Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Xen time implementation.
  4 *
  5 * This is implemented in terms of a clocksource driver which uses
  6 * the hypervisor clock as a nanosecond timebase, and a clockevent
  7 * driver which uses the hypervisor's timer mechanism.
  8 *
  9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 10 */
 11#include <linux/kernel.h>
 12#include <linux/interrupt.h>
 13#include <linux/clocksource.h>
 14#include <linux/clockchips.h>
 15#include <linux/gfp.h>
 16#include <linux/slab.h>
 17#include <linux/pvclock_gtod.h>
 18#include <linux/timekeeper_internal.h>
 19
 20#include <asm/pvclock.h>
 21#include <asm/xen/hypervisor.h>
 22#include <asm/xen/hypercall.h>
 
 23
 24#include <xen/events.h>
 25#include <xen/features.h>
 26#include <xen/interface/xen.h>
 27#include <xen/interface/vcpu.h>
 28
 29#include "xen-ops.h"
 30
 31/* Minimum amount of time until next clock event fires */
 32#define TIMER_SLOP	100000
 33
 34static u64 xen_sched_clock_offset __read_mostly;
 35
 36/* Get the TSC speed from Xen */
 37static unsigned long xen_tsc_khz(void)
 38{
 39	struct pvclock_vcpu_time_info *info =
 40		&HYPERVISOR_shared_info->vcpu_info[0].time;
 41
 42	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 43	return pvclock_tsc_khz(info);
 44}
 45
 46static u64 xen_clocksource_read(void)
 47{
 48        struct pvclock_vcpu_time_info *src;
 49	u64 ret;
 50
 51	preempt_disable_notrace();
 52	src = &__this_cpu_read(xen_vcpu)->time;
 53	ret = pvclock_clocksource_read(src);
 54	preempt_enable_notrace();
 55	return ret;
 56}
 57
 58static u64 xen_clocksource_get_cycles(struct clocksource *cs)
 59{
 60	return xen_clocksource_read();
 61}
 62
 63static u64 xen_sched_clock(void)
 64{
 65	return xen_clocksource_read() - xen_sched_clock_offset;
 
 
 
 
 
 
 
 66}
 67
 68static void xen_read_wallclock(struct timespec64 *ts)
 69{
 70	struct shared_info *s = HYPERVISOR_shared_info;
 71	struct pvclock_wall_clock *wall_clock = &(s->wc);
 72        struct pvclock_vcpu_time_info *vcpu_time;
 73
 74	vcpu_time = &get_cpu_var(xen_vcpu)->time;
 75	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
 76	put_cpu_var(xen_vcpu);
 77}
 78
 79static void xen_get_wallclock(struct timespec64 *now)
 80{
 81	xen_read_wallclock(now);
 82}
 83
 84static int xen_set_wallclock(const struct timespec64 *now)
 85{
 86	return -ENODEV;
 87}
 88
 89static int xen_pvclock_gtod_notify(struct notifier_block *nb,
 90				   unsigned long was_set, void *priv)
 91{
 92	/* Protected by the calling core code serialization */
 93	static struct timespec64 next_sync;
 94
 95	struct xen_platform_op op;
 96	struct timespec64 now;
 97	struct timekeeper *tk = priv;
 98	static bool settime64_supported = true;
 99	int ret;
100
101	now.tv_sec = tk->xtime_sec;
102	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
103
104	/*
105	 * We only take the expensive HV call when the clock was set
106	 * or when the 11 minutes RTC synchronization time elapsed.
107	 */
108	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
109		return NOTIFY_OK;
110
111again:
112	if (settime64_supported) {
113		op.cmd = XENPF_settime64;
114		op.u.settime64.mbz = 0;
115		op.u.settime64.secs = now.tv_sec;
116		op.u.settime64.nsecs = now.tv_nsec;
117		op.u.settime64.system_time = xen_clocksource_read();
118	} else {
119		op.cmd = XENPF_settime32;
120		op.u.settime32.secs = now.tv_sec;
121		op.u.settime32.nsecs = now.tv_nsec;
122		op.u.settime32.system_time = xen_clocksource_read();
123	}
124
125	ret = HYPERVISOR_platform_op(&op);
126
127	if (ret == -ENOSYS && settime64_supported) {
128		settime64_supported = false;
129		goto again;
130	}
131	if (ret < 0)
132		return NOTIFY_BAD;
133
134	/*
135	 * Move the next drift compensation time 11 minutes
136	 * ahead. That's emulating the sync_cmos_clock() update for
137	 * the hardware RTC.
138	 */
139	next_sync = now;
140	next_sync.tv_sec += 11 * 60;
141
142	return NOTIFY_OK;
143}
144
145static struct notifier_block xen_pvclock_gtod_notifier = {
146	.notifier_call = xen_pvclock_gtod_notify,
147};
148
149static int xen_cs_enable(struct clocksource *cs)
150{
151	vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
152	return 0;
153}
154
155static struct clocksource xen_clocksource __read_mostly = {
156	.name	= "xen",
157	.rating	= 400,
158	.read	= xen_clocksource_get_cycles,
159	.mask	= CLOCKSOURCE_MASK(64),
160	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
161	.enable = xen_cs_enable,
162};
163
164/*
165   Xen clockevent implementation
166
167   Xen has two clockevent implementations:
168
169   The old timer_op one works with all released versions of Xen prior
170   to version 3.0.4.  This version of the hypervisor provides a
171   single-shot timer with nanosecond resolution.  However, sharing the
172   same event channel is a 100Hz tick which is delivered while the
173   vcpu is running.  We don't care about or use this tick, but it will
174   cause the core time code to think the timer fired too soon, and
175   will end up resetting it each time.  It could be filtered, but
176   doing so has complications when the ktime clocksource is not yet
177   the xen clocksource (ie, at boot time).
178
179   The new vcpu_op-based timer interface allows the tick timer period
180   to be changed or turned off.  The tick timer is not useful as a
181   periodic timer because events are only delivered to running vcpus.
182   The one-shot timer can report when a timeout is in the past, so
183   set_next_event is capable of returning -ETIME when appropriate.
184   This interface is used when available.
185*/
186
187
188/*
189  Get a hypervisor absolute time.  In theory we could maintain an
190  offset between the kernel's time and the hypervisor's time, and
191  apply that to a kernel's absolute timeout.  Unfortunately the
192  hypervisor and kernel times can drift even if the kernel is using
193  the Xen clocksource, because ntp can warp the kernel's clocksource.
194*/
195static s64 get_abs_timeout(unsigned long delta)
196{
197	return xen_clocksource_read() + delta;
198}
199
200static int xen_timerop_shutdown(struct clock_event_device *evt)
201{
202	/* cancel timeout */
203	HYPERVISOR_set_timer_op(0);
204
205	return 0;
206}
207
208static int xen_timerop_set_next_event(unsigned long delta,
209				      struct clock_event_device *evt)
210{
211	WARN_ON(!clockevent_state_oneshot(evt));
212
213	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
214		BUG();
215
216	/* We may have missed the deadline, but there's no real way of
217	   knowing for sure.  If the event was in the past, then we'll
218	   get an immediate interrupt. */
219
220	return 0;
221}
222
223static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
224	.name			= "xen",
225	.features		= CLOCK_EVT_FEAT_ONESHOT,
226
227	.max_delta_ns		= 0xffffffff,
228	.max_delta_ticks	= 0xffffffff,
229	.min_delta_ns		= TIMER_SLOP,
230	.min_delta_ticks	= TIMER_SLOP,
231
232	.mult			= 1,
233	.shift			= 0,
234	.rating			= 500,
235
236	.set_state_shutdown	= xen_timerop_shutdown,
237	.set_next_event		= xen_timerop_set_next_event,
238};
239
240static int xen_vcpuop_shutdown(struct clock_event_device *evt)
241{
242	int cpu = smp_processor_id();
243
244	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
245			       NULL) ||
246	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
247			       NULL))
248		BUG();
249
250	return 0;
251}
252
253static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
254{
255	int cpu = smp_processor_id();
256
257	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
258			       NULL))
259		BUG();
260
261	return 0;
262}
263
264static int xen_vcpuop_set_next_event(unsigned long delta,
265				     struct clock_event_device *evt)
266{
267	int cpu = smp_processor_id();
268	struct vcpu_set_singleshot_timer single;
269	int ret;
270
271	WARN_ON(!clockevent_state_oneshot(evt));
272
273	single.timeout_abs_ns = get_abs_timeout(delta);
274	/* Get an event anyway, even if the timeout is already expired */
275	single.flags = 0;
276
277	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
278				 &single);
279	BUG_ON(ret != 0);
280
281	return ret;
282}
283
284static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
285	.name = "xen",
286	.features = CLOCK_EVT_FEAT_ONESHOT,
287
288	.max_delta_ns = 0xffffffff,
289	.max_delta_ticks = 0xffffffff,
290	.min_delta_ns = TIMER_SLOP,
291	.min_delta_ticks = TIMER_SLOP,
292
293	.mult = 1,
294	.shift = 0,
295	.rating = 500,
296
297	.set_state_shutdown = xen_vcpuop_shutdown,
298	.set_state_oneshot = xen_vcpuop_set_oneshot,
299	.set_next_event = xen_vcpuop_set_next_event,
300};
301
302static const struct clock_event_device *xen_clockevent =
303	&xen_timerop_clockevent;
304
305struct xen_clock_event_device {
306	struct clock_event_device evt;
307	char name[16];
308};
309static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
310
311static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
312{
313	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
314	irqreturn_t ret;
315
316	ret = IRQ_NONE;
317	if (evt->event_handler) {
318		evt->event_handler(evt);
319		ret = IRQ_HANDLED;
320	}
321
322	return ret;
323}
324
325void xen_teardown_timer(int cpu)
326{
327	struct clock_event_device *evt;
328	evt = &per_cpu(xen_clock_events, cpu).evt;
329
330	if (evt->irq >= 0) {
331		unbind_from_irqhandler(evt->irq, NULL);
332		evt->irq = -1;
333	}
334}
335
336void xen_setup_timer(int cpu)
337{
338	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
339	struct clock_event_device *evt = &xevt->evt;
340	int irq;
341
342	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
343	if (evt->irq >= 0)
344		xen_teardown_timer(cpu);
345
346	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
347
348	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
349
350	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
351				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
352				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
353				      xevt->name, NULL);
354	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
355
356	memcpy(evt, xen_clockevent, sizeof(*evt));
357
358	evt->cpumask = cpumask_of(cpu);
359	evt->irq = irq;
360}
361
362
363void xen_setup_cpu_clockevents(void)
364{
365	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
366}
367
368void xen_timer_resume(void)
369{
370	int cpu;
371
372	if (xen_clockevent != &xen_vcpuop_clockevent)
373		return;
374
375	for_each_online_cpu(cpu) {
376		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
377				       xen_vcpu_nr(cpu), NULL))
378			BUG();
379	}
380}
381
382static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
383static u64 xen_clock_value_saved;
384
385void xen_save_time_memory_area(void)
386{
387	struct vcpu_register_time_memory_area t;
388	int ret;
389
390	xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
391
392	if (!xen_clock)
393		return;
394
395	t.addr.v = NULL;
396
397	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
398	if (ret != 0)
399		pr_notice("Cannot save secondary vcpu_time_info (err %d)",
400			  ret);
401	else
402		clear_page(xen_clock);
403}
404
405void xen_restore_time_memory_area(void)
406{
407	struct vcpu_register_time_memory_area t;
408	int ret;
409
410	if (!xen_clock)
411		goto out;
412
413	t.addr.v = &xen_clock->pvti;
414
415	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
416
417	/*
418	 * We don't disable VDSO_CLOCKMODE_PVCLOCK entirely if it fails to
419	 * register the secondary time info with Xen or if we migrated to a
420	 * host without the necessary flags. On both of these cases what
421	 * happens is either process seeing a zeroed out pvti or seeing no
422	 * PVCLOCK_TSC_STABLE_BIT bit set. Userspace checks the latter and
423	 * if 0, it discards the data in pvti and fallbacks to a system
424	 * call for a reliable timestamp.
425	 */
426	if (ret != 0)
427		pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
428			  ret);
429
430out:
431	/* Need pvclock_resume() before using xen_clocksource_read(). */
432	pvclock_resume();
433	xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
434}
435
436static void xen_setup_vsyscall_time_info(void)
437{
438	struct vcpu_register_time_memory_area t;
439	struct pvclock_vsyscall_time_info *ti;
440	int ret;
441
442	ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
443	if (!ti)
444		return;
445
446	t.addr.v = &ti->pvti;
447
448	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
449	if (ret) {
450		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (err %d)\n", ret);
451		free_page((unsigned long)ti);
452		return;
453	}
454
455	/*
456	 * If primary time info had this bit set, secondary should too since
457	 * it's the same data on both just different memory regions. But we
458	 * still check it in case hypervisor is buggy.
459	 */
460	if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
461		t.addr.v = NULL;
462		ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
463					 0, &t);
464		if (!ret)
465			free_page((unsigned long)ti);
466
467		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (tsc unstable)\n");
468		return;
469	}
470
471	xen_clock = ti;
472	pvclock_set_pvti_cpu0_va(xen_clock);
473
474	xen_clocksource.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
475}
476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477static void __init xen_time_init(void)
478{
479	struct pvclock_vcpu_time_info *pvti;
480	int cpu = smp_processor_id();
481	struct timespec64 tp;
482
483	/* As Dom0 is never moved, no penalty on using TSC there */
 
 
 
 
 
 
484	if (xen_initial_domain())
485		xen_clocksource.rating = 275;
 
 
486
487	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
488
489	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
490			       NULL) == 0) {
491		/* Successfully turned off 100Hz tick, so we have the
492		   vcpuop-based timer interface */
493		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
494		xen_clockevent = &xen_vcpuop_clockevent;
495	}
496
497	/* Set initial system time with full resolution */
498	xen_read_wallclock(&tp);
499	do_settimeofday64(&tp);
500
501	setup_force_cpu_cap(X86_FEATURE_TSC);
502
503	/*
504	 * We check ahead on the primary time info if this
505	 * bit is supported hence speeding up Xen clocksource.
506	 */
507	pvti = &__this_cpu_read(xen_vcpu)->time;
508	if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
509		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
510		xen_setup_vsyscall_time_info();
511	}
512
513	xen_setup_runstate_info(cpu);
514	xen_setup_timer(cpu);
515	xen_setup_cpu_clockevents();
516
517	xen_time_setup_guest();
518
519	if (xen_initial_domain())
520		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
521}
522
523static void __init xen_init_time_common(void)
524{
525	xen_sched_clock_offset = xen_clocksource_read();
526	static_call_update(pv_steal_clock, xen_steal_clock);
527	paravirt_set_sched_clock(xen_sched_clock);
528
529	x86_platform.calibrate_tsc = xen_tsc_khz;
530	x86_platform.get_wallclock = xen_get_wallclock;
531}
532
533void __init xen_init_time_ops(void)
534{
535	xen_init_time_common();
536
537	x86_init.timers.timer_init = xen_time_init;
538	x86_init.timers.setup_percpu_clockev = x86_init_noop;
539	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
540
541	/* Dom0 uses the native method to set the hardware RTC. */
542	if (!xen_initial_domain())
543		x86_platform.set_wallclock = xen_set_wallclock;
544}
545
546#ifdef CONFIG_XEN_PVHVM
547static void xen_hvm_setup_cpu_clockevents(void)
548{
549	int cpu = smp_processor_id();
550	xen_setup_runstate_info(cpu);
551	/*
552	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
553	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
554	 * early bootup and also during CPU hotplug events).
555	 */
556	xen_setup_cpu_clockevents();
557}
558
559void __init xen_hvm_init_time_ops(void)
560{
561	static bool hvm_time_initialized;
562
563	if (hvm_time_initialized)
564		return;
565
566	/*
567	 * vector callback is needed otherwise we cannot receive interrupts
568	 * on cpu > 0 and at this point we don't know how many cpus are
569	 * available.
570	 */
571	if (!xen_have_vector_callback)
572		return;
573
574	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
575		pr_info_once("Xen doesn't support pvclock on HVM, disable pv timer");
576		return;
577	}
578
579	/*
580	 * Only MAX_VIRT_CPUS 'vcpu_info' are embedded inside 'shared_info'.
581	 * The __this_cpu_read(xen_vcpu) is still NULL when Xen HVM guest
582	 * boots on vcpu >= MAX_VIRT_CPUS (e.g., kexec), To access
583	 * __this_cpu_read(xen_vcpu) via xen_clocksource_read() will panic.
584	 *
585	 * The xen_hvm_init_time_ops() should be called again later after
586	 * __this_cpu_read(xen_vcpu) is available.
587	 */
588	if (!__this_cpu_read(xen_vcpu)) {
589		pr_info("Delay xen_init_time_common() as kernel is running on vcpu=%d\n",
590			xen_vcpu_nr(0));
591		return;
592	}
593
594	xen_init_time_common();
595
596	x86_init.timers.setup_percpu_clockev = xen_time_init;
597	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
598
599	x86_platform.set_wallclock = xen_set_wallclock;
600
601	hvm_time_initialized = true;
602}
603#endif
604
605/* Kernel parameter to specify Xen timer slop */
606static int __init parse_xen_timer_slop(char *ptr)
607{
608	unsigned long slop = memparse(ptr, NULL);
609
610	xen_timerop_clockevent.min_delta_ns = slop;
611	xen_timerop_clockevent.min_delta_ticks = slop;
612	xen_vcpuop_clockevent.min_delta_ns = slop;
613	xen_vcpuop_clockevent.min_delta_ticks = slop;
614
615	return 0;
616}
617early_param("xen_timer_slop", parse_xen_timer_slop);
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Xen time implementation.
  4 *
  5 * This is implemented in terms of a clocksource driver which uses
  6 * the hypervisor clock as a nanosecond timebase, and a clockevent
  7 * driver which uses the hypervisor's timer mechanism.
  8 *
  9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 10 */
 11#include <linux/kernel.h>
 12#include <linux/interrupt.h>
 13#include <linux/clocksource.h>
 14#include <linux/clockchips.h>
 15#include <linux/gfp.h>
 16#include <linux/slab.h>
 17#include <linux/pvclock_gtod.h>
 18#include <linux/timekeeper_internal.h>
 19
 20#include <asm/pvclock.h>
 21#include <asm/xen/hypervisor.h>
 22#include <asm/xen/hypercall.h>
 23#include <asm/xen/cpuid.h>
 24
 25#include <xen/events.h>
 26#include <xen/features.h>
 27#include <xen/interface/xen.h>
 28#include <xen/interface/vcpu.h>
 29
 30#include "xen-ops.h"
 31
 32/* Minimum amount of time until next clock event fires */
 33#define TIMER_SLOP	100000
 34
 35static u64 xen_sched_clock_offset __read_mostly;
 36
 37/* Get the TSC speed from Xen */
 38static unsigned long xen_tsc_khz(void)
 39{
 40	struct pvclock_vcpu_time_info *info =
 41		&HYPERVISOR_shared_info->vcpu_info[0].time;
 42
 43	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 44	return pvclock_tsc_khz(info);
 45}
 46
 47static u64 xen_clocksource_read(void)
 48{
 49        struct pvclock_vcpu_time_info *src;
 50	u64 ret;
 51
 52	preempt_disable_notrace();
 53	src = &__this_cpu_read(xen_vcpu)->time;
 54	ret = pvclock_clocksource_read(src);
 55	preempt_enable_notrace();
 56	return ret;
 57}
 58
 59static u64 xen_clocksource_get_cycles(struct clocksource *cs)
 60{
 61	return xen_clocksource_read();
 62}
 63
 64static noinstr u64 xen_sched_clock(void)
 65{
 66        struct pvclock_vcpu_time_info *src;
 67	u64 ret;
 68
 69	src = &__this_cpu_read(xen_vcpu)->time;
 70	ret = pvclock_clocksource_read_nowd(src);
 71	ret -= xen_sched_clock_offset;
 72
 73	return ret;
 74}
 75
 76static void xen_read_wallclock(struct timespec64 *ts)
 77{
 78	struct shared_info *s = HYPERVISOR_shared_info;
 79	struct pvclock_wall_clock *wall_clock = &(s->wc);
 80        struct pvclock_vcpu_time_info *vcpu_time;
 81
 82	vcpu_time = &get_cpu_var(xen_vcpu)->time;
 83	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
 84	put_cpu_var(xen_vcpu);
 85}
 86
 87static void xen_get_wallclock(struct timespec64 *now)
 88{
 89	xen_read_wallclock(now);
 90}
 91
 92static int xen_set_wallclock(const struct timespec64 *now)
 93{
 94	return -ENODEV;
 95}
 96
 97static int xen_pvclock_gtod_notify(struct notifier_block *nb,
 98				   unsigned long was_set, void *priv)
 99{
100	/* Protected by the calling core code serialization */
101	static struct timespec64 next_sync;
102
103	struct xen_platform_op op;
104	struct timespec64 now;
105	struct timekeeper *tk = priv;
106	static bool settime64_supported = true;
107	int ret;
108
109	now.tv_sec = tk->xtime_sec;
110	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
111
112	/*
113	 * We only take the expensive HV call when the clock was set
114	 * or when the 11 minutes RTC synchronization time elapsed.
115	 */
116	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
117		return NOTIFY_OK;
118
119again:
120	if (settime64_supported) {
121		op.cmd = XENPF_settime64;
122		op.u.settime64.mbz = 0;
123		op.u.settime64.secs = now.tv_sec;
124		op.u.settime64.nsecs = now.tv_nsec;
125		op.u.settime64.system_time = xen_clocksource_read();
126	} else {
127		op.cmd = XENPF_settime32;
128		op.u.settime32.secs = now.tv_sec;
129		op.u.settime32.nsecs = now.tv_nsec;
130		op.u.settime32.system_time = xen_clocksource_read();
131	}
132
133	ret = HYPERVISOR_platform_op(&op);
134
135	if (ret == -ENOSYS && settime64_supported) {
136		settime64_supported = false;
137		goto again;
138	}
139	if (ret < 0)
140		return NOTIFY_BAD;
141
142	/*
143	 * Move the next drift compensation time 11 minutes
144	 * ahead. That's emulating the sync_cmos_clock() update for
145	 * the hardware RTC.
146	 */
147	next_sync = now;
148	next_sync.tv_sec += 11 * 60;
149
150	return NOTIFY_OK;
151}
152
153static struct notifier_block xen_pvclock_gtod_notifier = {
154	.notifier_call = xen_pvclock_gtod_notify,
155};
156
157static int xen_cs_enable(struct clocksource *cs)
158{
159	vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
160	return 0;
161}
162
163static struct clocksource xen_clocksource __read_mostly = {
164	.name	= "xen",
165	.rating	= 400,
166	.read	= xen_clocksource_get_cycles,
167	.mask	= CLOCKSOURCE_MASK(64),
168	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
169	.enable = xen_cs_enable,
170};
171
172/*
173   Xen clockevent implementation
174
175   Xen has two clockevent implementations:
176
177   The old timer_op one works with all released versions of Xen prior
178   to version 3.0.4.  This version of the hypervisor provides a
179   single-shot timer with nanosecond resolution.  However, sharing the
180   same event channel is a 100Hz tick which is delivered while the
181   vcpu is running.  We don't care about or use this tick, but it will
182   cause the core time code to think the timer fired too soon, and
183   will end up resetting it each time.  It could be filtered, but
184   doing so has complications when the ktime clocksource is not yet
185   the xen clocksource (ie, at boot time).
186
187   The new vcpu_op-based timer interface allows the tick timer period
188   to be changed or turned off.  The tick timer is not useful as a
189   periodic timer because events are only delivered to running vcpus.
190   The one-shot timer can report when a timeout is in the past, so
191   set_next_event is capable of returning -ETIME when appropriate.
192   This interface is used when available.
193*/
194
195
196/*
197  Get a hypervisor absolute time.  In theory we could maintain an
198  offset between the kernel's time and the hypervisor's time, and
199  apply that to a kernel's absolute timeout.  Unfortunately the
200  hypervisor and kernel times can drift even if the kernel is using
201  the Xen clocksource, because ntp can warp the kernel's clocksource.
202*/
203static s64 get_abs_timeout(unsigned long delta)
204{
205	return xen_clocksource_read() + delta;
206}
207
208static int xen_timerop_shutdown(struct clock_event_device *evt)
209{
210	/* cancel timeout */
211	HYPERVISOR_set_timer_op(0);
212
213	return 0;
214}
215
216static int xen_timerop_set_next_event(unsigned long delta,
217				      struct clock_event_device *evt)
218{
219	WARN_ON(!clockevent_state_oneshot(evt));
220
221	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
222		BUG();
223
224	/* We may have missed the deadline, but there's no real way of
225	   knowing for sure.  If the event was in the past, then we'll
226	   get an immediate interrupt. */
227
228	return 0;
229}
230
231static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
232	.name			= "xen",
233	.features		= CLOCK_EVT_FEAT_ONESHOT,
234
235	.max_delta_ns		= 0xffffffff,
236	.max_delta_ticks	= 0xffffffff,
237	.min_delta_ns		= TIMER_SLOP,
238	.min_delta_ticks	= TIMER_SLOP,
239
240	.mult			= 1,
241	.shift			= 0,
242	.rating			= 500,
243
244	.set_state_shutdown	= xen_timerop_shutdown,
245	.set_next_event		= xen_timerop_set_next_event,
246};
247
248static int xen_vcpuop_shutdown(struct clock_event_device *evt)
249{
250	int cpu = smp_processor_id();
251
252	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
253			       NULL) ||
254	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
255			       NULL))
256		BUG();
257
258	return 0;
259}
260
261static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
262{
263	int cpu = smp_processor_id();
264
265	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
266			       NULL))
267		BUG();
268
269	return 0;
270}
271
272static int xen_vcpuop_set_next_event(unsigned long delta,
273				     struct clock_event_device *evt)
274{
275	int cpu = smp_processor_id();
276	struct vcpu_set_singleshot_timer single;
277	int ret;
278
279	WARN_ON(!clockevent_state_oneshot(evt));
280
281	single.timeout_abs_ns = get_abs_timeout(delta);
282	/* Get an event anyway, even if the timeout is already expired */
283	single.flags = 0;
284
285	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
286				 &single);
287	BUG_ON(ret != 0);
288
289	return ret;
290}
291
292static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
293	.name = "xen",
294	.features = CLOCK_EVT_FEAT_ONESHOT,
295
296	.max_delta_ns = 0xffffffff,
297	.max_delta_ticks = 0xffffffff,
298	.min_delta_ns = TIMER_SLOP,
299	.min_delta_ticks = TIMER_SLOP,
300
301	.mult = 1,
302	.shift = 0,
303	.rating = 500,
304
305	.set_state_shutdown = xen_vcpuop_shutdown,
306	.set_state_oneshot = xen_vcpuop_set_oneshot,
307	.set_next_event = xen_vcpuop_set_next_event,
308};
309
310static const struct clock_event_device *xen_clockevent =
311	&xen_timerop_clockevent;
312
313struct xen_clock_event_device {
314	struct clock_event_device evt;
315	char name[16];
316};
317static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
318
319static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
320{
321	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
322	irqreturn_t ret;
323
324	ret = IRQ_NONE;
325	if (evt->event_handler) {
326		evt->event_handler(evt);
327		ret = IRQ_HANDLED;
328	}
329
330	return ret;
331}
332
333void xen_teardown_timer(int cpu)
334{
335	struct clock_event_device *evt;
336	evt = &per_cpu(xen_clock_events, cpu).evt;
337
338	if (evt->irq >= 0) {
339		unbind_from_irqhandler(evt->irq, NULL);
340		evt->irq = -1;
341	}
342}
343
344void xen_setup_timer(int cpu)
345{
346	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
347	struct clock_event_device *evt = &xevt->evt;
348	int irq;
349
350	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
351	if (evt->irq >= 0)
352		xen_teardown_timer(cpu);
353
354	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
355
356	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
357
358	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
359				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
360				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
361				      xevt->name, NULL);
362	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
363
364	memcpy(evt, xen_clockevent, sizeof(*evt));
365
366	evt->cpumask = cpumask_of(cpu);
367	evt->irq = irq;
368}
369
370
371void xen_setup_cpu_clockevents(void)
372{
373	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
374}
375
376void xen_timer_resume(void)
377{
378	int cpu;
379
380	if (xen_clockevent != &xen_vcpuop_clockevent)
381		return;
382
383	for_each_online_cpu(cpu) {
384		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
385				       xen_vcpu_nr(cpu), NULL))
386			BUG();
387	}
388}
389
390static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
391static u64 xen_clock_value_saved;
392
393void xen_save_time_memory_area(void)
394{
395	struct vcpu_register_time_memory_area t;
396	int ret;
397
398	xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
399
400	if (!xen_clock)
401		return;
402
403	t.addr.v = NULL;
404
405	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
406	if (ret != 0)
407		pr_notice("Cannot save secondary vcpu_time_info (err %d)",
408			  ret);
409	else
410		clear_page(xen_clock);
411}
412
413void xen_restore_time_memory_area(void)
414{
415	struct vcpu_register_time_memory_area t;
416	int ret;
417
418	if (!xen_clock)
419		goto out;
420
421	t.addr.v = &xen_clock->pvti;
422
423	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
424
425	/*
426	 * We don't disable VDSO_CLOCKMODE_PVCLOCK entirely if it fails to
427	 * register the secondary time info with Xen or if we migrated to a
428	 * host without the necessary flags. On both of these cases what
429	 * happens is either process seeing a zeroed out pvti or seeing no
430	 * PVCLOCK_TSC_STABLE_BIT bit set. Userspace checks the latter and
431	 * if 0, it discards the data in pvti and fallbacks to a system
432	 * call for a reliable timestamp.
433	 */
434	if (ret != 0)
435		pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
436			  ret);
437
438out:
439	/* Need pvclock_resume() before using xen_clocksource_read(). */
440	pvclock_resume();
441	xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
442}
443
444static void xen_setup_vsyscall_time_info(void)
445{
446	struct vcpu_register_time_memory_area t;
447	struct pvclock_vsyscall_time_info *ti;
448	int ret;
449
450	ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
451	if (!ti)
452		return;
453
454	t.addr.v = &ti->pvti;
455
456	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
457	if (ret) {
458		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (err %d)\n", ret);
459		free_page((unsigned long)ti);
460		return;
461	}
462
463	/*
464	 * If primary time info had this bit set, secondary should too since
465	 * it's the same data on both just different memory regions. But we
466	 * still check it in case hypervisor is buggy.
467	 */
468	if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
469		t.addr.v = NULL;
470		ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
471					 0, &t);
472		if (!ret)
473			free_page((unsigned long)ti);
474
475		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (tsc unstable)\n");
476		return;
477	}
478
479	xen_clock = ti;
480	pvclock_set_pvti_cpu0_va(xen_clock);
481
482	xen_clocksource.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
483}
484
485/*
486 * Check if it is possible to safely use the tsc as a clocksource.  This is
487 * only true if the hypervisor notifies the guest that its tsc is invariant,
488 * the tsc is stable, and the tsc instruction will never be emulated.
489 */
490static int __init xen_tsc_safe_clocksource(void)
491{
492	u32 eax, ebx, ecx, edx;
493
494	if (!(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)))
495		return 0;
496
497	if (!(boot_cpu_has(X86_FEATURE_NONSTOP_TSC)))
498		return 0;
499
500	if (check_tsc_unstable())
501		return 0;
502
503	/* Leaf 4, sub-leaf 0 (0x40000x03) */
504	cpuid_count(xen_cpuid_base() + 3, 0, &eax, &ebx, &ecx, &edx);
505
506	return ebx == XEN_CPUID_TSC_MODE_NEVER_EMULATE;
507}
508
509static void __init xen_time_init(void)
510{
511	struct pvclock_vcpu_time_info *pvti;
512	int cpu = smp_processor_id();
513	struct timespec64 tp;
514
515	/*
516	 * As Dom0 is never moved, no penalty on using TSC there.
517	 *
518	 * If it is possible for the guest to determine that the tsc is a safe
519	 * clocksource, then set xen_clocksource rating below that of the tsc
520	 * so that the system prefers tsc instead.
521	 */
522	if (xen_initial_domain())
523		xen_clocksource.rating = 275;
524	else if (xen_tsc_safe_clocksource())
525		xen_clocksource.rating = 299;
526
527	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
528
529	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
530			       NULL) == 0) {
531		/* Successfully turned off 100Hz tick, so we have the
532		   vcpuop-based timer interface */
533		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
534		xen_clockevent = &xen_vcpuop_clockevent;
535	}
536
537	/* Set initial system time with full resolution */
538	xen_read_wallclock(&tp);
539	do_settimeofday64(&tp);
540
541	setup_force_cpu_cap(X86_FEATURE_TSC);
542
543	/*
544	 * We check ahead on the primary time info if this
545	 * bit is supported hence speeding up Xen clocksource.
546	 */
547	pvti = &__this_cpu_read(xen_vcpu)->time;
548	if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
549		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
550		xen_setup_vsyscall_time_info();
551	}
552
553	xen_setup_runstate_info(cpu);
554	xen_setup_timer(cpu);
555	xen_setup_cpu_clockevents();
556
557	xen_time_setup_guest();
558
559	if (xen_initial_domain())
560		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
561}
562
563static void __init xen_init_time_common(void)
564{
565	xen_sched_clock_offset = xen_clocksource_read();
566	static_call_update(pv_steal_clock, xen_steal_clock);
567	paravirt_set_sched_clock(xen_sched_clock);
568
569	x86_platform.calibrate_tsc = xen_tsc_khz;
570	x86_platform.get_wallclock = xen_get_wallclock;
571}
572
573void __init xen_init_time_ops(void)
574{
575	xen_init_time_common();
576
577	x86_init.timers.timer_init = xen_time_init;
578	x86_init.timers.setup_percpu_clockev = x86_init_noop;
579	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
580
581	/* Dom0 uses the native method to set the hardware RTC. */
582	if (!xen_initial_domain())
583		x86_platform.set_wallclock = xen_set_wallclock;
584}
585
586#ifdef CONFIG_XEN_PVHVM
587static void xen_hvm_setup_cpu_clockevents(void)
588{
589	int cpu = smp_processor_id();
590	xen_setup_runstate_info(cpu);
591	/*
592	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
593	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
594	 * early bootup and also during CPU hotplug events).
595	 */
596	xen_setup_cpu_clockevents();
597}
598
599void __init xen_hvm_init_time_ops(void)
600{
601	static bool hvm_time_initialized;
602
603	if (hvm_time_initialized)
604		return;
605
606	/*
607	 * vector callback is needed otherwise we cannot receive interrupts
608	 * on cpu > 0 and at this point we don't know how many cpus are
609	 * available.
610	 */
611	if (!xen_have_vector_callback)
612		return;
613
614	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
615		pr_info_once("Xen doesn't support pvclock on HVM, disable pv timer");
616		return;
617	}
618
619	/*
620	 * Only MAX_VIRT_CPUS 'vcpu_info' are embedded inside 'shared_info'.
621	 * The __this_cpu_read(xen_vcpu) is still NULL when Xen HVM guest
622	 * boots on vcpu >= MAX_VIRT_CPUS (e.g., kexec), To access
623	 * __this_cpu_read(xen_vcpu) via xen_clocksource_read() will panic.
624	 *
625	 * The xen_hvm_init_time_ops() should be called again later after
626	 * __this_cpu_read(xen_vcpu) is available.
627	 */
628	if (!__this_cpu_read(xen_vcpu)) {
629		pr_info("Delay xen_init_time_common() as kernel is running on vcpu=%d\n",
630			xen_vcpu_nr(0));
631		return;
632	}
633
634	xen_init_time_common();
635
636	x86_init.timers.setup_percpu_clockev = xen_time_init;
637	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
638
639	x86_platform.set_wallclock = xen_set_wallclock;
640
641	hvm_time_initialized = true;
642}
643#endif
644
645/* Kernel parameter to specify Xen timer slop */
646static int __init parse_xen_timer_slop(char *ptr)
647{
648	unsigned long slop = memparse(ptr, NULL);
649
650	xen_timerop_clockevent.min_delta_ns = slop;
651	xen_timerop_clockevent.min_delta_ticks = slop;
652	xen_vcpuop_clockevent.min_delta_ns = slop;
653	xen_vcpuop_clockevent.min_delta_ticks = slop;
654
655	return 0;
656}
657early_param("xen_timer_slop", parse_xen_timer_slop);