Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
 
 
  3 *  S390 version
  4 *    Copyright IBM Corp. 1999
  5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
  6 *		 Ulrich Weigand (uweigand@de.ibm.com)
  7 *
  8 *  Derived from "arch/i386/mm/fault.c"
  9 *    Copyright (C) 1995  Linus Torvalds
 10 */
 11
 12#include <linux/kernel_stat.h>
 13#include <linux/mmu_context.h>
 14#include <linux/perf_event.h>
 15#include <linux/signal.h>
 16#include <linux/sched.h>
 17#include <linux/sched/debug.h>
 18#include <linux/jump_label.h>
 19#include <linux/kernel.h>
 20#include <linux/errno.h>
 21#include <linux/string.h>
 22#include <linux/types.h>
 23#include <linux/ptrace.h>
 24#include <linux/mman.h>
 25#include <linux/mm.h>
 26#include <linux/compat.h>
 27#include <linux/smp.h>
 28#include <linux/kdebug.h>
 29#include <linux/init.h>
 30#include <linux/console.h>
 31#include <linux/extable.h>
 32#include <linux/hardirq.h>
 33#include <linux/kprobes.h>
 34#include <linux/uaccess.h>
 35#include <linux/hugetlb.h>
 36#include <linux/kfence.h>
 37#include <asm/asm-extable.h>
 38#include <asm/asm-offsets.h>
 39#include <asm/ptrace.h>
 40#include <asm/fault.h>
 41#include <asm/diag.h>
 42#include <asm/gmap.h>
 43#include <asm/irq.h>
 44#include <asm/facility.h>
 45#include <asm/uv.h>
 46#include "../kernel/entry.h"
 47
 48enum fault_type {
 49	KERNEL_FAULT,
 50	USER_FAULT,
 51	GMAP_FAULT,
 52};
 
 
 
 
 
 
 
 
 53
 54static DEFINE_STATIC_KEY_FALSE(have_store_indication);
 55
 56static int __init fault_init(void)
 57{
 58	if (test_facility(75))
 59		static_branch_enable(&have_store_indication);
 60	return 0;
 61}
 62early_initcall(fault_init);
 63
 64/*
 65 * Find out which address space caused the exception.
 66 */
 67static enum fault_type get_fault_type(struct pt_regs *regs)
 68{
 69	union teid teid = { .val = regs->int_parm_long };
 70
 71	if (likely(teid.as == PSW_BITS_AS_PRIMARY)) {
 72		if (user_mode(regs))
 73			return USER_FAULT;
 74		if (!IS_ENABLED(CONFIG_PGSTE))
 75			return KERNEL_FAULT;
 76		if (test_pt_regs_flag(regs, PIF_GUEST_FAULT))
 77			return GMAP_FAULT;
 78		return KERNEL_FAULT;
 79	}
 80	if (teid.as == PSW_BITS_AS_SECONDARY)
 81		return USER_FAULT;
 82	/* Access register mode, not used in the kernel */
 83	if (teid.as == PSW_BITS_AS_ACCREG)
 84		return USER_FAULT;
 85	/* Home space -> access via kernel ASCE */
 86	return KERNEL_FAULT;
 87}
 88
 89static unsigned long get_fault_address(struct pt_regs *regs)
 90{
 91	union teid teid = { .val = regs->int_parm_long };
 92
 93	return teid.addr * PAGE_SIZE;
 94}
 95
 96static __always_inline bool fault_is_write(struct pt_regs *regs)
 97{
 98	union teid teid = { .val = regs->int_parm_long };
 99
100	if (static_branch_likely(&have_store_indication))
101		return teid.fsi == TEID_FSI_STORE;
102	return false;
103}
104
105static void dump_pagetable(unsigned long asce, unsigned long address)
106{
107	unsigned long entry, *table = __va(asce & _ASCE_ORIGIN);
108
109	pr_alert("AS:%016lx ", asce);
110	switch (asce & _ASCE_TYPE_MASK) {
111	case _ASCE_TYPE_REGION1:
112		table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
113		if (get_kernel_nofault(entry, table))
114			goto bad;
115		pr_cont("R1:%016lx ", entry);
116		if (entry & _REGION_ENTRY_INVALID)
117			goto out;
118		table = __va(entry & _REGION_ENTRY_ORIGIN);
119		fallthrough;
120	case _ASCE_TYPE_REGION2:
121		table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
122		if (get_kernel_nofault(entry, table))
123			goto bad;
124		pr_cont("R2:%016lx ", entry);
125		if (entry & _REGION_ENTRY_INVALID)
126			goto out;
127		table = __va(entry & _REGION_ENTRY_ORIGIN);
128		fallthrough;
129	case _ASCE_TYPE_REGION3:
130		table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
131		if (get_kernel_nofault(entry, table))
132			goto bad;
133		pr_cont("R3:%016lx ", entry);
134		if (entry & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
135			goto out;
136		table = __va(entry & _REGION_ENTRY_ORIGIN);
137		fallthrough;
138	case _ASCE_TYPE_SEGMENT:
139		table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
140		if (get_kernel_nofault(entry, table))
141			goto bad;
142		pr_cont("S:%016lx ", entry);
143		if (entry & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
144			goto out;
145		table = __va(entry & _SEGMENT_ENTRY_ORIGIN);
146	}
147	table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
148	if (get_kernel_nofault(entry, table))
149		goto bad;
150	pr_cont("P:%016lx ", entry);
151out:
152	pr_cont("\n");
153	return;
154bad:
155	pr_cont("BAD\n");
156}
157
158static void dump_fault_info(struct pt_regs *regs)
159{
160	union teid teid = { .val = regs->int_parm_long };
161	unsigned long asce;
162
163	pr_alert("Failing address: %016lx TEID: %016lx\n",
164		 get_fault_address(regs), teid.val);
165	pr_alert("Fault in ");
166	switch (teid.as) {
167	case PSW_BITS_AS_HOME:
168		pr_cont("home space ");
169		break;
170	case PSW_BITS_AS_SECONDARY:
171		pr_cont("secondary space ");
172		break;
173	case PSW_BITS_AS_ACCREG:
174		pr_cont("access register ");
175		break;
176	case PSW_BITS_AS_PRIMARY:
177		pr_cont("primary space ");
178		break;
179	}
180	pr_cont("mode while using ");
181	switch (get_fault_type(regs)) {
182	case USER_FAULT:
183		asce = S390_lowcore.user_asce.val;
184		pr_cont("user ");
185		break;
186	case GMAP_FAULT:
187		asce = ((struct gmap *)S390_lowcore.gmap)->asce;
188		pr_cont("gmap ");
189		break;
190	case KERNEL_FAULT:
191		asce = S390_lowcore.kernel_asce.val;
192		pr_cont("kernel ");
193		break;
194	default:
195		unreachable();
196	}
197	pr_cont("ASCE.\n");
198	dump_pagetable(asce, get_fault_address(regs));
199}
200
201int show_unhandled_signals = 1;
202
203void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
 
 
 
 
204{
205	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
207	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
208		return;
209	if (!unhandled_signal(current, signr))
210		return;
211	if (!__ratelimit(&rs))
212		return;
213	pr_alert("User process fault: interruption code %04x ilc:%d ",
214		 regs->int_code & 0xffff, regs->int_code >> 17);
215	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
216	pr_cont("\n");
217	if (is_mm_fault)
218		dump_fault_info(regs);
219	show_regs(regs);
220}
221
222static void do_sigsegv(struct pt_regs *regs, int si_code)
 
 
 
 
 
223{
224	report_user_fault(regs, SIGSEGV, 1);
225	force_sig_fault(SIGSEGV, si_code, (void __user *)get_fault_address(regs));
 
 
 
 
 
 
 
 
 
226}
227
228static void handle_fault_error_nolock(struct pt_regs *regs, int si_code)
 
229{
230	enum fault_type fault_type;
231	unsigned long address;
232	bool is_write;
233
234	if (user_mode(regs)) {
235		if (WARN_ON_ONCE(!si_code))
236			si_code = SEGV_MAPERR;
237		return do_sigsegv(regs, si_code);
238	}
239	if (fixup_exception(regs))
240		return;
241	fault_type = get_fault_type(regs);
242	if (fault_type == KERNEL_FAULT) {
243		address = get_fault_address(regs);
244		is_write = fault_is_write(regs);
245		if (kfence_handle_page_fault(address, is_write, regs))
246			return;
247	}
248	if (fault_type == KERNEL_FAULT)
249		pr_alert("Unable to handle kernel pointer dereference in virtual kernel address space\n");
 
 
 
 
 
 
 
250	else
251		pr_alert("Unable to handle kernel paging request in virtual user address space\n");
252	dump_fault_info(regs);
253	die(regs, "Oops");
 
 
254}
255
256static void handle_fault_error(struct pt_regs *regs, int si_code)
 
257{
258	struct mm_struct *mm = current->mm;
 
 
 
 
 
 
259
260	mmap_read_unlock(mm);
261	handle_fault_error_nolock(regs, si_code);
262}
263
264static void do_sigbus(struct pt_regs *regs)
 
265{
266	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)get_fault_address(regs));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267}
268
269/*
270 * This routine handles page faults.  It determines the address,
271 * and the problem, and then passes it off to one of the appropriate
272 * routines.
273 *
274 * interruption code (int_code):
275 *   04       Protection	   ->  Write-Protection  (suppression)
276 *   10       Segment translation  ->  Not present	 (nullification)
277 *   11       Page translation	   ->  Not present	 (nullification)
278 *   3b       Region third trans.  ->  Not present	 (nullification)
279 */
280static void do_exception(struct pt_regs *regs, int access)
 
281{
 
 
282	struct vm_area_struct *vma;
283	unsigned long address;
284	struct mm_struct *mm;
285	enum fault_type type;
286	unsigned int flags;
287	struct gmap *gmap;
288	vm_fault_t fault;
289	bool is_write;
 
 
 
 
290
291	/*
292	 * The instruction that caused the program check has
293	 * been nullified. Don't signal single step via SIGTRAP.
 
294	 */
295	clear_thread_flag(TIF_PER_TRAP);
296	if (kprobe_page_fault(regs, 14))
297		return;
298	mm = current->mm;
299	address = get_fault_address(regs);
300	is_write = fault_is_write(regs);
301	type = get_fault_type(regs);
302	switch (type) {
303	case KERNEL_FAULT:
304		return handle_fault_error_nolock(regs, 0);
305	case USER_FAULT:
306	case GMAP_FAULT:
307		if (faulthandler_disabled() || !mm)
308			return handle_fault_error_nolock(regs, 0);
309		break;
310	}
311	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
312	flags = FAULT_FLAG_DEFAULT;
313	if (user_mode(regs))
314		flags |= FAULT_FLAG_USER;
315	if (is_write)
316		access = VM_WRITE;
317	if (access == VM_WRITE)
318		flags |= FAULT_FLAG_WRITE;
319	if (!(flags & FAULT_FLAG_USER))
320		goto lock_mmap;
321	vma = lock_vma_under_rcu(mm, address);
322	if (!vma)
323		goto lock_mmap;
324	if (!(vma->vm_flags & access)) {
325		vma_end_read(vma);
326		goto lock_mmap;
327	}
328	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
329	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
330		vma_end_read(vma);
331	if (!(fault & VM_FAULT_RETRY)) {
332		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
333		if (unlikely(fault & VM_FAULT_ERROR))
334			goto error;
335		return;
336	}
337	count_vm_vma_lock_event(VMA_LOCK_RETRY);
338	if (fault & VM_FAULT_MAJOR)
339		flags |= FAULT_FLAG_TRIED;
340
341	/* Quick path to respond to signals */
342	if (fault_signal_pending(fault, regs)) {
343		if (!user_mode(regs))
344			handle_fault_error_nolock(regs, 0);
345		return;
346	}
347lock_mmap:
348	mmap_read_lock(mm);
349	gmap = NULL;
350	if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
351		gmap = (struct gmap *)S390_lowcore.gmap;
352		current->thread.gmap_addr = address;
353		current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
354		current->thread.gmap_int_code = regs->int_code & 0xffff;
355		address = __gmap_translate(gmap, address);
356		if (address == -EFAULT)
357			return handle_fault_error(regs, SEGV_MAPERR);
358		if (gmap->pfault_enabled)
359			flags |= FAULT_FLAG_RETRY_NOWAIT;
360	}
 
 
361retry:
 
362	vma = find_vma(mm, address);
363	if (!vma)
364		return handle_fault_error(regs, SEGV_MAPERR);
 
365	if (unlikely(vma->vm_start > address)) {
366		if (!(vma->vm_flags & VM_GROWSDOWN))
367			return handle_fault_error(regs, SEGV_MAPERR);
368		vma = expand_stack(mm, address);
369		if (!vma)
370			return handle_fault_error_nolock(regs, SEGV_MAPERR);
371	}
 
 
 
 
 
 
372	if (unlikely(!(vma->vm_flags & access)))
373		return handle_fault_error(regs, SEGV_ACCERR);
374	fault = handle_mm_fault(vma, address, flags, regs);
375	if (fault_signal_pending(fault, regs)) {
376		if (flags & FAULT_FLAG_RETRY_NOWAIT)
377			mmap_read_unlock(mm);
378		if (!user_mode(regs))
379			handle_fault_error_nolock(regs, 0);
380		return;
381	}
382	/* The fault is fully completed (including releasing mmap lock) */
383	if (fault & VM_FAULT_COMPLETED) {
384		if (gmap) {
385			mmap_read_lock(mm);
386			goto gmap;
387		}
388		return;
389	}
390	if (unlikely(fault & VM_FAULT_ERROR)) {
391		mmap_read_unlock(mm);
392		goto error;
393	}
394	if (fault & VM_FAULT_RETRY) {
395		if (IS_ENABLED(CONFIG_PGSTE) && gmap &&	(flags & FAULT_FLAG_RETRY_NOWAIT)) {
396			/*
397			 * FAULT_FLAG_RETRY_NOWAIT has been set,
398			 * mmap_lock has not been released
399			 */
400			current->thread.gmap_pfault = 1;
401			return handle_fault_error(regs, 0);
402		}
403		flags &= ~FAULT_FLAG_RETRY_NOWAIT;
404		flags |= FAULT_FLAG_TRIED;
405		mmap_read_lock(mm);
406		goto retry;
407	}
408gmap:
409	if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
410		address =  __gmap_link(gmap, current->thread.gmap_addr,
411				       address);
412		if (address == -EFAULT)
413			return handle_fault_error(regs, SEGV_MAPERR);
414		if (address == -ENOMEM) {
415			fault = VM_FAULT_OOM;
416			mmap_read_unlock(mm);
417			goto error;
418		}
419	}
420	mmap_read_unlock(mm);
421	return;
422error:
423	if (fault & VM_FAULT_OOM) {
424		if (!user_mode(regs))
425			handle_fault_error_nolock(regs, 0);
426		else
427			pagefault_out_of_memory();
428	} else if (fault & VM_FAULT_SIGSEGV) {
429		if (!user_mode(regs))
430			handle_fault_error_nolock(regs, 0);
431		else
432			do_sigsegv(regs, SEGV_MAPERR);
433	} else if (fault & VM_FAULT_SIGBUS) {
434		if (!user_mode(regs))
435			handle_fault_error_nolock(regs, 0);
436		else
437			do_sigbus(regs);
438	} else {
439		BUG();
440	}
441}
442
443void do_protection_exception(struct pt_regs *regs)
 
444{
445	union teid teid = { .val = regs->int_parm_long };
446
447	/*
448	 * Protection exceptions are suppressing, decrement psw address.
449	 * The exception to this rule are aborted transactions, for these
450	 * the PSW already points to the correct location.
451	 */
452	if (!(regs->int_code & 0x200))
453		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
454	/*
455	 * Check for low-address protection.  This needs to be treated
456	 * as a special case because the translation exception code
457	 * field is not guaranteed to contain valid data in this case.
458	 */
459	if (unlikely(!teid.b61)) {
460		if (user_mode(regs)) {
461			/* Low-address protection in user mode: cannot happen */
462			die(regs, "Low-address protection");
463		}
464		/*
465		 * Low-address protection in kernel mode means
466		 * NULL pointer write access in kernel mode.
467		 */
468		return handle_fault_error_nolock(regs, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469	}
470	if (unlikely(MACHINE_HAS_NX && teid.b56)) {
471		regs->int_parm_long = (teid.addr * PAGE_SIZE) | (regs->psw.addr & PAGE_MASK);
472		return handle_fault_error_nolock(regs, SEGV_ACCERR);
 
 
473	}
474	do_exception(regs, VM_WRITE);
 
 
475}
476NOKPROBE_SYMBOL(do_protection_exception);
477
478void do_dat_exception(struct pt_regs *regs)
479{
480	do_exception(regs, VM_ACCESS_FLAGS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
481}
482NOKPROBE_SYMBOL(do_dat_exception);
483
484#if IS_ENABLED(CONFIG_PGSTE)
 
 
 
 
485
486void do_secure_storage_access(struct pt_regs *regs)
487{
488	union teid teid = { .val = regs->int_parm_long };
489	unsigned long addr = get_fault_address(regs);
490	struct vm_area_struct *vma;
491	struct mm_struct *mm;
492	struct page *page;
493	struct gmap *gmap;
494	int rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495
496	/*
497	 * Bit 61 indicates if the address is valid, if it is not the
498	 * kernel should be stopped or SIGSEGV should be sent to the
499	 * process. Bit 61 is not reliable without the misc UV feature,
500	 * therefore this needs to be checked too.
501	 */
502	if (uv_has_feature(BIT_UV_FEAT_MISC) && !teid.b61) {
503		/*
504		 * When this happens, userspace did something that it
505		 * was not supposed to do, e.g. branching into secure
506		 * memory. Trigger a segmentation fault.
507		 */
508		if (user_mode(regs)) {
509			send_sig(SIGSEGV, current, 0);
 
 
 
 
 
510			return;
511		}
512		/*
513		 * The kernel should never run into this case and
514		 * there is no way out of this situation.
515		 */
516		panic("Unexpected PGM 0x3d with TEID bit 61=0");
517	}
518	switch (get_fault_type(regs)) {
519	case GMAP_FAULT:
520		mm = current->mm;
521		gmap = (struct gmap *)S390_lowcore.gmap;
522		mmap_read_lock(mm);
523		addr = __gmap_translate(gmap, addr);
524		mmap_read_unlock(mm);
525		if (IS_ERR_VALUE(addr))
526			return handle_fault_error_nolock(regs, SEGV_MAPERR);
527		fallthrough;
528	case USER_FAULT:
529		mm = current->mm;
530		mmap_read_lock(mm);
531		vma = find_vma(mm, addr);
532		if (!vma)
533			return handle_fault_error(regs, SEGV_MAPERR);
534		page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET);
535		if (IS_ERR_OR_NULL(page)) {
536			mmap_read_unlock(mm);
537			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
538		}
539		if (arch_make_page_accessible(page))
540			send_sig(SIGSEGV, current, 0);
541		put_page(page);
542		mmap_read_unlock(mm);
543		break;
544	case KERNEL_FAULT:
545		page = phys_to_page(addr);
546		if (unlikely(!try_get_page(page)))
547			break;
548		rc = arch_make_page_accessible(page);
549		put_page(page);
550		if (rc)
551			BUG();
552		break;
553	default:
554		unreachable();
555	}
 
556}
557NOKPROBE_SYMBOL(do_secure_storage_access);
558
559void do_non_secure_storage_access(struct pt_regs *regs)
 
560{
561	struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
562	unsigned long gaddr = get_fault_address(regs);
563
564	if (WARN_ON_ONCE(get_fault_type(regs) != GMAP_FAULT))
565		return handle_fault_error_nolock(regs, SEGV_MAPERR);
566	if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL)
567		send_sig(SIGSEGV, current, 0);
 
 
 
 
 
 
 
 
 
 
 
 
568}
569NOKPROBE_SYMBOL(do_non_secure_storage_access);
570
571void do_secure_storage_violation(struct pt_regs *regs)
572{
573	struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
574	unsigned long gaddr = get_fault_address(regs);
575
576	/*
577	 * If the VM has been rebooted, its address space might still contain
578	 * secure pages from the previous boot.
579	 * Clear the page so it can be reused.
580	 */
581	if (!gmap_destroy_page(gmap, gaddr))
582		return;
583	/*
584	 * Either KVM messed up the secure guest mapping or the same
585	 * page is mapped into multiple secure guests.
586	 *
587	 * This exception is only triggered when a guest 2 is running
588	 * and can therefore never occur in kernel context.
589	 */
590	pr_warn_ratelimited("Secure storage violation in task: %s, pid %d\n",
591			    current->comm, current->pid);
592	send_sig(SIGSEGV, current, 0);
593}
 
594
595#endif /* CONFIG_PGSTE */
v3.1
 
  1/*
  2 *  arch/s390/mm/fault.c
  3 *
  4 *  S390 version
  5 *    Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
  6 *    Author(s): Hartmut Penner (hp@de.ibm.com)
  7 *               Ulrich Weigand (uweigand@de.ibm.com)
  8 *
  9 *  Derived from "arch/i386/mm/fault.c"
 10 *    Copyright (C) 1995  Linus Torvalds
 11 */
 12
 13#include <linux/kernel_stat.h>
 
 14#include <linux/perf_event.h>
 15#include <linux/signal.h>
 16#include <linux/sched.h>
 
 
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/ptrace.h>
 22#include <linux/mman.h>
 23#include <linux/mm.h>
 24#include <linux/compat.h>
 25#include <linux/smp.h>
 26#include <linux/kdebug.h>
 27#include <linux/init.h>
 28#include <linux/console.h>
 29#include <linux/module.h>
 30#include <linux/hardirq.h>
 31#include <linux/kprobes.h>
 32#include <linux/uaccess.h>
 33#include <linux/hugetlb.h>
 
 
 34#include <asm/asm-offsets.h>
 35#include <asm/system.h>
 36#include <asm/pgtable.h>
 
 
 37#include <asm/irq.h>
 38#include <asm/mmu_context.h>
 39#include <asm/compat.h>
 40#include "../kernel/entry.h"
 41
 42#ifndef CONFIG_64BIT
 43#define __FAIL_ADDR_MASK 0x7ffff000
 44#define __SUBCODE_MASK 0x0200
 45#define __PF_RES_FIELD 0ULL
 46#else /* CONFIG_64BIT */
 47#define __FAIL_ADDR_MASK -4096L
 48#define __SUBCODE_MASK 0x0600
 49#define __PF_RES_FIELD 0x8000000000000000ULL
 50#endif /* CONFIG_64BIT */
 51
 52#define VM_FAULT_BADCONTEXT	0x010000
 53#define VM_FAULT_BADMAP		0x020000
 54#define VM_FAULT_BADACCESS	0x040000
 55
 56static unsigned long store_indication;
 57
 58void fault_init(void)
 59{
 60	if (test_facility(2) && test_facility(75))
 61		store_indication = 0xc00;
 
 62}
 
 63
 64static inline int notify_page_fault(struct pt_regs *regs)
 
 
 
 65{
 66	int ret = 0;
 67
 68	/* kprobe_running() needs smp_processor_id() */
 69	if (kprobes_built_in() && !user_mode(regs)) {
 70		preempt_disable();
 71		if (kprobe_running() && kprobe_fault_handler(regs, 14))
 72			ret = 1;
 73		preempt_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74	}
 75	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 76}
 77
 
 78
 79/*
 80 * Unlock any spinlocks which will prevent us from getting the
 81 * message out.
 82 */
 83void bust_spinlocks(int yes)
 84{
 85	if (yes) {
 86		oops_in_progress = 1;
 87	} else {
 88		int loglevel_save = console_loglevel;
 89		console_unblank();
 90		oops_in_progress = 0;
 91		/*
 92		 * OK, the message is on the console.  Now we call printk()
 93		 * without oops_in_progress set so that printk will give klogd
 94		 * a poke.  Hold onto your hats...
 95		 */
 96		console_loglevel = 15;
 97		printk(" ");
 98		console_loglevel = loglevel_save;
 99	}
100}
101
102/*
103 * Returns the address space associated with the fault.
104 * Returns 0 for kernel space and 1 for user space.
105 */
106static inline int user_space_fault(unsigned long trans_exc_code)
107{
108	/*
109	 * The lowest two bits of the translation exception
110	 * identification indicate which paging table was used.
111	 */
112	trans_exc_code &= 3;
113	if (trans_exc_code == 2)
114		/* Access via secondary space, set_fs setting decides */
115		return current->thread.mm_segment.ar4;
116	if (user_mode == HOME_SPACE_MODE)
117		/* User space if the access has been done via home space. */
118		return trans_exc_code == 3;
119	/*
120	 * If the user space is not the home space the kernel runs in home
121	 * space. Access via secondary space has already been covered,
122	 * access via primary space or access register is from user space
123	 * and access via home space is from the kernel.
124	 */
125	return trans_exc_code != 3;
126}
127
128static inline void report_user_fault(struct pt_regs *regs, long int_code,
129				     int signr, unsigned long address)
130{
131	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
132		return;
133	if (!unhandled_signal(current, signr))
134		return;
135	if (!printk_ratelimit())
136		return;
137	printk("User process fault: interruption code 0x%lX ", int_code);
138	print_vma_addr(KERN_CONT "in ", regs->psw.addr & PSW_ADDR_INSN);
139	printk("\n");
140	printk("failing address: %lX\n", address);
 
 
141	show_regs(regs);
142}
143
144/*
145 * Send SIGSEGV to task.  This is an external routine
146 * to keep the stack usage of do_page_fault small.
147 */
148static noinline void do_sigsegv(struct pt_regs *regs, long int_code,
149				int si_code, unsigned long trans_exc_code)
150{
151	struct siginfo si;
152	unsigned long address;
153
154	address = trans_exc_code & __FAIL_ADDR_MASK;
155	current->thread.prot_addr = address;
156	current->thread.trap_no = int_code;
157	report_user_fault(regs, int_code, SIGSEGV, address);
158	si.si_signo = SIGSEGV;
159	si.si_code = si_code;
160	si.si_addr = (void __user *) address;
161	force_sig_info(SIGSEGV, &si, current);
162}
163
164static noinline void do_no_context(struct pt_regs *regs, long int_code,
165				   unsigned long trans_exc_code)
166{
167	const struct exception_table_entry *fixup;
168	unsigned long address;
 
169
170	/* Are we prepared to handle this kernel fault?  */
171	fixup = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
172	if (fixup) {
173		regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE;
 
 
174		return;
 
 
 
 
 
 
175	}
176
177	/*
178	 * Oops. The kernel tried to access some bad page. We'll have to
179	 * terminate things with extreme prejudice.
180	 */
181	address = trans_exc_code & __FAIL_ADDR_MASK;
182	if (!user_space_fault(trans_exc_code))
183		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
184		       " at virtual kernel address %p\n", (void *)address);
185	else
186		printk(KERN_ALERT "Unable to handle kernel paging request"
187		       " at virtual user address %p\n", (void *)address);
188
189	die("Oops", regs, int_code);
190	do_exit(SIGKILL);
191}
192
193static noinline void do_low_address(struct pt_regs *regs, long int_code,
194				    unsigned long trans_exc_code)
195{
196	/* Low-address protection hit in kernel mode means
197	   NULL pointer write access in kernel mode.  */
198	if (regs->psw.mask & PSW_MASK_PSTATE) {
199		/* Low-address protection hit in user mode 'cannot happen'. */
200		die ("Low-address protection", regs, int_code);
201		do_exit(SIGKILL);
202	}
203
204	do_no_context(regs, int_code, trans_exc_code);
 
205}
206
207static noinline void do_sigbus(struct pt_regs *regs, long int_code,
208			       unsigned long trans_exc_code)
209{
210	struct task_struct *tsk = current;
211	unsigned long address;
212	struct siginfo si;
213
214	/*
215	 * Send a sigbus, regardless of whether we were in kernel
216	 * or user mode.
217	 */
218	address = trans_exc_code & __FAIL_ADDR_MASK;
219	tsk->thread.prot_addr = address;
220	tsk->thread.trap_no = int_code;
221	si.si_signo = SIGBUS;
222	si.si_errno = 0;
223	si.si_code = BUS_ADRERR;
224	si.si_addr = (void __user *) address;
225	force_sig_info(SIGBUS, &si, tsk);
226}
227
228static noinline void do_fault_error(struct pt_regs *regs, long int_code,
229				    unsigned long trans_exc_code, int fault)
230{
231	int si_code;
232
233	switch (fault) {
234	case VM_FAULT_BADACCESS:
235	case VM_FAULT_BADMAP:
236		/* Bad memory access. Check if it is kernel or user space. */
237		if (regs->psw.mask & PSW_MASK_PSTATE) {
238			/* User mode accesses just cause a SIGSEGV */
239			si_code = (fault == VM_FAULT_BADMAP) ?
240				SEGV_MAPERR : SEGV_ACCERR;
241			do_sigsegv(regs, int_code, si_code, trans_exc_code);
242			return;
243		}
244	case VM_FAULT_BADCONTEXT:
245		do_no_context(regs, int_code, trans_exc_code);
246		break;
247	default: /* fault & VM_FAULT_ERROR */
248		if (fault & VM_FAULT_OOM) {
249			if (!(regs->psw.mask & PSW_MASK_PSTATE))
250				do_no_context(regs, int_code, trans_exc_code);
251			else
252				pagefault_out_of_memory();
253		} else if (fault & VM_FAULT_SIGBUS) {
254			/* Kernel mode? Handle exceptions or die */
255			if (!(regs->psw.mask & PSW_MASK_PSTATE))
256				do_no_context(regs, int_code, trans_exc_code);
257			else
258				do_sigbus(regs, int_code, trans_exc_code);
259		} else
260			BUG();
261		break;
262	}
263}
264
265/*
266 * This routine handles page faults.  It determines the address,
267 * and the problem, and then passes it off to one of the appropriate
268 * routines.
269 *
270 * interruption code (int_code):
271 *   04       Protection           ->  Write-Protection  (suprression)
272 *   10       Segment translation  ->  Not present       (nullification)
273 *   11       Page translation     ->  Not present       (nullification)
274 *   3b       Region third trans.  ->  Not present       (nullification)
275 */
276static inline int do_exception(struct pt_regs *regs, int access,
277			       unsigned long trans_exc_code)
278{
279	struct task_struct *tsk;
280	struct mm_struct *mm;
281	struct vm_area_struct *vma;
282	unsigned long address;
 
 
283	unsigned int flags;
284	int fault;
285
286	if (notify_page_fault(regs))
287		return 0;
288
289	tsk = current;
290	mm = tsk->mm;
291
292	/*
293	 * Verify that the fault happened in user space, that
294	 * we are not in an interrupt and that there is a 
295	 * user context.
296	 */
297	fault = VM_FAULT_BADCONTEXT;
298	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
299		goto out;
300
301	address = trans_exc_code & __FAIL_ADDR_MASK;
 
 
 
 
 
 
 
 
 
 
 
302	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
303	flags = FAULT_FLAG_ALLOW_RETRY;
304	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
 
 
 
 
305		flags |= FAULT_FLAG_WRITE;
306	down_read(&mm->mmap_sem);
307
308#ifdef CONFIG_PGSTE
309	if (test_tsk_thread_flag(current, TIF_SIE) && S390_lowcore.gmap) {
310		address = gmap_fault(address,
311				     (struct gmap *) S390_lowcore.gmap);
312		if (address == -EFAULT) {
313			fault = VM_FAULT_BADMAP;
314			goto out_up;
315		}
316		if (address == -ENOMEM) {
317			fault = VM_FAULT_OOM;
318			goto out_up;
319		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320	}
321#endif
322
323retry:
324	fault = VM_FAULT_BADMAP;
325	vma = find_vma(mm, address);
326	if (!vma)
327		goto out_up;
328
329	if (unlikely(vma->vm_start > address)) {
330		if (!(vma->vm_flags & VM_GROWSDOWN))
331			goto out_up;
332		if (expand_stack(vma, address))
333			goto out_up;
 
334	}
335
336	/*
337	 * Ok, we have a good vm_area for this memory access, so
338	 * we can handle it..
339	 */
340	fault = VM_FAULT_BADACCESS;
341	if (unlikely(!(vma->vm_flags & access)))
342		goto out_up;
343
344	if (is_vm_hugetlb_page(vma))
345		address &= HPAGE_MASK;
346	/*
347	 * If for any reason at all we couldn't handle the fault,
348	 * make sure we exit gracefully rather than endlessly redo
349	 * the fault.
350	 */
351	fault = handle_mm_fault(mm, vma, address, flags);
352	if (unlikely(fault & VM_FAULT_ERROR))
353		goto out_up;
354
355	/*
356	 * Major/minor page fault accounting is only done on the
357	 * initial attempt. If we go through a retry, it is extremely
358	 * likely that the page will be found in page cache at that point.
359	 */
360	if (flags & FAULT_FLAG_ALLOW_RETRY) {
361		if (fault & VM_FAULT_MAJOR) {
362			tsk->maj_flt++;
363			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
364				      regs, address);
365		} else {
366			tsk->min_flt++;
367			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
368				      regs, address);
 
 
369		}
370		if (fault & VM_FAULT_RETRY) {
371			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
372			 * of starvation. */
373			flags &= ~FAULT_FLAG_ALLOW_RETRY;
374			down_read(&mm->mmap_sem);
375			goto retry;
 
 
 
 
 
 
 
 
 
376		}
377	}
378	/*
379	 * The instruction that caused the program check will
380	 * be repeated. Don't signal single step via SIGTRAP.
381	 */
382	clear_tsk_thread_flag(tsk, TIF_PER_TRAP);
383	fault = 0;
384out_up:
385	up_read(&mm->mmap_sem);
386out:
387	return fault;
 
 
 
 
 
 
 
 
 
 
 
388}
389
390void __kprobes do_protection_exception(struct pt_regs *regs, long pgm_int_code,
391				       unsigned long trans_exc_code)
392{
393	int fault;
394
395	/* Protection exception is suppressing, decrement psw address. */
396	regs->psw.addr -= (pgm_int_code >> 16);
 
 
 
 
 
397	/*
398	 * Check for low-address protection.  This needs to be treated
399	 * as a special case because the translation exception code
400	 * field is not guaranteed to contain valid data in this case.
401	 */
402	if (unlikely(!(trans_exc_code & 4))) {
403		do_low_address(regs, pgm_int_code, trans_exc_code);
404		return;
405	}
406	fault = do_exception(regs, VM_WRITE, trans_exc_code);
407	if (unlikely(fault))
408		do_fault_error(regs, 4, trans_exc_code, fault);
409}
410
411void __kprobes do_dat_exception(struct pt_regs *regs, long pgm_int_code,
412				unsigned long trans_exc_code)
413{
414	int access, fault;
415
416	access = VM_READ | VM_EXEC | VM_WRITE;
417	fault = do_exception(regs, access, trans_exc_code);
418	if (unlikely(fault))
419		do_fault_error(regs, pgm_int_code & 255, trans_exc_code, fault);
420}
421
422#ifdef CONFIG_64BIT
423void __kprobes do_asce_exception(struct pt_regs *regs, long pgm_int_code,
424				 unsigned long trans_exc_code)
425{
426	struct mm_struct *mm = current->mm;
427	struct vm_area_struct *vma;
428
429	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
430		goto no_context;
431
432	down_read(&mm->mmap_sem);
433	vma = find_vma(mm, trans_exc_code & __FAIL_ADDR_MASK);
434	up_read(&mm->mmap_sem);
435
436	if (vma) {
437		update_mm(mm, current);
438		return;
439	}
440
441	/* User mode accesses just cause a SIGSEGV */
442	if (regs->psw.mask & PSW_MASK_PSTATE) {
443		do_sigsegv(regs, pgm_int_code, SEGV_MAPERR, trans_exc_code);
444		return;
445	}
446
447no_context:
448	do_no_context(regs, pgm_int_code, trans_exc_code);
449}
450#endif
451
452int __handle_fault(unsigned long uaddr, unsigned long pgm_int_code, int write)
453{
454	struct pt_regs regs;
455	int access, fault;
456
457	regs.psw.mask = psw_kernel_bits;
458	if (!irqs_disabled())
459		regs.psw.mask |= PSW_MASK_IO | PSW_MASK_EXT;
460	regs.psw.addr = (unsigned long) __builtin_return_address(0);
461	regs.psw.addr |= PSW_ADDR_AMODE;
462	uaddr &= PAGE_MASK;
463	access = write ? VM_WRITE : VM_READ;
464	fault = do_exception(&regs, access, uaddr | 2);
465	if (unlikely(fault)) {
466		if (fault & VM_FAULT_OOM)
467			return -EFAULT;
468		else if (fault & VM_FAULT_SIGBUS)
469			do_sigbus(&regs, pgm_int_code, uaddr);
470	}
471	return fault ? -EFAULT : 0;
472}
 
473
474#ifdef CONFIG_PFAULT 
475/*
476 * 'pfault' pseudo page faults routines.
477 */
478static int pfault_disable;
479
480static int __init nopfault(char *str)
481{
482	pfault_disable = 1;
483	return 1;
484}
485
486__setup("nopfault", nopfault);
487
488struct pfault_refbk {
489	u16 refdiagc;
490	u16 reffcode;
491	u16 refdwlen;
492	u16 refversn;
493	u64 refgaddr;
494	u64 refselmk;
495	u64 refcmpmk;
496	u64 reserved;
497} __attribute__ ((packed, aligned(8)));
498
499int pfault_init(void)
500{
501	struct pfault_refbk refbk = {
502		.refdiagc = 0x258,
503		.reffcode = 0,
504		.refdwlen = 5,
505		.refversn = 2,
506		.refgaddr = __LC_CURRENT_PID,
507		.refselmk = 1ULL << 48,
508		.refcmpmk = 1ULL << 48,
509		.reserved = __PF_RES_FIELD };
510        int rc;
511
512	if (!MACHINE_IS_VM || pfault_disable)
513		return -1;
514	asm volatile(
515		"	diag	%1,%0,0x258\n"
516		"0:	j	2f\n"
517		"1:	la	%0,8\n"
518		"2:\n"
519		EX_TABLE(0b,1b)
520		: "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
521        return rc;
522}
523
524void pfault_fini(void)
525{
526	struct pfault_refbk refbk = {
527		.refdiagc = 0x258,
528		.reffcode = 1,
529		.refdwlen = 5,
530		.refversn = 2,
531	};
532
533	if (!MACHINE_IS_VM || pfault_disable)
534		return;
535	asm volatile(
536		"	diag	%0,0,0x258\n"
537		"0:\n"
538		EX_TABLE(0b,0b)
539		: : "a" (&refbk), "m" (refbk) : "cc");
540}
541
542static DEFINE_SPINLOCK(pfault_lock);
543static LIST_HEAD(pfault_list);
544
545static void pfault_interrupt(unsigned int ext_int_code,
546			     unsigned int param32, unsigned long param64)
547{
548	struct task_struct *tsk;
549	__u16 subcode;
550	pid_t pid;
551
552	/*
553	 * Get the external interruption subcode & pfault
554	 * initial/completion signal bit. VM stores this 
555	 * in the 'cpu address' field associated with the
556         * external interrupt. 
557	 */
558	subcode = ext_int_code >> 16;
559	if ((subcode & 0xff00) != __SUBCODE_MASK)
560		return;
561	kstat_cpu(smp_processor_id()).irqs[EXTINT_PFL]++;
562	if (subcode & 0x0080) {
563		/* Get the token (= pid of the affected task). */
564		pid = sizeof(void *) == 4 ? param32 : param64;
565		rcu_read_lock();
566		tsk = find_task_by_pid_ns(pid, &init_pid_ns);
567		if (tsk)
568			get_task_struct(tsk);
569		rcu_read_unlock();
570		if (!tsk)
571			return;
572	} else {
573		tsk = current;
 
 
 
 
574	}
575	spin_lock(&pfault_lock);
576	if (subcode & 0x0080) {
577		/* signal bit is set -> a page has been swapped in by VM */
578		if (tsk->thread.pfault_wait == 1) {
579			/* Initial interrupt was faster than the completion
580			 * interrupt. pfault_wait is valid. Set pfault_wait
581			 * back to zero and wake up the process. This can
582			 * safely be done because the task is still sleeping
583			 * and can't produce new pfaults. */
584			tsk->thread.pfault_wait = 0;
585			list_del(&tsk->thread.list);
586			wake_up_process(tsk);
587		} else {
588			/* Completion interrupt was faster than initial
589			 * interrupt. Set pfault_wait to -1 so the initial
590			 * interrupt doesn't put the task to sleep. */
591			tsk->thread.pfault_wait = -1;
592		}
593		put_task_struct(tsk);
594	} else {
595		/* signal bit not set -> a real page is missing. */
596		if (tsk->thread.pfault_wait == -1) {
597			/* Completion interrupt was faster than the initial
598			 * interrupt (pfault_wait == -1). Set pfault_wait
599			 * back to zero and exit. */
600			tsk->thread.pfault_wait = 0;
601		} else {
602			/* Initial interrupt arrived before completion
603			 * interrupt. Let the task sleep. */
604			tsk->thread.pfault_wait = 1;
605			list_add(&tsk->thread.list, &pfault_list);
606			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
607			set_tsk_need_resched(tsk);
608		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
609	}
610	spin_unlock(&pfault_lock);
611}
 
612
613static int __cpuinit pfault_cpu_notify(struct notifier_block *self,
614				       unsigned long action, void *hcpu)
615{
616	struct thread_struct *thread, *next;
617	struct task_struct *tsk;
618
619	switch (action) {
620	case CPU_DEAD:
621	case CPU_DEAD_FROZEN:
622		spin_lock_irq(&pfault_lock);
623		list_for_each_entry_safe(thread, next, &pfault_list, list) {
624			thread->pfault_wait = 0;
625			list_del(&thread->list);
626			tsk = container_of(thread, struct task_struct, thread);
627			wake_up_process(tsk);
628		}
629		spin_unlock_irq(&pfault_lock);
630		break;
631	default:
632		break;
633	}
634	return NOTIFY_OK;
635}
 
636
637static int __init pfault_irq_init(void)
638{
639	int rc;
 
640
641	if (!MACHINE_IS_VM)
642		return 0;
643	rc = register_external_interrupt(0x2603, pfault_interrupt);
644	if (rc)
645		goto out_extint;
646	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
647	if (rc)
648		goto out_pfault;
649	service_subclass_irq_register();
650	hotcpu_notifier(pfault_cpu_notify, 0);
651	return 0;
652
653out_pfault:
654	unregister_external_interrupt(0x2603, pfault_interrupt);
655out_extint:
656	pfault_disable = 1;
657	return rc;
658}
659early_initcall(pfault_irq_init);
660
661#endif /* CONFIG_PFAULT */