Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf.h"
   4#include "perf-sys.h"
   5
   6#include "util/cpumap.h"
   7#include "util/evlist.h"
   8#include "util/evsel.h"
   9#include "util/evsel_fprintf.h"
  10#include "util/mutex.h"
  11#include "util/symbol.h"
  12#include "util/thread.h"
  13#include "util/header.h"
  14#include "util/session.h"
  15#include "util/tool.h"
  16#include "util/cloexec.h"
  17#include "util/thread_map.h"
  18#include "util/color.h"
  19#include "util/stat.h"
  20#include "util/string2.h"
  21#include "util/callchain.h"
  22#include "util/time-utils.h"
  23
  24#include <subcmd/pager.h>
  25#include <subcmd/parse-options.h>
  26#include "util/trace-event.h"
  27
  28#include "util/debug.h"
  29#include "util/event.h"
  30
  31#include <linux/kernel.h>
  32#include <linux/log2.h>
  33#include <linux/zalloc.h>
  34#include <sys/prctl.h>
  35#include <sys/resource.h>
  36#include <inttypes.h>
  37
  38#include <errno.h>
  39#include <semaphore.h>
  40#include <pthread.h>
  41#include <math.h>
  42#include <api/fs/fs.h>
  43#include <perf/cpumap.h>
  44#include <linux/time64.h>
  45#include <linux/err.h>
  46
  47#include <linux/ctype.h>
  48
  49#define PR_SET_NAME		15               /* Set process name */
  50#define MAX_CPUS		4096
  51#define COMM_LEN		20
  52#define SYM_LEN			129
  53#define MAX_PID			1024000
  54
  55static const char *cpu_list;
  56static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
  57
  58struct sched_atom;
  59
  60struct task_desc {
  61	unsigned long		nr;
  62	unsigned long		pid;
  63	char			comm[COMM_LEN];
  64
  65	unsigned long		nr_events;
  66	unsigned long		curr_event;
  67	struct sched_atom	**atoms;
  68
  69	pthread_t		thread;
  70	sem_t			sleep_sem;
  71
  72	sem_t			ready_for_work;
  73	sem_t			work_done_sem;
  74
  75	u64			cpu_usage;
  76};
  77
  78enum sched_event_type {
  79	SCHED_EVENT_RUN,
  80	SCHED_EVENT_SLEEP,
  81	SCHED_EVENT_WAKEUP,
  82	SCHED_EVENT_MIGRATION,
  83};
  84
  85struct sched_atom {
  86	enum sched_event_type	type;
  87	int			specific_wait;
  88	u64			timestamp;
  89	u64			duration;
  90	unsigned long		nr;
  91	sem_t			*wait_sem;
  92	struct task_desc	*wakee;
  93};
  94
  95#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  96
  97/* task state bitmask, copied from include/linux/sched.h */
  98#define TASK_RUNNING		0
  99#define TASK_INTERRUPTIBLE	1
 100#define TASK_UNINTERRUPTIBLE	2
 101#define __TASK_STOPPED		4
 102#define __TASK_TRACED		8
 103/* in tsk->exit_state */
 104#define EXIT_DEAD		16
 105#define EXIT_ZOMBIE		32
 106#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
 107/* in tsk->state again */
 108#define TASK_DEAD		64
 109#define TASK_WAKEKILL		128
 110#define TASK_WAKING		256
 111#define TASK_PARKED		512
 112
 113enum thread_state {
 114	THREAD_SLEEPING = 0,
 115	THREAD_WAIT_CPU,
 116	THREAD_SCHED_IN,
 117	THREAD_IGNORE
 118};
 119
 120struct work_atom {
 121	struct list_head	list;
 122	enum thread_state	state;
 123	u64			sched_out_time;
 124	u64			wake_up_time;
 125	u64			sched_in_time;
 126	u64			runtime;
 127};
 128
 129struct work_atoms {
 130	struct list_head	work_list;
 131	struct thread		*thread;
 132	struct rb_node		node;
 133	u64			max_lat;
 134	u64			max_lat_start;
 135	u64			max_lat_end;
 136	u64			total_lat;
 137	u64			nb_atoms;
 138	u64			total_runtime;
 139	int			num_merged;
 140};
 141
 142typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 143
 144struct perf_sched;
 145
 146struct trace_sched_handler {
 147	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 148			    struct perf_sample *sample, struct machine *machine);
 149
 150	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 151			     struct perf_sample *sample, struct machine *machine);
 152
 153	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 154			    struct perf_sample *sample, struct machine *machine);
 155
 156	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 157	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 158			  struct machine *machine);
 159
 160	int (*migrate_task_event)(struct perf_sched *sched,
 161				  struct evsel *evsel,
 162				  struct perf_sample *sample,
 163				  struct machine *machine);
 164};
 165
 166#define COLOR_PIDS PERF_COLOR_BLUE
 167#define COLOR_CPUS PERF_COLOR_BG_RED
 168
 169struct perf_sched_map {
 170	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 171	struct perf_cpu		*comp_cpus;
 172	bool			 comp;
 173	struct perf_thread_map *color_pids;
 174	const char		*color_pids_str;
 175	struct perf_cpu_map	*color_cpus;
 176	const char		*color_cpus_str;
 177	struct perf_cpu_map	*cpus;
 178	const char		*cpus_str;
 179};
 180
 181struct perf_sched {
 182	struct perf_tool tool;
 183	const char	 *sort_order;
 184	unsigned long	 nr_tasks;
 185	struct task_desc **pid_to_task;
 186	struct task_desc **tasks;
 187	const struct trace_sched_handler *tp_handler;
 188	struct mutex	 start_work_mutex;
 189	struct mutex	 work_done_wait_mutex;
 190	int		 profile_cpu;
 191/*
 192 * Track the current task - that way we can know whether there's any
 193 * weird events, such as a task being switched away that is not current.
 194 */
 195	struct perf_cpu	 max_cpu;
 196	u32		 curr_pid[MAX_CPUS];
 197	struct thread	 *curr_thread[MAX_CPUS];
 198	char		 next_shortname1;
 199	char		 next_shortname2;
 200	unsigned int	 replay_repeat;
 201	unsigned long	 nr_run_events;
 202	unsigned long	 nr_sleep_events;
 203	unsigned long	 nr_wakeup_events;
 204	unsigned long	 nr_sleep_corrections;
 205	unsigned long	 nr_run_events_optimized;
 206	unsigned long	 targetless_wakeups;
 207	unsigned long	 multitarget_wakeups;
 208	unsigned long	 nr_runs;
 209	unsigned long	 nr_timestamps;
 210	unsigned long	 nr_unordered_timestamps;
 211	unsigned long	 nr_context_switch_bugs;
 212	unsigned long	 nr_events;
 213	unsigned long	 nr_lost_chunks;
 214	unsigned long	 nr_lost_events;
 215	u64		 run_measurement_overhead;
 216	u64		 sleep_measurement_overhead;
 217	u64		 start_time;
 218	u64		 cpu_usage;
 219	u64		 runavg_cpu_usage;
 220	u64		 parent_cpu_usage;
 221	u64		 runavg_parent_cpu_usage;
 222	u64		 sum_runtime;
 223	u64		 sum_fluct;
 224	u64		 run_avg;
 225	u64		 all_runtime;
 226	u64		 all_count;
 227	u64		 cpu_last_switched[MAX_CPUS];
 228	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 229	struct list_head sort_list, cmp_pid;
 230	bool force;
 231	bool skip_merge;
 232	struct perf_sched_map map;
 233
 234	/* options for timehist command */
 235	bool		summary;
 236	bool		summary_only;
 237	bool		idle_hist;
 238	bool		show_callchain;
 239	unsigned int	max_stack;
 240	bool		show_cpu_visual;
 241	bool		show_wakeups;
 242	bool		show_next;
 243	bool		show_migrations;
 244	bool		show_state;
 245	u64		skipped_samples;
 246	const char	*time_str;
 247	struct perf_time_interval ptime;
 248	struct perf_time_interval hist_time;
 249	volatile bool   thread_funcs_exit;
 250};
 251
 252/* per thread run time data */
 253struct thread_runtime {
 254	u64 last_time;      /* time of previous sched in/out event */
 255	u64 dt_run;         /* run time */
 256	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 257	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 258	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 259	u64 dt_delay;       /* time between wakeup and sched-in */
 260	u64 ready_to_run;   /* time of wakeup */
 261
 262	struct stats run_stats;
 263	u64 total_run_time;
 264	u64 total_sleep_time;
 265	u64 total_iowait_time;
 266	u64 total_preempt_time;
 267	u64 total_delay_time;
 268
 269	int last_state;
 270
 271	char shortname[3];
 272	bool comm_changed;
 273
 274	u64 migrations;
 275};
 276
 277/* per event run time data */
 278struct evsel_runtime {
 279	u64 *last_time; /* time this event was last seen per cpu */
 280	u32 ncpu;       /* highest cpu slot allocated */
 281};
 282
 283/* per cpu idle time data */
 284struct idle_thread_runtime {
 285	struct thread_runtime	tr;
 286	struct thread		*last_thread;
 287	struct rb_root_cached	sorted_root;
 288	struct callchain_root	callchain;
 289	struct callchain_cursor	cursor;
 290};
 291
 292/* track idle times per cpu */
 293static struct thread **idle_threads;
 294static int idle_max_cpu;
 295static char idle_comm[] = "<idle>";
 296
 297static u64 get_nsecs(void)
 298{
 299	struct timespec ts;
 300
 301	clock_gettime(CLOCK_MONOTONIC, &ts);
 302
 303	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 304}
 305
 306static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 307{
 308	u64 T0 = get_nsecs(), T1;
 309
 310	do {
 311		T1 = get_nsecs();
 312	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 313}
 314
 315static void sleep_nsecs(u64 nsecs)
 316{
 317	struct timespec ts;
 318
 319	ts.tv_nsec = nsecs % 999999999;
 320	ts.tv_sec = nsecs / 999999999;
 321
 322	nanosleep(&ts, NULL);
 323}
 324
 325static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 326{
 327	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 328	int i;
 329
 330	for (i = 0; i < 10; i++) {
 331		T0 = get_nsecs();
 332		burn_nsecs(sched, 0);
 333		T1 = get_nsecs();
 334		delta = T1-T0;
 335		min_delta = min(min_delta, delta);
 336	}
 337	sched->run_measurement_overhead = min_delta;
 338
 339	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 340}
 341
 342static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 343{
 344	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 345	int i;
 346
 347	for (i = 0; i < 10; i++) {
 348		T0 = get_nsecs();
 349		sleep_nsecs(10000);
 350		T1 = get_nsecs();
 351		delta = T1-T0;
 352		min_delta = min(min_delta, delta);
 353	}
 354	min_delta -= 10000;
 355	sched->sleep_measurement_overhead = min_delta;
 356
 357	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 358}
 359
 360static struct sched_atom *
 361get_new_event(struct task_desc *task, u64 timestamp)
 362{
 363	struct sched_atom *event = zalloc(sizeof(*event));
 364	unsigned long idx = task->nr_events;
 365	size_t size;
 366
 367	event->timestamp = timestamp;
 368	event->nr = idx;
 369
 370	task->nr_events++;
 371	size = sizeof(struct sched_atom *) * task->nr_events;
 372	task->atoms = realloc(task->atoms, size);
 373	BUG_ON(!task->atoms);
 374
 375	task->atoms[idx] = event;
 376
 377	return event;
 378}
 379
 380static struct sched_atom *last_event(struct task_desc *task)
 381{
 382	if (!task->nr_events)
 383		return NULL;
 384
 385	return task->atoms[task->nr_events - 1];
 386}
 387
 388static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 389				u64 timestamp, u64 duration)
 390{
 391	struct sched_atom *event, *curr_event = last_event(task);
 392
 393	/*
 394	 * optimize an existing RUN event by merging this one
 395	 * to it:
 396	 */
 397	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 398		sched->nr_run_events_optimized++;
 399		curr_event->duration += duration;
 400		return;
 401	}
 402
 403	event = get_new_event(task, timestamp);
 404
 405	event->type = SCHED_EVENT_RUN;
 406	event->duration = duration;
 407
 408	sched->nr_run_events++;
 409}
 410
 411static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 412				   u64 timestamp, struct task_desc *wakee)
 413{
 414	struct sched_atom *event, *wakee_event;
 415
 416	event = get_new_event(task, timestamp);
 417	event->type = SCHED_EVENT_WAKEUP;
 418	event->wakee = wakee;
 419
 420	wakee_event = last_event(wakee);
 421	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 422		sched->targetless_wakeups++;
 423		return;
 424	}
 425	if (wakee_event->wait_sem) {
 426		sched->multitarget_wakeups++;
 427		return;
 428	}
 429
 430	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 431	sem_init(wakee_event->wait_sem, 0, 0);
 432	wakee_event->specific_wait = 1;
 433	event->wait_sem = wakee_event->wait_sem;
 434
 435	sched->nr_wakeup_events++;
 436}
 437
 438static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 439				  u64 timestamp, u64 task_state __maybe_unused)
 440{
 441	struct sched_atom *event = get_new_event(task, timestamp);
 442
 443	event->type = SCHED_EVENT_SLEEP;
 444
 445	sched->nr_sleep_events++;
 446}
 447
 448static struct task_desc *register_pid(struct perf_sched *sched,
 449				      unsigned long pid, const char *comm)
 450{
 451	struct task_desc *task;
 452	static int pid_max;
 453
 454	if (sched->pid_to_task == NULL) {
 455		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 456			pid_max = MAX_PID;
 457		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 458	}
 459	if (pid >= (unsigned long)pid_max) {
 460		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 461			sizeof(struct task_desc *))) == NULL);
 462		while (pid >= (unsigned long)pid_max)
 463			sched->pid_to_task[pid_max++] = NULL;
 464	}
 465
 466	task = sched->pid_to_task[pid];
 467
 468	if (task)
 469		return task;
 470
 471	task = zalloc(sizeof(*task));
 472	task->pid = pid;
 473	task->nr = sched->nr_tasks;
 474	strcpy(task->comm, comm);
 475	/*
 476	 * every task starts in sleeping state - this gets ignored
 477	 * if there's no wakeup pointing to this sleep state:
 478	 */
 479	add_sched_event_sleep(sched, task, 0, 0);
 480
 481	sched->pid_to_task[pid] = task;
 482	sched->nr_tasks++;
 483	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 484	BUG_ON(!sched->tasks);
 485	sched->tasks[task->nr] = task;
 486
 487	if (verbose > 0)
 488		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 489
 490	return task;
 491}
 492
 493
 494static void print_task_traces(struct perf_sched *sched)
 495{
 496	struct task_desc *task;
 497	unsigned long i;
 498
 499	for (i = 0; i < sched->nr_tasks; i++) {
 500		task = sched->tasks[i];
 501		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 502			task->nr, task->comm, task->pid, task->nr_events);
 503	}
 504}
 505
 506static void add_cross_task_wakeups(struct perf_sched *sched)
 507{
 508	struct task_desc *task1, *task2;
 509	unsigned long i, j;
 510
 511	for (i = 0; i < sched->nr_tasks; i++) {
 512		task1 = sched->tasks[i];
 513		j = i + 1;
 514		if (j == sched->nr_tasks)
 515			j = 0;
 516		task2 = sched->tasks[j];
 517		add_sched_event_wakeup(sched, task1, 0, task2);
 518	}
 519}
 520
 521static void perf_sched__process_event(struct perf_sched *sched,
 522				      struct sched_atom *atom)
 523{
 524	int ret = 0;
 525
 526	switch (atom->type) {
 527		case SCHED_EVENT_RUN:
 528			burn_nsecs(sched, atom->duration);
 529			break;
 530		case SCHED_EVENT_SLEEP:
 531			if (atom->wait_sem)
 532				ret = sem_wait(atom->wait_sem);
 533			BUG_ON(ret);
 534			break;
 535		case SCHED_EVENT_WAKEUP:
 536			if (atom->wait_sem)
 537				ret = sem_post(atom->wait_sem);
 538			BUG_ON(ret);
 539			break;
 540		case SCHED_EVENT_MIGRATION:
 541			break;
 542		default:
 543			BUG_ON(1);
 544	}
 545}
 546
 547static u64 get_cpu_usage_nsec_parent(void)
 548{
 549	struct rusage ru;
 550	u64 sum;
 551	int err;
 552
 553	err = getrusage(RUSAGE_SELF, &ru);
 554	BUG_ON(err);
 555
 556	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 557	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 558
 559	return sum;
 560}
 561
 562static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 563{
 564	struct perf_event_attr attr;
 565	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 566	int fd;
 567	struct rlimit limit;
 568	bool need_privilege = false;
 569
 570	memset(&attr, 0, sizeof(attr));
 571
 572	attr.type = PERF_TYPE_SOFTWARE;
 573	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 574
 575force_again:
 576	fd = sys_perf_event_open(&attr, 0, -1, -1,
 577				 perf_event_open_cloexec_flag());
 578
 579	if (fd < 0) {
 580		if (errno == EMFILE) {
 581			if (sched->force) {
 582				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 583				limit.rlim_cur += sched->nr_tasks - cur_task;
 584				if (limit.rlim_cur > limit.rlim_max) {
 585					limit.rlim_max = limit.rlim_cur;
 586					need_privilege = true;
 587				}
 588				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 589					if (need_privilege && errno == EPERM)
 590						strcpy(info, "Need privilege\n");
 591				} else
 592					goto force_again;
 593			} else
 594				strcpy(info, "Have a try with -f option\n");
 595		}
 596		pr_err("Error: sys_perf_event_open() syscall returned "
 597		       "with %d (%s)\n%s", fd,
 598		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 599		exit(EXIT_FAILURE);
 600	}
 601	return fd;
 602}
 603
 604static u64 get_cpu_usage_nsec_self(int fd)
 605{
 606	u64 runtime;
 607	int ret;
 608
 609	ret = read(fd, &runtime, sizeof(runtime));
 610	BUG_ON(ret != sizeof(runtime));
 611
 612	return runtime;
 613}
 614
 615struct sched_thread_parms {
 616	struct task_desc  *task;
 617	struct perf_sched *sched;
 618	int fd;
 619};
 620
 621static void *thread_func(void *ctx)
 622{
 623	struct sched_thread_parms *parms = ctx;
 624	struct task_desc *this_task = parms->task;
 625	struct perf_sched *sched = parms->sched;
 626	u64 cpu_usage_0, cpu_usage_1;
 627	unsigned long i, ret;
 628	char comm2[22];
 629	int fd = parms->fd;
 630
 631	zfree(&parms);
 632
 633	sprintf(comm2, ":%s", this_task->comm);
 634	prctl(PR_SET_NAME, comm2);
 635	if (fd < 0)
 636		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 637
 638	while (!sched->thread_funcs_exit) {
 639		ret = sem_post(&this_task->ready_for_work);
 640		BUG_ON(ret);
 641		mutex_lock(&sched->start_work_mutex);
 642		mutex_unlock(&sched->start_work_mutex);
 643
 644		cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 645
 646		for (i = 0; i < this_task->nr_events; i++) {
 647			this_task->curr_event = i;
 648			perf_sched__process_event(sched, this_task->atoms[i]);
 649		}
 650
 651		cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 652		this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 653		ret = sem_post(&this_task->work_done_sem);
 654		BUG_ON(ret);
 655
 656		mutex_lock(&sched->work_done_wait_mutex);
 657		mutex_unlock(&sched->work_done_wait_mutex);
 658	}
 659	return NULL;
 660}
 661
 662static void create_tasks(struct perf_sched *sched)
 663	EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
 664	EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
 665{
 666	struct task_desc *task;
 667	pthread_attr_t attr;
 668	unsigned long i;
 669	int err;
 670
 671	err = pthread_attr_init(&attr);
 672	BUG_ON(err);
 673	err = pthread_attr_setstacksize(&attr,
 674			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
 675	BUG_ON(err);
 676	mutex_lock(&sched->start_work_mutex);
 677	mutex_lock(&sched->work_done_wait_mutex);
 
 
 678	for (i = 0; i < sched->nr_tasks; i++) {
 679		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 680		BUG_ON(parms == NULL);
 681		parms->task = task = sched->tasks[i];
 682		parms->sched = sched;
 683		parms->fd = self_open_counters(sched, i);
 684		sem_init(&task->sleep_sem, 0, 0);
 685		sem_init(&task->ready_for_work, 0, 0);
 686		sem_init(&task->work_done_sem, 0, 0);
 687		task->curr_event = 0;
 688		err = pthread_create(&task->thread, &attr, thread_func, parms);
 689		BUG_ON(err);
 690	}
 691}
 692
 693static void destroy_tasks(struct perf_sched *sched)
 694	UNLOCK_FUNCTION(sched->start_work_mutex)
 695	UNLOCK_FUNCTION(sched->work_done_wait_mutex)
 696{
 697	struct task_desc *task;
 698	unsigned long i;
 699	int err;
 700
 701	mutex_unlock(&sched->start_work_mutex);
 702	mutex_unlock(&sched->work_done_wait_mutex);
 703	/* Get rid of threads so they won't be upset by mutex destrunction */
 704	for (i = 0; i < sched->nr_tasks; i++) {
 705		task = sched->tasks[i];
 706		err = pthread_join(task->thread, NULL);
 707		BUG_ON(err);
 708		sem_destroy(&task->sleep_sem);
 709		sem_destroy(&task->ready_for_work);
 710		sem_destroy(&task->work_done_sem);
 711	}
 712}
 713
 714static void wait_for_tasks(struct perf_sched *sched)
 715	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 716	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 717{
 718	u64 cpu_usage_0, cpu_usage_1;
 719	struct task_desc *task;
 720	unsigned long i, ret;
 721
 722	sched->start_time = get_nsecs();
 723	sched->cpu_usage = 0;
 724	mutex_unlock(&sched->work_done_wait_mutex);
 725
 726	for (i = 0; i < sched->nr_tasks; i++) {
 727		task = sched->tasks[i];
 728		ret = sem_wait(&task->ready_for_work);
 729		BUG_ON(ret);
 730		sem_init(&task->ready_for_work, 0, 0);
 731	}
 732	mutex_lock(&sched->work_done_wait_mutex);
 
 733
 734	cpu_usage_0 = get_cpu_usage_nsec_parent();
 735
 736	mutex_unlock(&sched->start_work_mutex);
 737
 738	for (i = 0; i < sched->nr_tasks; i++) {
 739		task = sched->tasks[i];
 740		ret = sem_wait(&task->work_done_sem);
 741		BUG_ON(ret);
 742		sem_init(&task->work_done_sem, 0, 0);
 743		sched->cpu_usage += task->cpu_usage;
 744		task->cpu_usage = 0;
 745	}
 746
 747	cpu_usage_1 = get_cpu_usage_nsec_parent();
 748	if (!sched->runavg_cpu_usage)
 749		sched->runavg_cpu_usage = sched->cpu_usage;
 750	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 751
 752	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 753	if (!sched->runavg_parent_cpu_usage)
 754		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 755	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 756					 sched->parent_cpu_usage)/sched->replay_repeat;
 757
 758	mutex_lock(&sched->start_work_mutex);
 
 759
 760	for (i = 0; i < sched->nr_tasks; i++) {
 761		task = sched->tasks[i];
 762		sem_init(&task->sleep_sem, 0, 0);
 763		task->curr_event = 0;
 764	}
 765}
 766
 767static void run_one_test(struct perf_sched *sched)
 768	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 769	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 770{
 771	u64 T0, T1, delta, avg_delta, fluct;
 772
 773	T0 = get_nsecs();
 774	wait_for_tasks(sched);
 775	T1 = get_nsecs();
 776
 777	delta = T1 - T0;
 778	sched->sum_runtime += delta;
 779	sched->nr_runs++;
 780
 781	avg_delta = sched->sum_runtime / sched->nr_runs;
 782	if (delta < avg_delta)
 783		fluct = avg_delta - delta;
 784	else
 785		fluct = delta - avg_delta;
 786	sched->sum_fluct += fluct;
 787	if (!sched->run_avg)
 788		sched->run_avg = delta;
 789	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 790
 791	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 792
 793	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 794
 795	printf("cpu: %0.2f / %0.2f",
 796		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 797
 798#if 0
 799	/*
 800	 * rusage statistics done by the parent, these are less
 801	 * accurate than the sched->sum_exec_runtime based statistics:
 802	 */
 803	printf(" [%0.2f / %0.2f]",
 804		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 805		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 806#endif
 807
 808	printf("\n");
 809
 810	if (sched->nr_sleep_corrections)
 811		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 812	sched->nr_sleep_corrections = 0;
 813}
 814
 815static void test_calibrations(struct perf_sched *sched)
 816{
 817	u64 T0, T1;
 818
 819	T0 = get_nsecs();
 820	burn_nsecs(sched, NSEC_PER_MSEC);
 821	T1 = get_nsecs();
 822
 823	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 824
 825	T0 = get_nsecs();
 826	sleep_nsecs(NSEC_PER_MSEC);
 827	T1 = get_nsecs();
 828
 829	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 830}
 831
 832static int
 833replay_wakeup_event(struct perf_sched *sched,
 834		    struct evsel *evsel, struct perf_sample *sample,
 835		    struct machine *machine __maybe_unused)
 836{
 837	const char *comm = evsel__strval(evsel, sample, "comm");
 838	const u32 pid	 = evsel__intval(evsel, sample, "pid");
 839	struct task_desc *waker, *wakee;
 840
 841	if (verbose > 0) {
 842		printf("sched_wakeup event %p\n", evsel);
 843
 844		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 845	}
 846
 847	waker = register_pid(sched, sample->tid, "<unknown>");
 848	wakee = register_pid(sched, pid, comm);
 849
 850	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 851	return 0;
 852}
 853
 854static int replay_switch_event(struct perf_sched *sched,
 855			       struct evsel *evsel,
 856			       struct perf_sample *sample,
 857			       struct machine *machine __maybe_unused)
 858{
 859	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
 860		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
 861	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
 862		  next_pid = evsel__intval(evsel, sample, "next_pid");
 863	const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
 864	struct task_desc *prev, __maybe_unused *next;
 865	u64 timestamp0, timestamp = sample->time;
 866	int cpu = sample->cpu;
 867	s64 delta;
 868
 869	if (verbose > 0)
 870		printf("sched_switch event %p\n", evsel);
 871
 872	if (cpu >= MAX_CPUS || cpu < 0)
 873		return 0;
 874
 875	timestamp0 = sched->cpu_last_switched[cpu];
 876	if (timestamp0)
 877		delta = timestamp - timestamp0;
 878	else
 879		delta = 0;
 880
 881	if (delta < 0) {
 882		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 883		return -1;
 884	}
 885
 886	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 887		 prev_comm, prev_pid, next_comm, next_pid, delta);
 888
 889	prev = register_pid(sched, prev_pid, prev_comm);
 890	next = register_pid(sched, next_pid, next_comm);
 891
 892	sched->cpu_last_switched[cpu] = timestamp;
 893
 894	add_sched_event_run(sched, prev, timestamp, delta);
 895	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 896
 897	return 0;
 898}
 899
 900static int replay_fork_event(struct perf_sched *sched,
 901			     union perf_event *event,
 902			     struct machine *machine)
 903{
 904	struct thread *child, *parent;
 905
 906	child = machine__findnew_thread(machine, event->fork.pid,
 907					event->fork.tid);
 908	parent = machine__findnew_thread(machine, event->fork.ppid,
 909					 event->fork.ptid);
 910
 911	if (child == NULL || parent == NULL) {
 912		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 913				 child, parent);
 914		goto out_put;
 915	}
 916
 917	if (verbose > 0) {
 918		printf("fork event\n");
 919		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 920		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 921	}
 922
 923	register_pid(sched, parent->tid, thread__comm_str(parent));
 924	register_pid(sched, child->tid, thread__comm_str(child));
 925out_put:
 926	thread__put(child);
 927	thread__put(parent);
 928	return 0;
 929}
 930
 931struct sort_dimension {
 932	const char		*name;
 933	sort_fn_t		cmp;
 934	struct list_head	list;
 935};
 936
 937/*
 938 * handle runtime stats saved per thread
 939 */
 940static struct thread_runtime *thread__init_runtime(struct thread *thread)
 941{
 942	struct thread_runtime *r;
 943
 944	r = zalloc(sizeof(struct thread_runtime));
 945	if (!r)
 946		return NULL;
 947
 948	init_stats(&r->run_stats);
 949	thread__set_priv(thread, r);
 950
 951	return r;
 952}
 953
 954static struct thread_runtime *thread__get_runtime(struct thread *thread)
 955{
 956	struct thread_runtime *tr;
 957
 958	tr = thread__priv(thread);
 959	if (tr == NULL) {
 960		tr = thread__init_runtime(thread);
 961		if (tr == NULL)
 962			pr_debug("Failed to malloc memory for runtime data.\n");
 963	}
 964
 965	return tr;
 966}
 967
 968static int
 969thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 970{
 971	struct sort_dimension *sort;
 972	int ret = 0;
 973
 974	BUG_ON(list_empty(list));
 975
 976	list_for_each_entry(sort, list, list) {
 977		ret = sort->cmp(l, r);
 978		if (ret)
 979			return ret;
 980	}
 981
 982	return ret;
 983}
 984
 985static struct work_atoms *
 986thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 987			 struct list_head *sort_list)
 988{
 989	struct rb_node *node = root->rb_root.rb_node;
 990	struct work_atoms key = { .thread = thread };
 991
 992	while (node) {
 993		struct work_atoms *atoms;
 994		int cmp;
 995
 996		atoms = container_of(node, struct work_atoms, node);
 997
 998		cmp = thread_lat_cmp(sort_list, &key, atoms);
 999		if (cmp > 0)
1000			node = node->rb_left;
1001		else if (cmp < 0)
1002			node = node->rb_right;
1003		else {
1004			BUG_ON(thread != atoms->thread);
1005			return atoms;
1006		}
1007	}
1008	return NULL;
1009}
1010
1011static void
1012__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1013			 struct list_head *sort_list)
1014{
1015	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1016	bool leftmost = true;
1017
1018	while (*new) {
1019		struct work_atoms *this;
1020		int cmp;
1021
1022		this = container_of(*new, struct work_atoms, node);
1023		parent = *new;
1024
1025		cmp = thread_lat_cmp(sort_list, data, this);
1026
1027		if (cmp > 0)
1028			new = &((*new)->rb_left);
1029		else {
1030			new = &((*new)->rb_right);
1031			leftmost = false;
1032		}
1033	}
1034
1035	rb_link_node(&data->node, parent, new);
1036	rb_insert_color_cached(&data->node, root, leftmost);
1037}
1038
1039static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1040{
1041	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1042	if (!atoms) {
1043		pr_err("No memory at %s\n", __func__);
1044		return -1;
1045	}
1046
1047	atoms->thread = thread__get(thread);
1048	INIT_LIST_HEAD(&atoms->work_list);
1049	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1050	return 0;
1051}
1052
1053static char sched_out_state(u64 prev_state)
1054{
1055	const char *str = TASK_STATE_TO_CHAR_STR;
1056
1057	return str[prev_state];
1058}
1059
1060static int
1061add_sched_out_event(struct work_atoms *atoms,
1062		    char run_state,
1063		    u64 timestamp)
1064{
1065	struct work_atom *atom = zalloc(sizeof(*atom));
1066	if (!atom) {
1067		pr_err("Non memory at %s", __func__);
1068		return -1;
1069	}
1070
1071	atom->sched_out_time = timestamp;
1072
1073	if (run_state == 'R') {
1074		atom->state = THREAD_WAIT_CPU;
1075		atom->wake_up_time = atom->sched_out_time;
1076	}
1077
1078	list_add_tail(&atom->list, &atoms->work_list);
1079	return 0;
1080}
1081
1082static void
1083add_runtime_event(struct work_atoms *atoms, u64 delta,
1084		  u64 timestamp __maybe_unused)
1085{
1086	struct work_atom *atom;
1087
1088	BUG_ON(list_empty(&atoms->work_list));
1089
1090	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1091
1092	atom->runtime += delta;
1093	atoms->total_runtime += delta;
1094}
1095
1096static void
1097add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1098{
1099	struct work_atom *atom;
1100	u64 delta;
1101
1102	if (list_empty(&atoms->work_list))
1103		return;
1104
1105	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1106
1107	if (atom->state != THREAD_WAIT_CPU)
1108		return;
1109
1110	if (timestamp < atom->wake_up_time) {
1111		atom->state = THREAD_IGNORE;
1112		return;
1113	}
1114
1115	atom->state = THREAD_SCHED_IN;
1116	atom->sched_in_time = timestamp;
1117
1118	delta = atom->sched_in_time - atom->wake_up_time;
1119	atoms->total_lat += delta;
1120	if (delta > atoms->max_lat) {
1121		atoms->max_lat = delta;
1122		atoms->max_lat_start = atom->wake_up_time;
1123		atoms->max_lat_end = timestamp;
1124	}
1125	atoms->nb_atoms++;
1126}
1127
1128static int latency_switch_event(struct perf_sched *sched,
1129				struct evsel *evsel,
1130				struct perf_sample *sample,
1131				struct machine *machine)
1132{
1133	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1134		  next_pid = evsel__intval(evsel, sample, "next_pid");
1135	const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1136	struct work_atoms *out_events, *in_events;
1137	struct thread *sched_out, *sched_in;
1138	u64 timestamp0, timestamp = sample->time;
1139	int cpu = sample->cpu, err = -1;
1140	s64 delta;
1141
1142	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1143
1144	timestamp0 = sched->cpu_last_switched[cpu];
1145	sched->cpu_last_switched[cpu] = timestamp;
1146	if (timestamp0)
1147		delta = timestamp - timestamp0;
1148	else
1149		delta = 0;
1150
1151	if (delta < 0) {
1152		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1153		return -1;
1154	}
1155
1156	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1157	sched_in = machine__findnew_thread(machine, -1, next_pid);
1158	if (sched_out == NULL || sched_in == NULL)
1159		goto out_put;
1160
1161	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1162	if (!out_events) {
1163		if (thread_atoms_insert(sched, sched_out))
1164			goto out_put;
1165		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1166		if (!out_events) {
1167			pr_err("out-event: Internal tree error");
1168			goto out_put;
1169		}
1170	}
1171	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1172		return -1;
1173
1174	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1175	if (!in_events) {
1176		if (thread_atoms_insert(sched, sched_in))
1177			goto out_put;
1178		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1179		if (!in_events) {
1180			pr_err("in-event: Internal tree error");
1181			goto out_put;
1182		}
1183		/*
1184		 * Take came in we have not heard about yet,
1185		 * add in an initial atom in runnable state:
1186		 */
1187		if (add_sched_out_event(in_events, 'R', timestamp))
1188			goto out_put;
1189	}
1190	add_sched_in_event(in_events, timestamp);
1191	err = 0;
1192out_put:
1193	thread__put(sched_out);
1194	thread__put(sched_in);
1195	return err;
1196}
1197
1198static int latency_runtime_event(struct perf_sched *sched,
1199				 struct evsel *evsel,
1200				 struct perf_sample *sample,
1201				 struct machine *machine)
1202{
1203	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1204	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1205	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1206	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1207	u64 timestamp = sample->time;
1208	int cpu = sample->cpu, err = -1;
1209
1210	if (thread == NULL)
1211		return -1;
1212
1213	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1214	if (!atoms) {
1215		if (thread_atoms_insert(sched, thread))
1216			goto out_put;
1217		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1218		if (!atoms) {
1219			pr_err("in-event: Internal tree error");
1220			goto out_put;
1221		}
1222		if (add_sched_out_event(atoms, 'R', timestamp))
1223			goto out_put;
1224	}
1225
1226	add_runtime_event(atoms, runtime, timestamp);
1227	err = 0;
1228out_put:
1229	thread__put(thread);
1230	return err;
1231}
1232
1233static int latency_wakeup_event(struct perf_sched *sched,
1234				struct evsel *evsel,
1235				struct perf_sample *sample,
1236				struct machine *machine)
1237{
1238	const u32 pid	  = evsel__intval(evsel, sample, "pid");
1239	struct work_atoms *atoms;
1240	struct work_atom *atom;
1241	struct thread *wakee;
1242	u64 timestamp = sample->time;
1243	int err = -1;
1244
1245	wakee = machine__findnew_thread(machine, -1, pid);
1246	if (wakee == NULL)
1247		return -1;
1248	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1249	if (!atoms) {
1250		if (thread_atoms_insert(sched, wakee))
1251			goto out_put;
1252		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1253		if (!atoms) {
1254			pr_err("wakeup-event: Internal tree error");
1255			goto out_put;
1256		}
1257		if (add_sched_out_event(atoms, 'S', timestamp))
1258			goto out_put;
1259	}
1260
1261	BUG_ON(list_empty(&atoms->work_list));
1262
1263	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1264
1265	/*
1266	 * As we do not guarantee the wakeup event happens when
1267	 * task is out of run queue, also may happen when task is
1268	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1269	 * then we should not set the ->wake_up_time when wake up a
1270	 * task which is on run queue.
1271	 *
1272	 * You WILL be missing events if you've recorded only
1273	 * one CPU, or are only looking at only one, so don't
1274	 * skip in this case.
1275	 */
1276	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1277		goto out_ok;
1278
1279	sched->nr_timestamps++;
1280	if (atom->sched_out_time > timestamp) {
1281		sched->nr_unordered_timestamps++;
1282		goto out_ok;
1283	}
1284
1285	atom->state = THREAD_WAIT_CPU;
1286	atom->wake_up_time = timestamp;
1287out_ok:
1288	err = 0;
1289out_put:
1290	thread__put(wakee);
1291	return err;
1292}
1293
1294static int latency_migrate_task_event(struct perf_sched *sched,
1295				      struct evsel *evsel,
1296				      struct perf_sample *sample,
1297				      struct machine *machine)
1298{
1299	const u32 pid = evsel__intval(evsel, sample, "pid");
1300	u64 timestamp = sample->time;
1301	struct work_atoms *atoms;
1302	struct work_atom *atom;
1303	struct thread *migrant;
1304	int err = -1;
1305
1306	/*
1307	 * Only need to worry about migration when profiling one CPU.
1308	 */
1309	if (sched->profile_cpu == -1)
1310		return 0;
1311
1312	migrant = machine__findnew_thread(machine, -1, pid);
1313	if (migrant == NULL)
1314		return -1;
1315	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1316	if (!atoms) {
1317		if (thread_atoms_insert(sched, migrant))
1318			goto out_put;
1319		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1320		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1321		if (!atoms) {
1322			pr_err("migration-event: Internal tree error");
1323			goto out_put;
1324		}
1325		if (add_sched_out_event(atoms, 'R', timestamp))
1326			goto out_put;
1327	}
1328
1329	BUG_ON(list_empty(&atoms->work_list));
1330
1331	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1332	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1333
1334	sched->nr_timestamps++;
1335
1336	if (atom->sched_out_time > timestamp)
1337		sched->nr_unordered_timestamps++;
1338	err = 0;
1339out_put:
1340	thread__put(migrant);
1341	return err;
1342}
1343
1344static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1345{
1346	int i;
1347	int ret;
1348	u64 avg;
1349	char max_lat_start[32], max_lat_end[32];
1350
1351	if (!work_list->nb_atoms)
1352		return;
1353	/*
1354	 * Ignore idle threads:
1355	 */
1356	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1357		return;
1358
1359	sched->all_runtime += work_list->total_runtime;
1360	sched->all_count   += work_list->nb_atoms;
1361
1362	if (work_list->num_merged > 1)
1363		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1364	else
1365		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1366
1367	for (i = 0; i < 24 - ret; i++)
1368		printf(" ");
1369
1370	avg = work_list->total_lat / work_list->nb_atoms;
1371	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1372	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1373
1374	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1375	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1376		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1377		 (double)work_list->max_lat / NSEC_PER_MSEC,
1378		 max_lat_start, max_lat_end);
1379}
1380
1381static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1382{
1383	if (l->thread == r->thread)
1384		return 0;
1385	if (l->thread->tid < r->thread->tid)
1386		return -1;
1387	if (l->thread->tid > r->thread->tid)
1388		return 1;
1389	return (int)(l->thread - r->thread);
1390}
1391
1392static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1393{
1394	u64 avgl, avgr;
1395
1396	if (!l->nb_atoms)
1397		return -1;
1398
1399	if (!r->nb_atoms)
1400		return 1;
1401
1402	avgl = l->total_lat / l->nb_atoms;
1403	avgr = r->total_lat / r->nb_atoms;
1404
1405	if (avgl < avgr)
1406		return -1;
1407	if (avgl > avgr)
1408		return 1;
1409
1410	return 0;
1411}
1412
1413static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1414{
1415	if (l->max_lat < r->max_lat)
1416		return -1;
1417	if (l->max_lat > r->max_lat)
1418		return 1;
1419
1420	return 0;
1421}
1422
1423static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1424{
1425	if (l->nb_atoms < r->nb_atoms)
1426		return -1;
1427	if (l->nb_atoms > r->nb_atoms)
1428		return 1;
1429
1430	return 0;
1431}
1432
1433static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1434{
1435	if (l->total_runtime < r->total_runtime)
1436		return -1;
1437	if (l->total_runtime > r->total_runtime)
1438		return 1;
1439
1440	return 0;
1441}
1442
1443static int sort_dimension__add(const char *tok, struct list_head *list)
1444{
1445	size_t i;
1446	static struct sort_dimension avg_sort_dimension = {
1447		.name = "avg",
1448		.cmp  = avg_cmp,
1449	};
1450	static struct sort_dimension max_sort_dimension = {
1451		.name = "max",
1452		.cmp  = max_cmp,
1453	};
1454	static struct sort_dimension pid_sort_dimension = {
1455		.name = "pid",
1456		.cmp  = pid_cmp,
1457	};
1458	static struct sort_dimension runtime_sort_dimension = {
1459		.name = "runtime",
1460		.cmp  = runtime_cmp,
1461	};
1462	static struct sort_dimension switch_sort_dimension = {
1463		.name = "switch",
1464		.cmp  = switch_cmp,
1465	};
1466	struct sort_dimension *available_sorts[] = {
1467		&pid_sort_dimension,
1468		&avg_sort_dimension,
1469		&max_sort_dimension,
1470		&switch_sort_dimension,
1471		&runtime_sort_dimension,
1472	};
1473
1474	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1475		if (!strcmp(available_sorts[i]->name, tok)) {
1476			list_add_tail(&available_sorts[i]->list, list);
1477
1478			return 0;
1479		}
1480	}
1481
1482	return -1;
1483}
1484
1485static void perf_sched__sort_lat(struct perf_sched *sched)
1486{
1487	struct rb_node *node;
1488	struct rb_root_cached *root = &sched->atom_root;
1489again:
1490	for (;;) {
1491		struct work_atoms *data;
1492		node = rb_first_cached(root);
1493		if (!node)
1494			break;
1495
1496		rb_erase_cached(node, root);
1497		data = rb_entry(node, struct work_atoms, node);
1498		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1499	}
1500	if (root == &sched->atom_root) {
1501		root = &sched->merged_atom_root;
1502		goto again;
1503	}
1504}
1505
1506static int process_sched_wakeup_event(struct perf_tool *tool,
1507				      struct evsel *evsel,
1508				      struct perf_sample *sample,
1509				      struct machine *machine)
1510{
1511	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1512
1513	if (sched->tp_handler->wakeup_event)
1514		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1515
1516	return 0;
1517}
1518
1519union map_priv {
1520	void	*ptr;
1521	bool	 color;
1522};
1523
1524static bool thread__has_color(struct thread *thread)
1525{
1526	union map_priv priv = {
1527		.ptr = thread__priv(thread),
1528	};
1529
1530	return priv.color;
1531}
1532
1533static struct thread*
1534map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1535{
1536	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1537	union map_priv priv = {
1538		.color = false,
1539	};
1540
1541	if (!sched->map.color_pids || !thread || thread__priv(thread))
1542		return thread;
1543
1544	if (thread_map__has(sched->map.color_pids, tid))
1545		priv.color = true;
1546
1547	thread__set_priv(thread, priv.ptr);
1548	return thread;
1549}
1550
1551static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1552			    struct perf_sample *sample, struct machine *machine)
1553{
1554	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1555	struct thread *sched_in;
1556	struct thread_runtime *tr;
1557	int new_shortname;
1558	u64 timestamp0, timestamp = sample->time;
1559	s64 delta;
1560	int i;
1561	struct perf_cpu this_cpu = {
1562		.cpu = sample->cpu,
1563	};
1564	int cpus_nr;
1565	bool new_cpu = false;
1566	const char *color = PERF_COLOR_NORMAL;
1567	char stimestamp[32];
1568
1569	BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1570
1571	if (this_cpu.cpu > sched->max_cpu.cpu)
1572		sched->max_cpu = this_cpu;
1573
1574	if (sched->map.comp) {
1575		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1576		if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1577			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1578			new_cpu = true;
1579		}
1580	} else
1581		cpus_nr = sched->max_cpu.cpu;
1582
1583	timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1584	sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1585	if (timestamp0)
1586		delta = timestamp - timestamp0;
1587	else
1588		delta = 0;
1589
1590	if (delta < 0) {
1591		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1592		return -1;
1593	}
1594
1595	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1596	if (sched_in == NULL)
1597		return -1;
1598
1599	tr = thread__get_runtime(sched_in);
1600	if (tr == NULL) {
1601		thread__put(sched_in);
1602		return -1;
1603	}
1604
1605	sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1606
1607	printf("  ");
1608
1609	new_shortname = 0;
1610	if (!tr->shortname[0]) {
1611		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1612			/*
1613			 * Don't allocate a letter-number for swapper:0
1614			 * as a shortname. Instead, we use '.' for it.
1615			 */
1616			tr->shortname[0] = '.';
1617			tr->shortname[1] = ' ';
1618		} else {
1619			tr->shortname[0] = sched->next_shortname1;
1620			tr->shortname[1] = sched->next_shortname2;
1621
1622			if (sched->next_shortname1 < 'Z') {
1623				sched->next_shortname1++;
1624			} else {
1625				sched->next_shortname1 = 'A';
1626				if (sched->next_shortname2 < '9')
1627					sched->next_shortname2++;
1628				else
1629					sched->next_shortname2 = '0';
1630			}
1631		}
1632		new_shortname = 1;
1633	}
1634
1635	for (i = 0; i < cpus_nr; i++) {
1636		struct perf_cpu cpu = {
1637			.cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1638		};
1639		struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1640		struct thread_runtime *curr_tr;
1641		const char *pid_color = color;
1642		const char *cpu_color = color;
1643
1644		if (curr_thread && thread__has_color(curr_thread))
1645			pid_color = COLOR_PIDS;
1646
1647		if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, cpu))
1648			continue;
1649
1650		if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1651			cpu_color = COLOR_CPUS;
1652
1653		if (cpu.cpu != this_cpu.cpu)
1654			color_fprintf(stdout, color, " ");
1655		else
1656			color_fprintf(stdout, cpu_color, "*");
1657
1658		if (sched->curr_thread[cpu.cpu]) {
1659			curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1660			if (curr_tr == NULL) {
1661				thread__put(sched_in);
1662				return -1;
1663			}
1664			color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1665		} else
1666			color_fprintf(stdout, color, "   ");
1667	}
1668
1669	if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1670		goto out;
1671
1672	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1673	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1674	if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1675		const char *pid_color = color;
1676
1677		if (thread__has_color(sched_in))
1678			pid_color = COLOR_PIDS;
1679
1680		color_fprintf(stdout, pid_color, "%s => %s:%d",
1681		       tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1682		tr->comm_changed = false;
1683	}
1684
1685	if (sched->map.comp && new_cpu)
1686		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1687
1688out:
1689	color_fprintf(stdout, color, "\n");
1690
1691	thread__put(sched_in);
1692
1693	return 0;
1694}
1695
1696static int process_sched_switch_event(struct perf_tool *tool,
1697				      struct evsel *evsel,
1698				      struct perf_sample *sample,
1699				      struct machine *machine)
1700{
1701	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1702	int this_cpu = sample->cpu, err = 0;
1703	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1704	    next_pid = evsel__intval(evsel, sample, "next_pid");
1705
1706	if (sched->curr_pid[this_cpu] != (u32)-1) {
1707		/*
1708		 * Are we trying to switch away a PID that is
1709		 * not current?
1710		 */
1711		if (sched->curr_pid[this_cpu] != prev_pid)
1712			sched->nr_context_switch_bugs++;
1713	}
1714
1715	if (sched->tp_handler->switch_event)
1716		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1717
1718	sched->curr_pid[this_cpu] = next_pid;
1719	return err;
1720}
1721
1722static int process_sched_runtime_event(struct perf_tool *tool,
1723				       struct evsel *evsel,
1724				       struct perf_sample *sample,
1725				       struct machine *machine)
1726{
1727	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1728
1729	if (sched->tp_handler->runtime_event)
1730		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1731
1732	return 0;
1733}
1734
1735static int perf_sched__process_fork_event(struct perf_tool *tool,
1736					  union perf_event *event,
1737					  struct perf_sample *sample,
1738					  struct machine *machine)
1739{
1740	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1741
1742	/* run the fork event through the perf machinery */
1743	perf_event__process_fork(tool, event, sample, machine);
1744
1745	/* and then run additional processing needed for this command */
1746	if (sched->tp_handler->fork_event)
1747		return sched->tp_handler->fork_event(sched, event, machine);
1748
1749	return 0;
1750}
1751
1752static int process_sched_migrate_task_event(struct perf_tool *tool,
1753					    struct evsel *evsel,
1754					    struct perf_sample *sample,
1755					    struct machine *machine)
1756{
1757	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1758
1759	if (sched->tp_handler->migrate_task_event)
1760		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1761
1762	return 0;
1763}
1764
1765typedef int (*tracepoint_handler)(struct perf_tool *tool,
1766				  struct evsel *evsel,
1767				  struct perf_sample *sample,
1768				  struct machine *machine);
1769
1770static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1771						 union perf_event *event __maybe_unused,
1772						 struct perf_sample *sample,
1773						 struct evsel *evsel,
1774						 struct machine *machine)
1775{
1776	int err = 0;
1777
1778	if (evsel->handler != NULL) {
1779		tracepoint_handler f = evsel->handler;
1780		err = f(tool, evsel, sample, machine);
1781	}
1782
1783	return err;
1784}
1785
1786static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1787				    union perf_event *event,
1788				    struct perf_sample *sample,
1789				    struct machine *machine)
1790{
1791	struct thread *thread;
1792	struct thread_runtime *tr;
1793	int err;
1794
1795	err = perf_event__process_comm(tool, event, sample, machine);
1796	if (err)
1797		return err;
1798
1799	thread = machine__find_thread(machine, sample->pid, sample->tid);
1800	if (!thread) {
1801		pr_err("Internal error: can't find thread\n");
1802		return -1;
1803	}
1804
1805	tr = thread__get_runtime(thread);
1806	if (tr == NULL) {
1807		thread__put(thread);
1808		return -1;
1809	}
1810
1811	tr->comm_changed = true;
1812	thread__put(thread);
1813
1814	return 0;
1815}
1816
1817static int perf_sched__read_events(struct perf_sched *sched)
1818{
1819	const struct evsel_str_handler handlers[] = {
1820		{ "sched:sched_switch",	      process_sched_switch_event, },
1821		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1822		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1823		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1824		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1825	};
1826	struct perf_session *session;
1827	struct perf_data data = {
1828		.path  = input_name,
1829		.mode  = PERF_DATA_MODE_READ,
1830		.force = sched->force,
1831	};
1832	int rc = -1;
1833
1834	session = perf_session__new(&data, &sched->tool);
1835	if (IS_ERR(session)) {
1836		pr_debug("Error creating perf session");
1837		return PTR_ERR(session);
1838	}
1839
1840	symbol__init(&session->header.env);
1841
1842	if (perf_session__set_tracepoints_handlers(session, handlers))
1843		goto out_delete;
1844
1845	if (perf_session__has_traces(session, "record -R")) {
1846		int err = perf_session__process_events(session);
1847		if (err) {
1848			pr_err("Failed to process events, error %d", err);
1849			goto out_delete;
1850		}
1851
1852		sched->nr_events      = session->evlist->stats.nr_events[0];
1853		sched->nr_lost_events = session->evlist->stats.total_lost;
1854		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1855	}
1856
1857	rc = 0;
1858out_delete:
1859	perf_session__delete(session);
1860	return rc;
1861}
1862
1863/*
1864 * scheduling times are printed as msec.usec
1865 */
1866static inline void print_sched_time(unsigned long long nsecs, int width)
1867{
1868	unsigned long msecs;
1869	unsigned long usecs;
1870
1871	msecs  = nsecs / NSEC_PER_MSEC;
1872	nsecs -= msecs * NSEC_PER_MSEC;
1873	usecs  = nsecs / NSEC_PER_USEC;
1874	printf("%*lu.%03lu ", width, msecs, usecs);
1875}
1876
1877/*
1878 * returns runtime data for event, allocating memory for it the
1879 * first time it is used.
1880 */
1881static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1882{
1883	struct evsel_runtime *r = evsel->priv;
1884
1885	if (r == NULL) {
1886		r = zalloc(sizeof(struct evsel_runtime));
1887		evsel->priv = r;
1888	}
1889
1890	return r;
1891}
1892
1893/*
1894 * save last time event was seen per cpu
1895 */
1896static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1897{
1898	struct evsel_runtime *r = evsel__get_runtime(evsel);
1899
1900	if (r == NULL)
1901		return;
1902
1903	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1904		int i, n = __roundup_pow_of_two(cpu+1);
1905		void *p = r->last_time;
1906
1907		p = realloc(r->last_time, n * sizeof(u64));
1908		if (!p)
1909			return;
1910
1911		r->last_time = p;
1912		for (i = r->ncpu; i < n; ++i)
1913			r->last_time[i] = (u64) 0;
1914
1915		r->ncpu = n;
1916	}
1917
1918	r->last_time[cpu] = timestamp;
1919}
1920
1921/* returns last time this event was seen on the given cpu */
1922static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1923{
1924	struct evsel_runtime *r = evsel__get_runtime(evsel);
1925
1926	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1927		return 0;
1928
1929	return r->last_time[cpu];
1930}
1931
1932static int comm_width = 30;
1933
1934static char *timehist_get_commstr(struct thread *thread)
1935{
1936	static char str[32];
1937	const char *comm = thread__comm_str(thread);
1938	pid_t tid = thread->tid;
1939	pid_t pid = thread->pid_;
1940	int n;
1941
1942	if (pid == 0)
1943		n = scnprintf(str, sizeof(str), "%s", comm);
1944
1945	else if (tid != pid)
1946		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1947
1948	else
1949		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1950
1951	if (n > comm_width)
1952		comm_width = n;
1953
1954	return str;
1955}
1956
1957static void timehist_header(struct perf_sched *sched)
1958{
1959	u32 ncpus = sched->max_cpu.cpu + 1;
1960	u32 i, j;
1961
1962	printf("%15s %6s ", "time", "cpu");
1963
1964	if (sched->show_cpu_visual) {
1965		printf(" ");
1966		for (i = 0, j = 0; i < ncpus; ++i) {
1967			printf("%x", j++);
1968			if (j > 15)
1969				j = 0;
1970		}
1971		printf(" ");
1972	}
1973
1974	printf(" %-*s  %9s  %9s  %9s", comm_width,
1975		"task name", "wait time", "sch delay", "run time");
1976
1977	if (sched->show_state)
1978		printf("  %s", "state");
1979
1980	printf("\n");
1981
1982	/*
1983	 * units row
1984	 */
1985	printf("%15s %-6s ", "", "");
1986
1987	if (sched->show_cpu_visual)
1988		printf(" %*s ", ncpus, "");
1989
1990	printf(" %-*s  %9s  %9s  %9s", comm_width,
1991	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1992
1993	if (sched->show_state)
1994		printf("  %5s", "");
1995
1996	printf("\n");
1997
1998	/*
1999	 * separator
2000	 */
2001	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2002
2003	if (sched->show_cpu_visual)
2004		printf(" %.*s ", ncpus, graph_dotted_line);
2005
2006	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
2007		graph_dotted_line, graph_dotted_line, graph_dotted_line,
2008		graph_dotted_line);
2009
2010	if (sched->show_state)
2011		printf("  %.5s", graph_dotted_line);
2012
2013	printf("\n");
2014}
2015
2016static char task_state_char(struct thread *thread, int state)
2017{
2018	static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
2019	unsigned bit = state ? ffs(state) : 0;
2020
2021	/* 'I' for idle */
2022	if (thread->tid == 0)
2023		return 'I';
2024
2025	return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
2026}
2027
2028static void timehist_print_sample(struct perf_sched *sched,
2029				  struct evsel *evsel,
2030				  struct perf_sample *sample,
2031				  struct addr_location *al,
2032				  struct thread *thread,
2033				  u64 t, int state)
2034{
2035	struct thread_runtime *tr = thread__priv(thread);
2036	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2037	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2038	u32 max_cpus = sched->max_cpu.cpu + 1;
2039	char tstr[64];
2040	char nstr[30];
2041	u64 wait_time;
2042
2043	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2044		return;
2045
2046	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2047	printf("%15s [%04d] ", tstr, sample->cpu);
2048
2049	if (sched->show_cpu_visual) {
2050		u32 i;
2051		char c;
2052
2053		printf(" ");
2054		for (i = 0; i < max_cpus; ++i) {
2055			/* flag idle times with 'i'; others are sched events */
2056			if (i == sample->cpu)
2057				c = (thread->tid == 0) ? 'i' : 's';
2058			else
2059				c = ' ';
2060			printf("%c", c);
2061		}
2062		printf(" ");
2063	}
2064
2065	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2066
2067	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2068	print_sched_time(wait_time, 6);
2069
2070	print_sched_time(tr->dt_delay, 6);
2071	print_sched_time(tr->dt_run, 6);
2072
2073	if (sched->show_state)
2074		printf(" %5c ", task_state_char(thread, state));
2075
2076	if (sched->show_next) {
2077		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2078		printf(" %-*s", comm_width, nstr);
2079	}
2080
2081	if (sched->show_wakeups && !sched->show_next)
2082		printf("  %-*s", comm_width, "");
2083
2084	if (thread->tid == 0)
2085		goto out;
2086
2087	if (sched->show_callchain)
2088		printf("  ");
2089
2090	sample__fprintf_sym(sample, al, 0,
2091			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2092			    EVSEL__PRINT_CALLCHAIN_ARROW |
2093			    EVSEL__PRINT_SKIP_IGNORED,
2094			    &callchain_cursor, symbol_conf.bt_stop_list,  stdout);
2095
2096out:
2097	printf("\n");
2098}
2099
2100/*
2101 * Explanation of delta-time stats:
2102 *
2103 *            t = time of current schedule out event
2104 *        tprev = time of previous sched out event
2105 *                also time of schedule-in event for current task
2106 *    last_time = time of last sched change event for current task
2107 *                (i.e, time process was last scheduled out)
2108 * ready_to_run = time of wakeup for current task
2109 *
2110 * -----|------------|------------|------------|------
2111 *    last         ready        tprev          t
2112 *    time         to run
2113 *
2114 *      |-------- dt_wait --------|
2115 *                   |- dt_delay -|-- dt_run --|
2116 *
2117 *   dt_run = run time of current task
2118 *  dt_wait = time between last schedule out event for task and tprev
2119 *            represents time spent off the cpu
2120 * dt_delay = time between wakeup and schedule-in of task
2121 */
2122
2123static void timehist_update_runtime_stats(struct thread_runtime *r,
2124					 u64 t, u64 tprev)
2125{
2126	r->dt_delay   = 0;
2127	r->dt_sleep   = 0;
2128	r->dt_iowait  = 0;
2129	r->dt_preempt = 0;
2130	r->dt_run     = 0;
2131
2132	if (tprev) {
2133		r->dt_run = t - tprev;
2134		if (r->ready_to_run) {
2135			if (r->ready_to_run > tprev)
2136				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2137			else
2138				r->dt_delay = tprev - r->ready_to_run;
2139		}
2140
2141		if (r->last_time > tprev)
2142			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2143		else if (r->last_time) {
2144			u64 dt_wait = tprev - r->last_time;
2145
2146			if (r->last_state == TASK_RUNNING)
2147				r->dt_preempt = dt_wait;
2148			else if (r->last_state == TASK_UNINTERRUPTIBLE)
2149				r->dt_iowait = dt_wait;
2150			else
2151				r->dt_sleep = dt_wait;
2152		}
2153	}
2154
2155	update_stats(&r->run_stats, r->dt_run);
2156
2157	r->total_run_time     += r->dt_run;
2158	r->total_delay_time   += r->dt_delay;
2159	r->total_sleep_time   += r->dt_sleep;
2160	r->total_iowait_time  += r->dt_iowait;
2161	r->total_preempt_time += r->dt_preempt;
2162}
2163
2164static bool is_idle_sample(struct perf_sample *sample,
2165			   struct evsel *evsel)
2166{
2167	/* pid 0 == swapper == idle task */
2168	if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2169		return evsel__intval(evsel, sample, "prev_pid") == 0;
2170
2171	return sample->pid == 0;
2172}
2173
2174static void save_task_callchain(struct perf_sched *sched,
2175				struct perf_sample *sample,
2176				struct evsel *evsel,
2177				struct machine *machine)
2178{
2179	struct callchain_cursor *cursor = &callchain_cursor;
2180	struct thread *thread;
2181
2182	/* want main thread for process - has maps */
2183	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2184	if (thread == NULL) {
2185		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2186		return;
2187	}
2188
2189	if (!sched->show_callchain || sample->callchain == NULL)
2190		return;
2191
2192	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2193				      NULL, NULL, sched->max_stack + 2) != 0) {
2194		if (verbose > 0)
2195			pr_err("Failed to resolve callchain. Skipping\n");
2196
2197		return;
2198	}
2199
2200	callchain_cursor_commit(cursor);
2201
2202	while (true) {
2203		struct callchain_cursor_node *node;
2204		struct symbol *sym;
2205
2206		node = callchain_cursor_current(cursor);
2207		if (node == NULL)
2208			break;
2209
2210		sym = node->ms.sym;
2211		if (sym) {
2212			if (!strcmp(sym->name, "schedule") ||
2213			    !strcmp(sym->name, "__schedule") ||
2214			    !strcmp(sym->name, "preempt_schedule"))
2215				sym->ignore = 1;
2216		}
2217
2218		callchain_cursor_advance(cursor);
2219	}
2220}
2221
2222static int init_idle_thread(struct thread *thread)
2223{
2224	struct idle_thread_runtime *itr;
2225
2226	thread__set_comm(thread, idle_comm, 0);
2227
2228	itr = zalloc(sizeof(*itr));
2229	if (itr == NULL)
2230		return -ENOMEM;
2231
2232	init_stats(&itr->tr.run_stats);
2233	callchain_init(&itr->callchain);
2234	callchain_cursor_reset(&itr->cursor);
2235	thread__set_priv(thread, itr);
2236
2237	return 0;
2238}
2239
2240/*
2241 * Track idle stats per cpu by maintaining a local thread
2242 * struct for the idle task on each cpu.
2243 */
2244static int init_idle_threads(int ncpu)
2245{
2246	int i, ret;
2247
2248	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2249	if (!idle_threads)
2250		return -ENOMEM;
2251
2252	idle_max_cpu = ncpu;
2253
2254	/* allocate the actual thread struct if needed */
2255	for (i = 0; i < ncpu; ++i) {
2256		idle_threads[i] = thread__new(0, 0);
2257		if (idle_threads[i] == NULL)
2258			return -ENOMEM;
2259
2260		ret = init_idle_thread(idle_threads[i]);
2261		if (ret < 0)
2262			return ret;
2263	}
2264
2265	return 0;
2266}
2267
2268static void free_idle_threads(void)
2269{
2270	int i;
2271
2272	if (idle_threads == NULL)
2273		return;
2274
2275	for (i = 0; i < idle_max_cpu; ++i) {
2276		if ((idle_threads[i]))
2277			thread__delete(idle_threads[i]);
2278	}
2279
2280	free(idle_threads);
2281}
2282
2283static struct thread *get_idle_thread(int cpu)
2284{
2285	/*
2286	 * expand/allocate array of pointers to local thread
2287	 * structs if needed
2288	 */
2289	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2290		int i, j = __roundup_pow_of_two(cpu+1);
2291		void *p;
2292
2293		p = realloc(idle_threads, j * sizeof(struct thread *));
2294		if (!p)
2295			return NULL;
2296
2297		idle_threads = (struct thread **) p;
2298		for (i = idle_max_cpu; i < j; ++i)
2299			idle_threads[i] = NULL;
2300
2301		idle_max_cpu = j;
2302	}
2303
2304	/* allocate a new thread struct if needed */
2305	if (idle_threads[cpu] == NULL) {
2306		idle_threads[cpu] = thread__new(0, 0);
2307
2308		if (idle_threads[cpu]) {
2309			if (init_idle_thread(idle_threads[cpu]) < 0)
2310				return NULL;
2311		}
2312	}
2313
2314	return idle_threads[cpu];
2315}
2316
2317static void save_idle_callchain(struct perf_sched *sched,
2318				struct idle_thread_runtime *itr,
2319				struct perf_sample *sample)
2320{
2321	if (!sched->show_callchain || sample->callchain == NULL)
2322		return;
2323
2324	callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2325}
2326
2327static struct thread *timehist_get_thread(struct perf_sched *sched,
2328					  struct perf_sample *sample,
2329					  struct machine *machine,
2330					  struct evsel *evsel)
2331{
2332	struct thread *thread;
2333
2334	if (is_idle_sample(sample, evsel)) {
2335		thread = get_idle_thread(sample->cpu);
2336		if (thread == NULL)
2337			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2338
2339	} else {
2340		/* there were samples with tid 0 but non-zero pid */
2341		thread = machine__findnew_thread(machine, sample->pid,
2342						 sample->tid ?: sample->pid);
2343		if (thread == NULL) {
2344			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2345				 sample->tid);
2346		}
2347
2348		save_task_callchain(sched, sample, evsel, machine);
2349		if (sched->idle_hist) {
2350			struct thread *idle;
2351			struct idle_thread_runtime *itr;
2352
2353			idle = get_idle_thread(sample->cpu);
2354			if (idle == NULL) {
2355				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2356				return NULL;
2357			}
2358
2359			itr = thread__priv(idle);
2360			if (itr == NULL)
2361				return NULL;
2362
2363			itr->last_thread = thread;
2364
2365			/* copy task callchain when entering to idle */
2366			if (evsel__intval(evsel, sample, "next_pid") == 0)
2367				save_idle_callchain(sched, itr, sample);
2368		}
2369	}
2370
2371	return thread;
2372}
2373
2374static bool timehist_skip_sample(struct perf_sched *sched,
2375				 struct thread *thread,
2376				 struct evsel *evsel,
2377				 struct perf_sample *sample)
2378{
2379	bool rc = false;
2380
2381	if (thread__is_filtered(thread)) {
2382		rc = true;
2383		sched->skipped_samples++;
2384	}
2385
2386	if (sched->idle_hist) {
2387		if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2388			rc = true;
2389		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2390			 evsel__intval(evsel, sample, "next_pid") != 0)
2391			rc = true;
2392	}
2393
2394	return rc;
2395}
2396
2397static void timehist_print_wakeup_event(struct perf_sched *sched,
2398					struct evsel *evsel,
2399					struct perf_sample *sample,
2400					struct machine *machine,
2401					struct thread *awakened)
2402{
2403	struct thread *thread;
2404	char tstr[64];
2405
2406	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2407	if (thread == NULL)
2408		return;
2409
2410	/* show wakeup unless both awakee and awaker are filtered */
2411	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2412	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2413		return;
2414	}
2415
2416	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2417	printf("%15s [%04d] ", tstr, sample->cpu);
2418	if (sched->show_cpu_visual)
2419		printf(" %*s ", sched->max_cpu.cpu + 1, "");
2420
2421	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2422
2423	/* dt spacer */
2424	printf("  %9s  %9s  %9s ", "", "", "");
2425
2426	printf("awakened: %s", timehist_get_commstr(awakened));
2427
2428	printf("\n");
2429}
2430
2431static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2432					union perf_event *event __maybe_unused,
2433					struct evsel *evsel __maybe_unused,
2434					struct perf_sample *sample __maybe_unused,
2435					struct machine *machine __maybe_unused)
2436{
2437	return 0;
2438}
2439
2440static int timehist_sched_wakeup_event(struct perf_tool *tool,
2441				       union perf_event *event __maybe_unused,
2442				       struct evsel *evsel,
2443				       struct perf_sample *sample,
2444				       struct machine *machine)
2445{
2446	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2447	struct thread *thread;
2448	struct thread_runtime *tr = NULL;
2449	/* want pid of awakened task not pid in sample */
2450	const u32 pid = evsel__intval(evsel, sample, "pid");
2451
2452	thread = machine__findnew_thread(machine, 0, pid);
2453	if (thread == NULL)
2454		return -1;
2455
2456	tr = thread__get_runtime(thread);
2457	if (tr == NULL)
2458		return -1;
2459
2460	if (tr->ready_to_run == 0)
2461		tr->ready_to_run = sample->time;
2462
2463	/* show wakeups if requested */
2464	if (sched->show_wakeups &&
2465	    !perf_time__skip_sample(&sched->ptime, sample->time))
2466		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2467
2468	return 0;
2469}
2470
2471static void timehist_print_migration_event(struct perf_sched *sched,
2472					struct evsel *evsel,
2473					struct perf_sample *sample,
2474					struct machine *machine,
2475					struct thread *migrated)
2476{
2477	struct thread *thread;
2478	char tstr[64];
2479	u32 max_cpus;
2480	u32 ocpu, dcpu;
2481
2482	if (sched->summary_only)
2483		return;
2484
2485	max_cpus = sched->max_cpu.cpu + 1;
2486	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2487	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2488
2489	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2490	if (thread == NULL)
2491		return;
2492
2493	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2494	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2495		return;
2496	}
2497
2498	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2499	printf("%15s [%04d] ", tstr, sample->cpu);
2500
2501	if (sched->show_cpu_visual) {
2502		u32 i;
2503		char c;
2504
2505		printf("  ");
2506		for (i = 0; i < max_cpus; ++i) {
2507			c = (i == sample->cpu) ? 'm' : ' ';
2508			printf("%c", c);
2509		}
2510		printf("  ");
2511	}
2512
2513	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2514
2515	/* dt spacer */
2516	printf("  %9s  %9s  %9s ", "", "", "");
2517
2518	printf("migrated: %s", timehist_get_commstr(migrated));
2519	printf(" cpu %d => %d", ocpu, dcpu);
2520
2521	printf("\n");
2522}
2523
2524static int timehist_migrate_task_event(struct perf_tool *tool,
2525				       union perf_event *event __maybe_unused,
2526				       struct evsel *evsel,
2527				       struct perf_sample *sample,
2528				       struct machine *machine)
2529{
2530	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2531	struct thread *thread;
2532	struct thread_runtime *tr = NULL;
2533	/* want pid of migrated task not pid in sample */
2534	const u32 pid = evsel__intval(evsel, sample, "pid");
2535
2536	thread = machine__findnew_thread(machine, 0, pid);
2537	if (thread == NULL)
2538		return -1;
2539
2540	tr = thread__get_runtime(thread);
2541	if (tr == NULL)
2542		return -1;
2543
2544	tr->migrations++;
2545
2546	/* show migrations if requested */
2547	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2548
2549	return 0;
2550}
2551
2552static int timehist_sched_change_event(struct perf_tool *tool,
2553				       union perf_event *event,
2554				       struct evsel *evsel,
2555				       struct perf_sample *sample,
2556				       struct machine *machine)
2557{
2558	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2559	struct perf_time_interval *ptime = &sched->ptime;
2560	struct addr_location al;
2561	struct thread *thread;
2562	struct thread_runtime *tr = NULL;
2563	u64 tprev, t = sample->time;
2564	int rc = 0;
2565	int state = evsel__intval(evsel, sample, "prev_state");
2566
2567	if (machine__resolve(machine, &al, sample) < 0) {
2568		pr_err("problem processing %d event. skipping it\n",
2569		       event->header.type);
2570		rc = -1;
2571		goto out;
2572	}
2573
2574	thread = timehist_get_thread(sched, sample, machine, evsel);
2575	if (thread == NULL) {
2576		rc = -1;
2577		goto out;
2578	}
2579
2580	if (timehist_skip_sample(sched, thread, evsel, sample))
2581		goto out;
2582
2583	tr = thread__get_runtime(thread);
2584	if (tr == NULL) {
2585		rc = -1;
2586		goto out;
2587	}
2588
2589	tprev = evsel__get_time(evsel, sample->cpu);
2590
2591	/*
2592	 * If start time given:
2593	 * - sample time is under window user cares about - skip sample
2594	 * - tprev is under window user cares about  - reset to start of window
2595	 */
2596	if (ptime->start && ptime->start > t)
2597		goto out;
2598
2599	if (tprev && ptime->start > tprev)
2600		tprev = ptime->start;
2601
2602	/*
2603	 * If end time given:
2604	 * - previous sched event is out of window - we are done
2605	 * - sample time is beyond window user cares about - reset it
2606	 *   to close out stats for time window interest
2607	 */
2608	if (ptime->end) {
2609		if (tprev > ptime->end)
2610			goto out;
2611
2612		if (t > ptime->end)
2613			t = ptime->end;
2614	}
2615
2616	if (!sched->idle_hist || thread->tid == 0) {
2617		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2618			timehist_update_runtime_stats(tr, t, tprev);
2619
2620		if (sched->idle_hist) {
2621			struct idle_thread_runtime *itr = (void *)tr;
2622			struct thread_runtime *last_tr;
2623
2624			BUG_ON(thread->tid != 0);
2625
2626			if (itr->last_thread == NULL)
2627				goto out;
2628
2629			/* add current idle time as last thread's runtime */
2630			last_tr = thread__get_runtime(itr->last_thread);
2631			if (last_tr == NULL)
2632				goto out;
2633
2634			timehist_update_runtime_stats(last_tr, t, tprev);
2635			/*
2636			 * remove delta time of last thread as it's not updated
2637			 * and otherwise it will show an invalid value next
2638			 * time.  we only care total run time and run stat.
2639			 */
2640			last_tr->dt_run = 0;
2641			last_tr->dt_delay = 0;
2642			last_tr->dt_sleep = 0;
2643			last_tr->dt_iowait = 0;
2644			last_tr->dt_preempt = 0;
2645
2646			if (itr->cursor.nr)
2647				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2648
2649			itr->last_thread = NULL;
2650		}
2651	}
2652
2653	if (!sched->summary_only)
2654		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2655
2656out:
2657	if (sched->hist_time.start == 0 && t >= ptime->start)
2658		sched->hist_time.start = t;
2659	if (ptime->end == 0 || t <= ptime->end)
2660		sched->hist_time.end = t;
2661
2662	if (tr) {
2663		/* time of this sched_switch event becomes last time task seen */
2664		tr->last_time = sample->time;
2665
2666		/* last state is used to determine where to account wait time */
2667		tr->last_state = state;
2668
2669		/* sched out event for task so reset ready to run time */
2670		tr->ready_to_run = 0;
2671	}
2672
2673	evsel__save_time(evsel, sample->time, sample->cpu);
2674
2675	return rc;
2676}
2677
2678static int timehist_sched_switch_event(struct perf_tool *tool,
2679			     union perf_event *event,
2680			     struct evsel *evsel,
2681			     struct perf_sample *sample,
2682			     struct machine *machine __maybe_unused)
2683{
2684	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2685}
2686
2687static int process_lost(struct perf_tool *tool __maybe_unused,
2688			union perf_event *event,
2689			struct perf_sample *sample,
2690			struct machine *machine __maybe_unused)
2691{
2692	char tstr[64];
2693
2694	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2695	printf("%15s ", tstr);
2696	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2697
2698	return 0;
2699}
2700
2701
2702static void print_thread_runtime(struct thread *t,
2703				 struct thread_runtime *r)
2704{
2705	double mean = avg_stats(&r->run_stats);
2706	float stddev;
2707
2708	printf("%*s   %5d  %9" PRIu64 " ",
2709	       comm_width, timehist_get_commstr(t), t->ppid,
2710	       (u64) r->run_stats.n);
2711
2712	print_sched_time(r->total_run_time, 8);
2713	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2714	print_sched_time(r->run_stats.min, 6);
2715	printf(" ");
2716	print_sched_time((u64) mean, 6);
2717	printf(" ");
2718	print_sched_time(r->run_stats.max, 6);
2719	printf("  ");
2720	printf("%5.2f", stddev);
2721	printf("   %5" PRIu64, r->migrations);
2722	printf("\n");
2723}
2724
2725static void print_thread_waittime(struct thread *t,
2726				  struct thread_runtime *r)
2727{
2728	printf("%*s   %5d  %9" PRIu64 " ",
2729	       comm_width, timehist_get_commstr(t), t->ppid,
2730	       (u64) r->run_stats.n);
2731
2732	print_sched_time(r->total_run_time, 8);
2733	print_sched_time(r->total_sleep_time, 6);
2734	printf(" ");
2735	print_sched_time(r->total_iowait_time, 6);
2736	printf(" ");
2737	print_sched_time(r->total_preempt_time, 6);
2738	printf(" ");
2739	print_sched_time(r->total_delay_time, 6);
2740	printf("\n");
2741}
2742
2743struct total_run_stats {
2744	struct perf_sched *sched;
2745	u64  sched_count;
2746	u64  task_count;
2747	u64  total_run_time;
2748};
2749
2750static int __show_thread_runtime(struct thread *t, void *priv)
2751{
2752	struct total_run_stats *stats = priv;
2753	struct thread_runtime *r;
2754
2755	if (thread__is_filtered(t))
2756		return 0;
2757
2758	r = thread__priv(t);
2759	if (r && r->run_stats.n) {
2760		stats->task_count++;
2761		stats->sched_count += r->run_stats.n;
2762		stats->total_run_time += r->total_run_time;
2763
2764		if (stats->sched->show_state)
2765			print_thread_waittime(t, r);
2766		else
2767			print_thread_runtime(t, r);
2768	}
2769
2770	return 0;
2771}
2772
2773static int show_thread_runtime(struct thread *t, void *priv)
2774{
2775	if (t->dead)
2776		return 0;
2777
2778	return __show_thread_runtime(t, priv);
2779}
2780
2781static int show_deadthread_runtime(struct thread *t, void *priv)
2782{
2783	if (!t->dead)
2784		return 0;
2785
2786	return __show_thread_runtime(t, priv);
2787}
2788
2789static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2790{
2791	const char *sep = " <- ";
2792	struct callchain_list *chain;
2793	size_t ret = 0;
2794	char bf[1024];
2795	bool first;
2796
2797	if (node == NULL)
2798		return 0;
2799
2800	ret = callchain__fprintf_folded(fp, node->parent);
2801	first = (ret == 0);
2802
2803	list_for_each_entry(chain, &node->val, list) {
2804		if (chain->ip >= PERF_CONTEXT_MAX)
2805			continue;
2806		if (chain->ms.sym && chain->ms.sym->ignore)
2807			continue;
2808		ret += fprintf(fp, "%s%s", first ? "" : sep,
2809			       callchain_list__sym_name(chain, bf, sizeof(bf),
2810							false));
2811		first = false;
2812	}
2813
2814	return ret;
2815}
2816
2817static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2818{
2819	size_t ret = 0;
2820	FILE *fp = stdout;
2821	struct callchain_node *chain;
2822	struct rb_node *rb_node = rb_first_cached(root);
2823
2824	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2825	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2826	       graph_dotted_line);
2827
2828	while (rb_node) {
2829		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2830		rb_node = rb_next(rb_node);
2831
2832		ret += fprintf(fp, "  ");
2833		print_sched_time(chain->hit, 12);
2834		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2835		ret += fprintf(fp, " %8d  ", chain->count);
2836		ret += callchain__fprintf_folded(fp, chain);
2837		ret += fprintf(fp, "\n");
2838	}
2839
2840	return ret;
2841}
2842
2843static void timehist_print_summary(struct perf_sched *sched,
2844				   struct perf_session *session)
2845{
2846	struct machine *m = &session->machines.host;
2847	struct total_run_stats totals;
2848	u64 task_count;
2849	struct thread *t;
2850	struct thread_runtime *r;
2851	int i;
2852	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2853
2854	memset(&totals, 0, sizeof(totals));
2855	totals.sched = sched;
2856
2857	if (sched->idle_hist) {
2858		printf("\nIdle-time summary\n");
2859		printf("%*s  parent  sched-out  ", comm_width, "comm");
2860		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2861	} else if (sched->show_state) {
2862		printf("\nWait-time summary\n");
2863		printf("%*s  parent   sched-in  ", comm_width, "comm");
2864		printf("   run-time      sleep      iowait     preempt       delay\n");
2865	} else {
2866		printf("\nRuntime summary\n");
2867		printf("%*s  parent   sched-in  ", comm_width, "comm");
2868		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2869	}
2870	printf("%*s            (count)  ", comm_width, "");
2871	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2872	       sched->show_state ? "(msec)" : "%");
2873	printf("%.117s\n", graph_dotted_line);
2874
2875	machine__for_each_thread(m, show_thread_runtime, &totals);
2876	task_count = totals.task_count;
2877	if (!task_count)
2878		printf("<no still running tasks>\n");
2879
2880	printf("\nTerminated tasks:\n");
2881	machine__for_each_thread(m, show_deadthread_runtime, &totals);
2882	if (task_count == totals.task_count)
2883		printf("<no terminated tasks>\n");
2884
2885	/* CPU idle stats not tracked when samples were skipped */
2886	if (sched->skipped_samples && !sched->idle_hist)
2887		return;
2888
2889	printf("\nIdle stats:\n");
2890	for (i = 0; i < idle_max_cpu; ++i) {
2891		if (cpu_list && !test_bit(i, cpu_bitmap))
2892			continue;
2893
2894		t = idle_threads[i];
2895		if (!t)
2896			continue;
2897
2898		r = thread__priv(t);
2899		if (r && r->run_stats.n) {
2900			totals.sched_count += r->run_stats.n;
2901			printf("    CPU %2d idle for ", i);
2902			print_sched_time(r->total_run_time, 6);
2903			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2904		} else
2905			printf("    CPU %2d idle entire time window\n", i);
2906	}
2907
2908	if (sched->idle_hist && sched->show_callchain) {
2909		callchain_param.mode  = CHAIN_FOLDED;
2910		callchain_param.value = CCVAL_PERIOD;
2911
2912		callchain_register_param(&callchain_param);
2913
2914		printf("\nIdle stats by callchain:\n");
2915		for (i = 0; i < idle_max_cpu; ++i) {
2916			struct idle_thread_runtime *itr;
2917
2918			t = idle_threads[i];
2919			if (!t)
2920				continue;
2921
2922			itr = thread__priv(t);
2923			if (itr == NULL)
2924				continue;
2925
2926			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2927					     0, &callchain_param);
2928
2929			printf("  CPU %2d:", i);
2930			print_sched_time(itr->tr.total_run_time, 6);
2931			printf(" msec\n");
2932			timehist_print_idlehist_callchain(&itr->sorted_root);
2933			printf("\n");
2934		}
2935	}
2936
2937	printf("\n"
2938	       "    Total number of unique tasks: %" PRIu64 "\n"
2939	       "Total number of context switches: %" PRIu64 "\n",
2940	       totals.task_count, totals.sched_count);
2941
2942	printf("           Total run time (msec): ");
2943	print_sched_time(totals.total_run_time, 2);
2944	printf("\n");
2945
2946	printf("    Total scheduling time (msec): ");
2947	print_sched_time(hist_time, 2);
2948	printf(" (x %d)\n", sched->max_cpu.cpu);
2949}
2950
2951typedef int (*sched_handler)(struct perf_tool *tool,
2952			  union perf_event *event,
2953			  struct evsel *evsel,
2954			  struct perf_sample *sample,
2955			  struct machine *machine);
2956
2957static int perf_timehist__process_sample(struct perf_tool *tool,
2958					 union perf_event *event,
2959					 struct perf_sample *sample,
2960					 struct evsel *evsel,
2961					 struct machine *machine)
2962{
2963	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2964	int err = 0;
2965	struct perf_cpu this_cpu = {
2966		.cpu = sample->cpu,
2967	};
2968
2969	if (this_cpu.cpu > sched->max_cpu.cpu)
2970		sched->max_cpu = this_cpu;
2971
2972	if (evsel->handler != NULL) {
2973		sched_handler f = evsel->handler;
2974
2975		err = f(tool, event, evsel, sample, machine);
2976	}
2977
2978	return err;
2979}
2980
2981static int timehist_check_attr(struct perf_sched *sched,
2982			       struct evlist *evlist)
2983{
2984	struct evsel *evsel;
2985	struct evsel_runtime *er;
2986
2987	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2988		er = evsel__get_runtime(evsel);
2989		if (er == NULL) {
2990			pr_err("Failed to allocate memory for evsel runtime data\n");
2991			return -1;
2992		}
2993
2994		if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2995			pr_info("Samples do not have callchains.\n");
2996			sched->show_callchain = 0;
2997			symbol_conf.use_callchain = 0;
2998		}
2999	}
3000
3001	return 0;
3002}
3003
3004static int perf_sched__timehist(struct perf_sched *sched)
3005{
3006	struct evsel_str_handler handlers[] = {
3007		{ "sched:sched_switch",       timehist_sched_switch_event, },
3008		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
3009		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
3010		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
3011	};
3012	const struct evsel_str_handler migrate_handlers[] = {
3013		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
3014	};
3015	struct perf_data data = {
3016		.path  = input_name,
3017		.mode  = PERF_DATA_MODE_READ,
3018		.force = sched->force,
3019	};
3020
3021	struct perf_session *session;
3022	struct evlist *evlist;
3023	int err = -1;
3024
3025	/*
3026	 * event handlers for timehist option
3027	 */
3028	sched->tool.sample	 = perf_timehist__process_sample;
3029	sched->tool.mmap	 = perf_event__process_mmap;
3030	sched->tool.comm	 = perf_event__process_comm;
3031	sched->tool.exit	 = perf_event__process_exit;
3032	sched->tool.fork	 = perf_event__process_fork;
3033	sched->tool.lost	 = process_lost;
3034	sched->tool.attr	 = perf_event__process_attr;
3035	sched->tool.tracing_data = perf_event__process_tracing_data;
3036	sched->tool.build_id	 = perf_event__process_build_id;
3037
3038	sched->tool.ordered_events = true;
3039	sched->tool.ordering_requires_timestamps = true;
3040
3041	symbol_conf.use_callchain = sched->show_callchain;
3042
3043	session = perf_session__new(&data, &sched->tool);
3044	if (IS_ERR(session))
3045		return PTR_ERR(session);
3046
3047	if (cpu_list) {
3048		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3049		if (err < 0)
3050			goto out;
3051	}
3052
3053	evlist = session->evlist;
3054
3055	symbol__init(&session->header.env);
3056
3057	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3058		pr_err("Invalid time string\n");
3059		return -EINVAL;
3060	}
3061
3062	if (timehist_check_attr(sched, evlist) != 0)
3063		goto out;
3064
3065	setup_pager();
3066
3067	/* prefer sched_waking if it is captured */
3068	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3069		handlers[1].handler = timehist_sched_wakeup_ignore;
3070
3071	/* setup per-evsel handlers */
3072	if (perf_session__set_tracepoints_handlers(session, handlers))
3073		goto out;
3074
3075	/* sched_switch event at a minimum needs to exist */
3076	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3077		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3078		goto out;
3079	}
3080
3081	if (sched->show_migrations &&
3082	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
3083		goto out;
3084
3085	/* pre-allocate struct for per-CPU idle stats */
3086	sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3087	if (sched->max_cpu.cpu == 0)
3088		sched->max_cpu.cpu = 4;
3089	if (init_idle_threads(sched->max_cpu.cpu))
3090		goto out;
3091
3092	/* summary_only implies summary option, but don't overwrite summary if set */
3093	if (sched->summary_only)
3094		sched->summary = sched->summary_only;
3095
3096	if (!sched->summary_only)
3097		timehist_header(sched);
3098
3099	err = perf_session__process_events(session);
3100	if (err) {
3101		pr_err("Failed to process events, error %d", err);
3102		goto out;
3103	}
3104
3105	sched->nr_events      = evlist->stats.nr_events[0];
3106	sched->nr_lost_events = evlist->stats.total_lost;
3107	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3108
3109	if (sched->summary)
3110		timehist_print_summary(sched, session);
3111
3112out:
3113	free_idle_threads();
3114	perf_session__delete(session);
3115
3116	return err;
3117}
3118
3119
3120static void print_bad_events(struct perf_sched *sched)
3121{
3122	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3123		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3124			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3125			sched->nr_unordered_timestamps, sched->nr_timestamps);
3126	}
3127	if (sched->nr_lost_events && sched->nr_events) {
3128		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3129			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3130			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3131	}
3132	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3133		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3134			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3135			sched->nr_context_switch_bugs, sched->nr_timestamps);
3136		if (sched->nr_lost_events)
3137			printf(" (due to lost events?)");
3138		printf("\n");
3139	}
3140}
3141
3142static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3143{
3144	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3145	struct work_atoms *this;
3146	const char *comm = thread__comm_str(data->thread), *this_comm;
3147	bool leftmost = true;
3148
3149	while (*new) {
3150		int cmp;
3151
3152		this = container_of(*new, struct work_atoms, node);
3153		parent = *new;
3154
3155		this_comm = thread__comm_str(this->thread);
3156		cmp = strcmp(comm, this_comm);
3157		if (cmp > 0) {
3158			new = &((*new)->rb_left);
3159		} else if (cmp < 0) {
3160			new = &((*new)->rb_right);
3161			leftmost = false;
3162		} else {
3163			this->num_merged++;
3164			this->total_runtime += data->total_runtime;
3165			this->nb_atoms += data->nb_atoms;
3166			this->total_lat += data->total_lat;
3167			list_splice(&data->work_list, &this->work_list);
3168			if (this->max_lat < data->max_lat) {
3169				this->max_lat = data->max_lat;
3170				this->max_lat_start = data->max_lat_start;
3171				this->max_lat_end = data->max_lat_end;
3172			}
3173			zfree(&data);
3174			return;
3175		}
3176	}
3177
3178	data->num_merged++;
3179	rb_link_node(&data->node, parent, new);
3180	rb_insert_color_cached(&data->node, root, leftmost);
3181}
3182
3183static void perf_sched__merge_lat(struct perf_sched *sched)
3184{
3185	struct work_atoms *data;
3186	struct rb_node *node;
3187
3188	if (sched->skip_merge)
3189		return;
3190
3191	while ((node = rb_first_cached(&sched->atom_root))) {
3192		rb_erase_cached(node, &sched->atom_root);
3193		data = rb_entry(node, struct work_atoms, node);
3194		__merge_work_atoms(&sched->merged_atom_root, data);
3195	}
3196}
3197
3198static int perf_sched__lat(struct perf_sched *sched)
3199{
3200	struct rb_node *next;
3201
3202	setup_pager();
3203
3204	if (perf_sched__read_events(sched))
3205		return -1;
3206
3207	perf_sched__merge_lat(sched);
3208	perf_sched__sort_lat(sched);
3209
3210	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3211	printf("  Task                  |   Runtime ms  | Switches | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3212	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3213
3214	next = rb_first_cached(&sched->sorted_atom_root);
3215
3216	while (next) {
3217		struct work_atoms *work_list;
3218
3219		work_list = rb_entry(next, struct work_atoms, node);
3220		output_lat_thread(sched, work_list);
3221		next = rb_next(next);
3222		thread__zput(work_list->thread);
3223	}
3224
3225	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3226	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3227		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3228
3229	printf(" ---------------------------------------------------\n");
3230
3231	print_bad_events(sched);
3232	printf("\n");
3233
3234	return 0;
3235}
3236
3237static int setup_map_cpus(struct perf_sched *sched)
3238{
3239	struct perf_cpu_map *map;
3240
3241	sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
3242
3243	if (sched->map.comp) {
3244		sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3245		if (!sched->map.comp_cpus)
3246			return -1;
3247	}
3248
3249	if (!sched->map.cpus_str)
3250		return 0;
3251
3252	map = perf_cpu_map__new(sched->map.cpus_str);
3253	if (!map) {
3254		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3255		return -1;
3256	}
3257
3258	sched->map.cpus = map;
3259	return 0;
3260}
3261
3262static int setup_color_pids(struct perf_sched *sched)
3263{
3264	struct perf_thread_map *map;
3265
3266	if (!sched->map.color_pids_str)
3267		return 0;
3268
3269	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3270	if (!map) {
3271		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3272		return -1;
3273	}
3274
3275	sched->map.color_pids = map;
3276	return 0;
3277}
3278
3279static int setup_color_cpus(struct perf_sched *sched)
3280{
3281	struct perf_cpu_map *map;
3282
3283	if (!sched->map.color_cpus_str)
3284		return 0;
3285
3286	map = perf_cpu_map__new(sched->map.color_cpus_str);
3287	if (!map) {
3288		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3289		return -1;
3290	}
3291
3292	sched->map.color_cpus = map;
3293	return 0;
3294}
3295
3296static int perf_sched__map(struct perf_sched *sched)
3297{
3298	if (setup_map_cpus(sched))
3299		return -1;
3300
3301	if (setup_color_pids(sched))
3302		return -1;
3303
3304	if (setup_color_cpus(sched))
3305		return -1;
3306
3307	setup_pager();
3308	if (perf_sched__read_events(sched))
3309		return -1;
3310	print_bad_events(sched);
3311	return 0;
3312}
3313
3314static int perf_sched__replay(struct perf_sched *sched)
3315{
3316	unsigned long i;
3317
3318	calibrate_run_measurement_overhead(sched);
3319	calibrate_sleep_measurement_overhead(sched);
3320
3321	test_calibrations(sched);
3322
3323	if (perf_sched__read_events(sched))
3324		return -1;
3325
3326	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3327	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3328	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3329
3330	if (sched->targetless_wakeups)
3331		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3332	if (sched->multitarget_wakeups)
3333		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3334	if (sched->nr_run_events_optimized)
3335		printf("run atoms optimized: %ld\n",
3336			sched->nr_run_events_optimized);
3337
3338	print_task_traces(sched);
3339	add_cross_task_wakeups(sched);
3340
3341	sched->thread_funcs_exit = false;
3342	create_tasks(sched);
3343	printf("------------------------------------------------------------\n");
3344	for (i = 0; i < sched->replay_repeat; i++)
3345		run_one_test(sched);
3346
3347	sched->thread_funcs_exit = true;
3348	destroy_tasks(sched);
3349	return 0;
3350}
3351
3352static void setup_sorting(struct perf_sched *sched, const struct option *options,
3353			  const char * const usage_msg[])
3354{
3355	char *tmp, *tok, *str = strdup(sched->sort_order);
3356
3357	for (tok = strtok_r(str, ", ", &tmp);
3358			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3359		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3360			usage_with_options_msg(usage_msg, options,
3361					"Unknown --sort key: `%s'", tok);
3362		}
3363	}
3364
3365	free(str);
3366
3367	sort_dimension__add("pid", &sched->cmp_pid);
3368}
3369
3370static bool schedstat_events_exposed(void)
3371{
3372	/*
3373	 * Select "sched:sched_stat_wait" event to check
3374	 * whether schedstat tracepoints are exposed.
3375	 */
3376	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3377		false : true;
3378}
3379
3380static int __cmd_record(int argc, const char **argv)
3381{
3382	unsigned int rec_argc, i, j;
3383	char **rec_argv;
3384	const char **rec_argv_copy;
3385	const char * const record_args[] = {
3386		"record",
3387		"-a",
3388		"-R",
3389		"-m", "1024",
3390		"-c", "1",
3391		"-e", "sched:sched_switch",
3392		"-e", "sched:sched_stat_runtime",
3393		"-e", "sched:sched_process_fork",
3394		"-e", "sched:sched_wakeup_new",
3395		"-e", "sched:sched_migrate_task",
3396	};
3397
3398	/*
3399	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3400	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3401	 * to prevent "perf sched record" execution failure, determine
3402	 * whether to record schedstat events according to actual situation.
3403	 */
3404	const char * const schedstat_args[] = {
3405		"-e", "sched:sched_stat_wait",
3406		"-e", "sched:sched_stat_sleep",
3407		"-e", "sched:sched_stat_iowait",
3408	};
3409	unsigned int schedstat_argc = schedstat_events_exposed() ?
3410		ARRAY_SIZE(schedstat_args) : 0;
3411
3412	struct tep_event *waking_event;
3413	int ret;
3414
3415	/*
3416	 * +2 for either "-e", "sched:sched_wakeup" or
3417	 * "-e", "sched:sched_waking"
3418	 */
3419	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3420	rec_argv = calloc(rec_argc + 1, sizeof(char *));
 
3421	if (rec_argv == NULL)
3422		return -ENOMEM;
3423	rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3424	if (rec_argv_copy == NULL) {
3425		free(rec_argv);
3426		return -ENOMEM;
3427	}
3428
3429	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3430		rec_argv[i] = strdup(record_args[i]);
3431
3432	rec_argv[i++] = strdup("-e");
3433	waking_event = trace_event__tp_format("sched", "sched_waking");
3434	if (!IS_ERR(waking_event))
3435		rec_argv[i++] = strdup("sched:sched_waking");
3436	else
3437		rec_argv[i++] = strdup("sched:sched_wakeup");
3438
3439	for (j = 0; j < schedstat_argc; j++)
3440		rec_argv[i++] = strdup(schedstat_args[j]);
3441
3442	for (j = 1; j < (unsigned int)argc; j++, i++)
3443		rec_argv[i] = strdup(argv[j]);
3444
3445	BUG_ON(i != rec_argc);
3446
3447	memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3448	ret = cmd_record(rec_argc, rec_argv_copy);
3449
3450	for (i = 0; i < rec_argc; i++)
3451		free(rec_argv[i]);
3452	free(rec_argv);
3453	free(rec_argv_copy);
3454
3455	return ret;
3456}
3457
3458int cmd_sched(int argc, const char **argv)
3459{
3460	static const char default_sort_order[] = "avg, max, switch, runtime";
3461	struct perf_sched sched = {
3462		.tool = {
3463			.sample		 = perf_sched__process_tracepoint_sample,
3464			.comm		 = perf_sched__process_comm,
3465			.namespaces	 = perf_event__process_namespaces,
3466			.lost		 = perf_event__process_lost,
3467			.fork		 = perf_sched__process_fork_event,
3468			.ordered_events = true,
3469		},
3470		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3471		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
 
 
3472		.sort_order	      = default_sort_order,
3473		.replay_repeat	      = 10,
3474		.profile_cpu	      = -1,
3475		.next_shortname1      = 'A',
3476		.next_shortname2      = '0',
3477		.skip_merge           = 0,
3478		.show_callchain	      = 1,
3479		.max_stack            = 5,
3480	};
3481	const struct option sched_options[] = {
3482	OPT_STRING('i', "input", &input_name, "file",
3483		    "input file name"),
3484	OPT_INCR('v', "verbose", &verbose,
3485		    "be more verbose (show symbol address, etc)"),
3486	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3487		    "dump raw trace in ASCII"),
3488	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3489	OPT_END()
3490	};
3491	const struct option latency_options[] = {
3492	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3493		   "sort by key(s): runtime, switch, avg, max"),
3494	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3495		    "CPU to profile on"),
3496	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3497		    "latency stats per pid instead of per comm"),
3498	OPT_PARENT(sched_options)
3499	};
3500	const struct option replay_options[] = {
3501	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3502		     "repeat the workload replay N times (-1: infinite)"),
3503	OPT_PARENT(sched_options)
3504	};
3505	const struct option map_options[] = {
3506	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3507		    "map output in compact mode"),
3508	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3509		   "highlight given pids in map"),
3510	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3511                    "highlight given CPUs in map"),
3512	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3513                    "display given CPUs in map"),
3514	OPT_PARENT(sched_options)
3515	};
3516	const struct option timehist_options[] = {
3517	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3518		   "file", "vmlinux pathname"),
3519	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3520		   "file", "kallsyms pathname"),
3521	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3522		    "Display call chains if present (default on)"),
3523	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3524		   "Maximum number of functions to display backtrace."),
3525	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3526		    "Look for files with symbols relative to this directory"),
3527	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3528		    "Show only syscall summary with statistics"),
3529	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3530		    "Show all syscalls and summary with statistics"),
3531	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3532	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3533	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3534	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3535	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3536	OPT_STRING(0, "time", &sched.time_str, "str",
3537		   "Time span for analysis (start,stop)"),
3538	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3539	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3540		   "analyze events only for given process id(s)"),
3541	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3542		   "analyze events only for given thread id(s)"),
3543	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3544	OPT_PARENT(sched_options)
3545	};
3546
3547	const char * const latency_usage[] = {
3548		"perf sched latency [<options>]",
3549		NULL
3550	};
3551	const char * const replay_usage[] = {
3552		"perf sched replay [<options>]",
3553		NULL
3554	};
3555	const char * const map_usage[] = {
3556		"perf sched map [<options>]",
3557		NULL
3558	};
3559	const char * const timehist_usage[] = {
3560		"perf sched timehist [<options>]",
3561		NULL
3562	};
3563	const char *const sched_subcommands[] = { "record", "latency", "map",
3564						  "replay", "script",
3565						  "timehist", NULL };
3566	const char *sched_usage[] = {
3567		NULL,
3568		NULL
3569	};
3570	struct trace_sched_handler lat_ops  = {
3571		.wakeup_event	    = latency_wakeup_event,
3572		.switch_event	    = latency_switch_event,
3573		.runtime_event	    = latency_runtime_event,
3574		.migrate_task_event = latency_migrate_task_event,
3575	};
3576	struct trace_sched_handler map_ops  = {
3577		.switch_event	    = map_switch_event,
3578	};
3579	struct trace_sched_handler replay_ops  = {
3580		.wakeup_event	    = replay_wakeup_event,
3581		.switch_event	    = replay_switch_event,
3582		.fork_event	    = replay_fork_event,
3583	};
3584	unsigned int i;
3585	int ret = 0;
3586
3587	mutex_init(&sched.start_work_mutex);
3588	mutex_init(&sched.work_done_wait_mutex);
3589	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3590		sched.curr_pid[i] = -1;
3591
3592	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3593					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3594	if (!argc)
3595		usage_with_options(sched_usage, sched_options);
3596
3597	/*
3598	 * Aliased to 'perf script' for now:
3599	 */
3600	if (!strcmp(argv[0], "script")) {
3601		ret = cmd_script(argc, argv);
3602	} else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3603		ret = __cmd_record(argc, argv);
3604	} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
 
3605		sched.tp_handler = &lat_ops;
3606		if (argc > 1) {
3607			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3608			if (argc)
3609				usage_with_options(latency_usage, latency_options);
3610		}
3611		setup_sorting(&sched, latency_options, latency_usage);
3612		ret = perf_sched__lat(&sched);
3613	} else if (!strcmp(argv[0], "map")) {
3614		if (argc) {
3615			argc = parse_options(argc, argv, map_options, map_usage, 0);
3616			if (argc)
3617				usage_with_options(map_usage, map_options);
3618		}
3619		sched.tp_handler = &map_ops;
3620		setup_sorting(&sched, latency_options, latency_usage);
3621		ret = perf_sched__map(&sched);
3622	} else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3623		sched.tp_handler = &replay_ops;
3624		if (argc) {
3625			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3626			if (argc)
3627				usage_with_options(replay_usage, replay_options);
3628		}
3629		ret = perf_sched__replay(&sched);
3630	} else if (!strcmp(argv[0], "timehist")) {
3631		if (argc) {
3632			argc = parse_options(argc, argv, timehist_options,
3633					     timehist_usage, 0);
3634			if (argc)
3635				usage_with_options(timehist_usage, timehist_options);
3636		}
3637		if ((sched.show_wakeups || sched.show_next) &&
3638		    sched.summary_only) {
3639			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3640			parse_options_usage(timehist_usage, timehist_options, "s", true);
3641			if (sched.show_wakeups)
3642				parse_options_usage(NULL, timehist_options, "w", true);
3643			if (sched.show_next)
3644				parse_options_usage(NULL, timehist_options, "n", true);
3645			ret = -EINVAL;
3646			goto out;
3647		}
3648		ret = symbol__validate_sym_arguments();
3649		if (ret)
3650			goto out;
3651
3652		ret = perf_sched__timehist(&sched);
3653	} else {
3654		usage_with_options(sched_usage, sched_options);
3655	}
3656
3657out:
3658	mutex_destroy(&sched.start_work_mutex);
3659	mutex_destroy(&sched.work_done_wait_mutex);
3660
3661	return ret;
3662}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf.h"
   4#include "perf-sys.h"
   5
   6#include "util/cpumap.h"
   7#include "util/evlist.h"
   8#include "util/evsel.h"
   9#include "util/evsel_fprintf.h"
 
  10#include "util/symbol.h"
  11#include "util/thread.h"
  12#include "util/header.h"
  13#include "util/session.h"
  14#include "util/tool.h"
  15#include "util/cloexec.h"
  16#include "util/thread_map.h"
  17#include "util/color.h"
  18#include "util/stat.h"
  19#include "util/string2.h"
  20#include "util/callchain.h"
  21#include "util/time-utils.h"
  22
  23#include <subcmd/pager.h>
  24#include <subcmd/parse-options.h>
  25#include "util/trace-event.h"
  26
  27#include "util/debug.h"
  28#include "util/event.h"
  29
  30#include <linux/kernel.h>
  31#include <linux/log2.h>
  32#include <linux/zalloc.h>
  33#include <sys/prctl.h>
  34#include <sys/resource.h>
  35#include <inttypes.h>
  36
  37#include <errno.h>
  38#include <semaphore.h>
  39#include <pthread.h>
  40#include <math.h>
  41#include <api/fs/fs.h>
  42#include <perf/cpumap.h>
  43#include <linux/time64.h>
  44#include <linux/err.h>
  45
  46#include <linux/ctype.h>
  47
  48#define PR_SET_NAME		15               /* Set process name */
  49#define MAX_CPUS		4096
  50#define COMM_LEN		20
  51#define SYM_LEN			129
  52#define MAX_PID			1024000
  53
  54static const char *cpu_list;
  55static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
  56
  57struct sched_atom;
  58
  59struct task_desc {
  60	unsigned long		nr;
  61	unsigned long		pid;
  62	char			comm[COMM_LEN];
  63
  64	unsigned long		nr_events;
  65	unsigned long		curr_event;
  66	struct sched_atom	**atoms;
  67
  68	pthread_t		thread;
  69	sem_t			sleep_sem;
  70
  71	sem_t			ready_for_work;
  72	sem_t			work_done_sem;
  73
  74	u64			cpu_usage;
  75};
  76
  77enum sched_event_type {
  78	SCHED_EVENT_RUN,
  79	SCHED_EVENT_SLEEP,
  80	SCHED_EVENT_WAKEUP,
  81	SCHED_EVENT_MIGRATION,
  82};
  83
  84struct sched_atom {
  85	enum sched_event_type	type;
  86	int			specific_wait;
  87	u64			timestamp;
  88	u64			duration;
  89	unsigned long		nr;
  90	sem_t			*wait_sem;
  91	struct task_desc	*wakee;
  92};
  93
  94#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  95
  96/* task state bitmask, copied from include/linux/sched.h */
  97#define TASK_RUNNING		0
  98#define TASK_INTERRUPTIBLE	1
  99#define TASK_UNINTERRUPTIBLE	2
 100#define __TASK_STOPPED		4
 101#define __TASK_TRACED		8
 102/* in tsk->exit_state */
 103#define EXIT_DEAD		16
 104#define EXIT_ZOMBIE		32
 105#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
 106/* in tsk->state again */
 107#define TASK_DEAD		64
 108#define TASK_WAKEKILL		128
 109#define TASK_WAKING		256
 110#define TASK_PARKED		512
 111
 112enum thread_state {
 113	THREAD_SLEEPING = 0,
 114	THREAD_WAIT_CPU,
 115	THREAD_SCHED_IN,
 116	THREAD_IGNORE
 117};
 118
 119struct work_atom {
 120	struct list_head	list;
 121	enum thread_state	state;
 122	u64			sched_out_time;
 123	u64			wake_up_time;
 124	u64			sched_in_time;
 125	u64			runtime;
 126};
 127
 128struct work_atoms {
 129	struct list_head	work_list;
 130	struct thread		*thread;
 131	struct rb_node		node;
 132	u64			max_lat;
 133	u64			max_lat_start;
 134	u64			max_lat_end;
 135	u64			total_lat;
 136	u64			nb_atoms;
 137	u64			total_runtime;
 138	int			num_merged;
 139};
 140
 141typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 142
 143struct perf_sched;
 144
 145struct trace_sched_handler {
 146	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 147			    struct perf_sample *sample, struct machine *machine);
 148
 149	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 150			     struct perf_sample *sample, struct machine *machine);
 151
 152	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 153			    struct perf_sample *sample, struct machine *machine);
 154
 155	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 156	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 157			  struct machine *machine);
 158
 159	int (*migrate_task_event)(struct perf_sched *sched,
 160				  struct evsel *evsel,
 161				  struct perf_sample *sample,
 162				  struct machine *machine);
 163};
 164
 165#define COLOR_PIDS PERF_COLOR_BLUE
 166#define COLOR_CPUS PERF_COLOR_BG_RED
 167
 168struct perf_sched_map {
 169	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 170	int			*comp_cpus;
 171	bool			 comp;
 172	struct perf_thread_map *color_pids;
 173	const char		*color_pids_str;
 174	struct perf_cpu_map	*color_cpus;
 175	const char		*color_cpus_str;
 176	struct perf_cpu_map	*cpus;
 177	const char		*cpus_str;
 178};
 179
 180struct perf_sched {
 181	struct perf_tool tool;
 182	const char	 *sort_order;
 183	unsigned long	 nr_tasks;
 184	struct task_desc **pid_to_task;
 185	struct task_desc **tasks;
 186	const struct trace_sched_handler *tp_handler;
 187	pthread_mutex_t	 start_work_mutex;
 188	pthread_mutex_t	 work_done_wait_mutex;
 189	int		 profile_cpu;
 190/*
 191 * Track the current task - that way we can know whether there's any
 192 * weird events, such as a task being switched away that is not current.
 193 */
 194	int		 max_cpu;
 195	u32		 curr_pid[MAX_CPUS];
 196	struct thread	 *curr_thread[MAX_CPUS];
 197	char		 next_shortname1;
 198	char		 next_shortname2;
 199	unsigned int	 replay_repeat;
 200	unsigned long	 nr_run_events;
 201	unsigned long	 nr_sleep_events;
 202	unsigned long	 nr_wakeup_events;
 203	unsigned long	 nr_sleep_corrections;
 204	unsigned long	 nr_run_events_optimized;
 205	unsigned long	 targetless_wakeups;
 206	unsigned long	 multitarget_wakeups;
 207	unsigned long	 nr_runs;
 208	unsigned long	 nr_timestamps;
 209	unsigned long	 nr_unordered_timestamps;
 210	unsigned long	 nr_context_switch_bugs;
 211	unsigned long	 nr_events;
 212	unsigned long	 nr_lost_chunks;
 213	unsigned long	 nr_lost_events;
 214	u64		 run_measurement_overhead;
 215	u64		 sleep_measurement_overhead;
 216	u64		 start_time;
 217	u64		 cpu_usage;
 218	u64		 runavg_cpu_usage;
 219	u64		 parent_cpu_usage;
 220	u64		 runavg_parent_cpu_usage;
 221	u64		 sum_runtime;
 222	u64		 sum_fluct;
 223	u64		 run_avg;
 224	u64		 all_runtime;
 225	u64		 all_count;
 226	u64		 cpu_last_switched[MAX_CPUS];
 227	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 228	struct list_head sort_list, cmp_pid;
 229	bool force;
 230	bool skip_merge;
 231	struct perf_sched_map map;
 232
 233	/* options for timehist command */
 234	bool		summary;
 235	bool		summary_only;
 236	bool		idle_hist;
 237	bool		show_callchain;
 238	unsigned int	max_stack;
 239	bool		show_cpu_visual;
 240	bool		show_wakeups;
 241	bool		show_next;
 242	bool		show_migrations;
 243	bool		show_state;
 244	u64		skipped_samples;
 245	const char	*time_str;
 246	struct perf_time_interval ptime;
 247	struct perf_time_interval hist_time;
 
 248};
 249
 250/* per thread run time data */
 251struct thread_runtime {
 252	u64 last_time;      /* time of previous sched in/out event */
 253	u64 dt_run;         /* run time */
 254	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 255	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 256	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 257	u64 dt_delay;       /* time between wakeup and sched-in */
 258	u64 ready_to_run;   /* time of wakeup */
 259
 260	struct stats run_stats;
 261	u64 total_run_time;
 262	u64 total_sleep_time;
 263	u64 total_iowait_time;
 264	u64 total_preempt_time;
 265	u64 total_delay_time;
 266
 267	int last_state;
 268
 269	char shortname[3];
 270	bool comm_changed;
 271
 272	u64 migrations;
 273};
 274
 275/* per event run time data */
 276struct evsel_runtime {
 277	u64 *last_time; /* time this event was last seen per cpu */
 278	u32 ncpu;       /* highest cpu slot allocated */
 279};
 280
 281/* per cpu idle time data */
 282struct idle_thread_runtime {
 283	struct thread_runtime	tr;
 284	struct thread		*last_thread;
 285	struct rb_root_cached	sorted_root;
 286	struct callchain_root	callchain;
 287	struct callchain_cursor	cursor;
 288};
 289
 290/* track idle times per cpu */
 291static struct thread **idle_threads;
 292static int idle_max_cpu;
 293static char idle_comm[] = "<idle>";
 294
 295static u64 get_nsecs(void)
 296{
 297	struct timespec ts;
 298
 299	clock_gettime(CLOCK_MONOTONIC, &ts);
 300
 301	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 302}
 303
 304static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 305{
 306	u64 T0 = get_nsecs(), T1;
 307
 308	do {
 309		T1 = get_nsecs();
 310	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 311}
 312
 313static void sleep_nsecs(u64 nsecs)
 314{
 315	struct timespec ts;
 316
 317	ts.tv_nsec = nsecs % 999999999;
 318	ts.tv_sec = nsecs / 999999999;
 319
 320	nanosleep(&ts, NULL);
 321}
 322
 323static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 324{
 325	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 326	int i;
 327
 328	for (i = 0; i < 10; i++) {
 329		T0 = get_nsecs();
 330		burn_nsecs(sched, 0);
 331		T1 = get_nsecs();
 332		delta = T1-T0;
 333		min_delta = min(min_delta, delta);
 334	}
 335	sched->run_measurement_overhead = min_delta;
 336
 337	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 338}
 339
 340static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 341{
 342	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 343	int i;
 344
 345	for (i = 0; i < 10; i++) {
 346		T0 = get_nsecs();
 347		sleep_nsecs(10000);
 348		T1 = get_nsecs();
 349		delta = T1-T0;
 350		min_delta = min(min_delta, delta);
 351	}
 352	min_delta -= 10000;
 353	sched->sleep_measurement_overhead = min_delta;
 354
 355	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 356}
 357
 358static struct sched_atom *
 359get_new_event(struct task_desc *task, u64 timestamp)
 360{
 361	struct sched_atom *event = zalloc(sizeof(*event));
 362	unsigned long idx = task->nr_events;
 363	size_t size;
 364
 365	event->timestamp = timestamp;
 366	event->nr = idx;
 367
 368	task->nr_events++;
 369	size = sizeof(struct sched_atom *) * task->nr_events;
 370	task->atoms = realloc(task->atoms, size);
 371	BUG_ON(!task->atoms);
 372
 373	task->atoms[idx] = event;
 374
 375	return event;
 376}
 377
 378static struct sched_atom *last_event(struct task_desc *task)
 379{
 380	if (!task->nr_events)
 381		return NULL;
 382
 383	return task->atoms[task->nr_events - 1];
 384}
 385
 386static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 387				u64 timestamp, u64 duration)
 388{
 389	struct sched_atom *event, *curr_event = last_event(task);
 390
 391	/*
 392	 * optimize an existing RUN event by merging this one
 393	 * to it:
 394	 */
 395	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 396		sched->nr_run_events_optimized++;
 397		curr_event->duration += duration;
 398		return;
 399	}
 400
 401	event = get_new_event(task, timestamp);
 402
 403	event->type = SCHED_EVENT_RUN;
 404	event->duration = duration;
 405
 406	sched->nr_run_events++;
 407}
 408
 409static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 410				   u64 timestamp, struct task_desc *wakee)
 411{
 412	struct sched_atom *event, *wakee_event;
 413
 414	event = get_new_event(task, timestamp);
 415	event->type = SCHED_EVENT_WAKEUP;
 416	event->wakee = wakee;
 417
 418	wakee_event = last_event(wakee);
 419	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 420		sched->targetless_wakeups++;
 421		return;
 422	}
 423	if (wakee_event->wait_sem) {
 424		sched->multitarget_wakeups++;
 425		return;
 426	}
 427
 428	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 429	sem_init(wakee_event->wait_sem, 0, 0);
 430	wakee_event->specific_wait = 1;
 431	event->wait_sem = wakee_event->wait_sem;
 432
 433	sched->nr_wakeup_events++;
 434}
 435
 436static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 437				  u64 timestamp, u64 task_state __maybe_unused)
 438{
 439	struct sched_atom *event = get_new_event(task, timestamp);
 440
 441	event->type = SCHED_EVENT_SLEEP;
 442
 443	sched->nr_sleep_events++;
 444}
 445
 446static struct task_desc *register_pid(struct perf_sched *sched,
 447				      unsigned long pid, const char *comm)
 448{
 449	struct task_desc *task;
 450	static int pid_max;
 451
 452	if (sched->pid_to_task == NULL) {
 453		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 454			pid_max = MAX_PID;
 455		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 456	}
 457	if (pid >= (unsigned long)pid_max) {
 458		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 459			sizeof(struct task_desc *))) == NULL);
 460		while (pid >= (unsigned long)pid_max)
 461			sched->pid_to_task[pid_max++] = NULL;
 462	}
 463
 464	task = sched->pid_to_task[pid];
 465
 466	if (task)
 467		return task;
 468
 469	task = zalloc(sizeof(*task));
 470	task->pid = pid;
 471	task->nr = sched->nr_tasks;
 472	strcpy(task->comm, comm);
 473	/*
 474	 * every task starts in sleeping state - this gets ignored
 475	 * if there's no wakeup pointing to this sleep state:
 476	 */
 477	add_sched_event_sleep(sched, task, 0, 0);
 478
 479	sched->pid_to_task[pid] = task;
 480	sched->nr_tasks++;
 481	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 482	BUG_ON(!sched->tasks);
 483	sched->tasks[task->nr] = task;
 484
 485	if (verbose > 0)
 486		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 487
 488	return task;
 489}
 490
 491
 492static void print_task_traces(struct perf_sched *sched)
 493{
 494	struct task_desc *task;
 495	unsigned long i;
 496
 497	for (i = 0; i < sched->nr_tasks; i++) {
 498		task = sched->tasks[i];
 499		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 500			task->nr, task->comm, task->pid, task->nr_events);
 501	}
 502}
 503
 504static void add_cross_task_wakeups(struct perf_sched *sched)
 505{
 506	struct task_desc *task1, *task2;
 507	unsigned long i, j;
 508
 509	for (i = 0; i < sched->nr_tasks; i++) {
 510		task1 = sched->tasks[i];
 511		j = i + 1;
 512		if (j == sched->nr_tasks)
 513			j = 0;
 514		task2 = sched->tasks[j];
 515		add_sched_event_wakeup(sched, task1, 0, task2);
 516	}
 517}
 518
 519static void perf_sched__process_event(struct perf_sched *sched,
 520				      struct sched_atom *atom)
 521{
 522	int ret = 0;
 523
 524	switch (atom->type) {
 525		case SCHED_EVENT_RUN:
 526			burn_nsecs(sched, atom->duration);
 527			break;
 528		case SCHED_EVENT_SLEEP:
 529			if (atom->wait_sem)
 530				ret = sem_wait(atom->wait_sem);
 531			BUG_ON(ret);
 532			break;
 533		case SCHED_EVENT_WAKEUP:
 534			if (atom->wait_sem)
 535				ret = sem_post(atom->wait_sem);
 536			BUG_ON(ret);
 537			break;
 538		case SCHED_EVENT_MIGRATION:
 539			break;
 540		default:
 541			BUG_ON(1);
 542	}
 543}
 544
 545static u64 get_cpu_usage_nsec_parent(void)
 546{
 547	struct rusage ru;
 548	u64 sum;
 549	int err;
 550
 551	err = getrusage(RUSAGE_SELF, &ru);
 552	BUG_ON(err);
 553
 554	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 555	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 556
 557	return sum;
 558}
 559
 560static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 561{
 562	struct perf_event_attr attr;
 563	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 564	int fd;
 565	struct rlimit limit;
 566	bool need_privilege = false;
 567
 568	memset(&attr, 0, sizeof(attr));
 569
 570	attr.type = PERF_TYPE_SOFTWARE;
 571	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 572
 573force_again:
 574	fd = sys_perf_event_open(&attr, 0, -1, -1,
 575				 perf_event_open_cloexec_flag());
 576
 577	if (fd < 0) {
 578		if (errno == EMFILE) {
 579			if (sched->force) {
 580				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 581				limit.rlim_cur += sched->nr_tasks - cur_task;
 582				if (limit.rlim_cur > limit.rlim_max) {
 583					limit.rlim_max = limit.rlim_cur;
 584					need_privilege = true;
 585				}
 586				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 587					if (need_privilege && errno == EPERM)
 588						strcpy(info, "Need privilege\n");
 589				} else
 590					goto force_again;
 591			} else
 592				strcpy(info, "Have a try with -f option\n");
 593		}
 594		pr_err("Error: sys_perf_event_open() syscall returned "
 595		       "with %d (%s)\n%s", fd,
 596		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 597		exit(EXIT_FAILURE);
 598	}
 599	return fd;
 600}
 601
 602static u64 get_cpu_usage_nsec_self(int fd)
 603{
 604	u64 runtime;
 605	int ret;
 606
 607	ret = read(fd, &runtime, sizeof(runtime));
 608	BUG_ON(ret != sizeof(runtime));
 609
 610	return runtime;
 611}
 612
 613struct sched_thread_parms {
 614	struct task_desc  *task;
 615	struct perf_sched *sched;
 616	int fd;
 617};
 618
 619static void *thread_func(void *ctx)
 620{
 621	struct sched_thread_parms *parms = ctx;
 622	struct task_desc *this_task = parms->task;
 623	struct perf_sched *sched = parms->sched;
 624	u64 cpu_usage_0, cpu_usage_1;
 625	unsigned long i, ret;
 626	char comm2[22];
 627	int fd = parms->fd;
 628
 629	zfree(&parms);
 630
 631	sprintf(comm2, ":%s", this_task->comm);
 632	prctl(PR_SET_NAME, comm2);
 633	if (fd < 0)
 634		return NULL;
 635again:
 636	ret = sem_post(&this_task->ready_for_work);
 637	BUG_ON(ret);
 638	ret = pthread_mutex_lock(&sched->start_work_mutex);
 639	BUG_ON(ret);
 640	ret = pthread_mutex_unlock(&sched->start_work_mutex);
 641	BUG_ON(ret);
 642
 643	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 644
 645	for (i = 0; i < this_task->nr_events; i++) {
 646		this_task->curr_event = i;
 647		perf_sched__process_event(sched, this_task->atoms[i]);
 648	}
 649
 650	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 651	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 652	ret = sem_post(&this_task->work_done_sem);
 653	BUG_ON(ret);
 654
 655	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 656	BUG_ON(ret);
 657	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 658	BUG_ON(ret);
 659
 660	goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 661}
 662
 663static void create_tasks(struct perf_sched *sched)
 
 
 664{
 665	struct task_desc *task;
 666	pthread_attr_t attr;
 667	unsigned long i;
 668	int err;
 669
 670	err = pthread_attr_init(&attr);
 671	BUG_ON(err);
 672	err = pthread_attr_setstacksize(&attr,
 673			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
 674	BUG_ON(err);
 675	err = pthread_mutex_lock(&sched->start_work_mutex);
 676	BUG_ON(err);
 677	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 678	BUG_ON(err);
 679	for (i = 0; i < sched->nr_tasks; i++) {
 680		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 681		BUG_ON(parms == NULL);
 682		parms->task = task = sched->tasks[i];
 683		parms->sched = sched;
 684		parms->fd = self_open_counters(sched, i);
 685		sem_init(&task->sleep_sem, 0, 0);
 686		sem_init(&task->ready_for_work, 0, 0);
 687		sem_init(&task->work_done_sem, 0, 0);
 688		task->curr_event = 0;
 689		err = pthread_create(&task->thread, &attr, thread_func, parms);
 690		BUG_ON(err);
 691	}
 692}
 693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 694static void wait_for_tasks(struct perf_sched *sched)
 
 
 695{
 696	u64 cpu_usage_0, cpu_usage_1;
 697	struct task_desc *task;
 698	unsigned long i, ret;
 699
 700	sched->start_time = get_nsecs();
 701	sched->cpu_usage = 0;
 702	pthread_mutex_unlock(&sched->work_done_wait_mutex);
 703
 704	for (i = 0; i < sched->nr_tasks; i++) {
 705		task = sched->tasks[i];
 706		ret = sem_wait(&task->ready_for_work);
 707		BUG_ON(ret);
 708		sem_init(&task->ready_for_work, 0, 0);
 709	}
 710	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 711	BUG_ON(ret);
 712
 713	cpu_usage_0 = get_cpu_usage_nsec_parent();
 714
 715	pthread_mutex_unlock(&sched->start_work_mutex);
 716
 717	for (i = 0; i < sched->nr_tasks; i++) {
 718		task = sched->tasks[i];
 719		ret = sem_wait(&task->work_done_sem);
 720		BUG_ON(ret);
 721		sem_init(&task->work_done_sem, 0, 0);
 722		sched->cpu_usage += task->cpu_usage;
 723		task->cpu_usage = 0;
 724	}
 725
 726	cpu_usage_1 = get_cpu_usage_nsec_parent();
 727	if (!sched->runavg_cpu_usage)
 728		sched->runavg_cpu_usage = sched->cpu_usage;
 729	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 730
 731	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 732	if (!sched->runavg_parent_cpu_usage)
 733		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 734	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 735					 sched->parent_cpu_usage)/sched->replay_repeat;
 736
 737	ret = pthread_mutex_lock(&sched->start_work_mutex);
 738	BUG_ON(ret);
 739
 740	for (i = 0; i < sched->nr_tasks; i++) {
 741		task = sched->tasks[i];
 742		sem_init(&task->sleep_sem, 0, 0);
 743		task->curr_event = 0;
 744	}
 745}
 746
 747static void run_one_test(struct perf_sched *sched)
 
 
 748{
 749	u64 T0, T1, delta, avg_delta, fluct;
 750
 751	T0 = get_nsecs();
 752	wait_for_tasks(sched);
 753	T1 = get_nsecs();
 754
 755	delta = T1 - T0;
 756	sched->sum_runtime += delta;
 757	sched->nr_runs++;
 758
 759	avg_delta = sched->sum_runtime / sched->nr_runs;
 760	if (delta < avg_delta)
 761		fluct = avg_delta - delta;
 762	else
 763		fluct = delta - avg_delta;
 764	sched->sum_fluct += fluct;
 765	if (!sched->run_avg)
 766		sched->run_avg = delta;
 767	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 768
 769	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 770
 771	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 772
 773	printf("cpu: %0.2f / %0.2f",
 774		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 775
 776#if 0
 777	/*
 778	 * rusage statistics done by the parent, these are less
 779	 * accurate than the sched->sum_exec_runtime based statistics:
 780	 */
 781	printf(" [%0.2f / %0.2f]",
 782		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 783		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 784#endif
 785
 786	printf("\n");
 787
 788	if (sched->nr_sleep_corrections)
 789		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 790	sched->nr_sleep_corrections = 0;
 791}
 792
 793static void test_calibrations(struct perf_sched *sched)
 794{
 795	u64 T0, T1;
 796
 797	T0 = get_nsecs();
 798	burn_nsecs(sched, NSEC_PER_MSEC);
 799	T1 = get_nsecs();
 800
 801	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 802
 803	T0 = get_nsecs();
 804	sleep_nsecs(NSEC_PER_MSEC);
 805	T1 = get_nsecs();
 806
 807	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 808}
 809
 810static int
 811replay_wakeup_event(struct perf_sched *sched,
 812		    struct evsel *evsel, struct perf_sample *sample,
 813		    struct machine *machine __maybe_unused)
 814{
 815	const char *comm = evsel__strval(evsel, sample, "comm");
 816	const u32 pid	 = evsel__intval(evsel, sample, "pid");
 817	struct task_desc *waker, *wakee;
 818
 819	if (verbose > 0) {
 820		printf("sched_wakeup event %p\n", evsel);
 821
 822		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 823	}
 824
 825	waker = register_pid(sched, sample->tid, "<unknown>");
 826	wakee = register_pid(sched, pid, comm);
 827
 828	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 829	return 0;
 830}
 831
 832static int replay_switch_event(struct perf_sched *sched,
 833			       struct evsel *evsel,
 834			       struct perf_sample *sample,
 835			       struct machine *machine __maybe_unused)
 836{
 837	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
 838		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
 839	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
 840		  next_pid = evsel__intval(evsel, sample, "next_pid");
 841	const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
 842	struct task_desc *prev, __maybe_unused *next;
 843	u64 timestamp0, timestamp = sample->time;
 844	int cpu = sample->cpu;
 845	s64 delta;
 846
 847	if (verbose > 0)
 848		printf("sched_switch event %p\n", evsel);
 849
 850	if (cpu >= MAX_CPUS || cpu < 0)
 851		return 0;
 852
 853	timestamp0 = sched->cpu_last_switched[cpu];
 854	if (timestamp0)
 855		delta = timestamp - timestamp0;
 856	else
 857		delta = 0;
 858
 859	if (delta < 0) {
 860		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 861		return -1;
 862	}
 863
 864	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 865		 prev_comm, prev_pid, next_comm, next_pid, delta);
 866
 867	prev = register_pid(sched, prev_pid, prev_comm);
 868	next = register_pid(sched, next_pid, next_comm);
 869
 870	sched->cpu_last_switched[cpu] = timestamp;
 871
 872	add_sched_event_run(sched, prev, timestamp, delta);
 873	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 874
 875	return 0;
 876}
 877
 878static int replay_fork_event(struct perf_sched *sched,
 879			     union perf_event *event,
 880			     struct machine *machine)
 881{
 882	struct thread *child, *parent;
 883
 884	child = machine__findnew_thread(machine, event->fork.pid,
 885					event->fork.tid);
 886	parent = machine__findnew_thread(machine, event->fork.ppid,
 887					 event->fork.ptid);
 888
 889	if (child == NULL || parent == NULL) {
 890		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 891				 child, parent);
 892		goto out_put;
 893	}
 894
 895	if (verbose > 0) {
 896		printf("fork event\n");
 897		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 898		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 899	}
 900
 901	register_pid(sched, parent->tid, thread__comm_str(parent));
 902	register_pid(sched, child->tid, thread__comm_str(child));
 903out_put:
 904	thread__put(child);
 905	thread__put(parent);
 906	return 0;
 907}
 908
 909struct sort_dimension {
 910	const char		*name;
 911	sort_fn_t		cmp;
 912	struct list_head	list;
 913};
 914
 915/*
 916 * handle runtime stats saved per thread
 917 */
 918static struct thread_runtime *thread__init_runtime(struct thread *thread)
 919{
 920	struct thread_runtime *r;
 921
 922	r = zalloc(sizeof(struct thread_runtime));
 923	if (!r)
 924		return NULL;
 925
 926	init_stats(&r->run_stats);
 927	thread__set_priv(thread, r);
 928
 929	return r;
 930}
 931
 932static struct thread_runtime *thread__get_runtime(struct thread *thread)
 933{
 934	struct thread_runtime *tr;
 935
 936	tr = thread__priv(thread);
 937	if (tr == NULL) {
 938		tr = thread__init_runtime(thread);
 939		if (tr == NULL)
 940			pr_debug("Failed to malloc memory for runtime data.\n");
 941	}
 942
 943	return tr;
 944}
 945
 946static int
 947thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 948{
 949	struct sort_dimension *sort;
 950	int ret = 0;
 951
 952	BUG_ON(list_empty(list));
 953
 954	list_for_each_entry(sort, list, list) {
 955		ret = sort->cmp(l, r);
 956		if (ret)
 957			return ret;
 958	}
 959
 960	return ret;
 961}
 962
 963static struct work_atoms *
 964thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 965			 struct list_head *sort_list)
 966{
 967	struct rb_node *node = root->rb_root.rb_node;
 968	struct work_atoms key = { .thread = thread };
 969
 970	while (node) {
 971		struct work_atoms *atoms;
 972		int cmp;
 973
 974		atoms = container_of(node, struct work_atoms, node);
 975
 976		cmp = thread_lat_cmp(sort_list, &key, atoms);
 977		if (cmp > 0)
 978			node = node->rb_left;
 979		else if (cmp < 0)
 980			node = node->rb_right;
 981		else {
 982			BUG_ON(thread != atoms->thread);
 983			return atoms;
 984		}
 985	}
 986	return NULL;
 987}
 988
 989static void
 990__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
 991			 struct list_head *sort_list)
 992{
 993	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
 994	bool leftmost = true;
 995
 996	while (*new) {
 997		struct work_atoms *this;
 998		int cmp;
 999
1000		this = container_of(*new, struct work_atoms, node);
1001		parent = *new;
1002
1003		cmp = thread_lat_cmp(sort_list, data, this);
1004
1005		if (cmp > 0)
1006			new = &((*new)->rb_left);
1007		else {
1008			new = &((*new)->rb_right);
1009			leftmost = false;
1010		}
1011	}
1012
1013	rb_link_node(&data->node, parent, new);
1014	rb_insert_color_cached(&data->node, root, leftmost);
1015}
1016
1017static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1018{
1019	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1020	if (!atoms) {
1021		pr_err("No memory at %s\n", __func__);
1022		return -1;
1023	}
1024
1025	atoms->thread = thread__get(thread);
1026	INIT_LIST_HEAD(&atoms->work_list);
1027	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1028	return 0;
1029}
1030
1031static char sched_out_state(u64 prev_state)
1032{
1033	const char *str = TASK_STATE_TO_CHAR_STR;
1034
1035	return str[prev_state];
1036}
1037
1038static int
1039add_sched_out_event(struct work_atoms *atoms,
1040		    char run_state,
1041		    u64 timestamp)
1042{
1043	struct work_atom *atom = zalloc(sizeof(*atom));
1044	if (!atom) {
1045		pr_err("Non memory at %s", __func__);
1046		return -1;
1047	}
1048
1049	atom->sched_out_time = timestamp;
1050
1051	if (run_state == 'R') {
1052		atom->state = THREAD_WAIT_CPU;
1053		atom->wake_up_time = atom->sched_out_time;
1054	}
1055
1056	list_add_tail(&atom->list, &atoms->work_list);
1057	return 0;
1058}
1059
1060static void
1061add_runtime_event(struct work_atoms *atoms, u64 delta,
1062		  u64 timestamp __maybe_unused)
1063{
1064	struct work_atom *atom;
1065
1066	BUG_ON(list_empty(&atoms->work_list));
1067
1068	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1069
1070	atom->runtime += delta;
1071	atoms->total_runtime += delta;
1072}
1073
1074static void
1075add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1076{
1077	struct work_atom *atom;
1078	u64 delta;
1079
1080	if (list_empty(&atoms->work_list))
1081		return;
1082
1083	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1084
1085	if (atom->state != THREAD_WAIT_CPU)
1086		return;
1087
1088	if (timestamp < atom->wake_up_time) {
1089		atom->state = THREAD_IGNORE;
1090		return;
1091	}
1092
1093	atom->state = THREAD_SCHED_IN;
1094	atom->sched_in_time = timestamp;
1095
1096	delta = atom->sched_in_time - atom->wake_up_time;
1097	atoms->total_lat += delta;
1098	if (delta > atoms->max_lat) {
1099		atoms->max_lat = delta;
1100		atoms->max_lat_start = atom->wake_up_time;
1101		atoms->max_lat_end = timestamp;
1102	}
1103	atoms->nb_atoms++;
1104}
1105
1106static int latency_switch_event(struct perf_sched *sched,
1107				struct evsel *evsel,
1108				struct perf_sample *sample,
1109				struct machine *machine)
1110{
1111	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1112		  next_pid = evsel__intval(evsel, sample, "next_pid");
1113	const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1114	struct work_atoms *out_events, *in_events;
1115	struct thread *sched_out, *sched_in;
1116	u64 timestamp0, timestamp = sample->time;
1117	int cpu = sample->cpu, err = -1;
1118	s64 delta;
1119
1120	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1121
1122	timestamp0 = sched->cpu_last_switched[cpu];
1123	sched->cpu_last_switched[cpu] = timestamp;
1124	if (timestamp0)
1125		delta = timestamp - timestamp0;
1126	else
1127		delta = 0;
1128
1129	if (delta < 0) {
1130		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1131		return -1;
1132	}
1133
1134	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1135	sched_in = machine__findnew_thread(machine, -1, next_pid);
1136	if (sched_out == NULL || sched_in == NULL)
1137		goto out_put;
1138
1139	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1140	if (!out_events) {
1141		if (thread_atoms_insert(sched, sched_out))
1142			goto out_put;
1143		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1144		if (!out_events) {
1145			pr_err("out-event: Internal tree error");
1146			goto out_put;
1147		}
1148	}
1149	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1150		return -1;
1151
1152	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1153	if (!in_events) {
1154		if (thread_atoms_insert(sched, sched_in))
1155			goto out_put;
1156		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1157		if (!in_events) {
1158			pr_err("in-event: Internal tree error");
1159			goto out_put;
1160		}
1161		/*
1162		 * Take came in we have not heard about yet,
1163		 * add in an initial atom in runnable state:
1164		 */
1165		if (add_sched_out_event(in_events, 'R', timestamp))
1166			goto out_put;
1167	}
1168	add_sched_in_event(in_events, timestamp);
1169	err = 0;
1170out_put:
1171	thread__put(sched_out);
1172	thread__put(sched_in);
1173	return err;
1174}
1175
1176static int latency_runtime_event(struct perf_sched *sched,
1177				 struct evsel *evsel,
1178				 struct perf_sample *sample,
1179				 struct machine *machine)
1180{
1181	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1182	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1183	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1184	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1185	u64 timestamp = sample->time;
1186	int cpu = sample->cpu, err = -1;
1187
1188	if (thread == NULL)
1189		return -1;
1190
1191	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1192	if (!atoms) {
1193		if (thread_atoms_insert(sched, thread))
1194			goto out_put;
1195		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1196		if (!atoms) {
1197			pr_err("in-event: Internal tree error");
1198			goto out_put;
1199		}
1200		if (add_sched_out_event(atoms, 'R', timestamp))
1201			goto out_put;
1202	}
1203
1204	add_runtime_event(atoms, runtime, timestamp);
1205	err = 0;
1206out_put:
1207	thread__put(thread);
1208	return err;
1209}
1210
1211static int latency_wakeup_event(struct perf_sched *sched,
1212				struct evsel *evsel,
1213				struct perf_sample *sample,
1214				struct machine *machine)
1215{
1216	const u32 pid	  = evsel__intval(evsel, sample, "pid");
1217	struct work_atoms *atoms;
1218	struct work_atom *atom;
1219	struct thread *wakee;
1220	u64 timestamp = sample->time;
1221	int err = -1;
1222
1223	wakee = machine__findnew_thread(machine, -1, pid);
1224	if (wakee == NULL)
1225		return -1;
1226	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1227	if (!atoms) {
1228		if (thread_atoms_insert(sched, wakee))
1229			goto out_put;
1230		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1231		if (!atoms) {
1232			pr_err("wakeup-event: Internal tree error");
1233			goto out_put;
1234		}
1235		if (add_sched_out_event(atoms, 'S', timestamp))
1236			goto out_put;
1237	}
1238
1239	BUG_ON(list_empty(&atoms->work_list));
1240
1241	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1242
1243	/*
1244	 * As we do not guarantee the wakeup event happens when
1245	 * task is out of run queue, also may happen when task is
1246	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1247	 * then we should not set the ->wake_up_time when wake up a
1248	 * task which is on run queue.
1249	 *
1250	 * You WILL be missing events if you've recorded only
1251	 * one CPU, or are only looking at only one, so don't
1252	 * skip in this case.
1253	 */
1254	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1255		goto out_ok;
1256
1257	sched->nr_timestamps++;
1258	if (atom->sched_out_time > timestamp) {
1259		sched->nr_unordered_timestamps++;
1260		goto out_ok;
1261	}
1262
1263	atom->state = THREAD_WAIT_CPU;
1264	atom->wake_up_time = timestamp;
1265out_ok:
1266	err = 0;
1267out_put:
1268	thread__put(wakee);
1269	return err;
1270}
1271
1272static int latency_migrate_task_event(struct perf_sched *sched,
1273				      struct evsel *evsel,
1274				      struct perf_sample *sample,
1275				      struct machine *machine)
1276{
1277	const u32 pid = evsel__intval(evsel, sample, "pid");
1278	u64 timestamp = sample->time;
1279	struct work_atoms *atoms;
1280	struct work_atom *atom;
1281	struct thread *migrant;
1282	int err = -1;
1283
1284	/*
1285	 * Only need to worry about migration when profiling one CPU.
1286	 */
1287	if (sched->profile_cpu == -1)
1288		return 0;
1289
1290	migrant = machine__findnew_thread(machine, -1, pid);
1291	if (migrant == NULL)
1292		return -1;
1293	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1294	if (!atoms) {
1295		if (thread_atoms_insert(sched, migrant))
1296			goto out_put;
1297		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1298		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1299		if (!atoms) {
1300			pr_err("migration-event: Internal tree error");
1301			goto out_put;
1302		}
1303		if (add_sched_out_event(atoms, 'R', timestamp))
1304			goto out_put;
1305	}
1306
1307	BUG_ON(list_empty(&atoms->work_list));
1308
1309	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1310	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1311
1312	sched->nr_timestamps++;
1313
1314	if (atom->sched_out_time > timestamp)
1315		sched->nr_unordered_timestamps++;
1316	err = 0;
1317out_put:
1318	thread__put(migrant);
1319	return err;
1320}
1321
1322static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1323{
1324	int i;
1325	int ret;
1326	u64 avg;
1327	char max_lat_start[32], max_lat_end[32];
1328
1329	if (!work_list->nb_atoms)
1330		return;
1331	/*
1332	 * Ignore idle threads:
1333	 */
1334	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1335		return;
1336
1337	sched->all_runtime += work_list->total_runtime;
1338	sched->all_count   += work_list->nb_atoms;
1339
1340	if (work_list->num_merged > 1)
1341		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1342	else
1343		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1344
1345	for (i = 0; i < 24 - ret; i++)
1346		printf(" ");
1347
1348	avg = work_list->total_lat / work_list->nb_atoms;
1349	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1350	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1351
1352	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1353	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1354		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1355		 (double)work_list->max_lat / NSEC_PER_MSEC,
1356		 max_lat_start, max_lat_end);
1357}
1358
1359static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1360{
1361	if (l->thread == r->thread)
1362		return 0;
1363	if (l->thread->tid < r->thread->tid)
1364		return -1;
1365	if (l->thread->tid > r->thread->tid)
1366		return 1;
1367	return (int)(l->thread - r->thread);
1368}
1369
1370static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1371{
1372	u64 avgl, avgr;
1373
1374	if (!l->nb_atoms)
1375		return -1;
1376
1377	if (!r->nb_atoms)
1378		return 1;
1379
1380	avgl = l->total_lat / l->nb_atoms;
1381	avgr = r->total_lat / r->nb_atoms;
1382
1383	if (avgl < avgr)
1384		return -1;
1385	if (avgl > avgr)
1386		return 1;
1387
1388	return 0;
1389}
1390
1391static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1392{
1393	if (l->max_lat < r->max_lat)
1394		return -1;
1395	if (l->max_lat > r->max_lat)
1396		return 1;
1397
1398	return 0;
1399}
1400
1401static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1402{
1403	if (l->nb_atoms < r->nb_atoms)
1404		return -1;
1405	if (l->nb_atoms > r->nb_atoms)
1406		return 1;
1407
1408	return 0;
1409}
1410
1411static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1412{
1413	if (l->total_runtime < r->total_runtime)
1414		return -1;
1415	if (l->total_runtime > r->total_runtime)
1416		return 1;
1417
1418	return 0;
1419}
1420
1421static int sort_dimension__add(const char *tok, struct list_head *list)
1422{
1423	size_t i;
1424	static struct sort_dimension avg_sort_dimension = {
1425		.name = "avg",
1426		.cmp  = avg_cmp,
1427	};
1428	static struct sort_dimension max_sort_dimension = {
1429		.name = "max",
1430		.cmp  = max_cmp,
1431	};
1432	static struct sort_dimension pid_sort_dimension = {
1433		.name = "pid",
1434		.cmp  = pid_cmp,
1435	};
1436	static struct sort_dimension runtime_sort_dimension = {
1437		.name = "runtime",
1438		.cmp  = runtime_cmp,
1439	};
1440	static struct sort_dimension switch_sort_dimension = {
1441		.name = "switch",
1442		.cmp  = switch_cmp,
1443	};
1444	struct sort_dimension *available_sorts[] = {
1445		&pid_sort_dimension,
1446		&avg_sort_dimension,
1447		&max_sort_dimension,
1448		&switch_sort_dimension,
1449		&runtime_sort_dimension,
1450	};
1451
1452	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1453		if (!strcmp(available_sorts[i]->name, tok)) {
1454			list_add_tail(&available_sorts[i]->list, list);
1455
1456			return 0;
1457		}
1458	}
1459
1460	return -1;
1461}
1462
1463static void perf_sched__sort_lat(struct perf_sched *sched)
1464{
1465	struct rb_node *node;
1466	struct rb_root_cached *root = &sched->atom_root;
1467again:
1468	for (;;) {
1469		struct work_atoms *data;
1470		node = rb_first_cached(root);
1471		if (!node)
1472			break;
1473
1474		rb_erase_cached(node, root);
1475		data = rb_entry(node, struct work_atoms, node);
1476		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1477	}
1478	if (root == &sched->atom_root) {
1479		root = &sched->merged_atom_root;
1480		goto again;
1481	}
1482}
1483
1484static int process_sched_wakeup_event(struct perf_tool *tool,
1485				      struct evsel *evsel,
1486				      struct perf_sample *sample,
1487				      struct machine *machine)
1488{
1489	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1490
1491	if (sched->tp_handler->wakeup_event)
1492		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1493
1494	return 0;
1495}
1496
1497union map_priv {
1498	void	*ptr;
1499	bool	 color;
1500};
1501
1502static bool thread__has_color(struct thread *thread)
1503{
1504	union map_priv priv = {
1505		.ptr = thread__priv(thread),
1506	};
1507
1508	return priv.color;
1509}
1510
1511static struct thread*
1512map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1513{
1514	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1515	union map_priv priv = {
1516		.color = false,
1517	};
1518
1519	if (!sched->map.color_pids || !thread || thread__priv(thread))
1520		return thread;
1521
1522	if (thread_map__has(sched->map.color_pids, tid))
1523		priv.color = true;
1524
1525	thread__set_priv(thread, priv.ptr);
1526	return thread;
1527}
1528
1529static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1530			    struct perf_sample *sample, struct machine *machine)
1531{
1532	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1533	struct thread *sched_in;
1534	struct thread_runtime *tr;
1535	int new_shortname;
1536	u64 timestamp0, timestamp = sample->time;
1537	s64 delta;
1538	int i, this_cpu = sample->cpu;
 
 
 
1539	int cpus_nr;
1540	bool new_cpu = false;
1541	const char *color = PERF_COLOR_NORMAL;
1542	char stimestamp[32];
1543
1544	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1545
1546	if (this_cpu > sched->max_cpu)
1547		sched->max_cpu = this_cpu;
1548
1549	if (sched->map.comp) {
1550		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1551		if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1552			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1553			new_cpu = true;
1554		}
1555	} else
1556		cpus_nr = sched->max_cpu;
1557
1558	timestamp0 = sched->cpu_last_switched[this_cpu];
1559	sched->cpu_last_switched[this_cpu] = timestamp;
1560	if (timestamp0)
1561		delta = timestamp - timestamp0;
1562	else
1563		delta = 0;
1564
1565	if (delta < 0) {
1566		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1567		return -1;
1568	}
1569
1570	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1571	if (sched_in == NULL)
1572		return -1;
1573
1574	tr = thread__get_runtime(sched_in);
1575	if (tr == NULL) {
1576		thread__put(sched_in);
1577		return -1;
1578	}
1579
1580	sched->curr_thread[this_cpu] = thread__get(sched_in);
1581
1582	printf("  ");
1583
1584	new_shortname = 0;
1585	if (!tr->shortname[0]) {
1586		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1587			/*
1588			 * Don't allocate a letter-number for swapper:0
1589			 * as a shortname. Instead, we use '.' for it.
1590			 */
1591			tr->shortname[0] = '.';
1592			tr->shortname[1] = ' ';
1593		} else {
1594			tr->shortname[0] = sched->next_shortname1;
1595			tr->shortname[1] = sched->next_shortname2;
1596
1597			if (sched->next_shortname1 < 'Z') {
1598				sched->next_shortname1++;
1599			} else {
1600				sched->next_shortname1 = 'A';
1601				if (sched->next_shortname2 < '9')
1602					sched->next_shortname2++;
1603				else
1604					sched->next_shortname2 = '0';
1605			}
1606		}
1607		new_shortname = 1;
1608	}
1609
1610	for (i = 0; i < cpus_nr; i++) {
1611		int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1612		struct thread *curr_thread = sched->curr_thread[cpu];
 
 
1613		struct thread_runtime *curr_tr;
1614		const char *pid_color = color;
1615		const char *cpu_color = color;
1616
1617		if (curr_thread && thread__has_color(curr_thread))
1618			pid_color = COLOR_PIDS;
1619
1620		if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1621			continue;
1622
1623		if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1624			cpu_color = COLOR_CPUS;
1625
1626		if (cpu != this_cpu)
1627			color_fprintf(stdout, color, " ");
1628		else
1629			color_fprintf(stdout, cpu_color, "*");
1630
1631		if (sched->curr_thread[cpu]) {
1632			curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1633			if (curr_tr == NULL) {
1634				thread__put(sched_in);
1635				return -1;
1636			}
1637			color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1638		} else
1639			color_fprintf(stdout, color, "   ");
1640	}
1641
1642	if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1643		goto out;
1644
1645	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1646	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1647	if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1648		const char *pid_color = color;
1649
1650		if (thread__has_color(sched_in))
1651			pid_color = COLOR_PIDS;
1652
1653		color_fprintf(stdout, pid_color, "%s => %s:%d",
1654		       tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1655		tr->comm_changed = false;
1656	}
1657
1658	if (sched->map.comp && new_cpu)
1659		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1660
1661out:
1662	color_fprintf(stdout, color, "\n");
1663
1664	thread__put(sched_in);
1665
1666	return 0;
1667}
1668
1669static int process_sched_switch_event(struct perf_tool *tool,
1670				      struct evsel *evsel,
1671				      struct perf_sample *sample,
1672				      struct machine *machine)
1673{
1674	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1675	int this_cpu = sample->cpu, err = 0;
1676	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1677	    next_pid = evsel__intval(evsel, sample, "next_pid");
1678
1679	if (sched->curr_pid[this_cpu] != (u32)-1) {
1680		/*
1681		 * Are we trying to switch away a PID that is
1682		 * not current?
1683		 */
1684		if (sched->curr_pid[this_cpu] != prev_pid)
1685			sched->nr_context_switch_bugs++;
1686	}
1687
1688	if (sched->tp_handler->switch_event)
1689		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1690
1691	sched->curr_pid[this_cpu] = next_pid;
1692	return err;
1693}
1694
1695static int process_sched_runtime_event(struct perf_tool *tool,
1696				       struct evsel *evsel,
1697				       struct perf_sample *sample,
1698				       struct machine *machine)
1699{
1700	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1701
1702	if (sched->tp_handler->runtime_event)
1703		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1704
1705	return 0;
1706}
1707
1708static int perf_sched__process_fork_event(struct perf_tool *tool,
1709					  union perf_event *event,
1710					  struct perf_sample *sample,
1711					  struct machine *machine)
1712{
1713	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1714
1715	/* run the fork event through the perf machinery */
1716	perf_event__process_fork(tool, event, sample, machine);
1717
1718	/* and then run additional processing needed for this command */
1719	if (sched->tp_handler->fork_event)
1720		return sched->tp_handler->fork_event(sched, event, machine);
1721
1722	return 0;
1723}
1724
1725static int process_sched_migrate_task_event(struct perf_tool *tool,
1726					    struct evsel *evsel,
1727					    struct perf_sample *sample,
1728					    struct machine *machine)
1729{
1730	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1731
1732	if (sched->tp_handler->migrate_task_event)
1733		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1734
1735	return 0;
1736}
1737
1738typedef int (*tracepoint_handler)(struct perf_tool *tool,
1739				  struct evsel *evsel,
1740				  struct perf_sample *sample,
1741				  struct machine *machine);
1742
1743static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1744						 union perf_event *event __maybe_unused,
1745						 struct perf_sample *sample,
1746						 struct evsel *evsel,
1747						 struct machine *machine)
1748{
1749	int err = 0;
1750
1751	if (evsel->handler != NULL) {
1752		tracepoint_handler f = evsel->handler;
1753		err = f(tool, evsel, sample, machine);
1754	}
1755
1756	return err;
1757}
1758
1759static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1760				    union perf_event *event,
1761				    struct perf_sample *sample,
1762				    struct machine *machine)
1763{
1764	struct thread *thread;
1765	struct thread_runtime *tr;
1766	int err;
1767
1768	err = perf_event__process_comm(tool, event, sample, machine);
1769	if (err)
1770		return err;
1771
1772	thread = machine__find_thread(machine, sample->pid, sample->tid);
1773	if (!thread) {
1774		pr_err("Internal error: can't find thread\n");
1775		return -1;
1776	}
1777
1778	tr = thread__get_runtime(thread);
1779	if (tr == NULL) {
1780		thread__put(thread);
1781		return -1;
1782	}
1783
1784	tr->comm_changed = true;
1785	thread__put(thread);
1786
1787	return 0;
1788}
1789
1790static int perf_sched__read_events(struct perf_sched *sched)
1791{
1792	const struct evsel_str_handler handlers[] = {
1793		{ "sched:sched_switch",	      process_sched_switch_event, },
1794		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1795		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1796		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1797		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1798	};
1799	struct perf_session *session;
1800	struct perf_data data = {
1801		.path  = input_name,
1802		.mode  = PERF_DATA_MODE_READ,
1803		.force = sched->force,
1804	};
1805	int rc = -1;
1806
1807	session = perf_session__new(&data, false, &sched->tool);
1808	if (IS_ERR(session)) {
1809		pr_debug("Error creating perf session");
1810		return PTR_ERR(session);
1811	}
1812
1813	symbol__init(&session->header.env);
1814
1815	if (perf_session__set_tracepoints_handlers(session, handlers))
1816		goto out_delete;
1817
1818	if (perf_session__has_traces(session, "record -R")) {
1819		int err = perf_session__process_events(session);
1820		if (err) {
1821			pr_err("Failed to process events, error %d", err);
1822			goto out_delete;
1823		}
1824
1825		sched->nr_events      = session->evlist->stats.nr_events[0];
1826		sched->nr_lost_events = session->evlist->stats.total_lost;
1827		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1828	}
1829
1830	rc = 0;
1831out_delete:
1832	perf_session__delete(session);
1833	return rc;
1834}
1835
1836/*
1837 * scheduling times are printed as msec.usec
1838 */
1839static inline void print_sched_time(unsigned long long nsecs, int width)
1840{
1841	unsigned long msecs;
1842	unsigned long usecs;
1843
1844	msecs  = nsecs / NSEC_PER_MSEC;
1845	nsecs -= msecs * NSEC_PER_MSEC;
1846	usecs  = nsecs / NSEC_PER_USEC;
1847	printf("%*lu.%03lu ", width, msecs, usecs);
1848}
1849
1850/*
1851 * returns runtime data for event, allocating memory for it the
1852 * first time it is used.
1853 */
1854static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1855{
1856	struct evsel_runtime *r = evsel->priv;
1857
1858	if (r == NULL) {
1859		r = zalloc(sizeof(struct evsel_runtime));
1860		evsel->priv = r;
1861	}
1862
1863	return r;
1864}
1865
1866/*
1867 * save last time event was seen per cpu
1868 */
1869static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1870{
1871	struct evsel_runtime *r = evsel__get_runtime(evsel);
1872
1873	if (r == NULL)
1874		return;
1875
1876	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1877		int i, n = __roundup_pow_of_two(cpu+1);
1878		void *p = r->last_time;
1879
1880		p = realloc(r->last_time, n * sizeof(u64));
1881		if (!p)
1882			return;
1883
1884		r->last_time = p;
1885		for (i = r->ncpu; i < n; ++i)
1886			r->last_time[i] = (u64) 0;
1887
1888		r->ncpu = n;
1889	}
1890
1891	r->last_time[cpu] = timestamp;
1892}
1893
1894/* returns last time this event was seen on the given cpu */
1895static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1896{
1897	struct evsel_runtime *r = evsel__get_runtime(evsel);
1898
1899	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1900		return 0;
1901
1902	return r->last_time[cpu];
1903}
1904
1905static int comm_width = 30;
1906
1907static char *timehist_get_commstr(struct thread *thread)
1908{
1909	static char str[32];
1910	const char *comm = thread__comm_str(thread);
1911	pid_t tid = thread->tid;
1912	pid_t pid = thread->pid_;
1913	int n;
1914
1915	if (pid == 0)
1916		n = scnprintf(str, sizeof(str), "%s", comm);
1917
1918	else if (tid != pid)
1919		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1920
1921	else
1922		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1923
1924	if (n > comm_width)
1925		comm_width = n;
1926
1927	return str;
1928}
1929
1930static void timehist_header(struct perf_sched *sched)
1931{
1932	u32 ncpus = sched->max_cpu + 1;
1933	u32 i, j;
1934
1935	printf("%15s %6s ", "time", "cpu");
1936
1937	if (sched->show_cpu_visual) {
1938		printf(" ");
1939		for (i = 0, j = 0; i < ncpus; ++i) {
1940			printf("%x", j++);
1941			if (j > 15)
1942				j = 0;
1943		}
1944		printf(" ");
1945	}
1946
1947	printf(" %-*s  %9s  %9s  %9s", comm_width,
1948		"task name", "wait time", "sch delay", "run time");
1949
1950	if (sched->show_state)
1951		printf("  %s", "state");
1952
1953	printf("\n");
1954
1955	/*
1956	 * units row
1957	 */
1958	printf("%15s %-6s ", "", "");
1959
1960	if (sched->show_cpu_visual)
1961		printf(" %*s ", ncpus, "");
1962
1963	printf(" %-*s  %9s  %9s  %9s", comm_width,
1964	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1965
1966	if (sched->show_state)
1967		printf("  %5s", "");
1968
1969	printf("\n");
1970
1971	/*
1972	 * separator
1973	 */
1974	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1975
1976	if (sched->show_cpu_visual)
1977		printf(" %.*s ", ncpus, graph_dotted_line);
1978
1979	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1980		graph_dotted_line, graph_dotted_line, graph_dotted_line,
1981		graph_dotted_line);
1982
1983	if (sched->show_state)
1984		printf("  %.5s", graph_dotted_line);
1985
1986	printf("\n");
1987}
1988
1989static char task_state_char(struct thread *thread, int state)
1990{
1991	static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1992	unsigned bit = state ? ffs(state) : 0;
1993
1994	/* 'I' for idle */
1995	if (thread->tid == 0)
1996		return 'I';
1997
1998	return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1999}
2000
2001static void timehist_print_sample(struct perf_sched *sched,
2002				  struct evsel *evsel,
2003				  struct perf_sample *sample,
2004				  struct addr_location *al,
2005				  struct thread *thread,
2006				  u64 t, int state)
2007{
2008	struct thread_runtime *tr = thread__priv(thread);
2009	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2010	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2011	u32 max_cpus = sched->max_cpu + 1;
2012	char tstr[64];
2013	char nstr[30];
2014	u64 wait_time;
2015
2016	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2017		return;
2018
2019	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2020	printf("%15s [%04d] ", tstr, sample->cpu);
2021
2022	if (sched->show_cpu_visual) {
2023		u32 i;
2024		char c;
2025
2026		printf(" ");
2027		for (i = 0; i < max_cpus; ++i) {
2028			/* flag idle times with 'i'; others are sched events */
2029			if (i == sample->cpu)
2030				c = (thread->tid == 0) ? 'i' : 's';
2031			else
2032				c = ' ';
2033			printf("%c", c);
2034		}
2035		printf(" ");
2036	}
2037
2038	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2039
2040	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2041	print_sched_time(wait_time, 6);
2042
2043	print_sched_time(tr->dt_delay, 6);
2044	print_sched_time(tr->dt_run, 6);
2045
2046	if (sched->show_state)
2047		printf(" %5c ", task_state_char(thread, state));
2048
2049	if (sched->show_next) {
2050		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2051		printf(" %-*s", comm_width, nstr);
2052	}
2053
2054	if (sched->show_wakeups && !sched->show_next)
2055		printf("  %-*s", comm_width, "");
2056
2057	if (thread->tid == 0)
2058		goto out;
2059
2060	if (sched->show_callchain)
2061		printf("  ");
2062
2063	sample__fprintf_sym(sample, al, 0,
2064			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2065			    EVSEL__PRINT_CALLCHAIN_ARROW |
2066			    EVSEL__PRINT_SKIP_IGNORED,
2067			    &callchain_cursor, symbol_conf.bt_stop_list,  stdout);
2068
2069out:
2070	printf("\n");
2071}
2072
2073/*
2074 * Explanation of delta-time stats:
2075 *
2076 *            t = time of current schedule out event
2077 *        tprev = time of previous sched out event
2078 *                also time of schedule-in event for current task
2079 *    last_time = time of last sched change event for current task
2080 *                (i.e, time process was last scheduled out)
2081 * ready_to_run = time of wakeup for current task
2082 *
2083 * -----|------------|------------|------------|------
2084 *    last         ready        tprev          t
2085 *    time         to run
2086 *
2087 *      |-------- dt_wait --------|
2088 *                   |- dt_delay -|-- dt_run --|
2089 *
2090 *   dt_run = run time of current task
2091 *  dt_wait = time between last schedule out event for task and tprev
2092 *            represents time spent off the cpu
2093 * dt_delay = time between wakeup and schedule-in of task
2094 */
2095
2096static void timehist_update_runtime_stats(struct thread_runtime *r,
2097					 u64 t, u64 tprev)
2098{
2099	r->dt_delay   = 0;
2100	r->dt_sleep   = 0;
2101	r->dt_iowait  = 0;
2102	r->dt_preempt = 0;
2103	r->dt_run     = 0;
2104
2105	if (tprev) {
2106		r->dt_run = t - tprev;
2107		if (r->ready_to_run) {
2108			if (r->ready_to_run > tprev)
2109				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2110			else
2111				r->dt_delay = tprev - r->ready_to_run;
2112		}
2113
2114		if (r->last_time > tprev)
2115			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2116		else if (r->last_time) {
2117			u64 dt_wait = tprev - r->last_time;
2118
2119			if (r->last_state == TASK_RUNNING)
2120				r->dt_preempt = dt_wait;
2121			else if (r->last_state == TASK_UNINTERRUPTIBLE)
2122				r->dt_iowait = dt_wait;
2123			else
2124				r->dt_sleep = dt_wait;
2125		}
2126	}
2127
2128	update_stats(&r->run_stats, r->dt_run);
2129
2130	r->total_run_time     += r->dt_run;
2131	r->total_delay_time   += r->dt_delay;
2132	r->total_sleep_time   += r->dt_sleep;
2133	r->total_iowait_time  += r->dt_iowait;
2134	r->total_preempt_time += r->dt_preempt;
2135}
2136
2137static bool is_idle_sample(struct perf_sample *sample,
2138			   struct evsel *evsel)
2139{
2140	/* pid 0 == swapper == idle task */
2141	if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2142		return evsel__intval(evsel, sample, "prev_pid") == 0;
2143
2144	return sample->pid == 0;
2145}
2146
2147static void save_task_callchain(struct perf_sched *sched,
2148				struct perf_sample *sample,
2149				struct evsel *evsel,
2150				struct machine *machine)
2151{
2152	struct callchain_cursor *cursor = &callchain_cursor;
2153	struct thread *thread;
2154
2155	/* want main thread for process - has maps */
2156	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2157	if (thread == NULL) {
2158		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2159		return;
2160	}
2161
2162	if (!sched->show_callchain || sample->callchain == NULL)
2163		return;
2164
2165	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2166				      NULL, NULL, sched->max_stack + 2) != 0) {
2167		if (verbose > 0)
2168			pr_err("Failed to resolve callchain. Skipping\n");
2169
2170		return;
2171	}
2172
2173	callchain_cursor_commit(cursor);
2174
2175	while (true) {
2176		struct callchain_cursor_node *node;
2177		struct symbol *sym;
2178
2179		node = callchain_cursor_current(cursor);
2180		if (node == NULL)
2181			break;
2182
2183		sym = node->ms.sym;
2184		if (sym) {
2185			if (!strcmp(sym->name, "schedule") ||
2186			    !strcmp(sym->name, "__schedule") ||
2187			    !strcmp(sym->name, "preempt_schedule"))
2188				sym->ignore = 1;
2189		}
2190
2191		callchain_cursor_advance(cursor);
2192	}
2193}
2194
2195static int init_idle_thread(struct thread *thread)
2196{
2197	struct idle_thread_runtime *itr;
2198
2199	thread__set_comm(thread, idle_comm, 0);
2200
2201	itr = zalloc(sizeof(*itr));
2202	if (itr == NULL)
2203		return -ENOMEM;
2204
2205	init_stats(&itr->tr.run_stats);
2206	callchain_init(&itr->callchain);
2207	callchain_cursor_reset(&itr->cursor);
2208	thread__set_priv(thread, itr);
2209
2210	return 0;
2211}
2212
2213/*
2214 * Track idle stats per cpu by maintaining a local thread
2215 * struct for the idle task on each cpu.
2216 */
2217static int init_idle_threads(int ncpu)
2218{
2219	int i, ret;
2220
2221	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2222	if (!idle_threads)
2223		return -ENOMEM;
2224
2225	idle_max_cpu = ncpu;
2226
2227	/* allocate the actual thread struct if needed */
2228	for (i = 0; i < ncpu; ++i) {
2229		idle_threads[i] = thread__new(0, 0);
2230		if (idle_threads[i] == NULL)
2231			return -ENOMEM;
2232
2233		ret = init_idle_thread(idle_threads[i]);
2234		if (ret < 0)
2235			return ret;
2236	}
2237
2238	return 0;
2239}
2240
2241static void free_idle_threads(void)
2242{
2243	int i;
2244
2245	if (idle_threads == NULL)
2246		return;
2247
2248	for (i = 0; i < idle_max_cpu; ++i) {
2249		if ((idle_threads[i]))
2250			thread__delete(idle_threads[i]);
2251	}
2252
2253	free(idle_threads);
2254}
2255
2256static struct thread *get_idle_thread(int cpu)
2257{
2258	/*
2259	 * expand/allocate array of pointers to local thread
2260	 * structs if needed
2261	 */
2262	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2263		int i, j = __roundup_pow_of_two(cpu+1);
2264		void *p;
2265
2266		p = realloc(idle_threads, j * sizeof(struct thread *));
2267		if (!p)
2268			return NULL;
2269
2270		idle_threads = (struct thread **) p;
2271		for (i = idle_max_cpu; i < j; ++i)
2272			idle_threads[i] = NULL;
2273
2274		idle_max_cpu = j;
2275	}
2276
2277	/* allocate a new thread struct if needed */
2278	if (idle_threads[cpu] == NULL) {
2279		idle_threads[cpu] = thread__new(0, 0);
2280
2281		if (idle_threads[cpu]) {
2282			if (init_idle_thread(idle_threads[cpu]) < 0)
2283				return NULL;
2284		}
2285	}
2286
2287	return idle_threads[cpu];
2288}
2289
2290static void save_idle_callchain(struct perf_sched *sched,
2291				struct idle_thread_runtime *itr,
2292				struct perf_sample *sample)
2293{
2294	if (!sched->show_callchain || sample->callchain == NULL)
2295		return;
2296
2297	callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2298}
2299
2300static struct thread *timehist_get_thread(struct perf_sched *sched,
2301					  struct perf_sample *sample,
2302					  struct machine *machine,
2303					  struct evsel *evsel)
2304{
2305	struct thread *thread;
2306
2307	if (is_idle_sample(sample, evsel)) {
2308		thread = get_idle_thread(sample->cpu);
2309		if (thread == NULL)
2310			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2311
2312	} else {
2313		/* there were samples with tid 0 but non-zero pid */
2314		thread = machine__findnew_thread(machine, sample->pid,
2315						 sample->tid ?: sample->pid);
2316		if (thread == NULL) {
2317			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2318				 sample->tid);
2319		}
2320
2321		save_task_callchain(sched, sample, evsel, machine);
2322		if (sched->idle_hist) {
2323			struct thread *idle;
2324			struct idle_thread_runtime *itr;
2325
2326			idle = get_idle_thread(sample->cpu);
2327			if (idle == NULL) {
2328				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2329				return NULL;
2330			}
2331
2332			itr = thread__priv(idle);
2333			if (itr == NULL)
2334				return NULL;
2335
2336			itr->last_thread = thread;
2337
2338			/* copy task callchain when entering to idle */
2339			if (evsel__intval(evsel, sample, "next_pid") == 0)
2340				save_idle_callchain(sched, itr, sample);
2341		}
2342	}
2343
2344	return thread;
2345}
2346
2347static bool timehist_skip_sample(struct perf_sched *sched,
2348				 struct thread *thread,
2349				 struct evsel *evsel,
2350				 struct perf_sample *sample)
2351{
2352	bool rc = false;
2353
2354	if (thread__is_filtered(thread)) {
2355		rc = true;
2356		sched->skipped_samples++;
2357	}
2358
2359	if (sched->idle_hist) {
2360		if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2361			rc = true;
2362		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2363			 evsel__intval(evsel, sample, "next_pid") != 0)
2364			rc = true;
2365	}
2366
2367	return rc;
2368}
2369
2370static void timehist_print_wakeup_event(struct perf_sched *sched,
2371					struct evsel *evsel,
2372					struct perf_sample *sample,
2373					struct machine *machine,
2374					struct thread *awakened)
2375{
2376	struct thread *thread;
2377	char tstr[64];
2378
2379	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2380	if (thread == NULL)
2381		return;
2382
2383	/* show wakeup unless both awakee and awaker are filtered */
2384	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2385	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2386		return;
2387	}
2388
2389	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2390	printf("%15s [%04d] ", tstr, sample->cpu);
2391	if (sched->show_cpu_visual)
2392		printf(" %*s ", sched->max_cpu + 1, "");
2393
2394	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2395
2396	/* dt spacer */
2397	printf("  %9s  %9s  %9s ", "", "", "");
2398
2399	printf("awakened: %s", timehist_get_commstr(awakened));
2400
2401	printf("\n");
2402}
2403
2404static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2405					union perf_event *event __maybe_unused,
2406					struct evsel *evsel __maybe_unused,
2407					struct perf_sample *sample __maybe_unused,
2408					struct machine *machine __maybe_unused)
2409{
2410	return 0;
2411}
2412
2413static int timehist_sched_wakeup_event(struct perf_tool *tool,
2414				       union perf_event *event __maybe_unused,
2415				       struct evsel *evsel,
2416				       struct perf_sample *sample,
2417				       struct machine *machine)
2418{
2419	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2420	struct thread *thread;
2421	struct thread_runtime *tr = NULL;
2422	/* want pid of awakened task not pid in sample */
2423	const u32 pid = evsel__intval(evsel, sample, "pid");
2424
2425	thread = machine__findnew_thread(machine, 0, pid);
2426	if (thread == NULL)
2427		return -1;
2428
2429	tr = thread__get_runtime(thread);
2430	if (tr == NULL)
2431		return -1;
2432
2433	if (tr->ready_to_run == 0)
2434		tr->ready_to_run = sample->time;
2435
2436	/* show wakeups if requested */
2437	if (sched->show_wakeups &&
2438	    !perf_time__skip_sample(&sched->ptime, sample->time))
2439		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2440
2441	return 0;
2442}
2443
2444static void timehist_print_migration_event(struct perf_sched *sched,
2445					struct evsel *evsel,
2446					struct perf_sample *sample,
2447					struct machine *machine,
2448					struct thread *migrated)
2449{
2450	struct thread *thread;
2451	char tstr[64];
2452	u32 max_cpus = sched->max_cpu + 1;
2453	u32 ocpu, dcpu;
2454
2455	if (sched->summary_only)
2456		return;
2457
2458	max_cpus = sched->max_cpu + 1;
2459	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2460	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2461
2462	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2463	if (thread == NULL)
2464		return;
2465
2466	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2467	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2468		return;
2469	}
2470
2471	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2472	printf("%15s [%04d] ", tstr, sample->cpu);
2473
2474	if (sched->show_cpu_visual) {
2475		u32 i;
2476		char c;
2477
2478		printf("  ");
2479		for (i = 0; i < max_cpus; ++i) {
2480			c = (i == sample->cpu) ? 'm' : ' ';
2481			printf("%c", c);
2482		}
2483		printf("  ");
2484	}
2485
2486	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2487
2488	/* dt spacer */
2489	printf("  %9s  %9s  %9s ", "", "", "");
2490
2491	printf("migrated: %s", timehist_get_commstr(migrated));
2492	printf(" cpu %d => %d", ocpu, dcpu);
2493
2494	printf("\n");
2495}
2496
2497static int timehist_migrate_task_event(struct perf_tool *tool,
2498				       union perf_event *event __maybe_unused,
2499				       struct evsel *evsel,
2500				       struct perf_sample *sample,
2501				       struct machine *machine)
2502{
2503	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2504	struct thread *thread;
2505	struct thread_runtime *tr = NULL;
2506	/* want pid of migrated task not pid in sample */
2507	const u32 pid = evsel__intval(evsel, sample, "pid");
2508
2509	thread = machine__findnew_thread(machine, 0, pid);
2510	if (thread == NULL)
2511		return -1;
2512
2513	tr = thread__get_runtime(thread);
2514	if (tr == NULL)
2515		return -1;
2516
2517	tr->migrations++;
2518
2519	/* show migrations if requested */
2520	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2521
2522	return 0;
2523}
2524
2525static int timehist_sched_change_event(struct perf_tool *tool,
2526				       union perf_event *event,
2527				       struct evsel *evsel,
2528				       struct perf_sample *sample,
2529				       struct machine *machine)
2530{
2531	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2532	struct perf_time_interval *ptime = &sched->ptime;
2533	struct addr_location al;
2534	struct thread *thread;
2535	struct thread_runtime *tr = NULL;
2536	u64 tprev, t = sample->time;
2537	int rc = 0;
2538	int state = evsel__intval(evsel, sample, "prev_state");
2539
2540	if (machine__resolve(machine, &al, sample) < 0) {
2541		pr_err("problem processing %d event. skipping it\n",
2542		       event->header.type);
2543		rc = -1;
2544		goto out;
2545	}
2546
2547	thread = timehist_get_thread(sched, sample, machine, evsel);
2548	if (thread == NULL) {
2549		rc = -1;
2550		goto out;
2551	}
2552
2553	if (timehist_skip_sample(sched, thread, evsel, sample))
2554		goto out;
2555
2556	tr = thread__get_runtime(thread);
2557	if (tr == NULL) {
2558		rc = -1;
2559		goto out;
2560	}
2561
2562	tprev = evsel__get_time(evsel, sample->cpu);
2563
2564	/*
2565	 * If start time given:
2566	 * - sample time is under window user cares about - skip sample
2567	 * - tprev is under window user cares about  - reset to start of window
2568	 */
2569	if (ptime->start && ptime->start > t)
2570		goto out;
2571
2572	if (tprev && ptime->start > tprev)
2573		tprev = ptime->start;
2574
2575	/*
2576	 * If end time given:
2577	 * - previous sched event is out of window - we are done
2578	 * - sample time is beyond window user cares about - reset it
2579	 *   to close out stats for time window interest
2580	 */
2581	if (ptime->end) {
2582		if (tprev > ptime->end)
2583			goto out;
2584
2585		if (t > ptime->end)
2586			t = ptime->end;
2587	}
2588
2589	if (!sched->idle_hist || thread->tid == 0) {
2590		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2591			timehist_update_runtime_stats(tr, t, tprev);
2592
2593		if (sched->idle_hist) {
2594			struct idle_thread_runtime *itr = (void *)tr;
2595			struct thread_runtime *last_tr;
2596
2597			BUG_ON(thread->tid != 0);
2598
2599			if (itr->last_thread == NULL)
2600				goto out;
2601
2602			/* add current idle time as last thread's runtime */
2603			last_tr = thread__get_runtime(itr->last_thread);
2604			if (last_tr == NULL)
2605				goto out;
2606
2607			timehist_update_runtime_stats(last_tr, t, tprev);
2608			/*
2609			 * remove delta time of last thread as it's not updated
2610			 * and otherwise it will show an invalid value next
2611			 * time.  we only care total run time and run stat.
2612			 */
2613			last_tr->dt_run = 0;
2614			last_tr->dt_delay = 0;
2615			last_tr->dt_sleep = 0;
2616			last_tr->dt_iowait = 0;
2617			last_tr->dt_preempt = 0;
2618
2619			if (itr->cursor.nr)
2620				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2621
2622			itr->last_thread = NULL;
2623		}
2624	}
2625
2626	if (!sched->summary_only)
2627		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2628
2629out:
2630	if (sched->hist_time.start == 0 && t >= ptime->start)
2631		sched->hist_time.start = t;
2632	if (ptime->end == 0 || t <= ptime->end)
2633		sched->hist_time.end = t;
2634
2635	if (tr) {
2636		/* time of this sched_switch event becomes last time task seen */
2637		tr->last_time = sample->time;
2638
2639		/* last state is used to determine where to account wait time */
2640		tr->last_state = state;
2641
2642		/* sched out event for task so reset ready to run time */
2643		tr->ready_to_run = 0;
2644	}
2645
2646	evsel__save_time(evsel, sample->time, sample->cpu);
2647
2648	return rc;
2649}
2650
2651static int timehist_sched_switch_event(struct perf_tool *tool,
2652			     union perf_event *event,
2653			     struct evsel *evsel,
2654			     struct perf_sample *sample,
2655			     struct machine *machine __maybe_unused)
2656{
2657	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2658}
2659
2660static int process_lost(struct perf_tool *tool __maybe_unused,
2661			union perf_event *event,
2662			struct perf_sample *sample,
2663			struct machine *machine __maybe_unused)
2664{
2665	char tstr[64];
2666
2667	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2668	printf("%15s ", tstr);
2669	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2670
2671	return 0;
2672}
2673
2674
2675static void print_thread_runtime(struct thread *t,
2676				 struct thread_runtime *r)
2677{
2678	double mean = avg_stats(&r->run_stats);
2679	float stddev;
2680
2681	printf("%*s   %5d  %9" PRIu64 " ",
2682	       comm_width, timehist_get_commstr(t), t->ppid,
2683	       (u64) r->run_stats.n);
2684
2685	print_sched_time(r->total_run_time, 8);
2686	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2687	print_sched_time(r->run_stats.min, 6);
2688	printf(" ");
2689	print_sched_time((u64) mean, 6);
2690	printf(" ");
2691	print_sched_time(r->run_stats.max, 6);
2692	printf("  ");
2693	printf("%5.2f", stddev);
2694	printf("   %5" PRIu64, r->migrations);
2695	printf("\n");
2696}
2697
2698static void print_thread_waittime(struct thread *t,
2699				  struct thread_runtime *r)
2700{
2701	printf("%*s   %5d  %9" PRIu64 " ",
2702	       comm_width, timehist_get_commstr(t), t->ppid,
2703	       (u64) r->run_stats.n);
2704
2705	print_sched_time(r->total_run_time, 8);
2706	print_sched_time(r->total_sleep_time, 6);
2707	printf(" ");
2708	print_sched_time(r->total_iowait_time, 6);
2709	printf(" ");
2710	print_sched_time(r->total_preempt_time, 6);
2711	printf(" ");
2712	print_sched_time(r->total_delay_time, 6);
2713	printf("\n");
2714}
2715
2716struct total_run_stats {
2717	struct perf_sched *sched;
2718	u64  sched_count;
2719	u64  task_count;
2720	u64  total_run_time;
2721};
2722
2723static int __show_thread_runtime(struct thread *t, void *priv)
2724{
2725	struct total_run_stats *stats = priv;
2726	struct thread_runtime *r;
2727
2728	if (thread__is_filtered(t))
2729		return 0;
2730
2731	r = thread__priv(t);
2732	if (r && r->run_stats.n) {
2733		stats->task_count++;
2734		stats->sched_count += r->run_stats.n;
2735		stats->total_run_time += r->total_run_time;
2736
2737		if (stats->sched->show_state)
2738			print_thread_waittime(t, r);
2739		else
2740			print_thread_runtime(t, r);
2741	}
2742
2743	return 0;
2744}
2745
2746static int show_thread_runtime(struct thread *t, void *priv)
2747{
2748	if (t->dead)
2749		return 0;
2750
2751	return __show_thread_runtime(t, priv);
2752}
2753
2754static int show_deadthread_runtime(struct thread *t, void *priv)
2755{
2756	if (!t->dead)
2757		return 0;
2758
2759	return __show_thread_runtime(t, priv);
2760}
2761
2762static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2763{
2764	const char *sep = " <- ";
2765	struct callchain_list *chain;
2766	size_t ret = 0;
2767	char bf[1024];
2768	bool first;
2769
2770	if (node == NULL)
2771		return 0;
2772
2773	ret = callchain__fprintf_folded(fp, node->parent);
2774	first = (ret == 0);
2775
2776	list_for_each_entry(chain, &node->val, list) {
2777		if (chain->ip >= PERF_CONTEXT_MAX)
2778			continue;
2779		if (chain->ms.sym && chain->ms.sym->ignore)
2780			continue;
2781		ret += fprintf(fp, "%s%s", first ? "" : sep,
2782			       callchain_list__sym_name(chain, bf, sizeof(bf),
2783							false));
2784		first = false;
2785	}
2786
2787	return ret;
2788}
2789
2790static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2791{
2792	size_t ret = 0;
2793	FILE *fp = stdout;
2794	struct callchain_node *chain;
2795	struct rb_node *rb_node = rb_first_cached(root);
2796
2797	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2798	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2799	       graph_dotted_line);
2800
2801	while (rb_node) {
2802		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2803		rb_node = rb_next(rb_node);
2804
2805		ret += fprintf(fp, "  ");
2806		print_sched_time(chain->hit, 12);
2807		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2808		ret += fprintf(fp, " %8d  ", chain->count);
2809		ret += callchain__fprintf_folded(fp, chain);
2810		ret += fprintf(fp, "\n");
2811	}
2812
2813	return ret;
2814}
2815
2816static void timehist_print_summary(struct perf_sched *sched,
2817				   struct perf_session *session)
2818{
2819	struct machine *m = &session->machines.host;
2820	struct total_run_stats totals;
2821	u64 task_count;
2822	struct thread *t;
2823	struct thread_runtime *r;
2824	int i;
2825	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2826
2827	memset(&totals, 0, sizeof(totals));
2828	totals.sched = sched;
2829
2830	if (sched->idle_hist) {
2831		printf("\nIdle-time summary\n");
2832		printf("%*s  parent  sched-out  ", comm_width, "comm");
2833		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2834	} else if (sched->show_state) {
2835		printf("\nWait-time summary\n");
2836		printf("%*s  parent   sched-in  ", comm_width, "comm");
2837		printf("   run-time      sleep      iowait     preempt       delay\n");
2838	} else {
2839		printf("\nRuntime summary\n");
2840		printf("%*s  parent   sched-in  ", comm_width, "comm");
2841		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2842	}
2843	printf("%*s            (count)  ", comm_width, "");
2844	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2845	       sched->show_state ? "(msec)" : "%");
2846	printf("%.117s\n", graph_dotted_line);
2847
2848	machine__for_each_thread(m, show_thread_runtime, &totals);
2849	task_count = totals.task_count;
2850	if (!task_count)
2851		printf("<no still running tasks>\n");
2852
2853	printf("\nTerminated tasks:\n");
2854	machine__for_each_thread(m, show_deadthread_runtime, &totals);
2855	if (task_count == totals.task_count)
2856		printf("<no terminated tasks>\n");
2857
2858	/* CPU idle stats not tracked when samples were skipped */
2859	if (sched->skipped_samples && !sched->idle_hist)
2860		return;
2861
2862	printf("\nIdle stats:\n");
2863	for (i = 0; i < idle_max_cpu; ++i) {
2864		if (cpu_list && !test_bit(i, cpu_bitmap))
2865			continue;
2866
2867		t = idle_threads[i];
2868		if (!t)
2869			continue;
2870
2871		r = thread__priv(t);
2872		if (r && r->run_stats.n) {
2873			totals.sched_count += r->run_stats.n;
2874			printf("    CPU %2d idle for ", i);
2875			print_sched_time(r->total_run_time, 6);
2876			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2877		} else
2878			printf("    CPU %2d idle entire time window\n", i);
2879	}
2880
2881	if (sched->idle_hist && sched->show_callchain) {
2882		callchain_param.mode  = CHAIN_FOLDED;
2883		callchain_param.value = CCVAL_PERIOD;
2884
2885		callchain_register_param(&callchain_param);
2886
2887		printf("\nIdle stats by callchain:\n");
2888		for (i = 0; i < idle_max_cpu; ++i) {
2889			struct idle_thread_runtime *itr;
2890
2891			t = idle_threads[i];
2892			if (!t)
2893				continue;
2894
2895			itr = thread__priv(t);
2896			if (itr == NULL)
2897				continue;
2898
2899			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2900					     0, &callchain_param);
2901
2902			printf("  CPU %2d:", i);
2903			print_sched_time(itr->tr.total_run_time, 6);
2904			printf(" msec\n");
2905			timehist_print_idlehist_callchain(&itr->sorted_root);
2906			printf("\n");
2907		}
2908	}
2909
2910	printf("\n"
2911	       "    Total number of unique tasks: %" PRIu64 "\n"
2912	       "Total number of context switches: %" PRIu64 "\n",
2913	       totals.task_count, totals.sched_count);
2914
2915	printf("           Total run time (msec): ");
2916	print_sched_time(totals.total_run_time, 2);
2917	printf("\n");
2918
2919	printf("    Total scheduling time (msec): ");
2920	print_sched_time(hist_time, 2);
2921	printf(" (x %d)\n", sched->max_cpu);
2922}
2923
2924typedef int (*sched_handler)(struct perf_tool *tool,
2925			  union perf_event *event,
2926			  struct evsel *evsel,
2927			  struct perf_sample *sample,
2928			  struct machine *machine);
2929
2930static int perf_timehist__process_sample(struct perf_tool *tool,
2931					 union perf_event *event,
2932					 struct perf_sample *sample,
2933					 struct evsel *evsel,
2934					 struct machine *machine)
2935{
2936	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2937	int err = 0;
2938	int this_cpu = sample->cpu;
 
 
2939
2940	if (this_cpu > sched->max_cpu)
2941		sched->max_cpu = this_cpu;
2942
2943	if (evsel->handler != NULL) {
2944		sched_handler f = evsel->handler;
2945
2946		err = f(tool, event, evsel, sample, machine);
2947	}
2948
2949	return err;
2950}
2951
2952static int timehist_check_attr(struct perf_sched *sched,
2953			       struct evlist *evlist)
2954{
2955	struct evsel *evsel;
2956	struct evsel_runtime *er;
2957
2958	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2959		er = evsel__get_runtime(evsel);
2960		if (er == NULL) {
2961			pr_err("Failed to allocate memory for evsel runtime data\n");
2962			return -1;
2963		}
2964
2965		if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2966			pr_info("Samples do not have callchains.\n");
2967			sched->show_callchain = 0;
2968			symbol_conf.use_callchain = 0;
2969		}
2970	}
2971
2972	return 0;
2973}
2974
2975static int perf_sched__timehist(struct perf_sched *sched)
2976{
2977	struct evsel_str_handler handlers[] = {
2978		{ "sched:sched_switch",       timehist_sched_switch_event, },
2979		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
2980		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
2981		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2982	};
2983	const struct evsel_str_handler migrate_handlers[] = {
2984		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
2985	};
2986	struct perf_data data = {
2987		.path  = input_name,
2988		.mode  = PERF_DATA_MODE_READ,
2989		.force = sched->force,
2990	};
2991
2992	struct perf_session *session;
2993	struct evlist *evlist;
2994	int err = -1;
2995
2996	/*
2997	 * event handlers for timehist option
2998	 */
2999	sched->tool.sample	 = perf_timehist__process_sample;
3000	sched->tool.mmap	 = perf_event__process_mmap;
3001	sched->tool.comm	 = perf_event__process_comm;
3002	sched->tool.exit	 = perf_event__process_exit;
3003	sched->tool.fork	 = perf_event__process_fork;
3004	sched->tool.lost	 = process_lost;
3005	sched->tool.attr	 = perf_event__process_attr;
3006	sched->tool.tracing_data = perf_event__process_tracing_data;
3007	sched->tool.build_id	 = perf_event__process_build_id;
3008
3009	sched->tool.ordered_events = true;
3010	sched->tool.ordering_requires_timestamps = true;
3011
3012	symbol_conf.use_callchain = sched->show_callchain;
3013
3014	session = perf_session__new(&data, false, &sched->tool);
3015	if (IS_ERR(session))
3016		return PTR_ERR(session);
3017
3018	if (cpu_list) {
3019		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3020		if (err < 0)
3021			goto out;
3022	}
3023
3024	evlist = session->evlist;
3025
3026	symbol__init(&session->header.env);
3027
3028	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3029		pr_err("Invalid time string\n");
3030		return -EINVAL;
3031	}
3032
3033	if (timehist_check_attr(sched, evlist) != 0)
3034		goto out;
3035
3036	setup_pager();
3037
3038	/* prefer sched_waking if it is captured */
3039	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3040		handlers[1].handler = timehist_sched_wakeup_ignore;
3041
3042	/* setup per-evsel handlers */
3043	if (perf_session__set_tracepoints_handlers(session, handlers))
3044		goto out;
3045
3046	/* sched_switch event at a minimum needs to exist */
3047	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3048		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3049		goto out;
3050	}
3051
3052	if (sched->show_migrations &&
3053	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
3054		goto out;
3055
3056	/* pre-allocate struct for per-CPU idle stats */
3057	sched->max_cpu = session->header.env.nr_cpus_online;
3058	if (sched->max_cpu == 0)
3059		sched->max_cpu = 4;
3060	if (init_idle_threads(sched->max_cpu))
3061		goto out;
3062
3063	/* summary_only implies summary option, but don't overwrite summary if set */
3064	if (sched->summary_only)
3065		sched->summary = sched->summary_only;
3066
3067	if (!sched->summary_only)
3068		timehist_header(sched);
3069
3070	err = perf_session__process_events(session);
3071	if (err) {
3072		pr_err("Failed to process events, error %d", err);
3073		goto out;
3074	}
3075
3076	sched->nr_events      = evlist->stats.nr_events[0];
3077	sched->nr_lost_events = evlist->stats.total_lost;
3078	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3079
3080	if (sched->summary)
3081		timehist_print_summary(sched, session);
3082
3083out:
3084	free_idle_threads();
3085	perf_session__delete(session);
3086
3087	return err;
3088}
3089
3090
3091static void print_bad_events(struct perf_sched *sched)
3092{
3093	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3094		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3095			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3096			sched->nr_unordered_timestamps, sched->nr_timestamps);
3097	}
3098	if (sched->nr_lost_events && sched->nr_events) {
3099		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3100			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3101			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3102	}
3103	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3104		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3105			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3106			sched->nr_context_switch_bugs, sched->nr_timestamps);
3107		if (sched->nr_lost_events)
3108			printf(" (due to lost events?)");
3109		printf("\n");
3110	}
3111}
3112
3113static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3114{
3115	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3116	struct work_atoms *this;
3117	const char *comm = thread__comm_str(data->thread), *this_comm;
3118	bool leftmost = true;
3119
3120	while (*new) {
3121		int cmp;
3122
3123		this = container_of(*new, struct work_atoms, node);
3124		parent = *new;
3125
3126		this_comm = thread__comm_str(this->thread);
3127		cmp = strcmp(comm, this_comm);
3128		if (cmp > 0) {
3129			new = &((*new)->rb_left);
3130		} else if (cmp < 0) {
3131			new = &((*new)->rb_right);
3132			leftmost = false;
3133		} else {
3134			this->num_merged++;
3135			this->total_runtime += data->total_runtime;
3136			this->nb_atoms += data->nb_atoms;
3137			this->total_lat += data->total_lat;
3138			list_splice(&data->work_list, &this->work_list);
3139			if (this->max_lat < data->max_lat) {
3140				this->max_lat = data->max_lat;
3141				this->max_lat_start = data->max_lat_start;
3142				this->max_lat_end = data->max_lat_end;
3143			}
3144			zfree(&data);
3145			return;
3146		}
3147	}
3148
3149	data->num_merged++;
3150	rb_link_node(&data->node, parent, new);
3151	rb_insert_color_cached(&data->node, root, leftmost);
3152}
3153
3154static void perf_sched__merge_lat(struct perf_sched *sched)
3155{
3156	struct work_atoms *data;
3157	struct rb_node *node;
3158
3159	if (sched->skip_merge)
3160		return;
3161
3162	while ((node = rb_first_cached(&sched->atom_root))) {
3163		rb_erase_cached(node, &sched->atom_root);
3164		data = rb_entry(node, struct work_atoms, node);
3165		__merge_work_atoms(&sched->merged_atom_root, data);
3166	}
3167}
3168
3169static int perf_sched__lat(struct perf_sched *sched)
3170{
3171	struct rb_node *next;
3172
3173	setup_pager();
3174
3175	if (perf_sched__read_events(sched))
3176		return -1;
3177
3178	perf_sched__merge_lat(sched);
3179	perf_sched__sort_lat(sched);
3180
3181	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3182	printf("  Task                  |   Runtime ms  | Switches | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3183	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3184
3185	next = rb_first_cached(&sched->sorted_atom_root);
3186
3187	while (next) {
3188		struct work_atoms *work_list;
3189
3190		work_list = rb_entry(next, struct work_atoms, node);
3191		output_lat_thread(sched, work_list);
3192		next = rb_next(next);
3193		thread__zput(work_list->thread);
3194	}
3195
3196	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3197	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3198		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3199
3200	printf(" ---------------------------------------------------\n");
3201
3202	print_bad_events(sched);
3203	printf("\n");
3204
3205	return 0;
3206}
3207
3208static int setup_map_cpus(struct perf_sched *sched)
3209{
3210	struct perf_cpu_map *map;
3211
3212	sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3213
3214	if (sched->map.comp) {
3215		sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3216		if (!sched->map.comp_cpus)
3217			return -1;
3218	}
3219
3220	if (!sched->map.cpus_str)
3221		return 0;
3222
3223	map = perf_cpu_map__new(sched->map.cpus_str);
3224	if (!map) {
3225		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3226		return -1;
3227	}
3228
3229	sched->map.cpus = map;
3230	return 0;
3231}
3232
3233static int setup_color_pids(struct perf_sched *sched)
3234{
3235	struct perf_thread_map *map;
3236
3237	if (!sched->map.color_pids_str)
3238		return 0;
3239
3240	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3241	if (!map) {
3242		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3243		return -1;
3244	}
3245
3246	sched->map.color_pids = map;
3247	return 0;
3248}
3249
3250static int setup_color_cpus(struct perf_sched *sched)
3251{
3252	struct perf_cpu_map *map;
3253
3254	if (!sched->map.color_cpus_str)
3255		return 0;
3256
3257	map = perf_cpu_map__new(sched->map.color_cpus_str);
3258	if (!map) {
3259		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3260		return -1;
3261	}
3262
3263	sched->map.color_cpus = map;
3264	return 0;
3265}
3266
3267static int perf_sched__map(struct perf_sched *sched)
3268{
3269	if (setup_map_cpus(sched))
3270		return -1;
3271
3272	if (setup_color_pids(sched))
3273		return -1;
3274
3275	if (setup_color_cpus(sched))
3276		return -1;
3277
3278	setup_pager();
3279	if (perf_sched__read_events(sched))
3280		return -1;
3281	print_bad_events(sched);
3282	return 0;
3283}
3284
3285static int perf_sched__replay(struct perf_sched *sched)
3286{
3287	unsigned long i;
3288
3289	calibrate_run_measurement_overhead(sched);
3290	calibrate_sleep_measurement_overhead(sched);
3291
3292	test_calibrations(sched);
3293
3294	if (perf_sched__read_events(sched))
3295		return -1;
3296
3297	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3298	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3299	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3300
3301	if (sched->targetless_wakeups)
3302		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3303	if (sched->multitarget_wakeups)
3304		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3305	if (sched->nr_run_events_optimized)
3306		printf("run atoms optimized: %ld\n",
3307			sched->nr_run_events_optimized);
3308
3309	print_task_traces(sched);
3310	add_cross_task_wakeups(sched);
3311
 
3312	create_tasks(sched);
3313	printf("------------------------------------------------------------\n");
3314	for (i = 0; i < sched->replay_repeat; i++)
3315		run_one_test(sched);
3316
 
 
3317	return 0;
3318}
3319
3320static void setup_sorting(struct perf_sched *sched, const struct option *options,
3321			  const char * const usage_msg[])
3322{
3323	char *tmp, *tok, *str = strdup(sched->sort_order);
3324
3325	for (tok = strtok_r(str, ", ", &tmp);
3326			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3327		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3328			usage_with_options_msg(usage_msg, options,
3329					"Unknown --sort key: `%s'", tok);
3330		}
3331	}
3332
3333	free(str);
3334
3335	sort_dimension__add("pid", &sched->cmp_pid);
3336}
3337
3338static bool schedstat_events_exposed(void)
3339{
3340	/*
3341	 * Select "sched:sched_stat_wait" event to check
3342	 * whether schedstat tracepoints are exposed.
3343	 */
3344	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3345		false : true;
3346}
3347
3348static int __cmd_record(int argc, const char **argv)
3349{
3350	unsigned int rec_argc, i, j;
3351	const char **rec_argv;
 
3352	const char * const record_args[] = {
3353		"record",
3354		"-a",
3355		"-R",
3356		"-m", "1024",
3357		"-c", "1",
3358		"-e", "sched:sched_switch",
3359		"-e", "sched:sched_stat_runtime",
3360		"-e", "sched:sched_process_fork",
3361		"-e", "sched:sched_wakeup_new",
3362		"-e", "sched:sched_migrate_task",
3363	};
3364
3365	/*
3366	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3367	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3368	 * to prevent "perf sched record" execution failure, determine
3369	 * whether to record schedstat events according to actual situation.
3370	 */
3371	const char * const schedstat_args[] = {
3372		"-e", "sched:sched_stat_wait",
3373		"-e", "sched:sched_stat_sleep",
3374		"-e", "sched:sched_stat_iowait",
3375	};
3376	unsigned int schedstat_argc = schedstat_events_exposed() ?
3377		ARRAY_SIZE(schedstat_args) : 0;
3378
3379	struct tep_event *waking_event;
 
3380
3381	/*
3382	 * +2 for either "-e", "sched:sched_wakeup" or
3383	 * "-e", "sched:sched_waking"
3384	 */
3385	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3386	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3387
3388	if (rec_argv == NULL)
3389		return -ENOMEM;
 
 
 
 
 
3390
3391	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3392		rec_argv[i] = strdup(record_args[i]);
3393
3394	rec_argv[i++] = "-e";
3395	waking_event = trace_event__tp_format("sched", "sched_waking");
3396	if (!IS_ERR(waking_event))
3397		rec_argv[i++] = strdup("sched:sched_waking");
3398	else
3399		rec_argv[i++] = strdup("sched:sched_wakeup");
3400
3401	for (j = 0; j < schedstat_argc; j++)
3402		rec_argv[i++] = strdup(schedstat_args[j]);
3403
3404	for (j = 1; j < (unsigned int)argc; j++, i++)
3405		rec_argv[i] = argv[j];
3406
3407	BUG_ON(i != rec_argc);
3408
3409	return cmd_record(i, rec_argv);
 
 
 
 
 
 
 
 
3410}
3411
3412int cmd_sched(int argc, const char **argv)
3413{
3414	static const char default_sort_order[] = "avg, max, switch, runtime";
3415	struct perf_sched sched = {
3416		.tool = {
3417			.sample		 = perf_sched__process_tracepoint_sample,
3418			.comm		 = perf_sched__process_comm,
3419			.namespaces	 = perf_event__process_namespaces,
3420			.lost		 = perf_event__process_lost,
3421			.fork		 = perf_sched__process_fork_event,
3422			.ordered_events = true,
3423		},
3424		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3425		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3426		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3427		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3428		.sort_order	      = default_sort_order,
3429		.replay_repeat	      = 10,
3430		.profile_cpu	      = -1,
3431		.next_shortname1      = 'A',
3432		.next_shortname2      = '0',
3433		.skip_merge           = 0,
3434		.show_callchain	      = 1,
3435		.max_stack            = 5,
3436	};
3437	const struct option sched_options[] = {
3438	OPT_STRING('i', "input", &input_name, "file",
3439		    "input file name"),
3440	OPT_INCR('v', "verbose", &verbose,
3441		    "be more verbose (show symbol address, etc)"),
3442	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3443		    "dump raw trace in ASCII"),
3444	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3445	OPT_END()
3446	};
3447	const struct option latency_options[] = {
3448	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3449		   "sort by key(s): runtime, switch, avg, max"),
3450	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3451		    "CPU to profile on"),
3452	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3453		    "latency stats per pid instead of per comm"),
3454	OPT_PARENT(sched_options)
3455	};
3456	const struct option replay_options[] = {
3457	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3458		     "repeat the workload replay N times (-1: infinite)"),
3459	OPT_PARENT(sched_options)
3460	};
3461	const struct option map_options[] = {
3462	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3463		    "map output in compact mode"),
3464	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3465		   "highlight given pids in map"),
3466	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3467                    "highlight given CPUs in map"),
3468	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3469                    "display given CPUs in map"),
3470	OPT_PARENT(sched_options)
3471	};
3472	const struct option timehist_options[] = {
3473	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3474		   "file", "vmlinux pathname"),
3475	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3476		   "file", "kallsyms pathname"),
3477	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3478		    "Display call chains if present (default on)"),
3479	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3480		   "Maximum number of functions to display backtrace."),
3481	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3482		    "Look for files with symbols relative to this directory"),
3483	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3484		    "Show only syscall summary with statistics"),
3485	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3486		    "Show all syscalls and summary with statistics"),
3487	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3488	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3489	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3490	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3491	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3492	OPT_STRING(0, "time", &sched.time_str, "str",
3493		   "Time span for analysis (start,stop)"),
3494	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3495	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3496		   "analyze events only for given process id(s)"),
3497	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3498		   "analyze events only for given thread id(s)"),
3499	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3500	OPT_PARENT(sched_options)
3501	};
3502
3503	const char * const latency_usage[] = {
3504		"perf sched latency [<options>]",
3505		NULL
3506	};
3507	const char * const replay_usage[] = {
3508		"perf sched replay [<options>]",
3509		NULL
3510	};
3511	const char * const map_usage[] = {
3512		"perf sched map [<options>]",
3513		NULL
3514	};
3515	const char * const timehist_usage[] = {
3516		"perf sched timehist [<options>]",
3517		NULL
3518	};
3519	const char *const sched_subcommands[] = { "record", "latency", "map",
3520						  "replay", "script",
3521						  "timehist", NULL };
3522	const char *sched_usage[] = {
3523		NULL,
3524		NULL
3525	};
3526	struct trace_sched_handler lat_ops  = {
3527		.wakeup_event	    = latency_wakeup_event,
3528		.switch_event	    = latency_switch_event,
3529		.runtime_event	    = latency_runtime_event,
3530		.migrate_task_event = latency_migrate_task_event,
3531	};
3532	struct trace_sched_handler map_ops  = {
3533		.switch_event	    = map_switch_event,
3534	};
3535	struct trace_sched_handler replay_ops  = {
3536		.wakeup_event	    = replay_wakeup_event,
3537		.switch_event	    = replay_switch_event,
3538		.fork_event	    = replay_fork_event,
3539	};
3540	unsigned int i;
 
3541
 
 
3542	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3543		sched.curr_pid[i] = -1;
3544
3545	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3546					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3547	if (!argc)
3548		usage_with_options(sched_usage, sched_options);
3549
3550	/*
3551	 * Aliased to 'perf script' for now:
3552	 */
3553	if (!strcmp(argv[0], "script"))
3554		return cmd_script(argc, argv);
3555
3556	if (!strncmp(argv[0], "rec", 3)) {
3557		return __cmd_record(argc, argv);
3558	} else if (!strncmp(argv[0], "lat", 3)) {
3559		sched.tp_handler = &lat_ops;
3560		if (argc > 1) {
3561			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3562			if (argc)
3563				usage_with_options(latency_usage, latency_options);
3564		}
3565		setup_sorting(&sched, latency_options, latency_usage);
3566		return perf_sched__lat(&sched);
3567	} else if (!strcmp(argv[0], "map")) {
3568		if (argc) {
3569			argc = parse_options(argc, argv, map_options, map_usage, 0);
3570			if (argc)
3571				usage_with_options(map_usage, map_options);
3572		}
3573		sched.tp_handler = &map_ops;
3574		setup_sorting(&sched, latency_options, latency_usage);
3575		return perf_sched__map(&sched);
3576	} else if (!strncmp(argv[0], "rep", 3)) {
3577		sched.tp_handler = &replay_ops;
3578		if (argc) {
3579			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3580			if (argc)
3581				usage_with_options(replay_usage, replay_options);
3582		}
3583		return perf_sched__replay(&sched);
3584	} else if (!strcmp(argv[0], "timehist")) {
3585		if (argc) {
3586			argc = parse_options(argc, argv, timehist_options,
3587					     timehist_usage, 0);
3588			if (argc)
3589				usage_with_options(timehist_usage, timehist_options);
3590		}
3591		if ((sched.show_wakeups || sched.show_next) &&
3592		    sched.summary_only) {
3593			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3594			parse_options_usage(timehist_usage, timehist_options, "s", true);
3595			if (sched.show_wakeups)
3596				parse_options_usage(NULL, timehist_options, "w", true);
3597			if (sched.show_next)
3598				parse_options_usage(NULL, timehist_options, "n", true);
3599			return -EINVAL;
 
3600		}
 
 
 
3601
3602		return perf_sched__timehist(&sched);
3603	} else {
3604		usage_with_options(sched_usage, sched_options);
3605	}
3606
3607	return 0;
 
 
 
 
3608}