Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf.h"
   4#include "perf-sys.h"
   5
   6#include "util/cpumap.h"
   7#include "util/evlist.h"
   8#include "util/evsel.h"
   9#include "util/evsel_fprintf.h"
  10#include "util/mutex.h"
  11#include "util/symbol.h"
  12#include "util/thread.h"
  13#include "util/header.h"
  14#include "util/session.h"
  15#include "util/tool.h"
  16#include "util/cloexec.h"
  17#include "util/thread_map.h"
  18#include "util/color.h"
  19#include "util/stat.h"
  20#include "util/string2.h"
  21#include "util/callchain.h"
  22#include "util/time-utils.h"
  23
  24#include <subcmd/pager.h>
  25#include <subcmd/parse-options.h>
  26#include "util/trace-event.h"
  27
  28#include "util/debug.h"
  29#include "util/event.h"
 
  30
  31#include <linux/kernel.h>
  32#include <linux/log2.h>
  33#include <linux/zalloc.h>
  34#include <sys/prctl.h>
  35#include <sys/resource.h>
  36#include <inttypes.h>
  37
  38#include <errno.h>
  39#include <semaphore.h>
  40#include <pthread.h>
  41#include <math.h>
  42#include <api/fs/fs.h>
  43#include <perf/cpumap.h>
  44#include <linux/time64.h>
  45#include <linux/err.h>
  46
  47#include <linux/ctype.h>
  48
  49#define PR_SET_NAME		15               /* Set process name */
  50#define MAX_CPUS		4096
  51#define COMM_LEN		20
  52#define SYM_LEN			129
  53#define MAX_PID			1024000
  54
  55static const char *cpu_list;
  56static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
  57
  58struct sched_atom;
  59
  60struct task_desc {
  61	unsigned long		nr;
  62	unsigned long		pid;
  63	char			comm[COMM_LEN];
  64
  65	unsigned long		nr_events;
  66	unsigned long		curr_event;
  67	struct sched_atom	**atoms;
  68
  69	pthread_t		thread;
  70	sem_t			sleep_sem;
  71
  72	sem_t			ready_for_work;
  73	sem_t			work_done_sem;
  74
  75	u64			cpu_usage;
  76};
  77
  78enum sched_event_type {
  79	SCHED_EVENT_RUN,
  80	SCHED_EVENT_SLEEP,
  81	SCHED_EVENT_WAKEUP,
  82	SCHED_EVENT_MIGRATION,
  83};
  84
  85struct sched_atom {
  86	enum sched_event_type	type;
  87	int			specific_wait;
  88	u64			timestamp;
  89	u64			duration;
  90	unsigned long		nr;
  91	sem_t			*wait_sem;
  92	struct task_desc	*wakee;
  93};
  94
  95#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  96
  97/* task state bitmask, copied from include/linux/sched.h */
  98#define TASK_RUNNING		0
  99#define TASK_INTERRUPTIBLE	1
 100#define TASK_UNINTERRUPTIBLE	2
 101#define __TASK_STOPPED		4
 102#define __TASK_TRACED		8
 103/* in tsk->exit_state */
 104#define EXIT_DEAD		16
 105#define EXIT_ZOMBIE		32
 106#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
 107/* in tsk->state again */
 108#define TASK_DEAD		64
 109#define TASK_WAKEKILL		128
 110#define TASK_WAKING		256
 111#define TASK_PARKED		512
 112
 113enum thread_state {
 114	THREAD_SLEEPING = 0,
 115	THREAD_WAIT_CPU,
 116	THREAD_SCHED_IN,
 117	THREAD_IGNORE
 118};
 119
 120struct work_atom {
 121	struct list_head	list;
 122	enum thread_state	state;
 123	u64			sched_out_time;
 124	u64			wake_up_time;
 125	u64			sched_in_time;
 126	u64			runtime;
 127};
 128
 129struct work_atoms {
 130	struct list_head	work_list;
 131	struct thread		*thread;
 132	struct rb_node		node;
 133	u64			max_lat;
 134	u64			max_lat_start;
 135	u64			max_lat_end;
 136	u64			total_lat;
 137	u64			nb_atoms;
 138	u64			total_runtime;
 139	int			num_merged;
 140};
 141
 142typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 143
 144struct perf_sched;
 145
 146struct trace_sched_handler {
 147	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 148			    struct perf_sample *sample, struct machine *machine);
 149
 150	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 151			     struct perf_sample *sample, struct machine *machine);
 152
 153	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 154			    struct perf_sample *sample, struct machine *machine);
 155
 156	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 157	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 158			  struct machine *machine);
 159
 160	int (*migrate_task_event)(struct perf_sched *sched,
 161				  struct evsel *evsel,
 162				  struct perf_sample *sample,
 163				  struct machine *machine);
 164};
 165
 166#define COLOR_PIDS PERF_COLOR_BLUE
 167#define COLOR_CPUS PERF_COLOR_BG_RED
 168
 169struct perf_sched_map {
 170	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 171	struct perf_cpu		*comp_cpus;
 172	bool			 comp;
 173	struct perf_thread_map *color_pids;
 174	const char		*color_pids_str;
 175	struct perf_cpu_map	*color_cpus;
 176	const char		*color_cpus_str;
 177	struct perf_cpu_map	*cpus;
 178	const char		*cpus_str;
 179};
 180
 181struct perf_sched {
 182	struct perf_tool tool;
 183	const char	 *sort_order;
 184	unsigned long	 nr_tasks;
 185	struct task_desc **pid_to_task;
 186	struct task_desc **tasks;
 187	const struct trace_sched_handler *tp_handler;
 188	struct mutex	 start_work_mutex;
 189	struct mutex	 work_done_wait_mutex;
 190	int		 profile_cpu;
 191/*
 192 * Track the current task - that way we can know whether there's any
 193 * weird events, such as a task being switched away that is not current.
 194 */
 195	struct perf_cpu	 max_cpu;
 196	u32		 curr_pid[MAX_CPUS];
 197	struct thread	 *curr_thread[MAX_CPUS];
 198	char		 next_shortname1;
 199	char		 next_shortname2;
 200	unsigned int	 replay_repeat;
 201	unsigned long	 nr_run_events;
 202	unsigned long	 nr_sleep_events;
 203	unsigned long	 nr_wakeup_events;
 204	unsigned long	 nr_sleep_corrections;
 205	unsigned long	 nr_run_events_optimized;
 206	unsigned long	 targetless_wakeups;
 207	unsigned long	 multitarget_wakeups;
 208	unsigned long	 nr_runs;
 209	unsigned long	 nr_timestamps;
 210	unsigned long	 nr_unordered_timestamps;
 211	unsigned long	 nr_context_switch_bugs;
 212	unsigned long	 nr_events;
 213	unsigned long	 nr_lost_chunks;
 214	unsigned long	 nr_lost_events;
 215	u64		 run_measurement_overhead;
 216	u64		 sleep_measurement_overhead;
 217	u64		 start_time;
 218	u64		 cpu_usage;
 219	u64		 runavg_cpu_usage;
 220	u64		 parent_cpu_usage;
 221	u64		 runavg_parent_cpu_usage;
 222	u64		 sum_runtime;
 223	u64		 sum_fluct;
 224	u64		 run_avg;
 225	u64		 all_runtime;
 226	u64		 all_count;
 227	u64		 cpu_last_switched[MAX_CPUS];
 228	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 229	struct list_head sort_list, cmp_pid;
 230	bool force;
 231	bool skip_merge;
 232	struct perf_sched_map map;
 233
 234	/* options for timehist command */
 235	bool		summary;
 236	bool		summary_only;
 237	bool		idle_hist;
 238	bool		show_callchain;
 239	unsigned int	max_stack;
 240	bool		show_cpu_visual;
 241	bool		show_wakeups;
 242	bool		show_next;
 243	bool		show_migrations;
 244	bool		show_state;
 245	u64		skipped_samples;
 246	const char	*time_str;
 247	struct perf_time_interval ptime;
 248	struct perf_time_interval hist_time;
 249	volatile bool   thread_funcs_exit;
 250};
 251
 252/* per thread run time data */
 253struct thread_runtime {
 254	u64 last_time;      /* time of previous sched in/out event */
 255	u64 dt_run;         /* run time */
 256	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 257	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 258	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 259	u64 dt_delay;       /* time between wakeup and sched-in */
 260	u64 ready_to_run;   /* time of wakeup */
 261
 262	struct stats run_stats;
 263	u64 total_run_time;
 264	u64 total_sleep_time;
 265	u64 total_iowait_time;
 266	u64 total_preempt_time;
 267	u64 total_delay_time;
 268
 269	int last_state;
 270
 271	char shortname[3];
 272	bool comm_changed;
 273
 274	u64 migrations;
 275};
 276
 277/* per event run time data */
 278struct evsel_runtime {
 279	u64 *last_time; /* time this event was last seen per cpu */
 280	u32 ncpu;       /* highest cpu slot allocated */
 281};
 282
 283/* per cpu idle time data */
 284struct idle_thread_runtime {
 285	struct thread_runtime	tr;
 286	struct thread		*last_thread;
 287	struct rb_root_cached	sorted_root;
 288	struct callchain_root	callchain;
 289	struct callchain_cursor	cursor;
 290};
 291
 292/* track idle times per cpu */
 293static struct thread **idle_threads;
 294static int idle_max_cpu;
 295static char idle_comm[] = "<idle>";
 296
 297static u64 get_nsecs(void)
 298{
 299	struct timespec ts;
 300
 301	clock_gettime(CLOCK_MONOTONIC, &ts);
 302
 303	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 304}
 305
 306static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 307{
 308	u64 T0 = get_nsecs(), T1;
 309
 310	do {
 311		T1 = get_nsecs();
 312	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 313}
 314
 315static void sleep_nsecs(u64 nsecs)
 316{
 317	struct timespec ts;
 318
 319	ts.tv_nsec = nsecs % 999999999;
 320	ts.tv_sec = nsecs / 999999999;
 321
 322	nanosleep(&ts, NULL);
 323}
 324
 325static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 326{
 327	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 328	int i;
 329
 330	for (i = 0; i < 10; i++) {
 331		T0 = get_nsecs();
 332		burn_nsecs(sched, 0);
 333		T1 = get_nsecs();
 334		delta = T1-T0;
 335		min_delta = min(min_delta, delta);
 336	}
 337	sched->run_measurement_overhead = min_delta;
 338
 339	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 340}
 341
 342static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 343{
 344	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 345	int i;
 346
 347	for (i = 0; i < 10; i++) {
 348		T0 = get_nsecs();
 349		sleep_nsecs(10000);
 350		T1 = get_nsecs();
 351		delta = T1-T0;
 352		min_delta = min(min_delta, delta);
 353	}
 354	min_delta -= 10000;
 355	sched->sleep_measurement_overhead = min_delta;
 356
 357	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 358}
 359
 360static struct sched_atom *
 361get_new_event(struct task_desc *task, u64 timestamp)
 362{
 363	struct sched_atom *event = zalloc(sizeof(*event));
 364	unsigned long idx = task->nr_events;
 365	size_t size;
 366
 367	event->timestamp = timestamp;
 368	event->nr = idx;
 369
 370	task->nr_events++;
 371	size = sizeof(struct sched_atom *) * task->nr_events;
 372	task->atoms = realloc(task->atoms, size);
 373	BUG_ON(!task->atoms);
 374
 375	task->atoms[idx] = event;
 376
 377	return event;
 378}
 379
 380static struct sched_atom *last_event(struct task_desc *task)
 381{
 382	if (!task->nr_events)
 383		return NULL;
 384
 385	return task->atoms[task->nr_events - 1];
 386}
 387
 388static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 389				u64 timestamp, u64 duration)
 390{
 391	struct sched_atom *event, *curr_event = last_event(task);
 392
 393	/*
 394	 * optimize an existing RUN event by merging this one
 395	 * to it:
 396	 */
 397	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 398		sched->nr_run_events_optimized++;
 399		curr_event->duration += duration;
 400		return;
 401	}
 402
 403	event = get_new_event(task, timestamp);
 404
 405	event->type = SCHED_EVENT_RUN;
 406	event->duration = duration;
 407
 408	sched->nr_run_events++;
 409}
 410
 411static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 412				   u64 timestamp, struct task_desc *wakee)
 413{
 414	struct sched_atom *event, *wakee_event;
 415
 416	event = get_new_event(task, timestamp);
 417	event->type = SCHED_EVENT_WAKEUP;
 418	event->wakee = wakee;
 419
 420	wakee_event = last_event(wakee);
 421	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 422		sched->targetless_wakeups++;
 423		return;
 424	}
 425	if (wakee_event->wait_sem) {
 426		sched->multitarget_wakeups++;
 427		return;
 428	}
 429
 430	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 431	sem_init(wakee_event->wait_sem, 0, 0);
 432	wakee_event->specific_wait = 1;
 433	event->wait_sem = wakee_event->wait_sem;
 434
 435	sched->nr_wakeup_events++;
 436}
 437
 438static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 439				  u64 timestamp, u64 task_state __maybe_unused)
 440{
 441	struct sched_atom *event = get_new_event(task, timestamp);
 442
 443	event->type = SCHED_EVENT_SLEEP;
 444
 445	sched->nr_sleep_events++;
 446}
 447
 448static struct task_desc *register_pid(struct perf_sched *sched,
 449				      unsigned long pid, const char *comm)
 450{
 451	struct task_desc *task;
 452	static int pid_max;
 453
 454	if (sched->pid_to_task == NULL) {
 455		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 456			pid_max = MAX_PID;
 457		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 458	}
 459	if (pid >= (unsigned long)pid_max) {
 460		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 461			sizeof(struct task_desc *))) == NULL);
 462		while (pid >= (unsigned long)pid_max)
 463			sched->pid_to_task[pid_max++] = NULL;
 464	}
 465
 466	task = sched->pid_to_task[pid];
 467
 468	if (task)
 469		return task;
 470
 471	task = zalloc(sizeof(*task));
 472	task->pid = pid;
 473	task->nr = sched->nr_tasks;
 474	strcpy(task->comm, comm);
 475	/*
 476	 * every task starts in sleeping state - this gets ignored
 477	 * if there's no wakeup pointing to this sleep state:
 478	 */
 479	add_sched_event_sleep(sched, task, 0, 0);
 480
 481	sched->pid_to_task[pid] = task;
 482	sched->nr_tasks++;
 483	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 484	BUG_ON(!sched->tasks);
 485	sched->tasks[task->nr] = task;
 486
 487	if (verbose > 0)
 488		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 489
 490	return task;
 491}
 492
 493
 494static void print_task_traces(struct perf_sched *sched)
 495{
 496	struct task_desc *task;
 497	unsigned long i;
 498
 499	for (i = 0; i < sched->nr_tasks; i++) {
 500		task = sched->tasks[i];
 501		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 502			task->nr, task->comm, task->pid, task->nr_events);
 503	}
 504}
 505
 506static void add_cross_task_wakeups(struct perf_sched *sched)
 507{
 508	struct task_desc *task1, *task2;
 509	unsigned long i, j;
 510
 511	for (i = 0; i < sched->nr_tasks; i++) {
 512		task1 = sched->tasks[i];
 513		j = i + 1;
 514		if (j == sched->nr_tasks)
 515			j = 0;
 516		task2 = sched->tasks[j];
 517		add_sched_event_wakeup(sched, task1, 0, task2);
 518	}
 519}
 520
 521static void perf_sched__process_event(struct perf_sched *sched,
 522				      struct sched_atom *atom)
 523{
 524	int ret = 0;
 525
 526	switch (atom->type) {
 527		case SCHED_EVENT_RUN:
 528			burn_nsecs(sched, atom->duration);
 529			break;
 530		case SCHED_EVENT_SLEEP:
 531			if (atom->wait_sem)
 532				ret = sem_wait(atom->wait_sem);
 533			BUG_ON(ret);
 534			break;
 535		case SCHED_EVENT_WAKEUP:
 536			if (atom->wait_sem)
 537				ret = sem_post(atom->wait_sem);
 538			BUG_ON(ret);
 539			break;
 540		case SCHED_EVENT_MIGRATION:
 541			break;
 542		default:
 543			BUG_ON(1);
 544	}
 545}
 546
 547static u64 get_cpu_usage_nsec_parent(void)
 548{
 549	struct rusage ru;
 550	u64 sum;
 551	int err;
 552
 553	err = getrusage(RUSAGE_SELF, &ru);
 554	BUG_ON(err);
 555
 556	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 557	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 558
 559	return sum;
 560}
 561
 562static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 563{
 564	struct perf_event_attr attr;
 565	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 566	int fd;
 567	struct rlimit limit;
 568	bool need_privilege = false;
 569
 570	memset(&attr, 0, sizeof(attr));
 571
 572	attr.type = PERF_TYPE_SOFTWARE;
 573	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 574
 575force_again:
 576	fd = sys_perf_event_open(&attr, 0, -1, -1,
 577				 perf_event_open_cloexec_flag());
 578
 579	if (fd < 0) {
 580		if (errno == EMFILE) {
 581			if (sched->force) {
 582				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 583				limit.rlim_cur += sched->nr_tasks - cur_task;
 584				if (limit.rlim_cur > limit.rlim_max) {
 585					limit.rlim_max = limit.rlim_cur;
 586					need_privilege = true;
 587				}
 588				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 589					if (need_privilege && errno == EPERM)
 590						strcpy(info, "Need privilege\n");
 591				} else
 592					goto force_again;
 593			} else
 594				strcpy(info, "Have a try with -f option\n");
 595		}
 596		pr_err("Error: sys_perf_event_open() syscall returned "
 597		       "with %d (%s)\n%s", fd,
 598		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 599		exit(EXIT_FAILURE);
 600	}
 601	return fd;
 602}
 603
 604static u64 get_cpu_usage_nsec_self(int fd)
 605{
 606	u64 runtime;
 607	int ret;
 608
 609	ret = read(fd, &runtime, sizeof(runtime));
 610	BUG_ON(ret != sizeof(runtime));
 611
 612	return runtime;
 613}
 614
 615struct sched_thread_parms {
 616	struct task_desc  *task;
 617	struct perf_sched *sched;
 618	int fd;
 619};
 620
 621static void *thread_func(void *ctx)
 622{
 623	struct sched_thread_parms *parms = ctx;
 624	struct task_desc *this_task = parms->task;
 625	struct perf_sched *sched = parms->sched;
 626	u64 cpu_usage_0, cpu_usage_1;
 627	unsigned long i, ret;
 628	char comm2[22];
 629	int fd = parms->fd;
 630
 631	zfree(&parms);
 632
 633	sprintf(comm2, ":%s", this_task->comm);
 634	prctl(PR_SET_NAME, comm2);
 635	if (fd < 0)
 636		return NULL;
 637
 638	while (!sched->thread_funcs_exit) {
 639		ret = sem_post(&this_task->ready_for_work);
 640		BUG_ON(ret);
 641		mutex_lock(&sched->start_work_mutex);
 642		mutex_unlock(&sched->start_work_mutex);
 643
 644		cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 645
 646		for (i = 0; i < this_task->nr_events; i++) {
 647			this_task->curr_event = i;
 648			perf_sched__process_event(sched, this_task->atoms[i]);
 649		}
 650
 651		cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 652		this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 653		ret = sem_post(&this_task->work_done_sem);
 654		BUG_ON(ret);
 655
 656		mutex_lock(&sched->work_done_wait_mutex);
 657		mutex_unlock(&sched->work_done_wait_mutex);
 658	}
 659	return NULL;
 660}
 661
 662static void create_tasks(struct perf_sched *sched)
 663	EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
 664	EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
 665{
 666	struct task_desc *task;
 667	pthread_attr_t attr;
 668	unsigned long i;
 669	int err;
 670
 671	err = pthread_attr_init(&attr);
 672	BUG_ON(err);
 673	err = pthread_attr_setstacksize(&attr,
 674			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
 675	BUG_ON(err);
 676	mutex_lock(&sched->start_work_mutex);
 677	mutex_lock(&sched->work_done_wait_mutex);
 678	for (i = 0; i < sched->nr_tasks; i++) {
 679		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 680		BUG_ON(parms == NULL);
 681		parms->task = task = sched->tasks[i];
 682		parms->sched = sched;
 683		parms->fd = self_open_counters(sched, i);
 684		sem_init(&task->sleep_sem, 0, 0);
 685		sem_init(&task->ready_for_work, 0, 0);
 686		sem_init(&task->work_done_sem, 0, 0);
 687		task->curr_event = 0;
 688		err = pthread_create(&task->thread, &attr, thread_func, parms);
 689		BUG_ON(err);
 690	}
 691}
 692
 693static void destroy_tasks(struct perf_sched *sched)
 694	UNLOCK_FUNCTION(sched->start_work_mutex)
 695	UNLOCK_FUNCTION(sched->work_done_wait_mutex)
 696{
 697	struct task_desc *task;
 698	unsigned long i;
 699	int err;
 700
 701	mutex_unlock(&sched->start_work_mutex);
 702	mutex_unlock(&sched->work_done_wait_mutex);
 703	/* Get rid of threads so they won't be upset by mutex destrunction */
 704	for (i = 0; i < sched->nr_tasks; i++) {
 705		task = sched->tasks[i];
 706		err = pthread_join(task->thread, NULL);
 707		BUG_ON(err);
 708		sem_destroy(&task->sleep_sem);
 709		sem_destroy(&task->ready_for_work);
 710		sem_destroy(&task->work_done_sem);
 711	}
 712}
 713
 714static void wait_for_tasks(struct perf_sched *sched)
 715	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 716	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 717{
 718	u64 cpu_usage_0, cpu_usage_1;
 719	struct task_desc *task;
 720	unsigned long i, ret;
 721
 722	sched->start_time = get_nsecs();
 723	sched->cpu_usage = 0;
 724	mutex_unlock(&sched->work_done_wait_mutex);
 725
 726	for (i = 0; i < sched->nr_tasks; i++) {
 727		task = sched->tasks[i];
 728		ret = sem_wait(&task->ready_for_work);
 729		BUG_ON(ret);
 730		sem_init(&task->ready_for_work, 0, 0);
 731	}
 732	mutex_lock(&sched->work_done_wait_mutex);
 733
 734	cpu_usage_0 = get_cpu_usage_nsec_parent();
 735
 736	mutex_unlock(&sched->start_work_mutex);
 737
 738	for (i = 0; i < sched->nr_tasks; i++) {
 739		task = sched->tasks[i];
 740		ret = sem_wait(&task->work_done_sem);
 741		BUG_ON(ret);
 742		sem_init(&task->work_done_sem, 0, 0);
 743		sched->cpu_usage += task->cpu_usage;
 744		task->cpu_usage = 0;
 745	}
 746
 747	cpu_usage_1 = get_cpu_usage_nsec_parent();
 748	if (!sched->runavg_cpu_usage)
 749		sched->runavg_cpu_usage = sched->cpu_usage;
 750	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 751
 752	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 753	if (!sched->runavg_parent_cpu_usage)
 754		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 755	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 756					 sched->parent_cpu_usage)/sched->replay_repeat;
 757
 758	mutex_lock(&sched->start_work_mutex);
 759
 760	for (i = 0; i < sched->nr_tasks; i++) {
 761		task = sched->tasks[i];
 762		sem_init(&task->sleep_sem, 0, 0);
 763		task->curr_event = 0;
 764	}
 765}
 766
 767static void run_one_test(struct perf_sched *sched)
 768	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 769	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 770{
 771	u64 T0, T1, delta, avg_delta, fluct;
 772
 773	T0 = get_nsecs();
 774	wait_for_tasks(sched);
 775	T1 = get_nsecs();
 776
 777	delta = T1 - T0;
 778	sched->sum_runtime += delta;
 779	sched->nr_runs++;
 780
 781	avg_delta = sched->sum_runtime / sched->nr_runs;
 782	if (delta < avg_delta)
 783		fluct = avg_delta - delta;
 784	else
 785		fluct = delta - avg_delta;
 786	sched->sum_fluct += fluct;
 787	if (!sched->run_avg)
 788		sched->run_avg = delta;
 789	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 790
 791	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 792
 793	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 794
 795	printf("cpu: %0.2f / %0.2f",
 796		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 797
 798#if 0
 799	/*
 800	 * rusage statistics done by the parent, these are less
 801	 * accurate than the sched->sum_exec_runtime based statistics:
 802	 */
 803	printf(" [%0.2f / %0.2f]",
 804		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 805		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 806#endif
 807
 808	printf("\n");
 809
 810	if (sched->nr_sleep_corrections)
 811		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 812	sched->nr_sleep_corrections = 0;
 813}
 814
 815static void test_calibrations(struct perf_sched *sched)
 816{
 817	u64 T0, T1;
 818
 819	T0 = get_nsecs();
 820	burn_nsecs(sched, NSEC_PER_MSEC);
 821	T1 = get_nsecs();
 822
 823	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 824
 825	T0 = get_nsecs();
 826	sleep_nsecs(NSEC_PER_MSEC);
 827	T1 = get_nsecs();
 828
 829	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 830}
 831
 832static int
 833replay_wakeup_event(struct perf_sched *sched,
 834		    struct evsel *evsel, struct perf_sample *sample,
 835		    struct machine *machine __maybe_unused)
 836{
 837	const char *comm = evsel__strval(evsel, sample, "comm");
 838	const u32 pid	 = evsel__intval(evsel, sample, "pid");
 839	struct task_desc *waker, *wakee;
 840
 841	if (verbose > 0) {
 842		printf("sched_wakeup event %p\n", evsel);
 843
 844		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 845	}
 846
 847	waker = register_pid(sched, sample->tid, "<unknown>");
 848	wakee = register_pid(sched, pid, comm);
 849
 850	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 851	return 0;
 852}
 853
 854static int replay_switch_event(struct perf_sched *sched,
 855			       struct evsel *evsel,
 856			       struct perf_sample *sample,
 857			       struct machine *machine __maybe_unused)
 858{
 859	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
 860		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
 861	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
 862		  next_pid = evsel__intval(evsel, sample, "next_pid");
 863	const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
 864	struct task_desc *prev, __maybe_unused *next;
 865	u64 timestamp0, timestamp = sample->time;
 866	int cpu = sample->cpu;
 867	s64 delta;
 868
 869	if (verbose > 0)
 870		printf("sched_switch event %p\n", evsel);
 871
 872	if (cpu >= MAX_CPUS || cpu < 0)
 873		return 0;
 874
 875	timestamp0 = sched->cpu_last_switched[cpu];
 876	if (timestamp0)
 877		delta = timestamp - timestamp0;
 878	else
 879		delta = 0;
 880
 881	if (delta < 0) {
 882		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 883		return -1;
 884	}
 885
 886	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 887		 prev_comm, prev_pid, next_comm, next_pid, delta);
 888
 889	prev = register_pid(sched, prev_pid, prev_comm);
 890	next = register_pid(sched, next_pid, next_comm);
 891
 892	sched->cpu_last_switched[cpu] = timestamp;
 893
 894	add_sched_event_run(sched, prev, timestamp, delta);
 895	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 896
 897	return 0;
 898}
 899
 900static int replay_fork_event(struct perf_sched *sched,
 901			     union perf_event *event,
 902			     struct machine *machine)
 903{
 904	struct thread *child, *parent;
 905
 906	child = machine__findnew_thread(machine, event->fork.pid,
 907					event->fork.tid);
 908	parent = machine__findnew_thread(machine, event->fork.ppid,
 909					 event->fork.ptid);
 910
 911	if (child == NULL || parent == NULL) {
 912		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 913				 child, parent);
 914		goto out_put;
 915	}
 916
 917	if (verbose > 0) {
 918		printf("fork event\n");
 919		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 920		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 921	}
 922
 923	register_pid(sched, parent->tid, thread__comm_str(parent));
 924	register_pid(sched, child->tid, thread__comm_str(child));
 925out_put:
 926	thread__put(child);
 927	thread__put(parent);
 928	return 0;
 929}
 930
 931struct sort_dimension {
 932	const char		*name;
 933	sort_fn_t		cmp;
 934	struct list_head	list;
 935};
 936
 937/*
 938 * handle runtime stats saved per thread
 939 */
 940static struct thread_runtime *thread__init_runtime(struct thread *thread)
 941{
 942	struct thread_runtime *r;
 943
 944	r = zalloc(sizeof(struct thread_runtime));
 945	if (!r)
 946		return NULL;
 947
 948	init_stats(&r->run_stats);
 949	thread__set_priv(thread, r);
 950
 951	return r;
 952}
 953
 954static struct thread_runtime *thread__get_runtime(struct thread *thread)
 955{
 956	struct thread_runtime *tr;
 957
 958	tr = thread__priv(thread);
 959	if (tr == NULL) {
 960		tr = thread__init_runtime(thread);
 961		if (tr == NULL)
 962			pr_debug("Failed to malloc memory for runtime data.\n");
 963	}
 964
 965	return tr;
 966}
 967
 968static int
 969thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 970{
 971	struct sort_dimension *sort;
 972	int ret = 0;
 973
 974	BUG_ON(list_empty(list));
 975
 976	list_for_each_entry(sort, list, list) {
 977		ret = sort->cmp(l, r);
 978		if (ret)
 979			return ret;
 980	}
 981
 982	return ret;
 983}
 984
 985static struct work_atoms *
 986thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 987			 struct list_head *sort_list)
 988{
 989	struct rb_node *node = root->rb_root.rb_node;
 990	struct work_atoms key = { .thread = thread };
 991
 992	while (node) {
 993		struct work_atoms *atoms;
 994		int cmp;
 995
 996		atoms = container_of(node, struct work_atoms, node);
 997
 998		cmp = thread_lat_cmp(sort_list, &key, atoms);
 999		if (cmp > 0)
1000			node = node->rb_left;
1001		else if (cmp < 0)
1002			node = node->rb_right;
1003		else {
1004			BUG_ON(thread != atoms->thread);
1005			return atoms;
1006		}
1007	}
1008	return NULL;
1009}
1010
1011static void
1012__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1013			 struct list_head *sort_list)
1014{
1015	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1016	bool leftmost = true;
1017
1018	while (*new) {
1019		struct work_atoms *this;
1020		int cmp;
1021
1022		this = container_of(*new, struct work_atoms, node);
1023		parent = *new;
1024
1025		cmp = thread_lat_cmp(sort_list, data, this);
1026
1027		if (cmp > 0)
1028			new = &((*new)->rb_left);
1029		else {
1030			new = &((*new)->rb_right);
1031			leftmost = false;
1032		}
1033	}
1034
1035	rb_link_node(&data->node, parent, new);
1036	rb_insert_color_cached(&data->node, root, leftmost);
1037}
1038
1039static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1040{
1041	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1042	if (!atoms) {
1043		pr_err("No memory at %s\n", __func__);
1044		return -1;
1045	}
1046
1047	atoms->thread = thread__get(thread);
1048	INIT_LIST_HEAD(&atoms->work_list);
1049	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1050	return 0;
1051}
1052
1053static char sched_out_state(u64 prev_state)
1054{
1055	const char *str = TASK_STATE_TO_CHAR_STR;
1056
1057	return str[prev_state];
1058}
1059
1060static int
1061add_sched_out_event(struct work_atoms *atoms,
1062		    char run_state,
1063		    u64 timestamp)
1064{
1065	struct work_atom *atom = zalloc(sizeof(*atom));
1066	if (!atom) {
1067		pr_err("Non memory at %s", __func__);
1068		return -1;
1069	}
1070
1071	atom->sched_out_time = timestamp;
1072
1073	if (run_state == 'R') {
1074		atom->state = THREAD_WAIT_CPU;
1075		atom->wake_up_time = atom->sched_out_time;
1076	}
1077
1078	list_add_tail(&atom->list, &atoms->work_list);
1079	return 0;
1080}
1081
1082static void
1083add_runtime_event(struct work_atoms *atoms, u64 delta,
1084		  u64 timestamp __maybe_unused)
1085{
1086	struct work_atom *atom;
1087
1088	BUG_ON(list_empty(&atoms->work_list));
1089
1090	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1091
1092	atom->runtime += delta;
1093	atoms->total_runtime += delta;
1094}
1095
1096static void
1097add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1098{
1099	struct work_atom *atom;
1100	u64 delta;
1101
1102	if (list_empty(&atoms->work_list))
1103		return;
1104
1105	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1106
1107	if (atom->state != THREAD_WAIT_CPU)
1108		return;
1109
1110	if (timestamp < atom->wake_up_time) {
1111		atom->state = THREAD_IGNORE;
1112		return;
1113	}
1114
1115	atom->state = THREAD_SCHED_IN;
1116	atom->sched_in_time = timestamp;
1117
1118	delta = atom->sched_in_time - atom->wake_up_time;
1119	atoms->total_lat += delta;
1120	if (delta > atoms->max_lat) {
1121		atoms->max_lat = delta;
1122		atoms->max_lat_start = atom->wake_up_time;
1123		atoms->max_lat_end = timestamp;
1124	}
1125	atoms->nb_atoms++;
1126}
1127
1128static int latency_switch_event(struct perf_sched *sched,
1129				struct evsel *evsel,
1130				struct perf_sample *sample,
1131				struct machine *machine)
1132{
1133	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1134		  next_pid = evsel__intval(evsel, sample, "next_pid");
1135	const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1136	struct work_atoms *out_events, *in_events;
1137	struct thread *sched_out, *sched_in;
1138	u64 timestamp0, timestamp = sample->time;
1139	int cpu = sample->cpu, err = -1;
1140	s64 delta;
1141
1142	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1143
1144	timestamp0 = sched->cpu_last_switched[cpu];
1145	sched->cpu_last_switched[cpu] = timestamp;
1146	if (timestamp0)
1147		delta = timestamp - timestamp0;
1148	else
1149		delta = 0;
1150
1151	if (delta < 0) {
1152		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1153		return -1;
1154	}
1155
1156	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1157	sched_in = machine__findnew_thread(machine, -1, next_pid);
1158	if (sched_out == NULL || sched_in == NULL)
1159		goto out_put;
1160
1161	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1162	if (!out_events) {
1163		if (thread_atoms_insert(sched, sched_out))
1164			goto out_put;
1165		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1166		if (!out_events) {
1167			pr_err("out-event: Internal tree error");
1168			goto out_put;
1169		}
1170	}
1171	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1172		return -1;
1173
1174	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1175	if (!in_events) {
1176		if (thread_atoms_insert(sched, sched_in))
1177			goto out_put;
1178		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1179		if (!in_events) {
1180			pr_err("in-event: Internal tree error");
1181			goto out_put;
1182		}
1183		/*
1184		 * Take came in we have not heard about yet,
1185		 * add in an initial atom in runnable state:
1186		 */
1187		if (add_sched_out_event(in_events, 'R', timestamp))
1188			goto out_put;
1189	}
1190	add_sched_in_event(in_events, timestamp);
1191	err = 0;
1192out_put:
1193	thread__put(sched_out);
1194	thread__put(sched_in);
1195	return err;
1196}
1197
1198static int latency_runtime_event(struct perf_sched *sched,
1199				 struct evsel *evsel,
1200				 struct perf_sample *sample,
1201				 struct machine *machine)
1202{
1203	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1204	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1205	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1206	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1207	u64 timestamp = sample->time;
1208	int cpu = sample->cpu, err = -1;
1209
1210	if (thread == NULL)
1211		return -1;
1212
1213	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1214	if (!atoms) {
1215		if (thread_atoms_insert(sched, thread))
1216			goto out_put;
1217		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1218		if (!atoms) {
1219			pr_err("in-event: Internal tree error");
1220			goto out_put;
1221		}
1222		if (add_sched_out_event(atoms, 'R', timestamp))
1223			goto out_put;
1224	}
1225
1226	add_runtime_event(atoms, runtime, timestamp);
1227	err = 0;
1228out_put:
1229	thread__put(thread);
1230	return err;
1231}
1232
1233static int latency_wakeup_event(struct perf_sched *sched,
1234				struct evsel *evsel,
1235				struct perf_sample *sample,
1236				struct machine *machine)
1237{
1238	const u32 pid	  = evsel__intval(evsel, sample, "pid");
1239	struct work_atoms *atoms;
1240	struct work_atom *atom;
1241	struct thread *wakee;
1242	u64 timestamp = sample->time;
1243	int err = -1;
1244
1245	wakee = machine__findnew_thread(machine, -1, pid);
1246	if (wakee == NULL)
1247		return -1;
1248	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1249	if (!atoms) {
1250		if (thread_atoms_insert(sched, wakee))
1251			goto out_put;
1252		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1253		if (!atoms) {
1254			pr_err("wakeup-event: Internal tree error");
1255			goto out_put;
1256		}
1257		if (add_sched_out_event(atoms, 'S', timestamp))
1258			goto out_put;
1259	}
1260
1261	BUG_ON(list_empty(&atoms->work_list));
1262
1263	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1264
1265	/*
1266	 * As we do not guarantee the wakeup event happens when
1267	 * task is out of run queue, also may happen when task is
1268	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1269	 * then we should not set the ->wake_up_time when wake up a
1270	 * task which is on run queue.
1271	 *
1272	 * You WILL be missing events if you've recorded only
1273	 * one CPU, or are only looking at only one, so don't
1274	 * skip in this case.
1275	 */
1276	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1277		goto out_ok;
1278
1279	sched->nr_timestamps++;
1280	if (atom->sched_out_time > timestamp) {
1281		sched->nr_unordered_timestamps++;
1282		goto out_ok;
1283	}
1284
1285	atom->state = THREAD_WAIT_CPU;
1286	atom->wake_up_time = timestamp;
1287out_ok:
1288	err = 0;
1289out_put:
1290	thread__put(wakee);
1291	return err;
1292}
1293
1294static int latency_migrate_task_event(struct perf_sched *sched,
1295				      struct evsel *evsel,
1296				      struct perf_sample *sample,
1297				      struct machine *machine)
1298{
1299	const u32 pid = evsel__intval(evsel, sample, "pid");
1300	u64 timestamp = sample->time;
1301	struct work_atoms *atoms;
1302	struct work_atom *atom;
1303	struct thread *migrant;
1304	int err = -1;
1305
1306	/*
1307	 * Only need to worry about migration when profiling one CPU.
1308	 */
1309	if (sched->profile_cpu == -1)
1310		return 0;
1311
1312	migrant = machine__findnew_thread(machine, -1, pid);
1313	if (migrant == NULL)
1314		return -1;
1315	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1316	if (!atoms) {
1317		if (thread_atoms_insert(sched, migrant))
1318			goto out_put;
1319		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1320		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1321		if (!atoms) {
1322			pr_err("migration-event: Internal tree error");
1323			goto out_put;
1324		}
1325		if (add_sched_out_event(atoms, 'R', timestamp))
1326			goto out_put;
1327	}
1328
1329	BUG_ON(list_empty(&atoms->work_list));
1330
1331	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1332	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1333
1334	sched->nr_timestamps++;
1335
1336	if (atom->sched_out_time > timestamp)
1337		sched->nr_unordered_timestamps++;
1338	err = 0;
1339out_put:
1340	thread__put(migrant);
1341	return err;
1342}
1343
1344static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1345{
1346	int i;
1347	int ret;
1348	u64 avg;
1349	char max_lat_start[32], max_lat_end[32];
1350
1351	if (!work_list->nb_atoms)
1352		return;
1353	/*
1354	 * Ignore idle threads:
1355	 */
1356	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1357		return;
1358
1359	sched->all_runtime += work_list->total_runtime;
1360	sched->all_count   += work_list->nb_atoms;
1361
1362	if (work_list->num_merged > 1)
1363		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1364	else
1365		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
 
 
 
1366
1367	for (i = 0; i < 24 - ret; i++)
1368		printf(" ");
1369
1370	avg = work_list->total_lat / work_list->nb_atoms;
1371	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1372	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1373
1374	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1375	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1376		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1377		 (double)work_list->max_lat / NSEC_PER_MSEC,
1378		 max_lat_start, max_lat_end);
1379}
1380
1381static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1382{
1383	if (l->thread == r->thread)
 
 
1384		return 0;
1385	if (l->thread->tid < r->thread->tid)
 
 
1386		return -1;
1387	if (l->thread->tid > r->thread->tid)
1388		return 1;
1389	return (int)(l->thread - r->thread);
1390}
1391
1392static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1393{
1394	u64 avgl, avgr;
1395
1396	if (!l->nb_atoms)
1397		return -1;
1398
1399	if (!r->nb_atoms)
1400		return 1;
1401
1402	avgl = l->total_lat / l->nb_atoms;
1403	avgr = r->total_lat / r->nb_atoms;
1404
1405	if (avgl < avgr)
1406		return -1;
1407	if (avgl > avgr)
1408		return 1;
1409
1410	return 0;
1411}
1412
1413static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1414{
1415	if (l->max_lat < r->max_lat)
1416		return -1;
1417	if (l->max_lat > r->max_lat)
1418		return 1;
1419
1420	return 0;
1421}
1422
1423static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1424{
1425	if (l->nb_atoms < r->nb_atoms)
1426		return -1;
1427	if (l->nb_atoms > r->nb_atoms)
1428		return 1;
1429
1430	return 0;
1431}
1432
1433static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1434{
1435	if (l->total_runtime < r->total_runtime)
1436		return -1;
1437	if (l->total_runtime > r->total_runtime)
1438		return 1;
1439
1440	return 0;
1441}
1442
1443static int sort_dimension__add(const char *tok, struct list_head *list)
1444{
1445	size_t i;
1446	static struct sort_dimension avg_sort_dimension = {
1447		.name = "avg",
1448		.cmp  = avg_cmp,
1449	};
1450	static struct sort_dimension max_sort_dimension = {
1451		.name = "max",
1452		.cmp  = max_cmp,
1453	};
1454	static struct sort_dimension pid_sort_dimension = {
1455		.name = "pid",
1456		.cmp  = pid_cmp,
1457	};
1458	static struct sort_dimension runtime_sort_dimension = {
1459		.name = "runtime",
1460		.cmp  = runtime_cmp,
1461	};
1462	static struct sort_dimension switch_sort_dimension = {
1463		.name = "switch",
1464		.cmp  = switch_cmp,
1465	};
1466	struct sort_dimension *available_sorts[] = {
1467		&pid_sort_dimension,
1468		&avg_sort_dimension,
1469		&max_sort_dimension,
1470		&switch_sort_dimension,
1471		&runtime_sort_dimension,
1472	};
1473
1474	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1475		if (!strcmp(available_sorts[i]->name, tok)) {
1476			list_add_tail(&available_sorts[i]->list, list);
1477
1478			return 0;
1479		}
1480	}
1481
1482	return -1;
1483}
1484
1485static void perf_sched__sort_lat(struct perf_sched *sched)
1486{
1487	struct rb_node *node;
1488	struct rb_root_cached *root = &sched->atom_root;
1489again:
1490	for (;;) {
1491		struct work_atoms *data;
1492		node = rb_first_cached(root);
1493		if (!node)
1494			break;
1495
1496		rb_erase_cached(node, root);
1497		data = rb_entry(node, struct work_atoms, node);
1498		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1499	}
1500	if (root == &sched->atom_root) {
1501		root = &sched->merged_atom_root;
1502		goto again;
1503	}
1504}
1505
1506static int process_sched_wakeup_event(struct perf_tool *tool,
1507				      struct evsel *evsel,
1508				      struct perf_sample *sample,
1509				      struct machine *machine)
1510{
1511	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1512
1513	if (sched->tp_handler->wakeup_event)
1514		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1515
1516	return 0;
1517}
1518
 
 
 
 
 
 
 
 
1519union map_priv {
1520	void	*ptr;
1521	bool	 color;
1522};
1523
1524static bool thread__has_color(struct thread *thread)
1525{
1526	union map_priv priv = {
1527		.ptr = thread__priv(thread),
1528	};
1529
1530	return priv.color;
1531}
1532
1533static struct thread*
1534map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1535{
1536	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1537	union map_priv priv = {
1538		.color = false,
1539	};
1540
1541	if (!sched->map.color_pids || !thread || thread__priv(thread))
1542		return thread;
1543
1544	if (thread_map__has(sched->map.color_pids, tid))
1545		priv.color = true;
1546
1547	thread__set_priv(thread, priv.ptr);
1548	return thread;
1549}
1550
1551static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1552			    struct perf_sample *sample, struct machine *machine)
1553{
1554	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1555	struct thread *sched_in;
1556	struct thread_runtime *tr;
1557	int new_shortname;
1558	u64 timestamp0, timestamp = sample->time;
1559	s64 delta;
1560	int i;
1561	struct perf_cpu this_cpu = {
1562		.cpu = sample->cpu,
1563	};
1564	int cpus_nr;
1565	bool new_cpu = false;
1566	const char *color = PERF_COLOR_NORMAL;
1567	char stimestamp[32];
1568
1569	BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1570
1571	if (this_cpu.cpu > sched->max_cpu.cpu)
1572		sched->max_cpu = this_cpu;
1573
1574	if (sched->map.comp) {
1575		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1576		if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1577			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1578			new_cpu = true;
1579		}
1580	} else
1581		cpus_nr = sched->max_cpu.cpu;
1582
1583	timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1584	sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1585	if (timestamp0)
1586		delta = timestamp - timestamp0;
1587	else
1588		delta = 0;
1589
1590	if (delta < 0) {
1591		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1592		return -1;
1593	}
1594
1595	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1596	if (sched_in == NULL)
1597		return -1;
1598
1599	tr = thread__get_runtime(sched_in);
1600	if (tr == NULL) {
1601		thread__put(sched_in);
1602		return -1;
1603	}
1604
1605	sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1606
1607	printf("  ");
1608
1609	new_shortname = 0;
1610	if (!tr->shortname[0]) {
1611		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1612			/*
1613			 * Don't allocate a letter-number for swapper:0
1614			 * as a shortname. Instead, we use '.' for it.
1615			 */
1616			tr->shortname[0] = '.';
1617			tr->shortname[1] = ' ';
1618		} else {
1619			tr->shortname[0] = sched->next_shortname1;
1620			tr->shortname[1] = sched->next_shortname2;
1621
1622			if (sched->next_shortname1 < 'Z') {
1623				sched->next_shortname1++;
1624			} else {
1625				sched->next_shortname1 = 'A';
1626				if (sched->next_shortname2 < '9')
1627					sched->next_shortname2++;
1628				else
1629					sched->next_shortname2 = '0';
1630			}
1631		}
1632		new_shortname = 1;
1633	}
1634
1635	for (i = 0; i < cpus_nr; i++) {
1636		struct perf_cpu cpu = {
1637			.cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1638		};
1639		struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1640		struct thread_runtime *curr_tr;
1641		const char *pid_color = color;
1642		const char *cpu_color = color;
1643
1644		if (curr_thread && thread__has_color(curr_thread))
1645			pid_color = COLOR_PIDS;
1646
1647		if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, cpu))
1648			continue;
1649
1650		if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1651			cpu_color = COLOR_CPUS;
1652
1653		if (cpu.cpu != this_cpu.cpu)
1654			color_fprintf(stdout, color, " ");
1655		else
1656			color_fprintf(stdout, cpu_color, "*");
1657
1658		if (sched->curr_thread[cpu.cpu]) {
1659			curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1660			if (curr_tr == NULL) {
1661				thread__put(sched_in);
1662				return -1;
1663			}
1664			color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1665		} else
1666			color_fprintf(stdout, color, "   ");
1667	}
1668
1669	if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1670		goto out;
1671
1672	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1673	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1674	if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1675		const char *pid_color = color;
1676
1677		if (thread__has_color(sched_in))
1678			pid_color = COLOR_PIDS;
1679
1680		color_fprintf(stdout, pid_color, "%s => %s:%d",
1681		       tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1682		tr->comm_changed = false;
1683	}
1684
1685	if (sched->map.comp && new_cpu)
1686		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1687
1688out:
1689	color_fprintf(stdout, color, "\n");
1690
1691	thread__put(sched_in);
1692
1693	return 0;
1694}
1695
1696static int process_sched_switch_event(struct perf_tool *tool,
1697				      struct evsel *evsel,
1698				      struct perf_sample *sample,
1699				      struct machine *machine)
1700{
1701	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1702	int this_cpu = sample->cpu, err = 0;
1703	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1704	    next_pid = evsel__intval(evsel, sample, "next_pid");
1705
1706	if (sched->curr_pid[this_cpu] != (u32)-1) {
1707		/*
1708		 * Are we trying to switch away a PID that is
1709		 * not current?
1710		 */
1711		if (sched->curr_pid[this_cpu] != prev_pid)
1712			sched->nr_context_switch_bugs++;
1713	}
1714
1715	if (sched->tp_handler->switch_event)
1716		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1717
1718	sched->curr_pid[this_cpu] = next_pid;
1719	return err;
1720}
1721
1722static int process_sched_runtime_event(struct perf_tool *tool,
1723				       struct evsel *evsel,
1724				       struct perf_sample *sample,
1725				       struct machine *machine)
1726{
1727	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1728
1729	if (sched->tp_handler->runtime_event)
1730		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1731
1732	return 0;
1733}
1734
1735static int perf_sched__process_fork_event(struct perf_tool *tool,
1736					  union perf_event *event,
1737					  struct perf_sample *sample,
1738					  struct machine *machine)
1739{
1740	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1741
1742	/* run the fork event through the perf machinery */
1743	perf_event__process_fork(tool, event, sample, machine);
1744
1745	/* and then run additional processing needed for this command */
1746	if (sched->tp_handler->fork_event)
1747		return sched->tp_handler->fork_event(sched, event, machine);
1748
1749	return 0;
1750}
1751
1752static int process_sched_migrate_task_event(struct perf_tool *tool,
1753					    struct evsel *evsel,
1754					    struct perf_sample *sample,
1755					    struct machine *machine)
1756{
1757	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1758
1759	if (sched->tp_handler->migrate_task_event)
1760		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1761
1762	return 0;
1763}
1764
1765typedef int (*tracepoint_handler)(struct perf_tool *tool,
1766				  struct evsel *evsel,
1767				  struct perf_sample *sample,
1768				  struct machine *machine);
1769
1770static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1771						 union perf_event *event __maybe_unused,
1772						 struct perf_sample *sample,
1773						 struct evsel *evsel,
1774						 struct machine *machine)
1775{
1776	int err = 0;
1777
1778	if (evsel->handler != NULL) {
1779		tracepoint_handler f = evsel->handler;
1780		err = f(tool, evsel, sample, machine);
1781	}
1782
1783	return err;
1784}
1785
1786static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1787				    union perf_event *event,
1788				    struct perf_sample *sample,
1789				    struct machine *machine)
1790{
1791	struct thread *thread;
1792	struct thread_runtime *tr;
1793	int err;
1794
1795	err = perf_event__process_comm(tool, event, sample, machine);
1796	if (err)
1797		return err;
1798
1799	thread = machine__find_thread(machine, sample->pid, sample->tid);
1800	if (!thread) {
1801		pr_err("Internal error: can't find thread\n");
1802		return -1;
1803	}
1804
1805	tr = thread__get_runtime(thread);
1806	if (tr == NULL) {
1807		thread__put(thread);
1808		return -1;
1809	}
1810
1811	tr->comm_changed = true;
1812	thread__put(thread);
1813
1814	return 0;
1815}
1816
1817static int perf_sched__read_events(struct perf_sched *sched)
1818{
1819	const struct evsel_str_handler handlers[] = {
1820		{ "sched:sched_switch",	      process_sched_switch_event, },
1821		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1822		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
 
1823		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1824		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1825	};
1826	struct perf_session *session;
1827	struct perf_data data = {
1828		.path  = input_name,
1829		.mode  = PERF_DATA_MODE_READ,
1830		.force = sched->force,
1831	};
1832	int rc = -1;
1833
1834	session = perf_session__new(&data, &sched->tool);
1835	if (IS_ERR(session)) {
1836		pr_debug("Error creating perf session");
1837		return PTR_ERR(session);
1838	}
1839
1840	symbol__init(&session->header.env);
1841
 
 
 
 
1842	if (perf_session__set_tracepoints_handlers(session, handlers))
1843		goto out_delete;
1844
1845	if (perf_session__has_traces(session, "record -R")) {
1846		int err = perf_session__process_events(session);
1847		if (err) {
1848			pr_err("Failed to process events, error %d", err);
1849			goto out_delete;
1850		}
1851
1852		sched->nr_events      = session->evlist->stats.nr_events[0];
1853		sched->nr_lost_events = session->evlist->stats.total_lost;
1854		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1855	}
1856
1857	rc = 0;
1858out_delete:
1859	perf_session__delete(session);
1860	return rc;
1861}
1862
1863/*
1864 * scheduling times are printed as msec.usec
1865 */
1866static inline void print_sched_time(unsigned long long nsecs, int width)
1867{
1868	unsigned long msecs;
1869	unsigned long usecs;
1870
1871	msecs  = nsecs / NSEC_PER_MSEC;
1872	nsecs -= msecs * NSEC_PER_MSEC;
1873	usecs  = nsecs / NSEC_PER_USEC;
1874	printf("%*lu.%03lu ", width, msecs, usecs);
1875}
1876
1877/*
1878 * returns runtime data for event, allocating memory for it the
1879 * first time it is used.
1880 */
1881static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1882{
1883	struct evsel_runtime *r = evsel->priv;
1884
1885	if (r == NULL) {
1886		r = zalloc(sizeof(struct evsel_runtime));
1887		evsel->priv = r;
1888	}
1889
1890	return r;
1891}
1892
1893/*
1894 * save last time event was seen per cpu
1895 */
1896static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1897{
1898	struct evsel_runtime *r = evsel__get_runtime(evsel);
1899
1900	if (r == NULL)
1901		return;
1902
1903	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1904		int i, n = __roundup_pow_of_two(cpu+1);
1905		void *p = r->last_time;
1906
1907		p = realloc(r->last_time, n * sizeof(u64));
1908		if (!p)
1909			return;
1910
1911		r->last_time = p;
1912		for (i = r->ncpu; i < n; ++i)
1913			r->last_time[i] = (u64) 0;
1914
1915		r->ncpu = n;
1916	}
1917
1918	r->last_time[cpu] = timestamp;
1919}
1920
1921/* returns last time this event was seen on the given cpu */
1922static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1923{
1924	struct evsel_runtime *r = evsel__get_runtime(evsel);
1925
1926	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1927		return 0;
1928
1929	return r->last_time[cpu];
1930}
1931
1932static int comm_width = 30;
1933
1934static char *timehist_get_commstr(struct thread *thread)
1935{
1936	static char str[32];
1937	const char *comm = thread__comm_str(thread);
1938	pid_t tid = thread->tid;
1939	pid_t pid = thread->pid_;
1940	int n;
1941
1942	if (pid == 0)
1943		n = scnprintf(str, sizeof(str), "%s", comm);
1944
1945	else if (tid != pid)
1946		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1947
1948	else
1949		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1950
1951	if (n > comm_width)
1952		comm_width = n;
1953
1954	return str;
1955}
1956
1957static void timehist_header(struct perf_sched *sched)
1958{
1959	u32 ncpus = sched->max_cpu.cpu + 1;
1960	u32 i, j;
1961
1962	printf("%15s %6s ", "time", "cpu");
1963
1964	if (sched->show_cpu_visual) {
1965		printf(" ");
1966		for (i = 0, j = 0; i < ncpus; ++i) {
1967			printf("%x", j++);
1968			if (j > 15)
1969				j = 0;
1970		}
1971		printf(" ");
1972	}
1973
1974	printf(" %-*s  %9s  %9s  %9s", comm_width,
1975		"task name", "wait time", "sch delay", "run time");
1976
1977	if (sched->show_state)
1978		printf("  %s", "state");
1979
1980	printf("\n");
1981
1982	/*
1983	 * units row
1984	 */
1985	printf("%15s %-6s ", "", "");
1986
1987	if (sched->show_cpu_visual)
1988		printf(" %*s ", ncpus, "");
1989
1990	printf(" %-*s  %9s  %9s  %9s", comm_width,
1991	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1992
1993	if (sched->show_state)
1994		printf("  %5s", "");
1995
1996	printf("\n");
1997
1998	/*
1999	 * separator
2000	 */
2001	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2002
2003	if (sched->show_cpu_visual)
2004		printf(" %.*s ", ncpus, graph_dotted_line);
2005
2006	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
2007		graph_dotted_line, graph_dotted_line, graph_dotted_line,
2008		graph_dotted_line);
2009
2010	if (sched->show_state)
2011		printf("  %.5s", graph_dotted_line);
2012
2013	printf("\n");
2014}
2015
2016static char task_state_char(struct thread *thread, int state)
2017{
2018	static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
2019	unsigned bit = state ? ffs(state) : 0;
2020
2021	/* 'I' for idle */
2022	if (thread->tid == 0)
2023		return 'I';
2024
2025	return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
2026}
2027
2028static void timehist_print_sample(struct perf_sched *sched,
2029				  struct evsel *evsel,
2030				  struct perf_sample *sample,
2031				  struct addr_location *al,
2032				  struct thread *thread,
2033				  u64 t, int state)
2034{
2035	struct thread_runtime *tr = thread__priv(thread);
2036	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2037	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2038	u32 max_cpus = sched->max_cpu.cpu + 1;
2039	char tstr[64];
2040	char nstr[30];
2041	u64 wait_time;
2042
2043	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2044		return;
2045
2046	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2047	printf("%15s [%04d] ", tstr, sample->cpu);
2048
2049	if (sched->show_cpu_visual) {
2050		u32 i;
2051		char c;
2052
2053		printf(" ");
2054		for (i = 0; i < max_cpus; ++i) {
2055			/* flag idle times with 'i'; others are sched events */
2056			if (i == sample->cpu)
2057				c = (thread->tid == 0) ? 'i' : 's';
2058			else
2059				c = ' ';
2060			printf("%c", c);
2061		}
2062		printf(" ");
2063	}
2064
2065	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2066
2067	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2068	print_sched_time(wait_time, 6);
2069
2070	print_sched_time(tr->dt_delay, 6);
2071	print_sched_time(tr->dt_run, 6);
2072
2073	if (sched->show_state)
2074		printf(" %5c ", task_state_char(thread, state));
2075
2076	if (sched->show_next) {
2077		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2078		printf(" %-*s", comm_width, nstr);
2079	}
2080
2081	if (sched->show_wakeups && !sched->show_next)
2082		printf("  %-*s", comm_width, "");
2083
2084	if (thread->tid == 0)
2085		goto out;
2086
2087	if (sched->show_callchain)
2088		printf("  ");
2089
2090	sample__fprintf_sym(sample, al, 0,
2091			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2092			    EVSEL__PRINT_CALLCHAIN_ARROW |
2093			    EVSEL__PRINT_SKIP_IGNORED,
2094			    &callchain_cursor, symbol_conf.bt_stop_list,  stdout);
2095
2096out:
2097	printf("\n");
2098}
2099
2100/*
2101 * Explanation of delta-time stats:
2102 *
2103 *            t = time of current schedule out event
2104 *        tprev = time of previous sched out event
2105 *                also time of schedule-in event for current task
2106 *    last_time = time of last sched change event for current task
2107 *                (i.e, time process was last scheduled out)
2108 * ready_to_run = time of wakeup for current task
2109 *
2110 * -----|------------|------------|------------|------
2111 *    last         ready        tprev          t
2112 *    time         to run
2113 *
2114 *      |-------- dt_wait --------|
2115 *                   |- dt_delay -|-- dt_run --|
2116 *
2117 *   dt_run = run time of current task
2118 *  dt_wait = time between last schedule out event for task and tprev
2119 *            represents time spent off the cpu
2120 * dt_delay = time between wakeup and schedule-in of task
2121 */
2122
2123static void timehist_update_runtime_stats(struct thread_runtime *r,
2124					 u64 t, u64 tprev)
2125{
2126	r->dt_delay   = 0;
2127	r->dt_sleep   = 0;
2128	r->dt_iowait  = 0;
2129	r->dt_preempt = 0;
2130	r->dt_run     = 0;
2131
2132	if (tprev) {
2133		r->dt_run = t - tprev;
2134		if (r->ready_to_run) {
2135			if (r->ready_to_run > tprev)
2136				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2137			else
2138				r->dt_delay = tprev - r->ready_to_run;
2139		}
2140
2141		if (r->last_time > tprev)
2142			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2143		else if (r->last_time) {
2144			u64 dt_wait = tprev - r->last_time;
2145
2146			if (r->last_state == TASK_RUNNING)
2147				r->dt_preempt = dt_wait;
2148			else if (r->last_state == TASK_UNINTERRUPTIBLE)
2149				r->dt_iowait = dt_wait;
2150			else
2151				r->dt_sleep = dt_wait;
2152		}
2153	}
2154
2155	update_stats(&r->run_stats, r->dt_run);
2156
2157	r->total_run_time     += r->dt_run;
2158	r->total_delay_time   += r->dt_delay;
2159	r->total_sleep_time   += r->dt_sleep;
2160	r->total_iowait_time  += r->dt_iowait;
2161	r->total_preempt_time += r->dt_preempt;
2162}
2163
2164static bool is_idle_sample(struct perf_sample *sample,
2165			   struct evsel *evsel)
2166{
2167	/* pid 0 == swapper == idle task */
2168	if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2169		return evsel__intval(evsel, sample, "prev_pid") == 0;
2170
2171	return sample->pid == 0;
2172}
2173
2174static void save_task_callchain(struct perf_sched *sched,
2175				struct perf_sample *sample,
2176				struct evsel *evsel,
2177				struct machine *machine)
2178{
2179	struct callchain_cursor *cursor = &callchain_cursor;
2180	struct thread *thread;
2181
2182	/* want main thread for process - has maps */
2183	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2184	if (thread == NULL) {
2185		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2186		return;
2187	}
2188
2189	if (!sched->show_callchain || sample->callchain == NULL)
2190		return;
2191
 
 
2192	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2193				      NULL, NULL, sched->max_stack + 2) != 0) {
2194		if (verbose > 0)
2195			pr_err("Failed to resolve callchain. Skipping\n");
2196
2197		return;
2198	}
2199
2200	callchain_cursor_commit(cursor);
2201
2202	while (true) {
2203		struct callchain_cursor_node *node;
2204		struct symbol *sym;
2205
2206		node = callchain_cursor_current(cursor);
2207		if (node == NULL)
2208			break;
2209
2210		sym = node->ms.sym;
2211		if (sym) {
2212			if (!strcmp(sym->name, "schedule") ||
2213			    !strcmp(sym->name, "__schedule") ||
2214			    !strcmp(sym->name, "preempt_schedule"))
2215				sym->ignore = 1;
2216		}
2217
2218		callchain_cursor_advance(cursor);
2219	}
2220}
2221
2222static int init_idle_thread(struct thread *thread)
2223{
2224	struct idle_thread_runtime *itr;
2225
2226	thread__set_comm(thread, idle_comm, 0);
2227
2228	itr = zalloc(sizeof(*itr));
2229	if (itr == NULL)
2230		return -ENOMEM;
2231
2232	init_stats(&itr->tr.run_stats);
2233	callchain_init(&itr->callchain);
2234	callchain_cursor_reset(&itr->cursor);
2235	thread__set_priv(thread, itr);
2236
2237	return 0;
2238}
2239
2240/*
2241 * Track idle stats per cpu by maintaining a local thread
2242 * struct for the idle task on each cpu.
2243 */
2244static int init_idle_threads(int ncpu)
2245{
2246	int i, ret;
2247
2248	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2249	if (!idle_threads)
2250		return -ENOMEM;
2251
2252	idle_max_cpu = ncpu;
2253
2254	/* allocate the actual thread struct if needed */
2255	for (i = 0; i < ncpu; ++i) {
2256		idle_threads[i] = thread__new(0, 0);
2257		if (idle_threads[i] == NULL)
2258			return -ENOMEM;
2259
2260		ret = init_idle_thread(idle_threads[i]);
2261		if (ret < 0)
2262			return ret;
2263	}
2264
2265	return 0;
2266}
2267
2268static void free_idle_threads(void)
2269{
2270	int i;
2271
2272	if (idle_threads == NULL)
2273		return;
2274
2275	for (i = 0; i < idle_max_cpu; ++i) {
2276		if ((idle_threads[i]))
2277			thread__delete(idle_threads[i]);
2278	}
2279
2280	free(idle_threads);
2281}
2282
2283static struct thread *get_idle_thread(int cpu)
2284{
2285	/*
2286	 * expand/allocate array of pointers to local thread
2287	 * structs if needed
2288	 */
2289	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2290		int i, j = __roundup_pow_of_two(cpu+1);
2291		void *p;
2292
2293		p = realloc(idle_threads, j * sizeof(struct thread *));
2294		if (!p)
2295			return NULL;
2296
2297		idle_threads = (struct thread **) p;
2298		for (i = idle_max_cpu; i < j; ++i)
2299			idle_threads[i] = NULL;
2300
2301		idle_max_cpu = j;
2302	}
2303
2304	/* allocate a new thread struct if needed */
2305	if (idle_threads[cpu] == NULL) {
2306		idle_threads[cpu] = thread__new(0, 0);
2307
2308		if (idle_threads[cpu]) {
2309			if (init_idle_thread(idle_threads[cpu]) < 0)
2310				return NULL;
2311		}
2312	}
2313
2314	return idle_threads[cpu];
2315}
2316
2317static void save_idle_callchain(struct perf_sched *sched,
2318				struct idle_thread_runtime *itr,
2319				struct perf_sample *sample)
2320{
 
 
2321	if (!sched->show_callchain || sample->callchain == NULL)
2322		return;
2323
2324	callchain_cursor__copy(&itr->cursor, &callchain_cursor);
 
 
 
 
2325}
2326
2327static struct thread *timehist_get_thread(struct perf_sched *sched,
2328					  struct perf_sample *sample,
2329					  struct machine *machine,
2330					  struct evsel *evsel)
2331{
2332	struct thread *thread;
2333
2334	if (is_idle_sample(sample, evsel)) {
2335		thread = get_idle_thread(sample->cpu);
2336		if (thread == NULL)
2337			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2338
2339	} else {
2340		/* there were samples with tid 0 but non-zero pid */
2341		thread = machine__findnew_thread(machine, sample->pid,
2342						 sample->tid ?: sample->pid);
2343		if (thread == NULL) {
2344			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2345				 sample->tid);
2346		}
2347
2348		save_task_callchain(sched, sample, evsel, machine);
2349		if (sched->idle_hist) {
2350			struct thread *idle;
2351			struct idle_thread_runtime *itr;
2352
2353			idle = get_idle_thread(sample->cpu);
2354			if (idle == NULL) {
2355				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2356				return NULL;
2357			}
2358
2359			itr = thread__priv(idle);
2360			if (itr == NULL)
2361				return NULL;
2362
2363			itr->last_thread = thread;
2364
2365			/* copy task callchain when entering to idle */
2366			if (evsel__intval(evsel, sample, "next_pid") == 0)
2367				save_idle_callchain(sched, itr, sample);
2368		}
2369	}
2370
2371	return thread;
2372}
2373
2374static bool timehist_skip_sample(struct perf_sched *sched,
2375				 struct thread *thread,
2376				 struct evsel *evsel,
2377				 struct perf_sample *sample)
2378{
2379	bool rc = false;
2380
2381	if (thread__is_filtered(thread)) {
2382		rc = true;
2383		sched->skipped_samples++;
2384	}
2385
2386	if (sched->idle_hist) {
2387		if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2388			rc = true;
2389		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2390			 evsel__intval(evsel, sample, "next_pid") != 0)
2391			rc = true;
2392	}
2393
2394	return rc;
2395}
2396
2397static void timehist_print_wakeup_event(struct perf_sched *sched,
2398					struct evsel *evsel,
2399					struct perf_sample *sample,
2400					struct machine *machine,
2401					struct thread *awakened)
2402{
2403	struct thread *thread;
2404	char tstr[64];
2405
2406	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2407	if (thread == NULL)
2408		return;
2409
2410	/* show wakeup unless both awakee and awaker are filtered */
2411	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2412	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2413		return;
2414	}
2415
2416	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2417	printf("%15s [%04d] ", tstr, sample->cpu);
2418	if (sched->show_cpu_visual)
2419		printf(" %*s ", sched->max_cpu.cpu + 1, "");
2420
2421	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2422
2423	/* dt spacer */
2424	printf("  %9s  %9s  %9s ", "", "", "");
2425
2426	printf("awakened: %s", timehist_get_commstr(awakened));
2427
2428	printf("\n");
2429}
2430
2431static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2432					union perf_event *event __maybe_unused,
2433					struct evsel *evsel __maybe_unused,
2434					struct perf_sample *sample __maybe_unused,
2435					struct machine *machine __maybe_unused)
2436{
2437	return 0;
2438}
2439
2440static int timehist_sched_wakeup_event(struct perf_tool *tool,
2441				       union perf_event *event __maybe_unused,
2442				       struct evsel *evsel,
2443				       struct perf_sample *sample,
2444				       struct machine *machine)
2445{
2446	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2447	struct thread *thread;
2448	struct thread_runtime *tr = NULL;
2449	/* want pid of awakened task not pid in sample */
2450	const u32 pid = evsel__intval(evsel, sample, "pid");
2451
2452	thread = machine__findnew_thread(machine, 0, pid);
2453	if (thread == NULL)
2454		return -1;
2455
2456	tr = thread__get_runtime(thread);
2457	if (tr == NULL)
2458		return -1;
2459
2460	if (tr->ready_to_run == 0)
2461		tr->ready_to_run = sample->time;
2462
2463	/* show wakeups if requested */
2464	if (sched->show_wakeups &&
2465	    !perf_time__skip_sample(&sched->ptime, sample->time))
2466		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2467
2468	return 0;
2469}
2470
2471static void timehist_print_migration_event(struct perf_sched *sched,
2472					struct evsel *evsel,
2473					struct perf_sample *sample,
2474					struct machine *machine,
2475					struct thread *migrated)
2476{
2477	struct thread *thread;
2478	char tstr[64];
2479	u32 max_cpus;
2480	u32 ocpu, dcpu;
2481
2482	if (sched->summary_only)
2483		return;
2484
2485	max_cpus = sched->max_cpu.cpu + 1;
2486	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2487	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2488
2489	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2490	if (thread == NULL)
2491		return;
2492
2493	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2494	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2495		return;
2496	}
2497
2498	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2499	printf("%15s [%04d] ", tstr, sample->cpu);
2500
2501	if (sched->show_cpu_visual) {
2502		u32 i;
2503		char c;
2504
2505		printf("  ");
2506		for (i = 0; i < max_cpus; ++i) {
2507			c = (i == sample->cpu) ? 'm' : ' ';
2508			printf("%c", c);
2509		}
2510		printf("  ");
2511	}
2512
2513	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2514
2515	/* dt spacer */
2516	printf("  %9s  %9s  %9s ", "", "", "");
2517
2518	printf("migrated: %s", timehist_get_commstr(migrated));
2519	printf(" cpu %d => %d", ocpu, dcpu);
2520
2521	printf("\n");
2522}
2523
2524static int timehist_migrate_task_event(struct perf_tool *tool,
2525				       union perf_event *event __maybe_unused,
2526				       struct evsel *evsel,
2527				       struct perf_sample *sample,
2528				       struct machine *machine)
2529{
2530	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2531	struct thread *thread;
2532	struct thread_runtime *tr = NULL;
2533	/* want pid of migrated task not pid in sample */
2534	const u32 pid = evsel__intval(evsel, sample, "pid");
2535
2536	thread = machine__findnew_thread(machine, 0, pid);
2537	if (thread == NULL)
2538		return -1;
2539
2540	tr = thread__get_runtime(thread);
2541	if (tr == NULL)
2542		return -1;
2543
2544	tr->migrations++;
2545
2546	/* show migrations if requested */
2547	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2548
2549	return 0;
2550}
2551
2552static int timehist_sched_change_event(struct perf_tool *tool,
2553				       union perf_event *event,
2554				       struct evsel *evsel,
2555				       struct perf_sample *sample,
2556				       struct machine *machine)
2557{
2558	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2559	struct perf_time_interval *ptime = &sched->ptime;
2560	struct addr_location al;
2561	struct thread *thread;
2562	struct thread_runtime *tr = NULL;
2563	u64 tprev, t = sample->time;
2564	int rc = 0;
2565	int state = evsel__intval(evsel, sample, "prev_state");
2566
 
2567	if (machine__resolve(machine, &al, sample) < 0) {
2568		pr_err("problem processing %d event. skipping it\n",
2569		       event->header.type);
2570		rc = -1;
2571		goto out;
2572	}
2573
2574	thread = timehist_get_thread(sched, sample, machine, evsel);
2575	if (thread == NULL) {
2576		rc = -1;
2577		goto out;
2578	}
2579
2580	if (timehist_skip_sample(sched, thread, evsel, sample))
2581		goto out;
2582
2583	tr = thread__get_runtime(thread);
2584	if (tr == NULL) {
2585		rc = -1;
2586		goto out;
2587	}
2588
2589	tprev = evsel__get_time(evsel, sample->cpu);
2590
2591	/*
2592	 * If start time given:
2593	 * - sample time is under window user cares about - skip sample
2594	 * - tprev is under window user cares about  - reset to start of window
2595	 */
2596	if (ptime->start && ptime->start > t)
2597		goto out;
2598
2599	if (tprev && ptime->start > tprev)
2600		tprev = ptime->start;
2601
2602	/*
2603	 * If end time given:
2604	 * - previous sched event is out of window - we are done
2605	 * - sample time is beyond window user cares about - reset it
2606	 *   to close out stats for time window interest
2607	 */
2608	if (ptime->end) {
2609		if (tprev > ptime->end)
2610			goto out;
2611
2612		if (t > ptime->end)
2613			t = ptime->end;
2614	}
2615
2616	if (!sched->idle_hist || thread->tid == 0) {
2617		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2618			timehist_update_runtime_stats(tr, t, tprev);
2619
2620		if (sched->idle_hist) {
2621			struct idle_thread_runtime *itr = (void *)tr;
2622			struct thread_runtime *last_tr;
2623
2624			BUG_ON(thread->tid != 0);
2625
2626			if (itr->last_thread == NULL)
2627				goto out;
2628
2629			/* add current idle time as last thread's runtime */
2630			last_tr = thread__get_runtime(itr->last_thread);
2631			if (last_tr == NULL)
2632				goto out;
2633
2634			timehist_update_runtime_stats(last_tr, t, tprev);
2635			/*
2636			 * remove delta time of last thread as it's not updated
2637			 * and otherwise it will show an invalid value next
2638			 * time.  we only care total run time and run stat.
2639			 */
2640			last_tr->dt_run = 0;
2641			last_tr->dt_delay = 0;
2642			last_tr->dt_sleep = 0;
2643			last_tr->dt_iowait = 0;
2644			last_tr->dt_preempt = 0;
2645
2646			if (itr->cursor.nr)
2647				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2648
2649			itr->last_thread = NULL;
2650		}
2651	}
2652
2653	if (!sched->summary_only)
2654		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2655
2656out:
2657	if (sched->hist_time.start == 0 && t >= ptime->start)
2658		sched->hist_time.start = t;
2659	if (ptime->end == 0 || t <= ptime->end)
2660		sched->hist_time.end = t;
2661
2662	if (tr) {
2663		/* time of this sched_switch event becomes last time task seen */
2664		tr->last_time = sample->time;
2665
2666		/* last state is used to determine where to account wait time */
2667		tr->last_state = state;
2668
2669		/* sched out event for task so reset ready to run time */
2670		tr->ready_to_run = 0;
2671	}
2672
2673	evsel__save_time(evsel, sample->time, sample->cpu);
2674
 
2675	return rc;
2676}
2677
2678static int timehist_sched_switch_event(struct perf_tool *tool,
2679			     union perf_event *event,
2680			     struct evsel *evsel,
2681			     struct perf_sample *sample,
2682			     struct machine *machine __maybe_unused)
2683{
2684	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2685}
2686
2687static int process_lost(struct perf_tool *tool __maybe_unused,
2688			union perf_event *event,
2689			struct perf_sample *sample,
2690			struct machine *machine __maybe_unused)
2691{
2692	char tstr[64];
2693
2694	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2695	printf("%15s ", tstr);
2696	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2697
2698	return 0;
2699}
2700
2701
2702static void print_thread_runtime(struct thread *t,
2703				 struct thread_runtime *r)
2704{
2705	double mean = avg_stats(&r->run_stats);
2706	float stddev;
2707
2708	printf("%*s   %5d  %9" PRIu64 " ",
2709	       comm_width, timehist_get_commstr(t), t->ppid,
2710	       (u64) r->run_stats.n);
2711
2712	print_sched_time(r->total_run_time, 8);
2713	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2714	print_sched_time(r->run_stats.min, 6);
2715	printf(" ");
2716	print_sched_time((u64) mean, 6);
2717	printf(" ");
2718	print_sched_time(r->run_stats.max, 6);
2719	printf("  ");
2720	printf("%5.2f", stddev);
2721	printf("   %5" PRIu64, r->migrations);
2722	printf("\n");
2723}
2724
2725static void print_thread_waittime(struct thread *t,
2726				  struct thread_runtime *r)
2727{
2728	printf("%*s   %5d  %9" PRIu64 " ",
2729	       comm_width, timehist_get_commstr(t), t->ppid,
2730	       (u64) r->run_stats.n);
2731
2732	print_sched_time(r->total_run_time, 8);
2733	print_sched_time(r->total_sleep_time, 6);
2734	printf(" ");
2735	print_sched_time(r->total_iowait_time, 6);
2736	printf(" ");
2737	print_sched_time(r->total_preempt_time, 6);
2738	printf(" ");
2739	print_sched_time(r->total_delay_time, 6);
2740	printf("\n");
2741}
2742
2743struct total_run_stats {
2744	struct perf_sched *sched;
2745	u64  sched_count;
2746	u64  task_count;
2747	u64  total_run_time;
2748};
2749
2750static int __show_thread_runtime(struct thread *t, void *priv)
2751{
2752	struct total_run_stats *stats = priv;
2753	struct thread_runtime *r;
2754
2755	if (thread__is_filtered(t))
2756		return 0;
2757
2758	r = thread__priv(t);
2759	if (r && r->run_stats.n) {
2760		stats->task_count++;
2761		stats->sched_count += r->run_stats.n;
2762		stats->total_run_time += r->total_run_time;
2763
2764		if (stats->sched->show_state)
2765			print_thread_waittime(t, r);
2766		else
2767			print_thread_runtime(t, r);
2768	}
2769
2770	return 0;
2771}
2772
2773static int show_thread_runtime(struct thread *t, void *priv)
2774{
2775	if (t->dead)
2776		return 0;
2777
2778	return __show_thread_runtime(t, priv);
2779}
2780
2781static int show_deadthread_runtime(struct thread *t, void *priv)
2782{
2783	if (!t->dead)
2784		return 0;
2785
2786	return __show_thread_runtime(t, priv);
2787}
2788
2789static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2790{
2791	const char *sep = " <- ";
2792	struct callchain_list *chain;
2793	size_t ret = 0;
2794	char bf[1024];
2795	bool first;
2796
2797	if (node == NULL)
2798		return 0;
2799
2800	ret = callchain__fprintf_folded(fp, node->parent);
2801	first = (ret == 0);
2802
2803	list_for_each_entry(chain, &node->val, list) {
2804		if (chain->ip >= PERF_CONTEXT_MAX)
2805			continue;
2806		if (chain->ms.sym && chain->ms.sym->ignore)
2807			continue;
2808		ret += fprintf(fp, "%s%s", first ? "" : sep,
2809			       callchain_list__sym_name(chain, bf, sizeof(bf),
2810							false));
2811		first = false;
2812	}
2813
2814	return ret;
2815}
2816
2817static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2818{
2819	size_t ret = 0;
2820	FILE *fp = stdout;
2821	struct callchain_node *chain;
2822	struct rb_node *rb_node = rb_first_cached(root);
2823
2824	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2825	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2826	       graph_dotted_line);
2827
2828	while (rb_node) {
2829		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2830		rb_node = rb_next(rb_node);
2831
2832		ret += fprintf(fp, "  ");
2833		print_sched_time(chain->hit, 12);
2834		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2835		ret += fprintf(fp, " %8d  ", chain->count);
2836		ret += callchain__fprintf_folded(fp, chain);
2837		ret += fprintf(fp, "\n");
2838	}
2839
2840	return ret;
2841}
2842
2843static void timehist_print_summary(struct perf_sched *sched,
2844				   struct perf_session *session)
2845{
2846	struct machine *m = &session->machines.host;
2847	struct total_run_stats totals;
2848	u64 task_count;
2849	struct thread *t;
2850	struct thread_runtime *r;
2851	int i;
2852	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2853
2854	memset(&totals, 0, sizeof(totals));
2855	totals.sched = sched;
2856
2857	if (sched->idle_hist) {
2858		printf("\nIdle-time summary\n");
2859		printf("%*s  parent  sched-out  ", comm_width, "comm");
2860		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2861	} else if (sched->show_state) {
2862		printf("\nWait-time summary\n");
2863		printf("%*s  parent   sched-in  ", comm_width, "comm");
2864		printf("   run-time      sleep      iowait     preempt       delay\n");
2865	} else {
2866		printf("\nRuntime summary\n");
2867		printf("%*s  parent   sched-in  ", comm_width, "comm");
2868		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2869	}
2870	printf("%*s            (count)  ", comm_width, "");
2871	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2872	       sched->show_state ? "(msec)" : "%");
2873	printf("%.117s\n", graph_dotted_line);
2874
2875	machine__for_each_thread(m, show_thread_runtime, &totals);
2876	task_count = totals.task_count;
2877	if (!task_count)
2878		printf("<no still running tasks>\n");
2879
2880	printf("\nTerminated tasks:\n");
2881	machine__for_each_thread(m, show_deadthread_runtime, &totals);
2882	if (task_count == totals.task_count)
2883		printf("<no terminated tasks>\n");
2884
2885	/* CPU idle stats not tracked when samples were skipped */
2886	if (sched->skipped_samples && !sched->idle_hist)
2887		return;
2888
2889	printf("\nIdle stats:\n");
2890	for (i = 0; i < idle_max_cpu; ++i) {
2891		if (cpu_list && !test_bit(i, cpu_bitmap))
2892			continue;
2893
2894		t = idle_threads[i];
2895		if (!t)
2896			continue;
2897
2898		r = thread__priv(t);
2899		if (r && r->run_stats.n) {
2900			totals.sched_count += r->run_stats.n;
2901			printf("    CPU %2d idle for ", i);
2902			print_sched_time(r->total_run_time, 6);
2903			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2904		} else
2905			printf("    CPU %2d idle entire time window\n", i);
2906	}
2907
2908	if (sched->idle_hist && sched->show_callchain) {
2909		callchain_param.mode  = CHAIN_FOLDED;
2910		callchain_param.value = CCVAL_PERIOD;
2911
2912		callchain_register_param(&callchain_param);
2913
2914		printf("\nIdle stats by callchain:\n");
2915		for (i = 0; i < idle_max_cpu; ++i) {
2916			struct idle_thread_runtime *itr;
2917
2918			t = idle_threads[i];
2919			if (!t)
2920				continue;
2921
2922			itr = thread__priv(t);
2923			if (itr == NULL)
2924				continue;
2925
2926			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2927					     0, &callchain_param);
2928
2929			printf("  CPU %2d:", i);
2930			print_sched_time(itr->tr.total_run_time, 6);
2931			printf(" msec\n");
2932			timehist_print_idlehist_callchain(&itr->sorted_root);
2933			printf("\n");
2934		}
2935	}
2936
2937	printf("\n"
2938	       "    Total number of unique tasks: %" PRIu64 "\n"
2939	       "Total number of context switches: %" PRIu64 "\n",
2940	       totals.task_count, totals.sched_count);
2941
2942	printf("           Total run time (msec): ");
2943	print_sched_time(totals.total_run_time, 2);
2944	printf("\n");
2945
2946	printf("    Total scheduling time (msec): ");
2947	print_sched_time(hist_time, 2);
2948	printf(" (x %d)\n", sched->max_cpu.cpu);
2949}
2950
2951typedef int (*sched_handler)(struct perf_tool *tool,
2952			  union perf_event *event,
2953			  struct evsel *evsel,
2954			  struct perf_sample *sample,
2955			  struct machine *machine);
2956
2957static int perf_timehist__process_sample(struct perf_tool *tool,
2958					 union perf_event *event,
2959					 struct perf_sample *sample,
2960					 struct evsel *evsel,
2961					 struct machine *machine)
2962{
2963	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2964	int err = 0;
2965	struct perf_cpu this_cpu = {
2966		.cpu = sample->cpu,
2967	};
2968
2969	if (this_cpu.cpu > sched->max_cpu.cpu)
2970		sched->max_cpu = this_cpu;
2971
2972	if (evsel->handler != NULL) {
2973		sched_handler f = evsel->handler;
2974
2975		err = f(tool, event, evsel, sample, machine);
2976	}
2977
2978	return err;
2979}
2980
2981static int timehist_check_attr(struct perf_sched *sched,
2982			       struct evlist *evlist)
2983{
2984	struct evsel *evsel;
2985	struct evsel_runtime *er;
2986
2987	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2988		er = evsel__get_runtime(evsel);
2989		if (er == NULL) {
2990			pr_err("Failed to allocate memory for evsel runtime data\n");
2991			return -1;
2992		}
2993
2994		if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2995			pr_info("Samples do not have callchains.\n");
 
 
 
2996			sched->show_callchain = 0;
2997			symbol_conf.use_callchain = 0;
2998		}
2999	}
3000
3001	return 0;
3002}
3003
3004static int perf_sched__timehist(struct perf_sched *sched)
3005{
3006	struct evsel_str_handler handlers[] = {
3007		{ "sched:sched_switch",       timehist_sched_switch_event, },
3008		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
3009		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
3010		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
3011	};
3012	const struct evsel_str_handler migrate_handlers[] = {
3013		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
3014	};
3015	struct perf_data data = {
3016		.path  = input_name,
3017		.mode  = PERF_DATA_MODE_READ,
3018		.force = sched->force,
3019	};
3020
3021	struct perf_session *session;
3022	struct evlist *evlist;
3023	int err = -1;
3024
3025	/*
3026	 * event handlers for timehist option
3027	 */
3028	sched->tool.sample	 = perf_timehist__process_sample;
3029	sched->tool.mmap	 = perf_event__process_mmap;
3030	sched->tool.comm	 = perf_event__process_comm;
3031	sched->tool.exit	 = perf_event__process_exit;
3032	sched->tool.fork	 = perf_event__process_fork;
3033	sched->tool.lost	 = process_lost;
3034	sched->tool.attr	 = perf_event__process_attr;
3035	sched->tool.tracing_data = perf_event__process_tracing_data;
3036	sched->tool.build_id	 = perf_event__process_build_id;
3037
3038	sched->tool.ordered_events = true;
3039	sched->tool.ordering_requires_timestamps = true;
3040
3041	symbol_conf.use_callchain = sched->show_callchain;
3042
3043	session = perf_session__new(&data, &sched->tool);
3044	if (IS_ERR(session))
3045		return PTR_ERR(session);
3046
3047	if (cpu_list) {
3048		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3049		if (err < 0)
3050			goto out;
3051	}
3052
3053	evlist = session->evlist;
3054
3055	symbol__init(&session->header.env);
3056
3057	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3058		pr_err("Invalid time string\n");
3059		return -EINVAL;
3060	}
3061
3062	if (timehist_check_attr(sched, evlist) != 0)
3063		goto out;
3064
3065	setup_pager();
3066
3067	/* prefer sched_waking if it is captured */
3068	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3069		handlers[1].handler = timehist_sched_wakeup_ignore;
3070
3071	/* setup per-evsel handlers */
3072	if (perf_session__set_tracepoints_handlers(session, handlers))
3073		goto out;
3074
3075	/* sched_switch event at a minimum needs to exist */
3076	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3077		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3078		goto out;
3079	}
3080
3081	if (sched->show_migrations &&
3082	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
3083		goto out;
3084
3085	/* pre-allocate struct for per-CPU idle stats */
3086	sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3087	if (sched->max_cpu.cpu == 0)
3088		sched->max_cpu.cpu = 4;
3089	if (init_idle_threads(sched->max_cpu.cpu))
3090		goto out;
3091
3092	/* summary_only implies summary option, but don't overwrite summary if set */
3093	if (sched->summary_only)
3094		sched->summary = sched->summary_only;
3095
3096	if (!sched->summary_only)
3097		timehist_header(sched);
3098
3099	err = perf_session__process_events(session);
3100	if (err) {
3101		pr_err("Failed to process events, error %d", err);
3102		goto out;
3103	}
3104
3105	sched->nr_events      = evlist->stats.nr_events[0];
3106	sched->nr_lost_events = evlist->stats.total_lost;
3107	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3108
3109	if (sched->summary)
3110		timehist_print_summary(sched, session);
3111
3112out:
3113	free_idle_threads();
3114	perf_session__delete(session);
3115
3116	return err;
3117}
3118
3119
3120static void print_bad_events(struct perf_sched *sched)
3121{
3122	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3123		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3124			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3125			sched->nr_unordered_timestamps, sched->nr_timestamps);
3126	}
3127	if (sched->nr_lost_events && sched->nr_events) {
3128		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3129			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3130			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3131	}
3132	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3133		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3134			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3135			sched->nr_context_switch_bugs, sched->nr_timestamps);
3136		if (sched->nr_lost_events)
3137			printf(" (due to lost events?)");
3138		printf("\n");
3139	}
3140}
3141
3142static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3143{
3144	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3145	struct work_atoms *this;
3146	const char *comm = thread__comm_str(data->thread), *this_comm;
3147	bool leftmost = true;
3148
3149	while (*new) {
3150		int cmp;
3151
3152		this = container_of(*new, struct work_atoms, node);
3153		parent = *new;
3154
3155		this_comm = thread__comm_str(this->thread);
3156		cmp = strcmp(comm, this_comm);
3157		if (cmp > 0) {
3158			new = &((*new)->rb_left);
3159		} else if (cmp < 0) {
3160			new = &((*new)->rb_right);
3161			leftmost = false;
3162		} else {
3163			this->num_merged++;
3164			this->total_runtime += data->total_runtime;
3165			this->nb_atoms += data->nb_atoms;
3166			this->total_lat += data->total_lat;
3167			list_splice(&data->work_list, &this->work_list);
3168			if (this->max_lat < data->max_lat) {
3169				this->max_lat = data->max_lat;
3170				this->max_lat_start = data->max_lat_start;
3171				this->max_lat_end = data->max_lat_end;
3172			}
3173			zfree(&data);
3174			return;
3175		}
3176	}
3177
3178	data->num_merged++;
3179	rb_link_node(&data->node, parent, new);
3180	rb_insert_color_cached(&data->node, root, leftmost);
3181}
3182
3183static void perf_sched__merge_lat(struct perf_sched *sched)
3184{
3185	struct work_atoms *data;
3186	struct rb_node *node;
3187
3188	if (sched->skip_merge)
3189		return;
3190
3191	while ((node = rb_first_cached(&sched->atom_root))) {
3192		rb_erase_cached(node, &sched->atom_root);
3193		data = rb_entry(node, struct work_atoms, node);
3194		__merge_work_atoms(&sched->merged_atom_root, data);
3195	}
3196}
3197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3198static int perf_sched__lat(struct perf_sched *sched)
3199{
 
3200	struct rb_node *next;
3201
3202	setup_pager();
3203
 
 
 
3204	if (perf_sched__read_events(sched))
3205		return -1;
3206
3207	perf_sched__merge_lat(sched);
3208	perf_sched__sort_lat(sched);
3209
3210	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3211	printf("  Task                  |   Runtime ms  | Switches | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3212	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3213
3214	next = rb_first_cached(&sched->sorted_atom_root);
3215
3216	while (next) {
3217		struct work_atoms *work_list;
3218
3219		work_list = rb_entry(next, struct work_atoms, node);
3220		output_lat_thread(sched, work_list);
3221		next = rb_next(next);
3222		thread__zput(work_list->thread);
3223	}
3224
3225	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3226	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3227		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3228
3229	printf(" ---------------------------------------------------\n");
3230
3231	print_bad_events(sched);
3232	printf("\n");
3233
3234	return 0;
 
 
 
 
3235}
3236
3237static int setup_map_cpus(struct perf_sched *sched)
3238{
3239	struct perf_cpu_map *map;
3240
3241	sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
3242
3243	if (sched->map.comp) {
3244		sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3245		if (!sched->map.comp_cpus)
3246			return -1;
3247	}
3248
3249	if (!sched->map.cpus_str)
3250		return 0;
3251
3252	map = perf_cpu_map__new(sched->map.cpus_str);
3253	if (!map) {
3254		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3255		return -1;
3256	}
3257
3258	sched->map.cpus = map;
3259	return 0;
3260}
3261
3262static int setup_color_pids(struct perf_sched *sched)
3263{
3264	struct perf_thread_map *map;
3265
3266	if (!sched->map.color_pids_str)
3267		return 0;
3268
3269	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3270	if (!map) {
3271		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3272		return -1;
3273	}
3274
3275	sched->map.color_pids = map;
3276	return 0;
3277}
3278
3279static int setup_color_cpus(struct perf_sched *sched)
3280{
3281	struct perf_cpu_map *map;
3282
3283	if (!sched->map.color_cpus_str)
3284		return 0;
3285
3286	map = perf_cpu_map__new(sched->map.color_cpus_str);
3287	if (!map) {
3288		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3289		return -1;
3290	}
3291
3292	sched->map.color_cpus = map;
3293	return 0;
3294}
3295
3296static int perf_sched__map(struct perf_sched *sched)
3297{
 
 
 
 
 
 
 
 
 
3298	if (setup_map_cpus(sched))
3299		return -1;
3300
3301	if (setup_color_pids(sched))
3302		return -1;
3303
3304	if (setup_color_cpus(sched))
3305		return -1;
3306
3307	setup_pager();
3308	if (perf_sched__read_events(sched))
3309		return -1;
 
 
3310	print_bad_events(sched);
3311	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3312}
3313
3314static int perf_sched__replay(struct perf_sched *sched)
3315{
 
3316	unsigned long i;
3317
 
 
 
 
 
 
 
3318	calibrate_run_measurement_overhead(sched);
3319	calibrate_sleep_measurement_overhead(sched);
3320
3321	test_calibrations(sched);
3322
3323	if (perf_sched__read_events(sched))
3324		return -1;
 
3325
3326	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3327	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3328	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3329
3330	if (sched->targetless_wakeups)
3331		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3332	if (sched->multitarget_wakeups)
3333		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3334	if (sched->nr_run_events_optimized)
3335		printf("run atoms optimized: %ld\n",
3336			sched->nr_run_events_optimized);
3337
3338	print_task_traces(sched);
3339	add_cross_task_wakeups(sched);
3340
3341	sched->thread_funcs_exit = false;
3342	create_tasks(sched);
3343	printf("------------------------------------------------------------\n");
3344	for (i = 0; i < sched->replay_repeat; i++)
3345		run_one_test(sched);
3346
3347	sched->thread_funcs_exit = true;
3348	destroy_tasks(sched);
3349	return 0;
 
 
 
 
 
 
 
3350}
3351
3352static void setup_sorting(struct perf_sched *sched, const struct option *options,
3353			  const char * const usage_msg[])
3354{
3355	char *tmp, *tok, *str = strdup(sched->sort_order);
3356
3357	for (tok = strtok_r(str, ", ", &tmp);
3358			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3359		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3360			usage_with_options_msg(usage_msg, options,
3361					"Unknown --sort key: `%s'", tok);
3362		}
3363	}
3364
3365	free(str);
3366
3367	sort_dimension__add("pid", &sched->cmp_pid);
3368}
3369
3370static bool schedstat_events_exposed(void)
3371{
3372	/*
3373	 * Select "sched:sched_stat_wait" event to check
3374	 * whether schedstat tracepoints are exposed.
3375	 */
3376	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3377		false : true;
3378}
3379
3380static int __cmd_record(int argc, const char **argv)
3381{
3382	unsigned int rec_argc, i, j;
3383	char **rec_argv;
3384	const char **rec_argv_copy;
3385	const char * const record_args[] = {
3386		"record",
3387		"-a",
3388		"-R",
3389		"-m", "1024",
3390		"-c", "1",
3391		"-e", "sched:sched_switch",
3392		"-e", "sched:sched_stat_runtime",
3393		"-e", "sched:sched_process_fork",
3394		"-e", "sched:sched_wakeup_new",
3395		"-e", "sched:sched_migrate_task",
3396	};
3397
3398	/*
3399	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3400	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3401	 * to prevent "perf sched record" execution failure, determine
3402	 * whether to record schedstat events according to actual situation.
3403	 */
3404	const char * const schedstat_args[] = {
3405		"-e", "sched:sched_stat_wait",
3406		"-e", "sched:sched_stat_sleep",
3407		"-e", "sched:sched_stat_iowait",
3408	};
3409	unsigned int schedstat_argc = schedstat_events_exposed() ?
3410		ARRAY_SIZE(schedstat_args) : 0;
3411
3412	struct tep_event *waking_event;
3413	int ret;
3414
3415	/*
3416	 * +2 for either "-e", "sched:sched_wakeup" or
3417	 * "-e", "sched:sched_waking"
3418	 */
3419	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3420	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3421	if (rec_argv == NULL)
3422		return -ENOMEM;
3423	rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3424	if (rec_argv_copy == NULL) {
3425		free(rec_argv);
3426		return -ENOMEM;
3427	}
3428
3429	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3430		rec_argv[i] = strdup(record_args[i]);
3431
3432	rec_argv[i++] = strdup("-e");
3433	waking_event = trace_event__tp_format("sched", "sched_waking");
3434	if (!IS_ERR(waking_event))
3435		rec_argv[i++] = strdup("sched:sched_waking");
3436	else
3437		rec_argv[i++] = strdup("sched:sched_wakeup");
3438
3439	for (j = 0; j < schedstat_argc; j++)
3440		rec_argv[i++] = strdup(schedstat_args[j]);
3441
3442	for (j = 1; j < (unsigned int)argc; j++, i++)
3443		rec_argv[i] = strdup(argv[j]);
3444
3445	BUG_ON(i != rec_argc);
3446
3447	memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3448	ret = cmd_record(rec_argc, rec_argv_copy);
3449
3450	for (i = 0; i < rec_argc; i++)
3451		free(rec_argv[i]);
3452	free(rec_argv);
3453	free(rec_argv_copy);
3454
3455	return ret;
3456}
3457
3458int cmd_sched(int argc, const char **argv)
3459{
3460	static const char default_sort_order[] = "avg, max, switch, runtime";
3461	struct perf_sched sched = {
3462		.tool = {
3463			.sample		 = perf_sched__process_tracepoint_sample,
3464			.comm		 = perf_sched__process_comm,
3465			.namespaces	 = perf_event__process_namespaces,
3466			.lost		 = perf_event__process_lost,
3467			.fork		 = perf_sched__process_fork_event,
3468			.ordered_events = true,
3469		},
3470		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3471		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3472		.sort_order	      = default_sort_order,
3473		.replay_repeat	      = 10,
3474		.profile_cpu	      = -1,
3475		.next_shortname1      = 'A',
3476		.next_shortname2      = '0',
3477		.skip_merge           = 0,
3478		.show_callchain	      = 1,
3479		.max_stack            = 5,
3480	};
3481	const struct option sched_options[] = {
3482	OPT_STRING('i', "input", &input_name, "file",
3483		    "input file name"),
3484	OPT_INCR('v', "verbose", &verbose,
3485		    "be more verbose (show symbol address, etc)"),
3486	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3487		    "dump raw trace in ASCII"),
3488	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3489	OPT_END()
3490	};
3491	const struct option latency_options[] = {
3492	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3493		   "sort by key(s): runtime, switch, avg, max"),
3494	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3495		    "CPU to profile on"),
3496	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3497		    "latency stats per pid instead of per comm"),
3498	OPT_PARENT(sched_options)
3499	};
3500	const struct option replay_options[] = {
3501	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3502		     "repeat the workload replay N times (-1: infinite)"),
3503	OPT_PARENT(sched_options)
3504	};
3505	const struct option map_options[] = {
3506	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3507		    "map output in compact mode"),
3508	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3509		   "highlight given pids in map"),
3510	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3511                    "highlight given CPUs in map"),
3512	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3513                    "display given CPUs in map"),
3514	OPT_PARENT(sched_options)
3515	};
3516	const struct option timehist_options[] = {
3517	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3518		   "file", "vmlinux pathname"),
3519	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3520		   "file", "kallsyms pathname"),
3521	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3522		    "Display call chains if present (default on)"),
3523	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3524		   "Maximum number of functions to display backtrace."),
3525	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3526		    "Look for files with symbols relative to this directory"),
3527	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3528		    "Show only syscall summary with statistics"),
3529	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3530		    "Show all syscalls and summary with statistics"),
3531	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3532	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3533	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3534	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3535	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3536	OPT_STRING(0, "time", &sched.time_str, "str",
3537		   "Time span for analysis (start,stop)"),
3538	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3539	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3540		   "analyze events only for given process id(s)"),
3541	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3542		   "analyze events only for given thread id(s)"),
3543	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3544	OPT_PARENT(sched_options)
3545	};
3546
3547	const char * const latency_usage[] = {
3548		"perf sched latency [<options>]",
3549		NULL
3550	};
3551	const char * const replay_usage[] = {
3552		"perf sched replay [<options>]",
3553		NULL
3554	};
3555	const char * const map_usage[] = {
3556		"perf sched map [<options>]",
3557		NULL
3558	};
3559	const char * const timehist_usage[] = {
3560		"perf sched timehist [<options>]",
3561		NULL
3562	};
3563	const char *const sched_subcommands[] = { "record", "latency", "map",
3564						  "replay", "script",
3565						  "timehist", NULL };
3566	const char *sched_usage[] = {
3567		NULL,
3568		NULL
3569	};
3570	struct trace_sched_handler lat_ops  = {
3571		.wakeup_event	    = latency_wakeup_event,
3572		.switch_event	    = latency_switch_event,
3573		.runtime_event	    = latency_runtime_event,
3574		.migrate_task_event = latency_migrate_task_event,
3575	};
3576	struct trace_sched_handler map_ops  = {
3577		.switch_event	    = map_switch_event,
3578	};
3579	struct trace_sched_handler replay_ops  = {
3580		.wakeup_event	    = replay_wakeup_event,
3581		.switch_event	    = replay_switch_event,
3582		.fork_event	    = replay_fork_event,
3583	};
3584	unsigned int i;
3585	int ret = 0;
3586
3587	mutex_init(&sched.start_work_mutex);
3588	mutex_init(&sched.work_done_wait_mutex);
3589	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3590		sched.curr_pid[i] = -1;
3591
3592	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3593					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3594	if (!argc)
3595		usage_with_options(sched_usage, sched_options);
3596
3597	/*
3598	 * Aliased to 'perf script' for now:
3599	 */
3600	if (!strcmp(argv[0], "script")) {
3601		ret = cmd_script(argc, argv);
3602	} else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3603		ret = __cmd_record(argc, argv);
3604	} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3605		sched.tp_handler = &lat_ops;
3606		if (argc > 1) {
3607			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3608			if (argc)
3609				usage_with_options(latency_usage, latency_options);
3610		}
3611		setup_sorting(&sched, latency_options, latency_usage);
3612		ret = perf_sched__lat(&sched);
3613	} else if (!strcmp(argv[0], "map")) {
3614		if (argc) {
3615			argc = parse_options(argc, argv, map_options, map_usage, 0);
3616			if (argc)
3617				usage_with_options(map_usage, map_options);
3618		}
3619		sched.tp_handler = &map_ops;
3620		setup_sorting(&sched, latency_options, latency_usage);
3621		ret = perf_sched__map(&sched);
3622	} else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3623		sched.tp_handler = &replay_ops;
3624		if (argc) {
3625			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3626			if (argc)
3627				usage_with_options(replay_usage, replay_options);
3628		}
3629		ret = perf_sched__replay(&sched);
3630	} else if (!strcmp(argv[0], "timehist")) {
3631		if (argc) {
3632			argc = parse_options(argc, argv, timehist_options,
3633					     timehist_usage, 0);
3634			if (argc)
3635				usage_with_options(timehist_usage, timehist_options);
3636		}
3637		if ((sched.show_wakeups || sched.show_next) &&
3638		    sched.summary_only) {
3639			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3640			parse_options_usage(timehist_usage, timehist_options, "s", true);
3641			if (sched.show_wakeups)
3642				parse_options_usage(NULL, timehist_options, "w", true);
3643			if (sched.show_next)
3644				parse_options_usage(NULL, timehist_options, "n", true);
3645			ret = -EINVAL;
3646			goto out;
3647		}
3648		ret = symbol__validate_sym_arguments();
3649		if (ret)
3650			goto out;
3651
3652		ret = perf_sched__timehist(&sched);
3653	} else {
3654		usage_with_options(sched_usage, sched_options);
3655	}
3656
3657out:
3658	mutex_destroy(&sched.start_work_mutex);
3659	mutex_destroy(&sched.work_done_wait_mutex);
3660
3661	return ret;
3662}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
 
   3#include "perf-sys.h"
   4
   5#include "util/cpumap.h"
   6#include "util/evlist.h"
   7#include "util/evsel.h"
   8#include "util/evsel_fprintf.h"
   9#include "util/mutex.h"
  10#include "util/symbol.h"
  11#include "util/thread.h"
  12#include "util/header.h"
  13#include "util/session.h"
  14#include "util/tool.h"
  15#include "util/cloexec.h"
  16#include "util/thread_map.h"
  17#include "util/color.h"
  18#include "util/stat.h"
  19#include "util/string2.h"
  20#include "util/callchain.h"
  21#include "util/time-utils.h"
  22
  23#include <subcmd/pager.h>
  24#include <subcmd/parse-options.h>
  25#include "util/trace-event.h"
  26
  27#include "util/debug.h"
  28#include "util/event.h"
  29#include "util/util.h"
  30
  31#include <linux/kernel.h>
  32#include <linux/log2.h>
  33#include <linux/zalloc.h>
  34#include <sys/prctl.h>
  35#include <sys/resource.h>
  36#include <inttypes.h>
  37
  38#include <errno.h>
  39#include <semaphore.h>
  40#include <pthread.h>
  41#include <math.h>
  42#include <api/fs/fs.h>
  43#include <perf/cpumap.h>
  44#include <linux/time64.h>
  45#include <linux/err.h>
  46
  47#include <linux/ctype.h>
  48
  49#define PR_SET_NAME		15               /* Set process name */
  50#define MAX_CPUS		4096
  51#define COMM_LEN		20
  52#define SYM_LEN			129
  53#define MAX_PID			1024000
  54
  55static const char *cpu_list;
  56static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
  57
  58struct sched_atom;
  59
  60struct task_desc {
  61	unsigned long		nr;
  62	unsigned long		pid;
  63	char			comm[COMM_LEN];
  64
  65	unsigned long		nr_events;
  66	unsigned long		curr_event;
  67	struct sched_atom	**atoms;
  68
  69	pthread_t		thread;
  70	sem_t			sleep_sem;
  71
  72	sem_t			ready_for_work;
  73	sem_t			work_done_sem;
  74
  75	u64			cpu_usage;
  76};
  77
  78enum sched_event_type {
  79	SCHED_EVENT_RUN,
  80	SCHED_EVENT_SLEEP,
  81	SCHED_EVENT_WAKEUP,
  82	SCHED_EVENT_MIGRATION,
  83};
  84
  85struct sched_atom {
  86	enum sched_event_type	type;
  87	int			specific_wait;
  88	u64			timestamp;
  89	u64			duration;
  90	unsigned long		nr;
  91	sem_t			*wait_sem;
  92	struct task_desc	*wakee;
  93};
  94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95enum thread_state {
  96	THREAD_SLEEPING = 0,
  97	THREAD_WAIT_CPU,
  98	THREAD_SCHED_IN,
  99	THREAD_IGNORE
 100};
 101
 102struct work_atom {
 103	struct list_head	list;
 104	enum thread_state	state;
 105	u64			sched_out_time;
 106	u64			wake_up_time;
 107	u64			sched_in_time;
 108	u64			runtime;
 109};
 110
 111struct work_atoms {
 112	struct list_head	work_list;
 113	struct thread		*thread;
 114	struct rb_node		node;
 115	u64			max_lat;
 116	u64			max_lat_start;
 117	u64			max_lat_end;
 118	u64			total_lat;
 119	u64			nb_atoms;
 120	u64			total_runtime;
 121	int			num_merged;
 122};
 123
 124typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 125
 126struct perf_sched;
 127
 128struct trace_sched_handler {
 129	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 130			    struct perf_sample *sample, struct machine *machine);
 131
 132	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 133			     struct perf_sample *sample, struct machine *machine);
 134
 135	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 136			    struct perf_sample *sample, struct machine *machine);
 137
 138	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 139	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 140			  struct machine *machine);
 141
 142	int (*migrate_task_event)(struct perf_sched *sched,
 143				  struct evsel *evsel,
 144				  struct perf_sample *sample,
 145				  struct machine *machine);
 146};
 147
 148#define COLOR_PIDS PERF_COLOR_BLUE
 149#define COLOR_CPUS PERF_COLOR_BG_RED
 150
 151struct perf_sched_map {
 152	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 153	struct perf_cpu		*comp_cpus;
 154	bool			 comp;
 155	struct perf_thread_map *color_pids;
 156	const char		*color_pids_str;
 157	struct perf_cpu_map	*color_cpus;
 158	const char		*color_cpus_str;
 159	struct perf_cpu_map	*cpus;
 160	const char		*cpus_str;
 161};
 162
 163struct perf_sched {
 164	struct perf_tool tool;
 165	const char	 *sort_order;
 166	unsigned long	 nr_tasks;
 167	struct task_desc **pid_to_task;
 168	struct task_desc **tasks;
 169	const struct trace_sched_handler *tp_handler;
 170	struct mutex	 start_work_mutex;
 171	struct mutex	 work_done_wait_mutex;
 172	int		 profile_cpu;
 173/*
 174 * Track the current task - that way we can know whether there's any
 175 * weird events, such as a task being switched away that is not current.
 176 */
 177	struct perf_cpu	 max_cpu;
 178	u32		 *curr_pid;
 179	struct thread	 **curr_thread;
 180	char		 next_shortname1;
 181	char		 next_shortname2;
 182	unsigned int	 replay_repeat;
 183	unsigned long	 nr_run_events;
 184	unsigned long	 nr_sleep_events;
 185	unsigned long	 nr_wakeup_events;
 186	unsigned long	 nr_sleep_corrections;
 187	unsigned long	 nr_run_events_optimized;
 188	unsigned long	 targetless_wakeups;
 189	unsigned long	 multitarget_wakeups;
 190	unsigned long	 nr_runs;
 191	unsigned long	 nr_timestamps;
 192	unsigned long	 nr_unordered_timestamps;
 193	unsigned long	 nr_context_switch_bugs;
 194	unsigned long	 nr_events;
 195	unsigned long	 nr_lost_chunks;
 196	unsigned long	 nr_lost_events;
 197	u64		 run_measurement_overhead;
 198	u64		 sleep_measurement_overhead;
 199	u64		 start_time;
 200	u64		 cpu_usage;
 201	u64		 runavg_cpu_usage;
 202	u64		 parent_cpu_usage;
 203	u64		 runavg_parent_cpu_usage;
 204	u64		 sum_runtime;
 205	u64		 sum_fluct;
 206	u64		 run_avg;
 207	u64		 all_runtime;
 208	u64		 all_count;
 209	u64		 *cpu_last_switched;
 210	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 211	struct list_head sort_list, cmp_pid;
 212	bool force;
 213	bool skip_merge;
 214	struct perf_sched_map map;
 215
 216	/* options for timehist command */
 217	bool		summary;
 218	bool		summary_only;
 219	bool		idle_hist;
 220	bool		show_callchain;
 221	unsigned int	max_stack;
 222	bool		show_cpu_visual;
 223	bool		show_wakeups;
 224	bool		show_next;
 225	bool		show_migrations;
 226	bool		show_state;
 227	u64		skipped_samples;
 228	const char	*time_str;
 229	struct perf_time_interval ptime;
 230	struct perf_time_interval hist_time;
 231	volatile bool   thread_funcs_exit;
 232};
 233
 234/* per thread run time data */
 235struct thread_runtime {
 236	u64 last_time;      /* time of previous sched in/out event */
 237	u64 dt_run;         /* run time */
 238	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 239	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 240	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 241	u64 dt_delay;       /* time between wakeup and sched-in */
 242	u64 ready_to_run;   /* time of wakeup */
 243
 244	struct stats run_stats;
 245	u64 total_run_time;
 246	u64 total_sleep_time;
 247	u64 total_iowait_time;
 248	u64 total_preempt_time;
 249	u64 total_delay_time;
 250
 251	char last_state;
 252
 253	char shortname[3];
 254	bool comm_changed;
 255
 256	u64 migrations;
 257};
 258
 259/* per event run time data */
 260struct evsel_runtime {
 261	u64 *last_time; /* time this event was last seen per cpu */
 262	u32 ncpu;       /* highest cpu slot allocated */
 263};
 264
 265/* per cpu idle time data */
 266struct idle_thread_runtime {
 267	struct thread_runtime	tr;
 268	struct thread		*last_thread;
 269	struct rb_root_cached	sorted_root;
 270	struct callchain_root	callchain;
 271	struct callchain_cursor	cursor;
 272};
 273
 274/* track idle times per cpu */
 275static struct thread **idle_threads;
 276static int idle_max_cpu;
 277static char idle_comm[] = "<idle>";
 278
 279static u64 get_nsecs(void)
 280{
 281	struct timespec ts;
 282
 283	clock_gettime(CLOCK_MONOTONIC, &ts);
 284
 285	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 286}
 287
 288static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 289{
 290	u64 T0 = get_nsecs(), T1;
 291
 292	do {
 293		T1 = get_nsecs();
 294	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 295}
 296
 297static void sleep_nsecs(u64 nsecs)
 298{
 299	struct timespec ts;
 300
 301	ts.tv_nsec = nsecs % 999999999;
 302	ts.tv_sec = nsecs / 999999999;
 303
 304	nanosleep(&ts, NULL);
 305}
 306
 307static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 308{
 309	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 310	int i;
 311
 312	for (i = 0; i < 10; i++) {
 313		T0 = get_nsecs();
 314		burn_nsecs(sched, 0);
 315		T1 = get_nsecs();
 316		delta = T1-T0;
 317		min_delta = min(min_delta, delta);
 318	}
 319	sched->run_measurement_overhead = min_delta;
 320
 321	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 322}
 323
 324static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 325{
 326	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 327	int i;
 328
 329	for (i = 0; i < 10; i++) {
 330		T0 = get_nsecs();
 331		sleep_nsecs(10000);
 332		T1 = get_nsecs();
 333		delta = T1-T0;
 334		min_delta = min(min_delta, delta);
 335	}
 336	min_delta -= 10000;
 337	sched->sleep_measurement_overhead = min_delta;
 338
 339	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 340}
 341
 342static struct sched_atom *
 343get_new_event(struct task_desc *task, u64 timestamp)
 344{
 345	struct sched_atom *event = zalloc(sizeof(*event));
 346	unsigned long idx = task->nr_events;
 347	size_t size;
 348
 349	event->timestamp = timestamp;
 350	event->nr = idx;
 351
 352	task->nr_events++;
 353	size = sizeof(struct sched_atom *) * task->nr_events;
 354	task->atoms = realloc(task->atoms, size);
 355	BUG_ON(!task->atoms);
 356
 357	task->atoms[idx] = event;
 358
 359	return event;
 360}
 361
 362static struct sched_atom *last_event(struct task_desc *task)
 363{
 364	if (!task->nr_events)
 365		return NULL;
 366
 367	return task->atoms[task->nr_events - 1];
 368}
 369
 370static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 371				u64 timestamp, u64 duration)
 372{
 373	struct sched_atom *event, *curr_event = last_event(task);
 374
 375	/*
 376	 * optimize an existing RUN event by merging this one
 377	 * to it:
 378	 */
 379	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 380		sched->nr_run_events_optimized++;
 381		curr_event->duration += duration;
 382		return;
 383	}
 384
 385	event = get_new_event(task, timestamp);
 386
 387	event->type = SCHED_EVENT_RUN;
 388	event->duration = duration;
 389
 390	sched->nr_run_events++;
 391}
 392
 393static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 394				   u64 timestamp, struct task_desc *wakee)
 395{
 396	struct sched_atom *event, *wakee_event;
 397
 398	event = get_new_event(task, timestamp);
 399	event->type = SCHED_EVENT_WAKEUP;
 400	event->wakee = wakee;
 401
 402	wakee_event = last_event(wakee);
 403	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 404		sched->targetless_wakeups++;
 405		return;
 406	}
 407	if (wakee_event->wait_sem) {
 408		sched->multitarget_wakeups++;
 409		return;
 410	}
 411
 412	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 413	sem_init(wakee_event->wait_sem, 0, 0);
 414	wakee_event->specific_wait = 1;
 415	event->wait_sem = wakee_event->wait_sem;
 416
 417	sched->nr_wakeup_events++;
 418}
 419
 420static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 421				  u64 timestamp, const char task_state __maybe_unused)
 422{
 423	struct sched_atom *event = get_new_event(task, timestamp);
 424
 425	event->type = SCHED_EVENT_SLEEP;
 426
 427	sched->nr_sleep_events++;
 428}
 429
 430static struct task_desc *register_pid(struct perf_sched *sched,
 431				      unsigned long pid, const char *comm)
 432{
 433	struct task_desc *task;
 434	static int pid_max;
 435
 436	if (sched->pid_to_task == NULL) {
 437		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 438			pid_max = MAX_PID;
 439		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 440	}
 441	if (pid >= (unsigned long)pid_max) {
 442		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 443			sizeof(struct task_desc *))) == NULL);
 444		while (pid >= (unsigned long)pid_max)
 445			sched->pid_to_task[pid_max++] = NULL;
 446	}
 447
 448	task = sched->pid_to_task[pid];
 449
 450	if (task)
 451		return task;
 452
 453	task = zalloc(sizeof(*task));
 454	task->pid = pid;
 455	task->nr = sched->nr_tasks;
 456	strcpy(task->comm, comm);
 457	/*
 458	 * every task starts in sleeping state - this gets ignored
 459	 * if there's no wakeup pointing to this sleep state:
 460	 */
 461	add_sched_event_sleep(sched, task, 0, 0);
 462
 463	sched->pid_to_task[pid] = task;
 464	sched->nr_tasks++;
 465	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 466	BUG_ON(!sched->tasks);
 467	sched->tasks[task->nr] = task;
 468
 469	if (verbose > 0)
 470		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 471
 472	return task;
 473}
 474
 475
 476static void print_task_traces(struct perf_sched *sched)
 477{
 478	struct task_desc *task;
 479	unsigned long i;
 480
 481	for (i = 0; i < sched->nr_tasks; i++) {
 482		task = sched->tasks[i];
 483		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 484			task->nr, task->comm, task->pid, task->nr_events);
 485	}
 486}
 487
 488static void add_cross_task_wakeups(struct perf_sched *sched)
 489{
 490	struct task_desc *task1, *task2;
 491	unsigned long i, j;
 492
 493	for (i = 0; i < sched->nr_tasks; i++) {
 494		task1 = sched->tasks[i];
 495		j = i + 1;
 496		if (j == sched->nr_tasks)
 497			j = 0;
 498		task2 = sched->tasks[j];
 499		add_sched_event_wakeup(sched, task1, 0, task2);
 500	}
 501}
 502
 503static void perf_sched__process_event(struct perf_sched *sched,
 504				      struct sched_atom *atom)
 505{
 506	int ret = 0;
 507
 508	switch (atom->type) {
 509		case SCHED_EVENT_RUN:
 510			burn_nsecs(sched, atom->duration);
 511			break;
 512		case SCHED_EVENT_SLEEP:
 513			if (atom->wait_sem)
 514				ret = sem_wait(atom->wait_sem);
 515			BUG_ON(ret);
 516			break;
 517		case SCHED_EVENT_WAKEUP:
 518			if (atom->wait_sem)
 519				ret = sem_post(atom->wait_sem);
 520			BUG_ON(ret);
 521			break;
 522		case SCHED_EVENT_MIGRATION:
 523			break;
 524		default:
 525			BUG_ON(1);
 526	}
 527}
 528
 529static u64 get_cpu_usage_nsec_parent(void)
 530{
 531	struct rusage ru;
 532	u64 sum;
 533	int err;
 534
 535	err = getrusage(RUSAGE_SELF, &ru);
 536	BUG_ON(err);
 537
 538	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 539	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 540
 541	return sum;
 542}
 543
 544static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 545{
 546	struct perf_event_attr attr;
 547	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 548	int fd;
 549	struct rlimit limit;
 550	bool need_privilege = false;
 551
 552	memset(&attr, 0, sizeof(attr));
 553
 554	attr.type = PERF_TYPE_SOFTWARE;
 555	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 556
 557force_again:
 558	fd = sys_perf_event_open(&attr, 0, -1, -1,
 559				 perf_event_open_cloexec_flag());
 560
 561	if (fd < 0) {
 562		if (errno == EMFILE) {
 563			if (sched->force) {
 564				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 565				limit.rlim_cur += sched->nr_tasks - cur_task;
 566				if (limit.rlim_cur > limit.rlim_max) {
 567					limit.rlim_max = limit.rlim_cur;
 568					need_privilege = true;
 569				}
 570				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 571					if (need_privilege && errno == EPERM)
 572						strcpy(info, "Need privilege\n");
 573				} else
 574					goto force_again;
 575			} else
 576				strcpy(info, "Have a try with -f option\n");
 577		}
 578		pr_err("Error: sys_perf_event_open() syscall returned "
 579		       "with %d (%s)\n%s", fd,
 580		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 581		exit(EXIT_FAILURE);
 582	}
 583	return fd;
 584}
 585
 586static u64 get_cpu_usage_nsec_self(int fd)
 587{
 588	u64 runtime;
 589	int ret;
 590
 591	ret = read(fd, &runtime, sizeof(runtime));
 592	BUG_ON(ret != sizeof(runtime));
 593
 594	return runtime;
 595}
 596
 597struct sched_thread_parms {
 598	struct task_desc  *task;
 599	struct perf_sched *sched;
 600	int fd;
 601};
 602
 603static void *thread_func(void *ctx)
 604{
 605	struct sched_thread_parms *parms = ctx;
 606	struct task_desc *this_task = parms->task;
 607	struct perf_sched *sched = parms->sched;
 608	u64 cpu_usage_0, cpu_usage_1;
 609	unsigned long i, ret;
 610	char comm2[22];
 611	int fd = parms->fd;
 612
 613	zfree(&parms);
 614
 615	sprintf(comm2, ":%s", this_task->comm);
 616	prctl(PR_SET_NAME, comm2);
 617	if (fd < 0)
 618		return NULL;
 619
 620	while (!sched->thread_funcs_exit) {
 621		ret = sem_post(&this_task->ready_for_work);
 622		BUG_ON(ret);
 623		mutex_lock(&sched->start_work_mutex);
 624		mutex_unlock(&sched->start_work_mutex);
 625
 626		cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 627
 628		for (i = 0; i < this_task->nr_events; i++) {
 629			this_task->curr_event = i;
 630			perf_sched__process_event(sched, this_task->atoms[i]);
 631		}
 632
 633		cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 634		this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 635		ret = sem_post(&this_task->work_done_sem);
 636		BUG_ON(ret);
 637
 638		mutex_lock(&sched->work_done_wait_mutex);
 639		mutex_unlock(&sched->work_done_wait_mutex);
 640	}
 641	return NULL;
 642}
 643
 644static void create_tasks(struct perf_sched *sched)
 645	EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
 646	EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
 647{
 648	struct task_desc *task;
 649	pthread_attr_t attr;
 650	unsigned long i;
 651	int err;
 652
 653	err = pthread_attr_init(&attr);
 654	BUG_ON(err);
 655	err = pthread_attr_setstacksize(&attr,
 656			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
 657	BUG_ON(err);
 658	mutex_lock(&sched->start_work_mutex);
 659	mutex_lock(&sched->work_done_wait_mutex);
 660	for (i = 0; i < sched->nr_tasks; i++) {
 661		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 662		BUG_ON(parms == NULL);
 663		parms->task = task = sched->tasks[i];
 664		parms->sched = sched;
 665		parms->fd = self_open_counters(sched, i);
 666		sem_init(&task->sleep_sem, 0, 0);
 667		sem_init(&task->ready_for_work, 0, 0);
 668		sem_init(&task->work_done_sem, 0, 0);
 669		task->curr_event = 0;
 670		err = pthread_create(&task->thread, &attr, thread_func, parms);
 671		BUG_ON(err);
 672	}
 673}
 674
 675static void destroy_tasks(struct perf_sched *sched)
 676	UNLOCK_FUNCTION(sched->start_work_mutex)
 677	UNLOCK_FUNCTION(sched->work_done_wait_mutex)
 678{
 679	struct task_desc *task;
 680	unsigned long i;
 681	int err;
 682
 683	mutex_unlock(&sched->start_work_mutex);
 684	mutex_unlock(&sched->work_done_wait_mutex);
 685	/* Get rid of threads so they won't be upset by mutex destrunction */
 686	for (i = 0; i < sched->nr_tasks; i++) {
 687		task = sched->tasks[i];
 688		err = pthread_join(task->thread, NULL);
 689		BUG_ON(err);
 690		sem_destroy(&task->sleep_sem);
 691		sem_destroy(&task->ready_for_work);
 692		sem_destroy(&task->work_done_sem);
 693	}
 694}
 695
 696static void wait_for_tasks(struct perf_sched *sched)
 697	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 698	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 699{
 700	u64 cpu_usage_0, cpu_usage_1;
 701	struct task_desc *task;
 702	unsigned long i, ret;
 703
 704	sched->start_time = get_nsecs();
 705	sched->cpu_usage = 0;
 706	mutex_unlock(&sched->work_done_wait_mutex);
 707
 708	for (i = 0; i < sched->nr_tasks; i++) {
 709		task = sched->tasks[i];
 710		ret = sem_wait(&task->ready_for_work);
 711		BUG_ON(ret);
 712		sem_init(&task->ready_for_work, 0, 0);
 713	}
 714	mutex_lock(&sched->work_done_wait_mutex);
 715
 716	cpu_usage_0 = get_cpu_usage_nsec_parent();
 717
 718	mutex_unlock(&sched->start_work_mutex);
 719
 720	for (i = 0; i < sched->nr_tasks; i++) {
 721		task = sched->tasks[i];
 722		ret = sem_wait(&task->work_done_sem);
 723		BUG_ON(ret);
 724		sem_init(&task->work_done_sem, 0, 0);
 725		sched->cpu_usage += task->cpu_usage;
 726		task->cpu_usage = 0;
 727	}
 728
 729	cpu_usage_1 = get_cpu_usage_nsec_parent();
 730	if (!sched->runavg_cpu_usage)
 731		sched->runavg_cpu_usage = sched->cpu_usage;
 732	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 733
 734	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 735	if (!sched->runavg_parent_cpu_usage)
 736		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 737	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 738					 sched->parent_cpu_usage)/sched->replay_repeat;
 739
 740	mutex_lock(&sched->start_work_mutex);
 741
 742	for (i = 0; i < sched->nr_tasks; i++) {
 743		task = sched->tasks[i];
 744		sem_init(&task->sleep_sem, 0, 0);
 745		task->curr_event = 0;
 746	}
 747}
 748
 749static void run_one_test(struct perf_sched *sched)
 750	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 751	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 752{
 753	u64 T0, T1, delta, avg_delta, fluct;
 754
 755	T0 = get_nsecs();
 756	wait_for_tasks(sched);
 757	T1 = get_nsecs();
 758
 759	delta = T1 - T0;
 760	sched->sum_runtime += delta;
 761	sched->nr_runs++;
 762
 763	avg_delta = sched->sum_runtime / sched->nr_runs;
 764	if (delta < avg_delta)
 765		fluct = avg_delta - delta;
 766	else
 767		fluct = delta - avg_delta;
 768	sched->sum_fluct += fluct;
 769	if (!sched->run_avg)
 770		sched->run_avg = delta;
 771	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 772
 773	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 774
 775	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 776
 777	printf("cpu: %0.2f / %0.2f",
 778		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 779
 780#if 0
 781	/*
 782	 * rusage statistics done by the parent, these are less
 783	 * accurate than the sched->sum_exec_runtime based statistics:
 784	 */
 785	printf(" [%0.2f / %0.2f]",
 786		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 787		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 788#endif
 789
 790	printf("\n");
 791
 792	if (sched->nr_sleep_corrections)
 793		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 794	sched->nr_sleep_corrections = 0;
 795}
 796
 797static void test_calibrations(struct perf_sched *sched)
 798{
 799	u64 T0, T1;
 800
 801	T0 = get_nsecs();
 802	burn_nsecs(sched, NSEC_PER_MSEC);
 803	T1 = get_nsecs();
 804
 805	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 806
 807	T0 = get_nsecs();
 808	sleep_nsecs(NSEC_PER_MSEC);
 809	T1 = get_nsecs();
 810
 811	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 812}
 813
 814static int
 815replay_wakeup_event(struct perf_sched *sched,
 816		    struct evsel *evsel, struct perf_sample *sample,
 817		    struct machine *machine __maybe_unused)
 818{
 819	const char *comm = evsel__strval(evsel, sample, "comm");
 820	const u32 pid	 = evsel__intval(evsel, sample, "pid");
 821	struct task_desc *waker, *wakee;
 822
 823	if (verbose > 0) {
 824		printf("sched_wakeup event %p\n", evsel);
 825
 826		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 827	}
 828
 829	waker = register_pid(sched, sample->tid, "<unknown>");
 830	wakee = register_pid(sched, pid, comm);
 831
 832	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 833	return 0;
 834}
 835
 836static int replay_switch_event(struct perf_sched *sched,
 837			       struct evsel *evsel,
 838			       struct perf_sample *sample,
 839			       struct machine *machine __maybe_unused)
 840{
 841	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
 842		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
 843	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
 844		  next_pid = evsel__intval(evsel, sample, "next_pid");
 845	const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
 846	struct task_desc *prev, __maybe_unused *next;
 847	u64 timestamp0, timestamp = sample->time;
 848	int cpu = sample->cpu;
 849	s64 delta;
 850
 851	if (verbose > 0)
 852		printf("sched_switch event %p\n", evsel);
 853
 854	if (cpu >= MAX_CPUS || cpu < 0)
 855		return 0;
 856
 857	timestamp0 = sched->cpu_last_switched[cpu];
 858	if (timestamp0)
 859		delta = timestamp - timestamp0;
 860	else
 861		delta = 0;
 862
 863	if (delta < 0) {
 864		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 865		return -1;
 866	}
 867
 868	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 869		 prev_comm, prev_pid, next_comm, next_pid, delta);
 870
 871	prev = register_pid(sched, prev_pid, prev_comm);
 872	next = register_pid(sched, next_pid, next_comm);
 873
 874	sched->cpu_last_switched[cpu] = timestamp;
 875
 876	add_sched_event_run(sched, prev, timestamp, delta);
 877	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 878
 879	return 0;
 880}
 881
 882static int replay_fork_event(struct perf_sched *sched,
 883			     union perf_event *event,
 884			     struct machine *machine)
 885{
 886	struct thread *child, *parent;
 887
 888	child = machine__findnew_thread(machine, event->fork.pid,
 889					event->fork.tid);
 890	parent = machine__findnew_thread(machine, event->fork.ppid,
 891					 event->fork.ptid);
 892
 893	if (child == NULL || parent == NULL) {
 894		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 895				 child, parent);
 896		goto out_put;
 897	}
 898
 899	if (verbose > 0) {
 900		printf("fork event\n");
 901		printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
 902		printf("...  child: %s/%d\n", thread__comm_str(child), thread__tid(child));
 903	}
 904
 905	register_pid(sched, thread__tid(parent), thread__comm_str(parent));
 906	register_pid(sched, thread__tid(child), thread__comm_str(child));
 907out_put:
 908	thread__put(child);
 909	thread__put(parent);
 910	return 0;
 911}
 912
 913struct sort_dimension {
 914	const char		*name;
 915	sort_fn_t		cmp;
 916	struct list_head	list;
 917};
 918
 919/*
 920 * handle runtime stats saved per thread
 921 */
 922static struct thread_runtime *thread__init_runtime(struct thread *thread)
 923{
 924	struct thread_runtime *r;
 925
 926	r = zalloc(sizeof(struct thread_runtime));
 927	if (!r)
 928		return NULL;
 929
 930	init_stats(&r->run_stats);
 931	thread__set_priv(thread, r);
 932
 933	return r;
 934}
 935
 936static struct thread_runtime *thread__get_runtime(struct thread *thread)
 937{
 938	struct thread_runtime *tr;
 939
 940	tr = thread__priv(thread);
 941	if (tr == NULL) {
 942		tr = thread__init_runtime(thread);
 943		if (tr == NULL)
 944			pr_debug("Failed to malloc memory for runtime data.\n");
 945	}
 946
 947	return tr;
 948}
 949
 950static int
 951thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 952{
 953	struct sort_dimension *sort;
 954	int ret = 0;
 955
 956	BUG_ON(list_empty(list));
 957
 958	list_for_each_entry(sort, list, list) {
 959		ret = sort->cmp(l, r);
 960		if (ret)
 961			return ret;
 962	}
 963
 964	return ret;
 965}
 966
 967static struct work_atoms *
 968thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 969			 struct list_head *sort_list)
 970{
 971	struct rb_node *node = root->rb_root.rb_node;
 972	struct work_atoms key = { .thread = thread };
 973
 974	while (node) {
 975		struct work_atoms *atoms;
 976		int cmp;
 977
 978		atoms = container_of(node, struct work_atoms, node);
 979
 980		cmp = thread_lat_cmp(sort_list, &key, atoms);
 981		if (cmp > 0)
 982			node = node->rb_left;
 983		else if (cmp < 0)
 984			node = node->rb_right;
 985		else {
 986			BUG_ON(thread != atoms->thread);
 987			return atoms;
 988		}
 989	}
 990	return NULL;
 991}
 992
 993static void
 994__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
 995			 struct list_head *sort_list)
 996{
 997	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
 998	bool leftmost = true;
 999
1000	while (*new) {
1001		struct work_atoms *this;
1002		int cmp;
1003
1004		this = container_of(*new, struct work_atoms, node);
1005		parent = *new;
1006
1007		cmp = thread_lat_cmp(sort_list, data, this);
1008
1009		if (cmp > 0)
1010			new = &((*new)->rb_left);
1011		else {
1012			new = &((*new)->rb_right);
1013			leftmost = false;
1014		}
1015	}
1016
1017	rb_link_node(&data->node, parent, new);
1018	rb_insert_color_cached(&data->node, root, leftmost);
1019}
1020
1021static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1022{
1023	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1024	if (!atoms) {
1025		pr_err("No memory at %s\n", __func__);
1026		return -1;
1027	}
1028
1029	atoms->thread = thread__get(thread);
1030	INIT_LIST_HEAD(&atoms->work_list);
1031	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1032	return 0;
1033}
1034
 
 
 
 
 
 
 
1035static int
1036add_sched_out_event(struct work_atoms *atoms,
1037		    char run_state,
1038		    u64 timestamp)
1039{
1040	struct work_atom *atom = zalloc(sizeof(*atom));
1041	if (!atom) {
1042		pr_err("Non memory at %s", __func__);
1043		return -1;
1044	}
1045
1046	atom->sched_out_time = timestamp;
1047
1048	if (run_state == 'R') {
1049		atom->state = THREAD_WAIT_CPU;
1050		atom->wake_up_time = atom->sched_out_time;
1051	}
1052
1053	list_add_tail(&atom->list, &atoms->work_list);
1054	return 0;
1055}
1056
1057static void
1058add_runtime_event(struct work_atoms *atoms, u64 delta,
1059		  u64 timestamp __maybe_unused)
1060{
1061	struct work_atom *atom;
1062
1063	BUG_ON(list_empty(&atoms->work_list));
1064
1065	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1066
1067	atom->runtime += delta;
1068	atoms->total_runtime += delta;
1069}
1070
1071static void
1072add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1073{
1074	struct work_atom *atom;
1075	u64 delta;
1076
1077	if (list_empty(&atoms->work_list))
1078		return;
1079
1080	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1081
1082	if (atom->state != THREAD_WAIT_CPU)
1083		return;
1084
1085	if (timestamp < atom->wake_up_time) {
1086		atom->state = THREAD_IGNORE;
1087		return;
1088	}
1089
1090	atom->state = THREAD_SCHED_IN;
1091	atom->sched_in_time = timestamp;
1092
1093	delta = atom->sched_in_time - atom->wake_up_time;
1094	atoms->total_lat += delta;
1095	if (delta > atoms->max_lat) {
1096		atoms->max_lat = delta;
1097		atoms->max_lat_start = atom->wake_up_time;
1098		atoms->max_lat_end = timestamp;
1099	}
1100	atoms->nb_atoms++;
1101}
1102
1103static int latency_switch_event(struct perf_sched *sched,
1104				struct evsel *evsel,
1105				struct perf_sample *sample,
1106				struct machine *machine)
1107{
1108	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1109		  next_pid = evsel__intval(evsel, sample, "next_pid");
1110	const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
1111	struct work_atoms *out_events, *in_events;
1112	struct thread *sched_out, *sched_in;
1113	u64 timestamp0, timestamp = sample->time;
1114	int cpu = sample->cpu, err = -1;
1115	s64 delta;
1116
1117	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1118
1119	timestamp0 = sched->cpu_last_switched[cpu];
1120	sched->cpu_last_switched[cpu] = timestamp;
1121	if (timestamp0)
1122		delta = timestamp - timestamp0;
1123	else
1124		delta = 0;
1125
1126	if (delta < 0) {
1127		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1128		return -1;
1129	}
1130
1131	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1132	sched_in = machine__findnew_thread(machine, -1, next_pid);
1133	if (sched_out == NULL || sched_in == NULL)
1134		goto out_put;
1135
1136	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1137	if (!out_events) {
1138		if (thread_atoms_insert(sched, sched_out))
1139			goto out_put;
1140		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1141		if (!out_events) {
1142			pr_err("out-event: Internal tree error");
1143			goto out_put;
1144		}
1145	}
1146	if (add_sched_out_event(out_events, prev_state, timestamp))
1147		return -1;
1148
1149	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1150	if (!in_events) {
1151		if (thread_atoms_insert(sched, sched_in))
1152			goto out_put;
1153		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1154		if (!in_events) {
1155			pr_err("in-event: Internal tree error");
1156			goto out_put;
1157		}
1158		/*
1159		 * Take came in we have not heard about yet,
1160		 * add in an initial atom in runnable state:
1161		 */
1162		if (add_sched_out_event(in_events, 'R', timestamp))
1163			goto out_put;
1164	}
1165	add_sched_in_event(in_events, timestamp);
1166	err = 0;
1167out_put:
1168	thread__put(sched_out);
1169	thread__put(sched_in);
1170	return err;
1171}
1172
1173static int latency_runtime_event(struct perf_sched *sched,
1174				 struct evsel *evsel,
1175				 struct perf_sample *sample,
1176				 struct machine *machine)
1177{
1178	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1179	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1180	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1181	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1182	u64 timestamp = sample->time;
1183	int cpu = sample->cpu, err = -1;
1184
1185	if (thread == NULL)
1186		return -1;
1187
1188	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1189	if (!atoms) {
1190		if (thread_atoms_insert(sched, thread))
1191			goto out_put;
1192		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1193		if (!atoms) {
1194			pr_err("in-event: Internal tree error");
1195			goto out_put;
1196		}
1197		if (add_sched_out_event(atoms, 'R', timestamp))
1198			goto out_put;
1199	}
1200
1201	add_runtime_event(atoms, runtime, timestamp);
1202	err = 0;
1203out_put:
1204	thread__put(thread);
1205	return err;
1206}
1207
1208static int latency_wakeup_event(struct perf_sched *sched,
1209				struct evsel *evsel,
1210				struct perf_sample *sample,
1211				struct machine *machine)
1212{
1213	const u32 pid	  = evsel__intval(evsel, sample, "pid");
1214	struct work_atoms *atoms;
1215	struct work_atom *atom;
1216	struct thread *wakee;
1217	u64 timestamp = sample->time;
1218	int err = -1;
1219
1220	wakee = machine__findnew_thread(machine, -1, pid);
1221	if (wakee == NULL)
1222		return -1;
1223	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1224	if (!atoms) {
1225		if (thread_atoms_insert(sched, wakee))
1226			goto out_put;
1227		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1228		if (!atoms) {
1229			pr_err("wakeup-event: Internal tree error");
1230			goto out_put;
1231		}
1232		if (add_sched_out_event(atoms, 'S', timestamp))
1233			goto out_put;
1234	}
1235
1236	BUG_ON(list_empty(&atoms->work_list));
1237
1238	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1239
1240	/*
1241	 * As we do not guarantee the wakeup event happens when
1242	 * task is out of run queue, also may happen when task is
1243	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1244	 * then we should not set the ->wake_up_time when wake up a
1245	 * task which is on run queue.
1246	 *
1247	 * You WILL be missing events if you've recorded only
1248	 * one CPU, or are only looking at only one, so don't
1249	 * skip in this case.
1250	 */
1251	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1252		goto out_ok;
1253
1254	sched->nr_timestamps++;
1255	if (atom->sched_out_time > timestamp) {
1256		sched->nr_unordered_timestamps++;
1257		goto out_ok;
1258	}
1259
1260	atom->state = THREAD_WAIT_CPU;
1261	atom->wake_up_time = timestamp;
1262out_ok:
1263	err = 0;
1264out_put:
1265	thread__put(wakee);
1266	return err;
1267}
1268
1269static int latency_migrate_task_event(struct perf_sched *sched,
1270				      struct evsel *evsel,
1271				      struct perf_sample *sample,
1272				      struct machine *machine)
1273{
1274	const u32 pid = evsel__intval(evsel, sample, "pid");
1275	u64 timestamp = sample->time;
1276	struct work_atoms *atoms;
1277	struct work_atom *atom;
1278	struct thread *migrant;
1279	int err = -1;
1280
1281	/*
1282	 * Only need to worry about migration when profiling one CPU.
1283	 */
1284	if (sched->profile_cpu == -1)
1285		return 0;
1286
1287	migrant = machine__findnew_thread(machine, -1, pid);
1288	if (migrant == NULL)
1289		return -1;
1290	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1291	if (!atoms) {
1292		if (thread_atoms_insert(sched, migrant))
1293			goto out_put;
1294		register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1295		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1296		if (!atoms) {
1297			pr_err("migration-event: Internal tree error");
1298			goto out_put;
1299		}
1300		if (add_sched_out_event(atoms, 'R', timestamp))
1301			goto out_put;
1302	}
1303
1304	BUG_ON(list_empty(&atoms->work_list));
1305
1306	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1307	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1308
1309	sched->nr_timestamps++;
1310
1311	if (atom->sched_out_time > timestamp)
1312		sched->nr_unordered_timestamps++;
1313	err = 0;
1314out_put:
1315	thread__put(migrant);
1316	return err;
1317}
1318
1319static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1320{
1321	int i;
1322	int ret;
1323	u64 avg;
1324	char max_lat_start[32], max_lat_end[32];
1325
1326	if (!work_list->nb_atoms)
1327		return;
1328	/*
1329	 * Ignore idle threads:
1330	 */
1331	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1332		return;
1333
1334	sched->all_runtime += work_list->total_runtime;
1335	sched->all_count   += work_list->nb_atoms;
1336
1337	if (work_list->num_merged > 1) {
1338		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread),
1339			     work_list->num_merged);
1340	} else {
1341		ret = printf("  %s:%d ", thread__comm_str(work_list->thread),
1342			     thread__tid(work_list->thread));
1343	}
1344
1345	for (i = 0; i < 24 - ret; i++)
1346		printf(" ");
1347
1348	avg = work_list->total_lat / work_list->nb_atoms;
1349	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1350	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1351
1352	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1353	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1354		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1355		 (double)work_list->max_lat / NSEC_PER_MSEC,
1356		 max_lat_start, max_lat_end);
1357}
1358
1359static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1360{
1361	pid_t l_tid, r_tid;
1362
1363	if (RC_CHK_EQUAL(l->thread, r->thread))
1364		return 0;
1365	l_tid = thread__tid(l->thread);
1366	r_tid = thread__tid(r->thread);
1367	if (l_tid < r_tid)
1368		return -1;
1369	if (l_tid > r_tid)
1370		return 1;
1371	return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1372}
1373
1374static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1375{
1376	u64 avgl, avgr;
1377
1378	if (!l->nb_atoms)
1379		return -1;
1380
1381	if (!r->nb_atoms)
1382		return 1;
1383
1384	avgl = l->total_lat / l->nb_atoms;
1385	avgr = r->total_lat / r->nb_atoms;
1386
1387	if (avgl < avgr)
1388		return -1;
1389	if (avgl > avgr)
1390		return 1;
1391
1392	return 0;
1393}
1394
1395static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1396{
1397	if (l->max_lat < r->max_lat)
1398		return -1;
1399	if (l->max_lat > r->max_lat)
1400		return 1;
1401
1402	return 0;
1403}
1404
1405static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1406{
1407	if (l->nb_atoms < r->nb_atoms)
1408		return -1;
1409	if (l->nb_atoms > r->nb_atoms)
1410		return 1;
1411
1412	return 0;
1413}
1414
1415static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1416{
1417	if (l->total_runtime < r->total_runtime)
1418		return -1;
1419	if (l->total_runtime > r->total_runtime)
1420		return 1;
1421
1422	return 0;
1423}
1424
1425static int sort_dimension__add(const char *tok, struct list_head *list)
1426{
1427	size_t i;
1428	static struct sort_dimension avg_sort_dimension = {
1429		.name = "avg",
1430		.cmp  = avg_cmp,
1431	};
1432	static struct sort_dimension max_sort_dimension = {
1433		.name = "max",
1434		.cmp  = max_cmp,
1435	};
1436	static struct sort_dimension pid_sort_dimension = {
1437		.name = "pid",
1438		.cmp  = pid_cmp,
1439	};
1440	static struct sort_dimension runtime_sort_dimension = {
1441		.name = "runtime",
1442		.cmp  = runtime_cmp,
1443	};
1444	static struct sort_dimension switch_sort_dimension = {
1445		.name = "switch",
1446		.cmp  = switch_cmp,
1447	};
1448	struct sort_dimension *available_sorts[] = {
1449		&pid_sort_dimension,
1450		&avg_sort_dimension,
1451		&max_sort_dimension,
1452		&switch_sort_dimension,
1453		&runtime_sort_dimension,
1454	};
1455
1456	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1457		if (!strcmp(available_sorts[i]->name, tok)) {
1458			list_add_tail(&available_sorts[i]->list, list);
1459
1460			return 0;
1461		}
1462	}
1463
1464	return -1;
1465}
1466
1467static void perf_sched__sort_lat(struct perf_sched *sched)
1468{
1469	struct rb_node *node;
1470	struct rb_root_cached *root = &sched->atom_root;
1471again:
1472	for (;;) {
1473		struct work_atoms *data;
1474		node = rb_first_cached(root);
1475		if (!node)
1476			break;
1477
1478		rb_erase_cached(node, root);
1479		data = rb_entry(node, struct work_atoms, node);
1480		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1481	}
1482	if (root == &sched->atom_root) {
1483		root = &sched->merged_atom_root;
1484		goto again;
1485	}
1486}
1487
1488static int process_sched_wakeup_event(struct perf_tool *tool,
1489				      struct evsel *evsel,
1490				      struct perf_sample *sample,
1491				      struct machine *machine)
1492{
1493	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1494
1495	if (sched->tp_handler->wakeup_event)
1496		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1497
1498	return 0;
1499}
1500
1501static int process_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
1502				      struct evsel *evsel __maybe_unused,
1503				      struct perf_sample *sample __maybe_unused,
1504				      struct machine *machine __maybe_unused)
1505{
1506	return 0;
1507}
1508
1509union map_priv {
1510	void	*ptr;
1511	bool	 color;
1512};
1513
1514static bool thread__has_color(struct thread *thread)
1515{
1516	union map_priv priv = {
1517		.ptr = thread__priv(thread),
1518	};
1519
1520	return priv.color;
1521}
1522
1523static struct thread*
1524map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1525{
1526	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1527	union map_priv priv = {
1528		.color = false,
1529	};
1530
1531	if (!sched->map.color_pids || !thread || thread__priv(thread))
1532		return thread;
1533
1534	if (thread_map__has(sched->map.color_pids, tid))
1535		priv.color = true;
1536
1537	thread__set_priv(thread, priv.ptr);
1538	return thread;
1539}
1540
1541static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1542			    struct perf_sample *sample, struct machine *machine)
1543{
1544	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1545	struct thread *sched_in;
1546	struct thread_runtime *tr;
1547	int new_shortname;
1548	u64 timestamp0, timestamp = sample->time;
1549	s64 delta;
1550	int i;
1551	struct perf_cpu this_cpu = {
1552		.cpu = sample->cpu,
1553	};
1554	int cpus_nr;
1555	bool new_cpu = false;
1556	const char *color = PERF_COLOR_NORMAL;
1557	char stimestamp[32];
1558
1559	BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1560
1561	if (this_cpu.cpu > sched->max_cpu.cpu)
1562		sched->max_cpu = this_cpu;
1563
1564	if (sched->map.comp) {
1565		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1566		if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1567			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1568			new_cpu = true;
1569		}
1570	} else
1571		cpus_nr = sched->max_cpu.cpu;
1572
1573	timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1574	sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1575	if (timestamp0)
1576		delta = timestamp - timestamp0;
1577	else
1578		delta = 0;
1579
1580	if (delta < 0) {
1581		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1582		return -1;
1583	}
1584
1585	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1586	if (sched_in == NULL)
1587		return -1;
1588
1589	tr = thread__get_runtime(sched_in);
1590	if (tr == NULL) {
1591		thread__put(sched_in);
1592		return -1;
1593	}
1594
1595	sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1596
1597	printf("  ");
1598
1599	new_shortname = 0;
1600	if (!tr->shortname[0]) {
1601		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1602			/*
1603			 * Don't allocate a letter-number for swapper:0
1604			 * as a shortname. Instead, we use '.' for it.
1605			 */
1606			tr->shortname[0] = '.';
1607			tr->shortname[1] = ' ';
1608		} else {
1609			tr->shortname[0] = sched->next_shortname1;
1610			tr->shortname[1] = sched->next_shortname2;
1611
1612			if (sched->next_shortname1 < 'Z') {
1613				sched->next_shortname1++;
1614			} else {
1615				sched->next_shortname1 = 'A';
1616				if (sched->next_shortname2 < '9')
1617					sched->next_shortname2++;
1618				else
1619					sched->next_shortname2 = '0';
1620			}
1621		}
1622		new_shortname = 1;
1623	}
1624
1625	for (i = 0; i < cpus_nr; i++) {
1626		struct perf_cpu cpu = {
1627			.cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1628		};
1629		struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1630		struct thread_runtime *curr_tr;
1631		const char *pid_color = color;
1632		const char *cpu_color = color;
1633
1634		if (curr_thread && thread__has_color(curr_thread))
1635			pid_color = COLOR_PIDS;
1636
1637		if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, cpu))
1638			continue;
1639
1640		if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1641			cpu_color = COLOR_CPUS;
1642
1643		if (cpu.cpu != this_cpu.cpu)
1644			color_fprintf(stdout, color, " ");
1645		else
1646			color_fprintf(stdout, cpu_color, "*");
1647
1648		if (sched->curr_thread[cpu.cpu]) {
1649			curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1650			if (curr_tr == NULL) {
1651				thread__put(sched_in);
1652				return -1;
1653			}
1654			color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1655		} else
1656			color_fprintf(stdout, color, "   ");
1657	}
1658
1659	if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1660		goto out;
1661
1662	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1663	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1664	if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1665		const char *pid_color = color;
1666
1667		if (thread__has_color(sched_in))
1668			pid_color = COLOR_PIDS;
1669
1670		color_fprintf(stdout, pid_color, "%s => %s:%d",
1671			tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1672		tr->comm_changed = false;
1673	}
1674
1675	if (sched->map.comp && new_cpu)
1676		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1677
1678out:
1679	color_fprintf(stdout, color, "\n");
1680
1681	thread__put(sched_in);
1682
1683	return 0;
1684}
1685
1686static int process_sched_switch_event(struct perf_tool *tool,
1687				      struct evsel *evsel,
1688				      struct perf_sample *sample,
1689				      struct machine *machine)
1690{
1691	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1692	int this_cpu = sample->cpu, err = 0;
1693	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1694	    next_pid = evsel__intval(evsel, sample, "next_pid");
1695
1696	if (sched->curr_pid[this_cpu] != (u32)-1) {
1697		/*
1698		 * Are we trying to switch away a PID that is
1699		 * not current?
1700		 */
1701		if (sched->curr_pid[this_cpu] != prev_pid)
1702			sched->nr_context_switch_bugs++;
1703	}
1704
1705	if (sched->tp_handler->switch_event)
1706		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1707
1708	sched->curr_pid[this_cpu] = next_pid;
1709	return err;
1710}
1711
1712static int process_sched_runtime_event(struct perf_tool *tool,
1713				       struct evsel *evsel,
1714				       struct perf_sample *sample,
1715				       struct machine *machine)
1716{
1717	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1718
1719	if (sched->tp_handler->runtime_event)
1720		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1721
1722	return 0;
1723}
1724
1725static int perf_sched__process_fork_event(struct perf_tool *tool,
1726					  union perf_event *event,
1727					  struct perf_sample *sample,
1728					  struct machine *machine)
1729{
1730	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1731
1732	/* run the fork event through the perf machinery */
1733	perf_event__process_fork(tool, event, sample, machine);
1734
1735	/* and then run additional processing needed for this command */
1736	if (sched->tp_handler->fork_event)
1737		return sched->tp_handler->fork_event(sched, event, machine);
1738
1739	return 0;
1740}
1741
1742static int process_sched_migrate_task_event(struct perf_tool *tool,
1743					    struct evsel *evsel,
1744					    struct perf_sample *sample,
1745					    struct machine *machine)
1746{
1747	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1748
1749	if (sched->tp_handler->migrate_task_event)
1750		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1751
1752	return 0;
1753}
1754
1755typedef int (*tracepoint_handler)(struct perf_tool *tool,
1756				  struct evsel *evsel,
1757				  struct perf_sample *sample,
1758				  struct machine *machine);
1759
1760static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1761						 union perf_event *event __maybe_unused,
1762						 struct perf_sample *sample,
1763						 struct evsel *evsel,
1764						 struct machine *machine)
1765{
1766	int err = 0;
1767
1768	if (evsel->handler != NULL) {
1769		tracepoint_handler f = evsel->handler;
1770		err = f(tool, evsel, sample, machine);
1771	}
1772
1773	return err;
1774}
1775
1776static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1777				    union perf_event *event,
1778				    struct perf_sample *sample,
1779				    struct machine *machine)
1780{
1781	struct thread *thread;
1782	struct thread_runtime *tr;
1783	int err;
1784
1785	err = perf_event__process_comm(tool, event, sample, machine);
1786	if (err)
1787		return err;
1788
1789	thread = machine__find_thread(machine, sample->pid, sample->tid);
1790	if (!thread) {
1791		pr_err("Internal error: can't find thread\n");
1792		return -1;
1793	}
1794
1795	tr = thread__get_runtime(thread);
1796	if (tr == NULL) {
1797		thread__put(thread);
1798		return -1;
1799	}
1800
1801	tr->comm_changed = true;
1802	thread__put(thread);
1803
1804	return 0;
1805}
1806
1807static int perf_sched__read_events(struct perf_sched *sched)
1808{
1809	struct evsel_str_handler handlers[] = {
1810		{ "sched:sched_switch",	      process_sched_switch_event, },
1811		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1812		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1813		{ "sched:sched_waking",	      process_sched_wakeup_event, },
1814		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1815		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1816	};
1817	struct perf_session *session;
1818	struct perf_data data = {
1819		.path  = input_name,
1820		.mode  = PERF_DATA_MODE_READ,
1821		.force = sched->force,
1822	};
1823	int rc = -1;
1824
1825	session = perf_session__new(&data, &sched->tool);
1826	if (IS_ERR(session)) {
1827		pr_debug("Error creating perf session");
1828		return PTR_ERR(session);
1829	}
1830
1831	symbol__init(&session->header.env);
1832
1833	/* prefer sched_waking if it is captured */
1834	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1835		handlers[2].handler = process_sched_wakeup_ignore;
1836
1837	if (perf_session__set_tracepoints_handlers(session, handlers))
1838		goto out_delete;
1839
1840	if (perf_session__has_traces(session, "record -R")) {
1841		int err = perf_session__process_events(session);
1842		if (err) {
1843			pr_err("Failed to process events, error %d", err);
1844			goto out_delete;
1845		}
1846
1847		sched->nr_events      = session->evlist->stats.nr_events[0];
1848		sched->nr_lost_events = session->evlist->stats.total_lost;
1849		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1850	}
1851
1852	rc = 0;
1853out_delete:
1854	perf_session__delete(session);
1855	return rc;
1856}
1857
1858/*
1859 * scheduling times are printed as msec.usec
1860 */
1861static inline void print_sched_time(unsigned long long nsecs, int width)
1862{
1863	unsigned long msecs;
1864	unsigned long usecs;
1865
1866	msecs  = nsecs / NSEC_PER_MSEC;
1867	nsecs -= msecs * NSEC_PER_MSEC;
1868	usecs  = nsecs / NSEC_PER_USEC;
1869	printf("%*lu.%03lu ", width, msecs, usecs);
1870}
1871
1872/*
1873 * returns runtime data for event, allocating memory for it the
1874 * first time it is used.
1875 */
1876static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1877{
1878	struct evsel_runtime *r = evsel->priv;
1879
1880	if (r == NULL) {
1881		r = zalloc(sizeof(struct evsel_runtime));
1882		evsel->priv = r;
1883	}
1884
1885	return r;
1886}
1887
1888/*
1889 * save last time event was seen per cpu
1890 */
1891static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1892{
1893	struct evsel_runtime *r = evsel__get_runtime(evsel);
1894
1895	if (r == NULL)
1896		return;
1897
1898	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1899		int i, n = __roundup_pow_of_two(cpu+1);
1900		void *p = r->last_time;
1901
1902		p = realloc(r->last_time, n * sizeof(u64));
1903		if (!p)
1904			return;
1905
1906		r->last_time = p;
1907		for (i = r->ncpu; i < n; ++i)
1908			r->last_time[i] = (u64) 0;
1909
1910		r->ncpu = n;
1911	}
1912
1913	r->last_time[cpu] = timestamp;
1914}
1915
1916/* returns last time this event was seen on the given cpu */
1917static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1918{
1919	struct evsel_runtime *r = evsel__get_runtime(evsel);
1920
1921	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1922		return 0;
1923
1924	return r->last_time[cpu];
1925}
1926
1927static int comm_width = 30;
1928
1929static char *timehist_get_commstr(struct thread *thread)
1930{
1931	static char str[32];
1932	const char *comm = thread__comm_str(thread);
1933	pid_t tid = thread__tid(thread);
1934	pid_t pid = thread__pid(thread);
1935	int n;
1936
1937	if (pid == 0)
1938		n = scnprintf(str, sizeof(str), "%s", comm);
1939
1940	else if (tid != pid)
1941		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1942
1943	else
1944		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1945
1946	if (n > comm_width)
1947		comm_width = n;
1948
1949	return str;
1950}
1951
1952static void timehist_header(struct perf_sched *sched)
1953{
1954	u32 ncpus = sched->max_cpu.cpu + 1;
1955	u32 i, j;
1956
1957	printf("%15s %6s ", "time", "cpu");
1958
1959	if (sched->show_cpu_visual) {
1960		printf(" ");
1961		for (i = 0, j = 0; i < ncpus; ++i) {
1962			printf("%x", j++);
1963			if (j > 15)
1964				j = 0;
1965		}
1966		printf(" ");
1967	}
1968
1969	printf(" %-*s  %9s  %9s  %9s", comm_width,
1970		"task name", "wait time", "sch delay", "run time");
1971
1972	if (sched->show_state)
1973		printf("  %s", "state");
1974
1975	printf("\n");
1976
1977	/*
1978	 * units row
1979	 */
1980	printf("%15s %-6s ", "", "");
1981
1982	if (sched->show_cpu_visual)
1983		printf(" %*s ", ncpus, "");
1984
1985	printf(" %-*s  %9s  %9s  %9s", comm_width,
1986	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1987
1988	if (sched->show_state)
1989		printf("  %5s", "");
1990
1991	printf("\n");
1992
1993	/*
1994	 * separator
1995	 */
1996	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1997
1998	if (sched->show_cpu_visual)
1999		printf(" %.*s ", ncpus, graph_dotted_line);
2000
2001	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
2002		graph_dotted_line, graph_dotted_line, graph_dotted_line,
2003		graph_dotted_line);
2004
2005	if (sched->show_state)
2006		printf("  %.5s", graph_dotted_line);
2007
2008	printf("\n");
2009}
2010
 
 
 
 
 
 
 
 
 
 
 
 
2011static void timehist_print_sample(struct perf_sched *sched,
2012				  struct evsel *evsel,
2013				  struct perf_sample *sample,
2014				  struct addr_location *al,
2015				  struct thread *thread,
2016				  u64 t, const char state)
2017{
2018	struct thread_runtime *tr = thread__priv(thread);
2019	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2020	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2021	u32 max_cpus = sched->max_cpu.cpu + 1;
2022	char tstr[64];
2023	char nstr[30];
2024	u64 wait_time;
2025
2026	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2027		return;
2028
2029	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2030	printf("%15s [%04d] ", tstr, sample->cpu);
2031
2032	if (sched->show_cpu_visual) {
2033		u32 i;
2034		char c;
2035
2036		printf(" ");
2037		for (i = 0; i < max_cpus; ++i) {
2038			/* flag idle times with 'i'; others are sched events */
2039			if (i == sample->cpu)
2040				c = (thread__tid(thread) == 0) ? 'i' : 's';
2041			else
2042				c = ' ';
2043			printf("%c", c);
2044		}
2045		printf(" ");
2046	}
2047
2048	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2049
2050	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2051	print_sched_time(wait_time, 6);
2052
2053	print_sched_time(tr->dt_delay, 6);
2054	print_sched_time(tr->dt_run, 6);
2055
2056	if (sched->show_state)
2057		printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state);
2058
2059	if (sched->show_next) {
2060		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2061		printf(" %-*s", comm_width, nstr);
2062	}
2063
2064	if (sched->show_wakeups && !sched->show_next)
2065		printf("  %-*s", comm_width, "");
2066
2067	if (thread__tid(thread) == 0)
2068		goto out;
2069
2070	if (sched->show_callchain)
2071		printf("  ");
2072
2073	sample__fprintf_sym(sample, al, 0,
2074			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2075			    EVSEL__PRINT_CALLCHAIN_ARROW |
2076			    EVSEL__PRINT_SKIP_IGNORED,
2077			    get_tls_callchain_cursor(), symbol_conf.bt_stop_list,  stdout);
2078
2079out:
2080	printf("\n");
2081}
2082
2083/*
2084 * Explanation of delta-time stats:
2085 *
2086 *            t = time of current schedule out event
2087 *        tprev = time of previous sched out event
2088 *                also time of schedule-in event for current task
2089 *    last_time = time of last sched change event for current task
2090 *                (i.e, time process was last scheduled out)
2091 * ready_to_run = time of wakeup for current task
2092 *
2093 * -----|------------|------------|------------|------
2094 *    last         ready        tprev          t
2095 *    time         to run
2096 *
2097 *      |-------- dt_wait --------|
2098 *                   |- dt_delay -|-- dt_run --|
2099 *
2100 *   dt_run = run time of current task
2101 *  dt_wait = time between last schedule out event for task and tprev
2102 *            represents time spent off the cpu
2103 * dt_delay = time between wakeup and schedule-in of task
2104 */
2105
2106static void timehist_update_runtime_stats(struct thread_runtime *r,
2107					 u64 t, u64 tprev)
2108{
2109	r->dt_delay   = 0;
2110	r->dt_sleep   = 0;
2111	r->dt_iowait  = 0;
2112	r->dt_preempt = 0;
2113	r->dt_run     = 0;
2114
2115	if (tprev) {
2116		r->dt_run = t - tprev;
2117		if (r->ready_to_run) {
2118			if (r->ready_to_run > tprev)
2119				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2120			else
2121				r->dt_delay = tprev - r->ready_to_run;
2122		}
2123
2124		if (r->last_time > tprev)
2125			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2126		else if (r->last_time) {
2127			u64 dt_wait = tprev - r->last_time;
2128
2129			if (r->last_state == 'R')
2130				r->dt_preempt = dt_wait;
2131			else if (r->last_state == 'D')
2132				r->dt_iowait = dt_wait;
2133			else
2134				r->dt_sleep = dt_wait;
2135		}
2136	}
2137
2138	update_stats(&r->run_stats, r->dt_run);
2139
2140	r->total_run_time     += r->dt_run;
2141	r->total_delay_time   += r->dt_delay;
2142	r->total_sleep_time   += r->dt_sleep;
2143	r->total_iowait_time  += r->dt_iowait;
2144	r->total_preempt_time += r->dt_preempt;
2145}
2146
2147static bool is_idle_sample(struct perf_sample *sample,
2148			   struct evsel *evsel)
2149{
2150	/* pid 0 == swapper == idle task */
2151	if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2152		return evsel__intval(evsel, sample, "prev_pid") == 0;
2153
2154	return sample->pid == 0;
2155}
2156
2157static void save_task_callchain(struct perf_sched *sched,
2158				struct perf_sample *sample,
2159				struct evsel *evsel,
2160				struct machine *machine)
2161{
2162	struct callchain_cursor *cursor;
2163	struct thread *thread;
2164
2165	/* want main thread for process - has maps */
2166	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2167	if (thread == NULL) {
2168		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2169		return;
2170	}
2171
2172	if (!sched->show_callchain || sample->callchain == NULL)
2173		return;
2174
2175	cursor = get_tls_callchain_cursor();
2176
2177	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2178				      NULL, NULL, sched->max_stack + 2) != 0) {
2179		if (verbose > 0)
2180			pr_err("Failed to resolve callchain. Skipping\n");
2181
2182		return;
2183	}
2184
2185	callchain_cursor_commit(cursor);
2186
2187	while (true) {
2188		struct callchain_cursor_node *node;
2189		struct symbol *sym;
2190
2191		node = callchain_cursor_current(cursor);
2192		if (node == NULL)
2193			break;
2194
2195		sym = node->ms.sym;
2196		if (sym) {
2197			if (!strcmp(sym->name, "schedule") ||
2198			    !strcmp(sym->name, "__schedule") ||
2199			    !strcmp(sym->name, "preempt_schedule"))
2200				sym->ignore = 1;
2201		}
2202
2203		callchain_cursor_advance(cursor);
2204	}
2205}
2206
2207static int init_idle_thread(struct thread *thread)
2208{
2209	struct idle_thread_runtime *itr;
2210
2211	thread__set_comm(thread, idle_comm, 0);
2212
2213	itr = zalloc(sizeof(*itr));
2214	if (itr == NULL)
2215		return -ENOMEM;
2216
2217	init_stats(&itr->tr.run_stats);
2218	callchain_init(&itr->callchain);
2219	callchain_cursor_reset(&itr->cursor);
2220	thread__set_priv(thread, itr);
2221
2222	return 0;
2223}
2224
2225/*
2226 * Track idle stats per cpu by maintaining a local thread
2227 * struct for the idle task on each cpu.
2228 */
2229static int init_idle_threads(int ncpu)
2230{
2231	int i, ret;
2232
2233	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2234	if (!idle_threads)
2235		return -ENOMEM;
2236
2237	idle_max_cpu = ncpu;
2238
2239	/* allocate the actual thread struct if needed */
2240	for (i = 0; i < ncpu; ++i) {
2241		idle_threads[i] = thread__new(0, 0);
2242		if (idle_threads[i] == NULL)
2243			return -ENOMEM;
2244
2245		ret = init_idle_thread(idle_threads[i]);
2246		if (ret < 0)
2247			return ret;
2248	}
2249
2250	return 0;
2251}
2252
2253static void free_idle_threads(void)
2254{
2255	int i;
2256
2257	if (idle_threads == NULL)
2258		return;
2259
2260	for (i = 0; i < idle_max_cpu; ++i) {
2261		if ((idle_threads[i]))
2262			thread__delete(idle_threads[i]);
2263	}
2264
2265	free(idle_threads);
2266}
2267
2268static struct thread *get_idle_thread(int cpu)
2269{
2270	/*
2271	 * expand/allocate array of pointers to local thread
2272	 * structs if needed
2273	 */
2274	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2275		int i, j = __roundup_pow_of_two(cpu+1);
2276		void *p;
2277
2278		p = realloc(idle_threads, j * sizeof(struct thread *));
2279		if (!p)
2280			return NULL;
2281
2282		idle_threads = (struct thread **) p;
2283		for (i = idle_max_cpu; i < j; ++i)
2284			idle_threads[i] = NULL;
2285
2286		idle_max_cpu = j;
2287	}
2288
2289	/* allocate a new thread struct if needed */
2290	if (idle_threads[cpu] == NULL) {
2291		idle_threads[cpu] = thread__new(0, 0);
2292
2293		if (idle_threads[cpu]) {
2294			if (init_idle_thread(idle_threads[cpu]) < 0)
2295				return NULL;
2296		}
2297	}
2298
2299	return idle_threads[cpu];
2300}
2301
2302static void save_idle_callchain(struct perf_sched *sched,
2303				struct idle_thread_runtime *itr,
2304				struct perf_sample *sample)
2305{
2306	struct callchain_cursor *cursor;
2307
2308	if (!sched->show_callchain || sample->callchain == NULL)
2309		return;
2310
2311	cursor = get_tls_callchain_cursor();
2312	if (cursor == NULL)
2313		return;
2314
2315	callchain_cursor__copy(&itr->cursor, cursor);
2316}
2317
2318static struct thread *timehist_get_thread(struct perf_sched *sched,
2319					  struct perf_sample *sample,
2320					  struct machine *machine,
2321					  struct evsel *evsel)
2322{
2323	struct thread *thread;
2324
2325	if (is_idle_sample(sample, evsel)) {
2326		thread = get_idle_thread(sample->cpu);
2327		if (thread == NULL)
2328			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2329
2330	} else {
2331		/* there were samples with tid 0 but non-zero pid */
2332		thread = machine__findnew_thread(machine, sample->pid,
2333						 sample->tid ?: sample->pid);
2334		if (thread == NULL) {
2335			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2336				 sample->tid);
2337		}
2338
2339		save_task_callchain(sched, sample, evsel, machine);
2340		if (sched->idle_hist) {
2341			struct thread *idle;
2342			struct idle_thread_runtime *itr;
2343
2344			idle = get_idle_thread(sample->cpu);
2345			if (idle == NULL) {
2346				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2347				return NULL;
2348			}
2349
2350			itr = thread__priv(idle);
2351			if (itr == NULL)
2352				return NULL;
2353
2354			itr->last_thread = thread;
2355
2356			/* copy task callchain when entering to idle */
2357			if (evsel__intval(evsel, sample, "next_pid") == 0)
2358				save_idle_callchain(sched, itr, sample);
2359		}
2360	}
2361
2362	return thread;
2363}
2364
2365static bool timehist_skip_sample(struct perf_sched *sched,
2366				 struct thread *thread,
2367				 struct evsel *evsel,
2368				 struct perf_sample *sample)
2369{
2370	bool rc = false;
2371
2372	if (thread__is_filtered(thread)) {
2373		rc = true;
2374		sched->skipped_samples++;
2375	}
2376
2377	if (sched->idle_hist) {
2378		if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2379			rc = true;
2380		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2381			 evsel__intval(evsel, sample, "next_pid") != 0)
2382			rc = true;
2383	}
2384
2385	return rc;
2386}
2387
2388static void timehist_print_wakeup_event(struct perf_sched *sched,
2389					struct evsel *evsel,
2390					struct perf_sample *sample,
2391					struct machine *machine,
2392					struct thread *awakened)
2393{
2394	struct thread *thread;
2395	char tstr[64];
2396
2397	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2398	if (thread == NULL)
2399		return;
2400
2401	/* show wakeup unless both awakee and awaker are filtered */
2402	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2403	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2404		return;
2405	}
2406
2407	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2408	printf("%15s [%04d] ", tstr, sample->cpu);
2409	if (sched->show_cpu_visual)
2410		printf(" %*s ", sched->max_cpu.cpu + 1, "");
2411
2412	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2413
2414	/* dt spacer */
2415	printf("  %9s  %9s  %9s ", "", "", "");
2416
2417	printf("awakened: %s", timehist_get_commstr(awakened));
2418
2419	printf("\n");
2420}
2421
2422static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2423					union perf_event *event __maybe_unused,
2424					struct evsel *evsel __maybe_unused,
2425					struct perf_sample *sample __maybe_unused,
2426					struct machine *machine __maybe_unused)
2427{
2428	return 0;
2429}
2430
2431static int timehist_sched_wakeup_event(struct perf_tool *tool,
2432				       union perf_event *event __maybe_unused,
2433				       struct evsel *evsel,
2434				       struct perf_sample *sample,
2435				       struct machine *machine)
2436{
2437	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2438	struct thread *thread;
2439	struct thread_runtime *tr = NULL;
2440	/* want pid of awakened task not pid in sample */
2441	const u32 pid = evsel__intval(evsel, sample, "pid");
2442
2443	thread = machine__findnew_thread(machine, 0, pid);
2444	if (thread == NULL)
2445		return -1;
2446
2447	tr = thread__get_runtime(thread);
2448	if (tr == NULL)
2449		return -1;
2450
2451	if (tr->ready_to_run == 0)
2452		tr->ready_to_run = sample->time;
2453
2454	/* show wakeups if requested */
2455	if (sched->show_wakeups &&
2456	    !perf_time__skip_sample(&sched->ptime, sample->time))
2457		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2458
2459	return 0;
2460}
2461
2462static void timehist_print_migration_event(struct perf_sched *sched,
2463					struct evsel *evsel,
2464					struct perf_sample *sample,
2465					struct machine *machine,
2466					struct thread *migrated)
2467{
2468	struct thread *thread;
2469	char tstr[64];
2470	u32 max_cpus;
2471	u32 ocpu, dcpu;
2472
2473	if (sched->summary_only)
2474		return;
2475
2476	max_cpus = sched->max_cpu.cpu + 1;
2477	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2478	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2479
2480	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2481	if (thread == NULL)
2482		return;
2483
2484	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2485	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2486		return;
2487	}
2488
2489	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2490	printf("%15s [%04d] ", tstr, sample->cpu);
2491
2492	if (sched->show_cpu_visual) {
2493		u32 i;
2494		char c;
2495
2496		printf("  ");
2497		for (i = 0; i < max_cpus; ++i) {
2498			c = (i == sample->cpu) ? 'm' : ' ';
2499			printf("%c", c);
2500		}
2501		printf("  ");
2502	}
2503
2504	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2505
2506	/* dt spacer */
2507	printf("  %9s  %9s  %9s ", "", "", "");
2508
2509	printf("migrated: %s", timehist_get_commstr(migrated));
2510	printf(" cpu %d => %d", ocpu, dcpu);
2511
2512	printf("\n");
2513}
2514
2515static int timehist_migrate_task_event(struct perf_tool *tool,
2516				       union perf_event *event __maybe_unused,
2517				       struct evsel *evsel,
2518				       struct perf_sample *sample,
2519				       struct machine *machine)
2520{
2521	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2522	struct thread *thread;
2523	struct thread_runtime *tr = NULL;
2524	/* want pid of migrated task not pid in sample */
2525	const u32 pid = evsel__intval(evsel, sample, "pid");
2526
2527	thread = machine__findnew_thread(machine, 0, pid);
2528	if (thread == NULL)
2529		return -1;
2530
2531	tr = thread__get_runtime(thread);
2532	if (tr == NULL)
2533		return -1;
2534
2535	tr->migrations++;
2536
2537	/* show migrations if requested */
2538	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2539
2540	return 0;
2541}
2542
2543static int timehist_sched_change_event(struct perf_tool *tool,
2544				       union perf_event *event,
2545				       struct evsel *evsel,
2546				       struct perf_sample *sample,
2547				       struct machine *machine)
2548{
2549	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2550	struct perf_time_interval *ptime = &sched->ptime;
2551	struct addr_location al;
2552	struct thread *thread;
2553	struct thread_runtime *tr = NULL;
2554	u64 tprev, t = sample->time;
2555	int rc = 0;
2556	const char state = evsel__taskstate(evsel, sample, "prev_state");
2557
2558	addr_location__init(&al);
2559	if (machine__resolve(machine, &al, sample) < 0) {
2560		pr_err("problem processing %d event. skipping it\n",
2561		       event->header.type);
2562		rc = -1;
2563		goto out;
2564	}
2565
2566	thread = timehist_get_thread(sched, sample, machine, evsel);
2567	if (thread == NULL) {
2568		rc = -1;
2569		goto out;
2570	}
2571
2572	if (timehist_skip_sample(sched, thread, evsel, sample))
2573		goto out;
2574
2575	tr = thread__get_runtime(thread);
2576	if (tr == NULL) {
2577		rc = -1;
2578		goto out;
2579	}
2580
2581	tprev = evsel__get_time(evsel, sample->cpu);
2582
2583	/*
2584	 * If start time given:
2585	 * - sample time is under window user cares about - skip sample
2586	 * - tprev is under window user cares about  - reset to start of window
2587	 */
2588	if (ptime->start && ptime->start > t)
2589		goto out;
2590
2591	if (tprev && ptime->start > tprev)
2592		tprev = ptime->start;
2593
2594	/*
2595	 * If end time given:
2596	 * - previous sched event is out of window - we are done
2597	 * - sample time is beyond window user cares about - reset it
2598	 *   to close out stats for time window interest
2599	 */
2600	if (ptime->end) {
2601		if (tprev > ptime->end)
2602			goto out;
2603
2604		if (t > ptime->end)
2605			t = ptime->end;
2606	}
2607
2608	if (!sched->idle_hist || thread__tid(thread) == 0) {
2609		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2610			timehist_update_runtime_stats(tr, t, tprev);
2611
2612		if (sched->idle_hist) {
2613			struct idle_thread_runtime *itr = (void *)tr;
2614			struct thread_runtime *last_tr;
2615
2616			BUG_ON(thread__tid(thread) != 0);
2617
2618			if (itr->last_thread == NULL)
2619				goto out;
2620
2621			/* add current idle time as last thread's runtime */
2622			last_tr = thread__get_runtime(itr->last_thread);
2623			if (last_tr == NULL)
2624				goto out;
2625
2626			timehist_update_runtime_stats(last_tr, t, tprev);
2627			/*
2628			 * remove delta time of last thread as it's not updated
2629			 * and otherwise it will show an invalid value next
2630			 * time.  we only care total run time and run stat.
2631			 */
2632			last_tr->dt_run = 0;
2633			last_tr->dt_delay = 0;
2634			last_tr->dt_sleep = 0;
2635			last_tr->dt_iowait = 0;
2636			last_tr->dt_preempt = 0;
2637
2638			if (itr->cursor.nr)
2639				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2640
2641			itr->last_thread = NULL;
2642		}
2643	}
2644
2645	if (!sched->summary_only)
2646		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2647
2648out:
2649	if (sched->hist_time.start == 0 && t >= ptime->start)
2650		sched->hist_time.start = t;
2651	if (ptime->end == 0 || t <= ptime->end)
2652		sched->hist_time.end = t;
2653
2654	if (tr) {
2655		/* time of this sched_switch event becomes last time task seen */
2656		tr->last_time = sample->time;
2657
2658		/* last state is used to determine where to account wait time */
2659		tr->last_state = state;
2660
2661		/* sched out event for task so reset ready to run time */
2662		tr->ready_to_run = 0;
2663	}
2664
2665	evsel__save_time(evsel, sample->time, sample->cpu);
2666
2667	addr_location__exit(&al);
2668	return rc;
2669}
2670
2671static int timehist_sched_switch_event(struct perf_tool *tool,
2672			     union perf_event *event,
2673			     struct evsel *evsel,
2674			     struct perf_sample *sample,
2675			     struct machine *machine __maybe_unused)
2676{
2677	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2678}
2679
2680static int process_lost(struct perf_tool *tool __maybe_unused,
2681			union perf_event *event,
2682			struct perf_sample *sample,
2683			struct machine *machine __maybe_unused)
2684{
2685	char tstr[64];
2686
2687	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2688	printf("%15s ", tstr);
2689	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2690
2691	return 0;
2692}
2693
2694
2695static void print_thread_runtime(struct thread *t,
2696				 struct thread_runtime *r)
2697{
2698	double mean = avg_stats(&r->run_stats);
2699	float stddev;
2700
2701	printf("%*s   %5d  %9" PRIu64 " ",
2702	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2703	       (u64) r->run_stats.n);
2704
2705	print_sched_time(r->total_run_time, 8);
2706	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2707	print_sched_time(r->run_stats.min, 6);
2708	printf(" ");
2709	print_sched_time((u64) mean, 6);
2710	printf(" ");
2711	print_sched_time(r->run_stats.max, 6);
2712	printf("  ");
2713	printf("%5.2f", stddev);
2714	printf("   %5" PRIu64, r->migrations);
2715	printf("\n");
2716}
2717
2718static void print_thread_waittime(struct thread *t,
2719				  struct thread_runtime *r)
2720{
2721	printf("%*s   %5d  %9" PRIu64 " ",
2722	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2723	       (u64) r->run_stats.n);
2724
2725	print_sched_time(r->total_run_time, 8);
2726	print_sched_time(r->total_sleep_time, 6);
2727	printf(" ");
2728	print_sched_time(r->total_iowait_time, 6);
2729	printf(" ");
2730	print_sched_time(r->total_preempt_time, 6);
2731	printf(" ");
2732	print_sched_time(r->total_delay_time, 6);
2733	printf("\n");
2734}
2735
2736struct total_run_stats {
2737	struct perf_sched *sched;
2738	u64  sched_count;
2739	u64  task_count;
2740	u64  total_run_time;
2741};
2742
2743static int show_thread_runtime(struct thread *t, void *priv)
2744{
2745	struct total_run_stats *stats = priv;
2746	struct thread_runtime *r;
2747
2748	if (thread__is_filtered(t))
2749		return 0;
2750
2751	r = thread__priv(t);
2752	if (r && r->run_stats.n) {
2753		stats->task_count++;
2754		stats->sched_count += r->run_stats.n;
2755		stats->total_run_time += r->total_run_time;
2756
2757		if (stats->sched->show_state)
2758			print_thread_waittime(t, r);
2759		else
2760			print_thread_runtime(t, r);
2761	}
2762
2763	return 0;
2764}
2765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2766static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2767{
2768	const char *sep = " <- ";
2769	struct callchain_list *chain;
2770	size_t ret = 0;
2771	char bf[1024];
2772	bool first;
2773
2774	if (node == NULL)
2775		return 0;
2776
2777	ret = callchain__fprintf_folded(fp, node->parent);
2778	first = (ret == 0);
2779
2780	list_for_each_entry(chain, &node->val, list) {
2781		if (chain->ip >= PERF_CONTEXT_MAX)
2782			continue;
2783		if (chain->ms.sym && chain->ms.sym->ignore)
2784			continue;
2785		ret += fprintf(fp, "%s%s", first ? "" : sep,
2786			       callchain_list__sym_name(chain, bf, sizeof(bf),
2787							false));
2788		first = false;
2789	}
2790
2791	return ret;
2792}
2793
2794static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2795{
2796	size_t ret = 0;
2797	FILE *fp = stdout;
2798	struct callchain_node *chain;
2799	struct rb_node *rb_node = rb_first_cached(root);
2800
2801	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2802	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2803	       graph_dotted_line);
2804
2805	while (rb_node) {
2806		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2807		rb_node = rb_next(rb_node);
2808
2809		ret += fprintf(fp, "  ");
2810		print_sched_time(chain->hit, 12);
2811		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2812		ret += fprintf(fp, " %8d  ", chain->count);
2813		ret += callchain__fprintf_folded(fp, chain);
2814		ret += fprintf(fp, "\n");
2815	}
2816
2817	return ret;
2818}
2819
2820static void timehist_print_summary(struct perf_sched *sched,
2821				   struct perf_session *session)
2822{
2823	struct machine *m = &session->machines.host;
2824	struct total_run_stats totals;
2825	u64 task_count;
2826	struct thread *t;
2827	struct thread_runtime *r;
2828	int i;
2829	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2830
2831	memset(&totals, 0, sizeof(totals));
2832	totals.sched = sched;
2833
2834	if (sched->idle_hist) {
2835		printf("\nIdle-time summary\n");
2836		printf("%*s  parent  sched-out  ", comm_width, "comm");
2837		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2838	} else if (sched->show_state) {
2839		printf("\nWait-time summary\n");
2840		printf("%*s  parent   sched-in  ", comm_width, "comm");
2841		printf("   run-time      sleep      iowait     preempt       delay\n");
2842	} else {
2843		printf("\nRuntime summary\n");
2844		printf("%*s  parent   sched-in  ", comm_width, "comm");
2845		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2846	}
2847	printf("%*s            (count)  ", comm_width, "");
2848	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2849	       sched->show_state ? "(msec)" : "%");
2850	printf("%.117s\n", graph_dotted_line);
2851
2852	machine__for_each_thread(m, show_thread_runtime, &totals);
2853	task_count = totals.task_count;
2854	if (!task_count)
2855		printf("<no still running tasks>\n");
2856
 
 
 
 
 
2857	/* CPU idle stats not tracked when samples were skipped */
2858	if (sched->skipped_samples && !sched->idle_hist)
2859		return;
2860
2861	printf("\nIdle stats:\n");
2862	for (i = 0; i < idle_max_cpu; ++i) {
2863		if (cpu_list && !test_bit(i, cpu_bitmap))
2864			continue;
2865
2866		t = idle_threads[i];
2867		if (!t)
2868			continue;
2869
2870		r = thread__priv(t);
2871		if (r && r->run_stats.n) {
2872			totals.sched_count += r->run_stats.n;
2873			printf("    CPU %2d idle for ", i);
2874			print_sched_time(r->total_run_time, 6);
2875			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2876		} else
2877			printf("    CPU %2d idle entire time window\n", i);
2878	}
2879
2880	if (sched->idle_hist && sched->show_callchain) {
2881		callchain_param.mode  = CHAIN_FOLDED;
2882		callchain_param.value = CCVAL_PERIOD;
2883
2884		callchain_register_param(&callchain_param);
2885
2886		printf("\nIdle stats by callchain:\n");
2887		for (i = 0; i < idle_max_cpu; ++i) {
2888			struct idle_thread_runtime *itr;
2889
2890			t = idle_threads[i];
2891			if (!t)
2892				continue;
2893
2894			itr = thread__priv(t);
2895			if (itr == NULL)
2896				continue;
2897
2898			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2899					     0, &callchain_param);
2900
2901			printf("  CPU %2d:", i);
2902			print_sched_time(itr->tr.total_run_time, 6);
2903			printf(" msec\n");
2904			timehist_print_idlehist_callchain(&itr->sorted_root);
2905			printf("\n");
2906		}
2907	}
2908
2909	printf("\n"
2910	       "    Total number of unique tasks: %" PRIu64 "\n"
2911	       "Total number of context switches: %" PRIu64 "\n",
2912	       totals.task_count, totals.sched_count);
2913
2914	printf("           Total run time (msec): ");
2915	print_sched_time(totals.total_run_time, 2);
2916	printf("\n");
2917
2918	printf("    Total scheduling time (msec): ");
2919	print_sched_time(hist_time, 2);
2920	printf(" (x %d)\n", sched->max_cpu.cpu);
2921}
2922
2923typedef int (*sched_handler)(struct perf_tool *tool,
2924			  union perf_event *event,
2925			  struct evsel *evsel,
2926			  struct perf_sample *sample,
2927			  struct machine *machine);
2928
2929static int perf_timehist__process_sample(struct perf_tool *tool,
2930					 union perf_event *event,
2931					 struct perf_sample *sample,
2932					 struct evsel *evsel,
2933					 struct machine *machine)
2934{
2935	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2936	int err = 0;
2937	struct perf_cpu this_cpu = {
2938		.cpu = sample->cpu,
2939	};
2940
2941	if (this_cpu.cpu > sched->max_cpu.cpu)
2942		sched->max_cpu = this_cpu;
2943
2944	if (evsel->handler != NULL) {
2945		sched_handler f = evsel->handler;
2946
2947		err = f(tool, event, evsel, sample, machine);
2948	}
2949
2950	return err;
2951}
2952
2953static int timehist_check_attr(struct perf_sched *sched,
2954			       struct evlist *evlist)
2955{
2956	struct evsel *evsel;
2957	struct evsel_runtime *er;
2958
2959	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2960		er = evsel__get_runtime(evsel);
2961		if (er == NULL) {
2962			pr_err("Failed to allocate memory for evsel runtime data\n");
2963			return -1;
2964		}
2965
2966		/* only need to save callchain related to sched_switch event */
2967		if (sched->show_callchain &&
2968		    evsel__name_is(evsel, "sched:sched_switch") &&
2969		    !evsel__has_callchain(evsel)) {
2970			pr_info("Samples of sched_switch event do not have callchains.\n");
2971			sched->show_callchain = 0;
2972			symbol_conf.use_callchain = 0;
2973		}
2974	}
2975
2976	return 0;
2977}
2978
2979static int perf_sched__timehist(struct perf_sched *sched)
2980{
2981	struct evsel_str_handler handlers[] = {
2982		{ "sched:sched_switch",       timehist_sched_switch_event, },
2983		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
2984		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
2985		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2986	};
2987	const struct evsel_str_handler migrate_handlers[] = {
2988		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
2989	};
2990	struct perf_data data = {
2991		.path  = input_name,
2992		.mode  = PERF_DATA_MODE_READ,
2993		.force = sched->force,
2994	};
2995
2996	struct perf_session *session;
2997	struct evlist *evlist;
2998	int err = -1;
2999
3000	/*
3001	 * event handlers for timehist option
3002	 */
3003	sched->tool.sample	 = perf_timehist__process_sample;
3004	sched->tool.mmap	 = perf_event__process_mmap;
3005	sched->tool.comm	 = perf_event__process_comm;
3006	sched->tool.exit	 = perf_event__process_exit;
3007	sched->tool.fork	 = perf_event__process_fork;
3008	sched->tool.lost	 = process_lost;
3009	sched->tool.attr	 = perf_event__process_attr;
3010	sched->tool.tracing_data = perf_event__process_tracing_data;
3011	sched->tool.build_id	 = perf_event__process_build_id;
3012
3013	sched->tool.ordered_events = true;
3014	sched->tool.ordering_requires_timestamps = true;
3015
3016	symbol_conf.use_callchain = sched->show_callchain;
3017
3018	session = perf_session__new(&data, &sched->tool);
3019	if (IS_ERR(session))
3020		return PTR_ERR(session);
3021
3022	if (cpu_list) {
3023		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3024		if (err < 0)
3025			goto out;
3026	}
3027
3028	evlist = session->evlist;
3029
3030	symbol__init(&session->header.env);
3031
3032	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3033		pr_err("Invalid time string\n");
3034		return -EINVAL;
3035	}
3036
3037	if (timehist_check_attr(sched, evlist) != 0)
3038		goto out;
3039
3040	setup_pager();
3041
3042	/* prefer sched_waking if it is captured */
3043	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3044		handlers[1].handler = timehist_sched_wakeup_ignore;
3045
3046	/* setup per-evsel handlers */
3047	if (perf_session__set_tracepoints_handlers(session, handlers))
3048		goto out;
3049
3050	/* sched_switch event at a minimum needs to exist */
3051	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3052		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3053		goto out;
3054	}
3055
3056	if (sched->show_migrations &&
3057	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
3058		goto out;
3059
3060	/* pre-allocate struct for per-CPU idle stats */
3061	sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3062	if (sched->max_cpu.cpu == 0)
3063		sched->max_cpu.cpu = 4;
3064	if (init_idle_threads(sched->max_cpu.cpu))
3065		goto out;
3066
3067	/* summary_only implies summary option, but don't overwrite summary if set */
3068	if (sched->summary_only)
3069		sched->summary = sched->summary_only;
3070
3071	if (!sched->summary_only)
3072		timehist_header(sched);
3073
3074	err = perf_session__process_events(session);
3075	if (err) {
3076		pr_err("Failed to process events, error %d", err);
3077		goto out;
3078	}
3079
3080	sched->nr_events      = evlist->stats.nr_events[0];
3081	sched->nr_lost_events = evlist->stats.total_lost;
3082	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3083
3084	if (sched->summary)
3085		timehist_print_summary(sched, session);
3086
3087out:
3088	free_idle_threads();
3089	perf_session__delete(session);
3090
3091	return err;
3092}
3093
3094
3095static void print_bad_events(struct perf_sched *sched)
3096{
3097	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3098		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3099			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3100			sched->nr_unordered_timestamps, sched->nr_timestamps);
3101	}
3102	if (sched->nr_lost_events && sched->nr_events) {
3103		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3104			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3105			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3106	}
3107	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3108		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3109			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3110			sched->nr_context_switch_bugs, sched->nr_timestamps);
3111		if (sched->nr_lost_events)
3112			printf(" (due to lost events?)");
3113		printf("\n");
3114	}
3115}
3116
3117static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3118{
3119	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3120	struct work_atoms *this;
3121	const char *comm = thread__comm_str(data->thread), *this_comm;
3122	bool leftmost = true;
3123
3124	while (*new) {
3125		int cmp;
3126
3127		this = container_of(*new, struct work_atoms, node);
3128		parent = *new;
3129
3130		this_comm = thread__comm_str(this->thread);
3131		cmp = strcmp(comm, this_comm);
3132		if (cmp > 0) {
3133			new = &((*new)->rb_left);
3134		} else if (cmp < 0) {
3135			new = &((*new)->rb_right);
3136			leftmost = false;
3137		} else {
3138			this->num_merged++;
3139			this->total_runtime += data->total_runtime;
3140			this->nb_atoms += data->nb_atoms;
3141			this->total_lat += data->total_lat;
3142			list_splice(&data->work_list, &this->work_list);
3143			if (this->max_lat < data->max_lat) {
3144				this->max_lat = data->max_lat;
3145				this->max_lat_start = data->max_lat_start;
3146				this->max_lat_end = data->max_lat_end;
3147			}
3148			zfree(&data);
3149			return;
3150		}
3151	}
3152
3153	data->num_merged++;
3154	rb_link_node(&data->node, parent, new);
3155	rb_insert_color_cached(&data->node, root, leftmost);
3156}
3157
3158static void perf_sched__merge_lat(struct perf_sched *sched)
3159{
3160	struct work_atoms *data;
3161	struct rb_node *node;
3162
3163	if (sched->skip_merge)
3164		return;
3165
3166	while ((node = rb_first_cached(&sched->atom_root))) {
3167		rb_erase_cached(node, &sched->atom_root);
3168		data = rb_entry(node, struct work_atoms, node);
3169		__merge_work_atoms(&sched->merged_atom_root, data);
3170	}
3171}
3172
3173static int setup_cpus_switch_event(struct perf_sched *sched)
3174{
3175	unsigned int i;
3176
3177	sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched)));
3178	if (!sched->cpu_last_switched)
3179		return -1;
3180
3181	sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid)));
3182	if (!sched->curr_pid) {
3183		zfree(&sched->cpu_last_switched);
3184		return -1;
3185	}
3186
3187	for (i = 0; i < MAX_CPUS; i++)
3188		sched->curr_pid[i] = -1;
3189
3190	return 0;
3191}
3192
3193static void free_cpus_switch_event(struct perf_sched *sched)
3194{
3195	zfree(&sched->curr_pid);
3196	zfree(&sched->cpu_last_switched);
3197}
3198
3199static int perf_sched__lat(struct perf_sched *sched)
3200{
3201	int rc = -1;
3202	struct rb_node *next;
3203
3204	setup_pager();
3205
3206	if (setup_cpus_switch_event(sched))
3207		return rc;
3208
3209	if (perf_sched__read_events(sched))
3210		goto out_free_cpus_switch_event;
3211
3212	perf_sched__merge_lat(sched);
3213	perf_sched__sort_lat(sched);
3214
3215	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3216	printf("  Task                  |   Runtime ms  | Switches | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3217	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3218
3219	next = rb_first_cached(&sched->sorted_atom_root);
3220
3221	while (next) {
3222		struct work_atoms *work_list;
3223
3224		work_list = rb_entry(next, struct work_atoms, node);
3225		output_lat_thread(sched, work_list);
3226		next = rb_next(next);
3227		thread__zput(work_list->thread);
3228	}
3229
3230	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3231	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3232		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3233
3234	printf(" ---------------------------------------------------\n");
3235
3236	print_bad_events(sched);
3237	printf("\n");
3238
3239	rc = 0;
3240
3241out_free_cpus_switch_event:
3242	free_cpus_switch_event(sched);
3243	return rc;
3244}
3245
3246static int setup_map_cpus(struct perf_sched *sched)
3247{
 
 
3248	sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
3249
3250	if (sched->map.comp) {
3251		sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3252		if (!sched->map.comp_cpus)
3253			return -1;
3254	}
3255
3256	if (sched->map.cpus_str) {
3257		sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str);
3258		if (!sched->map.cpus) {
3259			pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3260			zfree(&sched->map.comp_cpus);
3261			return -1;
3262		}
3263	}
3264
 
3265	return 0;
3266}
3267
3268static int setup_color_pids(struct perf_sched *sched)
3269{
3270	struct perf_thread_map *map;
3271
3272	if (!sched->map.color_pids_str)
3273		return 0;
3274
3275	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3276	if (!map) {
3277		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3278		return -1;
3279	}
3280
3281	sched->map.color_pids = map;
3282	return 0;
3283}
3284
3285static int setup_color_cpus(struct perf_sched *sched)
3286{
3287	struct perf_cpu_map *map;
3288
3289	if (!sched->map.color_cpus_str)
3290		return 0;
3291
3292	map = perf_cpu_map__new(sched->map.color_cpus_str);
3293	if (!map) {
3294		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3295		return -1;
3296	}
3297
3298	sched->map.color_cpus = map;
3299	return 0;
3300}
3301
3302static int perf_sched__map(struct perf_sched *sched)
3303{
3304	int rc = -1;
3305
3306	sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread)));
3307	if (!sched->curr_thread)
3308		return rc;
3309
3310	if (setup_cpus_switch_event(sched))
3311		goto out_free_curr_thread;
3312
3313	if (setup_map_cpus(sched))
3314		goto out_free_cpus_switch_event;
3315
3316	if (setup_color_pids(sched))
3317		goto out_put_map_cpus;
3318
3319	if (setup_color_cpus(sched))
3320		goto out_put_color_pids;
3321
3322	setup_pager();
3323	if (perf_sched__read_events(sched))
3324		goto out_put_color_cpus;
3325
3326	rc = 0;
3327	print_bad_events(sched);
3328
3329out_put_color_cpus:
3330	perf_cpu_map__put(sched->map.color_cpus);
3331
3332out_put_color_pids:
3333	perf_thread_map__put(sched->map.color_pids);
3334
3335out_put_map_cpus:
3336	zfree(&sched->map.comp_cpus);
3337	perf_cpu_map__put(sched->map.cpus);
3338
3339out_free_cpus_switch_event:
3340	free_cpus_switch_event(sched);
3341
3342out_free_curr_thread:
3343	zfree(&sched->curr_thread);
3344	return rc;
3345}
3346
3347static int perf_sched__replay(struct perf_sched *sched)
3348{
3349	int ret;
3350	unsigned long i;
3351
3352	mutex_init(&sched->start_work_mutex);
3353	mutex_init(&sched->work_done_wait_mutex);
3354
3355	ret = setup_cpus_switch_event(sched);
3356	if (ret)
3357		goto out_mutex_destroy;
3358
3359	calibrate_run_measurement_overhead(sched);
3360	calibrate_sleep_measurement_overhead(sched);
3361
3362	test_calibrations(sched);
3363
3364	ret = perf_sched__read_events(sched);
3365	if (ret)
3366		goto out_free_cpus_switch_event;
3367
3368	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3369	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3370	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3371
3372	if (sched->targetless_wakeups)
3373		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3374	if (sched->multitarget_wakeups)
3375		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3376	if (sched->nr_run_events_optimized)
3377		printf("run atoms optimized: %ld\n",
3378			sched->nr_run_events_optimized);
3379
3380	print_task_traces(sched);
3381	add_cross_task_wakeups(sched);
3382
3383	sched->thread_funcs_exit = false;
3384	create_tasks(sched);
3385	printf("------------------------------------------------------------\n");
3386	for (i = 0; i < sched->replay_repeat; i++)
3387		run_one_test(sched);
3388
3389	sched->thread_funcs_exit = true;
3390	destroy_tasks(sched);
3391
3392out_free_cpus_switch_event:
3393	free_cpus_switch_event(sched);
3394
3395out_mutex_destroy:
3396	mutex_destroy(&sched->start_work_mutex);
3397	mutex_destroy(&sched->work_done_wait_mutex);
3398	return ret;
3399}
3400
3401static void setup_sorting(struct perf_sched *sched, const struct option *options,
3402			  const char * const usage_msg[])
3403{
3404	char *tmp, *tok, *str = strdup(sched->sort_order);
3405
3406	for (tok = strtok_r(str, ", ", &tmp);
3407			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3408		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3409			usage_with_options_msg(usage_msg, options,
3410					"Unknown --sort key: `%s'", tok);
3411		}
3412	}
3413
3414	free(str);
3415
3416	sort_dimension__add("pid", &sched->cmp_pid);
3417}
3418
3419static bool schedstat_events_exposed(void)
3420{
3421	/*
3422	 * Select "sched:sched_stat_wait" event to check
3423	 * whether schedstat tracepoints are exposed.
3424	 */
3425	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3426		false : true;
3427}
3428
3429static int __cmd_record(int argc, const char **argv)
3430{
3431	unsigned int rec_argc, i, j;
3432	char **rec_argv;
3433	const char **rec_argv_copy;
3434	const char * const record_args[] = {
3435		"record",
3436		"-a",
3437		"-R",
3438		"-m", "1024",
3439		"-c", "1",
3440		"-e", "sched:sched_switch",
3441		"-e", "sched:sched_stat_runtime",
3442		"-e", "sched:sched_process_fork",
3443		"-e", "sched:sched_wakeup_new",
3444		"-e", "sched:sched_migrate_task",
3445	};
3446
3447	/*
3448	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3449	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3450	 * to prevent "perf sched record" execution failure, determine
3451	 * whether to record schedstat events according to actual situation.
3452	 */
3453	const char * const schedstat_args[] = {
3454		"-e", "sched:sched_stat_wait",
3455		"-e", "sched:sched_stat_sleep",
3456		"-e", "sched:sched_stat_iowait",
3457	};
3458	unsigned int schedstat_argc = schedstat_events_exposed() ?
3459		ARRAY_SIZE(schedstat_args) : 0;
3460
3461	struct tep_event *waking_event;
3462	int ret;
3463
3464	/*
3465	 * +2 for either "-e", "sched:sched_wakeup" or
3466	 * "-e", "sched:sched_waking"
3467	 */
3468	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3469	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3470	if (rec_argv == NULL)
3471		return -ENOMEM;
3472	rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3473	if (rec_argv_copy == NULL) {
3474		free(rec_argv);
3475		return -ENOMEM;
3476	}
3477
3478	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3479		rec_argv[i] = strdup(record_args[i]);
3480
3481	rec_argv[i++] = strdup("-e");
3482	waking_event = trace_event__tp_format("sched", "sched_waking");
3483	if (!IS_ERR(waking_event))
3484		rec_argv[i++] = strdup("sched:sched_waking");
3485	else
3486		rec_argv[i++] = strdup("sched:sched_wakeup");
3487
3488	for (j = 0; j < schedstat_argc; j++)
3489		rec_argv[i++] = strdup(schedstat_args[j]);
3490
3491	for (j = 1; j < (unsigned int)argc; j++, i++)
3492		rec_argv[i] = strdup(argv[j]);
3493
3494	BUG_ON(i != rec_argc);
3495
3496	memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3497	ret = cmd_record(rec_argc, rec_argv_copy);
3498
3499	for (i = 0; i < rec_argc; i++)
3500		free(rec_argv[i]);
3501	free(rec_argv);
3502	free(rec_argv_copy);
3503
3504	return ret;
3505}
3506
3507int cmd_sched(int argc, const char **argv)
3508{
3509	static const char default_sort_order[] = "avg, max, switch, runtime";
3510	struct perf_sched sched = {
3511		.tool = {
3512			.sample		 = perf_sched__process_tracepoint_sample,
3513			.comm		 = perf_sched__process_comm,
3514			.namespaces	 = perf_event__process_namespaces,
3515			.lost		 = perf_event__process_lost,
3516			.fork		 = perf_sched__process_fork_event,
3517			.ordered_events = true,
3518		},
3519		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3520		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3521		.sort_order	      = default_sort_order,
3522		.replay_repeat	      = 10,
3523		.profile_cpu	      = -1,
3524		.next_shortname1      = 'A',
3525		.next_shortname2      = '0',
3526		.skip_merge           = 0,
3527		.show_callchain	      = 1,
3528		.max_stack            = 5,
3529	};
3530	const struct option sched_options[] = {
3531	OPT_STRING('i', "input", &input_name, "file",
3532		    "input file name"),
3533	OPT_INCR('v', "verbose", &verbose,
3534		    "be more verbose (show symbol address, etc)"),
3535	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3536		    "dump raw trace in ASCII"),
3537	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3538	OPT_END()
3539	};
3540	const struct option latency_options[] = {
3541	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3542		   "sort by key(s): runtime, switch, avg, max"),
3543	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3544		    "CPU to profile on"),
3545	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3546		    "latency stats per pid instead of per comm"),
3547	OPT_PARENT(sched_options)
3548	};
3549	const struct option replay_options[] = {
3550	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3551		     "repeat the workload replay N times (-1: infinite)"),
3552	OPT_PARENT(sched_options)
3553	};
3554	const struct option map_options[] = {
3555	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3556		    "map output in compact mode"),
3557	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3558		   "highlight given pids in map"),
3559	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3560                    "highlight given CPUs in map"),
3561	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3562                    "display given CPUs in map"),
3563	OPT_PARENT(sched_options)
3564	};
3565	const struct option timehist_options[] = {
3566	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3567		   "file", "vmlinux pathname"),
3568	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3569		   "file", "kallsyms pathname"),
3570	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3571		    "Display call chains if present (default on)"),
3572	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3573		   "Maximum number of functions to display backtrace."),
3574	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3575		    "Look for files with symbols relative to this directory"),
3576	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3577		    "Show only syscall summary with statistics"),
3578	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3579		    "Show all syscalls and summary with statistics"),
3580	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3581	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3582	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3583	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3584	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3585	OPT_STRING(0, "time", &sched.time_str, "str",
3586		   "Time span for analysis (start,stop)"),
3587	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3588	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3589		   "analyze events only for given process id(s)"),
3590	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3591		   "analyze events only for given thread id(s)"),
3592	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3593	OPT_PARENT(sched_options)
3594	};
3595
3596	const char * const latency_usage[] = {
3597		"perf sched latency [<options>]",
3598		NULL
3599	};
3600	const char * const replay_usage[] = {
3601		"perf sched replay [<options>]",
3602		NULL
3603	};
3604	const char * const map_usage[] = {
3605		"perf sched map [<options>]",
3606		NULL
3607	};
3608	const char * const timehist_usage[] = {
3609		"perf sched timehist [<options>]",
3610		NULL
3611	};
3612	const char *const sched_subcommands[] = { "record", "latency", "map",
3613						  "replay", "script",
3614						  "timehist", NULL };
3615	const char *sched_usage[] = {
3616		NULL,
3617		NULL
3618	};
3619	struct trace_sched_handler lat_ops  = {
3620		.wakeup_event	    = latency_wakeup_event,
3621		.switch_event	    = latency_switch_event,
3622		.runtime_event	    = latency_runtime_event,
3623		.migrate_task_event = latency_migrate_task_event,
3624	};
3625	struct trace_sched_handler map_ops  = {
3626		.switch_event	    = map_switch_event,
3627	};
3628	struct trace_sched_handler replay_ops  = {
3629		.wakeup_event	    = replay_wakeup_event,
3630		.switch_event	    = replay_switch_event,
3631		.fork_event	    = replay_fork_event,
3632	};
3633	int ret;
 
 
 
 
 
 
3634
3635	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3636					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3637	if (!argc)
3638		usage_with_options(sched_usage, sched_options);
3639
3640	/*
3641	 * Aliased to 'perf script' for now:
3642	 */
3643	if (!strcmp(argv[0], "script")) {
3644		return cmd_script(argc, argv);
3645	} else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3646		return __cmd_record(argc, argv);
3647	} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3648		sched.tp_handler = &lat_ops;
3649		if (argc > 1) {
3650			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3651			if (argc)
3652				usage_with_options(latency_usage, latency_options);
3653		}
3654		setup_sorting(&sched, latency_options, latency_usage);
3655		return perf_sched__lat(&sched);
3656	} else if (!strcmp(argv[0], "map")) {
3657		if (argc) {
3658			argc = parse_options(argc, argv, map_options, map_usage, 0);
3659			if (argc)
3660				usage_with_options(map_usage, map_options);
3661		}
3662		sched.tp_handler = &map_ops;
3663		setup_sorting(&sched, latency_options, latency_usage);
3664		return perf_sched__map(&sched);
3665	} else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3666		sched.tp_handler = &replay_ops;
3667		if (argc) {
3668			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3669			if (argc)
3670				usage_with_options(replay_usage, replay_options);
3671		}
3672		return perf_sched__replay(&sched);
3673	} else if (!strcmp(argv[0], "timehist")) {
3674		if (argc) {
3675			argc = parse_options(argc, argv, timehist_options,
3676					     timehist_usage, 0);
3677			if (argc)
3678				usage_with_options(timehist_usage, timehist_options);
3679		}
3680		if ((sched.show_wakeups || sched.show_next) &&
3681		    sched.summary_only) {
3682			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3683			parse_options_usage(timehist_usage, timehist_options, "s", true);
3684			if (sched.show_wakeups)
3685				parse_options_usage(NULL, timehist_options, "w", true);
3686			if (sched.show_next)
3687				parse_options_usage(NULL, timehist_options, "n", true);
3688			return -EINVAL;
 
3689		}
3690		ret = symbol__validate_sym_arguments();
3691		if (ret)
3692			return ret;
3693
3694		return perf_sched__timehist(&sched);
3695	} else {
3696		usage_with_options(sched_usage, sched_options);
3697	}
3698
3699	return 0;
 
 
 
 
3700}