Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Xen time implementation.
  4 *
  5 * This is implemented in terms of a clocksource driver which uses
  6 * the hypervisor clock as a nanosecond timebase, and a clockevent
  7 * driver which uses the hypervisor's timer mechanism.
  8 *
  9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 10 */
 11#include <linux/kernel.h>
 12#include <linux/interrupt.h>
 13#include <linux/clocksource.h>
 14#include <linux/clockchips.h>
 
 
 15#include <linux/gfp.h>
 16#include <linux/slab.h>
 17#include <linux/pvclock_gtod.h>
 18#include <linux/timekeeper_internal.h>
 19
 20#include <asm/pvclock.h>
 21#include <asm/xen/hypervisor.h>
 22#include <asm/xen/hypercall.h>
 23
 24#include <xen/events.h>
 25#include <xen/features.h>
 26#include <xen/interface/xen.h>
 27#include <xen/interface/vcpu.h>
 28
 29#include "xen-ops.h"
 30
 31/* Minimum amount of time until next clock event fires */
 32#define TIMER_SLOP	100000
 
 33
 34static u64 xen_sched_clock_offset __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 35
 36/* Get the TSC speed from Xen */
 37static unsigned long xen_tsc_khz(void)
 38{
 39	struct pvclock_vcpu_time_info *info =
 40		&HYPERVISOR_shared_info->vcpu_info[0].time;
 41
 42	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 43	return pvclock_tsc_khz(info);
 44}
 45
 46static u64 xen_clocksource_read(void)
 47{
 48        struct pvclock_vcpu_time_info *src;
 49	u64 ret;
 50
 51	preempt_disable_notrace();
 52	src = &__this_cpu_read(xen_vcpu)->time;
 53	ret = pvclock_clocksource_read(src);
 54	preempt_enable_notrace();
 55	return ret;
 56}
 57
 58static u64 xen_clocksource_get_cycles(struct clocksource *cs)
 59{
 60	return xen_clocksource_read();
 61}
 62
 63static u64 xen_sched_clock(void)
 64{
 65	return xen_clocksource_read() - xen_sched_clock_offset;
 66}
 67
 68static void xen_read_wallclock(struct timespec64 *ts)
 69{
 70	struct shared_info *s = HYPERVISOR_shared_info;
 71	struct pvclock_wall_clock *wall_clock = &(s->wc);
 72        struct pvclock_vcpu_time_info *vcpu_time;
 73
 74	vcpu_time = &get_cpu_var(xen_vcpu)->time;
 75	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
 76	put_cpu_var(xen_vcpu);
 77}
 78
 79static void xen_get_wallclock(struct timespec64 *now)
 80{
 81	xen_read_wallclock(now);
 82}
 83
 84static int xen_set_wallclock(const struct timespec64 *now)
 85{
 86	return -ENODEV;
 87}
 88
 89static int xen_pvclock_gtod_notify(struct notifier_block *nb,
 90				   unsigned long was_set, void *priv)
 91{
 92	/* Protected by the calling core code serialization */
 93	static struct timespec64 next_sync;
 94
 95	struct xen_platform_op op;
 96	struct timespec64 now;
 97	struct timekeeper *tk = priv;
 98	static bool settime64_supported = true;
 99	int ret;
100
101	now.tv_sec = tk->xtime_sec;
102	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
103
104	/*
105	 * We only take the expensive HV call when the clock was set
106	 * or when the 11 minutes RTC synchronization time elapsed.
107	 */
108	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
109		return NOTIFY_OK;
110
111again:
112	if (settime64_supported) {
113		op.cmd = XENPF_settime64;
114		op.u.settime64.mbz = 0;
115		op.u.settime64.secs = now.tv_sec;
116		op.u.settime64.nsecs = now.tv_nsec;
117		op.u.settime64.system_time = xen_clocksource_read();
118	} else {
119		op.cmd = XENPF_settime32;
120		op.u.settime32.secs = now.tv_sec;
121		op.u.settime32.nsecs = now.tv_nsec;
122		op.u.settime32.system_time = xen_clocksource_read();
123	}
124
125	ret = HYPERVISOR_platform_op(&op);
126
127	if (ret == -ENOSYS && settime64_supported) {
128		settime64_supported = false;
129		goto again;
130	}
131	if (ret < 0)
132		return NOTIFY_BAD;
133
134	/*
135	 * Move the next drift compensation time 11 minutes
136	 * ahead. That's emulating the sync_cmos_clock() update for
137	 * the hardware RTC.
138	 */
139	next_sync = now;
140	next_sync.tv_sec += 11 * 60;
141
142	return NOTIFY_OK;
143}
144
145static struct notifier_block xen_pvclock_gtod_notifier = {
146	.notifier_call = xen_pvclock_gtod_notify,
147};
148
149static int xen_cs_enable(struct clocksource *cs)
150{
151	vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
152	return 0;
153}
154
155static struct clocksource xen_clocksource __read_mostly = {
156	.name	= "xen",
157	.rating	= 400,
158	.read	= xen_clocksource_get_cycles,
159	.mask	= CLOCKSOURCE_MASK(64),
160	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
161	.enable = xen_cs_enable,
162};
163
164/*
165   Xen clockevent implementation
166
167   Xen has two clockevent implementations:
168
169   The old timer_op one works with all released versions of Xen prior
170   to version 3.0.4.  This version of the hypervisor provides a
171   single-shot timer with nanosecond resolution.  However, sharing the
172   same event channel is a 100Hz tick which is delivered while the
173   vcpu is running.  We don't care about or use this tick, but it will
174   cause the core time code to think the timer fired too soon, and
175   will end up resetting it each time.  It could be filtered, but
176   doing so has complications when the ktime clocksource is not yet
177   the xen clocksource (ie, at boot time).
178
179   The new vcpu_op-based timer interface allows the tick timer period
180   to be changed or turned off.  The tick timer is not useful as a
181   periodic timer because events are only delivered to running vcpus.
182   The one-shot timer can report when a timeout is in the past, so
183   set_next_event is capable of returning -ETIME when appropriate.
184   This interface is used when available.
185*/
186
187
188/*
189  Get a hypervisor absolute time.  In theory we could maintain an
190  offset between the kernel's time and the hypervisor's time, and
191  apply that to a kernel's absolute timeout.  Unfortunately the
192  hypervisor and kernel times can drift even if the kernel is using
193  the Xen clocksource, because ntp can warp the kernel's clocksource.
194*/
195static s64 get_abs_timeout(unsigned long delta)
196{
197	return xen_clocksource_read() + delta;
198}
199
200static int xen_timerop_shutdown(struct clock_event_device *evt)
201{
202	/* cancel timeout */
203	HYPERVISOR_set_timer_op(0);
204
205	return 0;
206}
207
208static int xen_timerop_set_next_event(unsigned long delta,
209				      struct clock_event_device *evt)
210{
211	WARN_ON(!clockevent_state_oneshot(evt));
212
213	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
214		BUG();
215
216	/* We may have missed the deadline, but there's no real way of
217	   knowing for sure.  If the event was in the past, then we'll
218	   get an immediate interrupt. */
219
220	return 0;
221}
222
223static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
224	.name			= "xen",
225	.features		= CLOCK_EVT_FEAT_ONESHOT,
226
227	.max_delta_ns		= 0xffffffff,
228	.max_delta_ticks	= 0xffffffff,
229	.min_delta_ns		= TIMER_SLOP,
230	.min_delta_ticks	= TIMER_SLOP,
231
232	.mult			= 1,
233	.shift			= 0,
234	.rating			= 500,
235
236	.set_state_shutdown	= xen_timerop_shutdown,
237	.set_next_event		= xen_timerop_set_next_event,
238};
239
240static int xen_vcpuop_shutdown(struct clock_event_device *evt)
241{
242	int cpu = smp_processor_id();
243
244	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
245			       NULL) ||
246	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
247			       NULL))
248		BUG();
249
250	return 0;
251}
252
253static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
254{
255	int cpu = smp_processor_id();
256
257	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
258			       NULL))
259		BUG();
260
261	return 0;
262}
263
264static int xen_vcpuop_set_next_event(unsigned long delta,
265				     struct clock_event_device *evt)
266{
267	int cpu = smp_processor_id();
268	struct vcpu_set_singleshot_timer single;
269	int ret;
270
271	WARN_ON(!clockevent_state_oneshot(evt));
272
273	single.timeout_abs_ns = get_abs_timeout(delta);
274	/* Get an event anyway, even if the timeout is already expired */
275	single.flags = 0;
 
276
277	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
278				 &single);
279	BUG_ON(ret != 0);
280
281	return ret;
282}
283
284static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
285	.name = "xen",
286	.features = CLOCK_EVT_FEAT_ONESHOT,
287
288	.max_delta_ns = 0xffffffff,
289	.max_delta_ticks = 0xffffffff,
290	.min_delta_ns = TIMER_SLOP,
291	.min_delta_ticks = TIMER_SLOP,
292
293	.mult = 1,
294	.shift = 0,
295	.rating = 500,
296
297	.set_state_shutdown = xen_vcpuop_shutdown,
298	.set_state_oneshot = xen_vcpuop_set_oneshot,
299	.set_next_event = xen_vcpuop_set_next_event,
300};
301
302static const struct clock_event_device *xen_clockevent =
303	&xen_timerop_clockevent;
304
305struct xen_clock_event_device {
306	struct clock_event_device evt;
307	char name[16];
308};
309static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
310
311static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
312{
313	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
314	irqreturn_t ret;
315
316	ret = IRQ_NONE;
317	if (evt->event_handler) {
318		evt->event_handler(evt);
319		ret = IRQ_HANDLED;
320	}
321
 
 
322	return ret;
323}
324
325void xen_teardown_timer(int cpu)
326{
327	struct clock_event_device *evt;
 
328	evt = &per_cpu(xen_clock_events, cpu).evt;
329
330	if (evt->irq >= 0) {
331		unbind_from_irqhandler(evt->irq, NULL);
332		evt->irq = -1;
333	}
334}
335
336void xen_setup_timer(int cpu)
337{
338	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
339	struct clock_event_device *evt = &xevt->evt;
340	int irq;
341
342	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
343	if (evt->irq >= 0)
344		xen_teardown_timer(cpu);
345
346	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
347
348	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
349
350	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
351				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
352				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
353				      xevt->name, NULL);
354	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
355
356	memcpy(evt, xen_clockevent, sizeof(*evt));
357
358	evt->cpumask = cpumask_of(cpu);
359	evt->irq = irq;
360}
361
362
363void xen_setup_cpu_clockevents(void)
364{
365	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
366}
367
368void xen_timer_resume(void)
369{
370	int cpu;
371
 
 
372	if (xen_clockevent != &xen_vcpuop_clockevent)
373		return;
374
375	for_each_online_cpu(cpu) {
376		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
377				       xen_vcpu_nr(cpu), NULL))
378			BUG();
379	}
380}
381
382static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
383static u64 xen_clock_value_saved;
384
385void xen_save_time_memory_area(void)
386{
387	struct vcpu_register_time_memory_area t;
388	int ret;
389
390	xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
391
392	if (!xen_clock)
393		return;
394
395	t.addr.v = NULL;
396
397	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
398	if (ret != 0)
399		pr_notice("Cannot save secondary vcpu_time_info (err %d)",
400			  ret);
401	else
402		clear_page(xen_clock);
403}
404
405void xen_restore_time_memory_area(void)
406{
407	struct vcpu_register_time_memory_area t;
408	int ret;
409
410	if (!xen_clock)
411		goto out;
412
413	t.addr.v = &xen_clock->pvti;
414
415	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
416
417	/*
418	 * We don't disable VDSO_CLOCKMODE_PVCLOCK entirely if it fails to
419	 * register the secondary time info with Xen or if we migrated to a
420	 * host without the necessary flags. On both of these cases what
421	 * happens is either process seeing a zeroed out pvti or seeing no
422	 * PVCLOCK_TSC_STABLE_BIT bit set. Userspace checks the latter and
423	 * if 0, it discards the data in pvti and fallbacks to a system
424	 * call for a reliable timestamp.
425	 */
426	if (ret != 0)
427		pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
428			  ret);
429
430out:
431	/* Need pvclock_resume() before using xen_clocksource_read(). */
432	pvclock_resume();
433	xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
434}
435
436static void xen_setup_vsyscall_time_info(void)
437{
438	struct vcpu_register_time_memory_area t;
439	struct pvclock_vsyscall_time_info *ti;
440	int ret;
441
442	ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
443	if (!ti)
444		return;
445
446	t.addr.v = &ti->pvti;
447
448	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
449	if (ret) {
450		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (err %d)\n", ret);
451		free_page((unsigned long)ti);
452		return;
453	}
454
455	/*
456	 * If primary time info had this bit set, secondary should too since
457	 * it's the same data on both just different memory regions. But we
458	 * still check it in case hypervisor is buggy.
459	 */
460	if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
461		t.addr.v = NULL;
462		ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
463					 0, &t);
464		if (!ret)
465			free_page((unsigned long)ti);
466
467		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (tsc unstable)\n");
468		return;
469	}
470
471	xen_clock = ti;
472	pvclock_set_pvti_cpu0_va(xen_clock);
473
474	xen_clocksource.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
475}
476
477static void __init xen_time_init(void)
478{
479	struct pvclock_vcpu_time_info *pvti;
480	int cpu = smp_processor_id();
481	struct timespec64 tp;
482
483	/* As Dom0 is never moved, no penalty on using TSC there */
484	if (xen_initial_domain())
485		xen_clocksource.rating = 275;
486
487	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
488
489	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
490			       NULL) == 0) {
491		/* Successfully turned off 100Hz tick, so we have the
492		   vcpuop-based timer interface */
493		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
494		xen_clockevent = &xen_vcpuop_clockevent;
495	}
496
497	/* Set initial system time with full resolution */
498	xen_read_wallclock(&tp);
499	do_settimeofday64(&tp);
500
501	setup_force_cpu_cap(X86_FEATURE_TSC);
502
503	/*
504	 * We check ahead on the primary time info if this
505	 * bit is supported hence speeding up Xen clocksource.
506	 */
507	pvti = &__this_cpu_read(xen_vcpu)->time;
508	if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
509		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
510		xen_setup_vsyscall_time_info();
511	}
512
513	xen_setup_runstate_info(cpu);
514	xen_setup_timer(cpu);
515	xen_setup_cpu_clockevents();
516
517	xen_time_setup_guest();
518
519	if (xen_initial_domain())
520		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
521}
522
523static void __init xen_init_time_common(void)
524{
525	xen_sched_clock_offset = xen_clocksource_read();
526	static_call_update(pv_steal_clock, xen_steal_clock);
527	paravirt_set_sched_clock(xen_sched_clock);
528
529	x86_platform.calibrate_tsc = xen_tsc_khz;
530	x86_platform.get_wallclock = xen_get_wallclock;
531}
532
533void __init xen_init_time_ops(void)
534{
535	xen_init_time_common();
536
537	x86_init.timers.timer_init = xen_time_init;
538	x86_init.timers.setup_percpu_clockev = x86_init_noop;
539	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
540
 
 
541	/* Dom0 uses the native method to set the hardware RTC. */
542	if (!xen_initial_domain())
543		x86_platform.set_wallclock = xen_set_wallclock;
544}
545
546#ifdef CONFIG_XEN_PVHVM
547static void xen_hvm_setup_cpu_clockevents(void)
548{
549	int cpu = smp_processor_id();
550	xen_setup_runstate_info(cpu);
551	/*
552	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
553	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
554	 * early bootup and also during CPU hotplug events).
555	 */
556	xen_setup_cpu_clockevents();
557}
558
559void __init xen_hvm_init_time_ops(void)
560{
561	static bool hvm_time_initialized;
562
563	if (hvm_time_initialized)
564		return;
565
566	/*
567	 * vector callback is needed otherwise we cannot receive interrupts
568	 * on cpu > 0 and at this point we don't know how many cpus are
569	 * available.
570	 */
571	if (!xen_have_vector_callback)
572		return;
573
574	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
575		pr_info_once("Xen doesn't support pvclock on HVM, disable pv timer");
576		return;
577	}
578
579	/*
580	 * Only MAX_VIRT_CPUS 'vcpu_info' are embedded inside 'shared_info'.
581	 * The __this_cpu_read(xen_vcpu) is still NULL when Xen HVM guest
582	 * boots on vcpu >= MAX_VIRT_CPUS (e.g., kexec), To access
583	 * __this_cpu_read(xen_vcpu) via xen_clocksource_read() will panic.
584	 *
585	 * The xen_hvm_init_time_ops() should be called again later after
586	 * __this_cpu_read(xen_vcpu) is available.
587	 */
588	if (!__this_cpu_read(xen_vcpu)) {
589		pr_info("Delay xen_init_time_common() as kernel is running on vcpu=%d\n",
590			xen_vcpu_nr(0));
591		return;
592	}
593
594	xen_init_time_common();
595
596	x86_init.timers.setup_percpu_clockev = xen_time_init;
597	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
598
 
 
599	x86_platform.set_wallclock = xen_set_wallclock;
600
601	hvm_time_initialized = true;
602}
603#endif
604
605/* Kernel parameter to specify Xen timer slop */
606static int __init parse_xen_timer_slop(char *ptr)
607{
608	unsigned long slop = memparse(ptr, NULL);
609
610	xen_timerop_clockevent.min_delta_ns = slop;
611	xen_timerop_clockevent.min_delta_ticks = slop;
612	xen_vcpuop_clockevent.min_delta_ns = slop;
613	xen_vcpuop_clockevent.min_delta_ticks = slop;
614
615	return 0;
616}
617early_param("xen_timer_slop", parse_xen_timer_slop);
v4.6
 
  1/*
  2 * Xen time implementation.
  3 *
  4 * This is implemented in terms of a clocksource driver which uses
  5 * the hypervisor clock as a nanosecond timebase, and a clockevent
  6 * driver which uses the hypervisor's timer mechanism.
  7 *
  8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  9 */
 10#include <linux/kernel.h>
 11#include <linux/interrupt.h>
 12#include <linux/clocksource.h>
 13#include <linux/clockchips.h>
 14#include <linux/kernel_stat.h>
 15#include <linux/math64.h>
 16#include <linux/gfp.h>
 17#include <linux/slab.h>
 18#include <linux/pvclock_gtod.h>
 19#include <linux/timekeeper_internal.h>
 20
 21#include <asm/pvclock.h>
 22#include <asm/xen/hypervisor.h>
 23#include <asm/xen/hypercall.h>
 24
 25#include <xen/events.h>
 26#include <xen/features.h>
 27#include <xen/interface/xen.h>
 28#include <xen/interface/vcpu.h>
 29
 30#include "xen-ops.h"
 31
 32/* Xen may fire a timer up to this many ns early */
 33#define TIMER_SLOP	100000
 34#define NS_PER_TICK	(1000000000LL / HZ)
 35
 36/* snapshots of runstate info */
 37static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
 38
 39/* unused ns of stolen time */
 40static DEFINE_PER_CPU(u64, xen_residual_stolen);
 41
 42static void do_stolen_accounting(void)
 43{
 44	struct vcpu_runstate_info state;
 45	struct vcpu_runstate_info *snap;
 46	s64 runnable, offline, stolen;
 47	cputime_t ticks;
 48
 49	xen_get_runstate_snapshot(&state);
 50
 51	WARN_ON(state.state != RUNSTATE_running);
 52
 53	snap = this_cpu_ptr(&xen_runstate_snapshot);
 54
 55	/* work out how much time the VCPU has not been runn*ing*  */
 56	runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
 57	offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
 58
 59	*snap = state;
 60
 61	/* Add the appropriate number of ticks of stolen time,
 62	   including any left-overs from last time. */
 63	stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
 64
 65	if (stolen < 0)
 66		stolen = 0;
 67
 68	ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
 69	__this_cpu_write(xen_residual_stolen, stolen);
 70	account_steal_ticks(ticks);
 71}
 72
 73/* Get the TSC speed from Xen */
 74static unsigned long xen_tsc_khz(void)
 75{
 76	struct pvclock_vcpu_time_info *info =
 77		&HYPERVISOR_shared_info->vcpu_info[0].time;
 78
 
 79	return pvclock_tsc_khz(info);
 80}
 81
 82cycle_t xen_clocksource_read(void)
 83{
 84        struct pvclock_vcpu_time_info *src;
 85	cycle_t ret;
 86
 87	preempt_disable_notrace();
 88	src = &__this_cpu_read(xen_vcpu)->time;
 89	ret = pvclock_clocksource_read(src);
 90	preempt_enable_notrace();
 91	return ret;
 92}
 93
 94static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
 95{
 96	return xen_clocksource_read();
 97}
 98
 99static void xen_read_wallclock(struct timespec *ts)
 
 
 
 
 
100{
101	struct shared_info *s = HYPERVISOR_shared_info;
102	struct pvclock_wall_clock *wall_clock = &(s->wc);
103        struct pvclock_vcpu_time_info *vcpu_time;
104
105	vcpu_time = &get_cpu_var(xen_vcpu)->time;
106	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
107	put_cpu_var(xen_vcpu);
108}
109
110static void xen_get_wallclock(struct timespec *now)
111{
112	xen_read_wallclock(now);
113}
114
115static int xen_set_wallclock(const struct timespec *now)
116{
117	return -1;
118}
119
120static int xen_pvclock_gtod_notify(struct notifier_block *nb,
121				   unsigned long was_set, void *priv)
122{
123	/* Protected by the calling core code serialization */
124	static struct timespec64 next_sync;
125
126	struct xen_platform_op op;
127	struct timespec64 now;
128	struct timekeeper *tk = priv;
129	static bool settime64_supported = true;
130	int ret;
131
132	now.tv_sec = tk->xtime_sec;
133	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
134
135	/*
136	 * We only take the expensive HV call when the clock was set
137	 * or when the 11 minutes RTC synchronization time elapsed.
138	 */
139	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
140		return NOTIFY_OK;
141
142again:
143	if (settime64_supported) {
144		op.cmd = XENPF_settime64;
145		op.u.settime64.mbz = 0;
146		op.u.settime64.secs = now.tv_sec;
147		op.u.settime64.nsecs = now.tv_nsec;
148		op.u.settime64.system_time = xen_clocksource_read();
149	} else {
150		op.cmd = XENPF_settime32;
151		op.u.settime32.secs = now.tv_sec;
152		op.u.settime32.nsecs = now.tv_nsec;
153		op.u.settime32.system_time = xen_clocksource_read();
154	}
155
156	ret = HYPERVISOR_platform_op(&op);
157
158	if (ret == -ENOSYS && settime64_supported) {
159		settime64_supported = false;
160		goto again;
161	}
162	if (ret < 0)
163		return NOTIFY_BAD;
164
165	/*
166	 * Move the next drift compensation time 11 minutes
167	 * ahead. That's emulating the sync_cmos_clock() update for
168	 * the hardware RTC.
169	 */
170	next_sync = now;
171	next_sync.tv_sec += 11 * 60;
172
173	return NOTIFY_OK;
174}
175
176static struct notifier_block xen_pvclock_gtod_notifier = {
177	.notifier_call = xen_pvclock_gtod_notify,
178};
179
 
 
 
 
 
 
180static struct clocksource xen_clocksource __read_mostly = {
181	.name = "xen",
182	.rating = 400,
183	.read = xen_clocksource_get_cycles,
184	.mask = ~0,
185	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
 
186};
187
188/*
189   Xen clockevent implementation
190
191   Xen has two clockevent implementations:
192
193   The old timer_op one works with all released versions of Xen prior
194   to version 3.0.4.  This version of the hypervisor provides a
195   single-shot timer with nanosecond resolution.  However, sharing the
196   same event channel is a 100Hz tick which is delivered while the
197   vcpu is running.  We don't care about or use this tick, but it will
198   cause the core time code to think the timer fired too soon, and
199   will end up resetting it each time.  It could be filtered, but
200   doing so has complications when the ktime clocksource is not yet
201   the xen clocksource (ie, at boot time).
202
203   The new vcpu_op-based timer interface allows the tick timer period
204   to be changed or turned off.  The tick timer is not useful as a
205   periodic timer because events are only delivered to running vcpus.
206   The one-shot timer can report when a timeout is in the past, so
207   set_next_event is capable of returning -ETIME when appropriate.
208   This interface is used when available.
209*/
210
211
212/*
213  Get a hypervisor absolute time.  In theory we could maintain an
214  offset between the kernel's time and the hypervisor's time, and
215  apply that to a kernel's absolute timeout.  Unfortunately the
216  hypervisor and kernel times can drift even if the kernel is using
217  the Xen clocksource, because ntp can warp the kernel's clocksource.
218*/
219static s64 get_abs_timeout(unsigned long delta)
220{
221	return xen_clocksource_read() + delta;
222}
223
224static int xen_timerop_shutdown(struct clock_event_device *evt)
225{
226	/* cancel timeout */
227	HYPERVISOR_set_timer_op(0);
228
229	return 0;
230}
231
232static int xen_timerop_set_next_event(unsigned long delta,
233				      struct clock_event_device *evt)
234{
235	WARN_ON(!clockevent_state_oneshot(evt));
236
237	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
238		BUG();
239
240	/* We may have missed the deadline, but there's no real way of
241	   knowing for sure.  If the event was in the past, then we'll
242	   get an immediate interrupt. */
243
244	return 0;
245}
246
247static const struct clock_event_device xen_timerop_clockevent = {
248	.name			= "xen",
249	.features		= CLOCK_EVT_FEAT_ONESHOT,
250
251	.max_delta_ns		= 0xffffffff,
 
252	.min_delta_ns		= TIMER_SLOP,
 
253
254	.mult			= 1,
255	.shift			= 0,
256	.rating			= 500,
257
258	.set_state_shutdown	= xen_timerop_shutdown,
259	.set_next_event		= xen_timerop_set_next_event,
260};
261
262static int xen_vcpuop_shutdown(struct clock_event_device *evt)
263{
264	int cpu = smp_processor_id();
265
266	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
267	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
 
 
268		BUG();
269
270	return 0;
271}
272
273static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
274{
275	int cpu = smp_processor_id();
276
277	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
 
278		BUG();
279
280	return 0;
281}
282
283static int xen_vcpuop_set_next_event(unsigned long delta,
284				     struct clock_event_device *evt)
285{
286	int cpu = smp_processor_id();
287	struct vcpu_set_singleshot_timer single;
288	int ret;
289
290	WARN_ON(!clockevent_state_oneshot(evt));
291
292	single.timeout_abs_ns = get_abs_timeout(delta);
293	single.flags = VCPU_SSHOTTMR_future;
294
295	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
296
297	BUG_ON(ret != 0 && ret != -ETIME);
 
 
298
299	return ret;
300}
301
302static const struct clock_event_device xen_vcpuop_clockevent = {
303	.name = "xen",
304	.features = CLOCK_EVT_FEAT_ONESHOT,
305
306	.max_delta_ns = 0xffffffff,
 
307	.min_delta_ns = TIMER_SLOP,
 
308
309	.mult = 1,
310	.shift = 0,
311	.rating = 500,
312
313	.set_state_shutdown = xen_vcpuop_shutdown,
314	.set_state_oneshot = xen_vcpuop_set_oneshot,
315	.set_next_event = xen_vcpuop_set_next_event,
316};
317
318static const struct clock_event_device *xen_clockevent =
319	&xen_timerop_clockevent;
320
321struct xen_clock_event_device {
322	struct clock_event_device evt;
323	char name[16];
324};
325static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
326
327static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
328{
329	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
330	irqreturn_t ret;
331
332	ret = IRQ_NONE;
333	if (evt->event_handler) {
334		evt->event_handler(evt);
335		ret = IRQ_HANDLED;
336	}
337
338	do_stolen_accounting();
339
340	return ret;
341}
342
343void xen_teardown_timer(int cpu)
344{
345	struct clock_event_device *evt;
346	BUG_ON(cpu == 0);
347	evt = &per_cpu(xen_clock_events, cpu).evt;
348
349	if (evt->irq >= 0) {
350		unbind_from_irqhandler(evt->irq, NULL);
351		evt->irq = -1;
352	}
353}
354
355void xen_setup_timer(int cpu)
356{
357	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
358	struct clock_event_device *evt = &xevt->evt;
359	int irq;
360
361	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
362	if (evt->irq >= 0)
363		xen_teardown_timer(cpu);
364
365	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
366
367	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
368
369	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
370				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
371				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
372				      xevt->name, NULL);
373	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
374
375	memcpy(evt, xen_clockevent, sizeof(*evt));
376
377	evt->cpumask = cpumask_of(cpu);
378	evt->irq = irq;
379}
380
381
382void xen_setup_cpu_clockevents(void)
383{
384	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
385}
386
387void xen_timer_resume(void)
388{
389	int cpu;
390
391	pvclock_resume();
392
393	if (xen_clockevent != &xen_vcpuop_clockevent)
394		return;
395
396	for_each_online_cpu(cpu) {
397		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
 
398			BUG();
399	}
400}
401
402static const struct pv_time_ops xen_time_ops __initconst = {
403	.sched_clock = xen_clocksource_read,
404};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405
406static void __init xen_time_init(void)
407{
 
408	int cpu = smp_processor_id();
409	struct timespec tp;
410
411	/* As Dom0 is never moved, no penalty on using TSC there */
412	if (xen_initial_domain())
413		xen_clocksource.rating = 275;
414
415	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
416
417	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
 
418		/* Successfully turned off 100Hz tick, so we have the
419		   vcpuop-based timer interface */
420		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
421		xen_clockevent = &xen_vcpuop_clockevent;
422	}
423
424	/* Set initial system time with full resolution */
425	xen_read_wallclock(&tp);
426	do_settimeofday(&tp);
427
428	setup_force_cpu_cap(X86_FEATURE_TSC);
429
 
 
 
 
 
 
 
 
 
 
430	xen_setup_runstate_info(cpu);
431	xen_setup_timer(cpu);
432	xen_setup_cpu_clockevents();
433
 
 
434	if (xen_initial_domain())
435		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
436}
437
 
 
 
 
 
 
 
 
 
 
438void __init xen_init_time_ops(void)
439{
440	pv_time_ops = xen_time_ops;
441
442	x86_init.timers.timer_init = xen_time_init;
443	x86_init.timers.setup_percpu_clockev = x86_init_noop;
444	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
445
446	x86_platform.calibrate_tsc = xen_tsc_khz;
447	x86_platform.get_wallclock = xen_get_wallclock;
448	/* Dom0 uses the native method to set the hardware RTC. */
449	if (!xen_initial_domain())
450		x86_platform.set_wallclock = xen_set_wallclock;
451}
452
453#ifdef CONFIG_XEN_PVHVM
454static void xen_hvm_setup_cpu_clockevents(void)
455{
456	int cpu = smp_processor_id();
457	xen_setup_runstate_info(cpu);
458	/*
459	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
460	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
461	 * early bootup and also during CPU hotplug events).
462	 */
463	xen_setup_cpu_clockevents();
464}
465
466void __init xen_hvm_init_time_ops(void)
467{
468	/* vector callback is needed otherwise we cannot receive interrupts
 
 
 
 
 
 
469	 * on cpu > 0 and at this point we don't know how many cpus are
470	 * available */
 
471	if (!xen_have_vector_callback)
472		return;
 
473	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
474		printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
475				"disable pv timer\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
476		return;
477	}
478
479	pv_time_ops = xen_time_ops;
 
480	x86_init.timers.setup_percpu_clockev = xen_time_init;
481	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
482
483	x86_platform.calibrate_tsc = xen_tsc_khz;
484	x86_platform.get_wallclock = xen_get_wallclock;
485	x86_platform.set_wallclock = xen_set_wallclock;
 
 
486}
487#endif