Linux Audio

Check our new training course

Loading...
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include "iodev.h"
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/syscore_ops.h>
  34#include <linux/cpu.h>
  35#include <linux/sched.h>
  36#include <linux/cpumask.h>
  37#include <linux/smp.h>
  38#include <linux/anon_inodes.h>
  39#include <linux/profile.h>
  40#include <linux/kvm_para.h>
  41#include <linux/pagemap.h>
  42#include <linux/mman.h>
  43#include <linux/swap.h>
  44#include <linux/bitops.h>
  45#include <linux/spinlock.h>
  46#include <linux/compat.h>
  47#include <linux/srcu.h>
  48#include <linux/hugetlb.h>
  49#include <linux/slab.h>
  50#include <linux/sort.h>
  51#include <linux/bsearch.h>
  52
  53#include <asm/processor.h>
  54#include <asm/io.h>
  55#include <asm/uaccess.h>
  56#include <asm/pgtable.h>
  57
  58#include "coalesced_mmio.h"
  59#include "async_pf.h"
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/kvm.h>
  63
  64MODULE_AUTHOR("Qumranet");
  65MODULE_LICENSE("GPL");
  66
  67/*
  68 * Ordering of locks:
  69 *
  70 * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  71 */
  72
  73DEFINE_RAW_SPINLOCK(kvm_lock);
  74LIST_HEAD(vm_list);
  75
  76static cpumask_var_t cpus_hardware_enabled;
  77static int kvm_usage_count = 0;
  78static atomic_t hardware_enable_failed;
  79
  80struct kmem_cache *kvm_vcpu_cache;
  81EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  82
  83static __read_mostly struct preempt_ops kvm_preempt_ops;
  84
  85struct dentry *kvm_debugfs_dir;
  86
  87static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  88			   unsigned long arg);
  89#ifdef CONFIG_COMPAT
  90static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  91				  unsigned long arg);
  92#endif
  93static int hardware_enable_all(void);
  94static void hardware_disable_all(void);
  95
  96static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  97
  98bool kvm_rebooting;
  99EXPORT_SYMBOL_GPL(kvm_rebooting);
 100
 101static bool largepages_enabled = true;
 102
 103static struct page *hwpoison_page;
 104static pfn_t hwpoison_pfn;
 105
 106struct page *fault_page;
 107pfn_t fault_pfn;
 108
 109inline int kvm_is_mmio_pfn(pfn_t pfn)
 110{
 111	if (pfn_valid(pfn)) {
 112		int reserved;
 113		struct page *tail = pfn_to_page(pfn);
 114		struct page *head = compound_trans_head(tail);
 115		reserved = PageReserved(head);
 116		if (head != tail) {
 117			/*
 118			 * "head" is not a dangling pointer
 119			 * (compound_trans_head takes care of that)
 120			 * but the hugepage may have been splitted
 121			 * from under us (and we may not hold a
 122			 * reference count on the head page so it can
 123			 * be reused before we run PageReferenced), so
 124			 * we've to check PageTail before returning
 125			 * what we just read.
 126			 */
 127			smp_rmb();
 128			if (PageTail(tail))
 129				return reserved;
 130		}
 131		return PageReserved(tail);
 132	}
 133
 134	return true;
 135}
 136
 137/*
 138 * Switches to specified vcpu, until a matching vcpu_put()
 139 */
 140void vcpu_load(struct kvm_vcpu *vcpu)
 141{
 142	int cpu;
 143
 144	mutex_lock(&vcpu->mutex);
 145	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
 146		/* The thread running this VCPU changed. */
 147		struct pid *oldpid = vcpu->pid;
 148		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
 149		rcu_assign_pointer(vcpu->pid, newpid);
 150		synchronize_rcu();
 151		put_pid(oldpid);
 152	}
 153	cpu = get_cpu();
 154	preempt_notifier_register(&vcpu->preempt_notifier);
 155	kvm_arch_vcpu_load(vcpu, cpu);
 156	put_cpu();
 157}
 158
 159void vcpu_put(struct kvm_vcpu *vcpu)
 160{
 161	preempt_disable();
 162	kvm_arch_vcpu_put(vcpu);
 163	preempt_notifier_unregister(&vcpu->preempt_notifier);
 164	preempt_enable();
 165	mutex_unlock(&vcpu->mutex);
 166}
 167
 168static void ack_flush(void *_completed)
 169{
 170}
 171
 172static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
 173{
 174	int i, cpu, me;
 175	cpumask_var_t cpus;
 176	bool called = true;
 177	struct kvm_vcpu *vcpu;
 178
 179	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 180
 181	me = get_cpu();
 182	kvm_for_each_vcpu(i, vcpu, kvm) {
 183		kvm_make_request(req, vcpu);
 184		cpu = vcpu->cpu;
 185
 186		/* Set ->requests bit before we read ->mode */
 187		smp_mb();
 188
 189		if (cpus != NULL && cpu != -1 && cpu != me &&
 190		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
 191			cpumask_set_cpu(cpu, cpus);
 192	}
 193	if (unlikely(cpus == NULL))
 194		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
 195	else if (!cpumask_empty(cpus))
 196		smp_call_function_many(cpus, ack_flush, NULL, 1);
 197	else
 198		called = false;
 199	put_cpu();
 200	free_cpumask_var(cpus);
 201	return called;
 202}
 203
 204void kvm_flush_remote_tlbs(struct kvm *kvm)
 205{
 206	long dirty_count = kvm->tlbs_dirty;
 207
 208	smp_mb();
 209	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 210		++kvm->stat.remote_tlb_flush;
 211	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 212}
 213
 214void kvm_reload_remote_mmus(struct kvm *kvm)
 215{
 216	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 217}
 218
 219int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 220{
 221	struct page *page;
 222	int r;
 223
 224	mutex_init(&vcpu->mutex);
 225	vcpu->cpu = -1;
 226	vcpu->kvm = kvm;
 227	vcpu->vcpu_id = id;
 228	vcpu->pid = NULL;
 229	init_waitqueue_head(&vcpu->wq);
 230	kvm_async_pf_vcpu_init(vcpu);
 231
 232	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 233	if (!page) {
 234		r = -ENOMEM;
 235		goto fail;
 236	}
 237	vcpu->run = page_address(page);
 238
 239	r = kvm_arch_vcpu_init(vcpu);
 240	if (r < 0)
 241		goto fail_free_run;
 242	return 0;
 243
 244fail_free_run:
 245	free_page((unsigned long)vcpu->run);
 246fail:
 247	return r;
 248}
 249EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 250
 251void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 252{
 253	put_pid(vcpu->pid);
 254	kvm_arch_vcpu_uninit(vcpu);
 255	free_page((unsigned long)vcpu->run);
 256}
 257EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 258
 259#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 260static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 261{
 262	return container_of(mn, struct kvm, mmu_notifier);
 263}
 264
 265static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
 266					     struct mm_struct *mm,
 267					     unsigned long address)
 268{
 269	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 270	int need_tlb_flush, idx;
 271
 272	/*
 273	 * When ->invalidate_page runs, the linux pte has been zapped
 274	 * already but the page is still allocated until
 275	 * ->invalidate_page returns. So if we increase the sequence
 276	 * here the kvm page fault will notice if the spte can't be
 277	 * established because the page is going to be freed. If
 278	 * instead the kvm page fault establishes the spte before
 279	 * ->invalidate_page runs, kvm_unmap_hva will release it
 280	 * before returning.
 281	 *
 282	 * The sequence increase only need to be seen at spin_unlock
 283	 * time, and not at spin_lock time.
 284	 *
 285	 * Increasing the sequence after the spin_unlock would be
 286	 * unsafe because the kvm page fault could then establish the
 287	 * pte after kvm_unmap_hva returned, without noticing the page
 288	 * is going to be freed.
 289	 */
 290	idx = srcu_read_lock(&kvm->srcu);
 291	spin_lock(&kvm->mmu_lock);
 292
 293	kvm->mmu_notifier_seq++;
 294	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
 295	/* we've to flush the tlb before the pages can be freed */
 296	if (need_tlb_flush)
 297		kvm_flush_remote_tlbs(kvm);
 298
 299	spin_unlock(&kvm->mmu_lock);
 300	srcu_read_unlock(&kvm->srcu, idx);
 301}
 302
 303static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 304					struct mm_struct *mm,
 305					unsigned long address,
 306					pte_t pte)
 307{
 308	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 309	int idx;
 310
 311	idx = srcu_read_lock(&kvm->srcu);
 312	spin_lock(&kvm->mmu_lock);
 313	kvm->mmu_notifier_seq++;
 314	kvm_set_spte_hva(kvm, address, pte);
 315	spin_unlock(&kvm->mmu_lock);
 316	srcu_read_unlock(&kvm->srcu, idx);
 317}
 318
 319static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 320						    struct mm_struct *mm,
 321						    unsigned long start,
 322						    unsigned long end)
 323{
 324	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 325	int need_tlb_flush = 0, idx;
 326
 327	idx = srcu_read_lock(&kvm->srcu);
 328	spin_lock(&kvm->mmu_lock);
 329	/*
 330	 * The count increase must become visible at unlock time as no
 331	 * spte can be established without taking the mmu_lock and
 332	 * count is also read inside the mmu_lock critical section.
 333	 */
 334	kvm->mmu_notifier_count++;
 335	for (; start < end; start += PAGE_SIZE)
 336		need_tlb_flush |= kvm_unmap_hva(kvm, start);
 337	need_tlb_flush |= kvm->tlbs_dirty;
 338	/* we've to flush the tlb before the pages can be freed */
 339	if (need_tlb_flush)
 340		kvm_flush_remote_tlbs(kvm);
 341
 342	spin_unlock(&kvm->mmu_lock);
 343	srcu_read_unlock(&kvm->srcu, idx);
 344}
 345
 346static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 347						  struct mm_struct *mm,
 348						  unsigned long start,
 349						  unsigned long end)
 350{
 351	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 352
 353	spin_lock(&kvm->mmu_lock);
 354	/*
 355	 * This sequence increase will notify the kvm page fault that
 356	 * the page that is going to be mapped in the spte could have
 357	 * been freed.
 358	 */
 359	kvm->mmu_notifier_seq++;
 360	smp_wmb();
 361	/*
 362	 * The above sequence increase must be visible before the
 363	 * below count decrease, which is ensured by the smp_wmb above
 364	 * in conjunction with the smp_rmb in mmu_notifier_retry().
 365	 */
 366	kvm->mmu_notifier_count--;
 367	spin_unlock(&kvm->mmu_lock);
 368
 369	BUG_ON(kvm->mmu_notifier_count < 0);
 370}
 371
 372static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 373					      struct mm_struct *mm,
 374					      unsigned long address)
 375{
 376	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 377	int young, idx;
 378
 379	idx = srcu_read_lock(&kvm->srcu);
 380	spin_lock(&kvm->mmu_lock);
 381
 382	young = kvm_age_hva(kvm, address);
 383	if (young)
 384		kvm_flush_remote_tlbs(kvm);
 385
 386	spin_unlock(&kvm->mmu_lock);
 387	srcu_read_unlock(&kvm->srcu, idx);
 388
 389	return young;
 390}
 391
 392static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 393				       struct mm_struct *mm,
 394				       unsigned long address)
 395{
 396	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 397	int young, idx;
 398
 399	idx = srcu_read_lock(&kvm->srcu);
 400	spin_lock(&kvm->mmu_lock);
 401	young = kvm_test_age_hva(kvm, address);
 402	spin_unlock(&kvm->mmu_lock);
 403	srcu_read_unlock(&kvm->srcu, idx);
 404
 405	return young;
 406}
 407
 408static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 409				     struct mm_struct *mm)
 410{
 411	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 412	int idx;
 413
 414	idx = srcu_read_lock(&kvm->srcu);
 415	kvm_arch_flush_shadow(kvm);
 416	srcu_read_unlock(&kvm->srcu, idx);
 417}
 418
 419static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 420	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
 421	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
 422	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
 423	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
 424	.test_young		= kvm_mmu_notifier_test_young,
 425	.change_pte		= kvm_mmu_notifier_change_pte,
 426	.release		= kvm_mmu_notifier_release,
 427};
 428
 429static int kvm_init_mmu_notifier(struct kvm *kvm)
 430{
 431	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 432	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 433}
 434
 435#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 436
 437static int kvm_init_mmu_notifier(struct kvm *kvm)
 438{
 439	return 0;
 440}
 441
 442#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 443
 444static void kvm_init_memslots_id(struct kvm *kvm)
 445{
 446	int i;
 447	struct kvm_memslots *slots = kvm->memslots;
 448
 449	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 450		slots->id_to_index[i] = slots->memslots[i].id = i;
 451}
 452
 453static struct kvm *kvm_create_vm(unsigned long type)
 454{
 455	int r, i;
 456	struct kvm *kvm = kvm_arch_alloc_vm();
 457
 458	if (!kvm)
 459		return ERR_PTR(-ENOMEM);
 460
 461	r = kvm_arch_init_vm(kvm, type);
 462	if (r)
 463		goto out_err_nodisable;
 464
 465	r = hardware_enable_all();
 466	if (r)
 467		goto out_err_nodisable;
 468
 469#ifdef CONFIG_HAVE_KVM_IRQCHIP
 470	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
 471	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 472#endif
 473
 474	r = -ENOMEM;
 475	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 476	if (!kvm->memslots)
 477		goto out_err_nosrcu;
 478	kvm_init_memslots_id(kvm);
 479	if (init_srcu_struct(&kvm->srcu))
 480		goto out_err_nosrcu;
 481	for (i = 0; i < KVM_NR_BUSES; i++) {
 482		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
 483					GFP_KERNEL);
 484		if (!kvm->buses[i])
 485			goto out_err;
 486	}
 487
 488	spin_lock_init(&kvm->mmu_lock);
 489	kvm->mm = current->mm;
 490	atomic_inc(&kvm->mm->mm_count);
 491	kvm_eventfd_init(kvm);
 492	mutex_init(&kvm->lock);
 493	mutex_init(&kvm->irq_lock);
 494	mutex_init(&kvm->slots_lock);
 495	atomic_set(&kvm->users_count, 1);
 496
 497	r = kvm_init_mmu_notifier(kvm);
 498	if (r)
 499		goto out_err;
 500
 501	raw_spin_lock(&kvm_lock);
 502	list_add(&kvm->vm_list, &vm_list);
 503	raw_spin_unlock(&kvm_lock);
 504
 505	return kvm;
 506
 507out_err:
 508	cleanup_srcu_struct(&kvm->srcu);
 509out_err_nosrcu:
 510	hardware_disable_all();
 511out_err_nodisable:
 512	for (i = 0; i < KVM_NR_BUSES; i++)
 513		kfree(kvm->buses[i]);
 514	kfree(kvm->memslots);
 515	kvm_arch_free_vm(kvm);
 516	return ERR_PTR(r);
 517}
 518
 519static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 520{
 521	if (!memslot->dirty_bitmap)
 522		return;
 523
 524	if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
 525		vfree(memslot->dirty_bitmap);
 526	else
 527		kfree(memslot->dirty_bitmap);
 528
 529	memslot->dirty_bitmap = NULL;
 530}
 531
 532/*
 533 * Free any memory in @free but not in @dont.
 534 */
 535static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
 536				  struct kvm_memory_slot *dont)
 537{
 538	if (!dont || free->rmap != dont->rmap)
 539		vfree(free->rmap);
 540
 541	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 542		kvm_destroy_dirty_bitmap(free);
 543
 544	kvm_arch_free_memslot(free, dont);
 545
 546	free->npages = 0;
 547	free->rmap = NULL;
 548}
 549
 550void kvm_free_physmem(struct kvm *kvm)
 551{
 552	struct kvm_memslots *slots = kvm->memslots;
 553	struct kvm_memory_slot *memslot;
 554
 555	kvm_for_each_memslot(memslot, slots)
 556		kvm_free_physmem_slot(memslot, NULL);
 557
 558	kfree(kvm->memslots);
 559}
 560
 561static void kvm_destroy_vm(struct kvm *kvm)
 562{
 563	int i;
 564	struct mm_struct *mm = kvm->mm;
 565
 566	kvm_arch_sync_events(kvm);
 567	raw_spin_lock(&kvm_lock);
 568	list_del(&kvm->vm_list);
 569	raw_spin_unlock(&kvm_lock);
 570	kvm_free_irq_routing(kvm);
 571	for (i = 0; i < KVM_NR_BUSES; i++)
 572		kvm_io_bus_destroy(kvm->buses[i]);
 573	kvm_coalesced_mmio_free(kvm);
 574#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 575	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 576#else
 577	kvm_arch_flush_shadow(kvm);
 578#endif
 579	kvm_arch_destroy_vm(kvm);
 580	kvm_free_physmem(kvm);
 581	cleanup_srcu_struct(&kvm->srcu);
 582	kvm_arch_free_vm(kvm);
 583	hardware_disable_all();
 584	mmdrop(mm);
 585}
 586
 587void kvm_get_kvm(struct kvm *kvm)
 588{
 589	atomic_inc(&kvm->users_count);
 590}
 591EXPORT_SYMBOL_GPL(kvm_get_kvm);
 592
 593void kvm_put_kvm(struct kvm *kvm)
 594{
 595	if (atomic_dec_and_test(&kvm->users_count))
 596		kvm_destroy_vm(kvm);
 597}
 598EXPORT_SYMBOL_GPL(kvm_put_kvm);
 599
 600
 601static int kvm_vm_release(struct inode *inode, struct file *filp)
 602{
 603	struct kvm *kvm = filp->private_data;
 604
 605	kvm_irqfd_release(kvm);
 606
 607	kvm_put_kvm(kvm);
 608	return 0;
 609}
 610
 611/*
 612 * Allocation size is twice as large as the actual dirty bitmap size.
 613 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 614 */
 615static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 616{
 617#ifndef CONFIG_S390
 618	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 619
 620	if (dirty_bytes > PAGE_SIZE)
 621		memslot->dirty_bitmap = vzalloc(dirty_bytes);
 622	else
 623		memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
 624
 625	if (!memslot->dirty_bitmap)
 626		return -ENOMEM;
 627
 628#endif /* !CONFIG_S390 */
 629	return 0;
 630}
 631
 632static int cmp_memslot(const void *slot1, const void *slot2)
 633{
 634	struct kvm_memory_slot *s1, *s2;
 635
 636	s1 = (struct kvm_memory_slot *)slot1;
 637	s2 = (struct kvm_memory_slot *)slot2;
 638
 639	if (s1->npages < s2->npages)
 640		return 1;
 641	if (s1->npages > s2->npages)
 642		return -1;
 643
 644	return 0;
 645}
 646
 647/*
 648 * Sort the memslots base on its size, so the larger slots
 649 * will get better fit.
 650 */
 651static void sort_memslots(struct kvm_memslots *slots)
 652{
 653	int i;
 654
 655	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
 656	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
 657
 658	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 659		slots->id_to_index[slots->memslots[i].id] = i;
 660}
 661
 662void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
 663{
 664	if (new) {
 665		int id = new->id;
 666		struct kvm_memory_slot *old = id_to_memslot(slots, id);
 667		unsigned long npages = old->npages;
 668
 669		*old = *new;
 670		if (new->npages != npages)
 671			sort_memslots(slots);
 672	}
 673
 674	slots->generation++;
 675}
 676
 677/*
 678 * Allocate some memory and give it an address in the guest physical address
 679 * space.
 680 *
 681 * Discontiguous memory is allowed, mostly for framebuffers.
 682 *
 683 * Must be called holding mmap_sem for write.
 684 */
 685int __kvm_set_memory_region(struct kvm *kvm,
 686			    struct kvm_userspace_memory_region *mem,
 687			    int user_alloc)
 688{
 689	int r;
 690	gfn_t base_gfn;
 691	unsigned long npages;
 692	unsigned long i;
 693	struct kvm_memory_slot *memslot;
 694	struct kvm_memory_slot old, new;
 695	struct kvm_memslots *slots, *old_memslots;
 696
 697	r = -EINVAL;
 698	/* General sanity checks */
 699	if (mem->memory_size & (PAGE_SIZE - 1))
 700		goto out;
 701	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 702		goto out;
 703	/* We can read the guest memory with __xxx_user() later on. */
 704	if (user_alloc &&
 705	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 706	     !access_ok(VERIFY_WRITE,
 707			(void __user *)(unsigned long)mem->userspace_addr,
 708			mem->memory_size)))
 709		goto out;
 710	if (mem->slot >= KVM_MEM_SLOTS_NUM)
 711		goto out;
 712	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 713		goto out;
 714
 715	memslot = id_to_memslot(kvm->memslots, mem->slot);
 716	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 717	npages = mem->memory_size >> PAGE_SHIFT;
 718
 719	r = -EINVAL;
 720	if (npages > KVM_MEM_MAX_NR_PAGES)
 721		goto out;
 722
 723	if (!npages)
 724		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
 725
 726	new = old = *memslot;
 727
 728	new.id = mem->slot;
 729	new.base_gfn = base_gfn;
 730	new.npages = npages;
 731	new.flags = mem->flags;
 732
 733	/* Disallow changing a memory slot's size. */
 734	r = -EINVAL;
 735	if (npages && old.npages && npages != old.npages)
 736		goto out_free;
 737
 738	/* Check for overlaps */
 739	r = -EEXIST;
 740	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
 741		struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
 742
 743		if (s == memslot || !s->npages)
 744			continue;
 745		if (!((base_gfn + npages <= s->base_gfn) ||
 746		      (base_gfn >= s->base_gfn + s->npages)))
 747			goto out_free;
 748	}
 749
 750	/* Free page dirty bitmap if unneeded */
 751	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
 752		new.dirty_bitmap = NULL;
 753
 754	r = -ENOMEM;
 755
 756	/* Allocate if a slot is being created */
 757	if (npages && !old.npages) {
 758		new.user_alloc = user_alloc;
 759		new.userspace_addr = mem->userspace_addr;
 760#ifndef CONFIG_S390
 761		new.rmap = vzalloc(npages * sizeof(*new.rmap));
 762		if (!new.rmap)
 763			goto out_free;
 764#endif /* not defined CONFIG_S390 */
 765		if (kvm_arch_create_memslot(&new, npages))
 766			goto out_free;
 767	}
 768
 769	/* Allocate page dirty bitmap if needed */
 770	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
 771		if (kvm_create_dirty_bitmap(&new) < 0)
 772			goto out_free;
 773		/* destroy any largepage mappings for dirty tracking */
 774	}
 775
 776	if (!npages) {
 777		struct kvm_memory_slot *slot;
 778
 779		r = -ENOMEM;
 780		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
 781				GFP_KERNEL);
 782		if (!slots)
 783			goto out_free;
 784		slot = id_to_memslot(slots, mem->slot);
 785		slot->flags |= KVM_MEMSLOT_INVALID;
 786
 787		update_memslots(slots, NULL);
 788
 789		old_memslots = kvm->memslots;
 790		rcu_assign_pointer(kvm->memslots, slots);
 791		synchronize_srcu_expedited(&kvm->srcu);
 792		/* From this point no new shadow pages pointing to a deleted
 793		 * memslot will be created.
 794		 *
 795		 * validation of sp->gfn happens in:
 796		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
 797		 * 	- kvm_is_visible_gfn (mmu_check_roots)
 798		 */
 799		kvm_arch_flush_shadow(kvm);
 800		kfree(old_memslots);
 801	}
 802
 803	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
 804	if (r)
 805		goto out_free;
 806
 807	/* map/unmap the pages in iommu page table */
 808	if (npages) {
 809		r = kvm_iommu_map_pages(kvm, &new);
 810		if (r)
 811			goto out_free;
 812	} else
 813		kvm_iommu_unmap_pages(kvm, &old);
 814
 815	r = -ENOMEM;
 816	slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
 817			GFP_KERNEL);
 818	if (!slots)
 819		goto out_free;
 820
 821	/* actual memory is freed via old in kvm_free_physmem_slot below */
 822	if (!npages) {
 823		new.rmap = NULL;
 824		new.dirty_bitmap = NULL;
 825		memset(&new.arch, 0, sizeof(new.arch));
 826	}
 827
 828	update_memslots(slots, &new);
 829	old_memslots = kvm->memslots;
 830	rcu_assign_pointer(kvm->memslots, slots);
 831	synchronize_srcu_expedited(&kvm->srcu);
 832
 833	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
 834
 835	/*
 836	 * If the new memory slot is created, we need to clear all
 837	 * mmio sptes.
 838	 */
 839	if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
 840		kvm_arch_flush_shadow(kvm);
 841
 842	kvm_free_physmem_slot(&old, &new);
 843	kfree(old_memslots);
 844
 845	return 0;
 846
 847out_free:
 848	kvm_free_physmem_slot(&new, &old);
 849out:
 850	return r;
 851
 852}
 853EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
 854
 855int kvm_set_memory_region(struct kvm *kvm,
 856			  struct kvm_userspace_memory_region *mem,
 857			  int user_alloc)
 858{
 859	int r;
 860
 861	mutex_lock(&kvm->slots_lock);
 862	r = __kvm_set_memory_region(kvm, mem, user_alloc);
 863	mutex_unlock(&kvm->slots_lock);
 864	return r;
 865}
 866EXPORT_SYMBOL_GPL(kvm_set_memory_region);
 867
 868int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
 869				   struct
 870				   kvm_userspace_memory_region *mem,
 871				   int user_alloc)
 872{
 873	if (mem->slot >= KVM_MEMORY_SLOTS)
 874		return -EINVAL;
 875	return kvm_set_memory_region(kvm, mem, user_alloc);
 876}
 877
 878int kvm_get_dirty_log(struct kvm *kvm,
 879			struct kvm_dirty_log *log, int *is_dirty)
 880{
 881	struct kvm_memory_slot *memslot;
 882	int r, i;
 883	unsigned long n;
 884	unsigned long any = 0;
 885
 886	r = -EINVAL;
 887	if (log->slot >= KVM_MEMORY_SLOTS)
 888		goto out;
 889
 890	memslot = id_to_memslot(kvm->memslots, log->slot);
 891	r = -ENOENT;
 892	if (!memslot->dirty_bitmap)
 893		goto out;
 894
 895	n = kvm_dirty_bitmap_bytes(memslot);
 896
 897	for (i = 0; !any && i < n/sizeof(long); ++i)
 898		any = memslot->dirty_bitmap[i];
 899
 900	r = -EFAULT;
 901	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
 902		goto out;
 903
 904	if (any)
 905		*is_dirty = 1;
 906
 907	r = 0;
 908out:
 909	return r;
 910}
 911
 912bool kvm_largepages_enabled(void)
 913{
 914	return largepages_enabled;
 915}
 916
 917void kvm_disable_largepages(void)
 918{
 919	largepages_enabled = false;
 920}
 921EXPORT_SYMBOL_GPL(kvm_disable_largepages);
 922
 923int is_error_page(struct page *page)
 924{
 925	return page == bad_page || page == hwpoison_page || page == fault_page;
 926}
 927EXPORT_SYMBOL_GPL(is_error_page);
 928
 929int is_error_pfn(pfn_t pfn)
 930{
 931	return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
 932}
 933EXPORT_SYMBOL_GPL(is_error_pfn);
 934
 935int is_hwpoison_pfn(pfn_t pfn)
 936{
 937	return pfn == hwpoison_pfn;
 938}
 939EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
 940
 941int is_fault_pfn(pfn_t pfn)
 942{
 943	return pfn == fault_pfn;
 944}
 945EXPORT_SYMBOL_GPL(is_fault_pfn);
 946
 947int is_noslot_pfn(pfn_t pfn)
 948{
 949	return pfn == bad_pfn;
 950}
 951EXPORT_SYMBOL_GPL(is_noslot_pfn);
 952
 953int is_invalid_pfn(pfn_t pfn)
 954{
 955	return pfn == hwpoison_pfn || pfn == fault_pfn;
 956}
 957EXPORT_SYMBOL_GPL(is_invalid_pfn);
 958
 959static inline unsigned long bad_hva(void)
 960{
 961	return PAGE_OFFSET;
 962}
 963
 964int kvm_is_error_hva(unsigned long addr)
 965{
 966	return addr == bad_hva();
 967}
 968EXPORT_SYMBOL_GPL(kvm_is_error_hva);
 969
 970struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
 971{
 972	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
 973}
 974EXPORT_SYMBOL_GPL(gfn_to_memslot);
 975
 976int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
 977{
 978	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
 979
 980	if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
 981	      memslot->flags & KVM_MEMSLOT_INVALID)
 982		return 0;
 983
 984	return 1;
 985}
 986EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
 987
 988unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
 989{
 990	struct vm_area_struct *vma;
 991	unsigned long addr, size;
 992
 993	size = PAGE_SIZE;
 994
 995	addr = gfn_to_hva(kvm, gfn);
 996	if (kvm_is_error_hva(addr))
 997		return PAGE_SIZE;
 998
 999	down_read(&current->mm->mmap_sem);
1000	vma = find_vma(current->mm, addr);
1001	if (!vma)
1002		goto out;
1003
1004	size = vma_kernel_pagesize(vma);
1005
1006out:
1007	up_read(&current->mm->mmap_sem);
1008
1009	return size;
1010}
1011
1012static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1013				     gfn_t *nr_pages)
1014{
1015	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1016		return bad_hva();
1017
1018	if (nr_pages)
1019		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1020
1021	return gfn_to_hva_memslot(slot, gfn);
1022}
1023
1024unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1025{
1026	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1027}
1028EXPORT_SYMBOL_GPL(gfn_to_hva);
1029
1030static pfn_t get_fault_pfn(void)
1031{
1032	get_page(fault_page);
1033	return fault_pfn;
1034}
1035
1036int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1037	unsigned long start, int write, struct page **page)
1038{
1039	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1040
1041	if (write)
1042		flags |= FOLL_WRITE;
1043
1044	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1045}
1046
1047static inline int check_user_page_hwpoison(unsigned long addr)
1048{
1049	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1050
1051	rc = __get_user_pages(current, current->mm, addr, 1,
1052			      flags, NULL, NULL, NULL);
1053	return rc == -EHWPOISON;
1054}
1055
1056static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1057			bool *async, bool write_fault, bool *writable)
1058{
1059	struct page *page[1];
1060	int npages = 0;
1061	pfn_t pfn;
1062
1063	/* we can do it either atomically or asynchronously, not both */
1064	BUG_ON(atomic && async);
1065
1066	BUG_ON(!write_fault && !writable);
1067
1068	if (writable)
1069		*writable = true;
1070
1071	if (atomic || async)
1072		npages = __get_user_pages_fast(addr, 1, 1, page);
1073
1074	if (unlikely(npages != 1) && !atomic) {
1075		might_sleep();
1076
1077		if (writable)
1078			*writable = write_fault;
1079
1080		if (async) {
1081			down_read(&current->mm->mmap_sem);
1082			npages = get_user_page_nowait(current, current->mm,
1083						     addr, write_fault, page);
1084			up_read(&current->mm->mmap_sem);
1085		} else
1086			npages = get_user_pages_fast(addr, 1, write_fault,
1087						     page);
1088
1089		/* map read fault as writable if possible */
1090		if (unlikely(!write_fault) && npages == 1) {
1091			struct page *wpage[1];
1092
1093			npages = __get_user_pages_fast(addr, 1, 1, wpage);
1094			if (npages == 1) {
1095				*writable = true;
1096				put_page(page[0]);
1097				page[0] = wpage[0];
1098			}
1099			npages = 1;
1100		}
1101	}
1102
1103	if (unlikely(npages != 1)) {
1104		struct vm_area_struct *vma;
1105
1106		if (atomic)
1107			return get_fault_pfn();
1108
1109		down_read(&current->mm->mmap_sem);
1110		if (npages == -EHWPOISON ||
1111			(!async && check_user_page_hwpoison(addr))) {
1112			up_read(&current->mm->mmap_sem);
1113			get_page(hwpoison_page);
1114			return page_to_pfn(hwpoison_page);
1115		}
1116
1117		vma = find_vma_intersection(current->mm, addr, addr+1);
1118
1119		if (vma == NULL)
1120			pfn = get_fault_pfn();
1121		else if ((vma->vm_flags & VM_PFNMAP)) {
1122			pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1123				vma->vm_pgoff;
1124			BUG_ON(!kvm_is_mmio_pfn(pfn));
1125		} else {
1126			if (async && (vma->vm_flags & VM_WRITE))
1127				*async = true;
1128			pfn = get_fault_pfn();
1129		}
1130		up_read(&current->mm->mmap_sem);
1131	} else
1132		pfn = page_to_pfn(page[0]);
1133
1134	return pfn;
1135}
1136
1137pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1138{
1139	return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1140}
1141EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1142
1143static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1144			  bool write_fault, bool *writable)
1145{
1146	unsigned long addr;
1147
1148	if (async)
1149		*async = false;
1150
1151	addr = gfn_to_hva(kvm, gfn);
1152	if (kvm_is_error_hva(addr)) {
1153		get_page(bad_page);
1154		return page_to_pfn(bad_page);
1155	}
1156
1157	return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1158}
1159
1160pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1161{
1162	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1163}
1164EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1165
1166pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1167		       bool write_fault, bool *writable)
1168{
1169	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1170}
1171EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1172
1173pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1174{
1175	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1176}
1177EXPORT_SYMBOL_GPL(gfn_to_pfn);
1178
1179pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1180		      bool *writable)
1181{
1182	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1183}
1184EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1185
1186pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1187			 struct kvm_memory_slot *slot, gfn_t gfn)
1188{
1189	unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1190	return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1191}
1192
1193int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1194								  int nr_pages)
1195{
1196	unsigned long addr;
1197	gfn_t entry;
1198
1199	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1200	if (kvm_is_error_hva(addr))
1201		return -1;
1202
1203	if (entry < nr_pages)
1204		return 0;
1205
1206	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1207}
1208EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1209
1210struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1211{
1212	pfn_t pfn;
1213
1214	pfn = gfn_to_pfn(kvm, gfn);
1215	if (!kvm_is_mmio_pfn(pfn))
1216		return pfn_to_page(pfn);
1217
1218	WARN_ON(kvm_is_mmio_pfn(pfn));
1219
1220	get_page(bad_page);
1221	return bad_page;
1222}
1223
1224EXPORT_SYMBOL_GPL(gfn_to_page);
1225
1226void kvm_release_page_clean(struct page *page)
1227{
1228	kvm_release_pfn_clean(page_to_pfn(page));
1229}
1230EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1231
1232void kvm_release_pfn_clean(pfn_t pfn)
1233{
1234	if (!kvm_is_mmio_pfn(pfn))
1235		put_page(pfn_to_page(pfn));
1236}
1237EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1238
1239void kvm_release_page_dirty(struct page *page)
1240{
1241	kvm_release_pfn_dirty(page_to_pfn(page));
1242}
1243EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1244
1245void kvm_release_pfn_dirty(pfn_t pfn)
1246{
1247	kvm_set_pfn_dirty(pfn);
1248	kvm_release_pfn_clean(pfn);
1249}
1250EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1251
1252void kvm_set_page_dirty(struct page *page)
1253{
1254	kvm_set_pfn_dirty(page_to_pfn(page));
1255}
1256EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1257
1258void kvm_set_pfn_dirty(pfn_t pfn)
1259{
1260	if (!kvm_is_mmio_pfn(pfn)) {
1261		struct page *page = pfn_to_page(pfn);
1262		if (!PageReserved(page))
1263			SetPageDirty(page);
1264	}
1265}
1266EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1267
1268void kvm_set_pfn_accessed(pfn_t pfn)
1269{
1270	if (!kvm_is_mmio_pfn(pfn))
1271		mark_page_accessed(pfn_to_page(pfn));
1272}
1273EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1274
1275void kvm_get_pfn(pfn_t pfn)
1276{
1277	if (!kvm_is_mmio_pfn(pfn))
1278		get_page(pfn_to_page(pfn));
1279}
1280EXPORT_SYMBOL_GPL(kvm_get_pfn);
1281
1282static int next_segment(unsigned long len, int offset)
1283{
1284	if (len > PAGE_SIZE - offset)
1285		return PAGE_SIZE - offset;
1286	else
1287		return len;
1288}
1289
1290int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1291			int len)
1292{
1293	int r;
1294	unsigned long addr;
1295
1296	addr = gfn_to_hva(kvm, gfn);
1297	if (kvm_is_error_hva(addr))
1298		return -EFAULT;
1299	r = __copy_from_user(data, (void __user *)addr + offset, len);
1300	if (r)
1301		return -EFAULT;
1302	return 0;
1303}
1304EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1305
1306int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1307{
1308	gfn_t gfn = gpa >> PAGE_SHIFT;
1309	int seg;
1310	int offset = offset_in_page(gpa);
1311	int ret;
1312
1313	while ((seg = next_segment(len, offset)) != 0) {
1314		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1315		if (ret < 0)
1316			return ret;
1317		offset = 0;
1318		len -= seg;
1319		data += seg;
1320		++gfn;
1321	}
1322	return 0;
1323}
1324EXPORT_SYMBOL_GPL(kvm_read_guest);
1325
1326int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1327			  unsigned long len)
1328{
1329	int r;
1330	unsigned long addr;
1331	gfn_t gfn = gpa >> PAGE_SHIFT;
1332	int offset = offset_in_page(gpa);
1333
1334	addr = gfn_to_hva(kvm, gfn);
1335	if (kvm_is_error_hva(addr))
1336		return -EFAULT;
1337	pagefault_disable();
1338	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1339	pagefault_enable();
1340	if (r)
1341		return -EFAULT;
1342	return 0;
1343}
1344EXPORT_SYMBOL(kvm_read_guest_atomic);
1345
1346int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1347			 int offset, int len)
1348{
1349	int r;
1350	unsigned long addr;
1351
1352	addr = gfn_to_hva(kvm, gfn);
1353	if (kvm_is_error_hva(addr))
1354		return -EFAULT;
1355	r = __copy_to_user((void __user *)addr + offset, data, len);
1356	if (r)
1357		return -EFAULT;
1358	mark_page_dirty(kvm, gfn);
1359	return 0;
1360}
1361EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1362
1363int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1364		    unsigned long len)
1365{
1366	gfn_t gfn = gpa >> PAGE_SHIFT;
1367	int seg;
1368	int offset = offset_in_page(gpa);
1369	int ret;
1370
1371	while ((seg = next_segment(len, offset)) != 0) {
1372		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1373		if (ret < 0)
1374			return ret;
1375		offset = 0;
1376		len -= seg;
1377		data += seg;
1378		++gfn;
1379	}
1380	return 0;
1381}
1382
1383int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1384			      gpa_t gpa)
1385{
1386	struct kvm_memslots *slots = kvm_memslots(kvm);
1387	int offset = offset_in_page(gpa);
1388	gfn_t gfn = gpa >> PAGE_SHIFT;
1389
1390	ghc->gpa = gpa;
1391	ghc->generation = slots->generation;
1392	ghc->memslot = gfn_to_memslot(kvm, gfn);
1393	ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1394	if (!kvm_is_error_hva(ghc->hva))
1395		ghc->hva += offset;
1396	else
1397		return -EFAULT;
1398
1399	return 0;
1400}
1401EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1402
1403int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1404			   void *data, unsigned long len)
1405{
1406	struct kvm_memslots *slots = kvm_memslots(kvm);
1407	int r;
1408
1409	if (slots->generation != ghc->generation)
1410		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1411
1412	if (kvm_is_error_hva(ghc->hva))
1413		return -EFAULT;
1414
1415	r = __copy_to_user((void __user *)ghc->hva, data, len);
1416	if (r)
1417		return -EFAULT;
1418	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1419
1420	return 0;
1421}
1422EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1423
1424int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1425			   void *data, unsigned long len)
1426{
1427	struct kvm_memslots *slots = kvm_memslots(kvm);
1428	int r;
1429
1430	if (slots->generation != ghc->generation)
1431		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1432
1433	if (kvm_is_error_hva(ghc->hva))
1434		return -EFAULT;
1435
1436	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1437	if (r)
1438		return -EFAULT;
1439
1440	return 0;
1441}
1442EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1443
1444int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1445{
1446	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1447				    offset, len);
1448}
1449EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1450
1451int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1452{
1453	gfn_t gfn = gpa >> PAGE_SHIFT;
1454	int seg;
1455	int offset = offset_in_page(gpa);
1456	int ret;
1457
1458        while ((seg = next_segment(len, offset)) != 0) {
1459		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1460		if (ret < 0)
1461			return ret;
1462		offset = 0;
1463		len -= seg;
1464		++gfn;
1465	}
1466	return 0;
1467}
1468EXPORT_SYMBOL_GPL(kvm_clear_guest);
1469
1470void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1471			     gfn_t gfn)
1472{
1473	if (memslot && memslot->dirty_bitmap) {
1474		unsigned long rel_gfn = gfn - memslot->base_gfn;
1475
1476		/* TODO: introduce set_bit_le() and use it */
1477		test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
1478	}
1479}
1480
1481void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1482{
1483	struct kvm_memory_slot *memslot;
1484
1485	memslot = gfn_to_memslot(kvm, gfn);
1486	mark_page_dirty_in_slot(kvm, memslot, gfn);
1487}
1488
1489/*
1490 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1491 */
1492void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1493{
1494	DEFINE_WAIT(wait);
1495
1496	for (;;) {
1497		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1498
1499		if (kvm_arch_vcpu_runnable(vcpu)) {
1500			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1501			break;
1502		}
1503		if (kvm_cpu_has_pending_timer(vcpu))
1504			break;
1505		if (signal_pending(current))
1506			break;
1507
1508		schedule();
1509	}
1510
1511	finish_wait(&vcpu->wq, &wait);
1512}
1513
1514#ifndef CONFIG_S390
1515/*
1516 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1517 */
1518void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1519{
1520	int me;
1521	int cpu = vcpu->cpu;
1522	wait_queue_head_t *wqp;
1523
1524	wqp = kvm_arch_vcpu_wq(vcpu);
1525	if (waitqueue_active(wqp)) {
1526		wake_up_interruptible(wqp);
1527		++vcpu->stat.halt_wakeup;
1528	}
1529
1530	me = get_cpu();
1531	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1532		if (kvm_arch_vcpu_should_kick(vcpu))
1533			smp_send_reschedule(cpu);
1534	put_cpu();
1535}
1536#endif /* !CONFIG_S390 */
1537
1538void kvm_resched(struct kvm_vcpu *vcpu)
1539{
1540	if (!need_resched())
1541		return;
1542	cond_resched();
1543}
1544EXPORT_SYMBOL_GPL(kvm_resched);
1545
1546bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1547{
1548	struct pid *pid;
1549	struct task_struct *task = NULL;
1550
1551	rcu_read_lock();
1552	pid = rcu_dereference(target->pid);
1553	if (pid)
1554		task = get_pid_task(target->pid, PIDTYPE_PID);
1555	rcu_read_unlock();
1556	if (!task)
1557		return false;
1558	if (task->flags & PF_VCPU) {
1559		put_task_struct(task);
1560		return false;
1561	}
1562	if (yield_to(task, 1)) {
1563		put_task_struct(task);
1564		return true;
1565	}
1566	put_task_struct(task);
1567	return false;
1568}
1569EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1570
1571void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1572{
1573	struct kvm *kvm = me->kvm;
1574	struct kvm_vcpu *vcpu;
1575	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1576	int yielded = 0;
1577	int pass;
1578	int i;
1579
1580	/*
1581	 * We boost the priority of a VCPU that is runnable but not
1582	 * currently running, because it got preempted by something
1583	 * else and called schedule in __vcpu_run.  Hopefully that
1584	 * VCPU is holding the lock that we need and will release it.
1585	 * We approximate round-robin by starting at the last boosted VCPU.
1586	 */
1587	for (pass = 0; pass < 2 && !yielded; pass++) {
1588		kvm_for_each_vcpu(i, vcpu, kvm) {
1589			if (!pass && i < last_boosted_vcpu) {
1590				i = last_boosted_vcpu;
1591				continue;
1592			} else if (pass && i > last_boosted_vcpu)
1593				break;
1594			if (vcpu == me)
1595				continue;
1596			if (waitqueue_active(&vcpu->wq))
1597				continue;
1598			if (kvm_vcpu_yield_to(vcpu)) {
1599				kvm->last_boosted_vcpu = i;
1600				yielded = 1;
1601				break;
1602			}
1603		}
1604	}
1605}
1606EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1607
1608static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1609{
1610	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1611	struct page *page;
1612
1613	if (vmf->pgoff == 0)
1614		page = virt_to_page(vcpu->run);
1615#ifdef CONFIG_X86
1616	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1617		page = virt_to_page(vcpu->arch.pio_data);
1618#endif
1619#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1620	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1621		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1622#endif
1623	else
1624		return kvm_arch_vcpu_fault(vcpu, vmf);
1625	get_page(page);
1626	vmf->page = page;
1627	return 0;
1628}
1629
1630static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1631	.fault = kvm_vcpu_fault,
1632};
1633
1634static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1635{
1636	vma->vm_ops = &kvm_vcpu_vm_ops;
1637	return 0;
1638}
1639
1640static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1641{
1642	struct kvm_vcpu *vcpu = filp->private_data;
1643
1644	kvm_put_kvm(vcpu->kvm);
1645	return 0;
1646}
1647
1648static struct file_operations kvm_vcpu_fops = {
1649	.release        = kvm_vcpu_release,
1650	.unlocked_ioctl = kvm_vcpu_ioctl,
1651#ifdef CONFIG_COMPAT
1652	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1653#endif
1654	.mmap           = kvm_vcpu_mmap,
1655	.llseek		= noop_llseek,
1656};
1657
1658/*
1659 * Allocates an inode for the vcpu.
1660 */
1661static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1662{
1663	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1664}
1665
1666/*
1667 * Creates some virtual cpus.  Good luck creating more than one.
1668 */
1669static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1670{
1671	int r;
1672	struct kvm_vcpu *vcpu, *v;
1673
1674	vcpu = kvm_arch_vcpu_create(kvm, id);
1675	if (IS_ERR(vcpu))
1676		return PTR_ERR(vcpu);
1677
1678	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1679
1680	r = kvm_arch_vcpu_setup(vcpu);
1681	if (r)
1682		goto vcpu_destroy;
1683
1684	mutex_lock(&kvm->lock);
1685	if (!kvm_vcpu_compatible(vcpu)) {
1686		r = -EINVAL;
1687		goto unlock_vcpu_destroy;
1688	}
1689	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1690		r = -EINVAL;
1691		goto unlock_vcpu_destroy;
1692	}
1693
1694	kvm_for_each_vcpu(r, v, kvm)
1695		if (v->vcpu_id == id) {
1696			r = -EEXIST;
1697			goto unlock_vcpu_destroy;
1698		}
1699
1700	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1701
1702	/* Now it's all set up, let userspace reach it */
1703	kvm_get_kvm(kvm);
1704	r = create_vcpu_fd(vcpu);
1705	if (r < 0) {
1706		kvm_put_kvm(kvm);
1707		goto unlock_vcpu_destroy;
1708	}
1709
1710	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1711	smp_wmb();
1712	atomic_inc(&kvm->online_vcpus);
1713
1714	mutex_unlock(&kvm->lock);
1715	return r;
1716
1717unlock_vcpu_destroy:
1718	mutex_unlock(&kvm->lock);
1719vcpu_destroy:
1720	kvm_arch_vcpu_destroy(vcpu);
1721	return r;
1722}
1723
1724static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1725{
1726	if (sigset) {
1727		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1728		vcpu->sigset_active = 1;
1729		vcpu->sigset = *sigset;
1730	} else
1731		vcpu->sigset_active = 0;
1732	return 0;
1733}
1734
1735static long kvm_vcpu_ioctl(struct file *filp,
1736			   unsigned int ioctl, unsigned long arg)
1737{
1738	struct kvm_vcpu *vcpu = filp->private_data;
1739	void __user *argp = (void __user *)arg;
1740	int r;
1741	struct kvm_fpu *fpu = NULL;
1742	struct kvm_sregs *kvm_sregs = NULL;
1743
1744	if (vcpu->kvm->mm != current->mm)
1745		return -EIO;
1746
1747#if defined(CONFIG_S390) || defined(CONFIG_PPC)
1748	/*
1749	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1750	 * so vcpu_load() would break it.
1751	 */
1752	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1753		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1754#endif
1755
1756
1757	vcpu_load(vcpu);
1758	switch (ioctl) {
1759	case KVM_RUN:
1760		r = -EINVAL;
1761		if (arg)
1762			goto out;
1763		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1764		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1765		break;
1766	case KVM_GET_REGS: {
1767		struct kvm_regs *kvm_regs;
1768
1769		r = -ENOMEM;
1770		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1771		if (!kvm_regs)
1772			goto out;
1773		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1774		if (r)
1775			goto out_free1;
1776		r = -EFAULT;
1777		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1778			goto out_free1;
1779		r = 0;
1780out_free1:
1781		kfree(kvm_regs);
1782		break;
1783	}
1784	case KVM_SET_REGS: {
1785		struct kvm_regs *kvm_regs;
1786
1787		r = -ENOMEM;
1788		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1789		if (IS_ERR(kvm_regs)) {
1790			r = PTR_ERR(kvm_regs);
1791			goto out;
1792		}
1793		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1794		if (r)
1795			goto out_free2;
1796		r = 0;
1797out_free2:
1798		kfree(kvm_regs);
1799		break;
1800	}
1801	case KVM_GET_SREGS: {
1802		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1803		r = -ENOMEM;
1804		if (!kvm_sregs)
1805			goto out;
1806		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1807		if (r)
1808			goto out;
1809		r = -EFAULT;
1810		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1811			goto out;
1812		r = 0;
1813		break;
1814	}
1815	case KVM_SET_SREGS: {
1816		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1817		if (IS_ERR(kvm_sregs)) {
1818			r = PTR_ERR(kvm_sregs);
1819			goto out;
1820		}
1821		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1822		if (r)
1823			goto out;
1824		r = 0;
1825		break;
1826	}
1827	case KVM_GET_MP_STATE: {
1828		struct kvm_mp_state mp_state;
1829
1830		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1831		if (r)
1832			goto out;
1833		r = -EFAULT;
1834		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1835			goto out;
1836		r = 0;
1837		break;
1838	}
1839	case KVM_SET_MP_STATE: {
1840		struct kvm_mp_state mp_state;
1841
1842		r = -EFAULT;
1843		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1844			goto out;
1845		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1846		if (r)
1847			goto out;
1848		r = 0;
1849		break;
1850	}
1851	case KVM_TRANSLATE: {
1852		struct kvm_translation tr;
1853
1854		r = -EFAULT;
1855		if (copy_from_user(&tr, argp, sizeof tr))
1856			goto out;
1857		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1858		if (r)
1859			goto out;
1860		r = -EFAULT;
1861		if (copy_to_user(argp, &tr, sizeof tr))
1862			goto out;
1863		r = 0;
1864		break;
1865	}
1866	case KVM_SET_GUEST_DEBUG: {
1867		struct kvm_guest_debug dbg;
1868
1869		r = -EFAULT;
1870		if (copy_from_user(&dbg, argp, sizeof dbg))
1871			goto out;
1872		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1873		if (r)
1874			goto out;
1875		r = 0;
1876		break;
1877	}
1878	case KVM_SET_SIGNAL_MASK: {
1879		struct kvm_signal_mask __user *sigmask_arg = argp;
1880		struct kvm_signal_mask kvm_sigmask;
1881		sigset_t sigset, *p;
1882
1883		p = NULL;
1884		if (argp) {
1885			r = -EFAULT;
1886			if (copy_from_user(&kvm_sigmask, argp,
1887					   sizeof kvm_sigmask))
1888				goto out;
1889			r = -EINVAL;
1890			if (kvm_sigmask.len != sizeof sigset)
1891				goto out;
1892			r = -EFAULT;
1893			if (copy_from_user(&sigset, sigmask_arg->sigset,
1894					   sizeof sigset))
1895				goto out;
1896			p = &sigset;
1897		}
1898		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1899		break;
1900	}
1901	case KVM_GET_FPU: {
1902		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1903		r = -ENOMEM;
1904		if (!fpu)
1905			goto out;
1906		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1907		if (r)
1908			goto out;
1909		r = -EFAULT;
1910		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1911			goto out;
1912		r = 0;
1913		break;
1914	}
1915	case KVM_SET_FPU: {
1916		fpu = memdup_user(argp, sizeof(*fpu));
1917		if (IS_ERR(fpu)) {
1918			r = PTR_ERR(fpu);
1919			goto out;
1920		}
1921		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1922		if (r)
1923			goto out;
1924		r = 0;
1925		break;
1926	}
1927	default:
1928		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1929	}
1930out:
1931	vcpu_put(vcpu);
1932	kfree(fpu);
1933	kfree(kvm_sregs);
1934	return r;
1935}
1936
1937#ifdef CONFIG_COMPAT
1938static long kvm_vcpu_compat_ioctl(struct file *filp,
1939				  unsigned int ioctl, unsigned long arg)
1940{
1941	struct kvm_vcpu *vcpu = filp->private_data;
1942	void __user *argp = compat_ptr(arg);
1943	int r;
1944
1945	if (vcpu->kvm->mm != current->mm)
1946		return -EIO;
1947
1948	switch (ioctl) {
1949	case KVM_SET_SIGNAL_MASK: {
1950		struct kvm_signal_mask __user *sigmask_arg = argp;
1951		struct kvm_signal_mask kvm_sigmask;
1952		compat_sigset_t csigset;
1953		sigset_t sigset;
1954
1955		if (argp) {
1956			r = -EFAULT;
1957			if (copy_from_user(&kvm_sigmask, argp,
1958					   sizeof kvm_sigmask))
1959				goto out;
1960			r = -EINVAL;
1961			if (kvm_sigmask.len != sizeof csigset)
1962				goto out;
1963			r = -EFAULT;
1964			if (copy_from_user(&csigset, sigmask_arg->sigset,
1965					   sizeof csigset))
1966				goto out;
1967		}
1968		sigset_from_compat(&sigset, &csigset);
1969		r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1970		break;
1971	}
1972	default:
1973		r = kvm_vcpu_ioctl(filp, ioctl, arg);
1974	}
1975
1976out:
1977	return r;
1978}
1979#endif
1980
1981static long kvm_vm_ioctl(struct file *filp,
1982			   unsigned int ioctl, unsigned long arg)
1983{
1984	struct kvm *kvm = filp->private_data;
1985	void __user *argp = (void __user *)arg;
1986	int r;
1987
1988	if (kvm->mm != current->mm)
1989		return -EIO;
1990	switch (ioctl) {
1991	case KVM_CREATE_VCPU:
1992		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1993		if (r < 0)
1994			goto out;
1995		break;
1996	case KVM_SET_USER_MEMORY_REGION: {
1997		struct kvm_userspace_memory_region kvm_userspace_mem;
1998
1999		r = -EFAULT;
2000		if (copy_from_user(&kvm_userspace_mem, argp,
2001						sizeof kvm_userspace_mem))
2002			goto out;
2003
2004		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2005		if (r)
2006			goto out;
2007		break;
2008	}
2009	case KVM_GET_DIRTY_LOG: {
2010		struct kvm_dirty_log log;
2011
2012		r = -EFAULT;
2013		if (copy_from_user(&log, argp, sizeof log))
2014			goto out;
2015		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2016		if (r)
2017			goto out;
2018		break;
2019	}
2020#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2021	case KVM_REGISTER_COALESCED_MMIO: {
2022		struct kvm_coalesced_mmio_zone zone;
2023		r = -EFAULT;
2024		if (copy_from_user(&zone, argp, sizeof zone))
2025			goto out;
2026		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2027		if (r)
2028			goto out;
2029		r = 0;
2030		break;
2031	}
2032	case KVM_UNREGISTER_COALESCED_MMIO: {
2033		struct kvm_coalesced_mmio_zone zone;
2034		r = -EFAULT;
2035		if (copy_from_user(&zone, argp, sizeof zone))
2036			goto out;
2037		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2038		if (r)
2039			goto out;
2040		r = 0;
2041		break;
2042	}
2043#endif
2044	case KVM_IRQFD: {
2045		struct kvm_irqfd data;
2046
2047		r = -EFAULT;
2048		if (copy_from_user(&data, argp, sizeof data))
2049			goto out;
2050		r = kvm_irqfd(kvm, &data);
2051		break;
2052	}
2053	case KVM_IOEVENTFD: {
2054		struct kvm_ioeventfd data;
2055
2056		r = -EFAULT;
2057		if (copy_from_user(&data, argp, sizeof data))
2058			goto out;
2059		r = kvm_ioeventfd(kvm, &data);
2060		break;
2061	}
2062#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2063	case KVM_SET_BOOT_CPU_ID:
2064		r = 0;
2065		mutex_lock(&kvm->lock);
2066		if (atomic_read(&kvm->online_vcpus) != 0)
2067			r = -EBUSY;
2068		else
2069			kvm->bsp_vcpu_id = arg;
2070		mutex_unlock(&kvm->lock);
2071		break;
2072#endif
2073#ifdef CONFIG_HAVE_KVM_MSI
2074	case KVM_SIGNAL_MSI: {
2075		struct kvm_msi msi;
2076
2077		r = -EFAULT;
2078		if (copy_from_user(&msi, argp, sizeof msi))
2079			goto out;
2080		r = kvm_send_userspace_msi(kvm, &msi);
2081		break;
2082	}
2083#endif
2084	default:
2085		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2086		if (r == -ENOTTY)
2087			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2088	}
2089out:
2090	return r;
2091}
2092
2093#ifdef CONFIG_COMPAT
2094struct compat_kvm_dirty_log {
2095	__u32 slot;
2096	__u32 padding1;
2097	union {
2098		compat_uptr_t dirty_bitmap; /* one bit per page */
2099		__u64 padding2;
2100	};
2101};
2102
2103static long kvm_vm_compat_ioctl(struct file *filp,
2104			   unsigned int ioctl, unsigned long arg)
2105{
2106	struct kvm *kvm = filp->private_data;
2107	int r;
2108
2109	if (kvm->mm != current->mm)
2110		return -EIO;
2111	switch (ioctl) {
2112	case KVM_GET_DIRTY_LOG: {
2113		struct compat_kvm_dirty_log compat_log;
2114		struct kvm_dirty_log log;
2115
2116		r = -EFAULT;
2117		if (copy_from_user(&compat_log, (void __user *)arg,
2118				   sizeof(compat_log)))
2119			goto out;
2120		log.slot	 = compat_log.slot;
2121		log.padding1	 = compat_log.padding1;
2122		log.padding2	 = compat_log.padding2;
2123		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2124
2125		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2126		if (r)
2127			goto out;
2128		break;
2129	}
2130	default:
2131		r = kvm_vm_ioctl(filp, ioctl, arg);
2132	}
2133
2134out:
2135	return r;
2136}
2137#endif
2138
2139static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2140{
2141	struct page *page[1];
2142	unsigned long addr;
2143	int npages;
2144	gfn_t gfn = vmf->pgoff;
2145	struct kvm *kvm = vma->vm_file->private_data;
2146
2147	addr = gfn_to_hva(kvm, gfn);
2148	if (kvm_is_error_hva(addr))
2149		return VM_FAULT_SIGBUS;
2150
2151	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2152				NULL);
2153	if (unlikely(npages != 1))
2154		return VM_FAULT_SIGBUS;
2155
2156	vmf->page = page[0];
2157	return 0;
2158}
2159
2160static const struct vm_operations_struct kvm_vm_vm_ops = {
2161	.fault = kvm_vm_fault,
2162};
2163
2164static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2165{
2166	vma->vm_ops = &kvm_vm_vm_ops;
2167	return 0;
2168}
2169
2170static struct file_operations kvm_vm_fops = {
2171	.release        = kvm_vm_release,
2172	.unlocked_ioctl = kvm_vm_ioctl,
2173#ifdef CONFIG_COMPAT
2174	.compat_ioctl   = kvm_vm_compat_ioctl,
2175#endif
2176	.mmap           = kvm_vm_mmap,
2177	.llseek		= noop_llseek,
2178};
2179
2180static int kvm_dev_ioctl_create_vm(unsigned long type)
2181{
2182	int r;
2183	struct kvm *kvm;
2184
2185	kvm = kvm_create_vm(type);
2186	if (IS_ERR(kvm))
2187		return PTR_ERR(kvm);
2188#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2189	r = kvm_coalesced_mmio_init(kvm);
2190	if (r < 0) {
2191		kvm_put_kvm(kvm);
2192		return r;
2193	}
2194#endif
2195	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2196	if (r < 0)
2197		kvm_put_kvm(kvm);
2198
2199	return r;
2200}
2201
2202static long kvm_dev_ioctl_check_extension_generic(long arg)
2203{
2204	switch (arg) {
2205	case KVM_CAP_USER_MEMORY:
2206	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2207	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2208#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2209	case KVM_CAP_SET_BOOT_CPU_ID:
2210#endif
2211	case KVM_CAP_INTERNAL_ERROR_DATA:
2212#ifdef CONFIG_HAVE_KVM_MSI
2213	case KVM_CAP_SIGNAL_MSI:
2214#endif
2215		return 1;
2216#ifdef CONFIG_HAVE_KVM_IRQCHIP
2217	case KVM_CAP_IRQ_ROUTING:
2218		return KVM_MAX_IRQ_ROUTES;
2219#endif
2220	default:
2221		break;
2222	}
2223	return kvm_dev_ioctl_check_extension(arg);
2224}
2225
2226static long kvm_dev_ioctl(struct file *filp,
2227			  unsigned int ioctl, unsigned long arg)
2228{
2229	long r = -EINVAL;
2230
2231	switch (ioctl) {
2232	case KVM_GET_API_VERSION:
2233		r = -EINVAL;
2234		if (arg)
2235			goto out;
2236		r = KVM_API_VERSION;
2237		break;
2238	case KVM_CREATE_VM:
2239		r = kvm_dev_ioctl_create_vm(arg);
2240		break;
2241	case KVM_CHECK_EXTENSION:
2242		r = kvm_dev_ioctl_check_extension_generic(arg);
2243		break;
2244	case KVM_GET_VCPU_MMAP_SIZE:
2245		r = -EINVAL;
2246		if (arg)
2247			goto out;
2248		r = PAGE_SIZE;     /* struct kvm_run */
2249#ifdef CONFIG_X86
2250		r += PAGE_SIZE;    /* pio data page */
2251#endif
2252#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2253		r += PAGE_SIZE;    /* coalesced mmio ring page */
2254#endif
2255		break;
2256	case KVM_TRACE_ENABLE:
2257	case KVM_TRACE_PAUSE:
2258	case KVM_TRACE_DISABLE:
2259		r = -EOPNOTSUPP;
2260		break;
2261	default:
2262		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2263	}
2264out:
2265	return r;
2266}
2267
2268static struct file_operations kvm_chardev_ops = {
2269	.unlocked_ioctl = kvm_dev_ioctl,
2270	.compat_ioctl   = kvm_dev_ioctl,
2271	.llseek		= noop_llseek,
2272};
2273
2274static struct miscdevice kvm_dev = {
2275	KVM_MINOR,
2276	"kvm",
2277	&kvm_chardev_ops,
2278};
2279
2280static void hardware_enable_nolock(void *junk)
2281{
2282	int cpu = raw_smp_processor_id();
2283	int r;
2284
2285	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2286		return;
2287
2288	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2289
2290	r = kvm_arch_hardware_enable(NULL);
2291
2292	if (r) {
2293		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2294		atomic_inc(&hardware_enable_failed);
2295		printk(KERN_INFO "kvm: enabling virtualization on "
2296				 "CPU%d failed\n", cpu);
2297	}
2298}
2299
2300static void hardware_enable(void *junk)
2301{
2302	raw_spin_lock(&kvm_lock);
2303	hardware_enable_nolock(junk);
2304	raw_spin_unlock(&kvm_lock);
2305}
2306
2307static void hardware_disable_nolock(void *junk)
2308{
2309	int cpu = raw_smp_processor_id();
2310
2311	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2312		return;
2313	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2314	kvm_arch_hardware_disable(NULL);
2315}
2316
2317static void hardware_disable(void *junk)
2318{
2319	raw_spin_lock(&kvm_lock);
2320	hardware_disable_nolock(junk);
2321	raw_spin_unlock(&kvm_lock);
2322}
2323
2324static void hardware_disable_all_nolock(void)
2325{
2326	BUG_ON(!kvm_usage_count);
2327
2328	kvm_usage_count--;
2329	if (!kvm_usage_count)
2330		on_each_cpu(hardware_disable_nolock, NULL, 1);
2331}
2332
2333static void hardware_disable_all(void)
2334{
2335	raw_spin_lock(&kvm_lock);
2336	hardware_disable_all_nolock();
2337	raw_spin_unlock(&kvm_lock);
2338}
2339
2340static int hardware_enable_all(void)
2341{
2342	int r = 0;
2343
2344	raw_spin_lock(&kvm_lock);
2345
2346	kvm_usage_count++;
2347	if (kvm_usage_count == 1) {
2348		atomic_set(&hardware_enable_failed, 0);
2349		on_each_cpu(hardware_enable_nolock, NULL, 1);
2350
2351		if (atomic_read(&hardware_enable_failed)) {
2352			hardware_disable_all_nolock();
2353			r = -EBUSY;
2354		}
2355	}
2356
2357	raw_spin_unlock(&kvm_lock);
2358
2359	return r;
2360}
2361
2362static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2363			   void *v)
2364{
2365	int cpu = (long)v;
2366
2367	if (!kvm_usage_count)
2368		return NOTIFY_OK;
2369
2370	val &= ~CPU_TASKS_FROZEN;
2371	switch (val) {
2372	case CPU_DYING:
2373		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2374		       cpu);
2375		hardware_disable(NULL);
2376		break;
2377	case CPU_STARTING:
2378		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2379		       cpu);
2380		hardware_enable(NULL);
2381		break;
2382	}
2383	return NOTIFY_OK;
2384}
2385
2386
2387asmlinkage void kvm_spurious_fault(void)
2388{
2389	/* Fault while not rebooting.  We want the trace. */
2390	BUG();
2391}
2392EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2393
2394static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2395		      void *v)
2396{
2397	/*
2398	 * Some (well, at least mine) BIOSes hang on reboot if
2399	 * in vmx root mode.
2400	 *
2401	 * And Intel TXT required VMX off for all cpu when system shutdown.
2402	 */
2403	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2404	kvm_rebooting = true;
2405	on_each_cpu(hardware_disable_nolock, NULL, 1);
2406	return NOTIFY_OK;
2407}
2408
2409static struct notifier_block kvm_reboot_notifier = {
2410	.notifier_call = kvm_reboot,
2411	.priority = 0,
2412};
2413
2414static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2415{
2416	int i;
2417
2418	for (i = 0; i < bus->dev_count; i++) {
2419		struct kvm_io_device *pos = bus->range[i].dev;
2420
2421		kvm_iodevice_destructor(pos);
2422	}
2423	kfree(bus);
2424}
2425
2426int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2427{
2428	const struct kvm_io_range *r1 = p1;
2429	const struct kvm_io_range *r2 = p2;
2430
2431	if (r1->addr < r2->addr)
2432		return -1;
2433	if (r1->addr + r1->len > r2->addr + r2->len)
2434		return 1;
2435	return 0;
2436}
2437
2438int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2439			  gpa_t addr, int len)
2440{
2441	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2442		.addr = addr,
2443		.len = len,
2444		.dev = dev,
2445	};
2446
2447	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2448		kvm_io_bus_sort_cmp, NULL);
2449
2450	return 0;
2451}
2452
2453int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2454			     gpa_t addr, int len)
2455{
2456	struct kvm_io_range *range, key;
2457	int off;
2458
2459	key = (struct kvm_io_range) {
2460		.addr = addr,
2461		.len = len,
2462	};
2463
2464	range = bsearch(&key, bus->range, bus->dev_count,
2465			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2466	if (range == NULL)
2467		return -ENOENT;
2468
2469	off = range - bus->range;
2470
2471	while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2472		off--;
2473
2474	return off;
2475}
2476
2477/* kvm_io_bus_write - called under kvm->slots_lock */
2478int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2479		     int len, const void *val)
2480{
2481	int idx;
2482	struct kvm_io_bus *bus;
2483	struct kvm_io_range range;
2484
2485	range = (struct kvm_io_range) {
2486		.addr = addr,
2487		.len = len,
2488	};
2489
2490	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2491	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2492	if (idx < 0)
2493		return -EOPNOTSUPP;
2494
2495	while (idx < bus->dev_count &&
2496		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2497		if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2498			return 0;
2499		idx++;
2500	}
2501
2502	return -EOPNOTSUPP;
2503}
2504
2505/* kvm_io_bus_read - called under kvm->slots_lock */
2506int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2507		    int len, void *val)
2508{
2509	int idx;
2510	struct kvm_io_bus *bus;
2511	struct kvm_io_range range;
2512
2513	range = (struct kvm_io_range) {
2514		.addr = addr,
2515		.len = len,
2516	};
2517
2518	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2519	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2520	if (idx < 0)
2521		return -EOPNOTSUPP;
2522
2523	while (idx < bus->dev_count &&
2524		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2525		if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2526			return 0;
2527		idx++;
2528	}
2529
2530	return -EOPNOTSUPP;
2531}
2532
2533/* Caller must hold slots_lock. */
2534int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2535			    int len, struct kvm_io_device *dev)
2536{
2537	struct kvm_io_bus *new_bus, *bus;
2538
2539	bus = kvm->buses[bus_idx];
2540	if (bus->dev_count > NR_IOBUS_DEVS - 1)
2541		return -ENOSPC;
2542
2543	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2544			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2545	if (!new_bus)
2546		return -ENOMEM;
2547	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2548	       sizeof(struct kvm_io_range)));
2549	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2550	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2551	synchronize_srcu_expedited(&kvm->srcu);
2552	kfree(bus);
2553
2554	return 0;
2555}
2556
2557/* Caller must hold slots_lock. */
2558int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2559			      struct kvm_io_device *dev)
2560{
2561	int i, r;
2562	struct kvm_io_bus *new_bus, *bus;
2563
2564	bus = kvm->buses[bus_idx];
2565	r = -ENOENT;
2566	for (i = 0; i < bus->dev_count; i++)
2567		if (bus->range[i].dev == dev) {
2568			r = 0;
2569			break;
2570		}
2571
2572	if (r)
2573		return r;
2574
2575	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2576			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2577	if (!new_bus)
2578		return -ENOMEM;
2579
2580	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2581	new_bus->dev_count--;
2582	memcpy(new_bus->range + i, bus->range + i + 1,
2583	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2584
2585	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2586	synchronize_srcu_expedited(&kvm->srcu);
2587	kfree(bus);
2588	return r;
2589}
2590
2591static struct notifier_block kvm_cpu_notifier = {
2592	.notifier_call = kvm_cpu_hotplug,
2593};
2594
2595static int vm_stat_get(void *_offset, u64 *val)
2596{
2597	unsigned offset = (long)_offset;
2598	struct kvm *kvm;
2599
2600	*val = 0;
2601	raw_spin_lock(&kvm_lock);
2602	list_for_each_entry(kvm, &vm_list, vm_list)
2603		*val += *(u32 *)((void *)kvm + offset);
2604	raw_spin_unlock(&kvm_lock);
2605	return 0;
2606}
2607
2608DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2609
2610static int vcpu_stat_get(void *_offset, u64 *val)
2611{
2612	unsigned offset = (long)_offset;
2613	struct kvm *kvm;
2614	struct kvm_vcpu *vcpu;
2615	int i;
2616
2617	*val = 0;
2618	raw_spin_lock(&kvm_lock);
2619	list_for_each_entry(kvm, &vm_list, vm_list)
2620		kvm_for_each_vcpu(i, vcpu, kvm)
2621			*val += *(u32 *)((void *)vcpu + offset);
2622
2623	raw_spin_unlock(&kvm_lock);
2624	return 0;
2625}
2626
2627DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2628
2629static const struct file_operations *stat_fops[] = {
2630	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2631	[KVM_STAT_VM]   = &vm_stat_fops,
2632};
2633
2634static int kvm_init_debug(void)
2635{
2636	int r = -EFAULT;
2637	struct kvm_stats_debugfs_item *p;
2638
2639	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2640	if (kvm_debugfs_dir == NULL)
2641		goto out;
2642
2643	for (p = debugfs_entries; p->name; ++p) {
2644		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2645						(void *)(long)p->offset,
2646						stat_fops[p->kind]);
2647		if (p->dentry == NULL)
2648			goto out_dir;
2649	}
2650
2651	return 0;
2652
2653out_dir:
2654	debugfs_remove_recursive(kvm_debugfs_dir);
2655out:
2656	return r;
2657}
2658
2659static void kvm_exit_debug(void)
2660{
2661	struct kvm_stats_debugfs_item *p;
2662
2663	for (p = debugfs_entries; p->name; ++p)
2664		debugfs_remove(p->dentry);
2665	debugfs_remove(kvm_debugfs_dir);
2666}
2667
2668static int kvm_suspend(void)
2669{
2670	if (kvm_usage_count)
2671		hardware_disable_nolock(NULL);
2672	return 0;
2673}
2674
2675static void kvm_resume(void)
2676{
2677	if (kvm_usage_count) {
2678		WARN_ON(raw_spin_is_locked(&kvm_lock));
2679		hardware_enable_nolock(NULL);
2680	}
2681}
2682
2683static struct syscore_ops kvm_syscore_ops = {
2684	.suspend = kvm_suspend,
2685	.resume = kvm_resume,
2686};
2687
2688struct page *bad_page;
2689pfn_t bad_pfn;
2690
2691static inline
2692struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2693{
2694	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2695}
2696
2697static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2698{
2699	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2700
2701	kvm_arch_vcpu_load(vcpu, cpu);
2702}
2703
2704static void kvm_sched_out(struct preempt_notifier *pn,
2705			  struct task_struct *next)
2706{
2707	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2708
2709	kvm_arch_vcpu_put(vcpu);
2710}
2711
2712int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2713		  struct module *module)
2714{
2715	int r;
2716	int cpu;
2717
2718	r = kvm_arch_init(opaque);
2719	if (r)
2720		goto out_fail;
2721
2722	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2723
2724	if (bad_page == NULL) {
2725		r = -ENOMEM;
2726		goto out;
2727	}
2728
2729	bad_pfn = page_to_pfn(bad_page);
2730
2731	hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2732
2733	if (hwpoison_page == NULL) {
2734		r = -ENOMEM;
2735		goto out_free_0;
2736	}
2737
2738	hwpoison_pfn = page_to_pfn(hwpoison_page);
2739
2740	fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2741
2742	if (fault_page == NULL) {
2743		r = -ENOMEM;
2744		goto out_free_0;
2745	}
2746
2747	fault_pfn = page_to_pfn(fault_page);
2748
2749	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2750		r = -ENOMEM;
2751		goto out_free_0;
2752	}
2753
2754	r = kvm_arch_hardware_setup();
2755	if (r < 0)
2756		goto out_free_0a;
2757
2758	for_each_online_cpu(cpu) {
2759		smp_call_function_single(cpu,
2760				kvm_arch_check_processor_compat,
2761				&r, 1);
2762		if (r < 0)
2763			goto out_free_1;
2764	}
2765
2766	r = register_cpu_notifier(&kvm_cpu_notifier);
2767	if (r)
2768		goto out_free_2;
2769	register_reboot_notifier(&kvm_reboot_notifier);
2770
2771	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2772	if (!vcpu_align)
2773		vcpu_align = __alignof__(struct kvm_vcpu);
2774	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2775					   0, NULL);
2776	if (!kvm_vcpu_cache) {
2777		r = -ENOMEM;
2778		goto out_free_3;
2779	}
2780
2781	r = kvm_async_pf_init();
2782	if (r)
2783		goto out_free;
2784
2785	kvm_chardev_ops.owner = module;
2786	kvm_vm_fops.owner = module;
2787	kvm_vcpu_fops.owner = module;
2788
2789	r = misc_register(&kvm_dev);
2790	if (r) {
2791		printk(KERN_ERR "kvm: misc device register failed\n");
2792		goto out_unreg;
2793	}
2794
2795	register_syscore_ops(&kvm_syscore_ops);
2796
2797	kvm_preempt_ops.sched_in = kvm_sched_in;
2798	kvm_preempt_ops.sched_out = kvm_sched_out;
2799
2800	r = kvm_init_debug();
2801	if (r) {
2802		printk(KERN_ERR "kvm: create debugfs files failed\n");
2803		goto out_undebugfs;
2804	}
2805
2806	return 0;
2807
2808out_undebugfs:
2809	unregister_syscore_ops(&kvm_syscore_ops);
2810out_unreg:
2811	kvm_async_pf_deinit();
2812out_free:
2813	kmem_cache_destroy(kvm_vcpu_cache);
2814out_free_3:
2815	unregister_reboot_notifier(&kvm_reboot_notifier);
2816	unregister_cpu_notifier(&kvm_cpu_notifier);
2817out_free_2:
2818out_free_1:
2819	kvm_arch_hardware_unsetup();
2820out_free_0a:
2821	free_cpumask_var(cpus_hardware_enabled);
2822out_free_0:
2823	if (fault_page)
2824		__free_page(fault_page);
2825	if (hwpoison_page)
2826		__free_page(hwpoison_page);
2827	__free_page(bad_page);
2828out:
2829	kvm_arch_exit();
2830out_fail:
2831	return r;
2832}
2833EXPORT_SYMBOL_GPL(kvm_init);
2834
2835void kvm_exit(void)
2836{
2837	kvm_exit_debug();
2838	misc_deregister(&kvm_dev);
2839	kmem_cache_destroy(kvm_vcpu_cache);
2840	kvm_async_pf_deinit();
2841	unregister_syscore_ops(&kvm_syscore_ops);
2842	unregister_reboot_notifier(&kvm_reboot_notifier);
2843	unregister_cpu_notifier(&kvm_cpu_notifier);
2844	on_each_cpu(hardware_disable_nolock, NULL, 1);
2845	kvm_arch_hardware_unsetup();
2846	kvm_arch_exit();
2847	free_cpumask_var(cpus_hardware_enabled);
2848	__free_page(fault_page);
2849	__free_page(hwpoison_page);
2850	__free_page(bad_page);
2851}
2852EXPORT_SYMBOL_GPL(kvm_exit);