Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16#include <kvm/iodev.h>
17
18#include <linux/kvm_host.h>
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
22#include <linux/percpu.h>
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
26#include <linux/reboot.h>
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
30#include <linux/syscore_ops.h>
31#include <linux/cpu.h>
32#include <linux/sched/signal.h>
33#include <linux/sched/mm.h>
34#include <linux/sched/stat.h>
35#include <linux/cpumask.h>
36#include <linux/smp.h>
37#include <linux/anon_inodes.h>
38#include <linux/profile.h>
39#include <linux/kvm_para.h>
40#include <linux/pagemap.h>
41#include <linux/mman.h>
42#include <linux/swap.h>
43#include <linux/bitops.h>
44#include <linux/spinlock.h>
45#include <linux/compat.h>
46#include <linux/srcu.h>
47#include <linux/hugetlb.h>
48#include <linux/slab.h>
49#include <linux/sort.h>
50#include <linux/bsearch.h>
51#include <linux/io.h>
52#include <linux/lockdep.h>
53#include <linux/kthread.h>
54#include <linux/suspend.h>
55
56#include <asm/processor.h>
57#include <asm/ioctl.h>
58#include <linux/uaccess.h>
59
60#include "coalesced_mmio.h"
61#include "async_pf.h"
62#include "kvm_mm.h"
63#include "vfio.h"
64
65#define CREATE_TRACE_POINTS
66#include <trace/events/kvm.h>
67
68#include <linux/kvm_dirty_ring.h>
69
70/* Worst case buffer size needed for holding an integer. */
71#define ITOA_MAX_LEN 12
72
73MODULE_AUTHOR("Qumranet");
74MODULE_LICENSE("GPL");
75
76/* Architectures should define their poll value according to the halt latency */
77unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78module_param(halt_poll_ns, uint, 0644);
79EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81/* Default doubles per-vcpu halt_poll_ns. */
82unsigned int halt_poll_ns_grow = 2;
83module_param(halt_poll_ns_grow, uint, 0644);
84EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86/* The start value to grow halt_poll_ns from */
87unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88module_param(halt_poll_ns_grow_start, uint, 0644);
89EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91/* Default resets per-vcpu halt_poll_ns . */
92unsigned int halt_poll_ns_shrink;
93module_param(halt_poll_ns_shrink, uint, 0644);
94EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96/*
97 * Ordering of locks:
98 *
99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100 */
101
102DEFINE_MUTEX(kvm_lock);
103static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104LIST_HEAD(vm_list);
105
106static cpumask_var_t cpus_hardware_enabled;
107static int kvm_usage_count;
108static atomic_t hardware_enable_failed;
109
110static struct kmem_cache *kvm_vcpu_cache;
111
112static __read_mostly struct preempt_ops kvm_preempt_ops;
113static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115struct dentry *kvm_debugfs_dir;
116EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118static const struct file_operations stat_fops_per_vm;
119
120static struct file_operations kvm_chardev_ops;
121
122static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 unsigned long arg);
124#ifdef CONFIG_KVM_COMPAT
125static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 unsigned long arg);
127#define KVM_COMPAT(c) .compat_ioctl = (c)
128#else
129/*
130 * For architectures that don't implement a compat infrastructure,
131 * adopt a double line of defense:
132 * - Prevent a compat task from opening /dev/kvm
133 * - If the open has been done by a 64bit task, and the KVM fd
134 * passed to a compat task, let the ioctls fail.
135 */
136static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 unsigned long arg) { return -EINVAL; }
138
139static int kvm_no_compat_open(struct inode *inode, struct file *file)
140{
141 return is_compat_task() ? -ENODEV : 0;
142}
143#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
144 .open = kvm_no_compat_open
145#endif
146static int hardware_enable_all(void);
147static void hardware_disable_all(void);
148
149static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150
151__visible bool kvm_rebooting;
152EXPORT_SYMBOL_GPL(kvm_rebooting);
153
154#define KVM_EVENT_CREATE_VM 0
155#define KVM_EVENT_DESTROY_VM 1
156static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157static unsigned long long kvm_createvm_count;
158static unsigned long long kvm_active_vms;
159
160static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161
162__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163 unsigned long start, unsigned long end)
164{
165}
166
167__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168{
169}
170
171bool kvm_is_zone_device_page(struct page *page)
172{
173 /*
174 * The metadata used by is_zone_device_page() to determine whether or
175 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176 * the device has been pinned, e.g. by get_user_pages(). WARN if the
177 * page_count() is zero to help detect bad usage of this helper.
178 */
179 if (WARN_ON_ONCE(!page_count(page)))
180 return false;
181
182 return is_zone_device_page(page);
183}
184
185/*
186 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
187 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types
188 * is likely incomplete, it has been compiled purely through people wanting to
189 * back guest with a certain type of memory and encountering issues.
190 */
191struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
192{
193 struct page *page;
194
195 if (!pfn_valid(pfn))
196 return NULL;
197
198 page = pfn_to_page(pfn);
199 if (!PageReserved(page))
200 return page;
201
202 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
203 if (is_zero_pfn(pfn))
204 return page;
205
206 /*
207 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
208 * perspective they are "normal" pages, albeit with slightly different
209 * usage rules.
210 */
211 if (kvm_is_zone_device_page(page))
212 return page;
213
214 return NULL;
215}
216
217/*
218 * Switches to specified vcpu, until a matching vcpu_put()
219 */
220void vcpu_load(struct kvm_vcpu *vcpu)
221{
222 int cpu = get_cpu();
223
224 __this_cpu_write(kvm_running_vcpu, vcpu);
225 preempt_notifier_register(&vcpu->preempt_notifier);
226 kvm_arch_vcpu_load(vcpu, cpu);
227 put_cpu();
228}
229EXPORT_SYMBOL_GPL(vcpu_load);
230
231void vcpu_put(struct kvm_vcpu *vcpu)
232{
233 preempt_disable();
234 kvm_arch_vcpu_put(vcpu);
235 preempt_notifier_unregister(&vcpu->preempt_notifier);
236 __this_cpu_write(kvm_running_vcpu, NULL);
237 preempt_enable();
238}
239EXPORT_SYMBOL_GPL(vcpu_put);
240
241/* TODO: merge with kvm_arch_vcpu_should_kick */
242static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
243{
244 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
245
246 /*
247 * We need to wait for the VCPU to reenable interrupts and get out of
248 * READING_SHADOW_PAGE_TABLES mode.
249 */
250 if (req & KVM_REQUEST_WAIT)
251 return mode != OUTSIDE_GUEST_MODE;
252
253 /*
254 * Need to kick a running VCPU, but otherwise there is nothing to do.
255 */
256 return mode == IN_GUEST_MODE;
257}
258
259static void ack_kick(void *_completed)
260{
261}
262
263static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
264{
265 if (cpumask_empty(cpus))
266 return false;
267
268 smp_call_function_many(cpus, ack_kick, NULL, wait);
269 return true;
270}
271
272static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
273 struct cpumask *tmp, int current_cpu)
274{
275 int cpu;
276
277 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
278 __kvm_make_request(req, vcpu);
279
280 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
281 return;
282
283 /*
284 * Note, the vCPU could get migrated to a different pCPU at any point
285 * after kvm_request_needs_ipi(), which could result in sending an IPI
286 * to the previous pCPU. But, that's OK because the purpose of the IPI
287 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
288 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
289 * after this point is also OK, as the requirement is only that KVM wait
290 * for vCPUs that were reading SPTEs _before_ any changes were
291 * finalized. See kvm_vcpu_kick() for more details on handling requests.
292 */
293 if (kvm_request_needs_ipi(vcpu, req)) {
294 cpu = READ_ONCE(vcpu->cpu);
295 if (cpu != -1 && cpu != current_cpu)
296 __cpumask_set_cpu(cpu, tmp);
297 }
298}
299
300bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
301 unsigned long *vcpu_bitmap)
302{
303 struct kvm_vcpu *vcpu;
304 struct cpumask *cpus;
305 int i, me;
306 bool called;
307
308 me = get_cpu();
309
310 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
311 cpumask_clear(cpus);
312
313 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
314 vcpu = kvm_get_vcpu(kvm, i);
315 if (!vcpu)
316 continue;
317 kvm_make_vcpu_request(vcpu, req, cpus, me);
318 }
319
320 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
321 put_cpu();
322
323 return called;
324}
325
326bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
327 struct kvm_vcpu *except)
328{
329 struct kvm_vcpu *vcpu;
330 struct cpumask *cpus;
331 unsigned long i;
332 bool called;
333 int me;
334
335 me = get_cpu();
336
337 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
338 cpumask_clear(cpus);
339
340 kvm_for_each_vcpu(i, vcpu, kvm) {
341 if (vcpu == except)
342 continue;
343 kvm_make_vcpu_request(vcpu, req, cpus, me);
344 }
345
346 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
347 put_cpu();
348
349 return called;
350}
351
352bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
353{
354 return kvm_make_all_cpus_request_except(kvm, req, NULL);
355}
356EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
357
358#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
359void kvm_flush_remote_tlbs(struct kvm *kvm)
360{
361 ++kvm->stat.generic.remote_tlb_flush_requests;
362
363 /*
364 * We want to publish modifications to the page tables before reading
365 * mode. Pairs with a memory barrier in arch-specific code.
366 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
367 * and smp_mb in walk_shadow_page_lockless_begin/end.
368 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
369 *
370 * There is already an smp_mb__after_atomic() before
371 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
372 * barrier here.
373 */
374 if (!kvm_arch_flush_remote_tlb(kvm)
375 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
376 ++kvm->stat.generic.remote_tlb_flush;
377}
378EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
379#endif
380
381static void kvm_flush_shadow_all(struct kvm *kvm)
382{
383 kvm_arch_flush_shadow_all(kvm);
384 kvm_arch_guest_memory_reclaimed(kvm);
385}
386
387#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
388static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
389 gfp_t gfp_flags)
390{
391 gfp_flags |= mc->gfp_zero;
392
393 if (mc->kmem_cache)
394 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
395 else
396 return (void *)__get_free_page(gfp_flags);
397}
398
399int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
400{
401 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
402 void *obj;
403
404 if (mc->nobjs >= min)
405 return 0;
406
407 if (unlikely(!mc->objects)) {
408 if (WARN_ON_ONCE(!capacity))
409 return -EIO;
410
411 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
412 if (!mc->objects)
413 return -ENOMEM;
414
415 mc->capacity = capacity;
416 }
417
418 /* It is illegal to request a different capacity across topups. */
419 if (WARN_ON_ONCE(mc->capacity != capacity))
420 return -EIO;
421
422 while (mc->nobjs < mc->capacity) {
423 obj = mmu_memory_cache_alloc_obj(mc, gfp);
424 if (!obj)
425 return mc->nobjs >= min ? 0 : -ENOMEM;
426 mc->objects[mc->nobjs++] = obj;
427 }
428 return 0;
429}
430
431int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
432{
433 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
434}
435
436int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
437{
438 return mc->nobjs;
439}
440
441void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
442{
443 while (mc->nobjs) {
444 if (mc->kmem_cache)
445 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
446 else
447 free_page((unsigned long)mc->objects[--mc->nobjs]);
448 }
449
450 kvfree(mc->objects);
451
452 mc->objects = NULL;
453 mc->capacity = 0;
454}
455
456void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
457{
458 void *p;
459
460 if (WARN_ON(!mc->nobjs))
461 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
462 else
463 p = mc->objects[--mc->nobjs];
464 BUG_ON(!p);
465 return p;
466}
467#endif
468
469static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
470{
471 mutex_init(&vcpu->mutex);
472 vcpu->cpu = -1;
473 vcpu->kvm = kvm;
474 vcpu->vcpu_id = id;
475 vcpu->pid = NULL;
476#ifndef __KVM_HAVE_ARCH_WQP
477 rcuwait_init(&vcpu->wait);
478#endif
479 kvm_async_pf_vcpu_init(vcpu);
480
481 kvm_vcpu_set_in_spin_loop(vcpu, false);
482 kvm_vcpu_set_dy_eligible(vcpu, false);
483 vcpu->preempted = false;
484 vcpu->ready = false;
485 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
486 vcpu->last_used_slot = NULL;
487
488 /* Fill the stats id string for the vcpu */
489 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
490 task_pid_nr(current), id);
491}
492
493static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
494{
495 kvm_arch_vcpu_destroy(vcpu);
496 kvm_dirty_ring_free(&vcpu->dirty_ring);
497
498 /*
499 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
500 * the vcpu->pid pointer, and at destruction time all file descriptors
501 * are already gone.
502 */
503 put_pid(rcu_dereference_protected(vcpu->pid, 1));
504
505 free_page((unsigned long)vcpu->run);
506 kmem_cache_free(kvm_vcpu_cache, vcpu);
507}
508
509void kvm_destroy_vcpus(struct kvm *kvm)
510{
511 unsigned long i;
512 struct kvm_vcpu *vcpu;
513
514 kvm_for_each_vcpu(i, vcpu, kvm) {
515 kvm_vcpu_destroy(vcpu);
516 xa_erase(&kvm->vcpu_array, i);
517 }
518
519 atomic_set(&kvm->online_vcpus, 0);
520}
521EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
522
523#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
524static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
525{
526 return container_of(mn, struct kvm, mmu_notifier);
527}
528
529static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
530 struct mm_struct *mm,
531 unsigned long start, unsigned long end)
532{
533 struct kvm *kvm = mmu_notifier_to_kvm(mn);
534 int idx;
535
536 idx = srcu_read_lock(&kvm->srcu);
537 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
538 srcu_read_unlock(&kvm->srcu, idx);
539}
540
541typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
542
543typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
544 unsigned long end);
545
546typedef void (*on_unlock_fn_t)(struct kvm *kvm);
547
548struct kvm_hva_range {
549 unsigned long start;
550 unsigned long end;
551 pte_t pte;
552 hva_handler_t handler;
553 on_lock_fn_t on_lock;
554 on_unlock_fn_t on_unlock;
555 bool flush_on_ret;
556 bool may_block;
557};
558
559/*
560 * Use a dedicated stub instead of NULL to indicate that there is no callback
561 * function/handler. The compiler technically can't guarantee that a real
562 * function will have a non-zero address, and so it will generate code to
563 * check for !NULL, whereas comparing against a stub will be elided at compile
564 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
565 */
566static void kvm_null_fn(void)
567{
568
569}
570#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
571
572/* Iterate over each memslot intersecting [start, last] (inclusive) range */
573#define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
574 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
575 node; \
576 node = interval_tree_iter_next(node, start, last)) \
577
578static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
579 const struct kvm_hva_range *range)
580{
581 bool ret = false, locked = false;
582 struct kvm_gfn_range gfn_range;
583 struct kvm_memory_slot *slot;
584 struct kvm_memslots *slots;
585 int i, idx;
586
587 if (WARN_ON_ONCE(range->end <= range->start))
588 return 0;
589
590 /* A null handler is allowed if and only if on_lock() is provided. */
591 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
592 IS_KVM_NULL_FN(range->handler)))
593 return 0;
594
595 idx = srcu_read_lock(&kvm->srcu);
596
597 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
598 struct interval_tree_node *node;
599
600 slots = __kvm_memslots(kvm, i);
601 kvm_for_each_memslot_in_hva_range(node, slots,
602 range->start, range->end - 1) {
603 unsigned long hva_start, hva_end;
604
605 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
606 hva_start = max(range->start, slot->userspace_addr);
607 hva_end = min(range->end, slot->userspace_addr +
608 (slot->npages << PAGE_SHIFT));
609
610 /*
611 * To optimize for the likely case where the address
612 * range is covered by zero or one memslots, don't
613 * bother making these conditional (to avoid writes on
614 * the second or later invocation of the handler).
615 */
616 gfn_range.pte = range->pte;
617 gfn_range.may_block = range->may_block;
618
619 /*
620 * {gfn(page) | page intersects with [hva_start, hva_end)} =
621 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
622 */
623 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
624 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
625 gfn_range.slot = slot;
626
627 if (!locked) {
628 locked = true;
629 KVM_MMU_LOCK(kvm);
630 if (!IS_KVM_NULL_FN(range->on_lock))
631 range->on_lock(kvm, range->start, range->end);
632 if (IS_KVM_NULL_FN(range->handler))
633 break;
634 }
635 ret |= range->handler(kvm, &gfn_range);
636 }
637 }
638
639 if (range->flush_on_ret && ret)
640 kvm_flush_remote_tlbs(kvm);
641
642 if (locked) {
643 KVM_MMU_UNLOCK(kvm);
644 if (!IS_KVM_NULL_FN(range->on_unlock))
645 range->on_unlock(kvm);
646 }
647
648 srcu_read_unlock(&kvm->srcu, idx);
649
650 /* The notifiers are averse to booleans. :-( */
651 return (int)ret;
652}
653
654static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
655 unsigned long start,
656 unsigned long end,
657 pte_t pte,
658 hva_handler_t handler)
659{
660 struct kvm *kvm = mmu_notifier_to_kvm(mn);
661 const struct kvm_hva_range range = {
662 .start = start,
663 .end = end,
664 .pte = pte,
665 .handler = handler,
666 .on_lock = (void *)kvm_null_fn,
667 .on_unlock = (void *)kvm_null_fn,
668 .flush_on_ret = true,
669 .may_block = false,
670 };
671
672 return __kvm_handle_hva_range(kvm, &range);
673}
674
675static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
676 unsigned long start,
677 unsigned long end,
678 hva_handler_t handler)
679{
680 struct kvm *kvm = mmu_notifier_to_kvm(mn);
681 const struct kvm_hva_range range = {
682 .start = start,
683 .end = end,
684 .pte = __pte(0),
685 .handler = handler,
686 .on_lock = (void *)kvm_null_fn,
687 .on_unlock = (void *)kvm_null_fn,
688 .flush_on_ret = false,
689 .may_block = false,
690 };
691
692 return __kvm_handle_hva_range(kvm, &range);
693}
694static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
695 struct mm_struct *mm,
696 unsigned long address,
697 pte_t pte)
698{
699 struct kvm *kvm = mmu_notifier_to_kvm(mn);
700
701 trace_kvm_set_spte_hva(address);
702
703 /*
704 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
705 * If mmu_invalidate_in_progress is zero, then no in-progress
706 * invalidations, including this one, found a relevant memslot at
707 * start(); rechecking memslots here is unnecessary. Note, a false
708 * positive (count elevated by a different invalidation) is sub-optimal
709 * but functionally ok.
710 */
711 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
712 if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
713 return;
714
715 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
716}
717
718void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
719 unsigned long end)
720{
721 /*
722 * The count increase must become visible at unlock time as no
723 * spte can be established without taking the mmu_lock and
724 * count is also read inside the mmu_lock critical section.
725 */
726 kvm->mmu_invalidate_in_progress++;
727 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
728 kvm->mmu_invalidate_range_start = start;
729 kvm->mmu_invalidate_range_end = end;
730 } else {
731 /*
732 * Fully tracking multiple concurrent ranges has diminishing
733 * returns. Keep things simple and just find the minimal range
734 * which includes the current and new ranges. As there won't be
735 * enough information to subtract a range after its invalidate
736 * completes, any ranges invalidated concurrently will
737 * accumulate and persist until all outstanding invalidates
738 * complete.
739 */
740 kvm->mmu_invalidate_range_start =
741 min(kvm->mmu_invalidate_range_start, start);
742 kvm->mmu_invalidate_range_end =
743 max(kvm->mmu_invalidate_range_end, end);
744 }
745}
746
747static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
748 const struct mmu_notifier_range *range)
749{
750 struct kvm *kvm = mmu_notifier_to_kvm(mn);
751 const struct kvm_hva_range hva_range = {
752 .start = range->start,
753 .end = range->end,
754 .pte = __pte(0),
755 .handler = kvm_unmap_gfn_range,
756 .on_lock = kvm_mmu_invalidate_begin,
757 .on_unlock = kvm_arch_guest_memory_reclaimed,
758 .flush_on_ret = true,
759 .may_block = mmu_notifier_range_blockable(range),
760 };
761
762 trace_kvm_unmap_hva_range(range->start, range->end);
763
764 /*
765 * Prevent memslot modification between range_start() and range_end()
766 * so that conditionally locking provides the same result in both
767 * functions. Without that guarantee, the mmu_invalidate_in_progress
768 * adjustments will be imbalanced.
769 *
770 * Pairs with the decrement in range_end().
771 */
772 spin_lock(&kvm->mn_invalidate_lock);
773 kvm->mn_active_invalidate_count++;
774 spin_unlock(&kvm->mn_invalidate_lock);
775
776 /*
777 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
778 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
779 * each cache's lock. There are relatively few caches in existence at
780 * any given time, and the caches themselves can check for hva overlap,
781 * i.e. don't need to rely on memslot overlap checks for performance.
782 * Because this runs without holding mmu_lock, the pfn caches must use
783 * mn_active_invalidate_count (see above) instead of
784 * mmu_invalidate_in_progress.
785 */
786 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
787 hva_range.may_block);
788
789 __kvm_handle_hva_range(kvm, &hva_range);
790
791 return 0;
792}
793
794void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
795 unsigned long end)
796{
797 /*
798 * This sequence increase will notify the kvm page fault that
799 * the page that is going to be mapped in the spte could have
800 * been freed.
801 */
802 kvm->mmu_invalidate_seq++;
803 smp_wmb();
804 /*
805 * The above sequence increase must be visible before the
806 * below count decrease, which is ensured by the smp_wmb above
807 * in conjunction with the smp_rmb in mmu_invalidate_retry().
808 */
809 kvm->mmu_invalidate_in_progress--;
810}
811
812static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
813 const struct mmu_notifier_range *range)
814{
815 struct kvm *kvm = mmu_notifier_to_kvm(mn);
816 const struct kvm_hva_range hva_range = {
817 .start = range->start,
818 .end = range->end,
819 .pte = __pte(0),
820 .handler = (void *)kvm_null_fn,
821 .on_lock = kvm_mmu_invalidate_end,
822 .on_unlock = (void *)kvm_null_fn,
823 .flush_on_ret = false,
824 .may_block = mmu_notifier_range_blockable(range),
825 };
826 bool wake;
827
828 __kvm_handle_hva_range(kvm, &hva_range);
829
830 /* Pairs with the increment in range_start(). */
831 spin_lock(&kvm->mn_invalidate_lock);
832 wake = (--kvm->mn_active_invalidate_count == 0);
833 spin_unlock(&kvm->mn_invalidate_lock);
834
835 /*
836 * There can only be one waiter, since the wait happens under
837 * slots_lock.
838 */
839 if (wake)
840 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
841
842 BUG_ON(kvm->mmu_invalidate_in_progress < 0);
843}
844
845static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
846 struct mm_struct *mm,
847 unsigned long start,
848 unsigned long end)
849{
850 trace_kvm_age_hva(start, end);
851
852 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
853}
854
855static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
856 struct mm_struct *mm,
857 unsigned long start,
858 unsigned long end)
859{
860 trace_kvm_age_hva(start, end);
861
862 /*
863 * Even though we do not flush TLB, this will still adversely
864 * affect performance on pre-Haswell Intel EPT, where there is
865 * no EPT Access Bit to clear so that we have to tear down EPT
866 * tables instead. If we find this unacceptable, we can always
867 * add a parameter to kvm_age_hva so that it effectively doesn't
868 * do anything on clear_young.
869 *
870 * Also note that currently we never issue secondary TLB flushes
871 * from clear_young, leaving this job up to the regular system
872 * cadence. If we find this inaccurate, we might come up with a
873 * more sophisticated heuristic later.
874 */
875 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
876}
877
878static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
879 struct mm_struct *mm,
880 unsigned long address)
881{
882 trace_kvm_test_age_hva(address);
883
884 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
885 kvm_test_age_gfn);
886}
887
888static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
889 struct mm_struct *mm)
890{
891 struct kvm *kvm = mmu_notifier_to_kvm(mn);
892 int idx;
893
894 idx = srcu_read_lock(&kvm->srcu);
895 kvm_flush_shadow_all(kvm);
896 srcu_read_unlock(&kvm->srcu, idx);
897}
898
899static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
900 .invalidate_range = kvm_mmu_notifier_invalidate_range,
901 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
902 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
903 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
904 .clear_young = kvm_mmu_notifier_clear_young,
905 .test_young = kvm_mmu_notifier_test_young,
906 .change_pte = kvm_mmu_notifier_change_pte,
907 .release = kvm_mmu_notifier_release,
908};
909
910static int kvm_init_mmu_notifier(struct kvm *kvm)
911{
912 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
913 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
914}
915
916#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
917
918static int kvm_init_mmu_notifier(struct kvm *kvm)
919{
920 return 0;
921}
922
923#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
924
925#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
926static int kvm_pm_notifier_call(struct notifier_block *bl,
927 unsigned long state,
928 void *unused)
929{
930 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
931
932 return kvm_arch_pm_notifier(kvm, state);
933}
934
935static void kvm_init_pm_notifier(struct kvm *kvm)
936{
937 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
938 /* Suspend KVM before we suspend ftrace, RCU, etc. */
939 kvm->pm_notifier.priority = INT_MAX;
940 register_pm_notifier(&kvm->pm_notifier);
941}
942
943static void kvm_destroy_pm_notifier(struct kvm *kvm)
944{
945 unregister_pm_notifier(&kvm->pm_notifier);
946}
947#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
948static void kvm_init_pm_notifier(struct kvm *kvm)
949{
950}
951
952static void kvm_destroy_pm_notifier(struct kvm *kvm)
953{
954}
955#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
956
957static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
958{
959 if (!memslot->dirty_bitmap)
960 return;
961
962 kvfree(memslot->dirty_bitmap);
963 memslot->dirty_bitmap = NULL;
964}
965
966/* This does not remove the slot from struct kvm_memslots data structures */
967static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
968{
969 kvm_destroy_dirty_bitmap(slot);
970
971 kvm_arch_free_memslot(kvm, slot);
972
973 kfree(slot);
974}
975
976static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
977{
978 struct hlist_node *idnode;
979 struct kvm_memory_slot *memslot;
980 int bkt;
981
982 /*
983 * The same memslot objects live in both active and inactive sets,
984 * arbitrarily free using index '1' so the second invocation of this
985 * function isn't operating over a structure with dangling pointers
986 * (even though this function isn't actually touching them).
987 */
988 if (!slots->node_idx)
989 return;
990
991 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
992 kvm_free_memslot(kvm, memslot);
993}
994
995static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
996{
997 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
998 case KVM_STATS_TYPE_INSTANT:
999 return 0444;
1000 case KVM_STATS_TYPE_CUMULATIVE:
1001 case KVM_STATS_TYPE_PEAK:
1002 default:
1003 return 0644;
1004 }
1005}
1006
1007
1008static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1009{
1010 int i;
1011 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1012 kvm_vcpu_stats_header.num_desc;
1013
1014 if (IS_ERR(kvm->debugfs_dentry))
1015 return;
1016
1017 debugfs_remove_recursive(kvm->debugfs_dentry);
1018
1019 if (kvm->debugfs_stat_data) {
1020 for (i = 0; i < kvm_debugfs_num_entries; i++)
1021 kfree(kvm->debugfs_stat_data[i]);
1022 kfree(kvm->debugfs_stat_data);
1023 }
1024}
1025
1026static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1027{
1028 static DEFINE_MUTEX(kvm_debugfs_lock);
1029 struct dentry *dent;
1030 char dir_name[ITOA_MAX_LEN * 2];
1031 struct kvm_stat_data *stat_data;
1032 const struct _kvm_stats_desc *pdesc;
1033 int i, ret = -ENOMEM;
1034 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1035 kvm_vcpu_stats_header.num_desc;
1036
1037 if (!debugfs_initialized())
1038 return 0;
1039
1040 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1041 mutex_lock(&kvm_debugfs_lock);
1042 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1043 if (dent) {
1044 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1045 dput(dent);
1046 mutex_unlock(&kvm_debugfs_lock);
1047 return 0;
1048 }
1049 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1050 mutex_unlock(&kvm_debugfs_lock);
1051 if (IS_ERR(dent))
1052 return 0;
1053
1054 kvm->debugfs_dentry = dent;
1055 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1056 sizeof(*kvm->debugfs_stat_data),
1057 GFP_KERNEL_ACCOUNT);
1058 if (!kvm->debugfs_stat_data)
1059 goto out_err;
1060
1061 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1062 pdesc = &kvm_vm_stats_desc[i];
1063 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1064 if (!stat_data)
1065 goto out_err;
1066
1067 stat_data->kvm = kvm;
1068 stat_data->desc = pdesc;
1069 stat_data->kind = KVM_STAT_VM;
1070 kvm->debugfs_stat_data[i] = stat_data;
1071 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1072 kvm->debugfs_dentry, stat_data,
1073 &stat_fops_per_vm);
1074 }
1075
1076 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1077 pdesc = &kvm_vcpu_stats_desc[i];
1078 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1079 if (!stat_data)
1080 goto out_err;
1081
1082 stat_data->kvm = kvm;
1083 stat_data->desc = pdesc;
1084 stat_data->kind = KVM_STAT_VCPU;
1085 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1086 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1087 kvm->debugfs_dentry, stat_data,
1088 &stat_fops_per_vm);
1089 }
1090
1091 ret = kvm_arch_create_vm_debugfs(kvm);
1092 if (ret)
1093 goto out_err;
1094
1095 return 0;
1096out_err:
1097 kvm_destroy_vm_debugfs(kvm);
1098 return ret;
1099}
1100
1101/*
1102 * Called after the VM is otherwise initialized, but just before adding it to
1103 * the vm_list.
1104 */
1105int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1106{
1107 return 0;
1108}
1109
1110/*
1111 * Called just after removing the VM from the vm_list, but before doing any
1112 * other destruction.
1113 */
1114void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1115{
1116}
1117
1118/*
1119 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1120 * be setup already, so we can create arch-specific debugfs entries under it.
1121 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1122 * a per-arch destroy interface is not needed.
1123 */
1124int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1125{
1126 return 0;
1127}
1128
1129static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1130{
1131 struct kvm *kvm = kvm_arch_alloc_vm();
1132 struct kvm_memslots *slots;
1133 int r = -ENOMEM;
1134 int i, j;
1135
1136 if (!kvm)
1137 return ERR_PTR(-ENOMEM);
1138
1139 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1140 __module_get(kvm_chardev_ops.owner);
1141
1142 KVM_MMU_LOCK_INIT(kvm);
1143 mmgrab(current->mm);
1144 kvm->mm = current->mm;
1145 kvm_eventfd_init(kvm);
1146 mutex_init(&kvm->lock);
1147 mutex_init(&kvm->irq_lock);
1148 mutex_init(&kvm->slots_lock);
1149 mutex_init(&kvm->slots_arch_lock);
1150 spin_lock_init(&kvm->mn_invalidate_lock);
1151 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1152 xa_init(&kvm->vcpu_array);
1153
1154 INIT_LIST_HEAD(&kvm->gpc_list);
1155 spin_lock_init(&kvm->gpc_lock);
1156
1157 INIT_LIST_HEAD(&kvm->devices);
1158 kvm->max_vcpus = KVM_MAX_VCPUS;
1159
1160 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1161
1162 /*
1163 * Force subsequent debugfs file creations to fail if the VM directory
1164 * is not created (by kvm_create_vm_debugfs()).
1165 */
1166 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1167
1168 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1169 task_pid_nr(current));
1170
1171 if (init_srcu_struct(&kvm->srcu))
1172 goto out_err_no_srcu;
1173 if (init_srcu_struct(&kvm->irq_srcu))
1174 goto out_err_no_irq_srcu;
1175
1176 refcount_set(&kvm->users_count, 1);
1177 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1178 for (j = 0; j < 2; j++) {
1179 slots = &kvm->__memslots[i][j];
1180
1181 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1182 slots->hva_tree = RB_ROOT_CACHED;
1183 slots->gfn_tree = RB_ROOT;
1184 hash_init(slots->id_hash);
1185 slots->node_idx = j;
1186
1187 /* Generations must be different for each address space. */
1188 slots->generation = i;
1189 }
1190
1191 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1192 }
1193
1194 for (i = 0; i < KVM_NR_BUSES; i++) {
1195 rcu_assign_pointer(kvm->buses[i],
1196 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1197 if (!kvm->buses[i])
1198 goto out_err_no_arch_destroy_vm;
1199 }
1200
1201 r = kvm_arch_init_vm(kvm, type);
1202 if (r)
1203 goto out_err_no_arch_destroy_vm;
1204
1205 r = hardware_enable_all();
1206 if (r)
1207 goto out_err_no_disable;
1208
1209#ifdef CONFIG_HAVE_KVM_IRQFD
1210 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1211#endif
1212
1213 r = kvm_init_mmu_notifier(kvm);
1214 if (r)
1215 goto out_err_no_mmu_notifier;
1216
1217 r = kvm_coalesced_mmio_init(kvm);
1218 if (r < 0)
1219 goto out_no_coalesced_mmio;
1220
1221 r = kvm_create_vm_debugfs(kvm, fdname);
1222 if (r)
1223 goto out_err_no_debugfs;
1224
1225 r = kvm_arch_post_init_vm(kvm);
1226 if (r)
1227 goto out_err;
1228
1229 mutex_lock(&kvm_lock);
1230 list_add(&kvm->vm_list, &vm_list);
1231 mutex_unlock(&kvm_lock);
1232
1233 preempt_notifier_inc();
1234 kvm_init_pm_notifier(kvm);
1235
1236 return kvm;
1237
1238out_err:
1239 kvm_destroy_vm_debugfs(kvm);
1240out_err_no_debugfs:
1241 kvm_coalesced_mmio_free(kvm);
1242out_no_coalesced_mmio:
1243#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1244 if (kvm->mmu_notifier.ops)
1245 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1246#endif
1247out_err_no_mmu_notifier:
1248 hardware_disable_all();
1249out_err_no_disable:
1250 kvm_arch_destroy_vm(kvm);
1251out_err_no_arch_destroy_vm:
1252 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1253 for (i = 0; i < KVM_NR_BUSES; i++)
1254 kfree(kvm_get_bus(kvm, i));
1255 cleanup_srcu_struct(&kvm->irq_srcu);
1256out_err_no_irq_srcu:
1257 cleanup_srcu_struct(&kvm->srcu);
1258out_err_no_srcu:
1259 kvm_arch_free_vm(kvm);
1260 mmdrop(current->mm);
1261 module_put(kvm_chardev_ops.owner);
1262 return ERR_PTR(r);
1263}
1264
1265static void kvm_destroy_devices(struct kvm *kvm)
1266{
1267 struct kvm_device *dev, *tmp;
1268
1269 /*
1270 * We do not need to take the kvm->lock here, because nobody else
1271 * has a reference to the struct kvm at this point and therefore
1272 * cannot access the devices list anyhow.
1273 */
1274 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1275 list_del(&dev->vm_node);
1276 dev->ops->destroy(dev);
1277 }
1278}
1279
1280static void kvm_destroy_vm(struct kvm *kvm)
1281{
1282 int i;
1283 struct mm_struct *mm = kvm->mm;
1284
1285 kvm_destroy_pm_notifier(kvm);
1286 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1287 kvm_destroy_vm_debugfs(kvm);
1288 kvm_arch_sync_events(kvm);
1289 mutex_lock(&kvm_lock);
1290 list_del(&kvm->vm_list);
1291 mutex_unlock(&kvm_lock);
1292 kvm_arch_pre_destroy_vm(kvm);
1293
1294 kvm_free_irq_routing(kvm);
1295 for (i = 0; i < KVM_NR_BUSES; i++) {
1296 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1297
1298 if (bus)
1299 kvm_io_bus_destroy(bus);
1300 kvm->buses[i] = NULL;
1301 }
1302 kvm_coalesced_mmio_free(kvm);
1303#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1304 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1305 /*
1306 * At this point, pending calls to invalidate_range_start()
1307 * have completed but no more MMU notifiers will run, so
1308 * mn_active_invalidate_count may remain unbalanced.
1309 * No threads can be waiting in install_new_memslots as the
1310 * last reference on KVM has been dropped, but freeing
1311 * memslots would deadlock without this manual intervention.
1312 */
1313 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1314 kvm->mn_active_invalidate_count = 0;
1315#else
1316 kvm_flush_shadow_all(kvm);
1317#endif
1318 kvm_arch_destroy_vm(kvm);
1319 kvm_destroy_devices(kvm);
1320 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1321 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1322 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1323 }
1324 cleanup_srcu_struct(&kvm->irq_srcu);
1325 cleanup_srcu_struct(&kvm->srcu);
1326 kvm_arch_free_vm(kvm);
1327 preempt_notifier_dec();
1328 hardware_disable_all();
1329 mmdrop(mm);
1330 module_put(kvm_chardev_ops.owner);
1331}
1332
1333void kvm_get_kvm(struct kvm *kvm)
1334{
1335 refcount_inc(&kvm->users_count);
1336}
1337EXPORT_SYMBOL_GPL(kvm_get_kvm);
1338
1339/*
1340 * Make sure the vm is not during destruction, which is a safe version of
1341 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1342 */
1343bool kvm_get_kvm_safe(struct kvm *kvm)
1344{
1345 return refcount_inc_not_zero(&kvm->users_count);
1346}
1347EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1348
1349void kvm_put_kvm(struct kvm *kvm)
1350{
1351 if (refcount_dec_and_test(&kvm->users_count))
1352 kvm_destroy_vm(kvm);
1353}
1354EXPORT_SYMBOL_GPL(kvm_put_kvm);
1355
1356/*
1357 * Used to put a reference that was taken on behalf of an object associated
1358 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1359 * of the new file descriptor fails and the reference cannot be transferred to
1360 * its final owner. In such cases, the caller is still actively using @kvm and
1361 * will fail miserably if the refcount unexpectedly hits zero.
1362 */
1363void kvm_put_kvm_no_destroy(struct kvm *kvm)
1364{
1365 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1366}
1367EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1368
1369static int kvm_vm_release(struct inode *inode, struct file *filp)
1370{
1371 struct kvm *kvm = filp->private_data;
1372
1373 kvm_irqfd_release(kvm);
1374
1375 kvm_put_kvm(kvm);
1376 return 0;
1377}
1378
1379/*
1380 * Allocation size is twice as large as the actual dirty bitmap size.
1381 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1382 */
1383static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1384{
1385 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1386
1387 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1388 if (!memslot->dirty_bitmap)
1389 return -ENOMEM;
1390
1391 return 0;
1392}
1393
1394static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1395{
1396 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1397 int node_idx_inactive = active->node_idx ^ 1;
1398
1399 return &kvm->__memslots[as_id][node_idx_inactive];
1400}
1401
1402/*
1403 * Helper to get the address space ID when one of memslot pointers may be NULL.
1404 * This also serves as a sanity that at least one of the pointers is non-NULL,
1405 * and that their address space IDs don't diverge.
1406 */
1407static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1408 struct kvm_memory_slot *b)
1409{
1410 if (WARN_ON_ONCE(!a && !b))
1411 return 0;
1412
1413 if (!a)
1414 return b->as_id;
1415 if (!b)
1416 return a->as_id;
1417
1418 WARN_ON_ONCE(a->as_id != b->as_id);
1419 return a->as_id;
1420}
1421
1422static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1423 struct kvm_memory_slot *slot)
1424{
1425 struct rb_root *gfn_tree = &slots->gfn_tree;
1426 struct rb_node **node, *parent;
1427 int idx = slots->node_idx;
1428
1429 parent = NULL;
1430 for (node = &gfn_tree->rb_node; *node; ) {
1431 struct kvm_memory_slot *tmp;
1432
1433 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1434 parent = *node;
1435 if (slot->base_gfn < tmp->base_gfn)
1436 node = &(*node)->rb_left;
1437 else if (slot->base_gfn > tmp->base_gfn)
1438 node = &(*node)->rb_right;
1439 else
1440 BUG();
1441 }
1442
1443 rb_link_node(&slot->gfn_node[idx], parent, node);
1444 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1445}
1446
1447static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1448 struct kvm_memory_slot *slot)
1449{
1450 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1451}
1452
1453static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1454 struct kvm_memory_slot *old,
1455 struct kvm_memory_slot *new)
1456{
1457 int idx = slots->node_idx;
1458
1459 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1460
1461 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1462 &slots->gfn_tree);
1463}
1464
1465/*
1466 * Replace @old with @new in the inactive memslots.
1467 *
1468 * With NULL @old this simply adds @new.
1469 * With NULL @new this simply removes @old.
1470 *
1471 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1472 * appropriately.
1473 */
1474static void kvm_replace_memslot(struct kvm *kvm,
1475 struct kvm_memory_slot *old,
1476 struct kvm_memory_slot *new)
1477{
1478 int as_id = kvm_memslots_get_as_id(old, new);
1479 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1480 int idx = slots->node_idx;
1481
1482 if (old) {
1483 hash_del(&old->id_node[idx]);
1484 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1485
1486 if ((long)old == atomic_long_read(&slots->last_used_slot))
1487 atomic_long_set(&slots->last_used_slot, (long)new);
1488
1489 if (!new) {
1490 kvm_erase_gfn_node(slots, old);
1491 return;
1492 }
1493 }
1494
1495 /*
1496 * Initialize @new's hva range. Do this even when replacing an @old
1497 * slot, kvm_copy_memslot() deliberately does not touch node data.
1498 */
1499 new->hva_node[idx].start = new->userspace_addr;
1500 new->hva_node[idx].last = new->userspace_addr +
1501 (new->npages << PAGE_SHIFT) - 1;
1502
1503 /*
1504 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1505 * hva_node needs to be swapped with remove+insert even though hva can't
1506 * change when replacing an existing slot.
1507 */
1508 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1509 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1510
1511 /*
1512 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1513 * switch the node in the gfn tree instead of removing the old and
1514 * inserting the new as two separate operations. Replacement is a
1515 * single O(1) operation versus two O(log(n)) operations for
1516 * remove+insert.
1517 */
1518 if (old && old->base_gfn == new->base_gfn) {
1519 kvm_replace_gfn_node(slots, old, new);
1520 } else {
1521 if (old)
1522 kvm_erase_gfn_node(slots, old);
1523 kvm_insert_gfn_node(slots, new);
1524 }
1525}
1526
1527static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1528{
1529 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1530
1531#ifdef __KVM_HAVE_READONLY_MEM
1532 valid_flags |= KVM_MEM_READONLY;
1533#endif
1534
1535 if (mem->flags & ~valid_flags)
1536 return -EINVAL;
1537
1538 return 0;
1539}
1540
1541static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1542{
1543 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1544
1545 /* Grab the generation from the activate memslots. */
1546 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1547
1548 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1549 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1550
1551 /*
1552 * Do not store the new memslots while there are invalidations in
1553 * progress, otherwise the locking in invalidate_range_start and
1554 * invalidate_range_end will be unbalanced.
1555 */
1556 spin_lock(&kvm->mn_invalidate_lock);
1557 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1558 while (kvm->mn_active_invalidate_count) {
1559 set_current_state(TASK_UNINTERRUPTIBLE);
1560 spin_unlock(&kvm->mn_invalidate_lock);
1561 schedule();
1562 spin_lock(&kvm->mn_invalidate_lock);
1563 }
1564 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1565 rcu_assign_pointer(kvm->memslots[as_id], slots);
1566 spin_unlock(&kvm->mn_invalidate_lock);
1567
1568 /*
1569 * Acquired in kvm_set_memslot. Must be released before synchronize
1570 * SRCU below in order to avoid deadlock with another thread
1571 * acquiring the slots_arch_lock in an srcu critical section.
1572 */
1573 mutex_unlock(&kvm->slots_arch_lock);
1574
1575 synchronize_srcu_expedited(&kvm->srcu);
1576
1577 /*
1578 * Increment the new memslot generation a second time, dropping the
1579 * update in-progress flag and incrementing the generation based on
1580 * the number of address spaces. This provides a unique and easily
1581 * identifiable generation number while the memslots are in flux.
1582 */
1583 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1584
1585 /*
1586 * Generations must be unique even across address spaces. We do not need
1587 * a global counter for that, instead the generation space is evenly split
1588 * across address spaces. For example, with two address spaces, address
1589 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1590 * use generations 1, 3, 5, ...
1591 */
1592 gen += KVM_ADDRESS_SPACE_NUM;
1593
1594 kvm_arch_memslots_updated(kvm, gen);
1595
1596 slots->generation = gen;
1597}
1598
1599static int kvm_prepare_memory_region(struct kvm *kvm,
1600 const struct kvm_memory_slot *old,
1601 struct kvm_memory_slot *new,
1602 enum kvm_mr_change change)
1603{
1604 int r;
1605
1606 /*
1607 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1608 * will be freed on "commit". If logging is enabled in both old and
1609 * new, reuse the existing bitmap. If logging is enabled only in the
1610 * new and KVM isn't using a ring buffer, allocate and initialize a
1611 * new bitmap.
1612 */
1613 if (change != KVM_MR_DELETE) {
1614 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1615 new->dirty_bitmap = NULL;
1616 else if (old && old->dirty_bitmap)
1617 new->dirty_bitmap = old->dirty_bitmap;
1618 else if (kvm_use_dirty_bitmap(kvm)) {
1619 r = kvm_alloc_dirty_bitmap(new);
1620 if (r)
1621 return r;
1622
1623 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1624 bitmap_set(new->dirty_bitmap, 0, new->npages);
1625 }
1626 }
1627
1628 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1629
1630 /* Free the bitmap on failure if it was allocated above. */
1631 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1632 kvm_destroy_dirty_bitmap(new);
1633
1634 return r;
1635}
1636
1637static void kvm_commit_memory_region(struct kvm *kvm,
1638 struct kvm_memory_slot *old,
1639 const struct kvm_memory_slot *new,
1640 enum kvm_mr_change change)
1641{
1642 int old_flags = old ? old->flags : 0;
1643 int new_flags = new ? new->flags : 0;
1644 /*
1645 * Update the total number of memslot pages before calling the arch
1646 * hook so that architectures can consume the result directly.
1647 */
1648 if (change == KVM_MR_DELETE)
1649 kvm->nr_memslot_pages -= old->npages;
1650 else if (change == KVM_MR_CREATE)
1651 kvm->nr_memslot_pages += new->npages;
1652
1653 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1654 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1655 atomic_set(&kvm->nr_memslots_dirty_logging,
1656 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1657 }
1658
1659 kvm_arch_commit_memory_region(kvm, old, new, change);
1660
1661 switch (change) {
1662 case KVM_MR_CREATE:
1663 /* Nothing more to do. */
1664 break;
1665 case KVM_MR_DELETE:
1666 /* Free the old memslot and all its metadata. */
1667 kvm_free_memslot(kvm, old);
1668 break;
1669 case KVM_MR_MOVE:
1670 case KVM_MR_FLAGS_ONLY:
1671 /*
1672 * Free the dirty bitmap as needed; the below check encompasses
1673 * both the flags and whether a ring buffer is being used)
1674 */
1675 if (old->dirty_bitmap && !new->dirty_bitmap)
1676 kvm_destroy_dirty_bitmap(old);
1677
1678 /*
1679 * The final quirk. Free the detached, old slot, but only its
1680 * memory, not any metadata. Metadata, including arch specific
1681 * data, may be reused by @new.
1682 */
1683 kfree(old);
1684 break;
1685 default:
1686 BUG();
1687 }
1688}
1689
1690/*
1691 * Activate @new, which must be installed in the inactive slots by the caller,
1692 * by swapping the active slots and then propagating @new to @old once @old is
1693 * unreachable and can be safely modified.
1694 *
1695 * With NULL @old this simply adds @new to @active (while swapping the sets).
1696 * With NULL @new this simply removes @old from @active and frees it
1697 * (while also swapping the sets).
1698 */
1699static void kvm_activate_memslot(struct kvm *kvm,
1700 struct kvm_memory_slot *old,
1701 struct kvm_memory_slot *new)
1702{
1703 int as_id = kvm_memslots_get_as_id(old, new);
1704
1705 kvm_swap_active_memslots(kvm, as_id);
1706
1707 /* Propagate the new memslot to the now inactive memslots. */
1708 kvm_replace_memslot(kvm, old, new);
1709}
1710
1711static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1712 const struct kvm_memory_slot *src)
1713{
1714 dest->base_gfn = src->base_gfn;
1715 dest->npages = src->npages;
1716 dest->dirty_bitmap = src->dirty_bitmap;
1717 dest->arch = src->arch;
1718 dest->userspace_addr = src->userspace_addr;
1719 dest->flags = src->flags;
1720 dest->id = src->id;
1721 dest->as_id = src->as_id;
1722}
1723
1724static void kvm_invalidate_memslot(struct kvm *kvm,
1725 struct kvm_memory_slot *old,
1726 struct kvm_memory_slot *invalid_slot)
1727{
1728 /*
1729 * Mark the current slot INVALID. As with all memslot modifications,
1730 * this must be done on an unreachable slot to avoid modifying the
1731 * current slot in the active tree.
1732 */
1733 kvm_copy_memslot(invalid_slot, old);
1734 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1735 kvm_replace_memslot(kvm, old, invalid_slot);
1736
1737 /*
1738 * Activate the slot that is now marked INVALID, but don't propagate
1739 * the slot to the now inactive slots. The slot is either going to be
1740 * deleted or recreated as a new slot.
1741 */
1742 kvm_swap_active_memslots(kvm, old->as_id);
1743
1744 /*
1745 * From this point no new shadow pages pointing to a deleted, or moved,
1746 * memslot will be created. Validation of sp->gfn happens in:
1747 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1748 * - kvm_is_visible_gfn (mmu_check_root)
1749 */
1750 kvm_arch_flush_shadow_memslot(kvm, old);
1751 kvm_arch_guest_memory_reclaimed(kvm);
1752
1753 /* Was released by kvm_swap_active_memslots, reacquire. */
1754 mutex_lock(&kvm->slots_arch_lock);
1755
1756 /*
1757 * Copy the arch-specific field of the newly-installed slot back to the
1758 * old slot as the arch data could have changed between releasing
1759 * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1760 * above. Writers are required to retrieve memslots *after* acquiring
1761 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1762 */
1763 old->arch = invalid_slot->arch;
1764}
1765
1766static void kvm_create_memslot(struct kvm *kvm,
1767 struct kvm_memory_slot *new)
1768{
1769 /* Add the new memslot to the inactive set and activate. */
1770 kvm_replace_memslot(kvm, NULL, new);
1771 kvm_activate_memslot(kvm, NULL, new);
1772}
1773
1774static void kvm_delete_memslot(struct kvm *kvm,
1775 struct kvm_memory_slot *old,
1776 struct kvm_memory_slot *invalid_slot)
1777{
1778 /*
1779 * Remove the old memslot (in the inactive memslots) by passing NULL as
1780 * the "new" slot, and for the invalid version in the active slots.
1781 */
1782 kvm_replace_memslot(kvm, old, NULL);
1783 kvm_activate_memslot(kvm, invalid_slot, NULL);
1784}
1785
1786static void kvm_move_memslot(struct kvm *kvm,
1787 struct kvm_memory_slot *old,
1788 struct kvm_memory_slot *new,
1789 struct kvm_memory_slot *invalid_slot)
1790{
1791 /*
1792 * Replace the old memslot in the inactive slots, and then swap slots
1793 * and replace the current INVALID with the new as well.
1794 */
1795 kvm_replace_memslot(kvm, old, new);
1796 kvm_activate_memslot(kvm, invalid_slot, new);
1797}
1798
1799static void kvm_update_flags_memslot(struct kvm *kvm,
1800 struct kvm_memory_slot *old,
1801 struct kvm_memory_slot *new)
1802{
1803 /*
1804 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1805 * an intermediate step. Instead, the old memslot is simply replaced
1806 * with a new, updated copy in both memslot sets.
1807 */
1808 kvm_replace_memslot(kvm, old, new);
1809 kvm_activate_memslot(kvm, old, new);
1810}
1811
1812static int kvm_set_memslot(struct kvm *kvm,
1813 struct kvm_memory_slot *old,
1814 struct kvm_memory_slot *new,
1815 enum kvm_mr_change change)
1816{
1817 struct kvm_memory_slot *invalid_slot;
1818 int r;
1819
1820 /*
1821 * Released in kvm_swap_active_memslots.
1822 *
1823 * Must be held from before the current memslots are copied until
1824 * after the new memslots are installed with rcu_assign_pointer,
1825 * then released before the synchronize srcu in kvm_swap_active_memslots.
1826 *
1827 * When modifying memslots outside of the slots_lock, must be held
1828 * before reading the pointer to the current memslots until after all
1829 * changes to those memslots are complete.
1830 *
1831 * These rules ensure that installing new memslots does not lose
1832 * changes made to the previous memslots.
1833 */
1834 mutex_lock(&kvm->slots_arch_lock);
1835
1836 /*
1837 * Invalidate the old slot if it's being deleted or moved. This is
1838 * done prior to actually deleting/moving the memslot to allow vCPUs to
1839 * continue running by ensuring there are no mappings or shadow pages
1840 * for the memslot when it is deleted/moved. Without pre-invalidation
1841 * (and without a lock), a window would exist between effecting the
1842 * delete/move and committing the changes in arch code where KVM or a
1843 * guest could access a non-existent memslot.
1844 *
1845 * Modifications are done on a temporary, unreachable slot. The old
1846 * slot needs to be preserved in case a later step fails and the
1847 * invalidation needs to be reverted.
1848 */
1849 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1850 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1851 if (!invalid_slot) {
1852 mutex_unlock(&kvm->slots_arch_lock);
1853 return -ENOMEM;
1854 }
1855 kvm_invalidate_memslot(kvm, old, invalid_slot);
1856 }
1857
1858 r = kvm_prepare_memory_region(kvm, old, new, change);
1859 if (r) {
1860 /*
1861 * For DELETE/MOVE, revert the above INVALID change. No
1862 * modifications required since the original slot was preserved
1863 * in the inactive slots. Changing the active memslots also
1864 * release slots_arch_lock.
1865 */
1866 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1867 kvm_activate_memslot(kvm, invalid_slot, old);
1868 kfree(invalid_slot);
1869 } else {
1870 mutex_unlock(&kvm->slots_arch_lock);
1871 }
1872 return r;
1873 }
1874
1875 /*
1876 * For DELETE and MOVE, the working slot is now active as the INVALID
1877 * version of the old slot. MOVE is particularly special as it reuses
1878 * the old slot and returns a copy of the old slot (in working_slot).
1879 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1880 * old slot is detached but otherwise preserved.
1881 */
1882 if (change == KVM_MR_CREATE)
1883 kvm_create_memslot(kvm, new);
1884 else if (change == KVM_MR_DELETE)
1885 kvm_delete_memslot(kvm, old, invalid_slot);
1886 else if (change == KVM_MR_MOVE)
1887 kvm_move_memslot(kvm, old, new, invalid_slot);
1888 else if (change == KVM_MR_FLAGS_ONLY)
1889 kvm_update_flags_memslot(kvm, old, new);
1890 else
1891 BUG();
1892
1893 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1894 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1895 kfree(invalid_slot);
1896
1897 /*
1898 * No need to refresh new->arch, changes after dropping slots_arch_lock
1899 * will directly hit the final, active memslot. Architectures are
1900 * responsible for knowing that new->arch may be stale.
1901 */
1902 kvm_commit_memory_region(kvm, old, new, change);
1903
1904 return 0;
1905}
1906
1907static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1908 gfn_t start, gfn_t end)
1909{
1910 struct kvm_memslot_iter iter;
1911
1912 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1913 if (iter.slot->id != id)
1914 return true;
1915 }
1916
1917 return false;
1918}
1919
1920/*
1921 * Allocate some memory and give it an address in the guest physical address
1922 * space.
1923 *
1924 * Discontiguous memory is allowed, mostly for framebuffers.
1925 *
1926 * Must be called holding kvm->slots_lock for write.
1927 */
1928int __kvm_set_memory_region(struct kvm *kvm,
1929 const struct kvm_userspace_memory_region *mem)
1930{
1931 struct kvm_memory_slot *old, *new;
1932 struct kvm_memslots *slots;
1933 enum kvm_mr_change change;
1934 unsigned long npages;
1935 gfn_t base_gfn;
1936 int as_id, id;
1937 int r;
1938
1939 r = check_memory_region_flags(mem);
1940 if (r)
1941 return r;
1942
1943 as_id = mem->slot >> 16;
1944 id = (u16)mem->slot;
1945
1946 /* General sanity checks */
1947 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1948 (mem->memory_size != (unsigned long)mem->memory_size))
1949 return -EINVAL;
1950 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1951 return -EINVAL;
1952 /* We can read the guest memory with __xxx_user() later on. */
1953 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1954 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1955 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1956 mem->memory_size))
1957 return -EINVAL;
1958 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1959 return -EINVAL;
1960 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1961 return -EINVAL;
1962 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1963 return -EINVAL;
1964
1965 slots = __kvm_memslots(kvm, as_id);
1966
1967 /*
1968 * Note, the old memslot (and the pointer itself!) may be invalidated
1969 * and/or destroyed by kvm_set_memslot().
1970 */
1971 old = id_to_memslot(slots, id);
1972
1973 if (!mem->memory_size) {
1974 if (!old || !old->npages)
1975 return -EINVAL;
1976
1977 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1978 return -EIO;
1979
1980 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1981 }
1982
1983 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1984 npages = (mem->memory_size >> PAGE_SHIFT);
1985
1986 if (!old || !old->npages) {
1987 change = KVM_MR_CREATE;
1988
1989 /*
1990 * To simplify KVM internals, the total number of pages across
1991 * all memslots must fit in an unsigned long.
1992 */
1993 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1994 return -EINVAL;
1995 } else { /* Modify an existing slot. */
1996 if ((mem->userspace_addr != old->userspace_addr) ||
1997 (npages != old->npages) ||
1998 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1999 return -EINVAL;
2000
2001 if (base_gfn != old->base_gfn)
2002 change = KVM_MR_MOVE;
2003 else if (mem->flags != old->flags)
2004 change = KVM_MR_FLAGS_ONLY;
2005 else /* Nothing to change. */
2006 return 0;
2007 }
2008
2009 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2010 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2011 return -EEXIST;
2012
2013 /* Allocate a slot that will persist in the memslot. */
2014 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2015 if (!new)
2016 return -ENOMEM;
2017
2018 new->as_id = as_id;
2019 new->id = id;
2020 new->base_gfn = base_gfn;
2021 new->npages = npages;
2022 new->flags = mem->flags;
2023 new->userspace_addr = mem->userspace_addr;
2024
2025 r = kvm_set_memslot(kvm, old, new, change);
2026 if (r)
2027 kfree(new);
2028 return r;
2029}
2030EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2031
2032int kvm_set_memory_region(struct kvm *kvm,
2033 const struct kvm_userspace_memory_region *mem)
2034{
2035 int r;
2036
2037 mutex_lock(&kvm->slots_lock);
2038 r = __kvm_set_memory_region(kvm, mem);
2039 mutex_unlock(&kvm->slots_lock);
2040 return r;
2041}
2042EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2043
2044static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2045 struct kvm_userspace_memory_region *mem)
2046{
2047 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2048 return -EINVAL;
2049
2050 return kvm_set_memory_region(kvm, mem);
2051}
2052
2053#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2054/**
2055 * kvm_get_dirty_log - get a snapshot of dirty pages
2056 * @kvm: pointer to kvm instance
2057 * @log: slot id and address to which we copy the log
2058 * @is_dirty: set to '1' if any dirty pages were found
2059 * @memslot: set to the associated memslot, always valid on success
2060 */
2061int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2062 int *is_dirty, struct kvm_memory_slot **memslot)
2063{
2064 struct kvm_memslots *slots;
2065 int i, as_id, id;
2066 unsigned long n;
2067 unsigned long any = 0;
2068
2069 /* Dirty ring tracking may be exclusive to dirty log tracking */
2070 if (!kvm_use_dirty_bitmap(kvm))
2071 return -ENXIO;
2072
2073 *memslot = NULL;
2074 *is_dirty = 0;
2075
2076 as_id = log->slot >> 16;
2077 id = (u16)log->slot;
2078 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2079 return -EINVAL;
2080
2081 slots = __kvm_memslots(kvm, as_id);
2082 *memslot = id_to_memslot(slots, id);
2083 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2084 return -ENOENT;
2085
2086 kvm_arch_sync_dirty_log(kvm, *memslot);
2087
2088 n = kvm_dirty_bitmap_bytes(*memslot);
2089
2090 for (i = 0; !any && i < n/sizeof(long); ++i)
2091 any = (*memslot)->dirty_bitmap[i];
2092
2093 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2094 return -EFAULT;
2095
2096 if (any)
2097 *is_dirty = 1;
2098 return 0;
2099}
2100EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2101
2102#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2103/**
2104 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2105 * and reenable dirty page tracking for the corresponding pages.
2106 * @kvm: pointer to kvm instance
2107 * @log: slot id and address to which we copy the log
2108 *
2109 * We need to keep it in mind that VCPU threads can write to the bitmap
2110 * concurrently. So, to avoid losing track of dirty pages we keep the
2111 * following order:
2112 *
2113 * 1. Take a snapshot of the bit and clear it if needed.
2114 * 2. Write protect the corresponding page.
2115 * 3. Copy the snapshot to the userspace.
2116 * 4. Upon return caller flushes TLB's if needed.
2117 *
2118 * Between 2 and 4, the guest may write to the page using the remaining TLB
2119 * entry. This is not a problem because the page is reported dirty using
2120 * the snapshot taken before and step 4 ensures that writes done after
2121 * exiting to userspace will be logged for the next call.
2122 *
2123 */
2124static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2125{
2126 struct kvm_memslots *slots;
2127 struct kvm_memory_slot *memslot;
2128 int i, as_id, id;
2129 unsigned long n;
2130 unsigned long *dirty_bitmap;
2131 unsigned long *dirty_bitmap_buffer;
2132 bool flush;
2133
2134 /* Dirty ring tracking may be exclusive to dirty log tracking */
2135 if (!kvm_use_dirty_bitmap(kvm))
2136 return -ENXIO;
2137
2138 as_id = log->slot >> 16;
2139 id = (u16)log->slot;
2140 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2141 return -EINVAL;
2142
2143 slots = __kvm_memslots(kvm, as_id);
2144 memslot = id_to_memslot(slots, id);
2145 if (!memslot || !memslot->dirty_bitmap)
2146 return -ENOENT;
2147
2148 dirty_bitmap = memslot->dirty_bitmap;
2149
2150 kvm_arch_sync_dirty_log(kvm, memslot);
2151
2152 n = kvm_dirty_bitmap_bytes(memslot);
2153 flush = false;
2154 if (kvm->manual_dirty_log_protect) {
2155 /*
2156 * Unlike kvm_get_dirty_log, we always return false in *flush,
2157 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2158 * is some code duplication between this function and
2159 * kvm_get_dirty_log, but hopefully all architecture
2160 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2161 * can be eliminated.
2162 */
2163 dirty_bitmap_buffer = dirty_bitmap;
2164 } else {
2165 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2166 memset(dirty_bitmap_buffer, 0, n);
2167
2168 KVM_MMU_LOCK(kvm);
2169 for (i = 0; i < n / sizeof(long); i++) {
2170 unsigned long mask;
2171 gfn_t offset;
2172
2173 if (!dirty_bitmap[i])
2174 continue;
2175
2176 flush = true;
2177 mask = xchg(&dirty_bitmap[i], 0);
2178 dirty_bitmap_buffer[i] = mask;
2179
2180 offset = i * BITS_PER_LONG;
2181 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2182 offset, mask);
2183 }
2184 KVM_MMU_UNLOCK(kvm);
2185 }
2186
2187 if (flush)
2188 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2189
2190 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2191 return -EFAULT;
2192 return 0;
2193}
2194
2195
2196/**
2197 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2198 * @kvm: kvm instance
2199 * @log: slot id and address to which we copy the log
2200 *
2201 * Steps 1-4 below provide general overview of dirty page logging. See
2202 * kvm_get_dirty_log_protect() function description for additional details.
2203 *
2204 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2205 * always flush the TLB (step 4) even if previous step failed and the dirty
2206 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2207 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2208 * writes will be marked dirty for next log read.
2209 *
2210 * 1. Take a snapshot of the bit and clear it if needed.
2211 * 2. Write protect the corresponding page.
2212 * 3. Copy the snapshot to the userspace.
2213 * 4. Flush TLB's if needed.
2214 */
2215static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2216 struct kvm_dirty_log *log)
2217{
2218 int r;
2219
2220 mutex_lock(&kvm->slots_lock);
2221
2222 r = kvm_get_dirty_log_protect(kvm, log);
2223
2224 mutex_unlock(&kvm->slots_lock);
2225 return r;
2226}
2227
2228/**
2229 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2230 * and reenable dirty page tracking for the corresponding pages.
2231 * @kvm: pointer to kvm instance
2232 * @log: slot id and address from which to fetch the bitmap of dirty pages
2233 */
2234static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2235 struct kvm_clear_dirty_log *log)
2236{
2237 struct kvm_memslots *slots;
2238 struct kvm_memory_slot *memslot;
2239 int as_id, id;
2240 gfn_t offset;
2241 unsigned long i, n;
2242 unsigned long *dirty_bitmap;
2243 unsigned long *dirty_bitmap_buffer;
2244 bool flush;
2245
2246 /* Dirty ring tracking may be exclusive to dirty log tracking */
2247 if (!kvm_use_dirty_bitmap(kvm))
2248 return -ENXIO;
2249
2250 as_id = log->slot >> 16;
2251 id = (u16)log->slot;
2252 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2253 return -EINVAL;
2254
2255 if (log->first_page & 63)
2256 return -EINVAL;
2257
2258 slots = __kvm_memslots(kvm, as_id);
2259 memslot = id_to_memslot(slots, id);
2260 if (!memslot || !memslot->dirty_bitmap)
2261 return -ENOENT;
2262
2263 dirty_bitmap = memslot->dirty_bitmap;
2264
2265 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2266
2267 if (log->first_page > memslot->npages ||
2268 log->num_pages > memslot->npages - log->first_page ||
2269 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2270 return -EINVAL;
2271
2272 kvm_arch_sync_dirty_log(kvm, memslot);
2273
2274 flush = false;
2275 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2276 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2277 return -EFAULT;
2278
2279 KVM_MMU_LOCK(kvm);
2280 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2281 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2282 i++, offset += BITS_PER_LONG) {
2283 unsigned long mask = *dirty_bitmap_buffer++;
2284 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2285 if (!mask)
2286 continue;
2287
2288 mask &= atomic_long_fetch_andnot(mask, p);
2289
2290 /*
2291 * mask contains the bits that really have been cleared. This
2292 * never includes any bits beyond the length of the memslot (if
2293 * the length is not aligned to 64 pages), therefore it is not
2294 * a problem if userspace sets them in log->dirty_bitmap.
2295 */
2296 if (mask) {
2297 flush = true;
2298 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2299 offset, mask);
2300 }
2301 }
2302 KVM_MMU_UNLOCK(kvm);
2303
2304 if (flush)
2305 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2306
2307 return 0;
2308}
2309
2310static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2311 struct kvm_clear_dirty_log *log)
2312{
2313 int r;
2314
2315 mutex_lock(&kvm->slots_lock);
2316
2317 r = kvm_clear_dirty_log_protect(kvm, log);
2318
2319 mutex_unlock(&kvm->slots_lock);
2320 return r;
2321}
2322#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2323
2324struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2325{
2326 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2327}
2328EXPORT_SYMBOL_GPL(gfn_to_memslot);
2329
2330struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2331{
2332 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2333 u64 gen = slots->generation;
2334 struct kvm_memory_slot *slot;
2335
2336 /*
2337 * This also protects against using a memslot from a different address space,
2338 * since different address spaces have different generation numbers.
2339 */
2340 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2341 vcpu->last_used_slot = NULL;
2342 vcpu->last_used_slot_gen = gen;
2343 }
2344
2345 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2346 if (slot)
2347 return slot;
2348
2349 /*
2350 * Fall back to searching all memslots. We purposely use
2351 * search_memslots() instead of __gfn_to_memslot() to avoid
2352 * thrashing the VM-wide last_used_slot in kvm_memslots.
2353 */
2354 slot = search_memslots(slots, gfn, false);
2355 if (slot) {
2356 vcpu->last_used_slot = slot;
2357 return slot;
2358 }
2359
2360 return NULL;
2361}
2362
2363bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2364{
2365 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2366
2367 return kvm_is_visible_memslot(memslot);
2368}
2369EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2370
2371bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2372{
2373 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2374
2375 return kvm_is_visible_memslot(memslot);
2376}
2377EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2378
2379unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2380{
2381 struct vm_area_struct *vma;
2382 unsigned long addr, size;
2383
2384 size = PAGE_SIZE;
2385
2386 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2387 if (kvm_is_error_hva(addr))
2388 return PAGE_SIZE;
2389
2390 mmap_read_lock(current->mm);
2391 vma = find_vma(current->mm, addr);
2392 if (!vma)
2393 goto out;
2394
2395 size = vma_kernel_pagesize(vma);
2396
2397out:
2398 mmap_read_unlock(current->mm);
2399
2400 return size;
2401}
2402
2403static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2404{
2405 return slot->flags & KVM_MEM_READONLY;
2406}
2407
2408static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2409 gfn_t *nr_pages, bool write)
2410{
2411 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2412 return KVM_HVA_ERR_BAD;
2413
2414 if (memslot_is_readonly(slot) && write)
2415 return KVM_HVA_ERR_RO_BAD;
2416
2417 if (nr_pages)
2418 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2419
2420 return __gfn_to_hva_memslot(slot, gfn);
2421}
2422
2423static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2424 gfn_t *nr_pages)
2425{
2426 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2427}
2428
2429unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2430 gfn_t gfn)
2431{
2432 return gfn_to_hva_many(slot, gfn, NULL);
2433}
2434EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2435
2436unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2437{
2438 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2439}
2440EXPORT_SYMBOL_GPL(gfn_to_hva);
2441
2442unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2443{
2444 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2445}
2446EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2447
2448/*
2449 * Return the hva of a @gfn and the R/W attribute if possible.
2450 *
2451 * @slot: the kvm_memory_slot which contains @gfn
2452 * @gfn: the gfn to be translated
2453 * @writable: used to return the read/write attribute of the @slot if the hva
2454 * is valid and @writable is not NULL
2455 */
2456unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2457 gfn_t gfn, bool *writable)
2458{
2459 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2460
2461 if (!kvm_is_error_hva(hva) && writable)
2462 *writable = !memslot_is_readonly(slot);
2463
2464 return hva;
2465}
2466
2467unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2468{
2469 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2470
2471 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2472}
2473
2474unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2475{
2476 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2477
2478 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2479}
2480
2481static inline int check_user_page_hwpoison(unsigned long addr)
2482{
2483 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2484
2485 rc = get_user_pages(addr, 1, flags, NULL, NULL);
2486 return rc == -EHWPOISON;
2487}
2488
2489/*
2490 * The fast path to get the writable pfn which will be stored in @pfn,
2491 * true indicates success, otherwise false is returned. It's also the
2492 * only part that runs if we can in atomic context.
2493 */
2494static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2495 bool *writable, kvm_pfn_t *pfn)
2496{
2497 struct page *page[1];
2498
2499 /*
2500 * Fast pin a writable pfn only if it is a write fault request
2501 * or the caller allows to map a writable pfn for a read fault
2502 * request.
2503 */
2504 if (!(write_fault || writable))
2505 return false;
2506
2507 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2508 *pfn = page_to_pfn(page[0]);
2509
2510 if (writable)
2511 *writable = true;
2512 return true;
2513 }
2514
2515 return false;
2516}
2517
2518/*
2519 * The slow path to get the pfn of the specified host virtual address,
2520 * 1 indicates success, -errno is returned if error is detected.
2521 */
2522static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2523 bool interruptible, bool *writable, kvm_pfn_t *pfn)
2524{
2525 unsigned int flags = FOLL_HWPOISON;
2526 struct page *page;
2527 int npages;
2528
2529 might_sleep();
2530
2531 if (writable)
2532 *writable = write_fault;
2533
2534 if (write_fault)
2535 flags |= FOLL_WRITE;
2536 if (async)
2537 flags |= FOLL_NOWAIT;
2538 if (interruptible)
2539 flags |= FOLL_INTERRUPTIBLE;
2540
2541 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2542 if (npages != 1)
2543 return npages;
2544
2545 /* map read fault as writable if possible */
2546 if (unlikely(!write_fault) && writable) {
2547 struct page *wpage;
2548
2549 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2550 *writable = true;
2551 put_page(page);
2552 page = wpage;
2553 }
2554 }
2555 *pfn = page_to_pfn(page);
2556 return npages;
2557}
2558
2559static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2560{
2561 if (unlikely(!(vma->vm_flags & VM_READ)))
2562 return false;
2563
2564 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2565 return false;
2566
2567 return true;
2568}
2569
2570static int kvm_try_get_pfn(kvm_pfn_t pfn)
2571{
2572 struct page *page = kvm_pfn_to_refcounted_page(pfn);
2573
2574 if (!page)
2575 return 1;
2576
2577 return get_page_unless_zero(page);
2578}
2579
2580static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2581 unsigned long addr, bool write_fault,
2582 bool *writable, kvm_pfn_t *p_pfn)
2583{
2584 kvm_pfn_t pfn;
2585 pte_t *ptep;
2586 spinlock_t *ptl;
2587 int r;
2588
2589 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2590 if (r) {
2591 /*
2592 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2593 * not call the fault handler, so do it here.
2594 */
2595 bool unlocked = false;
2596 r = fixup_user_fault(current->mm, addr,
2597 (write_fault ? FAULT_FLAG_WRITE : 0),
2598 &unlocked);
2599 if (unlocked)
2600 return -EAGAIN;
2601 if (r)
2602 return r;
2603
2604 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2605 if (r)
2606 return r;
2607 }
2608
2609 if (write_fault && !pte_write(*ptep)) {
2610 pfn = KVM_PFN_ERR_RO_FAULT;
2611 goto out;
2612 }
2613
2614 if (writable)
2615 *writable = pte_write(*ptep);
2616 pfn = pte_pfn(*ptep);
2617
2618 /*
2619 * Get a reference here because callers of *hva_to_pfn* and
2620 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2621 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2622 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2623 * simply do nothing for reserved pfns.
2624 *
2625 * Whoever called remap_pfn_range is also going to call e.g.
2626 * unmap_mapping_range before the underlying pages are freed,
2627 * causing a call to our MMU notifier.
2628 *
2629 * Certain IO or PFNMAP mappings can be backed with valid
2630 * struct pages, but be allocated without refcounting e.g.,
2631 * tail pages of non-compound higher order allocations, which
2632 * would then underflow the refcount when the caller does the
2633 * required put_page. Don't allow those pages here.
2634 */
2635 if (!kvm_try_get_pfn(pfn))
2636 r = -EFAULT;
2637
2638out:
2639 pte_unmap_unlock(ptep, ptl);
2640 *p_pfn = pfn;
2641
2642 return r;
2643}
2644
2645/*
2646 * Pin guest page in memory and return its pfn.
2647 * @addr: host virtual address which maps memory to the guest
2648 * @atomic: whether this function can sleep
2649 * @interruptible: whether the process can be interrupted by non-fatal signals
2650 * @async: whether this function need to wait IO complete if the
2651 * host page is not in the memory
2652 * @write_fault: whether we should get a writable host page
2653 * @writable: whether it allows to map a writable host page for !@write_fault
2654 *
2655 * The function will map a writable host page for these two cases:
2656 * 1): @write_fault = true
2657 * 2): @write_fault = false && @writable, @writable will tell the caller
2658 * whether the mapping is writable.
2659 */
2660kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2661 bool *async, bool write_fault, bool *writable)
2662{
2663 struct vm_area_struct *vma;
2664 kvm_pfn_t pfn;
2665 int npages, r;
2666
2667 /* we can do it either atomically or asynchronously, not both */
2668 BUG_ON(atomic && async);
2669
2670 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2671 return pfn;
2672
2673 if (atomic)
2674 return KVM_PFN_ERR_FAULT;
2675
2676 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2677 writable, &pfn);
2678 if (npages == 1)
2679 return pfn;
2680 if (npages == -EINTR)
2681 return KVM_PFN_ERR_SIGPENDING;
2682
2683 mmap_read_lock(current->mm);
2684 if (npages == -EHWPOISON ||
2685 (!async && check_user_page_hwpoison(addr))) {
2686 pfn = KVM_PFN_ERR_HWPOISON;
2687 goto exit;
2688 }
2689
2690retry:
2691 vma = vma_lookup(current->mm, addr);
2692
2693 if (vma == NULL)
2694 pfn = KVM_PFN_ERR_FAULT;
2695 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2696 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2697 if (r == -EAGAIN)
2698 goto retry;
2699 if (r < 0)
2700 pfn = KVM_PFN_ERR_FAULT;
2701 } else {
2702 if (async && vma_is_valid(vma, write_fault))
2703 *async = true;
2704 pfn = KVM_PFN_ERR_FAULT;
2705 }
2706exit:
2707 mmap_read_unlock(current->mm);
2708 return pfn;
2709}
2710
2711kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2712 bool atomic, bool interruptible, bool *async,
2713 bool write_fault, bool *writable, hva_t *hva)
2714{
2715 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2716
2717 if (hva)
2718 *hva = addr;
2719
2720 if (addr == KVM_HVA_ERR_RO_BAD) {
2721 if (writable)
2722 *writable = false;
2723 return KVM_PFN_ERR_RO_FAULT;
2724 }
2725
2726 if (kvm_is_error_hva(addr)) {
2727 if (writable)
2728 *writable = false;
2729 return KVM_PFN_NOSLOT;
2730 }
2731
2732 /* Do not map writable pfn in the readonly memslot. */
2733 if (writable && memslot_is_readonly(slot)) {
2734 *writable = false;
2735 writable = NULL;
2736 }
2737
2738 return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2739 writable);
2740}
2741EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2742
2743kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2744 bool *writable)
2745{
2746 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2747 NULL, write_fault, writable, NULL);
2748}
2749EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2750
2751kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2752{
2753 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2754 NULL, NULL);
2755}
2756EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2757
2758kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2759{
2760 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2761 NULL, NULL);
2762}
2763EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2764
2765kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2766{
2767 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2768}
2769EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2770
2771kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2772{
2773 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2774}
2775EXPORT_SYMBOL_GPL(gfn_to_pfn);
2776
2777kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2778{
2779 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2780}
2781EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2782
2783int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2784 struct page **pages, int nr_pages)
2785{
2786 unsigned long addr;
2787 gfn_t entry = 0;
2788
2789 addr = gfn_to_hva_many(slot, gfn, &entry);
2790 if (kvm_is_error_hva(addr))
2791 return -1;
2792
2793 if (entry < nr_pages)
2794 return 0;
2795
2796 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2797}
2798EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2799
2800/*
2801 * Do not use this helper unless you are absolutely certain the gfn _must_ be
2802 * backed by 'struct page'. A valid example is if the backing memslot is
2803 * controlled by KVM. Note, if the returned page is valid, it's refcount has
2804 * been elevated by gfn_to_pfn().
2805 */
2806struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2807{
2808 struct page *page;
2809 kvm_pfn_t pfn;
2810
2811 pfn = gfn_to_pfn(kvm, gfn);
2812
2813 if (is_error_noslot_pfn(pfn))
2814 return KVM_ERR_PTR_BAD_PAGE;
2815
2816 page = kvm_pfn_to_refcounted_page(pfn);
2817 if (!page)
2818 return KVM_ERR_PTR_BAD_PAGE;
2819
2820 return page;
2821}
2822EXPORT_SYMBOL_GPL(gfn_to_page);
2823
2824void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2825{
2826 if (dirty)
2827 kvm_release_pfn_dirty(pfn);
2828 else
2829 kvm_release_pfn_clean(pfn);
2830}
2831
2832int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2833{
2834 kvm_pfn_t pfn;
2835 void *hva = NULL;
2836 struct page *page = KVM_UNMAPPED_PAGE;
2837
2838 if (!map)
2839 return -EINVAL;
2840
2841 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2842 if (is_error_noslot_pfn(pfn))
2843 return -EINVAL;
2844
2845 if (pfn_valid(pfn)) {
2846 page = pfn_to_page(pfn);
2847 hva = kmap(page);
2848#ifdef CONFIG_HAS_IOMEM
2849 } else {
2850 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2851#endif
2852 }
2853
2854 if (!hva)
2855 return -EFAULT;
2856
2857 map->page = page;
2858 map->hva = hva;
2859 map->pfn = pfn;
2860 map->gfn = gfn;
2861
2862 return 0;
2863}
2864EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2865
2866void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2867{
2868 if (!map)
2869 return;
2870
2871 if (!map->hva)
2872 return;
2873
2874 if (map->page != KVM_UNMAPPED_PAGE)
2875 kunmap(map->page);
2876#ifdef CONFIG_HAS_IOMEM
2877 else
2878 memunmap(map->hva);
2879#endif
2880
2881 if (dirty)
2882 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2883
2884 kvm_release_pfn(map->pfn, dirty);
2885
2886 map->hva = NULL;
2887 map->page = NULL;
2888}
2889EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2890
2891static bool kvm_is_ad_tracked_page(struct page *page)
2892{
2893 /*
2894 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2895 * touched (e.g. set dirty) except by its owner".
2896 */
2897 return !PageReserved(page);
2898}
2899
2900static void kvm_set_page_dirty(struct page *page)
2901{
2902 if (kvm_is_ad_tracked_page(page))
2903 SetPageDirty(page);
2904}
2905
2906static void kvm_set_page_accessed(struct page *page)
2907{
2908 if (kvm_is_ad_tracked_page(page))
2909 mark_page_accessed(page);
2910}
2911
2912void kvm_release_page_clean(struct page *page)
2913{
2914 WARN_ON(is_error_page(page));
2915
2916 kvm_set_page_accessed(page);
2917 put_page(page);
2918}
2919EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2920
2921void kvm_release_pfn_clean(kvm_pfn_t pfn)
2922{
2923 struct page *page;
2924
2925 if (is_error_noslot_pfn(pfn))
2926 return;
2927
2928 page = kvm_pfn_to_refcounted_page(pfn);
2929 if (!page)
2930 return;
2931
2932 kvm_release_page_clean(page);
2933}
2934EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2935
2936void kvm_release_page_dirty(struct page *page)
2937{
2938 WARN_ON(is_error_page(page));
2939
2940 kvm_set_page_dirty(page);
2941 kvm_release_page_clean(page);
2942}
2943EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2944
2945void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2946{
2947 struct page *page;
2948
2949 if (is_error_noslot_pfn(pfn))
2950 return;
2951
2952 page = kvm_pfn_to_refcounted_page(pfn);
2953 if (!page)
2954 return;
2955
2956 kvm_release_page_dirty(page);
2957}
2958EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2959
2960/*
2961 * Note, checking for an error/noslot pfn is the caller's responsibility when
2962 * directly marking a page dirty/accessed. Unlike the "release" helpers, the
2963 * "set" helpers are not to be used when the pfn might point at garbage.
2964 */
2965void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2966{
2967 if (WARN_ON(is_error_noslot_pfn(pfn)))
2968 return;
2969
2970 if (pfn_valid(pfn))
2971 kvm_set_page_dirty(pfn_to_page(pfn));
2972}
2973EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2974
2975void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2976{
2977 if (WARN_ON(is_error_noslot_pfn(pfn)))
2978 return;
2979
2980 if (pfn_valid(pfn))
2981 kvm_set_page_accessed(pfn_to_page(pfn));
2982}
2983EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2984
2985static int next_segment(unsigned long len, int offset)
2986{
2987 if (len > PAGE_SIZE - offset)
2988 return PAGE_SIZE - offset;
2989 else
2990 return len;
2991}
2992
2993static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2994 void *data, int offset, int len)
2995{
2996 int r;
2997 unsigned long addr;
2998
2999 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3000 if (kvm_is_error_hva(addr))
3001 return -EFAULT;
3002 r = __copy_from_user(data, (void __user *)addr + offset, len);
3003 if (r)
3004 return -EFAULT;
3005 return 0;
3006}
3007
3008int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3009 int len)
3010{
3011 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3012
3013 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3014}
3015EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3016
3017int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3018 int offset, int len)
3019{
3020 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3021
3022 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3023}
3024EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3025
3026int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3027{
3028 gfn_t gfn = gpa >> PAGE_SHIFT;
3029 int seg;
3030 int offset = offset_in_page(gpa);
3031 int ret;
3032
3033 while ((seg = next_segment(len, offset)) != 0) {
3034 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3035 if (ret < 0)
3036 return ret;
3037 offset = 0;
3038 len -= seg;
3039 data += seg;
3040 ++gfn;
3041 }
3042 return 0;
3043}
3044EXPORT_SYMBOL_GPL(kvm_read_guest);
3045
3046int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3047{
3048 gfn_t gfn = gpa >> PAGE_SHIFT;
3049 int seg;
3050 int offset = offset_in_page(gpa);
3051 int ret;
3052
3053 while ((seg = next_segment(len, offset)) != 0) {
3054 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3055 if (ret < 0)
3056 return ret;
3057 offset = 0;
3058 len -= seg;
3059 data += seg;
3060 ++gfn;
3061 }
3062 return 0;
3063}
3064EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3065
3066static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3067 void *data, int offset, unsigned long len)
3068{
3069 int r;
3070 unsigned long addr;
3071
3072 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3073 if (kvm_is_error_hva(addr))
3074 return -EFAULT;
3075 pagefault_disable();
3076 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3077 pagefault_enable();
3078 if (r)
3079 return -EFAULT;
3080 return 0;
3081}
3082
3083int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3084 void *data, unsigned long len)
3085{
3086 gfn_t gfn = gpa >> PAGE_SHIFT;
3087 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3088 int offset = offset_in_page(gpa);
3089
3090 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3091}
3092EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3093
3094static int __kvm_write_guest_page(struct kvm *kvm,
3095 struct kvm_memory_slot *memslot, gfn_t gfn,
3096 const void *data, int offset, int len)
3097{
3098 int r;
3099 unsigned long addr;
3100
3101 addr = gfn_to_hva_memslot(memslot, gfn);
3102 if (kvm_is_error_hva(addr))
3103 return -EFAULT;
3104 r = __copy_to_user((void __user *)addr + offset, data, len);
3105 if (r)
3106 return -EFAULT;
3107 mark_page_dirty_in_slot(kvm, memslot, gfn);
3108 return 0;
3109}
3110
3111int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3112 const void *data, int offset, int len)
3113{
3114 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3115
3116 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3117}
3118EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3119
3120int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3121 const void *data, int offset, int len)
3122{
3123 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3124
3125 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3126}
3127EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3128
3129int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3130 unsigned long len)
3131{
3132 gfn_t gfn = gpa >> PAGE_SHIFT;
3133 int seg;
3134 int offset = offset_in_page(gpa);
3135 int ret;
3136
3137 while ((seg = next_segment(len, offset)) != 0) {
3138 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3139 if (ret < 0)
3140 return ret;
3141 offset = 0;
3142 len -= seg;
3143 data += seg;
3144 ++gfn;
3145 }
3146 return 0;
3147}
3148EXPORT_SYMBOL_GPL(kvm_write_guest);
3149
3150int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3151 unsigned long len)
3152{
3153 gfn_t gfn = gpa >> PAGE_SHIFT;
3154 int seg;
3155 int offset = offset_in_page(gpa);
3156 int ret;
3157
3158 while ((seg = next_segment(len, offset)) != 0) {
3159 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3160 if (ret < 0)
3161 return ret;
3162 offset = 0;
3163 len -= seg;
3164 data += seg;
3165 ++gfn;
3166 }
3167 return 0;
3168}
3169EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3170
3171static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3172 struct gfn_to_hva_cache *ghc,
3173 gpa_t gpa, unsigned long len)
3174{
3175 int offset = offset_in_page(gpa);
3176 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3177 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3178 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3179 gfn_t nr_pages_avail;
3180
3181 /* Update ghc->generation before performing any error checks. */
3182 ghc->generation = slots->generation;
3183
3184 if (start_gfn > end_gfn) {
3185 ghc->hva = KVM_HVA_ERR_BAD;
3186 return -EINVAL;
3187 }
3188
3189 /*
3190 * If the requested region crosses two memslots, we still
3191 * verify that the entire region is valid here.
3192 */
3193 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3194 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3195 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3196 &nr_pages_avail);
3197 if (kvm_is_error_hva(ghc->hva))
3198 return -EFAULT;
3199 }
3200
3201 /* Use the slow path for cross page reads and writes. */
3202 if (nr_pages_needed == 1)
3203 ghc->hva += offset;
3204 else
3205 ghc->memslot = NULL;
3206
3207 ghc->gpa = gpa;
3208 ghc->len = len;
3209 return 0;
3210}
3211
3212int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3213 gpa_t gpa, unsigned long len)
3214{
3215 struct kvm_memslots *slots = kvm_memslots(kvm);
3216 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3217}
3218EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3219
3220int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3221 void *data, unsigned int offset,
3222 unsigned long len)
3223{
3224 struct kvm_memslots *slots = kvm_memslots(kvm);
3225 int r;
3226 gpa_t gpa = ghc->gpa + offset;
3227
3228 if (WARN_ON_ONCE(len + offset > ghc->len))
3229 return -EINVAL;
3230
3231 if (slots->generation != ghc->generation) {
3232 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3233 return -EFAULT;
3234 }
3235
3236 if (kvm_is_error_hva(ghc->hva))
3237 return -EFAULT;
3238
3239 if (unlikely(!ghc->memslot))
3240 return kvm_write_guest(kvm, gpa, data, len);
3241
3242 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3243 if (r)
3244 return -EFAULT;
3245 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3246
3247 return 0;
3248}
3249EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3250
3251int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3252 void *data, unsigned long len)
3253{
3254 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3255}
3256EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3257
3258int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3259 void *data, unsigned int offset,
3260 unsigned long len)
3261{
3262 struct kvm_memslots *slots = kvm_memslots(kvm);
3263 int r;
3264 gpa_t gpa = ghc->gpa + offset;
3265
3266 if (WARN_ON_ONCE(len + offset > ghc->len))
3267 return -EINVAL;
3268
3269 if (slots->generation != ghc->generation) {
3270 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3271 return -EFAULT;
3272 }
3273
3274 if (kvm_is_error_hva(ghc->hva))
3275 return -EFAULT;
3276
3277 if (unlikely(!ghc->memslot))
3278 return kvm_read_guest(kvm, gpa, data, len);
3279
3280 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3281 if (r)
3282 return -EFAULT;
3283
3284 return 0;
3285}
3286EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3287
3288int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3289 void *data, unsigned long len)
3290{
3291 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3292}
3293EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3294
3295int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3296{
3297 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3298 gfn_t gfn = gpa >> PAGE_SHIFT;
3299 int seg;
3300 int offset = offset_in_page(gpa);
3301 int ret;
3302
3303 while ((seg = next_segment(len, offset)) != 0) {
3304 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3305 if (ret < 0)
3306 return ret;
3307 offset = 0;
3308 len -= seg;
3309 ++gfn;
3310 }
3311 return 0;
3312}
3313EXPORT_SYMBOL_GPL(kvm_clear_guest);
3314
3315void mark_page_dirty_in_slot(struct kvm *kvm,
3316 const struct kvm_memory_slot *memslot,
3317 gfn_t gfn)
3318{
3319 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3320
3321#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3322 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3323 return;
3324
3325 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3326#endif
3327
3328 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3329 unsigned long rel_gfn = gfn - memslot->base_gfn;
3330 u32 slot = (memslot->as_id << 16) | memslot->id;
3331
3332 if (kvm->dirty_ring_size && vcpu)
3333 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3334 else if (memslot->dirty_bitmap)
3335 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3336 }
3337}
3338EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3339
3340void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3341{
3342 struct kvm_memory_slot *memslot;
3343
3344 memslot = gfn_to_memslot(kvm, gfn);
3345 mark_page_dirty_in_slot(kvm, memslot, gfn);
3346}
3347EXPORT_SYMBOL_GPL(mark_page_dirty);
3348
3349void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3350{
3351 struct kvm_memory_slot *memslot;
3352
3353 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3354 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3355}
3356EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3357
3358void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3359{
3360 if (!vcpu->sigset_active)
3361 return;
3362
3363 /*
3364 * This does a lockless modification of ->real_blocked, which is fine
3365 * because, only current can change ->real_blocked and all readers of
3366 * ->real_blocked don't care as long ->real_blocked is always a subset
3367 * of ->blocked.
3368 */
3369 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3370}
3371
3372void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3373{
3374 if (!vcpu->sigset_active)
3375 return;
3376
3377 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3378 sigemptyset(¤t->real_blocked);
3379}
3380
3381static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3382{
3383 unsigned int old, val, grow, grow_start;
3384
3385 old = val = vcpu->halt_poll_ns;
3386 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3387 grow = READ_ONCE(halt_poll_ns_grow);
3388 if (!grow)
3389 goto out;
3390
3391 val *= grow;
3392 if (val < grow_start)
3393 val = grow_start;
3394
3395 vcpu->halt_poll_ns = val;
3396out:
3397 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3398}
3399
3400static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3401{
3402 unsigned int old, val, shrink, grow_start;
3403
3404 old = val = vcpu->halt_poll_ns;
3405 shrink = READ_ONCE(halt_poll_ns_shrink);
3406 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3407 if (shrink == 0)
3408 val = 0;
3409 else
3410 val /= shrink;
3411
3412 if (val < grow_start)
3413 val = 0;
3414
3415 vcpu->halt_poll_ns = val;
3416 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3417}
3418
3419static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3420{
3421 int ret = -EINTR;
3422 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3423
3424 if (kvm_arch_vcpu_runnable(vcpu))
3425 goto out;
3426 if (kvm_cpu_has_pending_timer(vcpu))
3427 goto out;
3428 if (signal_pending(current))
3429 goto out;
3430 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3431 goto out;
3432
3433 ret = 0;
3434out:
3435 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3436 return ret;
3437}
3438
3439/*
3440 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3441 * pending. This is mostly used when halting a vCPU, but may also be used
3442 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3443 */
3444bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3445{
3446 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3447 bool waited = false;
3448
3449 vcpu->stat.generic.blocking = 1;
3450
3451 preempt_disable();
3452 kvm_arch_vcpu_blocking(vcpu);
3453 prepare_to_rcuwait(wait);
3454 preempt_enable();
3455
3456 for (;;) {
3457 set_current_state(TASK_INTERRUPTIBLE);
3458
3459 if (kvm_vcpu_check_block(vcpu) < 0)
3460 break;
3461
3462 waited = true;
3463 schedule();
3464 }
3465
3466 preempt_disable();
3467 finish_rcuwait(wait);
3468 kvm_arch_vcpu_unblocking(vcpu);
3469 preempt_enable();
3470
3471 vcpu->stat.generic.blocking = 0;
3472
3473 return waited;
3474}
3475
3476static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3477 ktime_t end, bool success)
3478{
3479 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3480 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3481
3482 ++vcpu->stat.generic.halt_attempted_poll;
3483
3484 if (success) {
3485 ++vcpu->stat.generic.halt_successful_poll;
3486
3487 if (!vcpu_valid_wakeup(vcpu))
3488 ++vcpu->stat.generic.halt_poll_invalid;
3489
3490 stats->halt_poll_success_ns += poll_ns;
3491 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3492 } else {
3493 stats->halt_poll_fail_ns += poll_ns;
3494 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3495 }
3496}
3497
3498static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3499{
3500 struct kvm *kvm = vcpu->kvm;
3501
3502 if (kvm->override_halt_poll_ns) {
3503 /*
3504 * Ensure kvm->max_halt_poll_ns is not read before
3505 * kvm->override_halt_poll_ns.
3506 *
3507 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3508 */
3509 smp_rmb();
3510 return READ_ONCE(kvm->max_halt_poll_ns);
3511 }
3512
3513 return READ_ONCE(halt_poll_ns);
3514}
3515
3516/*
3517 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3518 * polling is enabled, busy wait for a short time before blocking to avoid the
3519 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3520 * is halted.
3521 */
3522void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3523{
3524 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3525 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3526 ktime_t start, cur, poll_end;
3527 bool waited = false;
3528 bool do_halt_poll;
3529 u64 halt_ns;
3530
3531 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3532 vcpu->halt_poll_ns = max_halt_poll_ns;
3533
3534 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3535
3536 start = cur = poll_end = ktime_get();
3537 if (do_halt_poll) {
3538 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3539
3540 do {
3541 if (kvm_vcpu_check_block(vcpu) < 0)
3542 goto out;
3543 cpu_relax();
3544 poll_end = cur = ktime_get();
3545 } while (kvm_vcpu_can_poll(cur, stop));
3546 }
3547
3548 waited = kvm_vcpu_block(vcpu);
3549
3550 cur = ktime_get();
3551 if (waited) {
3552 vcpu->stat.generic.halt_wait_ns +=
3553 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3554 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3555 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3556 }
3557out:
3558 /* The total time the vCPU was "halted", including polling time. */
3559 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3560
3561 /*
3562 * Note, halt-polling is considered successful so long as the vCPU was
3563 * never actually scheduled out, i.e. even if the wake event arrived
3564 * after of the halt-polling loop itself, but before the full wait.
3565 */
3566 if (do_halt_poll)
3567 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3568
3569 if (halt_poll_allowed) {
3570 /* Recompute the max halt poll time in case it changed. */
3571 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3572
3573 if (!vcpu_valid_wakeup(vcpu)) {
3574 shrink_halt_poll_ns(vcpu);
3575 } else if (max_halt_poll_ns) {
3576 if (halt_ns <= vcpu->halt_poll_ns)
3577 ;
3578 /* we had a long block, shrink polling */
3579 else if (vcpu->halt_poll_ns &&
3580 halt_ns > max_halt_poll_ns)
3581 shrink_halt_poll_ns(vcpu);
3582 /* we had a short halt and our poll time is too small */
3583 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3584 halt_ns < max_halt_poll_ns)
3585 grow_halt_poll_ns(vcpu);
3586 } else {
3587 vcpu->halt_poll_ns = 0;
3588 }
3589 }
3590
3591 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3592}
3593EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3594
3595bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3596{
3597 if (__kvm_vcpu_wake_up(vcpu)) {
3598 WRITE_ONCE(vcpu->ready, true);
3599 ++vcpu->stat.generic.halt_wakeup;
3600 return true;
3601 }
3602
3603 return false;
3604}
3605EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3606
3607#ifndef CONFIG_S390
3608/*
3609 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3610 */
3611void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3612{
3613 int me, cpu;
3614
3615 if (kvm_vcpu_wake_up(vcpu))
3616 return;
3617
3618 me = get_cpu();
3619 /*
3620 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3621 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3622 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3623 * within the vCPU thread itself.
3624 */
3625 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3626 if (vcpu->mode == IN_GUEST_MODE)
3627 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3628 goto out;
3629 }
3630
3631 /*
3632 * Note, the vCPU could get migrated to a different pCPU at any point
3633 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3634 * IPI to the previous pCPU. But, that's ok because the purpose of the
3635 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3636 * vCPU also requires it to leave IN_GUEST_MODE.
3637 */
3638 if (kvm_arch_vcpu_should_kick(vcpu)) {
3639 cpu = READ_ONCE(vcpu->cpu);
3640 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3641 smp_send_reschedule(cpu);
3642 }
3643out:
3644 put_cpu();
3645}
3646EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3647#endif /* !CONFIG_S390 */
3648
3649int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3650{
3651 struct pid *pid;
3652 struct task_struct *task = NULL;
3653 int ret = 0;
3654
3655 rcu_read_lock();
3656 pid = rcu_dereference(target->pid);
3657 if (pid)
3658 task = get_pid_task(pid, PIDTYPE_PID);
3659 rcu_read_unlock();
3660 if (!task)
3661 return ret;
3662 ret = yield_to(task, 1);
3663 put_task_struct(task);
3664
3665 return ret;
3666}
3667EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3668
3669/*
3670 * Helper that checks whether a VCPU is eligible for directed yield.
3671 * Most eligible candidate to yield is decided by following heuristics:
3672 *
3673 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3674 * (preempted lock holder), indicated by @in_spin_loop.
3675 * Set at the beginning and cleared at the end of interception/PLE handler.
3676 *
3677 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3678 * chance last time (mostly it has become eligible now since we have probably
3679 * yielded to lockholder in last iteration. This is done by toggling
3680 * @dy_eligible each time a VCPU checked for eligibility.)
3681 *
3682 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3683 * to preempted lock-holder could result in wrong VCPU selection and CPU
3684 * burning. Giving priority for a potential lock-holder increases lock
3685 * progress.
3686 *
3687 * Since algorithm is based on heuristics, accessing another VCPU data without
3688 * locking does not harm. It may result in trying to yield to same VCPU, fail
3689 * and continue with next VCPU and so on.
3690 */
3691static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3692{
3693#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3694 bool eligible;
3695
3696 eligible = !vcpu->spin_loop.in_spin_loop ||
3697 vcpu->spin_loop.dy_eligible;
3698
3699 if (vcpu->spin_loop.in_spin_loop)
3700 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3701
3702 return eligible;
3703#else
3704 return true;
3705#endif
3706}
3707
3708/*
3709 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3710 * a vcpu_load/vcpu_put pair. However, for most architectures
3711 * kvm_arch_vcpu_runnable does not require vcpu_load.
3712 */
3713bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3714{
3715 return kvm_arch_vcpu_runnable(vcpu);
3716}
3717
3718static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3719{
3720 if (kvm_arch_dy_runnable(vcpu))
3721 return true;
3722
3723#ifdef CONFIG_KVM_ASYNC_PF
3724 if (!list_empty_careful(&vcpu->async_pf.done))
3725 return true;
3726#endif
3727
3728 return false;
3729}
3730
3731bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3732{
3733 return false;
3734}
3735
3736void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3737{
3738 struct kvm *kvm = me->kvm;
3739 struct kvm_vcpu *vcpu;
3740 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3741 unsigned long i;
3742 int yielded = 0;
3743 int try = 3;
3744 int pass;
3745
3746 kvm_vcpu_set_in_spin_loop(me, true);
3747 /*
3748 * We boost the priority of a VCPU that is runnable but not
3749 * currently running, because it got preempted by something
3750 * else and called schedule in __vcpu_run. Hopefully that
3751 * VCPU is holding the lock that we need and will release it.
3752 * We approximate round-robin by starting at the last boosted VCPU.
3753 */
3754 for (pass = 0; pass < 2 && !yielded && try; pass++) {
3755 kvm_for_each_vcpu(i, vcpu, kvm) {
3756 if (!pass && i <= last_boosted_vcpu) {
3757 i = last_boosted_vcpu;
3758 continue;
3759 } else if (pass && i > last_boosted_vcpu)
3760 break;
3761 if (!READ_ONCE(vcpu->ready))
3762 continue;
3763 if (vcpu == me)
3764 continue;
3765 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3766 continue;
3767 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3768 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3769 !kvm_arch_vcpu_in_kernel(vcpu))
3770 continue;
3771 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3772 continue;
3773
3774 yielded = kvm_vcpu_yield_to(vcpu);
3775 if (yielded > 0) {
3776 kvm->last_boosted_vcpu = i;
3777 break;
3778 } else if (yielded < 0) {
3779 try--;
3780 if (!try)
3781 break;
3782 }
3783 }
3784 }
3785 kvm_vcpu_set_in_spin_loop(me, false);
3786
3787 /* Ensure vcpu is not eligible during next spinloop */
3788 kvm_vcpu_set_dy_eligible(me, false);
3789}
3790EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3791
3792static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3793{
3794#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3795 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3796 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3797 kvm->dirty_ring_size / PAGE_SIZE);
3798#else
3799 return false;
3800#endif
3801}
3802
3803static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3804{
3805 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3806 struct page *page;
3807
3808 if (vmf->pgoff == 0)
3809 page = virt_to_page(vcpu->run);
3810#ifdef CONFIG_X86
3811 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3812 page = virt_to_page(vcpu->arch.pio_data);
3813#endif
3814#ifdef CONFIG_KVM_MMIO
3815 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3816 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3817#endif
3818 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3819 page = kvm_dirty_ring_get_page(
3820 &vcpu->dirty_ring,
3821 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3822 else
3823 return kvm_arch_vcpu_fault(vcpu, vmf);
3824 get_page(page);
3825 vmf->page = page;
3826 return 0;
3827}
3828
3829static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3830 .fault = kvm_vcpu_fault,
3831};
3832
3833static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3834{
3835 struct kvm_vcpu *vcpu = file->private_data;
3836 unsigned long pages = vma_pages(vma);
3837
3838 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3839 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3840 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3841 return -EINVAL;
3842
3843 vma->vm_ops = &kvm_vcpu_vm_ops;
3844 return 0;
3845}
3846
3847static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3848{
3849 struct kvm_vcpu *vcpu = filp->private_data;
3850
3851 kvm_put_kvm(vcpu->kvm);
3852 return 0;
3853}
3854
3855static const struct file_operations kvm_vcpu_fops = {
3856 .release = kvm_vcpu_release,
3857 .unlocked_ioctl = kvm_vcpu_ioctl,
3858 .mmap = kvm_vcpu_mmap,
3859 .llseek = noop_llseek,
3860 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3861};
3862
3863/*
3864 * Allocates an inode for the vcpu.
3865 */
3866static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3867{
3868 char name[8 + 1 + ITOA_MAX_LEN + 1];
3869
3870 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3871 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3872}
3873
3874#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3875static int vcpu_get_pid(void *data, u64 *val)
3876{
3877 struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data;
3878 *val = pid_nr(rcu_access_pointer(vcpu->pid));
3879 return 0;
3880}
3881
3882DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3883
3884static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3885{
3886 struct dentry *debugfs_dentry;
3887 char dir_name[ITOA_MAX_LEN * 2];
3888
3889 if (!debugfs_initialized())
3890 return;
3891
3892 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3893 debugfs_dentry = debugfs_create_dir(dir_name,
3894 vcpu->kvm->debugfs_dentry);
3895 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3896 &vcpu_get_pid_fops);
3897
3898 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3899}
3900#endif
3901
3902/*
3903 * Creates some virtual cpus. Good luck creating more than one.
3904 */
3905static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3906{
3907 int r;
3908 struct kvm_vcpu *vcpu;
3909 struct page *page;
3910
3911 if (id >= KVM_MAX_VCPU_IDS)
3912 return -EINVAL;
3913
3914 mutex_lock(&kvm->lock);
3915 if (kvm->created_vcpus >= kvm->max_vcpus) {
3916 mutex_unlock(&kvm->lock);
3917 return -EINVAL;
3918 }
3919
3920 r = kvm_arch_vcpu_precreate(kvm, id);
3921 if (r) {
3922 mutex_unlock(&kvm->lock);
3923 return r;
3924 }
3925
3926 kvm->created_vcpus++;
3927 mutex_unlock(&kvm->lock);
3928
3929 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3930 if (!vcpu) {
3931 r = -ENOMEM;
3932 goto vcpu_decrement;
3933 }
3934
3935 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3936 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3937 if (!page) {
3938 r = -ENOMEM;
3939 goto vcpu_free;
3940 }
3941 vcpu->run = page_address(page);
3942
3943 kvm_vcpu_init(vcpu, kvm, id);
3944
3945 r = kvm_arch_vcpu_create(vcpu);
3946 if (r)
3947 goto vcpu_free_run_page;
3948
3949 if (kvm->dirty_ring_size) {
3950 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3951 id, kvm->dirty_ring_size);
3952 if (r)
3953 goto arch_vcpu_destroy;
3954 }
3955
3956 mutex_lock(&kvm->lock);
3957
3958#ifdef CONFIG_LOCKDEP
3959 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3960 mutex_lock(&vcpu->mutex);
3961 mutex_unlock(&vcpu->mutex);
3962#endif
3963
3964 if (kvm_get_vcpu_by_id(kvm, id)) {
3965 r = -EEXIST;
3966 goto unlock_vcpu_destroy;
3967 }
3968
3969 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3970 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3971 BUG_ON(r == -EBUSY);
3972 if (r)
3973 goto unlock_vcpu_destroy;
3974
3975 /* Now it's all set up, let userspace reach it */
3976 kvm_get_kvm(kvm);
3977 r = create_vcpu_fd(vcpu);
3978 if (r < 0) {
3979 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3980 kvm_put_kvm_no_destroy(kvm);
3981 goto unlock_vcpu_destroy;
3982 }
3983
3984 /*
3985 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
3986 * pointer before kvm->online_vcpu's incremented value.
3987 */
3988 smp_wmb();
3989 atomic_inc(&kvm->online_vcpus);
3990
3991 mutex_unlock(&kvm->lock);
3992 kvm_arch_vcpu_postcreate(vcpu);
3993 kvm_create_vcpu_debugfs(vcpu);
3994 return r;
3995
3996unlock_vcpu_destroy:
3997 mutex_unlock(&kvm->lock);
3998 kvm_dirty_ring_free(&vcpu->dirty_ring);
3999arch_vcpu_destroy:
4000 kvm_arch_vcpu_destroy(vcpu);
4001vcpu_free_run_page:
4002 free_page((unsigned long)vcpu->run);
4003vcpu_free:
4004 kmem_cache_free(kvm_vcpu_cache, vcpu);
4005vcpu_decrement:
4006 mutex_lock(&kvm->lock);
4007 kvm->created_vcpus--;
4008 mutex_unlock(&kvm->lock);
4009 return r;
4010}
4011
4012static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4013{
4014 if (sigset) {
4015 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4016 vcpu->sigset_active = 1;
4017 vcpu->sigset = *sigset;
4018 } else
4019 vcpu->sigset_active = 0;
4020 return 0;
4021}
4022
4023static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4024 size_t size, loff_t *offset)
4025{
4026 struct kvm_vcpu *vcpu = file->private_data;
4027
4028 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4029 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4030 sizeof(vcpu->stat), user_buffer, size, offset);
4031}
4032
4033static const struct file_operations kvm_vcpu_stats_fops = {
4034 .read = kvm_vcpu_stats_read,
4035 .llseek = noop_llseek,
4036};
4037
4038static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4039{
4040 int fd;
4041 struct file *file;
4042 char name[15 + ITOA_MAX_LEN + 1];
4043
4044 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4045
4046 fd = get_unused_fd_flags(O_CLOEXEC);
4047 if (fd < 0)
4048 return fd;
4049
4050 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4051 if (IS_ERR(file)) {
4052 put_unused_fd(fd);
4053 return PTR_ERR(file);
4054 }
4055 file->f_mode |= FMODE_PREAD;
4056 fd_install(fd, file);
4057
4058 return fd;
4059}
4060
4061static long kvm_vcpu_ioctl(struct file *filp,
4062 unsigned int ioctl, unsigned long arg)
4063{
4064 struct kvm_vcpu *vcpu = filp->private_data;
4065 void __user *argp = (void __user *)arg;
4066 int r;
4067 struct kvm_fpu *fpu = NULL;
4068 struct kvm_sregs *kvm_sregs = NULL;
4069
4070 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4071 return -EIO;
4072
4073 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4074 return -EINVAL;
4075
4076 /*
4077 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4078 * execution; mutex_lock() would break them.
4079 */
4080 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4081 if (r != -ENOIOCTLCMD)
4082 return r;
4083
4084 if (mutex_lock_killable(&vcpu->mutex))
4085 return -EINTR;
4086 switch (ioctl) {
4087 case KVM_RUN: {
4088 struct pid *oldpid;
4089 r = -EINVAL;
4090 if (arg)
4091 goto out;
4092 oldpid = rcu_access_pointer(vcpu->pid);
4093 if (unlikely(oldpid != task_pid(current))) {
4094 /* The thread running this VCPU changed. */
4095 struct pid *newpid;
4096
4097 r = kvm_arch_vcpu_run_pid_change(vcpu);
4098 if (r)
4099 break;
4100
4101 newpid = get_task_pid(current, PIDTYPE_PID);
4102 rcu_assign_pointer(vcpu->pid, newpid);
4103 if (oldpid)
4104 synchronize_rcu();
4105 put_pid(oldpid);
4106 }
4107 r = kvm_arch_vcpu_ioctl_run(vcpu);
4108 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4109 break;
4110 }
4111 case KVM_GET_REGS: {
4112 struct kvm_regs *kvm_regs;
4113
4114 r = -ENOMEM;
4115 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4116 if (!kvm_regs)
4117 goto out;
4118 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4119 if (r)
4120 goto out_free1;
4121 r = -EFAULT;
4122 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4123 goto out_free1;
4124 r = 0;
4125out_free1:
4126 kfree(kvm_regs);
4127 break;
4128 }
4129 case KVM_SET_REGS: {
4130 struct kvm_regs *kvm_regs;
4131
4132 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4133 if (IS_ERR(kvm_regs)) {
4134 r = PTR_ERR(kvm_regs);
4135 goto out;
4136 }
4137 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4138 kfree(kvm_regs);
4139 break;
4140 }
4141 case KVM_GET_SREGS: {
4142 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4143 GFP_KERNEL_ACCOUNT);
4144 r = -ENOMEM;
4145 if (!kvm_sregs)
4146 goto out;
4147 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4148 if (r)
4149 goto out;
4150 r = -EFAULT;
4151 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4152 goto out;
4153 r = 0;
4154 break;
4155 }
4156 case KVM_SET_SREGS: {
4157 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4158 if (IS_ERR(kvm_sregs)) {
4159 r = PTR_ERR(kvm_sregs);
4160 kvm_sregs = NULL;
4161 goto out;
4162 }
4163 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4164 break;
4165 }
4166 case KVM_GET_MP_STATE: {
4167 struct kvm_mp_state mp_state;
4168
4169 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4170 if (r)
4171 goto out;
4172 r = -EFAULT;
4173 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4174 goto out;
4175 r = 0;
4176 break;
4177 }
4178 case KVM_SET_MP_STATE: {
4179 struct kvm_mp_state mp_state;
4180
4181 r = -EFAULT;
4182 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4183 goto out;
4184 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4185 break;
4186 }
4187 case KVM_TRANSLATE: {
4188 struct kvm_translation tr;
4189
4190 r = -EFAULT;
4191 if (copy_from_user(&tr, argp, sizeof(tr)))
4192 goto out;
4193 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4194 if (r)
4195 goto out;
4196 r = -EFAULT;
4197 if (copy_to_user(argp, &tr, sizeof(tr)))
4198 goto out;
4199 r = 0;
4200 break;
4201 }
4202 case KVM_SET_GUEST_DEBUG: {
4203 struct kvm_guest_debug dbg;
4204
4205 r = -EFAULT;
4206 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4207 goto out;
4208 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4209 break;
4210 }
4211 case KVM_SET_SIGNAL_MASK: {
4212 struct kvm_signal_mask __user *sigmask_arg = argp;
4213 struct kvm_signal_mask kvm_sigmask;
4214 sigset_t sigset, *p;
4215
4216 p = NULL;
4217 if (argp) {
4218 r = -EFAULT;
4219 if (copy_from_user(&kvm_sigmask, argp,
4220 sizeof(kvm_sigmask)))
4221 goto out;
4222 r = -EINVAL;
4223 if (kvm_sigmask.len != sizeof(sigset))
4224 goto out;
4225 r = -EFAULT;
4226 if (copy_from_user(&sigset, sigmask_arg->sigset,
4227 sizeof(sigset)))
4228 goto out;
4229 p = &sigset;
4230 }
4231 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4232 break;
4233 }
4234 case KVM_GET_FPU: {
4235 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4236 r = -ENOMEM;
4237 if (!fpu)
4238 goto out;
4239 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4240 if (r)
4241 goto out;
4242 r = -EFAULT;
4243 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4244 goto out;
4245 r = 0;
4246 break;
4247 }
4248 case KVM_SET_FPU: {
4249 fpu = memdup_user(argp, sizeof(*fpu));
4250 if (IS_ERR(fpu)) {
4251 r = PTR_ERR(fpu);
4252 fpu = NULL;
4253 goto out;
4254 }
4255 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4256 break;
4257 }
4258 case KVM_GET_STATS_FD: {
4259 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4260 break;
4261 }
4262 default:
4263 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4264 }
4265out:
4266 mutex_unlock(&vcpu->mutex);
4267 kfree(fpu);
4268 kfree(kvm_sregs);
4269 return r;
4270}
4271
4272#ifdef CONFIG_KVM_COMPAT
4273static long kvm_vcpu_compat_ioctl(struct file *filp,
4274 unsigned int ioctl, unsigned long arg)
4275{
4276 struct kvm_vcpu *vcpu = filp->private_data;
4277 void __user *argp = compat_ptr(arg);
4278 int r;
4279
4280 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4281 return -EIO;
4282
4283 switch (ioctl) {
4284 case KVM_SET_SIGNAL_MASK: {
4285 struct kvm_signal_mask __user *sigmask_arg = argp;
4286 struct kvm_signal_mask kvm_sigmask;
4287 sigset_t sigset;
4288
4289 if (argp) {
4290 r = -EFAULT;
4291 if (copy_from_user(&kvm_sigmask, argp,
4292 sizeof(kvm_sigmask)))
4293 goto out;
4294 r = -EINVAL;
4295 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4296 goto out;
4297 r = -EFAULT;
4298 if (get_compat_sigset(&sigset,
4299 (compat_sigset_t __user *)sigmask_arg->sigset))
4300 goto out;
4301 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4302 } else
4303 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4304 break;
4305 }
4306 default:
4307 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4308 }
4309
4310out:
4311 return r;
4312}
4313#endif
4314
4315static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4316{
4317 struct kvm_device *dev = filp->private_data;
4318
4319 if (dev->ops->mmap)
4320 return dev->ops->mmap(dev, vma);
4321
4322 return -ENODEV;
4323}
4324
4325static int kvm_device_ioctl_attr(struct kvm_device *dev,
4326 int (*accessor)(struct kvm_device *dev,
4327 struct kvm_device_attr *attr),
4328 unsigned long arg)
4329{
4330 struct kvm_device_attr attr;
4331
4332 if (!accessor)
4333 return -EPERM;
4334
4335 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4336 return -EFAULT;
4337
4338 return accessor(dev, &attr);
4339}
4340
4341static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4342 unsigned long arg)
4343{
4344 struct kvm_device *dev = filp->private_data;
4345
4346 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4347 return -EIO;
4348
4349 switch (ioctl) {
4350 case KVM_SET_DEVICE_ATTR:
4351 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4352 case KVM_GET_DEVICE_ATTR:
4353 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4354 case KVM_HAS_DEVICE_ATTR:
4355 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4356 default:
4357 if (dev->ops->ioctl)
4358 return dev->ops->ioctl(dev, ioctl, arg);
4359
4360 return -ENOTTY;
4361 }
4362}
4363
4364static int kvm_device_release(struct inode *inode, struct file *filp)
4365{
4366 struct kvm_device *dev = filp->private_data;
4367 struct kvm *kvm = dev->kvm;
4368
4369 if (dev->ops->release) {
4370 mutex_lock(&kvm->lock);
4371 list_del(&dev->vm_node);
4372 dev->ops->release(dev);
4373 mutex_unlock(&kvm->lock);
4374 }
4375
4376 kvm_put_kvm(kvm);
4377 return 0;
4378}
4379
4380static const struct file_operations kvm_device_fops = {
4381 .unlocked_ioctl = kvm_device_ioctl,
4382 .release = kvm_device_release,
4383 KVM_COMPAT(kvm_device_ioctl),
4384 .mmap = kvm_device_mmap,
4385};
4386
4387struct kvm_device *kvm_device_from_filp(struct file *filp)
4388{
4389 if (filp->f_op != &kvm_device_fops)
4390 return NULL;
4391
4392 return filp->private_data;
4393}
4394
4395static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4396#ifdef CONFIG_KVM_MPIC
4397 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4398 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4399#endif
4400};
4401
4402int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4403{
4404 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4405 return -ENOSPC;
4406
4407 if (kvm_device_ops_table[type] != NULL)
4408 return -EEXIST;
4409
4410 kvm_device_ops_table[type] = ops;
4411 return 0;
4412}
4413
4414void kvm_unregister_device_ops(u32 type)
4415{
4416 if (kvm_device_ops_table[type] != NULL)
4417 kvm_device_ops_table[type] = NULL;
4418}
4419
4420static int kvm_ioctl_create_device(struct kvm *kvm,
4421 struct kvm_create_device *cd)
4422{
4423 const struct kvm_device_ops *ops;
4424 struct kvm_device *dev;
4425 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4426 int type;
4427 int ret;
4428
4429 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4430 return -ENODEV;
4431
4432 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4433 ops = kvm_device_ops_table[type];
4434 if (ops == NULL)
4435 return -ENODEV;
4436
4437 if (test)
4438 return 0;
4439
4440 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4441 if (!dev)
4442 return -ENOMEM;
4443
4444 dev->ops = ops;
4445 dev->kvm = kvm;
4446
4447 mutex_lock(&kvm->lock);
4448 ret = ops->create(dev, type);
4449 if (ret < 0) {
4450 mutex_unlock(&kvm->lock);
4451 kfree(dev);
4452 return ret;
4453 }
4454 list_add(&dev->vm_node, &kvm->devices);
4455 mutex_unlock(&kvm->lock);
4456
4457 if (ops->init)
4458 ops->init(dev);
4459
4460 kvm_get_kvm(kvm);
4461 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4462 if (ret < 0) {
4463 kvm_put_kvm_no_destroy(kvm);
4464 mutex_lock(&kvm->lock);
4465 list_del(&dev->vm_node);
4466 if (ops->release)
4467 ops->release(dev);
4468 mutex_unlock(&kvm->lock);
4469 if (ops->destroy)
4470 ops->destroy(dev);
4471 return ret;
4472 }
4473
4474 cd->fd = ret;
4475 return 0;
4476}
4477
4478static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4479{
4480 switch (arg) {
4481 case KVM_CAP_USER_MEMORY:
4482 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4483 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4484 case KVM_CAP_INTERNAL_ERROR_DATA:
4485#ifdef CONFIG_HAVE_KVM_MSI
4486 case KVM_CAP_SIGNAL_MSI:
4487#endif
4488#ifdef CONFIG_HAVE_KVM_IRQFD
4489 case KVM_CAP_IRQFD:
4490 case KVM_CAP_IRQFD_RESAMPLE:
4491#endif
4492 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4493 case KVM_CAP_CHECK_EXTENSION_VM:
4494 case KVM_CAP_ENABLE_CAP_VM:
4495 case KVM_CAP_HALT_POLL:
4496 return 1;
4497#ifdef CONFIG_KVM_MMIO
4498 case KVM_CAP_COALESCED_MMIO:
4499 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4500 case KVM_CAP_COALESCED_PIO:
4501 return 1;
4502#endif
4503#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4504 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4505 return KVM_DIRTY_LOG_MANUAL_CAPS;
4506#endif
4507#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4508 case KVM_CAP_IRQ_ROUTING:
4509 return KVM_MAX_IRQ_ROUTES;
4510#endif
4511#if KVM_ADDRESS_SPACE_NUM > 1
4512 case KVM_CAP_MULTI_ADDRESS_SPACE:
4513 return KVM_ADDRESS_SPACE_NUM;
4514#endif
4515 case KVM_CAP_NR_MEMSLOTS:
4516 return KVM_USER_MEM_SLOTS;
4517 case KVM_CAP_DIRTY_LOG_RING:
4518#ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4519 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4520#else
4521 return 0;
4522#endif
4523 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4524#ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4525 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4526#else
4527 return 0;
4528#endif
4529#ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4530 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4531#endif
4532 case KVM_CAP_BINARY_STATS_FD:
4533 case KVM_CAP_SYSTEM_EVENT_DATA:
4534 return 1;
4535 default:
4536 break;
4537 }
4538 return kvm_vm_ioctl_check_extension(kvm, arg);
4539}
4540
4541static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4542{
4543 int r;
4544
4545 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4546 return -EINVAL;
4547
4548 /* the size should be power of 2 */
4549 if (!size || (size & (size - 1)))
4550 return -EINVAL;
4551
4552 /* Should be bigger to keep the reserved entries, or a page */
4553 if (size < kvm_dirty_ring_get_rsvd_entries() *
4554 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4555 return -EINVAL;
4556
4557 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4558 sizeof(struct kvm_dirty_gfn))
4559 return -E2BIG;
4560
4561 /* We only allow it to set once */
4562 if (kvm->dirty_ring_size)
4563 return -EINVAL;
4564
4565 mutex_lock(&kvm->lock);
4566
4567 if (kvm->created_vcpus) {
4568 /* We don't allow to change this value after vcpu created */
4569 r = -EINVAL;
4570 } else {
4571 kvm->dirty_ring_size = size;
4572 r = 0;
4573 }
4574
4575 mutex_unlock(&kvm->lock);
4576 return r;
4577}
4578
4579static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4580{
4581 unsigned long i;
4582 struct kvm_vcpu *vcpu;
4583 int cleared = 0;
4584
4585 if (!kvm->dirty_ring_size)
4586 return -EINVAL;
4587
4588 mutex_lock(&kvm->slots_lock);
4589
4590 kvm_for_each_vcpu(i, vcpu, kvm)
4591 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4592
4593 mutex_unlock(&kvm->slots_lock);
4594
4595 if (cleared)
4596 kvm_flush_remote_tlbs(kvm);
4597
4598 return cleared;
4599}
4600
4601int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4602 struct kvm_enable_cap *cap)
4603{
4604 return -EINVAL;
4605}
4606
4607static bool kvm_are_all_memslots_empty(struct kvm *kvm)
4608{
4609 int i;
4610
4611 lockdep_assert_held(&kvm->slots_lock);
4612
4613 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4614 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4615 return false;
4616 }
4617
4618 return true;
4619}
4620
4621static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4622 struct kvm_enable_cap *cap)
4623{
4624 switch (cap->cap) {
4625#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4626 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4627 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4628
4629 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4630 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4631
4632 if (cap->flags || (cap->args[0] & ~allowed_options))
4633 return -EINVAL;
4634 kvm->manual_dirty_log_protect = cap->args[0];
4635 return 0;
4636 }
4637#endif
4638 case KVM_CAP_HALT_POLL: {
4639 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4640 return -EINVAL;
4641
4642 kvm->max_halt_poll_ns = cap->args[0];
4643
4644 /*
4645 * Ensure kvm->override_halt_poll_ns does not become visible
4646 * before kvm->max_halt_poll_ns.
4647 *
4648 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4649 */
4650 smp_wmb();
4651 kvm->override_halt_poll_ns = true;
4652
4653 return 0;
4654 }
4655 case KVM_CAP_DIRTY_LOG_RING:
4656 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4657 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4658 return -EINVAL;
4659
4660 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4661 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4662 int r = -EINVAL;
4663
4664 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4665 !kvm->dirty_ring_size || cap->flags)
4666 return r;
4667
4668 mutex_lock(&kvm->slots_lock);
4669
4670 /*
4671 * For simplicity, allow enabling ring+bitmap if and only if
4672 * there are no memslots, e.g. to ensure all memslots allocate
4673 * a bitmap after the capability is enabled.
4674 */
4675 if (kvm_are_all_memslots_empty(kvm)) {
4676 kvm->dirty_ring_with_bitmap = true;
4677 r = 0;
4678 }
4679
4680 mutex_unlock(&kvm->slots_lock);
4681
4682 return r;
4683 }
4684 default:
4685 return kvm_vm_ioctl_enable_cap(kvm, cap);
4686 }
4687}
4688
4689static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4690 size_t size, loff_t *offset)
4691{
4692 struct kvm *kvm = file->private_data;
4693
4694 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4695 &kvm_vm_stats_desc[0], &kvm->stat,
4696 sizeof(kvm->stat), user_buffer, size, offset);
4697}
4698
4699static const struct file_operations kvm_vm_stats_fops = {
4700 .read = kvm_vm_stats_read,
4701 .llseek = noop_llseek,
4702};
4703
4704static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4705{
4706 int fd;
4707 struct file *file;
4708
4709 fd = get_unused_fd_flags(O_CLOEXEC);
4710 if (fd < 0)
4711 return fd;
4712
4713 file = anon_inode_getfile("kvm-vm-stats",
4714 &kvm_vm_stats_fops, kvm, O_RDONLY);
4715 if (IS_ERR(file)) {
4716 put_unused_fd(fd);
4717 return PTR_ERR(file);
4718 }
4719 file->f_mode |= FMODE_PREAD;
4720 fd_install(fd, file);
4721
4722 return fd;
4723}
4724
4725static long kvm_vm_ioctl(struct file *filp,
4726 unsigned int ioctl, unsigned long arg)
4727{
4728 struct kvm *kvm = filp->private_data;
4729 void __user *argp = (void __user *)arg;
4730 int r;
4731
4732 if (kvm->mm != current->mm || kvm->vm_dead)
4733 return -EIO;
4734 switch (ioctl) {
4735 case KVM_CREATE_VCPU:
4736 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4737 break;
4738 case KVM_ENABLE_CAP: {
4739 struct kvm_enable_cap cap;
4740
4741 r = -EFAULT;
4742 if (copy_from_user(&cap, argp, sizeof(cap)))
4743 goto out;
4744 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4745 break;
4746 }
4747 case KVM_SET_USER_MEMORY_REGION: {
4748 struct kvm_userspace_memory_region kvm_userspace_mem;
4749
4750 r = -EFAULT;
4751 if (copy_from_user(&kvm_userspace_mem, argp,
4752 sizeof(kvm_userspace_mem)))
4753 goto out;
4754
4755 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4756 break;
4757 }
4758 case KVM_GET_DIRTY_LOG: {
4759 struct kvm_dirty_log log;
4760
4761 r = -EFAULT;
4762 if (copy_from_user(&log, argp, sizeof(log)))
4763 goto out;
4764 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4765 break;
4766 }
4767#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4768 case KVM_CLEAR_DIRTY_LOG: {
4769 struct kvm_clear_dirty_log log;
4770
4771 r = -EFAULT;
4772 if (copy_from_user(&log, argp, sizeof(log)))
4773 goto out;
4774 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4775 break;
4776 }
4777#endif
4778#ifdef CONFIG_KVM_MMIO
4779 case KVM_REGISTER_COALESCED_MMIO: {
4780 struct kvm_coalesced_mmio_zone zone;
4781
4782 r = -EFAULT;
4783 if (copy_from_user(&zone, argp, sizeof(zone)))
4784 goto out;
4785 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4786 break;
4787 }
4788 case KVM_UNREGISTER_COALESCED_MMIO: {
4789 struct kvm_coalesced_mmio_zone zone;
4790
4791 r = -EFAULT;
4792 if (copy_from_user(&zone, argp, sizeof(zone)))
4793 goto out;
4794 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4795 break;
4796 }
4797#endif
4798 case KVM_IRQFD: {
4799 struct kvm_irqfd data;
4800
4801 r = -EFAULT;
4802 if (copy_from_user(&data, argp, sizeof(data)))
4803 goto out;
4804 r = kvm_irqfd(kvm, &data);
4805 break;
4806 }
4807 case KVM_IOEVENTFD: {
4808 struct kvm_ioeventfd data;
4809
4810 r = -EFAULT;
4811 if (copy_from_user(&data, argp, sizeof(data)))
4812 goto out;
4813 r = kvm_ioeventfd(kvm, &data);
4814 break;
4815 }
4816#ifdef CONFIG_HAVE_KVM_MSI
4817 case KVM_SIGNAL_MSI: {
4818 struct kvm_msi msi;
4819
4820 r = -EFAULT;
4821 if (copy_from_user(&msi, argp, sizeof(msi)))
4822 goto out;
4823 r = kvm_send_userspace_msi(kvm, &msi);
4824 break;
4825 }
4826#endif
4827#ifdef __KVM_HAVE_IRQ_LINE
4828 case KVM_IRQ_LINE_STATUS:
4829 case KVM_IRQ_LINE: {
4830 struct kvm_irq_level irq_event;
4831
4832 r = -EFAULT;
4833 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4834 goto out;
4835
4836 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4837 ioctl == KVM_IRQ_LINE_STATUS);
4838 if (r)
4839 goto out;
4840
4841 r = -EFAULT;
4842 if (ioctl == KVM_IRQ_LINE_STATUS) {
4843 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4844 goto out;
4845 }
4846
4847 r = 0;
4848 break;
4849 }
4850#endif
4851#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4852 case KVM_SET_GSI_ROUTING: {
4853 struct kvm_irq_routing routing;
4854 struct kvm_irq_routing __user *urouting;
4855 struct kvm_irq_routing_entry *entries = NULL;
4856
4857 r = -EFAULT;
4858 if (copy_from_user(&routing, argp, sizeof(routing)))
4859 goto out;
4860 r = -EINVAL;
4861 if (!kvm_arch_can_set_irq_routing(kvm))
4862 goto out;
4863 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4864 goto out;
4865 if (routing.flags)
4866 goto out;
4867 if (routing.nr) {
4868 urouting = argp;
4869 entries = vmemdup_user(urouting->entries,
4870 array_size(sizeof(*entries),
4871 routing.nr));
4872 if (IS_ERR(entries)) {
4873 r = PTR_ERR(entries);
4874 goto out;
4875 }
4876 }
4877 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4878 routing.flags);
4879 kvfree(entries);
4880 break;
4881 }
4882#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4883 case KVM_CREATE_DEVICE: {
4884 struct kvm_create_device cd;
4885
4886 r = -EFAULT;
4887 if (copy_from_user(&cd, argp, sizeof(cd)))
4888 goto out;
4889
4890 r = kvm_ioctl_create_device(kvm, &cd);
4891 if (r)
4892 goto out;
4893
4894 r = -EFAULT;
4895 if (copy_to_user(argp, &cd, sizeof(cd)))
4896 goto out;
4897
4898 r = 0;
4899 break;
4900 }
4901 case KVM_CHECK_EXTENSION:
4902 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4903 break;
4904 case KVM_RESET_DIRTY_RINGS:
4905 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4906 break;
4907 case KVM_GET_STATS_FD:
4908 r = kvm_vm_ioctl_get_stats_fd(kvm);
4909 break;
4910 default:
4911 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4912 }
4913out:
4914 return r;
4915}
4916
4917#ifdef CONFIG_KVM_COMPAT
4918struct compat_kvm_dirty_log {
4919 __u32 slot;
4920 __u32 padding1;
4921 union {
4922 compat_uptr_t dirty_bitmap; /* one bit per page */
4923 __u64 padding2;
4924 };
4925};
4926
4927struct compat_kvm_clear_dirty_log {
4928 __u32 slot;
4929 __u32 num_pages;
4930 __u64 first_page;
4931 union {
4932 compat_uptr_t dirty_bitmap; /* one bit per page */
4933 __u64 padding2;
4934 };
4935};
4936
4937long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4938 unsigned long arg)
4939{
4940 return -ENOTTY;
4941}
4942
4943static long kvm_vm_compat_ioctl(struct file *filp,
4944 unsigned int ioctl, unsigned long arg)
4945{
4946 struct kvm *kvm = filp->private_data;
4947 int r;
4948
4949 if (kvm->mm != current->mm || kvm->vm_dead)
4950 return -EIO;
4951
4952 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4953 if (r != -ENOTTY)
4954 return r;
4955
4956 switch (ioctl) {
4957#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4958 case KVM_CLEAR_DIRTY_LOG: {
4959 struct compat_kvm_clear_dirty_log compat_log;
4960 struct kvm_clear_dirty_log log;
4961
4962 if (copy_from_user(&compat_log, (void __user *)arg,
4963 sizeof(compat_log)))
4964 return -EFAULT;
4965 log.slot = compat_log.slot;
4966 log.num_pages = compat_log.num_pages;
4967 log.first_page = compat_log.first_page;
4968 log.padding2 = compat_log.padding2;
4969 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4970
4971 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4972 break;
4973 }
4974#endif
4975 case KVM_GET_DIRTY_LOG: {
4976 struct compat_kvm_dirty_log compat_log;
4977 struct kvm_dirty_log log;
4978
4979 if (copy_from_user(&compat_log, (void __user *)arg,
4980 sizeof(compat_log)))
4981 return -EFAULT;
4982 log.slot = compat_log.slot;
4983 log.padding1 = compat_log.padding1;
4984 log.padding2 = compat_log.padding2;
4985 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4986
4987 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4988 break;
4989 }
4990 default:
4991 r = kvm_vm_ioctl(filp, ioctl, arg);
4992 }
4993 return r;
4994}
4995#endif
4996
4997static const struct file_operations kvm_vm_fops = {
4998 .release = kvm_vm_release,
4999 .unlocked_ioctl = kvm_vm_ioctl,
5000 .llseek = noop_llseek,
5001 KVM_COMPAT(kvm_vm_compat_ioctl),
5002};
5003
5004bool file_is_kvm(struct file *file)
5005{
5006 return file && file->f_op == &kvm_vm_fops;
5007}
5008EXPORT_SYMBOL_GPL(file_is_kvm);
5009
5010static int kvm_dev_ioctl_create_vm(unsigned long type)
5011{
5012 char fdname[ITOA_MAX_LEN + 1];
5013 int r, fd;
5014 struct kvm *kvm;
5015 struct file *file;
5016
5017 fd = get_unused_fd_flags(O_CLOEXEC);
5018 if (fd < 0)
5019 return fd;
5020
5021 snprintf(fdname, sizeof(fdname), "%d", fd);
5022
5023 kvm = kvm_create_vm(type, fdname);
5024 if (IS_ERR(kvm)) {
5025 r = PTR_ERR(kvm);
5026 goto put_fd;
5027 }
5028
5029 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5030 if (IS_ERR(file)) {
5031 r = PTR_ERR(file);
5032 goto put_kvm;
5033 }
5034
5035 /*
5036 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5037 * already set, with ->release() being kvm_vm_release(). In error
5038 * cases it will be called by the final fput(file) and will take
5039 * care of doing kvm_put_kvm(kvm).
5040 */
5041 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5042
5043 fd_install(fd, file);
5044 return fd;
5045
5046put_kvm:
5047 kvm_put_kvm(kvm);
5048put_fd:
5049 put_unused_fd(fd);
5050 return r;
5051}
5052
5053static long kvm_dev_ioctl(struct file *filp,
5054 unsigned int ioctl, unsigned long arg)
5055{
5056 long r = -EINVAL;
5057
5058 switch (ioctl) {
5059 case KVM_GET_API_VERSION:
5060 if (arg)
5061 goto out;
5062 r = KVM_API_VERSION;
5063 break;
5064 case KVM_CREATE_VM:
5065 r = kvm_dev_ioctl_create_vm(arg);
5066 break;
5067 case KVM_CHECK_EXTENSION:
5068 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5069 break;
5070 case KVM_GET_VCPU_MMAP_SIZE:
5071 if (arg)
5072 goto out;
5073 r = PAGE_SIZE; /* struct kvm_run */
5074#ifdef CONFIG_X86
5075 r += PAGE_SIZE; /* pio data page */
5076#endif
5077#ifdef CONFIG_KVM_MMIO
5078 r += PAGE_SIZE; /* coalesced mmio ring page */
5079#endif
5080 break;
5081 case KVM_TRACE_ENABLE:
5082 case KVM_TRACE_PAUSE:
5083 case KVM_TRACE_DISABLE:
5084 r = -EOPNOTSUPP;
5085 break;
5086 default:
5087 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5088 }
5089out:
5090 return r;
5091}
5092
5093static struct file_operations kvm_chardev_ops = {
5094 .unlocked_ioctl = kvm_dev_ioctl,
5095 .llseek = noop_llseek,
5096 KVM_COMPAT(kvm_dev_ioctl),
5097};
5098
5099static struct miscdevice kvm_dev = {
5100 KVM_MINOR,
5101 "kvm",
5102 &kvm_chardev_ops,
5103};
5104
5105static void hardware_enable_nolock(void *junk)
5106{
5107 int cpu = raw_smp_processor_id();
5108 int r;
5109
5110 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
5111 return;
5112
5113 cpumask_set_cpu(cpu, cpus_hardware_enabled);
5114
5115 r = kvm_arch_hardware_enable();
5116
5117 if (r) {
5118 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5119 atomic_inc(&hardware_enable_failed);
5120 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
5121 }
5122}
5123
5124static int kvm_starting_cpu(unsigned int cpu)
5125{
5126 raw_spin_lock(&kvm_count_lock);
5127 if (kvm_usage_count)
5128 hardware_enable_nolock(NULL);
5129 raw_spin_unlock(&kvm_count_lock);
5130 return 0;
5131}
5132
5133static void hardware_disable_nolock(void *junk)
5134{
5135 int cpu = raw_smp_processor_id();
5136
5137 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
5138 return;
5139 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5140 kvm_arch_hardware_disable();
5141}
5142
5143static int kvm_dying_cpu(unsigned int cpu)
5144{
5145 raw_spin_lock(&kvm_count_lock);
5146 if (kvm_usage_count)
5147 hardware_disable_nolock(NULL);
5148 raw_spin_unlock(&kvm_count_lock);
5149 return 0;
5150}
5151
5152static void hardware_disable_all_nolock(void)
5153{
5154 BUG_ON(!kvm_usage_count);
5155
5156 kvm_usage_count--;
5157 if (!kvm_usage_count)
5158 on_each_cpu(hardware_disable_nolock, NULL, 1);
5159}
5160
5161static void hardware_disable_all(void)
5162{
5163 raw_spin_lock(&kvm_count_lock);
5164 hardware_disable_all_nolock();
5165 raw_spin_unlock(&kvm_count_lock);
5166}
5167
5168static int hardware_enable_all(void)
5169{
5170 int r = 0;
5171
5172 raw_spin_lock(&kvm_count_lock);
5173
5174 kvm_usage_count++;
5175 if (kvm_usage_count == 1) {
5176 atomic_set(&hardware_enable_failed, 0);
5177 on_each_cpu(hardware_enable_nolock, NULL, 1);
5178
5179 if (atomic_read(&hardware_enable_failed)) {
5180 hardware_disable_all_nolock();
5181 r = -EBUSY;
5182 }
5183 }
5184
5185 raw_spin_unlock(&kvm_count_lock);
5186
5187 return r;
5188}
5189
5190static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
5191 void *v)
5192{
5193 /*
5194 * Some (well, at least mine) BIOSes hang on reboot if
5195 * in vmx root mode.
5196 *
5197 * And Intel TXT required VMX off for all cpu when system shutdown.
5198 */
5199 pr_info("kvm: exiting hardware virtualization\n");
5200 kvm_rebooting = true;
5201 on_each_cpu(hardware_disable_nolock, NULL, 1);
5202 return NOTIFY_OK;
5203}
5204
5205static struct notifier_block kvm_reboot_notifier = {
5206 .notifier_call = kvm_reboot,
5207 .priority = 0,
5208};
5209
5210static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5211{
5212 int i;
5213
5214 for (i = 0; i < bus->dev_count; i++) {
5215 struct kvm_io_device *pos = bus->range[i].dev;
5216
5217 kvm_iodevice_destructor(pos);
5218 }
5219 kfree(bus);
5220}
5221
5222static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5223 const struct kvm_io_range *r2)
5224{
5225 gpa_t addr1 = r1->addr;
5226 gpa_t addr2 = r2->addr;
5227
5228 if (addr1 < addr2)
5229 return -1;
5230
5231 /* If r2->len == 0, match the exact address. If r2->len != 0,
5232 * accept any overlapping write. Any order is acceptable for
5233 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5234 * we process all of them.
5235 */
5236 if (r2->len) {
5237 addr1 += r1->len;
5238 addr2 += r2->len;
5239 }
5240
5241 if (addr1 > addr2)
5242 return 1;
5243
5244 return 0;
5245}
5246
5247static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5248{
5249 return kvm_io_bus_cmp(p1, p2);
5250}
5251
5252static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5253 gpa_t addr, int len)
5254{
5255 struct kvm_io_range *range, key;
5256 int off;
5257
5258 key = (struct kvm_io_range) {
5259 .addr = addr,
5260 .len = len,
5261 };
5262
5263 range = bsearch(&key, bus->range, bus->dev_count,
5264 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5265 if (range == NULL)
5266 return -ENOENT;
5267
5268 off = range - bus->range;
5269
5270 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5271 off--;
5272
5273 return off;
5274}
5275
5276static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5277 struct kvm_io_range *range, const void *val)
5278{
5279 int idx;
5280
5281 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5282 if (idx < 0)
5283 return -EOPNOTSUPP;
5284
5285 while (idx < bus->dev_count &&
5286 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5287 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5288 range->len, val))
5289 return idx;
5290 idx++;
5291 }
5292
5293 return -EOPNOTSUPP;
5294}
5295
5296/* kvm_io_bus_write - called under kvm->slots_lock */
5297int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5298 int len, const void *val)
5299{
5300 struct kvm_io_bus *bus;
5301 struct kvm_io_range range;
5302 int r;
5303
5304 range = (struct kvm_io_range) {
5305 .addr = addr,
5306 .len = len,
5307 };
5308
5309 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5310 if (!bus)
5311 return -ENOMEM;
5312 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5313 return r < 0 ? r : 0;
5314}
5315EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5316
5317/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5318int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5319 gpa_t addr, int len, const void *val, long cookie)
5320{
5321 struct kvm_io_bus *bus;
5322 struct kvm_io_range range;
5323
5324 range = (struct kvm_io_range) {
5325 .addr = addr,
5326 .len = len,
5327 };
5328
5329 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5330 if (!bus)
5331 return -ENOMEM;
5332
5333 /* First try the device referenced by cookie. */
5334 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5335 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5336 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5337 val))
5338 return cookie;
5339
5340 /*
5341 * cookie contained garbage; fall back to search and return the
5342 * correct cookie value.
5343 */
5344 return __kvm_io_bus_write(vcpu, bus, &range, val);
5345}
5346
5347static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5348 struct kvm_io_range *range, void *val)
5349{
5350 int idx;
5351
5352 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5353 if (idx < 0)
5354 return -EOPNOTSUPP;
5355
5356 while (idx < bus->dev_count &&
5357 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5358 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5359 range->len, val))
5360 return idx;
5361 idx++;
5362 }
5363
5364 return -EOPNOTSUPP;
5365}
5366
5367/* kvm_io_bus_read - called under kvm->slots_lock */
5368int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5369 int len, void *val)
5370{
5371 struct kvm_io_bus *bus;
5372 struct kvm_io_range range;
5373 int r;
5374
5375 range = (struct kvm_io_range) {
5376 .addr = addr,
5377 .len = len,
5378 };
5379
5380 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5381 if (!bus)
5382 return -ENOMEM;
5383 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5384 return r < 0 ? r : 0;
5385}
5386
5387/* Caller must hold slots_lock. */
5388int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5389 int len, struct kvm_io_device *dev)
5390{
5391 int i;
5392 struct kvm_io_bus *new_bus, *bus;
5393 struct kvm_io_range range;
5394
5395 bus = kvm_get_bus(kvm, bus_idx);
5396 if (!bus)
5397 return -ENOMEM;
5398
5399 /* exclude ioeventfd which is limited by maximum fd */
5400 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5401 return -ENOSPC;
5402
5403 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5404 GFP_KERNEL_ACCOUNT);
5405 if (!new_bus)
5406 return -ENOMEM;
5407
5408 range = (struct kvm_io_range) {
5409 .addr = addr,
5410 .len = len,
5411 .dev = dev,
5412 };
5413
5414 for (i = 0; i < bus->dev_count; i++)
5415 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5416 break;
5417
5418 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5419 new_bus->dev_count++;
5420 new_bus->range[i] = range;
5421 memcpy(new_bus->range + i + 1, bus->range + i,
5422 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5423 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5424 synchronize_srcu_expedited(&kvm->srcu);
5425 kfree(bus);
5426
5427 return 0;
5428}
5429
5430int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5431 struct kvm_io_device *dev)
5432{
5433 int i, j;
5434 struct kvm_io_bus *new_bus, *bus;
5435
5436 lockdep_assert_held(&kvm->slots_lock);
5437
5438 bus = kvm_get_bus(kvm, bus_idx);
5439 if (!bus)
5440 return 0;
5441
5442 for (i = 0; i < bus->dev_count; i++) {
5443 if (bus->range[i].dev == dev) {
5444 break;
5445 }
5446 }
5447
5448 if (i == bus->dev_count)
5449 return 0;
5450
5451 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5452 GFP_KERNEL_ACCOUNT);
5453 if (new_bus) {
5454 memcpy(new_bus, bus, struct_size(bus, range, i));
5455 new_bus->dev_count--;
5456 memcpy(new_bus->range + i, bus->range + i + 1,
5457 flex_array_size(new_bus, range, new_bus->dev_count - i));
5458 }
5459
5460 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5461 synchronize_srcu_expedited(&kvm->srcu);
5462
5463 /* Destroy the old bus _after_ installing the (null) bus. */
5464 if (!new_bus) {
5465 pr_err("kvm: failed to shrink bus, removing it completely\n");
5466 for (j = 0; j < bus->dev_count; j++) {
5467 if (j == i)
5468 continue;
5469 kvm_iodevice_destructor(bus->range[j].dev);
5470 }
5471 }
5472
5473 kfree(bus);
5474 return new_bus ? 0 : -ENOMEM;
5475}
5476
5477struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5478 gpa_t addr)
5479{
5480 struct kvm_io_bus *bus;
5481 int dev_idx, srcu_idx;
5482 struct kvm_io_device *iodev = NULL;
5483
5484 srcu_idx = srcu_read_lock(&kvm->srcu);
5485
5486 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5487 if (!bus)
5488 goto out_unlock;
5489
5490 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5491 if (dev_idx < 0)
5492 goto out_unlock;
5493
5494 iodev = bus->range[dev_idx].dev;
5495
5496out_unlock:
5497 srcu_read_unlock(&kvm->srcu, srcu_idx);
5498
5499 return iodev;
5500}
5501EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5502
5503static int kvm_debugfs_open(struct inode *inode, struct file *file,
5504 int (*get)(void *, u64 *), int (*set)(void *, u64),
5505 const char *fmt)
5506{
5507 int ret;
5508 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5509 inode->i_private;
5510
5511 /*
5512 * The debugfs files are a reference to the kvm struct which
5513 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5514 * avoids the race between open and the removal of the debugfs directory.
5515 */
5516 if (!kvm_get_kvm_safe(stat_data->kvm))
5517 return -ENOENT;
5518
5519 ret = simple_attr_open(inode, file, get,
5520 kvm_stats_debugfs_mode(stat_data->desc) & 0222
5521 ? set : NULL, fmt);
5522 if (ret)
5523 kvm_put_kvm(stat_data->kvm);
5524
5525 return ret;
5526}
5527
5528static int kvm_debugfs_release(struct inode *inode, struct file *file)
5529{
5530 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5531 inode->i_private;
5532
5533 simple_attr_release(inode, file);
5534 kvm_put_kvm(stat_data->kvm);
5535
5536 return 0;
5537}
5538
5539static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5540{
5541 *val = *(u64 *)((void *)(&kvm->stat) + offset);
5542
5543 return 0;
5544}
5545
5546static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5547{
5548 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5549
5550 return 0;
5551}
5552
5553static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5554{
5555 unsigned long i;
5556 struct kvm_vcpu *vcpu;
5557
5558 *val = 0;
5559
5560 kvm_for_each_vcpu(i, vcpu, kvm)
5561 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5562
5563 return 0;
5564}
5565
5566static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5567{
5568 unsigned long i;
5569 struct kvm_vcpu *vcpu;
5570
5571 kvm_for_each_vcpu(i, vcpu, kvm)
5572 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5573
5574 return 0;
5575}
5576
5577static int kvm_stat_data_get(void *data, u64 *val)
5578{
5579 int r = -EFAULT;
5580 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5581
5582 switch (stat_data->kind) {
5583 case KVM_STAT_VM:
5584 r = kvm_get_stat_per_vm(stat_data->kvm,
5585 stat_data->desc->desc.offset, val);
5586 break;
5587 case KVM_STAT_VCPU:
5588 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5589 stat_data->desc->desc.offset, val);
5590 break;
5591 }
5592
5593 return r;
5594}
5595
5596static int kvm_stat_data_clear(void *data, u64 val)
5597{
5598 int r = -EFAULT;
5599 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5600
5601 if (val)
5602 return -EINVAL;
5603
5604 switch (stat_data->kind) {
5605 case KVM_STAT_VM:
5606 r = kvm_clear_stat_per_vm(stat_data->kvm,
5607 stat_data->desc->desc.offset);
5608 break;
5609 case KVM_STAT_VCPU:
5610 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5611 stat_data->desc->desc.offset);
5612 break;
5613 }
5614
5615 return r;
5616}
5617
5618static int kvm_stat_data_open(struct inode *inode, struct file *file)
5619{
5620 __simple_attr_check_format("%llu\n", 0ull);
5621 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5622 kvm_stat_data_clear, "%llu\n");
5623}
5624
5625static const struct file_operations stat_fops_per_vm = {
5626 .owner = THIS_MODULE,
5627 .open = kvm_stat_data_open,
5628 .release = kvm_debugfs_release,
5629 .read = simple_attr_read,
5630 .write = simple_attr_write,
5631 .llseek = no_llseek,
5632};
5633
5634static int vm_stat_get(void *_offset, u64 *val)
5635{
5636 unsigned offset = (long)_offset;
5637 struct kvm *kvm;
5638 u64 tmp_val;
5639
5640 *val = 0;
5641 mutex_lock(&kvm_lock);
5642 list_for_each_entry(kvm, &vm_list, vm_list) {
5643 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5644 *val += tmp_val;
5645 }
5646 mutex_unlock(&kvm_lock);
5647 return 0;
5648}
5649
5650static int vm_stat_clear(void *_offset, u64 val)
5651{
5652 unsigned offset = (long)_offset;
5653 struct kvm *kvm;
5654
5655 if (val)
5656 return -EINVAL;
5657
5658 mutex_lock(&kvm_lock);
5659 list_for_each_entry(kvm, &vm_list, vm_list) {
5660 kvm_clear_stat_per_vm(kvm, offset);
5661 }
5662 mutex_unlock(&kvm_lock);
5663
5664 return 0;
5665}
5666
5667DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5668DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5669
5670static int vcpu_stat_get(void *_offset, u64 *val)
5671{
5672 unsigned offset = (long)_offset;
5673 struct kvm *kvm;
5674 u64 tmp_val;
5675
5676 *val = 0;
5677 mutex_lock(&kvm_lock);
5678 list_for_each_entry(kvm, &vm_list, vm_list) {
5679 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5680 *val += tmp_val;
5681 }
5682 mutex_unlock(&kvm_lock);
5683 return 0;
5684}
5685
5686static int vcpu_stat_clear(void *_offset, u64 val)
5687{
5688 unsigned offset = (long)_offset;
5689 struct kvm *kvm;
5690
5691 if (val)
5692 return -EINVAL;
5693
5694 mutex_lock(&kvm_lock);
5695 list_for_each_entry(kvm, &vm_list, vm_list) {
5696 kvm_clear_stat_per_vcpu(kvm, offset);
5697 }
5698 mutex_unlock(&kvm_lock);
5699
5700 return 0;
5701}
5702
5703DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5704 "%llu\n");
5705DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5706
5707static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5708{
5709 struct kobj_uevent_env *env;
5710 unsigned long long created, active;
5711
5712 if (!kvm_dev.this_device || !kvm)
5713 return;
5714
5715 mutex_lock(&kvm_lock);
5716 if (type == KVM_EVENT_CREATE_VM) {
5717 kvm_createvm_count++;
5718 kvm_active_vms++;
5719 } else if (type == KVM_EVENT_DESTROY_VM) {
5720 kvm_active_vms--;
5721 }
5722 created = kvm_createvm_count;
5723 active = kvm_active_vms;
5724 mutex_unlock(&kvm_lock);
5725
5726 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5727 if (!env)
5728 return;
5729
5730 add_uevent_var(env, "CREATED=%llu", created);
5731 add_uevent_var(env, "COUNT=%llu", active);
5732
5733 if (type == KVM_EVENT_CREATE_VM) {
5734 add_uevent_var(env, "EVENT=create");
5735 kvm->userspace_pid = task_pid_nr(current);
5736 } else if (type == KVM_EVENT_DESTROY_VM) {
5737 add_uevent_var(env, "EVENT=destroy");
5738 }
5739 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5740
5741 if (!IS_ERR(kvm->debugfs_dentry)) {
5742 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5743
5744 if (p) {
5745 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5746 if (!IS_ERR(tmp))
5747 add_uevent_var(env, "STATS_PATH=%s", tmp);
5748 kfree(p);
5749 }
5750 }
5751 /* no need for checks, since we are adding at most only 5 keys */
5752 env->envp[env->envp_idx++] = NULL;
5753 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5754 kfree(env);
5755}
5756
5757static void kvm_init_debug(void)
5758{
5759 const struct file_operations *fops;
5760 const struct _kvm_stats_desc *pdesc;
5761 int i;
5762
5763 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5764
5765 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5766 pdesc = &kvm_vm_stats_desc[i];
5767 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5768 fops = &vm_stat_fops;
5769 else
5770 fops = &vm_stat_readonly_fops;
5771 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5772 kvm_debugfs_dir,
5773 (void *)(long)pdesc->desc.offset, fops);
5774 }
5775
5776 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5777 pdesc = &kvm_vcpu_stats_desc[i];
5778 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5779 fops = &vcpu_stat_fops;
5780 else
5781 fops = &vcpu_stat_readonly_fops;
5782 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5783 kvm_debugfs_dir,
5784 (void *)(long)pdesc->desc.offset, fops);
5785 }
5786}
5787
5788static int kvm_suspend(void)
5789{
5790 if (kvm_usage_count)
5791 hardware_disable_nolock(NULL);
5792 return 0;
5793}
5794
5795static void kvm_resume(void)
5796{
5797 if (kvm_usage_count) {
5798 lockdep_assert_not_held(&kvm_count_lock);
5799 hardware_enable_nolock(NULL);
5800 }
5801}
5802
5803static struct syscore_ops kvm_syscore_ops = {
5804 .suspend = kvm_suspend,
5805 .resume = kvm_resume,
5806};
5807
5808static inline
5809struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5810{
5811 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5812}
5813
5814static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5815{
5816 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5817
5818 WRITE_ONCE(vcpu->preempted, false);
5819 WRITE_ONCE(vcpu->ready, false);
5820
5821 __this_cpu_write(kvm_running_vcpu, vcpu);
5822 kvm_arch_sched_in(vcpu, cpu);
5823 kvm_arch_vcpu_load(vcpu, cpu);
5824}
5825
5826static void kvm_sched_out(struct preempt_notifier *pn,
5827 struct task_struct *next)
5828{
5829 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5830
5831 if (current->on_rq) {
5832 WRITE_ONCE(vcpu->preempted, true);
5833 WRITE_ONCE(vcpu->ready, true);
5834 }
5835 kvm_arch_vcpu_put(vcpu);
5836 __this_cpu_write(kvm_running_vcpu, NULL);
5837}
5838
5839/**
5840 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5841 *
5842 * We can disable preemption locally around accessing the per-CPU variable,
5843 * and use the resolved vcpu pointer after enabling preemption again,
5844 * because even if the current thread is migrated to another CPU, reading
5845 * the per-CPU value later will give us the same value as we update the
5846 * per-CPU variable in the preempt notifier handlers.
5847 */
5848struct kvm_vcpu *kvm_get_running_vcpu(void)
5849{
5850 struct kvm_vcpu *vcpu;
5851
5852 preempt_disable();
5853 vcpu = __this_cpu_read(kvm_running_vcpu);
5854 preempt_enable();
5855
5856 return vcpu;
5857}
5858EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5859
5860/**
5861 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5862 */
5863struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5864{
5865 return &kvm_running_vcpu;
5866}
5867
5868#ifdef CONFIG_GUEST_PERF_EVENTS
5869static unsigned int kvm_guest_state(void)
5870{
5871 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5872 unsigned int state;
5873
5874 if (!kvm_arch_pmi_in_guest(vcpu))
5875 return 0;
5876
5877 state = PERF_GUEST_ACTIVE;
5878 if (!kvm_arch_vcpu_in_kernel(vcpu))
5879 state |= PERF_GUEST_USER;
5880
5881 return state;
5882}
5883
5884static unsigned long kvm_guest_get_ip(void)
5885{
5886 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5887
5888 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5889 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5890 return 0;
5891
5892 return kvm_arch_vcpu_get_ip(vcpu);
5893}
5894
5895static struct perf_guest_info_callbacks kvm_guest_cbs = {
5896 .state = kvm_guest_state,
5897 .get_ip = kvm_guest_get_ip,
5898 .handle_intel_pt_intr = NULL,
5899};
5900
5901void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5902{
5903 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5904 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5905}
5906void kvm_unregister_perf_callbacks(void)
5907{
5908 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5909}
5910#endif
5911
5912struct kvm_cpu_compat_check {
5913 void *opaque;
5914 int *ret;
5915};
5916
5917static void check_processor_compat(void *data)
5918{
5919 struct kvm_cpu_compat_check *c = data;
5920
5921 *c->ret = kvm_arch_check_processor_compat(c->opaque);
5922}
5923
5924int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5925 struct module *module)
5926{
5927 struct kvm_cpu_compat_check c;
5928 int r;
5929 int cpu;
5930
5931 r = kvm_arch_init(opaque);
5932 if (r)
5933 goto out_fail;
5934
5935 /*
5936 * kvm_arch_init makes sure there's at most one caller
5937 * for architectures that support multiple implementations,
5938 * like intel and amd on x86.
5939 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5940 * conflicts in case kvm is already setup for another implementation.
5941 */
5942 r = kvm_irqfd_init();
5943 if (r)
5944 goto out_irqfd;
5945
5946 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5947 r = -ENOMEM;
5948 goto out_free_0;
5949 }
5950
5951 r = kvm_arch_hardware_setup(opaque);
5952 if (r < 0)
5953 goto out_free_1;
5954
5955 c.ret = &r;
5956 c.opaque = opaque;
5957 for_each_online_cpu(cpu) {
5958 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5959 if (r < 0)
5960 goto out_free_2;
5961 }
5962
5963 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5964 kvm_starting_cpu, kvm_dying_cpu);
5965 if (r)
5966 goto out_free_2;
5967 register_reboot_notifier(&kvm_reboot_notifier);
5968
5969 /* A kmem cache lets us meet the alignment requirements of fx_save. */
5970 if (!vcpu_align)
5971 vcpu_align = __alignof__(struct kvm_vcpu);
5972 kvm_vcpu_cache =
5973 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5974 SLAB_ACCOUNT,
5975 offsetof(struct kvm_vcpu, arch),
5976 offsetofend(struct kvm_vcpu, stats_id)
5977 - offsetof(struct kvm_vcpu, arch),
5978 NULL);
5979 if (!kvm_vcpu_cache) {
5980 r = -ENOMEM;
5981 goto out_free_3;
5982 }
5983
5984 for_each_possible_cpu(cpu) {
5985 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5986 GFP_KERNEL, cpu_to_node(cpu))) {
5987 r = -ENOMEM;
5988 goto out_free_4;
5989 }
5990 }
5991
5992 r = kvm_async_pf_init();
5993 if (r)
5994 goto out_free_4;
5995
5996 kvm_chardev_ops.owner = module;
5997
5998 r = misc_register(&kvm_dev);
5999 if (r) {
6000 pr_err("kvm: misc device register failed\n");
6001 goto out_unreg;
6002 }
6003
6004 register_syscore_ops(&kvm_syscore_ops);
6005
6006 kvm_preempt_ops.sched_in = kvm_sched_in;
6007 kvm_preempt_ops.sched_out = kvm_sched_out;
6008
6009 kvm_init_debug();
6010
6011 r = kvm_vfio_ops_init();
6012 WARN_ON(r);
6013
6014 return 0;
6015
6016out_unreg:
6017 kvm_async_pf_deinit();
6018out_free_4:
6019 for_each_possible_cpu(cpu)
6020 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6021 kmem_cache_destroy(kvm_vcpu_cache);
6022out_free_3:
6023 unregister_reboot_notifier(&kvm_reboot_notifier);
6024 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
6025out_free_2:
6026 kvm_arch_hardware_unsetup();
6027out_free_1:
6028 free_cpumask_var(cpus_hardware_enabled);
6029out_free_0:
6030 kvm_irqfd_exit();
6031out_irqfd:
6032 kvm_arch_exit();
6033out_fail:
6034 return r;
6035}
6036EXPORT_SYMBOL_GPL(kvm_init);
6037
6038void kvm_exit(void)
6039{
6040 int cpu;
6041
6042 debugfs_remove_recursive(kvm_debugfs_dir);
6043 misc_deregister(&kvm_dev);
6044 for_each_possible_cpu(cpu)
6045 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6046 kmem_cache_destroy(kvm_vcpu_cache);
6047 kvm_async_pf_deinit();
6048 unregister_syscore_ops(&kvm_syscore_ops);
6049 unregister_reboot_notifier(&kvm_reboot_notifier);
6050 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
6051 on_each_cpu(hardware_disable_nolock, NULL, 1);
6052 kvm_arch_hardware_unsetup();
6053 kvm_arch_exit();
6054 kvm_irqfd_exit();
6055 free_cpumask_var(cpus_hardware_enabled);
6056 kvm_vfio_ops_exit();
6057}
6058EXPORT_SYMBOL_GPL(kvm_exit);
6059
6060struct kvm_vm_worker_thread_context {
6061 struct kvm *kvm;
6062 struct task_struct *parent;
6063 struct completion init_done;
6064 kvm_vm_thread_fn_t thread_fn;
6065 uintptr_t data;
6066 int err;
6067};
6068
6069static int kvm_vm_worker_thread(void *context)
6070{
6071 /*
6072 * The init_context is allocated on the stack of the parent thread, so
6073 * we have to locally copy anything that is needed beyond initialization
6074 */
6075 struct kvm_vm_worker_thread_context *init_context = context;
6076 struct task_struct *parent;
6077 struct kvm *kvm = init_context->kvm;
6078 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6079 uintptr_t data = init_context->data;
6080 int err;
6081
6082 err = kthread_park(current);
6083 /* kthread_park(current) is never supposed to return an error */
6084 WARN_ON(err != 0);
6085 if (err)
6086 goto init_complete;
6087
6088 err = cgroup_attach_task_all(init_context->parent, current);
6089 if (err) {
6090 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6091 __func__, err);
6092 goto init_complete;
6093 }
6094
6095 set_user_nice(current, task_nice(init_context->parent));
6096
6097init_complete:
6098 init_context->err = err;
6099 complete(&init_context->init_done);
6100 init_context = NULL;
6101
6102 if (err)
6103 goto out;
6104
6105 /* Wait to be woken up by the spawner before proceeding. */
6106 kthread_parkme();
6107
6108 if (!kthread_should_stop())
6109 err = thread_fn(kvm, data);
6110
6111out:
6112 /*
6113 * Move kthread back to its original cgroup to prevent it lingering in
6114 * the cgroup of the VM process, after the latter finishes its
6115 * execution.
6116 *
6117 * kthread_stop() waits on the 'exited' completion condition which is
6118 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6119 * kthread is removed from the cgroup in the cgroup_exit() which is
6120 * called after the exit_mm(). This causes the kthread_stop() to return
6121 * before the kthread actually quits the cgroup.
6122 */
6123 rcu_read_lock();
6124 parent = rcu_dereference(current->real_parent);
6125 get_task_struct(parent);
6126 rcu_read_unlock();
6127 cgroup_attach_task_all(parent, current);
6128 put_task_struct(parent);
6129
6130 return err;
6131}
6132
6133int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6134 uintptr_t data, const char *name,
6135 struct task_struct **thread_ptr)
6136{
6137 struct kvm_vm_worker_thread_context init_context = {};
6138 struct task_struct *thread;
6139
6140 *thread_ptr = NULL;
6141 init_context.kvm = kvm;
6142 init_context.parent = current;
6143 init_context.thread_fn = thread_fn;
6144 init_context.data = data;
6145 init_completion(&init_context.init_done);
6146
6147 thread = kthread_run(kvm_vm_worker_thread, &init_context,
6148 "%s-%d", name, task_pid_nr(current));
6149 if (IS_ERR(thread))
6150 return PTR_ERR(thread);
6151
6152 /* kthread_run is never supposed to return NULL */
6153 WARN_ON(thread == NULL);
6154
6155 wait_for_completion(&init_context.init_done);
6156
6157 if (!init_context.err)
6158 *thread_ptr = thread;
6159
6160 return init_context.err;
6161}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16#include <kvm/iodev.h>
17
18#include <linux/kvm_host.h>
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
22#include <linux/percpu.h>
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
26#include <linux/reboot.h>
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
30#include <linux/syscore_ops.h>
31#include <linux/cpu.h>
32#include <linux/sched/signal.h>
33#include <linux/sched/mm.h>
34#include <linux/sched/stat.h>
35#include <linux/cpumask.h>
36#include <linux/smp.h>
37#include <linux/anon_inodes.h>
38#include <linux/profile.h>
39#include <linux/kvm_para.h>
40#include <linux/pagemap.h>
41#include <linux/mman.h>
42#include <linux/swap.h>
43#include <linux/bitops.h>
44#include <linux/spinlock.h>
45#include <linux/compat.h>
46#include <linux/srcu.h>
47#include <linux/hugetlb.h>
48#include <linux/slab.h>
49#include <linux/sort.h>
50#include <linux/bsearch.h>
51#include <linux/io.h>
52#include <linux/lockdep.h>
53#include <linux/kthread.h>
54#include <linux/suspend.h>
55
56#include <asm/processor.h>
57#include <asm/ioctl.h>
58#include <linux/uaccess.h>
59
60#include "coalesced_mmio.h"
61#include "async_pf.h"
62#include "kvm_mm.h"
63#include "vfio.h"
64
65#include <trace/events/ipi.h>
66
67#define CREATE_TRACE_POINTS
68#include <trace/events/kvm.h>
69
70#include <linux/kvm_dirty_ring.h>
71
72
73/* Worst case buffer size needed for holding an integer. */
74#define ITOA_MAX_LEN 12
75
76MODULE_AUTHOR("Qumranet");
77MODULE_LICENSE("GPL");
78
79/* Architectures should define their poll value according to the halt latency */
80unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81module_param(halt_poll_ns, uint, 0644);
82EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84/* Default doubles per-vcpu halt_poll_ns. */
85unsigned int halt_poll_ns_grow = 2;
86module_param(halt_poll_ns_grow, uint, 0644);
87EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89/* The start value to grow halt_poll_ns from */
90unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91module_param(halt_poll_ns_grow_start, uint, 0644);
92EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94/* Default resets per-vcpu halt_poll_ns . */
95unsigned int halt_poll_ns_shrink;
96module_param(halt_poll_ns_shrink, uint, 0644);
97EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99/*
100 * Ordering of locks:
101 *
102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103 */
104
105DEFINE_MUTEX(kvm_lock);
106LIST_HEAD(vm_list);
107
108static struct kmem_cache *kvm_vcpu_cache;
109
110static __read_mostly struct preempt_ops kvm_preempt_ops;
111static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113struct dentry *kvm_debugfs_dir;
114EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116static const struct file_operations stat_fops_per_vm;
117
118static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
120#ifdef CONFIG_KVM_COMPAT
121static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg);
123#define KVM_COMPAT(c) .compat_ioctl = (c)
124#else
125/*
126 * For architectures that don't implement a compat infrastructure,
127 * adopt a double line of defense:
128 * - Prevent a compat task from opening /dev/kvm
129 * - If the open has been done by a 64bit task, and the KVM fd
130 * passed to a compat task, let the ioctls fail.
131 */
132static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 unsigned long arg) { return -EINVAL; }
134
135static int kvm_no_compat_open(struct inode *inode, struct file *file)
136{
137 return is_compat_task() ? -ENODEV : 0;
138}
139#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
140 .open = kvm_no_compat_open
141#endif
142static int hardware_enable_all(void);
143static void hardware_disable_all(void);
144
145static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147#define KVM_EVENT_CREATE_VM 0
148#define KVM_EVENT_DESTROY_VM 1
149static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150static unsigned long long kvm_createvm_count;
151static unsigned long long kvm_active_vms;
152
153static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154
155__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156{
157}
158
159bool kvm_is_zone_device_page(struct page *page)
160{
161 /*
162 * The metadata used by is_zone_device_page() to determine whether or
163 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164 * the device has been pinned, e.g. by get_user_pages(). WARN if the
165 * page_count() is zero to help detect bad usage of this helper.
166 */
167 if (WARN_ON_ONCE(!page_count(page)))
168 return false;
169
170 return is_zone_device_page(page);
171}
172
173/*
174 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types
176 * is likely incomplete, it has been compiled purely through people wanting to
177 * back guest with a certain type of memory and encountering issues.
178 */
179struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180{
181 struct page *page;
182
183 if (!pfn_valid(pfn))
184 return NULL;
185
186 page = pfn_to_page(pfn);
187 if (!PageReserved(page))
188 return page;
189
190 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191 if (is_zero_pfn(pfn))
192 return page;
193
194 /*
195 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196 * perspective they are "normal" pages, albeit with slightly different
197 * usage rules.
198 */
199 if (kvm_is_zone_device_page(page))
200 return page;
201
202 return NULL;
203}
204
205/*
206 * Switches to specified vcpu, until a matching vcpu_put()
207 */
208void vcpu_load(struct kvm_vcpu *vcpu)
209{
210 int cpu = get_cpu();
211
212 __this_cpu_write(kvm_running_vcpu, vcpu);
213 preempt_notifier_register(&vcpu->preempt_notifier);
214 kvm_arch_vcpu_load(vcpu, cpu);
215 put_cpu();
216}
217EXPORT_SYMBOL_GPL(vcpu_load);
218
219void vcpu_put(struct kvm_vcpu *vcpu)
220{
221 preempt_disable();
222 kvm_arch_vcpu_put(vcpu);
223 preempt_notifier_unregister(&vcpu->preempt_notifier);
224 __this_cpu_write(kvm_running_vcpu, NULL);
225 preempt_enable();
226}
227EXPORT_SYMBOL_GPL(vcpu_put);
228
229/* TODO: merge with kvm_arch_vcpu_should_kick */
230static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231{
232 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233
234 /*
235 * We need to wait for the VCPU to reenable interrupts and get out of
236 * READING_SHADOW_PAGE_TABLES mode.
237 */
238 if (req & KVM_REQUEST_WAIT)
239 return mode != OUTSIDE_GUEST_MODE;
240
241 /*
242 * Need to kick a running VCPU, but otherwise there is nothing to do.
243 */
244 return mode == IN_GUEST_MODE;
245}
246
247static void ack_kick(void *_completed)
248{
249}
250
251static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252{
253 if (cpumask_empty(cpus))
254 return false;
255
256 smp_call_function_many(cpus, ack_kick, NULL, wait);
257 return true;
258}
259
260static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261 struct cpumask *tmp, int current_cpu)
262{
263 int cpu;
264
265 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266 __kvm_make_request(req, vcpu);
267
268 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269 return;
270
271 /*
272 * Note, the vCPU could get migrated to a different pCPU at any point
273 * after kvm_request_needs_ipi(), which could result in sending an IPI
274 * to the previous pCPU. But, that's OK because the purpose of the IPI
275 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277 * after this point is also OK, as the requirement is only that KVM wait
278 * for vCPUs that were reading SPTEs _before_ any changes were
279 * finalized. See kvm_vcpu_kick() for more details on handling requests.
280 */
281 if (kvm_request_needs_ipi(vcpu, req)) {
282 cpu = READ_ONCE(vcpu->cpu);
283 if (cpu != -1 && cpu != current_cpu)
284 __cpumask_set_cpu(cpu, tmp);
285 }
286}
287
288bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289 unsigned long *vcpu_bitmap)
290{
291 struct kvm_vcpu *vcpu;
292 struct cpumask *cpus;
293 int i, me;
294 bool called;
295
296 me = get_cpu();
297
298 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299 cpumask_clear(cpus);
300
301 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302 vcpu = kvm_get_vcpu(kvm, i);
303 if (!vcpu)
304 continue;
305 kvm_make_vcpu_request(vcpu, req, cpus, me);
306 }
307
308 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309 put_cpu();
310
311 return called;
312}
313
314bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315 struct kvm_vcpu *except)
316{
317 struct kvm_vcpu *vcpu;
318 struct cpumask *cpus;
319 unsigned long i;
320 bool called;
321 int me;
322
323 me = get_cpu();
324
325 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
326 cpumask_clear(cpus);
327
328 kvm_for_each_vcpu(i, vcpu, kvm) {
329 if (vcpu == except)
330 continue;
331 kvm_make_vcpu_request(vcpu, req, cpus, me);
332 }
333
334 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
335 put_cpu();
336
337 return called;
338}
339
340bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
341{
342 return kvm_make_all_cpus_request_except(kvm, req, NULL);
343}
344EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
345
346void kvm_flush_remote_tlbs(struct kvm *kvm)
347{
348 ++kvm->stat.generic.remote_tlb_flush_requests;
349
350 /*
351 * We want to publish modifications to the page tables before reading
352 * mode. Pairs with a memory barrier in arch-specific code.
353 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354 * and smp_mb in walk_shadow_page_lockless_begin/end.
355 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
356 *
357 * There is already an smp_mb__after_atomic() before
358 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
359 * barrier here.
360 */
361 if (!kvm_arch_flush_remote_tlbs(kvm)
362 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
363 ++kvm->stat.generic.remote_tlb_flush;
364}
365EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
366
367void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
368{
369 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
370 return;
371
372 /*
373 * Fall back to a flushing entire TLBs if the architecture range-based
374 * TLB invalidation is unsupported or can't be performed for whatever
375 * reason.
376 */
377 kvm_flush_remote_tlbs(kvm);
378}
379
380void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
381 const struct kvm_memory_slot *memslot)
382{
383 /*
384 * All current use cases for flushing the TLBs for a specific memslot
385 * are related to dirty logging, and many do the TLB flush out of
386 * mmu_lock. The interaction between the various operations on memslot
387 * must be serialized by slots_locks to ensure the TLB flush from one
388 * operation is observed by any other operation on the same memslot.
389 */
390 lockdep_assert_held(&kvm->slots_lock);
391 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
392}
393
394static void kvm_flush_shadow_all(struct kvm *kvm)
395{
396 kvm_arch_flush_shadow_all(kvm);
397 kvm_arch_guest_memory_reclaimed(kvm);
398}
399
400#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
401static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
402 gfp_t gfp_flags)
403{
404 gfp_flags |= mc->gfp_zero;
405
406 if (mc->kmem_cache)
407 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
408 else
409 return (void *)__get_free_page(gfp_flags);
410}
411
412int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
413{
414 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
415 void *obj;
416
417 if (mc->nobjs >= min)
418 return 0;
419
420 if (unlikely(!mc->objects)) {
421 if (WARN_ON_ONCE(!capacity))
422 return -EIO;
423
424 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
425 if (!mc->objects)
426 return -ENOMEM;
427
428 mc->capacity = capacity;
429 }
430
431 /* It is illegal to request a different capacity across topups. */
432 if (WARN_ON_ONCE(mc->capacity != capacity))
433 return -EIO;
434
435 while (mc->nobjs < mc->capacity) {
436 obj = mmu_memory_cache_alloc_obj(mc, gfp);
437 if (!obj)
438 return mc->nobjs >= min ? 0 : -ENOMEM;
439 mc->objects[mc->nobjs++] = obj;
440 }
441 return 0;
442}
443
444int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445{
446 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447}
448
449int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450{
451 return mc->nobjs;
452}
453
454void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455{
456 while (mc->nobjs) {
457 if (mc->kmem_cache)
458 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459 else
460 free_page((unsigned long)mc->objects[--mc->nobjs]);
461 }
462
463 kvfree(mc->objects);
464
465 mc->objects = NULL;
466 mc->capacity = 0;
467}
468
469void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470{
471 void *p;
472
473 if (WARN_ON(!mc->nobjs))
474 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475 else
476 p = mc->objects[--mc->nobjs];
477 BUG_ON(!p);
478 return p;
479}
480#endif
481
482static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483{
484 mutex_init(&vcpu->mutex);
485 vcpu->cpu = -1;
486 vcpu->kvm = kvm;
487 vcpu->vcpu_id = id;
488 vcpu->pid = NULL;
489#ifndef __KVM_HAVE_ARCH_WQP
490 rcuwait_init(&vcpu->wait);
491#endif
492 kvm_async_pf_vcpu_init(vcpu);
493
494 kvm_vcpu_set_in_spin_loop(vcpu, false);
495 kvm_vcpu_set_dy_eligible(vcpu, false);
496 vcpu->preempted = false;
497 vcpu->ready = false;
498 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499 vcpu->last_used_slot = NULL;
500
501 /* Fill the stats id string for the vcpu */
502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503 task_pid_nr(current), id);
504}
505
506static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507{
508 kvm_arch_vcpu_destroy(vcpu);
509 kvm_dirty_ring_free(&vcpu->dirty_ring);
510
511 /*
512 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513 * the vcpu->pid pointer, and at destruction time all file descriptors
514 * are already gone.
515 */
516 put_pid(rcu_dereference_protected(vcpu->pid, 1));
517
518 free_page((unsigned long)vcpu->run);
519 kmem_cache_free(kvm_vcpu_cache, vcpu);
520}
521
522void kvm_destroy_vcpus(struct kvm *kvm)
523{
524 unsigned long i;
525 struct kvm_vcpu *vcpu;
526
527 kvm_for_each_vcpu(i, vcpu, kvm) {
528 kvm_vcpu_destroy(vcpu);
529 xa_erase(&kvm->vcpu_array, i);
530 }
531
532 atomic_set(&kvm->online_vcpus, 0);
533}
534EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535
536#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
537static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538{
539 return container_of(mn, struct kvm, mmu_notifier);
540}
541
542typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543
544typedef void (*on_lock_fn_t)(struct kvm *kvm);
545
546struct kvm_mmu_notifier_range {
547 /*
548 * 64-bit addresses, as KVM notifiers can operate on host virtual
549 * addresses (unsigned long) and guest physical addresses (64-bit).
550 */
551 u64 start;
552 u64 end;
553 union kvm_mmu_notifier_arg arg;
554 gfn_handler_t handler;
555 on_lock_fn_t on_lock;
556 bool flush_on_ret;
557 bool may_block;
558};
559
560/*
561 * The inner-most helper returns a tuple containing the return value from the
562 * arch- and action-specific handler, plus a flag indicating whether or not at
563 * least one memslot was found, i.e. if the handler found guest memory.
564 *
565 * Note, most notifiers are averse to booleans, so even though KVM tracks the
566 * return from arch code as a bool, outer helpers will cast it to an int. :-(
567 */
568typedef struct kvm_mmu_notifier_return {
569 bool ret;
570 bool found_memslot;
571} kvm_mn_ret_t;
572
573/*
574 * Use a dedicated stub instead of NULL to indicate that there is no callback
575 * function/handler. The compiler technically can't guarantee that a real
576 * function will have a non-zero address, and so it will generate code to
577 * check for !NULL, whereas comparing against a stub will be elided at compile
578 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579 */
580static void kvm_null_fn(void)
581{
582
583}
584#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585
586static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
587
588/* Iterate over each memslot intersecting [start, last] (inclusive) range */
589#define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
590 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
591 node; \
592 node = interval_tree_iter_next(node, start, last)) \
593
594static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
595 const struct kvm_mmu_notifier_range *range)
596{
597 struct kvm_mmu_notifier_return r = {
598 .ret = false,
599 .found_memslot = false,
600 };
601 struct kvm_gfn_range gfn_range;
602 struct kvm_memory_slot *slot;
603 struct kvm_memslots *slots;
604 int i, idx;
605
606 if (WARN_ON_ONCE(range->end <= range->start))
607 return r;
608
609 /* A null handler is allowed if and only if on_lock() is provided. */
610 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
611 IS_KVM_NULL_FN(range->handler)))
612 return r;
613
614 idx = srcu_read_lock(&kvm->srcu);
615
616 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
617 struct interval_tree_node *node;
618
619 slots = __kvm_memslots(kvm, i);
620 kvm_for_each_memslot_in_hva_range(node, slots,
621 range->start, range->end - 1) {
622 unsigned long hva_start, hva_end;
623
624 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
625 hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
626 hva_end = min_t(unsigned long, range->end,
627 slot->userspace_addr + (slot->npages << PAGE_SHIFT));
628
629 /*
630 * To optimize for the likely case where the address
631 * range is covered by zero or one memslots, don't
632 * bother making these conditional (to avoid writes on
633 * the second or later invocation of the handler).
634 */
635 gfn_range.arg = range->arg;
636 gfn_range.may_block = range->may_block;
637
638 /*
639 * {gfn(page) | page intersects with [hva_start, hva_end)} =
640 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
641 */
642 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
643 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
644 gfn_range.slot = slot;
645
646 if (!r.found_memslot) {
647 r.found_memslot = true;
648 KVM_MMU_LOCK(kvm);
649 if (!IS_KVM_NULL_FN(range->on_lock))
650 range->on_lock(kvm);
651
652 if (IS_KVM_NULL_FN(range->handler))
653 break;
654 }
655 r.ret |= range->handler(kvm, &gfn_range);
656 }
657 }
658
659 if (range->flush_on_ret && r.ret)
660 kvm_flush_remote_tlbs(kvm);
661
662 if (r.found_memslot)
663 KVM_MMU_UNLOCK(kvm);
664
665 srcu_read_unlock(&kvm->srcu, idx);
666
667 return r;
668}
669
670static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
671 unsigned long start,
672 unsigned long end,
673 union kvm_mmu_notifier_arg arg,
674 gfn_handler_t handler)
675{
676 struct kvm *kvm = mmu_notifier_to_kvm(mn);
677 const struct kvm_mmu_notifier_range range = {
678 .start = start,
679 .end = end,
680 .arg = arg,
681 .handler = handler,
682 .on_lock = (void *)kvm_null_fn,
683 .flush_on_ret = true,
684 .may_block = false,
685 };
686
687 return __kvm_handle_hva_range(kvm, &range).ret;
688}
689
690static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
691 unsigned long start,
692 unsigned long end,
693 gfn_handler_t handler)
694{
695 struct kvm *kvm = mmu_notifier_to_kvm(mn);
696 const struct kvm_mmu_notifier_range range = {
697 .start = start,
698 .end = end,
699 .handler = handler,
700 .on_lock = (void *)kvm_null_fn,
701 .flush_on_ret = false,
702 .may_block = false,
703 };
704
705 return __kvm_handle_hva_range(kvm, &range).ret;
706}
707
708static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
709{
710 /*
711 * Skipping invalid memslots is correct if and only change_pte() is
712 * surrounded by invalidate_range_{start,end}(), which is currently
713 * guaranteed by the primary MMU. If that ever changes, KVM needs to
714 * unmap the memslot instead of skipping the memslot to ensure that KVM
715 * doesn't hold references to the old PFN.
716 */
717 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
718
719 if (range->slot->flags & KVM_MEMSLOT_INVALID)
720 return false;
721
722 return kvm_set_spte_gfn(kvm, range);
723}
724
725static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
726 struct mm_struct *mm,
727 unsigned long address,
728 pte_t pte)
729{
730 struct kvm *kvm = mmu_notifier_to_kvm(mn);
731 const union kvm_mmu_notifier_arg arg = { .pte = pte };
732
733 trace_kvm_set_spte_hva(address);
734
735 /*
736 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
737 * If mmu_invalidate_in_progress is zero, then no in-progress
738 * invalidations, including this one, found a relevant memslot at
739 * start(); rechecking memslots here is unnecessary. Note, a false
740 * positive (count elevated by a different invalidation) is sub-optimal
741 * but functionally ok.
742 */
743 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
744 if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
745 return;
746
747 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
748}
749
750void kvm_mmu_invalidate_begin(struct kvm *kvm)
751{
752 lockdep_assert_held_write(&kvm->mmu_lock);
753 /*
754 * The count increase must become visible at unlock time as no
755 * spte can be established without taking the mmu_lock and
756 * count is also read inside the mmu_lock critical section.
757 */
758 kvm->mmu_invalidate_in_progress++;
759
760 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
761 kvm->mmu_invalidate_range_start = INVALID_GPA;
762 kvm->mmu_invalidate_range_end = INVALID_GPA;
763 }
764}
765
766void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
767{
768 lockdep_assert_held_write(&kvm->mmu_lock);
769
770 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
771
772 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
773 kvm->mmu_invalidate_range_start = start;
774 kvm->mmu_invalidate_range_end = end;
775 } else {
776 /*
777 * Fully tracking multiple concurrent ranges has diminishing
778 * returns. Keep things simple and just find the minimal range
779 * which includes the current and new ranges. As there won't be
780 * enough information to subtract a range after its invalidate
781 * completes, any ranges invalidated concurrently will
782 * accumulate and persist until all outstanding invalidates
783 * complete.
784 */
785 kvm->mmu_invalidate_range_start =
786 min(kvm->mmu_invalidate_range_start, start);
787 kvm->mmu_invalidate_range_end =
788 max(kvm->mmu_invalidate_range_end, end);
789 }
790}
791
792bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
793{
794 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
795 return kvm_unmap_gfn_range(kvm, range);
796}
797
798static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
799 const struct mmu_notifier_range *range)
800{
801 struct kvm *kvm = mmu_notifier_to_kvm(mn);
802 const struct kvm_mmu_notifier_range hva_range = {
803 .start = range->start,
804 .end = range->end,
805 .handler = kvm_mmu_unmap_gfn_range,
806 .on_lock = kvm_mmu_invalidate_begin,
807 .flush_on_ret = true,
808 .may_block = mmu_notifier_range_blockable(range),
809 };
810
811 trace_kvm_unmap_hva_range(range->start, range->end);
812
813 /*
814 * Prevent memslot modification between range_start() and range_end()
815 * so that conditionally locking provides the same result in both
816 * functions. Without that guarantee, the mmu_invalidate_in_progress
817 * adjustments will be imbalanced.
818 *
819 * Pairs with the decrement in range_end().
820 */
821 spin_lock(&kvm->mn_invalidate_lock);
822 kvm->mn_active_invalidate_count++;
823 spin_unlock(&kvm->mn_invalidate_lock);
824
825 /*
826 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
827 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
828 * each cache's lock. There are relatively few caches in existence at
829 * any given time, and the caches themselves can check for hva overlap,
830 * i.e. don't need to rely on memslot overlap checks for performance.
831 * Because this runs without holding mmu_lock, the pfn caches must use
832 * mn_active_invalidate_count (see above) instead of
833 * mmu_invalidate_in_progress.
834 */
835 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
836
837 /*
838 * If one or more memslots were found and thus zapped, notify arch code
839 * that guest memory has been reclaimed. This needs to be done *after*
840 * dropping mmu_lock, as x86's reclaim path is slooooow.
841 */
842 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
843 kvm_arch_guest_memory_reclaimed(kvm);
844
845 return 0;
846}
847
848void kvm_mmu_invalidate_end(struct kvm *kvm)
849{
850 lockdep_assert_held_write(&kvm->mmu_lock);
851
852 /*
853 * This sequence increase will notify the kvm page fault that
854 * the page that is going to be mapped in the spte could have
855 * been freed.
856 */
857 kvm->mmu_invalidate_seq++;
858 smp_wmb();
859 /*
860 * The above sequence increase must be visible before the
861 * below count decrease, which is ensured by the smp_wmb above
862 * in conjunction with the smp_rmb in mmu_invalidate_retry().
863 */
864 kvm->mmu_invalidate_in_progress--;
865 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
866
867 /*
868 * Assert that at least one range was added between start() and end().
869 * Not adding a range isn't fatal, but it is a KVM bug.
870 */
871 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
872}
873
874static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
875 const struct mmu_notifier_range *range)
876{
877 struct kvm *kvm = mmu_notifier_to_kvm(mn);
878 const struct kvm_mmu_notifier_range hva_range = {
879 .start = range->start,
880 .end = range->end,
881 .handler = (void *)kvm_null_fn,
882 .on_lock = kvm_mmu_invalidate_end,
883 .flush_on_ret = false,
884 .may_block = mmu_notifier_range_blockable(range),
885 };
886 bool wake;
887
888 __kvm_handle_hva_range(kvm, &hva_range);
889
890 /* Pairs with the increment in range_start(). */
891 spin_lock(&kvm->mn_invalidate_lock);
892 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
893 --kvm->mn_active_invalidate_count;
894 wake = !kvm->mn_active_invalidate_count;
895 spin_unlock(&kvm->mn_invalidate_lock);
896
897 /*
898 * There can only be one waiter, since the wait happens under
899 * slots_lock.
900 */
901 if (wake)
902 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
903}
904
905static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
906 struct mm_struct *mm,
907 unsigned long start,
908 unsigned long end)
909{
910 trace_kvm_age_hva(start, end);
911
912 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
913 kvm_age_gfn);
914}
915
916static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
917 struct mm_struct *mm,
918 unsigned long start,
919 unsigned long end)
920{
921 trace_kvm_age_hva(start, end);
922
923 /*
924 * Even though we do not flush TLB, this will still adversely
925 * affect performance on pre-Haswell Intel EPT, where there is
926 * no EPT Access Bit to clear so that we have to tear down EPT
927 * tables instead. If we find this unacceptable, we can always
928 * add a parameter to kvm_age_hva so that it effectively doesn't
929 * do anything on clear_young.
930 *
931 * Also note that currently we never issue secondary TLB flushes
932 * from clear_young, leaving this job up to the regular system
933 * cadence. If we find this inaccurate, we might come up with a
934 * more sophisticated heuristic later.
935 */
936 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
937}
938
939static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
940 struct mm_struct *mm,
941 unsigned long address)
942{
943 trace_kvm_test_age_hva(address);
944
945 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
946 kvm_test_age_gfn);
947}
948
949static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
950 struct mm_struct *mm)
951{
952 struct kvm *kvm = mmu_notifier_to_kvm(mn);
953 int idx;
954
955 idx = srcu_read_lock(&kvm->srcu);
956 kvm_flush_shadow_all(kvm);
957 srcu_read_unlock(&kvm->srcu, idx);
958}
959
960static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
961 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
962 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
963 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
964 .clear_young = kvm_mmu_notifier_clear_young,
965 .test_young = kvm_mmu_notifier_test_young,
966 .change_pte = kvm_mmu_notifier_change_pte,
967 .release = kvm_mmu_notifier_release,
968};
969
970static int kvm_init_mmu_notifier(struct kvm *kvm)
971{
972 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
973 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
974}
975
976#else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
977
978static int kvm_init_mmu_notifier(struct kvm *kvm)
979{
980 return 0;
981}
982
983#endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
984
985#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
986static int kvm_pm_notifier_call(struct notifier_block *bl,
987 unsigned long state,
988 void *unused)
989{
990 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
991
992 return kvm_arch_pm_notifier(kvm, state);
993}
994
995static void kvm_init_pm_notifier(struct kvm *kvm)
996{
997 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
998 /* Suspend KVM before we suspend ftrace, RCU, etc. */
999 kvm->pm_notifier.priority = INT_MAX;
1000 register_pm_notifier(&kvm->pm_notifier);
1001}
1002
1003static void kvm_destroy_pm_notifier(struct kvm *kvm)
1004{
1005 unregister_pm_notifier(&kvm->pm_notifier);
1006}
1007#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
1008static void kvm_init_pm_notifier(struct kvm *kvm)
1009{
1010}
1011
1012static void kvm_destroy_pm_notifier(struct kvm *kvm)
1013{
1014}
1015#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
1016
1017static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
1018{
1019 if (!memslot->dirty_bitmap)
1020 return;
1021
1022 kvfree(memslot->dirty_bitmap);
1023 memslot->dirty_bitmap = NULL;
1024}
1025
1026/* This does not remove the slot from struct kvm_memslots data structures */
1027static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1028{
1029 if (slot->flags & KVM_MEM_GUEST_MEMFD)
1030 kvm_gmem_unbind(slot);
1031
1032 kvm_destroy_dirty_bitmap(slot);
1033
1034 kvm_arch_free_memslot(kvm, slot);
1035
1036 kfree(slot);
1037}
1038
1039static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1040{
1041 struct hlist_node *idnode;
1042 struct kvm_memory_slot *memslot;
1043 int bkt;
1044
1045 /*
1046 * The same memslot objects live in both active and inactive sets,
1047 * arbitrarily free using index '1' so the second invocation of this
1048 * function isn't operating over a structure with dangling pointers
1049 * (even though this function isn't actually touching them).
1050 */
1051 if (!slots->node_idx)
1052 return;
1053
1054 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1055 kvm_free_memslot(kvm, memslot);
1056}
1057
1058static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1059{
1060 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1061 case KVM_STATS_TYPE_INSTANT:
1062 return 0444;
1063 case KVM_STATS_TYPE_CUMULATIVE:
1064 case KVM_STATS_TYPE_PEAK:
1065 default:
1066 return 0644;
1067 }
1068}
1069
1070
1071static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1072{
1073 int i;
1074 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1075 kvm_vcpu_stats_header.num_desc;
1076
1077 if (IS_ERR(kvm->debugfs_dentry))
1078 return;
1079
1080 debugfs_remove_recursive(kvm->debugfs_dentry);
1081
1082 if (kvm->debugfs_stat_data) {
1083 for (i = 0; i < kvm_debugfs_num_entries; i++)
1084 kfree(kvm->debugfs_stat_data[i]);
1085 kfree(kvm->debugfs_stat_data);
1086 }
1087}
1088
1089static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1090{
1091 static DEFINE_MUTEX(kvm_debugfs_lock);
1092 struct dentry *dent;
1093 char dir_name[ITOA_MAX_LEN * 2];
1094 struct kvm_stat_data *stat_data;
1095 const struct _kvm_stats_desc *pdesc;
1096 int i, ret = -ENOMEM;
1097 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1098 kvm_vcpu_stats_header.num_desc;
1099
1100 if (!debugfs_initialized())
1101 return 0;
1102
1103 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1104 mutex_lock(&kvm_debugfs_lock);
1105 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1106 if (dent) {
1107 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1108 dput(dent);
1109 mutex_unlock(&kvm_debugfs_lock);
1110 return 0;
1111 }
1112 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1113 mutex_unlock(&kvm_debugfs_lock);
1114 if (IS_ERR(dent))
1115 return 0;
1116
1117 kvm->debugfs_dentry = dent;
1118 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1119 sizeof(*kvm->debugfs_stat_data),
1120 GFP_KERNEL_ACCOUNT);
1121 if (!kvm->debugfs_stat_data)
1122 goto out_err;
1123
1124 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1125 pdesc = &kvm_vm_stats_desc[i];
1126 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1127 if (!stat_data)
1128 goto out_err;
1129
1130 stat_data->kvm = kvm;
1131 stat_data->desc = pdesc;
1132 stat_data->kind = KVM_STAT_VM;
1133 kvm->debugfs_stat_data[i] = stat_data;
1134 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1135 kvm->debugfs_dentry, stat_data,
1136 &stat_fops_per_vm);
1137 }
1138
1139 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1140 pdesc = &kvm_vcpu_stats_desc[i];
1141 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1142 if (!stat_data)
1143 goto out_err;
1144
1145 stat_data->kvm = kvm;
1146 stat_data->desc = pdesc;
1147 stat_data->kind = KVM_STAT_VCPU;
1148 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1149 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1150 kvm->debugfs_dentry, stat_data,
1151 &stat_fops_per_vm);
1152 }
1153
1154 kvm_arch_create_vm_debugfs(kvm);
1155 return 0;
1156out_err:
1157 kvm_destroy_vm_debugfs(kvm);
1158 return ret;
1159}
1160
1161/*
1162 * Called after the VM is otherwise initialized, but just before adding it to
1163 * the vm_list.
1164 */
1165int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1166{
1167 return 0;
1168}
1169
1170/*
1171 * Called just after removing the VM from the vm_list, but before doing any
1172 * other destruction.
1173 */
1174void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1175{
1176}
1177
1178/*
1179 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1180 * be setup already, so we can create arch-specific debugfs entries under it.
1181 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1182 * a per-arch destroy interface is not needed.
1183 */
1184void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1185{
1186}
1187
1188static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1189{
1190 struct kvm *kvm = kvm_arch_alloc_vm();
1191 struct kvm_memslots *slots;
1192 int r = -ENOMEM;
1193 int i, j;
1194
1195 if (!kvm)
1196 return ERR_PTR(-ENOMEM);
1197
1198 KVM_MMU_LOCK_INIT(kvm);
1199 mmgrab(current->mm);
1200 kvm->mm = current->mm;
1201 kvm_eventfd_init(kvm);
1202 mutex_init(&kvm->lock);
1203 mutex_init(&kvm->irq_lock);
1204 mutex_init(&kvm->slots_lock);
1205 mutex_init(&kvm->slots_arch_lock);
1206 spin_lock_init(&kvm->mn_invalidate_lock);
1207 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1208 xa_init(&kvm->vcpu_array);
1209#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1210 xa_init(&kvm->mem_attr_array);
1211#endif
1212
1213 INIT_LIST_HEAD(&kvm->gpc_list);
1214 spin_lock_init(&kvm->gpc_lock);
1215
1216 INIT_LIST_HEAD(&kvm->devices);
1217 kvm->max_vcpus = KVM_MAX_VCPUS;
1218
1219 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1220
1221 /*
1222 * Force subsequent debugfs file creations to fail if the VM directory
1223 * is not created (by kvm_create_vm_debugfs()).
1224 */
1225 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1226
1227 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1228 task_pid_nr(current));
1229
1230 if (init_srcu_struct(&kvm->srcu))
1231 goto out_err_no_srcu;
1232 if (init_srcu_struct(&kvm->irq_srcu))
1233 goto out_err_no_irq_srcu;
1234
1235 refcount_set(&kvm->users_count, 1);
1236 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1237 for (j = 0; j < 2; j++) {
1238 slots = &kvm->__memslots[i][j];
1239
1240 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1241 slots->hva_tree = RB_ROOT_CACHED;
1242 slots->gfn_tree = RB_ROOT;
1243 hash_init(slots->id_hash);
1244 slots->node_idx = j;
1245
1246 /* Generations must be different for each address space. */
1247 slots->generation = i;
1248 }
1249
1250 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1251 }
1252
1253 for (i = 0; i < KVM_NR_BUSES; i++) {
1254 rcu_assign_pointer(kvm->buses[i],
1255 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1256 if (!kvm->buses[i])
1257 goto out_err_no_arch_destroy_vm;
1258 }
1259
1260 r = kvm_arch_init_vm(kvm, type);
1261 if (r)
1262 goto out_err_no_arch_destroy_vm;
1263
1264 r = hardware_enable_all();
1265 if (r)
1266 goto out_err_no_disable;
1267
1268#ifdef CONFIG_HAVE_KVM_IRQCHIP
1269 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1270#endif
1271
1272 r = kvm_init_mmu_notifier(kvm);
1273 if (r)
1274 goto out_err_no_mmu_notifier;
1275
1276 r = kvm_coalesced_mmio_init(kvm);
1277 if (r < 0)
1278 goto out_no_coalesced_mmio;
1279
1280 r = kvm_create_vm_debugfs(kvm, fdname);
1281 if (r)
1282 goto out_err_no_debugfs;
1283
1284 r = kvm_arch_post_init_vm(kvm);
1285 if (r)
1286 goto out_err;
1287
1288 mutex_lock(&kvm_lock);
1289 list_add(&kvm->vm_list, &vm_list);
1290 mutex_unlock(&kvm_lock);
1291
1292 preempt_notifier_inc();
1293 kvm_init_pm_notifier(kvm);
1294
1295 return kvm;
1296
1297out_err:
1298 kvm_destroy_vm_debugfs(kvm);
1299out_err_no_debugfs:
1300 kvm_coalesced_mmio_free(kvm);
1301out_no_coalesced_mmio:
1302#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1303 if (kvm->mmu_notifier.ops)
1304 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1305#endif
1306out_err_no_mmu_notifier:
1307 hardware_disable_all();
1308out_err_no_disable:
1309 kvm_arch_destroy_vm(kvm);
1310out_err_no_arch_destroy_vm:
1311 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1312 for (i = 0; i < KVM_NR_BUSES; i++)
1313 kfree(kvm_get_bus(kvm, i));
1314 cleanup_srcu_struct(&kvm->irq_srcu);
1315out_err_no_irq_srcu:
1316 cleanup_srcu_struct(&kvm->srcu);
1317out_err_no_srcu:
1318 kvm_arch_free_vm(kvm);
1319 mmdrop(current->mm);
1320 return ERR_PTR(r);
1321}
1322
1323static void kvm_destroy_devices(struct kvm *kvm)
1324{
1325 struct kvm_device *dev, *tmp;
1326
1327 /*
1328 * We do not need to take the kvm->lock here, because nobody else
1329 * has a reference to the struct kvm at this point and therefore
1330 * cannot access the devices list anyhow.
1331 */
1332 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1333 list_del(&dev->vm_node);
1334 dev->ops->destroy(dev);
1335 }
1336}
1337
1338static void kvm_destroy_vm(struct kvm *kvm)
1339{
1340 int i;
1341 struct mm_struct *mm = kvm->mm;
1342
1343 kvm_destroy_pm_notifier(kvm);
1344 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1345 kvm_destroy_vm_debugfs(kvm);
1346 kvm_arch_sync_events(kvm);
1347 mutex_lock(&kvm_lock);
1348 list_del(&kvm->vm_list);
1349 mutex_unlock(&kvm_lock);
1350 kvm_arch_pre_destroy_vm(kvm);
1351
1352 kvm_free_irq_routing(kvm);
1353 for (i = 0; i < KVM_NR_BUSES; i++) {
1354 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1355
1356 if (bus)
1357 kvm_io_bus_destroy(bus);
1358 kvm->buses[i] = NULL;
1359 }
1360 kvm_coalesced_mmio_free(kvm);
1361#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1362 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1363 /*
1364 * At this point, pending calls to invalidate_range_start()
1365 * have completed but no more MMU notifiers will run, so
1366 * mn_active_invalidate_count may remain unbalanced.
1367 * No threads can be waiting in kvm_swap_active_memslots() as the
1368 * last reference on KVM has been dropped, but freeing
1369 * memslots would deadlock without this manual intervention.
1370 *
1371 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1372 * notifier between a start() and end(), then there shouldn't be any
1373 * in-progress invalidations.
1374 */
1375 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1376 if (kvm->mn_active_invalidate_count)
1377 kvm->mn_active_invalidate_count = 0;
1378 else
1379 WARN_ON(kvm->mmu_invalidate_in_progress);
1380#else
1381 kvm_flush_shadow_all(kvm);
1382#endif
1383 kvm_arch_destroy_vm(kvm);
1384 kvm_destroy_devices(kvm);
1385 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1386 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1387 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1388 }
1389 cleanup_srcu_struct(&kvm->irq_srcu);
1390 cleanup_srcu_struct(&kvm->srcu);
1391#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1392 xa_destroy(&kvm->mem_attr_array);
1393#endif
1394 kvm_arch_free_vm(kvm);
1395 preempt_notifier_dec();
1396 hardware_disable_all();
1397 mmdrop(mm);
1398}
1399
1400void kvm_get_kvm(struct kvm *kvm)
1401{
1402 refcount_inc(&kvm->users_count);
1403}
1404EXPORT_SYMBOL_GPL(kvm_get_kvm);
1405
1406/*
1407 * Make sure the vm is not during destruction, which is a safe version of
1408 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1409 */
1410bool kvm_get_kvm_safe(struct kvm *kvm)
1411{
1412 return refcount_inc_not_zero(&kvm->users_count);
1413}
1414EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1415
1416void kvm_put_kvm(struct kvm *kvm)
1417{
1418 if (refcount_dec_and_test(&kvm->users_count))
1419 kvm_destroy_vm(kvm);
1420}
1421EXPORT_SYMBOL_GPL(kvm_put_kvm);
1422
1423/*
1424 * Used to put a reference that was taken on behalf of an object associated
1425 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1426 * of the new file descriptor fails and the reference cannot be transferred to
1427 * its final owner. In such cases, the caller is still actively using @kvm and
1428 * will fail miserably if the refcount unexpectedly hits zero.
1429 */
1430void kvm_put_kvm_no_destroy(struct kvm *kvm)
1431{
1432 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1433}
1434EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1435
1436static int kvm_vm_release(struct inode *inode, struct file *filp)
1437{
1438 struct kvm *kvm = filp->private_data;
1439
1440 kvm_irqfd_release(kvm);
1441
1442 kvm_put_kvm(kvm);
1443 return 0;
1444}
1445
1446/*
1447 * Allocation size is twice as large as the actual dirty bitmap size.
1448 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1449 */
1450static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1451{
1452 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1453
1454 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1455 if (!memslot->dirty_bitmap)
1456 return -ENOMEM;
1457
1458 return 0;
1459}
1460
1461static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1462{
1463 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1464 int node_idx_inactive = active->node_idx ^ 1;
1465
1466 return &kvm->__memslots[as_id][node_idx_inactive];
1467}
1468
1469/*
1470 * Helper to get the address space ID when one of memslot pointers may be NULL.
1471 * This also serves as a sanity that at least one of the pointers is non-NULL,
1472 * and that their address space IDs don't diverge.
1473 */
1474static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1475 struct kvm_memory_slot *b)
1476{
1477 if (WARN_ON_ONCE(!a && !b))
1478 return 0;
1479
1480 if (!a)
1481 return b->as_id;
1482 if (!b)
1483 return a->as_id;
1484
1485 WARN_ON_ONCE(a->as_id != b->as_id);
1486 return a->as_id;
1487}
1488
1489static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1490 struct kvm_memory_slot *slot)
1491{
1492 struct rb_root *gfn_tree = &slots->gfn_tree;
1493 struct rb_node **node, *parent;
1494 int idx = slots->node_idx;
1495
1496 parent = NULL;
1497 for (node = &gfn_tree->rb_node; *node; ) {
1498 struct kvm_memory_slot *tmp;
1499
1500 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1501 parent = *node;
1502 if (slot->base_gfn < tmp->base_gfn)
1503 node = &(*node)->rb_left;
1504 else if (slot->base_gfn > tmp->base_gfn)
1505 node = &(*node)->rb_right;
1506 else
1507 BUG();
1508 }
1509
1510 rb_link_node(&slot->gfn_node[idx], parent, node);
1511 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1512}
1513
1514static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1515 struct kvm_memory_slot *slot)
1516{
1517 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1518}
1519
1520static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1521 struct kvm_memory_slot *old,
1522 struct kvm_memory_slot *new)
1523{
1524 int idx = slots->node_idx;
1525
1526 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1527
1528 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1529 &slots->gfn_tree);
1530}
1531
1532/*
1533 * Replace @old with @new in the inactive memslots.
1534 *
1535 * With NULL @old this simply adds @new.
1536 * With NULL @new this simply removes @old.
1537 *
1538 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1539 * appropriately.
1540 */
1541static void kvm_replace_memslot(struct kvm *kvm,
1542 struct kvm_memory_slot *old,
1543 struct kvm_memory_slot *new)
1544{
1545 int as_id = kvm_memslots_get_as_id(old, new);
1546 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1547 int idx = slots->node_idx;
1548
1549 if (old) {
1550 hash_del(&old->id_node[idx]);
1551 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1552
1553 if ((long)old == atomic_long_read(&slots->last_used_slot))
1554 atomic_long_set(&slots->last_used_slot, (long)new);
1555
1556 if (!new) {
1557 kvm_erase_gfn_node(slots, old);
1558 return;
1559 }
1560 }
1561
1562 /*
1563 * Initialize @new's hva range. Do this even when replacing an @old
1564 * slot, kvm_copy_memslot() deliberately does not touch node data.
1565 */
1566 new->hva_node[idx].start = new->userspace_addr;
1567 new->hva_node[idx].last = new->userspace_addr +
1568 (new->npages << PAGE_SHIFT) - 1;
1569
1570 /*
1571 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1572 * hva_node needs to be swapped with remove+insert even though hva can't
1573 * change when replacing an existing slot.
1574 */
1575 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1576 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1577
1578 /*
1579 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1580 * switch the node in the gfn tree instead of removing the old and
1581 * inserting the new as two separate operations. Replacement is a
1582 * single O(1) operation versus two O(log(n)) operations for
1583 * remove+insert.
1584 */
1585 if (old && old->base_gfn == new->base_gfn) {
1586 kvm_replace_gfn_node(slots, old, new);
1587 } else {
1588 if (old)
1589 kvm_erase_gfn_node(slots, old);
1590 kvm_insert_gfn_node(slots, new);
1591 }
1592}
1593
1594/*
1595 * Flags that do not access any of the extra space of struct
1596 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1597 * only allows these.
1598 */
1599#define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1600 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1601
1602static int check_memory_region_flags(struct kvm *kvm,
1603 const struct kvm_userspace_memory_region2 *mem)
1604{
1605 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1606
1607 if (kvm_arch_has_private_mem(kvm))
1608 valid_flags |= KVM_MEM_GUEST_MEMFD;
1609
1610 /* Dirty logging private memory is not currently supported. */
1611 if (mem->flags & KVM_MEM_GUEST_MEMFD)
1612 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1613
1614#ifdef CONFIG_HAVE_KVM_READONLY_MEM
1615 /*
1616 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1617 * read-only memslots have emulated MMIO, not page fault, semantics,
1618 * and KVM doesn't allow emulated MMIO for private memory.
1619 */
1620 if (!(mem->flags & KVM_MEM_GUEST_MEMFD))
1621 valid_flags |= KVM_MEM_READONLY;
1622#endif
1623
1624 if (mem->flags & ~valid_flags)
1625 return -EINVAL;
1626
1627 return 0;
1628}
1629
1630static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1631{
1632 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1633
1634 /* Grab the generation from the activate memslots. */
1635 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1636
1637 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1638 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1639
1640 /*
1641 * Do not store the new memslots while there are invalidations in
1642 * progress, otherwise the locking in invalidate_range_start and
1643 * invalidate_range_end will be unbalanced.
1644 */
1645 spin_lock(&kvm->mn_invalidate_lock);
1646 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1647 while (kvm->mn_active_invalidate_count) {
1648 set_current_state(TASK_UNINTERRUPTIBLE);
1649 spin_unlock(&kvm->mn_invalidate_lock);
1650 schedule();
1651 spin_lock(&kvm->mn_invalidate_lock);
1652 }
1653 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1654 rcu_assign_pointer(kvm->memslots[as_id], slots);
1655 spin_unlock(&kvm->mn_invalidate_lock);
1656
1657 /*
1658 * Acquired in kvm_set_memslot. Must be released before synchronize
1659 * SRCU below in order to avoid deadlock with another thread
1660 * acquiring the slots_arch_lock in an srcu critical section.
1661 */
1662 mutex_unlock(&kvm->slots_arch_lock);
1663
1664 synchronize_srcu_expedited(&kvm->srcu);
1665
1666 /*
1667 * Increment the new memslot generation a second time, dropping the
1668 * update in-progress flag and incrementing the generation based on
1669 * the number of address spaces. This provides a unique and easily
1670 * identifiable generation number while the memslots are in flux.
1671 */
1672 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1673
1674 /*
1675 * Generations must be unique even across address spaces. We do not need
1676 * a global counter for that, instead the generation space is evenly split
1677 * across address spaces. For example, with two address spaces, address
1678 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1679 * use generations 1, 3, 5, ...
1680 */
1681 gen += kvm_arch_nr_memslot_as_ids(kvm);
1682
1683 kvm_arch_memslots_updated(kvm, gen);
1684
1685 slots->generation = gen;
1686}
1687
1688static int kvm_prepare_memory_region(struct kvm *kvm,
1689 const struct kvm_memory_slot *old,
1690 struct kvm_memory_slot *new,
1691 enum kvm_mr_change change)
1692{
1693 int r;
1694
1695 /*
1696 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1697 * will be freed on "commit". If logging is enabled in both old and
1698 * new, reuse the existing bitmap. If logging is enabled only in the
1699 * new and KVM isn't using a ring buffer, allocate and initialize a
1700 * new bitmap.
1701 */
1702 if (change != KVM_MR_DELETE) {
1703 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1704 new->dirty_bitmap = NULL;
1705 else if (old && old->dirty_bitmap)
1706 new->dirty_bitmap = old->dirty_bitmap;
1707 else if (kvm_use_dirty_bitmap(kvm)) {
1708 r = kvm_alloc_dirty_bitmap(new);
1709 if (r)
1710 return r;
1711
1712 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1713 bitmap_set(new->dirty_bitmap, 0, new->npages);
1714 }
1715 }
1716
1717 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1718
1719 /* Free the bitmap on failure if it was allocated above. */
1720 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1721 kvm_destroy_dirty_bitmap(new);
1722
1723 return r;
1724}
1725
1726static void kvm_commit_memory_region(struct kvm *kvm,
1727 struct kvm_memory_slot *old,
1728 const struct kvm_memory_slot *new,
1729 enum kvm_mr_change change)
1730{
1731 int old_flags = old ? old->flags : 0;
1732 int new_flags = new ? new->flags : 0;
1733 /*
1734 * Update the total number of memslot pages before calling the arch
1735 * hook so that architectures can consume the result directly.
1736 */
1737 if (change == KVM_MR_DELETE)
1738 kvm->nr_memslot_pages -= old->npages;
1739 else if (change == KVM_MR_CREATE)
1740 kvm->nr_memslot_pages += new->npages;
1741
1742 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1743 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1744 atomic_set(&kvm->nr_memslots_dirty_logging,
1745 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1746 }
1747
1748 kvm_arch_commit_memory_region(kvm, old, new, change);
1749
1750 switch (change) {
1751 case KVM_MR_CREATE:
1752 /* Nothing more to do. */
1753 break;
1754 case KVM_MR_DELETE:
1755 /* Free the old memslot and all its metadata. */
1756 kvm_free_memslot(kvm, old);
1757 break;
1758 case KVM_MR_MOVE:
1759 case KVM_MR_FLAGS_ONLY:
1760 /*
1761 * Free the dirty bitmap as needed; the below check encompasses
1762 * both the flags and whether a ring buffer is being used)
1763 */
1764 if (old->dirty_bitmap && !new->dirty_bitmap)
1765 kvm_destroy_dirty_bitmap(old);
1766
1767 /*
1768 * The final quirk. Free the detached, old slot, but only its
1769 * memory, not any metadata. Metadata, including arch specific
1770 * data, may be reused by @new.
1771 */
1772 kfree(old);
1773 break;
1774 default:
1775 BUG();
1776 }
1777}
1778
1779/*
1780 * Activate @new, which must be installed in the inactive slots by the caller,
1781 * by swapping the active slots and then propagating @new to @old once @old is
1782 * unreachable and can be safely modified.
1783 *
1784 * With NULL @old this simply adds @new to @active (while swapping the sets).
1785 * With NULL @new this simply removes @old from @active and frees it
1786 * (while also swapping the sets).
1787 */
1788static void kvm_activate_memslot(struct kvm *kvm,
1789 struct kvm_memory_slot *old,
1790 struct kvm_memory_slot *new)
1791{
1792 int as_id = kvm_memslots_get_as_id(old, new);
1793
1794 kvm_swap_active_memslots(kvm, as_id);
1795
1796 /* Propagate the new memslot to the now inactive memslots. */
1797 kvm_replace_memslot(kvm, old, new);
1798}
1799
1800static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1801 const struct kvm_memory_slot *src)
1802{
1803 dest->base_gfn = src->base_gfn;
1804 dest->npages = src->npages;
1805 dest->dirty_bitmap = src->dirty_bitmap;
1806 dest->arch = src->arch;
1807 dest->userspace_addr = src->userspace_addr;
1808 dest->flags = src->flags;
1809 dest->id = src->id;
1810 dest->as_id = src->as_id;
1811}
1812
1813static void kvm_invalidate_memslot(struct kvm *kvm,
1814 struct kvm_memory_slot *old,
1815 struct kvm_memory_slot *invalid_slot)
1816{
1817 /*
1818 * Mark the current slot INVALID. As with all memslot modifications,
1819 * this must be done on an unreachable slot to avoid modifying the
1820 * current slot in the active tree.
1821 */
1822 kvm_copy_memslot(invalid_slot, old);
1823 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1824 kvm_replace_memslot(kvm, old, invalid_slot);
1825
1826 /*
1827 * Activate the slot that is now marked INVALID, but don't propagate
1828 * the slot to the now inactive slots. The slot is either going to be
1829 * deleted or recreated as a new slot.
1830 */
1831 kvm_swap_active_memslots(kvm, old->as_id);
1832
1833 /*
1834 * From this point no new shadow pages pointing to a deleted, or moved,
1835 * memslot will be created. Validation of sp->gfn happens in:
1836 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1837 * - kvm_is_visible_gfn (mmu_check_root)
1838 */
1839 kvm_arch_flush_shadow_memslot(kvm, old);
1840 kvm_arch_guest_memory_reclaimed(kvm);
1841
1842 /* Was released by kvm_swap_active_memslots(), reacquire. */
1843 mutex_lock(&kvm->slots_arch_lock);
1844
1845 /*
1846 * Copy the arch-specific field of the newly-installed slot back to the
1847 * old slot as the arch data could have changed between releasing
1848 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1849 * above. Writers are required to retrieve memslots *after* acquiring
1850 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1851 */
1852 old->arch = invalid_slot->arch;
1853}
1854
1855static void kvm_create_memslot(struct kvm *kvm,
1856 struct kvm_memory_slot *new)
1857{
1858 /* Add the new memslot to the inactive set and activate. */
1859 kvm_replace_memslot(kvm, NULL, new);
1860 kvm_activate_memslot(kvm, NULL, new);
1861}
1862
1863static void kvm_delete_memslot(struct kvm *kvm,
1864 struct kvm_memory_slot *old,
1865 struct kvm_memory_slot *invalid_slot)
1866{
1867 /*
1868 * Remove the old memslot (in the inactive memslots) by passing NULL as
1869 * the "new" slot, and for the invalid version in the active slots.
1870 */
1871 kvm_replace_memslot(kvm, old, NULL);
1872 kvm_activate_memslot(kvm, invalid_slot, NULL);
1873}
1874
1875static void kvm_move_memslot(struct kvm *kvm,
1876 struct kvm_memory_slot *old,
1877 struct kvm_memory_slot *new,
1878 struct kvm_memory_slot *invalid_slot)
1879{
1880 /*
1881 * Replace the old memslot in the inactive slots, and then swap slots
1882 * and replace the current INVALID with the new as well.
1883 */
1884 kvm_replace_memslot(kvm, old, new);
1885 kvm_activate_memslot(kvm, invalid_slot, new);
1886}
1887
1888static void kvm_update_flags_memslot(struct kvm *kvm,
1889 struct kvm_memory_slot *old,
1890 struct kvm_memory_slot *new)
1891{
1892 /*
1893 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1894 * an intermediate step. Instead, the old memslot is simply replaced
1895 * with a new, updated copy in both memslot sets.
1896 */
1897 kvm_replace_memslot(kvm, old, new);
1898 kvm_activate_memslot(kvm, old, new);
1899}
1900
1901static int kvm_set_memslot(struct kvm *kvm,
1902 struct kvm_memory_slot *old,
1903 struct kvm_memory_slot *new,
1904 enum kvm_mr_change change)
1905{
1906 struct kvm_memory_slot *invalid_slot;
1907 int r;
1908
1909 /*
1910 * Released in kvm_swap_active_memslots().
1911 *
1912 * Must be held from before the current memslots are copied until after
1913 * the new memslots are installed with rcu_assign_pointer, then
1914 * released before the synchronize srcu in kvm_swap_active_memslots().
1915 *
1916 * When modifying memslots outside of the slots_lock, must be held
1917 * before reading the pointer to the current memslots until after all
1918 * changes to those memslots are complete.
1919 *
1920 * These rules ensure that installing new memslots does not lose
1921 * changes made to the previous memslots.
1922 */
1923 mutex_lock(&kvm->slots_arch_lock);
1924
1925 /*
1926 * Invalidate the old slot if it's being deleted or moved. This is
1927 * done prior to actually deleting/moving the memslot to allow vCPUs to
1928 * continue running by ensuring there are no mappings or shadow pages
1929 * for the memslot when it is deleted/moved. Without pre-invalidation
1930 * (and without a lock), a window would exist between effecting the
1931 * delete/move and committing the changes in arch code where KVM or a
1932 * guest could access a non-existent memslot.
1933 *
1934 * Modifications are done on a temporary, unreachable slot. The old
1935 * slot needs to be preserved in case a later step fails and the
1936 * invalidation needs to be reverted.
1937 */
1938 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1939 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1940 if (!invalid_slot) {
1941 mutex_unlock(&kvm->slots_arch_lock);
1942 return -ENOMEM;
1943 }
1944 kvm_invalidate_memslot(kvm, old, invalid_slot);
1945 }
1946
1947 r = kvm_prepare_memory_region(kvm, old, new, change);
1948 if (r) {
1949 /*
1950 * For DELETE/MOVE, revert the above INVALID change. No
1951 * modifications required since the original slot was preserved
1952 * in the inactive slots. Changing the active memslots also
1953 * release slots_arch_lock.
1954 */
1955 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1956 kvm_activate_memslot(kvm, invalid_slot, old);
1957 kfree(invalid_slot);
1958 } else {
1959 mutex_unlock(&kvm->slots_arch_lock);
1960 }
1961 return r;
1962 }
1963
1964 /*
1965 * For DELETE and MOVE, the working slot is now active as the INVALID
1966 * version of the old slot. MOVE is particularly special as it reuses
1967 * the old slot and returns a copy of the old slot (in working_slot).
1968 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1969 * old slot is detached but otherwise preserved.
1970 */
1971 if (change == KVM_MR_CREATE)
1972 kvm_create_memslot(kvm, new);
1973 else if (change == KVM_MR_DELETE)
1974 kvm_delete_memslot(kvm, old, invalid_slot);
1975 else if (change == KVM_MR_MOVE)
1976 kvm_move_memslot(kvm, old, new, invalid_slot);
1977 else if (change == KVM_MR_FLAGS_ONLY)
1978 kvm_update_flags_memslot(kvm, old, new);
1979 else
1980 BUG();
1981
1982 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1983 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1984 kfree(invalid_slot);
1985
1986 /*
1987 * No need to refresh new->arch, changes after dropping slots_arch_lock
1988 * will directly hit the final, active memslot. Architectures are
1989 * responsible for knowing that new->arch may be stale.
1990 */
1991 kvm_commit_memory_region(kvm, old, new, change);
1992
1993 return 0;
1994}
1995
1996static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1997 gfn_t start, gfn_t end)
1998{
1999 struct kvm_memslot_iter iter;
2000
2001 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
2002 if (iter.slot->id != id)
2003 return true;
2004 }
2005
2006 return false;
2007}
2008
2009/*
2010 * Allocate some memory and give it an address in the guest physical address
2011 * space.
2012 *
2013 * Discontiguous memory is allowed, mostly for framebuffers.
2014 *
2015 * Must be called holding kvm->slots_lock for write.
2016 */
2017int __kvm_set_memory_region(struct kvm *kvm,
2018 const struct kvm_userspace_memory_region2 *mem)
2019{
2020 struct kvm_memory_slot *old, *new;
2021 struct kvm_memslots *slots;
2022 enum kvm_mr_change change;
2023 unsigned long npages;
2024 gfn_t base_gfn;
2025 int as_id, id;
2026 int r;
2027
2028 r = check_memory_region_flags(kvm, mem);
2029 if (r)
2030 return r;
2031
2032 as_id = mem->slot >> 16;
2033 id = (u16)mem->slot;
2034
2035 /* General sanity checks */
2036 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2037 (mem->memory_size != (unsigned long)mem->memory_size))
2038 return -EINVAL;
2039 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2040 return -EINVAL;
2041 /* We can read the guest memory with __xxx_user() later on. */
2042 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2043 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2044 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2045 mem->memory_size))
2046 return -EINVAL;
2047 if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2048 (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2049 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2050 return -EINVAL;
2051 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2052 return -EINVAL;
2053 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2054 return -EINVAL;
2055 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2056 return -EINVAL;
2057
2058 slots = __kvm_memslots(kvm, as_id);
2059
2060 /*
2061 * Note, the old memslot (and the pointer itself!) may be invalidated
2062 * and/or destroyed by kvm_set_memslot().
2063 */
2064 old = id_to_memslot(slots, id);
2065
2066 if (!mem->memory_size) {
2067 if (!old || !old->npages)
2068 return -EINVAL;
2069
2070 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2071 return -EIO;
2072
2073 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2074 }
2075
2076 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2077 npages = (mem->memory_size >> PAGE_SHIFT);
2078
2079 if (!old || !old->npages) {
2080 change = KVM_MR_CREATE;
2081
2082 /*
2083 * To simplify KVM internals, the total number of pages across
2084 * all memslots must fit in an unsigned long.
2085 */
2086 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2087 return -EINVAL;
2088 } else { /* Modify an existing slot. */
2089 /* Private memslots are immutable, they can only be deleted. */
2090 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2091 return -EINVAL;
2092 if ((mem->userspace_addr != old->userspace_addr) ||
2093 (npages != old->npages) ||
2094 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2095 return -EINVAL;
2096
2097 if (base_gfn != old->base_gfn)
2098 change = KVM_MR_MOVE;
2099 else if (mem->flags != old->flags)
2100 change = KVM_MR_FLAGS_ONLY;
2101 else /* Nothing to change. */
2102 return 0;
2103 }
2104
2105 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2106 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2107 return -EEXIST;
2108
2109 /* Allocate a slot that will persist in the memslot. */
2110 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2111 if (!new)
2112 return -ENOMEM;
2113
2114 new->as_id = as_id;
2115 new->id = id;
2116 new->base_gfn = base_gfn;
2117 new->npages = npages;
2118 new->flags = mem->flags;
2119 new->userspace_addr = mem->userspace_addr;
2120 if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2121 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2122 if (r)
2123 goto out;
2124 }
2125
2126 r = kvm_set_memslot(kvm, old, new, change);
2127 if (r)
2128 goto out_unbind;
2129
2130 return 0;
2131
2132out_unbind:
2133 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2134 kvm_gmem_unbind(new);
2135out:
2136 kfree(new);
2137 return r;
2138}
2139EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2140
2141int kvm_set_memory_region(struct kvm *kvm,
2142 const struct kvm_userspace_memory_region2 *mem)
2143{
2144 int r;
2145
2146 mutex_lock(&kvm->slots_lock);
2147 r = __kvm_set_memory_region(kvm, mem);
2148 mutex_unlock(&kvm->slots_lock);
2149 return r;
2150}
2151EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2152
2153static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2154 struct kvm_userspace_memory_region2 *mem)
2155{
2156 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2157 return -EINVAL;
2158
2159 return kvm_set_memory_region(kvm, mem);
2160}
2161
2162#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2163/**
2164 * kvm_get_dirty_log - get a snapshot of dirty pages
2165 * @kvm: pointer to kvm instance
2166 * @log: slot id and address to which we copy the log
2167 * @is_dirty: set to '1' if any dirty pages were found
2168 * @memslot: set to the associated memslot, always valid on success
2169 */
2170int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2171 int *is_dirty, struct kvm_memory_slot **memslot)
2172{
2173 struct kvm_memslots *slots;
2174 int i, as_id, id;
2175 unsigned long n;
2176 unsigned long any = 0;
2177
2178 /* Dirty ring tracking may be exclusive to dirty log tracking */
2179 if (!kvm_use_dirty_bitmap(kvm))
2180 return -ENXIO;
2181
2182 *memslot = NULL;
2183 *is_dirty = 0;
2184
2185 as_id = log->slot >> 16;
2186 id = (u16)log->slot;
2187 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2188 return -EINVAL;
2189
2190 slots = __kvm_memslots(kvm, as_id);
2191 *memslot = id_to_memslot(slots, id);
2192 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2193 return -ENOENT;
2194
2195 kvm_arch_sync_dirty_log(kvm, *memslot);
2196
2197 n = kvm_dirty_bitmap_bytes(*memslot);
2198
2199 for (i = 0; !any && i < n/sizeof(long); ++i)
2200 any = (*memslot)->dirty_bitmap[i];
2201
2202 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2203 return -EFAULT;
2204
2205 if (any)
2206 *is_dirty = 1;
2207 return 0;
2208}
2209EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2210
2211#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2212/**
2213 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2214 * and reenable dirty page tracking for the corresponding pages.
2215 * @kvm: pointer to kvm instance
2216 * @log: slot id and address to which we copy the log
2217 *
2218 * We need to keep it in mind that VCPU threads can write to the bitmap
2219 * concurrently. So, to avoid losing track of dirty pages we keep the
2220 * following order:
2221 *
2222 * 1. Take a snapshot of the bit and clear it if needed.
2223 * 2. Write protect the corresponding page.
2224 * 3. Copy the snapshot to the userspace.
2225 * 4. Upon return caller flushes TLB's if needed.
2226 *
2227 * Between 2 and 4, the guest may write to the page using the remaining TLB
2228 * entry. This is not a problem because the page is reported dirty using
2229 * the snapshot taken before and step 4 ensures that writes done after
2230 * exiting to userspace will be logged for the next call.
2231 *
2232 */
2233static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2234{
2235 struct kvm_memslots *slots;
2236 struct kvm_memory_slot *memslot;
2237 int i, as_id, id;
2238 unsigned long n;
2239 unsigned long *dirty_bitmap;
2240 unsigned long *dirty_bitmap_buffer;
2241 bool flush;
2242
2243 /* Dirty ring tracking may be exclusive to dirty log tracking */
2244 if (!kvm_use_dirty_bitmap(kvm))
2245 return -ENXIO;
2246
2247 as_id = log->slot >> 16;
2248 id = (u16)log->slot;
2249 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2250 return -EINVAL;
2251
2252 slots = __kvm_memslots(kvm, as_id);
2253 memslot = id_to_memslot(slots, id);
2254 if (!memslot || !memslot->dirty_bitmap)
2255 return -ENOENT;
2256
2257 dirty_bitmap = memslot->dirty_bitmap;
2258
2259 kvm_arch_sync_dirty_log(kvm, memslot);
2260
2261 n = kvm_dirty_bitmap_bytes(memslot);
2262 flush = false;
2263 if (kvm->manual_dirty_log_protect) {
2264 /*
2265 * Unlike kvm_get_dirty_log, we always return false in *flush,
2266 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2267 * is some code duplication between this function and
2268 * kvm_get_dirty_log, but hopefully all architecture
2269 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2270 * can be eliminated.
2271 */
2272 dirty_bitmap_buffer = dirty_bitmap;
2273 } else {
2274 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2275 memset(dirty_bitmap_buffer, 0, n);
2276
2277 KVM_MMU_LOCK(kvm);
2278 for (i = 0; i < n / sizeof(long); i++) {
2279 unsigned long mask;
2280 gfn_t offset;
2281
2282 if (!dirty_bitmap[i])
2283 continue;
2284
2285 flush = true;
2286 mask = xchg(&dirty_bitmap[i], 0);
2287 dirty_bitmap_buffer[i] = mask;
2288
2289 offset = i * BITS_PER_LONG;
2290 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2291 offset, mask);
2292 }
2293 KVM_MMU_UNLOCK(kvm);
2294 }
2295
2296 if (flush)
2297 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2298
2299 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2300 return -EFAULT;
2301 return 0;
2302}
2303
2304
2305/**
2306 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2307 * @kvm: kvm instance
2308 * @log: slot id and address to which we copy the log
2309 *
2310 * Steps 1-4 below provide general overview of dirty page logging. See
2311 * kvm_get_dirty_log_protect() function description for additional details.
2312 *
2313 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2314 * always flush the TLB (step 4) even if previous step failed and the dirty
2315 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2316 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2317 * writes will be marked dirty for next log read.
2318 *
2319 * 1. Take a snapshot of the bit and clear it if needed.
2320 * 2. Write protect the corresponding page.
2321 * 3. Copy the snapshot to the userspace.
2322 * 4. Flush TLB's if needed.
2323 */
2324static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2325 struct kvm_dirty_log *log)
2326{
2327 int r;
2328
2329 mutex_lock(&kvm->slots_lock);
2330
2331 r = kvm_get_dirty_log_protect(kvm, log);
2332
2333 mutex_unlock(&kvm->slots_lock);
2334 return r;
2335}
2336
2337/**
2338 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2339 * and reenable dirty page tracking for the corresponding pages.
2340 * @kvm: pointer to kvm instance
2341 * @log: slot id and address from which to fetch the bitmap of dirty pages
2342 */
2343static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2344 struct kvm_clear_dirty_log *log)
2345{
2346 struct kvm_memslots *slots;
2347 struct kvm_memory_slot *memslot;
2348 int as_id, id;
2349 gfn_t offset;
2350 unsigned long i, n;
2351 unsigned long *dirty_bitmap;
2352 unsigned long *dirty_bitmap_buffer;
2353 bool flush;
2354
2355 /* Dirty ring tracking may be exclusive to dirty log tracking */
2356 if (!kvm_use_dirty_bitmap(kvm))
2357 return -ENXIO;
2358
2359 as_id = log->slot >> 16;
2360 id = (u16)log->slot;
2361 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2362 return -EINVAL;
2363
2364 if (log->first_page & 63)
2365 return -EINVAL;
2366
2367 slots = __kvm_memslots(kvm, as_id);
2368 memslot = id_to_memslot(slots, id);
2369 if (!memslot || !memslot->dirty_bitmap)
2370 return -ENOENT;
2371
2372 dirty_bitmap = memslot->dirty_bitmap;
2373
2374 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2375
2376 if (log->first_page > memslot->npages ||
2377 log->num_pages > memslot->npages - log->first_page ||
2378 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2379 return -EINVAL;
2380
2381 kvm_arch_sync_dirty_log(kvm, memslot);
2382
2383 flush = false;
2384 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2385 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2386 return -EFAULT;
2387
2388 KVM_MMU_LOCK(kvm);
2389 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2390 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2391 i++, offset += BITS_PER_LONG) {
2392 unsigned long mask = *dirty_bitmap_buffer++;
2393 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2394 if (!mask)
2395 continue;
2396
2397 mask &= atomic_long_fetch_andnot(mask, p);
2398
2399 /*
2400 * mask contains the bits that really have been cleared. This
2401 * never includes any bits beyond the length of the memslot (if
2402 * the length is not aligned to 64 pages), therefore it is not
2403 * a problem if userspace sets them in log->dirty_bitmap.
2404 */
2405 if (mask) {
2406 flush = true;
2407 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2408 offset, mask);
2409 }
2410 }
2411 KVM_MMU_UNLOCK(kvm);
2412
2413 if (flush)
2414 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2415
2416 return 0;
2417}
2418
2419static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2420 struct kvm_clear_dirty_log *log)
2421{
2422 int r;
2423
2424 mutex_lock(&kvm->slots_lock);
2425
2426 r = kvm_clear_dirty_log_protect(kvm, log);
2427
2428 mutex_unlock(&kvm->slots_lock);
2429 return r;
2430}
2431#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2432
2433#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2434/*
2435 * Returns true if _all_ gfns in the range [@start, @end) have attributes
2436 * matching @attrs.
2437 */
2438bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2439 unsigned long attrs)
2440{
2441 XA_STATE(xas, &kvm->mem_attr_array, start);
2442 unsigned long index;
2443 bool has_attrs;
2444 void *entry;
2445
2446 rcu_read_lock();
2447
2448 if (!attrs) {
2449 has_attrs = !xas_find(&xas, end - 1);
2450 goto out;
2451 }
2452
2453 has_attrs = true;
2454 for (index = start; index < end; index++) {
2455 do {
2456 entry = xas_next(&xas);
2457 } while (xas_retry(&xas, entry));
2458
2459 if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2460 has_attrs = false;
2461 break;
2462 }
2463 }
2464
2465out:
2466 rcu_read_unlock();
2467 return has_attrs;
2468}
2469
2470static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2471{
2472 if (!kvm || kvm_arch_has_private_mem(kvm))
2473 return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2474
2475 return 0;
2476}
2477
2478static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2479 struct kvm_mmu_notifier_range *range)
2480{
2481 struct kvm_gfn_range gfn_range;
2482 struct kvm_memory_slot *slot;
2483 struct kvm_memslots *slots;
2484 struct kvm_memslot_iter iter;
2485 bool found_memslot = false;
2486 bool ret = false;
2487 int i;
2488
2489 gfn_range.arg = range->arg;
2490 gfn_range.may_block = range->may_block;
2491
2492 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2493 slots = __kvm_memslots(kvm, i);
2494
2495 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2496 slot = iter.slot;
2497 gfn_range.slot = slot;
2498
2499 gfn_range.start = max(range->start, slot->base_gfn);
2500 gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2501 if (gfn_range.start >= gfn_range.end)
2502 continue;
2503
2504 if (!found_memslot) {
2505 found_memslot = true;
2506 KVM_MMU_LOCK(kvm);
2507 if (!IS_KVM_NULL_FN(range->on_lock))
2508 range->on_lock(kvm);
2509 }
2510
2511 ret |= range->handler(kvm, &gfn_range);
2512 }
2513 }
2514
2515 if (range->flush_on_ret && ret)
2516 kvm_flush_remote_tlbs(kvm);
2517
2518 if (found_memslot)
2519 KVM_MMU_UNLOCK(kvm);
2520}
2521
2522static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2523 struct kvm_gfn_range *range)
2524{
2525 /*
2526 * Unconditionally add the range to the invalidation set, regardless of
2527 * whether or not the arch callback actually needs to zap SPTEs. E.g.
2528 * if KVM supports RWX attributes in the future and the attributes are
2529 * going from R=>RW, zapping isn't strictly necessary. Unconditionally
2530 * adding the range allows KVM to require that MMU invalidations add at
2531 * least one range between begin() and end(), e.g. allows KVM to detect
2532 * bugs where the add() is missed. Relaxing the rule *might* be safe,
2533 * but it's not obvious that allowing new mappings while the attributes
2534 * are in flux is desirable or worth the complexity.
2535 */
2536 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2537
2538 return kvm_arch_pre_set_memory_attributes(kvm, range);
2539}
2540
2541/* Set @attributes for the gfn range [@start, @end). */
2542static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2543 unsigned long attributes)
2544{
2545 struct kvm_mmu_notifier_range pre_set_range = {
2546 .start = start,
2547 .end = end,
2548 .handler = kvm_pre_set_memory_attributes,
2549 .on_lock = kvm_mmu_invalidate_begin,
2550 .flush_on_ret = true,
2551 .may_block = true,
2552 };
2553 struct kvm_mmu_notifier_range post_set_range = {
2554 .start = start,
2555 .end = end,
2556 .arg.attributes = attributes,
2557 .handler = kvm_arch_post_set_memory_attributes,
2558 .on_lock = kvm_mmu_invalidate_end,
2559 .may_block = true,
2560 };
2561 unsigned long i;
2562 void *entry;
2563 int r = 0;
2564
2565 entry = attributes ? xa_mk_value(attributes) : NULL;
2566
2567 mutex_lock(&kvm->slots_lock);
2568
2569 /* Nothing to do if the entire range as the desired attributes. */
2570 if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2571 goto out_unlock;
2572
2573 /*
2574 * Reserve memory ahead of time to avoid having to deal with failures
2575 * partway through setting the new attributes.
2576 */
2577 for (i = start; i < end; i++) {
2578 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2579 if (r)
2580 goto out_unlock;
2581 }
2582
2583 kvm_handle_gfn_range(kvm, &pre_set_range);
2584
2585 for (i = start; i < end; i++) {
2586 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2587 GFP_KERNEL_ACCOUNT));
2588 KVM_BUG_ON(r, kvm);
2589 }
2590
2591 kvm_handle_gfn_range(kvm, &post_set_range);
2592
2593out_unlock:
2594 mutex_unlock(&kvm->slots_lock);
2595
2596 return r;
2597}
2598static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2599 struct kvm_memory_attributes *attrs)
2600{
2601 gfn_t start, end;
2602
2603 /* flags is currently not used. */
2604 if (attrs->flags)
2605 return -EINVAL;
2606 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2607 return -EINVAL;
2608 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2609 return -EINVAL;
2610 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2611 return -EINVAL;
2612
2613 start = attrs->address >> PAGE_SHIFT;
2614 end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2615
2616 /*
2617 * xarray tracks data using "unsigned long", and as a result so does
2618 * KVM. For simplicity, supports generic attributes only on 64-bit
2619 * architectures.
2620 */
2621 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2622
2623 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2624}
2625#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2626
2627struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2628{
2629 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2630}
2631EXPORT_SYMBOL_GPL(gfn_to_memslot);
2632
2633struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2634{
2635 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2636 u64 gen = slots->generation;
2637 struct kvm_memory_slot *slot;
2638
2639 /*
2640 * This also protects against using a memslot from a different address space,
2641 * since different address spaces have different generation numbers.
2642 */
2643 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2644 vcpu->last_used_slot = NULL;
2645 vcpu->last_used_slot_gen = gen;
2646 }
2647
2648 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2649 if (slot)
2650 return slot;
2651
2652 /*
2653 * Fall back to searching all memslots. We purposely use
2654 * search_memslots() instead of __gfn_to_memslot() to avoid
2655 * thrashing the VM-wide last_used_slot in kvm_memslots.
2656 */
2657 slot = search_memslots(slots, gfn, false);
2658 if (slot) {
2659 vcpu->last_used_slot = slot;
2660 return slot;
2661 }
2662
2663 return NULL;
2664}
2665
2666bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2667{
2668 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2669
2670 return kvm_is_visible_memslot(memslot);
2671}
2672EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2673
2674bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2675{
2676 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2677
2678 return kvm_is_visible_memslot(memslot);
2679}
2680EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2681
2682unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2683{
2684 struct vm_area_struct *vma;
2685 unsigned long addr, size;
2686
2687 size = PAGE_SIZE;
2688
2689 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2690 if (kvm_is_error_hva(addr))
2691 return PAGE_SIZE;
2692
2693 mmap_read_lock(current->mm);
2694 vma = find_vma(current->mm, addr);
2695 if (!vma)
2696 goto out;
2697
2698 size = vma_kernel_pagesize(vma);
2699
2700out:
2701 mmap_read_unlock(current->mm);
2702
2703 return size;
2704}
2705
2706static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2707{
2708 return slot->flags & KVM_MEM_READONLY;
2709}
2710
2711static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2712 gfn_t *nr_pages, bool write)
2713{
2714 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2715 return KVM_HVA_ERR_BAD;
2716
2717 if (memslot_is_readonly(slot) && write)
2718 return KVM_HVA_ERR_RO_BAD;
2719
2720 if (nr_pages)
2721 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2722
2723 return __gfn_to_hva_memslot(slot, gfn);
2724}
2725
2726static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2727 gfn_t *nr_pages)
2728{
2729 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2730}
2731
2732unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2733 gfn_t gfn)
2734{
2735 return gfn_to_hva_many(slot, gfn, NULL);
2736}
2737EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2738
2739unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2740{
2741 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2742}
2743EXPORT_SYMBOL_GPL(gfn_to_hva);
2744
2745unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2746{
2747 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2748}
2749EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2750
2751/*
2752 * Return the hva of a @gfn and the R/W attribute if possible.
2753 *
2754 * @slot: the kvm_memory_slot which contains @gfn
2755 * @gfn: the gfn to be translated
2756 * @writable: used to return the read/write attribute of the @slot if the hva
2757 * is valid and @writable is not NULL
2758 */
2759unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2760 gfn_t gfn, bool *writable)
2761{
2762 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2763
2764 if (!kvm_is_error_hva(hva) && writable)
2765 *writable = !memslot_is_readonly(slot);
2766
2767 return hva;
2768}
2769
2770unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2771{
2772 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2773
2774 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2775}
2776
2777unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2778{
2779 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2780
2781 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2782}
2783
2784static inline int check_user_page_hwpoison(unsigned long addr)
2785{
2786 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2787
2788 rc = get_user_pages(addr, 1, flags, NULL);
2789 return rc == -EHWPOISON;
2790}
2791
2792/*
2793 * The fast path to get the writable pfn which will be stored in @pfn,
2794 * true indicates success, otherwise false is returned. It's also the
2795 * only part that runs if we can in atomic context.
2796 */
2797static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2798 bool *writable, kvm_pfn_t *pfn)
2799{
2800 struct page *page[1];
2801
2802 /*
2803 * Fast pin a writable pfn only if it is a write fault request
2804 * or the caller allows to map a writable pfn for a read fault
2805 * request.
2806 */
2807 if (!(write_fault || writable))
2808 return false;
2809
2810 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2811 *pfn = page_to_pfn(page[0]);
2812
2813 if (writable)
2814 *writable = true;
2815 return true;
2816 }
2817
2818 return false;
2819}
2820
2821/*
2822 * The slow path to get the pfn of the specified host virtual address,
2823 * 1 indicates success, -errno is returned if error is detected.
2824 */
2825static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2826 bool interruptible, bool *writable, kvm_pfn_t *pfn)
2827{
2828 /*
2829 * When a VCPU accesses a page that is not mapped into the secondary
2830 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2831 * make progress. We always want to honor NUMA hinting faults in that
2832 * case, because GUP usage corresponds to memory accesses from the VCPU.
2833 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2834 * mapped into the secondary MMU and gets accessed by a VCPU.
2835 *
2836 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2837 * implicitly honor NUMA hinting faults and don't need this flag.
2838 */
2839 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2840 struct page *page;
2841 int npages;
2842
2843 might_sleep();
2844
2845 if (writable)
2846 *writable = write_fault;
2847
2848 if (write_fault)
2849 flags |= FOLL_WRITE;
2850 if (async)
2851 flags |= FOLL_NOWAIT;
2852 if (interruptible)
2853 flags |= FOLL_INTERRUPTIBLE;
2854
2855 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2856 if (npages != 1)
2857 return npages;
2858
2859 /* map read fault as writable if possible */
2860 if (unlikely(!write_fault) && writable) {
2861 struct page *wpage;
2862
2863 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2864 *writable = true;
2865 put_page(page);
2866 page = wpage;
2867 }
2868 }
2869 *pfn = page_to_pfn(page);
2870 return npages;
2871}
2872
2873static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2874{
2875 if (unlikely(!(vma->vm_flags & VM_READ)))
2876 return false;
2877
2878 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2879 return false;
2880
2881 return true;
2882}
2883
2884static int kvm_try_get_pfn(kvm_pfn_t pfn)
2885{
2886 struct page *page = kvm_pfn_to_refcounted_page(pfn);
2887
2888 if (!page)
2889 return 1;
2890
2891 return get_page_unless_zero(page);
2892}
2893
2894static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2895 unsigned long addr, bool write_fault,
2896 bool *writable, kvm_pfn_t *p_pfn)
2897{
2898 kvm_pfn_t pfn;
2899 pte_t *ptep;
2900 pte_t pte;
2901 spinlock_t *ptl;
2902 int r;
2903
2904 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2905 if (r) {
2906 /*
2907 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2908 * not call the fault handler, so do it here.
2909 */
2910 bool unlocked = false;
2911 r = fixup_user_fault(current->mm, addr,
2912 (write_fault ? FAULT_FLAG_WRITE : 0),
2913 &unlocked);
2914 if (unlocked)
2915 return -EAGAIN;
2916 if (r)
2917 return r;
2918
2919 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2920 if (r)
2921 return r;
2922 }
2923
2924 pte = ptep_get(ptep);
2925
2926 if (write_fault && !pte_write(pte)) {
2927 pfn = KVM_PFN_ERR_RO_FAULT;
2928 goto out;
2929 }
2930
2931 if (writable)
2932 *writable = pte_write(pte);
2933 pfn = pte_pfn(pte);
2934
2935 /*
2936 * Get a reference here because callers of *hva_to_pfn* and
2937 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2938 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2939 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2940 * simply do nothing for reserved pfns.
2941 *
2942 * Whoever called remap_pfn_range is also going to call e.g.
2943 * unmap_mapping_range before the underlying pages are freed,
2944 * causing a call to our MMU notifier.
2945 *
2946 * Certain IO or PFNMAP mappings can be backed with valid
2947 * struct pages, but be allocated without refcounting e.g.,
2948 * tail pages of non-compound higher order allocations, which
2949 * would then underflow the refcount when the caller does the
2950 * required put_page. Don't allow those pages here.
2951 */
2952 if (!kvm_try_get_pfn(pfn))
2953 r = -EFAULT;
2954
2955out:
2956 pte_unmap_unlock(ptep, ptl);
2957 *p_pfn = pfn;
2958
2959 return r;
2960}
2961
2962/*
2963 * Pin guest page in memory and return its pfn.
2964 * @addr: host virtual address which maps memory to the guest
2965 * @atomic: whether this function can sleep
2966 * @interruptible: whether the process can be interrupted by non-fatal signals
2967 * @async: whether this function need to wait IO complete if the
2968 * host page is not in the memory
2969 * @write_fault: whether we should get a writable host page
2970 * @writable: whether it allows to map a writable host page for !@write_fault
2971 *
2972 * The function will map a writable host page for these two cases:
2973 * 1): @write_fault = true
2974 * 2): @write_fault = false && @writable, @writable will tell the caller
2975 * whether the mapping is writable.
2976 */
2977kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2978 bool *async, bool write_fault, bool *writable)
2979{
2980 struct vm_area_struct *vma;
2981 kvm_pfn_t pfn;
2982 int npages, r;
2983
2984 /* we can do it either atomically or asynchronously, not both */
2985 BUG_ON(atomic && async);
2986
2987 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2988 return pfn;
2989
2990 if (atomic)
2991 return KVM_PFN_ERR_FAULT;
2992
2993 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2994 writable, &pfn);
2995 if (npages == 1)
2996 return pfn;
2997 if (npages == -EINTR)
2998 return KVM_PFN_ERR_SIGPENDING;
2999
3000 mmap_read_lock(current->mm);
3001 if (npages == -EHWPOISON ||
3002 (!async && check_user_page_hwpoison(addr))) {
3003 pfn = KVM_PFN_ERR_HWPOISON;
3004 goto exit;
3005 }
3006
3007retry:
3008 vma = vma_lookup(current->mm, addr);
3009
3010 if (vma == NULL)
3011 pfn = KVM_PFN_ERR_FAULT;
3012 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3013 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
3014 if (r == -EAGAIN)
3015 goto retry;
3016 if (r < 0)
3017 pfn = KVM_PFN_ERR_FAULT;
3018 } else {
3019 if (async && vma_is_valid(vma, write_fault))
3020 *async = true;
3021 pfn = KVM_PFN_ERR_FAULT;
3022 }
3023exit:
3024 mmap_read_unlock(current->mm);
3025 return pfn;
3026}
3027
3028kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
3029 bool atomic, bool interruptible, bool *async,
3030 bool write_fault, bool *writable, hva_t *hva)
3031{
3032 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
3033
3034 if (hva)
3035 *hva = addr;
3036
3037 if (addr == KVM_HVA_ERR_RO_BAD) {
3038 if (writable)
3039 *writable = false;
3040 return KVM_PFN_ERR_RO_FAULT;
3041 }
3042
3043 if (kvm_is_error_hva(addr)) {
3044 if (writable)
3045 *writable = false;
3046 return KVM_PFN_NOSLOT;
3047 }
3048
3049 /* Do not map writable pfn in the readonly memslot. */
3050 if (writable && memslot_is_readonly(slot)) {
3051 *writable = false;
3052 writable = NULL;
3053 }
3054
3055 return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3056 writable);
3057}
3058EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3059
3060kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3061 bool *writable)
3062{
3063 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3064 NULL, write_fault, writable, NULL);
3065}
3066EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3067
3068kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3069{
3070 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3071 NULL, NULL);
3072}
3073EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3074
3075kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3076{
3077 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3078 NULL, NULL);
3079}
3080EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3081
3082kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3083{
3084 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3085}
3086EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3087
3088kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3089{
3090 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3091}
3092EXPORT_SYMBOL_GPL(gfn_to_pfn);
3093
3094kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3095{
3096 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3097}
3098EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3099
3100int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3101 struct page **pages, int nr_pages)
3102{
3103 unsigned long addr;
3104 gfn_t entry = 0;
3105
3106 addr = gfn_to_hva_many(slot, gfn, &entry);
3107 if (kvm_is_error_hva(addr))
3108 return -1;
3109
3110 if (entry < nr_pages)
3111 return 0;
3112
3113 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3114}
3115EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3116
3117/*
3118 * Do not use this helper unless you are absolutely certain the gfn _must_ be
3119 * backed by 'struct page'. A valid example is if the backing memslot is
3120 * controlled by KVM. Note, if the returned page is valid, it's refcount has
3121 * been elevated by gfn_to_pfn().
3122 */
3123struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3124{
3125 struct page *page;
3126 kvm_pfn_t pfn;
3127
3128 pfn = gfn_to_pfn(kvm, gfn);
3129
3130 if (is_error_noslot_pfn(pfn))
3131 return KVM_ERR_PTR_BAD_PAGE;
3132
3133 page = kvm_pfn_to_refcounted_page(pfn);
3134 if (!page)
3135 return KVM_ERR_PTR_BAD_PAGE;
3136
3137 return page;
3138}
3139EXPORT_SYMBOL_GPL(gfn_to_page);
3140
3141void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3142{
3143 if (dirty)
3144 kvm_release_pfn_dirty(pfn);
3145 else
3146 kvm_release_pfn_clean(pfn);
3147}
3148
3149int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3150{
3151 kvm_pfn_t pfn;
3152 void *hva = NULL;
3153 struct page *page = KVM_UNMAPPED_PAGE;
3154
3155 if (!map)
3156 return -EINVAL;
3157
3158 pfn = gfn_to_pfn(vcpu->kvm, gfn);
3159 if (is_error_noslot_pfn(pfn))
3160 return -EINVAL;
3161
3162 if (pfn_valid(pfn)) {
3163 page = pfn_to_page(pfn);
3164 hva = kmap(page);
3165#ifdef CONFIG_HAS_IOMEM
3166 } else {
3167 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3168#endif
3169 }
3170
3171 if (!hva)
3172 return -EFAULT;
3173
3174 map->page = page;
3175 map->hva = hva;
3176 map->pfn = pfn;
3177 map->gfn = gfn;
3178
3179 return 0;
3180}
3181EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3182
3183void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3184{
3185 if (!map)
3186 return;
3187
3188 if (!map->hva)
3189 return;
3190
3191 if (map->page != KVM_UNMAPPED_PAGE)
3192 kunmap(map->page);
3193#ifdef CONFIG_HAS_IOMEM
3194 else
3195 memunmap(map->hva);
3196#endif
3197
3198 if (dirty)
3199 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3200
3201 kvm_release_pfn(map->pfn, dirty);
3202
3203 map->hva = NULL;
3204 map->page = NULL;
3205}
3206EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3207
3208static bool kvm_is_ad_tracked_page(struct page *page)
3209{
3210 /*
3211 * Per page-flags.h, pages tagged PG_reserved "should in general not be
3212 * touched (e.g. set dirty) except by its owner".
3213 */
3214 return !PageReserved(page);
3215}
3216
3217static void kvm_set_page_dirty(struct page *page)
3218{
3219 if (kvm_is_ad_tracked_page(page))
3220 SetPageDirty(page);
3221}
3222
3223static void kvm_set_page_accessed(struct page *page)
3224{
3225 if (kvm_is_ad_tracked_page(page))
3226 mark_page_accessed(page);
3227}
3228
3229void kvm_release_page_clean(struct page *page)
3230{
3231 WARN_ON(is_error_page(page));
3232
3233 kvm_set_page_accessed(page);
3234 put_page(page);
3235}
3236EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3237
3238void kvm_release_pfn_clean(kvm_pfn_t pfn)
3239{
3240 struct page *page;
3241
3242 if (is_error_noslot_pfn(pfn))
3243 return;
3244
3245 page = kvm_pfn_to_refcounted_page(pfn);
3246 if (!page)
3247 return;
3248
3249 kvm_release_page_clean(page);
3250}
3251EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3252
3253void kvm_release_page_dirty(struct page *page)
3254{
3255 WARN_ON(is_error_page(page));
3256
3257 kvm_set_page_dirty(page);
3258 kvm_release_page_clean(page);
3259}
3260EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3261
3262void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3263{
3264 struct page *page;
3265
3266 if (is_error_noslot_pfn(pfn))
3267 return;
3268
3269 page = kvm_pfn_to_refcounted_page(pfn);
3270 if (!page)
3271 return;
3272
3273 kvm_release_page_dirty(page);
3274}
3275EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3276
3277/*
3278 * Note, checking for an error/noslot pfn is the caller's responsibility when
3279 * directly marking a page dirty/accessed. Unlike the "release" helpers, the
3280 * "set" helpers are not to be used when the pfn might point at garbage.
3281 */
3282void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3283{
3284 if (WARN_ON(is_error_noslot_pfn(pfn)))
3285 return;
3286
3287 if (pfn_valid(pfn))
3288 kvm_set_page_dirty(pfn_to_page(pfn));
3289}
3290EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3291
3292void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3293{
3294 if (WARN_ON(is_error_noslot_pfn(pfn)))
3295 return;
3296
3297 if (pfn_valid(pfn))
3298 kvm_set_page_accessed(pfn_to_page(pfn));
3299}
3300EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3301
3302static int next_segment(unsigned long len, int offset)
3303{
3304 if (len > PAGE_SIZE - offset)
3305 return PAGE_SIZE - offset;
3306 else
3307 return len;
3308}
3309
3310static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3311 void *data, int offset, int len)
3312{
3313 int r;
3314 unsigned long addr;
3315
3316 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3317 if (kvm_is_error_hva(addr))
3318 return -EFAULT;
3319 r = __copy_from_user(data, (void __user *)addr + offset, len);
3320 if (r)
3321 return -EFAULT;
3322 return 0;
3323}
3324
3325int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3326 int len)
3327{
3328 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3329
3330 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3331}
3332EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3333
3334int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3335 int offset, int len)
3336{
3337 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3338
3339 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3340}
3341EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3342
3343int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3344{
3345 gfn_t gfn = gpa >> PAGE_SHIFT;
3346 int seg;
3347 int offset = offset_in_page(gpa);
3348 int ret;
3349
3350 while ((seg = next_segment(len, offset)) != 0) {
3351 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3352 if (ret < 0)
3353 return ret;
3354 offset = 0;
3355 len -= seg;
3356 data += seg;
3357 ++gfn;
3358 }
3359 return 0;
3360}
3361EXPORT_SYMBOL_GPL(kvm_read_guest);
3362
3363int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3364{
3365 gfn_t gfn = gpa >> PAGE_SHIFT;
3366 int seg;
3367 int offset = offset_in_page(gpa);
3368 int ret;
3369
3370 while ((seg = next_segment(len, offset)) != 0) {
3371 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3372 if (ret < 0)
3373 return ret;
3374 offset = 0;
3375 len -= seg;
3376 data += seg;
3377 ++gfn;
3378 }
3379 return 0;
3380}
3381EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3382
3383static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3384 void *data, int offset, unsigned long len)
3385{
3386 int r;
3387 unsigned long addr;
3388
3389 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3390 if (kvm_is_error_hva(addr))
3391 return -EFAULT;
3392 pagefault_disable();
3393 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3394 pagefault_enable();
3395 if (r)
3396 return -EFAULT;
3397 return 0;
3398}
3399
3400int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3401 void *data, unsigned long len)
3402{
3403 gfn_t gfn = gpa >> PAGE_SHIFT;
3404 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3405 int offset = offset_in_page(gpa);
3406
3407 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3408}
3409EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3410
3411static int __kvm_write_guest_page(struct kvm *kvm,
3412 struct kvm_memory_slot *memslot, gfn_t gfn,
3413 const void *data, int offset, int len)
3414{
3415 int r;
3416 unsigned long addr;
3417
3418 addr = gfn_to_hva_memslot(memslot, gfn);
3419 if (kvm_is_error_hva(addr))
3420 return -EFAULT;
3421 r = __copy_to_user((void __user *)addr + offset, data, len);
3422 if (r)
3423 return -EFAULT;
3424 mark_page_dirty_in_slot(kvm, memslot, gfn);
3425 return 0;
3426}
3427
3428int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3429 const void *data, int offset, int len)
3430{
3431 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3432
3433 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3434}
3435EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3436
3437int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3438 const void *data, int offset, int len)
3439{
3440 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3441
3442 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3443}
3444EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3445
3446int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3447 unsigned long len)
3448{
3449 gfn_t gfn = gpa >> PAGE_SHIFT;
3450 int seg;
3451 int offset = offset_in_page(gpa);
3452 int ret;
3453
3454 while ((seg = next_segment(len, offset)) != 0) {
3455 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3456 if (ret < 0)
3457 return ret;
3458 offset = 0;
3459 len -= seg;
3460 data += seg;
3461 ++gfn;
3462 }
3463 return 0;
3464}
3465EXPORT_SYMBOL_GPL(kvm_write_guest);
3466
3467int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3468 unsigned long len)
3469{
3470 gfn_t gfn = gpa >> PAGE_SHIFT;
3471 int seg;
3472 int offset = offset_in_page(gpa);
3473 int ret;
3474
3475 while ((seg = next_segment(len, offset)) != 0) {
3476 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3477 if (ret < 0)
3478 return ret;
3479 offset = 0;
3480 len -= seg;
3481 data += seg;
3482 ++gfn;
3483 }
3484 return 0;
3485}
3486EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3487
3488static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3489 struct gfn_to_hva_cache *ghc,
3490 gpa_t gpa, unsigned long len)
3491{
3492 int offset = offset_in_page(gpa);
3493 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3494 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3495 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3496 gfn_t nr_pages_avail;
3497
3498 /* Update ghc->generation before performing any error checks. */
3499 ghc->generation = slots->generation;
3500
3501 if (start_gfn > end_gfn) {
3502 ghc->hva = KVM_HVA_ERR_BAD;
3503 return -EINVAL;
3504 }
3505
3506 /*
3507 * If the requested region crosses two memslots, we still
3508 * verify that the entire region is valid here.
3509 */
3510 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3511 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3512 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3513 &nr_pages_avail);
3514 if (kvm_is_error_hva(ghc->hva))
3515 return -EFAULT;
3516 }
3517
3518 /* Use the slow path for cross page reads and writes. */
3519 if (nr_pages_needed == 1)
3520 ghc->hva += offset;
3521 else
3522 ghc->memslot = NULL;
3523
3524 ghc->gpa = gpa;
3525 ghc->len = len;
3526 return 0;
3527}
3528
3529int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3530 gpa_t gpa, unsigned long len)
3531{
3532 struct kvm_memslots *slots = kvm_memslots(kvm);
3533 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3534}
3535EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3536
3537int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3538 void *data, unsigned int offset,
3539 unsigned long len)
3540{
3541 struct kvm_memslots *slots = kvm_memslots(kvm);
3542 int r;
3543 gpa_t gpa = ghc->gpa + offset;
3544
3545 if (WARN_ON_ONCE(len + offset > ghc->len))
3546 return -EINVAL;
3547
3548 if (slots->generation != ghc->generation) {
3549 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3550 return -EFAULT;
3551 }
3552
3553 if (kvm_is_error_hva(ghc->hva))
3554 return -EFAULT;
3555
3556 if (unlikely(!ghc->memslot))
3557 return kvm_write_guest(kvm, gpa, data, len);
3558
3559 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3560 if (r)
3561 return -EFAULT;
3562 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3563
3564 return 0;
3565}
3566EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3567
3568int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3569 void *data, unsigned long len)
3570{
3571 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3572}
3573EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3574
3575int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3576 void *data, unsigned int offset,
3577 unsigned long len)
3578{
3579 struct kvm_memslots *slots = kvm_memslots(kvm);
3580 int r;
3581 gpa_t gpa = ghc->gpa + offset;
3582
3583 if (WARN_ON_ONCE(len + offset > ghc->len))
3584 return -EINVAL;
3585
3586 if (slots->generation != ghc->generation) {
3587 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3588 return -EFAULT;
3589 }
3590
3591 if (kvm_is_error_hva(ghc->hva))
3592 return -EFAULT;
3593
3594 if (unlikely(!ghc->memslot))
3595 return kvm_read_guest(kvm, gpa, data, len);
3596
3597 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3598 if (r)
3599 return -EFAULT;
3600
3601 return 0;
3602}
3603EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3604
3605int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3606 void *data, unsigned long len)
3607{
3608 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3609}
3610EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3611
3612int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3613{
3614 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3615 gfn_t gfn = gpa >> PAGE_SHIFT;
3616 int seg;
3617 int offset = offset_in_page(gpa);
3618 int ret;
3619
3620 while ((seg = next_segment(len, offset)) != 0) {
3621 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3622 if (ret < 0)
3623 return ret;
3624 offset = 0;
3625 len -= seg;
3626 ++gfn;
3627 }
3628 return 0;
3629}
3630EXPORT_SYMBOL_GPL(kvm_clear_guest);
3631
3632void mark_page_dirty_in_slot(struct kvm *kvm,
3633 const struct kvm_memory_slot *memslot,
3634 gfn_t gfn)
3635{
3636 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3637
3638#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3639 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3640 return;
3641
3642 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3643#endif
3644
3645 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3646 unsigned long rel_gfn = gfn - memslot->base_gfn;
3647 u32 slot = (memslot->as_id << 16) | memslot->id;
3648
3649 if (kvm->dirty_ring_size && vcpu)
3650 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3651 else if (memslot->dirty_bitmap)
3652 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3653 }
3654}
3655EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3656
3657void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3658{
3659 struct kvm_memory_slot *memslot;
3660
3661 memslot = gfn_to_memslot(kvm, gfn);
3662 mark_page_dirty_in_slot(kvm, memslot, gfn);
3663}
3664EXPORT_SYMBOL_GPL(mark_page_dirty);
3665
3666void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3667{
3668 struct kvm_memory_slot *memslot;
3669
3670 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3671 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3672}
3673EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3674
3675void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3676{
3677 if (!vcpu->sigset_active)
3678 return;
3679
3680 /*
3681 * This does a lockless modification of ->real_blocked, which is fine
3682 * because, only current can change ->real_blocked and all readers of
3683 * ->real_blocked don't care as long ->real_blocked is always a subset
3684 * of ->blocked.
3685 */
3686 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3687}
3688
3689void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3690{
3691 if (!vcpu->sigset_active)
3692 return;
3693
3694 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3695 sigemptyset(¤t->real_blocked);
3696}
3697
3698static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3699{
3700 unsigned int old, val, grow, grow_start;
3701
3702 old = val = vcpu->halt_poll_ns;
3703 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3704 grow = READ_ONCE(halt_poll_ns_grow);
3705 if (!grow)
3706 goto out;
3707
3708 val *= grow;
3709 if (val < grow_start)
3710 val = grow_start;
3711
3712 vcpu->halt_poll_ns = val;
3713out:
3714 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3715}
3716
3717static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3718{
3719 unsigned int old, val, shrink, grow_start;
3720
3721 old = val = vcpu->halt_poll_ns;
3722 shrink = READ_ONCE(halt_poll_ns_shrink);
3723 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3724 if (shrink == 0)
3725 val = 0;
3726 else
3727 val /= shrink;
3728
3729 if (val < grow_start)
3730 val = 0;
3731
3732 vcpu->halt_poll_ns = val;
3733 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3734}
3735
3736static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3737{
3738 int ret = -EINTR;
3739 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3740
3741 if (kvm_arch_vcpu_runnable(vcpu))
3742 goto out;
3743 if (kvm_cpu_has_pending_timer(vcpu))
3744 goto out;
3745 if (signal_pending(current))
3746 goto out;
3747 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3748 goto out;
3749
3750 ret = 0;
3751out:
3752 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3753 return ret;
3754}
3755
3756/*
3757 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3758 * pending. This is mostly used when halting a vCPU, but may also be used
3759 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3760 */
3761bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3762{
3763 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3764 bool waited = false;
3765
3766 vcpu->stat.generic.blocking = 1;
3767
3768 preempt_disable();
3769 kvm_arch_vcpu_blocking(vcpu);
3770 prepare_to_rcuwait(wait);
3771 preempt_enable();
3772
3773 for (;;) {
3774 set_current_state(TASK_INTERRUPTIBLE);
3775
3776 if (kvm_vcpu_check_block(vcpu) < 0)
3777 break;
3778
3779 waited = true;
3780 schedule();
3781 }
3782
3783 preempt_disable();
3784 finish_rcuwait(wait);
3785 kvm_arch_vcpu_unblocking(vcpu);
3786 preempt_enable();
3787
3788 vcpu->stat.generic.blocking = 0;
3789
3790 return waited;
3791}
3792
3793static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3794 ktime_t end, bool success)
3795{
3796 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3797 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3798
3799 ++vcpu->stat.generic.halt_attempted_poll;
3800
3801 if (success) {
3802 ++vcpu->stat.generic.halt_successful_poll;
3803
3804 if (!vcpu_valid_wakeup(vcpu))
3805 ++vcpu->stat.generic.halt_poll_invalid;
3806
3807 stats->halt_poll_success_ns += poll_ns;
3808 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3809 } else {
3810 stats->halt_poll_fail_ns += poll_ns;
3811 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3812 }
3813}
3814
3815static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3816{
3817 struct kvm *kvm = vcpu->kvm;
3818
3819 if (kvm->override_halt_poll_ns) {
3820 /*
3821 * Ensure kvm->max_halt_poll_ns is not read before
3822 * kvm->override_halt_poll_ns.
3823 *
3824 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3825 */
3826 smp_rmb();
3827 return READ_ONCE(kvm->max_halt_poll_ns);
3828 }
3829
3830 return READ_ONCE(halt_poll_ns);
3831}
3832
3833/*
3834 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3835 * polling is enabled, busy wait for a short time before blocking to avoid the
3836 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3837 * is halted.
3838 */
3839void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3840{
3841 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3842 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3843 ktime_t start, cur, poll_end;
3844 bool waited = false;
3845 bool do_halt_poll;
3846 u64 halt_ns;
3847
3848 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3849 vcpu->halt_poll_ns = max_halt_poll_ns;
3850
3851 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3852
3853 start = cur = poll_end = ktime_get();
3854 if (do_halt_poll) {
3855 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3856
3857 do {
3858 if (kvm_vcpu_check_block(vcpu) < 0)
3859 goto out;
3860 cpu_relax();
3861 poll_end = cur = ktime_get();
3862 } while (kvm_vcpu_can_poll(cur, stop));
3863 }
3864
3865 waited = kvm_vcpu_block(vcpu);
3866
3867 cur = ktime_get();
3868 if (waited) {
3869 vcpu->stat.generic.halt_wait_ns +=
3870 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3871 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3872 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3873 }
3874out:
3875 /* The total time the vCPU was "halted", including polling time. */
3876 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3877
3878 /*
3879 * Note, halt-polling is considered successful so long as the vCPU was
3880 * never actually scheduled out, i.e. even if the wake event arrived
3881 * after of the halt-polling loop itself, but before the full wait.
3882 */
3883 if (do_halt_poll)
3884 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3885
3886 if (halt_poll_allowed) {
3887 /* Recompute the max halt poll time in case it changed. */
3888 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3889
3890 if (!vcpu_valid_wakeup(vcpu)) {
3891 shrink_halt_poll_ns(vcpu);
3892 } else if (max_halt_poll_ns) {
3893 if (halt_ns <= vcpu->halt_poll_ns)
3894 ;
3895 /* we had a long block, shrink polling */
3896 else if (vcpu->halt_poll_ns &&
3897 halt_ns > max_halt_poll_ns)
3898 shrink_halt_poll_ns(vcpu);
3899 /* we had a short halt and our poll time is too small */
3900 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3901 halt_ns < max_halt_poll_ns)
3902 grow_halt_poll_ns(vcpu);
3903 } else {
3904 vcpu->halt_poll_ns = 0;
3905 }
3906 }
3907
3908 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3909}
3910EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3911
3912bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3913{
3914 if (__kvm_vcpu_wake_up(vcpu)) {
3915 WRITE_ONCE(vcpu->ready, true);
3916 ++vcpu->stat.generic.halt_wakeup;
3917 return true;
3918 }
3919
3920 return false;
3921}
3922EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3923
3924#ifndef CONFIG_S390
3925/*
3926 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3927 */
3928void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3929{
3930 int me, cpu;
3931
3932 if (kvm_vcpu_wake_up(vcpu))
3933 return;
3934
3935 me = get_cpu();
3936 /*
3937 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3938 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3939 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3940 * within the vCPU thread itself.
3941 */
3942 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3943 if (vcpu->mode == IN_GUEST_MODE)
3944 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3945 goto out;
3946 }
3947
3948 /*
3949 * Note, the vCPU could get migrated to a different pCPU at any point
3950 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3951 * IPI to the previous pCPU. But, that's ok because the purpose of the
3952 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3953 * vCPU also requires it to leave IN_GUEST_MODE.
3954 */
3955 if (kvm_arch_vcpu_should_kick(vcpu)) {
3956 cpu = READ_ONCE(vcpu->cpu);
3957 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3958 smp_send_reschedule(cpu);
3959 }
3960out:
3961 put_cpu();
3962}
3963EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3964#endif /* !CONFIG_S390 */
3965
3966int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3967{
3968 struct pid *pid;
3969 struct task_struct *task = NULL;
3970 int ret = 0;
3971
3972 rcu_read_lock();
3973 pid = rcu_dereference(target->pid);
3974 if (pid)
3975 task = get_pid_task(pid, PIDTYPE_PID);
3976 rcu_read_unlock();
3977 if (!task)
3978 return ret;
3979 ret = yield_to(task, 1);
3980 put_task_struct(task);
3981
3982 return ret;
3983}
3984EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3985
3986/*
3987 * Helper that checks whether a VCPU is eligible for directed yield.
3988 * Most eligible candidate to yield is decided by following heuristics:
3989 *
3990 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3991 * (preempted lock holder), indicated by @in_spin_loop.
3992 * Set at the beginning and cleared at the end of interception/PLE handler.
3993 *
3994 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3995 * chance last time (mostly it has become eligible now since we have probably
3996 * yielded to lockholder in last iteration. This is done by toggling
3997 * @dy_eligible each time a VCPU checked for eligibility.)
3998 *
3999 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
4000 * to preempted lock-holder could result in wrong VCPU selection and CPU
4001 * burning. Giving priority for a potential lock-holder increases lock
4002 * progress.
4003 *
4004 * Since algorithm is based on heuristics, accessing another VCPU data without
4005 * locking does not harm. It may result in trying to yield to same VCPU, fail
4006 * and continue with next VCPU and so on.
4007 */
4008static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
4009{
4010#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
4011 bool eligible;
4012
4013 eligible = !vcpu->spin_loop.in_spin_loop ||
4014 vcpu->spin_loop.dy_eligible;
4015
4016 if (vcpu->spin_loop.in_spin_loop)
4017 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
4018
4019 return eligible;
4020#else
4021 return true;
4022#endif
4023}
4024
4025/*
4026 * Unlike kvm_arch_vcpu_runnable, this function is called outside
4027 * a vcpu_load/vcpu_put pair. However, for most architectures
4028 * kvm_arch_vcpu_runnable does not require vcpu_load.
4029 */
4030bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
4031{
4032 return kvm_arch_vcpu_runnable(vcpu);
4033}
4034
4035static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4036{
4037 if (kvm_arch_dy_runnable(vcpu))
4038 return true;
4039
4040#ifdef CONFIG_KVM_ASYNC_PF
4041 if (!list_empty_careful(&vcpu->async_pf.done))
4042 return true;
4043#endif
4044
4045 return false;
4046}
4047
4048/*
4049 * By default, simply query the target vCPU's current mode when checking if a
4050 * vCPU was preempted in kernel mode. All architectures except x86 (or more
4051 * specifical, except VMX) allow querying whether or not a vCPU is in kernel
4052 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
4053 * directly for cross-vCPU checks is functionally correct and accurate.
4054 */
4055bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
4056{
4057 return kvm_arch_vcpu_in_kernel(vcpu);
4058}
4059
4060bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4061{
4062 return false;
4063}
4064
4065void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4066{
4067 struct kvm *kvm = me->kvm;
4068 struct kvm_vcpu *vcpu;
4069 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
4070 unsigned long i;
4071 int yielded = 0;
4072 int try = 3;
4073 int pass;
4074
4075 kvm_vcpu_set_in_spin_loop(me, true);
4076 /*
4077 * We boost the priority of a VCPU that is runnable but not
4078 * currently running, because it got preempted by something
4079 * else and called schedule in __vcpu_run. Hopefully that
4080 * VCPU is holding the lock that we need and will release it.
4081 * We approximate round-robin by starting at the last boosted VCPU.
4082 */
4083 for (pass = 0; pass < 2 && !yielded && try; pass++) {
4084 kvm_for_each_vcpu(i, vcpu, kvm) {
4085 if (!pass && i <= last_boosted_vcpu) {
4086 i = last_boosted_vcpu;
4087 continue;
4088 } else if (pass && i > last_boosted_vcpu)
4089 break;
4090 if (!READ_ONCE(vcpu->ready))
4091 continue;
4092 if (vcpu == me)
4093 continue;
4094 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4095 continue;
4096
4097 /*
4098 * Treat the target vCPU as being in-kernel if it has a
4099 * pending interrupt, as the vCPU trying to yield may
4100 * be spinning waiting on IPI delivery, i.e. the target
4101 * vCPU is in-kernel for the purposes of directed yield.
4102 */
4103 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4104 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4105 !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4106 continue;
4107 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4108 continue;
4109
4110 yielded = kvm_vcpu_yield_to(vcpu);
4111 if (yielded > 0) {
4112 kvm->last_boosted_vcpu = i;
4113 break;
4114 } else if (yielded < 0) {
4115 try--;
4116 if (!try)
4117 break;
4118 }
4119 }
4120 }
4121 kvm_vcpu_set_in_spin_loop(me, false);
4122
4123 /* Ensure vcpu is not eligible during next spinloop */
4124 kvm_vcpu_set_dy_eligible(me, false);
4125}
4126EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4127
4128static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4129{
4130#ifdef CONFIG_HAVE_KVM_DIRTY_RING
4131 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4132 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4133 kvm->dirty_ring_size / PAGE_SIZE);
4134#else
4135 return false;
4136#endif
4137}
4138
4139static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4140{
4141 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4142 struct page *page;
4143
4144 if (vmf->pgoff == 0)
4145 page = virt_to_page(vcpu->run);
4146#ifdef CONFIG_X86
4147 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4148 page = virt_to_page(vcpu->arch.pio_data);
4149#endif
4150#ifdef CONFIG_KVM_MMIO
4151 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4152 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4153#endif
4154 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4155 page = kvm_dirty_ring_get_page(
4156 &vcpu->dirty_ring,
4157 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4158 else
4159 return kvm_arch_vcpu_fault(vcpu, vmf);
4160 get_page(page);
4161 vmf->page = page;
4162 return 0;
4163}
4164
4165static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4166 .fault = kvm_vcpu_fault,
4167};
4168
4169static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4170{
4171 struct kvm_vcpu *vcpu = file->private_data;
4172 unsigned long pages = vma_pages(vma);
4173
4174 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4175 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4176 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4177 return -EINVAL;
4178
4179 vma->vm_ops = &kvm_vcpu_vm_ops;
4180 return 0;
4181}
4182
4183static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4184{
4185 struct kvm_vcpu *vcpu = filp->private_data;
4186
4187 kvm_put_kvm(vcpu->kvm);
4188 return 0;
4189}
4190
4191static struct file_operations kvm_vcpu_fops = {
4192 .release = kvm_vcpu_release,
4193 .unlocked_ioctl = kvm_vcpu_ioctl,
4194 .mmap = kvm_vcpu_mmap,
4195 .llseek = noop_llseek,
4196 KVM_COMPAT(kvm_vcpu_compat_ioctl),
4197};
4198
4199/*
4200 * Allocates an inode for the vcpu.
4201 */
4202static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4203{
4204 char name[8 + 1 + ITOA_MAX_LEN + 1];
4205
4206 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4207 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4208}
4209
4210#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4211static int vcpu_get_pid(void *data, u64 *val)
4212{
4213 struct kvm_vcpu *vcpu = data;
4214
4215 rcu_read_lock();
4216 *val = pid_nr(rcu_dereference(vcpu->pid));
4217 rcu_read_unlock();
4218 return 0;
4219}
4220
4221DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4222
4223static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4224{
4225 struct dentry *debugfs_dentry;
4226 char dir_name[ITOA_MAX_LEN * 2];
4227
4228 if (!debugfs_initialized())
4229 return;
4230
4231 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4232 debugfs_dentry = debugfs_create_dir(dir_name,
4233 vcpu->kvm->debugfs_dentry);
4234 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4235 &vcpu_get_pid_fops);
4236
4237 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4238}
4239#endif
4240
4241/*
4242 * Creates some virtual cpus. Good luck creating more than one.
4243 */
4244static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
4245{
4246 int r;
4247 struct kvm_vcpu *vcpu;
4248 struct page *page;
4249
4250 if (id >= KVM_MAX_VCPU_IDS)
4251 return -EINVAL;
4252
4253 mutex_lock(&kvm->lock);
4254 if (kvm->created_vcpus >= kvm->max_vcpus) {
4255 mutex_unlock(&kvm->lock);
4256 return -EINVAL;
4257 }
4258
4259 r = kvm_arch_vcpu_precreate(kvm, id);
4260 if (r) {
4261 mutex_unlock(&kvm->lock);
4262 return r;
4263 }
4264
4265 kvm->created_vcpus++;
4266 mutex_unlock(&kvm->lock);
4267
4268 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4269 if (!vcpu) {
4270 r = -ENOMEM;
4271 goto vcpu_decrement;
4272 }
4273
4274 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4275 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4276 if (!page) {
4277 r = -ENOMEM;
4278 goto vcpu_free;
4279 }
4280 vcpu->run = page_address(page);
4281
4282 kvm_vcpu_init(vcpu, kvm, id);
4283
4284 r = kvm_arch_vcpu_create(vcpu);
4285 if (r)
4286 goto vcpu_free_run_page;
4287
4288 if (kvm->dirty_ring_size) {
4289 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4290 id, kvm->dirty_ring_size);
4291 if (r)
4292 goto arch_vcpu_destroy;
4293 }
4294
4295 mutex_lock(&kvm->lock);
4296
4297#ifdef CONFIG_LOCKDEP
4298 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4299 mutex_lock(&vcpu->mutex);
4300 mutex_unlock(&vcpu->mutex);
4301#endif
4302
4303 if (kvm_get_vcpu_by_id(kvm, id)) {
4304 r = -EEXIST;
4305 goto unlock_vcpu_destroy;
4306 }
4307
4308 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4309 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4310 if (r)
4311 goto unlock_vcpu_destroy;
4312
4313 /* Now it's all set up, let userspace reach it */
4314 kvm_get_kvm(kvm);
4315 r = create_vcpu_fd(vcpu);
4316 if (r < 0)
4317 goto kvm_put_xa_release;
4318
4319 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4320 r = -EINVAL;
4321 goto kvm_put_xa_release;
4322 }
4323
4324 /*
4325 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4326 * pointer before kvm->online_vcpu's incremented value.
4327 */
4328 smp_wmb();
4329 atomic_inc(&kvm->online_vcpus);
4330
4331 mutex_unlock(&kvm->lock);
4332 kvm_arch_vcpu_postcreate(vcpu);
4333 kvm_create_vcpu_debugfs(vcpu);
4334 return r;
4335
4336kvm_put_xa_release:
4337 kvm_put_kvm_no_destroy(kvm);
4338 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4339unlock_vcpu_destroy:
4340 mutex_unlock(&kvm->lock);
4341 kvm_dirty_ring_free(&vcpu->dirty_ring);
4342arch_vcpu_destroy:
4343 kvm_arch_vcpu_destroy(vcpu);
4344vcpu_free_run_page:
4345 free_page((unsigned long)vcpu->run);
4346vcpu_free:
4347 kmem_cache_free(kvm_vcpu_cache, vcpu);
4348vcpu_decrement:
4349 mutex_lock(&kvm->lock);
4350 kvm->created_vcpus--;
4351 mutex_unlock(&kvm->lock);
4352 return r;
4353}
4354
4355static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4356{
4357 if (sigset) {
4358 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4359 vcpu->sigset_active = 1;
4360 vcpu->sigset = *sigset;
4361 } else
4362 vcpu->sigset_active = 0;
4363 return 0;
4364}
4365
4366static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4367 size_t size, loff_t *offset)
4368{
4369 struct kvm_vcpu *vcpu = file->private_data;
4370
4371 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4372 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4373 sizeof(vcpu->stat), user_buffer, size, offset);
4374}
4375
4376static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4377{
4378 struct kvm_vcpu *vcpu = file->private_data;
4379
4380 kvm_put_kvm(vcpu->kvm);
4381 return 0;
4382}
4383
4384static const struct file_operations kvm_vcpu_stats_fops = {
4385 .owner = THIS_MODULE,
4386 .read = kvm_vcpu_stats_read,
4387 .release = kvm_vcpu_stats_release,
4388 .llseek = noop_llseek,
4389};
4390
4391static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4392{
4393 int fd;
4394 struct file *file;
4395 char name[15 + ITOA_MAX_LEN + 1];
4396
4397 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4398
4399 fd = get_unused_fd_flags(O_CLOEXEC);
4400 if (fd < 0)
4401 return fd;
4402
4403 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4404 if (IS_ERR(file)) {
4405 put_unused_fd(fd);
4406 return PTR_ERR(file);
4407 }
4408
4409 kvm_get_kvm(vcpu->kvm);
4410
4411 file->f_mode |= FMODE_PREAD;
4412 fd_install(fd, file);
4413
4414 return fd;
4415}
4416
4417static long kvm_vcpu_ioctl(struct file *filp,
4418 unsigned int ioctl, unsigned long arg)
4419{
4420 struct kvm_vcpu *vcpu = filp->private_data;
4421 void __user *argp = (void __user *)arg;
4422 int r;
4423 struct kvm_fpu *fpu = NULL;
4424 struct kvm_sregs *kvm_sregs = NULL;
4425
4426 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4427 return -EIO;
4428
4429 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4430 return -EINVAL;
4431
4432 /*
4433 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4434 * execution; mutex_lock() would break them.
4435 */
4436 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4437 if (r != -ENOIOCTLCMD)
4438 return r;
4439
4440 if (mutex_lock_killable(&vcpu->mutex))
4441 return -EINTR;
4442 switch (ioctl) {
4443 case KVM_RUN: {
4444 struct pid *oldpid;
4445 r = -EINVAL;
4446 if (arg)
4447 goto out;
4448 oldpid = rcu_access_pointer(vcpu->pid);
4449 if (unlikely(oldpid != task_pid(current))) {
4450 /* The thread running this VCPU changed. */
4451 struct pid *newpid;
4452
4453 r = kvm_arch_vcpu_run_pid_change(vcpu);
4454 if (r)
4455 break;
4456
4457 newpid = get_task_pid(current, PIDTYPE_PID);
4458 rcu_assign_pointer(vcpu->pid, newpid);
4459 if (oldpid)
4460 synchronize_rcu();
4461 put_pid(oldpid);
4462 }
4463 r = kvm_arch_vcpu_ioctl_run(vcpu);
4464 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4465 break;
4466 }
4467 case KVM_GET_REGS: {
4468 struct kvm_regs *kvm_regs;
4469
4470 r = -ENOMEM;
4471 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4472 if (!kvm_regs)
4473 goto out;
4474 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4475 if (r)
4476 goto out_free1;
4477 r = -EFAULT;
4478 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4479 goto out_free1;
4480 r = 0;
4481out_free1:
4482 kfree(kvm_regs);
4483 break;
4484 }
4485 case KVM_SET_REGS: {
4486 struct kvm_regs *kvm_regs;
4487
4488 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4489 if (IS_ERR(kvm_regs)) {
4490 r = PTR_ERR(kvm_regs);
4491 goto out;
4492 }
4493 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4494 kfree(kvm_regs);
4495 break;
4496 }
4497 case KVM_GET_SREGS: {
4498 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4499 GFP_KERNEL_ACCOUNT);
4500 r = -ENOMEM;
4501 if (!kvm_sregs)
4502 goto out;
4503 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4504 if (r)
4505 goto out;
4506 r = -EFAULT;
4507 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4508 goto out;
4509 r = 0;
4510 break;
4511 }
4512 case KVM_SET_SREGS: {
4513 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4514 if (IS_ERR(kvm_sregs)) {
4515 r = PTR_ERR(kvm_sregs);
4516 kvm_sregs = NULL;
4517 goto out;
4518 }
4519 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4520 break;
4521 }
4522 case KVM_GET_MP_STATE: {
4523 struct kvm_mp_state mp_state;
4524
4525 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4526 if (r)
4527 goto out;
4528 r = -EFAULT;
4529 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4530 goto out;
4531 r = 0;
4532 break;
4533 }
4534 case KVM_SET_MP_STATE: {
4535 struct kvm_mp_state mp_state;
4536
4537 r = -EFAULT;
4538 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4539 goto out;
4540 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4541 break;
4542 }
4543 case KVM_TRANSLATE: {
4544 struct kvm_translation tr;
4545
4546 r = -EFAULT;
4547 if (copy_from_user(&tr, argp, sizeof(tr)))
4548 goto out;
4549 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4550 if (r)
4551 goto out;
4552 r = -EFAULT;
4553 if (copy_to_user(argp, &tr, sizeof(tr)))
4554 goto out;
4555 r = 0;
4556 break;
4557 }
4558 case KVM_SET_GUEST_DEBUG: {
4559 struct kvm_guest_debug dbg;
4560
4561 r = -EFAULT;
4562 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4563 goto out;
4564 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4565 break;
4566 }
4567 case KVM_SET_SIGNAL_MASK: {
4568 struct kvm_signal_mask __user *sigmask_arg = argp;
4569 struct kvm_signal_mask kvm_sigmask;
4570 sigset_t sigset, *p;
4571
4572 p = NULL;
4573 if (argp) {
4574 r = -EFAULT;
4575 if (copy_from_user(&kvm_sigmask, argp,
4576 sizeof(kvm_sigmask)))
4577 goto out;
4578 r = -EINVAL;
4579 if (kvm_sigmask.len != sizeof(sigset))
4580 goto out;
4581 r = -EFAULT;
4582 if (copy_from_user(&sigset, sigmask_arg->sigset,
4583 sizeof(sigset)))
4584 goto out;
4585 p = &sigset;
4586 }
4587 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4588 break;
4589 }
4590 case KVM_GET_FPU: {
4591 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4592 r = -ENOMEM;
4593 if (!fpu)
4594 goto out;
4595 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4596 if (r)
4597 goto out;
4598 r = -EFAULT;
4599 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4600 goto out;
4601 r = 0;
4602 break;
4603 }
4604 case KVM_SET_FPU: {
4605 fpu = memdup_user(argp, sizeof(*fpu));
4606 if (IS_ERR(fpu)) {
4607 r = PTR_ERR(fpu);
4608 fpu = NULL;
4609 goto out;
4610 }
4611 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4612 break;
4613 }
4614 case KVM_GET_STATS_FD: {
4615 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4616 break;
4617 }
4618 default:
4619 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4620 }
4621out:
4622 mutex_unlock(&vcpu->mutex);
4623 kfree(fpu);
4624 kfree(kvm_sregs);
4625 return r;
4626}
4627
4628#ifdef CONFIG_KVM_COMPAT
4629static long kvm_vcpu_compat_ioctl(struct file *filp,
4630 unsigned int ioctl, unsigned long arg)
4631{
4632 struct kvm_vcpu *vcpu = filp->private_data;
4633 void __user *argp = compat_ptr(arg);
4634 int r;
4635
4636 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4637 return -EIO;
4638
4639 switch (ioctl) {
4640 case KVM_SET_SIGNAL_MASK: {
4641 struct kvm_signal_mask __user *sigmask_arg = argp;
4642 struct kvm_signal_mask kvm_sigmask;
4643 sigset_t sigset;
4644
4645 if (argp) {
4646 r = -EFAULT;
4647 if (copy_from_user(&kvm_sigmask, argp,
4648 sizeof(kvm_sigmask)))
4649 goto out;
4650 r = -EINVAL;
4651 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4652 goto out;
4653 r = -EFAULT;
4654 if (get_compat_sigset(&sigset,
4655 (compat_sigset_t __user *)sigmask_arg->sigset))
4656 goto out;
4657 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4658 } else
4659 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4660 break;
4661 }
4662 default:
4663 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4664 }
4665
4666out:
4667 return r;
4668}
4669#endif
4670
4671static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4672{
4673 struct kvm_device *dev = filp->private_data;
4674
4675 if (dev->ops->mmap)
4676 return dev->ops->mmap(dev, vma);
4677
4678 return -ENODEV;
4679}
4680
4681static int kvm_device_ioctl_attr(struct kvm_device *dev,
4682 int (*accessor)(struct kvm_device *dev,
4683 struct kvm_device_attr *attr),
4684 unsigned long arg)
4685{
4686 struct kvm_device_attr attr;
4687
4688 if (!accessor)
4689 return -EPERM;
4690
4691 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4692 return -EFAULT;
4693
4694 return accessor(dev, &attr);
4695}
4696
4697static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4698 unsigned long arg)
4699{
4700 struct kvm_device *dev = filp->private_data;
4701
4702 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4703 return -EIO;
4704
4705 switch (ioctl) {
4706 case KVM_SET_DEVICE_ATTR:
4707 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4708 case KVM_GET_DEVICE_ATTR:
4709 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4710 case KVM_HAS_DEVICE_ATTR:
4711 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4712 default:
4713 if (dev->ops->ioctl)
4714 return dev->ops->ioctl(dev, ioctl, arg);
4715
4716 return -ENOTTY;
4717 }
4718}
4719
4720static int kvm_device_release(struct inode *inode, struct file *filp)
4721{
4722 struct kvm_device *dev = filp->private_data;
4723 struct kvm *kvm = dev->kvm;
4724
4725 if (dev->ops->release) {
4726 mutex_lock(&kvm->lock);
4727 list_del(&dev->vm_node);
4728 dev->ops->release(dev);
4729 mutex_unlock(&kvm->lock);
4730 }
4731
4732 kvm_put_kvm(kvm);
4733 return 0;
4734}
4735
4736static struct file_operations kvm_device_fops = {
4737 .unlocked_ioctl = kvm_device_ioctl,
4738 .release = kvm_device_release,
4739 KVM_COMPAT(kvm_device_ioctl),
4740 .mmap = kvm_device_mmap,
4741};
4742
4743struct kvm_device *kvm_device_from_filp(struct file *filp)
4744{
4745 if (filp->f_op != &kvm_device_fops)
4746 return NULL;
4747
4748 return filp->private_data;
4749}
4750
4751static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4752#ifdef CONFIG_KVM_MPIC
4753 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4754 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4755#endif
4756};
4757
4758int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4759{
4760 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4761 return -ENOSPC;
4762
4763 if (kvm_device_ops_table[type] != NULL)
4764 return -EEXIST;
4765
4766 kvm_device_ops_table[type] = ops;
4767 return 0;
4768}
4769
4770void kvm_unregister_device_ops(u32 type)
4771{
4772 if (kvm_device_ops_table[type] != NULL)
4773 kvm_device_ops_table[type] = NULL;
4774}
4775
4776static int kvm_ioctl_create_device(struct kvm *kvm,
4777 struct kvm_create_device *cd)
4778{
4779 const struct kvm_device_ops *ops;
4780 struct kvm_device *dev;
4781 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4782 int type;
4783 int ret;
4784
4785 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4786 return -ENODEV;
4787
4788 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4789 ops = kvm_device_ops_table[type];
4790 if (ops == NULL)
4791 return -ENODEV;
4792
4793 if (test)
4794 return 0;
4795
4796 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4797 if (!dev)
4798 return -ENOMEM;
4799
4800 dev->ops = ops;
4801 dev->kvm = kvm;
4802
4803 mutex_lock(&kvm->lock);
4804 ret = ops->create(dev, type);
4805 if (ret < 0) {
4806 mutex_unlock(&kvm->lock);
4807 kfree(dev);
4808 return ret;
4809 }
4810 list_add(&dev->vm_node, &kvm->devices);
4811 mutex_unlock(&kvm->lock);
4812
4813 if (ops->init)
4814 ops->init(dev);
4815
4816 kvm_get_kvm(kvm);
4817 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4818 if (ret < 0) {
4819 kvm_put_kvm_no_destroy(kvm);
4820 mutex_lock(&kvm->lock);
4821 list_del(&dev->vm_node);
4822 if (ops->release)
4823 ops->release(dev);
4824 mutex_unlock(&kvm->lock);
4825 if (ops->destroy)
4826 ops->destroy(dev);
4827 return ret;
4828 }
4829
4830 cd->fd = ret;
4831 return 0;
4832}
4833
4834static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4835{
4836 switch (arg) {
4837 case KVM_CAP_USER_MEMORY:
4838 case KVM_CAP_USER_MEMORY2:
4839 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4840 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4841 case KVM_CAP_INTERNAL_ERROR_DATA:
4842#ifdef CONFIG_HAVE_KVM_MSI
4843 case KVM_CAP_SIGNAL_MSI:
4844#endif
4845#ifdef CONFIG_HAVE_KVM_IRQCHIP
4846 case KVM_CAP_IRQFD:
4847#endif
4848 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4849 case KVM_CAP_CHECK_EXTENSION_VM:
4850 case KVM_CAP_ENABLE_CAP_VM:
4851 case KVM_CAP_HALT_POLL:
4852 return 1;
4853#ifdef CONFIG_KVM_MMIO
4854 case KVM_CAP_COALESCED_MMIO:
4855 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4856 case KVM_CAP_COALESCED_PIO:
4857 return 1;
4858#endif
4859#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4860 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4861 return KVM_DIRTY_LOG_MANUAL_CAPS;
4862#endif
4863#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4864 case KVM_CAP_IRQ_ROUTING:
4865 return KVM_MAX_IRQ_ROUTES;
4866#endif
4867#if KVM_MAX_NR_ADDRESS_SPACES > 1
4868 case KVM_CAP_MULTI_ADDRESS_SPACE:
4869 if (kvm)
4870 return kvm_arch_nr_memslot_as_ids(kvm);
4871 return KVM_MAX_NR_ADDRESS_SPACES;
4872#endif
4873 case KVM_CAP_NR_MEMSLOTS:
4874 return KVM_USER_MEM_SLOTS;
4875 case KVM_CAP_DIRTY_LOG_RING:
4876#ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4877 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4878#else
4879 return 0;
4880#endif
4881 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4882#ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4883 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4884#else
4885 return 0;
4886#endif
4887#ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4888 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4889#endif
4890 case KVM_CAP_BINARY_STATS_FD:
4891 case KVM_CAP_SYSTEM_EVENT_DATA:
4892 case KVM_CAP_DEVICE_CTRL:
4893 return 1;
4894#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4895 case KVM_CAP_MEMORY_ATTRIBUTES:
4896 return kvm_supported_mem_attributes(kvm);
4897#endif
4898#ifdef CONFIG_KVM_PRIVATE_MEM
4899 case KVM_CAP_GUEST_MEMFD:
4900 return !kvm || kvm_arch_has_private_mem(kvm);
4901#endif
4902 default:
4903 break;
4904 }
4905 return kvm_vm_ioctl_check_extension(kvm, arg);
4906}
4907
4908static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4909{
4910 int r;
4911
4912 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4913 return -EINVAL;
4914
4915 /* the size should be power of 2 */
4916 if (!size || (size & (size - 1)))
4917 return -EINVAL;
4918
4919 /* Should be bigger to keep the reserved entries, or a page */
4920 if (size < kvm_dirty_ring_get_rsvd_entries() *
4921 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4922 return -EINVAL;
4923
4924 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4925 sizeof(struct kvm_dirty_gfn))
4926 return -E2BIG;
4927
4928 /* We only allow it to set once */
4929 if (kvm->dirty_ring_size)
4930 return -EINVAL;
4931
4932 mutex_lock(&kvm->lock);
4933
4934 if (kvm->created_vcpus) {
4935 /* We don't allow to change this value after vcpu created */
4936 r = -EINVAL;
4937 } else {
4938 kvm->dirty_ring_size = size;
4939 r = 0;
4940 }
4941
4942 mutex_unlock(&kvm->lock);
4943 return r;
4944}
4945
4946static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4947{
4948 unsigned long i;
4949 struct kvm_vcpu *vcpu;
4950 int cleared = 0;
4951
4952 if (!kvm->dirty_ring_size)
4953 return -EINVAL;
4954
4955 mutex_lock(&kvm->slots_lock);
4956
4957 kvm_for_each_vcpu(i, vcpu, kvm)
4958 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4959
4960 mutex_unlock(&kvm->slots_lock);
4961
4962 if (cleared)
4963 kvm_flush_remote_tlbs(kvm);
4964
4965 return cleared;
4966}
4967
4968int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4969 struct kvm_enable_cap *cap)
4970{
4971 return -EINVAL;
4972}
4973
4974bool kvm_are_all_memslots_empty(struct kvm *kvm)
4975{
4976 int i;
4977
4978 lockdep_assert_held(&kvm->slots_lock);
4979
4980 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4981 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4982 return false;
4983 }
4984
4985 return true;
4986}
4987EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4988
4989static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4990 struct kvm_enable_cap *cap)
4991{
4992 switch (cap->cap) {
4993#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4994 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4995 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4996
4997 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4998 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4999
5000 if (cap->flags || (cap->args[0] & ~allowed_options))
5001 return -EINVAL;
5002 kvm->manual_dirty_log_protect = cap->args[0];
5003 return 0;
5004 }
5005#endif
5006 case KVM_CAP_HALT_POLL: {
5007 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5008 return -EINVAL;
5009
5010 kvm->max_halt_poll_ns = cap->args[0];
5011
5012 /*
5013 * Ensure kvm->override_halt_poll_ns does not become visible
5014 * before kvm->max_halt_poll_ns.
5015 *
5016 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5017 */
5018 smp_wmb();
5019 kvm->override_halt_poll_ns = true;
5020
5021 return 0;
5022 }
5023 case KVM_CAP_DIRTY_LOG_RING:
5024 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5025 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5026 return -EINVAL;
5027
5028 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5029 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5030 int r = -EINVAL;
5031
5032 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5033 !kvm->dirty_ring_size || cap->flags)
5034 return r;
5035
5036 mutex_lock(&kvm->slots_lock);
5037
5038 /*
5039 * For simplicity, allow enabling ring+bitmap if and only if
5040 * there are no memslots, e.g. to ensure all memslots allocate
5041 * a bitmap after the capability is enabled.
5042 */
5043 if (kvm_are_all_memslots_empty(kvm)) {
5044 kvm->dirty_ring_with_bitmap = true;
5045 r = 0;
5046 }
5047
5048 mutex_unlock(&kvm->slots_lock);
5049
5050 return r;
5051 }
5052 default:
5053 return kvm_vm_ioctl_enable_cap(kvm, cap);
5054 }
5055}
5056
5057static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5058 size_t size, loff_t *offset)
5059{
5060 struct kvm *kvm = file->private_data;
5061
5062 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5063 &kvm_vm_stats_desc[0], &kvm->stat,
5064 sizeof(kvm->stat), user_buffer, size, offset);
5065}
5066
5067static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5068{
5069 struct kvm *kvm = file->private_data;
5070
5071 kvm_put_kvm(kvm);
5072 return 0;
5073}
5074
5075static const struct file_operations kvm_vm_stats_fops = {
5076 .owner = THIS_MODULE,
5077 .read = kvm_vm_stats_read,
5078 .release = kvm_vm_stats_release,
5079 .llseek = noop_llseek,
5080};
5081
5082static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5083{
5084 int fd;
5085 struct file *file;
5086
5087 fd = get_unused_fd_flags(O_CLOEXEC);
5088 if (fd < 0)
5089 return fd;
5090
5091 file = anon_inode_getfile("kvm-vm-stats",
5092 &kvm_vm_stats_fops, kvm, O_RDONLY);
5093 if (IS_ERR(file)) {
5094 put_unused_fd(fd);
5095 return PTR_ERR(file);
5096 }
5097
5098 kvm_get_kvm(kvm);
5099
5100 file->f_mode |= FMODE_PREAD;
5101 fd_install(fd, file);
5102
5103 return fd;
5104}
5105
5106#define SANITY_CHECK_MEM_REGION_FIELD(field) \
5107do { \
5108 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \
5109 offsetof(struct kvm_userspace_memory_region2, field)); \
5110 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \
5111 sizeof_field(struct kvm_userspace_memory_region2, field)); \
5112} while (0)
5113
5114static long kvm_vm_ioctl(struct file *filp,
5115 unsigned int ioctl, unsigned long arg)
5116{
5117 struct kvm *kvm = filp->private_data;
5118 void __user *argp = (void __user *)arg;
5119 int r;
5120
5121 if (kvm->mm != current->mm || kvm->vm_dead)
5122 return -EIO;
5123 switch (ioctl) {
5124 case KVM_CREATE_VCPU:
5125 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5126 break;
5127 case KVM_ENABLE_CAP: {
5128 struct kvm_enable_cap cap;
5129
5130 r = -EFAULT;
5131 if (copy_from_user(&cap, argp, sizeof(cap)))
5132 goto out;
5133 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5134 break;
5135 }
5136 case KVM_SET_USER_MEMORY_REGION2:
5137 case KVM_SET_USER_MEMORY_REGION: {
5138 struct kvm_userspace_memory_region2 mem;
5139 unsigned long size;
5140
5141 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5142 /*
5143 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5144 * accessed, but avoid leaking kernel memory in case of a bug.
5145 */
5146 memset(&mem, 0, sizeof(mem));
5147 size = sizeof(struct kvm_userspace_memory_region);
5148 } else {
5149 size = sizeof(struct kvm_userspace_memory_region2);
5150 }
5151
5152 /* Ensure the common parts of the two structs are identical. */
5153 SANITY_CHECK_MEM_REGION_FIELD(slot);
5154 SANITY_CHECK_MEM_REGION_FIELD(flags);
5155 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5156 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5157 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5158
5159 r = -EFAULT;
5160 if (copy_from_user(&mem, argp, size))
5161 goto out;
5162
5163 r = -EINVAL;
5164 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5165 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5166 goto out;
5167
5168 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5169 break;
5170 }
5171 case KVM_GET_DIRTY_LOG: {
5172 struct kvm_dirty_log log;
5173
5174 r = -EFAULT;
5175 if (copy_from_user(&log, argp, sizeof(log)))
5176 goto out;
5177 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5178 break;
5179 }
5180#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5181 case KVM_CLEAR_DIRTY_LOG: {
5182 struct kvm_clear_dirty_log log;
5183
5184 r = -EFAULT;
5185 if (copy_from_user(&log, argp, sizeof(log)))
5186 goto out;
5187 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5188 break;
5189 }
5190#endif
5191#ifdef CONFIG_KVM_MMIO
5192 case KVM_REGISTER_COALESCED_MMIO: {
5193 struct kvm_coalesced_mmio_zone zone;
5194
5195 r = -EFAULT;
5196 if (copy_from_user(&zone, argp, sizeof(zone)))
5197 goto out;
5198 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5199 break;
5200 }
5201 case KVM_UNREGISTER_COALESCED_MMIO: {
5202 struct kvm_coalesced_mmio_zone zone;
5203
5204 r = -EFAULT;
5205 if (copy_from_user(&zone, argp, sizeof(zone)))
5206 goto out;
5207 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5208 break;
5209 }
5210#endif
5211 case KVM_IRQFD: {
5212 struct kvm_irqfd data;
5213
5214 r = -EFAULT;
5215 if (copy_from_user(&data, argp, sizeof(data)))
5216 goto out;
5217 r = kvm_irqfd(kvm, &data);
5218 break;
5219 }
5220 case KVM_IOEVENTFD: {
5221 struct kvm_ioeventfd data;
5222
5223 r = -EFAULT;
5224 if (copy_from_user(&data, argp, sizeof(data)))
5225 goto out;
5226 r = kvm_ioeventfd(kvm, &data);
5227 break;
5228 }
5229#ifdef CONFIG_HAVE_KVM_MSI
5230 case KVM_SIGNAL_MSI: {
5231 struct kvm_msi msi;
5232
5233 r = -EFAULT;
5234 if (copy_from_user(&msi, argp, sizeof(msi)))
5235 goto out;
5236 r = kvm_send_userspace_msi(kvm, &msi);
5237 break;
5238 }
5239#endif
5240#ifdef __KVM_HAVE_IRQ_LINE
5241 case KVM_IRQ_LINE_STATUS:
5242 case KVM_IRQ_LINE: {
5243 struct kvm_irq_level irq_event;
5244
5245 r = -EFAULT;
5246 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5247 goto out;
5248
5249 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5250 ioctl == KVM_IRQ_LINE_STATUS);
5251 if (r)
5252 goto out;
5253
5254 r = -EFAULT;
5255 if (ioctl == KVM_IRQ_LINE_STATUS) {
5256 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5257 goto out;
5258 }
5259
5260 r = 0;
5261 break;
5262 }
5263#endif
5264#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5265 case KVM_SET_GSI_ROUTING: {
5266 struct kvm_irq_routing routing;
5267 struct kvm_irq_routing __user *urouting;
5268 struct kvm_irq_routing_entry *entries = NULL;
5269
5270 r = -EFAULT;
5271 if (copy_from_user(&routing, argp, sizeof(routing)))
5272 goto out;
5273 r = -EINVAL;
5274 if (!kvm_arch_can_set_irq_routing(kvm))
5275 goto out;
5276 if (routing.nr > KVM_MAX_IRQ_ROUTES)
5277 goto out;
5278 if (routing.flags)
5279 goto out;
5280 if (routing.nr) {
5281 urouting = argp;
5282 entries = vmemdup_array_user(urouting->entries,
5283 routing.nr, sizeof(*entries));
5284 if (IS_ERR(entries)) {
5285 r = PTR_ERR(entries);
5286 goto out;
5287 }
5288 }
5289 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5290 routing.flags);
5291 kvfree(entries);
5292 break;
5293 }
5294#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5295#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5296 case KVM_SET_MEMORY_ATTRIBUTES: {
5297 struct kvm_memory_attributes attrs;
5298
5299 r = -EFAULT;
5300 if (copy_from_user(&attrs, argp, sizeof(attrs)))
5301 goto out;
5302
5303 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5304 break;
5305 }
5306#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5307 case KVM_CREATE_DEVICE: {
5308 struct kvm_create_device cd;
5309
5310 r = -EFAULT;
5311 if (copy_from_user(&cd, argp, sizeof(cd)))
5312 goto out;
5313
5314 r = kvm_ioctl_create_device(kvm, &cd);
5315 if (r)
5316 goto out;
5317
5318 r = -EFAULT;
5319 if (copy_to_user(argp, &cd, sizeof(cd)))
5320 goto out;
5321
5322 r = 0;
5323 break;
5324 }
5325 case KVM_CHECK_EXTENSION:
5326 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5327 break;
5328 case KVM_RESET_DIRTY_RINGS:
5329 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5330 break;
5331 case KVM_GET_STATS_FD:
5332 r = kvm_vm_ioctl_get_stats_fd(kvm);
5333 break;
5334#ifdef CONFIG_KVM_PRIVATE_MEM
5335 case KVM_CREATE_GUEST_MEMFD: {
5336 struct kvm_create_guest_memfd guest_memfd;
5337
5338 r = -EFAULT;
5339 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5340 goto out;
5341
5342 r = kvm_gmem_create(kvm, &guest_memfd);
5343 break;
5344 }
5345#endif
5346 default:
5347 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5348 }
5349out:
5350 return r;
5351}
5352
5353#ifdef CONFIG_KVM_COMPAT
5354struct compat_kvm_dirty_log {
5355 __u32 slot;
5356 __u32 padding1;
5357 union {
5358 compat_uptr_t dirty_bitmap; /* one bit per page */
5359 __u64 padding2;
5360 };
5361};
5362
5363struct compat_kvm_clear_dirty_log {
5364 __u32 slot;
5365 __u32 num_pages;
5366 __u64 first_page;
5367 union {
5368 compat_uptr_t dirty_bitmap; /* one bit per page */
5369 __u64 padding2;
5370 };
5371};
5372
5373long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5374 unsigned long arg)
5375{
5376 return -ENOTTY;
5377}
5378
5379static long kvm_vm_compat_ioctl(struct file *filp,
5380 unsigned int ioctl, unsigned long arg)
5381{
5382 struct kvm *kvm = filp->private_data;
5383 int r;
5384
5385 if (kvm->mm != current->mm || kvm->vm_dead)
5386 return -EIO;
5387
5388 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5389 if (r != -ENOTTY)
5390 return r;
5391
5392 switch (ioctl) {
5393#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5394 case KVM_CLEAR_DIRTY_LOG: {
5395 struct compat_kvm_clear_dirty_log compat_log;
5396 struct kvm_clear_dirty_log log;
5397
5398 if (copy_from_user(&compat_log, (void __user *)arg,
5399 sizeof(compat_log)))
5400 return -EFAULT;
5401 log.slot = compat_log.slot;
5402 log.num_pages = compat_log.num_pages;
5403 log.first_page = compat_log.first_page;
5404 log.padding2 = compat_log.padding2;
5405 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5406
5407 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5408 break;
5409 }
5410#endif
5411 case KVM_GET_DIRTY_LOG: {
5412 struct compat_kvm_dirty_log compat_log;
5413 struct kvm_dirty_log log;
5414
5415 if (copy_from_user(&compat_log, (void __user *)arg,
5416 sizeof(compat_log)))
5417 return -EFAULT;
5418 log.slot = compat_log.slot;
5419 log.padding1 = compat_log.padding1;
5420 log.padding2 = compat_log.padding2;
5421 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5422
5423 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5424 break;
5425 }
5426 default:
5427 r = kvm_vm_ioctl(filp, ioctl, arg);
5428 }
5429 return r;
5430}
5431#endif
5432
5433static struct file_operations kvm_vm_fops = {
5434 .release = kvm_vm_release,
5435 .unlocked_ioctl = kvm_vm_ioctl,
5436 .llseek = noop_llseek,
5437 KVM_COMPAT(kvm_vm_compat_ioctl),
5438};
5439
5440bool file_is_kvm(struct file *file)
5441{
5442 return file && file->f_op == &kvm_vm_fops;
5443}
5444EXPORT_SYMBOL_GPL(file_is_kvm);
5445
5446static int kvm_dev_ioctl_create_vm(unsigned long type)
5447{
5448 char fdname[ITOA_MAX_LEN + 1];
5449 int r, fd;
5450 struct kvm *kvm;
5451 struct file *file;
5452
5453 fd = get_unused_fd_flags(O_CLOEXEC);
5454 if (fd < 0)
5455 return fd;
5456
5457 snprintf(fdname, sizeof(fdname), "%d", fd);
5458
5459 kvm = kvm_create_vm(type, fdname);
5460 if (IS_ERR(kvm)) {
5461 r = PTR_ERR(kvm);
5462 goto put_fd;
5463 }
5464
5465 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5466 if (IS_ERR(file)) {
5467 r = PTR_ERR(file);
5468 goto put_kvm;
5469 }
5470
5471 /*
5472 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5473 * already set, with ->release() being kvm_vm_release(). In error
5474 * cases it will be called by the final fput(file) and will take
5475 * care of doing kvm_put_kvm(kvm).
5476 */
5477 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5478
5479 fd_install(fd, file);
5480 return fd;
5481
5482put_kvm:
5483 kvm_put_kvm(kvm);
5484put_fd:
5485 put_unused_fd(fd);
5486 return r;
5487}
5488
5489static long kvm_dev_ioctl(struct file *filp,
5490 unsigned int ioctl, unsigned long arg)
5491{
5492 int r = -EINVAL;
5493
5494 switch (ioctl) {
5495 case KVM_GET_API_VERSION:
5496 if (arg)
5497 goto out;
5498 r = KVM_API_VERSION;
5499 break;
5500 case KVM_CREATE_VM:
5501 r = kvm_dev_ioctl_create_vm(arg);
5502 break;
5503 case KVM_CHECK_EXTENSION:
5504 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5505 break;
5506 case KVM_GET_VCPU_MMAP_SIZE:
5507 if (arg)
5508 goto out;
5509 r = PAGE_SIZE; /* struct kvm_run */
5510#ifdef CONFIG_X86
5511 r += PAGE_SIZE; /* pio data page */
5512#endif
5513#ifdef CONFIG_KVM_MMIO
5514 r += PAGE_SIZE; /* coalesced mmio ring page */
5515#endif
5516 break;
5517 default:
5518 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5519 }
5520out:
5521 return r;
5522}
5523
5524static struct file_operations kvm_chardev_ops = {
5525 .unlocked_ioctl = kvm_dev_ioctl,
5526 .llseek = noop_llseek,
5527 KVM_COMPAT(kvm_dev_ioctl),
5528};
5529
5530static struct miscdevice kvm_dev = {
5531 KVM_MINOR,
5532 "kvm",
5533 &kvm_chardev_ops,
5534};
5535
5536#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5537__visible bool kvm_rebooting;
5538EXPORT_SYMBOL_GPL(kvm_rebooting);
5539
5540static DEFINE_PER_CPU(bool, hardware_enabled);
5541static int kvm_usage_count;
5542
5543static int __hardware_enable_nolock(void)
5544{
5545 if (__this_cpu_read(hardware_enabled))
5546 return 0;
5547
5548 if (kvm_arch_hardware_enable()) {
5549 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5550 raw_smp_processor_id());
5551 return -EIO;
5552 }
5553
5554 __this_cpu_write(hardware_enabled, true);
5555 return 0;
5556}
5557
5558static void hardware_enable_nolock(void *failed)
5559{
5560 if (__hardware_enable_nolock())
5561 atomic_inc(failed);
5562}
5563
5564static int kvm_online_cpu(unsigned int cpu)
5565{
5566 int ret = 0;
5567
5568 /*
5569 * Abort the CPU online process if hardware virtualization cannot
5570 * be enabled. Otherwise running VMs would encounter unrecoverable
5571 * errors when scheduled to this CPU.
5572 */
5573 mutex_lock(&kvm_lock);
5574 if (kvm_usage_count)
5575 ret = __hardware_enable_nolock();
5576 mutex_unlock(&kvm_lock);
5577 return ret;
5578}
5579
5580static void hardware_disable_nolock(void *junk)
5581{
5582 /*
5583 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5584 * hardware, not just CPUs that successfully enabled hardware!
5585 */
5586 if (!__this_cpu_read(hardware_enabled))
5587 return;
5588
5589 kvm_arch_hardware_disable();
5590
5591 __this_cpu_write(hardware_enabled, false);
5592}
5593
5594static int kvm_offline_cpu(unsigned int cpu)
5595{
5596 mutex_lock(&kvm_lock);
5597 if (kvm_usage_count)
5598 hardware_disable_nolock(NULL);
5599 mutex_unlock(&kvm_lock);
5600 return 0;
5601}
5602
5603static void hardware_disable_all_nolock(void)
5604{
5605 BUG_ON(!kvm_usage_count);
5606
5607 kvm_usage_count--;
5608 if (!kvm_usage_count)
5609 on_each_cpu(hardware_disable_nolock, NULL, 1);
5610}
5611
5612static void hardware_disable_all(void)
5613{
5614 cpus_read_lock();
5615 mutex_lock(&kvm_lock);
5616 hardware_disable_all_nolock();
5617 mutex_unlock(&kvm_lock);
5618 cpus_read_unlock();
5619}
5620
5621static int hardware_enable_all(void)
5622{
5623 atomic_t failed = ATOMIC_INIT(0);
5624 int r;
5625
5626 /*
5627 * Do not enable hardware virtualization if the system is going down.
5628 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5629 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5630 * after kvm_reboot() is called. Note, this relies on system_state
5631 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5632 * hook instead of registering a dedicated reboot notifier (the latter
5633 * runs before system_state is updated).
5634 */
5635 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5636 system_state == SYSTEM_RESTART)
5637 return -EBUSY;
5638
5639 /*
5640 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5641 * is called, and so on_each_cpu() between them includes the CPU that
5642 * is being onlined. As a result, hardware_enable_nolock() may get
5643 * invoked before kvm_online_cpu(), which also enables hardware if the
5644 * usage count is non-zero. Disable CPU hotplug to avoid attempting to
5645 * enable hardware multiple times.
5646 */
5647 cpus_read_lock();
5648 mutex_lock(&kvm_lock);
5649
5650 r = 0;
5651
5652 kvm_usage_count++;
5653 if (kvm_usage_count == 1) {
5654 on_each_cpu(hardware_enable_nolock, &failed, 1);
5655
5656 if (atomic_read(&failed)) {
5657 hardware_disable_all_nolock();
5658 r = -EBUSY;
5659 }
5660 }
5661
5662 mutex_unlock(&kvm_lock);
5663 cpus_read_unlock();
5664
5665 return r;
5666}
5667
5668static void kvm_shutdown(void)
5669{
5670 /*
5671 * Disable hardware virtualization and set kvm_rebooting to indicate
5672 * that KVM has asynchronously disabled hardware virtualization, i.e.
5673 * that relevant errors and exceptions aren't entirely unexpected.
5674 * Some flavors of hardware virtualization need to be disabled before
5675 * transferring control to firmware (to perform shutdown/reboot), e.g.
5676 * on x86, virtualization can block INIT interrupts, which are used by
5677 * firmware to pull APs back under firmware control. Note, this path
5678 * is used for both shutdown and reboot scenarios, i.e. neither name is
5679 * 100% comprehensive.
5680 */
5681 pr_info("kvm: exiting hardware virtualization\n");
5682 kvm_rebooting = true;
5683 on_each_cpu(hardware_disable_nolock, NULL, 1);
5684}
5685
5686static int kvm_suspend(void)
5687{
5688 /*
5689 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5690 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5691 * is stable. Assert that kvm_lock is not held to ensure the system
5692 * isn't suspended while KVM is enabling hardware. Hardware enabling
5693 * can be preempted, but the task cannot be frozen until it has dropped
5694 * all locks (userspace tasks are frozen via a fake signal).
5695 */
5696 lockdep_assert_not_held(&kvm_lock);
5697 lockdep_assert_irqs_disabled();
5698
5699 if (kvm_usage_count)
5700 hardware_disable_nolock(NULL);
5701 return 0;
5702}
5703
5704static void kvm_resume(void)
5705{
5706 lockdep_assert_not_held(&kvm_lock);
5707 lockdep_assert_irqs_disabled();
5708
5709 if (kvm_usage_count)
5710 WARN_ON_ONCE(__hardware_enable_nolock());
5711}
5712
5713static struct syscore_ops kvm_syscore_ops = {
5714 .suspend = kvm_suspend,
5715 .resume = kvm_resume,
5716 .shutdown = kvm_shutdown,
5717};
5718#else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5719static int hardware_enable_all(void)
5720{
5721 return 0;
5722}
5723
5724static void hardware_disable_all(void)
5725{
5726
5727}
5728#endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5729
5730static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5731{
5732 if (dev->ops->destructor)
5733 dev->ops->destructor(dev);
5734}
5735
5736static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5737{
5738 int i;
5739
5740 for (i = 0; i < bus->dev_count; i++) {
5741 struct kvm_io_device *pos = bus->range[i].dev;
5742
5743 kvm_iodevice_destructor(pos);
5744 }
5745 kfree(bus);
5746}
5747
5748static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5749 const struct kvm_io_range *r2)
5750{
5751 gpa_t addr1 = r1->addr;
5752 gpa_t addr2 = r2->addr;
5753
5754 if (addr1 < addr2)
5755 return -1;
5756
5757 /* If r2->len == 0, match the exact address. If r2->len != 0,
5758 * accept any overlapping write. Any order is acceptable for
5759 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5760 * we process all of them.
5761 */
5762 if (r2->len) {
5763 addr1 += r1->len;
5764 addr2 += r2->len;
5765 }
5766
5767 if (addr1 > addr2)
5768 return 1;
5769
5770 return 0;
5771}
5772
5773static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5774{
5775 return kvm_io_bus_cmp(p1, p2);
5776}
5777
5778static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5779 gpa_t addr, int len)
5780{
5781 struct kvm_io_range *range, key;
5782 int off;
5783
5784 key = (struct kvm_io_range) {
5785 .addr = addr,
5786 .len = len,
5787 };
5788
5789 range = bsearch(&key, bus->range, bus->dev_count,
5790 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5791 if (range == NULL)
5792 return -ENOENT;
5793
5794 off = range - bus->range;
5795
5796 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5797 off--;
5798
5799 return off;
5800}
5801
5802static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5803 struct kvm_io_range *range, const void *val)
5804{
5805 int idx;
5806
5807 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5808 if (idx < 0)
5809 return -EOPNOTSUPP;
5810
5811 while (idx < bus->dev_count &&
5812 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5813 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5814 range->len, val))
5815 return idx;
5816 idx++;
5817 }
5818
5819 return -EOPNOTSUPP;
5820}
5821
5822/* kvm_io_bus_write - called under kvm->slots_lock */
5823int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5824 int len, const void *val)
5825{
5826 struct kvm_io_bus *bus;
5827 struct kvm_io_range range;
5828 int r;
5829
5830 range = (struct kvm_io_range) {
5831 .addr = addr,
5832 .len = len,
5833 };
5834
5835 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5836 if (!bus)
5837 return -ENOMEM;
5838 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5839 return r < 0 ? r : 0;
5840}
5841EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5842
5843/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5844int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5845 gpa_t addr, int len, const void *val, long cookie)
5846{
5847 struct kvm_io_bus *bus;
5848 struct kvm_io_range range;
5849
5850 range = (struct kvm_io_range) {
5851 .addr = addr,
5852 .len = len,
5853 };
5854
5855 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5856 if (!bus)
5857 return -ENOMEM;
5858
5859 /* First try the device referenced by cookie. */
5860 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5861 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5862 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5863 val))
5864 return cookie;
5865
5866 /*
5867 * cookie contained garbage; fall back to search and return the
5868 * correct cookie value.
5869 */
5870 return __kvm_io_bus_write(vcpu, bus, &range, val);
5871}
5872
5873static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5874 struct kvm_io_range *range, void *val)
5875{
5876 int idx;
5877
5878 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5879 if (idx < 0)
5880 return -EOPNOTSUPP;
5881
5882 while (idx < bus->dev_count &&
5883 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5884 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5885 range->len, val))
5886 return idx;
5887 idx++;
5888 }
5889
5890 return -EOPNOTSUPP;
5891}
5892
5893/* kvm_io_bus_read - called under kvm->slots_lock */
5894int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5895 int len, void *val)
5896{
5897 struct kvm_io_bus *bus;
5898 struct kvm_io_range range;
5899 int r;
5900
5901 range = (struct kvm_io_range) {
5902 .addr = addr,
5903 .len = len,
5904 };
5905
5906 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5907 if (!bus)
5908 return -ENOMEM;
5909 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5910 return r < 0 ? r : 0;
5911}
5912
5913int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5914 int len, struct kvm_io_device *dev)
5915{
5916 int i;
5917 struct kvm_io_bus *new_bus, *bus;
5918 struct kvm_io_range range;
5919
5920 lockdep_assert_held(&kvm->slots_lock);
5921
5922 bus = kvm_get_bus(kvm, bus_idx);
5923 if (!bus)
5924 return -ENOMEM;
5925
5926 /* exclude ioeventfd which is limited by maximum fd */
5927 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5928 return -ENOSPC;
5929
5930 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5931 GFP_KERNEL_ACCOUNT);
5932 if (!new_bus)
5933 return -ENOMEM;
5934
5935 range = (struct kvm_io_range) {
5936 .addr = addr,
5937 .len = len,
5938 .dev = dev,
5939 };
5940
5941 for (i = 0; i < bus->dev_count; i++)
5942 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5943 break;
5944
5945 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5946 new_bus->dev_count++;
5947 new_bus->range[i] = range;
5948 memcpy(new_bus->range + i + 1, bus->range + i,
5949 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5950 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5951 synchronize_srcu_expedited(&kvm->srcu);
5952 kfree(bus);
5953
5954 return 0;
5955}
5956
5957int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5958 struct kvm_io_device *dev)
5959{
5960 int i;
5961 struct kvm_io_bus *new_bus, *bus;
5962
5963 lockdep_assert_held(&kvm->slots_lock);
5964
5965 bus = kvm_get_bus(kvm, bus_idx);
5966 if (!bus)
5967 return 0;
5968
5969 for (i = 0; i < bus->dev_count; i++) {
5970 if (bus->range[i].dev == dev) {
5971 break;
5972 }
5973 }
5974
5975 if (i == bus->dev_count)
5976 return 0;
5977
5978 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5979 GFP_KERNEL_ACCOUNT);
5980 if (new_bus) {
5981 memcpy(new_bus, bus, struct_size(bus, range, i));
5982 new_bus->dev_count--;
5983 memcpy(new_bus->range + i, bus->range + i + 1,
5984 flex_array_size(new_bus, range, new_bus->dev_count - i));
5985 }
5986
5987 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5988 synchronize_srcu_expedited(&kvm->srcu);
5989
5990 /*
5991 * If NULL bus is installed, destroy the old bus, including all the
5992 * attached devices. Otherwise, destroy the caller's device only.
5993 */
5994 if (!new_bus) {
5995 pr_err("kvm: failed to shrink bus, removing it completely\n");
5996 kvm_io_bus_destroy(bus);
5997 return -ENOMEM;
5998 }
5999
6000 kvm_iodevice_destructor(dev);
6001 kfree(bus);
6002 return 0;
6003}
6004
6005struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6006 gpa_t addr)
6007{
6008 struct kvm_io_bus *bus;
6009 int dev_idx, srcu_idx;
6010 struct kvm_io_device *iodev = NULL;
6011
6012 srcu_idx = srcu_read_lock(&kvm->srcu);
6013
6014 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
6015 if (!bus)
6016 goto out_unlock;
6017
6018 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6019 if (dev_idx < 0)
6020 goto out_unlock;
6021
6022 iodev = bus->range[dev_idx].dev;
6023
6024out_unlock:
6025 srcu_read_unlock(&kvm->srcu, srcu_idx);
6026
6027 return iodev;
6028}
6029EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6030
6031static int kvm_debugfs_open(struct inode *inode, struct file *file,
6032 int (*get)(void *, u64 *), int (*set)(void *, u64),
6033 const char *fmt)
6034{
6035 int ret;
6036 struct kvm_stat_data *stat_data = inode->i_private;
6037
6038 /*
6039 * The debugfs files are a reference to the kvm struct which
6040 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
6041 * avoids the race between open and the removal of the debugfs directory.
6042 */
6043 if (!kvm_get_kvm_safe(stat_data->kvm))
6044 return -ENOENT;
6045
6046 ret = simple_attr_open(inode, file, get,
6047 kvm_stats_debugfs_mode(stat_data->desc) & 0222
6048 ? set : NULL, fmt);
6049 if (ret)
6050 kvm_put_kvm(stat_data->kvm);
6051
6052 return ret;
6053}
6054
6055static int kvm_debugfs_release(struct inode *inode, struct file *file)
6056{
6057 struct kvm_stat_data *stat_data = inode->i_private;
6058
6059 simple_attr_release(inode, file);
6060 kvm_put_kvm(stat_data->kvm);
6061
6062 return 0;
6063}
6064
6065static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6066{
6067 *val = *(u64 *)((void *)(&kvm->stat) + offset);
6068
6069 return 0;
6070}
6071
6072static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6073{
6074 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
6075
6076 return 0;
6077}
6078
6079static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6080{
6081 unsigned long i;
6082 struct kvm_vcpu *vcpu;
6083
6084 *val = 0;
6085
6086 kvm_for_each_vcpu(i, vcpu, kvm)
6087 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
6088
6089 return 0;
6090}
6091
6092static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6093{
6094 unsigned long i;
6095 struct kvm_vcpu *vcpu;
6096
6097 kvm_for_each_vcpu(i, vcpu, kvm)
6098 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6099
6100 return 0;
6101}
6102
6103static int kvm_stat_data_get(void *data, u64 *val)
6104{
6105 int r = -EFAULT;
6106 struct kvm_stat_data *stat_data = data;
6107
6108 switch (stat_data->kind) {
6109 case KVM_STAT_VM:
6110 r = kvm_get_stat_per_vm(stat_data->kvm,
6111 stat_data->desc->desc.offset, val);
6112 break;
6113 case KVM_STAT_VCPU:
6114 r = kvm_get_stat_per_vcpu(stat_data->kvm,
6115 stat_data->desc->desc.offset, val);
6116 break;
6117 }
6118
6119 return r;
6120}
6121
6122static int kvm_stat_data_clear(void *data, u64 val)
6123{
6124 int r = -EFAULT;
6125 struct kvm_stat_data *stat_data = data;
6126
6127 if (val)
6128 return -EINVAL;
6129
6130 switch (stat_data->kind) {
6131 case KVM_STAT_VM:
6132 r = kvm_clear_stat_per_vm(stat_data->kvm,
6133 stat_data->desc->desc.offset);
6134 break;
6135 case KVM_STAT_VCPU:
6136 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6137 stat_data->desc->desc.offset);
6138 break;
6139 }
6140
6141 return r;
6142}
6143
6144static int kvm_stat_data_open(struct inode *inode, struct file *file)
6145{
6146 __simple_attr_check_format("%llu\n", 0ull);
6147 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6148 kvm_stat_data_clear, "%llu\n");
6149}
6150
6151static const struct file_operations stat_fops_per_vm = {
6152 .owner = THIS_MODULE,
6153 .open = kvm_stat_data_open,
6154 .release = kvm_debugfs_release,
6155 .read = simple_attr_read,
6156 .write = simple_attr_write,
6157 .llseek = no_llseek,
6158};
6159
6160static int vm_stat_get(void *_offset, u64 *val)
6161{
6162 unsigned offset = (long)_offset;
6163 struct kvm *kvm;
6164 u64 tmp_val;
6165
6166 *val = 0;
6167 mutex_lock(&kvm_lock);
6168 list_for_each_entry(kvm, &vm_list, vm_list) {
6169 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6170 *val += tmp_val;
6171 }
6172 mutex_unlock(&kvm_lock);
6173 return 0;
6174}
6175
6176static int vm_stat_clear(void *_offset, u64 val)
6177{
6178 unsigned offset = (long)_offset;
6179 struct kvm *kvm;
6180
6181 if (val)
6182 return -EINVAL;
6183
6184 mutex_lock(&kvm_lock);
6185 list_for_each_entry(kvm, &vm_list, vm_list) {
6186 kvm_clear_stat_per_vm(kvm, offset);
6187 }
6188 mutex_unlock(&kvm_lock);
6189
6190 return 0;
6191}
6192
6193DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6194DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6195
6196static int vcpu_stat_get(void *_offset, u64 *val)
6197{
6198 unsigned offset = (long)_offset;
6199 struct kvm *kvm;
6200 u64 tmp_val;
6201
6202 *val = 0;
6203 mutex_lock(&kvm_lock);
6204 list_for_each_entry(kvm, &vm_list, vm_list) {
6205 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6206 *val += tmp_val;
6207 }
6208 mutex_unlock(&kvm_lock);
6209 return 0;
6210}
6211
6212static int vcpu_stat_clear(void *_offset, u64 val)
6213{
6214 unsigned offset = (long)_offset;
6215 struct kvm *kvm;
6216
6217 if (val)
6218 return -EINVAL;
6219
6220 mutex_lock(&kvm_lock);
6221 list_for_each_entry(kvm, &vm_list, vm_list) {
6222 kvm_clear_stat_per_vcpu(kvm, offset);
6223 }
6224 mutex_unlock(&kvm_lock);
6225
6226 return 0;
6227}
6228
6229DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6230 "%llu\n");
6231DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6232
6233static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6234{
6235 struct kobj_uevent_env *env;
6236 unsigned long long created, active;
6237
6238 if (!kvm_dev.this_device || !kvm)
6239 return;
6240
6241 mutex_lock(&kvm_lock);
6242 if (type == KVM_EVENT_CREATE_VM) {
6243 kvm_createvm_count++;
6244 kvm_active_vms++;
6245 } else if (type == KVM_EVENT_DESTROY_VM) {
6246 kvm_active_vms--;
6247 }
6248 created = kvm_createvm_count;
6249 active = kvm_active_vms;
6250 mutex_unlock(&kvm_lock);
6251
6252 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
6253 if (!env)
6254 return;
6255
6256 add_uevent_var(env, "CREATED=%llu", created);
6257 add_uevent_var(env, "COUNT=%llu", active);
6258
6259 if (type == KVM_EVENT_CREATE_VM) {
6260 add_uevent_var(env, "EVENT=create");
6261 kvm->userspace_pid = task_pid_nr(current);
6262 } else if (type == KVM_EVENT_DESTROY_VM) {
6263 add_uevent_var(env, "EVENT=destroy");
6264 }
6265 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6266
6267 if (!IS_ERR(kvm->debugfs_dentry)) {
6268 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
6269
6270 if (p) {
6271 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6272 if (!IS_ERR(tmp))
6273 add_uevent_var(env, "STATS_PATH=%s", tmp);
6274 kfree(p);
6275 }
6276 }
6277 /* no need for checks, since we are adding at most only 5 keys */
6278 env->envp[env->envp_idx++] = NULL;
6279 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6280 kfree(env);
6281}
6282
6283static void kvm_init_debug(void)
6284{
6285 const struct file_operations *fops;
6286 const struct _kvm_stats_desc *pdesc;
6287 int i;
6288
6289 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6290
6291 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6292 pdesc = &kvm_vm_stats_desc[i];
6293 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6294 fops = &vm_stat_fops;
6295 else
6296 fops = &vm_stat_readonly_fops;
6297 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6298 kvm_debugfs_dir,
6299 (void *)(long)pdesc->desc.offset, fops);
6300 }
6301
6302 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6303 pdesc = &kvm_vcpu_stats_desc[i];
6304 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6305 fops = &vcpu_stat_fops;
6306 else
6307 fops = &vcpu_stat_readonly_fops;
6308 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6309 kvm_debugfs_dir,
6310 (void *)(long)pdesc->desc.offset, fops);
6311 }
6312}
6313
6314static inline
6315struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6316{
6317 return container_of(pn, struct kvm_vcpu, preempt_notifier);
6318}
6319
6320static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6321{
6322 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6323
6324 WRITE_ONCE(vcpu->preempted, false);
6325 WRITE_ONCE(vcpu->ready, false);
6326
6327 __this_cpu_write(kvm_running_vcpu, vcpu);
6328 kvm_arch_sched_in(vcpu, cpu);
6329 kvm_arch_vcpu_load(vcpu, cpu);
6330}
6331
6332static void kvm_sched_out(struct preempt_notifier *pn,
6333 struct task_struct *next)
6334{
6335 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6336
6337 if (current->on_rq) {
6338 WRITE_ONCE(vcpu->preempted, true);
6339 WRITE_ONCE(vcpu->ready, true);
6340 }
6341 kvm_arch_vcpu_put(vcpu);
6342 __this_cpu_write(kvm_running_vcpu, NULL);
6343}
6344
6345/**
6346 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6347 *
6348 * We can disable preemption locally around accessing the per-CPU variable,
6349 * and use the resolved vcpu pointer after enabling preemption again,
6350 * because even if the current thread is migrated to another CPU, reading
6351 * the per-CPU value later will give us the same value as we update the
6352 * per-CPU variable in the preempt notifier handlers.
6353 */
6354struct kvm_vcpu *kvm_get_running_vcpu(void)
6355{
6356 struct kvm_vcpu *vcpu;
6357
6358 preempt_disable();
6359 vcpu = __this_cpu_read(kvm_running_vcpu);
6360 preempt_enable();
6361
6362 return vcpu;
6363}
6364EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6365
6366/**
6367 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6368 */
6369struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6370{
6371 return &kvm_running_vcpu;
6372}
6373
6374#ifdef CONFIG_GUEST_PERF_EVENTS
6375static unsigned int kvm_guest_state(void)
6376{
6377 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6378 unsigned int state;
6379
6380 if (!kvm_arch_pmi_in_guest(vcpu))
6381 return 0;
6382
6383 state = PERF_GUEST_ACTIVE;
6384 if (!kvm_arch_vcpu_in_kernel(vcpu))
6385 state |= PERF_GUEST_USER;
6386
6387 return state;
6388}
6389
6390static unsigned long kvm_guest_get_ip(void)
6391{
6392 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6393
6394 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6395 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6396 return 0;
6397
6398 return kvm_arch_vcpu_get_ip(vcpu);
6399}
6400
6401static struct perf_guest_info_callbacks kvm_guest_cbs = {
6402 .state = kvm_guest_state,
6403 .get_ip = kvm_guest_get_ip,
6404 .handle_intel_pt_intr = NULL,
6405};
6406
6407void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6408{
6409 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6410 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6411}
6412void kvm_unregister_perf_callbacks(void)
6413{
6414 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6415}
6416#endif
6417
6418int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6419{
6420 int r;
6421 int cpu;
6422
6423#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6424 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6425 kvm_online_cpu, kvm_offline_cpu);
6426 if (r)
6427 return r;
6428
6429 register_syscore_ops(&kvm_syscore_ops);
6430#endif
6431
6432 /* A kmem cache lets us meet the alignment requirements of fx_save. */
6433 if (!vcpu_align)
6434 vcpu_align = __alignof__(struct kvm_vcpu);
6435 kvm_vcpu_cache =
6436 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6437 SLAB_ACCOUNT,
6438 offsetof(struct kvm_vcpu, arch),
6439 offsetofend(struct kvm_vcpu, stats_id)
6440 - offsetof(struct kvm_vcpu, arch),
6441 NULL);
6442 if (!kvm_vcpu_cache) {
6443 r = -ENOMEM;
6444 goto err_vcpu_cache;
6445 }
6446
6447 for_each_possible_cpu(cpu) {
6448 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6449 GFP_KERNEL, cpu_to_node(cpu))) {
6450 r = -ENOMEM;
6451 goto err_cpu_kick_mask;
6452 }
6453 }
6454
6455 r = kvm_irqfd_init();
6456 if (r)
6457 goto err_irqfd;
6458
6459 r = kvm_async_pf_init();
6460 if (r)
6461 goto err_async_pf;
6462
6463 kvm_chardev_ops.owner = module;
6464 kvm_vm_fops.owner = module;
6465 kvm_vcpu_fops.owner = module;
6466 kvm_device_fops.owner = module;
6467
6468 kvm_preempt_ops.sched_in = kvm_sched_in;
6469 kvm_preempt_ops.sched_out = kvm_sched_out;
6470
6471 kvm_init_debug();
6472
6473 r = kvm_vfio_ops_init();
6474 if (WARN_ON_ONCE(r))
6475 goto err_vfio;
6476
6477 kvm_gmem_init(module);
6478
6479 /*
6480 * Registration _must_ be the very last thing done, as this exposes
6481 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6482 */
6483 r = misc_register(&kvm_dev);
6484 if (r) {
6485 pr_err("kvm: misc device register failed\n");
6486 goto err_register;
6487 }
6488
6489 return 0;
6490
6491err_register:
6492 kvm_vfio_ops_exit();
6493err_vfio:
6494 kvm_async_pf_deinit();
6495err_async_pf:
6496 kvm_irqfd_exit();
6497err_irqfd:
6498err_cpu_kick_mask:
6499 for_each_possible_cpu(cpu)
6500 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6501 kmem_cache_destroy(kvm_vcpu_cache);
6502err_vcpu_cache:
6503#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6504 unregister_syscore_ops(&kvm_syscore_ops);
6505 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6506#endif
6507 return r;
6508}
6509EXPORT_SYMBOL_GPL(kvm_init);
6510
6511void kvm_exit(void)
6512{
6513 int cpu;
6514
6515 /*
6516 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6517 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6518 * to KVM while the module is being stopped.
6519 */
6520 misc_deregister(&kvm_dev);
6521
6522 debugfs_remove_recursive(kvm_debugfs_dir);
6523 for_each_possible_cpu(cpu)
6524 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6525 kmem_cache_destroy(kvm_vcpu_cache);
6526 kvm_vfio_ops_exit();
6527 kvm_async_pf_deinit();
6528#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6529 unregister_syscore_ops(&kvm_syscore_ops);
6530 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6531#endif
6532 kvm_irqfd_exit();
6533}
6534EXPORT_SYMBOL_GPL(kvm_exit);
6535
6536struct kvm_vm_worker_thread_context {
6537 struct kvm *kvm;
6538 struct task_struct *parent;
6539 struct completion init_done;
6540 kvm_vm_thread_fn_t thread_fn;
6541 uintptr_t data;
6542 int err;
6543};
6544
6545static int kvm_vm_worker_thread(void *context)
6546{
6547 /*
6548 * The init_context is allocated on the stack of the parent thread, so
6549 * we have to locally copy anything that is needed beyond initialization
6550 */
6551 struct kvm_vm_worker_thread_context *init_context = context;
6552 struct task_struct *parent;
6553 struct kvm *kvm = init_context->kvm;
6554 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6555 uintptr_t data = init_context->data;
6556 int err;
6557
6558 err = kthread_park(current);
6559 /* kthread_park(current) is never supposed to return an error */
6560 WARN_ON(err != 0);
6561 if (err)
6562 goto init_complete;
6563
6564 err = cgroup_attach_task_all(init_context->parent, current);
6565 if (err) {
6566 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6567 __func__, err);
6568 goto init_complete;
6569 }
6570
6571 set_user_nice(current, task_nice(init_context->parent));
6572
6573init_complete:
6574 init_context->err = err;
6575 complete(&init_context->init_done);
6576 init_context = NULL;
6577
6578 if (err)
6579 goto out;
6580
6581 /* Wait to be woken up by the spawner before proceeding. */
6582 kthread_parkme();
6583
6584 if (!kthread_should_stop())
6585 err = thread_fn(kvm, data);
6586
6587out:
6588 /*
6589 * Move kthread back to its original cgroup to prevent it lingering in
6590 * the cgroup of the VM process, after the latter finishes its
6591 * execution.
6592 *
6593 * kthread_stop() waits on the 'exited' completion condition which is
6594 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6595 * kthread is removed from the cgroup in the cgroup_exit() which is
6596 * called after the exit_mm(). This causes the kthread_stop() to return
6597 * before the kthread actually quits the cgroup.
6598 */
6599 rcu_read_lock();
6600 parent = rcu_dereference(current->real_parent);
6601 get_task_struct(parent);
6602 rcu_read_unlock();
6603 cgroup_attach_task_all(parent, current);
6604 put_task_struct(parent);
6605
6606 return err;
6607}
6608
6609int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6610 uintptr_t data, const char *name,
6611 struct task_struct **thread_ptr)
6612{
6613 struct kvm_vm_worker_thread_context init_context = {};
6614 struct task_struct *thread;
6615
6616 *thread_ptr = NULL;
6617 init_context.kvm = kvm;
6618 init_context.parent = current;
6619 init_context.thread_fn = thread_fn;
6620 init_context.data = data;
6621 init_completion(&init_context.init_done);
6622
6623 thread = kthread_run(kvm_vm_worker_thread, &init_context,
6624 "%s-%d", name, task_pid_nr(current));
6625 if (IS_ERR(thread))
6626 return PTR_ERR(thread);
6627
6628 /* kthread_run is never supposed to return NULL */
6629 WARN_ON(thread == NULL);
6630
6631 wait_for_completion(&init_context.init_done);
6632
6633 if (!init_context.err)
6634 *thread_ptr = thread;
6635
6636 return init_context.err;
6637}