Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Xen time implementation.
  4 *
  5 * This is implemented in terms of a clocksource driver which uses
  6 * the hypervisor clock as a nanosecond timebase, and a clockevent
  7 * driver which uses the hypervisor's timer mechanism.
  8 *
  9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 10 */
 11#include <linux/kernel.h>
 12#include <linux/interrupt.h>
 13#include <linux/clocksource.h>
 14#include <linux/clockchips.h>
 15#include <linux/gfp.h>
 16#include <linux/slab.h>
 17#include <linux/pvclock_gtod.h>
 18#include <linux/timekeeper_internal.h>
 19
 20#include <asm/pvclock.h>
 21#include <asm/xen/hypervisor.h>
 22#include <asm/xen/hypercall.h>
 23
 24#include <xen/events.h>
 25#include <xen/features.h>
 26#include <xen/interface/xen.h>
 27#include <xen/interface/vcpu.h>
 28
 29#include "xen-ops.h"
 30
 31/* Minimum amount of time until next clock event fires */
 32#define TIMER_SLOP	100000
 33
 34static u64 xen_sched_clock_offset __read_mostly;
 35
 36/* Get the TSC speed from Xen */
 37static unsigned long xen_tsc_khz(void)
 38{
 39	struct pvclock_vcpu_time_info *info =
 40		&HYPERVISOR_shared_info->vcpu_info[0].time;
 41
 42	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 43	return pvclock_tsc_khz(info);
 44}
 45
 46static u64 xen_clocksource_read(void)
 47{
 48        struct pvclock_vcpu_time_info *src;
 49	u64 ret;
 50
 51	preempt_disable_notrace();
 52	src = &__this_cpu_read(xen_vcpu)->time;
 53	ret = pvclock_clocksource_read(src);
 54	preempt_enable_notrace();
 55	return ret;
 56}
 57
 58static u64 xen_clocksource_get_cycles(struct clocksource *cs)
 59{
 60	return xen_clocksource_read();
 61}
 62
 63static u64 xen_sched_clock(void)
 64{
 65	return xen_clocksource_read() - xen_sched_clock_offset;
 66}
 67
 68static void xen_read_wallclock(struct timespec64 *ts)
 69{
 70	struct shared_info *s = HYPERVISOR_shared_info;
 71	struct pvclock_wall_clock *wall_clock = &(s->wc);
 72        struct pvclock_vcpu_time_info *vcpu_time;
 73
 74	vcpu_time = &get_cpu_var(xen_vcpu)->time;
 75	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
 76	put_cpu_var(xen_vcpu);
 77}
 78
 79static void xen_get_wallclock(struct timespec64 *now)
 80{
 81	xen_read_wallclock(now);
 82}
 83
 84static int xen_set_wallclock(const struct timespec64 *now)
 85{
 86	return -ENODEV;
 87}
 88
 89static int xen_pvclock_gtod_notify(struct notifier_block *nb,
 90				   unsigned long was_set, void *priv)
 91{
 92	/* Protected by the calling core code serialization */
 93	static struct timespec64 next_sync;
 94
 95	struct xen_platform_op op;
 96	struct timespec64 now;
 97	struct timekeeper *tk = priv;
 98	static bool settime64_supported = true;
 99	int ret;
100
101	now.tv_sec = tk->xtime_sec;
102	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
103
104	/*
105	 * We only take the expensive HV call when the clock was set
106	 * or when the 11 minutes RTC synchronization time elapsed.
107	 */
108	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
109		return NOTIFY_OK;
110
111again:
112	if (settime64_supported) {
113		op.cmd = XENPF_settime64;
114		op.u.settime64.mbz = 0;
115		op.u.settime64.secs = now.tv_sec;
116		op.u.settime64.nsecs = now.tv_nsec;
117		op.u.settime64.system_time = xen_clocksource_read();
118	} else {
119		op.cmd = XENPF_settime32;
120		op.u.settime32.secs = now.tv_sec;
121		op.u.settime32.nsecs = now.tv_nsec;
122		op.u.settime32.system_time = xen_clocksource_read();
123	}
124
125	ret = HYPERVISOR_platform_op(&op);
126
127	if (ret == -ENOSYS && settime64_supported) {
128		settime64_supported = false;
129		goto again;
130	}
131	if (ret < 0)
132		return NOTIFY_BAD;
133
134	/*
135	 * Move the next drift compensation time 11 minutes
136	 * ahead. That's emulating the sync_cmos_clock() update for
137	 * the hardware RTC.
138	 */
139	next_sync = now;
140	next_sync.tv_sec += 11 * 60;
141
142	return NOTIFY_OK;
143}
144
145static struct notifier_block xen_pvclock_gtod_notifier = {
146	.notifier_call = xen_pvclock_gtod_notify,
147};
148
149static int xen_cs_enable(struct clocksource *cs)
150{
151	vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
152	return 0;
153}
154
155static struct clocksource xen_clocksource __read_mostly = {
156	.name	= "xen",
157	.rating	= 400,
158	.read	= xen_clocksource_get_cycles,
159	.mask	= CLOCKSOURCE_MASK(64),
160	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
161	.enable = xen_cs_enable,
162};
163
164/*
165   Xen clockevent implementation
166
167   Xen has two clockevent implementations:
168
169   The old timer_op one works with all released versions of Xen prior
170   to version 3.0.4.  This version of the hypervisor provides a
171   single-shot timer with nanosecond resolution.  However, sharing the
172   same event channel is a 100Hz tick which is delivered while the
173   vcpu is running.  We don't care about or use this tick, but it will
174   cause the core time code to think the timer fired too soon, and
175   will end up resetting it each time.  It could be filtered, but
176   doing so has complications when the ktime clocksource is not yet
177   the xen clocksource (ie, at boot time).
178
179   The new vcpu_op-based timer interface allows the tick timer period
180   to be changed or turned off.  The tick timer is not useful as a
181   periodic timer because events are only delivered to running vcpus.
182   The one-shot timer can report when a timeout is in the past, so
183   set_next_event is capable of returning -ETIME when appropriate.
184   This interface is used when available.
185*/
186
187
188/*
189  Get a hypervisor absolute time.  In theory we could maintain an
190  offset between the kernel's time and the hypervisor's time, and
191  apply that to a kernel's absolute timeout.  Unfortunately the
192  hypervisor and kernel times can drift even if the kernel is using
193  the Xen clocksource, because ntp can warp the kernel's clocksource.
194*/
195static s64 get_abs_timeout(unsigned long delta)
196{
197	return xen_clocksource_read() + delta;
198}
199
200static int xen_timerop_shutdown(struct clock_event_device *evt)
201{
202	/* cancel timeout */
203	HYPERVISOR_set_timer_op(0);
204
205	return 0;
206}
207
208static int xen_timerop_set_next_event(unsigned long delta,
209				      struct clock_event_device *evt)
210{
211	WARN_ON(!clockevent_state_oneshot(evt));
212
213	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
214		BUG();
215
216	/* We may have missed the deadline, but there's no real way of
217	   knowing for sure.  If the event was in the past, then we'll
218	   get an immediate interrupt. */
219
220	return 0;
221}
222
223static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
224	.name			= "xen",
225	.features		= CLOCK_EVT_FEAT_ONESHOT,
226
227	.max_delta_ns		= 0xffffffff,
228	.max_delta_ticks	= 0xffffffff,
229	.min_delta_ns		= TIMER_SLOP,
230	.min_delta_ticks	= TIMER_SLOP,
231
232	.mult			= 1,
233	.shift			= 0,
234	.rating			= 500,
235
236	.set_state_shutdown	= xen_timerop_shutdown,
237	.set_next_event		= xen_timerop_set_next_event,
238};
239
240static int xen_vcpuop_shutdown(struct clock_event_device *evt)
241{
242	int cpu = smp_processor_id();
243
244	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
245			       NULL) ||
246	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
247			       NULL))
248		BUG();
249
250	return 0;
251}
252
253static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
254{
255	int cpu = smp_processor_id();
256
257	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
258			       NULL))
259		BUG();
260
261	return 0;
262}
263
264static int xen_vcpuop_set_next_event(unsigned long delta,
265				     struct clock_event_device *evt)
266{
267	int cpu = smp_processor_id();
268	struct vcpu_set_singleshot_timer single;
269	int ret;
270
271	WARN_ON(!clockevent_state_oneshot(evt));
272
273	single.timeout_abs_ns = get_abs_timeout(delta);
274	/* Get an event anyway, even if the timeout is already expired */
275	single.flags = 0;
276
277	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
278				 &single);
279	BUG_ON(ret != 0);
280
281	return ret;
282}
283
284static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
285	.name = "xen",
286	.features = CLOCK_EVT_FEAT_ONESHOT,
287
288	.max_delta_ns = 0xffffffff,
289	.max_delta_ticks = 0xffffffff,
290	.min_delta_ns = TIMER_SLOP,
291	.min_delta_ticks = TIMER_SLOP,
292
293	.mult = 1,
294	.shift = 0,
295	.rating = 500,
296
297	.set_state_shutdown = xen_vcpuop_shutdown,
298	.set_state_oneshot = xen_vcpuop_set_oneshot,
299	.set_next_event = xen_vcpuop_set_next_event,
300};
301
302static const struct clock_event_device *xen_clockevent =
303	&xen_timerop_clockevent;
304
305struct xen_clock_event_device {
306	struct clock_event_device evt;
307	char name[16];
308};
309static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
310
311static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
312{
313	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
314	irqreturn_t ret;
315
316	ret = IRQ_NONE;
317	if (evt->event_handler) {
318		evt->event_handler(evt);
319		ret = IRQ_HANDLED;
320	}
321
322	return ret;
323}
324
325void xen_teardown_timer(int cpu)
326{
327	struct clock_event_device *evt;
328	evt = &per_cpu(xen_clock_events, cpu).evt;
329
330	if (evt->irq >= 0) {
331		unbind_from_irqhandler(evt->irq, NULL);
332		evt->irq = -1;
333	}
334}
335
336void xen_setup_timer(int cpu)
337{
338	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
339	struct clock_event_device *evt = &xevt->evt;
340	int irq;
341
342	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
343	if (evt->irq >= 0)
344		xen_teardown_timer(cpu);
345
346	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
347
348	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
349
350	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
351				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
352				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
353				      xevt->name, NULL);
354	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
355
356	memcpy(evt, xen_clockevent, sizeof(*evt));
357
358	evt->cpumask = cpumask_of(cpu);
359	evt->irq = irq;
360}
361
362
363void xen_setup_cpu_clockevents(void)
364{
365	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
366}
367
368void xen_timer_resume(void)
369{
370	int cpu;
371
372	if (xen_clockevent != &xen_vcpuop_clockevent)
373		return;
374
375	for_each_online_cpu(cpu) {
376		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
377				       xen_vcpu_nr(cpu), NULL))
378			BUG();
379	}
380}
381
 
 
 
 
 
382static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
383static u64 xen_clock_value_saved;
384
385void xen_save_time_memory_area(void)
386{
387	struct vcpu_register_time_memory_area t;
388	int ret;
389
390	xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
391
392	if (!xen_clock)
393		return;
394
395	t.addr.v = NULL;
396
397	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
398	if (ret != 0)
399		pr_notice("Cannot save secondary vcpu_time_info (err %d)",
400			  ret);
401	else
402		clear_page(xen_clock);
403}
404
405void xen_restore_time_memory_area(void)
406{
407	struct vcpu_register_time_memory_area t;
408	int ret;
409
410	if (!xen_clock)
411		goto out;
412
413	t.addr.v = &xen_clock->pvti;
414
415	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
416
417	/*
418	 * We don't disable VDSO_CLOCKMODE_PVCLOCK entirely if it fails to
419	 * register the secondary time info with Xen or if we migrated to a
420	 * host without the necessary flags. On both of these cases what
421	 * happens is either process seeing a zeroed out pvti or seeing no
422	 * PVCLOCK_TSC_STABLE_BIT bit set. Userspace checks the latter and
423	 * if 0, it discards the data in pvti and fallbacks to a system
424	 * call for a reliable timestamp.
425	 */
426	if (ret != 0)
427		pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
428			  ret);
429
430out:
431	/* Need pvclock_resume() before using xen_clocksource_read(). */
432	pvclock_resume();
433	xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
434}
435
436static void xen_setup_vsyscall_time_info(void)
437{
438	struct vcpu_register_time_memory_area t;
439	struct pvclock_vsyscall_time_info *ti;
440	int ret;
441
442	ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
443	if (!ti)
444		return;
445
446	t.addr.v = &ti->pvti;
447
448	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
449	if (ret) {
450		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (err %d)\n", ret);
451		free_page((unsigned long)ti);
452		return;
453	}
454
455	/*
456	 * If primary time info had this bit set, secondary should too since
457	 * it's the same data on both just different memory regions. But we
458	 * still check it in case hypervisor is buggy.
459	 */
460	if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
461		t.addr.v = NULL;
462		ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
463					 0, &t);
464		if (!ret)
465			free_page((unsigned long)ti);
466
467		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (tsc unstable)\n");
468		return;
469	}
470
471	xen_clock = ti;
472	pvclock_set_pvti_cpu0_va(xen_clock);
473
474	xen_clocksource.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
475}
476
477static void __init xen_time_init(void)
478{
479	struct pvclock_vcpu_time_info *pvti;
480	int cpu = smp_processor_id();
481	struct timespec64 tp;
482
483	/* As Dom0 is never moved, no penalty on using TSC there */
484	if (xen_initial_domain())
485		xen_clocksource.rating = 275;
486
487	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
488
489	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
490			       NULL) == 0) {
491		/* Successfully turned off 100Hz tick, so we have the
492		   vcpuop-based timer interface */
493		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
494		xen_clockevent = &xen_vcpuop_clockevent;
495	}
496
497	/* Set initial system time with full resolution */
498	xen_read_wallclock(&tp);
499	do_settimeofday64(&tp);
500
501	setup_force_cpu_cap(X86_FEATURE_TSC);
502
503	/*
504	 * We check ahead on the primary time info if this
505	 * bit is supported hence speeding up Xen clocksource.
506	 */
507	pvti = &__this_cpu_read(xen_vcpu)->time;
508	if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
509		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
510		xen_setup_vsyscall_time_info();
511	}
512
513	xen_setup_runstate_info(cpu);
514	xen_setup_timer(cpu);
515	xen_setup_cpu_clockevents();
516
517	xen_time_setup_guest();
518
519	if (xen_initial_domain())
520		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
521}
522
523static void __init xen_init_time_common(void)
524{
525	xen_sched_clock_offset = xen_clocksource_read();
526	static_call_update(pv_steal_clock, xen_steal_clock);
527	paravirt_set_sched_clock(xen_sched_clock);
528
529	x86_platform.calibrate_tsc = xen_tsc_khz;
530	x86_platform.get_wallclock = xen_get_wallclock;
531}
532
533void __init xen_init_time_ops(void)
534{
535	xen_init_time_common();
 
536
537	x86_init.timers.timer_init = xen_time_init;
538	x86_init.timers.setup_percpu_clockev = x86_init_noop;
539	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
540
 
 
541	/* Dom0 uses the native method to set the hardware RTC. */
542	if (!xen_initial_domain())
543		x86_platform.set_wallclock = xen_set_wallclock;
544}
545
546#ifdef CONFIG_XEN_PVHVM
547static void xen_hvm_setup_cpu_clockevents(void)
548{
549	int cpu = smp_processor_id();
550	xen_setup_runstate_info(cpu);
551	/*
552	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
553	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
554	 * early bootup and also during CPU hotplug events).
555	 */
556	xen_setup_cpu_clockevents();
557}
558
559void __init xen_hvm_init_time_ops(void)
560{
561	static bool hvm_time_initialized;
562
563	if (hvm_time_initialized)
564		return;
565
566	/*
567	 * vector callback is needed otherwise we cannot receive interrupts
568	 * on cpu > 0 and at this point we don't know how many cpus are
569	 * available.
570	 */
571	if (!xen_have_vector_callback)
572		return;
573
574	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
575		pr_info_once("Xen doesn't support pvclock on HVM, disable pv timer");
576		return;
577	}
578
579	/*
580	 * Only MAX_VIRT_CPUS 'vcpu_info' are embedded inside 'shared_info'.
581	 * The __this_cpu_read(xen_vcpu) is still NULL when Xen HVM guest
582	 * boots on vcpu >= MAX_VIRT_CPUS (e.g., kexec), To access
583	 * __this_cpu_read(xen_vcpu) via xen_clocksource_read() will panic.
584	 *
585	 * The xen_hvm_init_time_ops() should be called again later after
586	 * __this_cpu_read(xen_vcpu) is available.
587	 */
588	if (!__this_cpu_read(xen_vcpu)) {
589		pr_info("Delay xen_init_time_common() as kernel is running on vcpu=%d\n",
590			xen_vcpu_nr(0));
591		return;
592	}
593
594	xen_init_time_common();
595
596	x86_init.timers.setup_percpu_clockev = xen_time_init;
597	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
598
 
 
599	x86_platform.set_wallclock = xen_set_wallclock;
600
601	hvm_time_initialized = true;
602}
603#endif
604
605/* Kernel parameter to specify Xen timer slop */
606static int __init parse_xen_timer_slop(char *ptr)
607{
608	unsigned long slop = memparse(ptr, NULL);
609
610	xen_timerop_clockevent.min_delta_ns = slop;
611	xen_timerop_clockevent.min_delta_ticks = slop;
612	xen_vcpuop_clockevent.min_delta_ns = slop;
613	xen_vcpuop_clockevent.min_delta_ticks = slop;
614
615	return 0;
616}
617early_param("xen_timer_slop", parse_xen_timer_slop);
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Xen time implementation.
  4 *
  5 * This is implemented in terms of a clocksource driver which uses
  6 * the hypervisor clock as a nanosecond timebase, and a clockevent
  7 * driver which uses the hypervisor's timer mechanism.
  8 *
  9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 10 */
 11#include <linux/kernel.h>
 12#include <linux/interrupt.h>
 13#include <linux/clocksource.h>
 14#include <linux/clockchips.h>
 15#include <linux/gfp.h>
 16#include <linux/slab.h>
 17#include <linux/pvclock_gtod.h>
 18#include <linux/timekeeper_internal.h>
 19
 20#include <asm/pvclock.h>
 21#include <asm/xen/hypervisor.h>
 22#include <asm/xen/hypercall.h>
 23
 24#include <xen/events.h>
 25#include <xen/features.h>
 26#include <xen/interface/xen.h>
 27#include <xen/interface/vcpu.h>
 28
 29#include "xen-ops.h"
 30
 31/* Minimum amount of time until next clock event fires */
 32#define TIMER_SLOP	100000
 33
 34static u64 xen_sched_clock_offset __read_mostly;
 35
 36/* Get the TSC speed from Xen */
 37static unsigned long xen_tsc_khz(void)
 38{
 39	struct pvclock_vcpu_time_info *info =
 40		&HYPERVISOR_shared_info->vcpu_info[0].time;
 41
 
 42	return pvclock_tsc_khz(info);
 43}
 44
 45static u64 xen_clocksource_read(void)
 46{
 47        struct pvclock_vcpu_time_info *src;
 48	u64 ret;
 49
 50	preempt_disable_notrace();
 51	src = &__this_cpu_read(xen_vcpu)->time;
 52	ret = pvclock_clocksource_read(src);
 53	preempt_enable_notrace();
 54	return ret;
 55}
 56
 57static u64 xen_clocksource_get_cycles(struct clocksource *cs)
 58{
 59	return xen_clocksource_read();
 60}
 61
 62static u64 xen_sched_clock(void)
 63{
 64	return xen_clocksource_read() - xen_sched_clock_offset;
 65}
 66
 67static void xen_read_wallclock(struct timespec64 *ts)
 68{
 69	struct shared_info *s = HYPERVISOR_shared_info;
 70	struct pvclock_wall_clock *wall_clock = &(s->wc);
 71        struct pvclock_vcpu_time_info *vcpu_time;
 72
 73	vcpu_time = &get_cpu_var(xen_vcpu)->time;
 74	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
 75	put_cpu_var(xen_vcpu);
 76}
 77
 78static void xen_get_wallclock(struct timespec64 *now)
 79{
 80	xen_read_wallclock(now);
 81}
 82
 83static int xen_set_wallclock(const struct timespec64 *now)
 84{
 85	return -ENODEV;
 86}
 87
 88static int xen_pvclock_gtod_notify(struct notifier_block *nb,
 89				   unsigned long was_set, void *priv)
 90{
 91	/* Protected by the calling core code serialization */
 92	static struct timespec64 next_sync;
 93
 94	struct xen_platform_op op;
 95	struct timespec64 now;
 96	struct timekeeper *tk = priv;
 97	static bool settime64_supported = true;
 98	int ret;
 99
100	now.tv_sec = tk->xtime_sec;
101	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
102
103	/*
104	 * We only take the expensive HV call when the clock was set
105	 * or when the 11 minutes RTC synchronization time elapsed.
106	 */
107	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
108		return NOTIFY_OK;
109
110again:
111	if (settime64_supported) {
112		op.cmd = XENPF_settime64;
113		op.u.settime64.mbz = 0;
114		op.u.settime64.secs = now.tv_sec;
115		op.u.settime64.nsecs = now.tv_nsec;
116		op.u.settime64.system_time = xen_clocksource_read();
117	} else {
118		op.cmd = XENPF_settime32;
119		op.u.settime32.secs = now.tv_sec;
120		op.u.settime32.nsecs = now.tv_nsec;
121		op.u.settime32.system_time = xen_clocksource_read();
122	}
123
124	ret = HYPERVISOR_platform_op(&op);
125
126	if (ret == -ENOSYS && settime64_supported) {
127		settime64_supported = false;
128		goto again;
129	}
130	if (ret < 0)
131		return NOTIFY_BAD;
132
133	/*
134	 * Move the next drift compensation time 11 minutes
135	 * ahead. That's emulating the sync_cmos_clock() update for
136	 * the hardware RTC.
137	 */
138	next_sync = now;
139	next_sync.tv_sec += 11 * 60;
140
141	return NOTIFY_OK;
142}
143
144static struct notifier_block xen_pvclock_gtod_notifier = {
145	.notifier_call = xen_pvclock_gtod_notify,
146};
147
 
 
 
 
 
 
148static struct clocksource xen_clocksource __read_mostly = {
149	.name = "xen",
150	.rating = 400,
151	.read = xen_clocksource_get_cycles,
152	.mask = ~0,
153	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
 
154};
155
156/*
157   Xen clockevent implementation
158
159   Xen has two clockevent implementations:
160
161   The old timer_op one works with all released versions of Xen prior
162   to version 3.0.4.  This version of the hypervisor provides a
163   single-shot timer with nanosecond resolution.  However, sharing the
164   same event channel is a 100Hz tick which is delivered while the
165   vcpu is running.  We don't care about or use this tick, but it will
166   cause the core time code to think the timer fired too soon, and
167   will end up resetting it each time.  It could be filtered, but
168   doing so has complications when the ktime clocksource is not yet
169   the xen clocksource (ie, at boot time).
170
171   The new vcpu_op-based timer interface allows the tick timer period
172   to be changed or turned off.  The tick timer is not useful as a
173   periodic timer because events are only delivered to running vcpus.
174   The one-shot timer can report when a timeout is in the past, so
175   set_next_event is capable of returning -ETIME when appropriate.
176   This interface is used when available.
177*/
178
179
180/*
181  Get a hypervisor absolute time.  In theory we could maintain an
182  offset between the kernel's time and the hypervisor's time, and
183  apply that to a kernel's absolute timeout.  Unfortunately the
184  hypervisor and kernel times can drift even if the kernel is using
185  the Xen clocksource, because ntp can warp the kernel's clocksource.
186*/
187static s64 get_abs_timeout(unsigned long delta)
188{
189	return xen_clocksource_read() + delta;
190}
191
192static int xen_timerop_shutdown(struct clock_event_device *evt)
193{
194	/* cancel timeout */
195	HYPERVISOR_set_timer_op(0);
196
197	return 0;
198}
199
200static int xen_timerop_set_next_event(unsigned long delta,
201				      struct clock_event_device *evt)
202{
203	WARN_ON(!clockevent_state_oneshot(evt));
204
205	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
206		BUG();
207
208	/* We may have missed the deadline, but there's no real way of
209	   knowing for sure.  If the event was in the past, then we'll
210	   get an immediate interrupt. */
211
212	return 0;
213}
214
215static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
216	.name			= "xen",
217	.features		= CLOCK_EVT_FEAT_ONESHOT,
218
219	.max_delta_ns		= 0xffffffff,
220	.max_delta_ticks	= 0xffffffff,
221	.min_delta_ns		= TIMER_SLOP,
222	.min_delta_ticks	= TIMER_SLOP,
223
224	.mult			= 1,
225	.shift			= 0,
226	.rating			= 500,
227
228	.set_state_shutdown	= xen_timerop_shutdown,
229	.set_next_event		= xen_timerop_set_next_event,
230};
231
232static int xen_vcpuop_shutdown(struct clock_event_device *evt)
233{
234	int cpu = smp_processor_id();
235
236	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
237			       NULL) ||
238	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
239			       NULL))
240		BUG();
241
242	return 0;
243}
244
245static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
246{
247	int cpu = smp_processor_id();
248
249	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
250			       NULL))
251		BUG();
252
253	return 0;
254}
255
256static int xen_vcpuop_set_next_event(unsigned long delta,
257				     struct clock_event_device *evt)
258{
259	int cpu = smp_processor_id();
260	struct vcpu_set_singleshot_timer single;
261	int ret;
262
263	WARN_ON(!clockevent_state_oneshot(evt));
264
265	single.timeout_abs_ns = get_abs_timeout(delta);
266	/* Get an event anyway, even if the timeout is already expired */
267	single.flags = 0;
268
269	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
270				 &single);
271	BUG_ON(ret != 0);
272
273	return ret;
274}
275
276static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
277	.name = "xen",
278	.features = CLOCK_EVT_FEAT_ONESHOT,
279
280	.max_delta_ns = 0xffffffff,
281	.max_delta_ticks = 0xffffffff,
282	.min_delta_ns = TIMER_SLOP,
283	.min_delta_ticks = TIMER_SLOP,
284
285	.mult = 1,
286	.shift = 0,
287	.rating = 500,
288
289	.set_state_shutdown = xen_vcpuop_shutdown,
290	.set_state_oneshot = xen_vcpuop_set_oneshot,
291	.set_next_event = xen_vcpuop_set_next_event,
292};
293
294static const struct clock_event_device *xen_clockevent =
295	&xen_timerop_clockevent;
296
297struct xen_clock_event_device {
298	struct clock_event_device evt;
299	char name[16];
300};
301static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
302
303static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
304{
305	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
306	irqreturn_t ret;
307
308	ret = IRQ_NONE;
309	if (evt->event_handler) {
310		evt->event_handler(evt);
311		ret = IRQ_HANDLED;
312	}
313
314	return ret;
315}
316
317void xen_teardown_timer(int cpu)
318{
319	struct clock_event_device *evt;
320	evt = &per_cpu(xen_clock_events, cpu).evt;
321
322	if (evt->irq >= 0) {
323		unbind_from_irqhandler(evt->irq, NULL);
324		evt->irq = -1;
325	}
326}
327
328void xen_setup_timer(int cpu)
329{
330	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
331	struct clock_event_device *evt = &xevt->evt;
332	int irq;
333
334	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
335	if (evt->irq >= 0)
336		xen_teardown_timer(cpu);
337
338	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
339
340	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
341
342	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
343				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
344				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
345				      xevt->name, NULL);
346	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
347
348	memcpy(evt, xen_clockevent, sizeof(*evt));
349
350	evt->cpumask = cpumask_of(cpu);
351	evt->irq = irq;
352}
353
354
355void xen_setup_cpu_clockevents(void)
356{
357	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
358}
359
360void xen_timer_resume(void)
361{
362	int cpu;
363
364	if (xen_clockevent != &xen_vcpuop_clockevent)
365		return;
366
367	for_each_online_cpu(cpu) {
368		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
369				       xen_vcpu_nr(cpu), NULL))
370			BUG();
371	}
372}
373
374static const struct pv_time_ops xen_time_ops __initconst = {
375	.sched_clock = xen_sched_clock,
376	.steal_clock = xen_steal_clock,
377};
378
379static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
380static u64 xen_clock_value_saved;
381
382void xen_save_time_memory_area(void)
383{
384	struct vcpu_register_time_memory_area t;
385	int ret;
386
387	xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
388
389	if (!xen_clock)
390		return;
391
392	t.addr.v = NULL;
393
394	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
395	if (ret != 0)
396		pr_notice("Cannot save secondary vcpu_time_info (err %d)",
397			  ret);
398	else
399		clear_page(xen_clock);
400}
401
402void xen_restore_time_memory_area(void)
403{
404	struct vcpu_register_time_memory_area t;
405	int ret;
406
407	if (!xen_clock)
408		goto out;
409
410	t.addr.v = &xen_clock->pvti;
411
412	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
413
414	/*
415	 * We don't disable VCLOCK_PVCLOCK entirely if it fails to register the
416	 * secondary time info with Xen or if we migrated to a host without the
417	 * necessary flags. On both of these cases what happens is either
418	 * process seeing a zeroed out pvti or seeing no PVCLOCK_TSC_STABLE_BIT
419	 * bit set. Userspace checks the latter and if 0, it discards the data
420	 * in pvti and fallbacks to a system call for a reliable timestamp.
 
421	 */
422	if (ret != 0)
423		pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
424			  ret);
425
426out:
427	/* Need pvclock_resume() before using xen_clocksource_read(). */
428	pvclock_resume();
429	xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
430}
431
432static void xen_setup_vsyscall_time_info(void)
433{
434	struct vcpu_register_time_memory_area t;
435	struct pvclock_vsyscall_time_info *ti;
436	int ret;
437
438	ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
439	if (!ti)
440		return;
441
442	t.addr.v = &ti->pvti;
443
444	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
445	if (ret) {
446		pr_notice("xen: VCLOCK_PVCLOCK not supported (err %d)\n", ret);
447		free_page((unsigned long)ti);
448		return;
449	}
450
451	/*
452	 * If primary time info had this bit set, secondary should too since
453	 * it's the same data on both just different memory regions. But we
454	 * still check it in case hypervisor is buggy.
455	 */
456	if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
457		t.addr.v = NULL;
458		ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
459					 0, &t);
460		if (!ret)
461			free_page((unsigned long)ti);
462
463		pr_notice("xen: VCLOCK_PVCLOCK not supported (tsc unstable)\n");
464		return;
465	}
466
467	xen_clock = ti;
468	pvclock_set_pvti_cpu0_va(xen_clock);
469
470	xen_clocksource.archdata.vclock_mode = VCLOCK_PVCLOCK;
471}
472
473static void __init xen_time_init(void)
474{
475	struct pvclock_vcpu_time_info *pvti;
476	int cpu = smp_processor_id();
477	struct timespec64 tp;
478
479	/* As Dom0 is never moved, no penalty on using TSC there */
480	if (xen_initial_domain())
481		xen_clocksource.rating = 275;
482
483	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
484
485	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
486			       NULL) == 0) {
487		/* Successfully turned off 100Hz tick, so we have the
488		   vcpuop-based timer interface */
489		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
490		xen_clockevent = &xen_vcpuop_clockevent;
491	}
492
493	/* Set initial system time with full resolution */
494	xen_read_wallclock(&tp);
495	do_settimeofday64(&tp);
496
497	setup_force_cpu_cap(X86_FEATURE_TSC);
498
499	/*
500	 * We check ahead on the primary time info if this
501	 * bit is supported hence speeding up Xen clocksource.
502	 */
503	pvti = &__this_cpu_read(xen_vcpu)->time;
504	if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
505		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
506		xen_setup_vsyscall_time_info();
507	}
508
509	xen_setup_runstate_info(cpu);
510	xen_setup_timer(cpu);
511	xen_setup_cpu_clockevents();
512
513	xen_time_setup_guest();
514
515	if (xen_initial_domain())
516		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
517}
518
 
 
 
 
 
 
 
 
 
 
519void __init xen_init_time_ops(void)
520{
521	xen_sched_clock_offset = xen_clocksource_read();
522	pv_ops.time = xen_time_ops;
523
524	x86_init.timers.timer_init = xen_time_init;
525	x86_init.timers.setup_percpu_clockev = x86_init_noop;
526	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
527
528	x86_platform.calibrate_tsc = xen_tsc_khz;
529	x86_platform.get_wallclock = xen_get_wallclock;
530	/* Dom0 uses the native method to set the hardware RTC. */
531	if (!xen_initial_domain())
532		x86_platform.set_wallclock = xen_set_wallclock;
533}
534
535#ifdef CONFIG_XEN_PVHVM
536static void xen_hvm_setup_cpu_clockevents(void)
537{
538	int cpu = smp_processor_id();
539	xen_setup_runstate_info(cpu);
540	/*
541	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
542	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
543	 * early bootup and also during CPU hotplug events).
544	 */
545	xen_setup_cpu_clockevents();
546}
547
548void __init xen_hvm_init_time_ops(void)
549{
 
 
 
 
 
550	/*
551	 * vector callback is needed otherwise we cannot receive interrupts
552	 * on cpu > 0 and at this point we don't know how many cpus are
553	 * available.
554	 */
555	if (!xen_have_vector_callback)
556		return;
557
558	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
559		pr_info("Xen doesn't support pvclock on HVM, disable pv timer");
560		return;
561	}
562
563	xen_sched_clock_offset = xen_clocksource_read();
564	pv_ops.time = xen_time_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
565	x86_init.timers.setup_percpu_clockev = xen_time_init;
566	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
567
568	x86_platform.calibrate_tsc = xen_tsc_khz;
569	x86_platform.get_wallclock = xen_get_wallclock;
570	x86_platform.set_wallclock = xen_set_wallclock;
 
 
571}
572#endif
573
574/* Kernel parameter to specify Xen timer slop */
575static int __init parse_xen_timer_slop(char *ptr)
576{
577	unsigned long slop = memparse(ptr, NULL);
578
579	xen_timerop_clockevent.min_delta_ns = slop;
580	xen_timerop_clockevent.min_delta_ticks = slop;
581	xen_vcpuop_clockevent.min_delta_ns = slop;
582	xen_vcpuop_clockevent.min_delta_ticks = slop;
583
584	return 0;
585}
586early_param("xen_timer_slop", parse_xen_timer_slop);