Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * This module enables machines with Intel VT-x extensions to run virtual
   6 * machines without emulation or binary translation.
   7 *
   8 * Copyright (C) 2006 Qumranet, Inc.
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 */
  15
  16#include <kvm/iodev.h>
  17
  18#include <linux/kvm_host.h>
  19#include <linux/kvm.h>
  20#include <linux/module.h>
  21#include <linux/errno.h>
  22#include <linux/percpu.h>
  23#include <linux/mm.h>
  24#include <linux/miscdevice.h>
  25#include <linux/vmalloc.h>
  26#include <linux/reboot.h>
  27#include <linux/debugfs.h>
  28#include <linux/highmem.h>
  29#include <linux/file.h>
  30#include <linux/syscore_ops.h>
  31#include <linux/cpu.h>
  32#include <linux/sched/signal.h>
  33#include <linux/sched/mm.h>
  34#include <linux/sched/stat.h>
  35#include <linux/cpumask.h>
  36#include <linux/smp.h>
  37#include <linux/anon_inodes.h>
  38#include <linux/profile.h>
  39#include <linux/kvm_para.h>
  40#include <linux/pagemap.h>
  41#include <linux/mman.h>
  42#include <linux/swap.h>
  43#include <linux/bitops.h>
  44#include <linux/spinlock.h>
  45#include <linux/compat.h>
  46#include <linux/srcu.h>
  47#include <linux/hugetlb.h>
  48#include <linux/slab.h>
  49#include <linux/sort.h>
  50#include <linux/bsearch.h>
  51#include <linux/io.h>
  52#include <linux/lockdep.h>
  53#include <linux/kthread.h>
  54#include <linux/suspend.h>
  55
  56#include <asm/processor.h>
  57#include <asm/ioctl.h>
  58#include <linux/uaccess.h>
  59
  60#include "coalesced_mmio.h"
  61#include "async_pf.h"
  62#include "kvm_mm.h"
  63#include "vfio.h"
  64
  65#define CREATE_TRACE_POINTS
  66#include <trace/events/kvm.h>
  67
  68#include <linux/kvm_dirty_ring.h>
  69
  70/* Worst case buffer size needed for holding an integer. */
  71#define ITOA_MAX_LEN 12
  72
  73MODULE_AUTHOR("Qumranet");
  74MODULE_LICENSE("GPL");
  75
  76/* Architectures should define their poll value according to the halt latency */
  77unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  78module_param(halt_poll_ns, uint, 0644);
  79EXPORT_SYMBOL_GPL(halt_poll_ns);
  80
  81/* Default doubles per-vcpu halt_poll_ns. */
  82unsigned int halt_poll_ns_grow = 2;
  83module_param(halt_poll_ns_grow, uint, 0644);
  84EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
  85
  86/* The start value to grow halt_poll_ns from */
  87unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
  88module_param(halt_poll_ns_grow_start, uint, 0644);
  89EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
  90
  91/* Default resets per-vcpu halt_poll_ns . */
  92unsigned int halt_poll_ns_shrink;
  93module_param(halt_poll_ns_shrink, uint, 0644);
  94EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
  95
  96/*
  97 * Ordering of locks:
  98 *
  99 *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
 100 */
 101
 102DEFINE_MUTEX(kvm_lock);
 103static DEFINE_RAW_SPINLOCK(kvm_count_lock);
 104LIST_HEAD(vm_list);
 105
 106static cpumask_var_t cpus_hardware_enabled;
 107static int kvm_usage_count;
 108static atomic_t hardware_enable_failed;
 109
 110static struct kmem_cache *kvm_vcpu_cache;
 111
 112static __read_mostly struct preempt_ops kvm_preempt_ops;
 113static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
 114
 115struct dentry *kvm_debugfs_dir;
 116EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
 117
 
 118static const struct file_operations stat_fops_per_vm;
 119
 120static struct file_operations kvm_chardev_ops;
 121
 122static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 123			   unsigned long arg);
 124#ifdef CONFIG_KVM_COMPAT
 125static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 126				  unsigned long arg);
 127#define KVM_COMPAT(c)	.compat_ioctl	= (c)
 128#else
 129/*
 130 * For architectures that don't implement a compat infrastructure,
 131 * adopt a double line of defense:
 132 * - Prevent a compat task from opening /dev/kvm
 133 * - If the open has been done by a 64bit task, and the KVM fd
 134 *   passed to a compat task, let the ioctls fail.
 135 */
 136static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
 137				unsigned long arg) { return -EINVAL; }
 138
 139static int kvm_no_compat_open(struct inode *inode, struct file *file)
 140{
 141	return is_compat_task() ? -ENODEV : 0;
 142}
 143#define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
 144			.open		= kvm_no_compat_open
 145#endif
 146static int hardware_enable_all(void);
 147static void hardware_disable_all(void);
 148
 149static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 150
 
 
 151__visible bool kvm_rebooting;
 152EXPORT_SYMBOL_GPL(kvm_rebooting);
 153
 154#define KVM_EVENT_CREATE_VM 0
 155#define KVM_EVENT_DESTROY_VM 1
 156static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
 157static unsigned long long kvm_createvm_count;
 158static unsigned long long kvm_active_vms;
 159
 160static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
 161
 162__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
 163						   unsigned long start, unsigned long end)
 164{
 165}
 166
 167__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
 168{
 169}
 170
 171bool kvm_is_zone_device_page(struct page *page)
 172{
 173	/*
 174	 * The metadata used by is_zone_device_page() to determine whether or
 175	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
 176	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
 177	 * page_count() is zero to help detect bad usage of this helper.
 178	 */
 179	if (WARN_ON_ONCE(!page_count(page)))
 180		return false;
 181
 182	return is_zone_device_page(page);
 183}
 184
 185/*
 186 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
 187 * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
 188 * is likely incomplete, it has been compiled purely through people wanting to
 189 * back guest with a certain type of memory and encountering issues.
 190 */
 191struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
 192{
 193	struct page *page;
 194
 195	if (!pfn_valid(pfn))
 196		return NULL;
 197
 198	page = pfn_to_page(pfn);
 199	if (!PageReserved(page))
 200		return page;
 201
 202	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
 203	if (is_zero_pfn(pfn))
 204		return page;
 205
 206	/*
 207	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
 208	 * perspective they are "normal" pages, albeit with slightly different
 209	 * usage rules.
 210	 */
 211	if (kvm_is_zone_device_page(page))
 212		return page;
 
 
 213
 214	return NULL;
 
 
 
 
 
 
 
 
 
 
 215}
 216
 217/*
 218 * Switches to specified vcpu, until a matching vcpu_put()
 219 */
 220void vcpu_load(struct kvm_vcpu *vcpu)
 221{
 222	int cpu = get_cpu();
 223
 224	__this_cpu_write(kvm_running_vcpu, vcpu);
 225	preempt_notifier_register(&vcpu->preempt_notifier);
 226	kvm_arch_vcpu_load(vcpu, cpu);
 227	put_cpu();
 228}
 229EXPORT_SYMBOL_GPL(vcpu_load);
 230
 231void vcpu_put(struct kvm_vcpu *vcpu)
 232{
 233	preempt_disable();
 234	kvm_arch_vcpu_put(vcpu);
 235	preempt_notifier_unregister(&vcpu->preempt_notifier);
 236	__this_cpu_write(kvm_running_vcpu, NULL);
 237	preempt_enable();
 238}
 239EXPORT_SYMBOL_GPL(vcpu_put);
 240
 241/* TODO: merge with kvm_arch_vcpu_should_kick */
 242static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
 243{
 244	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
 245
 246	/*
 247	 * We need to wait for the VCPU to reenable interrupts and get out of
 248	 * READING_SHADOW_PAGE_TABLES mode.
 249	 */
 250	if (req & KVM_REQUEST_WAIT)
 251		return mode != OUTSIDE_GUEST_MODE;
 252
 253	/*
 254	 * Need to kick a running VCPU, but otherwise there is nothing to do.
 255	 */
 256	return mode == IN_GUEST_MODE;
 257}
 258
 259static void ack_kick(void *_completed)
 260{
 261}
 262
 263static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
 264{
 
 
 
 265	if (cpumask_empty(cpus))
 266		return false;
 267
 268	smp_call_function_many(cpus, ack_kick, NULL, wait);
 269	return true;
 270}
 271
 272static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
 273				  struct cpumask *tmp, int current_cpu)
 274{
 275	int cpu;
 276
 277	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
 278		__kvm_make_request(req, vcpu);
 279
 280	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
 281		return;
 282
 283	/*
 284	 * Note, the vCPU could get migrated to a different pCPU at any point
 285	 * after kvm_request_needs_ipi(), which could result in sending an IPI
 286	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
 287	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
 288	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
 289	 * after this point is also OK, as the requirement is only that KVM wait
 290	 * for vCPUs that were reading SPTEs _before_ any changes were
 291	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
 292	 */
 293	if (kvm_request_needs_ipi(vcpu, req)) {
 294		cpu = READ_ONCE(vcpu->cpu);
 295		if (cpu != -1 && cpu != current_cpu)
 296			__cpumask_set_cpu(cpu, tmp);
 297	}
 298}
 299
 300bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
 301				 unsigned long *vcpu_bitmap)
 
 302{
 
 303	struct kvm_vcpu *vcpu;
 304	struct cpumask *cpus;
 305	int i, me;
 306	bool called;
 307
 308	me = get_cpu();
 309
 310	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
 311	cpumask_clear(cpus);
 
 
 
 
 
 312
 313	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
 314		vcpu = kvm_get_vcpu(kvm, i);
 315		if (!vcpu)
 316			continue;
 317		kvm_make_vcpu_request(vcpu, req, cpus, me);
 
 
 
 318	}
 319
 320	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
 321	put_cpu();
 322
 323	return called;
 324}
 325
 326bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
 327				      struct kvm_vcpu *except)
 328{
 329	struct kvm_vcpu *vcpu;
 330	struct cpumask *cpus;
 331	unsigned long i;
 332	bool called;
 333	int me;
 334
 335	me = get_cpu();
 336
 337	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
 338	cpumask_clear(cpus);
 339
 340	kvm_for_each_vcpu(i, vcpu, kvm) {
 341		if (vcpu == except)
 342			continue;
 343		kvm_make_vcpu_request(vcpu, req, cpus, me);
 344	}
 345
 346	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
 347	put_cpu();
 348
 
 349	return called;
 350}
 351
 352bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 353{
 354	return kvm_make_all_cpus_request_except(kvm, req, NULL);
 355}
 356EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
 357
 358#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 359void kvm_flush_remote_tlbs(struct kvm *kvm)
 360{
 361	++kvm->stat.generic.remote_tlb_flush_requests;
 
 
 
 
 362
 363	/*
 364	 * We want to publish modifications to the page tables before reading
 365	 * mode. Pairs with a memory barrier in arch-specific code.
 366	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 367	 * and smp_mb in walk_shadow_page_lockless_begin/end.
 368	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 369	 *
 370	 * There is already an smp_mb__after_atomic() before
 371	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 372	 * barrier here.
 373	 */
 374	if (!kvm_arch_flush_remote_tlb(kvm)
 375	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 376		++kvm->stat.generic.remote_tlb_flush;
 
 377}
 378EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 379#endif
 380
 381static void kvm_flush_shadow_all(struct kvm *kvm)
 382{
 383	kvm_arch_flush_shadow_all(kvm);
 384	kvm_arch_guest_memory_reclaimed(kvm);
 385}
 386
 387#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
 388static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
 389					       gfp_t gfp_flags)
 390{
 391	gfp_flags |= mc->gfp_zero;
 392
 393	if (mc->kmem_cache)
 394		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
 395	else
 396		return (void *)__get_free_page(gfp_flags);
 397}
 398
 399int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
 400{
 401	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
 402	void *obj;
 403
 404	if (mc->nobjs >= min)
 405		return 0;
 406
 407	if (unlikely(!mc->objects)) {
 408		if (WARN_ON_ONCE(!capacity))
 409			return -EIO;
 410
 411		mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
 412		if (!mc->objects)
 413			return -ENOMEM;
 414
 415		mc->capacity = capacity;
 416	}
 417
 418	/* It is illegal to request a different capacity across topups. */
 419	if (WARN_ON_ONCE(mc->capacity != capacity))
 420		return -EIO;
 421
 422	while (mc->nobjs < mc->capacity) {
 423		obj = mmu_memory_cache_alloc_obj(mc, gfp);
 424		if (!obj)
 425			return mc->nobjs >= min ? 0 : -ENOMEM;
 426		mc->objects[mc->nobjs++] = obj;
 427	}
 428	return 0;
 429}
 430
 431int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
 432{
 433	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
 434}
 435
 436int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
 437{
 438	return mc->nobjs;
 439}
 440
 441void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
 442{
 443	while (mc->nobjs) {
 444		if (mc->kmem_cache)
 445			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
 446		else
 447			free_page((unsigned long)mc->objects[--mc->nobjs]);
 448	}
 449
 450	kvfree(mc->objects);
 451
 452	mc->objects = NULL;
 453	mc->capacity = 0;
 454}
 455
 456void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 457{
 458	void *p;
 459
 460	if (WARN_ON(!mc->nobjs))
 461		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
 462	else
 463		p = mc->objects[--mc->nobjs];
 464	BUG_ON(!p);
 465	return p;
 466}
 467#endif
 468
 469static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 470{
 471	mutex_init(&vcpu->mutex);
 472	vcpu->cpu = -1;
 473	vcpu->kvm = kvm;
 474	vcpu->vcpu_id = id;
 475	vcpu->pid = NULL;
 476#ifndef __KVM_HAVE_ARCH_WQP
 477	rcuwait_init(&vcpu->wait);
 478#endif
 479	kvm_async_pf_vcpu_init(vcpu);
 480
 
 
 
 481	kvm_vcpu_set_in_spin_loop(vcpu, false);
 482	kvm_vcpu_set_dy_eligible(vcpu, false);
 483	vcpu->preempted = false;
 484	vcpu->ready = false;
 485	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
 486	vcpu->last_used_slot = NULL;
 487
 488	/* Fill the stats id string for the vcpu */
 489	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
 490		 task_pid_nr(current), id);
 491}
 492
 493static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
 494{
 495	kvm_arch_vcpu_destroy(vcpu);
 496	kvm_dirty_ring_free(&vcpu->dirty_ring);
 497
 498	/*
 499	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
 500	 * the vcpu->pid pointer, and at destruction time all file descriptors
 501	 * are already gone.
 502	 */
 503	put_pid(rcu_dereference_protected(vcpu->pid, 1));
 504
 505	free_page((unsigned long)vcpu->run);
 506	kmem_cache_free(kvm_vcpu_cache, vcpu);
 507}
 508
 509void kvm_destroy_vcpus(struct kvm *kvm)
 510{
 511	unsigned long i;
 512	struct kvm_vcpu *vcpu;
 513
 514	kvm_for_each_vcpu(i, vcpu, kvm) {
 515		kvm_vcpu_destroy(vcpu);
 516		xa_erase(&kvm->vcpu_array, i);
 517	}
 518
 519	atomic_set(&kvm->online_vcpus, 0);
 520}
 521EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
 522
 523#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 524static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 525{
 526	return container_of(mn, struct kvm, mmu_notifier);
 527}
 528
 529static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
 530					      struct mm_struct *mm,
 531					      unsigned long start, unsigned long end)
 532{
 533	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 534	int idx;
 535
 536	idx = srcu_read_lock(&kvm->srcu);
 537	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
 538	srcu_read_unlock(&kvm->srcu, idx);
 539}
 540
 541typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
 542
 543typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
 544			     unsigned long end);
 545
 546typedef void (*on_unlock_fn_t)(struct kvm *kvm);
 547
 548struct kvm_hva_range {
 549	unsigned long start;
 550	unsigned long end;
 551	pte_t pte;
 552	hva_handler_t handler;
 553	on_lock_fn_t on_lock;
 554	on_unlock_fn_t on_unlock;
 555	bool flush_on_ret;
 556	bool may_block;
 557};
 558
 559/*
 560 * Use a dedicated stub instead of NULL to indicate that there is no callback
 561 * function/handler.  The compiler technically can't guarantee that a real
 562 * function will have a non-zero address, and so it will generate code to
 563 * check for !NULL, whereas comparing against a stub will be elided at compile
 564 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
 565 */
 566static void kvm_null_fn(void)
 567{
 568
 569}
 570#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
 571
 572/* Iterate over each memslot intersecting [start, last] (inclusive) range */
 573#define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
 574	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
 575	     node;							     \
 576	     node = interval_tree_iter_next(node, start, last))	     \
 577
 578static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
 579						  const struct kvm_hva_range *range)
 580{
 581	bool ret = false, locked = false;
 582	struct kvm_gfn_range gfn_range;
 583	struct kvm_memory_slot *slot;
 584	struct kvm_memslots *slots;
 585	int i, idx;
 586
 587	if (WARN_ON_ONCE(range->end <= range->start))
 588		return 0;
 589
 590	/* A null handler is allowed if and only if on_lock() is provided. */
 591	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
 592			 IS_KVM_NULL_FN(range->handler)))
 593		return 0;
 594
 595	idx = srcu_read_lock(&kvm->srcu);
 596
 597	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 598		struct interval_tree_node *node;
 599
 600		slots = __kvm_memslots(kvm, i);
 601		kvm_for_each_memslot_in_hva_range(node, slots,
 602						  range->start, range->end - 1) {
 603			unsigned long hva_start, hva_end;
 604
 605			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
 606			hva_start = max(range->start, slot->userspace_addr);
 607			hva_end = min(range->end, slot->userspace_addr +
 608						  (slot->npages << PAGE_SHIFT));
 609
 610			/*
 611			 * To optimize for the likely case where the address
 612			 * range is covered by zero or one memslots, don't
 613			 * bother making these conditional (to avoid writes on
 614			 * the second or later invocation of the handler).
 615			 */
 616			gfn_range.pte = range->pte;
 617			gfn_range.may_block = range->may_block;
 618
 619			/*
 620			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
 621			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
 622			 */
 623			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
 624			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
 625			gfn_range.slot = slot;
 626
 627			if (!locked) {
 628				locked = true;
 629				KVM_MMU_LOCK(kvm);
 630				if (!IS_KVM_NULL_FN(range->on_lock))
 631					range->on_lock(kvm, range->start, range->end);
 632				if (IS_KVM_NULL_FN(range->handler))
 633					break;
 634			}
 635			ret |= range->handler(kvm, &gfn_range);
 636		}
 637	}
 638
 639	if (range->flush_on_ret && ret)
 640		kvm_flush_remote_tlbs(kvm);
 641
 642	if (locked) {
 643		KVM_MMU_UNLOCK(kvm);
 644		if (!IS_KVM_NULL_FN(range->on_unlock))
 645			range->on_unlock(kvm);
 646	}
 647
 648	srcu_read_unlock(&kvm->srcu, idx);
 649
 650	/* The notifiers are averse to booleans. :-( */
 651	return (int)ret;
 652}
 653
 654static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
 655						unsigned long start,
 656						unsigned long end,
 657						pte_t pte,
 658						hva_handler_t handler)
 659{
 660	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 661	const struct kvm_hva_range range = {
 662		.start		= start,
 663		.end		= end,
 664		.pte		= pte,
 665		.handler	= handler,
 666		.on_lock	= (void *)kvm_null_fn,
 667		.on_unlock	= (void *)kvm_null_fn,
 668		.flush_on_ret	= true,
 669		.may_block	= false,
 670	};
 671
 672	return __kvm_handle_hva_range(kvm, &range);
 673}
 674
 675static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
 676							 unsigned long start,
 677							 unsigned long end,
 678							 hva_handler_t handler)
 679{
 680	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 681	const struct kvm_hva_range range = {
 682		.start		= start,
 683		.end		= end,
 684		.pte		= __pte(0),
 685		.handler	= handler,
 686		.on_lock	= (void *)kvm_null_fn,
 687		.on_unlock	= (void *)kvm_null_fn,
 688		.flush_on_ret	= false,
 689		.may_block	= false,
 690	};
 691
 692	return __kvm_handle_hva_range(kvm, &range);
 693}
 694static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 695					struct mm_struct *mm,
 696					unsigned long address,
 697					pte_t pte)
 698{
 699	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 
 700
 701	trace_kvm_set_spte_hva(address);
 702
 703	/*
 704	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
 705	 * If mmu_invalidate_in_progress is zero, then no in-progress
 706	 * invalidations, including this one, found a relevant memslot at
 707	 * start(); rechecking memslots here is unnecessary.  Note, a false
 708	 * positive (count elevated by a different invalidation) is sub-optimal
 709	 * but functionally ok.
 710	 */
 711	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
 712	if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
 713		return;
 714
 715	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
 716}
 717
 718void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
 719			      unsigned long end)
 720{
 721	/*
 722	 * The count increase must become visible at unlock time as no
 723	 * spte can be established without taking the mmu_lock and
 724	 * count is also read inside the mmu_lock critical section.
 725	 */
 726	kvm->mmu_invalidate_in_progress++;
 727	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
 728		kvm->mmu_invalidate_range_start = start;
 729		kvm->mmu_invalidate_range_end = end;
 730	} else {
 731		/*
 732		 * Fully tracking multiple concurrent ranges has diminishing
 733		 * returns. Keep things simple and just find the minimal range
 734		 * which includes the current and new ranges. As there won't be
 735		 * enough information to subtract a range after its invalidate
 736		 * completes, any ranges invalidated concurrently will
 737		 * accumulate and persist until all outstanding invalidates
 738		 * complete.
 739		 */
 740		kvm->mmu_invalidate_range_start =
 741			min(kvm->mmu_invalidate_range_start, start);
 742		kvm->mmu_invalidate_range_end =
 743			max(kvm->mmu_invalidate_range_end, end);
 744	}
 745}
 746
 747static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 748					const struct mmu_notifier_range *range)
 749{
 750	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 751	const struct kvm_hva_range hva_range = {
 752		.start		= range->start,
 753		.end		= range->end,
 754		.pte		= __pte(0),
 755		.handler	= kvm_unmap_gfn_range,
 756		.on_lock	= kvm_mmu_invalidate_begin,
 757		.on_unlock	= kvm_arch_guest_memory_reclaimed,
 758		.flush_on_ret	= true,
 759		.may_block	= mmu_notifier_range_blockable(range),
 760	};
 761
 762	trace_kvm_unmap_hva_range(range->start, range->end);
 763
 764	/*
 765	 * Prevent memslot modification between range_start() and range_end()
 766	 * so that conditionally locking provides the same result in both
 767	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
 768	 * adjustments will be imbalanced.
 769	 *
 770	 * Pairs with the decrement in range_end().
 771	 */
 772	spin_lock(&kvm->mn_invalidate_lock);
 773	kvm->mn_active_invalidate_count++;
 774	spin_unlock(&kvm->mn_invalidate_lock);
 775
 
 
 776	/*
 777	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
 778	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
 779	 * each cache's lock.  There are relatively few caches in existence at
 780	 * any given time, and the caches themselves can check for hva overlap,
 781	 * i.e. don't need to rely on memslot overlap checks for performance.
 782	 * Because this runs without holding mmu_lock, the pfn caches must use
 783	 * mn_active_invalidate_count (see above) instead of
 784	 * mmu_invalidate_in_progress.
 785	 */
 786	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
 787					  hva_range.may_block);
 
 
 
 
 
 788
 789	__kvm_handle_hva_range(kvm, &hva_range);
 
 790
 791	return 0;
 792}
 793
 794void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
 795			    unsigned long end)
 796{
 
 
 
 797	/*
 798	 * This sequence increase will notify the kvm page fault that
 799	 * the page that is going to be mapped in the spte could have
 800	 * been freed.
 801	 */
 802	kvm->mmu_invalidate_seq++;
 803	smp_wmb();
 804	/*
 805	 * The above sequence increase must be visible before the
 806	 * below count decrease, which is ensured by the smp_wmb above
 807	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
 808	 */
 809	kvm->mmu_invalidate_in_progress--;
 810}
 811
 812static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 813					const struct mmu_notifier_range *range)
 814{
 815	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 816	const struct kvm_hva_range hva_range = {
 817		.start		= range->start,
 818		.end		= range->end,
 819		.pte		= __pte(0),
 820		.handler	= (void *)kvm_null_fn,
 821		.on_lock	= kvm_mmu_invalidate_end,
 822		.on_unlock	= (void *)kvm_null_fn,
 823		.flush_on_ret	= false,
 824		.may_block	= mmu_notifier_range_blockable(range),
 825	};
 826	bool wake;
 827
 828	__kvm_handle_hva_range(kvm, &hva_range);
 829
 830	/* Pairs with the increment in range_start(). */
 831	spin_lock(&kvm->mn_invalidate_lock);
 832	wake = (--kvm->mn_active_invalidate_count == 0);
 833	spin_unlock(&kvm->mn_invalidate_lock);
 834
 835	/*
 836	 * There can only be one waiter, since the wait happens under
 837	 * slots_lock.
 838	 */
 839	if (wake)
 840		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
 841
 842	BUG_ON(kvm->mmu_invalidate_in_progress < 0);
 843}
 844
 845static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 846					      struct mm_struct *mm,
 847					      unsigned long start,
 848					      unsigned long end)
 849{
 850	trace_kvm_age_hva(start, end);
 
 
 
 
 
 
 
 
 851
 852	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
 
 
 
 853}
 854
 855static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 856					struct mm_struct *mm,
 857					unsigned long start,
 858					unsigned long end)
 859{
 860	trace_kvm_age_hva(start, end);
 
 861
 
 
 862	/*
 863	 * Even though we do not flush TLB, this will still adversely
 864	 * affect performance on pre-Haswell Intel EPT, where there is
 865	 * no EPT Access Bit to clear so that we have to tear down EPT
 866	 * tables instead. If we find this unacceptable, we can always
 867	 * add a parameter to kvm_age_hva so that it effectively doesn't
 868	 * do anything on clear_young.
 869	 *
 870	 * Also note that currently we never issue secondary TLB flushes
 871	 * from clear_young, leaving this job up to the regular system
 872	 * cadence. If we find this inaccurate, we might come up with a
 873	 * more sophisticated heuristic later.
 874	 */
 875	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
 
 
 
 
 876}
 877
 878static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 879				       struct mm_struct *mm,
 880				       unsigned long address)
 881{
 882	trace_kvm_test_age_hva(address);
 
 883
 884	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
 885					     kvm_test_age_gfn);
 
 
 
 
 
 886}
 887
 888static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 889				     struct mm_struct *mm)
 890{
 891	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 892	int idx;
 893
 894	idx = srcu_read_lock(&kvm->srcu);
 895	kvm_flush_shadow_all(kvm);
 896	srcu_read_unlock(&kvm->srcu, idx);
 897}
 898
 899static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 900	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
 901	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
 902	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
 903	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
 904	.clear_young		= kvm_mmu_notifier_clear_young,
 905	.test_young		= kvm_mmu_notifier_test_young,
 906	.change_pte		= kvm_mmu_notifier_change_pte,
 907	.release		= kvm_mmu_notifier_release,
 908};
 909
 910static int kvm_init_mmu_notifier(struct kvm *kvm)
 911{
 912	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 913	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 914}
 915
 916#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 917
 918static int kvm_init_mmu_notifier(struct kvm *kvm)
 919{
 920	return 0;
 921}
 922
 923#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 924
 925#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
 926static int kvm_pm_notifier_call(struct notifier_block *bl,
 927				unsigned long state,
 928				void *unused)
 929{
 930	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
 931
 932	return kvm_arch_pm_notifier(kvm, state);
 933}
 934
 935static void kvm_init_pm_notifier(struct kvm *kvm)
 936{
 937	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
 938	/* Suspend KVM before we suspend ftrace, RCU, etc. */
 939	kvm->pm_notifier.priority = INT_MAX;
 940	register_pm_notifier(&kvm->pm_notifier);
 941}
 942
 943static void kvm_destroy_pm_notifier(struct kvm *kvm)
 944{
 945	unregister_pm_notifier(&kvm->pm_notifier);
 946}
 947#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
 948static void kvm_init_pm_notifier(struct kvm *kvm)
 949{
 950}
 951
 952static void kvm_destroy_pm_notifier(struct kvm *kvm)
 953{
 954}
 955#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
 956
 957static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 958{
 959	if (!memslot->dirty_bitmap)
 960		return;
 961
 962	kvfree(memslot->dirty_bitmap);
 963	memslot->dirty_bitmap = NULL;
 964}
 965
 966/* This does not remove the slot from struct kvm_memslots data structures */
 967static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
 968{
 969	kvm_destroy_dirty_bitmap(slot);
 970
 971	kvm_arch_free_memslot(kvm, slot);
 972
 973	kfree(slot);
 
 974}
 975
 976static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 977{
 978	struct hlist_node *idnode;
 979	struct kvm_memory_slot *memslot;
 980	int bkt;
 981
 982	/*
 983	 * The same memslot objects live in both active and inactive sets,
 984	 * arbitrarily free using index '1' so the second invocation of this
 985	 * function isn't operating over a structure with dangling pointers
 986	 * (even though this function isn't actually touching them).
 987	 */
 988	if (!slots->node_idx)
 989		return;
 990
 991	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
 992		kvm_free_memslot(kvm, memslot);
 993}
 994
 995static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
 996{
 997	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
 998	case KVM_STATS_TYPE_INSTANT:
 999		return 0444;
1000	case KVM_STATS_TYPE_CUMULATIVE:
1001	case KVM_STATS_TYPE_PEAK:
1002	default:
1003		return 0644;
1004	}
1005}
1006
1007
1008static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1009{
1010	int i;
1011	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1012				      kvm_vcpu_stats_header.num_desc;
1013
1014	if (IS_ERR(kvm->debugfs_dentry))
1015		return;
1016
1017	debugfs_remove_recursive(kvm->debugfs_dentry);
1018
1019	if (kvm->debugfs_stat_data) {
1020		for (i = 0; i < kvm_debugfs_num_entries; i++)
1021			kfree(kvm->debugfs_stat_data[i]);
1022		kfree(kvm->debugfs_stat_data);
1023	}
1024}
1025
1026static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1027{
1028	static DEFINE_MUTEX(kvm_debugfs_lock);
1029	struct dentry *dent;
1030	char dir_name[ITOA_MAX_LEN * 2];
1031	struct kvm_stat_data *stat_data;
1032	const struct _kvm_stats_desc *pdesc;
1033	int i, ret = -ENOMEM;
1034	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1035				      kvm_vcpu_stats_header.num_desc;
1036
1037	if (!debugfs_initialized())
1038		return 0;
1039
1040	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1041	mutex_lock(&kvm_debugfs_lock);
1042	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1043	if (dent) {
1044		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1045		dput(dent);
1046		mutex_unlock(&kvm_debugfs_lock);
1047		return 0;
1048	}
1049	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1050	mutex_unlock(&kvm_debugfs_lock);
1051	if (IS_ERR(dent))
1052		return 0;
1053
1054	kvm->debugfs_dentry = dent;
1055	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1056					 sizeof(*kvm->debugfs_stat_data),
1057					 GFP_KERNEL_ACCOUNT);
1058	if (!kvm->debugfs_stat_data)
1059		goto out_err;
1060
1061	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1062		pdesc = &kvm_vm_stats_desc[i];
1063		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1064		if (!stat_data)
1065			goto out_err;
1066
1067		stat_data->kvm = kvm;
1068		stat_data->desc = pdesc;
1069		stat_data->kind = KVM_STAT_VM;
1070		kvm->debugfs_stat_data[i] = stat_data;
1071		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1072				    kvm->debugfs_dentry, stat_data,
1073				    &stat_fops_per_vm);
1074	}
1075
1076	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1077		pdesc = &kvm_vcpu_stats_desc[i];
1078		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1079		if (!stat_data)
1080			goto out_err;
1081
1082		stat_data->kvm = kvm;
1083		stat_data->desc = pdesc;
1084		stat_data->kind = KVM_STAT_VCPU;
1085		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1086		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1087				    kvm->debugfs_dentry, stat_data,
1088				    &stat_fops_per_vm);
1089	}
1090
1091	ret = kvm_arch_create_vm_debugfs(kvm);
1092	if (ret)
1093		goto out_err;
1094
1095	return 0;
1096out_err:
1097	kvm_destroy_vm_debugfs(kvm);
1098	return ret;
1099}
1100
1101/*
1102 * Called after the VM is otherwise initialized, but just before adding it to
1103 * the vm_list.
1104 */
1105int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1106{
1107	return 0;
1108}
1109
1110/*
1111 * Called just after removing the VM from the vm_list, but before doing any
1112 * other destruction.
1113 */
1114void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1115{
1116}
1117
1118/*
1119 * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1120 * be setup already, so we can create arch-specific debugfs entries under it.
1121 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1122 * a per-arch destroy interface is not needed.
1123 */
1124int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1125{
1126	return 0;
1127}
1128
1129static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1130{
1131	struct kvm *kvm = kvm_arch_alloc_vm();
1132	struct kvm_memslots *slots;
1133	int r = -ENOMEM;
1134	int i, j;
1135
1136	if (!kvm)
1137		return ERR_PTR(-ENOMEM);
1138
1139	/* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1140	__module_get(kvm_chardev_ops.owner);
1141
1142	KVM_MMU_LOCK_INIT(kvm);
1143	mmgrab(current->mm);
1144	kvm->mm = current->mm;
1145	kvm_eventfd_init(kvm);
1146	mutex_init(&kvm->lock);
1147	mutex_init(&kvm->irq_lock);
1148	mutex_init(&kvm->slots_lock);
1149	mutex_init(&kvm->slots_arch_lock);
1150	spin_lock_init(&kvm->mn_invalidate_lock);
1151	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1152	xa_init(&kvm->vcpu_array);
1153
1154	INIT_LIST_HEAD(&kvm->gpc_list);
1155	spin_lock_init(&kvm->gpc_lock);
1156
1157	INIT_LIST_HEAD(&kvm->devices);
1158	kvm->max_vcpus = KVM_MAX_VCPUS;
1159
1160	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1161
1162	/*
1163	 * Force subsequent debugfs file creations to fail if the VM directory
1164	 * is not created (by kvm_create_vm_debugfs()).
1165	 */
1166	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1167
1168	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1169		 task_pid_nr(current));
1170
1171	if (init_srcu_struct(&kvm->srcu))
1172		goto out_err_no_srcu;
1173	if (init_srcu_struct(&kvm->irq_srcu))
1174		goto out_err_no_irq_srcu;
1175
1176	refcount_set(&kvm->users_count, 1);
1177	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1178		for (j = 0; j < 2; j++) {
1179			slots = &kvm->__memslots[i][j];
1180
1181			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1182			slots->hva_tree = RB_ROOT_CACHED;
1183			slots->gfn_tree = RB_ROOT;
1184			hash_init(slots->id_hash);
1185			slots->node_idx = j;
1186
1187			/* Generations must be different for each address space. */
1188			slots->generation = i;
1189		}
1190
1191		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1192	}
1193
1194	for (i = 0; i < KVM_NR_BUSES; i++) {
1195		rcu_assign_pointer(kvm->buses[i],
1196			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1197		if (!kvm->buses[i])
1198			goto out_err_no_arch_destroy_vm;
1199	}
1200
 
 
1201	r = kvm_arch_init_vm(kvm, type);
1202	if (r)
1203		goto out_err_no_arch_destroy_vm;
1204
1205	r = hardware_enable_all();
1206	if (r)
1207		goto out_err_no_disable;
1208
1209#ifdef CONFIG_HAVE_KVM_IRQFD
1210	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1211#endif
1212
1213	r = kvm_init_mmu_notifier(kvm);
1214	if (r)
1215		goto out_err_no_mmu_notifier;
1216
1217	r = kvm_coalesced_mmio_init(kvm);
1218	if (r < 0)
1219		goto out_no_coalesced_mmio;
1220
1221	r = kvm_create_vm_debugfs(kvm, fdname);
1222	if (r)
1223		goto out_err_no_debugfs;
1224
1225	r = kvm_arch_post_init_vm(kvm);
1226	if (r)
1227		goto out_err;
1228
1229	mutex_lock(&kvm_lock);
1230	list_add(&kvm->vm_list, &vm_list);
1231	mutex_unlock(&kvm_lock);
1232
1233	preempt_notifier_inc();
1234	kvm_init_pm_notifier(kvm);
1235
1236	return kvm;
1237
1238out_err:
1239	kvm_destroy_vm_debugfs(kvm);
1240out_err_no_debugfs:
1241	kvm_coalesced_mmio_free(kvm);
1242out_no_coalesced_mmio:
1243#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1244	if (kvm->mmu_notifier.ops)
1245		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1246#endif
1247out_err_no_mmu_notifier:
1248	hardware_disable_all();
1249out_err_no_disable:
1250	kvm_arch_destroy_vm(kvm);
1251out_err_no_arch_destroy_vm:
1252	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1253	for (i = 0; i < KVM_NR_BUSES; i++)
1254		kfree(kvm_get_bus(kvm, i));
 
 
1255	cleanup_srcu_struct(&kvm->irq_srcu);
1256out_err_no_irq_srcu:
1257	cleanup_srcu_struct(&kvm->srcu);
1258out_err_no_srcu:
1259	kvm_arch_free_vm(kvm);
1260	mmdrop(current->mm);
1261	module_put(kvm_chardev_ops.owner);
1262	return ERR_PTR(r);
1263}
1264
1265static void kvm_destroy_devices(struct kvm *kvm)
1266{
1267	struct kvm_device *dev, *tmp;
1268
1269	/*
1270	 * We do not need to take the kvm->lock here, because nobody else
1271	 * has a reference to the struct kvm at this point and therefore
1272	 * cannot access the devices list anyhow.
1273	 */
1274	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1275		list_del(&dev->vm_node);
1276		dev->ops->destroy(dev);
1277	}
1278}
1279
1280static void kvm_destroy_vm(struct kvm *kvm)
1281{
1282	int i;
1283	struct mm_struct *mm = kvm->mm;
1284
1285	kvm_destroy_pm_notifier(kvm);
1286	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1287	kvm_destroy_vm_debugfs(kvm);
1288	kvm_arch_sync_events(kvm);
1289	mutex_lock(&kvm_lock);
1290	list_del(&kvm->vm_list);
1291	mutex_unlock(&kvm_lock);
1292	kvm_arch_pre_destroy_vm(kvm);
1293
1294	kvm_free_irq_routing(kvm);
1295	for (i = 0; i < KVM_NR_BUSES; i++) {
1296		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1297
1298		if (bus)
1299			kvm_io_bus_destroy(bus);
1300		kvm->buses[i] = NULL;
1301	}
1302	kvm_coalesced_mmio_free(kvm);
1303#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1304	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1305	/*
1306	 * At this point, pending calls to invalidate_range_start()
1307	 * have completed but no more MMU notifiers will run, so
1308	 * mn_active_invalidate_count may remain unbalanced.
1309	 * No threads can be waiting in install_new_memslots as the
1310	 * last reference on KVM has been dropped, but freeing
1311	 * memslots would deadlock without this manual intervention.
1312	 */
1313	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1314	kvm->mn_active_invalidate_count = 0;
1315#else
1316	kvm_flush_shadow_all(kvm);
1317#endif
1318	kvm_arch_destroy_vm(kvm);
1319	kvm_destroy_devices(kvm);
1320	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1321		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1322		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1323	}
1324	cleanup_srcu_struct(&kvm->irq_srcu);
1325	cleanup_srcu_struct(&kvm->srcu);
1326	kvm_arch_free_vm(kvm);
1327	preempt_notifier_dec();
1328	hardware_disable_all();
1329	mmdrop(mm);
1330	module_put(kvm_chardev_ops.owner);
1331}
1332
1333void kvm_get_kvm(struct kvm *kvm)
1334{
1335	refcount_inc(&kvm->users_count);
1336}
1337EXPORT_SYMBOL_GPL(kvm_get_kvm);
1338
1339/*
1340 * Make sure the vm is not during destruction, which is a safe version of
1341 * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1342 */
1343bool kvm_get_kvm_safe(struct kvm *kvm)
1344{
1345	return refcount_inc_not_zero(&kvm->users_count);
1346}
1347EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1348
1349void kvm_put_kvm(struct kvm *kvm)
1350{
1351	if (refcount_dec_and_test(&kvm->users_count))
1352		kvm_destroy_vm(kvm);
1353}
1354EXPORT_SYMBOL_GPL(kvm_put_kvm);
1355
1356/*
1357 * Used to put a reference that was taken on behalf of an object associated
1358 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1359 * of the new file descriptor fails and the reference cannot be transferred to
1360 * its final owner.  In such cases, the caller is still actively using @kvm and
1361 * will fail miserably if the refcount unexpectedly hits zero.
1362 */
1363void kvm_put_kvm_no_destroy(struct kvm *kvm)
1364{
1365	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1366}
1367EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1368
1369static int kvm_vm_release(struct inode *inode, struct file *filp)
1370{
1371	struct kvm *kvm = filp->private_data;
1372
1373	kvm_irqfd_release(kvm);
1374
1375	kvm_put_kvm(kvm);
1376	return 0;
1377}
1378
1379/*
1380 * Allocation size is twice as large as the actual dirty bitmap size.
1381 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1382 */
1383static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1384{
1385	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1386
1387	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1388	if (!memslot->dirty_bitmap)
1389		return -ENOMEM;
1390
1391	return 0;
1392}
1393
1394static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
 
 
 
 
 
1395{
1396	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1397	int node_idx_inactive = active->node_idx ^ 1;
 
 
 
1398
1399	return &kvm->__memslots[as_id][node_idx_inactive];
 
 
 
 
 
 
 
 
 
 
1400}
1401
1402/*
1403 * Helper to get the address space ID when one of memslot pointers may be NULL.
1404 * This also serves as a sanity that at least one of the pointers is non-NULL,
1405 * and that their address space IDs don't diverge.
1406 */
1407static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1408				  struct kvm_memory_slot *b)
1409{
1410	if (WARN_ON_ONCE(!a && !b))
1411		return 0;
1412
1413	if (!a)
1414		return b->as_id;
1415	if (!b)
1416		return a->as_id;
1417
1418	WARN_ON_ONCE(a->as_id != b->as_id);
1419	return a->as_id;
1420}
1421
1422static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1423				struct kvm_memory_slot *slot)
1424{
1425	struct rb_root *gfn_tree = &slots->gfn_tree;
1426	struct rb_node **node, *parent;
1427	int idx = slots->node_idx;
1428
1429	parent = NULL;
1430	for (node = &gfn_tree->rb_node; *node; ) {
1431		struct kvm_memory_slot *tmp;
1432
1433		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1434		parent = *node;
1435		if (slot->base_gfn < tmp->base_gfn)
1436			node = &(*node)->rb_left;
1437		else if (slot->base_gfn > tmp->base_gfn)
1438			node = &(*node)->rb_right;
1439		else
1440			BUG();
1441	}
1442
1443	rb_link_node(&slot->gfn_node[idx], parent, node);
1444	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1445}
1446
1447static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1448			       struct kvm_memory_slot *slot)
 
 
 
 
 
 
 
1449{
1450	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1451}
1452
1453static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1454				 struct kvm_memory_slot *old,
1455				 struct kvm_memory_slot *new)
 
 
 
 
 
 
 
1456{
1457	int idx = slots->node_idx;
 
 
 
 
 
1458
1459	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1460
1461	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1462			&slots->gfn_tree);
 
 
 
1463}
1464
1465/*
1466 * Replace @old with @new in the inactive memslots.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1467 *
1468 * With NULL @old this simply adds @new.
1469 * With NULL @new this simply removes @old.
1470 *
1471 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1472 * appropriately.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1473 */
1474static void kvm_replace_memslot(struct kvm *kvm,
1475				struct kvm_memory_slot *old,
1476				struct kvm_memory_slot *new)
1477{
1478	int as_id = kvm_memslots_get_as_id(old, new);
1479	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1480	int idx = slots->node_idx;
1481
1482	if (old) {
1483		hash_del(&old->id_node[idx]);
1484		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1485
1486		if ((long)old == atomic_long_read(&slots->last_used_slot))
1487			atomic_long_set(&slots->last_used_slot, (long)new);
1488
1489		if (!new) {
1490			kvm_erase_gfn_node(slots, old);
1491			return;
1492		}
1493	}
1494
1495	/*
1496	 * Initialize @new's hva range.  Do this even when replacing an @old
1497	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1498	 */
1499	new->hva_node[idx].start = new->userspace_addr;
1500	new->hva_node[idx].last = new->userspace_addr +
1501				  (new->npages << PAGE_SHIFT) - 1;
1502
1503	/*
1504	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1505	 * hva_node needs to be swapped with remove+insert even though hva can't
1506	 * change when replacing an existing slot.
1507	 */
1508	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1509	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1510
1511	/*
1512	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1513	 * switch the node in the gfn tree instead of removing the old and
1514	 * inserting the new as two separate operations. Replacement is a
1515	 * single O(1) operation versus two O(log(n)) operations for
1516	 * remove+insert.
1517	 */
1518	if (old && old->base_gfn == new->base_gfn) {
1519		kvm_replace_gfn_node(slots, old, new);
1520	} else {
1521		if (old)
1522			kvm_erase_gfn_node(slots, old);
1523		kvm_insert_gfn_node(slots, new);
 
 
 
 
 
 
 
 
 
1524	}
1525}
1526
1527static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1528{
1529	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1530
1531#ifdef __KVM_HAVE_READONLY_MEM
1532	valid_flags |= KVM_MEM_READONLY;
1533#endif
1534
1535	if (mem->flags & ~valid_flags)
1536		return -EINVAL;
1537
1538	return 0;
1539}
1540
1541static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
 
1542{
1543	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1544
1545	/* Grab the generation from the activate memslots. */
1546	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1547
1548	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1549	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1550
1551	/*
1552	 * Do not store the new memslots while there are invalidations in
1553	 * progress, otherwise the locking in invalidate_range_start and
1554	 * invalidate_range_end will be unbalanced.
1555	 */
1556	spin_lock(&kvm->mn_invalidate_lock);
1557	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1558	while (kvm->mn_active_invalidate_count) {
1559		set_current_state(TASK_UNINTERRUPTIBLE);
1560		spin_unlock(&kvm->mn_invalidate_lock);
1561		schedule();
1562		spin_lock(&kvm->mn_invalidate_lock);
1563	}
1564	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1565	rcu_assign_pointer(kvm->memslots[as_id], slots);
1566	spin_unlock(&kvm->mn_invalidate_lock);
1567
1568	/*
1569	 * Acquired in kvm_set_memslot. Must be released before synchronize
1570	 * SRCU below in order to avoid deadlock with another thread
1571	 * acquiring the slots_arch_lock in an srcu critical section.
1572	 */
1573	mutex_unlock(&kvm->slots_arch_lock);
1574
1575	synchronize_srcu_expedited(&kvm->srcu);
1576
1577	/*
1578	 * Increment the new memslot generation a second time, dropping the
1579	 * update in-progress flag and incrementing the generation based on
1580	 * the number of address spaces.  This provides a unique and easily
1581	 * identifiable generation number while the memslots are in flux.
1582	 */
1583	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1584
1585	/*
1586	 * Generations must be unique even across address spaces.  We do not need
1587	 * a global counter for that, instead the generation space is evenly split
1588	 * across address spaces.  For example, with two address spaces, address
1589	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1590	 * use generations 1, 3, 5, ...
1591	 */
1592	gen += KVM_ADDRESS_SPACE_NUM;
1593
1594	kvm_arch_memslots_updated(kvm, gen);
1595
1596	slots->generation = gen;
1597}
1598
1599static int kvm_prepare_memory_region(struct kvm *kvm,
1600				     const struct kvm_memory_slot *old,
1601				     struct kvm_memory_slot *new,
1602				     enum kvm_mr_change change)
1603{
1604	int r;
1605
1606	/*
1607	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1608	 * will be freed on "commit".  If logging is enabled in both old and
1609	 * new, reuse the existing bitmap.  If logging is enabled only in the
1610	 * new and KVM isn't using a ring buffer, allocate and initialize a
1611	 * new bitmap.
1612	 */
1613	if (change != KVM_MR_DELETE) {
1614		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1615			new->dirty_bitmap = NULL;
1616		else if (old && old->dirty_bitmap)
1617			new->dirty_bitmap = old->dirty_bitmap;
1618		else if (kvm_use_dirty_bitmap(kvm)) {
1619			r = kvm_alloc_dirty_bitmap(new);
1620			if (r)
1621				return r;
1622
1623			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1624				bitmap_set(new->dirty_bitmap, 0, new->npages);
1625		}
1626	}
1627
1628	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1629
1630	/* Free the bitmap on failure if it was allocated above. */
1631	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1632		kvm_destroy_dirty_bitmap(new);
1633
1634	return r;
1635}
1636
1637static void kvm_commit_memory_region(struct kvm *kvm,
1638				     struct kvm_memory_slot *old,
1639				     const struct kvm_memory_slot *new,
1640				     enum kvm_mr_change change)
1641{
1642	int old_flags = old ? old->flags : 0;
1643	int new_flags = new ? new->flags : 0;
1644	/*
1645	 * Update the total number of memslot pages before calling the arch
1646	 * hook so that architectures can consume the result directly.
1647	 */
1648	if (change == KVM_MR_DELETE)
1649		kvm->nr_memslot_pages -= old->npages;
1650	else if (change == KVM_MR_CREATE)
1651		kvm->nr_memslot_pages += new->npages;
1652
1653	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1654		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1655		atomic_set(&kvm->nr_memslots_dirty_logging,
1656			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1657	}
1658
1659	kvm_arch_commit_memory_region(kvm, old, new, change);
1660
1661	switch (change) {
1662	case KVM_MR_CREATE:
1663		/* Nothing more to do. */
1664		break;
1665	case KVM_MR_DELETE:
1666		/* Free the old memslot and all its metadata. */
1667		kvm_free_memslot(kvm, old);
1668		break;
1669	case KVM_MR_MOVE:
1670	case KVM_MR_FLAGS_ONLY:
1671		/*
1672		 * Free the dirty bitmap as needed; the below check encompasses
1673		 * both the flags and whether a ring buffer is being used)
1674		 */
1675		if (old->dirty_bitmap && !new->dirty_bitmap)
1676			kvm_destroy_dirty_bitmap(old);
1677
1678		/*
1679		 * The final quirk.  Free the detached, old slot, but only its
1680		 * memory, not any metadata.  Metadata, including arch specific
1681		 * data, may be reused by @new.
1682		 */
1683		kfree(old);
1684		break;
1685	default:
1686		BUG();
1687	}
1688}
1689
1690/*
1691 * Activate @new, which must be installed in the inactive slots by the caller,
1692 * by swapping the active slots and then propagating @new to @old once @old is
1693 * unreachable and can be safely modified.
1694 *
1695 * With NULL @old this simply adds @new to @active (while swapping the sets).
1696 * With NULL @new this simply removes @old from @active and frees it
1697 * (while also swapping the sets).
1698 */
1699static void kvm_activate_memslot(struct kvm *kvm,
1700				 struct kvm_memory_slot *old,
1701				 struct kvm_memory_slot *new)
1702{
1703	int as_id = kvm_memslots_get_as_id(old, new);
1704
1705	kvm_swap_active_memslots(kvm, as_id);
1706
1707	/* Propagate the new memslot to the now inactive memslots. */
1708	kvm_replace_memslot(kvm, old, new);
1709}
1710
1711static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1712			     const struct kvm_memory_slot *src)
1713{
1714	dest->base_gfn = src->base_gfn;
1715	dest->npages = src->npages;
1716	dest->dirty_bitmap = src->dirty_bitmap;
1717	dest->arch = src->arch;
1718	dest->userspace_addr = src->userspace_addr;
1719	dest->flags = src->flags;
1720	dest->id = src->id;
1721	dest->as_id = src->as_id;
1722}
1723
1724static void kvm_invalidate_memslot(struct kvm *kvm,
1725				   struct kvm_memory_slot *old,
1726				   struct kvm_memory_slot *invalid_slot)
1727{
1728	/*
1729	 * Mark the current slot INVALID.  As with all memslot modifications,
1730	 * this must be done on an unreachable slot to avoid modifying the
1731	 * current slot in the active tree.
1732	 */
1733	kvm_copy_memslot(invalid_slot, old);
1734	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1735	kvm_replace_memslot(kvm, old, invalid_slot);
1736
1737	/*
1738	 * Activate the slot that is now marked INVALID, but don't propagate
1739	 * the slot to the now inactive slots. The slot is either going to be
1740	 * deleted or recreated as a new slot.
1741	 */
1742	kvm_swap_active_memslots(kvm, old->as_id);
1743
1744	/*
1745	 * From this point no new shadow pages pointing to a deleted, or moved,
1746	 * memslot will be created.  Validation of sp->gfn happens in:
1747	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1748	 *	- kvm_is_visible_gfn (mmu_check_root)
1749	 */
1750	kvm_arch_flush_shadow_memslot(kvm, old);
1751	kvm_arch_guest_memory_reclaimed(kvm);
1752
1753	/* Was released by kvm_swap_active_memslots, reacquire. */
1754	mutex_lock(&kvm->slots_arch_lock);
1755
1756	/*
1757	 * Copy the arch-specific field of the newly-installed slot back to the
1758	 * old slot as the arch data could have changed between releasing
1759	 * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1760	 * above.  Writers are required to retrieve memslots *after* acquiring
1761	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1762	 */
1763	old->arch = invalid_slot->arch;
1764}
1765
1766static void kvm_create_memslot(struct kvm *kvm,
1767			       struct kvm_memory_slot *new)
1768{
1769	/* Add the new memslot to the inactive set and activate. */
1770	kvm_replace_memslot(kvm, NULL, new);
1771	kvm_activate_memslot(kvm, NULL, new);
1772}
1773
1774static void kvm_delete_memslot(struct kvm *kvm,
1775			       struct kvm_memory_slot *old,
1776			       struct kvm_memory_slot *invalid_slot)
1777{
1778	/*
1779	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1780	 * the "new" slot, and for the invalid version in the active slots.
1781	 */
1782	kvm_replace_memslot(kvm, old, NULL);
1783	kvm_activate_memslot(kvm, invalid_slot, NULL);
1784}
1785
1786static void kvm_move_memslot(struct kvm *kvm,
1787			     struct kvm_memory_slot *old,
1788			     struct kvm_memory_slot *new,
1789			     struct kvm_memory_slot *invalid_slot)
1790{
1791	/*
1792	 * Replace the old memslot in the inactive slots, and then swap slots
1793	 * and replace the current INVALID with the new as well.
1794	 */
1795	kvm_replace_memslot(kvm, old, new);
1796	kvm_activate_memslot(kvm, invalid_slot, new);
1797}
1798
1799static void kvm_update_flags_memslot(struct kvm *kvm,
1800				     struct kvm_memory_slot *old,
1801				     struct kvm_memory_slot *new)
1802{
1803	/*
1804	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1805	 * an intermediate step. Instead, the old memslot is simply replaced
1806	 * with a new, updated copy in both memslot sets.
1807	 */
1808	kvm_replace_memslot(kvm, old, new);
1809	kvm_activate_memslot(kvm, old, new);
1810}
1811
1812static int kvm_set_memslot(struct kvm *kvm,
 
1813			   struct kvm_memory_slot *old,
1814			   struct kvm_memory_slot *new,
1815			   enum kvm_mr_change change)
1816{
1817	struct kvm_memory_slot *invalid_slot;
 
1818	int r;
1819
1820	/*
1821	 * Released in kvm_swap_active_memslots.
1822	 *
1823	 * Must be held from before the current memslots are copied until
1824	 * after the new memslots are installed with rcu_assign_pointer,
1825	 * then released before the synchronize srcu in kvm_swap_active_memslots.
1826	 *
1827	 * When modifying memslots outside of the slots_lock, must be held
1828	 * before reading the pointer to the current memslots until after all
1829	 * changes to those memslots are complete.
1830	 *
1831	 * These rules ensure that installing new memslots does not lose
1832	 * changes made to the previous memslots.
1833	 */
1834	mutex_lock(&kvm->slots_arch_lock);
1835
1836	/*
1837	 * Invalidate the old slot if it's being deleted or moved.  This is
1838	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1839	 * continue running by ensuring there are no mappings or shadow pages
1840	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1841	 * (and without a lock), a window would exist between effecting the
1842	 * delete/move and committing the changes in arch code where KVM or a
1843	 * guest could access a non-existent memslot.
1844	 *
1845	 * Modifications are done on a temporary, unreachable slot.  The old
1846	 * slot needs to be preserved in case a later step fails and the
1847	 * invalidation needs to be reverted.
1848	 */
1849	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1850		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1851		if (!invalid_slot) {
1852			mutex_unlock(&kvm->slots_arch_lock);
1853			return -ENOMEM;
1854		}
1855		kvm_invalidate_memslot(kvm, old, invalid_slot);
1856	}
1857
1858	r = kvm_prepare_memory_region(kvm, old, new, change);
1859	if (r) {
1860		/*
1861		 * For DELETE/MOVE, revert the above INVALID change.  No
1862		 * modifications required since the original slot was preserved
1863		 * in the inactive slots.  Changing the active memslots also
1864		 * release slots_arch_lock.
1865		 */
1866		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1867			kvm_activate_memslot(kvm, invalid_slot, old);
1868			kfree(invalid_slot);
1869		} else {
1870			mutex_unlock(&kvm->slots_arch_lock);
1871		}
1872		return r;
 
 
 
1873	}
1874
1875	/*
1876	 * For DELETE and MOVE, the working slot is now active as the INVALID
1877	 * version of the old slot.  MOVE is particularly special as it reuses
1878	 * the old slot and returns a copy of the old slot (in working_slot).
1879	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1880	 * old slot is detached but otherwise preserved.
1881	 */
1882	if (change == KVM_MR_CREATE)
1883		kvm_create_memslot(kvm, new);
1884	else if (change == KVM_MR_DELETE)
1885		kvm_delete_memslot(kvm, old, invalid_slot);
1886	else if (change == KVM_MR_MOVE)
1887		kvm_move_memslot(kvm, old, new, invalid_slot);
1888	else if (change == KVM_MR_FLAGS_ONLY)
1889		kvm_update_flags_memslot(kvm, old, new);
1890	else
1891		BUG();
1892
1893	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1894	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1895		kfree(invalid_slot);
1896
1897	/*
1898	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1899	 * will directly hit the final, active memslot.  Architectures are
1900	 * responsible for knowing that new->arch may be stale.
1901	 */
1902	kvm_commit_memory_region(kvm, old, new, change);
1903
 
1904	return 0;
 
 
 
 
 
 
1905}
1906
1907static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1908				      gfn_t start, gfn_t end)
 
1909{
1910	struct kvm_memslot_iter iter;
 
1911
1912	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1913		if (iter.slot->id != id)
1914			return true;
1915	}
1916
1917	return false;
 
 
 
 
 
 
 
 
1918}
1919
1920/*
1921 * Allocate some memory and give it an address in the guest physical address
1922 * space.
1923 *
1924 * Discontiguous memory is allowed, mostly for framebuffers.
1925 *
1926 * Must be called holding kvm->slots_lock for write.
1927 */
1928int __kvm_set_memory_region(struct kvm *kvm,
1929			    const struct kvm_userspace_memory_region *mem)
1930{
1931	struct kvm_memory_slot *old, *new;
1932	struct kvm_memslots *slots;
1933	enum kvm_mr_change change;
1934	unsigned long npages;
1935	gfn_t base_gfn;
1936	int as_id, id;
1937	int r;
1938
1939	r = check_memory_region_flags(mem);
1940	if (r)
1941		return r;
1942
1943	as_id = mem->slot >> 16;
1944	id = (u16)mem->slot;
1945
1946	/* General sanity checks */
1947	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1948	    (mem->memory_size != (unsigned long)mem->memory_size))
1949		return -EINVAL;
1950	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1951		return -EINVAL;
1952	/* We can read the guest memory with __xxx_user() later on. */
1953	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1954	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1955	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1956			mem->memory_size))
1957		return -EINVAL;
1958	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1959		return -EINVAL;
1960	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1961		return -EINVAL;
1962	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1963		return -EINVAL;
1964
1965	slots = __kvm_memslots(kvm, as_id);
1966
1967	/*
1968	 * Note, the old memslot (and the pointer itself!) may be invalidated
1969	 * and/or destroyed by kvm_set_memslot().
1970	 */
1971	old = id_to_memslot(slots, id);
1972
1973	if (!mem->memory_size) {
1974		if (!old || !old->npages)
1975			return -EINVAL;
 
 
 
 
 
1976
1977		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1978			return -EIO;
1979
1980		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1981	}
 
 
 
1982
1983	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1984	npages = (mem->memory_size >> PAGE_SHIFT);
1985
1986	if (!old || !old->npages) {
1987		change = KVM_MR_CREATE;
1988
1989		/*
1990		 * To simplify KVM internals, the total number of pages across
1991		 * all memslots must fit in an unsigned long.
1992		 */
1993		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1994			return -EINVAL;
1995	} else { /* Modify an existing slot. */
1996		if ((mem->userspace_addr != old->userspace_addr) ||
1997		    (npages != old->npages) ||
1998		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1999			return -EINVAL;
2000
2001		if (base_gfn != old->base_gfn)
2002			change = KVM_MR_MOVE;
2003		else if (mem->flags != old->flags)
2004			change = KVM_MR_FLAGS_ONLY;
2005		else /* Nothing to change. */
2006			return 0;
 
 
 
 
2007	}
2008
2009	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2010	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2011		return -EEXIST;
 
 
 
 
 
 
 
2012
2013	/* Allocate a slot that will persist in the memslot. */
2014	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2015	if (!new)
2016		return -ENOMEM;
 
 
 
2017
2018	new->as_id = as_id;
2019	new->id = id;
2020	new->base_gfn = base_gfn;
2021	new->npages = npages;
2022	new->flags = mem->flags;
2023	new->userspace_addr = mem->userspace_addr;
2024
2025	r = kvm_set_memslot(kvm, old, new, change);
2026	if (r)
2027		kfree(new);
 
 
 
 
 
 
 
 
2028	return r;
2029}
2030EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2031
2032int kvm_set_memory_region(struct kvm *kvm,
2033			  const struct kvm_userspace_memory_region *mem)
2034{
2035	int r;
2036
2037	mutex_lock(&kvm->slots_lock);
2038	r = __kvm_set_memory_region(kvm, mem);
2039	mutex_unlock(&kvm->slots_lock);
2040	return r;
2041}
2042EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2043
2044static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2045					  struct kvm_userspace_memory_region *mem)
2046{
2047	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2048		return -EINVAL;
2049
2050	return kvm_set_memory_region(kvm, mem);
2051}
2052
2053#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2054/**
2055 * kvm_get_dirty_log - get a snapshot of dirty pages
2056 * @kvm:	pointer to kvm instance
2057 * @log:	slot id and address to which we copy the log
2058 * @is_dirty:	set to '1' if any dirty pages were found
2059 * @memslot:	set to the associated memslot, always valid on success
2060 */
2061int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2062		      int *is_dirty, struct kvm_memory_slot **memslot)
2063{
2064	struct kvm_memslots *slots;
2065	int i, as_id, id;
2066	unsigned long n;
2067	unsigned long any = 0;
2068
2069	/* Dirty ring tracking may be exclusive to dirty log tracking */
2070	if (!kvm_use_dirty_bitmap(kvm))
2071		return -ENXIO;
2072
2073	*memslot = NULL;
2074	*is_dirty = 0;
2075
2076	as_id = log->slot >> 16;
2077	id = (u16)log->slot;
2078	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2079		return -EINVAL;
2080
2081	slots = __kvm_memslots(kvm, as_id);
2082	*memslot = id_to_memslot(slots, id);
2083	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2084		return -ENOENT;
2085
2086	kvm_arch_sync_dirty_log(kvm, *memslot);
2087
2088	n = kvm_dirty_bitmap_bytes(*memslot);
2089
2090	for (i = 0; !any && i < n/sizeof(long); ++i)
2091		any = (*memslot)->dirty_bitmap[i];
2092
2093	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2094		return -EFAULT;
2095
2096	if (any)
2097		*is_dirty = 1;
2098	return 0;
2099}
2100EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2101
2102#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2103/**
2104 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2105 *	and reenable dirty page tracking for the corresponding pages.
2106 * @kvm:	pointer to kvm instance
2107 * @log:	slot id and address to which we copy the log
2108 *
2109 * We need to keep it in mind that VCPU threads can write to the bitmap
2110 * concurrently. So, to avoid losing track of dirty pages we keep the
2111 * following order:
2112 *
2113 *    1. Take a snapshot of the bit and clear it if needed.
2114 *    2. Write protect the corresponding page.
2115 *    3. Copy the snapshot to the userspace.
2116 *    4. Upon return caller flushes TLB's if needed.
2117 *
2118 * Between 2 and 4, the guest may write to the page using the remaining TLB
2119 * entry.  This is not a problem because the page is reported dirty using
2120 * the snapshot taken before and step 4 ensures that writes done after
2121 * exiting to userspace will be logged for the next call.
2122 *
2123 */
2124static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2125{
2126	struct kvm_memslots *slots;
2127	struct kvm_memory_slot *memslot;
2128	int i, as_id, id;
2129	unsigned long n;
2130	unsigned long *dirty_bitmap;
2131	unsigned long *dirty_bitmap_buffer;
2132	bool flush;
2133
2134	/* Dirty ring tracking may be exclusive to dirty log tracking */
2135	if (!kvm_use_dirty_bitmap(kvm))
2136		return -ENXIO;
2137
2138	as_id = log->slot >> 16;
2139	id = (u16)log->slot;
2140	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2141		return -EINVAL;
2142
2143	slots = __kvm_memslots(kvm, as_id);
2144	memslot = id_to_memslot(slots, id);
2145	if (!memslot || !memslot->dirty_bitmap)
2146		return -ENOENT;
2147
2148	dirty_bitmap = memslot->dirty_bitmap;
2149
2150	kvm_arch_sync_dirty_log(kvm, memslot);
2151
2152	n = kvm_dirty_bitmap_bytes(memslot);
2153	flush = false;
2154	if (kvm->manual_dirty_log_protect) {
2155		/*
2156		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2157		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2158		 * is some code duplication between this function and
2159		 * kvm_get_dirty_log, but hopefully all architecture
2160		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2161		 * can be eliminated.
2162		 */
2163		dirty_bitmap_buffer = dirty_bitmap;
2164	} else {
2165		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2166		memset(dirty_bitmap_buffer, 0, n);
2167
2168		KVM_MMU_LOCK(kvm);
2169		for (i = 0; i < n / sizeof(long); i++) {
2170			unsigned long mask;
2171			gfn_t offset;
2172
2173			if (!dirty_bitmap[i])
2174				continue;
2175
2176			flush = true;
2177			mask = xchg(&dirty_bitmap[i], 0);
2178			dirty_bitmap_buffer[i] = mask;
2179
2180			offset = i * BITS_PER_LONG;
2181			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2182								offset, mask);
2183		}
2184		KVM_MMU_UNLOCK(kvm);
2185	}
2186
2187	if (flush)
2188		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2189
2190	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2191		return -EFAULT;
2192	return 0;
2193}
2194
2195
2196/**
2197 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2198 * @kvm: kvm instance
2199 * @log: slot id and address to which we copy the log
2200 *
2201 * Steps 1-4 below provide general overview of dirty page logging. See
2202 * kvm_get_dirty_log_protect() function description for additional details.
2203 *
2204 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2205 * always flush the TLB (step 4) even if previous step failed  and the dirty
2206 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2207 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2208 * writes will be marked dirty for next log read.
2209 *
2210 *   1. Take a snapshot of the bit and clear it if needed.
2211 *   2. Write protect the corresponding page.
2212 *   3. Copy the snapshot to the userspace.
2213 *   4. Flush TLB's if needed.
2214 */
2215static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2216				      struct kvm_dirty_log *log)
2217{
2218	int r;
2219
2220	mutex_lock(&kvm->slots_lock);
2221
2222	r = kvm_get_dirty_log_protect(kvm, log);
2223
2224	mutex_unlock(&kvm->slots_lock);
2225	return r;
2226}
2227
2228/**
2229 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2230 *	and reenable dirty page tracking for the corresponding pages.
2231 * @kvm:	pointer to kvm instance
2232 * @log:	slot id and address from which to fetch the bitmap of dirty pages
2233 */
2234static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2235				       struct kvm_clear_dirty_log *log)
2236{
2237	struct kvm_memslots *slots;
2238	struct kvm_memory_slot *memslot;
2239	int as_id, id;
2240	gfn_t offset;
2241	unsigned long i, n;
2242	unsigned long *dirty_bitmap;
2243	unsigned long *dirty_bitmap_buffer;
2244	bool flush;
2245
2246	/* Dirty ring tracking may be exclusive to dirty log tracking */
2247	if (!kvm_use_dirty_bitmap(kvm))
2248		return -ENXIO;
2249
2250	as_id = log->slot >> 16;
2251	id = (u16)log->slot;
2252	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2253		return -EINVAL;
2254
2255	if (log->first_page & 63)
2256		return -EINVAL;
2257
2258	slots = __kvm_memslots(kvm, as_id);
2259	memslot = id_to_memslot(slots, id);
2260	if (!memslot || !memslot->dirty_bitmap)
2261		return -ENOENT;
2262
2263	dirty_bitmap = memslot->dirty_bitmap;
2264
2265	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2266
2267	if (log->first_page > memslot->npages ||
2268	    log->num_pages > memslot->npages - log->first_page ||
2269	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2270	    return -EINVAL;
2271
2272	kvm_arch_sync_dirty_log(kvm, memslot);
2273
2274	flush = false;
2275	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2276	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2277		return -EFAULT;
2278
2279	KVM_MMU_LOCK(kvm);
2280	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2281		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2282	     i++, offset += BITS_PER_LONG) {
2283		unsigned long mask = *dirty_bitmap_buffer++;
2284		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2285		if (!mask)
2286			continue;
2287
2288		mask &= atomic_long_fetch_andnot(mask, p);
2289
2290		/*
2291		 * mask contains the bits that really have been cleared.  This
2292		 * never includes any bits beyond the length of the memslot (if
2293		 * the length is not aligned to 64 pages), therefore it is not
2294		 * a problem if userspace sets them in log->dirty_bitmap.
2295		*/
2296		if (mask) {
2297			flush = true;
2298			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2299								offset, mask);
2300		}
2301	}
2302	KVM_MMU_UNLOCK(kvm);
2303
2304	if (flush)
2305		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2306
2307	return 0;
2308}
2309
2310static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2311					struct kvm_clear_dirty_log *log)
2312{
2313	int r;
2314
2315	mutex_lock(&kvm->slots_lock);
2316
2317	r = kvm_clear_dirty_log_protect(kvm, log);
2318
2319	mutex_unlock(&kvm->slots_lock);
2320	return r;
2321}
2322#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2323
2324struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2325{
2326	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2327}
2328EXPORT_SYMBOL_GPL(gfn_to_memslot);
2329
2330struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2331{
2332	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2333	u64 gen = slots->generation;
2334	struct kvm_memory_slot *slot;
2335
2336	/*
2337	 * This also protects against using a memslot from a different address space,
2338	 * since different address spaces have different generation numbers.
2339	 */
2340	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2341		vcpu->last_used_slot = NULL;
2342		vcpu->last_used_slot_gen = gen;
2343	}
2344
2345	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2346	if (slot)
2347		return slot;
2348
2349	/*
2350	 * Fall back to searching all memslots. We purposely use
2351	 * search_memslots() instead of __gfn_to_memslot() to avoid
2352	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2353	 */
2354	slot = search_memslots(slots, gfn, false);
2355	if (slot) {
2356		vcpu->last_used_slot = slot;
2357		return slot;
2358	}
2359
2360	return NULL;
2361}
 
2362
2363bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2364{
2365	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2366
2367	return kvm_is_visible_memslot(memslot);
2368}
2369EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2370
2371bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2372{
2373	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2374
2375	return kvm_is_visible_memslot(memslot);
2376}
2377EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2378
2379unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2380{
2381	struct vm_area_struct *vma;
2382	unsigned long addr, size;
2383
2384	size = PAGE_SIZE;
2385
2386	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2387	if (kvm_is_error_hva(addr))
2388		return PAGE_SIZE;
2389
2390	mmap_read_lock(current->mm);
2391	vma = find_vma(current->mm, addr);
2392	if (!vma)
2393		goto out;
2394
2395	size = vma_kernel_pagesize(vma);
2396
2397out:
2398	mmap_read_unlock(current->mm);
2399
2400	return size;
2401}
2402
2403static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2404{
2405	return slot->flags & KVM_MEM_READONLY;
2406}
2407
2408static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2409				       gfn_t *nr_pages, bool write)
2410{
2411	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2412		return KVM_HVA_ERR_BAD;
2413
2414	if (memslot_is_readonly(slot) && write)
2415		return KVM_HVA_ERR_RO_BAD;
2416
2417	if (nr_pages)
2418		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2419
2420	return __gfn_to_hva_memslot(slot, gfn);
2421}
2422
2423static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2424				     gfn_t *nr_pages)
2425{
2426	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2427}
2428
2429unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2430					gfn_t gfn)
2431{
2432	return gfn_to_hva_many(slot, gfn, NULL);
2433}
2434EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2435
2436unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2437{
2438	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2439}
2440EXPORT_SYMBOL_GPL(gfn_to_hva);
2441
2442unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2443{
2444	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2445}
2446EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2447
2448/*
2449 * Return the hva of a @gfn and the R/W attribute if possible.
2450 *
2451 * @slot: the kvm_memory_slot which contains @gfn
2452 * @gfn: the gfn to be translated
2453 * @writable: used to return the read/write attribute of the @slot if the hva
2454 * is valid and @writable is not NULL
2455 */
2456unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2457				      gfn_t gfn, bool *writable)
2458{
2459	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2460
2461	if (!kvm_is_error_hva(hva) && writable)
2462		*writable = !memslot_is_readonly(slot);
2463
2464	return hva;
2465}
2466
2467unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2468{
2469	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2470
2471	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2472}
2473
2474unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2475{
2476	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2477
2478	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2479}
2480
2481static inline int check_user_page_hwpoison(unsigned long addr)
2482{
2483	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2484
2485	rc = get_user_pages(addr, 1, flags, NULL, NULL);
2486	return rc == -EHWPOISON;
2487}
2488
2489/*
2490 * The fast path to get the writable pfn which will be stored in @pfn,
2491 * true indicates success, otherwise false is returned.  It's also the
2492 * only part that runs if we can in atomic context.
2493 */
2494static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2495			    bool *writable, kvm_pfn_t *pfn)
2496{
2497	struct page *page[1];
2498
2499	/*
2500	 * Fast pin a writable pfn only if it is a write fault request
2501	 * or the caller allows to map a writable pfn for a read fault
2502	 * request.
2503	 */
2504	if (!(write_fault || writable))
2505		return false;
2506
2507	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2508		*pfn = page_to_pfn(page[0]);
2509
2510		if (writable)
2511			*writable = true;
2512		return true;
2513	}
2514
2515	return false;
2516}
2517
2518/*
2519 * The slow path to get the pfn of the specified host virtual address,
2520 * 1 indicates success, -errno is returned if error is detected.
2521 */
2522static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2523			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2524{
2525	unsigned int flags = FOLL_HWPOISON;
2526	struct page *page;
2527	int npages;
2528
2529	might_sleep();
2530
2531	if (writable)
2532		*writable = write_fault;
2533
2534	if (write_fault)
2535		flags |= FOLL_WRITE;
2536	if (async)
2537		flags |= FOLL_NOWAIT;
2538	if (interruptible)
2539		flags |= FOLL_INTERRUPTIBLE;
2540
2541	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2542	if (npages != 1)
2543		return npages;
2544
2545	/* map read fault as writable if possible */
2546	if (unlikely(!write_fault) && writable) {
2547		struct page *wpage;
2548
2549		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2550			*writable = true;
2551			put_page(page);
2552			page = wpage;
2553		}
2554	}
2555	*pfn = page_to_pfn(page);
2556	return npages;
2557}
2558
2559static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2560{
2561	if (unlikely(!(vma->vm_flags & VM_READ)))
2562		return false;
2563
2564	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2565		return false;
2566
2567	return true;
2568}
2569
2570static int kvm_try_get_pfn(kvm_pfn_t pfn)
2571{
2572	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2573
2574	if (!page)
2575		return 1;
2576
2577	return get_page_unless_zero(page);
2578}
2579
2580static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2581			       unsigned long addr, bool write_fault,
2582			       bool *writable, kvm_pfn_t *p_pfn)
 
2583{
2584	kvm_pfn_t pfn;
2585	pte_t *ptep;
2586	spinlock_t *ptl;
2587	int r;
2588
2589	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2590	if (r) {
2591		/*
2592		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2593		 * not call the fault handler, so do it here.
2594		 */
2595		bool unlocked = false;
2596		r = fixup_user_fault(current->mm, addr,
2597				     (write_fault ? FAULT_FLAG_WRITE : 0),
2598				     &unlocked);
2599		if (unlocked)
2600			return -EAGAIN;
2601		if (r)
2602			return r;
2603
2604		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2605		if (r)
2606			return r;
2607	}
2608
2609	if (write_fault && !pte_write(*ptep)) {
2610		pfn = KVM_PFN_ERR_RO_FAULT;
2611		goto out;
2612	}
2613
2614	if (writable)
2615		*writable = pte_write(*ptep);
2616	pfn = pte_pfn(*ptep);
2617
2618	/*
2619	 * Get a reference here because callers of *hva_to_pfn* and
2620	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2621	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2622	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2623	 * simply do nothing for reserved pfns.
2624	 *
2625	 * Whoever called remap_pfn_range is also going to call e.g.
2626	 * unmap_mapping_range before the underlying pages are freed,
2627	 * causing a call to our MMU notifier.
2628	 *
2629	 * Certain IO or PFNMAP mappings can be backed with valid
2630	 * struct pages, but be allocated without refcounting e.g.,
2631	 * tail pages of non-compound higher order allocations, which
2632	 * would then underflow the refcount when the caller does the
2633	 * required put_page. Don't allow those pages here.
2634	 */ 
2635	if (!kvm_try_get_pfn(pfn))
2636		r = -EFAULT;
2637
2638out:
2639	pte_unmap_unlock(ptep, ptl);
2640	*p_pfn = pfn;
2641
2642	return r;
2643}
2644
2645/*
2646 * Pin guest page in memory and return its pfn.
2647 * @addr: host virtual address which maps memory to the guest
2648 * @atomic: whether this function can sleep
2649 * @interruptible: whether the process can be interrupted by non-fatal signals
2650 * @async: whether this function need to wait IO complete if the
2651 *         host page is not in the memory
2652 * @write_fault: whether we should get a writable host page
2653 * @writable: whether it allows to map a writable host page for !@write_fault
2654 *
2655 * The function will map a writable host page for these two cases:
2656 * 1): @write_fault = true
2657 * 2): @write_fault = false && @writable, @writable will tell the caller
2658 *     whether the mapping is writable.
2659 */
2660kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2661		     bool *async, bool write_fault, bool *writable)
2662{
2663	struct vm_area_struct *vma;
2664	kvm_pfn_t pfn;
2665	int npages, r;
2666
2667	/* we can do it either atomically or asynchronously, not both */
2668	BUG_ON(atomic && async);
2669
2670	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2671		return pfn;
2672
2673	if (atomic)
2674		return KVM_PFN_ERR_FAULT;
2675
2676	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2677				 writable, &pfn);
2678	if (npages == 1)
2679		return pfn;
2680	if (npages == -EINTR)
2681		return KVM_PFN_ERR_SIGPENDING;
2682
2683	mmap_read_lock(current->mm);
2684	if (npages == -EHWPOISON ||
2685	      (!async && check_user_page_hwpoison(addr))) {
2686		pfn = KVM_PFN_ERR_HWPOISON;
2687		goto exit;
2688	}
2689
2690retry:
2691	vma = vma_lookup(current->mm, addr);
2692
2693	if (vma == NULL)
2694		pfn = KVM_PFN_ERR_FAULT;
2695	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2696		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2697		if (r == -EAGAIN)
2698			goto retry;
2699		if (r < 0)
2700			pfn = KVM_PFN_ERR_FAULT;
2701	} else {
2702		if (async && vma_is_valid(vma, write_fault))
2703			*async = true;
2704		pfn = KVM_PFN_ERR_FAULT;
2705	}
2706exit:
2707	mmap_read_unlock(current->mm);
2708	return pfn;
2709}
2710
2711kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2712			       bool atomic, bool interruptible, bool *async,
2713			       bool write_fault, bool *writable, hva_t *hva)
2714{
2715	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2716
2717	if (hva)
2718		*hva = addr;
2719
2720	if (addr == KVM_HVA_ERR_RO_BAD) {
2721		if (writable)
2722			*writable = false;
2723		return KVM_PFN_ERR_RO_FAULT;
2724	}
2725
2726	if (kvm_is_error_hva(addr)) {
2727		if (writable)
2728			*writable = false;
2729		return KVM_PFN_NOSLOT;
2730	}
2731
2732	/* Do not map writable pfn in the readonly memslot. */
2733	if (writable && memslot_is_readonly(slot)) {
2734		*writable = false;
2735		writable = NULL;
2736	}
2737
2738	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2739			  writable);
2740}
2741EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2742
2743kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2744		      bool *writable)
2745{
2746	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2747				    NULL, write_fault, writable, NULL);
2748}
2749EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2750
2751kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2752{
2753	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2754				    NULL, NULL);
2755}
2756EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2757
2758kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2759{
2760	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2761				    NULL, NULL);
2762}
2763EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2764
2765kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2766{
2767	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2768}
2769EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2770
2771kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2772{
2773	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2774}
2775EXPORT_SYMBOL_GPL(gfn_to_pfn);
2776
2777kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2778{
2779	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2780}
2781EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2782
2783int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2784			    struct page **pages, int nr_pages)
2785{
2786	unsigned long addr;
2787	gfn_t entry = 0;
2788
2789	addr = gfn_to_hva_many(slot, gfn, &entry);
2790	if (kvm_is_error_hva(addr))
2791		return -1;
2792
2793	if (entry < nr_pages)
2794		return 0;
2795
2796	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2797}
2798EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2799
2800/*
2801 * Do not use this helper unless you are absolutely certain the gfn _must_ be
2802 * backed by 'struct page'.  A valid example is if the backing memslot is
2803 * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2804 * been elevated by gfn_to_pfn().
2805 */
2806struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2807{
2808	struct page *page;
2809	kvm_pfn_t pfn;
2810
2811	pfn = gfn_to_pfn(kvm, gfn);
2812
2813	if (is_error_noslot_pfn(pfn))
2814		return KVM_ERR_PTR_BAD_PAGE;
2815
2816	page = kvm_pfn_to_refcounted_page(pfn);
2817	if (!page)
2818		return KVM_ERR_PTR_BAD_PAGE;
 
2819
2820	return page;
 
 
 
 
 
 
 
 
 
2821}
2822EXPORT_SYMBOL_GPL(gfn_to_page);
2823
2824void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2825{
 
 
 
 
 
 
2826	if (dirty)
2827		kvm_release_pfn_dirty(pfn);
2828	else
2829		kvm_release_pfn_clean(pfn);
2830}
2831
2832int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2833{
2834	kvm_pfn_t pfn;
2835	void *hva = NULL;
2836	struct page *page = KVM_UNMAPPED_PAGE;
 
 
2837
2838	if (!map)
2839		return -EINVAL;
2840
2841	pfn = gfn_to_pfn(vcpu->kvm, gfn);
 
 
 
 
 
 
 
 
 
 
 
 
2842	if (is_error_noslot_pfn(pfn))
2843		return -EINVAL;
2844
2845	if (pfn_valid(pfn)) {
2846		page = pfn_to_page(pfn);
2847		hva = kmap(page);
 
 
 
2848#ifdef CONFIG_HAS_IOMEM
2849	} else {
2850		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
 
 
2851#endif
2852	}
2853
2854	if (!hva)
2855		return -EFAULT;
2856
2857	map->page = page;
2858	map->hva = hva;
2859	map->pfn = pfn;
2860	map->gfn = gfn;
2861
2862	return 0;
2863}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2865
2866void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
 
 
 
2867{
2868	if (!map)
2869		return;
2870
2871	if (!map->hva)
2872		return;
2873
2874	if (map->page != KVM_UNMAPPED_PAGE)
2875		kunmap(map->page);
 
 
 
 
2876#ifdef CONFIG_HAS_IOMEM
2877	else
2878		memunmap(map->hva);
 
 
2879#endif
2880
2881	if (dirty)
2882		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2883
2884	kvm_release_pfn(map->pfn, dirty);
 
 
 
2885
2886	map->hva = NULL;
2887	map->page = NULL;
2888}
2889EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2890
2891static bool kvm_is_ad_tracked_page(struct page *page)
 
2892{
2893	/*
2894	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2895	 * touched (e.g. set dirty) except by its owner".
2896	 */
2897	return !PageReserved(page);
2898}
 
2899
2900static void kvm_set_page_dirty(struct page *page)
2901{
2902	if (kvm_is_ad_tracked_page(page))
2903		SetPageDirty(page);
2904}
 
2905
2906static void kvm_set_page_accessed(struct page *page)
2907{
2908	if (kvm_is_ad_tracked_page(page))
2909		mark_page_accessed(page);
 
 
 
2910}
 
2911
2912void kvm_release_page_clean(struct page *page)
2913{
2914	WARN_ON(is_error_page(page));
2915
2916	kvm_set_page_accessed(page);
2917	put_page(page);
2918}
2919EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2920
2921void kvm_release_pfn_clean(kvm_pfn_t pfn)
2922{
2923	struct page *page;
2924
2925	if (is_error_noslot_pfn(pfn))
2926		return;
2927
2928	page = kvm_pfn_to_refcounted_page(pfn);
2929	if (!page)
2930		return;
2931
2932	kvm_release_page_clean(page);
2933}
2934EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2935
2936void kvm_release_page_dirty(struct page *page)
2937{
2938	WARN_ON(is_error_page(page));
2939
2940	kvm_set_page_dirty(page);
2941	kvm_release_page_clean(page);
2942}
2943EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2944
2945void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2946{
2947	struct page *page;
2948
2949	if (is_error_noslot_pfn(pfn))
2950		return;
2951
2952	page = kvm_pfn_to_refcounted_page(pfn);
2953	if (!page)
2954		return;
2955
2956	kvm_release_page_dirty(page);
2957}
2958EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2959
2960/*
2961 * Note, checking for an error/noslot pfn is the caller's responsibility when
2962 * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2963 * "set" helpers are not to be used when the pfn might point at garbage.
2964 */
2965void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2966{
2967	if (WARN_ON(is_error_noslot_pfn(pfn)))
2968		return;
2969
2970	if (pfn_valid(pfn))
2971		kvm_set_page_dirty(pfn_to_page(pfn));
2972}
2973EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2974
2975void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2976{
2977	if (WARN_ON(is_error_noslot_pfn(pfn)))
2978		return;
2979
2980	if (pfn_valid(pfn))
2981		kvm_set_page_accessed(pfn_to_page(pfn));
2982}
2983EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2984
 
 
 
 
 
 
 
2985static int next_segment(unsigned long len, int offset)
2986{
2987	if (len > PAGE_SIZE - offset)
2988		return PAGE_SIZE - offset;
2989	else
2990		return len;
2991}
2992
2993static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2994				 void *data, int offset, int len)
2995{
2996	int r;
2997	unsigned long addr;
2998
2999	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3000	if (kvm_is_error_hva(addr))
3001		return -EFAULT;
3002	r = __copy_from_user(data, (void __user *)addr + offset, len);
3003	if (r)
3004		return -EFAULT;
3005	return 0;
3006}
3007
3008int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3009			int len)
3010{
3011	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3012
3013	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3014}
3015EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3016
3017int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3018			     int offset, int len)
3019{
3020	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3021
3022	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3023}
3024EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3025
3026int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3027{
3028	gfn_t gfn = gpa >> PAGE_SHIFT;
3029	int seg;
3030	int offset = offset_in_page(gpa);
3031	int ret;
3032
3033	while ((seg = next_segment(len, offset)) != 0) {
3034		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3035		if (ret < 0)
3036			return ret;
3037		offset = 0;
3038		len -= seg;
3039		data += seg;
3040		++gfn;
3041	}
3042	return 0;
3043}
3044EXPORT_SYMBOL_GPL(kvm_read_guest);
3045
3046int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3047{
3048	gfn_t gfn = gpa >> PAGE_SHIFT;
3049	int seg;
3050	int offset = offset_in_page(gpa);
3051	int ret;
3052
3053	while ((seg = next_segment(len, offset)) != 0) {
3054		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3055		if (ret < 0)
3056			return ret;
3057		offset = 0;
3058		len -= seg;
3059		data += seg;
3060		++gfn;
3061	}
3062	return 0;
3063}
3064EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3065
3066static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3067			           void *data, int offset, unsigned long len)
3068{
3069	int r;
3070	unsigned long addr;
3071
3072	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3073	if (kvm_is_error_hva(addr))
3074		return -EFAULT;
3075	pagefault_disable();
3076	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3077	pagefault_enable();
3078	if (r)
3079		return -EFAULT;
3080	return 0;
3081}
3082
3083int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3084			       void *data, unsigned long len)
3085{
3086	gfn_t gfn = gpa >> PAGE_SHIFT;
3087	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3088	int offset = offset_in_page(gpa);
3089
3090	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3091}
3092EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3093
3094static int __kvm_write_guest_page(struct kvm *kvm,
3095				  struct kvm_memory_slot *memslot, gfn_t gfn,
3096			          const void *data, int offset, int len)
3097{
3098	int r;
3099	unsigned long addr;
3100
3101	addr = gfn_to_hva_memslot(memslot, gfn);
3102	if (kvm_is_error_hva(addr))
3103		return -EFAULT;
3104	r = __copy_to_user((void __user *)addr + offset, data, len);
3105	if (r)
3106		return -EFAULT;
3107	mark_page_dirty_in_slot(kvm, memslot, gfn);
3108	return 0;
3109}
3110
3111int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3112			 const void *data, int offset, int len)
3113{
3114	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3115
3116	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3117}
3118EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3119
3120int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3121			      const void *data, int offset, int len)
3122{
3123	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3124
3125	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3126}
3127EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3128
3129int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3130		    unsigned long len)
3131{
3132	gfn_t gfn = gpa >> PAGE_SHIFT;
3133	int seg;
3134	int offset = offset_in_page(gpa);
3135	int ret;
3136
3137	while ((seg = next_segment(len, offset)) != 0) {
3138		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3139		if (ret < 0)
3140			return ret;
3141		offset = 0;
3142		len -= seg;
3143		data += seg;
3144		++gfn;
3145	}
3146	return 0;
3147}
3148EXPORT_SYMBOL_GPL(kvm_write_guest);
3149
3150int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3151		         unsigned long len)
3152{
3153	gfn_t gfn = gpa >> PAGE_SHIFT;
3154	int seg;
3155	int offset = offset_in_page(gpa);
3156	int ret;
3157
3158	while ((seg = next_segment(len, offset)) != 0) {
3159		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3160		if (ret < 0)
3161			return ret;
3162		offset = 0;
3163		len -= seg;
3164		data += seg;
3165		++gfn;
3166	}
3167	return 0;
3168}
3169EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3170
3171static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3172				       struct gfn_to_hva_cache *ghc,
3173				       gpa_t gpa, unsigned long len)
3174{
3175	int offset = offset_in_page(gpa);
3176	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3177	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3178	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3179	gfn_t nr_pages_avail;
3180
3181	/* Update ghc->generation before performing any error checks. */
3182	ghc->generation = slots->generation;
3183
3184	if (start_gfn > end_gfn) {
3185		ghc->hva = KVM_HVA_ERR_BAD;
3186		return -EINVAL;
3187	}
3188
3189	/*
3190	 * If the requested region crosses two memslots, we still
3191	 * verify that the entire region is valid here.
3192	 */
3193	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3194		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3195		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3196					   &nr_pages_avail);
3197		if (kvm_is_error_hva(ghc->hva))
3198			return -EFAULT;
3199	}
3200
3201	/* Use the slow path for cross page reads and writes. */
3202	if (nr_pages_needed == 1)
3203		ghc->hva += offset;
3204	else
3205		ghc->memslot = NULL;
3206
3207	ghc->gpa = gpa;
3208	ghc->len = len;
3209	return 0;
3210}
3211
3212int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3213			      gpa_t gpa, unsigned long len)
3214{
3215	struct kvm_memslots *slots = kvm_memslots(kvm);
3216	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3217}
3218EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3219
3220int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3221				  void *data, unsigned int offset,
3222				  unsigned long len)
3223{
3224	struct kvm_memslots *slots = kvm_memslots(kvm);
3225	int r;
3226	gpa_t gpa = ghc->gpa + offset;
3227
3228	if (WARN_ON_ONCE(len + offset > ghc->len))
3229		return -EINVAL;
3230
3231	if (slots->generation != ghc->generation) {
3232		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3233			return -EFAULT;
3234	}
3235
3236	if (kvm_is_error_hva(ghc->hva))
3237		return -EFAULT;
3238
3239	if (unlikely(!ghc->memslot))
3240		return kvm_write_guest(kvm, gpa, data, len);
3241
3242	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3243	if (r)
3244		return -EFAULT;
3245	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3246
3247	return 0;
3248}
3249EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3250
3251int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3252			   void *data, unsigned long len)
3253{
3254	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3255}
3256EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3257
3258int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3259				 void *data, unsigned int offset,
3260				 unsigned long len)
3261{
3262	struct kvm_memslots *slots = kvm_memslots(kvm);
3263	int r;
3264	gpa_t gpa = ghc->gpa + offset;
3265
3266	if (WARN_ON_ONCE(len + offset > ghc->len))
3267		return -EINVAL;
3268
3269	if (slots->generation != ghc->generation) {
3270		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3271			return -EFAULT;
3272	}
3273
3274	if (kvm_is_error_hva(ghc->hva))
3275		return -EFAULT;
3276
3277	if (unlikely(!ghc->memslot))
3278		return kvm_read_guest(kvm, gpa, data, len);
3279
3280	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3281	if (r)
3282		return -EFAULT;
3283
3284	return 0;
3285}
3286EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3287
3288int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3289			  void *data, unsigned long len)
3290{
3291	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3292}
3293EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3294
3295int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3296{
3297	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
 
 
 
 
 
 
 
3298	gfn_t gfn = gpa >> PAGE_SHIFT;
3299	int seg;
3300	int offset = offset_in_page(gpa);
3301	int ret;
3302
3303	while ((seg = next_segment(len, offset)) != 0) {
3304		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3305		if (ret < 0)
3306			return ret;
3307		offset = 0;
3308		len -= seg;
3309		++gfn;
3310	}
3311	return 0;
3312}
3313EXPORT_SYMBOL_GPL(kvm_clear_guest);
3314
3315void mark_page_dirty_in_slot(struct kvm *kvm,
3316			     const struct kvm_memory_slot *memslot,
3317		 	     gfn_t gfn)
3318{
3319	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3320
3321#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3322	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3323		return;
3324
3325	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3326#endif
3327
3328	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3329		unsigned long rel_gfn = gfn - memslot->base_gfn;
3330		u32 slot = (memslot->as_id << 16) | memslot->id;
3331
3332		if (kvm->dirty_ring_size && vcpu)
3333			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3334		else if (memslot->dirty_bitmap)
3335			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3336	}
3337}
3338EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3339
3340void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3341{
3342	struct kvm_memory_slot *memslot;
3343
3344	memslot = gfn_to_memslot(kvm, gfn);
3345	mark_page_dirty_in_slot(kvm, memslot, gfn);
3346}
3347EXPORT_SYMBOL_GPL(mark_page_dirty);
3348
3349void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3350{
3351	struct kvm_memory_slot *memslot;
3352
3353	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3354	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3355}
3356EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3357
3358void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3359{
3360	if (!vcpu->sigset_active)
3361		return;
3362
3363	/*
3364	 * This does a lockless modification of ->real_blocked, which is fine
3365	 * because, only current can change ->real_blocked and all readers of
3366	 * ->real_blocked don't care as long ->real_blocked is always a subset
3367	 * of ->blocked.
3368	 */
3369	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3370}
3371
3372void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3373{
3374	if (!vcpu->sigset_active)
3375		return;
3376
3377	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3378	sigemptyset(&current->real_blocked);
3379}
3380
3381static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3382{
3383	unsigned int old, val, grow, grow_start;
3384
3385	old = val = vcpu->halt_poll_ns;
3386	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3387	grow = READ_ONCE(halt_poll_ns_grow);
3388	if (!grow)
3389		goto out;
3390
3391	val *= grow;
3392	if (val < grow_start)
3393		val = grow_start;
3394
 
 
 
3395	vcpu->halt_poll_ns = val;
3396out:
3397	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3398}
3399
3400static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3401{
3402	unsigned int old, val, shrink, grow_start;
3403
3404	old = val = vcpu->halt_poll_ns;
3405	shrink = READ_ONCE(halt_poll_ns_shrink);
3406	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3407	if (shrink == 0)
3408		val = 0;
3409	else
3410		val /= shrink;
3411
3412	if (val < grow_start)
3413		val = 0;
3414
3415	vcpu->halt_poll_ns = val;
3416	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3417}
3418
3419static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3420{
3421	int ret = -EINTR;
3422	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3423
3424	if (kvm_arch_vcpu_runnable(vcpu))
 
3425		goto out;
 
3426	if (kvm_cpu_has_pending_timer(vcpu))
3427		goto out;
3428	if (signal_pending(current))
3429		goto out;
3430	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3431		goto out;
3432
3433	ret = 0;
3434out:
3435	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3436	return ret;
3437}
3438
3439/*
3440 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3441 * pending.  This is mostly used when halting a vCPU, but may also be used
3442 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3443 */
3444bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3445{
3446	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3447	bool waited = false;
3448
3449	vcpu->stat.generic.blocking = 1;
3450
3451	preempt_disable();
3452	kvm_arch_vcpu_blocking(vcpu);
3453	prepare_to_rcuwait(wait);
3454	preempt_enable();
3455
3456	for (;;) {
3457		set_current_state(TASK_INTERRUPTIBLE);
3458
3459		if (kvm_vcpu_check_block(vcpu) < 0)
3460			break;
3461
3462		waited = true;
3463		schedule();
3464	}
3465
3466	preempt_disable();
3467	finish_rcuwait(wait);
3468	kvm_arch_vcpu_unblocking(vcpu);
3469	preempt_enable();
3470
3471	vcpu->stat.generic.blocking = 0;
3472
3473	return waited;
3474}
3475
3476static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3477					  ktime_t end, bool success)
3478{
3479	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3480	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3481
3482	++vcpu->stat.generic.halt_attempted_poll;
3483
3484	if (success) {
3485		++vcpu->stat.generic.halt_successful_poll;
3486
3487		if (!vcpu_valid_wakeup(vcpu))
3488			++vcpu->stat.generic.halt_poll_invalid;
3489
3490		stats->halt_poll_success_ns += poll_ns;
3491		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3492	} else {
3493		stats->halt_poll_fail_ns += poll_ns;
3494		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3495	}
3496}
3497
3498static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3499{
3500	struct kvm *kvm = vcpu->kvm;
3501
3502	if (kvm->override_halt_poll_ns) {
3503		/*
3504		 * Ensure kvm->max_halt_poll_ns is not read before
3505		 * kvm->override_halt_poll_ns.
3506		 *
3507		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3508		 */
3509		smp_rmb();
3510		return READ_ONCE(kvm->max_halt_poll_ns);
3511	}
3512
3513	return READ_ONCE(halt_poll_ns);
3514}
3515
3516/*
3517 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3518 * polling is enabled, busy wait for a short time before blocking to avoid the
3519 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3520 * is halted.
3521 */
3522void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3523{
3524	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3525	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3526	ktime_t start, cur, poll_end;
3527	bool waited = false;
3528	bool do_halt_poll;
3529	u64 halt_ns;
3530
3531	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3532		vcpu->halt_poll_ns = max_halt_poll_ns;
3533
3534	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3535
3536	start = cur = poll_end = ktime_get();
3537	if (do_halt_poll) {
3538		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3539
 
3540		do {
3541			if (kvm_vcpu_check_block(vcpu) < 0)
 
 
 
 
 
 
 
3542				goto out;
3543			cpu_relax();
3544			poll_end = cur = ktime_get();
3545		} while (kvm_vcpu_can_poll(cur, stop));
3546	}
3547
3548	waited = kvm_vcpu_block(vcpu);
 
 
3549
3550	cur = ktime_get();
3551	if (waited) {
3552		vcpu->stat.generic.halt_wait_ns +=
3553			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3554		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3555				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3556	}
 
 
3557out:
3558	/* The total time the vCPU was "halted", including polling time. */
3559	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3560
3561	/*
3562	 * Note, halt-polling is considered successful so long as the vCPU was
3563	 * never actually scheduled out, i.e. even if the wake event arrived
3564	 * after of the halt-polling loop itself, but before the full wait.
3565	 */
3566	if (do_halt_poll)
3567		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3568
3569	if (halt_poll_allowed) {
3570		/* Recompute the max halt poll time in case it changed. */
3571		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3572
 
3573		if (!vcpu_valid_wakeup(vcpu)) {
3574			shrink_halt_poll_ns(vcpu);
3575		} else if (max_halt_poll_ns) {
3576			if (halt_ns <= vcpu->halt_poll_ns)
3577				;
3578			/* we had a long block, shrink polling */
3579			else if (vcpu->halt_poll_ns &&
3580				 halt_ns > max_halt_poll_ns)
3581				shrink_halt_poll_ns(vcpu);
3582			/* we had a short halt and our poll time is too small */
3583			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3584				 halt_ns < max_halt_poll_ns)
3585				grow_halt_poll_ns(vcpu);
3586		} else {
3587			vcpu->halt_poll_ns = 0;
3588		}
3589	}
3590
3591	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
 
3592}
3593EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3594
3595bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3596{
3597	if (__kvm_vcpu_wake_up(vcpu)) {
 
 
 
3598		WRITE_ONCE(vcpu->ready, true);
3599		++vcpu->stat.generic.halt_wakeup;
3600		return true;
3601	}
3602
3603	return false;
3604}
3605EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3606
3607#ifndef CONFIG_S390
3608/*
3609 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3610 */
3611void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3612{
3613	int me, cpu;
 
3614
3615	if (kvm_vcpu_wake_up(vcpu))
3616		return;
3617
3618	me = get_cpu();
3619	/*
3620	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3621	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3622	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3623	 * within the vCPU thread itself.
3624	 */
3625	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3626		if (vcpu->mode == IN_GUEST_MODE)
3627			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3628		goto out;
3629	}
3630
3631	/*
3632	 * Note, the vCPU could get migrated to a different pCPU at any point
3633	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3634	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3635	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3636	 * vCPU also requires it to leave IN_GUEST_MODE.
3637	 */
3638	if (kvm_arch_vcpu_should_kick(vcpu)) {
3639		cpu = READ_ONCE(vcpu->cpu);
3640		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3641			smp_send_reschedule(cpu);
3642	}
3643out:
3644	put_cpu();
3645}
3646EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3647#endif /* !CONFIG_S390 */
3648
3649int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3650{
3651	struct pid *pid;
3652	struct task_struct *task = NULL;
3653	int ret = 0;
3654
3655	rcu_read_lock();
3656	pid = rcu_dereference(target->pid);
3657	if (pid)
3658		task = get_pid_task(pid, PIDTYPE_PID);
3659	rcu_read_unlock();
3660	if (!task)
3661		return ret;
3662	ret = yield_to(task, 1);
3663	put_task_struct(task);
3664
3665	return ret;
3666}
3667EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3668
3669/*
3670 * Helper that checks whether a VCPU is eligible for directed yield.
3671 * Most eligible candidate to yield is decided by following heuristics:
3672 *
3673 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3674 *  (preempted lock holder), indicated by @in_spin_loop.
3675 *  Set at the beginning and cleared at the end of interception/PLE handler.
3676 *
3677 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3678 *  chance last time (mostly it has become eligible now since we have probably
3679 *  yielded to lockholder in last iteration. This is done by toggling
3680 *  @dy_eligible each time a VCPU checked for eligibility.)
3681 *
3682 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3683 *  to preempted lock-holder could result in wrong VCPU selection and CPU
3684 *  burning. Giving priority for a potential lock-holder increases lock
3685 *  progress.
3686 *
3687 *  Since algorithm is based on heuristics, accessing another VCPU data without
3688 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3689 *  and continue with next VCPU and so on.
3690 */
3691static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3692{
3693#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3694	bool eligible;
3695
3696	eligible = !vcpu->spin_loop.in_spin_loop ||
3697		    vcpu->spin_loop.dy_eligible;
3698
3699	if (vcpu->spin_loop.in_spin_loop)
3700		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3701
3702	return eligible;
3703#else
3704	return true;
3705#endif
3706}
3707
3708/*
3709 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3710 * a vcpu_load/vcpu_put pair.  However, for most architectures
3711 * kvm_arch_vcpu_runnable does not require vcpu_load.
3712 */
3713bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3714{
3715	return kvm_arch_vcpu_runnable(vcpu);
3716}
3717
3718static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3719{
3720	if (kvm_arch_dy_runnable(vcpu))
3721		return true;
3722
3723#ifdef CONFIG_KVM_ASYNC_PF
3724	if (!list_empty_careful(&vcpu->async_pf.done))
3725		return true;
3726#endif
3727
3728	return false;
3729}
3730
3731bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3732{
3733	return false;
3734}
3735
3736void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3737{
3738	struct kvm *kvm = me->kvm;
3739	struct kvm_vcpu *vcpu;
3740	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3741	unsigned long i;
3742	int yielded = 0;
3743	int try = 3;
3744	int pass;
 
3745
3746	kvm_vcpu_set_in_spin_loop(me, true);
3747	/*
3748	 * We boost the priority of a VCPU that is runnable but not
3749	 * currently running, because it got preempted by something
3750	 * else and called schedule in __vcpu_run.  Hopefully that
3751	 * VCPU is holding the lock that we need and will release it.
3752	 * We approximate round-robin by starting at the last boosted VCPU.
3753	 */
3754	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3755		kvm_for_each_vcpu(i, vcpu, kvm) {
3756			if (!pass && i <= last_boosted_vcpu) {
3757				i = last_boosted_vcpu;
3758				continue;
3759			} else if (pass && i > last_boosted_vcpu)
3760				break;
3761			if (!READ_ONCE(vcpu->ready))
3762				continue;
3763			if (vcpu == me)
3764				continue;
3765			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
 
3766				continue;
3767			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3768			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3769			    !kvm_arch_vcpu_in_kernel(vcpu))
3770				continue;
3771			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3772				continue;
3773
3774			yielded = kvm_vcpu_yield_to(vcpu);
3775			if (yielded > 0) {
3776				kvm->last_boosted_vcpu = i;
3777				break;
3778			} else if (yielded < 0) {
3779				try--;
3780				if (!try)
3781					break;
3782			}
3783		}
3784	}
3785	kvm_vcpu_set_in_spin_loop(me, false);
3786
3787	/* Ensure vcpu is not eligible during next spinloop */
3788	kvm_vcpu_set_dy_eligible(me, false);
3789}
3790EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3791
3792static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3793{
3794#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3795	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3796	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3797	     kvm->dirty_ring_size / PAGE_SIZE);
3798#else
3799	return false;
3800#endif
3801}
3802
3803static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3804{
3805	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3806	struct page *page;
3807
3808	if (vmf->pgoff == 0)
3809		page = virt_to_page(vcpu->run);
3810#ifdef CONFIG_X86
3811	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3812		page = virt_to_page(vcpu->arch.pio_data);
3813#endif
3814#ifdef CONFIG_KVM_MMIO
3815	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3816		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3817#endif
3818	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3819		page = kvm_dirty_ring_get_page(
3820		    &vcpu->dirty_ring,
3821		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3822	else
3823		return kvm_arch_vcpu_fault(vcpu, vmf);
3824	get_page(page);
3825	vmf->page = page;
3826	return 0;
3827}
3828
3829static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3830	.fault = kvm_vcpu_fault,
3831};
3832
3833static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3834{
3835	struct kvm_vcpu *vcpu = file->private_data;
3836	unsigned long pages = vma_pages(vma);
3837
3838	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3839	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3840	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3841		return -EINVAL;
3842
3843	vma->vm_ops = &kvm_vcpu_vm_ops;
3844	return 0;
3845}
3846
3847static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3848{
3849	struct kvm_vcpu *vcpu = filp->private_data;
3850
3851	kvm_put_kvm(vcpu->kvm);
3852	return 0;
3853}
3854
3855static const struct file_operations kvm_vcpu_fops = {
3856	.release        = kvm_vcpu_release,
3857	.unlocked_ioctl = kvm_vcpu_ioctl,
3858	.mmap           = kvm_vcpu_mmap,
3859	.llseek		= noop_llseek,
3860	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3861};
3862
3863/*
3864 * Allocates an inode for the vcpu.
3865 */
3866static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3867{
3868	char name[8 + 1 + ITOA_MAX_LEN + 1];
3869
3870	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3871	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3872}
3873
3874#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3875static int vcpu_get_pid(void *data, u64 *val)
3876{
3877	struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data;
3878	*val = pid_nr(rcu_access_pointer(vcpu->pid));
3879	return 0;
3880}
3881
3882DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3883
3884static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3885{
 
3886	struct dentry *debugfs_dentry;
3887	char dir_name[ITOA_MAX_LEN * 2];
3888
3889	if (!debugfs_initialized())
3890		return;
3891
3892	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3893	debugfs_dentry = debugfs_create_dir(dir_name,
3894					    vcpu->kvm->debugfs_dentry);
3895	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3896			    &vcpu_get_pid_fops);
3897
3898	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3899}
3900#endif
 
3901
3902/*
3903 * Creates some virtual cpus.  Good luck creating more than one.
3904 */
3905static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3906{
3907	int r;
3908	struct kvm_vcpu *vcpu;
3909	struct page *page;
3910
3911	if (id >= KVM_MAX_VCPU_IDS)
3912		return -EINVAL;
3913
3914	mutex_lock(&kvm->lock);
3915	if (kvm->created_vcpus >= kvm->max_vcpus) {
3916		mutex_unlock(&kvm->lock);
3917		return -EINVAL;
3918	}
3919
3920	r = kvm_arch_vcpu_precreate(kvm, id);
3921	if (r) {
3922		mutex_unlock(&kvm->lock);
3923		return r;
3924	}
3925
3926	kvm->created_vcpus++;
3927	mutex_unlock(&kvm->lock);
3928
3929	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
 
 
 
 
3930	if (!vcpu) {
3931		r = -ENOMEM;
3932		goto vcpu_decrement;
3933	}
3934
3935	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3936	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3937	if (!page) {
3938		r = -ENOMEM;
3939		goto vcpu_free;
3940	}
3941	vcpu->run = page_address(page);
3942
3943	kvm_vcpu_init(vcpu, kvm, id);
3944
3945	r = kvm_arch_vcpu_create(vcpu);
3946	if (r)
3947		goto vcpu_free_run_page;
3948
3949	if (kvm->dirty_ring_size) {
3950		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3951					 id, kvm->dirty_ring_size);
3952		if (r)
3953			goto arch_vcpu_destroy;
3954	}
3955
3956	mutex_lock(&kvm->lock);
3957
3958#ifdef CONFIG_LOCKDEP
3959	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3960	mutex_lock(&vcpu->mutex);
3961	mutex_unlock(&vcpu->mutex);
3962#endif
3963
3964	if (kvm_get_vcpu_by_id(kvm, id)) {
3965		r = -EEXIST;
3966		goto unlock_vcpu_destroy;
3967	}
3968
3969	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3970	r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3971	BUG_ON(r == -EBUSY);
3972	if (r)
3973		goto unlock_vcpu_destroy;
3974
3975	/* Now it's all set up, let userspace reach it */
3976	kvm_get_kvm(kvm);
3977	r = create_vcpu_fd(vcpu);
3978	if (r < 0) {
3979		xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3980		kvm_put_kvm_no_destroy(kvm);
3981		goto unlock_vcpu_destroy;
3982	}
3983
 
 
3984	/*
3985	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3986	 * pointer before kvm->online_vcpu's incremented value.
3987	 */
3988	smp_wmb();
3989	atomic_inc(&kvm->online_vcpus);
3990
3991	mutex_unlock(&kvm->lock);
3992	kvm_arch_vcpu_postcreate(vcpu);
3993	kvm_create_vcpu_debugfs(vcpu);
3994	return r;
3995
3996unlock_vcpu_destroy:
3997	mutex_unlock(&kvm->lock);
3998	kvm_dirty_ring_free(&vcpu->dirty_ring);
3999arch_vcpu_destroy:
4000	kvm_arch_vcpu_destroy(vcpu);
4001vcpu_free_run_page:
4002	free_page((unsigned long)vcpu->run);
4003vcpu_free:
4004	kmem_cache_free(kvm_vcpu_cache, vcpu);
4005vcpu_decrement:
4006	mutex_lock(&kvm->lock);
4007	kvm->created_vcpus--;
4008	mutex_unlock(&kvm->lock);
4009	return r;
4010}
4011
4012static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4013{
4014	if (sigset) {
4015		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4016		vcpu->sigset_active = 1;
4017		vcpu->sigset = *sigset;
4018	} else
4019		vcpu->sigset_active = 0;
4020	return 0;
4021}
4022
4023static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4024			      size_t size, loff_t *offset)
4025{
4026	struct kvm_vcpu *vcpu = file->private_data;
4027
4028	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4029			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4030			sizeof(vcpu->stat), user_buffer, size, offset);
4031}
4032
4033static const struct file_operations kvm_vcpu_stats_fops = {
4034	.read = kvm_vcpu_stats_read,
4035	.llseek = noop_llseek,
4036};
4037
4038static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4039{
4040	int fd;
4041	struct file *file;
4042	char name[15 + ITOA_MAX_LEN + 1];
4043
4044	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4045
4046	fd = get_unused_fd_flags(O_CLOEXEC);
4047	if (fd < 0)
4048		return fd;
4049
4050	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4051	if (IS_ERR(file)) {
4052		put_unused_fd(fd);
4053		return PTR_ERR(file);
4054	}
4055	file->f_mode |= FMODE_PREAD;
4056	fd_install(fd, file);
4057
4058	return fd;
4059}
4060
4061static long kvm_vcpu_ioctl(struct file *filp,
4062			   unsigned int ioctl, unsigned long arg)
4063{
4064	struct kvm_vcpu *vcpu = filp->private_data;
4065	void __user *argp = (void __user *)arg;
4066	int r;
4067	struct kvm_fpu *fpu = NULL;
4068	struct kvm_sregs *kvm_sregs = NULL;
4069
4070	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4071		return -EIO;
4072
4073	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4074		return -EINVAL;
4075
4076	/*
4077	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4078	 * execution; mutex_lock() would break them.
4079	 */
4080	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4081	if (r != -ENOIOCTLCMD)
4082		return r;
4083
4084	if (mutex_lock_killable(&vcpu->mutex))
4085		return -EINTR;
4086	switch (ioctl) {
4087	case KVM_RUN: {
4088		struct pid *oldpid;
4089		r = -EINVAL;
4090		if (arg)
4091			goto out;
4092		oldpid = rcu_access_pointer(vcpu->pid);
4093		if (unlikely(oldpid != task_pid(current))) {
4094			/* The thread running this VCPU changed. */
4095			struct pid *newpid;
4096
4097			r = kvm_arch_vcpu_run_pid_change(vcpu);
4098			if (r)
4099				break;
4100
4101			newpid = get_task_pid(current, PIDTYPE_PID);
4102			rcu_assign_pointer(vcpu->pid, newpid);
4103			if (oldpid)
4104				synchronize_rcu();
4105			put_pid(oldpid);
4106		}
4107		r = kvm_arch_vcpu_ioctl_run(vcpu);
4108		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4109		break;
4110	}
4111	case KVM_GET_REGS: {
4112		struct kvm_regs *kvm_regs;
4113
4114		r = -ENOMEM;
4115		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4116		if (!kvm_regs)
4117			goto out;
4118		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4119		if (r)
4120			goto out_free1;
4121		r = -EFAULT;
4122		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4123			goto out_free1;
4124		r = 0;
4125out_free1:
4126		kfree(kvm_regs);
4127		break;
4128	}
4129	case KVM_SET_REGS: {
4130		struct kvm_regs *kvm_regs;
4131
4132		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4133		if (IS_ERR(kvm_regs)) {
4134			r = PTR_ERR(kvm_regs);
4135			goto out;
4136		}
4137		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4138		kfree(kvm_regs);
4139		break;
4140	}
4141	case KVM_GET_SREGS: {
4142		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4143				    GFP_KERNEL_ACCOUNT);
4144		r = -ENOMEM;
4145		if (!kvm_sregs)
4146			goto out;
4147		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4148		if (r)
4149			goto out;
4150		r = -EFAULT;
4151		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4152			goto out;
4153		r = 0;
4154		break;
4155	}
4156	case KVM_SET_SREGS: {
4157		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4158		if (IS_ERR(kvm_sregs)) {
4159			r = PTR_ERR(kvm_sregs);
4160			kvm_sregs = NULL;
4161			goto out;
4162		}
4163		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4164		break;
4165	}
4166	case KVM_GET_MP_STATE: {
4167		struct kvm_mp_state mp_state;
4168
4169		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4170		if (r)
4171			goto out;
4172		r = -EFAULT;
4173		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4174			goto out;
4175		r = 0;
4176		break;
4177	}
4178	case KVM_SET_MP_STATE: {
4179		struct kvm_mp_state mp_state;
4180
4181		r = -EFAULT;
4182		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4183			goto out;
4184		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4185		break;
4186	}
4187	case KVM_TRANSLATE: {
4188		struct kvm_translation tr;
4189
4190		r = -EFAULT;
4191		if (copy_from_user(&tr, argp, sizeof(tr)))
4192			goto out;
4193		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4194		if (r)
4195			goto out;
4196		r = -EFAULT;
4197		if (copy_to_user(argp, &tr, sizeof(tr)))
4198			goto out;
4199		r = 0;
4200		break;
4201	}
4202	case KVM_SET_GUEST_DEBUG: {
4203		struct kvm_guest_debug dbg;
4204
4205		r = -EFAULT;
4206		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4207			goto out;
4208		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4209		break;
4210	}
4211	case KVM_SET_SIGNAL_MASK: {
4212		struct kvm_signal_mask __user *sigmask_arg = argp;
4213		struct kvm_signal_mask kvm_sigmask;
4214		sigset_t sigset, *p;
4215
4216		p = NULL;
4217		if (argp) {
4218			r = -EFAULT;
4219			if (copy_from_user(&kvm_sigmask, argp,
4220					   sizeof(kvm_sigmask)))
4221				goto out;
4222			r = -EINVAL;
4223			if (kvm_sigmask.len != sizeof(sigset))
4224				goto out;
4225			r = -EFAULT;
4226			if (copy_from_user(&sigset, sigmask_arg->sigset,
4227					   sizeof(sigset)))
4228				goto out;
4229			p = &sigset;
4230		}
4231		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4232		break;
4233	}
4234	case KVM_GET_FPU: {
4235		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4236		r = -ENOMEM;
4237		if (!fpu)
4238			goto out;
4239		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4240		if (r)
4241			goto out;
4242		r = -EFAULT;
4243		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4244			goto out;
4245		r = 0;
4246		break;
4247	}
4248	case KVM_SET_FPU: {
4249		fpu = memdup_user(argp, sizeof(*fpu));
4250		if (IS_ERR(fpu)) {
4251			r = PTR_ERR(fpu);
4252			fpu = NULL;
4253			goto out;
4254		}
4255		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4256		break;
4257	}
4258	case KVM_GET_STATS_FD: {
4259		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4260		break;
4261	}
4262	default:
4263		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4264	}
4265out:
4266	mutex_unlock(&vcpu->mutex);
4267	kfree(fpu);
4268	kfree(kvm_sregs);
4269	return r;
4270}
4271
4272#ifdef CONFIG_KVM_COMPAT
4273static long kvm_vcpu_compat_ioctl(struct file *filp,
4274				  unsigned int ioctl, unsigned long arg)
4275{
4276	struct kvm_vcpu *vcpu = filp->private_data;
4277	void __user *argp = compat_ptr(arg);
4278	int r;
4279
4280	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4281		return -EIO;
4282
4283	switch (ioctl) {
4284	case KVM_SET_SIGNAL_MASK: {
4285		struct kvm_signal_mask __user *sigmask_arg = argp;
4286		struct kvm_signal_mask kvm_sigmask;
4287		sigset_t sigset;
4288
4289		if (argp) {
4290			r = -EFAULT;
4291			if (copy_from_user(&kvm_sigmask, argp,
4292					   sizeof(kvm_sigmask)))
4293				goto out;
4294			r = -EINVAL;
4295			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4296				goto out;
4297			r = -EFAULT;
4298			if (get_compat_sigset(&sigset,
4299					      (compat_sigset_t __user *)sigmask_arg->sigset))
4300				goto out;
4301			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4302		} else
4303			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4304		break;
4305	}
4306	default:
4307		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4308	}
4309
4310out:
4311	return r;
4312}
4313#endif
4314
4315static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4316{
4317	struct kvm_device *dev = filp->private_data;
4318
4319	if (dev->ops->mmap)
4320		return dev->ops->mmap(dev, vma);
4321
4322	return -ENODEV;
4323}
4324
4325static int kvm_device_ioctl_attr(struct kvm_device *dev,
4326				 int (*accessor)(struct kvm_device *dev,
4327						 struct kvm_device_attr *attr),
4328				 unsigned long arg)
4329{
4330	struct kvm_device_attr attr;
4331
4332	if (!accessor)
4333		return -EPERM;
4334
4335	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4336		return -EFAULT;
4337
4338	return accessor(dev, &attr);
4339}
4340
4341static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4342			     unsigned long arg)
4343{
4344	struct kvm_device *dev = filp->private_data;
4345
4346	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4347		return -EIO;
4348
4349	switch (ioctl) {
4350	case KVM_SET_DEVICE_ATTR:
4351		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4352	case KVM_GET_DEVICE_ATTR:
4353		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4354	case KVM_HAS_DEVICE_ATTR:
4355		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4356	default:
4357		if (dev->ops->ioctl)
4358			return dev->ops->ioctl(dev, ioctl, arg);
4359
4360		return -ENOTTY;
4361	}
4362}
4363
4364static int kvm_device_release(struct inode *inode, struct file *filp)
4365{
4366	struct kvm_device *dev = filp->private_data;
4367	struct kvm *kvm = dev->kvm;
4368
4369	if (dev->ops->release) {
4370		mutex_lock(&kvm->lock);
4371		list_del(&dev->vm_node);
4372		dev->ops->release(dev);
4373		mutex_unlock(&kvm->lock);
4374	}
4375
4376	kvm_put_kvm(kvm);
4377	return 0;
4378}
4379
4380static const struct file_operations kvm_device_fops = {
4381	.unlocked_ioctl = kvm_device_ioctl,
4382	.release = kvm_device_release,
4383	KVM_COMPAT(kvm_device_ioctl),
4384	.mmap = kvm_device_mmap,
4385};
4386
4387struct kvm_device *kvm_device_from_filp(struct file *filp)
4388{
4389	if (filp->f_op != &kvm_device_fops)
4390		return NULL;
4391
4392	return filp->private_data;
4393}
4394
4395static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4396#ifdef CONFIG_KVM_MPIC
4397	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4398	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4399#endif
4400};
4401
4402int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4403{
4404	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4405		return -ENOSPC;
4406
4407	if (kvm_device_ops_table[type] != NULL)
4408		return -EEXIST;
4409
4410	kvm_device_ops_table[type] = ops;
4411	return 0;
4412}
4413
4414void kvm_unregister_device_ops(u32 type)
4415{
4416	if (kvm_device_ops_table[type] != NULL)
4417		kvm_device_ops_table[type] = NULL;
4418}
4419
4420static int kvm_ioctl_create_device(struct kvm *kvm,
4421				   struct kvm_create_device *cd)
4422{
4423	const struct kvm_device_ops *ops;
4424	struct kvm_device *dev;
4425	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4426	int type;
4427	int ret;
4428
4429	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4430		return -ENODEV;
4431
4432	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4433	ops = kvm_device_ops_table[type];
4434	if (ops == NULL)
4435		return -ENODEV;
4436
4437	if (test)
4438		return 0;
4439
4440	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4441	if (!dev)
4442		return -ENOMEM;
4443
4444	dev->ops = ops;
4445	dev->kvm = kvm;
4446
4447	mutex_lock(&kvm->lock);
4448	ret = ops->create(dev, type);
4449	if (ret < 0) {
4450		mutex_unlock(&kvm->lock);
4451		kfree(dev);
4452		return ret;
4453	}
4454	list_add(&dev->vm_node, &kvm->devices);
4455	mutex_unlock(&kvm->lock);
4456
4457	if (ops->init)
4458		ops->init(dev);
4459
4460	kvm_get_kvm(kvm);
4461	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4462	if (ret < 0) {
4463		kvm_put_kvm_no_destroy(kvm);
4464		mutex_lock(&kvm->lock);
4465		list_del(&dev->vm_node);
4466		if (ops->release)
4467			ops->release(dev);
4468		mutex_unlock(&kvm->lock);
4469		if (ops->destroy)
4470			ops->destroy(dev);
4471		return ret;
4472	}
4473
4474	cd->fd = ret;
4475	return 0;
4476}
4477
4478static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4479{
4480	switch (arg) {
4481	case KVM_CAP_USER_MEMORY:
4482	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4483	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4484	case KVM_CAP_INTERNAL_ERROR_DATA:
4485#ifdef CONFIG_HAVE_KVM_MSI
4486	case KVM_CAP_SIGNAL_MSI:
4487#endif
4488#ifdef CONFIG_HAVE_KVM_IRQFD
4489	case KVM_CAP_IRQFD:
4490	case KVM_CAP_IRQFD_RESAMPLE:
4491#endif
4492	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4493	case KVM_CAP_CHECK_EXTENSION_VM:
4494	case KVM_CAP_ENABLE_CAP_VM:
4495	case KVM_CAP_HALT_POLL:
4496		return 1;
4497#ifdef CONFIG_KVM_MMIO
4498	case KVM_CAP_COALESCED_MMIO:
4499		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4500	case KVM_CAP_COALESCED_PIO:
4501		return 1;
4502#endif
4503#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4504	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4505		return KVM_DIRTY_LOG_MANUAL_CAPS;
4506#endif
4507#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4508	case KVM_CAP_IRQ_ROUTING:
4509		return KVM_MAX_IRQ_ROUTES;
4510#endif
4511#if KVM_ADDRESS_SPACE_NUM > 1
4512	case KVM_CAP_MULTI_ADDRESS_SPACE:
4513		return KVM_ADDRESS_SPACE_NUM;
4514#endif
4515	case KVM_CAP_NR_MEMSLOTS:
4516		return KVM_USER_MEM_SLOTS;
4517	case KVM_CAP_DIRTY_LOG_RING:
4518#ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4519		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4520#else
4521		return 0;
4522#endif
4523	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4524#ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4525		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4526#else
4527		return 0;
4528#endif
4529#ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4530	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4531#endif
4532	case KVM_CAP_BINARY_STATS_FD:
4533	case KVM_CAP_SYSTEM_EVENT_DATA:
4534		return 1;
4535	default:
4536		break;
4537	}
4538	return kvm_vm_ioctl_check_extension(kvm, arg);
4539}
4540
4541static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4542{
4543	int r;
4544
4545	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4546		return -EINVAL;
4547
4548	/* the size should be power of 2 */
4549	if (!size || (size & (size - 1)))
4550		return -EINVAL;
4551
4552	/* Should be bigger to keep the reserved entries, or a page */
4553	if (size < kvm_dirty_ring_get_rsvd_entries() *
4554	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4555		return -EINVAL;
4556
4557	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4558	    sizeof(struct kvm_dirty_gfn))
4559		return -E2BIG;
4560
4561	/* We only allow it to set once */
4562	if (kvm->dirty_ring_size)
4563		return -EINVAL;
4564
4565	mutex_lock(&kvm->lock);
4566
4567	if (kvm->created_vcpus) {
4568		/* We don't allow to change this value after vcpu created */
4569		r = -EINVAL;
4570	} else {
4571		kvm->dirty_ring_size = size;
4572		r = 0;
4573	}
4574
4575	mutex_unlock(&kvm->lock);
4576	return r;
4577}
4578
4579static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4580{
4581	unsigned long i;
4582	struct kvm_vcpu *vcpu;
4583	int cleared = 0;
4584
4585	if (!kvm->dirty_ring_size)
4586		return -EINVAL;
4587
4588	mutex_lock(&kvm->slots_lock);
4589
4590	kvm_for_each_vcpu(i, vcpu, kvm)
4591		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4592
4593	mutex_unlock(&kvm->slots_lock);
4594
4595	if (cleared)
4596		kvm_flush_remote_tlbs(kvm);
4597
4598	return cleared;
4599}
4600
4601int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4602						  struct kvm_enable_cap *cap)
4603{
4604	return -EINVAL;
4605}
4606
4607static bool kvm_are_all_memslots_empty(struct kvm *kvm)
4608{
4609	int i;
4610
4611	lockdep_assert_held(&kvm->slots_lock);
4612
4613	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4614		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4615			return false;
4616	}
4617
4618	return true;
4619}
4620
4621static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4622					   struct kvm_enable_cap *cap)
4623{
4624	switch (cap->cap) {
4625#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4626	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4627		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4628
4629		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4630			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4631
4632		if (cap->flags || (cap->args[0] & ~allowed_options))
4633			return -EINVAL;
4634		kvm->manual_dirty_log_protect = cap->args[0];
4635		return 0;
4636	}
4637#endif
4638	case KVM_CAP_HALT_POLL: {
4639		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4640			return -EINVAL;
4641
4642		kvm->max_halt_poll_ns = cap->args[0];
4643
4644		/*
4645		 * Ensure kvm->override_halt_poll_ns does not become visible
4646		 * before kvm->max_halt_poll_ns.
4647		 *
4648		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4649		 */
4650		smp_wmb();
4651		kvm->override_halt_poll_ns = true;
4652
4653		return 0;
4654	}
4655	case KVM_CAP_DIRTY_LOG_RING:
4656	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4657		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4658			return -EINVAL;
4659
4660		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4661	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4662		int r = -EINVAL;
4663
4664		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4665		    !kvm->dirty_ring_size || cap->flags)
4666			return r;
4667
4668		mutex_lock(&kvm->slots_lock);
4669
4670		/*
4671		 * For simplicity, allow enabling ring+bitmap if and only if
4672		 * there are no memslots, e.g. to ensure all memslots allocate
4673		 * a bitmap after the capability is enabled.
4674		 */
4675		if (kvm_are_all_memslots_empty(kvm)) {
4676			kvm->dirty_ring_with_bitmap = true;
4677			r = 0;
4678		}
4679
4680		mutex_unlock(&kvm->slots_lock);
4681
4682		return r;
4683	}
4684	default:
4685		return kvm_vm_ioctl_enable_cap(kvm, cap);
4686	}
4687}
4688
4689static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4690			      size_t size, loff_t *offset)
4691{
4692	struct kvm *kvm = file->private_data;
4693
4694	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4695				&kvm_vm_stats_desc[0], &kvm->stat,
4696				sizeof(kvm->stat), user_buffer, size, offset);
4697}
4698
4699static const struct file_operations kvm_vm_stats_fops = {
4700	.read = kvm_vm_stats_read,
4701	.llseek = noop_llseek,
4702};
4703
4704static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4705{
4706	int fd;
4707	struct file *file;
4708
4709	fd = get_unused_fd_flags(O_CLOEXEC);
4710	if (fd < 0)
4711		return fd;
4712
4713	file = anon_inode_getfile("kvm-vm-stats",
4714			&kvm_vm_stats_fops, kvm, O_RDONLY);
4715	if (IS_ERR(file)) {
4716		put_unused_fd(fd);
4717		return PTR_ERR(file);
4718	}
4719	file->f_mode |= FMODE_PREAD;
4720	fd_install(fd, file);
4721
4722	return fd;
4723}
4724
4725static long kvm_vm_ioctl(struct file *filp,
4726			   unsigned int ioctl, unsigned long arg)
4727{
4728	struct kvm *kvm = filp->private_data;
4729	void __user *argp = (void __user *)arg;
4730	int r;
4731
4732	if (kvm->mm != current->mm || kvm->vm_dead)
4733		return -EIO;
4734	switch (ioctl) {
4735	case KVM_CREATE_VCPU:
4736		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4737		break;
4738	case KVM_ENABLE_CAP: {
4739		struct kvm_enable_cap cap;
4740
4741		r = -EFAULT;
4742		if (copy_from_user(&cap, argp, sizeof(cap)))
4743			goto out;
4744		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4745		break;
4746	}
4747	case KVM_SET_USER_MEMORY_REGION: {
4748		struct kvm_userspace_memory_region kvm_userspace_mem;
4749
4750		r = -EFAULT;
4751		if (copy_from_user(&kvm_userspace_mem, argp,
4752						sizeof(kvm_userspace_mem)))
4753			goto out;
4754
4755		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4756		break;
4757	}
4758	case KVM_GET_DIRTY_LOG: {
4759		struct kvm_dirty_log log;
4760
4761		r = -EFAULT;
4762		if (copy_from_user(&log, argp, sizeof(log)))
4763			goto out;
4764		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4765		break;
4766	}
4767#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4768	case KVM_CLEAR_DIRTY_LOG: {
4769		struct kvm_clear_dirty_log log;
4770
4771		r = -EFAULT;
4772		if (copy_from_user(&log, argp, sizeof(log)))
4773			goto out;
4774		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4775		break;
4776	}
4777#endif
4778#ifdef CONFIG_KVM_MMIO
4779	case KVM_REGISTER_COALESCED_MMIO: {
4780		struct kvm_coalesced_mmio_zone zone;
4781
4782		r = -EFAULT;
4783		if (copy_from_user(&zone, argp, sizeof(zone)))
4784			goto out;
4785		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4786		break;
4787	}
4788	case KVM_UNREGISTER_COALESCED_MMIO: {
4789		struct kvm_coalesced_mmio_zone zone;
4790
4791		r = -EFAULT;
4792		if (copy_from_user(&zone, argp, sizeof(zone)))
4793			goto out;
4794		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4795		break;
4796	}
4797#endif
4798	case KVM_IRQFD: {
4799		struct kvm_irqfd data;
4800
4801		r = -EFAULT;
4802		if (copy_from_user(&data, argp, sizeof(data)))
4803			goto out;
4804		r = kvm_irqfd(kvm, &data);
4805		break;
4806	}
4807	case KVM_IOEVENTFD: {
4808		struct kvm_ioeventfd data;
4809
4810		r = -EFAULT;
4811		if (copy_from_user(&data, argp, sizeof(data)))
4812			goto out;
4813		r = kvm_ioeventfd(kvm, &data);
4814		break;
4815	}
4816#ifdef CONFIG_HAVE_KVM_MSI
4817	case KVM_SIGNAL_MSI: {
4818		struct kvm_msi msi;
4819
4820		r = -EFAULT;
4821		if (copy_from_user(&msi, argp, sizeof(msi)))
4822			goto out;
4823		r = kvm_send_userspace_msi(kvm, &msi);
4824		break;
4825	}
4826#endif
4827#ifdef __KVM_HAVE_IRQ_LINE
4828	case KVM_IRQ_LINE_STATUS:
4829	case KVM_IRQ_LINE: {
4830		struct kvm_irq_level irq_event;
4831
4832		r = -EFAULT;
4833		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4834			goto out;
4835
4836		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4837					ioctl == KVM_IRQ_LINE_STATUS);
4838		if (r)
4839			goto out;
4840
4841		r = -EFAULT;
4842		if (ioctl == KVM_IRQ_LINE_STATUS) {
4843			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4844				goto out;
4845		}
4846
4847		r = 0;
4848		break;
4849	}
4850#endif
4851#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4852	case KVM_SET_GSI_ROUTING: {
4853		struct kvm_irq_routing routing;
4854		struct kvm_irq_routing __user *urouting;
4855		struct kvm_irq_routing_entry *entries = NULL;
4856
4857		r = -EFAULT;
4858		if (copy_from_user(&routing, argp, sizeof(routing)))
4859			goto out;
4860		r = -EINVAL;
4861		if (!kvm_arch_can_set_irq_routing(kvm))
4862			goto out;
4863		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4864			goto out;
4865		if (routing.flags)
4866			goto out;
4867		if (routing.nr) {
4868			urouting = argp;
4869			entries = vmemdup_user(urouting->entries,
4870					       array_size(sizeof(*entries),
4871							  routing.nr));
4872			if (IS_ERR(entries)) {
4873				r = PTR_ERR(entries);
4874				goto out;
4875			}
4876		}
4877		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4878					routing.flags);
4879		kvfree(entries);
4880		break;
4881	}
4882#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4883	case KVM_CREATE_DEVICE: {
4884		struct kvm_create_device cd;
4885
4886		r = -EFAULT;
4887		if (copy_from_user(&cd, argp, sizeof(cd)))
4888			goto out;
4889
4890		r = kvm_ioctl_create_device(kvm, &cd);
4891		if (r)
4892			goto out;
4893
4894		r = -EFAULT;
4895		if (copy_to_user(argp, &cd, sizeof(cd)))
4896			goto out;
4897
4898		r = 0;
4899		break;
4900	}
4901	case KVM_CHECK_EXTENSION:
4902		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4903		break;
4904	case KVM_RESET_DIRTY_RINGS:
4905		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4906		break;
4907	case KVM_GET_STATS_FD:
4908		r = kvm_vm_ioctl_get_stats_fd(kvm);
4909		break;
4910	default:
4911		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4912	}
4913out:
4914	return r;
4915}
4916
4917#ifdef CONFIG_KVM_COMPAT
4918struct compat_kvm_dirty_log {
4919	__u32 slot;
4920	__u32 padding1;
4921	union {
4922		compat_uptr_t dirty_bitmap; /* one bit per page */
4923		__u64 padding2;
4924	};
4925};
4926
4927struct compat_kvm_clear_dirty_log {
4928	__u32 slot;
4929	__u32 num_pages;
4930	__u64 first_page;
4931	union {
4932		compat_uptr_t dirty_bitmap; /* one bit per page */
4933		__u64 padding2;
4934	};
4935};
4936
4937long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4938				     unsigned long arg)
4939{
4940	return -ENOTTY;
4941}
4942
4943static long kvm_vm_compat_ioctl(struct file *filp,
4944			   unsigned int ioctl, unsigned long arg)
4945{
4946	struct kvm *kvm = filp->private_data;
4947	int r;
4948
4949	if (kvm->mm != current->mm || kvm->vm_dead)
4950		return -EIO;
4951
4952	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4953	if (r != -ENOTTY)
4954		return r;
4955
4956	switch (ioctl) {
4957#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4958	case KVM_CLEAR_DIRTY_LOG: {
4959		struct compat_kvm_clear_dirty_log compat_log;
4960		struct kvm_clear_dirty_log log;
4961
4962		if (copy_from_user(&compat_log, (void __user *)arg,
4963				   sizeof(compat_log)))
4964			return -EFAULT;
4965		log.slot	 = compat_log.slot;
4966		log.num_pages	 = compat_log.num_pages;
4967		log.first_page	 = compat_log.first_page;
4968		log.padding2	 = compat_log.padding2;
4969		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4970
4971		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4972		break;
4973	}
4974#endif
4975	case KVM_GET_DIRTY_LOG: {
4976		struct compat_kvm_dirty_log compat_log;
4977		struct kvm_dirty_log log;
4978
4979		if (copy_from_user(&compat_log, (void __user *)arg,
4980				   sizeof(compat_log)))
4981			return -EFAULT;
4982		log.slot	 = compat_log.slot;
4983		log.padding1	 = compat_log.padding1;
4984		log.padding2	 = compat_log.padding2;
4985		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4986
4987		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4988		break;
4989	}
4990	default:
4991		r = kvm_vm_ioctl(filp, ioctl, arg);
4992	}
4993	return r;
4994}
4995#endif
4996
4997static const struct file_operations kvm_vm_fops = {
4998	.release        = kvm_vm_release,
4999	.unlocked_ioctl = kvm_vm_ioctl,
5000	.llseek		= noop_llseek,
5001	KVM_COMPAT(kvm_vm_compat_ioctl),
5002};
5003
5004bool file_is_kvm(struct file *file)
5005{
5006	return file && file->f_op == &kvm_vm_fops;
5007}
5008EXPORT_SYMBOL_GPL(file_is_kvm);
5009
5010static int kvm_dev_ioctl_create_vm(unsigned long type)
5011{
5012	char fdname[ITOA_MAX_LEN + 1];
5013	int r, fd;
5014	struct kvm *kvm;
5015	struct file *file;
5016
5017	fd = get_unused_fd_flags(O_CLOEXEC);
5018	if (fd < 0)
5019		return fd;
5020
5021	snprintf(fdname, sizeof(fdname), "%d", fd);
5022
5023	kvm = kvm_create_vm(type, fdname);
5024	if (IS_ERR(kvm)) {
5025		r = PTR_ERR(kvm);
5026		goto put_fd;
5027	}
5028
5029	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5030	if (IS_ERR(file)) {
 
5031		r = PTR_ERR(file);
5032		goto put_kvm;
5033	}
5034
5035	/*
5036	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5037	 * already set, with ->release() being kvm_vm_release().  In error
5038	 * cases it will be called by the final fput(file) and will take
5039	 * care of doing kvm_put_kvm(kvm).
5040	 */
 
 
 
 
 
5041	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5042
5043	fd_install(fd, file);
5044	return fd;
5045
5046put_kvm:
5047	kvm_put_kvm(kvm);
5048put_fd:
5049	put_unused_fd(fd);
5050	return r;
5051}
5052
5053static long kvm_dev_ioctl(struct file *filp,
5054			  unsigned int ioctl, unsigned long arg)
5055{
5056	long r = -EINVAL;
5057
5058	switch (ioctl) {
5059	case KVM_GET_API_VERSION:
5060		if (arg)
5061			goto out;
5062		r = KVM_API_VERSION;
5063		break;
5064	case KVM_CREATE_VM:
5065		r = kvm_dev_ioctl_create_vm(arg);
5066		break;
5067	case KVM_CHECK_EXTENSION:
5068		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5069		break;
5070	case KVM_GET_VCPU_MMAP_SIZE:
5071		if (arg)
5072			goto out;
5073		r = PAGE_SIZE;     /* struct kvm_run */
5074#ifdef CONFIG_X86
5075		r += PAGE_SIZE;    /* pio data page */
5076#endif
5077#ifdef CONFIG_KVM_MMIO
5078		r += PAGE_SIZE;    /* coalesced mmio ring page */
5079#endif
5080		break;
5081	case KVM_TRACE_ENABLE:
5082	case KVM_TRACE_PAUSE:
5083	case KVM_TRACE_DISABLE:
5084		r = -EOPNOTSUPP;
5085		break;
5086	default:
5087		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5088	}
5089out:
5090	return r;
5091}
5092
5093static struct file_operations kvm_chardev_ops = {
5094	.unlocked_ioctl = kvm_dev_ioctl,
5095	.llseek		= noop_llseek,
5096	KVM_COMPAT(kvm_dev_ioctl),
5097};
5098
5099static struct miscdevice kvm_dev = {
5100	KVM_MINOR,
5101	"kvm",
5102	&kvm_chardev_ops,
5103};
5104
5105static void hardware_enable_nolock(void *junk)
5106{
5107	int cpu = raw_smp_processor_id();
5108	int r;
5109
5110	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
5111		return;
5112
5113	cpumask_set_cpu(cpu, cpus_hardware_enabled);
5114
5115	r = kvm_arch_hardware_enable();
5116
5117	if (r) {
5118		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5119		atomic_inc(&hardware_enable_failed);
5120		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
5121	}
5122}
5123
5124static int kvm_starting_cpu(unsigned int cpu)
5125{
5126	raw_spin_lock(&kvm_count_lock);
5127	if (kvm_usage_count)
5128		hardware_enable_nolock(NULL);
5129	raw_spin_unlock(&kvm_count_lock);
5130	return 0;
5131}
5132
5133static void hardware_disable_nolock(void *junk)
5134{
5135	int cpu = raw_smp_processor_id();
5136
5137	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
5138		return;
5139	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5140	kvm_arch_hardware_disable();
5141}
5142
5143static int kvm_dying_cpu(unsigned int cpu)
5144{
5145	raw_spin_lock(&kvm_count_lock);
5146	if (kvm_usage_count)
5147		hardware_disable_nolock(NULL);
5148	raw_spin_unlock(&kvm_count_lock);
5149	return 0;
5150}
5151
5152static void hardware_disable_all_nolock(void)
5153{
5154	BUG_ON(!kvm_usage_count);
5155
5156	kvm_usage_count--;
5157	if (!kvm_usage_count)
5158		on_each_cpu(hardware_disable_nolock, NULL, 1);
5159}
5160
5161static void hardware_disable_all(void)
5162{
5163	raw_spin_lock(&kvm_count_lock);
5164	hardware_disable_all_nolock();
5165	raw_spin_unlock(&kvm_count_lock);
5166}
5167
5168static int hardware_enable_all(void)
5169{
5170	int r = 0;
5171
5172	raw_spin_lock(&kvm_count_lock);
5173
5174	kvm_usage_count++;
5175	if (kvm_usage_count == 1) {
5176		atomic_set(&hardware_enable_failed, 0);
5177		on_each_cpu(hardware_enable_nolock, NULL, 1);
5178
5179		if (atomic_read(&hardware_enable_failed)) {
5180			hardware_disable_all_nolock();
5181			r = -EBUSY;
5182		}
5183	}
5184
5185	raw_spin_unlock(&kvm_count_lock);
5186
5187	return r;
5188}
5189
5190static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
5191		      void *v)
5192{
5193	/*
5194	 * Some (well, at least mine) BIOSes hang on reboot if
5195	 * in vmx root mode.
5196	 *
5197	 * And Intel TXT required VMX off for all cpu when system shutdown.
5198	 */
5199	pr_info("kvm: exiting hardware virtualization\n");
5200	kvm_rebooting = true;
5201	on_each_cpu(hardware_disable_nolock, NULL, 1);
5202	return NOTIFY_OK;
5203}
5204
5205static struct notifier_block kvm_reboot_notifier = {
5206	.notifier_call = kvm_reboot,
5207	.priority = 0,
5208};
5209
5210static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5211{
5212	int i;
5213
5214	for (i = 0; i < bus->dev_count; i++) {
5215		struct kvm_io_device *pos = bus->range[i].dev;
5216
5217		kvm_iodevice_destructor(pos);
5218	}
5219	kfree(bus);
5220}
5221
5222static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5223				 const struct kvm_io_range *r2)
5224{
5225	gpa_t addr1 = r1->addr;
5226	gpa_t addr2 = r2->addr;
5227
5228	if (addr1 < addr2)
5229		return -1;
5230
5231	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5232	 * accept any overlapping write.  Any order is acceptable for
5233	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5234	 * we process all of them.
5235	 */
5236	if (r2->len) {
5237		addr1 += r1->len;
5238		addr2 += r2->len;
5239	}
5240
5241	if (addr1 > addr2)
5242		return 1;
5243
5244	return 0;
5245}
5246
5247static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5248{
5249	return kvm_io_bus_cmp(p1, p2);
5250}
5251
5252static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5253			     gpa_t addr, int len)
5254{
5255	struct kvm_io_range *range, key;
5256	int off;
5257
5258	key = (struct kvm_io_range) {
5259		.addr = addr,
5260		.len = len,
5261	};
5262
5263	range = bsearch(&key, bus->range, bus->dev_count,
5264			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5265	if (range == NULL)
5266		return -ENOENT;
5267
5268	off = range - bus->range;
5269
5270	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5271		off--;
5272
5273	return off;
5274}
5275
5276static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5277			      struct kvm_io_range *range, const void *val)
5278{
5279	int idx;
5280
5281	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5282	if (idx < 0)
5283		return -EOPNOTSUPP;
5284
5285	while (idx < bus->dev_count &&
5286		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5287		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5288					range->len, val))
5289			return idx;
5290		idx++;
5291	}
5292
5293	return -EOPNOTSUPP;
5294}
5295
5296/* kvm_io_bus_write - called under kvm->slots_lock */
5297int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5298		     int len, const void *val)
5299{
5300	struct kvm_io_bus *bus;
5301	struct kvm_io_range range;
5302	int r;
5303
5304	range = (struct kvm_io_range) {
5305		.addr = addr,
5306		.len = len,
5307	};
5308
5309	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5310	if (!bus)
5311		return -ENOMEM;
5312	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5313	return r < 0 ? r : 0;
5314}
5315EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5316
5317/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5318int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5319			    gpa_t addr, int len, const void *val, long cookie)
5320{
5321	struct kvm_io_bus *bus;
5322	struct kvm_io_range range;
5323
5324	range = (struct kvm_io_range) {
5325		.addr = addr,
5326		.len = len,
5327	};
5328
5329	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5330	if (!bus)
5331		return -ENOMEM;
5332
5333	/* First try the device referenced by cookie. */
5334	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5335	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5336		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5337					val))
5338			return cookie;
5339
5340	/*
5341	 * cookie contained garbage; fall back to search and return the
5342	 * correct cookie value.
5343	 */
5344	return __kvm_io_bus_write(vcpu, bus, &range, val);
5345}
5346
5347static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5348			     struct kvm_io_range *range, void *val)
5349{
5350	int idx;
5351
5352	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5353	if (idx < 0)
5354		return -EOPNOTSUPP;
5355
5356	while (idx < bus->dev_count &&
5357		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5358		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5359				       range->len, val))
5360			return idx;
5361		idx++;
5362	}
5363
5364	return -EOPNOTSUPP;
5365}
5366
5367/* kvm_io_bus_read - called under kvm->slots_lock */
5368int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5369		    int len, void *val)
5370{
5371	struct kvm_io_bus *bus;
5372	struct kvm_io_range range;
5373	int r;
5374
5375	range = (struct kvm_io_range) {
5376		.addr = addr,
5377		.len = len,
5378	};
5379
5380	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5381	if (!bus)
5382		return -ENOMEM;
5383	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5384	return r < 0 ? r : 0;
5385}
5386
5387/* Caller must hold slots_lock. */
5388int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5389			    int len, struct kvm_io_device *dev)
5390{
5391	int i;
5392	struct kvm_io_bus *new_bus, *bus;
5393	struct kvm_io_range range;
5394
5395	bus = kvm_get_bus(kvm, bus_idx);
5396	if (!bus)
5397		return -ENOMEM;
5398
5399	/* exclude ioeventfd which is limited by maximum fd */
5400	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5401		return -ENOSPC;
5402
5403	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5404			  GFP_KERNEL_ACCOUNT);
5405	if (!new_bus)
5406		return -ENOMEM;
5407
5408	range = (struct kvm_io_range) {
5409		.addr = addr,
5410		.len = len,
5411		.dev = dev,
5412	};
5413
5414	for (i = 0; i < bus->dev_count; i++)
5415		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5416			break;
5417
5418	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5419	new_bus->dev_count++;
5420	new_bus->range[i] = range;
5421	memcpy(new_bus->range + i + 1, bus->range + i,
5422		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5423	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5424	synchronize_srcu_expedited(&kvm->srcu);
5425	kfree(bus);
5426
5427	return 0;
5428}
5429
5430int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5431			      struct kvm_io_device *dev)
 
5432{
5433	int i, j;
5434	struct kvm_io_bus *new_bus, *bus;
5435
5436	lockdep_assert_held(&kvm->slots_lock);
5437
5438	bus = kvm_get_bus(kvm, bus_idx);
5439	if (!bus)
5440		return 0;
5441
5442	for (i = 0; i < bus->dev_count; i++) {
5443		if (bus->range[i].dev == dev) {
5444			break;
5445		}
5446	}
5447
5448	if (i == bus->dev_count)
5449		return 0;
5450
5451	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5452			  GFP_KERNEL_ACCOUNT);
5453	if (new_bus) {
5454		memcpy(new_bus, bus, struct_size(bus, range, i));
5455		new_bus->dev_count--;
5456		memcpy(new_bus->range + i, bus->range + i + 1,
5457				flex_array_size(new_bus, range, new_bus->dev_count - i));
5458	}
5459
5460	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5461	synchronize_srcu_expedited(&kvm->srcu);
5462
5463	/* Destroy the old bus _after_ installing the (null) bus. */
5464	if (!new_bus) {
5465		pr_err("kvm: failed to shrink bus, removing it completely\n");
5466		for (j = 0; j < bus->dev_count; j++) {
5467			if (j == i)
5468				continue;
5469			kvm_iodevice_destructor(bus->range[j].dev);
5470		}
5471	}
5472
 
 
5473	kfree(bus);
5474	return new_bus ? 0 : -ENOMEM;
5475}
5476
5477struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5478					 gpa_t addr)
5479{
5480	struct kvm_io_bus *bus;
5481	int dev_idx, srcu_idx;
5482	struct kvm_io_device *iodev = NULL;
5483
5484	srcu_idx = srcu_read_lock(&kvm->srcu);
5485
5486	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5487	if (!bus)
5488		goto out_unlock;
5489
5490	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5491	if (dev_idx < 0)
5492		goto out_unlock;
5493
5494	iodev = bus->range[dev_idx].dev;
5495
5496out_unlock:
5497	srcu_read_unlock(&kvm->srcu, srcu_idx);
5498
5499	return iodev;
5500}
5501EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5502
5503static int kvm_debugfs_open(struct inode *inode, struct file *file,
5504			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5505			   const char *fmt)
5506{
5507	int ret;
5508	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5509					  inode->i_private;
5510
5511	/*
5512	 * The debugfs files are a reference to the kvm struct which
5513        * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5514        * avoids the race between open and the removal of the debugfs directory.
5515	 */
5516	if (!kvm_get_kvm_safe(stat_data->kvm))
5517		return -ENOENT;
5518
5519	ret = simple_attr_open(inode, file, get,
5520			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
5521			       ? set : NULL, fmt);
5522	if (ret)
5523		kvm_put_kvm(stat_data->kvm);
 
 
5524
5525	return ret;
5526}
5527
5528static int kvm_debugfs_release(struct inode *inode, struct file *file)
5529{
5530	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5531					  inode->i_private;
5532
5533	simple_attr_release(inode, file);
5534	kvm_put_kvm(stat_data->kvm);
5535
5536	return 0;
5537}
5538
5539static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5540{
5541	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5542
5543	return 0;
5544}
5545
5546static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5547{
5548	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5549
5550	return 0;
5551}
5552
5553static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5554{
5555	unsigned long i;
5556	struct kvm_vcpu *vcpu;
5557
5558	*val = 0;
5559
5560	kvm_for_each_vcpu(i, vcpu, kvm)
5561		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5562
5563	return 0;
5564}
5565
5566static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5567{
5568	unsigned long i;
5569	struct kvm_vcpu *vcpu;
5570
5571	kvm_for_each_vcpu(i, vcpu, kvm)
5572		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5573
5574	return 0;
5575}
5576
5577static int kvm_stat_data_get(void *data, u64 *val)
5578{
5579	int r = -EFAULT;
5580	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5581
5582	switch (stat_data->kind) {
5583	case KVM_STAT_VM:
5584		r = kvm_get_stat_per_vm(stat_data->kvm,
5585					stat_data->desc->desc.offset, val);
5586		break;
5587	case KVM_STAT_VCPU:
5588		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5589					  stat_data->desc->desc.offset, val);
5590		break;
5591	}
5592
5593	return r;
5594}
5595
5596static int kvm_stat_data_clear(void *data, u64 val)
5597{
5598	int r = -EFAULT;
5599	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5600
5601	if (val)
5602		return -EINVAL;
5603
5604	switch (stat_data->kind) {
5605	case KVM_STAT_VM:
5606		r = kvm_clear_stat_per_vm(stat_data->kvm,
5607					  stat_data->desc->desc.offset);
5608		break;
5609	case KVM_STAT_VCPU:
5610		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5611					    stat_data->desc->desc.offset);
5612		break;
5613	}
5614
5615	return r;
5616}
5617
5618static int kvm_stat_data_open(struct inode *inode, struct file *file)
5619{
5620	__simple_attr_check_format("%llu\n", 0ull);
5621	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5622				kvm_stat_data_clear, "%llu\n");
5623}
5624
5625static const struct file_operations stat_fops_per_vm = {
5626	.owner = THIS_MODULE,
5627	.open = kvm_stat_data_open,
5628	.release = kvm_debugfs_release,
5629	.read = simple_attr_read,
5630	.write = simple_attr_write,
5631	.llseek = no_llseek,
5632};
5633
5634static int vm_stat_get(void *_offset, u64 *val)
5635{
5636	unsigned offset = (long)_offset;
5637	struct kvm *kvm;
5638	u64 tmp_val;
5639
5640	*val = 0;
5641	mutex_lock(&kvm_lock);
5642	list_for_each_entry(kvm, &vm_list, vm_list) {
5643		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5644		*val += tmp_val;
5645	}
5646	mutex_unlock(&kvm_lock);
5647	return 0;
5648}
5649
5650static int vm_stat_clear(void *_offset, u64 val)
5651{
5652	unsigned offset = (long)_offset;
5653	struct kvm *kvm;
5654
5655	if (val)
5656		return -EINVAL;
5657
5658	mutex_lock(&kvm_lock);
5659	list_for_each_entry(kvm, &vm_list, vm_list) {
5660		kvm_clear_stat_per_vm(kvm, offset);
5661	}
5662	mutex_unlock(&kvm_lock);
5663
5664	return 0;
5665}
5666
5667DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5668DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5669
5670static int vcpu_stat_get(void *_offset, u64 *val)
5671{
5672	unsigned offset = (long)_offset;
5673	struct kvm *kvm;
5674	u64 tmp_val;
5675
5676	*val = 0;
5677	mutex_lock(&kvm_lock);
5678	list_for_each_entry(kvm, &vm_list, vm_list) {
5679		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5680		*val += tmp_val;
5681	}
5682	mutex_unlock(&kvm_lock);
5683	return 0;
5684}
5685
5686static int vcpu_stat_clear(void *_offset, u64 val)
5687{
5688	unsigned offset = (long)_offset;
5689	struct kvm *kvm;
5690
5691	if (val)
5692		return -EINVAL;
5693
5694	mutex_lock(&kvm_lock);
5695	list_for_each_entry(kvm, &vm_list, vm_list) {
5696		kvm_clear_stat_per_vcpu(kvm, offset);
5697	}
5698	mutex_unlock(&kvm_lock);
5699
5700	return 0;
5701}
5702
5703DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5704			"%llu\n");
5705DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
 
 
 
 
5706
5707static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5708{
5709	struct kobj_uevent_env *env;
5710	unsigned long long created, active;
5711
5712	if (!kvm_dev.this_device || !kvm)
5713		return;
5714
5715	mutex_lock(&kvm_lock);
5716	if (type == KVM_EVENT_CREATE_VM) {
5717		kvm_createvm_count++;
5718		kvm_active_vms++;
5719	} else if (type == KVM_EVENT_DESTROY_VM) {
5720		kvm_active_vms--;
5721	}
5722	created = kvm_createvm_count;
5723	active = kvm_active_vms;
5724	mutex_unlock(&kvm_lock);
5725
5726	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5727	if (!env)
5728		return;
5729
5730	add_uevent_var(env, "CREATED=%llu", created);
5731	add_uevent_var(env, "COUNT=%llu", active);
5732
5733	if (type == KVM_EVENT_CREATE_VM) {
5734		add_uevent_var(env, "EVENT=create");
5735		kvm->userspace_pid = task_pid_nr(current);
5736	} else if (type == KVM_EVENT_DESTROY_VM) {
5737		add_uevent_var(env, "EVENT=destroy");
5738	}
5739	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5740
5741	if (!IS_ERR(kvm->debugfs_dentry)) {
5742		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5743
5744		if (p) {
5745			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5746			if (!IS_ERR(tmp))
5747				add_uevent_var(env, "STATS_PATH=%s", tmp);
5748			kfree(p);
5749		}
5750	}
5751	/* no need for checks, since we are adding at most only 5 keys */
5752	env->envp[env->envp_idx++] = NULL;
5753	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5754	kfree(env);
5755}
5756
5757static void kvm_init_debug(void)
5758{
5759	const struct file_operations *fops;
5760	const struct _kvm_stats_desc *pdesc;
5761	int i;
5762
5763	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5764
5765	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5766		pdesc = &kvm_vm_stats_desc[i];
5767		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5768			fops = &vm_stat_fops;
5769		else
5770			fops = &vm_stat_readonly_fops;
5771		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5772				kvm_debugfs_dir,
5773				(void *)(long)pdesc->desc.offset, fops);
5774	}
5775
5776	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5777		pdesc = &kvm_vcpu_stats_desc[i];
5778		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5779			fops = &vcpu_stat_fops;
5780		else
5781			fops = &vcpu_stat_readonly_fops;
5782		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5783				kvm_debugfs_dir,
5784				(void *)(long)pdesc->desc.offset, fops);
5785	}
5786}
5787
5788static int kvm_suspend(void)
5789{
5790	if (kvm_usage_count)
5791		hardware_disable_nolock(NULL);
5792	return 0;
5793}
5794
5795static void kvm_resume(void)
5796{
5797	if (kvm_usage_count) {
5798		lockdep_assert_not_held(&kvm_count_lock);
 
 
5799		hardware_enable_nolock(NULL);
5800	}
5801}
5802
5803static struct syscore_ops kvm_syscore_ops = {
5804	.suspend = kvm_suspend,
5805	.resume = kvm_resume,
5806};
5807
5808static inline
5809struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5810{
5811	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5812}
5813
5814static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5815{
5816	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5817
5818	WRITE_ONCE(vcpu->preempted, false);
5819	WRITE_ONCE(vcpu->ready, false);
5820
5821	__this_cpu_write(kvm_running_vcpu, vcpu);
5822	kvm_arch_sched_in(vcpu, cpu);
5823	kvm_arch_vcpu_load(vcpu, cpu);
5824}
5825
5826static void kvm_sched_out(struct preempt_notifier *pn,
5827			  struct task_struct *next)
5828{
5829	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5830
5831	if (current->on_rq) {
5832		WRITE_ONCE(vcpu->preempted, true);
5833		WRITE_ONCE(vcpu->ready, true);
5834	}
5835	kvm_arch_vcpu_put(vcpu);
5836	__this_cpu_write(kvm_running_vcpu, NULL);
5837}
5838
5839/**
5840 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5841 *
5842 * We can disable preemption locally around accessing the per-CPU variable,
5843 * and use the resolved vcpu pointer after enabling preemption again,
5844 * because even if the current thread is migrated to another CPU, reading
5845 * the per-CPU value later will give us the same value as we update the
5846 * per-CPU variable in the preempt notifier handlers.
5847 */
5848struct kvm_vcpu *kvm_get_running_vcpu(void)
5849{
5850	struct kvm_vcpu *vcpu;
5851
5852	preempt_disable();
5853	vcpu = __this_cpu_read(kvm_running_vcpu);
5854	preempt_enable();
5855
5856	return vcpu;
5857}
5858EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5859
5860/**
5861 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5862 */
5863struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5864{
5865        return &kvm_running_vcpu;
5866}
5867
5868#ifdef CONFIG_GUEST_PERF_EVENTS
5869static unsigned int kvm_guest_state(void)
5870{
5871	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5872	unsigned int state;
5873
5874	if (!kvm_arch_pmi_in_guest(vcpu))
5875		return 0;
5876
5877	state = PERF_GUEST_ACTIVE;
5878	if (!kvm_arch_vcpu_in_kernel(vcpu))
5879		state |= PERF_GUEST_USER;
5880
5881	return state;
5882}
5883
5884static unsigned long kvm_guest_get_ip(void)
5885{
5886	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5887
5888	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5889	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5890		return 0;
5891
5892	return kvm_arch_vcpu_get_ip(vcpu);
5893}
5894
5895static struct perf_guest_info_callbacks kvm_guest_cbs = {
5896	.state			= kvm_guest_state,
5897	.get_ip			= kvm_guest_get_ip,
5898	.handle_intel_pt_intr	= NULL,
5899};
5900
5901void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5902{
5903	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5904	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5905}
5906void kvm_unregister_perf_callbacks(void)
5907{
5908	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5909}
5910#endif
5911
5912struct kvm_cpu_compat_check {
5913	void *opaque;
5914	int *ret;
5915};
5916
5917static void check_processor_compat(void *data)
5918{
5919	struct kvm_cpu_compat_check *c = data;
5920
5921	*c->ret = kvm_arch_check_processor_compat(c->opaque);
5922}
5923
5924int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5925		  struct module *module)
5926{
5927	struct kvm_cpu_compat_check c;
5928	int r;
5929	int cpu;
5930
5931	r = kvm_arch_init(opaque);
5932	if (r)
5933		goto out_fail;
5934
5935	/*
5936	 * kvm_arch_init makes sure there's at most one caller
5937	 * for architectures that support multiple implementations,
5938	 * like intel and amd on x86.
5939	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5940	 * conflicts in case kvm is already setup for another implementation.
5941	 */
5942	r = kvm_irqfd_init();
5943	if (r)
5944		goto out_irqfd;
5945
5946	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5947		r = -ENOMEM;
5948		goto out_free_0;
5949	}
5950
5951	r = kvm_arch_hardware_setup(opaque);
5952	if (r < 0)
5953		goto out_free_1;
5954
5955	c.ret = &r;
5956	c.opaque = opaque;
5957	for_each_online_cpu(cpu) {
5958		smp_call_function_single(cpu, check_processor_compat, &c, 1);
5959		if (r < 0)
5960			goto out_free_2;
5961	}
5962
5963	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5964				      kvm_starting_cpu, kvm_dying_cpu);
5965	if (r)
5966		goto out_free_2;
5967	register_reboot_notifier(&kvm_reboot_notifier);
5968
5969	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5970	if (!vcpu_align)
5971		vcpu_align = __alignof__(struct kvm_vcpu);
5972	kvm_vcpu_cache =
5973		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5974					   SLAB_ACCOUNT,
5975					   offsetof(struct kvm_vcpu, arch),
5976					   offsetofend(struct kvm_vcpu, stats_id)
5977					   - offsetof(struct kvm_vcpu, arch),
5978					   NULL);
5979	if (!kvm_vcpu_cache) {
5980		r = -ENOMEM;
5981		goto out_free_3;
5982	}
5983
5984	for_each_possible_cpu(cpu) {
5985		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5986					    GFP_KERNEL, cpu_to_node(cpu))) {
5987			r = -ENOMEM;
5988			goto out_free_4;
5989		}
5990	}
5991
5992	r = kvm_async_pf_init();
5993	if (r)
5994		goto out_free_4;
5995
5996	kvm_chardev_ops.owner = module;
 
 
5997
5998	r = misc_register(&kvm_dev);
5999	if (r) {
6000		pr_err("kvm: misc device register failed\n");
6001		goto out_unreg;
6002	}
6003
6004	register_syscore_ops(&kvm_syscore_ops);
6005
6006	kvm_preempt_ops.sched_in = kvm_sched_in;
6007	kvm_preempt_ops.sched_out = kvm_sched_out;
6008
6009	kvm_init_debug();
6010
6011	r = kvm_vfio_ops_init();
6012	WARN_ON(r);
6013
6014	return 0;
6015
6016out_unreg:
6017	kvm_async_pf_deinit();
6018out_free_4:
6019	for_each_possible_cpu(cpu)
6020		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6021	kmem_cache_destroy(kvm_vcpu_cache);
6022out_free_3:
6023	unregister_reboot_notifier(&kvm_reboot_notifier);
6024	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
6025out_free_2:
6026	kvm_arch_hardware_unsetup();
6027out_free_1:
6028	free_cpumask_var(cpus_hardware_enabled);
6029out_free_0:
6030	kvm_irqfd_exit();
6031out_irqfd:
6032	kvm_arch_exit();
6033out_fail:
6034	return r;
6035}
6036EXPORT_SYMBOL_GPL(kvm_init);
6037
6038void kvm_exit(void)
6039{
6040	int cpu;
6041
6042	debugfs_remove_recursive(kvm_debugfs_dir);
6043	misc_deregister(&kvm_dev);
6044	for_each_possible_cpu(cpu)
6045		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6046	kmem_cache_destroy(kvm_vcpu_cache);
6047	kvm_async_pf_deinit();
6048	unregister_syscore_ops(&kvm_syscore_ops);
6049	unregister_reboot_notifier(&kvm_reboot_notifier);
6050	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
6051	on_each_cpu(hardware_disable_nolock, NULL, 1);
6052	kvm_arch_hardware_unsetup();
6053	kvm_arch_exit();
6054	kvm_irqfd_exit();
6055	free_cpumask_var(cpus_hardware_enabled);
6056	kvm_vfio_ops_exit();
6057}
6058EXPORT_SYMBOL_GPL(kvm_exit);
6059
6060struct kvm_vm_worker_thread_context {
6061	struct kvm *kvm;
6062	struct task_struct *parent;
6063	struct completion init_done;
6064	kvm_vm_thread_fn_t thread_fn;
6065	uintptr_t data;
6066	int err;
6067};
6068
6069static int kvm_vm_worker_thread(void *context)
6070{
6071	/*
6072	 * The init_context is allocated on the stack of the parent thread, so
6073	 * we have to locally copy anything that is needed beyond initialization
6074	 */
6075	struct kvm_vm_worker_thread_context *init_context = context;
6076	struct task_struct *parent;
6077	struct kvm *kvm = init_context->kvm;
6078	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6079	uintptr_t data = init_context->data;
6080	int err;
6081
6082	err = kthread_park(current);
6083	/* kthread_park(current) is never supposed to return an error */
6084	WARN_ON(err != 0);
6085	if (err)
6086		goto init_complete;
6087
6088	err = cgroup_attach_task_all(init_context->parent, current);
6089	if (err) {
6090		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6091			__func__, err);
6092		goto init_complete;
6093	}
6094
6095	set_user_nice(current, task_nice(init_context->parent));
6096
6097init_complete:
6098	init_context->err = err;
6099	complete(&init_context->init_done);
6100	init_context = NULL;
6101
6102	if (err)
6103		goto out;
6104
6105	/* Wait to be woken up by the spawner before proceeding. */
6106	kthread_parkme();
6107
6108	if (!kthread_should_stop())
6109		err = thread_fn(kvm, data);
6110
6111out:
6112	/*
6113	 * Move kthread back to its original cgroup to prevent it lingering in
6114	 * the cgroup of the VM process, after the latter finishes its
6115	 * execution.
6116	 *
6117	 * kthread_stop() waits on the 'exited' completion condition which is
6118	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6119	 * kthread is removed from the cgroup in the cgroup_exit() which is
6120	 * called after the exit_mm(). This causes the kthread_stop() to return
6121	 * before the kthread actually quits the cgroup.
6122	 */
6123	rcu_read_lock();
6124	parent = rcu_dereference(current->real_parent);
6125	get_task_struct(parent);
6126	rcu_read_unlock();
6127	cgroup_attach_task_all(parent, current);
6128	put_task_struct(parent);
6129
6130	return err;
6131}
6132
6133int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6134				uintptr_t data, const char *name,
6135				struct task_struct **thread_ptr)
6136{
6137	struct kvm_vm_worker_thread_context init_context = {};
6138	struct task_struct *thread;
6139
6140	*thread_ptr = NULL;
6141	init_context.kvm = kvm;
6142	init_context.parent = current;
6143	init_context.thread_fn = thread_fn;
6144	init_context.data = data;
6145	init_completion(&init_context.init_done);
6146
6147	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6148			     "%s-%d", name, task_pid_nr(current));
6149	if (IS_ERR(thread))
6150		return PTR_ERR(thread);
6151
6152	/* kthread_run is never supposed to return NULL */
6153	WARN_ON(thread == NULL);
6154
6155	wait_for_completion(&init_context.init_done);
6156
6157	if (!init_context.err)
6158		*thread_ptr = thread;
6159
6160	return init_context.err;
6161}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * This module enables machines with Intel VT-x extensions to run virtual
   6 * machines without emulation or binary translation.
   7 *
   8 * Copyright (C) 2006 Qumranet, Inc.
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 */
  15
  16#include <kvm/iodev.h>
  17
  18#include <linux/kvm_host.h>
  19#include <linux/kvm.h>
  20#include <linux/module.h>
  21#include <linux/errno.h>
  22#include <linux/percpu.h>
  23#include <linux/mm.h>
  24#include <linux/miscdevice.h>
  25#include <linux/vmalloc.h>
  26#include <linux/reboot.h>
  27#include <linux/debugfs.h>
  28#include <linux/highmem.h>
  29#include <linux/file.h>
  30#include <linux/syscore_ops.h>
  31#include <linux/cpu.h>
  32#include <linux/sched/signal.h>
  33#include <linux/sched/mm.h>
  34#include <linux/sched/stat.h>
  35#include <linux/cpumask.h>
  36#include <linux/smp.h>
  37#include <linux/anon_inodes.h>
  38#include <linux/profile.h>
  39#include <linux/kvm_para.h>
  40#include <linux/pagemap.h>
  41#include <linux/mman.h>
  42#include <linux/swap.h>
  43#include <linux/bitops.h>
  44#include <linux/spinlock.h>
  45#include <linux/compat.h>
  46#include <linux/srcu.h>
  47#include <linux/hugetlb.h>
  48#include <linux/slab.h>
  49#include <linux/sort.h>
  50#include <linux/bsearch.h>
  51#include <linux/io.h>
  52#include <linux/lockdep.h>
  53#include <linux/kthread.h>
 
  54
  55#include <asm/processor.h>
  56#include <asm/ioctl.h>
  57#include <linux/uaccess.h>
  58
  59#include "coalesced_mmio.h"
  60#include "async_pf.h"
 
  61#include "vfio.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/kvm.h>
  65
 
 
  66/* Worst case buffer size needed for holding an integer. */
  67#define ITOA_MAX_LEN 12
  68
  69MODULE_AUTHOR("Qumranet");
  70MODULE_LICENSE("GPL");
  71
  72/* Architectures should define their poll value according to the halt latency */
  73unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  74module_param(halt_poll_ns, uint, 0644);
  75EXPORT_SYMBOL_GPL(halt_poll_ns);
  76
  77/* Default doubles per-vcpu halt_poll_ns. */
  78unsigned int halt_poll_ns_grow = 2;
  79module_param(halt_poll_ns_grow, uint, 0644);
  80EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
  81
  82/* The start value to grow halt_poll_ns from */
  83unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
  84module_param(halt_poll_ns_grow_start, uint, 0644);
  85EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
  86
  87/* Default resets per-vcpu halt_poll_ns . */
  88unsigned int halt_poll_ns_shrink;
  89module_param(halt_poll_ns_shrink, uint, 0644);
  90EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
  91
  92/*
  93 * Ordering of locks:
  94 *
  95 *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  96 */
  97
  98DEFINE_MUTEX(kvm_lock);
  99static DEFINE_RAW_SPINLOCK(kvm_count_lock);
 100LIST_HEAD(vm_list);
 101
 102static cpumask_var_t cpus_hardware_enabled;
 103static int kvm_usage_count;
 104static atomic_t hardware_enable_failed;
 105
 106static struct kmem_cache *kvm_vcpu_cache;
 107
 108static __read_mostly struct preempt_ops kvm_preempt_ops;
 109static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
 110
 111struct dentry *kvm_debugfs_dir;
 112EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
 113
 114static int kvm_debugfs_num_entries;
 115static const struct file_operations stat_fops_per_vm;
 116
 
 
 117static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 118			   unsigned long arg);
 119#ifdef CONFIG_KVM_COMPAT
 120static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 121				  unsigned long arg);
 122#define KVM_COMPAT(c)	.compat_ioctl	= (c)
 123#else
 124/*
 125 * For architectures that don't implement a compat infrastructure,
 126 * adopt a double line of defense:
 127 * - Prevent a compat task from opening /dev/kvm
 128 * - If the open has been done by a 64bit task, and the KVM fd
 129 *   passed to a compat task, let the ioctls fail.
 130 */
 131static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
 132				unsigned long arg) { return -EINVAL; }
 133
 134static int kvm_no_compat_open(struct inode *inode, struct file *file)
 135{
 136	return is_compat_task() ? -ENODEV : 0;
 137}
 138#define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
 139			.open		= kvm_no_compat_open
 140#endif
 141static int hardware_enable_all(void);
 142static void hardware_disable_all(void);
 143
 144static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 145
 146static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
 147
 148__visible bool kvm_rebooting;
 149EXPORT_SYMBOL_GPL(kvm_rebooting);
 150
 151#define KVM_EVENT_CREATE_VM 0
 152#define KVM_EVENT_DESTROY_VM 1
 153static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
 154static unsigned long long kvm_createvm_count;
 155static unsigned long long kvm_active_vms;
 156
 
 
 157__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
 158						   unsigned long start, unsigned long end)
 159{
 160}
 161
 162bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
 
 
 
 
 163{
 164	/*
 165	 * The metadata used by is_zone_device_page() to determine whether or
 166	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
 167	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
 168	 * page_count() is zero to help detect bad usage of this helper.
 169	 */
 170	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
 171		return false;
 172
 173	return is_zone_device_page(pfn_to_page(pfn));
 174}
 175
 176bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
 
 
 
 
 
 
 177{
 
 
 
 
 
 
 
 
 
 
 
 
 
 178	/*
 179	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
 180	 * perspective they are "normal" pages, albeit with slightly different
 181	 * usage rules.
 182	 */
 183	if (pfn_valid(pfn))
 184		return PageReserved(pfn_to_page(pfn)) &&
 185		       !is_zero_pfn(pfn) &&
 186		       !kvm_is_zone_device_pfn(pfn);
 187
 188	return true;
 189}
 190
 191bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
 192{
 193	struct page *page = pfn_to_page(pfn);
 194
 195	if (!PageTransCompoundMap(page))
 196		return false;
 197
 198	return is_transparent_hugepage(compound_head(page));
 199}
 200
 201/*
 202 * Switches to specified vcpu, until a matching vcpu_put()
 203 */
 204void vcpu_load(struct kvm_vcpu *vcpu)
 205{
 206	int cpu = get_cpu();
 207
 208	__this_cpu_write(kvm_running_vcpu, vcpu);
 209	preempt_notifier_register(&vcpu->preempt_notifier);
 210	kvm_arch_vcpu_load(vcpu, cpu);
 211	put_cpu();
 212}
 213EXPORT_SYMBOL_GPL(vcpu_load);
 214
 215void vcpu_put(struct kvm_vcpu *vcpu)
 216{
 217	preempt_disable();
 218	kvm_arch_vcpu_put(vcpu);
 219	preempt_notifier_unregister(&vcpu->preempt_notifier);
 220	__this_cpu_write(kvm_running_vcpu, NULL);
 221	preempt_enable();
 222}
 223EXPORT_SYMBOL_GPL(vcpu_put);
 224
 225/* TODO: merge with kvm_arch_vcpu_should_kick */
 226static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
 227{
 228	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
 229
 230	/*
 231	 * We need to wait for the VCPU to reenable interrupts and get out of
 232	 * READING_SHADOW_PAGE_TABLES mode.
 233	 */
 234	if (req & KVM_REQUEST_WAIT)
 235		return mode != OUTSIDE_GUEST_MODE;
 236
 237	/*
 238	 * Need to kick a running VCPU, but otherwise there is nothing to do.
 239	 */
 240	return mode == IN_GUEST_MODE;
 241}
 242
 243static void ack_flush(void *_completed)
 244{
 245}
 246
 247static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
 248{
 249	if (unlikely(!cpus))
 250		cpus = cpu_online_mask;
 251
 252	if (cpumask_empty(cpus))
 253		return false;
 254
 255	smp_call_function_many(cpus, ack_flush, NULL, wait);
 256	return true;
 257}
 258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 259bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
 260				 struct kvm_vcpu *except,
 261				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
 262{
 263	int i, cpu, me;
 264	struct kvm_vcpu *vcpu;
 
 
 265	bool called;
 266
 267	me = get_cpu();
 268
 269	kvm_for_each_vcpu(i, vcpu, kvm) {
 270		if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
 271		    vcpu == except)
 272			continue;
 273
 274		kvm_make_request(req, vcpu);
 275		cpu = vcpu->cpu;
 276
 277		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
 
 
 278			continue;
 279
 280		if (tmp != NULL && cpu != -1 && cpu != me &&
 281		    kvm_request_needs_ipi(vcpu, req))
 282			__cpumask_set_cpu(cpu, tmp);
 283	}
 284
 285	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
 286	put_cpu();
 287
 288	return called;
 289}
 290
 291bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
 292				      struct kvm_vcpu *except)
 293{
 294	cpumask_var_t cpus;
 
 
 295	bool called;
 
 296
 297	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 298
 299	called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
 
 
 
 
 
 
 
 
 
 
 300
 301	free_cpumask_var(cpus);
 302	return called;
 303}
 304
 305bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 306{
 307	return kvm_make_all_cpus_request_except(kvm, req, NULL);
 308}
 
 309
 310#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 311void kvm_flush_remote_tlbs(struct kvm *kvm)
 312{
 313	/*
 314	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
 315	 * kvm_make_all_cpus_request.
 316	 */
 317	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
 318
 319	/*
 320	 * We want to publish modifications to the page tables before reading
 321	 * mode. Pairs with a memory barrier in arch-specific code.
 322	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 323	 * and smp_mb in walk_shadow_page_lockless_begin/end.
 324	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 325	 *
 326	 * There is already an smp_mb__after_atomic() before
 327	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 328	 * barrier here.
 329	 */
 330	if (!kvm_arch_flush_remote_tlb(kvm)
 331	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 332		++kvm->stat.remote_tlb_flush;
 333	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 334}
 335EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 336#endif
 337
 338void kvm_reload_remote_mmus(struct kvm *kvm)
 339{
 340	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 
 341}
 342
 343#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
 344static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
 345					       gfp_t gfp_flags)
 346{
 347	gfp_flags |= mc->gfp_zero;
 348
 349	if (mc->kmem_cache)
 350		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
 351	else
 352		return (void *)__get_free_page(gfp_flags);
 353}
 354
 355int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
 356{
 
 357	void *obj;
 358
 359	if (mc->nobjs >= min)
 360		return 0;
 361	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
 362		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363		if (!obj)
 364			return mc->nobjs >= min ? 0 : -ENOMEM;
 365		mc->objects[mc->nobjs++] = obj;
 366	}
 367	return 0;
 368}
 369
 
 
 
 
 
 370int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
 371{
 372	return mc->nobjs;
 373}
 374
 375void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
 376{
 377	while (mc->nobjs) {
 378		if (mc->kmem_cache)
 379			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
 380		else
 381			free_page((unsigned long)mc->objects[--mc->nobjs]);
 382	}
 
 
 
 
 
 383}
 384
 385void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 386{
 387	void *p;
 388
 389	if (WARN_ON(!mc->nobjs))
 390		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
 391	else
 392		p = mc->objects[--mc->nobjs];
 393	BUG_ON(!p);
 394	return p;
 395}
 396#endif
 397
 398static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 399{
 400	mutex_init(&vcpu->mutex);
 401	vcpu->cpu = -1;
 402	vcpu->kvm = kvm;
 403	vcpu->vcpu_id = id;
 404	vcpu->pid = NULL;
 
 405	rcuwait_init(&vcpu->wait);
 
 406	kvm_async_pf_vcpu_init(vcpu);
 407
 408	vcpu->pre_pcpu = -1;
 409	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
 410
 411	kvm_vcpu_set_in_spin_loop(vcpu, false);
 412	kvm_vcpu_set_dy_eligible(vcpu, false);
 413	vcpu->preempted = false;
 414	vcpu->ready = false;
 415	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
 
 
 
 
 
 416}
 417
 418void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
 419{
 420	kvm_arch_vcpu_destroy(vcpu);
 
 421
 422	/*
 423	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
 424	 * the vcpu->pid pointer, and at destruction time all file descriptors
 425	 * are already gone.
 426	 */
 427	put_pid(rcu_dereference_protected(vcpu->pid, 1));
 428
 429	free_page((unsigned long)vcpu->run);
 430	kmem_cache_free(kvm_vcpu_cache, vcpu);
 431}
 432EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 433
 434#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 435static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 436{
 437	return container_of(mn, struct kvm, mmu_notifier);
 438}
 439
 440static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
 441					      struct mm_struct *mm,
 442					      unsigned long start, unsigned long end)
 443{
 444	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 445	int idx;
 446
 447	idx = srcu_read_lock(&kvm->srcu);
 448	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
 449	srcu_read_unlock(&kvm->srcu, idx);
 450}
 451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 453					struct mm_struct *mm,
 454					unsigned long address,
 455					pte_t pte)
 456{
 457	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 458	int idx;
 459
 460	idx = srcu_read_lock(&kvm->srcu);
 461	spin_lock(&kvm->mmu_lock);
 462	kvm->mmu_notifier_seq++;
 
 
 
 
 
 
 
 
 
 
 463
 464	if (kvm_set_spte_hva(kvm, address, pte))
 465		kvm_flush_remote_tlbs(kvm);
 466
 467	spin_unlock(&kvm->mmu_lock);
 468	srcu_read_unlock(&kvm->srcu, idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 469}
 470
 471static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 472					const struct mmu_notifier_range *range)
 473{
 474	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 475	int need_tlb_flush = 0, idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476
 477	idx = srcu_read_lock(&kvm->srcu);
 478	spin_lock(&kvm->mmu_lock);
 479	/*
 480	 * The count increase must become visible at unlock time as no
 481	 * spte can be established without taking the mmu_lock and
 482	 * count is also read inside the mmu_lock critical section.
 
 
 
 
 
 483	 */
 484	kvm->mmu_notifier_count++;
 485	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
 486					     range->flags);
 487	need_tlb_flush |= kvm->tlbs_dirty;
 488	/* we've to flush the tlb before the pages can be freed */
 489	if (need_tlb_flush)
 490		kvm_flush_remote_tlbs(kvm);
 491
 492	spin_unlock(&kvm->mmu_lock);
 493	srcu_read_unlock(&kvm->srcu, idx);
 494
 495	return 0;
 496}
 497
 498static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 499					const struct mmu_notifier_range *range)
 500{
 501	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 502
 503	spin_lock(&kvm->mmu_lock);
 504	/*
 505	 * This sequence increase will notify the kvm page fault that
 506	 * the page that is going to be mapped in the spte could have
 507	 * been freed.
 508	 */
 509	kvm->mmu_notifier_seq++;
 510	smp_wmb();
 511	/*
 512	 * The above sequence increase must be visible before the
 513	 * below count decrease, which is ensured by the smp_wmb above
 514	 * in conjunction with the smp_rmb in mmu_notifier_retry().
 515	 */
 516	kvm->mmu_notifier_count--;
 517	spin_unlock(&kvm->mmu_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 518
 519	BUG_ON(kvm->mmu_notifier_count < 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520}
 521
 522static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 523					      struct mm_struct *mm,
 524					      unsigned long start,
 525					      unsigned long end)
 526{
 527	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 528	int young, idx;
 529
 530	idx = srcu_read_lock(&kvm->srcu);
 531	spin_lock(&kvm->mmu_lock);
 532
 533	young = kvm_age_hva(kvm, start, end);
 534	if (young)
 535		kvm_flush_remote_tlbs(kvm);
 536
 537	spin_unlock(&kvm->mmu_lock);
 538	srcu_read_unlock(&kvm->srcu, idx);
 539
 540	return young;
 541}
 542
 543static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 544					struct mm_struct *mm,
 545					unsigned long start,
 546					unsigned long end)
 547{
 548	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 549	int young, idx;
 550
 551	idx = srcu_read_lock(&kvm->srcu);
 552	spin_lock(&kvm->mmu_lock);
 553	/*
 554	 * Even though we do not flush TLB, this will still adversely
 555	 * affect performance on pre-Haswell Intel EPT, where there is
 556	 * no EPT Access Bit to clear so that we have to tear down EPT
 557	 * tables instead. If we find this unacceptable, we can always
 558	 * add a parameter to kvm_age_hva so that it effectively doesn't
 559	 * do anything on clear_young.
 560	 *
 561	 * Also note that currently we never issue secondary TLB flushes
 562	 * from clear_young, leaving this job up to the regular system
 563	 * cadence. If we find this inaccurate, we might come up with a
 564	 * more sophisticated heuristic later.
 565	 */
 566	young = kvm_age_hva(kvm, start, end);
 567	spin_unlock(&kvm->mmu_lock);
 568	srcu_read_unlock(&kvm->srcu, idx);
 569
 570	return young;
 571}
 572
 573static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 574				       struct mm_struct *mm,
 575				       unsigned long address)
 576{
 577	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 578	int young, idx;
 579
 580	idx = srcu_read_lock(&kvm->srcu);
 581	spin_lock(&kvm->mmu_lock);
 582	young = kvm_test_age_hva(kvm, address);
 583	spin_unlock(&kvm->mmu_lock);
 584	srcu_read_unlock(&kvm->srcu, idx);
 585
 586	return young;
 587}
 588
 589static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 590				     struct mm_struct *mm)
 591{
 592	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 593	int idx;
 594
 595	idx = srcu_read_lock(&kvm->srcu);
 596	kvm_arch_flush_shadow_all(kvm);
 597	srcu_read_unlock(&kvm->srcu, idx);
 598}
 599
 600static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 601	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
 602	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
 603	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
 604	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
 605	.clear_young		= kvm_mmu_notifier_clear_young,
 606	.test_young		= kvm_mmu_notifier_test_young,
 607	.change_pte		= kvm_mmu_notifier_change_pte,
 608	.release		= kvm_mmu_notifier_release,
 609};
 610
 611static int kvm_init_mmu_notifier(struct kvm *kvm)
 612{
 613	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 614	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 615}
 616
 617#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 618
 619static int kvm_init_mmu_notifier(struct kvm *kvm)
 620{
 621	return 0;
 622}
 623
 624#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 625
 626static struct kvm_memslots *kvm_alloc_memslots(void)
 
 
 
 627{
 628	int i;
 629	struct kvm_memslots *slots;
 
 
 630
 631	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
 632	if (!slots)
 633		return NULL;
 
 
 
 
 634
 635	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 636		slots->id_to_index[i] = -1;
 
 
 
 
 
 
 637
 638	return slots;
 
 639}
 
 640
 641static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 642{
 643	if (!memslot->dirty_bitmap)
 644		return;
 645
 646	kvfree(memslot->dirty_bitmap);
 647	memslot->dirty_bitmap = NULL;
 648}
 649
 
 650static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
 651{
 652	kvm_destroy_dirty_bitmap(slot);
 653
 654	kvm_arch_free_memslot(kvm, slot);
 655
 656	slot->flags = 0;
 657	slot->npages = 0;
 658}
 659
 660static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 661{
 
 662	struct kvm_memory_slot *memslot;
 
 663
 664	if (!slots)
 
 
 
 
 
 
 665		return;
 666
 667	kvm_for_each_memslot(memslot, slots)
 668		kvm_free_memslot(kvm, memslot);
 
 669
 670	kvfree(slots);
 
 
 
 
 
 
 
 
 
 671}
 672
 
 673static void kvm_destroy_vm_debugfs(struct kvm *kvm)
 674{
 675	int i;
 
 
 676
 677	if (!kvm->debugfs_dentry)
 678		return;
 679
 680	debugfs_remove_recursive(kvm->debugfs_dentry);
 681
 682	if (kvm->debugfs_stat_data) {
 683		for (i = 0; i < kvm_debugfs_num_entries; i++)
 684			kfree(kvm->debugfs_stat_data[i]);
 685		kfree(kvm->debugfs_stat_data);
 686	}
 687}
 688
 689static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
 690{
 
 
 691	char dir_name[ITOA_MAX_LEN * 2];
 692	struct kvm_stat_data *stat_data;
 693	struct kvm_stats_debugfs_item *p;
 
 
 
 694
 695	if (!debugfs_initialized())
 696		return 0;
 697
 698	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
 699	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
 
 
 
 
 
 
 
 
 
 
 
 700
 
 701	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
 702					 sizeof(*kvm->debugfs_stat_data),
 703					 GFP_KERNEL_ACCOUNT);
 704	if (!kvm->debugfs_stat_data)
 705		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706
 707	for (p = debugfs_entries; p->name; p++) {
 
 708		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
 709		if (!stat_data)
 710			return -ENOMEM;
 711
 712		stat_data->kvm = kvm;
 713		stat_data->dbgfs_item = p;
 714		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
 715		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
 
 716				    kvm->debugfs_dentry, stat_data,
 717				    &stat_fops_per_vm);
 718	}
 
 
 
 
 
 719	return 0;
 
 
 
 720}
 721
 722/*
 723 * Called after the VM is otherwise initialized, but just before adding it to
 724 * the vm_list.
 725 */
 726int __weak kvm_arch_post_init_vm(struct kvm *kvm)
 727{
 728	return 0;
 729}
 730
 731/*
 732 * Called just after removing the VM from the vm_list, but before doing any
 733 * other destruction.
 734 */
 735void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
 736{
 737}
 738
 739static struct kvm *kvm_create_vm(unsigned long type)
 
 
 
 
 
 
 
 
 
 
 
 740{
 741	struct kvm *kvm = kvm_arch_alloc_vm();
 
 742	int r = -ENOMEM;
 743	int i;
 744
 745	if (!kvm)
 746		return ERR_PTR(-ENOMEM);
 747
 748	spin_lock_init(&kvm->mmu_lock);
 
 
 
 749	mmgrab(current->mm);
 750	kvm->mm = current->mm;
 751	kvm_eventfd_init(kvm);
 752	mutex_init(&kvm->lock);
 753	mutex_init(&kvm->irq_lock);
 754	mutex_init(&kvm->slots_lock);
 
 
 
 
 
 
 
 
 755	INIT_LIST_HEAD(&kvm->devices);
 
 756
 757	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 758
 
 
 
 
 
 
 
 
 
 759	if (init_srcu_struct(&kvm->srcu))
 760		goto out_err_no_srcu;
 761	if (init_srcu_struct(&kvm->irq_srcu))
 762		goto out_err_no_irq_srcu;
 763
 764	refcount_set(&kvm->users_count, 1);
 765	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 766		struct kvm_memslots *slots = kvm_alloc_memslots();
 
 767
 768		if (!slots)
 769			goto out_err_no_arch_destroy_vm;
 770		/* Generations must be different for each address space. */
 771		slots->generation = i;
 772		rcu_assign_pointer(kvm->memslots[i], slots);
 
 
 
 
 
 
 773	}
 774
 775	for (i = 0; i < KVM_NR_BUSES; i++) {
 776		rcu_assign_pointer(kvm->buses[i],
 777			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
 778		if (!kvm->buses[i])
 779			goto out_err_no_arch_destroy_vm;
 780	}
 781
 782	kvm->max_halt_poll_ns = halt_poll_ns;
 783
 784	r = kvm_arch_init_vm(kvm, type);
 785	if (r)
 786		goto out_err_no_arch_destroy_vm;
 787
 788	r = hardware_enable_all();
 789	if (r)
 790		goto out_err_no_disable;
 791
 792#ifdef CONFIG_HAVE_KVM_IRQFD
 793	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 794#endif
 795
 796	r = kvm_init_mmu_notifier(kvm);
 797	if (r)
 798		goto out_err_no_mmu_notifier;
 799
 
 
 
 
 
 
 
 
 800	r = kvm_arch_post_init_vm(kvm);
 801	if (r)
 802		goto out_err;
 803
 804	mutex_lock(&kvm_lock);
 805	list_add(&kvm->vm_list, &vm_list);
 806	mutex_unlock(&kvm_lock);
 807
 808	preempt_notifier_inc();
 
 809
 810	return kvm;
 811
 812out_err:
 
 
 
 
 813#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 814	if (kvm->mmu_notifier.ops)
 815		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
 816#endif
 817out_err_no_mmu_notifier:
 818	hardware_disable_all();
 819out_err_no_disable:
 820	kvm_arch_destroy_vm(kvm);
 821out_err_no_arch_destroy_vm:
 822	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
 823	for (i = 0; i < KVM_NR_BUSES; i++)
 824		kfree(kvm_get_bus(kvm, i));
 825	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 826		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 827	cleanup_srcu_struct(&kvm->irq_srcu);
 828out_err_no_irq_srcu:
 829	cleanup_srcu_struct(&kvm->srcu);
 830out_err_no_srcu:
 831	kvm_arch_free_vm(kvm);
 832	mmdrop(current->mm);
 
 833	return ERR_PTR(r);
 834}
 835
 836static void kvm_destroy_devices(struct kvm *kvm)
 837{
 838	struct kvm_device *dev, *tmp;
 839
 840	/*
 841	 * We do not need to take the kvm->lock here, because nobody else
 842	 * has a reference to the struct kvm at this point and therefore
 843	 * cannot access the devices list anyhow.
 844	 */
 845	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
 846		list_del(&dev->vm_node);
 847		dev->ops->destroy(dev);
 848	}
 849}
 850
 851static void kvm_destroy_vm(struct kvm *kvm)
 852{
 853	int i;
 854	struct mm_struct *mm = kvm->mm;
 855
 
 856	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
 857	kvm_destroy_vm_debugfs(kvm);
 858	kvm_arch_sync_events(kvm);
 859	mutex_lock(&kvm_lock);
 860	list_del(&kvm->vm_list);
 861	mutex_unlock(&kvm_lock);
 862	kvm_arch_pre_destroy_vm(kvm);
 863
 864	kvm_free_irq_routing(kvm);
 865	for (i = 0; i < KVM_NR_BUSES; i++) {
 866		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
 867
 868		if (bus)
 869			kvm_io_bus_destroy(bus);
 870		kvm->buses[i] = NULL;
 871	}
 872	kvm_coalesced_mmio_free(kvm);
 873#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 874	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 
 
 
 
 
 
 
 
 
 
 875#else
 876	kvm_arch_flush_shadow_all(kvm);
 877#endif
 878	kvm_arch_destroy_vm(kvm);
 879	kvm_destroy_devices(kvm);
 880	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 881		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 
 
 882	cleanup_srcu_struct(&kvm->irq_srcu);
 883	cleanup_srcu_struct(&kvm->srcu);
 884	kvm_arch_free_vm(kvm);
 885	preempt_notifier_dec();
 886	hardware_disable_all();
 887	mmdrop(mm);
 
 888}
 889
 890void kvm_get_kvm(struct kvm *kvm)
 891{
 892	refcount_inc(&kvm->users_count);
 893}
 894EXPORT_SYMBOL_GPL(kvm_get_kvm);
 895
 
 
 
 
 
 
 
 
 
 
 896void kvm_put_kvm(struct kvm *kvm)
 897{
 898	if (refcount_dec_and_test(&kvm->users_count))
 899		kvm_destroy_vm(kvm);
 900}
 901EXPORT_SYMBOL_GPL(kvm_put_kvm);
 902
 903/*
 904 * Used to put a reference that was taken on behalf of an object associated
 905 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
 906 * of the new file descriptor fails and the reference cannot be transferred to
 907 * its final owner.  In such cases, the caller is still actively using @kvm and
 908 * will fail miserably if the refcount unexpectedly hits zero.
 909 */
 910void kvm_put_kvm_no_destroy(struct kvm *kvm)
 911{
 912	WARN_ON(refcount_dec_and_test(&kvm->users_count));
 913}
 914EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
 915
 916static int kvm_vm_release(struct inode *inode, struct file *filp)
 917{
 918	struct kvm *kvm = filp->private_data;
 919
 920	kvm_irqfd_release(kvm);
 921
 922	kvm_put_kvm(kvm);
 923	return 0;
 924}
 925
 926/*
 927 * Allocation size is twice as large as the actual dirty bitmap size.
 928 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
 929 */
 930static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
 931{
 932	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 933
 934	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
 935	if (!memslot->dirty_bitmap)
 936		return -ENOMEM;
 937
 938	return 0;
 939}
 940
 941/*
 942 * Delete a memslot by decrementing the number of used slots and shifting all
 943 * other entries in the array forward one spot.
 944 */
 945static inline void kvm_memslot_delete(struct kvm_memslots *slots,
 946				      struct kvm_memory_slot *memslot)
 947{
 948	struct kvm_memory_slot *mslots = slots->memslots;
 949	int i;
 950
 951	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
 952		return;
 953
 954	slots->used_slots--;
 955
 956	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
 957		atomic_set(&slots->lru_slot, 0);
 958
 959	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
 960		mslots[i] = mslots[i + 1];
 961		slots->id_to_index[mslots[i].id] = i;
 962	}
 963	mslots[i] = *memslot;
 964	slots->id_to_index[memslot->id] = -1;
 965}
 966
 967/*
 968 * "Insert" a new memslot by incrementing the number of used slots.  Returns
 969 * the new slot's initial index into the memslots array.
 
 970 */
 971static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
 
 972{
 973	return slots->used_slots++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974}
 975
 976/*
 977 * Move a changed memslot backwards in the array by shifting existing slots
 978 * with a higher GFN toward the front of the array.  Note, the changed memslot
 979 * itself is not preserved in the array, i.e. not swapped at this time, only
 980 * its new index into the array is tracked.  Returns the changed memslot's
 981 * current index into the memslots array.
 982 */
 983static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
 984					    struct kvm_memory_slot *memslot)
 985{
 986	struct kvm_memory_slot *mslots = slots->memslots;
 987	int i;
 988
 989	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
 990	    WARN_ON_ONCE(!slots->used_slots))
 991		return -1;
 992
 993	/*
 994	 * Move the target memslot backward in the array by shifting existing
 995	 * memslots with a higher GFN (than the target memslot) towards the
 996	 * front of the array.
 997	 */
 998	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
 999		if (memslot->base_gfn > mslots[i + 1].base_gfn)
1000			break;
1001
1002		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1003
1004		/* Shift the next memslot forward one and update its index. */
1005		mslots[i] = mslots[i + 1];
1006		slots->id_to_index[mslots[i].id] = i;
1007	}
1008	return i;
1009}
1010
1011/*
1012 * Move a changed memslot forwards in the array by shifting existing slots with
1013 * a lower GFN toward the back of the array.  Note, the changed memslot itself
1014 * is not preserved in the array, i.e. not swapped at this time, only its new
1015 * index into the array is tracked.  Returns the changed memslot's final index
1016 * into the memslots array.
1017 */
1018static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1019					   struct kvm_memory_slot *memslot,
1020					   int start)
1021{
1022	struct kvm_memory_slot *mslots = slots->memslots;
1023	int i;
1024
1025	for (i = start; i > 0; i--) {
1026		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1027			break;
1028
1029		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1030
1031		/* Shift the next memslot back one and update its index. */
1032		mslots[i] = mslots[i - 1];
1033		slots->id_to_index[mslots[i].id] = i;
1034	}
1035	return i;
1036}
1037
1038/*
1039 * Re-sort memslots based on their GFN to account for an added, deleted, or
1040 * moved memslot.  Sorting memslots by GFN allows using a binary search during
1041 * memslot lookup.
1042 *
1043 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1044 * at memslots[0] has the highest GFN.
1045 *
1046 * The sorting algorithm takes advantage of having initially sorted memslots
1047 * and knowing the position of the changed memslot.  Sorting is also optimized
1048 * by not swapping the updated memslot and instead only shifting other memslots
1049 * and tracking the new index for the update memslot.  Only once its final
1050 * index is known is the updated memslot copied into its position in the array.
1051 *
1052 *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1053 *    the end of the array.
1054 *
1055 *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1056 *    end of the array and then it forward to its correct location.
1057 *
1058 *  - When moving a memslot, the algorithm first moves the updated memslot
1059 *    backward to handle the scenario where the memslot's GFN was changed to a
1060 *    lower value.  update_memslots() then falls through and runs the same flow
1061 *    as creating a memslot to move the memslot forward to handle the scenario
1062 *    where its GFN was changed to a higher value.
1063 *
1064 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1065 * historical reasons.  Originally, invalid memslots where denoted by having
1066 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1067 * to the end of the array.  The current algorithm uses dedicated logic to
1068 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1069 *
1070 * The other historical motiviation for highest->lowest was to improve the
1071 * performance of memslot lookup.  KVM originally used a linear search starting
1072 * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1073 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1074 * single memslot above the 4gb boundary.  As the largest memslot is also the
1075 * most likely to be referenced, sorting it to the front of the array was
1076 * advantageous.  The current binary search starts from the middle of the array
1077 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1078 */
1079static void update_memslots(struct kvm_memslots *slots,
1080			    struct kvm_memory_slot *memslot,
1081			    enum kvm_mr_change change)
1082{
1083	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1084
1085	if (change == KVM_MR_DELETE) {
1086		kvm_memslot_delete(slots, memslot);
 
 
 
 
 
 
 
1087	} else {
1088		if (change == KVM_MR_CREATE)
1089			i = kvm_memslot_insert_back(slots);
1090		else
1091			i = kvm_memslot_move_backward(slots, memslot);
1092		i = kvm_memslot_move_forward(slots, memslot, i);
1093
1094		/*
1095		 * Copy the memslot to its new position in memslots and update
1096		 * its index accordingly.
1097		 */
1098		slots->memslots[i] = *memslot;
1099		slots->id_to_index[memslot->id] = i;
1100	}
1101}
1102
1103static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1104{
1105	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1106
1107#ifdef __KVM_HAVE_READONLY_MEM
1108	valid_flags |= KVM_MEM_READONLY;
1109#endif
1110
1111	if (mem->flags & ~valid_flags)
1112		return -EINVAL;
1113
1114	return 0;
1115}
1116
1117static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1118		int as_id, struct kvm_memslots *slots)
1119{
1120	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1121	u64 gen = old_memslots->generation;
 
 
1122
1123	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1124	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126	rcu_assign_pointer(kvm->memslots[as_id], slots);
 
 
 
 
 
 
 
 
 
1127	synchronize_srcu_expedited(&kvm->srcu);
1128
1129	/*
1130	 * Increment the new memslot generation a second time, dropping the
1131	 * update in-progress flag and incrementing the generation based on
1132	 * the number of address spaces.  This provides a unique and easily
1133	 * identifiable generation number while the memslots are in flux.
1134	 */
1135	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1136
1137	/*
1138	 * Generations must be unique even across address spaces.  We do not need
1139	 * a global counter for that, instead the generation space is evenly split
1140	 * across address spaces.  For example, with two address spaces, address
1141	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1142	 * use generations 1, 3, 5, ...
1143	 */
1144	gen += KVM_ADDRESS_SPACE_NUM;
1145
1146	kvm_arch_memslots_updated(kvm, gen);
1147
1148	slots->generation = gen;
 
1149
1150	return old_memslots;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1151}
1152
1153/*
1154 * Note, at a minimum, the current number of used slots must be allocated, even
1155 * when deleting a memslot, as we need a complete duplicate of the memslots for
1156 * use when invalidating a memslot prior to deleting/moving the memslot.
 
 
 
 
1157 */
1158static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1159					     enum kvm_mr_change change)
 
 
 
 
 
 
 
 
 
 
 
 
1160{
1161	struct kvm_memslots *slots;
1162	size_t old_size, new_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163
1164	old_size = sizeof(struct kvm_memslots) +
1165		   (sizeof(struct kvm_memory_slot) * old->used_slots);
 
 
 
 
 
1166
1167	if (change == KVM_MR_CREATE)
1168		new_size = old_size + sizeof(struct kvm_memory_slot);
1169	else
1170		new_size = old_size;
 
 
 
 
 
 
 
1171
1172	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1173	if (likely(slots))
1174		memcpy(slots, old, old_size);
 
 
 
 
 
 
 
 
 
1175
1176	return slots;
 
 
 
 
 
 
 
 
 
 
1177}
1178
1179static int kvm_set_memslot(struct kvm *kvm,
1180			   const struct kvm_userspace_memory_region *mem,
1181			   struct kvm_memory_slot *old,
1182			   struct kvm_memory_slot *new, int as_id,
1183			   enum kvm_mr_change change)
1184{
1185	struct kvm_memory_slot *slot;
1186	struct kvm_memslots *slots;
1187	int r;
1188
1189	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1190	if (!slots)
1191		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
1192
 
 
 
 
 
 
 
 
 
 
 
 
 
1193	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1194		/*
1195		 * Note, the INVALID flag needs to be in the appropriate entry
1196		 * in the freshly allocated memslots, not in @old or @new.
1197		 */
1198		slot = id_to_memslot(slots, old->id);
1199		slot->flags |= KVM_MEMSLOT_INVALID;
 
1200
 
 
1201		/*
1202		 * We can re-use the old memslots, the only difference from the
1203		 * newly installed memslots is the invalid flag, which will get
1204		 * dropped by update_memslots anyway.  We'll also revert to the
1205		 * old memslots if preparing the new memory region fails.
1206		 */
1207		slots = install_new_memslots(kvm, as_id, slots);
1208
1209		/* From this point no new shadow pages pointing to a deleted,
1210		 * or moved, memslot will be created.
1211		 *
1212		 * validation of sp->gfn happens in:
1213		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1214		 *	- kvm_is_visible_gfn (mmu_check_root)
1215		 */
1216		kvm_arch_flush_shadow_memslot(kvm, slot);
1217	}
1218
1219	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1220	if (r)
1221		goto out_slots;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222
1223	update_memslots(slots, new, change);
1224	slots = install_new_memslots(kvm, as_id, slots);
 
1225
1226	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
 
 
 
 
 
1227
1228	kvfree(slots);
1229	return 0;
1230
1231out_slots:
1232	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1233		slots = install_new_memslots(kvm, as_id, slots);
1234	kvfree(slots);
1235	return r;
1236}
1237
1238static int kvm_delete_memslot(struct kvm *kvm,
1239			      const struct kvm_userspace_memory_region *mem,
1240			      struct kvm_memory_slot *old, int as_id)
1241{
1242	struct kvm_memory_slot new;
1243	int r;
1244
1245	if (!old->npages)
1246		return -EINVAL;
 
 
1247
1248	memset(&new, 0, sizeof(new));
1249	new.id = old->id;
1250
1251	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1252	if (r)
1253		return r;
1254
1255	kvm_free_memslot(kvm, old);
1256	return 0;
1257}
1258
1259/*
1260 * Allocate some memory and give it an address in the guest physical address
1261 * space.
1262 *
1263 * Discontiguous memory is allowed, mostly for framebuffers.
1264 *
1265 * Must be called holding kvm->slots_lock for write.
1266 */
1267int __kvm_set_memory_region(struct kvm *kvm,
1268			    const struct kvm_userspace_memory_region *mem)
1269{
1270	struct kvm_memory_slot old, new;
1271	struct kvm_memory_slot *tmp;
1272	enum kvm_mr_change change;
 
 
1273	int as_id, id;
1274	int r;
1275
1276	r = check_memory_region_flags(mem);
1277	if (r)
1278		return r;
1279
1280	as_id = mem->slot >> 16;
1281	id = (u16)mem->slot;
1282
1283	/* General sanity checks */
1284	if (mem->memory_size & (PAGE_SIZE - 1))
 
1285		return -EINVAL;
1286	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1287		return -EINVAL;
1288	/* We can read the guest memory with __xxx_user() later on. */
1289	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 
1290	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1291			mem->memory_size))
1292		return -EINVAL;
1293	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1294		return -EINVAL;
1295	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1296		return -EINVAL;
 
 
 
 
1297
1298	/*
1299	 * Make a full copy of the old memslot, the pointer will become stale
1300	 * when the memslots are re-sorted by update_memslots(), and the old
1301	 * memslot needs to be referenced after calling update_memslots(), e.g.
1302	 * to free its resources and for arch specific behavior.
1303	 */
1304	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1305	if (tmp) {
1306		old = *tmp;
1307		tmp = NULL;
1308	} else {
1309		memset(&old, 0, sizeof(old));
1310		old.id = id;
1311	}
1312
1313	if (!mem->memory_size)
1314		return kvm_delete_memslot(kvm, mem, &old, as_id);
1315
1316	new.id = id;
1317	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1318	new.npages = mem->memory_size >> PAGE_SHIFT;
1319	new.flags = mem->flags;
1320	new.userspace_addr = mem->userspace_addr;
1321
1322	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1323		return -EINVAL;
1324
1325	if (!old.npages) {
1326		change = KVM_MR_CREATE;
1327		new.dirty_bitmap = NULL;
1328		memset(&new.arch, 0, sizeof(new.arch));
 
 
 
 
 
1329	} else { /* Modify an existing slot. */
1330		if ((new.userspace_addr != old.userspace_addr) ||
1331		    (new.npages != old.npages) ||
1332		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1333			return -EINVAL;
1334
1335		if (new.base_gfn != old.base_gfn)
1336			change = KVM_MR_MOVE;
1337		else if (new.flags != old.flags)
1338			change = KVM_MR_FLAGS_ONLY;
1339		else /* Nothing to change. */
1340			return 0;
1341
1342		/* Copy dirty_bitmap and arch from the current memslot. */
1343		new.dirty_bitmap = old.dirty_bitmap;
1344		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1345	}
1346
1347	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1348		/* Check for overlaps */
1349		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1350			if (tmp->id == id)
1351				continue;
1352			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1353			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1354				return -EEXIST;
1355		}
1356	}
1357
1358	/* Allocate/free page dirty bitmap as needed */
1359	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1360		new.dirty_bitmap = NULL;
1361	else if (!new.dirty_bitmap) {
1362		r = kvm_alloc_dirty_bitmap(&new);
1363		if (r)
1364			return r;
1365
1366		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1367			bitmap_set(new.dirty_bitmap, 0, new.npages);
1368	}
 
 
 
1369
1370	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1371	if (r)
1372		goto out_bitmap;
1373
1374	if (old.dirty_bitmap && !new.dirty_bitmap)
1375		kvm_destroy_dirty_bitmap(&old);
1376	return 0;
1377
1378out_bitmap:
1379	if (new.dirty_bitmap && !old.dirty_bitmap)
1380		kvm_destroy_dirty_bitmap(&new);
1381	return r;
1382}
1383EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1384
1385int kvm_set_memory_region(struct kvm *kvm,
1386			  const struct kvm_userspace_memory_region *mem)
1387{
1388	int r;
1389
1390	mutex_lock(&kvm->slots_lock);
1391	r = __kvm_set_memory_region(kvm, mem);
1392	mutex_unlock(&kvm->slots_lock);
1393	return r;
1394}
1395EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1396
1397static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1398					  struct kvm_userspace_memory_region *mem)
1399{
1400	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1401		return -EINVAL;
1402
1403	return kvm_set_memory_region(kvm, mem);
1404}
1405
1406#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1407/**
1408 * kvm_get_dirty_log - get a snapshot of dirty pages
1409 * @kvm:	pointer to kvm instance
1410 * @log:	slot id and address to which we copy the log
1411 * @is_dirty:	set to '1' if any dirty pages were found
1412 * @memslot:	set to the associated memslot, always valid on success
1413 */
1414int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1415		      int *is_dirty, struct kvm_memory_slot **memslot)
1416{
1417	struct kvm_memslots *slots;
1418	int i, as_id, id;
1419	unsigned long n;
1420	unsigned long any = 0;
1421
 
 
 
 
1422	*memslot = NULL;
1423	*is_dirty = 0;
1424
1425	as_id = log->slot >> 16;
1426	id = (u16)log->slot;
1427	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1428		return -EINVAL;
1429
1430	slots = __kvm_memslots(kvm, as_id);
1431	*memslot = id_to_memslot(slots, id);
1432	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1433		return -ENOENT;
1434
1435	kvm_arch_sync_dirty_log(kvm, *memslot);
1436
1437	n = kvm_dirty_bitmap_bytes(*memslot);
1438
1439	for (i = 0; !any && i < n/sizeof(long); ++i)
1440		any = (*memslot)->dirty_bitmap[i];
1441
1442	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1443		return -EFAULT;
1444
1445	if (any)
1446		*is_dirty = 1;
1447	return 0;
1448}
1449EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1450
1451#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1452/**
1453 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1454 *	and reenable dirty page tracking for the corresponding pages.
1455 * @kvm:	pointer to kvm instance
1456 * @log:	slot id and address to which we copy the log
1457 *
1458 * We need to keep it in mind that VCPU threads can write to the bitmap
1459 * concurrently. So, to avoid losing track of dirty pages we keep the
1460 * following order:
1461 *
1462 *    1. Take a snapshot of the bit and clear it if needed.
1463 *    2. Write protect the corresponding page.
1464 *    3. Copy the snapshot to the userspace.
1465 *    4. Upon return caller flushes TLB's if needed.
1466 *
1467 * Between 2 and 4, the guest may write to the page using the remaining TLB
1468 * entry.  This is not a problem because the page is reported dirty using
1469 * the snapshot taken before and step 4 ensures that writes done after
1470 * exiting to userspace will be logged for the next call.
1471 *
1472 */
1473static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1474{
1475	struct kvm_memslots *slots;
1476	struct kvm_memory_slot *memslot;
1477	int i, as_id, id;
1478	unsigned long n;
1479	unsigned long *dirty_bitmap;
1480	unsigned long *dirty_bitmap_buffer;
1481	bool flush;
1482
 
 
 
 
1483	as_id = log->slot >> 16;
1484	id = (u16)log->slot;
1485	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1486		return -EINVAL;
1487
1488	slots = __kvm_memslots(kvm, as_id);
1489	memslot = id_to_memslot(slots, id);
1490	if (!memslot || !memslot->dirty_bitmap)
1491		return -ENOENT;
1492
1493	dirty_bitmap = memslot->dirty_bitmap;
1494
1495	kvm_arch_sync_dirty_log(kvm, memslot);
1496
1497	n = kvm_dirty_bitmap_bytes(memslot);
1498	flush = false;
1499	if (kvm->manual_dirty_log_protect) {
1500		/*
1501		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1502		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1503		 * is some code duplication between this function and
1504		 * kvm_get_dirty_log, but hopefully all architecture
1505		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1506		 * can be eliminated.
1507		 */
1508		dirty_bitmap_buffer = dirty_bitmap;
1509	} else {
1510		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1511		memset(dirty_bitmap_buffer, 0, n);
1512
1513		spin_lock(&kvm->mmu_lock);
1514		for (i = 0; i < n / sizeof(long); i++) {
1515			unsigned long mask;
1516			gfn_t offset;
1517
1518			if (!dirty_bitmap[i])
1519				continue;
1520
1521			flush = true;
1522			mask = xchg(&dirty_bitmap[i], 0);
1523			dirty_bitmap_buffer[i] = mask;
1524
1525			offset = i * BITS_PER_LONG;
1526			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1527								offset, mask);
1528		}
1529		spin_unlock(&kvm->mmu_lock);
1530	}
1531
1532	if (flush)
1533		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1534
1535	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1536		return -EFAULT;
1537	return 0;
1538}
1539
1540
1541/**
1542 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1543 * @kvm: kvm instance
1544 * @log: slot id and address to which we copy the log
1545 *
1546 * Steps 1-4 below provide general overview of dirty page logging. See
1547 * kvm_get_dirty_log_protect() function description for additional details.
1548 *
1549 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1550 * always flush the TLB (step 4) even if previous step failed  and the dirty
1551 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1552 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1553 * writes will be marked dirty for next log read.
1554 *
1555 *   1. Take a snapshot of the bit and clear it if needed.
1556 *   2. Write protect the corresponding page.
1557 *   3. Copy the snapshot to the userspace.
1558 *   4. Flush TLB's if needed.
1559 */
1560static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1561				      struct kvm_dirty_log *log)
1562{
1563	int r;
1564
1565	mutex_lock(&kvm->slots_lock);
1566
1567	r = kvm_get_dirty_log_protect(kvm, log);
1568
1569	mutex_unlock(&kvm->slots_lock);
1570	return r;
1571}
1572
1573/**
1574 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1575 *	and reenable dirty page tracking for the corresponding pages.
1576 * @kvm:	pointer to kvm instance
1577 * @log:	slot id and address from which to fetch the bitmap of dirty pages
1578 */
1579static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1580				       struct kvm_clear_dirty_log *log)
1581{
1582	struct kvm_memslots *slots;
1583	struct kvm_memory_slot *memslot;
1584	int as_id, id;
1585	gfn_t offset;
1586	unsigned long i, n;
1587	unsigned long *dirty_bitmap;
1588	unsigned long *dirty_bitmap_buffer;
1589	bool flush;
1590
 
 
 
 
1591	as_id = log->slot >> 16;
1592	id = (u16)log->slot;
1593	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1594		return -EINVAL;
1595
1596	if (log->first_page & 63)
1597		return -EINVAL;
1598
1599	slots = __kvm_memslots(kvm, as_id);
1600	memslot = id_to_memslot(slots, id);
1601	if (!memslot || !memslot->dirty_bitmap)
1602		return -ENOENT;
1603
1604	dirty_bitmap = memslot->dirty_bitmap;
1605
1606	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1607
1608	if (log->first_page > memslot->npages ||
1609	    log->num_pages > memslot->npages - log->first_page ||
1610	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1611	    return -EINVAL;
1612
1613	kvm_arch_sync_dirty_log(kvm, memslot);
1614
1615	flush = false;
1616	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1617	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1618		return -EFAULT;
1619
1620	spin_lock(&kvm->mmu_lock);
1621	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1622		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1623	     i++, offset += BITS_PER_LONG) {
1624		unsigned long mask = *dirty_bitmap_buffer++;
1625		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1626		if (!mask)
1627			continue;
1628
1629		mask &= atomic_long_fetch_andnot(mask, p);
1630
1631		/*
1632		 * mask contains the bits that really have been cleared.  This
1633		 * never includes any bits beyond the length of the memslot (if
1634		 * the length is not aligned to 64 pages), therefore it is not
1635		 * a problem if userspace sets them in log->dirty_bitmap.
1636		*/
1637		if (mask) {
1638			flush = true;
1639			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1640								offset, mask);
1641		}
1642	}
1643	spin_unlock(&kvm->mmu_lock);
1644
1645	if (flush)
1646		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1647
1648	return 0;
1649}
1650
1651static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1652					struct kvm_clear_dirty_log *log)
1653{
1654	int r;
1655
1656	mutex_lock(&kvm->slots_lock);
1657
1658	r = kvm_clear_dirty_log_protect(kvm, log);
1659
1660	mutex_unlock(&kvm->slots_lock);
1661	return r;
1662}
1663#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1664
1665struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1666{
1667	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1668}
1669EXPORT_SYMBOL_GPL(gfn_to_memslot);
1670
1671struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1672{
1673	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1674}
1675EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1676
1677bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1678{
1679	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1680
1681	return kvm_is_visible_memslot(memslot);
1682}
1683EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1684
1685bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1686{
1687	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1688
1689	return kvm_is_visible_memslot(memslot);
1690}
1691EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1692
1693unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1694{
1695	struct vm_area_struct *vma;
1696	unsigned long addr, size;
1697
1698	size = PAGE_SIZE;
1699
1700	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1701	if (kvm_is_error_hva(addr))
1702		return PAGE_SIZE;
1703
1704	mmap_read_lock(current->mm);
1705	vma = find_vma(current->mm, addr);
1706	if (!vma)
1707		goto out;
1708
1709	size = vma_kernel_pagesize(vma);
1710
1711out:
1712	mmap_read_unlock(current->mm);
1713
1714	return size;
1715}
1716
1717static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1718{
1719	return slot->flags & KVM_MEM_READONLY;
1720}
1721
1722static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1723				       gfn_t *nr_pages, bool write)
1724{
1725	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1726		return KVM_HVA_ERR_BAD;
1727
1728	if (memslot_is_readonly(slot) && write)
1729		return KVM_HVA_ERR_RO_BAD;
1730
1731	if (nr_pages)
1732		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1733
1734	return __gfn_to_hva_memslot(slot, gfn);
1735}
1736
1737static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1738				     gfn_t *nr_pages)
1739{
1740	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1741}
1742
1743unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1744					gfn_t gfn)
1745{
1746	return gfn_to_hva_many(slot, gfn, NULL);
1747}
1748EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1749
1750unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1751{
1752	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1753}
1754EXPORT_SYMBOL_GPL(gfn_to_hva);
1755
1756unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1757{
1758	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1759}
1760EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1761
1762/*
1763 * Return the hva of a @gfn and the R/W attribute if possible.
1764 *
1765 * @slot: the kvm_memory_slot which contains @gfn
1766 * @gfn: the gfn to be translated
1767 * @writable: used to return the read/write attribute of the @slot if the hva
1768 * is valid and @writable is not NULL
1769 */
1770unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1771				      gfn_t gfn, bool *writable)
1772{
1773	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1774
1775	if (!kvm_is_error_hva(hva) && writable)
1776		*writable = !memslot_is_readonly(slot);
1777
1778	return hva;
1779}
1780
1781unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1782{
1783	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1784
1785	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1786}
1787
1788unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1789{
1790	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1791
1792	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1793}
1794
1795static inline int check_user_page_hwpoison(unsigned long addr)
1796{
1797	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1798
1799	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1800	return rc == -EHWPOISON;
1801}
1802
1803/*
1804 * The fast path to get the writable pfn which will be stored in @pfn,
1805 * true indicates success, otherwise false is returned.  It's also the
1806 * only part that runs if we can in atomic context.
1807 */
1808static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1809			    bool *writable, kvm_pfn_t *pfn)
1810{
1811	struct page *page[1];
1812
1813	/*
1814	 * Fast pin a writable pfn only if it is a write fault request
1815	 * or the caller allows to map a writable pfn for a read fault
1816	 * request.
1817	 */
1818	if (!(write_fault || writable))
1819		return false;
1820
1821	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1822		*pfn = page_to_pfn(page[0]);
1823
1824		if (writable)
1825			*writable = true;
1826		return true;
1827	}
1828
1829	return false;
1830}
1831
1832/*
1833 * The slow path to get the pfn of the specified host virtual address,
1834 * 1 indicates success, -errno is returned if error is detected.
1835 */
1836static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1837			   bool *writable, kvm_pfn_t *pfn)
1838{
1839	unsigned int flags = FOLL_HWPOISON;
1840	struct page *page;
1841	int npages = 0;
1842
1843	might_sleep();
1844
1845	if (writable)
1846		*writable = write_fault;
1847
1848	if (write_fault)
1849		flags |= FOLL_WRITE;
1850	if (async)
1851		flags |= FOLL_NOWAIT;
 
 
1852
1853	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1854	if (npages != 1)
1855		return npages;
1856
1857	/* map read fault as writable if possible */
1858	if (unlikely(!write_fault) && writable) {
1859		struct page *wpage;
1860
1861		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1862			*writable = true;
1863			put_page(page);
1864			page = wpage;
1865		}
1866	}
1867	*pfn = page_to_pfn(page);
1868	return npages;
1869}
1870
1871static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1872{
1873	if (unlikely(!(vma->vm_flags & VM_READ)))
1874		return false;
1875
1876	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1877		return false;
1878
1879	return true;
1880}
1881
 
 
 
 
 
 
 
 
 
 
1882static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1883			       unsigned long addr, bool *async,
1884			       bool write_fault, bool *writable,
1885			       kvm_pfn_t *p_pfn)
1886{
1887	unsigned long pfn;
 
 
1888	int r;
1889
1890	r = follow_pfn(vma, addr, &pfn);
1891	if (r) {
1892		/*
1893		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1894		 * not call the fault handler, so do it here.
1895		 */
1896		bool unlocked = false;
1897		r = fixup_user_fault(current->mm, addr,
1898				     (write_fault ? FAULT_FLAG_WRITE : 0),
1899				     &unlocked);
1900		if (unlocked)
1901			return -EAGAIN;
1902		if (r)
1903			return r;
1904
1905		r = follow_pfn(vma, addr, &pfn);
1906		if (r)
1907			return r;
 
1908
 
 
 
1909	}
1910
1911	if (writable)
1912		*writable = true;
 
1913
1914	/*
1915	 * Get a reference here because callers of *hva_to_pfn* and
1916	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1917	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1918	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1919	 * simply do nothing for reserved pfns.
1920	 *
1921	 * Whoever called remap_pfn_range is also going to call e.g.
1922	 * unmap_mapping_range before the underlying pages are freed,
1923	 * causing a call to our MMU notifier.
 
 
 
 
 
 
1924	 */ 
1925	kvm_get_pfn(pfn);
 
1926
 
 
1927	*p_pfn = pfn;
1928	return 0;
 
1929}
1930
1931/*
1932 * Pin guest page in memory and return its pfn.
1933 * @addr: host virtual address which maps memory to the guest
1934 * @atomic: whether this function can sleep
 
1935 * @async: whether this function need to wait IO complete if the
1936 *         host page is not in the memory
1937 * @write_fault: whether we should get a writable host page
1938 * @writable: whether it allows to map a writable host page for !@write_fault
1939 *
1940 * The function will map a writable host page for these two cases:
1941 * 1): @write_fault = true
1942 * 2): @write_fault = false && @writable, @writable will tell the caller
1943 *     whether the mapping is writable.
1944 */
1945static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1946			bool write_fault, bool *writable)
1947{
1948	struct vm_area_struct *vma;
1949	kvm_pfn_t pfn = 0;
1950	int npages, r;
1951
1952	/* we can do it either atomically or asynchronously, not both */
1953	BUG_ON(atomic && async);
1954
1955	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1956		return pfn;
1957
1958	if (atomic)
1959		return KVM_PFN_ERR_FAULT;
1960
1961	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
 
1962	if (npages == 1)
1963		return pfn;
 
 
1964
1965	mmap_read_lock(current->mm);
1966	if (npages == -EHWPOISON ||
1967	      (!async && check_user_page_hwpoison(addr))) {
1968		pfn = KVM_PFN_ERR_HWPOISON;
1969		goto exit;
1970	}
1971
1972retry:
1973	vma = find_vma_intersection(current->mm, addr, addr + 1);
1974
1975	if (vma == NULL)
1976		pfn = KVM_PFN_ERR_FAULT;
1977	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1978		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1979		if (r == -EAGAIN)
1980			goto retry;
1981		if (r < 0)
1982			pfn = KVM_PFN_ERR_FAULT;
1983	} else {
1984		if (async && vma_is_valid(vma, write_fault))
1985			*async = true;
1986		pfn = KVM_PFN_ERR_FAULT;
1987	}
1988exit:
1989	mmap_read_unlock(current->mm);
1990	return pfn;
1991}
1992
1993kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1994			       bool atomic, bool *async, bool write_fault,
1995			       bool *writable)
1996{
1997	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1998
 
 
 
1999	if (addr == KVM_HVA_ERR_RO_BAD) {
2000		if (writable)
2001			*writable = false;
2002		return KVM_PFN_ERR_RO_FAULT;
2003	}
2004
2005	if (kvm_is_error_hva(addr)) {
2006		if (writable)
2007			*writable = false;
2008		return KVM_PFN_NOSLOT;
2009	}
2010
2011	/* Do not map writable pfn in the readonly memslot. */
2012	if (writable && memslot_is_readonly(slot)) {
2013		*writable = false;
2014		writable = NULL;
2015	}
2016
2017	return hva_to_pfn(addr, atomic, async, write_fault,
2018			  writable);
2019}
2020EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2021
2022kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2023		      bool *writable)
2024{
2025	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2026				    write_fault, writable);
2027}
2028EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2029
2030kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2031{
2032	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
 
2033}
2034EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2035
2036kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2037{
2038	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
 
2039}
2040EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2041
2042kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2043{
2044	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2045}
2046EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2047
2048kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2049{
2050	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2051}
2052EXPORT_SYMBOL_GPL(gfn_to_pfn);
2053
2054kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2055{
2056	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2057}
2058EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2059
2060int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2061			    struct page **pages, int nr_pages)
2062{
2063	unsigned long addr;
2064	gfn_t entry = 0;
2065
2066	addr = gfn_to_hva_many(slot, gfn, &entry);
2067	if (kvm_is_error_hva(addr))
2068		return -1;
2069
2070	if (entry < nr_pages)
2071		return 0;
2072
2073	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2074}
2075EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2076
2077static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
 
 
 
 
 
 
2078{
 
 
 
 
 
2079	if (is_error_noslot_pfn(pfn))
2080		return KVM_ERR_PTR_BAD_PAGE;
2081
2082	if (kvm_is_reserved_pfn(pfn)) {
2083		WARN_ON(1);
2084		return KVM_ERR_PTR_BAD_PAGE;
2085	}
2086
2087	return pfn_to_page(pfn);
2088}
2089
2090struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2091{
2092	kvm_pfn_t pfn;
2093
2094	pfn = gfn_to_pfn(kvm, gfn);
2095
2096	return kvm_pfn_to_page(pfn);
2097}
2098EXPORT_SYMBOL_GPL(gfn_to_page);
2099
2100void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2101{
2102	if (pfn == 0)
2103		return;
2104
2105	if (cache)
2106		cache->pfn = cache->gfn = 0;
2107
2108	if (dirty)
2109		kvm_release_pfn_dirty(pfn);
2110	else
2111		kvm_release_pfn_clean(pfn);
2112}
2113
2114static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2115				 struct gfn_to_pfn_cache *cache, u64 gen)
2116{
2117	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2118
2119	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2120	cache->gfn = gfn;
2121	cache->dirty = false;
2122	cache->generation = gen;
2123}
2124
2125static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2126			 struct kvm_host_map *map,
2127			 struct gfn_to_pfn_cache *cache,
2128			 bool atomic)
2129{
2130	kvm_pfn_t pfn;
2131	void *hva = NULL;
2132	struct page *page = KVM_UNMAPPED_PAGE;
2133	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2134	u64 gen = slots->generation;
2135
2136	if (!map)
2137		return -EINVAL;
2138
2139	if (cache) {
2140		if (!cache->pfn || cache->gfn != gfn ||
2141			cache->generation != gen) {
2142			if (atomic)
2143				return -EAGAIN;
2144			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2145		}
2146		pfn = cache->pfn;
2147	} else {
2148		if (atomic)
2149			return -EAGAIN;
2150		pfn = gfn_to_pfn_memslot(slot, gfn);
2151	}
2152	if (is_error_noslot_pfn(pfn))
2153		return -EINVAL;
2154
2155	if (pfn_valid(pfn)) {
2156		page = pfn_to_page(pfn);
2157		if (atomic)
2158			hva = kmap_atomic(page);
2159		else
2160			hva = kmap(page);
2161#ifdef CONFIG_HAS_IOMEM
2162	} else if (!atomic) {
2163		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2164	} else {
2165		return -EINVAL;
2166#endif
2167	}
2168
2169	if (!hva)
2170		return -EFAULT;
2171
2172	map->page = page;
2173	map->hva = hva;
2174	map->pfn = pfn;
2175	map->gfn = gfn;
2176
2177	return 0;
2178}
2179
2180int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2181		struct gfn_to_pfn_cache *cache, bool atomic)
2182{
2183	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2184			cache, atomic);
2185}
2186EXPORT_SYMBOL_GPL(kvm_map_gfn);
2187
2188int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2189{
2190	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2191		NULL, false);
2192}
2193EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2194
2195static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2196			struct kvm_host_map *map,
2197			struct gfn_to_pfn_cache *cache,
2198			bool dirty, bool atomic)
2199{
2200	if (!map)
2201		return;
2202
2203	if (!map->hva)
2204		return;
2205
2206	if (map->page != KVM_UNMAPPED_PAGE) {
2207		if (atomic)
2208			kunmap_atomic(map->hva);
2209		else
2210			kunmap(map->page);
2211	}
2212#ifdef CONFIG_HAS_IOMEM
2213	else if (!atomic)
2214		memunmap(map->hva);
2215	else
2216		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2217#endif
2218
2219	if (dirty)
2220		mark_page_dirty_in_slot(memslot, map->gfn);
2221
2222	if (cache)
2223		cache->dirty |= dirty;
2224	else
2225		kvm_release_pfn(map->pfn, dirty, NULL);
2226
2227	map->hva = NULL;
2228	map->page = NULL;
2229}
 
2230
2231int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2232		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2233{
2234	__kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2235			cache, dirty, atomic);
2236	return 0;
 
 
2237}
2238EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2239
2240void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2241{
2242	__kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2243			dirty, false);
2244}
2245EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2246
2247struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2248{
2249	kvm_pfn_t pfn;
2250
2251	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2252
2253	return kvm_pfn_to_page(pfn);
2254}
2255EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2256
2257void kvm_release_page_clean(struct page *page)
2258{
2259	WARN_ON(is_error_page(page));
2260
2261	kvm_release_pfn_clean(page_to_pfn(page));
 
2262}
2263EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2264
2265void kvm_release_pfn_clean(kvm_pfn_t pfn)
2266{
2267	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2268		put_page(pfn_to_page(pfn));
 
 
 
 
 
 
 
 
2269}
2270EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2271
2272void kvm_release_page_dirty(struct page *page)
2273{
2274	WARN_ON(is_error_page(page));
2275
2276	kvm_release_pfn_dirty(page_to_pfn(page));
 
2277}
2278EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2279
2280void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2281{
2282	kvm_set_pfn_dirty(pfn);
2283	kvm_release_pfn_clean(pfn);
 
 
 
 
 
 
 
 
2284}
2285EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2286
 
 
 
 
 
2287void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2288{
2289	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2290		SetPageDirty(pfn_to_page(pfn));
 
 
 
2291}
2292EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2293
2294void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2295{
2296	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2297		mark_page_accessed(pfn_to_page(pfn));
 
 
 
2298}
2299EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2300
2301void kvm_get_pfn(kvm_pfn_t pfn)
2302{
2303	if (!kvm_is_reserved_pfn(pfn))
2304		get_page(pfn_to_page(pfn));
2305}
2306EXPORT_SYMBOL_GPL(kvm_get_pfn);
2307
2308static int next_segment(unsigned long len, int offset)
2309{
2310	if (len > PAGE_SIZE - offset)
2311		return PAGE_SIZE - offset;
2312	else
2313		return len;
2314}
2315
2316static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2317				 void *data, int offset, int len)
2318{
2319	int r;
2320	unsigned long addr;
2321
2322	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2323	if (kvm_is_error_hva(addr))
2324		return -EFAULT;
2325	r = __copy_from_user(data, (void __user *)addr + offset, len);
2326	if (r)
2327		return -EFAULT;
2328	return 0;
2329}
2330
2331int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2332			int len)
2333{
2334	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2335
2336	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2337}
2338EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2339
2340int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2341			     int offset, int len)
2342{
2343	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2344
2345	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2346}
2347EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2348
2349int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2350{
2351	gfn_t gfn = gpa >> PAGE_SHIFT;
2352	int seg;
2353	int offset = offset_in_page(gpa);
2354	int ret;
2355
2356	while ((seg = next_segment(len, offset)) != 0) {
2357		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2358		if (ret < 0)
2359			return ret;
2360		offset = 0;
2361		len -= seg;
2362		data += seg;
2363		++gfn;
2364	}
2365	return 0;
2366}
2367EXPORT_SYMBOL_GPL(kvm_read_guest);
2368
2369int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2370{
2371	gfn_t gfn = gpa >> PAGE_SHIFT;
2372	int seg;
2373	int offset = offset_in_page(gpa);
2374	int ret;
2375
2376	while ((seg = next_segment(len, offset)) != 0) {
2377		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2378		if (ret < 0)
2379			return ret;
2380		offset = 0;
2381		len -= seg;
2382		data += seg;
2383		++gfn;
2384	}
2385	return 0;
2386}
2387EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2388
2389static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2390			           void *data, int offset, unsigned long len)
2391{
2392	int r;
2393	unsigned long addr;
2394
2395	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2396	if (kvm_is_error_hva(addr))
2397		return -EFAULT;
2398	pagefault_disable();
2399	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2400	pagefault_enable();
2401	if (r)
2402		return -EFAULT;
2403	return 0;
2404}
2405
2406int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2407			       void *data, unsigned long len)
2408{
2409	gfn_t gfn = gpa >> PAGE_SHIFT;
2410	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2411	int offset = offset_in_page(gpa);
2412
2413	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2414}
2415EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2416
2417static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
 
2418			          const void *data, int offset, int len)
2419{
2420	int r;
2421	unsigned long addr;
2422
2423	addr = gfn_to_hva_memslot(memslot, gfn);
2424	if (kvm_is_error_hva(addr))
2425		return -EFAULT;
2426	r = __copy_to_user((void __user *)addr + offset, data, len);
2427	if (r)
2428		return -EFAULT;
2429	mark_page_dirty_in_slot(memslot, gfn);
2430	return 0;
2431}
2432
2433int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2434			 const void *data, int offset, int len)
2435{
2436	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2437
2438	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2439}
2440EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2441
2442int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2443			      const void *data, int offset, int len)
2444{
2445	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2446
2447	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2448}
2449EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2450
2451int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2452		    unsigned long len)
2453{
2454	gfn_t gfn = gpa >> PAGE_SHIFT;
2455	int seg;
2456	int offset = offset_in_page(gpa);
2457	int ret;
2458
2459	while ((seg = next_segment(len, offset)) != 0) {
2460		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2461		if (ret < 0)
2462			return ret;
2463		offset = 0;
2464		len -= seg;
2465		data += seg;
2466		++gfn;
2467	}
2468	return 0;
2469}
2470EXPORT_SYMBOL_GPL(kvm_write_guest);
2471
2472int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2473		         unsigned long len)
2474{
2475	gfn_t gfn = gpa >> PAGE_SHIFT;
2476	int seg;
2477	int offset = offset_in_page(gpa);
2478	int ret;
2479
2480	while ((seg = next_segment(len, offset)) != 0) {
2481		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2482		if (ret < 0)
2483			return ret;
2484		offset = 0;
2485		len -= seg;
2486		data += seg;
2487		++gfn;
2488	}
2489	return 0;
2490}
2491EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2492
2493static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2494				       struct gfn_to_hva_cache *ghc,
2495				       gpa_t gpa, unsigned long len)
2496{
2497	int offset = offset_in_page(gpa);
2498	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2499	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2500	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2501	gfn_t nr_pages_avail;
2502
2503	/* Update ghc->generation before performing any error checks. */
2504	ghc->generation = slots->generation;
2505
2506	if (start_gfn > end_gfn) {
2507		ghc->hva = KVM_HVA_ERR_BAD;
2508		return -EINVAL;
2509	}
2510
2511	/*
2512	 * If the requested region crosses two memslots, we still
2513	 * verify that the entire region is valid here.
2514	 */
2515	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2516		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2517		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2518					   &nr_pages_avail);
2519		if (kvm_is_error_hva(ghc->hva))
2520			return -EFAULT;
2521	}
2522
2523	/* Use the slow path for cross page reads and writes. */
2524	if (nr_pages_needed == 1)
2525		ghc->hva += offset;
2526	else
2527		ghc->memslot = NULL;
2528
2529	ghc->gpa = gpa;
2530	ghc->len = len;
2531	return 0;
2532}
2533
2534int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2535			      gpa_t gpa, unsigned long len)
2536{
2537	struct kvm_memslots *slots = kvm_memslots(kvm);
2538	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2539}
2540EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2541
2542int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2543				  void *data, unsigned int offset,
2544				  unsigned long len)
2545{
2546	struct kvm_memslots *slots = kvm_memslots(kvm);
2547	int r;
2548	gpa_t gpa = ghc->gpa + offset;
2549
2550	BUG_ON(len + offset > ghc->len);
 
2551
2552	if (slots->generation != ghc->generation) {
2553		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2554			return -EFAULT;
2555	}
2556
2557	if (kvm_is_error_hva(ghc->hva))
2558		return -EFAULT;
2559
2560	if (unlikely(!ghc->memslot))
2561		return kvm_write_guest(kvm, gpa, data, len);
2562
2563	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2564	if (r)
2565		return -EFAULT;
2566	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2567
2568	return 0;
2569}
2570EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2571
2572int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2573			   void *data, unsigned long len)
2574{
2575	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2576}
2577EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2578
2579int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2580				 void *data, unsigned int offset,
2581				 unsigned long len)
2582{
2583	struct kvm_memslots *slots = kvm_memslots(kvm);
2584	int r;
2585	gpa_t gpa = ghc->gpa + offset;
2586
2587	BUG_ON(len + offset > ghc->len);
 
2588
2589	if (slots->generation != ghc->generation) {
2590		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2591			return -EFAULT;
2592	}
2593
2594	if (kvm_is_error_hva(ghc->hva))
2595		return -EFAULT;
2596
2597	if (unlikely(!ghc->memslot))
2598		return kvm_read_guest(kvm, gpa, data, len);
2599
2600	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2601	if (r)
2602		return -EFAULT;
2603
2604	return 0;
2605}
2606EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2607
2608int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2609			  void *data, unsigned long len)
2610{
2611	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2612}
2613EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2614
2615int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2616{
2617	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2618
2619	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2620}
2621EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2622
2623int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2624{
2625	gfn_t gfn = gpa >> PAGE_SHIFT;
2626	int seg;
2627	int offset = offset_in_page(gpa);
2628	int ret;
2629
2630	while ((seg = next_segment(len, offset)) != 0) {
2631		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2632		if (ret < 0)
2633			return ret;
2634		offset = 0;
2635		len -= seg;
2636		++gfn;
2637	}
2638	return 0;
2639}
2640EXPORT_SYMBOL_GPL(kvm_clear_guest);
2641
2642static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2643				    gfn_t gfn)
 
2644{
2645	if (memslot && memslot->dirty_bitmap) {
 
 
 
 
 
 
 
 
 
2646		unsigned long rel_gfn = gfn - memslot->base_gfn;
 
2647
2648		set_bit_le(rel_gfn, memslot->dirty_bitmap);
 
 
 
2649	}
2650}
 
2651
2652void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2653{
2654	struct kvm_memory_slot *memslot;
2655
2656	memslot = gfn_to_memslot(kvm, gfn);
2657	mark_page_dirty_in_slot(memslot, gfn);
2658}
2659EXPORT_SYMBOL_GPL(mark_page_dirty);
2660
2661void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2662{
2663	struct kvm_memory_slot *memslot;
2664
2665	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2666	mark_page_dirty_in_slot(memslot, gfn);
2667}
2668EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2669
2670void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2671{
2672	if (!vcpu->sigset_active)
2673		return;
2674
2675	/*
2676	 * This does a lockless modification of ->real_blocked, which is fine
2677	 * because, only current can change ->real_blocked and all readers of
2678	 * ->real_blocked don't care as long ->real_blocked is always a subset
2679	 * of ->blocked.
2680	 */
2681	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2682}
2683
2684void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2685{
2686	if (!vcpu->sigset_active)
2687		return;
2688
2689	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2690	sigemptyset(&current->real_blocked);
2691}
2692
2693static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2694{
2695	unsigned int old, val, grow, grow_start;
2696
2697	old = val = vcpu->halt_poll_ns;
2698	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2699	grow = READ_ONCE(halt_poll_ns_grow);
2700	if (!grow)
2701		goto out;
2702
2703	val *= grow;
2704	if (val < grow_start)
2705		val = grow_start;
2706
2707	if (val > halt_poll_ns)
2708		val = halt_poll_ns;
2709
2710	vcpu->halt_poll_ns = val;
2711out:
2712	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2713}
2714
2715static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2716{
2717	unsigned int old, val, shrink;
2718
2719	old = val = vcpu->halt_poll_ns;
2720	shrink = READ_ONCE(halt_poll_ns_shrink);
 
2721	if (shrink == 0)
2722		val = 0;
2723	else
2724		val /= shrink;
2725
 
 
 
2726	vcpu->halt_poll_ns = val;
2727	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2728}
2729
2730static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2731{
2732	int ret = -EINTR;
2733	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2734
2735	if (kvm_arch_vcpu_runnable(vcpu)) {
2736		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2737		goto out;
2738	}
2739	if (kvm_cpu_has_pending_timer(vcpu))
2740		goto out;
2741	if (signal_pending(current))
2742		goto out;
 
 
2743
2744	ret = 0;
2745out:
2746	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2747	return ret;
2748}
2749
2750static inline void
2751update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
 
 
 
 
2752{
2753	if (waited)
2754		vcpu->stat.halt_poll_fail_ns += poll_ns;
2755	else
2756		vcpu->stat.halt_poll_success_ns += poll_ns;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2757}
2758
2759/*
2760 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
 
 
 
2761 */
2762void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2763{
 
 
2764	ktime_t start, cur, poll_end;
2765	bool waited = false;
2766	u64 block_ns;
 
 
 
 
2767
2768	kvm_arch_vcpu_blocking(vcpu);
2769
2770	start = cur = poll_end = ktime_get();
2771	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2772		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2773
2774		++vcpu->stat.halt_attempted_poll;
2775		do {
2776			/*
2777			 * This sets KVM_REQ_UNHALT if an interrupt
2778			 * arrives.
2779			 */
2780			if (kvm_vcpu_check_block(vcpu) < 0) {
2781				++vcpu->stat.halt_successful_poll;
2782				if (!vcpu_valid_wakeup(vcpu))
2783					++vcpu->stat.halt_poll_invalid;
2784				goto out;
2785			}
2786			poll_end = cur = ktime_get();
2787		} while (single_task_running() && ktime_before(cur, stop));
2788	}
2789
2790	prepare_to_rcuwait(&vcpu->wait);
2791	for (;;) {
2792		set_current_state(TASK_INTERRUPTIBLE);
2793
2794		if (kvm_vcpu_check_block(vcpu) < 0)
2795			break;
2796
2797		waited = true;
2798		schedule();
 
2799	}
2800	finish_rcuwait(&vcpu->wait);
2801	cur = ktime_get();
2802out:
2803	kvm_arch_vcpu_unblocking(vcpu);
2804	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
 
 
 
 
 
 
 
 
2805
2806	update_halt_poll_stats(
2807		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
 
2808
2809	if (!kvm_arch_no_poll(vcpu)) {
2810		if (!vcpu_valid_wakeup(vcpu)) {
2811			shrink_halt_poll_ns(vcpu);
2812		} else if (vcpu->kvm->max_halt_poll_ns) {
2813			if (block_ns <= vcpu->halt_poll_ns)
2814				;
2815			/* we had a long block, shrink polling */
2816			else if (vcpu->halt_poll_ns &&
2817					block_ns > vcpu->kvm->max_halt_poll_ns)
2818				shrink_halt_poll_ns(vcpu);
2819			/* we had a short halt and our poll time is too small */
2820			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2821					block_ns < vcpu->kvm->max_halt_poll_ns)
2822				grow_halt_poll_ns(vcpu);
2823		} else {
2824			vcpu->halt_poll_ns = 0;
2825		}
2826	}
2827
2828	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2829	kvm_arch_vcpu_block_finish(vcpu);
2830}
2831EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2832
2833bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2834{
2835	struct rcuwait *waitp;
2836
2837	waitp = kvm_arch_vcpu_get_wait(vcpu);
2838	if (rcuwait_wake_up(waitp)) {
2839		WRITE_ONCE(vcpu->ready, true);
2840		++vcpu->stat.halt_wakeup;
2841		return true;
2842	}
2843
2844	return false;
2845}
2846EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2847
2848#ifndef CONFIG_S390
2849/*
2850 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2851 */
2852void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2853{
2854	int me;
2855	int cpu = vcpu->cpu;
2856
2857	if (kvm_vcpu_wake_up(vcpu))
2858		return;
2859
2860	me = get_cpu();
2861	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2862		if (kvm_arch_vcpu_should_kick(vcpu))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863			smp_send_reschedule(cpu);
 
 
2864	put_cpu();
2865}
2866EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2867#endif /* !CONFIG_S390 */
2868
2869int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2870{
2871	struct pid *pid;
2872	struct task_struct *task = NULL;
2873	int ret = 0;
2874
2875	rcu_read_lock();
2876	pid = rcu_dereference(target->pid);
2877	if (pid)
2878		task = get_pid_task(pid, PIDTYPE_PID);
2879	rcu_read_unlock();
2880	if (!task)
2881		return ret;
2882	ret = yield_to(task, 1);
2883	put_task_struct(task);
2884
2885	return ret;
2886}
2887EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2888
2889/*
2890 * Helper that checks whether a VCPU is eligible for directed yield.
2891 * Most eligible candidate to yield is decided by following heuristics:
2892 *
2893 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2894 *  (preempted lock holder), indicated by @in_spin_loop.
2895 *  Set at the beginning and cleared at the end of interception/PLE handler.
2896 *
2897 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2898 *  chance last time (mostly it has become eligible now since we have probably
2899 *  yielded to lockholder in last iteration. This is done by toggling
2900 *  @dy_eligible each time a VCPU checked for eligibility.)
2901 *
2902 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2903 *  to preempted lock-holder could result in wrong VCPU selection and CPU
2904 *  burning. Giving priority for a potential lock-holder increases lock
2905 *  progress.
2906 *
2907 *  Since algorithm is based on heuristics, accessing another VCPU data without
2908 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2909 *  and continue with next VCPU and so on.
2910 */
2911static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2912{
2913#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2914	bool eligible;
2915
2916	eligible = !vcpu->spin_loop.in_spin_loop ||
2917		    vcpu->spin_loop.dy_eligible;
2918
2919	if (vcpu->spin_loop.in_spin_loop)
2920		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2921
2922	return eligible;
2923#else
2924	return true;
2925#endif
2926}
2927
2928/*
2929 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2930 * a vcpu_load/vcpu_put pair.  However, for most architectures
2931 * kvm_arch_vcpu_runnable does not require vcpu_load.
2932 */
2933bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2934{
2935	return kvm_arch_vcpu_runnable(vcpu);
2936}
2937
2938static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2939{
2940	if (kvm_arch_dy_runnable(vcpu))
2941		return true;
2942
2943#ifdef CONFIG_KVM_ASYNC_PF
2944	if (!list_empty_careful(&vcpu->async_pf.done))
2945		return true;
2946#endif
2947
2948	return false;
2949}
2950
 
 
 
 
 
2951void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2952{
2953	struct kvm *kvm = me->kvm;
2954	struct kvm_vcpu *vcpu;
2955	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
 
2956	int yielded = 0;
2957	int try = 3;
2958	int pass;
2959	int i;
2960
2961	kvm_vcpu_set_in_spin_loop(me, true);
2962	/*
2963	 * We boost the priority of a VCPU that is runnable but not
2964	 * currently running, because it got preempted by something
2965	 * else and called schedule in __vcpu_run.  Hopefully that
2966	 * VCPU is holding the lock that we need and will release it.
2967	 * We approximate round-robin by starting at the last boosted VCPU.
2968	 */
2969	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2970		kvm_for_each_vcpu(i, vcpu, kvm) {
2971			if (!pass && i <= last_boosted_vcpu) {
2972				i = last_boosted_vcpu;
2973				continue;
2974			} else if (pass && i > last_boosted_vcpu)
2975				break;
2976			if (!READ_ONCE(vcpu->ready))
2977				continue;
2978			if (vcpu == me)
2979				continue;
2980			if (rcuwait_active(&vcpu->wait) &&
2981			    !vcpu_dy_runnable(vcpu))
2982				continue;
2983			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2984				!kvm_arch_vcpu_in_kernel(vcpu))
 
2985				continue;
2986			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2987				continue;
2988
2989			yielded = kvm_vcpu_yield_to(vcpu);
2990			if (yielded > 0) {
2991				kvm->last_boosted_vcpu = i;
2992				break;
2993			} else if (yielded < 0) {
2994				try--;
2995				if (!try)
2996					break;
2997			}
2998		}
2999	}
3000	kvm_vcpu_set_in_spin_loop(me, false);
3001
3002	/* Ensure vcpu is not eligible during next spinloop */
3003	kvm_vcpu_set_dy_eligible(me, false);
3004}
3005EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3006
 
 
 
 
 
 
 
 
 
 
 
3007static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3008{
3009	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3010	struct page *page;
3011
3012	if (vmf->pgoff == 0)
3013		page = virt_to_page(vcpu->run);
3014#ifdef CONFIG_X86
3015	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3016		page = virt_to_page(vcpu->arch.pio_data);
3017#endif
3018#ifdef CONFIG_KVM_MMIO
3019	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3020		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3021#endif
 
 
 
 
3022	else
3023		return kvm_arch_vcpu_fault(vcpu, vmf);
3024	get_page(page);
3025	vmf->page = page;
3026	return 0;
3027}
3028
3029static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3030	.fault = kvm_vcpu_fault,
3031};
3032
3033static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3034{
 
 
 
 
 
 
 
 
3035	vma->vm_ops = &kvm_vcpu_vm_ops;
3036	return 0;
3037}
3038
3039static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3040{
3041	struct kvm_vcpu *vcpu = filp->private_data;
3042
3043	kvm_put_kvm(vcpu->kvm);
3044	return 0;
3045}
3046
3047static struct file_operations kvm_vcpu_fops = {
3048	.release        = kvm_vcpu_release,
3049	.unlocked_ioctl = kvm_vcpu_ioctl,
3050	.mmap           = kvm_vcpu_mmap,
3051	.llseek		= noop_llseek,
3052	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3053};
3054
3055/*
3056 * Allocates an inode for the vcpu.
3057 */
3058static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3059{
3060	char name[8 + 1 + ITOA_MAX_LEN + 1];
3061
3062	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3063	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3064}
3065
 
 
 
 
 
 
 
 
 
 
3066static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3067{
3068#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3069	struct dentry *debugfs_dentry;
3070	char dir_name[ITOA_MAX_LEN * 2];
3071
3072	if (!debugfs_initialized())
3073		return;
3074
3075	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3076	debugfs_dentry = debugfs_create_dir(dir_name,
3077					    vcpu->kvm->debugfs_dentry);
 
 
3078
3079	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
 
3080#endif
3081}
3082
3083/*
3084 * Creates some virtual cpus.  Good luck creating more than one.
3085 */
3086static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3087{
3088	int r;
3089	struct kvm_vcpu *vcpu;
3090	struct page *page;
3091
3092	if (id >= KVM_MAX_VCPU_ID)
3093		return -EINVAL;
3094
3095	mutex_lock(&kvm->lock);
3096	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3097		mutex_unlock(&kvm->lock);
3098		return -EINVAL;
3099	}
3100
 
 
 
 
 
 
3101	kvm->created_vcpus++;
3102	mutex_unlock(&kvm->lock);
3103
3104	r = kvm_arch_vcpu_precreate(kvm, id);
3105	if (r)
3106		goto vcpu_decrement;
3107
3108	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3109	if (!vcpu) {
3110		r = -ENOMEM;
3111		goto vcpu_decrement;
3112	}
3113
3114	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3115	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3116	if (!page) {
3117		r = -ENOMEM;
3118		goto vcpu_free;
3119	}
3120	vcpu->run = page_address(page);
3121
3122	kvm_vcpu_init(vcpu, kvm, id);
3123
3124	r = kvm_arch_vcpu_create(vcpu);
3125	if (r)
3126		goto vcpu_free_run_page;
3127
 
 
 
 
 
 
 
3128	mutex_lock(&kvm->lock);
 
 
 
 
 
 
 
3129	if (kvm_get_vcpu_by_id(kvm, id)) {
3130		r = -EEXIST;
3131		goto unlock_vcpu_destroy;
3132	}
3133
3134	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3135	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
 
 
 
3136
3137	/* Now it's all set up, let userspace reach it */
3138	kvm_get_kvm(kvm);
3139	r = create_vcpu_fd(vcpu);
3140	if (r < 0) {
 
3141		kvm_put_kvm_no_destroy(kvm);
3142		goto unlock_vcpu_destroy;
3143	}
3144
3145	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3146
3147	/*
3148	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3149	 * before kvm->online_vcpu's incremented value.
3150	 */
3151	smp_wmb();
3152	atomic_inc(&kvm->online_vcpus);
3153
3154	mutex_unlock(&kvm->lock);
3155	kvm_arch_vcpu_postcreate(vcpu);
3156	kvm_create_vcpu_debugfs(vcpu);
3157	return r;
3158
3159unlock_vcpu_destroy:
3160	mutex_unlock(&kvm->lock);
 
 
3161	kvm_arch_vcpu_destroy(vcpu);
3162vcpu_free_run_page:
3163	free_page((unsigned long)vcpu->run);
3164vcpu_free:
3165	kmem_cache_free(kvm_vcpu_cache, vcpu);
3166vcpu_decrement:
3167	mutex_lock(&kvm->lock);
3168	kvm->created_vcpus--;
3169	mutex_unlock(&kvm->lock);
3170	return r;
3171}
3172
3173static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3174{
3175	if (sigset) {
3176		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3177		vcpu->sigset_active = 1;
3178		vcpu->sigset = *sigset;
3179	} else
3180		vcpu->sigset_active = 0;
3181	return 0;
3182}
3183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3184static long kvm_vcpu_ioctl(struct file *filp,
3185			   unsigned int ioctl, unsigned long arg)
3186{
3187	struct kvm_vcpu *vcpu = filp->private_data;
3188	void __user *argp = (void __user *)arg;
3189	int r;
3190	struct kvm_fpu *fpu = NULL;
3191	struct kvm_sregs *kvm_sregs = NULL;
3192
3193	if (vcpu->kvm->mm != current->mm)
3194		return -EIO;
3195
3196	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3197		return -EINVAL;
3198
3199	/*
3200	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3201	 * execution; mutex_lock() would break them.
3202	 */
3203	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3204	if (r != -ENOIOCTLCMD)
3205		return r;
3206
3207	if (mutex_lock_killable(&vcpu->mutex))
3208		return -EINTR;
3209	switch (ioctl) {
3210	case KVM_RUN: {
3211		struct pid *oldpid;
3212		r = -EINVAL;
3213		if (arg)
3214			goto out;
3215		oldpid = rcu_access_pointer(vcpu->pid);
3216		if (unlikely(oldpid != task_pid(current))) {
3217			/* The thread running this VCPU changed. */
3218			struct pid *newpid;
3219
3220			r = kvm_arch_vcpu_run_pid_change(vcpu);
3221			if (r)
3222				break;
3223
3224			newpid = get_task_pid(current, PIDTYPE_PID);
3225			rcu_assign_pointer(vcpu->pid, newpid);
3226			if (oldpid)
3227				synchronize_rcu();
3228			put_pid(oldpid);
3229		}
3230		r = kvm_arch_vcpu_ioctl_run(vcpu);
3231		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3232		break;
3233	}
3234	case KVM_GET_REGS: {
3235		struct kvm_regs *kvm_regs;
3236
3237		r = -ENOMEM;
3238		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3239		if (!kvm_regs)
3240			goto out;
3241		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3242		if (r)
3243			goto out_free1;
3244		r = -EFAULT;
3245		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3246			goto out_free1;
3247		r = 0;
3248out_free1:
3249		kfree(kvm_regs);
3250		break;
3251	}
3252	case KVM_SET_REGS: {
3253		struct kvm_regs *kvm_regs;
3254
3255		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3256		if (IS_ERR(kvm_regs)) {
3257			r = PTR_ERR(kvm_regs);
3258			goto out;
3259		}
3260		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3261		kfree(kvm_regs);
3262		break;
3263	}
3264	case KVM_GET_SREGS: {
3265		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3266				    GFP_KERNEL_ACCOUNT);
3267		r = -ENOMEM;
3268		if (!kvm_sregs)
3269			goto out;
3270		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3271		if (r)
3272			goto out;
3273		r = -EFAULT;
3274		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3275			goto out;
3276		r = 0;
3277		break;
3278	}
3279	case KVM_SET_SREGS: {
3280		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3281		if (IS_ERR(kvm_sregs)) {
3282			r = PTR_ERR(kvm_sregs);
3283			kvm_sregs = NULL;
3284			goto out;
3285		}
3286		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3287		break;
3288	}
3289	case KVM_GET_MP_STATE: {
3290		struct kvm_mp_state mp_state;
3291
3292		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3293		if (r)
3294			goto out;
3295		r = -EFAULT;
3296		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3297			goto out;
3298		r = 0;
3299		break;
3300	}
3301	case KVM_SET_MP_STATE: {
3302		struct kvm_mp_state mp_state;
3303
3304		r = -EFAULT;
3305		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3306			goto out;
3307		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3308		break;
3309	}
3310	case KVM_TRANSLATE: {
3311		struct kvm_translation tr;
3312
3313		r = -EFAULT;
3314		if (copy_from_user(&tr, argp, sizeof(tr)))
3315			goto out;
3316		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3317		if (r)
3318			goto out;
3319		r = -EFAULT;
3320		if (copy_to_user(argp, &tr, sizeof(tr)))
3321			goto out;
3322		r = 0;
3323		break;
3324	}
3325	case KVM_SET_GUEST_DEBUG: {
3326		struct kvm_guest_debug dbg;
3327
3328		r = -EFAULT;
3329		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3330			goto out;
3331		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3332		break;
3333	}
3334	case KVM_SET_SIGNAL_MASK: {
3335		struct kvm_signal_mask __user *sigmask_arg = argp;
3336		struct kvm_signal_mask kvm_sigmask;
3337		sigset_t sigset, *p;
3338
3339		p = NULL;
3340		if (argp) {
3341			r = -EFAULT;
3342			if (copy_from_user(&kvm_sigmask, argp,
3343					   sizeof(kvm_sigmask)))
3344				goto out;
3345			r = -EINVAL;
3346			if (kvm_sigmask.len != sizeof(sigset))
3347				goto out;
3348			r = -EFAULT;
3349			if (copy_from_user(&sigset, sigmask_arg->sigset,
3350					   sizeof(sigset)))
3351				goto out;
3352			p = &sigset;
3353		}
3354		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3355		break;
3356	}
3357	case KVM_GET_FPU: {
3358		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3359		r = -ENOMEM;
3360		if (!fpu)
3361			goto out;
3362		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3363		if (r)
3364			goto out;
3365		r = -EFAULT;
3366		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3367			goto out;
3368		r = 0;
3369		break;
3370	}
3371	case KVM_SET_FPU: {
3372		fpu = memdup_user(argp, sizeof(*fpu));
3373		if (IS_ERR(fpu)) {
3374			r = PTR_ERR(fpu);
3375			fpu = NULL;
3376			goto out;
3377		}
3378		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3379		break;
3380	}
 
 
 
 
3381	default:
3382		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3383	}
3384out:
3385	mutex_unlock(&vcpu->mutex);
3386	kfree(fpu);
3387	kfree(kvm_sregs);
3388	return r;
3389}
3390
3391#ifdef CONFIG_KVM_COMPAT
3392static long kvm_vcpu_compat_ioctl(struct file *filp,
3393				  unsigned int ioctl, unsigned long arg)
3394{
3395	struct kvm_vcpu *vcpu = filp->private_data;
3396	void __user *argp = compat_ptr(arg);
3397	int r;
3398
3399	if (vcpu->kvm->mm != current->mm)
3400		return -EIO;
3401
3402	switch (ioctl) {
3403	case KVM_SET_SIGNAL_MASK: {
3404		struct kvm_signal_mask __user *sigmask_arg = argp;
3405		struct kvm_signal_mask kvm_sigmask;
3406		sigset_t sigset;
3407
3408		if (argp) {
3409			r = -EFAULT;
3410			if (copy_from_user(&kvm_sigmask, argp,
3411					   sizeof(kvm_sigmask)))
3412				goto out;
3413			r = -EINVAL;
3414			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3415				goto out;
3416			r = -EFAULT;
3417			if (get_compat_sigset(&sigset,
3418					      (compat_sigset_t __user *)sigmask_arg->sigset))
3419				goto out;
3420			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3421		} else
3422			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3423		break;
3424	}
3425	default:
3426		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3427	}
3428
3429out:
3430	return r;
3431}
3432#endif
3433
3434static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3435{
3436	struct kvm_device *dev = filp->private_data;
3437
3438	if (dev->ops->mmap)
3439		return dev->ops->mmap(dev, vma);
3440
3441	return -ENODEV;
3442}
3443
3444static int kvm_device_ioctl_attr(struct kvm_device *dev,
3445				 int (*accessor)(struct kvm_device *dev,
3446						 struct kvm_device_attr *attr),
3447				 unsigned long arg)
3448{
3449	struct kvm_device_attr attr;
3450
3451	if (!accessor)
3452		return -EPERM;
3453
3454	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3455		return -EFAULT;
3456
3457	return accessor(dev, &attr);
3458}
3459
3460static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3461			     unsigned long arg)
3462{
3463	struct kvm_device *dev = filp->private_data;
3464
3465	if (dev->kvm->mm != current->mm)
3466		return -EIO;
3467
3468	switch (ioctl) {
3469	case KVM_SET_DEVICE_ATTR:
3470		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3471	case KVM_GET_DEVICE_ATTR:
3472		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3473	case KVM_HAS_DEVICE_ATTR:
3474		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3475	default:
3476		if (dev->ops->ioctl)
3477			return dev->ops->ioctl(dev, ioctl, arg);
3478
3479		return -ENOTTY;
3480	}
3481}
3482
3483static int kvm_device_release(struct inode *inode, struct file *filp)
3484{
3485	struct kvm_device *dev = filp->private_data;
3486	struct kvm *kvm = dev->kvm;
3487
3488	if (dev->ops->release) {
3489		mutex_lock(&kvm->lock);
3490		list_del(&dev->vm_node);
3491		dev->ops->release(dev);
3492		mutex_unlock(&kvm->lock);
3493	}
3494
3495	kvm_put_kvm(kvm);
3496	return 0;
3497}
3498
3499static const struct file_operations kvm_device_fops = {
3500	.unlocked_ioctl = kvm_device_ioctl,
3501	.release = kvm_device_release,
3502	KVM_COMPAT(kvm_device_ioctl),
3503	.mmap = kvm_device_mmap,
3504};
3505
3506struct kvm_device *kvm_device_from_filp(struct file *filp)
3507{
3508	if (filp->f_op != &kvm_device_fops)
3509		return NULL;
3510
3511	return filp->private_data;
3512}
3513
3514static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3515#ifdef CONFIG_KVM_MPIC
3516	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3517	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3518#endif
3519};
3520
3521int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3522{
3523	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3524		return -ENOSPC;
3525
3526	if (kvm_device_ops_table[type] != NULL)
3527		return -EEXIST;
3528
3529	kvm_device_ops_table[type] = ops;
3530	return 0;
3531}
3532
3533void kvm_unregister_device_ops(u32 type)
3534{
3535	if (kvm_device_ops_table[type] != NULL)
3536		kvm_device_ops_table[type] = NULL;
3537}
3538
3539static int kvm_ioctl_create_device(struct kvm *kvm,
3540				   struct kvm_create_device *cd)
3541{
3542	const struct kvm_device_ops *ops = NULL;
3543	struct kvm_device *dev;
3544	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3545	int type;
3546	int ret;
3547
3548	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3549		return -ENODEV;
3550
3551	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3552	ops = kvm_device_ops_table[type];
3553	if (ops == NULL)
3554		return -ENODEV;
3555
3556	if (test)
3557		return 0;
3558
3559	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3560	if (!dev)
3561		return -ENOMEM;
3562
3563	dev->ops = ops;
3564	dev->kvm = kvm;
3565
3566	mutex_lock(&kvm->lock);
3567	ret = ops->create(dev, type);
3568	if (ret < 0) {
3569		mutex_unlock(&kvm->lock);
3570		kfree(dev);
3571		return ret;
3572	}
3573	list_add(&dev->vm_node, &kvm->devices);
3574	mutex_unlock(&kvm->lock);
3575
3576	if (ops->init)
3577		ops->init(dev);
3578
3579	kvm_get_kvm(kvm);
3580	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3581	if (ret < 0) {
3582		kvm_put_kvm_no_destroy(kvm);
3583		mutex_lock(&kvm->lock);
3584		list_del(&dev->vm_node);
 
 
3585		mutex_unlock(&kvm->lock);
3586		ops->destroy(dev);
 
3587		return ret;
3588	}
3589
3590	cd->fd = ret;
3591	return 0;
3592}
3593
3594static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3595{
3596	switch (arg) {
3597	case KVM_CAP_USER_MEMORY:
3598	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3599	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3600	case KVM_CAP_INTERNAL_ERROR_DATA:
3601#ifdef CONFIG_HAVE_KVM_MSI
3602	case KVM_CAP_SIGNAL_MSI:
3603#endif
3604#ifdef CONFIG_HAVE_KVM_IRQFD
3605	case KVM_CAP_IRQFD:
3606	case KVM_CAP_IRQFD_RESAMPLE:
3607#endif
3608	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3609	case KVM_CAP_CHECK_EXTENSION_VM:
3610	case KVM_CAP_ENABLE_CAP_VM:
3611	case KVM_CAP_HALT_POLL:
3612		return 1;
3613#ifdef CONFIG_KVM_MMIO
3614	case KVM_CAP_COALESCED_MMIO:
3615		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3616	case KVM_CAP_COALESCED_PIO:
3617		return 1;
3618#endif
3619#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3620	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3621		return KVM_DIRTY_LOG_MANUAL_CAPS;
3622#endif
3623#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3624	case KVM_CAP_IRQ_ROUTING:
3625		return KVM_MAX_IRQ_ROUTES;
3626#endif
3627#if KVM_ADDRESS_SPACE_NUM > 1
3628	case KVM_CAP_MULTI_ADDRESS_SPACE:
3629		return KVM_ADDRESS_SPACE_NUM;
3630#endif
3631	case KVM_CAP_NR_MEMSLOTS:
3632		return KVM_USER_MEM_SLOTS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3633	default:
3634		break;
3635	}
3636	return kvm_vm_ioctl_check_extension(kvm, arg);
3637}
3638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3639int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3640						  struct kvm_enable_cap *cap)
3641{
3642	return -EINVAL;
3643}
3644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3645static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3646					   struct kvm_enable_cap *cap)
3647{
3648	switch (cap->cap) {
3649#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3650	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3651		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3652
3653		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3654			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3655
3656		if (cap->flags || (cap->args[0] & ~allowed_options))
3657			return -EINVAL;
3658		kvm->manual_dirty_log_protect = cap->args[0];
3659		return 0;
3660	}
3661#endif
3662	case KVM_CAP_HALT_POLL: {
3663		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3664			return -EINVAL;
3665
3666		kvm->max_halt_poll_ns = cap->args[0];
 
 
 
 
 
 
 
 
 
 
3667		return 0;
3668	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3669	default:
3670		return kvm_vm_ioctl_enable_cap(kvm, cap);
3671	}
3672}
3673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3674static long kvm_vm_ioctl(struct file *filp,
3675			   unsigned int ioctl, unsigned long arg)
3676{
3677	struct kvm *kvm = filp->private_data;
3678	void __user *argp = (void __user *)arg;
3679	int r;
3680
3681	if (kvm->mm != current->mm)
3682		return -EIO;
3683	switch (ioctl) {
3684	case KVM_CREATE_VCPU:
3685		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3686		break;
3687	case KVM_ENABLE_CAP: {
3688		struct kvm_enable_cap cap;
3689
3690		r = -EFAULT;
3691		if (copy_from_user(&cap, argp, sizeof(cap)))
3692			goto out;
3693		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3694		break;
3695	}
3696	case KVM_SET_USER_MEMORY_REGION: {
3697		struct kvm_userspace_memory_region kvm_userspace_mem;
3698
3699		r = -EFAULT;
3700		if (copy_from_user(&kvm_userspace_mem, argp,
3701						sizeof(kvm_userspace_mem)))
3702			goto out;
3703
3704		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3705		break;
3706	}
3707	case KVM_GET_DIRTY_LOG: {
3708		struct kvm_dirty_log log;
3709
3710		r = -EFAULT;
3711		if (copy_from_user(&log, argp, sizeof(log)))
3712			goto out;
3713		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3714		break;
3715	}
3716#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3717	case KVM_CLEAR_DIRTY_LOG: {
3718		struct kvm_clear_dirty_log log;
3719
3720		r = -EFAULT;
3721		if (copy_from_user(&log, argp, sizeof(log)))
3722			goto out;
3723		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3724		break;
3725	}
3726#endif
3727#ifdef CONFIG_KVM_MMIO
3728	case KVM_REGISTER_COALESCED_MMIO: {
3729		struct kvm_coalesced_mmio_zone zone;
3730
3731		r = -EFAULT;
3732		if (copy_from_user(&zone, argp, sizeof(zone)))
3733			goto out;
3734		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3735		break;
3736	}
3737	case KVM_UNREGISTER_COALESCED_MMIO: {
3738		struct kvm_coalesced_mmio_zone zone;
3739
3740		r = -EFAULT;
3741		if (copy_from_user(&zone, argp, sizeof(zone)))
3742			goto out;
3743		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3744		break;
3745	}
3746#endif
3747	case KVM_IRQFD: {
3748		struct kvm_irqfd data;
3749
3750		r = -EFAULT;
3751		if (copy_from_user(&data, argp, sizeof(data)))
3752			goto out;
3753		r = kvm_irqfd(kvm, &data);
3754		break;
3755	}
3756	case KVM_IOEVENTFD: {
3757		struct kvm_ioeventfd data;
3758
3759		r = -EFAULT;
3760		if (copy_from_user(&data, argp, sizeof(data)))
3761			goto out;
3762		r = kvm_ioeventfd(kvm, &data);
3763		break;
3764	}
3765#ifdef CONFIG_HAVE_KVM_MSI
3766	case KVM_SIGNAL_MSI: {
3767		struct kvm_msi msi;
3768
3769		r = -EFAULT;
3770		if (copy_from_user(&msi, argp, sizeof(msi)))
3771			goto out;
3772		r = kvm_send_userspace_msi(kvm, &msi);
3773		break;
3774	}
3775#endif
3776#ifdef __KVM_HAVE_IRQ_LINE
3777	case KVM_IRQ_LINE_STATUS:
3778	case KVM_IRQ_LINE: {
3779		struct kvm_irq_level irq_event;
3780
3781		r = -EFAULT;
3782		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3783			goto out;
3784
3785		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3786					ioctl == KVM_IRQ_LINE_STATUS);
3787		if (r)
3788			goto out;
3789
3790		r = -EFAULT;
3791		if (ioctl == KVM_IRQ_LINE_STATUS) {
3792			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3793				goto out;
3794		}
3795
3796		r = 0;
3797		break;
3798	}
3799#endif
3800#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3801	case KVM_SET_GSI_ROUTING: {
3802		struct kvm_irq_routing routing;
3803		struct kvm_irq_routing __user *urouting;
3804		struct kvm_irq_routing_entry *entries = NULL;
3805
3806		r = -EFAULT;
3807		if (copy_from_user(&routing, argp, sizeof(routing)))
3808			goto out;
3809		r = -EINVAL;
3810		if (!kvm_arch_can_set_irq_routing(kvm))
3811			goto out;
3812		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3813			goto out;
3814		if (routing.flags)
3815			goto out;
3816		if (routing.nr) {
3817			urouting = argp;
3818			entries = vmemdup_user(urouting->entries,
3819					       array_size(sizeof(*entries),
3820							  routing.nr));
3821			if (IS_ERR(entries)) {
3822				r = PTR_ERR(entries);
3823				goto out;
3824			}
3825		}
3826		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3827					routing.flags);
3828		kvfree(entries);
3829		break;
3830	}
3831#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3832	case KVM_CREATE_DEVICE: {
3833		struct kvm_create_device cd;
3834
3835		r = -EFAULT;
3836		if (copy_from_user(&cd, argp, sizeof(cd)))
3837			goto out;
3838
3839		r = kvm_ioctl_create_device(kvm, &cd);
3840		if (r)
3841			goto out;
3842
3843		r = -EFAULT;
3844		if (copy_to_user(argp, &cd, sizeof(cd)))
3845			goto out;
3846
3847		r = 0;
3848		break;
3849	}
3850	case KVM_CHECK_EXTENSION:
3851		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3852		break;
 
 
 
 
 
 
3853	default:
3854		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3855	}
3856out:
3857	return r;
3858}
3859
3860#ifdef CONFIG_KVM_COMPAT
3861struct compat_kvm_dirty_log {
3862	__u32 slot;
3863	__u32 padding1;
3864	union {
3865		compat_uptr_t dirty_bitmap; /* one bit per page */
3866		__u64 padding2;
3867	};
3868};
3869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3870static long kvm_vm_compat_ioctl(struct file *filp,
3871			   unsigned int ioctl, unsigned long arg)
3872{
3873	struct kvm *kvm = filp->private_data;
3874	int r;
3875
3876	if (kvm->mm != current->mm)
3877		return -EIO;
 
 
 
 
 
3878	switch (ioctl) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3879	case KVM_GET_DIRTY_LOG: {
3880		struct compat_kvm_dirty_log compat_log;
3881		struct kvm_dirty_log log;
3882
3883		if (copy_from_user(&compat_log, (void __user *)arg,
3884				   sizeof(compat_log)))
3885			return -EFAULT;
3886		log.slot	 = compat_log.slot;
3887		log.padding1	 = compat_log.padding1;
3888		log.padding2	 = compat_log.padding2;
3889		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3890
3891		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3892		break;
3893	}
3894	default:
3895		r = kvm_vm_ioctl(filp, ioctl, arg);
3896	}
3897	return r;
3898}
3899#endif
3900
3901static struct file_operations kvm_vm_fops = {
3902	.release        = kvm_vm_release,
3903	.unlocked_ioctl = kvm_vm_ioctl,
3904	.llseek		= noop_llseek,
3905	KVM_COMPAT(kvm_vm_compat_ioctl),
3906};
3907
 
 
 
 
 
 
3908static int kvm_dev_ioctl_create_vm(unsigned long type)
3909{
3910	int r;
 
3911	struct kvm *kvm;
3912	struct file *file;
3913
3914	kvm = kvm_create_vm(type);
3915	if (IS_ERR(kvm))
3916		return PTR_ERR(kvm);
3917#ifdef CONFIG_KVM_MMIO
3918	r = kvm_coalesced_mmio_init(kvm);
3919	if (r < 0)
3920		goto put_kvm;
3921#endif
3922	r = get_unused_fd_flags(O_CLOEXEC);
3923	if (r < 0)
3924		goto put_kvm;
3925
3926	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3927	if (IS_ERR(file)) {
3928		put_unused_fd(r);
3929		r = PTR_ERR(file);
3930		goto put_kvm;
3931	}
3932
3933	/*
3934	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3935	 * already set, with ->release() being kvm_vm_release().  In error
3936	 * cases it will be called by the final fput(file) and will take
3937	 * care of doing kvm_put_kvm(kvm).
3938	 */
3939	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3940		put_unused_fd(r);
3941		fput(file);
3942		return -ENOMEM;
3943	}
3944	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3945
3946	fd_install(r, file);
3947	return r;
3948
3949put_kvm:
3950	kvm_put_kvm(kvm);
 
 
3951	return r;
3952}
3953
3954static long kvm_dev_ioctl(struct file *filp,
3955			  unsigned int ioctl, unsigned long arg)
3956{
3957	long r = -EINVAL;
3958
3959	switch (ioctl) {
3960	case KVM_GET_API_VERSION:
3961		if (arg)
3962			goto out;
3963		r = KVM_API_VERSION;
3964		break;
3965	case KVM_CREATE_VM:
3966		r = kvm_dev_ioctl_create_vm(arg);
3967		break;
3968	case KVM_CHECK_EXTENSION:
3969		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3970		break;
3971	case KVM_GET_VCPU_MMAP_SIZE:
3972		if (arg)
3973			goto out;
3974		r = PAGE_SIZE;     /* struct kvm_run */
3975#ifdef CONFIG_X86
3976		r += PAGE_SIZE;    /* pio data page */
3977#endif
3978#ifdef CONFIG_KVM_MMIO
3979		r += PAGE_SIZE;    /* coalesced mmio ring page */
3980#endif
3981		break;
3982	case KVM_TRACE_ENABLE:
3983	case KVM_TRACE_PAUSE:
3984	case KVM_TRACE_DISABLE:
3985		r = -EOPNOTSUPP;
3986		break;
3987	default:
3988		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3989	}
3990out:
3991	return r;
3992}
3993
3994static struct file_operations kvm_chardev_ops = {
3995	.unlocked_ioctl = kvm_dev_ioctl,
3996	.llseek		= noop_llseek,
3997	KVM_COMPAT(kvm_dev_ioctl),
3998};
3999
4000static struct miscdevice kvm_dev = {
4001	KVM_MINOR,
4002	"kvm",
4003	&kvm_chardev_ops,
4004};
4005
4006static void hardware_enable_nolock(void *junk)
4007{
4008	int cpu = raw_smp_processor_id();
4009	int r;
4010
4011	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4012		return;
4013
4014	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4015
4016	r = kvm_arch_hardware_enable();
4017
4018	if (r) {
4019		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4020		atomic_inc(&hardware_enable_failed);
4021		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4022	}
4023}
4024
4025static int kvm_starting_cpu(unsigned int cpu)
4026{
4027	raw_spin_lock(&kvm_count_lock);
4028	if (kvm_usage_count)
4029		hardware_enable_nolock(NULL);
4030	raw_spin_unlock(&kvm_count_lock);
4031	return 0;
4032}
4033
4034static void hardware_disable_nolock(void *junk)
4035{
4036	int cpu = raw_smp_processor_id();
4037
4038	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4039		return;
4040	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4041	kvm_arch_hardware_disable();
4042}
4043
4044static int kvm_dying_cpu(unsigned int cpu)
4045{
4046	raw_spin_lock(&kvm_count_lock);
4047	if (kvm_usage_count)
4048		hardware_disable_nolock(NULL);
4049	raw_spin_unlock(&kvm_count_lock);
4050	return 0;
4051}
4052
4053static void hardware_disable_all_nolock(void)
4054{
4055	BUG_ON(!kvm_usage_count);
4056
4057	kvm_usage_count--;
4058	if (!kvm_usage_count)
4059		on_each_cpu(hardware_disable_nolock, NULL, 1);
4060}
4061
4062static void hardware_disable_all(void)
4063{
4064	raw_spin_lock(&kvm_count_lock);
4065	hardware_disable_all_nolock();
4066	raw_spin_unlock(&kvm_count_lock);
4067}
4068
4069static int hardware_enable_all(void)
4070{
4071	int r = 0;
4072
4073	raw_spin_lock(&kvm_count_lock);
4074
4075	kvm_usage_count++;
4076	if (kvm_usage_count == 1) {
4077		atomic_set(&hardware_enable_failed, 0);
4078		on_each_cpu(hardware_enable_nolock, NULL, 1);
4079
4080		if (atomic_read(&hardware_enable_failed)) {
4081			hardware_disable_all_nolock();
4082			r = -EBUSY;
4083		}
4084	}
4085
4086	raw_spin_unlock(&kvm_count_lock);
4087
4088	return r;
4089}
4090
4091static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4092		      void *v)
4093{
4094	/*
4095	 * Some (well, at least mine) BIOSes hang on reboot if
4096	 * in vmx root mode.
4097	 *
4098	 * And Intel TXT required VMX off for all cpu when system shutdown.
4099	 */
4100	pr_info("kvm: exiting hardware virtualization\n");
4101	kvm_rebooting = true;
4102	on_each_cpu(hardware_disable_nolock, NULL, 1);
4103	return NOTIFY_OK;
4104}
4105
4106static struct notifier_block kvm_reboot_notifier = {
4107	.notifier_call = kvm_reboot,
4108	.priority = 0,
4109};
4110
4111static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4112{
4113	int i;
4114
4115	for (i = 0; i < bus->dev_count; i++) {
4116		struct kvm_io_device *pos = bus->range[i].dev;
4117
4118		kvm_iodevice_destructor(pos);
4119	}
4120	kfree(bus);
4121}
4122
4123static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4124				 const struct kvm_io_range *r2)
4125{
4126	gpa_t addr1 = r1->addr;
4127	gpa_t addr2 = r2->addr;
4128
4129	if (addr1 < addr2)
4130		return -1;
4131
4132	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4133	 * accept any overlapping write.  Any order is acceptable for
4134	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4135	 * we process all of them.
4136	 */
4137	if (r2->len) {
4138		addr1 += r1->len;
4139		addr2 += r2->len;
4140	}
4141
4142	if (addr1 > addr2)
4143		return 1;
4144
4145	return 0;
4146}
4147
4148static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4149{
4150	return kvm_io_bus_cmp(p1, p2);
4151}
4152
4153static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4154			     gpa_t addr, int len)
4155{
4156	struct kvm_io_range *range, key;
4157	int off;
4158
4159	key = (struct kvm_io_range) {
4160		.addr = addr,
4161		.len = len,
4162	};
4163
4164	range = bsearch(&key, bus->range, bus->dev_count,
4165			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4166	if (range == NULL)
4167		return -ENOENT;
4168
4169	off = range - bus->range;
4170
4171	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4172		off--;
4173
4174	return off;
4175}
4176
4177static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4178			      struct kvm_io_range *range, const void *val)
4179{
4180	int idx;
4181
4182	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4183	if (idx < 0)
4184		return -EOPNOTSUPP;
4185
4186	while (idx < bus->dev_count &&
4187		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4188		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4189					range->len, val))
4190			return idx;
4191		idx++;
4192	}
4193
4194	return -EOPNOTSUPP;
4195}
4196
4197/* kvm_io_bus_write - called under kvm->slots_lock */
4198int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4199		     int len, const void *val)
4200{
4201	struct kvm_io_bus *bus;
4202	struct kvm_io_range range;
4203	int r;
4204
4205	range = (struct kvm_io_range) {
4206		.addr = addr,
4207		.len = len,
4208	};
4209
4210	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4211	if (!bus)
4212		return -ENOMEM;
4213	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4214	return r < 0 ? r : 0;
4215}
4216EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4217
4218/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4219int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4220			    gpa_t addr, int len, const void *val, long cookie)
4221{
4222	struct kvm_io_bus *bus;
4223	struct kvm_io_range range;
4224
4225	range = (struct kvm_io_range) {
4226		.addr = addr,
4227		.len = len,
4228	};
4229
4230	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4231	if (!bus)
4232		return -ENOMEM;
4233
4234	/* First try the device referenced by cookie. */
4235	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4236	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4237		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4238					val))
4239			return cookie;
4240
4241	/*
4242	 * cookie contained garbage; fall back to search and return the
4243	 * correct cookie value.
4244	 */
4245	return __kvm_io_bus_write(vcpu, bus, &range, val);
4246}
4247
4248static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4249			     struct kvm_io_range *range, void *val)
4250{
4251	int idx;
4252
4253	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4254	if (idx < 0)
4255		return -EOPNOTSUPP;
4256
4257	while (idx < bus->dev_count &&
4258		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4259		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4260				       range->len, val))
4261			return idx;
4262		idx++;
4263	}
4264
4265	return -EOPNOTSUPP;
4266}
4267
4268/* kvm_io_bus_read - called under kvm->slots_lock */
4269int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4270		    int len, void *val)
4271{
4272	struct kvm_io_bus *bus;
4273	struct kvm_io_range range;
4274	int r;
4275
4276	range = (struct kvm_io_range) {
4277		.addr = addr,
4278		.len = len,
4279	};
4280
4281	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4282	if (!bus)
4283		return -ENOMEM;
4284	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4285	return r < 0 ? r : 0;
4286}
4287
4288/* Caller must hold slots_lock. */
4289int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4290			    int len, struct kvm_io_device *dev)
4291{
4292	int i;
4293	struct kvm_io_bus *new_bus, *bus;
4294	struct kvm_io_range range;
4295
4296	bus = kvm_get_bus(kvm, bus_idx);
4297	if (!bus)
4298		return -ENOMEM;
4299
4300	/* exclude ioeventfd which is limited by maximum fd */
4301	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4302		return -ENOSPC;
4303
4304	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4305			  GFP_KERNEL_ACCOUNT);
4306	if (!new_bus)
4307		return -ENOMEM;
4308
4309	range = (struct kvm_io_range) {
4310		.addr = addr,
4311		.len = len,
4312		.dev = dev,
4313	};
4314
4315	for (i = 0; i < bus->dev_count; i++)
4316		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4317			break;
4318
4319	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4320	new_bus->dev_count++;
4321	new_bus->range[i] = range;
4322	memcpy(new_bus->range + i + 1, bus->range + i,
4323		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4324	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4325	synchronize_srcu_expedited(&kvm->srcu);
4326	kfree(bus);
4327
4328	return 0;
4329}
4330
4331/* Caller must hold slots_lock. */
4332void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4333			       struct kvm_io_device *dev)
4334{
4335	int i, j;
4336	struct kvm_io_bus *new_bus, *bus;
4337
 
 
4338	bus = kvm_get_bus(kvm, bus_idx);
4339	if (!bus)
4340		return;
4341
4342	for (i = 0; i < bus->dev_count; i++)
4343		if (bus->range[i].dev == dev) {
4344			break;
4345		}
 
4346
4347	if (i == bus->dev_count)
4348		return;
4349
4350	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4351			  GFP_KERNEL_ACCOUNT);
4352	if (new_bus) {
4353		memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4354		new_bus->dev_count--;
4355		memcpy(new_bus->range + i, bus->range + i + 1,
4356		       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4357	} else {
 
 
 
 
 
 
4358		pr_err("kvm: failed to shrink bus, removing it completely\n");
4359		for (j = 0; j < bus->dev_count; j++) {
4360			if (j == i)
4361				continue;
4362			kvm_iodevice_destructor(bus->range[j].dev);
4363		}
4364	}
4365
4366	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4367	synchronize_srcu_expedited(&kvm->srcu);
4368	kfree(bus);
4369	return;
4370}
4371
4372struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4373					 gpa_t addr)
4374{
4375	struct kvm_io_bus *bus;
4376	int dev_idx, srcu_idx;
4377	struct kvm_io_device *iodev = NULL;
4378
4379	srcu_idx = srcu_read_lock(&kvm->srcu);
4380
4381	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4382	if (!bus)
4383		goto out_unlock;
4384
4385	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4386	if (dev_idx < 0)
4387		goto out_unlock;
4388
4389	iodev = bus->range[dev_idx].dev;
4390
4391out_unlock:
4392	srcu_read_unlock(&kvm->srcu, srcu_idx);
4393
4394	return iodev;
4395}
4396EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4397
4398static int kvm_debugfs_open(struct inode *inode, struct file *file,
4399			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4400			   const char *fmt)
4401{
 
4402	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4403					  inode->i_private;
4404
4405	/* The debugfs files are a reference to the kvm struct which
4406	 * is still valid when kvm_destroy_vm is called.
4407	 * To avoid the race between open and the removal of the debugfs
4408	 * directory we test against the users count.
4409	 */
4410	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4411		return -ENOENT;
4412
4413	if (simple_attr_open(inode, file, get,
4414		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4415		    ? set : NULL,
4416		    fmt)) {
4417		kvm_put_kvm(stat_data->kvm);
4418		return -ENOMEM;
4419	}
4420
4421	return 0;
4422}
4423
4424static int kvm_debugfs_release(struct inode *inode, struct file *file)
4425{
4426	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4427					  inode->i_private;
4428
4429	simple_attr_release(inode, file);
4430	kvm_put_kvm(stat_data->kvm);
4431
4432	return 0;
4433}
4434
4435static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4436{
4437	*val = *(ulong *)((void *)kvm + offset);
4438
4439	return 0;
4440}
4441
4442static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4443{
4444	*(ulong *)((void *)kvm + offset) = 0;
4445
4446	return 0;
4447}
4448
4449static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4450{
4451	int i;
4452	struct kvm_vcpu *vcpu;
4453
4454	*val = 0;
4455
4456	kvm_for_each_vcpu(i, vcpu, kvm)
4457		*val += *(u64 *)((void *)vcpu + offset);
4458
4459	return 0;
4460}
4461
4462static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4463{
4464	int i;
4465	struct kvm_vcpu *vcpu;
4466
4467	kvm_for_each_vcpu(i, vcpu, kvm)
4468		*(u64 *)((void *)vcpu + offset) = 0;
4469
4470	return 0;
4471}
4472
4473static int kvm_stat_data_get(void *data, u64 *val)
4474{
4475	int r = -EFAULT;
4476	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4477
4478	switch (stat_data->dbgfs_item->kind) {
4479	case KVM_STAT_VM:
4480		r = kvm_get_stat_per_vm(stat_data->kvm,
4481					stat_data->dbgfs_item->offset, val);
4482		break;
4483	case KVM_STAT_VCPU:
4484		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4485					  stat_data->dbgfs_item->offset, val);
4486		break;
4487	}
4488
4489	return r;
4490}
4491
4492static int kvm_stat_data_clear(void *data, u64 val)
4493{
4494	int r = -EFAULT;
4495	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4496
4497	if (val)
4498		return -EINVAL;
4499
4500	switch (stat_data->dbgfs_item->kind) {
4501	case KVM_STAT_VM:
4502		r = kvm_clear_stat_per_vm(stat_data->kvm,
4503					  stat_data->dbgfs_item->offset);
4504		break;
4505	case KVM_STAT_VCPU:
4506		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4507					    stat_data->dbgfs_item->offset);
4508		break;
4509	}
4510
4511	return r;
4512}
4513
4514static int kvm_stat_data_open(struct inode *inode, struct file *file)
4515{
4516	__simple_attr_check_format("%llu\n", 0ull);
4517	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4518				kvm_stat_data_clear, "%llu\n");
4519}
4520
4521static const struct file_operations stat_fops_per_vm = {
4522	.owner = THIS_MODULE,
4523	.open = kvm_stat_data_open,
4524	.release = kvm_debugfs_release,
4525	.read = simple_attr_read,
4526	.write = simple_attr_write,
4527	.llseek = no_llseek,
4528};
4529
4530static int vm_stat_get(void *_offset, u64 *val)
4531{
4532	unsigned offset = (long)_offset;
4533	struct kvm *kvm;
4534	u64 tmp_val;
4535
4536	*val = 0;
4537	mutex_lock(&kvm_lock);
4538	list_for_each_entry(kvm, &vm_list, vm_list) {
4539		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4540		*val += tmp_val;
4541	}
4542	mutex_unlock(&kvm_lock);
4543	return 0;
4544}
4545
4546static int vm_stat_clear(void *_offset, u64 val)
4547{
4548	unsigned offset = (long)_offset;
4549	struct kvm *kvm;
4550
4551	if (val)
4552		return -EINVAL;
4553
4554	mutex_lock(&kvm_lock);
4555	list_for_each_entry(kvm, &vm_list, vm_list) {
4556		kvm_clear_stat_per_vm(kvm, offset);
4557	}
4558	mutex_unlock(&kvm_lock);
4559
4560	return 0;
4561}
4562
4563DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
 
4564
4565static int vcpu_stat_get(void *_offset, u64 *val)
4566{
4567	unsigned offset = (long)_offset;
4568	struct kvm *kvm;
4569	u64 tmp_val;
4570
4571	*val = 0;
4572	mutex_lock(&kvm_lock);
4573	list_for_each_entry(kvm, &vm_list, vm_list) {
4574		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4575		*val += tmp_val;
4576	}
4577	mutex_unlock(&kvm_lock);
4578	return 0;
4579}
4580
4581static int vcpu_stat_clear(void *_offset, u64 val)
4582{
4583	unsigned offset = (long)_offset;
4584	struct kvm *kvm;
4585
4586	if (val)
4587		return -EINVAL;
4588
4589	mutex_lock(&kvm_lock);
4590	list_for_each_entry(kvm, &vm_list, vm_list) {
4591		kvm_clear_stat_per_vcpu(kvm, offset);
4592	}
4593	mutex_unlock(&kvm_lock);
4594
4595	return 0;
4596}
4597
4598DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4599			"%llu\n");
4600
4601static const struct file_operations *stat_fops[] = {
4602	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4603	[KVM_STAT_VM]   = &vm_stat_fops,
4604};
4605
4606static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4607{
4608	struct kobj_uevent_env *env;
4609	unsigned long long created, active;
4610
4611	if (!kvm_dev.this_device || !kvm)
4612		return;
4613
4614	mutex_lock(&kvm_lock);
4615	if (type == KVM_EVENT_CREATE_VM) {
4616		kvm_createvm_count++;
4617		kvm_active_vms++;
4618	} else if (type == KVM_EVENT_DESTROY_VM) {
4619		kvm_active_vms--;
4620	}
4621	created = kvm_createvm_count;
4622	active = kvm_active_vms;
4623	mutex_unlock(&kvm_lock);
4624
4625	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4626	if (!env)
4627		return;
4628
4629	add_uevent_var(env, "CREATED=%llu", created);
4630	add_uevent_var(env, "COUNT=%llu", active);
4631
4632	if (type == KVM_EVENT_CREATE_VM) {
4633		add_uevent_var(env, "EVENT=create");
4634		kvm->userspace_pid = task_pid_nr(current);
4635	} else if (type == KVM_EVENT_DESTROY_VM) {
4636		add_uevent_var(env, "EVENT=destroy");
4637	}
4638	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4639
4640	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4641		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4642
4643		if (p) {
4644			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4645			if (!IS_ERR(tmp))
4646				add_uevent_var(env, "STATS_PATH=%s", tmp);
4647			kfree(p);
4648		}
4649	}
4650	/* no need for checks, since we are adding at most only 5 keys */
4651	env->envp[env->envp_idx++] = NULL;
4652	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4653	kfree(env);
4654}
4655
4656static void kvm_init_debug(void)
4657{
4658	struct kvm_stats_debugfs_item *p;
 
 
4659
4660	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4661
4662	kvm_debugfs_num_entries = 0;
4663	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4664		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4665				    kvm_debugfs_dir, (void *)(long)p->offset,
4666				    stat_fops[p->kind]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4667	}
4668}
4669
4670static int kvm_suspend(void)
4671{
4672	if (kvm_usage_count)
4673		hardware_disable_nolock(NULL);
4674	return 0;
4675}
4676
4677static void kvm_resume(void)
4678{
4679	if (kvm_usage_count) {
4680#ifdef CONFIG_LOCKDEP
4681		WARN_ON(lockdep_is_held(&kvm_count_lock));
4682#endif
4683		hardware_enable_nolock(NULL);
4684	}
4685}
4686
4687static struct syscore_ops kvm_syscore_ops = {
4688	.suspend = kvm_suspend,
4689	.resume = kvm_resume,
4690};
4691
4692static inline
4693struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4694{
4695	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4696}
4697
4698static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4699{
4700	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4701
4702	WRITE_ONCE(vcpu->preempted, false);
4703	WRITE_ONCE(vcpu->ready, false);
4704
4705	__this_cpu_write(kvm_running_vcpu, vcpu);
4706	kvm_arch_sched_in(vcpu, cpu);
4707	kvm_arch_vcpu_load(vcpu, cpu);
4708}
4709
4710static void kvm_sched_out(struct preempt_notifier *pn,
4711			  struct task_struct *next)
4712{
4713	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4714
4715	if (current->state == TASK_RUNNING) {
4716		WRITE_ONCE(vcpu->preempted, true);
4717		WRITE_ONCE(vcpu->ready, true);
4718	}
4719	kvm_arch_vcpu_put(vcpu);
4720	__this_cpu_write(kvm_running_vcpu, NULL);
4721}
4722
4723/**
4724 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4725 *
4726 * We can disable preemption locally around accessing the per-CPU variable,
4727 * and use the resolved vcpu pointer after enabling preemption again,
4728 * because even if the current thread is migrated to another CPU, reading
4729 * the per-CPU value later will give us the same value as we update the
4730 * per-CPU variable in the preempt notifier handlers.
4731 */
4732struct kvm_vcpu *kvm_get_running_vcpu(void)
4733{
4734	struct kvm_vcpu *vcpu;
4735
4736	preempt_disable();
4737	vcpu = __this_cpu_read(kvm_running_vcpu);
4738	preempt_enable();
4739
4740	return vcpu;
4741}
4742EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4743
4744/**
4745 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4746 */
4747struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4748{
4749        return &kvm_running_vcpu;
4750}
4751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4752struct kvm_cpu_compat_check {
4753	void *opaque;
4754	int *ret;
4755};
4756
4757static void check_processor_compat(void *data)
4758{
4759	struct kvm_cpu_compat_check *c = data;
4760
4761	*c->ret = kvm_arch_check_processor_compat(c->opaque);
4762}
4763
4764int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4765		  struct module *module)
4766{
4767	struct kvm_cpu_compat_check c;
4768	int r;
4769	int cpu;
4770
4771	r = kvm_arch_init(opaque);
4772	if (r)
4773		goto out_fail;
4774
4775	/*
4776	 * kvm_arch_init makes sure there's at most one caller
4777	 * for architectures that support multiple implementations,
4778	 * like intel and amd on x86.
4779	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4780	 * conflicts in case kvm is already setup for another implementation.
4781	 */
4782	r = kvm_irqfd_init();
4783	if (r)
4784		goto out_irqfd;
4785
4786	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4787		r = -ENOMEM;
4788		goto out_free_0;
4789	}
4790
4791	r = kvm_arch_hardware_setup(opaque);
4792	if (r < 0)
4793		goto out_free_1;
4794
4795	c.ret = &r;
4796	c.opaque = opaque;
4797	for_each_online_cpu(cpu) {
4798		smp_call_function_single(cpu, check_processor_compat, &c, 1);
4799		if (r < 0)
4800			goto out_free_2;
4801	}
4802
4803	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4804				      kvm_starting_cpu, kvm_dying_cpu);
4805	if (r)
4806		goto out_free_2;
4807	register_reboot_notifier(&kvm_reboot_notifier);
4808
4809	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4810	if (!vcpu_align)
4811		vcpu_align = __alignof__(struct kvm_vcpu);
4812	kvm_vcpu_cache =
4813		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4814					   SLAB_ACCOUNT,
4815					   offsetof(struct kvm_vcpu, arch),
4816					   sizeof_field(struct kvm_vcpu, arch),
 
4817					   NULL);
4818	if (!kvm_vcpu_cache) {
4819		r = -ENOMEM;
4820		goto out_free_3;
4821	}
4822
 
 
 
 
 
 
 
 
4823	r = kvm_async_pf_init();
4824	if (r)
4825		goto out_free;
4826
4827	kvm_chardev_ops.owner = module;
4828	kvm_vm_fops.owner = module;
4829	kvm_vcpu_fops.owner = module;
4830
4831	r = misc_register(&kvm_dev);
4832	if (r) {
4833		pr_err("kvm: misc device register failed\n");
4834		goto out_unreg;
4835	}
4836
4837	register_syscore_ops(&kvm_syscore_ops);
4838
4839	kvm_preempt_ops.sched_in = kvm_sched_in;
4840	kvm_preempt_ops.sched_out = kvm_sched_out;
4841
4842	kvm_init_debug();
4843
4844	r = kvm_vfio_ops_init();
4845	WARN_ON(r);
4846
4847	return 0;
4848
4849out_unreg:
4850	kvm_async_pf_deinit();
4851out_free:
 
 
4852	kmem_cache_destroy(kvm_vcpu_cache);
4853out_free_3:
4854	unregister_reboot_notifier(&kvm_reboot_notifier);
4855	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4856out_free_2:
4857	kvm_arch_hardware_unsetup();
4858out_free_1:
4859	free_cpumask_var(cpus_hardware_enabled);
4860out_free_0:
4861	kvm_irqfd_exit();
4862out_irqfd:
4863	kvm_arch_exit();
4864out_fail:
4865	return r;
4866}
4867EXPORT_SYMBOL_GPL(kvm_init);
4868
4869void kvm_exit(void)
4870{
 
 
4871	debugfs_remove_recursive(kvm_debugfs_dir);
4872	misc_deregister(&kvm_dev);
 
 
4873	kmem_cache_destroy(kvm_vcpu_cache);
4874	kvm_async_pf_deinit();
4875	unregister_syscore_ops(&kvm_syscore_ops);
4876	unregister_reboot_notifier(&kvm_reboot_notifier);
4877	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4878	on_each_cpu(hardware_disable_nolock, NULL, 1);
4879	kvm_arch_hardware_unsetup();
4880	kvm_arch_exit();
4881	kvm_irqfd_exit();
4882	free_cpumask_var(cpus_hardware_enabled);
4883	kvm_vfio_ops_exit();
4884}
4885EXPORT_SYMBOL_GPL(kvm_exit);
4886
4887struct kvm_vm_worker_thread_context {
4888	struct kvm *kvm;
4889	struct task_struct *parent;
4890	struct completion init_done;
4891	kvm_vm_thread_fn_t thread_fn;
4892	uintptr_t data;
4893	int err;
4894};
4895
4896static int kvm_vm_worker_thread(void *context)
4897{
4898	/*
4899	 * The init_context is allocated on the stack of the parent thread, so
4900	 * we have to locally copy anything that is needed beyond initialization
4901	 */
4902	struct kvm_vm_worker_thread_context *init_context = context;
 
4903	struct kvm *kvm = init_context->kvm;
4904	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4905	uintptr_t data = init_context->data;
4906	int err;
4907
4908	err = kthread_park(current);
4909	/* kthread_park(current) is never supposed to return an error */
4910	WARN_ON(err != 0);
4911	if (err)
4912		goto init_complete;
4913
4914	err = cgroup_attach_task_all(init_context->parent, current);
4915	if (err) {
4916		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4917			__func__, err);
4918		goto init_complete;
4919	}
4920
4921	set_user_nice(current, task_nice(init_context->parent));
4922
4923init_complete:
4924	init_context->err = err;
4925	complete(&init_context->init_done);
4926	init_context = NULL;
4927
4928	if (err)
4929		return err;
4930
4931	/* Wait to be woken up by the spawner before proceeding. */
4932	kthread_parkme();
4933
4934	if (!kthread_should_stop())
4935		err = thread_fn(kvm, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4936
4937	return err;
4938}
4939
4940int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4941				uintptr_t data, const char *name,
4942				struct task_struct **thread_ptr)
4943{
4944	struct kvm_vm_worker_thread_context init_context = {};
4945	struct task_struct *thread;
4946
4947	*thread_ptr = NULL;
4948	init_context.kvm = kvm;
4949	init_context.parent = current;
4950	init_context.thread_fn = thread_fn;
4951	init_context.data = data;
4952	init_completion(&init_context.init_done);
4953
4954	thread = kthread_run(kvm_vm_worker_thread, &init_context,
4955			     "%s-%d", name, task_pid_nr(current));
4956	if (IS_ERR(thread))
4957		return PTR_ERR(thread);
4958
4959	/* kthread_run is never supposed to return NULL */
4960	WARN_ON(thread == NULL);
4961
4962	wait_for_completion(&init_context.init_done);
4963
4964	if (!init_context.err)
4965		*thread_ptr = thread;
4966
4967	return init_context.err;
4968}