Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf.h"
   4#include "perf-sys.h"
   5
   6#include "util/cpumap.h"
   7#include "util/evlist.h"
 
   8#include "util/evsel.h"
   9#include "util/evsel_fprintf.h"
  10#include "util/mutex.h"
  11#include "util/symbol.h"
  12#include "util/thread.h"
  13#include "util/header.h"
  14#include "util/session.h"
  15#include "util/tool.h"
  16#include "util/cloexec.h"
  17#include "util/thread_map.h"
  18#include "util/color.h"
  19#include "util/stat.h"
  20#include "util/string2.h"
  21#include "util/callchain.h"
  22#include "util/time-utils.h"
  23
  24#include <subcmd/pager.h>
  25#include <subcmd/parse-options.h>
  26#include "util/trace-event.h"
  27
  28#include "util/debug.h"
  29#include "util/event.h"
  30
  31#include <linux/kernel.h>
  32#include <linux/log2.h>
  33#include <linux/zalloc.h>
  34#include <sys/prctl.h>
  35#include <sys/resource.h>
  36#include <inttypes.h>
  37
  38#include <errno.h>
  39#include <semaphore.h>
  40#include <pthread.h>
  41#include <math.h>
  42#include <api/fs/fs.h>
  43#include <perf/cpumap.h>
  44#include <linux/time64.h>
  45#include <linux/err.h>
  46
  47#include <linux/ctype.h>
  48
  49#define PR_SET_NAME		15               /* Set process name */
  50#define MAX_CPUS		4096
  51#define COMM_LEN		20
  52#define SYM_LEN			129
  53#define MAX_PID			1024000
  54
  55static const char *cpu_list;
  56static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
  57
  58struct sched_atom;
  59
  60struct task_desc {
  61	unsigned long		nr;
  62	unsigned long		pid;
  63	char			comm[COMM_LEN];
  64
  65	unsigned long		nr_events;
  66	unsigned long		curr_event;
  67	struct sched_atom	**atoms;
  68
  69	pthread_t		thread;
  70	sem_t			sleep_sem;
  71
  72	sem_t			ready_for_work;
  73	sem_t			work_done_sem;
  74
  75	u64			cpu_usage;
  76};
  77
  78enum sched_event_type {
  79	SCHED_EVENT_RUN,
  80	SCHED_EVENT_SLEEP,
  81	SCHED_EVENT_WAKEUP,
  82	SCHED_EVENT_MIGRATION,
  83};
  84
  85struct sched_atom {
  86	enum sched_event_type	type;
  87	int			specific_wait;
  88	u64			timestamp;
  89	u64			duration;
  90	unsigned long		nr;
  91	sem_t			*wait_sem;
  92	struct task_desc	*wakee;
  93};
  94
  95#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  96
  97/* task state bitmask, copied from include/linux/sched.h */
  98#define TASK_RUNNING		0
  99#define TASK_INTERRUPTIBLE	1
 100#define TASK_UNINTERRUPTIBLE	2
 101#define __TASK_STOPPED		4
 102#define __TASK_TRACED		8
 103/* in tsk->exit_state */
 104#define EXIT_DEAD		16
 105#define EXIT_ZOMBIE		32
 106#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
 107/* in tsk->state again */
 108#define TASK_DEAD		64
 109#define TASK_WAKEKILL		128
 110#define TASK_WAKING		256
 111#define TASK_PARKED		512
 112
 113enum thread_state {
 114	THREAD_SLEEPING = 0,
 115	THREAD_WAIT_CPU,
 116	THREAD_SCHED_IN,
 117	THREAD_IGNORE
 118};
 119
 120struct work_atom {
 121	struct list_head	list;
 122	enum thread_state	state;
 123	u64			sched_out_time;
 124	u64			wake_up_time;
 125	u64			sched_in_time;
 126	u64			runtime;
 127};
 128
 129struct work_atoms {
 130	struct list_head	work_list;
 131	struct thread		*thread;
 132	struct rb_node		node;
 133	u64			max_lat;
 134	u64			max_lat_start;
 135	u64			max_lat_end;
 136	u64			total_lat;
 137	u64			nb_atoms;
 138	u64			total_runtime;
 139	int			num_merged;
 140};
 141
 142typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 143
 144struct perf_sched;
 145
 146struct trace_sched_handler {
 147	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 148			    struct perf_sample *sample, struct machine *machine);
 149
 150	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 151			     struct perf_sample *sample, struct machine *machine);
 152
 153	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 154			    struct perf_sample *sample, struct machine *machine);
 155
 156	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 157	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 158			  struct machine *machine);
 159
 160	int (*migrate_task_event)(struct perf_sched *sched,
 161				  struct evsel *evsel,
 162				  struct perf_sample *sample,
 163				  struct machine *machine);
 164};
 165
 166#define COLOR_PIDS PERF_COLOR_BLUE
 167#define COLOR_CPUS PERF_COLOR_BG_RED
 168
 169struct perf_sched_map {
 170	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 171	struct perf_cpu		*comp_cpus;
 172	bool			 comp;
 173	struct perf_thread_map *color_pids;
 174	const char		*color_pids_str;
 175	struct perf_cpu_map	*color_cpus;
 176	const char		*color_cpus_str;
 177	struct perf_cpu_map	*cpus;
 178	const char		*cpus_str;
 179};
 180
 181struct perf_sched {
 182	struct perf_tool tool;
 183	const char	 *sort_order;
 184	unsigned long	 nr_tasks;
 185	struct task_desc **pid_to_task;
 186	struct task_desc **tasks;
 187	const struct trace_sched_handler *tp_handler;
 188	struct mutex	 start_work_mutex;
 189	struct mutex	 work_done_wait_mutex;
 190	int		 profile_cpu;
 191/*
 192 * Track the current task - that way we can know whether there's any
 193 * weird events, such as a task being switched away that is not current.
 194 */
 195	struct perf_cpu	 max_cpu;
 196	u32		 curr_pid[MAX_CPUS];
 197	struct thread	 *curr_thread[MAX_CPUS];
 198	char		 next_shortname1;
 199	char		 next_shortname2;
 200	unsigned int	 replay_repeat;
 201	unsigned long	 nr_run_events;
 202	unsigned long	 nr_sleep_events;
 203	unsigned long	 nr_wakeup_events;
 204	unsigned long	 nr_sleep_corrections;
 205	unsigned long	 nr_run_events_optimized;
 206	unsigned long	 targetless_wakeups;
 207	unsigned long	 multitarget_wakeups;
 208	unsigned long	 nr_runs;
 209	unsigned long	 nr_timestamps;
 210	unsigned long	 nr_unordered_timestamps;
 211	unsigned long	 nr_context_switch_bugs;
 212	unsigned long	 nr_events;
 213	unsigned long	 nr_lost_chunks;
 214	unsigned long	 nr_lost_events;
 215	u64		 run_measurement_overhead;
 216	u64		 sleep_measurement_overhead;
 217	u64		 start_time;
 218	u64		 cpu_usage;
 219	u64		 runavg_cpu_usage;
 220	u64		 parent_cpu_usage;
 221	u64		 runavg_parent_cpu_usage;
 222	u64		 sum_runtime;
 223	u64		 sum_fluct;
 224	u64		 run_avg;
 225	u64		 all_runtime;
 226	u64		 all_count;
 227	u64		 cpu_last_switched[MAX_CPUS];
 228	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 229	struct list_head sort_list, cmp_pid;
 230	bool force;
 231	bool skip_merge;
 232	struct perf_sched_map map;
 233
 234	/* options for timehist command */
 235	bool		summary;
 236	bool		summary_only;
 237	bool		idle_hist;
 238	bool		show_callchain;
 239	unsigned int	max_stack;
 240	bool		show_cpu_visual;
 241	bool		show_wakeups;
 242	bool		show_next;
 243	bool		show_migrations;
 244	bool		show_state;
 245	u64		skipped_samples;
 246	const char	*time_str;
 247	struct perf_time_interval ptime;
 248	struct perf_time_interval hist_time;
 249	volatile bool   thread_funcs_exit;
 250};
 251
 252/* per thread run time data */
 253struct thread_runtime {
 254	u64 last_time;      /* time of previous sched in/out event */
 255	u64 dt_run;         /* run time */
 256	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 257	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 258	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 259	u64 dt_delay;       /* time between wakeup and sched-in */
 260	u64 ready_to_run;   /* time of wakeup */
 261
 262	struct stats run_stats;
 263	u64 total_run_time;
 264	u64 total_sleep_time;
 265	u64 total_iowait_time;
 266	u64 total_preempt_time;
 267	u64 total_delay_time;
 268
 269	int last_state;
 270
 271	char shortname[3];
 272	bool comm_changed;
 273
 274	u64 migrations;
 275};
 276
 277/* per event run time data */
 278struct evsel_runtime {
 279	u64 *last_time; /* time this event was last seen per cpu */
 280	u32 ncpu;       /* highest cpu slot allocated */
 281};
 282
 283/* per cpu idle time data */
 284struct idle_thread_runtime {
 285	struct thread_runtime	tr;
 286	struct thread		*last_thread;
 287	struct rb_root_cached	sorted_root;
 288	struct callchain_root	callchain;
 289	struct callchain_cursor	cursor;
 290};
 291
 292/* track idle times per cpu */
 293static struct thread **idle_threads;
 294static int idle_max_cpu;
 295static char idle_comm[] = "<idle>";
 296
 297static u64 get_nsecs(void)
 298{
 299	struct timespec ts;
 300
 301	clock_gettime(CLOCK_MONOTONIC, &ts);
 302
 303	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 304}
 305
 306static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 307{
 308	u64 T0 = get_nsecs(), T1;
 309
 310	do {
 311		T1 = get_nsecs();
 312	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 313}
 314
 315static void sleep_nsecs(u64 nsecs)
 316{
 317	struct timespec ts;
 318
 319	ts.tv_nsec = nsecs % 999999999;
 320	ts.tv_sec = nsecs / 999999999;
 321
 322	nanosleep(&ts, NULL);
 323}
 324
 325static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 326{
 327	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 328	int i;
 329
 330	for (i = 0; i < 10; i++) {
 331		T0 = get_nsecs();
 332		burn_nsecs(sched, 0);
 333		T1 = get_nsecs();
 334		delta = T1-T0;
 335		min_delta = min(min_delta, delta);
 336	}
 337	sched->run_measurement_overhead = min_delta;
 338
 339	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 340}
 341
 342static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 343{
 344	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 345	int i;
 346
 347	for (i = 0; i < 10; i++) {
 348		T0 = get_nsecs();
 349		sleep_nsecs(10000);
 350		T1 = get_nsecs();
 351		delta = T1-T0;
 352		min_delta = min(min_delta, delta);
 353	}
 354	min_delta -= 10000;
 355	sched->sleep_measurement_overhead = min_delta;
 356
 357	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 358}
 359
 360static struct sched_atom *
 361get_new_event(struct task_desc *task, u64 timestamp)
 362{
 363	struct sched_atom *event = zalloc(sizeof(*event));
 364	unsigned long idx = task->nr_events;
 365	size_t size;
 366
 367	event->timestamp = timestamp;
 368	event->nr = idx;
 369
 370	task->nr_events++;
 371	size = sizeof(struct sched_atom *) * task->nr_events;
 372	task->atoms = realloc(task->atoms, size);
 373	BUG_ON(!task->atoms);
 374
 375	task->atoms[idx] = event;
 376
 377	return event;
 378}
 379
 380static struct sched_atom *last_event(struct task_desc *task)
 381{
 382	if (!task->nr_events)
 383		return NULL;
 384
 385	return task->atoms[task->nr_events - 1];
 386}
 387
 388static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 389				u64 timestamp, u64 duration)
 390{
 391	struct sched_atom *event, *curr_event = last_event(task);
 392
 393	/*
 394	 * optimize an existing RUN event by merging this one
 395	 * to it:
 396	 */
 397	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 398		sched->nr_run_events_optimized++;
 399		curr_event->duration += duration;
 400		return;
 401	}
 402
 403	event = get_new_event(task, timestamp);
 404
 405	event->type = SCHED_EVENT_RUN;
 406	event->duration = duration;
 407
 408	sched->nr_run_events++;
 409}
 410
 411static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 412				   u64 timestamp, struct task_desc *wakee)
 413{
 414	struct sched_atom *event, *wakee_event;
 415
 416	event = get_new_event(task, timestamp);
 417	event->type = SCHED_EVENT_WAKEUP;
 418	event->wakee = wakee;
 419
 420	wakee_event = last_event(wakee);
 421	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 422		sched->targetless_wakeups++;
 423		return;
 424	}
 425	if (wakee_event->wait_sem) {
 426		sched->multitarget_wakeups++;
 427		return;
 428	}
 429
 430	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 431	sem_init(wakee_event->wait_sem, 0, 0);
 432	wakee_event->specific_wait = 1;
 433	event->wait_sem = wakee_event->wait_sem;
 434
 435	sched->nr_wakeup_events++;
 436}
 437
 438static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 439				  u64 timestamp, u64 task_state __maybe_unused)
 440{
 441	struct sched_atom *event = get_new_event(task, timestamp);
 442
 443	event->type = SCHED_EVENT_SLEEP;
 444
 445	sched->nr_sleep_events++;
 446}
 447
 448static struct task_desc *register_pid(struct perf_sched *sched,
 449				      unsigned long pid, const char *comm)
 450{
 451	struct task_desc *task;
 452	static int pid_max;
 453
 454	if (sched->pid_to_task == NULL) {
 455		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 456			pid_max = MAX_PID;
 457		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 458	}
 459	if (pid >= (unsigned long)pid_max) {
 460		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 461			sizeof(struct task_desc *))) == NULL);
 462		while (pid >= (unsigned long)pid_max)
 463			sched->pid_to_task[pid_max++] = NULL;
 464	}
 465
 466	task = sched->pid_to_task[pid];
 467
 468	if (task)
 469		return task;
 470
 471	task = zalloc(sizeof(*task));
 472	task->pid = pid;
 473	task->nr = sched->nr_tasks;
 474	strcpy(task->comm, comm);
 475	/*
 476	 * every task starts in sleeping state - this gets ignored
 477	 * if there's no wakeup pointing to this sleep state:
 478	 */
 479	add_sched_event_sleep(sched, task, 0, 0);
 480
 481	sched->pid_to_task[pid] = task;
 482	sched->nr_tasks++;
 483	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 484	BUG_ON(!sched->tasks);
 485	sched->tasks[task->nr] = task;
 486
 487	if (verbose > 0)
 488		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 489
 490	return task;
 491}
 492
 493
 494static void print_task_traces(struct perf_sched *sched)
 495{
 496	struct task_desc *task;
 497	unsigned long i;
 498
 499	for (i = 0; i < sched->nr_tasks; i++) {
 500		task = sched->tasks[i];
 501		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 502			task->nr, task->comm, task->pid, task->nr_events);
 503	}
 504}
 505
 506static void add_cross_task_wakeups(struct perf_sched *sched)
 507{
 508	struct task_desc *task1, *task2;
 509	unsigned long i, j;
 510
 511	for (i = 0; i < sched->nr_tasks; i++) {
 512		task1 = sched->tasks[i];
 513		j = i + 1;
 514		if (j == sched->nr_tasks)
 515			j = 0;
 516		task2 = sched->tasks[j];
 517		add_sched_event_wakeup(sched, task1, 0, task2);
 518	}
 519}
 520
 521static void perf_sched__process_event(struct perf_sched *sched,
 522				      struct sched_atom *atom)
 523{
 524	int ret = 0;
 525
 526	switch (atom->type) {
 527		case SCHED_EVENT_RUN:
 528			burn_nsecs(sched, atom->duration);
 529			break;
 530		case SCHED_EVENT_SLEEP:
 531			if (atom->wait_sem)
 532				ret = sem_wait(atom->wait_sem);
 533			BUG_ON(ret);
 534			break;
 535		case SCHED_EVENT_WAKEUP:
 536			if (atom->wait_sem)
 537				ret = sem_post(atom->wait_sem);
 538			BUG_ON(ret);
 539			break;
 540		case SCHED_EVENT_MIGRATION:
 541			break;
 542		default:
 543			BUG_ON(1);
 544	}
 545}
 546
 547static u64 get_cpu_usage_nsec_parent(void)
 548{
 549	struct rusage ru;
 550	u64 sum;
 551	int err;
 552
 553	err = getrusage(RUSAGE_SELF, &ru);
 554	BUG_ON(err);
 555
 556	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 557	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 558
 559	return sum;
 560}
 561
 562static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 563{
 564	struct perf_event_attr attr;
 565	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 566	int fd;
 567	struct rlimit limit;
 568	bool need_privilege = false;
 569
 570	memset(&attr, 0, sizeof(attr));
 571
 572	attr.type = PERF_TYPE_SOFTWARE;
 573	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 574
 575force_again:
 576	fd = sys_perf_event_open(&attr, 0, -1, -1,
 577				 perf_event_open_cloexec_flag());
 578
 579	if (fd < 0) {
 580		if (errno == EMFILE) {
 581			if (sched->force) {
 582				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 583				limit.rlim_cur += sched->nr_tasks - cur_task;
 584				if (limit.rlim_cur > limit.rlim_max) {
 585					limit.rlim_max = limit.rlim_cur;
 586					need_privilege = true;
 587				}
 588				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 589					if (need_privilege && errno == EPERM)
 590						strcpy(info, "Need privilege\n");
 591				} else
 592					goto force_again;
 593			} else
 594				strcpy(info, "Have a try with -f option\n");
 595		}
 596		pr_err("Error: sys_perf_event_open() syscall returned "
 597		       "with %d (%s)\n%s", fd,
 598		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 599		exit(EXIT_FAILURE);
 600	}
 601	return fd;
 602}
 603
 604static u64 get_cpu_usage_nsec_self(int fd)
 605{
 606	u64 runtime;
 607	int ret;
 608
 609	ret = read(fd, &runtime, sizeof(runtime));
 610	BUG_ON(ret != sizeof(runtime));
 611
 612	return runtime;
 613}
 614
 615struct sched_thread_parms {
 616	struct task_desc  *task;
 617	struct perf_sched *sched;
 618	int fd;
 619};
 620
 621static void *thread_func(void *ctx)
 622{
 623	struct sched_thread_parms *parms = ctx;
 624	struct task_desc *this_task = parms->task;
 625	struct perf_sched *sched = parms->sched;
 626	u64 cpu_usage_0, cpu_usage_1;
 627	unsigned long i, ret;
 628	char comm2[22];
 629	int fd = parms->fd;
 630
 631	zfree(&parms);
 632
 633	sprintf(comm2, ":%s", this_task->comm);
 634	prctl(PR_SET_NAME, comm2);
 635	if (fd < 0)
 636		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 637
 638	while (!sched->thread_funcs_exit) {
 639		ret = sem_post(&this_task->ready_for_work);
 640		BUG_ON(ret);
 641		mutex_lock(&sched->start_work_mutex);
 642		mutex_unlock(&sched->start_work_mutex);
 643
 644		cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 645
 646		for (i = 0; i < this_task->nr_events; i++) {
 647			this_task->curr_event = i;
 648			perf_sched__process_event(sched, this_task->atoms[i]);
 649		}
 650
 651		cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 652		this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 653		ret = sem_post(&this_task->work_done_sem);
 654		BUG_ON(ret);
 655
 656		mutex_lock(&sched->work_done_wait_mutex);
 657		mutex_unlock(&sched->work_done_wait_mutex);
 658	}
 659	return NULL;
 660}
 661
 662static void create_tasks(struct perf_sched *sched)
 663	EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
 664	EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
 665{
 666	struct task_desc *task;
 667	pthread_attr_t attr;
 668	unsigned long i;
 669	int err;
 670
 671	err = pthread_attr_init(&attr);
 672	BUG_ON(err);
 673	err = pthread_attr_setstacksize(&attr,
 674			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
 
 
 
 
 675	BUG_ON(err);
 676	mutex_lock(&sched->start_work_mutex);
 677	mutex_lock(&sched->work_done_wait_mutex);
 678	for (i = 0; i < sched->nr_tasks; i++) {
 679		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 680		BUG_ON(parms == NULL);
 681		parms->task = task = sched->tasks[i];
 682		parms->sched = sched;
 683		parms->fd = self_open_counters(sched, i);
 684		sem_init(&task->sleep_sem, 0, 0);
 685		sem_init(&task->ready_for_work, 0, 0);
 686		sem_init(&task->work_done_sem, 0, 0);
 687		task->curr_event = 0;
 688		err = pthread_create(&task->thread, &attr, thread_func, parms);
 689		BUG_ON(err);
 690	}
 691}
 692
 693static void destroy_tasks(struct perf_sched *sched)
 694	UNLOCK_FUNCTION(sched->start_work_mutex)
 695	UNLOCK_FUNCTION(sched->work_done_wait_mutex)
 696{
 697	struct task_desc *task;
 698	unsigned long i;
 699	int err;
 700
 701	mutex_unlock(&sched->start_work_mutex);
 702	mutex_unlock(&sched->work_done_wait_mutex);
 703	/* Get rid of threads so they won't be upset by mutex destrunction */
 704	for (i = 0; i < sched->nr_tasks; i++) {
 705		task = sched->tasks[i];
 706		err = pthread_join(task->thread, NULL);
 707		BUG_ON(err);
 708		sem_destroy(&task->sleep_sem);
 709		sem_destroy(&task->ready_for_work);
 710		sem_destroy(&task->work_done_sem);
 711	}
 712}
 713
 714static void wait_for_tasks(struct perf_sched *sched)
 715	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 716	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 717{
 718	u64 cpu_usage_0, cpu_usage_1;
 719	struct task_desc *task;
 720	unsigned long i, ret;
 721
 722	sched->start_time = get_nsecs();
 723	sched->cpu_usage = 0;
 724	mutex_unlock(&sched->work_done_wait_mutex);
 725
 726	for (i = 0; i < sched->nr_tasks; i++) {
 727		task = sched->tasks[i];
 728		ret = sem_wait(&task->ready_for_work);
 729		BUG_ON(ret);
 730		sem_init(&task->ready_for_work, 0, 0);
 731	}
 732	mutex_lock(&sched->work_done_wait_mutex);
 
 733
 734	cpu_usage_0 = get_cpu_usage_nsec_parent();
 735
 736	mutex_unlock(&sched->start_work_mutex);
 737
 738	for (i = 0; i < sched->nr_tasks; i++) {
 739		task = sched->tasks[i];
 740		ret = sem_wait(&task->work_done_sem);
 741		BUG_ON(ret);
 742		sem_init(&task->work_done_sem, 0, 0);
 743		sched->cpu_usage += task->cpu_usage;
 744		task->cpu_usage = 0;
 745	}
 746
 747	cpu_usage_1 = get_cpu_usage_nsec_parent();
 748	if (!sched->runavg_cpu_usage)
 749		sched->runavg_cpu_usage = sched->cpu_usage;
 750	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 751
 752	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 753	if (!sched->runavg_parent_cpu_usage)
 754		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 755	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 756					 sched->parent_cpu_usage)/sched->replay_repeat;
 757
 758	mutex_lock(&sched->start_work_mutex);
 
 759
 760	for (i = 0; i < sched->nr_tasks; i++) {
 761		task = sched->tasks[i];
 762		sem_init(&task->sleep_sem, 0, 0);
 763		task->curr_event = 0;
 764	}
 765}
 766
 767static void run_one_test(struct perf_sched *sched)
 768	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
 769	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
 770{
 771	u64 T0, T1, delta, avg_delta, fluct;
 772
 773	T0 = get_nsecs();
 774	wait_for_tasks(sched);
 775	T1 = get_nsecs();
 776
 777	delta = T1 - T0;
 778	sched->sum_runtime += delta;
 779	sched->nr_runs++;
 780
 781	avg_delta = sched->sum_runtime / sched->nr_runs;
 782	if (delta < avg_delta)
 783		fluct = avg_delta - delta;
 784	else
 785		fluct = delta - avg_delta;
 786	sched->sum_fluct += fluct;
 787	if (!sched->run_avg)
 788		sched->run_avg = delta;
 789	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 790
 791	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 792
 793	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 794
 795	printf("cpu: %0.2f / %0.2f",
 796		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 797
 798#if 0
 799	/*
 800	 * rusage statistics done by the parent, these are less
 801	 * accurate than the sched->sum_exec_runtime based statistics:
 802	 */
 803	printf(" [%0.2f / %0.2f]",
 804		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 805		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 806#endif
 807
 808	printf("\n");
 809
 810	if (sched->nr_sleep_corrections)
 811		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 812	sched->nr_sleep_corrections = 0;
 813}
 814
 815static void test_calibrations(struct perf_sched *sched)
 816{
 817	u64 T0, T1;
 818
 819	T0 = get_nsecs();
 820	burn_nsecs(sched, NSEC_PER_MSEC);
 821	T1 = get_nsecs();
 822
 823	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 824
 825	T0 = get_nsecs();
 826	sleep_nsecs(NSEC_PER_MSEC);
 827	T1 = get_nsecs();
 828
 829	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 830}
 831
 832static int
 833replay_wakeup_event(struct perf_sched *sched,
 834		    struct evsel *evsel, struct perf_sample *sample,
 835		    struct machine *machine __maybe_unused)
 836{
 837	const char *comm = evsel__strval(evsel, sample, "comm");
 838	const u32 pid	 = evsel__intval(evsel, sample, "pid");
 839	struct task_desc *waker, *wakee;
 840
 841	if (verbose > 0) {
 842		printf("sched_wakeup event %p\n", evsel);
 843
 844		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 845	}
 846
 847	waker = register_pid(sched, sample->tid, "<unknown>");
 848	wakee = register_pid(sched, pid, comm);
 849
 850	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 851	return 0;
 852}
 853
 854static int replay_switch_event(struct perf_sched *sched,
 855			       struct evsel *evsel,
 856			       struct perf_sample *sample,
 857			       struct machine *machine __maybe_unused)
 858{
 859	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
 860		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
 861	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
 862		  next_pid = evsel__intval(evsel, sample, "next_pid");
 863	const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
 864	struct task_desc *prev, __maybe_unused *next;
 865	u64 timestamp0, timestamp = sample->time;
 866	int cpu = sample->cpu;
 867	s64 delta;
 868
 869	if (verbose > 0)
 870		printf("sched_switch event %p\n", evsel);
 871
 872	if (cpu >= MAX_CPUS || cpu < 0)
 873		return 0;
 874
 875	timestamp0 = sched->cpu_last_switched[cpu];
 876	if (timestamp0)
 877		delta = timestamp - timestamp0;
 878	else
 879		delta = 0;
 880
 881	if (delta < 0) {
 882		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 883		return -1;
 884	}
 885
 886	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 887		 prev_comm, prev_pid, next_comm, next_pid, delta);
 888
 889	prev = register_pid(sched, prev_pid, prev_comm);
 890	next = register_pid(sched, next_pid, next_comm);
 891
 892	sched->cpu_last_switched[cpu] = timestamp;
 893
 894	add_sched_event_run(sched, prev, timestamp, delta);
 895	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 896
 897	return 0;
 898}
 899
 900static int replay_fork_event(struct perf_sched *sched,
 901			     union perf_event *event,
 902			     struct machine *machine)
 903{
 904	struct thread *child, *parent;
 905
 906	child = machine__findnew_thread(machine, event->fork.pid,
 907					event->fork.tid);
 908	parent = machine__findnew_thread(machine, event->fork.ppid,
 909					 event->fork.ptid);
 910
 911	if (child == NULL || parent == NULL) {
 912		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 913				 child, parent);
 914		goto out_put;
 915	}
 916
 917	if (verbose > 0) {
 918		printf("fork event\n");
 919		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 920		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 921	}
 922
 923	register_pid(sched, parent->tid, thread__comm_str(parent));
 924	register_pid(sched, child->tid, thread__comm_str(child));
 925out_put:
 926	thread__put(child);
 927	thread__put(parent);
 928	return 0;
 929}
 930
 931struct sort_dimension {
 932	const char		*name;
 933	sort_fn_t		cmp;
 934	struct list_head	list;
 935};
 936
 937/*
 938 * handle runtime stats saved per thread
 939 */
 940static struct thread_runtime *thread__init_runtime(struct thread *thread)
 941{
 942	struct thread_runtime *r;
 943
 944	r = zalloc(sizeof(struct thread_runtime));
 945	if (!r)
 946		return NULL;
 947
 948	init_stats(&r->run_stats);
 949	thread__set_priv(thread, r);
 950
 951	return r;
 952}
 953
 954static struct thread_runtime *thread__get_runtime(struct thread *thread)
 955{
 956	struct thread_runtime *tr;
 957
 958	tr = thread__priv(thread);
 959	if (tr == NULL) {
 960		tr = thread__init_runtime(thread);
 961		if (tr == NULL)
 962			pr_debug("Failed to malloc memory for runtime data.\n");
 963	}
 964
 965	return tr;
 966}
 967
 968static int
 969thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 970{
 971	struct sort_dimension *sort;
 972	int ret = 0;
 973
 974	BUG_ON(list_empty(list));
 975
 976	list_for_each_entry(sort, list, list) {
 977		ret = sort->cmp(l, r);
 978		if (ret)
 979			return ret;
 980	}
 981
 982	return ret;
 983}
 984
 985static struct work_atoms *
 986thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 987			 struct list_head *sort_list)
 988{
 989	struct rb_node *node = root->rb_root.rb_node;
 990	struct work_atoms key = { .thread = thread };
 991
 992	while (node) {
 993		struct work_atoms *atoms;
 994		int cmp;
 995
 996		atoms = container_of(node, struct work_atoms, node);
 997
 998		cmp = thread_lat_cmp(sort_list, &key, atoms);
 999		if (cmp > 0)
1000			node = node->rb_left;
1001		else if (cmp < 0)
1002			node = node->rb_right;
1003		else {
1004			BUG_ON(thread != atoms->thread);
1005			return atoms;
1006		}
1007	}
1008	return NULL;
1009}
1010
1011static void
1012__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1013			 struct list_head *sort_list)
1014{
1015	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1016	bool leftmost = true;
1017
1018	while (*new) {
1019		struct work_atoms *this;
1020		int cmp;
1021
1022		this = container_of(*new, struct work_atoms, node);
1023		parent = *new;
1024
1025		cmp = thread_lat_cmp(sort_list, data, this);
1026
1027		if (cmp > 0)
1028			new = &((*new)->rb_left);
1029		else {
1030			new = &((*new)->rb_right);
1031			leftmost = false;
1032		}
1033	}
1034
1035	rb_link_node(&data->node, parent, new);
1036	rb_insert_color_cached(&data->node, root, leftmost);
1037}
1038
1039static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1040{
1041	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1042	if (!atoms) {
1043		pr_err("No memory at %s\n", __func__);
1044		return -1;
1045	}
1046
1047	atoms->thread = thread__get(thread);
1048	INIT_LIST_HEAD(&atoms->work_list);
1049	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1050	return 0;
1051}
1052
1053static char sched_out_state(u64 prev_state)
1054{
1055	const char *str = TASK_STATE_TO_CHAR_STR;
1056
1057	return str[prev_state];
1058}
1059
1060static int
1061add_sched_out_event(struct work_atoms *atoms,
1062		    char run_state,
1063		    u64 timestamp)
1064{
1065	struct work_atom *atom = zalloc(sizeof(*atom));
1066	if (!atom) {
1067		pr_err("Non memory at %s", __func__);
1068		return -1;
1069	}
1070
1071	atom->sched_out_time = timestamp;
1072
1073	if (run_state == 'R') {
1074		atom->state = THREAD_WAIT_CPU;
1075		atom->wake_up_time = atom->sched_out_time;
1076	}
1077
1078	list_add_tail(&atom->list, &atoms->work_list);
1079	return 0;
1080}
1081
1082static void
1083add_runtime_event(struct work_atoms *atoms, u64 delta,
1084		  u64 timestamp __maybe_unused)
1085{
1086	struct work_atom *atom;
1087
1088	BUG_ON(list_empty(&atoms->work_list));
1089
1090	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1091
1092	atom->runtime += delta;
1093	atoms->total_runtime += delta;
1094}
1095
1096static void
1097add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1098{
1099	struct work_atom *atom;
1100	u64 delta;
1101
1102	if (list_empty(&atoms->work_list))
1103		return;
1104
1105	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1106
1107	if (atom->state != THREAD_WAIT_CPU)
1108		return;
1109
1110	if (timestamp < atom->wake_up_time) {
1111		atom->state = THREAD_IGNORE;
1112		return;
1113	}
1114
1115	atom->state = THREAD_SCHED_IN;
1116	atom->sched_in_time = timestamp;
1117
1118	delta = atom->sched_in_time - atom->wake_up_time;
1119	atoms->total_lat += delta;
1120	if (delta > atoms->max_lat) {
1121		atoms->max_lat = delta;
1122		atoms->max_lat_start = atom->wake_up_time;
1123		atoms->max_lat_end = timestamp;
1124	}
1125	atoms->nb_atoms++;
1126}
1127
1128static int latency_switch_event(struct perf_sched *sched,
1129				struct evsel *evsel,
1130				struct perf_sample *sample,
1131				struct machine *machine)
1132{
1133	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1134		  next_pid = evsel__intval(evsel, sample, "next_pid");
1135	const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1136	struct work_atoms *out_events, *in_events;
1137	struct thread *sched_out, *sched_in;
1138	u64 timestamp0, timestamp = sample->time;
1139	int cpu = sample->cpu, err = -1;
1140	s64 delta;
1141
1142	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1143
1144	timestamp0 = sched->cpu_last_switched[cpu];
1145	sched->cpu_last_switched[cpu] = timestamp;
1146	if (timestamp0)
1147		delta = timestamp - timestamp0;
1148	else
1149		delta = 0;
1150
1151	if (delta < 0) {
1152		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1153		return -1;
1154	}
1155
1156	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1157	sched_in = machine__findnew_thread(machine, -1, next_pid);
1158	if (sched_out == NULL || sched_in == NULL)
1159		goto out_put;
1160
1161	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1162	if (!out_events) {
1163		if (thread_atoms_insert(sched, sched_out))
1164			goto out_put;
1165		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1166		if (!out_events) {
1167			pr_err("out-event: Internal tree error");
1168			goto out_put;
1169		}
1170	}
1171	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1172		return -1;
1173
1174	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1175	if (!in_events) {
1176		if (thread_atoms_insert(sched, sched_in))
1177			goto out_put;
1178		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1179		if (!in_events) {
1180			pr_err("in-event: Internal tree error");
1181			goto out_put;
1182		}
1183		/*
1184		 * Take came in we have not heard about yet,
1185		 * add in an initial atom in runnable state:
1186		 */
1187		if (add_sched_out_event(in_events, 'R', timestamp))
1188			goto out_put;
1189	}
1190	add_sched_in_event(in_events, timestamp);
1191	err = 0;
1192out_put:
1193	thread__put(sched_out);
1194	thread__put(sched_in);
1195	return err;
1196}
1197
1198static int latency_runtime_event(struct perf_sched *sched,
1199				 struct evsel *evsel,
1200				 struct perf_sample *sample,
1201				 struct machine *machine)
1202{
1203	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1204	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1205	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1206	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1207	u64 timestamp = sample->time;
1208	int cpu = sample->cpu, err = -1;
1209
1210	if (thread == NULL)
1211		return -1;
1212
1213	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1214	if (!atoms) {
1215		if (thread_atoms_insert(sched, thread))
1216			goto out_put;
1217		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1218		if (!atoms) {
1219			pr_err("in-event: Internal tree error");
1220			goto out_put;
1221		}
1222		if (add_sched_out_event(atoms, 'R', timestamp))
1223			goto out_put;
1224	}
1225
1226	add_runtime_event(atoms, runtime, timestamp);
1227	err = 0;
1228out_put:
1229	thread__put(thread);
1230	return err;
1231}
1232
1233static int latency_wakeup_event(struct perf_sched *sched,
1234				struct evsel *evsel,
1235				struct perf_sample *sample,
1236				struct machine *machine)
1237{
1238	const u32 pid	  = evsel__intval(evsel, sample, "pid");
1239	struct work_atoms *atoms;
1240	struct work_atom *atom;
1241	struct thread *wakee;
1242	u64 timestamp = sample->time;
1243	int err = -1;
1244
1245	wakee = machine__findnew_thread(machine, -1, pid);
1246	if (wakee == NULL)
1247		return -1;
1248	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1249	if (!atoms) {
1250		if (thread_atoms_insert(sched, wakee))
1251			goto out_put;
1252		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1253		if (!atoms) {
1254			pr_err("wakeup-event: Internal tree error");
1255			goto out_put;
1256		}
1257		if (add_sched_out_event(atoms, 'S', timestamp))
1258			goto out_put;
1259	}
1260
1261	BUG_ON(list_empty(&atoms->work_list));
1262
1263	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1264
1265	/*
1266	 * As we do not guarantee the wakeup event happens when
1267	 * task is out of run queue, also may happen when task is
1268	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1269	 * then we should not set the ->wake_up_time when wake up a
1270	 * task which is on run queue.
1271	 *
1272	 * You WILL be missing events if you've recorded only
1273	 * one CPU, or are only looking at only one, so don't
1274	 * skip in this case.
1275	 */
1276	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1277		goto out_ok;
1278
1279	sched->nr_timestamps++;
1280	if (atom->sched_out_time > timestamp) {
1281		sched->nr_unordered_timestamps++;
1282		goto out_ok;
1283	}
1284
1285	atom->state = THREAD_WAIT_CPU;
1286	atom->wake_up_time = timestamp;
1287out_ok:
1288	err = 0;
1289out_put:
1290	thread__put(wakee);
1291	return err;
1292}
1293
1294static int latency_migrate_task_event(struct perf_sched *sched,
1295				      struct evsel *evsel,
1296				      struct perf_sample *sample,
1297				      struct machine *machine)
1298{
1299	const u32 pid = evsel__intval(evsel, sample, "pid");
1300	u64 timestamp = sample->time;
1301	struct work_atoms *atoms;
1302	struct work_atom *atom;
1303	struct thread *migrant;
1304	int err = -1;
1305
1306	/*
1307	 * Only need to worry about migration when profiling one CPU.
1308	 */
1309	if (sched->profile_cpu == -1)
1310		return 0;
1311
1312	migrant = machine__findnew_thread(machine, -1, pid);
1313	if (migrant == NULL)
1314		return -1;
1315	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1316	if (!atoms) {
1317		if (thread_atoms_insert(sched, migrant))
1318			goto out_put;
1319		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1320		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1321		if (!atoms) {
1322			pr_err("migration-event: Internal tree error");
1323			goto out_put;
1324		}
1325		if (add_sched_out_event(atoms, 'R', timestamp))
1326			goto out_put;
1327	}
1328
1329	BUG_ON(list_empty(&atoms->work_list));
1330
1331	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1332	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1333
1334	sched->nr_timestamps++;
1335
1336	if (atom->sched_out_time > timestamp)
1337		sched->nr_unordered_timestamps++;
1338	err = 0;
1339out_put:
1340	thread__put(migrant);
1341	return err;
1342}
1343
1344static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1345{
1346	int i;
1347	int ret;
1348	u64 avg;
1349	char max_lat_start[32], max_lat_end[32];
1350
1351	if (!work_list->nb_atoms)
1352		return;
1353	/*
1354	 * Ignore idle threads:
1355	 */
1356	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1357		return;
1358
1359	sched->all_runtime += work_list->total_runtime;
1360	sched->all_count   += work_list->nb_atoms;
1361
1362	if (work_list->num_merged > 1)
1363		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1364	else
1365		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1366
1367	for (i = 0; i < 24 - ret; i++)
1368		printf(" ");
1369
1370	avg = work_list->total_lat / work_list->nb_atoms;
1371	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1372	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1373
1374	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1375	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1376		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1377		 (double)work_list->max_lat / NSEC_PER_MSEC,
1378		 max_lat_start, max_lat_end);
1379}
1380
1381static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1382{
1383	if (l->thread == r->thread)
1384		return 0;
1385	if (l->thread->tid < r->thread->tid)
1386		return -1;
1387	if (l->thread->tid > r->thread->tid)
1388		return 1;
1389	return (int)(l->thread - r->thread);
1390}
1391
1392static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1393{
1394	u64 avgl, avgr;
1395
1396	if (!l->nb_atoms)
1397		return -1;
1398
1399	if (!r->nb_atoms)
1400		return 1;
1401
1402	avgl = l->total_lat / l->nb_atoms;
1403	avgr = r->total_lat / r->nb_atoms;
1404
1405	if (avgl < avgr)
1406		return -1;
1407	if (avgl > avgr)
1408		return 1;
1409
1410	return 0;
1411}
1412
1413static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1414{
1415	if (l->max_lat < r->max_lat)
1416		return -1;
1417	if (l->max_lat > r->max_lat)
1418		return 1;
1419
1420	return 0;
1421}
1422
1423static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1424{
1425	if (l->nb_atoms < r->nb_atoms)
1426		return -1;
1427	if (l->nb_atoms > r->nb_atoms)
1428		return 1;
1429
1430	return 0;
1431}
1432
1433static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1434{
1435	if (l->total_runtime < r->total_runtime)
1436		return -1;
1437	if (l->total_runtime > r->total_runtime)
1438		return 1;
1439
1440	return 0;
1441}
1442
1443static int sort_dimension__add(const char *tok, struct list_head *list)
1444{
1445	size_t i;
1446	static struct sort_dimension avg_sort_dimension = {
1447		.name = "avg",
1448		.cmp  = avg_cmp,
1449	};
1450	static struct sort_dimension max_sort_dimension = {
1451		.name = "max",
1452		.cmp  = max_cmp,
1453	};
1454	static struct sort_dimension pid_sort_dimension = {
1455		.name = "pid",
1456		.cmp  = pid_cmp,
1457	};
1458	static struct sort_dimension runtime_sort_dimension = {
1459		.name = "runtime",
1460		.cmp  = runtime_cmp,
1461	};
1462	static struct sort_dimension switch_sort_dimension = {
1463		.name = "switch",
1464		.cmp  = switch_cmp,
1465	};
1466	struct sort_dimension *available_sorts[] = {
1467		&pid_sort_dimension,
1468		&avg_sort_dimension,
1469		&max_sort_dimension,
1470		&switch_sort_dimension,
1471		&runtime_sort_dimension,
1472	};
1473
1474	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1475		if (!strcmp(available_sorts[i]->name, tok)) {
1476			list_add_tail(&available_sorts[i]->list, list);
1477
1478			return 0;
1479		}
1480	}
1481
1482	return -1;
1483}
1484
1485static void perf_sched__sort_lat(struct perf_sched *sched)
1486{
1487	struct rb_node *node;
1488	struct rb_root_cached *root = &sched->atom_root;
1489again:
1490	for (;;) {
1491		struct work_atoms *data;
1492		node = rb_first_cached(root);
1493		if (!node)
1494			break;
1495
1496		rb_erase_cached(node, root);
1497		data = rb_entry(node, struct work_atoms, node);
1498		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1499	}
1500	if (root == &sched->atom_root) {
1501		root = &sched->merged_atom_root;
1502		goto again;
1503	}
1504}
1505
1506static int process_sched_wakeup_event(struct perf_tool *tool,
1507				      struct evsel *evsel,
1508				      struct perf_sample *sample,
1509				      struct machine *machine)
1510{
1511	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1512
1513	if (sched->tp_handler->wakeup_event)
1514		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1515
1516	return 0;
1517}
1518
1519union map_priv {
1520	void	*ptr;
1521	bool	 color;
1522};
1523
1524static bool thread__has_color(struct thread *thread)
1525{
1526	union map_priv priv = {
1527		.ptr = thread__priv(thread),
1528	};
1529
1530	return priv.color;
1531}
1532
1533static struct thread*
1534map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1535{
1536	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1537	union map_priv priv = {
1538		.color = false,
1539	};
1540
1541	if (!sched->map.color_pids || !thread || thread__priv(thread))
1542		return thread;
1543
1544	if (thread_map__has(sched->map.color_pids, tid))
1545		priv.color = true;
1546
1547	thread__set_priv(thread, priv.ptr);
1548	return thread;
1549}
1550
1551static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1552			    struct perf_sample *sample, struct machine *machine)
1553{
1554	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1555	struct thread *sched_in;
1556	struct thread_runtime *tr;
1557	int new_shortname;
1558	u64 timestamp0, timestamp = sample->time;
1559	s64 delta;
1560	int i;
1561	struct perf_cpu this_cpu = {
1562		.cpu = sample->cpu,
1563	};
1564	int cpus_nr;
1565	bool new_cpu = false;
1566	const char *color = PERF_COLOR_NORMAL;
1567	char stimestamp[32];
1568
1569	BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1570
1571	if (this_cpu.cpu > sched->max_cpu.cpu)
1572		sched->max_cpu = this_cpu;
1573
1574	if (sched->map.comp) {
1575		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1576		if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1577			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1578			new_cpu = true;
1579		}
1580	} else
1581		cpus_nr = sched->max_cpu.cpu;
1582
1583	timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1584	sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1585	if (timestamp0)
1586		delta = timestamp - timestamp0;
1587	else
1588		delta = 0;
1589
1590	if (delta < 0) {
1591		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1592		return -1;
1593	}
1594
1595	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1596	if (sched_in == NULL)
1597		return -1;
1598
1599	tr = thread__get_runtime(sched_in);
1600	if (tr == NULL) {
1601		thread__put(sched_in);
1602		return -1;
1603	}
1604
1605	sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1606
1607	printf("  ");
1608
1609	new_shortname = 0;
1610	if (!tr->shortname[0]) {
1611		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1612			/*
1613			 * Don't allocate a letter-number for swapper:0
1614			 * as a shortname. Instead, we use '.' for it.
1615			 */
1616			tr->shortname[0] = '.';
1617			tr->shortname[1] = ' ';
1618		} else {
1619			tr->shortname[0] = sched->next_shortname1;
1620			tr->shortname[1] = sched->next_shortname2;
1621
1622			if (sched->next_shortname1 < 'Z') {
1623				sched->next_shortname1++;
1624			} else {
1625				sched->next_shortname1 = 'A';
1626				if (sched->next_shortname2 < '9')
1627					sched->next_shortname2++;
1628				else
1629					sched->next_shortname2 = '0';
1630			}
1631		}
1632		new_shortname = 1;
1633	}
1634
1635	for (i = 0; i < cpus_nr; i++) {
1636		struct perf_cpu cpu = {
1637			.cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1638		};
1639		struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1640		struct thread_runtime *curr_tr;
1641		const char *pid_color = color;
1642		const char *cpu_color = color;
1643
1644		if (curr_thread && thread__has_color(curr_thread))
1645			pid_color = COLOR_PIDS;
1646
1647		if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, cpu))
1648			continue;
1649
1650		if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1651			cpu_color = COLOR_CPUS;
1652
1653		if (cpu.cpu != this_cpu.cpu)
1654			color_fprintf(stdout, color, " ");
1655		else
1656			color_fprintf(stdout, cpu_color, "*");
1657
1658		if (sched->curr_thread[cpu.cpu]) {
1659			curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1660			if (curr_tr == NULL) {
1661				thread__put(sched_in);
1662				return -1;
1663			}
1664			color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1665		} else
1666			color_fprintf(stdout, color, "   ");
1667	}
1668
1669	if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1670		goto out;
1671
1672	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1673	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1674	if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1675		const char *pid_color = color;
1676
1677		if (thread__has_color(sched_in))
1678			pid_color = COLOR_PIDS;
1679
1680		color_fprintf(stdout, pid_color, "%s => %s:%d",
1681		       tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1682		tr->comm_changed = false;
1683	}
1684
1685	if (sched->map.comp && new_cpu)
1686		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1687
1688out:
1689	color_fprintf(stdout, color, "\n");
1690
1691	thread__put(sched_in);
1692
1693	return 0;
1694}
1695
1696static int process_sched_switch_event(struct perf_tool *tool,
1697				      struct evsel *evsel,
1698				      struct perf_sample *sample,
1699				      struct machine *machine)
1700{
1701	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1702	int this_cpu = sample->cpu, err = 0;
1703	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1704	    next_pid = evsel__intval(evsel, sample, "next_pid");
1705
1706	if (sched->curr_pid[this_cpu] != (u32)-1) {
1707		/*
1708		 * Are we trying to switch away a PID that is
1709		 * not current?
1710		 */
1711		if (sched->curr_pid[this_cpu] != prev_pid)
1712			sched->nr_context_switch_bugs++;
1713	}
1714
1715	if (sched->tp_handler->switch_event)
1716		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1717
1718	sched->curr_pid[this_cpu] = next_pid;
1719	return err;
1720}
1721
1722static int process_sched_runtime_event(struct perf_tool *tool,
1723				       struct evsel *evsel,
1724				       struct perf_sample *sample,
1725				       struct machine *machine)
1726{
1727	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1728
1729	if (sched->tp_handler->runtime_event)
1730		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1731
1732	return 0;
1733}
1734
1735static int perf_sched__process_fork_event(struct perf_tool *tool,
1736					  union perf_event *event,
1737					  struct perf_sample *sample,
1738					  struct machine *machine)
1739{
1740	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1741
1742	/* run the fork event through the perf machinery */
1743	perf_event__process_fork(tool, event, sample, machine);
1744
1745	/* and then run additional processing needed for this command */
1746	if (sched->tp_handler->fork_event)
1747		return sched->tp_handler->fork_event(sched, event, machine);
1748
1749	return 0;
1750}
1751
1752static int process_sched_migrate_task_event(struct perf_tool *tool,
1753					    struct evsel *evsel,
1754					    struct perf_sample *sample,
1755					    struct machine *machine)
1756{
1757	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1758
1759	if (sched->tp_handler->migrate_task_event)
1760		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1761
1762	return 0;
1763}
1764
1765typedef int (*tracepoint_handler)(struct perf_tool *tool,
1766				  struct evsel *evsel,
1767				  struct perf_sample *sample,
1768				  struct machine *machine);
1769
1770static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1771						 union perf_event *event __maybe_unused,
1772						 struct perf_sample *sample,
1773						 struct evsel *evsel,
1774						 struct machine *machine)
1775{
1776	int err = 0;
1777
1778	if (evsel->handler != NULL) {
1779		tracepoint_handler f = evsel->handler;
1780		err = f(tool, evsel, sample, machine);
1781	}
1782
1783	return err;
1784}
1785
1786static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1787				    union perf_event *event,
1788				    struct perf_sample *sample,
1789				    struct machine *machine)
1790{
1791	struct thread *thread;
1792	struct thread_runtime *tr;
1793	int err;
1794
1795	err = perf_event__process_comm(tool, event, sample, machine);
1796	if (err)
1797		return err;
1798
1799	thread = machine__find_thread(machine, sample->pid, sample->tid);
1800	if (!thread) {
1801		pr_err("Internal error: can't find thread\n");
1802		return -1;
1803	}
1804
1805	tr = thread__get_runtime(thread);
1806	if (tr == NULL) {
1807		thread__put(thread);
1808		return -1;
1809	}
1810
1811	tr->comm_changed = true;
1812	thread__put(thread);
1813
1814	return 0;
1815}
1816
1817static int perf_sched__read_events(struct perf_sched *sched)
1818{
1819	const struct evsel_str_handler handlers[] = {
1820		{ "sched:sched_switch",	      process_sched_switch_event, },
1821		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1822		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1823		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1824		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1825	};
1826	struct perf_session *session;
1827	struct perf_data data = {
1828		.path  = input_name,
1829		.mode  = PERF_DATA_MODE_READ,
1830		.force = sched->force,
1831	};
1832	int rc = -1;
1833
1834	session = perf_session__new(&data, &sched->tool);
1835	if (IS_ERR(session)) {
1836		pr_debug("Error creating perf session");
1837		return PTR_ERR(session);
1838	}
1839
1840	symbol__init(&session->header.env);
1841
1842	if (perf_session__set_tracepoints_handlers(session, handlers))
1843		goto out_delete;
1844
1845	if (perf_session__has_traces(session, "record -R")) {
1846		int err = perf_session__process_events(session);
1847		if (err) {
1848			pr_err("Failed to process events, error %d", err);
1849			goto out_delete;
1850		}
1851
1852		sched->nr_events      = session->evlist->stats.nr_events[0];
1853		sched->nr_lost_events = session->evlist->stats.total_lost;
1854		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1855	}
1856
1857	rc = 0;
1858out_delete:
1859	perf_session__delete(session);
1860	return rc;
1861}
1862
1863/*
1864 * scheduling times are printed as msec.usec
1865 */
1866static inline void print_sched_time(unsigned long long nsecs, int width)
1867{
1868	unsigned long msecs;
1869	unsigned long usecs;
1870
1871	msecs  = nsecs / NSEC_PER_MSEC;
1872	nsecs -= msecs * NSEC_PER_MSEC;
1873	usecs  = nsecs / NSEC_PER_USEC;
1874	printf("%*lu.%03lu ", width, msecs, usecs);
1875}
1876
1877/*
1878 * returns runtime data for event, allocating memory for it the
1879 * first time it is used.
1880 */
1881static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1882{
1883	struct evsel_runtime *r = evsel->priv;
1884
1885	if (r == NULL) {
1886		r = zalloc(sizeof(struct evsel_runtime));
1887		evsel->priv = r;
1888	}
1889
1890	return r;
1891}
1892
1893/*
1894 * save last time event was seen per cpu
1895 */
1896static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
 
1897{
1898	struct evsel_runtime *r = evsel__get_runtime(evsel);
1899
1900	if (r == NULL)
1901		return;
1902
1903	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1904		int i, n = __roundup_pow_of_two(cpu+1);
1905		void *p = r->last_time;
1906
1907		p = realloc(r->last_time, n * sizeof(u64));
1908		if (!p)
1909			return;
1910
1911		r->last_time = p;
1912		for (i = r->ncpu; i < n; ++i)
1913			r->last_time[i] = (u64) 0;
1914
1915		r->ncpu = n;
1916	}
1917
1918	r->last_time[cpu] = timestamp;
1919}
1920
1921/* returns last time this event was seen on the given cpu */
1922static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1923{
1924	struct evsel_runtime *r = evsel__get_runtime(evsel);
1925
1926	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1927		return 0;
1928
1929	return r->last_time[cpu];
1930}
1931
1932static int comm_width = 30;
1933
1934static char *timehist_get_commstr(struct thread *thread)
1935{
1936	static char str[32];
1937	const char *comm = thread__comm_str(thread);
1938	pid_t tid = thread->tid;
1939	pid_t pid = thread->pid_;
1940	int n;
1941
1942	if (pid == 0)
1943		n = scnprintf(str, sizeof(str), "%s", comm);
1944
1945	else if (tid != pid)
1946		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1947
1948	else
1949		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1950
1951	if (n > comm_width)
1952		comm_width = n;
1953
1954	return str;
1955}
1956
1957static void timehist_header(struct perf_sched *sched)
1958{
1959	u32 ncpus = sched->max_cpu.cpu + 1;
1960	u32 i, j;
1961
1962	printf("%15s %6s ", "time", "cpu");
1963
1964	if (sched->show_cpu_visual) {
1965		printf(" ");
1966		for (i = 0, j = 0; i < ncpus; ++i) {
1967			printf("%x", j++);
1968			if (j > 15)
1969				j = 0;
1970		}
1971		printf(" ");
1972	}
1973
1974	printf(" %-*s  %9s  %9s  %9s", comm_width,
1975		"task name", "wait time", "sch delay", "run time");
1976
1977	if (sched->show_state)
1978		printf("  %s", "state");
1979
1980	printf("\n");
1981
1982	/*
1983	 * units row
1984	 */
1985	printf("%15s %-6s ", "", "");
1986
1987	if (sched->show_cpu_visual)
1988		printf(" %*s ", ncpus, "");
1989
1990	printf(" %-*s  %9s  %9s  %9s", comm_width,
1991	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1992
1993	if (sched->show_state)
1994		printf("  %5s", "");
1995
1996	printf("\n");
1997
1998	/*
1999	 * separator
2000	 */
2001	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2002
2003	if (sched->show_cpu_visual)
2004		printf(" %.*s ", ncpus, graph_dotted_line);
2005
2006	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
2007		graph_dotted_line, graph_dotted_line, graph_dotted_line,
2008		graph_dotted_line);
2009
2010	if (sched->show_state)
2011		printf("  %.5s", graph_dotted_line);
2012
2013	printf("\n");
2014}
2015
2016static char task_state_char(struct thread *thread, int state)
2017{
2018	static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
2019	unsigned bit = state ? ffs(state) : 0;
2020
2021	/* 'I' for idle */
2022	if (thread->tid == 0)
2023		return 'I';
2024
2025	return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
2026}
2027
2028static void timehist_print_sample(struct perf_sched *sched,
2029				  struct evsel *evsel,
2030				  struct perf_sample *sample,
2031				  struct addr_location *al,
2032				  struct thread *thread,
2033				  u64 t, int state)
2034{
2035	struct thread_runtime *tr = thread__priv(thread);
2036	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2037	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2038	u32 max_cpus = sched->max_cpu.cpu + 1;
2039	char tstr[64];
2040	char nstr[30];
2041	u64 wait_time;
2042
2043	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2044		return;
2045
2046	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2047	printf("%15s [%04d] ", tstr, sample->cpu);
2048
2049	if (sched->show_cpu_visual) {
2050		u32 i;
2051		char c;
2052
2053		printf(" ");
2054		for (i = 0; i < max_cpus; ++i) {
2055			/* flag idle times with 'i'; others are sched events */
2056			if (i == sample->cpu)
2057				c = (thread->tid == 0) ? 'i' : 's';
2058			else
2059				c = ' ';
2060			printf("%c", c);
2061		}
2062		printf(" ");
2063	}
2064
2065	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2066
2067	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2068	print_sched_time(wait_time, 6);
2069
2070	print_sched_time(tr->dt_delay, 6);
2071	print_sched_time(tr->dt_run, 6);
2072
2073	if (sched->show_state)
2074		printf(" %5c ", task_state_char(thread, state));
2075
2076	if (sched->show_next) {
2077		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2078		printf(" %-*s", comm_width, nstr);
2079	}
2080
2081	if (sched->show_wakeups && !sched->show_next)
2082		printf("  %-*s", comm_width, "");
2083
2084	if (thread->tid == 0)
2085		goto out;
2086
2087	if (sched->show_callchain)
2088		printf("  ");
2089
2090	sample__fprintf_sym(sample, al, 0,
2091			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2092			    EVSEL__PRINT_CALLCHAIN_ARROW |
2093			    EVSEL__PRINT_SKIP_IGNORED,
2094			    &callchain_cursor, symbol_conf.bt_stop_list,  stdout);
2095
2096out:
2097	printf("\n");
2098}
2099
2100/*
2101 * Explanation of delta-time stats:
2102 *
2103 *            t = time of current schedule out event
2104 *        tprev = time of previous sched out event
2105 *                also time of schedule-in event for current task
2106 *    last_time = time of last sched change event for current task
2107 *                (i.e, time process was last scheduled out)
2108 * ready_to_run = time of wakeup for current task
2109 *
2110 * -----|------------|------------|------------|------
2111 *    last         ready        tprev          t
2112 *    time         to run
2113 *
2114 *      |-------- dt_wait --------|
2115 *                   |- dt_delay -|-- dt_run --|
2116 *
2117 *   dt_run = run time of current task
2118 *  dt_wait = time between last schedule out event for task and tprev
2119 *            represents time spent off the cpu
2120 * dt_delay = time between wakeup and schedule-in of task
2121 */
2122
2123static void timehist_update_runtime_stats(struct thread_runtime *r,
2124					 u64 t, u64 tprev)
2125{
2126	r->dt_delay   = 0;
2127	r->dt_sleep   = 0;
2128	r->dt_iowait  = 0;
2129	r->dt_preempt = 0;
2130	r->dt_run     = 0;
2131
2132	if (tprev) {
2133		r->dt_run = t - tprev;
2134		if (r->ready_to_run) {
2135			if (r->ready_to_run > tprev)
2136				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2137			else
2138				r->dt_delay = tprev - r->ready_to_run;
2139		}
2140
2141		if (r->last_time > tprev)
2142			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2143		else if (r->last_time) {
2144			u64 dt_wait = tprev - r->last_time;
2145
2146			if (r->last_state == TASK_RUNNING)
2147				r->dt_preempt = dt_wait;
2148			else if (r->last_state == TASK_UNINTERRUPTIBLE)
2149				r->dt_iowait = dt_wait;
2150			else
2151				r->dt_sleep = dt_wait;
2152		}
2153	}
2154
2155	update_stats(&r->run_stats, r->dt_run);
2156
2157	r->total_run_time     += r->dt_run;
2158	r->total_delay_time   += r->dt_delay;
2159	r->total_sleep_time   += r->dt_sleep;
2160	r->total_iowait_time  += r->dt_iowait;
2161	r->total_preempt_time += r->dt_preempt;
2162}
2163
2164static bool is_idle_sample(struct perf_sample *sample,
2165			   struct evsel *evsel)
2166{
2167	/* pid 0 == swapper == idle task */
2168	if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2169		return evsel__intval(evsel, sample, "prev_pid") == 0;
2170
2171	return sample->pid == 0;
2172}
2173
2174static void save_task_callchain(struct perf_sched *sched,
2175				struct perf_sample *sample,
2176				struct evsel *evsel,
2177				struct machine *machine)
2178{
2179	struct callchain_cursor *cursor = &callchain_cursor;
2180	struct thread *thread;
2181
2182	/* want main thread for process - has maps */
2183	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2184	if (thread == NULL) {
2185		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2186		return;
2187	}
2188
2189	if (!sched->show_callchain || sample->callchain == NULL)
2190		return;
2191
2192	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2193				      NULL, NULL, sched->max_stack + 2) != 0) {
2194		if (verbose > 0)
2195			pr_err("Failed to resolve callchain. Skipping\n");
2196
2197		return;
2198	}
2199
2200	callchain_cursor_commit(cursor);
2201
2202	while (true) {
2203		struct callchain_cursor_node *node;
2204		struct symbol *sym;
2205
2206		node = callchain_cursor_current(cursor);
2207		if (node == NULL)
2208			break;
2209
2210		sym = node->ms.sym;
2211		if (sym) {
2212			if (!strcmp(sym->name, "schedule") ||
2213			    !strcmp(sym->name, "__schedule") ||
2214			    !strcmp(sym->name, "preempt_schedule"))
2215				sym->ignore = 1;
2216		}
2217
2218		callchain_cursor_advance(cursor);
2219	}
2220}
2221
2222static int init_idle_thread(struct thread *thread)
2223{
2224	struct idle_thread_runtime *itr;
2225
2226	thread__set_comm(thread, idle_comm, 0);
2227
2228	itr = zalloc(sizeof(*itr));
2229	if (itr == NULL)
2230		return -ENOMEM;
2231
2232	init_stats(&itr->tr.run_stats);
2233	callchain_init(&itr->callchain);
2234	callchain_cursor_reset(&itr->cursor);
2235	thread__set_priv(thread, itr);
2236
2237	return 0;
2238}
2239
2240/*
2241 * Track idle stats per cpu by maintaining a local thread
2242 * struct for the idle task on each cpu.
2243 */
2244static int init_idle_threads(int ncpu)
2245{
2246	int i, ret;
2247
2248	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2249	if (!idle_threads)
2250		return -ENOMEM;
2251
2252	idle_max_cpu = ncpu;
2253
2254	/* allocate the actual thread struct if needed */
2255	for (i = 0; i < ncpu; ++i) {
2256		idle_threads[i] = thread__new(0, 0);
2257		if (idle_threads[i] == NULL)
2258			return -ENOMEM;
2259
2260		ret = init_idle_thread(idle_threads[i]);
2261		if (ret < 0)
2262			return ret;
2263	}
2264
2265	return 0;
2266}
2267
2268static void free_idle_threads(void)
2269{
2270	int i;
2271
2272	if (idle_threads == NULL)
2273		return;
2274
2275	for (i = 0; i < idle_max_cpu; ++i) {
2276		if ((idle_threads[i]))
2277			thread__delete(idle_threads[i]);
2278	}
2279
2280	free(idle_threads);
2281}
2282
2283static struct thread *get_idle_thread(int cpu)
2284{
2285	/*
2286	 * expand/allocate array of pointers to local thread
2287	 * structs if needed
2288	 */
2289	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2290		int i, j = __roundup_pow_of_two(cpu+1);
2291		void *p;
2292
2293		p = realloc(idle_threads, j * sizeof(struct thread *));
2294		if (!p)
2295			return NULL;
2296
2297		idle_threads = (struct thread **) p;
2298		for (i = idle_max_cpu; i < j; ++i)
2299			idle_threads[i] = NULL;
2300
2301		idle_max_cpu = j;
2302	}
2303
2304	/* allocate a new thread struct if needed */
2305	if (idle_threads[cpu] == NULL) {
2306		idle_threads[cpu] = thread__new(0, 0);
2307
2308		if (idle_threads[cpu]) {
2309			if (init_idle_thread(idle_threads[cpu]) < 0)
2310				return NULL;
2311		}
2312	}
2313
2314	return idle_threads[cpu];
2315}
2316
2317static void save_idle_callchain(struct perf_sched *sched,
2318				struct idle_thread_runtime *itr,
2319				struct perf_sample *sample)
2320{
2321	if (!sched->show_callchain || sample->callchain == NULL)
2322		return;
2323
2324	callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2325}
2326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2327static struct thread *timehist_get_thread(struct perf_sched *sched,
2328					  struct perf_sample *sample,
2329					  struct machine *machine,
2330					  struct evsel *evsel)
2331{
2332	struct thread *thread;
2333
2334	if (is_idle_sample(sample, evsel)) {
2335		thread = get_idle_thread(sample->cpu);
2336		if (thread == NULL)
2337			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2338
2339	} else {
2340		/* there were samples with tid 0 but non-zero pid */
2341		thread = machine__findnew_thread(machine, sample->pid,
2342						 sample->tid ?: sample->pid);
2343		if (thread == NULL) {
2344			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2345				 sample->tid);
2346		}
2347
2348		save_task_callchain(sched, sample, evsel, machine);
2349		if (sched->idle_hist) {
2350			struct thread *idle;
2351			struct idle_thread_runtime *itr;
2352
2353			idle = get_idle_thread(sample->cpu);
2354			if (idle == NULL) {
2355				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2356				return NULL;
2357			}
2358
2359			itr = thread__priv(idle);
2360			if (itr == NULL)
2361				return NULL;
2362
2363			itr->last_thread = thread;
2364
2365			/* copy task callchain when entering to idle */
2366			if (evsel__intval(evsel, sample, "next_pid") == 0)
2367				save_idle_callchain(sched, itr, sample);
2368		}
2369	}
2370
2371	return thread;
2372}
2373
2374static bool timehist_skip_sample(struct perf_sched *sched,
2375				 struct thread *thread,
2376				 struct evsel *evsel,
2377				 struct perf_sample *sample)
2378{
2379	bool rc = false;
2380
2381	if (thread__is_filtered(thread)) {
2382		rc = true;
2383		sched->skipped_samples++;
2384	}
2385
2386	if (sched->idle_hist) {
2387		if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2388			rc = true;
2389		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2390			 evsel__intval(evsel, sample, "next_pid") != 0)
2391			rc = true;
2392	}
2393
2394	return rc;
2395}
2396
2397static void timehist_print_wakeup_event(struct perf_sched *sched,
2398					struct evsel *evsel,
2399					struct perf_sample *sample,
2400					struct machine *machine,
2401					struct thread *awakened)
2402{
2403	struct thread *thread;
2404	char tstr[64];
2405
2406	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2407	if (thread == NULL)
2408		return;
2409
2410	/* show wakeup unless both awakee and awaker are filtered */
2411	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2412	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2413		return;
2414	}
2415
2416	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2417	printf("%15s [%04d] ", tstr, sample->cpu);
2418	if (sched->show_cpu_visual)
2419		printf(" %*s ", sched->max_cpu.cpu + 1, "");
2420
2421	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2422
2423	/* dt spacer */
2424	printf("  %9s  %9s  %9s ", "", "", "");
2425
2426	printf("awakened: %s", timehist_get_commstr(awakened));
2427
2428	printf("\n");
2429}
2430
2431static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2432					union perf_event *event __maybe_unused,
2433					struct evsel *evsel __maybe_unused,
2434					struct perf_sample *sample __maybe_unused,
2435					struct machine *machine __maybe_unused)
2436{
2437	return 0;
2438}
2439
2440static int timehist_sched_wakeup_event(struct perf_tool *tool,
2441				       union perf_event *event __maybe_unused,
2442				       struct evsel *evsel,
2443				       struct perf_sample *sample,
2444				       struct machine *machine)
2445{
2446	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2447	struct thread *thread;
2448	struct thread_runtime *tr = NULL;
2449	/* want pid of awakened task not pid in sample */
2450	const u32 pid = evsel__intval(evsel, sample, "pid");
2451
2452	thread = machine__findnew_thread(machine, 0, pid);
2453	if (thread == NULL)
2454		return -1;
2455
2456	tr = thread__get_runtime(thread);
2457	if (tr == NULL)
2458		return -1;
2459
2460	if (tr->ready_to_run == 0)
2461		tr->ready_to_run = sample->time;
2462
2463	/* show wakeups if requested */
2464	if (sched->show_wakeups &&
2465	    !perf_time__skip_sample(&sched->ptime, sample->time))
2466		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2467
2468	return 0;
2469}
2470
2471static void timehist_print_migration_event(struct perf_sched *sched,
2472					struct evsel *evsel,
2473					struct perf_sample *sample,
2474					struct machine *machine,
2475					struct thread *migrated)
2476{
2477	struct thread *thread;
2478	char tstr[64];
2479	u32 max_cpus;
2480	u32 ocpu, dcpu;
2481
2482	if (sched->summary_only)
2483		return;
2484
2485	max_cpus = sched->max_cpu.cpu + 1;
2486	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2487	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2488
2489	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2490	if (thread == NULL)
2491		return;
2492
2493	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2494	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2495		return;
2496	}
2497
2498	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2499	printf("%15s [%04d] ", tstr, sample->cpu);
2500
2501	if (sched->show_cpu_visual) {
2502		u32 i;
2503		char c;
2504
2505		printf("  ");
2506		for (i = 0; i < max_cpus; ++i) {
2507			c = (i == sample->cpu) ? 'm' : ' ';
2508			printf("%c", c);
2509		}
2510		printf("  ");
2511	}
2512
2513	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2514
2515	/* dt spacer */
2516	printf("  %9s  %9s  %9s ", "", "", "");
2517
2518	printf("migrated: %s", timehist_get_commstr(migrated));
2519	printf(" cpu %d => %d", ocpu, dcpu);
2520
2521	printf("\n");
2522}
2523
2524static int timehist_migrate_task_event(struct perf_tool *tool,
2525				       union perf_event *event __maybe_unused,
2526				       struct evsel *evsel,
2527				       struct perf_sample *sample,
2528				       struct machine *machine)
2529{
2530	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2531	struct thread *thread;
2532	struct thread_runtime *tr = NULL;
2533	/* want pid of migrated task not pid in sample */
2534	const u32 pid = evsel__intval(evsel, sample, "pid");
2535
2536	thread = machine__findnew_thread(machine, 0, pid);
2537	if (thread == NULL)
2538		return -1;
2539
2540	tr = thread__get_runtime(thread);
2541	if (tr == NULL)
2542		return -1;
2543
2544	tr->migrations++;
2545
2546	/* show migrations if requested */
2547	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2548
2549	return 0;
2550}
2551
2552static int timehist_sched_change_event(struct perf_tool *tool,
2553				       union perf_event *event,
2554				       struct evsel *evsel,
2555				       struct perf_sample *sample,
2556				       struct machine *machine)
2557{
2558	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2559	struct perf_time_interval *ptime = &sched->ptime;
2560	struct addr_location al;
2561	struct thread *thread;
2562	struct thread_runtime *tr = NULL;
2563	u64 tprev, t = sample->time;
2564	int rc = 0;
2565	int state = evsel__intval(evsel, sample, "prev_state");
2566
2567	if (machine__resolve(machine, &al, sample) < 0) {
2568		pr_err("problem processing %d event. skipping it\n",
2569		       event->header.type);
2570		rc = -1;
2571		goto out;
2572	}
2573
2574	thread = timehist_get_thread(sched, sample, machine, evsel);
2575	if (thread == NULL) {
2576		rc = -1;
2577		goto out;
2578	}
2579
2580	if (timehist_skip_sample(sched, thread, evsel, sample))
2581		goto out;
2582
2583	tr = thread__get_runtime(thread);
2584	if (tr == NULL) {
2585		rc = -1;
2586		goto out;
2587	}
2588
2589	tprev = evsel__get_time(evsel, sample->cpu);
2590
2591	/*
2592	 * If start time given:
2593	 * - sample time is under window user cares about - skip sample
2594	 * - tprev is under window user cares about  - reset to start of window
2595	 */
2596	if (ptime->start && ptime->start > t)
2597		goto out;
2598
2599	if (tprev && ptime->start > tprev)
2600		tprev = ptime->start;
2601
2602	/*
2603	 * If end time given:
2604	 * - previous sched event is out of window - we are done
2605	 * - sample time is beyond window user cares about - reset it
2606	 *   to close out stats for time window interest
2607	 */
2608	if (ptime->end) {
2609		if (tprev > ptime->end)
2610			goto out;
2611
2612		if (t > ptime->end)
2613			t = ptime->end;
2614	}
2615
2616	if (!sched->idle_hist || thread->tid == 0) {
2617		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2618			timehist_update_runtime_stats(tr, t, tprev);
2619
2620		if (sched->idle_hist) {
2621			struct idle_thread_runtime *itr = (void *)tr;
2622			struct thread_runtime *last_tr;
2623
2624			BUG_ON(thread->tid != 0);
2625
2626			if (itr->last_thread == NULL)
2627				goto out;
2628
2629			/* add current idle time as last thread's runtime */
2630			last_tr = thread__get_runtime(itr->last_thread);
2631			if (last_tr == NULL)
2632				goto out;
2633
2634			timehist_update_runtime_stats(last_tr, t, tprev);
2635			/*
2636			 * remove delta time of last thread as it's not updated
2637			 * and otherwise it will show an invalid value next
2638			 * time.  we only care total run time and run stat.
2639			 */
2640			last_tr->dt_run = 0;
 
2641			last_tr->dt_delay = 0;
2642			last_tr->dt_sleep = 0;
2643			last_tr->dt_iowait = 0;
2644			last_tr->dt_preempt = 0;
2645
2646			if (itr->cursor.nr)
2647				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2648
2649			itr->last_thread = NULL;
2650		}
2651	}
2652
2653	if (!sched->summary_only)
2654		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2655
2656out:
2657	if (sched->hist_time.start == 0 && t >= ptime->start)
2658		sched->hist_time.start = t;
2659	if (ptime->end == 0 || t <= ptime->end)
2660		sched->hist_time.end = t;
2661
2662	if (tr) {
2663		/* time of this sched_switch event becomes last time task seen */
2664		tr->last_time = sample->time;
2665
2666		/* last state is used to determine where to account wait time */
2667		tr->last_state = state;
2668
2669		/* sched out event for task so reset ready to run time */
2670		tr->ready_to_run = 0;
2671	}
2672
2673	evsel__save_time(evsel, sample->time, sample->cpu);
2674
2675	return rc;
2676}
2677
2678static int timehist_sched_switch_event(struct perf_tool *tool,
2679			     union perf_event *event,
2680			     struct evsel *evsel,
2681			     struct perf_sample *sample,
2682			     struct machine *machine __maybe_unused)
2683{
2684	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2685}
2686
2687static int process_lost(struct perf_tool *tool __maybe_unused,
2688			union perf_event *event,
2689			struct perf_sample *sample,
2690			struct machine *machine __maybe_unused)
2691{
2692	char tstr[64];
2693
2694	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2695	printf("%15s ", tstr);
2696	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2697
2698	return 0;
2699}
2700
2701
2702static void print_thread_runtime(struct thread *t,
2703				 struct thread_runtime *r)
2704{
2705	double mean = avg_stats(&r->run_stats);
2706	float stddev;
2707
2708	printf("%*s   %5d  %9" PRIu64 " ",
2709	       comm_width, timehist_get_commstr(t), t->ppid,
2710	       (u64) r->run_stats.n);
2711
2712	print_sched_time(r->total_run_time, 8);
2713	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2714	print_sched_time(r->run_stats.min, 6);
2715	printf(" ");
2716	print_sched_time((u64) mean, 6);
2717	printf(" ");
2718	print_sched_time(r->run_stats.max, 6);
2719	printf("  ");
2720	printf("%5.2f", stddev);
2721	printf("   %5" PRIu64, r->migrations);
2722	printf("\n");
2723}
2724
2725static void print_thread_waittime(struct thread *t,
2726				  struct thread_runtime *r)
2727{
2728	printf("%*s   %5d  %9" PRIu64 " ",
2729	       comm_width, timehist_get_commstr(t), t->ppid,
2730	       (u64) r->run_stats.n);
2731
2732	print_sched_time(r->total_run_time, 8);
2733	print_sched_time(r->total_sleep_time, 6);
2734	printf(" ");
2735	print_sched_time(r->total_iowait_time, 6);
2736	printf(" ");
2737	print_sched_time(r->total_preempt_time, 6);
2738	printf(" ");
2739	print_sched_time(r->total_delay_time, 6);
2740	printf("\n");
2741}
2742
2743struct total_run_stats {
2744	struct perf_sched *sched;
2745	u64  sched_count;
2746	u64  task_count;
2747	u64  total_run_time;
2748};
2749
2750static int __show_thread_runtime(struct thread *t, void *priv)
2751{
2752	struct total_run_stats *stats = priv;
2753	struct thread_runtime *r;
2754
2755	if (thread__is_filtered(t))
2756		return 0;
2757
2758	r = thread__priv(t);
2759	if (r && r->run_stats.n) {
2760		stats->task_count++;
2761		stats->sched_count += r->run_stats.n;
2762		stats->total_run_time += r->total_run_time;
2763
2764		if (stats->sched->show_state)
2765			print_thread_waittime(t, r);
2766		else
2767			print_thread_runtime(t, r);
2768	}
2769
2770	return 0;
2771}
2772
2773static int show_thread_runtime(struct thread *t, void *priv)
2774{
2775	if (t->dead)
2776		return 0;
2777
2778	return __show_thread_runtime(t, priv);
2779}
2780
2781static int show_deadthread_runtime(struct thread *t, void *priv)
2782{
2783	if (!t->dead)
2784		return 0;
2785
2786	return __show_thread_runtime(t, priv);
2787}
2788
2789static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2790{
2791	const char *sep = " <- ";
2792	struct callchain_list *chain;
2793	size_t ret = 0;
2794	char bf[1024];
2795	bool first;
2796
2797	if (node == NULL)
2798		return 0;
2799
2800	ret = callchain__fprintf_folded(fp, node->parent);
2801	first = (ret == 0);
2802
2803	list_for_each_entry(chain, &node->val, list) {
2804		if (chain->ip >= PERF_CONTEXT_MAX)
2805			continue;
2806		if (chain->ms.sym && chain->ms.sym->ignore)
2807			continue;
2808		ret += fprintf(fp, "%s%s", first ? "" : sep,
2809			       callchain_list__sym_name(chain, bf, sizeof(bf),
2810							false));
2811		first = false;
2812	}
2813
2814	return ret;
2815}
2816
2817static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2818{
2819	size_t ret = 0;
2820	FILE *fp = stdout;
2821	struct callchain_node *chain;
2822	struct rb_node *rb_node = rb_first_cached(root);
2823
2824	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2825	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2826	       graph_dotted_line);
2827
2828	while (rb_node) {
2829		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2830		rb_node = rb_next(rb_node);
2831
2832		ret += fprintf(fp, "  ");
2833		print_sched_time(chain->hit, 12);
2834		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2835		ret += fprintf(fp, " %8d  ", chain->count);
2836		ret += callchain__fprintf_folded(fp, chain);
2837		ret += fprintf(fp, "\n");
2838	}
2839
2840	return ret;
2841}
2842
2843static void timehist_print_summary(struct perf_sched *sched,
2844				   struct perf_session *session)
2845{
2846	struct machine *m = &session->machines.host;
2847	struct total_run_stats totals;
2848	u64 task_count;
2849	struct thread *t;
2850	struct thread_runtime *r;
2851	int i;
2852	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2853
2854	memset(&totals, 0, sizeof(totals));
2855	totals.sched = sched;
2856
2857	if (sched->idle_hist) {
2858		printf("\nIdle-time summary\n");
2859		printf("%*s  parent  sched-out  ", comm_width, "comm");
2860		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2861	} else if (sched->show_state) {
2862		printf("\nWait-time summary\n");
2863		printf("%*s  parent   sched-in  ", comm_width, "comm");
2864		printf("   run-time      sleep      iowait     preempt       delay\n");
2865	} else {
2866		printf("\nRuntime summary\n");
2867		printf("%*s  parent   sched-in  ", comm_width, "comm");
2868		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2869	}
2870	printf("%*s            (count)  ", comm_width, "");
2871	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2872	       sched->show_state ? "(msec)" : "%");
2873	printf("%.117s\n", graph_dotted_line);
2874
2875	machine__for_each_thread(m, show_thread_runtime, &totals);
2876	task_count = totals.task_count;
2877	if (!task_count)
2878		printf("<no still running tasks>\n");
2879
2880	printf("\nTerminated tasks:\n");
2881	machine__for_each_thread(m, show_deadthread_runtime, &totals);
2882	if (task_count == totals.task_count)
2883		printf("<no terminated tasks>\n");
2884
2885	/* CPU idle stats not tracked when samples were skipped */
2886	if (sched->skipped_samples && !sched->idle_hist)
2887		return;
2888
2889	printf("\nIdle stats:\n");
2890	for (i = 0; i < idle_max_cpu; ++i) {
2891		if (cpu_list && !test_bit(i, cpu_bitmap))
2892			continue;
2893
2894		t = idle_threads[i];
2895		if (!t)
2896			continue;
2897
2898		r = thread__priv(t);
2899		if (r && r->run_stats.n) {
2900			totals.sched_count += r->run_stats.n;
2901			printf("    CPU %2d idle for ", i);
2902			print_sched_time(r->total_run_time, 6);
2903			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2904		} else
2905			printf("    CPU %2d idle entire time window\n", i);
2906	}
2907
2908	if (sched->idle_hist && sched->show_callchain) {
2909		callchain_param.mode  = CHAIN_FOLDED;
2910		callchain_param.value = CCVAL_PERIOD;
2911
2912		callchain_register_param(&callchain_param);
2913
2914		printf("\nIdle stats by callchain:\n");
2915		for (i = 0; i < idle_max_cpu; ++i) {
2916			struct idle_thread_runtime *itr;
2917
2918			t = idle_threads[i];
2919			if (!t)
2920				continue;
2921
2922			itr = thread__priv(t);
2923			if (itr == NULL)
2924				continue;
2925
2926			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2927					     0, &callchain_param);
2928
2929			printf("  CPU %2d:", i);
2930			print_sched_time(itr->tr.total_run_time, 6);
2931			printf(" msec\n");
2932			timehist_print_idlehist_callchain(&itr->sorted_root);
2933			printf("\n");
2934		}
2935	}
2936
2937	printf("\n"
2938	       "    Total number of unique tasks: %" PRIu64 "\n"
2939	       "Total number of context switches: %" PRIu64 "\n",
2940	       totals.task_count, totals.sched_count);
2941
2942	printf("           Total run time (msec): ");
2943	print_sched_time(totals.total_run_time, 2);
2944	printf("\n");
2945
2946	printf("    Total scheduling time (msec): ");
2947	print_sched_time(hist_time, 2);
2948	printf(" (x %d)\n", sched->max_cpu.cpu);
2949}
2950
2951typedef int (*sched_handler)(struct perf_tool *tool,
2952			  union perf_event *event,
2953			  struct evsel *evsel,
2954			  struct perf_sample *sample,
2955			  struct machine *machine);
2956
2957static int perf_timehist__process_sample(struct perf_tool *tool,
2958					 union perf_event *event,
2959					 struct perf_sample *sample,
2960					 struct evsel *evsel,
2961					 struct machine *machine)
2962{
2963	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2964	int err = 0;
2965	struct perf_cpu this_cpu = {
2966		.cpu = sample->cpu,
2967	};
2968
2969	if (this_cpu.cpu > sched->max_cpu.cpu)
2970		sched->max_cpu = this_cpu;
2971
2972	if (evsel->handler != NULL) {
2973		sched_handler f = evsel->handler;
2974
2975		err = f(tool, event, evsel, sample, machine);
2976	}
2977
2978	return err;
2979}
2980
2981static int timehist_check_attr(struct perf_sched *sched,
2982			       struct evlist *evlist)
2983{
2984	struct evsel *evsel;
2985	struct evsel_runtime *er;
2986
2987	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2988		er = evsel__get_runtime(evsel);
2989		if (er == NULL) {
2990			pr_err("Failed to allocate memory for evsel runtime data\n");
2991			return -1;
2992		}
2993
2994		if (sched->show_callchain && !evsel__has_callchain(evsel)) {
 
2995			pr_info("Samples do not have callchains.\n");
2996			sched->show_callchain = 0;
2997			symbol_conf.use_callchain = 0;
2998		}
2999	}
3000
3001	return 0;
3002}
3003
3004static int perf_sched__timehist(struct perf_sched *sched)
3005{
3006	struct evsel_str_handler handlers[] = {
3007		{ "sched:sched_switch",       timehist_sched_switch_event, },
3008		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
3009		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
3010		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
3011	};
3012	const struct evsel_str_handler migrate_handlers[] = {
3013		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
3014	};
3015	struct perf_data data = {
3016		.path  = input_name,
3017		.mode  = PERF_DATA_MODE_READ,
3018		.force = sched->force,
3019	};
3020
3021	struct perf_session *session;
3022	struct evlist *evlist;
3023	int err = -1;
3024
3025	/*
3026	 * event handlers for timehist option
3027	 */
3028	sched->tool.sample	 = perf_timehist__process_sample;
3029	sched->tool.mmap	 = perf_event__process_mmap;
3030	sched->tool.comm	 = perf_event__process_comm;
3031	sched->tool.exit	 = perf_event__process_exit;
3032	sched->tool.fork	 = perf_event__process_fork;
3033	sched->tool.lost	 = process_lost;
3034	sched->tool.attr	 = perf_event__process_attr;
3035	sched->tool.tracing_data = perf_event__process_tracing_data;
3036	sched->tool.build_id	 = perf_event__process_build_id;
3037
3038	sched->tool.ordered_events = true;
3039	sched->tool.ordering_requires_timestamps = true;
3040
3041	symbol_conf.use_callchain = sched->show_callchain;
3042
3043	session = perf_session__new(&data, &sched->tool);
3044	if (IS_ERR(session))
3045		return PTR_ERR(session);
3046
3047	if (cpu_list) {
3048		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3049		if (err < 0)
3050			goto out;
3051	}
3052
3053	evlist = session->evlist;
3054
3055	symbol__init(&session->header.env);
3056
3057	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3058		pr_err("Invalid time string\n");
3059		return -EINVAL;
3060	}
3061
3062	if (timehist_check_attr(sched, evlist) != 0)
3063		goto out;
3064
3065	setup_pager();
3066
3067	/* prefer sched_waking if it is captured */
3068	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3069		handlers[1].handler = timehist_sched_wakeup_ignore;
3070
3071	/* setup per-evsel handlers */
3072	if (perf_session__set_tracepoints_handlers(session, handlers))
3073		goto out;
3074
3075	/* sched_switch event at a minimum needs to exist */
3076	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
 
3077		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3078		goto out;
3079	}
3080
3081	if (sched->show_migrations &&
3082	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
3083		goto out;
3084
3085	/* pre-allocate struct for per-CPU idle stats */
3086	sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3087	if (sched->max_cpu.cpu == 0)
3088		sched->max_cpu.cpu = 4;
3089	if (init_idle_threads(sched->max_cpu.cpu))
3090		goto out;
3091
3092	/* summary_only implies summary option, but don't overwrite summary if set */
3093	if (sched->summary_only)
3094		sched->summary = sched->summary_only;
3095
3096	if (!sched->summary_only)
3097		timehist_header(sched);
3098
3099	err = perf_session__process_events(session);
3100	if (err) {
3101		pr_err("Failed to process events, error %d", err);
3102		goto out;
3103	}
3104
3105	sched->nr_events      = evlist->stats.nr_events[0];
3106	sched->nr_lost_events = evlist->stats.total_lost;
3107	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3108
3109	if (sched->summary)
3110		timehist_print_summary(sched, session);
3111
3112out:
3113	free_idle_threads();
3114	perf_session__delete(session);
3115
3116	return err;
3117}
3118
3119
3120static void print_bad_events(struct perf_sched *sched)
3121{
3122	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3123		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3124			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3125			sched->nr_unordered_timestamps, sched->nr_timestamps);
3126	}
3127	if (sched->nr_lost_events && sched->nr_events) {
3128		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3129			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3130			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3131	}
3132	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3133		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3134			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3135			sched->nr_context_switch_bugs, sched->nr_timestamps);
3136		if (sched->nr_lost_events)
3137			printf(" (due to lost events?)");
3138		printf("\n");
3139	}
3140}
3141
3142static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3143{
3144	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3145	struct work_atoms *this;
3146	const char *comm = thread__comm_str(data->thread), *this_comm;
3147	bool leftmost = true;
3148
3149	while (*new) {
3150		int cmp;
3151
3152		this = container_of(*new, struct work_atoms, node);
3153		parent = *new;
3154
3155		this_comm = thread__comm_str(this->thread);
3156		cmp = strcmp(comm, this_comm);
3157		if (cmp > 0) {
3158			new = &((*new)->rb_left);
3159		} else if (cmp < 0) {
3160			new = &((*new)->rb_right);
3161			leftmost = false;
3162		} else {
3163			this->num_merged++;
3164			this->total_runtime += data->total_runtime;
3165			this->nb_atoms += data->nb_atoms;
3166			this->total_lat += data->total_lat;
3167			list_splice(&data->work_list, &this->work_list);
3168			if (this->max_lat < data->max_lat) {
3169				this->max_lat = data->max_lat;
3170				this->max_lat_start = data->max_lat_start;
3171				this->max_lat_end = data->max_lat_end;
3172			}
3173			zfree(&data);
3174			return;
3175		}
3176	}
3177
3178	data->num_merged++;
3179	rb_link_node(&data->node, parent, new);
3180	rb_insert_color_cached(&data->node, root, leftmost);
3181}
3182
3183static void perf_sched__merge_lat(struct perf_sched *sched)
3184{
3185	struct work_atoms *data;
3186	struct rb_node *node;
3187
3188	if (sched->skip_merge)
3189		return;
3190
3191	while ((node = rb_first_cached(&sched->atom_root))) {
3192		rb_erase_cached(node, &sched->atom_root);
3193		data = rb_entry(node, struct work_atoms, node);
3194		__merge_work_atoms(&sched->merged_atom_root, data);
3195	}
3196}
3197
3198static int perf_sched__lat(struct perf_sched *sched)
3199{
3200	struct rb_node *next;
3201
3202	setup_pager();
3203
3204	if (perf_sched__read_events(sched))
3205		return -1;
3206
3207	perf_sched__merge_lat(sched);
3208	perf_sched__sort_lat(sched);
3209
3210	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3211	printf("  Task                  |   Runtime ms  | Switches | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3212	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3213
3214	next = rb_first_cached(&sched->sorted_atom_root);
3215
3216	while (next) {
3217		struct work_atoms *work_list;
3218
3219		work_list = rb_entry(next, struct work_atoms, node);
3220		output_lat_thread(sched, work_list);
3221		next = rb_next(next);
3222		thread__zput(work_list->thread);
3223	}
3224
3225	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3226	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3227		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3228
3229	printf(" ---------------------------------------------------\n");
3230
3231	print_bad_events(sched);
3232	printf("\n");
3233
3234	return 0;
3235}
3236
3237static int setup_map_cpus(struct perf_sched *sched)
3238{
3239	struct perf_cpu_map *map;
3240
3241	sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
3242
3243	if (sched->map.comp) {
3244		sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3245		if (!sched->map.comp_cpus)
3246			return -1;
3247	}
3248
3249	if (!sched->map.cpus_str)
3250		return 0;
3251
3252	map = perf_cpu_map__new(sched->map.cpus_str);
3253	if (!map) {
3254		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3255		return -1;
3256	}
3257
3258	sched->map.cpus = map;
3259	return 0;
3260}
3261
3262static int setup_color_pids(struct perf_sched *sched)
3263{
3264	struct perf_thread_map *map;
3265
3266	if (!sched->map.color_pids_str)
3267		return 0;
3268
3269	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3270	if (!map) {
3271		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3272		return -1;
3273	}
3274
3275	sched->map.color_pids = map;
3276	return 0;
3277}
3278
3279static int setup_color_cpus(struct perf_sched *sched)
3280{
3281	struct perf_cpu_map *map;
3282
3283	if (!sched->map.color_cpus_str)
3284		return 0;
3285
3286	map = perf_cpu_map__new(sched->map.color_cpus_str);
3287	if (!map) {
3288		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3289		return -1;
3290	}
3291
3292	sched->map.color_cpus = map;
3293	return 0;
3294}
3295
3296static int perf_sched__map(struct perf_sched *sched)
3297{
3298	if (setup_map_cpus(sched))
3299		return -1;
3300
3301	if (setup_color_pids(sched))
3302		return -1;
3303
3304	if (setup_color_cpus(sched))
3305		return -1;
3306
3307	setup_pager();
3308	if (perf_sched__read_events(sched))
3309		return -1;
3310	print_bad_events(sched);
3311	return 0;
3312}
3313
3314static int perf_sched__replay(struct perf_sched *sched)
3315{
3316	unsigned long i;
3317
3318	calibrate_run_measurement_overhead(sched);
3319	calibrate_sleep_measurement_overhead(sched);
3320
3321	test_calibrations(sched);
3322
3323	if (perf_sched__read_events(sched))
3324		return -1;
3325
3326	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3327	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3328	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3329
3330	if (sched->targetless_wakeups)
3331		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3332	if (sched->multitarget_wakeups)
3333		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3334	if (sched->nr_run_events_optimized)
3335		printf("run atoms optimized: %ld\n",
3336			sched->nr_run_events_optimized);
3337
3338	print_task_traces(sched);
3339	add_cross_task_wakeups(sched);
3340
3341	sched->thread_funcs_exit = false;
3342	create_tasks(sched);
3343	printf("------------------------------------------------------------\n");
3344	for (i = 0; i < sched->replay_repeat; i++)
3345		run_one_test(sched);
3346
3347	sched->thread_funcs_exit = true;
3348	destroy_tasks(sched);
3349	return 0;
3350}
3351
3352static void setup_sorting(struct perf_sched *sched, const struct option *options,
3353			  const char * const usage_msg[])
3354{
3355	char *tmp, *tok, *str = strdup(sched->sort_order);
3356
3357	for (tok = strtok_r(str, ", ", &tmp);
3358			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3359		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3360			usage_with_options_msg(usage_msg, options,
3361					"Unknown --sort key: `%s'", tok);
3362		}
3363	}
3364
3365	free(str);
3366
3367	sort_dimension__add("pid", &sched->cmp_pid);
3368}
3369
3370static bool schedstat_events_exposed(void)
3371{
3372	/*
3373	 * Select "sched:sched_stat_wait" event to check
3374	 * whether schedstat tracepoints are exposed.
3375	 */
3376	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3377		false : true;
3378}
3379
3380static int __cmd_record(int argc, const char **argv)
3381{
3382	unsigned int rec_argc, i, j;
3383	char **rec_argv;
3384	const char **rec_argv_copy;
3385	const char * const record_args[] = {
3386		"record",
3387		"-a",
3388		"-R",
3389		"-m", "1024",
3390		"-c", "1",
3391		"-e", "sched:sched_switch",
 
 
 
3392		"-e", "sched:sched_stat_runtime",
3393		"-e", "sched:sched_process_fork",
 
3394		"-e", "sched:sched_wakeup_new",
3395		"-e", "sched:sched_migrate_task",
3396	};
3397
3398	/*
3399	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3400	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3401	 * to prevent "perf sched record" execution failure, determine
3402	 * whether to record schedstat events according to actual situation.
3403	 */
3404	const char * const schedstat_args[] = {
3405		"-e", "sched:sched_stat_wait",
3406		"-e", "sched:sched_stat_sleep",
3407		"-e", "sched:sched_stat_iowait",
3408	};
3409	unsigned int schedstat_argc = schedstat_events_exposed() ?
3410		ARRAY_SIZE(schedstat_args) : 0;
3411
3412	struct tep_event *waking_event;
3413	int ret;
3414
3415	/*
3416	 * +2 for either "-e", "sched:sched_wakeup" or
3417	 * "-e", "sched:sched_waking"
3418	 */
3419	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3420	rec_argv = calloc(rec_argc + 1, sizeof(char *));
 
3421	if (rec_argv == NULL)
3422		return -ENOMEM;
3423	rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3424	if (rec_argv_copy == NULL) {
3425		free(rec_argv);
3426		return -ENOMEM;
3427	}
3428
3429	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3430		rec_argv[i] = strdup(record_args[i]);
3431
3432	rec_argv[i++] = strdup("-e");
3433	waking_event = trace_event__tp_format("sched", "sched_waking");
3434	if (!IS_ERR(waking_event))
3435		rec_argv[i++] = strdup("sched:sched_waking");
3436	else
3437		rec_argv[i++] = strdup("sched:sched_wakeup");
3438
3439	for (j = 0; j < schedstat_argc; j++)
3440		rec_argv[i++] = strdup(schedstat_args[j]);
3441
3442	for (j = 1; j < (unsigned int)argc; j++, i++)
3443		rec_argv[i] = strdup(argv[j]);
3444
3445	BUG_ON(i != rec_argc);
3446
3447	memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3448	ret = cmd_record(rec_argc, rec_argv_copy);
3449
3450	for (i = 0; i < rec_argc; i++)
3451		free(rec_argv[i]);
3452	free(rec_argv);
3453	free(rec_argv_copy);
3454
3455	return ret;
3456}
3457
3458int cmd_sched(int argc, const char **argv)
3459{
3460	static const char default_sort_order[] = "avg, max, switch, runtime";
3461	struct perf_sched sched = {
3462		.tool = {
3463			.sample		 = perf_sched__process_tracepoint_sample,
3464			.comm		 = perf_sched__process_comm,
3465			.namespaces	 = perf_event__process_namespaces,
3466			.lost		 = perf_event__process_lost,
3467			.fork		 = perf_sched__process_fork_event,
3468			.ordered_events = true,
3469		},
3470		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3471		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
 
 
3472		.sort_order	      = default_sort_order,
3473		.replay_repeat	      = 10,
3474		.profile_cpu	      = -1,
3475		.next_shortname1      = 'A',
3476		.next_shortname2      = '0',
3477		.skip_merge           = 0,
3478		.show_callchain	      = 1,
3479		.max_stack            = 5,
3480	};
3481	const struct option sched_options[] = {
3482	OPT_STRING('i', "input", &input_name, "file",
3483		    "input file name"),
3484	OPT_INCR('v', "verbose", &verbose,
3485		    "be more verbose (show symbol address, etc)"),
3486	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3487		    "dump raw trace in ASCII"),
3488	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3489	OPT_END()
3490	};
3491	const struct option latency_options[] = {
3492	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3493		   "sort by key(s): runtime, switch, avg, max"),
3494	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3495		    "CPU to profile on"),
3496	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3497		    "latency stats per pid instead of per comm"),
3498	OPT_PARENT(sched_options)
3499	};
3500	const struct option replay_options[] = {
3501	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3502		     "repeat the workload replay N times (-1: infinite)"),
3503	OPT_PARENT(sched_options)
3504	};
3505	const struct option map_options[] = {
3506	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3507		    "map output in compact mode"),
3508	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3509		   "highlight given pids in map"),
3510	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3511                    "highlight given CPUs in map"),
3512	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3513                    "display given CPUs in map"),
3514	OPT_PARENT(sched_options)
3515	};
3516	const struct option timehist_options[] = {
3517	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3518		   "file", "vmlinux pathname"),
3519	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3520		   "file", "kallsyms pathname"),
3521	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3522		    "Display call chains if present (default on)"),
3523	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3524		   "Maximum number of functions to display backtrace."),
3525	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3526		    "Look for files with symbols relative to this directory"),
3527	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3528		    "Show only syscall summary with statistics"),
3529	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3530		    "Show all syscalls and summary with statistics"),
3531	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3532	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3533	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3534	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3535	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3536	OPT_STRING(0, "time", &sched.time_str, "str",
3537		   "Time span for analysis (start,stop)"),
3538	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3539	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3540		   "analyze events only for given process id(s)"),
3541	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3542		   "analyze events only for given thread id(s)"),
3543	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3544	OPT_PARENT(sched_options)
3545	};
3546
3547	const char * const latency_usage[] = {
3548		"perf sched latency [<options>]",
3549		NULL
3550	};
3551	const char * const replay_usage[] = {
3552		"perf sched replay [<options>]",
3553		NULL
3554	};
3555	const char * const map_usage[] = {
3556		"perf sched map [<options>]",
3557		NULL
3558	};
3559	const char * const timehist_usage[] = {
3560		"perf sched timehist [<options>]",
3561		NULL
3562	};
3563	const char *const sched_subcommands[] = { "record", "latency", "map",
3564						  "replay", "script",
3565						  "timehist", NULL };
3566	const char *sched_usage[] = {
3567		NULL,
3568		NULL
3569	};
3570	struct trace_sched_handler lat_ops  = {
3571		.wakeup_event	    = latency_wakeup_event,
3572		.switch_event	    = latency_switch_event,
3573		.runtime_event	    = latency_runtime_event,
3574		.migrate_task_event = latency_migrate_task_event,
3575	};
3576	struct trace_sched_handler map_ops  = {
3577		.switch_event	    = map_switch_event,
3578	};
3579	struct trace_sched_handler replay_ops  = {
3580		.wakeup_event	    = replay_wakeup_event,
3581		.switch_event	    = replay_switch_event,
3582		.fork_event	    = replay_fork_event,
3583	};
3584	unsigned int i;
3585	int ret = 0;
3586
3587	mutex_init(&sched.start_work_mutex);
3588	mutex_init(&sched.work_done_wait_mutex);
3589	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3590		sched.curr_pid[i] = -1;
3591
3592	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3593					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3594	if (!argc)
3595		usage_with_options(sched_usage, sched_options);
3596
3597	/*
3598	 * Aliased to 'perf script' for now:
3599	 */
3600	if (!strcmp(argv[0], "script")) {
3601		ret = cmd_script(argc, argv);
3602	} else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3603		ret = __cmd_record(argc, argv);
3604	} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
 
3605		sched.tp_handler = &lat_ops;
3606		if (argc > 1) {
3607			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3608			if (argc)
3609				usage_with_options(latency_usage, latency_options);
3610		}
3611		setup_sorting(&sched, latency_options, latency_usage);
3612		ret = perf_sched__lat(&sched);
3613	} else if (!strcmp(argv[0], "map")) {
3614		if (argc) {
3615			argc = parse_options(argc, argv, map_options, map_usage, 0);
3616			if (argc)
3617				usage_with_options(map_usage, map_options);
3618		}
3619		sched.tp_handler = &map_ops;
3620		setup_sorting(&sched, latency_options, latency_usage);
3621		ret = perf_sched__map(&sched);
3622	} else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3623		sched.tp_handler = &replay_ops;
3624		if (argc) {
3625			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3626			if (argc)
3627				usage_with_options(replay_usage, replay_options);
3628		}
3629		ret = perf_sched__replay(&sched);
3630	} else if (!strcmp(argv[0], "timehist")) {
3631		if (argc) {
3632			argc = parse_options(argc, argv, timehist_options,
3633					     timehist_usage, 0);
3634			if (argc)
3635				usage_with_options(timehist_usage, timehist_options);
3636		}
3637		if ((sched.show_wakeups || sched.show_next) &&
3638		    sched.summary_only) {
3639			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3640			parse_options_usage(timehist_usage, timehist_options, "s", true);
3641			if (sched.show_wakeups)
3642				parse_options_usage(NULL, timehist_options, "w", true);
3643			if (sched.show_next)
3644				parse_options_usage(NULL, timehist_options, "n", true);
3645			ret = -EINVAL;
3646			goto out;
3647		}
3648		ret = symbol__validate_sym_arguments();
3649		if (ret)
3650			goto out;
3651
3652		ret = perf_sched__timehist(&sched);
3653	} else {
3654		usage_with_options(sched_usage, sched_options);
3655	}
3656
3657out:
3658	mutex_destroy(&sched.start_work_mutex);
3659	mutex_destroy(&sched.work_done_wait_mutex);
3660
3661	return ret;
3662}
v4.10.11
 
   1#include "builtin.h"
   2#include "perf.h"
 
   3
   4#include "util/util.h"
   5#include "util/evlist.h"
   6#include "util/cache.h"
   7#include "util/evsel.h"
 
 
   8#include "util/symbol.h"
   9#include "util/thread.h"
  10#include "util/header.h"
  11#include "util/session.h"
  12#include "util/tool.h"
  13#include "util/cloexec.h"
  14#include "util/thread_map.h"
  15#include "util/color.h"
  16#include "util/stat.h"
 
  17#include "util/callchain.h"
  18#include "util/time-utils.h"
  19
 
  20#include <subcmd/parse-options.h>
  21#include "util/trace-event.h"
  22
  23#include "util/debug.h"
 
  24
 
  25#include <linux/log2.h>
 
  26#include <sys/prctl.h>
  27#include <sys/resource.h>
 
  28
 
  29#include <semaphore.h>
  30#include <pthread.h>
  31#include <math.h>
  32#include <api/fs/fs.h>
 
  33#include <linux/time64.h>
 
 
 
  34
  35#define PR_SET_NAME		15               /* Set process name */
  36#define MAX_CPUS		4096
  37#define COMM_LEN		20
  38#define SYM_LEN			129
  39#define MAX_PID			1024000
  40
 
 
 
  41struct sched_atom;
  42
  43struct task_desc {
  44	unsigned long		nr;
  45	unsigned long		pid;
  46	char			comm[COMM_LEN];
  47
  48	unsigned long		nr_events;
  49	unsigned long		curr_event;
  50	struct sched_atom	**atoms;
  51
  52	pthread_t		thread;
  53	sem_t			sleep_sem;
  54
  55	sem_t			ready_for_work;
  56	sem_t			work_done_sem;
  57
  58	u64			cpu_usage;
  59};
  60
  61enum sched_event_type {
  62	SCHED_EVENT_RUN,
  63	SCHED_EVENT_SLEEP,
  64	SCHED_EVENT_WAKEUP,
  65	SCHED_EVENT_MIGRATION,
  66};
  67
  68struct sched_atom {
  69	enum sched_event_type	type;
  70	int			specific_wait;
  71	u64			timestamp;
  72	u64			duration;
  73	unsigned long		nr;
  74	sem_t			*wait_sem;
  75	struct task_desc	*wakee;
  76};
  77
  78#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80enum thread_state {
  81	THREAD_SLEEPING = 0,
  82	THREAD_WAIT_CPU,
  83	THREAD_SCHED_IN,
  84	THREAD_IGNORE
  85};
  86
  87struct work_atom {
  88	struct list_head	list;
  89	enum thread_state	state;
  90	u64			sched_out_time;
  91	u64			wake_up_time;
  92	u64			sched_in_time;
  93	u64			runtime;
  94};
  95
  96struct work_atoms {
  97	struct list_head	work_list;
  98	struct thread		*thread;
  99	struct rb_node		node;
 100	u64			max_lat;
 101	u64			max_lat_at;
 
 102	u64			total_lat;
 103	u64			nb_atoms;
 104	u64			total_runtime;
 105	int			num_merged;
 106};
 107
 108typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 109
 110struct perf_sched;
 111
 112struct trace_sched_handler {
 113	int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 114			    struct perf_sample *sample, struct machine *machine);
 115
 116	int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 117			     struct perf_sample *sample, struct machine *machine);
 118
 119	int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 120			    struct perf_sample *sample, struct machine *machine);
 121
 122	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 123	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 124			  struct machine *machine);
 125
 126	int (*migrate_task_event)(struct perf_sched *sched,
 127				  struct perf_evsel *evsel,
 128				  struct perf_sample *sample,
 129				  struct machine *machine);
 130};
 131
 132#define COLOR_PIDS PERF_COLOR_BLUE
 133#define COLOR_CPUS PERF_COLOR_BG_RED
 134
 135struct perf_sched_map {
 136	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 137	int			*comp_cpus;
 138	bool			 comp;
 139	struct thread_map	*color_pids;
 140	const char		*color_pids_str;
 141	struct cpu_map		*color_cpus;
 142	const char		*color_cpus_str;
 143	struct cpu_map		*cpus;
 144	const char		*cpus_str;
 145};
 146
 147struct perf_sched {
 148	struct perf_tool tool;
 149	const char	 *sort_order;
 150	unsigned long	 nr_tasks;
 151	struct task_desc **pid_to_task;
 152	struct task_desc **tasks;
 153	const struct trace_sched_handler *tp_handler;
 154	pthread_mutex_t	 start_work_mutex;
 155	pthread_mutex_t	 work_done_wait_mutex;
 156	int		 profile_cpu;
 157/*
 158 * Track the current task - that way we can know whether there's any
 159 * weird events, such as a task being switched away that is not current.
 160 */
 161	int		 max_cpu;
 162	u32		 curr_pid[MAX_CPUS];
 163	struct thread	 *curr_thread[MAX_CPUS];
 164	char		 next_shortname1;
 165	char		 next_shortname2;
 166	unsigned int	 replay_repeat;
 167	unsigned long	 nr_run_events;
 168	unsigned long	 nr_sleep_events;
 169	unsigned long	 nr_wakeup_events;
 170	unsigned long	 nr_sleep_corrections;
 171	unsigned long	 nr_run_events_optimized;
 172	unsigned long	 targetless_wakeups;
 173	unsigned long	 multitarget_wakeups;
 174	unsigned long	 nr_runs;
 175	unsigned long	 nr_timestamps;
 176	unsigned long	 nr_unordered_timestamps;
 177	unsigned long	 nr_context_switch_bugs;
 178	unsigned long	 nr_events;
 179	unsigned long	 nr_lost_chunks;
 180	unsigned long	 nr_lost_events;
 181	u64		 run_measurement_overhead;
 182	u64		 sleep_measurement_overhead;
 183	u64		 start_time;
 184	u64		 cpu_usage;
 185	u64		 runavg_cpu_usage;
 186	u64		 parent_cpu_usage;
 187	u64		 runavg_parent_cpu_usage;
 188	u64		 sum_runtime;
 189	u64		 sum_fluct;
 190	u64		 run_avg;
 191	u64		 all_runtime;
 192	u64		 all_count;
 193	u64		 cpu_last_switched[MAX_CPUS];
 194	struct rb_root	 atom_root, sorted_atom_root, merged_atom_root;
 195	struct list_head sort_list, cmp_pid;
 196	bool force;
 197	bool skip_merge;
 198	struct perf_sched_map map;
 199
 200	/* options for timehist command */
 201	bool		summary;
 202	bool		summary_only;
 203	bool		idle_hist;
 204	bool		show_callchain;
 205	unsigned int	max_stack;
 206	bool		show_cpu_visual;
 207	bool		show_wakeups;
 
 208	bool		show_migrations;
 
 209	u64		skipped_samples;
 210	const char	*time_str;
 211	struct perf_time_interval ptime;
 212	struct perf_time_interval hist_time;
 
 213};
 214
 215/* per thread run time data */
 216struct thread_runtime {
 217	u64 last_time;      /* time of previous sched in/out event */
 218	u64 dt_run;         /* run time */
 219	u64 dt_wait;        /* time between CPU access (off cpu) */
 
 
 220	u64 dt_delay;       /* time between wakeup and sched-in */
 221	u64 ready_to_run;   /* time of wakeup */
 222
 223	struct stats run_stats;
 224	u64 total_run_time;
 
 
 
 
 
 
 
 
 
 225
 226	u64 migrations;
 227};
 228
 229/* per event run time data */
 230struct evsel_runtime {
 231	u64 *last_time; /* time this event was last seen per cpu */
 232	u32 ncpu;       /* highest cpu slot allocated */
 233};
 234
 235/* per cpu idle time data */
 236struct idle_thread_runtime {
 237	struct thread_runtime	tr;
 238	struct thread		*last_thread;
 239	struct rb_root		sorted_root;
 240	struct callchain_root	callchain;
 241	struct callchain_cursor	cursor;
 242};
 243
 244/* track idle times per cpu */
 245static struct thread **idle_threads;
 246static int idle_max_cpu;
 247static char idle_comm[] = "<idle>";
 248
 249static u64 get_nsecs(void)
 250{
 251	struct timespec ts;
 252
 253	clock_gettime(CLOCK_MONOTONIC, &ts);
 254
 255	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 256}
 257
 258static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 259{
 260	u64 T0 = get_nsecs(), T1;
 261
 262	do {
 263		T1 = get_nsecs();
 264	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 265}
 266
 267static void sleep_nsecs(u64 nsecs)
 268{
 269	struct timespec ts;
 270
 271	ts.tv_nsec = nsecs % 999999999;
 272	ts.tv_sec = nsecs / 999999999;
 273
 274	nanosleep(&ts, NULL);
 275}
 276
 277static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 278{
 279	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 280	int i;
 281
 282	for (i = 0; i < 10; i++) {
 283		T0 = get_nsecs();
 284		burn_nsecs(sched, 0);
 285		T1 = get_nsecs();
 286		delta = T1-T0;
 287		min_delta = min(min_delta, delta);
 288	}
 289	sched->run_measurement_overhead = min_delta;
 290
 291	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 292}
 293
 294static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 295{
 296	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 297	int i;
 298
 299	for (i = 0; i < 10; i++) {
 300		T0 = get_nsecs();
 301		sleep_nsecs(10000);
 302		T1 = get_nsecs();
 303		delta = T1-T0;
 304		min_delta = min(min_delta, delta);
 305	}
 306	min_delta -= 10000;
 307	sched->sleep_measurement_overhead = min_delta;
 308
 309	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 310}
 311
 312static struct sched_atom *
 313get_new_event(struct task_desc *task, u64 timestamp)
 314{
 315	struct sched_atom *event = zalloc(sizeof(*event));
 316	unsigned long idx = task->nr_events;
 317	size_t size;
 318
 319	event->timestamp = timestamp;
 320	event->nr = idx;
 321
 322	task->nr_events++;
 323	size = sizeof(struct sched_atom *) * task->nr_events;
 324	task->atoms = realloc(task->atoms, size);
 325	BUG_ON(!task->atoms);
 326
 327	task->atoms[idx] = event;
 328
 329	return event;
 330}
 331
 332static struct sched_atom *last_event(struct task_desc *task)
 333{
 334	if (!task->nr_events)
 335		return NULL;
 336
 337	return task->atoms[task->nr_events - 1];
 338}
 339
 340static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 341				u64 timestamp, u64 duration)
 342{
 343	struct sched_atom *event, *curr_event = last_event(task);
 344
 345	/*
 346	 * optimize an existing RUN event by merging this one
 347	 * to it:
 348	 */
 349	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 350		sched->nr_run_events_optimized++;
 351		curr_event->duration += duration;
 352		return;
 353	}
 354
 355	event = get_new_event(task, timestamp);
 356
 357	event->type = SCHED_EVENT_RUN;
 358	event->duration = duration;
 359
 360	sched->nr_run_events++;
 361}
 362
 363static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 364				   u64 timestamp, struct task_desc *wakee)
 365{
 366	struct sched_atom *event, *wakee_event;
 367
 368	event = get_new_event(task, timestamp);
 369	event->type = SCHED_EVENT_WAKEUP;
 370	event->wakee = wakee;
 371
 372	wakee_event = last_event(wakee);
 373	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 374		sched->targetless_wakeups++;
 375		return;
 376	}
 377	if (wakee_event->wait_sem) {
 378		sched->multitarget_wakeups++;
 379		return;
 380	}
 381
 382	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 383	sem_init(wakee_event->wait_sem, 0, 0);
 384	wakee_event->specific_wait = 1;
 385	event->wait_sem = wakee_event->wait_sem;
 386
 387	sched->nr_wakeup_events++;
 388}
 389
 390static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 391				  u64 timestamp, u64 task_state __maybe_unused)
 392{
 393	struct sched_atom *event = get_new_event(task, timestamp);
 394
 395	event->type = SCHED_EVENT_SLEEP;
 396
 397	sched->nr_sleep_events++;
 398}
 399
 400static struct task_desc *register_pid(struct perf_sched *sched,
 401				      unsigned long pid, const char *comm)
 402{
 403	struct task_desc *task;
 404	static int pid_max;
 405
 406	if (sched->pid_to_task == NULL) {
 407		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 408			pid_max = MAX_PID;
 409		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 410	}
 411	if (pid >= (unsigned long)pid_max) {
 412		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 413			sizeof(struct task_desc *))) == NULL);
 414		while (pid >= (unsigned long)pid_max)
 415			sched->pid_to_task[pid_max++] = NULL;
 416	}
 417
 418	task = sched->pid_to_task[pid];
 419
 420	if (task)
 421		return task;
 422
 423	task = zalloc(sizeof(*task));
 424	task->pid = pid;
 425	task->nr = sched->nr_tasks;
 426	strcpy(task->comm, comm);
 427	/*
 428	 * every task starts in sleeping state - this gets ignored
 429	 * if there's no wakeup pointing to this sleep state:
 430	 */
 431	add_sched_event_sleep(sched, task, 0, 0);
 432
 433	sched->pid_to_task[pid] = task;
 434	sched->nr_tasks++;
 435	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 436	BUG_ON(!sched->tasks);
 437	sched->tasks[task->nr] = task;
 438
 439	if (verbose)
 440		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 441
 442	return task;
 443}
 444
 445
 446static void print_task_traces(struct perf_sched *sched)
 447{
 448	struct task_desc *task;
 449	unsigned long i;
 450
 451	for (i = 0; i < sched->nr_tasks; i++) {
 452		task = sched->tasks[i];
 453		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 454			task->nr, task->comm, task->pid, task->nr_events);
 455	}
 456}
 457
 458static void add_cross_task_wakeups(struct perf_sched *sched)
 459{
 460	struct task_desc *task1, *task2;
 461	unsigned long i, j;
 462
 463	for (i = 0; i < sched->nr_tasks; i++) {
 464		task1 = sched->tasks[i];
 465		j = i + 1;
 466		if (j == sched->nr_tasks)
 467			j = 0;
 468		task2 = sched->tasks[j];
 469		add_sched_event_wakeup(sched, task1, 0, task2);
 470	}
 471}
 472
 473static void perf_sched__process_event(struct perf_sched *sched,
 474				      struct sched_atom *atom)
 475{
 476	int ret = 0;
 477
 478	switch (atom->type) {
 479		case SCHED_EVENT_RUN:
 480			burn_nsecs(sched, atom->duration);
 481			break;
 482		case SCHED_EVENT_SLEEP:
 483			if (atom->wait_sem)
 484				ret = sem_wait(atom->wait_sem);
 485			BUG_ON(ret);
 486			break;
 487		case SCHED_EVENT_WAKEUP:
 488			if (atom->wait_sem)
 489				ret = sem_post(atom->wait_sem);
 490			BUG_ON(ret);
 491			break;
 492		case SCHED_EVENT_MIGRATION:
 493			break;
 494		default:
 495			BUG_ON(1);
 496	}
 497}
 498
 499static u64 get_cpu_usage_nsec_parent(void)
 500{
 501	struct rusage ru;
 502	u64 sum;
 503	int err;
 504
 505	err = getrusage(RUSAGE_SELF, &ru);
 506	BUG_ON(err);
 507
 508	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 509	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 510
 511	return sum;
 512}
 513
 514static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 515{
 516	struct perf_event_attr attr;
 517	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 518	int fd;
 519	struct rlimit limit;
 520	bool need_privilege = false;
 521
 522	memset(&attr, 0, sizeof(attr));
 523
 524	attr.type = PERF_TYPE_SOFTWARE;
 525	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 526
 527force_again:
 528	fd = sys_perf_event_open(&attr, 0, -1, -1,
 529				 perf_event_open_cloexec_flag());
 530
 531	if (fd < 0) {
 532		if (errno == EMFILE) {
 533			if (sched->force) {
 534				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 535				limit.rlim_cur += sched->nr_tasks - cur_task;
 536				if (limit.rlim_cur > limit.rlim_max) {
 537					limit.rlim_max = limit.rlim_cur;
 538					need_privilege = true;
 539				}
 540				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 541					if (need_privilege && errno == EPERM)
 542						strcpy(info, "Need privilege\n");
 543				} else
 544					goto force_again;
 545			} else
 546				strcpy(info, "Have a try with -f option\n");
 547		}
 548		pr_err("Error: sys_perf_event_open() syscall returned "
 549		       "with %d (%s)\n%s", fd,
 550		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 551		exit(EXIT_FAILURE);
 552	}
 553	return fd;
 554}
 555
 556static u64 get_cpu_usage_nsec_self(int fd)
 557{
 558	u64 runtime;
 559	int ret;
 560
 561	ret = read(fd, &runtime, sizeof(runtime));
 562	BUG_ON(ret != sizeof(runtime));
 563
 564	return runtime;
 565}
 566
 567struct sched_thread_parms {
 568	struct task_desc  *task;
 569	struct perf_sched *sched;
 570	int fd;
 571};
 572
 573static void *thread_func(void *ctx)
 574{
 575	struct sched_thread_parms *parms = ctx;
 576	struct task_desc *this_task = parms->task;
 577	struct perf_sched *sched = parms->sched;
 578	u64 cpu_usage_0, cpu_usage_1;
 579	unsigned long i, ret;
 580	char comm2[22];
 581	int fd = parms->fd;
 582
 583	zfree(&parms);
 584
 585	sprintf(comm2, ":%s", this_task->comm);
 586	prctl(PR_SET_NAME, comm2);
 587	if (fd < 0)
 588		return NULL;
 589again:
 590	ret = sem_post(&this_task->ready_for_work);
 591	BUG_ON(ret);
 592	ret = pthread_mutex_lock(&sched->start_work_mutex);
 593	BUG_ON(ret);
 594	ret = pthread_mutex_unlock(&sched->start_work_mutex);
 595	BUG_ON(ret);
 596
 597	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 598
 599	for (i = 0; i < this_task->nr_events; i++) {
 600		this_task->curr_event = i;
 601		perf_sched__process_event(sched, this_task->atoms[i]);
 602	}
 603
 604	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 605	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 606	ret = sem_post(&this_task->work_done_sem);
 607	BUG_ON(ret);
 608
 609	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 610	BUG_ON(ret);
 611	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 612	BUG_ON(ret);
 613
 614	goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 615}
 616
 617static void create_tasks(struct perf_sched *sched)
 
 
 618{
 619	struct task_desc *task;
 620	pthread_attr_t attr;
 621	unsigned long i;
 622	int err;
 623
 624	err = pthread_attr_init(&attr);
 625	BUG_ON(err);
 626	err = pthread_attr_setstacksize(&attr,
 627			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 628	BUG_ON(err);
 629	err = pthread_mutex_lock(&sched->start_work_mutex);
 630	BUG_ON(err);
 631	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 632	BUG_ON(err);
 
 
 633	for (i = 0; i < sched->nr_tasks; i++) {
 634		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 635		BUG_ON(parms == NULL);
 636		parms->task = task = sched->tasks[i];
 637		parms->sched = sched;
 638		parms->fd = self_open_counters(sched, i);
 639		sem_init(&task->sleep_sem, 0, 0);
 640		sem_init(&task->ready_for_work, 0, 0);
 641		sem_init(&task->work_done_sem, 0, 0);
 642		task->curr_event = 0;
 643		err = pthread_create(&task->thread, &attr, thread_func, parms);
 644		BUG_ON(err);
 645	}
 646}
 647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648static void wait_for_tasks(struct perf_sched *sched)
 
 
 649{
 650	u64 cpu_usage_0, cpu_usage_1;
 651	struct task_desc *task;
 652	unsigned long i, ret;
 653
 654	sched->start_time = get_nsecs();
 655	sched->cpu_usage = 0;
 656	pthread_mutex_unlock(&sched->work_done_wait_mutex);
 657
 658	for (i = 0; i < sched->nr_tasks; i++) {
 659		task = sched->tasks[i];
 660		ret = sem_wait(&task->ready_for_work);
 661		BUG_ON(ret);
 662		sem_init(&task->ready_for_work, 0, 0);
 663	}
 664	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 665	BUG_ON(ret);
 666
 667	cpu_usage_0 = get_cpu_usage_nsec_parent();
 668
 669	pthread_mutex_unlock(&sched->start_work_mutex);
 670
 671	for (i = 0; i < sched->nr_tasks; i++) {
 672		task = sched->tasks[i];
 673		ret = sem_wait(&task->work_done_sem);
 674		BUG_ON(ret);
 675		sem_init(&task->work_done_sem, 0, 0);
 676		sched->cpu_usage += task->cpu_usage;
 677		task->cpu_usage = 0;
 678	}
 679
 680	cpu_usage_1 = get_cpu_usage_nsec_parent();
 681	if (!sched->runavg_cpu_usage)
 682		sched->runavg_cpu_usage = sched->cpu_usage;
 683	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 684
 685	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 686	if (!sched->runavg_parent_cpu_usage)
 687		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 688	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 689					 sched->parent_cpu_usage)/sched->replay_repeat;
 690
 691	ret = pthread_mutex_lock(&sched->start_work_mutex);
 692	BUG_ON(ret);
 693
 694	for (i = 0; i < sched->nr_tasks; i++) {
 695		task = sched->tasks[i];
 696		sem_init(&task->sleep_sem, 0, 0);
 697		task->curr_event = 0;
 698	}
 699}
 700
 701static void run_one_test(struct perf_sched *sched)
 
 
 702{
 703	u64 T0, T1, delta, avg_delta, fluct;
 704
 705	T0 = get_nsecs();
 706	wait_for_tasks(sched);
 707	T1 = get_nsecs();
 708
 709	delta = T1 - T0;
 710	sched->sum_runtime += delta;
 711	sched->nr_runs++;
 712
 713	avg_delta = sched->sum_runtime / sched->nr_runs;
 714	if (delta < avg_delta)
 715		fluct = avg_delta - delta;
 716	else
 717		fluct = delta - avg_delta;
 718	sched->sum_fluct += fluct;
 719	if (!sched->run_avg)
 720		sched->run_avg = delta;
 721	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 722
 723	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 724
 725	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 726
 727	printf("cpu: %0.2f / %0.2f",
 728		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 729
 730#if 0
 731	/*
 732	 * rusage statistics done by the parent, these are less
 733	 * accurate than the sched->sum_exec_runtime based statistics:
 734	 */
 735	printf(" [%0.2f / %0.2f]",
 736		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 737		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 738#endif
 739
 740	printf("\n");
 741
 742	if (sched->nr_sleep_corrections)
 743		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 744	sched->nr_sleep_corrections = 0;
 745}
 746
 747static void test_calibrations(struct perf_sched *sched)
 748{
 749	u64 T0, T1;
 750
 751	T0 = get_nsecs();
 752	burn_nsecs(sched, NSEC_PER_MSEC);
 753	T1 = get_nsecs();
 754
 755	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 756
 757	T0 = get_nsecs();
 758	sleep_nsecs(NSEC_PER_MSEC);
 759	T1 = get_nsecs();
 760
 761	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 762}
 763
 764static int
 765replay_wakeup_event(struct perf_sched *sched,
 766		    struct perf_evsel *evsel, struct perf_sample *sample,
 767		    struct machine *machine __maybe_unused)
 768{
 769	const char *comm = perf_evsel__strval(evsel, sample, "comm");
 770	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
 771	struct task_desc *waker, *wakee;
 772
 773	if (verbose) {
 774		printf("sched_wakeup event %p\n", evsel);
 775
 776		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 777	}
 778
 779	waker = register_pid(sched, sample->tid, "<unknown>");
 780	wakee = register_pid(sched, pid, comm);
 781
 782	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 783	return 0;
 784}
 785
 786static int replay_switch_event(struct perf_sched *sched,
 787			       struct perf_evsel *evsel,
 788			       struct perf_sample *sample,
 789			       struct machine *machine __maybe_unused)
 790{
 791	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 792		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 793	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 794		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 795	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 796	struct task_desc *prev, __maybe_unused *next;
 797	u64 timestamp0, timestamp = sample->time;
 798	int cpu = sample->cpu;
 799	s64 delta;
 800
 801	if (verbose)
 802		printf("sched_switch event %p\n", evsel);
 803
 804	if (cpu >= MAX_CPUS || cpu < 0)
 805		return 0;
 806
 807	timestamp0 = sched->cpu_last_switched[cpu];
 808	if (timestamp0)
 809		delta = timestamp - timestamp0;
 810	else
 811		delta = 0;
 812
 813	if (delta < 0) {
 814		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 815		return -1;
 816	}
 817
 818	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 819		 prev_comm, prev_pid, next_comm, next_pid, delta);
 820
 821	prev = register_pid(sched, prev_pid, prev_comm);
 822	next = register_pid(sched, next_pid, next_comm);
 823
 824	sched->cpu_last_switched[cpu] = timestamp;
 825
 826	add_sched_event_run(sched, prev, timestamp, delta);
 827	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 828
 829	return 0;
 830}
 831
 832static int replay_fork_event(struct perf_sched *sched,
 833			     union perf_event *event,
 834			     struct machine *machine)
 835{
 836	struct thread *child, *parent;
 837
 838	child = machine__findnew_thread(machine, event->fork.pid,
 839					event->fork.tid);
 840	parent = machine__findnew_thread(machine, event->fork.ppid,
 841					 event->fork.ptid);
 842
 843	if (child == NULL || parent == NULL) {
 844		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 845				 child, parent);
 846		goto out_put;
 847	}
 848
 849	if (verbose) {
 850		printf("fork event\n");
 851		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 852		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 853	}
 854
 855	register_pid(sched, parent->tid, thread__comm_str(parent));
 856	register_pid(sched, child->tid, thread__comm_str(child));
 857out_put:
 858	thread__put(child);
 859	thread__put(parent);
 860	return 0;
 861}
 862
 863struct sort_dimension {
 864	const char		*name;
 865	sort_fn_t		cmp;
 866	struct list_head	list;
 867};
 868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869static int
 870thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 871{
 872	struct sort_dimension *sort;
 873	int ret = 0;
 874
 875	BUG_ON(list_empty(list));
 876
 877	list_for_each_entry(sort, list, list) {
 878		ret = sort->cmp(l, r);
 879		if (ret)
 880			return ret;
 881	}
 882
 883	return ret;
 884}
 885
 886static struct work_atoms *
 887thread_atoms_search(struct rb_root *root, struct thread *thread,
 888			 struct list_head *sort_list)
 889{
 890	struct rb_node *node = root->rb_node;
 891	struct work_atoms key = { .thread = thread };
 892
 893	while (node) {
 894		struct work_atoms *atoms;
 895		int cmp;
 896
 897		atoms = container_of(node, struct work_atoms, node);
 898
 899		cmp = thread_lat_cmp(sort_list, &key, atoms);
 900		if (cmp > 0)
 901			node = node->rb_left;
 902		else if (cmp < 0)
 903			node = node->rb_right;
 904		else {
 905			BUG_ON(thread != atoms->thread);
 906			return atoms;
 907		}
 908	}
 909	return NULL;
 910}
 911
 912static void
 913__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 914			 struct list_head *sort_list)
 915{
 916	struct rb_node **new = &(root->rb_node), *parent = NULL;
 
 917
 918	while (*new) {
 919		struct work_atoms *this;
 920		int cmp;
 921
 922		this = container_of(*new, struct work_atoms, node);
 923		parent = *new;
 924
 925		cmp = thread_lat_cmp(sort_list, data, this);
 926
 927		if (cmp > 0)
 928			new = &((*new)->rb_left);
 929		else
 930			new = &((*new)->rb_right);
 
 
 931	}
 932
 933	rb_link_node(&data->node, parent, new);
 934	rb_insert_color(&data->node, root);
 935}
 936
 937static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
 938{
 939	struct work_atoms *atoms = zalloc(sizeof(*atoms));
 940	if (!atoms) {
 941		pr_err("No memory at %s\n", __func__);
 942		return -1;
 943	}
 944
 945	atoms->thread = thread__get(thread);
 946	INIT_LIST_HEAD(&atoms->work_list);
 947	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
 948	return 0;
 949}
 950
 951static char sched_out_state(u64 prev_state)
 952{
 953	const char *str = TASK_STATE_TO_CHAR_STR;
 954
 955	return str[prev_state];
 956}
 957
 958static int
 959add_sched_out_event(struct work_atoms *atoms,
 960		    char run_state,
 961		    u64 timestamp)
 962{
 963	struct work_atom *atom = zalloc(sizeof(*atom));
 964	if (!atom) {
 965		pr_err("Non memory at %s", __func__);
 966		return -1;
 967	}
 968
 969	atom->sched_out_time = timestamp;
 970
 971	if (run_state == 'R') {
 972		atom->state = THREAD_WAIT_CPU;
 973		atom->wake_up_time = atom->sched_out_time;
 974	}
 975
 976	list_add_tail(&atom->list, &atoms->work_list);
 977	return 0;
 978}
 979
 980static void
 981add_runtime_event(struct work_atoms *atoms, u64 delta,
 982		  u64 timestamp __maybe_unused)
 983{
 984	struct work_atom *atom;
 985
 986	BUG_ON(list_empty(&atoms->work_list));
 987
 988	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 989
 990	atom->runtime += delta;
 991	atoms->total_runtime += delta;
 992}
 993
 994static void
 995add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
 996{
 997	struct work_atom *atom;
 998	u64 delta;
 999
1000	if (list_empty(&atoms->work_list))
1001		return;
1002
1003	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1004
1005	if (atom->state != THREAD_WAIT_CPU)
1006		return;
1007
1008	if (timestamp < atom->wake_up_time) {
1009		atom->state = THREAD_IGNORE;
1010		return;
1011	}
1012
1013	atom->state = THREAD_SCHED_IN;
1014	atom->sched_in_time = timestamp;
1015
1016	delta = atom->sched_in_time - atom->wake_up_time;
1017	atoms->total_lat += delta;
1018	if (delta > atoms->max_lat) {
1019		atoms->max_lat = delta;
1020		atoms->max_lat_at = timestamp;
 
1021	}
1022	atoms->nb_atoms++;
1023}
1024
1025static int latency_switch_event(struct perf_sched *sched,
1026				struct perf_evsel *evsel,
1027				struct perf_sample *sample,
1028				struct machine *machine)
1029{
1030	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1031		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1032	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1033	struct work_atoms *out_events, *in_events;
1034	struct thread *sched_out, *sched_in;
1035	u64 timestamp0, timestamp = sample->time;
1036	int cpu = sample->cpu, err = -1;
1037	s64 delta;
1038
1039	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040
1041	timestamp0 = sched->cpu_last_switched[cpu];
1042	sched->cpu_last_switched[cpu] = timestamp;
1043	if (timestamp0)
1044		delta = timestamp - timestamp0;
1045	else
1046		delta = 0;
1047
1048	if (delta < 0) {
1049		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1050		return -1;
1051	}
1052
1053	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1054	sched_in = machine__findnew_thread(machine, -1, next_pid);
1055	if (sched_out == NULL || sched_in == NULL)
1056		goto out_put;
1057
1058	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1059	if (!out_events) {
1060		if (thread_atoms_insert(sched, sched_out))
1061			goto out_put;
1062		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1063		if (!out_events) {
1064			pr_err("out-event: Internal tree error");
1065			goto out_put;
1066		}
1067	}
1068	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1069		return -1;
1070
1071	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1072	if (!in_events) {
1073		if (thread_atoms_insert(sched, sched_in))
1074			goto out_put;
1075		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1076		if (!in_events) {
1077			pr_err("in-event: Internal tree error");
1078			goto out_put;
1079		}
1080		/*
1081		 * Take came in we have not heard about yet,
1082		 * add in an initial atom in runnable state:
1083		 */
1084		if (add_sched_out_event(in_events, 'R', timestamp))
1085			goto out_put;
1086	}
1087	add_sched_in_event(in_events, timestamp);
1088	err = 0;
1089out_put:
1090	thread__put(sched_out);
1091	thread__put(sched_in);
1092	return err;
1093}
1094
1095static int latency_runtime_event(struct perf_sched *sched,
1096				 struct perf_evsel *evsel,
1097				 struct perf_sample *sample,
1098				 struct machine *machine)
1099{
1100	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
1101	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1102	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1103	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1104	u64 timestamp = sample->time;
1105	int cpu = sample->cpu, err = -1;
1106
1107	if (thread == NULL)
1108		return -1;
1109
1110	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1111	if (!atoms) {
1112		if (thread_atoms_insert(sched, thread))
1113			goto out_put;
1114		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1115		if (!atoms) {
1116			pr_err("in-event: Internal tree error");
1117			goto out_put;
1118		}
1119		if (add_sched_out_event(atoms, 'R', timestamp))
1120			goto out_put;
1121	}
1122
1123	add_runtime_event(atoms, runtime, timestamp);
1124	err = 0;
1125out_put:
1126	thread__put(thread);
1127	return err;
1128}
1129
1130static int latency_wakeup_event(struct perf_sched *sched,
1131				struct perf_evsel *evsel,
1132				struct perf_sample *sample,
1133				struct machine *machine)
1134{
1135	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid");
1136	struct work_atoms *atoms;
1137	struct work_atom *atom;
1138	struct thread *wakee;
1139	u64 timestamp = sample->time;
1140	int err = -1;
1141
1142	wakee = machine__findnew_thread(machine, -1, pid);
1143	if (wakee == NULL)
1144		return -1;
1145	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1146	if (!atoms) {
1147		if (thread_atoms_insert(sched, wakee))
1148			goto out_put;
1149		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1150		if (!atoms) {
1151			pr_err("wakeup-event: Internal tree error");
1152			goto out_put;
1153		}
1154		if (add_sched_out_event(atoms, 'S', timestamp))
1155			goto out_put;
1156	}
1157
1158	BUG_ON(list_empty(&atoms->work_list));
1159
1160	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1161
1162	/*
1163	 * As we do not guarantee the wakeup event happens when
1164	 * task is out of run queue, also may happen when task is
1165	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1166	 * then we should not set the ->wake_up_time when wake up a
1167	 * task which is on run queue.
1168	 *
1169	 * You WILL be missing events if you've recorded only
1170	 * one CPU, or are only looking at only one, so don't
1171	 * skip in this case.
1172	 */
1173	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1174		goto out_ok;
1175
1176	sched->nr_timestamps++;
1177	if (atom->sched_out_time > timestamp) {
1178		sched->nr_unordered_timestamps++;
1179		goto out_ok;
1180	}
1181
1182	atom->state = THREAD_WAIT_CPU;
1183	atom->wake_up_time = timestamp;
1184out_ok:
1185	err = 0;
1186out_put:
1187	thread__put(wakee);
1188	return err;
1189}
1190
1191static int latency_migrate_task_event(struct perf_sched *sched,
1192				      struct perf_evsel *evsel,
1193				      struct perf_sample *sample,
1194				      struct machine *machine)
1195{
1196	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1197	u64 timestamp = sample->time;
1198	struct work_atoms *atoms;
1199	struct work_atom *atom;
1200	struct thread *migrant;
1201	int err = -1;
1202
1203	/*
1204	 * Only need to worry about migration when profiling one CPU.
1205	 */
1206	if (sched->profile_cpu == -1)
1207		return 0;
1208
1209	migrant = machine__findnew_thread(machine, -1, pid);
1210	if (migrant == NULL)
1211		return -1;
1212	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1213	if (!atoms) {
1214		if (thread_atoms_insert(sched, migrant))
1215			goto out_put;
1216		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1217		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1218		if (!atoms) {
1219			pr_err("migration-event: Internal tree error");
1220			goto out_put;
1221		}
1222		if (add_sched_out_event(atoms, 'R', timestamp))
1223			goto out_put;
1224	}
1225
1226	BUG_ON(list_empty(&atoms->work_list));
1227
1228	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1229	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1230
1231	sched->nr_timestamps++;
1232
1233	if (atom->sched_out_time > timestamp)
1234		sched->nr_unordered_timestamps++;
1235	err = 0;
1236out_put:
1237	thread__put(migrant);
1238	return err;
1239}
1240
1241static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1242{
1243	int i;
1244	int ret;
1245	u64 avg;
1246	char max_lat_at[32];
1247
1248	if (!work_list->nb_atoms)
1249		return;
1250	/*
1251	 * Ignore idle threads:
1252	 */
1253	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1254		return;
1255
1256	sched->all_runtime += work_list->total_runtime;
1257	sched->all_count   += work_list->nb_atoms;
1258
1259	if (work_list->num_merged > 1)
1260		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1261	else
1262		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1263
1264	for (i = 0; i < 24 - ret; i++)
1265		printf(" ");
1266
1267	avg = work_list->total_lat / work_list->nb_atoms;
1268	timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
 
1269
1270	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1271	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1272		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1273		 (double)work_list->max_lat / NSEC_PER_MSEC,
1274		 max_lat_at);
1275}
1276
1277static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1278{
1279	if (l->thread == r->thread)
1280		return 0;
1281	if (l->thread->tid < r->thread->tid)
1282		return -1;
1283	if (l->thread->tid > r->thread->tid)
1284		return 1;
1285	return (int)(l->thread - r->thread);
1286}
1287
1288static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1289{
1290	u64 avgl, avgr;
1291
1292	if (!l->nb_atoms)
1293		return -1;
1294
1295	if (!r->nb_atoms)
1296		return 1;
1297
1298	avgl = l->total_lat / l->nb_atoms;
1299	avgr = r->total_lat / r->nb_atoms;
1300
1301	if (avgl < avgr)
1302		return -1;
1303	if (avgl > avgr)
1304		return 1;
1305
1306	return 0;
1307}
1308
1309static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1310{
1311	if (l->max_lat < r->max_lat)
1312		return -1;
1313	if (l->max_lat > r->max_lat)
1314		return 1;
1315
1316	return 0;
1317}
1318
1319static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1320{
1321	if (l->nb_atoms < r->nb_atoms)
1322		return -1;
1323	if (l->nb_atoms > r->nb_atoms)
1324		return 1;
1325
1326	return 0;
1327}
1328
1329static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1330{
1331	if (l->total_runtime < r->total_runtime)
1332		return -1;
1333	if (l->total_runtime > r->total_runtime)
1334		return 1;
1335
1336	return 0;
1337}
1338
1339static int sort_dimension__add(const char *tok, struct list_head *list)
1340{
1341	size_t i;
1342	static struct sort_dimension avg_sort_dimension = {
1343		.name = "avg",
1344		.cmp  = avg_cmp,
1345	};
1346	static struct sort_dimension max_sort_dimension = {
1347		.name = "max",
1348		.cmp  = max_cmp,
1349	};
1350	static struct sort_dimension pid_sort_dimension = {
1351		.name = "pid",
1352		.cmp  = pid_cmp,
1353	};
1354	static struct sort_dimension runtime_sort_dimension = {
1355		.name = "runtime",
1356		.cmp  = runtime_cmp,
1357	};
1358	static struct sort_dimension switch_sort_dimension = {
1359		.name = "switch",
1360		.cmp  = switch_cmp,
1361	};
1362	struct sort_dimension *available_sorts[] = {
1363		&pid_sort_dimension,
1364		&avg_sort_dimension,
1365		&max_sort_dimension,
1366		&switch_sort_dimension,
1367		&runtime_sort_dimension,
1368	};
1369
1370	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1371		if (!strcmp(available_sorts[i]->name, tok)) {
1372			list_add_tail(&available_sorts[i]->list, list);
1373
1374			return 0;
1375		}
1376	}
1377
1378	return -1;
1379}
1380
1381static void perf_sched__sort_lat(struct perf_sched *sched)
1382{
1383	struct rb_node *node;
1384	struct rb_root *root = &sched->atom_root;
1385again:
1386	for (;;) {
1387		struct work_atoms *data;
1388		node = rb_first(root);
1389		if (!node)
1390			break;
1391
1392		rb_erase(node, root);
1393		data = rb_entry(node, struct work_atoms, node);
1394		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1395	}
1396	if (root == &sched->atom_root) {
1397		root = &sched->merged_atom_root;
1398		goto again;
1399	}
1400}
1401
1402static int process_sched_wakeup_event(struct perf_tool *tool,
1403				      struct perf_evsel *evsel,
1404				      struct perf_sample *sample,
1405				      struct machine *machine)
1406{
1407	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1408
1409	if (sched->tp_handler->wakeup_event)
1410		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1411
1412	return 0;
1413}
1414
1415union map_priv {
1416	void	*ptr;
1417	bool	 color;
1418};
1419
1420static bool thread__has_color(struct thread *thread)
1421{
1422	union map_priv priv = {
1423		.ptr = thread__priv(thread),
1424	};
1425
1426	return priv.color;
1427}
1428
1429static struct thread*
1430map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1431{
1432	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1433	union map_priv priv = {
1434		.color = false,
1435	};
1436
1437	if (!sched->map.color_pids || !thread || thread__priv(thread))
1438		return thread;
1439
1440	if (thread_map__has(sched->map.color_pids, tid))
1441		priv.color = true;
1442
1443	thread__set_priv(thread, priv.ptr);
1444	return thread;
1445}
1446
1447static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1448			    struct perf_sample *sample, struct machine *machine)
1449{
1450	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1451	struct thread *sched_in;
 
1452	int new_shortname;
1453	u64 timestamp0, timestamp = sample->time;
1454	s64 delta;
1455	int i, this_cpu = sample->cpu;
 
 
 
1456	int cpus_nr;
1457	bool new_cpu = false;
1458	const char *color = PERF_COLOR_NORMAL;
1459	char stimestamp[32];
1460
1461	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1462
1463	if (this_cpu > sched->max_cpu)
1464		sched->max_cpu = this_cpu;
1465
1466	if (sched->map.comp) {
1467		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1468		if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1469			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1470			new_cpu = true;
1471		}
1472	} else
1473		cpus_nr = sched->max_cpu;
1474
1475	timestamp0 = sched->cpu_last_switched[this_cpu];
1476	sched->cpu_last_switched[this_cpu] = timestamp;
1477	if (timestamp0)
1478		delta = timestamp - timestamp0;
1479	else
1480		delta = 0;
1481
1482	if (delta < 0) {
1483		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1484		return -1;
1485	}
1486
1487	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1488	if (sched_in == NULL)
1489		return -1;
1490
1491	sched->curr_thread[this_cpu] = thread__get(sched_in);
 
 
 
 
 
 
1492
1493	printf("  ");
1494
1495	new_shortname = 0;
1496	if (!sched_in->shortname[0]) {
1497		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1498			/*
1499			 * Don't allocate a letter-number for swapper:0
1500			 * as a shortname. Instead, we use '.' for it.
1501			 */
1502			sched_in->shortname[0] = '.';
1503			sched_in->shortname[1] = ' ';
1504		} else {
1505			sched_in->shortname[0] = sched->next_shortname1;
1506			sched_in->shortname[1] = sched->next_shortname2;
1507
1508			if (sched->next_shortname1 < 'Z') {
1509				sched->next_shortname1++;
1510			} else {
1511				sched->next_shortname1 = 'A';
1512				if (sched->next_shortname2 < '9')
1513					sched->next_shortname2++;
1514				else
1515					sched->next_shortname2 = '0';
1516			}
1517		}
1518		new_shortname = 1;
1519	}
1520
1521	for (i = 0; i < cpus_nr; i++) {
1522		int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1523		struct thread *curr_thread = sched->curr_thread[cpu];
 
 
 
1524		const char *pid_color = color;
1525		const char *cpu_color = color;
1526
1527		if (curr_thread && thread__has_color(curr_thread))
1528			pid_color = COLOR_PIDS;
1529
1530		if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1531			continue;
1532
1533		if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1534			cpu_color = COLOR_CPUS;
1535
1536		if (cpu != this_cpu)
1537			color_fprintf(stdout, color, " ");
1538		else
1539			color_fprintf(stdout, cpu_color, "*");
1540
1541		if (sched->curr_thread[cpu])
1542			color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname);
1543		else
 
 
 
 
 
1544			color_fprintf(stdout, color, "   ");
1545	}
1546
1547	if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1548		goto out;
1549
1550	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1551	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1552	if (new_shortname || (verbose && sched_in->tid)) {
1553		const char *pid_color = color;
1554
1555		if (thread__has_color(sched_in))
1556			pid_color = COLOR_PIDS;
1557
1558		color_fprintf(stdout, pid_color, "%s => %s:%d",
1559		       sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
 
1560	}
1561
1562	if (sched->map.comp && new_cpu)
1563		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1564
1565out:
1566	color_fprintf(stdout, color, "\n");
1567
1568	thread__put(sched_in);
1569
1570	return 0;
1571}
1572
1573static int process_sched_switch_event(struct perf_tool *tool,
1574				      struct perf_evsel *evsel,
1575				      struct perf_sample *sample,
1576				      struct machine *machine)
1577{
1578	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1579	int this_cpu = sample->cpu, err = 0;
1580	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1581	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1582
1583	if (sched->curr_pid[this_cpu] != (u32)-1) {
1584		/*
1585		 * Are we trying to switch away a PID that is
1586		 * not current?
1587		 */
1588		if (sched->curr_pid[this_cpu] != prev_pid)
1589			sched->nr_context_switch_bugs++;
1590	}
1591
1592	if (sched->tp_handler->switch_event)
1593		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1594
1595	sched->curr_pid[this_cpu] = next_pid;
1596	return err;
1597}
1598
1599static int process_sched_runtime_event(struct perf_tool *tool,
1600				       struct perf_evsel *evsel,
1601				       struct perf_sample *sample,
1602				       struct machine *machine)
1603{
1604	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1605
1606	if (sched->tp_handler->runtime_event)
1607		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1608
1609	return 0;
1610}
1611
1612static int perf_sched__process_fork_event(struct perf_tool *tool,
1613					  union perf_event *event,
1614					  struct perf_sample *sample,
1615					  struct machine *machine)
1616{
1617	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1618
1619	/* run the fork event through the perf machineruy */
1620	perf_event__process_fork(tool, event, sample, machine);
1621
1622	/* and then run additional processing needed for this command */
1623	if (sched->tp_handler->fork_event)
1624		return sched->tp_handler->fork_event(sched, event, machine);
1625
1626	return 0;
1627}
1628
1629static int process_sched_migrate_task_event(struct perf_tool *tool,
1630					    struct perf_evsel *evsel,
1631					    struct perf_sample *sample,
1632					    struct machine *machine)
1633{
1634	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1635
1636	if (sched->tp_handler->migrate_task_event)
1637		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1638
1639	return 0;
1640}
1641
1642typedef int (*tracepoint_handler)(struct perf_tool *tool,
1643				  struct perf_evsel *evsel,
1644				  struct perf_sample *sample,
1645				  struct machine *machine);
1646
1647static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1648						 union perf_event *event __maybe_unused,
1649						 struct perf_sample *sample,
1650						 struct perf_evsel *evsel,
1651						 struct machine *machine)
1652{
1653	int err = 0;
1654
1655	if (evsel->handler != NULL) {
1656		tracepoint_handler f = evsel->handler;
1657		err = f(tool, evsel, sample, machine);
1658	}
1659
1660	return err;
1661}
1662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1663static int perf_sched__read_events(struct perf_sched *sched)
1664{
1665	const struct perf_evsel_str_handler handlers[] = {
1666		{ "sched:sched_switch",	      process_sched_switch_event, },
1667		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1668		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1669		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1670		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1671	};
1672	struct perf_session *session;
1673	struct perf_data_file file = {
1674		.path = input_name,
1675		.mode = PERF_DATA_MODE_READ,
1676		.force = sched->force,
1677	};
1678	int rc = -1;
1679
1680	session = perf_session__new(&file, false, &sched->tool);
1681	if (session == NULL) {
1682		pr_debug("No Memory for session\n");
1683		return -1;
1684	}
1685
1686	symbol__init(&session->header.env);
1687
1688	if (perf_session__set_tracepoints_handlers(session, handlers))
1689		goto out_delete;
1690
1691	if (perf_session__has_traces(session, "record -R")) {
1692		int err = perf_session__process_events(session);
1693		if (err) {
1694			pr_err("Failed to process events, error %d", err);
1695			goto out_delete;
1696		}
1697
1698		sched->nr_events      = session->evlist->stats.nr_events[0];
1699		sched->nr_lost_events = session->evlist->stats.total_lost;
1700		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1701	}
1702
1703	rc = 0;
1704out_delete:
1705	perf_session__delete(session);
1706	return rc;
1707}
1708
1709/*
1710 * scheduling times are printed as msec.usec
1711 */
1712static inline void print_sched_time(unsigned long long nsecs, int width)
1713{
1714	unsigned long msecs;
1715	unsigned long usecs;
1716
1717	msecs  = nsecs / NSEC_PER_MSEC;
1718	nsecs -= msecs * NSEC_PER_MSEC;
1719	usecs  = nsecs / NSEC_PER_USEC;
1720	printf("%*lu.%03lu ", width, msecs, usecs);
1721}
1722
1723/*
1724 * returns runtime data for event, allocating memory for it the
1725 * first time it is used.
1726 */
1727static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1728{
1729	struct evsel_runtime *r = evsel->priv;
1730
1731	if (r == NULL) {
1732		r = zalloc(sizeof(struct evsel_runtime));
1733		evsel->priv = r;
1734	}
1735
1736	return r;
1737}
1738
1739/*
1740 * save last time event was seen per cpu
1741 */
1742static void perf_evsel__save_time(struct perf_evsel *evsel,
1743				  u64 timestamp, u32 cpu)
1744{
1745	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1746
1747	if (r == NULL)
1748		return;
1749
1750	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1751		int i, n = __roundup_pow_of_two(cpu+1);
1752		void *p = r->last_time;
1753
1754		p = realloc(r->last_time, n * sizeof(u64));
1755		if (!p)
1756			return;
1757
1758		r->last_time = p;
1759		for (i = r->ncpu; i < n; ++i)
1760			r->last_time[i] = (u64) 0;
1761
1762		r->ncpu = n;
1763	}
1764
1765	r->last_time[cpu] = timestamp;
1766}
1767
1768/* returns last time this event was seen on the given cpu */
1769static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1770{
1771	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1772
1773	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1774		return 0;
1775
1776	return r->last_time[cpu];
1777}
1778
1779static int comm_width = 30;
1780
1781static char *timehist_get_commstr(struct thread *thread)
1782{
1783	static char str[32];
1784	const char *comm = thread__comm_str(thread);
1785	pid_t tid = thread->tid;
1786	pid_t pid = thread->pid_;
1787	int n;
1788
1789	if (pid == 0)
1790		n = scnprintf(str, sizeof(str), "%s", comm);
1791
1792	else if (tid != pid)
1793		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1794
1795	else
1796		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1797
1798	if (n > comm_width)
1799		comm_width = n;
1800
1801	return str;
1802}
1803
1804static void timehist_header(struct perf_sched *sched)
1805{
1806	u32 ncpus = sched->max_cpu + 1;
1807	u32 i, j;
1808
1809	printf("%15s %6s ", "time", "cpu");
1810
1811	if (sched->show_cpu_visual) {
1812		printf(" ");
1813		for (i = 0, j = 0; i < ncpus; ++i) {
1814			printf("%x", j++);
1815			if (j > 15)
1816				j = 0;
1817		}
1818		printf(" ");
1819	}
1820
1821	printf(" %-*s  %9s  %9s  %9s", comm_width,
1822		"task name", "wait time", "sch delay", "run time");
1823
 
 
 
1824	printf("\n");
1825
1826	/*
1827	 * units row
1828	 */
1829	printf("%15s %-6s ", "", "");
1830
1831	if (sched->show_cpu_visual)
1832		printf(" %*s ", ncpus, "");
1833
1834	printf(" %-*s  %9s  %9s  %9s\n", comm_width,
1835	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1836
 
 
 
 
 
1837	/*
1838	 * separator
1839	 */
1840	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1841
1842	if (sched->show_cpu_visual)
1843		printf(" %.*s ", ncpus, graph_dotted_line);
1844
1845	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1846		graph_dotted_line, graph_dotted_line, graph_dotted_line,
1847		graph_dotted_line);
1848
 
 
 
1849	printf("\n");
1850}
1851
 
 
 
 
 
 
 
 
 
 
 
 
1852static void timehist_print_sample(struct perf_sched *sched,
 
1853				  struct perf_sample *sample,
1854				  struct addr_location *al,
1855				  struct thread *thread,
1856				  u64 t)
1857{
1858	struct thread_runtime *tr = thread__priv(thread);
1859	u32 max_cpus = sched->max_cpu + 1;
 
 
1860	char tstr[64];
 
 
 
 
 
1861
1862	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
1863	printf("%15s [%04d] ", tstr, sample->cpu);
1864
1865	if (sched->show_cpu_visual) {
1866		u32 i;
1867		char c;
1868
1869		printf(" ");
1870		for (i = 0; i < max_cpus; ++i) {
1871			/* flag idle times with 'i'; others are sched events */
1872			if (i == sample->cpu)
1873				c = (thread->tid == 0) ? 'i' : 's';
1874			else
1875				c = ' ';
1876			printf("%c", c);
1877		}
1878		printf(" ");
1879	}
1880
1881	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
1882
1883	print_sched_time(tr->dt_wait, 6);
 
 
1884	print_sched_time(tr->dt_delay, 6);
1885	print_sched_time(tr->dt_run, 6);
1886
1887	if (sched->show_wakeups)
 
 
 
 
 
 
 
 
1888		printf("  %-*s", comm_width, "");
1889
1890	if (thread->tid == 0)
1891		goto out;
1892
1893	if (sched->show_callchain)
1894		printf("  ");
1895
1896	sample__fprintf_sym(sample, al, 0,
1897			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
1898			    EVSEL__PRINT_CALLCHAIN_ARROW |
1899			    EVSEL__PRINT_SKIP_IGNORED,
1900			    &callchain_cursor, stdout);
1901
1902out:
1903	printf("\n");
1904}
1905
1906/*
1907 * Explanation of delta-time stats:
1908 *
1909 *            t = time of current schedule out event
1910 *        tprev = time of previous sched out event
1911 *                also time of schedule-in event for current task
1912 *    last_time = time of last sched change event for current task
1913 *                (i.e, time process was last scheduled out)
1914 * ready_to_run = time of wakeup for current task
1915 *
1916 * -----|------------|------------|------------|------
1917 *    last         ready        tprev          t
1918 *    time         to run
1919 *
1920 *      |-------- dt_wait --------|
1921 *                   |- dt_delay -|-- dt_run --|
1922 *
1923 *   dt_run = run time of current task
1924 *  dt_wait = time between last schedule out event for task and tprev
1925 *            represents time spent off the cpu
1926 * dt_delay = time between wakeup and schedule-in of task
1927 */
1928
1929static void timehist_update_runtime_stats(struct thread_runtime *r,
1930					 u64 t, u64 tprev)
1931{
1932	r->dt_delay   = 0;
1933	r->dt_wait    = 0;
 
 
1934	r->dt_run     = 0;
 
1935	if (tprev) {
1936		r->dt_run = t - tprev;
1937		if (r->ready_to_run) {
1938			if (r->ready_to_run > tprev)
1939				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
1940			else
1941				r->dt_delay = tprev - r->ready_to_run;
1942		}
1943
1944		if (r->last_time > tprev)
1945			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
1946		else if (r->last_time)
1947			r->dt_wait = tprev - r->last_time;
 
 
 
 
 
 
 
 
1948	}
1949
1950	update_stats(&r->run_stats, r->dt_run);
1951	r->total_run_time += r->dt_run;
 
 
 
 
 
1952}
1953
1954static bool is_idle_sample(struct perf_sample *sample,
1955			   struct perf_evsel *evsel)
1956{
1957	/* pid 0 == swapper == idle task */
1958	if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
1959		return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
1960
1961	return sample->pid == 0;
1962}
1963
1964static void save_task_callchain(struct perf_sched *sched,
1965				struct perf_sample *sample,
1966				struct perf_evsel *evsel,
1967				struct machine *machine)
1968{
1969	struct callchain_cursor *cursor = &callchain_cursor;
1970	struct thread *thread;
1971
1972	/* want main thread for process - has maps */
1973	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
1974	if (thread == NULL) {
1975		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
1976		return;
1977	}
1978
1979	if (!symbol_conf.use_callchain || sample->callchain == NULL)
1980		return;
1981
1982	if (thread__resolve_callchain(thread, cursor, evsel, sample,
1983				      NULL, NULL, sched->max_stack + 2) != 0) {
1984		if (verbose)
1985			error("Failed to resolve callchain. Skipping\n");
1986
1987		return;
1988	}
1989
1990	callchain_cursor_commit(cursor);
1991
1992	while (true) {
1993		struct callchain_cursor_node *node;
1994		struct symbol *sym;
1995
1996		node = callchain_cursor_current(cursor);
1997		if (node == NULL)
1998			break;
1999
2000		sym = node->sym;
2001		if (sym && sym->name) {
2002			if (!strcmp(sym->name, "schedule") ||
2003			    !strcmp(sym->name, "__schedule") ||
2004			    !strcmp(sym->name, "preempt_schedule"))
2005				sym->ignore = 1;
2006		}
2007
2008		callchain_cursor_advance(cursor);
2009	}
2010}
2011
2012static int init_idle_thread(struct thread *thread)
2013{
2014	struct idle_thread_runtime *itr;
2015
2016	thread__set_comm(thread, idle_comm, 0);
2017
2018	itr = zalloc(sizeof(*itr));
2019	if (itr == NULL)
2020		return -ENOMEM;
2021
2022	init_stats(&itr->tr.run_stats);
2023	callchain_init(&itr->callchain);
2024	callchain_cursor_reset(&itr->cursor);
2025	thread__set_priv(thread, itr);
2026
2027	return 0;
2028}
2029
2030/*
2031 * Track idle stats per cpu by maintaining a local thread
2032 * struct for the idle task on each cpu.
2033 */
2034static int init_idle_threads(int ncpu)
2035{
2036	int i, ret;
2037
2038	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2039	if (!idle_threads)
2040		return -ENOMEM;
2041
2042	idle_max_cpu = ncpu;
2043
2044	/* allocate the actual thread struct if needed */
2045	for (i = 0; i < ncpu; ++i) {
2046		idle_threads[i] = thread__new(0, 0);
2047		if (idle_threads[i] == NULL)
2048			return -ENOMEM;
2049
2050		ret = init_idle_thread(idle_threads[i]);
2051		if (ret < 0)
2052			return ret;
2053	}
2054
2055	return 0;
2056}
2057
2058static void free_idle_threads(void)
2059{
2060	int i;
2061
2062	if (idle_threads == NULL)
2063		return;
2064
2065	for (i = 0; i < idle_max_cpu; ++i) {
2066		if ((idle_threads[i]))
2067			thread__delete(idle_threads[i]);
2068	}
2069
2070	free(idle_threads);
2071}
2072
2073static struct thread *get_idle_thread(int cpu)
2074{
2075	/*
2076	 * expand/allocate array of pointers to local thread
2077	 * structs if needed
2078	 */
2079	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2080		int i, j = __roundup_pow_of_two(cpu+1);
2081		void *p;
2082
2083		p = realloc(idle_threads, j * sizeof(struct thread *));
2084		if (!p)
2085			return NULL;
2086
2087		idle_threads = (struct thread **) p;
2088		for (i = idle_max_cpu; i < j; ++i)
2089			idle_threads[i] = NULL;
2090
2091		idle_max_cpu = j;
2092	}
2093
2094	/* allocate a new thread struct if needed */
2095	if (idle_threads[cpu] == NULL) {
2096		idle_threads[cpu] = thread__new(0, 0);
2097
2098		if (idle_threads[cpu]) {
2099			if (init_idle_thread(idle_threads[cpu]) < 0)
2100				return NULL;
2101		}
2102	}
2103
2104	return idle_threads[cpu];
2105}
2106
2107static void save_idle_callchain(struct idle_thread_runtime *itr,
 
2108				struct perf_sample *sample)
2109{
2110	if (!symbol_conf.use_callchain || sample->callchain == NULL)
2111		return;
2112
2113	callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2114}
2115
2116/*
2117 * handle runtime stats saved per thread
2118 */
2119static struct thread_runtime *thread__init_runtime(struct thread *thread)
2120{
2121	struct thread_runtime *r;
2122
2123	r = zalloc(sizeof(struct thread_runtime));
2124	if (!r)
2125		return NULL;
2126
2127	init_stats(&r->run_stats);
2128	thread__set_priv(thread, r);
2129
2130	return r;
2131}
2132
2133static struct thread_runtime *thread__get_runtime(struct thread *thread)
2134{
2135	struct thread_runtime *tr;
2136
2137	tr = thread__priv(thread);
2138	if (tr == NULL) {
2139		tr = thread__init_runtime(thread);
2140		if (tr == NULL)
2141			pr_debug("Failed to malloc memory for runtime data.\n");
2142	}
2143
2144	return tr;
2145}
2146
2147static struct thread *timehist_get_thread(struct perf_sched *sched,
2148					  struct perf_sample *sample,
2149					  struct machine *machine,
2150					  struct perf_evsel *evsel)
2151{
2152	struct thread *thread;
2153
2154	if (is_idle_sample(sample, evsel)) {
2155		thread = get_idle_thread(sample->cpu);
2156		if (thread == NULL)
2157			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2158
2159	} else {
2160		/* there were samples with tid 0 but non-zero pid */
2161		thread = machine__findnew_thread(machine, sample->pid,
2162						 sample->tid ?: sample->pid);
2163		if (thread == NULL) {
2164			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2165				 sample->tid);
2166		}
2167
2168		save_task_callchain(sched, sample, evsel, machine);
2169		if (sched->idle_hist) {
2170			struct thread *idle;
2171			struct idle_thread_runtime *itr;
2172
2173			idle = get_idle_thread(sample->cpu);
2174			if (idle == NULL) {
2175				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2176				return NULL;
2177			}
2178
2179			itr = thread__priv(idle);
2180			if (itr == NULL)
2181				return NULL;
2182
2183			itr->last_thread = thread;
2184
2185			/* copy task callchain when entering to idle */
2186			if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2187				save_idle_callchain(itr, sample);
2188		}
2189	}
2190
2191	return thread;
2192}
2193
2194static bool timehist_skip_sample(struct perf_sched *sched,
2195				 struct thread *thread,
2196				 struct perf_evsel *evsel,
2197				 struct perf_sample *sample)
2198{
2199	bool rc = false;
2200
2201	if (thread__is_filtered(thread)) {
2202		rc = true;
2203		sched->skipped_samples++;
2204	}
2205
2206	if (sched->idle_hist) {
2207		if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2208			rc = true;
2209		else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2210			 perf_evsel__intval(evsel, sample, "next_pid") != 0)
2211			rc = true;
2212	}
2213
2214	return rc;
2215}
2216
2217static void timehist_print_wakeup_event(struct perf_sched *sched,
2218					struct perf_evsel *evsel,
2219					struct perf_sample *sample,
2220					struct machine *machine,
2221					struct thread *awakened)
2222{
2223	struct thread *thread;
2224	char tstr[64];
2225
2226	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2227	if (thread == NULL)
2228		return;
2229
2230	/* show wakeup unless both awakee and awaker are filtered */
2231	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2232	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2233		return;
2234	}
2235
2236	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2237	printf("%15s [%04d] ", tstr, sample->cpu);
2238	if (sched->show_cpu_visual)
2239		printf(" %*s ", sched->max_cpu + 1, "");
2240
2241	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2242
2243	/* dt spacer */
2244	printf("  %9s  %9s  %9s ", "", "", "");
2245
2246	printf("awakened: %s", timehist_get_commstr(awakened));
2247
2248	printf("\n");
2249}
2250
 
 
 
 
 
 
 
 
 
2251static int timehist_sched_wakeup_event(struct perf_tool *tool,
2252				       union perf_event *event __maybe_unused,
2253				       struct perf_evsel *evsel,
2254				       struct perf_sample *sample,
2255				       struct machine *machine)
2256{
2257	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2258	struct thread *thread;
2259	struct thread_runtime *tr = NULL;
2260	/* want pid of awakened task not pid in sample */
2261	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2262
2263	thread = machine__findnew_thread(machine, 0, pid);
2264	if (thread == NULL)
2265		return -1;
2266
2267	tr = thread__get_runtime(thread);
2268	if (tr == NULL)
2269		return -1;
2270
2271	if (tr->ready_to_run == 0)
2272		tr->ready_to_run = sample->time;
2273
2274	/* show wakeups if requested */
2275	if (sched->show_wakeups &&
2276	    !perf_time__skip_sample(&sched->ptime, sample->time))
2277		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2278
2279	return 0;
2280}
2281
2282static void timehist_print_migration_event(struct perf_sched *sched,
2283					struct perf_evsel *evsel,
2284					struct perf_sample *sample,
2285					struct machine *machine,
2286					struct thread *migrated)
2287{
2288	struct thread *thread;
2289	char tstr[64];
2290	u32 max_cpus = sched->max_cpu + 1;
2291	u32 ocpu, dcpu;
2292
2293	if (sched->summary_only)
2294		return;
2295
2296	max_cpus = sched->max_cpu + 1;
2297	ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2298	dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2299
2300	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2301	if (thread == NULL)
2302		return;
2303
2304	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2305	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2306		return;
2307	}
2308
2309	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2310	printf("%15s [%04d] ", tstr, sample->cpu);
2311
2312	if (sched->show_cpu_visual) {
2313		u32 i;
2314		char c;
2315
2316		printf("  ");
2317		for (i = 0; i < max_cpus; ++i) {
2318			c = (i == sample->cpu) ? 'm' : ' ';
2319			printf("%c", c);
2320		}
2321		printf("  ");
2322	}
2323
2324	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2325
2326	/* dt spacer */
2327	printf("  %9s  %9s  %9s ", "", "", "");
2328
2329	printf("migrated: %s", timehist_get_commstr(migrated));
2330	printf(" cpu %d => %d", ocpu, dcpu);
2331
2332	printf("\n");
2333}
2334
2335static int timehist_migrate_task_event(struct perf_tool *tool,
2336				       union perf_event *event __maybe_unused,
2337				       struct perf_evsel *evsel,
2338				       struct perf_sample *sample,
2339				       struct machine *machine)
2340{
2341	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2342	struct thread *thread;
2343	struct thread_runtime *tr = NULL;
2344	/* want pid of migrated task not pid in sample */
2345	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2346
2347	thread = machine__findnew_thread(machine, 0, pid);
2348	if (thread == NULL)
2349		return -1;
2350
2351	tr = thread__get_runtime(thread);
2352	if (tr == NULL)
2353		return -1;
2354
2355	tr->migrations++;
2356
2357	/* show migrations if requested */
2358	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2359
2360	return 0;
2361}
2362
2363static int timehist_sched_change_event(struct perf_tool *tool,
2364				       union perf_event *event,
2365				       struct perf_evsel *evsel,
2366				       struct perf_sample *sample,
2367				       struct machine *machine)
2368{
2369	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2370	struct perf_time_interval *ptime = &sched->ptime;
2371	struct addr_location al;
2372	struct thread *thread;
2373	struct thread_runtime *tr = NULL;
2374	u64 tprev, t = sample->time;
2375	int rc = 0;
 
2376
2377	if (machine__resolve(machine, &al, sample) < 0) {
2378		pr_err("problem processing %d event. skipping it\n",
2379		       event->header.type);
2380		rc = -1;
2381		goto out;
2382	}
2383
2384	thread = timehist_get_thread(sched, sample, machine, evsel);
2385	if (thread == NULL) {
2386		rc = -1;
2387		goto out;
2388	}
2389
2390	if (timehist_skip_sample(sched, thread, evsel, sample))
2391		goto out;
2392
2393	tr = thread__get_runtime(thread);
2394	if (tr == NULL) {
2395		rc = -1;
2396		goto out;
2397	}
2398
2399	tprev = perf_evsel__get_time(evsel, sample->cpu);
2400
2401	/*
2402	 * If start time given:
2403	 * - sample time is under window user cares about - skip sample
2404	 * - tprev is under window user cares about  - reset to start of window
2405	 */
2406	if (ptime->start && ptime->start > t)
2407		goto out;
2408
2409	if (tprev && ptime->start > tprev)
2410		tprev = ptime->start;
2411
2412	/*
2413	 * If end time given:
2414	 * - previous sched event is out of window - we are done
2415	 * - sample time is beyond window user cares about - reset it
2416	 *   to close out stats for time window interest
2417	 */
2418	if (ptime->end) {
2419		if (tprev > ptime->end)
2420			goto out;
2421
2422		if (t > ptime->end)
2423			t = ptime->end;
2424	}
2425
2426	if (!sched->idle_hist || thread->tid == 0) {
2427		timehist_update_runtime_stats(tr, t, tprev);
 
2428
2429		if (sched->idle_hist) {
2430			struct idle_thread_runtime *itr = (void *)tr;
2431			struct thread_runtime *last_tr;
2432
2433			BUG_ON(thread->tid != 0);
2434
2435			if (itr->last_thread == NULL)
2436				goto out;
2437
2438			/* add current idle time as last thread's runtime */
2439			last_tr = thread__get_runtime(itr->last_thread);
2440			if (last_tr == NULL)
2441				goto out;
2442
2443			timehist_update_runtime_stats(last_tr, t, tprev);
2444			/*
2445			 * remove delta time of last thread as it's not updated
2446			 * and otherwise it will show an invalid value next
2447			 * time.  we only care total run time and run stat.
2448			 */
2449			last_tr->dt_run = 0;
2450			last_tr->dt_wait = 0;
2451			last_tr->dt_delay = 0;
 
 
 
2452
2453			if (itr->cursor.nr)
2454				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2455
2456			itr->last_thread = NULL;
2457		}
2458	}
2459
2460	if (!sched->summary_only)
2461		timehist_print_sample(sched, sample, &al, thread, t);
2462
2463out:
2464	if (sched->hist_time.start == 0 && t >= ptime->start)
2465		sched->hist_time.start = t;
2466	if (ptime->end == 0 || t <= ptime->end)
2467		sched->hist_time.end = t;
2468
2469	if (tr) {
2470		/* time of this sched_switch event becomes last time task seen */
2471		tr->last_time = sample->time;
2472
 
 
 
2473		/* sched out event for task so reset ready to run time */
2474		tr->ready_to_run = 0;
2475	}
2476
2477	perf_evsel__save_time(evsel, sample->time, sample->cpu);
2478
2479	return rc;
2480}
2481
2482static int timehist_sched_switch_event(struct perf_tool *tool,
2483			     union perf_event *event,
2484			     struct perf_evsel *evsel,
2485			     struct perf_sample *sample,
2486			     struct machine *machine __maybe_unused)
2487{
2488	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2489}
2490
2491static int process_lost(struct perf_tool *tool __maybe_unused,
2492			union perf_event *event,
2493			struct perf_sample *sample,
2494			struct machine *machine __maybe_unused)
2495{
2496	char tstr[64];
2497
2498	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2499	printf("%15s ", tstr);
2500	printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2501
2502	return 0;
2503}
2504
2505
2506static void print_thread_runtime(struct thread *t,
2507				 struct thread_runtime *r)
2508{
2509	double mean = avg_stats(&r->run_stats);
2510	float stddev;
2511
2512	printf("%*s   %5d  %9" PRIu64 " ",
2513	       comm_width, timehist_get_commstr(t), t->ppid,
2514	       (u64) r->run_stats.n);
2515
2516	print_sched_time(r->total_run_time, 8);
2517	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2518	print_sched_time(r->run_stats.min, 6);
2519	printf(" ");
2520	print_sched_time((u64) mean, 6);
2521	printf(" ");
2522	print_sched_time(r->run_stats.max, 6);
2523	printf("  ");
2524	printf("%5.2f", stddev);
2525	printf("   %5" PRIu64, r->migrations);
2526	printf("\n");
2527}
2528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2529struct total_run_stats {
 
2530	u64  sched_count;
2531	u64  task_count;
2532	u64  total_run_time;
2533};
2534
2535static int __show_thread_runtime(struct thread *t, void *priv)
2536{
2537	struct total_run_stats *stats = priv;
2538	struct thread_runtime *r;
2539
2540	if (thread__is_filtered(t))
2541		return 0;
2542
2543	r = thread__priv(t);
2544	if (r && r->run_stats.n) {
2545		stats->task_count++;
2546		stats->sched_count += r->run_stats.n;
2547		stats->total_run_time += r->total_run_time;
2548		print_thread_runtime(t, r);
 
 
 
 
2549	}
2550
2551	return 0;
2552}
2553
2554static int show_thread_runtime(struct thread *t, void *priv)
2555{
2556	if (t->dead)
2557		return 0;
2558
2559	return __show_thread_runtime(t, priv);
2560}
2561
2562static int show_deadthread_runtime(struct thread *t, void *priv)
2563{
2564	if (!t->dead)
2565		return 0;
2566
2567	return __show_thread_runtime(t, priv);
2568}
2569
2570static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2571{
2572	const char *sep = " <- ";
2573	struct callchain_list *chain;
2574	size_t ret = 0;
2575	char bf[1024];
2576	bool first;
2577
2578	if (node == NULL)
2579		return 0;
2580
2581	ret = callchain__fprintf_folded(fp, node->parent);
2582	first = (ret == 0);
2583
2584	list_for_each_entry(chain, &node->val, list) {
2585		if (chain->ip >= PERF_CONTEXT_MAX)
2586			continue;
2587		if (chain->ms.sym && chain->ms.sym->ignore)
2588			continue;
2589		ret += fprintf(fp, "%s%s", first ? "" : sep,
2590			       callchain_list__sym_name(chain, bf, sizeof(bf),
2591							false));
2592		first = false;
2593	}
2594
2595	return ret;
2596}
2597
2598static size_t timehist_print_idlehist_callchain(struct rb_root *root)
2599{
2600	size_t ret = 0;
2601	FILE *fp = stdout;
2602	struct callchain_node *chain;
2603	struct rb_node *rb_node = rb_first(root);
2604
2605	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2606	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2607	       graph_dotted_line);
2608
2609	while (rb_node) {
2610		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2611		rb_node = rb_next(rb_node);
2612
2613		ret += fprintf(fp, "  ");
2614		print_sched_time(chain->hit, 12);
2615		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2616		ret += fprintf(fp, " %8d  ", chain->count);
2617		ret += callchain__fprintf_folded(fp, chain);
2618		ret += fprintf(fp, "\n");
2619	}
2620
2621	return ret;
2622}
2623
2624static void timehist_print_summary(struct perf_sched *sched,
2625				   struct perf_session *session)
2626{
2627	struct machine *m = &session->machines.host;
2628	struct total_run_stats totals;
2629	u64 task_count;
2630	struct thread *t;
2631	struct thread_runtime *r;
2632	int i;
2633	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2634
2635	memset(&totals, 0, sizeof(totals));
 
2636
2637	if (sched->idle_hist) {
2638		printf("\nIdle-time summary\n");
2639		printf("%*s  parent  sched-out  ", comm_width, "comm");
2640		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
 
 
 
 
2641	} else {
2642		printf("\nRuntime summary\n");
2643		printf("%*s  parent   sched-in  ", comm_width, "comm");
2644		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2645	}
2646	printf("%*s            (count)  ", comm_width, "");
2647	printf("     (msec)     (msec)      (msec)      (msec)       %%\n");
 
2648	printf("%.117s\n", graph_dotted_line);
2649
2650	machine__for_each_thread(m, show_thread_runtime, &totals);
2651	task_count = totals.task_count;
2652	if (!task_count)
2653		printf("<no still running tasks>\n");
2654
2655	printf("\nTerminated tasks:\n");
2656	machine__for_each_thread(m, show_deadthread_runtime, &totals);
2657	if (task_count == totals.task_count)
2658		printf("<no terminated tasks>\n");
2659
2660	/* CPU idle stats not tracked when samples were skipped */
2661	if (sched->skipped_samples && !sched->idle_hist)
2662		return;
2663
2664	printf("\nIdle stats:\n");
2665	for (i = 0; i < idle_max_cpu; ++i) {
 
 
 
2666		t = idle_threads[i];
2667		if (!t)
2668			continue;
2669
2670		r = thread__priv(t);
2671		if (r && r->run_stats.n) {
2672			totals.sched_count += r->run_stats.n;
2673			printf("    CPU %2d idle for ", i);
2674			print_sched_time(r->total_run_time, 6);
2675			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2676		} else
2677			printf("    CPU %2d idle entire time window\n", i);
2678	}
2679
2680	if (sched->idle_hist && symbol_conf.use_callchain) {
2681		callchain_param.mode  = CHAIN_FOLDED;
2682		callchain_param.value = CCVAL_PERIOD;
2683
2684		callchain_register_param(&callchain_param);
2685
2686		printf("\nIdle stats by callchain:\n");
2687		for (i = 0; i < idle_max_cpu; ++i) {
2688			struct idle_thread_runtime *itr;
2689
2690			t = idle_threads[i];
2691			if (!t)
2692				continue;
2693
2694			itr = thread__priv(t);
2695			if (itr == NULL)
2696				continue;
2697
2698			callchain_param.sort(&itr->sorted_root, &itr->callchain,
2699					     0, &callchain_param);
2700
2701			printf("  CPU %2d:", i);
2702			print_sched_time(itr->tr.total_run_time, 6);
2703			printf(" msec\n");
2704			timehist_print_idlehist_callchain(&itr->sorted_root);
2705			printf("\n");
2706		}
2707	}
2708
2709	printf("\n"
2710	       "    Total number of unique tasks: %" PRIu64 "\n"
2711	       "Total number of context switches: %" PRIu64 "\n",
2712	       totals.task_count, totals.sched_count);
2713
2714	printf("           Total run time (msec): ");
2715	print_sched_time(totals.total_run_time, 2);
2716	printf("\n");
2717
2718	printf("    Total scheduling time (msec): ");
2719	print_sched_time(hist_time, 2);
2720	printf(" (x %d)\n", sched->max_cpu);
2721}
2722
2723typedef int (*sched_handler)(struct perf_tool *tool,
2724			  union perf_event *event,
2725			  struct perf_evsel *evsel,
2726			  struct perf_sample *sample,
2727			  struct machine *machine);
2728
2729static int perf_timehist__process_sample(struct perf_tool *tool,
2730					 union perf_event *event,
2731					 struct perf_sample *sample,
2732					 struct perf_evsel *evsel,
2733					 struct machine *machine)
2734{
2735	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2736	int err = 0;
2737	int this_cpu = sample->cpu;
 
 
2738
2739	if (this_cpu > sched->max_cpu)
2740		sched->max_cpu = this_cpu;
2741
2742	if (evsel->handler != NULL) {
2743		sched_handler f = evsel->handler;
2744
2745		err = f(tool, event, evsel, sample, machine);
2746	}
2747
2748	return err;
2749}
2750
2751static int timehist_check_attr(struct perf_sched *sched,
2752			       struct perf_evlist *evlist)
2753{
2754	struct perf_evsel *evsel;
2755	struct evsel_runtime *er;
2756
2757	list_for_each_entry(evsel, &evlist->entries, node) {
2758		er = perf_evsel__get_runtime(evsel);
2759		if (er == NULL) {
2760			pr_err("Failed to allocate memory for evsel runtime data\n");
2761			return -1;
2762		}
2763
2764		if (sched->show_callchain &&
2765		    !(evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) {
2766			pr_info("Samples do not have callchains.\n");
2767			sched->show_callchain = 0;
2768			symbol_conf.use_callchain = 0;
2769		}
2770	}
2771
2772	return 0;
2773}
2774
2775static int perf_sched__timehist(struct perf_sched *sched)
2776{
2777	const struct perf_evsel_str_handler handlers[] = {
2778		{ "sched:sched_switch",       timehist_sched_switch_event, },
2779		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
 
2780		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2781	};
2782	const struct perf_evsel_str_handler migrate_handlers[] = {
2783		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
2784	};
2785	struct perf_data_file file = {
2786		.path = input_name,
2787		.mode = PERF_DATA_MODE_READ,
2788		.force = sched->force,
2789	};
2790
2791	struct perf_session *session;
2792	struct perf_evlist *evlist;
2793	int err = -1;
2794
2795	/*
2796	 * event handlers for timehist option
2797	 */
2798	sched->tool.sample	 = perf_timehist__process_sample;
2799	sched->tool.mmap	 = perf_event__process_mmap;
2800	sched->tool.comm	 = perf_event__process_comm;
2801	sched->tool.exit	 = perf_event__process_exit;
2802	sched->tool.fork	 = perf_event__process_fork;
2803	sched->tool.lost	 = process_lost;
2804	sched->tool.attr	 = perf_event__process_attr;
2805	sched->tool.tracing_data = perf_event__process_tracing_data;
2806	sched->tool.build_id	 = perf_event__process_build_id;
2807
2808	sched->tool.ordered_events = true;
2809	sched->tool.ordering_requires_timestamps = true;
2810
2811	symbol_conf.use_callchain = sched->show_callchain;
2812
2813	session = perf_session__new(&file, false, &sched->tool);
2814	if (session == NULL)
2815		return -ENOMEM;
 
 
 
 
 
 
2816
2817	evlist = session->evlist;
2818
2819	symbol__init(&session->header.env);
2820
2821	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2822		pr_err("Invalid time string\n");
2823		return -EINVAL;
2824	}
2825
2826	if (timehist_check_attr(sched, evlist) != 0)
2827		goto out;
2828
2829	setup_pager();
2830
 
 
 
 
2831	/* setup per-evsel handlers */
2832	if (perf_session__set_tracepoints_handlers(session, handlers))
2833		goto out;
2834
2835	/* sched_switch event at a minimum needs to exist */
2836	if (!perf_evlist__find_tracepoint_by_name(session->evlist,
2837						  "sched:sched_switch")) {
2838		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
2839		goto out;
2840	}
2841
2842	if (sched->show_migrations &&
2843	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
2844		goto out;
2845
2846	/* pre-allocate struct for per-CPU idle stats */
2847	sched->max_cpu = session->header.env.nr_cpus_online;
2848	if (sched->max_cpu == 0)
2849		sched->max_cpu = 4;
2850	if (init_idle_threads(sched->max_cpu))
2851		goto out;
2852
2853	/* summary_only implies summary option, but don't overwrite summary if set */
2854	if (sched->summary_only)
2855		sched->summary = sched->summary_only;
2856
2857	if (!sched->summary_only)
2858		timehist_header(sched);
2859
2860	err = perf_session__process_events(session);
2861	if (err) {
2862		pr_err("Failed to process events, error %d", err);
2863		goto out;
2864	}
2865
2866	sched->nr_events      = evlist->stats.nr_events[0];
2867	sched->nr_lost_events = evlist->stats.total_lost;
2868	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
2869
2870	if (sched->summary)
2871		timehist_print_summary(sched, session);
2872
2873out:
2874	free_idle_threads();
2875	perf_session__delete(session);
2876
2877	return err;
2878}
2879
2880
2881static void print_bad_events(struct perf_sched *sched)
2882{
2883	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
2884		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
2885			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
2886			sched->nr_unordered_timestamps, sched->nr_timestamps);
2887	}
2888	if (sched->nr_lost_events && sched->nr_events) {
2889		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
2890			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
2891			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
2892	}
2893	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
2894		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
2895			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
2896			sched->nr_context_switch_bugs, sched->nr_timestamps);
2897		if (sched->nr_lost_events)
2898			printf(" (due to lost events?)");
2899		printf("\n");
2900	}
2901}
2902
2903static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
2904{
2905	struct rb_node **new = &(root->rb_node), *parent = NULL;
2906	struct work_atoms *this;
2907	const char *comm = thread__comm_str(data->thread), *this_comm;
 
2908
2909	while (*new) {
2910		int cmp;
2911
2912		this = container_of(*new, struct work_atoms, node);
2913		parent = *new;
2914
2915		this_comm = thread__comm_str(this->thread);
2916		cmp = strcmp(comm, this_comm);
2917		if (cmp > 0) {
2918			new = &((*new)->rb_left);
2919		} else if (cmp < 0) {
2920			new = &((*new)->rb_right);
 
2921		} else {
2922			this->num_merged++;
2923			this->total_runtime += data->total_runtime;
2924			this->nb_atoms += data->nb_atoms;
2925			this->total_lat += data->total_lat;
2926			list_splice(&data->work_list, &this->work_list);
2927			if (this->max_lat < data->max_lat) {
2928				this->max_lat = data->max_lat;
2929				this->max_lat_at = data->max_lat_at;
 
2930			}
2931			zfree(&data);
2932			return;
2933		}
2934	}
2935
2936	data->num_merged++;
2937	rb_link_node(&data->node, parent, new);
2938	rb_insert_color(&data->node, root);
2939}
2940
2941static void perf_sched__merge_lat(struct perf_sched *sched)
2942{
2943	struct work_atoms *data;
2944	struct rb_node *node;
2945
2946	if (sched->skip_merge)
2947		return;
2948
2949	while ((node = rb_first(&sched->atom_root))) {
2950		rb_erase(node, &sched->atom_root);
2951		data = rb_entry(node, struct work_atoms, node);
2952		__merge_work_atoms(&sched->merged_atom_root, data);
2953	}
2954}
2955
2956static int perf_sched__lat(struct perf_sched *sched)
2957{
2958	struct rb_node *next;
2959
2960	setup_pager();
2961
2962	if (perf_sched__read_events(sched))
2963		return -1;
2964
2965	perf_sched__merge_lat(sched);
2966	perf_sched__sort_lat(sched);
2967
2968	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
2969	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
2970	printf(" -----------------------------------------------------------------------------------------------------------------\n");
2971
2972	next = rb_first(&sched->sorted_atom_root);
2973
2974	while (next) {
2975		struct work_atoms *work_list;
2976
2977		work_list = rb_entry(next, struct work_atoms, node);
2978		output_lat_thread(sched, work_list);
2979		next = rb_next(next);
2980		thread__zput(work_list->thread);
2981	}
2982
2983	printf(" -----------------------------------------------------------------------------------------------------------------\n");
2984	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
2985		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
2986
2987	printf(" ---------------------------------------------------\n");
2988
2989	print_bad_events(sched);
2990	printf("\n");
2991
2992	return 0;
2993}
2994
2995static int setup_map_cpus(struct perf_sched *sched)
2996{
2997	struct cpu_map *map;
2998
2999	sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3000
3001	if (sched->map.comp) {
3002		sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3003		if (!sched->map.comp_cpus)
3004			return -1;
3005	}
3006
3007	if (!sched->map.cpus_str)
3008		return 0;
3009
3010	map = cpu_map__new(sched->map.cpus_str);
3011	if (!map) {
3012		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3013		return -1;
3014	}
3015
3016	sched->map.cpus = map;
3017	return 0;
3018}
3019
3020static int setup_color_pids(struct perf_sched *sched)
3021{
3022	struct thread_map *map;
3023
3024	if (!sched->map.color_pids_str)
3025		return 0;
3026
3027	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3028	if (!map) {
3029		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3030		return -1;
3031	}
3032
3033	sched->map.color_pids = map;
3034	return 0;
3035}
3036
3037static int setup_color_cpus(struct perf_sched *sched)
3038{
3039	struct cpu_map *map;
3040
3041	if (!sched->map.color_cpus_str)
3042		return 0;
3043
3044	map = cpu_map__new(sched->map.color_cpus_str);
3045	if (!map) {
3046		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3047		return -1;
3048	}
3049
3050	sched->map.color_cpus = map;
3051	return 0;
3052}
3053
3054static int perf_sched__map(struct perf_sched *sched)
3055{
3056	if (setup_map_cpus(sched))
3057		return -1;
3058
3059	if (setup_color_pids(sched))
3060		return -1;
3061
3062	if (setup_color_cpus(sched))
3063		return -1;
3064
3065	setup_pager();
3066	if (perf_sched__read_events(sched))
3067		return -1;
3068	print_bad_events(sched);
3069	return 0;
3070}
3071
3072static int perf_sched__replay(struct perf_sched *sched)
3073{
3074	unsigned long i;
3075
3076	calibrate_run_measurement_overhead(sched);
3077	calibrate_sleep_measurement_overhead(sched);
3078
3079	test_calibrations(sched);
3080
3081	if (perf_sched__read_events(sched))
3082		return -1;
3083
3084	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3085	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3086	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3087
3088	if (sched->targetless_wakeups)
3089		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3090	if (sched->multitarget_wakeups)
3091		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3092	if (sched->nr_run_events_optimized)
3093		printf("run atoms optimized: %ld\n",
3094			sched->nr_run_events_optimized);
3095
3096	print_task_traces(sched);
3097	add_cross_task_wakeups(sched);
3098
 
3099	create_tasks(sched);
3100	printf("------------------------------------------------------------\n");
3101	for (i = 0; i < sched->replay_repeat; i++)
3102		run_one_test(sched);
3103
 
 
3104	return 0;
3105}
3106
3107static void setup_sorting(struct perf_sched *sched, const struct option *options,
3108			  const char * const usage_msg[])
3109{
3110	char *tmp, *tok, *str = strdup(sched->sort_order);
3111
3112	for (tok = strtok_r(str, ", ", &tmp);
3113			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3114		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3115			usage_with_options_msg(usage_msg, options,
3116					"Unknown --sort key: `%s'", tok);
3117		}
3118	}
3119
3120	free(str);
3121
3122	sort_dimension__add("pid", &sched->cmp_pid);
3123}
3124
 
 
 
 
 
 
 
 
 
 
3125static int __cmd_record(int argc, const char **argv)
3126{
3127	unsigned int rec_argc, i, j;
3128	const char **rec_argv;
 
3129	const char * const record_args[] = {
3130		"record",
3131		"-a",
3132		"-R",
3133		"-m", "1024",
3134		"-c", "1",
3135		"-e", "sched:sched_switch",
3136		"-e", "sched:sched_stat_wait",
3137		"-e", "sched:sched_stat_sleep",
3138		"-e", "sched:sched_stat_iowait",
3139		"-e", "sched:sched_stat_runtime",
3140		"-e", "sched:sched_process_fork",
3141		"-e", "sched:sched_wakeup",
3142		"-e", "sched:sched_wakeup_new",
3143		"-e", "sched:sched_migrate_task",
3144	};
3145
3146	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3147	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3148
3149	if (rec_argv == NULL)
3150		return -ENOMEM;
 
 
 
 
 
3151
3152	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3153		rec_argv[i] = strdup(record_args[i]);
3154
 
 
 
 
 
 
 
 
 
 
3155	for (j = 1; j < (unsigned int)argc; j++, i++)
3156		rec_argv[i] = argv[j];
3157
3158	BUG_ON(i != rec_argc);
3159
3160	return cmd_record(i, rec_argv, NULL);
 
 
 
 
 
 
 
 
3161}
3162
3163int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
3164{
3165	const char default_sort_order[] = "avg, max, switch, runtime";
3166	struct perf_sched sched = {
3167		.tool = {
3168			.sample		 = perf_sched__process_tracepoint_sample,
3169			.comm		 = perf_event__process_comm,
 
3170			.lost		 = perf_event__process_lost,
3171			.fork		 = perf_sched__process_fork_event,
3172			.ordered_events = true,
3173		},
3174		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3175		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3176		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3177		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3178		.sort_order	      = default_sort_order,
3179		.replay_repeat	      = 10,
3180		.profile_cpu	      = -1,
3181		.next_shortname1      = 'A',
3182		.next_shortname2      = '0',
3183		.skip_merge           = 0,
3184		.show_callchain	      = 1,
3185		.max_stack            = 5,
3186	};
3187	const struct option sched_options[] = {
3188	OPT_STRING('i', "input", &input_name, "file",
3189		    "input file name"),
3190	OPT_INCR('v', "verbose", &verbose,
3191		    "be more verbose (show symbol address, etc)"),
3192	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3193		    "dump raw trace in ASCII"),
3194	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3195	OPT_END()
3196	};
3197	const struct option latency_options[] = {
3198	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3199		   "sort by key(s): runtime, switch, avg, max"),
3200	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3201		    "CPU to profile on"),
3202	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3203		    "latency stats per pid instead of per comm"),
3204	OPT_PARENT(sched_options)
3205	};
3206	const struct option replay_options[] = {
3207	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3208		     "repeat the workload replay N times (-1: infinite)"),
3209	OPT_PARENT(sched_options)
3210	};
3211	const struct option map_options[] = {
3212	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3213		    "map output in compact mode"),
3214	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3215		   "highlight given pids in map"),
3216	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3217                    "highlight given CPUs in map"),
3218	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3219                    "display given CPUs in map"),
3220	OPT_PARENT(sched_options)
3221	};
3222	const struct option timehist_options[] = {
3223	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3224		   "file", "vmlinux pathname"),
3225	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3226		   "file", "kallsyms pathname"),
3227	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3228		    "Display call chains if present (default on)"),
3229	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3230		   "Maximum number of functions to display backtrace."),
3231	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3232		    "Look for files with symbols relative to this directory"),
3233	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3234		    "Show only syscall summary with statistics"),
3235	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3236		    "Show all syscalls and summary with statistics"),
3237	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
 
3238	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3239	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3240	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3241	OPT_STRING(0, "time", &sched.time_str, "str",
3242		   "Time span for analysis (start,stop)"),
 
 
 
 
 
 
3243	OPT_PARENT(sched_options)
3244	};
3245
3246	const char * const latency_usage[] = {
3247		"perf sched latency [<options>]",
3248		NULL
3249	};
3250	const char * const replay_usage[] = {
3251		"perf sched replay [<options>]",
3252		NULL
3253	};
3254	const char * const map_usage[] = {
3255		"perf sched map [<options>]",
3256		NULL
3257	};
3258	const char * const timehist_usage[] = {
3259		"perf sched timehist [<options>]",
3260		NULL
3261	};
3262	const char *const sched_subcommands[] = { "record", "latency", "map",
3263						  "replay", "script",
3264						  "timehist", NULL };
3265	const char *sched_usage[] = {
3266		NULL,
3267		NULL
3268	};
3269	struct trace_sched_handler lat_ops  = {
3270		.wakeup_event	    = latency_wakeup_event,
3271		.switch_event	    = latency_switch_event,
3272		.runtime_event	    = latency_runtime_event,
3273		.migrate_task_event = latency_migrate_task_event,
3274	};
3275	struct trace_sched_handler map_ops  = {
3276		.switch_event	    = map_switch_event,
3277	};
3278	struct trace_sched_handler replay_ops  = {
3279		.wakeup_event	    = replay_wakeup_event,
3280		.switch_event	    = replay_switch_event,
3281		.fork_event	    = replay_fork_event,
3282	};
3283	unsigned int i;
 
3284
 
 
3285	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3286		sched.curr_pid[i] = -1;
3287
3288	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3289					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3290	if (!argc)
3291		usage_with_options(sched_usage, sched_options);
3292
3293	/*
3294	 * Aliased to 'perf script' for now:
3295	 */
3296	if (!strcmp(argv[0], "script"))
3297		return cmd_script(argc, argv, prefix);
3298
3299	if (!strncmp(argv[0], "rec", 3)) {
3300		return __cmd_record(argc, argv);
3301	} else if (!strncmp(argv[0], "lat", 3)) {
3302		sched.tp_handler = &lat_ops;
3303		if (argc > 1) {
3304			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3305			if (argc)
3306				usage_with_options(latency_usage, latency_options);
3307		}
3308		setup_sorting(&sched, latency_options, latency_usage);
3309		return perf_sched__lat(&sched);
3310	} else if (!strcmp(argv[0], "map")) {
3311		if (argc) {
3312			argc = parse_options(argc, argv, map_options, map_usage, 0);
3313			if (argc)
3314				usage_with_options(map_usage, map_options);
3315		}
3316		sched.tp_handler = &map_ops;
3317		setup_sorting(&sched, latency_options, latency_usage);
3318		return perf_sched__map(&sched);
3319	} else if (!strncmp(argv[0], "rep", 3)) {
3320		sched.tp_handler = &replay_ops;
3321		if (argc) {
3322			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3323			if (argc)
3324				usage_with_options(replay_usage, replay_options);
3325		}
3326		return perf_sched__replay(&sched);
3327	} else if (!strcmp(argv[0], "timehist")) {
3328		if (argc) {
3329			argc = parse_options(argc, argv, timehist_options,
3330					     timehist_usage, 0);
3331			if (argc)
3332				usage_with_options(timehist_usage, timehist_options);
3333		}
3334		if (sched.show_wakeups && sched.summary_only) {
3335			pr_err(" Error: -s and -w are mutually exclusive.\n");
 
3336			parse_options_usage(timehist_usage, timehist_options, "s", true);
3337			parse_options_usage(NULL, timehist_options, "w", true);
3338			return -EINVAL;
 
 
 
 
3339		}
 
 
 
3340
3341		return perf_sched__timehist(&sched);
3342	} else {
3343		usage_with_options(sched_usage, sched_options);
3344	}
3345
3346	return 0;
 
 
 
 
3347}