Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
   4 *
   5 * Copyright (C) 2008 Nokia Corporation
   6 *
   7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
   8 *          Peter Ujfalusi <peter.ujfalusi@ti.com>
   9 */
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/of.h>
  16#include <linux/of_device.h>
  17#include <sound/core.h>
  18#include <sound/pcm.h>
  19#include <sound/pcm_params.h>
  20#include <sound/initval.h>
  21#include <sound/soc.h>
  22#include <sound/dmaengine_pcm.h>
  23
  24#include "omap-mcbsp-priv.h"
  25#include "omap-mcbsp.h"
  26#include "sdma-pcm.h"
  27
  28#define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
  29
  30enum {
  31	OMAP_MCBSP_WORD_8 = 0,
  32	OMAP_MCBSP_WORD_12,
  33	OMAP_MCBSP_WORD_16,
  34	OMAP_MCBSP_WORD_20,
  35	OMAP_MCBSP_WORD_24,
  36	OMAP_MCBSP_WORD_32,
  37};
  38
  39static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
  40{
  41	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
  42	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n", MCBSP_READ(mcbsp, DRR2));
  43	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n", MCBSP_READ(mcbsp, DRR1));
  44	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n", MCBSP_READ(mcbsp, DXR2));
  45	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n", MCBSP_READ(mcbsp, DXR1));
  46	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
  47	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
  48	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n", MCBSP_READ(mcbsp, RCR2));
  49	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n", MCBSP_READ(mcbsp, RCR1));
  50	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n", MCBSP_READ(mcbsp, XCR2));
  51	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n", MCBSP_READ(mcbsp, XCR1));
  52	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
  53	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
  54	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n", MCBSP_READ(mcbsp, PCR0));
  55	dev_dbg(mcbsp->dev, "***********************\n");
  56}
  57
  58static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
  59{
  60	struct clk *fck_src;
  61	const char *src;
  62	int r;
  63
  64	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
  65		src = "pad_fck";
  66	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
  67		src = "prcm_fck";
  68	else
  69		return -EINVAL;
  70
  71	fck_src = clk_get(mcbsp->dev, src);
  72	if (IS_ERR(fck_src)) {
  73		dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
  74		return -EINVAL;
  75	}
  76
  77	pm_runtime_put_sync(mcbsp->dev);
 
  78
  79	r = clk_set_parent(mcbsp->fclk, fck_src);
  80	if (r)
  81		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
  82			src);
  83
  84	pm_runtime_get_sync(mcbsp->dev);
 
  85
  86	clk_put(fck_src);
  87
  88	return r;
  89}
  90
  91static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
  92{
  93	struct omap_mcbsp *mcbsp = data;
  94	u16 irqst;
  95
  96	irqst = MCBSP_READ(mcbsp, IRQST);
  97	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
  98
  99	if (irqst & RSYNCERREN)
 100		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
 101	if (irqst & RFSREN)
 102		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
 103	if (irqst & REOFEN)
 104		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
 105	if (irqst & RRDYEN)
 106		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
 107	if (irqst & RUNDFLEN)
 108		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
 109	if (irqst & ROVFLEN)
 110		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
 111
 112	if (irqst & XSYNCERREN)
 113		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
 114	if (irqst & XFSXEN)
 115		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
 116	if (irqst & XEOFEN)
 117		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
 118	if (irqst & XRDYEN)
 119		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
 120	if (irqst & XUNDFLEN)
 121		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
 122	if (irqst & XOVFLEN)
 123		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
 124	if (irqst & XEMPTYEOFEN)
 125		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
 126
 127	MCBSP_WRITE(mcbsp, IRQST, irqst);
 128
 129	return IRQ_HANDLED;
 130}
 131
 132static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
 133{
 134	struct omap_mcbsp *mcbsp = data;
 135	u16 irqst_spcr2;
 136
 137	irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
 138	dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
 139
 140	if (irqst_spcr2 & XSYNC_ERR) {
 141		dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
 142			irqst_spcr2);
 143		/* Writing zero to XSYNC_ERR clears the IRQ */
 144		MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
 145	}
 146
 147	return IRQ_HANDLED;
 148}
 149
 150static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
 151{
 152	struct omap_mcbsp *mcbsp = data;
 153	u16 irqst_spcr1;
 154
 155	irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
 156	dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
 157
 158	if (irqst_spcr1 & RSYNC_ERR) {
 159		dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
 160			irqst_spcr1);
 161		/* Writing zero to RSYNC_ERR clears the IRQ */
 162		MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
 163	}
 164
 165	return IRQ_HANDLED;
 166}
 167
 168/*
 169 * omap_mcbsp_config simply write a config to the
 170 * appropriate McBSP.
 171 * You either call this function or set the McBSP registers
 172 * by yourself before calling omap_mcbsp_start().
 173 */
 174static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
 175			      const struct omap_mcbsp_reg_cfg *config)
 176{
 177	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
 178		mcbsp->id, mcbsp->phys_base);
 179
 180	/* We write the given config */
 181	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
 182	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
 183	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
 184	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
 185	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
 186	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
 187	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
 188	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
 189	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
 190	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
 191	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
 192	if (mcbsp->pdata->has_ccr) {
 193		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
 194		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
 195	}
 196	/* Enable wakeup behavior */
 197	if (mcbsp->pdata->has_wakeup)
 198		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
 199
 200	/* Enable TX/RX sync error interrupts by default */
 201	if (mcbsp->irq)
 202		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
 203			    RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
 204}
 205
 206/**
 207 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
 208 * @mcbsp: omap_mcbsp struct for the McBSP instance
 209 * @stream: Stream direction (playback/capture)
 210 *
 211 * Returns the address of mcbsp data transmit register or data receive register
 212 * to be used by DMA for transferring/receiving data
 213 */
 214static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
 215				     unsigned int stream)
 216{
 217	int data_reg;
 218
 219	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
 220		if (mcbsp->pdata->reg_size == 2)
 221			data_reg = OMAP_MCBSP_REG_DXR1;
 222		else
 223			data_reg = OMAP_MCBSP_REG_DXR;
 224	} else {
 225		if (mcbsp->pdata->reg_size == 2)
 226			data_reg = OMAP_MCBSP_REG_DRR1;
 227		else
 228			data_reg = OMAP_MCBSP_REG_DRR;
 229	}
 230
 231	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
 232}
 233
 234/*
 235 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
 236 * The threshold parameter is 1 based, and it is converted (threshold - 1)
 237 * for the THRSH2 register.
 238 */
 239static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
 240{
 241	if (threshold && threshold <= mcbsp->max_tx_thres)
 242		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
 243}
 244
 245/*
 246 * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
 247 * The threshold parameter is 1 based, and it is converted (threshold - 1)
 248 * for the THRSH1 register.
 249 */
 250static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
 251{
 252	if (threshold && threshold <= mcbsp->max_rx_thres)
 253		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
 254}
 255
 256/*
 257 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
 258 */
 259static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
 260{
 261	u16 buffstat;
 262
 263	/* Returns the number of free locations in the buffer */
 264	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
 265
 266	/* Number of slots are different in McBSP ports */
 267	return mcbsp->pdata->buffer_size - buffstat;
 268}
 269
 270/*
 271 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
 272 * to reach the threshold value (when the DMA will be triggered to read it)
 273 */
 274static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
 275{
 276	u16 buffstat, threshold;
 277
 278	/* Returns the number of used locations in the buffer */
 279	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
 280	/* RX threshold */
 281	threshold = MCBSP_READ(mcbsp, THRSH1);
 282
 283	/* Return the number of location till we reach the threshold limit */
 284	if (threshold <= buffstat)
 285		return 0;
 286	else
 287		return threshold - buffstat;
 288}
 289
 290static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
 291{
 292	void *reg_cache;
 293	int err;
 294
 295	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
 296	if (!reg_cache)
 297		return -ENOMEM;
 298
 299	spin_lock(&mcbsp->lock);
 300	if (!mcbsp->free) {
 301		dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
 302		err = -EBUSY;
 303		goto err_kfree;
 304	}
 305
 306	mcbsp->free = false;
 307	mcbsp->reg_cache = reg_cache;
 308	spin_unlock(&mcbsp->lock);
 309
 310	if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
 311		mcbsp->pdata->ops->request(mcbsp->id - 1);
 312
 313	/*
 314	 * Make sure that transmitter, receiver and sample-rate generator are
 315	 * not running before activating IRQs.
 316	 */
 317	MCBSP_WRITE(mcbsp, SPCR1, 0);
 318	MCBSP_WRITE(mcbsp, SPCR2, 0);
 319
 320	if (mcbsp->irq) {
 321		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
 322				  "McBSP", (void *)mcbsp);
 323		if (err != 0) {
 324			dev_err(mcbsp->dev, "Unable to request IRQ\n");
 325			goto err_clk_disable;
 326		}
 327	} else {
 328		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
 329				  "McBSP TX", (void *)mcbsp);
 330		if (err != 0) {
 331			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
 332			goto err_clk_disable;
 333		}
 334
 335		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
 336				  "McBSP RX", (void *)mcbsp);
 337		if (err != 0) {
 338			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
 339			goto err_free_irq;
 340		}
 341	}
 342
 343	return 0;
 344err_free_irq:
 345	free_irq(mcbsp->tx_irq, (void *)mcbsp);
 346err_clk_disable:
 347	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
 348		mcbsp->pdata->ops->free(mcbsp->id - 1);
 349
 350	/* Disable wakeup behavior */
 351	if (mcbsp->pdata->has_wakeup)
 352		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
 353
 354	spin_lock(&mcbsp->lock);
 355	mcbsp->free = true;
 356	mcbsp->reg_cache = NULL;
 357err_kfree:
 358	spin_unlock(&mcbsp->lock);
 359	kfree(reg_cache);
 360
 361	return err;
 362}
 363
 364static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
 365{
 366	void *reg_cache;
 367
 368	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
 369		mcbsp->pdata->ops->free(mcbsp->id - 1);
 370
 371	/* Disable wakeup behavior */
 372	if (mcbsp->pdata->has_wakeup)
 373		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
 374
 375	/* Disable interrupt requests */
 376	if (mcbsp->irq) {
 377		MCBSP_WRITE(mcbsp, IRQEN, 0);
 378
 379		free_irq(mcbsp->irq, (void *)mcbsp);
 380	} else {
 381		free_irq(mcbsp->rx_irq, (void *)mcbsp);
 382		free_irq(mcbsp->tx_irq, (void *)mcbsp);
 383	}
 384
 385	reg_cache = mcbsp->reg_cache;
 386
 387	/*
 388	 * Select CLKS source from internal source unconditionally before
 389	 * marking the McBSP port as free.
 390	 * If the external clock source via MCBSP_CLKS pin has been selected the
 391	 * system will refuse to enter idle if the CLKS pin source is not reset
 392	 * back to internal source.
 393	 */
 394	if (!mcbsp_omap1())
 395		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
 396
 397	spin_lock(&mcbsp->lock);
 398	if (mcbsp->free)
 399		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
 400	else
 401		mcbsp->free = true;
 402	mcbsp->reg_cache = NULL;
 403	spin_unlock(&mcbsp->lock);
 404
 405	kfree(reg_cache);
 406}
 407
 408/*
 409 * Here we start the McBSP, by enabling transmitter, receiver or both.
 410 * If no transmitter or receiver is active prior calling, then sample-rate
 411 * generator and frame sync are started.
 412 */
 413static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
 414{
 415	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
 416	int rx = !tx;
 417	int enable_srg = 0;
 418	u16 w;
 419
 420	if (mcbsp->st_data)
 421		omap_mcbsp_st_start(mcbsp);
 422
 423	/* Only enable SRG, if McBSP is master */
 424	w = MCBSP_READ_CACHE(mcbsp, PCR0);
 425	if (w & (FSXM | FSRM | CLKXM | CLKRM))
 426		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
 427				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
 428
 429	if (enable_srg) {
 430		/* Start the sample generator */
 431		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 432		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
 433	}
 434
 435	/* Enable transmitter and receiver */
 436	tx &= 1;
 437	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 438	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
 439
 440	rx &= 1;
 441	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
 442	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
 443
 444	/*
 445	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
 446	 * REVISIT: 100us may give enough time for two CLKSRG, however
 447	 * due to some unknown PM related, clock gating etc. reason it
 448	 * is now at 500us.
 449	 */
 450	udelay(500);
 451
 452	if (enable_srg) {
 453		/* Start frame sync */
 454		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 455		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
 456	}
 457
 458	if (mcbsp->pdata->has_ccr) {
 459		/* Release the transmitter and receiver */
 460		w = MCBSP_READ_CACHE(mcbsp, XCCR);
 461		w &= ~(tx ? XDISABLE : 0);
 462		MCBSP_WRITE(mcbsp, XCCR, w);
 463		w = MCBSP_READ_CACHE(mcbsp, RCCR);
 464		w &= ~(rx ? RDISABLE : 0);
 465		MCBSP_WRITE(mcbsp, RCCR, w);
 466	}
 467
 468	/* Dump McBSP Regs */
 469	omap_mcbsp_dump_reg(mcbsp);
 470}
 471
 472static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
 473{
 474	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
 475	int rx = !tx;
 476	int idle;
 477	u16 w;
 478
 479	/* Reset transmitter */
 480	tx &= 1;
 481	if (mcbsp->pdata->has_ccr) {
 482		w = MCBSP_READ_CACHE(mcbsp, XCCR);
 483		w |= (tx ? XDISABLE : 0);
 484		MCBSP_WRITE(mcbsp, XCCR, w);
 485	}
 486	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 487	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
 488
 489	/* Reset receiver */
 490	rx &= 1;
 491	if (mcbsp->pdata->has_ccr) {
 492		w = MCBSP_READ_CACHE(mcbsp, RCCR);
 493		w |= (rx ? RDISABLE : 0);
 494		MCBSP_WRITE(mcbsp, RCCR, w);
 495	}
 496	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
 497	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
 498
 499	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
 500			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
 501
 502	if (idle) {
 503		/* Reset the sample rate generator */
 504		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 505		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
 506	}
 507
 508	if (mcbsp->st_data)
 509		omap_mcbsp_st_stop(mcbsp);
 510}
 511
 512#define max_thres(m)			(mcbsp->pdata->buffer_size)
 513#define valid_threshold(m, val)		((val) <= max_thres(m))
 514#define THRESHOLD_PROP_BUILDER(prop)					\
 515static ssize_t prop##_show(struct device *dev,				\
 516			struct device_attribute *attr, char *buf)	\
 517{									\
 518	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
 519									\
 520	return sysfs_emit(buf, "%u\n", mcbsp->prop);			\
 521}									\
 522									\
 523static ssize_t prop##_store(struct device *dev,				\
 524				struct device_attribute *attr,		\
 525				const char *buf, size_t size)		\
 526{									\
 527	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
 528	unsigned long val;						\
 529	int status;							\
 530									\
 531	status = kstrtoul(buf, 0, &val);				\
 532	if (status)							\
 533		return status;						\
 534									\
 535	if (!valid_threshold(mcbsp, val))				\
 536		return -EDOM;						\
 537									\
 538	mcbsp->prop = val;						\
 539	return size;							\
 540}									\
 541									\
 542static DEVICE_ATTR_RW(prop)
 543
 544THRESHOLD_PROP_BUILDER(max_tx_thres);
 545THRESHOLD_PROP_BUILDER(max_rx_thres);
 546
 547static const char * const dma_op_modes[] = {
 548	"element", "threshold",
 549};
 550
 551static ssize_t dma_op_mode_show(struct device *dev,
 552				struct device_attribute *attr, char *buf)
 553{
 554	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
 555	int dma_op_mode, i = 0;
 556	ssize_t len = 0;
 557	const char * const *s;
 558
 559	dma_op_mode = mcbsp->dma_op_mode;
 560
 561	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
 562		if (dma_op_mode == i)
 563			len += sysfs_emit_at(buf, len, "[%s] ", *s);
 564		else
 565			len += sysfs_emit_at(buf, len, "%s ", *s);
 566	}
 567	len += sysfs_emit_at(buf, len, "\n");
 568
 569	return len;
 570}
 571
 572static ssize_t dma_op_mode_store(struct device *dev,
 573				 struct device_attribute *attr, const char *buf,
 574				 size_t size)
 575{
 576	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
 577	int i;
 578
 579	i = sysfs_match_string(dma_op_modes, buf);
 580	if (i < 0)
 581		return i;
 582
 583	spin_lock_irq(&mcbsp->lock);
 584	if (!mcbsp->free) {
 585		size = -EBUSY;
 586		goto unlock;
 587	}
 588	mcbsp->dma_op_mode = i;
 589
 590unlock:
 591	spin_unlock_irq(&mcbsp->lock);
 592
 593	return size;
 594}
 595
 596static DEVICE_ATTR_RW(dma_op_mode);
 597
 598static const struct attribute *additional_attrs[] = {
 599	&dev_attr_max_tx_thres.attr,
 600	&dev_attr_max_rx_thres.attr,
 601	&dev_attr_dma_op_mode.attr,
 602	NULL,
 603};
 604
 605static const struct attribute_group additional_attr_group = {
 606	.attrs = (struct attribute **)additional_attrs,
 607};
 608
 609/*
 610 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
 611 * 730 has only 2 McBSP, and both of them are MPU peripherals.
 612 */
 613static int omap_mcbsp_init(struct platform_device *pdev)
 614{
 615	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
 616	struct resource *res;
 617	int ret;
 618
 619	spin_lock_init(&mcbsp->lock);
 620	mcbsp->free = true;
 621
 622	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
 623	if (!res)
 624		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 625
 626	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
 627	if (IS_ERR(mcbsp->io_base))
 628		return PTR_ERR(mcbsp->io_base);
 629
 630	mcbsp->phys_base = res->start;
 631	mcbsp->reg_cache_size = resource_size(res);
 632
 633	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
 634	if (!res)
 635		mcbsp->phys_dma_base = mcbsp->phys_base;
 636	else
 637		mcbsp->phys_dma_base = res->start;
 638
 639	/*
 640	 * OMAP1, 2 uses two interrupt lines: TX, RX
 641	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
 642	 * OMAP4 and newer SoC only have the combined IRQ line.
 643	 * Use the combined IRQ if available since it gives better debugging
 644	 * possibilities.
 645	 */
 646	mcbsp->irq = platform_get_irq_byname(pdev, "common");
 647	if (mcbsp->irq == -ENXIO) {
 648		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
 649
 650		if (mcbsp->tx_irq == -ENXIO) {
 651			mcbsp->irq = platform_get_irq(pdev, 0);
 652			mcbsp->tx_irq = 0;
 653		} else {
 654			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
 655			mcbsp->irq = 0;
 656		}
 657	}
 658
 659	if (!pdev->dev.of_node) {
 660		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
 661		if (!res) {
 662			dev_err(&pdev->dev, "invalid tx DMA channel\n");
 663			return -ENODEV;
 664		}
 665		mcbsp->dma_req[0] = res->start;
 666		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
 667
 668		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
 669		if (!res) {
 670			dev_err(&pdev->dev, "invalid rx DMA channel\n");
 671			return -ENODEV;
 672		}
 673		mcbsp->dma_req[1] = res->start;
 674		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
 675	} else {
 676		mcbsp->dma_data[0].filter_data = "tx";
 677		mcbsp->dma_data[1].filter_data = "rx";
 678	}
 679
 680	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
 681						SNDRV_PCM_STREAM_PLAYBACK);
 682	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
 683						SNDRV_PCM_STREAM_CAPTURE);
 684
 685	mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
 686	if (IS_ERR(mcbsp->fclk)) {
 687		ret = PTR_ERR(mcbsp->fclk);
 688		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
 689		return ret;
 690	}
 691
 692	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
 693	if (mcbsp->pdata->buffer_size) {
 694		/*
 695		 * Initially configure the maximum thresholds to a safe value.
 696		 * The McBSP FIFO usage with these values should not go under
 697		 * 16 locations.
 698		 * If the whole FIFO without safety buffer is used, than there
 699		 * is a possibility that the DMA will be not able to push the
 700		 * new data on time, causing channel shifts in runtime.
 701		 */
 702		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
 703		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
 704
 705		ret = devm_device_add_group(mcbsp->dev, &additional_attr_group);
 706		if (ret) {
 707			dev_err(mcbsp->dev,
 708				"Unable to create additional controls\n");
 709			return ret;
 710		}
 711	}
 712
 713	return omap_mcbsp_st_init(pdev);
 714}
 715
 716/*
 717 * Stream DMA parameters. DMA request line and port address are set runtime
 718 * since they are different between OMAP1 and later OMAPs
 719 */
 720static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
 721		unsigned int packet_size)
 722{
 723	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
 724	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
 725	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 726	int words;
 727
 728	/* No need to proceed further if McBSP does not have FIFO */
 729	if (mcbsp->pdata->buffer_size == 0)
 730		return;
 731
 732	/*
 733	 * Configure McBSP threshold based on either:
 734	 * packet_size, when the sDMA is in packet mode, or based on the
 735	 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
 736	 * for mono streams.
 737	 */
 738	if (packet_size)
 739		words = packet_size;
 740	else
 741		words = 1;
 742
 743	/* Configure McBSP internal buffer usage */
 744	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 745		omap_mcbsp_set_tx_threshold(mcbsp, words);
 746	else
 747		omap_mcbsp_set_rx_threshold(mcbsp, words);
 748}
 749
 750static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
 751				    struct snd_pcm_hw_rule *rule)
 752{
 753	struct snd_interval *buffer_size = hw_param_interval(params,
 754					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
 755	struct snd_interval *channels = hw_param_interval(params,
 756					SNDRV_PCM_HW_PARAM_CHANNELS);
 757	struct omap_mcbsp *mcbsp = rule->private;
 758	struct snd_interval frames;
 759	int size;
 760
 761	snd_interval_any(&frames);
 762	size = mcbsp->pdata->buffer_size;
 763
 764	frames.min = size / channels->min;
 765	frames.integer = 1;
 766	return snd_interval_refine(buffer_size, &frames);
 767}
 768
 769static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
 770				  struct snd_soc_dai *cpu_dai)
 771{
 772	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 773	int err = 0;
 774
 775	if (!snd_soc_dai_active(cpu_dai))
 776		err = omap_mcbsp_request(mcbsp);
 777
 778	/*
 779	 * OMAP3 McBSP FIFO is word structured.
 780	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
 781	 * McBSP1,3,4,5 has 128 word long buffer
 782	 * This means that the size of the FIFO depends on the sample format.
 783	 * For example on McBSP3:
 784	 * 16bit samples: size is 128 * 2 = 256 bytes
 785	 * 32bit samples: size is 128 * 4 = 512 bytes
 786	 * It is simpler to place constraint for buffer and period based on
 787	 * channels.
 788	 * McBSP3 as example again (16 or 32 bit samples):
 789	 * 1 channel (mono): size is 128 frames (128 words)
 790	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
 791	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
 792	 */
 793	if (mcbsp->pdata->buffer_size) {
 794		/*
 795		* Rule for the buffer size. We should not allow
 796		* smaller buffer than the FIFO size to avoid underruns.
 797		* This applies only for the playback stream.
 798		*/
 799		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 800			snd_pcm_hw_rule_add(substream->runtime, 0,
 801					    SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 802					    omap_mcbsp_hwrule_min_buffersize,
 803					    mcbsp,
 804					    SNDRV_PCM_HW_PARAM_CHANNELS, -1);
 805
 806		/* Make sure, that the period size is always even */
 807		snd_pcm_hw_constraint_step(substream->runtime, 0,
 808					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
 809	}
 810
 811	return err;
 812}
 813
 814static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
 815				    struct snd_soc_dai *cpu_dai)
 816{
 817	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 818	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
 819	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
 820	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
 821
 822	if (mcbsp->latency[stream2])
 823		cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
 824					       mcbsp->latency[stream2]);
 825	else if (mcbsp->latency[stream1])
 826		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
 827
 828	mcbsp->latency[stream1] = 0;
 829
 830	if (!snd_soc_dai_active(cpu_dai)) {
 831		omap_mcbsp_free(mcbsp);
 832		mcbsp->configured = 0;
 833	}
 834}
 835
 836static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
 837				  struct snd_soc_dai *cpu_dai)
 838{
 839	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 840	struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
 841	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
 842	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
 843	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
 844	int latency = mcbsp->latency[stream2];
 845
 846	/* Prevent omap hardware from hitting off between FIFO fills */
 847	if (!latency || mcbsp->latency[stream1] < latency)
 848		latency = mcbsp->latency[stream1];
 849
 850	if (cpu_latency_qos_request_active(pm_qos_req))
 851		cpu_latency_qos_update_request(pm_qos_req, latency);
 852	else if (latency)
 853		cpu_latency_qos_add_request(pm_qos_req, latency);
 854
 855	return 0;
 856}
 857
 858static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
 859				  struct snd_soc_dai *cpu_dai)
 860{
 861	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 862
 863	switch (cmd) {
 864	case SNDRV_PCM_TRIGGER_START:
 865	case SNDRV_PCM_TRIGGER_RESUME:
 866	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 867		mcbsp->active++;
 868		omap_mcbsp_start(mcbsp, substream->stream);
 869		break;
 870
 871	case SNDRV_PCM_TRIGGER_STOP:
 872	case SNDRV_PCM_TRIGGER_SUSPEND:
 873	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 874		omap_mcbsp_stop(mcbsp, substream->stream);
 875		mcbsp->active--;
 876		break;
 877	default:
 878		return -EINVAL;
 879	}
 880
 881	return 0;
 882}
 883
 884static snd_pcm_sframes_t omap_mcbsp_dai_delay(
 885			struct snd_pcm_substream *substream,
 886			struct snd_soc_dai *dai)
 887{
 888	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
 889	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
 890	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 891	u16 fifo_use;
 892	snd_pcm_sframes_t delay;
 893
 894	/* No need to proceed further if McBSP does not have FIFO */
 895	if (mcbsp->pdata->buffer_size == 0)
 896		return 0;
 897
 898	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 899		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
 900	else
 901		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
 902
 903	/*
 904	 * Divide the used locations with the channel count to get the
 905	 * FIFO usage in samples (don't care about partial samples in the
 906	 * buffer).
 907	 */
 908	delay = fifo_use / substream->runtime->channels;
 909
 910	return delay;
 911}
 912
 913static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
 914				    struct snd_pcm_hw_params *params,
 915				    struct snd_soc_dai *cpu_dai)
 916{
 917	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 918	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
 919	struct snd_dmaengine_dai_dma_data *dma_data;
 920	int wlen, channels, wpf;
 921	int pkt_size = 0;
 922	unsigned int format, div, framesize, master;
 923	unsigned int buffer_size = mcbsp->pdata->buffer_size;
 924
 925	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
 926	channels = params_channels(params);
 927
 928	switch (params_format(params)) {
 929	case SNDRV_PCM_FORMAT_S16_LE:
 930		wlen = 16;
 931		break;
 932	case SNDRV_PCM_FORMAT_S32_LE:
 933		wlen = 32;
 934		break;
 935	default:
 936		return -EINVAL;
 937	}
 938	if (buffer_size) {
 939		int latency;
 940
 941		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
 942			int period_words, max_thrsh;
 943			int divider = 0;
 944
 945			period_words = params_period_bytes(params) / (wlen / 8);
 946			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 947				max_thrsh = mcbsp->max_tx_thres;
 948			else
 949				max_thrsh = mcbsp->max_rx_thres;
 950			/*
 951			 * Use sDMA packet mode if McBSP is in threshold mode:
 952			 * If period words less than the FIFO size the packet
 953			 * size is set to the number of period words, otherwise
 954			 * Look for the biggest threshold value which divides
 955			 * the period size evenly.
 956			 */
 957			divider = period_words / max_thrsh;
 958			if (period_words % max_thrsh)
 959				divider++;
 960			while (period_words % divider &&
 961				divider < period_words)
 962				divider++;
 963			if (divider == period_words)
 964				return -EINVAL;
 965
 966			pkt_size = period_words / divider;
 967		} else if (channels > 1) {
 968			/* Use packet mode for non mono streams */
 969			pkt_size = channels;
 970		}
 971
 972		latency = (buffer_size - pkt_size) / channels;
 973		latency = latency * USEC_PER_SEC /
 974			  (params->rate_num / params->rate_den);
 975		mcbsp->latency[substream->stream] = latency;
 976
 977		omap_mcbsp_set_threshold(substream, pkt_size);
 978	}
 979
 980	dma_data->maxburst = pkt_size;
 981
 982	if (mcbsp->configured) {
 983		/* McBSP already configured by another stream */
 984		return 0;
 985	}
 986
 987	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
 988	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
 989	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
 990	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
 991	format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
 992	wpf = channels;
 993	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
 994			      format == SND_SOC_DAIFMT_LEFT_J)) {
 995		/* Use dual-phase frames */
 996		regs->rcr2	|= RPHASE;
 997		regs->xcr2	|= XPHASE;
 998		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
 999		wpf--;
1000		regs->rcr2	|= RFRLEN2(wpf - 1);
1001		regs->xcr2	|= XFRLEN2(wpf - 1);
1002	}
1003
1004	regs->rcr1	|= RFRLEN1(wpf - 1);
1005	regs->xcr1	|= XFRLEN1(wpf - 1);
1006
1007	switch (params_format(params)) {
1008	case SNDRV_PCM_FORMAT_S16_LE:
1009		/* Set word lengths */
1010		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
1011		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
1012		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
1013		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
1014		break;
1015	case SNDRV_PCM_FORMAT_S32_LE:
1016		/* Set word lengths */
1017		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
1018		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
1019		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
1020		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
1021		break;
1022	default:
1023		/* Unsupported PCM format */
1024		return -EINVAL;
1025	}
1026
1027	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
1028	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1029	master = mcbsp->fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK;
1030	if (master == SND_SOC_DAIFMT_BP_FP) {
1031		div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1032		framesize = (mcbsp->in_freq / div) / params_rate(params);
1033
1034		if (framesize < wlen * channels) {
1035			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1036					"channels\n", __func__);
1037			return -EINVAL;
1038		}
1039	} else
1040		framesize = wlen * channels;
1041
1042	/* Set FS period and length in terms of bit clock periods */
1043	regs->srgr2	&= ~FPER(0xfff);
1044	regs->srgr1	&= ~FWID(0xff);
1045	switch (format) {
1046	case SND_SOC_DAIFMT_I2S:
1047	case SND_SOC_DAIFMT_LEFT_J:
1048		regs->srgr2	|= FPER(framesize - 1);
1049		regs->srgr1	|= FWID((framesize >> 1) - 1);
1050		break;
1051	case SND_SOC_DAIFMT_DSP_A:
1052	case SND_SOC_DAIFMT_DSP_B:
1053		regs->srgr2	|= FPER(framesize - 1);
1054		regs->srgr1	|= FWID(0);
1055		break;
1056	}
1057
1058	omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1059	mcbsp->wlen = wlen;
1060	mcbsp->configured = 1;
1061
1062	return 0;
1063}
1064
1065/*
1066 * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1067 * cache is initialized here
1068 */
1069static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1070				      unsigned int fmt)
1071{
1072	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1073	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1074	bool inv_fs = false;
1075
1076	if (mcbsp->configured)
1077		return 0;
1078
1079	mcbsp->fmt = fmt;
1080	memset(regs, 0, sizeof(*regs));
1081	/* Generic McBSP register settings */
1082	regs->spcr2	|= XINTM(3) | FREE;
1083	regs->spcr1	|= RINTM(3);
1084	/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1085	if (!mcbsp->pdata->has_ccr) {
1086		regs->rcr2	|= RFIG;
1087		regs->xcr2	|= XFIG;
1088	}
1089
1090	/* Configure XCCR/RCCR only for revisions which have ccr registers */
1091	if (mcbsp->pdata->has_ccr) {
1092		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1093		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1094	}
1095
1096	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1097	case SND_SOC_DAIFMT_I2S:
1098		/* 1-bit data delay */
1099		regs->rcr2	|= RDATDLY(1);
1100		regs->xcr2	|= XDATDLY(1);
1101		break;
1102	case SND_SOC_DAIFMT_LEFT_J:
1103		/* 0-bit data delay */
1104		regs->rcr2	|= RDATDLY(0);
1105		regs->xcr2	|= XDATDLY(0);
1106		regs->spcr1	|= RJUST(2);
1107		/* Invert FS polarity configuration */
1108		inv_fs = true;
1109		break;
1110	case SND_SOC_DAIFMT_DSP_A:
1111		/* 1-bit data delay */
1112		regs->rcr2      |= RDATDLY(1);
1113		regs->xcr2      |= XDATDLY(1);
1114		/* Invert FS polarity configuration */
1115		inv_fs = true;
1116		break;
1117	case SND_SOC_DAIFMT_DSP_B:
1118		/* 0-bit data delay */
1119		regs->rcr2      |= RDATDLY(0);
1120		regs->xcr2      |= XDATDLY(0);
1121		/* Invert FS polarity configuration */
1122		inv_fs = true;
1123		break;
1124	default:
1125		/* Unsupported data format */
1126		return -EINVAL;
1127	}
1128
1129	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
1130	case SND_SOC_DAIFMT_BP_FP:
1131		/* McBSP master. Set FS and bit clocks as outputs */
1132		regs->pcr0	|= FSXM | FSRM |
1133				   CLKXM | CLKRM;
1134		/* Sample rate generator drives the FS */
1135		regs->srgr2	|= FSGM;
1136		break;
1137	case SND_SOC_DAIFMT_BC_FP:
1138		/* McBSP slave. FS clock as output */
1139		regs->srgr2	|= FSGM;
1140		regs->pcr0	|= FSXM | FSRM;
1141		break;
1142	case SND_SOC_DAIFMT_BC_FC:
1143		/* McBSP slave */
1144		break;
1145	default:
1146		/* Unsupported master/slave configuration */
1147		return -EINVAL;
1148	}
1149
1150	/* Set bit clock (CLKX/CLKR) and FS polarities */
1151	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1152	case SND_SOC_DAIFMT_NB_NF:
1153		/*
1154		 * Normal BCLK + FS.
1155		 * FS active low. TX data driven on falling edge of bit clock
1156		 * and RX data sampled on rising edge of bit clock.
1157		 */
1158		regs->pcr0	|= FSXP | FSRP |
1159				   CLKXP | CLKRP;
1160		break;
1161	case SND_SOC_DAIFMT_NB_IF:
1162		regs->pcr0	|= CLKXP | CLKRP;
1163		break;
1164	case SND_SOC_DAIFMT_IB_NF:
1165		regs->pcr0	|= FSXP | FSRP;
1166		break;
1167	case SND_SOC_DAIFMT_IB_IF:
1168		break;
1169	default:
1170		return -EINVAL;
1171	}
1172	if (inv_fs)
1173		regs->pcr0 ^= FSXP | FSRP;
1174
1175	return 0;
1176}
1177
1178static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1179				     int div_id, int div)
1180{
1181	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1182	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1183
1184	if (div_id != OMAP_MCBSP_CLKGDV)
1185		return -ENODEV;
1186
1187	mcbsp->clk_div = div;
1188	regs->srgr1	&= ~CLKGDV(0xff);
1189	regs->srgr1	|= CLKGDV(div - 1);
1190
1191	return 0;
1192}
1193
1194static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1195					 int clk_id, unsigned int freq,
1196					 int dir)
1197{
1198	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1199	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1200	int err = 0;
1201
1202	if (mcbsp->active) {
1203		if (freq == mcbsp->in_freq)
1204			return 0;
1205		else
1206			return -EBUSY;
1207	}
1208
1209	mcbsp->in_freq = freq;
1210	regs->srgr2 &= ~CLKSM;
1211	regs->pcr0 &= ~SCLKME;
1212
1213	switch (clk_id) {
1214	case OMAP_MCBSP_SYSCLK_CLK:
1215		regs->srgr2	|= CLKSM;
1216		break;
1217	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1218		if (mcbsp_omap1()) {
1219			err = -EINVAL;
1220			break;
1221		}
1222		err = omap2_mcbsp_set_clks_src(mcbsp,
1223					       MCBSP_CLKS_PRCM_SRC);
1224		break;
1225	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1226		if (mcbsp_omap1()) {
1227			err = 0;
1228			break;
1229		}
1230		err = omap2_mcbsp_set_clks_src(mcbsp,
1231					       MCBSP_CLKS_PAD_SRC);
1232		break;
1233
1234	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1235		regs->srgr2	|= CLKSM;
1236		regs->pcr0	|= SCLKME;
1237		/*
1238		 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1239		 * disable output on those pins. This enables to inject the
1240		 * reference clock through CLKX/CLKR. For this to work
1241		 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1242		 */
1243		regs->pcr0	&= ~CLKXM;
1244		break;
1245	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1246		regs->pcr0	|= SCLKME;
1247		/* Disable ouput on CLKR pin in master mode */
1248		regs->pcr0	&= ~CLKRM;
1249		break;
1250	default:
1251		err = -ENODEV;
1252	}
1253
1254	return err;
1255}
1256
1257static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1258	.startup	= omap_mcbsp_dai_startup,
1259	.shutdown	= omap_mcbsp_dai_shutdown,
1260	.prepare	= omap_mcbsp_dai_prepare,
1261	.trigger	= omap_mcbsp_dai_trigger,
1262	.delay		= omap_mcbsp_dai_delay,
1263	.hw_params	= omap_mcbsp_dai_hw_params,
1264	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
1265	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
1266	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
1267};
1268
1269static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1270{
1271	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1272
1273	pm_runtime_enable(mcbsp->dev);
1274
1275	snd_soc_dai_init_dma_data(dai,
1276				  &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1277				  &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1278
1279	return 0;
1280}
1281
1282static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1283{
1284	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1285
1286	pm_runtime_disable(mcbsp->dev);
1287
1288	return 0;
1289}
1290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1291static struct snd_soc_dai_driver omap_mcbsp_dai = {
1292	.probe = omap_mcbsp_probe,
1293	.remove = omap_mcbsp_remove,
1294	.playback = {
1295		.channels_min = 1,
1296		.channels_max = 16,
1297		.rates = OMAP_MCBSP_RATES,
1298		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1299	},
1300	.capture = {
1301		.channels_min = 1,
1302		.channels_max = 16,
1303		.rates = OMAP_MCBSP_RATES,
1304		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1305	},
1306	.ops = &mcbsp_dai_ops,
1307};
1308
1309static const struct snd_soc_component_driver omap_mcbsp_component = {
1310	.name			= "omap-mcbsp",
1311	.legacy_dai_naming	= 1,
1312};
1313
1314static struct omap_mcbsp_platform_data omap2420_pdata = {
1315	.reg_step = 4,
1316	.reg_size = 2,
1317};
1318
1319static struct omap_mcbsp_platform_data omap2430_pdata = {
1320	.reg_step = 4,
1321	.reg_size = 4,
1322	.has_ccr = true,
1323};
1324
1325static struct omap_mcbsp_platform_data omap3_pdata = {
1326	.reg_step = 4,
1327	.reg_size = 4,
1328	.has_ccr = true,
1329	.has_wakeup = true,
1330};
1331
1332static struct omap_mcbsp_platform_data omap4_pdata = {
1333	.reg_step = 4,
1334	.reg_size = 4,
1335	.has_ccr = true,
1336	.has_wakeup = true,
1337};
1338
1339static const struct of_device_id omap_mcbsp_of_match[] = {
1340	{
1341		.compatible = "ti,omap2420-mcbsp",
1342		.data = &omap2420_pdata,
1343	},
1344	{
1345		.compatible = "ti,omap2430-mcbsp",
1346		.data = &omap2430_pdata,
1347	},
1348	{
1349		.compatible = "ti,omap3-mcbsp",
1350		.data = &omap3_pdata,
1351	},
1352	{
1353		.compatible = "ti,omap4-mcbsp",
1354		.data = &omap4_pdata,
1355	},
1356	{ },
1357};
1358MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1359
1360static int asoc_mcbsp_probe(struct platform_device *pdev)
1361{
1362	struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
 
 
1363	struct omap_mcbsp *mcbsp;
1364	const struct of_device_id *match;
1365	int ret;
1366
1367	match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
1368	if (match) {
1369		struct device_node *node = pdev->dev.of_node;
1370		struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1371		int buffer_size;
1372
1373		pdata = devm_kzalloc(&pdev->dev,
1374				     sizeof(struct omap_mcbsp_platform_data),
1375				     GFP_KERNEL);
1376		if (!pdata)
1377			return -ENOMEM;
1378
1379		memcpy(pdata, match->data, sizeof(*pdata));
1380		if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1381			pdata->buffer_size = buffer_size;
1382		if (pdata_quirk)
1383			pdata->force_ick_on = pdata_quirk->force_ick_on;
1384	} else if (!pdata) {
1385		dev_err(&pdev->dev, "missing platform data.\n");
1386		return -EINVAL;
1387	}
1388	mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1389	if (!mcbsp)
1390		return -ENOMEM;
1391
1392	mcbsp->id = pdev->id;
1393	mcbsp->pdata = pdata;
1394	mcbsp->dev = &pdev->dev;
1395	platform_set_drvdata(pdev, mcbsp);
1396
1397	ret = omap_mcbsp_init(pdev);
1398	if (ret)
1399		return ret;
1400
1401	if (mcbsp->pdata->reg_size == 2) {
1402		omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1403		omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1404	}
1405
1406	ret = devm_snd_soc_register_component(&pdev->dev,
1407					      &omap_mcbsp_component,
1408					      &omap_mcbsp_dai, 1);
1409	if (ret)
1410		return ret;
1411
1412	return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1413}
1414
1415static int asoc_mcbsp_remove(struct platform_device *pdev)
1416{
1417	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1418
1419	if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1420		mcbsp->pdata->ops->free(mcbsp->id);
1421
1422	if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
1423		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
1424
1425	return 0;
1426}
1427
1428static struct platform_driver asoc_mcbsp_driver = {
1429	.driver = {
1430			.name = "omap-mcbsp",
1431			.of_match_table = omap_mcbsp_of_match,
1432	},
1433
1434	.probe = asoc_mcbsp_probe,
1435	.remove = asoc_mcbsp_remove,
1436};
1437
1438module_platform_driver(asoc_mcbsp_driver);
1439
1440MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1441MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1442MODULE_LICENSE("GPL");
1443MODULE_ALIAS("platform:omap-mcbsp");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
   4 *
   5 * Copyright (C) 2008 Nokia Corporation
   6 *
   7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
   8 *          Peter Ujfalusi <peter.ujfalusi@ti.com>
   9 */
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/of.h>
 
  16#include <sound/core.h>
  17#include <sound/pcm.h>
  18#include <sound/pcm_params.h>
  19#include <sound/initval.h>
  20#include <sound/soc.h>
  21#include <sound/dmaengine_pcm.h>
  22
  23#include "omap-mcbsp-priv.h"
  24#include "omap-mcbsp.h"
  25#include "sdma-pcm.h"
  26
  27#define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
  28
  29enum {
  30	OMAP_MCBSP_WORD_8 = 0,
  31	OMAP_MCBSP_WORD_12,
  32	OMAP_MCBSP_WORD_16,
  33	OMAP_MCBSP_WORD_20,
  34	OMAP_MCBSP_WORD_24,
  35	OMAP_MCBSP_WORD_32,
  36};
  37
  38static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
  39{
  40	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
  41	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n", MCBSP_READ(mcbsp, DRR2));
  42	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n", MCBSP_READ(mcbsp, DRR1));
  43	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n", MCBSP_READ(mcbsp, DXR2));
  44	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n", MCBSP_READ(mcbsp, DXR1));
  45	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
  46	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
  47	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n", MCBSP_READ(mcbsp, RCR2));
  48	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n", MCBSP_READ(mcbsp, RCR1));
  49	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n", MCBSP_READ(mcbsp, XCR2));
  50	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n", MCBSP_READ(mcbsp, XCR1));
  51	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
  52	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
  53	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n", MCBSP_READ(mcbsp, PCR0));
  54	dev_dbg(mcbsp->dev, "***********************\n");
  55}
  56
  57static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
  58{
  59	struct clk *fck_src;
  60	const char *src;
  61	int r;
  62
  63	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
  64		src = "pad_fck";
  65	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
  66		src = "prcm_fck";
  67	else
  68		return -EINVAL;
  69
  70	fck_src = clk_get(mcbsp->dev, src);
  71	if (IS_ERR(fck_src)) {
  72		dev_info(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
  73		return 0;
  74	}
  75
  76	if (mcbsp->active)
  77		pm_runtime_put_sync(mcbsp->dev);
  78
  79	r = clk_set_parent(mcbsp->fclk, fck_src);
  80	if (r)
  81		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
  82			src);
  83
  84	if (mcbsp->active)
  85		pm_runtime_get_sync(mcbsp->dev);
  86
  87	clk_put(fck_src);
  88
  89	return r;
  90}
  91
  92static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
  93{
  94	struct omap_mcbsp *mcbsp = data;
  95	u16 irqst;
  96
  97	irqst = MCBSP_READ(mcbsp, IRQST);
  98	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
  99
 100	if (irqst & RSYNCERREN)
 101		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
 102	if (irqst & RFSREN)
 103		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
 104	if (irqst & REOFEN)
 105		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
 106	if (irqst & RRDYEN)
 107		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
 108	if (irqst & RUNDFLEN)
 109		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
 110	if (irqst & ROVFLEN)
 111		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
 112
 113	if (irqst & XSYNCERREN)
 114		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
 115	if (irqst & XFSXEN)
 116		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
 117	if (irqst & XEOFEN)
 118		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
 119	if (irqst & XRDYEN)
 120		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
 121	if (irqst & XUNDFLEN)
 122		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
 123	if (irqst & XOVFLEN)
 124		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
 125	if (irqst & XEMPTYEOFEN)
 126		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
 127
 128	MCBSP_WRITE(mcbsp, IRQST, irqst);
 129
 130	return IRQ_HANDLED;
 131}
 132
 133static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
 134{
 135	struct omap_mcbsp *mcbsp = data;
 136	u16 irqst_spcr2;
 137
 138	irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
 139	dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
 140
 141	if (irqst_spcr2 & XSYNC_ERR) {
 142		dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
 143			irqst_spcr2);
 144		/* Writing zero to XSYNC_ERR clears the IRQ */
 145		MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
 146	}
 147
 148	return IRQ_HANDLED;
 149}
 150
 151static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
 152{
 153	struct omap_mcbsp *mcbsp = data;
 154	u16 irqst_spcr1;
 155
 156	irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
 157	dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
 158
 159	if (irqst_spcr1 & RSYNC_ERR) {
 160		dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
 161			irqst_spcr1);
 162		/* Writing zero to RSYNC_ERR clears the IRQ */
 163		MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
 164	}
 165
 166	return IRQ_HANDLED;
 167}
 168
 169/*
 170 * omap_mcbsp_config simply write a config to the
 171 * appropriate McBSP.
 172 * You either call this function or set the McBSP registers
 173 * by yourself before calling omap_mcbsp_start().
 174 */
 175static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
 176			      const struct omap_mcbsp_reg_cfg *config)
 177{
 178	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
 179		mcbsp->id, mcbsp->phys_base);
 180
 181	/* We write the given config */
 182	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
 183	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
 184	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
 185	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
 186	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
 187	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
 188	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
 189	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
 190	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
 191	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
 192	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
 193	if (mcbsp->pdata->has_ccr) {
 194		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
 195		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
 196	}
 197	/* Enable wakeup behavior */
 198	if (mcbsp->pdata->has_wakeup)
 199		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
 200
 201	/* Enable TX/RX sync error interrupts by default */
 202	if (mcbsp->irq)
 203		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
 204			    RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
 205}
 206
 207/**
 208 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
 209 * @mcbsp: omap_mcbsp struct for the McBSP instance
 210 * @stream: Stream direction (playback/capture)
 211 *
 212 * Returns the address of mcbsp data transmit register or data receive register
 213 * to be used by DMA for transferring/receiving data
 214 */
 215static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
 216				     unsigned int stream)
 217{
 218	int data_reg;
 219
 220	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
 221		if (mcbsp->pdata->reg_size == 2)
 222			data_reg = OMAP_MCBSP_REG_DXR1;
 223		else
 224			data_reg = OMAP_MCBSP_REG_DXR;
 225	} else {
 226		if (mcbsp->pdata->reg_size == 2)
 227			data_reg = OMAP_MCBSP_REG_DRR1;
 228		else
 229			data_reg = OMAP_MCBSP_REG_DRR;
 230	}
 231
 232	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
 233}
 234
 235/*
 236 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
 237 * The threshold parameter is 1 based, and it is converted (threshold - 1)
 238 * for the THRSH2 register.
 239 */
 240static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
 241{
 242	if (threshold && threshold <= mcbsp->max_tx_thres)
 243		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
 244}
 245
 246/*
 247 * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
 248 * The threshold parameter is 1 based, and it is converted (threshold - 1)
 249 * for the THRSH1 register.
 250 */
 251static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
 252{
 253	if (threshold && threshold <= mcbsp->max_rx_thres)
 254		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
 255}
 256
 257/*
 258 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
 259 */
 260static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
 261{
 262	u16 buffstat;
 263
 264	/* Returns the number of free locations in the buffer */
 265	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
 266
 267	/* Number of slots are different in McBSP ports */
 268	return mcbsp->pdata->buffer_size - buffstat;
 269}
 270
 271/*
 272 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
 273 * to reach the threshold value (when the DMA will be triggered to read it)
 274 */
 275static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
 276{
 277	u16 buffstat, threshold;
 278
 279	/* Returns the number of used locations in the buffer */
 280	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
 281	/* RX threshold */
 282	threshold = MCBSP_READ(mcbsp, THRSH1);
 283
 284	/* Return the number of location till we reach the threshold limit */
 285	if (threshold <= buffstat)
 286		return 0;
 287	else
 288		return threshold - buffstat;
 289}
 290
 291static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
 292{
 293	void *reg_cache;
 294	int err;
 295
 296	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
 297	if (!reg_cache)
 298		return -ENOMEM;
 299
 300	spin_lock(&mcbsp->lock);
 301	if (!mcbsp->free) {
 302		dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
 303		err = -EBUSY;
 304		goto err_kfree;
 305	}
 306
 307	mcbsp->free = false;
 308	mcbsp->reg_cache = reg_cache;
 309	spin_unlock(&mcbsp->lock);
 310
 311	if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
 312		mcbsp->pdata->ops->request(mcbsp->id - 1);
 313
 314	/*
 315	 * Make sure that transmitter, receiver and sample-rate generator are
 316	 * not running before activating IRQs.
 317	 */
 318	MCBSP_WRITE(mcbsp, SPCR1, 0);
 319	MCBSP_WRITE(mcbsp, SPCR2, 0);
 320
 321	if (mcbsp->irq) {
 322		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
 323				  "McBSP", (void *)mcbsp);
 324		if (err != 0) {
 325			dev_err(mcbsp->dev, "Unable to request IRQ\n");
 326			goto err_clk_disable;
 327		}
 328	} else {
 329		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
 330				  "McBSP TX", (void *)mcbsp);
 331		if (err != 0) {
 332			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
 333			goto err_clk_disable;
 334		}
 335
 336		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
 337				  "McBSP RX", (void *)mcbsp);
 338		if (err != 0) {
 339			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
 340			goto err_free_irq;
 341		}
 342	}
 343
 344	return 0;
 345err_free_irq:
 346	free_irq(mcbsp->tx_irq, (void *)mcbsp);
 347err_clk_disable:
 348	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
 349		mcbsp->pdata->ops->free(mcbsp->id - 1);
 350
 351	/* Disable wakeup behavior */
 352	if (mcbsp->pdata->has_wakeup)
 353		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
 354
 355	spin_lock(&mcbsp->lock);
 356	mcbsp->free = true;
 357	mcbsp->reg_cache = NULL;
 358err_kfree:
 359	spin_unlock(&mcbsp->lock);
 360	kfree(reg_cache);
 361
 362	return err;
 363}
 364
 365static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
 366{
 367	void *reg_cache;
 368
 369	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
 370		mcbsp->pdata->ops->free(mcbsp->id - 1);
 371
 372	/* Disable wakeup behavior */
 373	if (mcbsp->pdata->has_wakeup)
 374		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
 375
 376	/* Disable interrupt requests */
 377	if (mcbsp->irq) {
 378		MCBSP_WRITE(mcbsp, IRQEN, 0);
 379
 380		free_irq(mcbsp->irq, (void *)mcbsp);
 381	} else {
 382		free_irq(mcbsp->rx_irq, (void *)mcbsp);
 383		free_irq(mcbsp->tx_irq, (void *)mcbsp);
 384	}
 385
 386	reg_cache = mcbsp->reg_cache;
 387
 388	/*
 389	 * Select CLKS source from internal source unconditionally before
 390	 * marking the McBSP port as free.
 391	 * If the external clock source via MCBSP_CLKS pin has been selected the
 392	 * system will refuse to enter idle if the CLKS pin source is not reset
 393	 * back to internal source.
 394	 */
 395	if (!mcbsp_omap1())
 396		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
 397
 398	spin_lock(&mcbsp->lock);
 399	if (mcbsp->free)
 400		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
 401	else
 402		mcbsp->free = true;
 403	mcbsp->reg_cache = NULL;
 404	spin_unlock(&mcbsp->lock);
 405
 406	kfree(reg_cache);
 407}
 408
 409/*
 410 * Here we start the McBSP, by enabling transmitter, receiver or both.
 411 * If no transmitter or receiver is active prior calling, then sample-rate
 412 * generator and frame sync are started.
 413 */
 414static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
 415{
 416	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
 417	int rx = !tx;
 418	int enable_srg = 0;
 419	u16 w;
 420
 421	if (mcbsp->st_data)
 422		omap_mcbsp_st_start(mcbsp);
 423
 424	/* Only enable SRG, if McBSP is master */
 425	w = MCBSP_READ_CACHE(mcbsp, PCR0);
 426	if (w & (FSXM | FSRM | CLKXM | CLKRM))
 427		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
 428				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
 429
 430	if (enable_srg) {
 431		/* Start the sample generator */
 432		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 433		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
 434	}
 435
 436	/* Enable transmitter and receiver */
 437	tx &= 1;
 438	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 439	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
 440
 441	rx &= 1;
 442	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
 443	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
 444
 445	/*
 446	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
 447	 * REVISIT: 100us may give enough time for two CLKSRG, however
 448	 * due to some unknown PM related, clock gating etc. reason it
 449	 * is now at 500us.
 450	 */
 451	udelay(500);
 452
 453	if (enable_srg) {
 454		/* Start frame sync */
 455		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 456		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
 457	}
 458
 459	if (mcbsp->pdata->has_ccr) {
 460		/* Release the transmitter and receiver */
 461		w = MCBSP_READ_CACHE(mcbsp, XCCR);
 462		w &= ~(tx ? XDISABLE : 0);
 463		MCBSP_WRITE(mcbsp, XCCR, w);
 464		w = MCBSP_READ_CACHE(mcbsp, RCCR);
 465		w &= ~(rx ? RDISABLE : 0);
 466		MCBSP_WRITE(mcbsp, RCCR, w);
 467	}
 468
 469	/* Dump McBSP Regs */
 470	omap_mcbsp_dump_reg(mcbsp);
 471}
 472
 473static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
 474{
 475	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
 476	int rx = !tx;
 477	int idle;
 478	u16 w;
 479
 480	/* Reset transmitter */
 481	tx &= 1;
 482	if (mcbsp->pdata->has_ccr) {
 483		w = MCBSP_READ_CACHE(mcbsp, XCCR);
 484		w |= (tx ? XDISABLE : 0);
 485		MCBSP_WRITE(mcbsp, XCCR, w);
 486	}
 487	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 488	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
 489
 490	/* Reset receiver */
 491	rx &= 1;
 492	if (mcbsp->pdata->has_ccr) {
 493		w = MCBSP_READ_CACHE(mcbsp, RCCR);
 494		w |= (rx ? RDISABLE : 0);
 495		MCBSP_WRITE(mcbsp, RCCR, w);
 496	}
 497	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
 498	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
 499
 500	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
 501			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
 502
 503	if (idle) {
 504		/* Reset the sample rate generator */
 505		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 506		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
 507	}
 508
 509	if (mcbsp->st_data)
 510		omap_mcbsp_st_stop(mcbsp);
 511}
 512
 513#define max_thres(m)			(mcbsp->pdata->buffer_size)
 514#define valid_threshold(m, val)		((val) <= max_thres(m))
 515#define THRESHOLD_PROP_BUILDER(prop)					\
 516static ssize_t prop##_show(struct device *dev,				\
 517			struct device_attribute *attr, char *buf)	\
 518{									\
 519	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
 520									\
 521	return sysfs_emit(buf, "%u\n", mcbsp->prop);			\
 522}									\
 523									\
 524static ssize_t prop##_store(struct device *dev,				\
 525				struct device_attribute *attr,		\
 526				const char *buf, size_t size)		\
 527{									\
 528	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
 529	unsigned long val;						\
 530	int status;							\
 531									\
 532	status = kstrtoul(buf, 0, &val);				\
 533	if (status)							\
 534		return status;						\
 535									\
 536	if (!valid_threshold(mcbsp, val))				\
 537		return -EDOM;						\
 538									\
 539	mcbsp->prop = val;						\
 540	return size;							\
 541}									\
 542									\
 543static DEVICE_ATTR_RW(prop)
 544
 545THRESHOLD_PROP_BUILDER(max_tx_thres);
 546THRESHOLD_PROP_BUILDER(max_rx_thres);
 547
 548static const char * const dma_op_modes[] = {
 549	"element", "threshold",
 550};
 551
 552static ssize_t dma_op_mode_show(struct device *dev,
 553				struct device_attribute *attr, char *buf)
 554{
 555	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
 556	int dma_op_mode, i = 0;
 557	ssize_t len = 0;
 558	const char * const *s;
 559
 560	dma_op_mode = mcbsp->dma_op_mode;
 561
 562	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
 563		if (dma_op_mode == i)
 564			len += sysfs_emit_at(buf, len, "[%s] ", *s);
 565		else
 566			len += sysfs_emit_at(buf, len, "%s ", *s);
 567	}
 568	len += sysfs_emit_at(buf, len, "\n");
 569
 570	return len;
 571}
 572
 573static ssize_t dma_op_mode_store(struct device *dev,
 574				 struct device_attribute *attr, const char *buf,
 575				 size_t size)
 576{
 577	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
 578	int i;
 579
 580	i = sysfs_match_string(dma_op_modes, buf);
 581	if (i < 0)
 582		return i;
 583
 584	spin_lock_irq(&mcbsp->lock);
 585	if (!mcbsp->free) {
 586		size = -EBUSY;
 587		goto unlock;
 588	}
 589	mcbsp->dma_op_mode = i;
 590
 591unlock:
 592	spin_unlock_irq(&mcbsp->lock);
 593
 594	return size;
 595}
 596
 597static DEVICE_ATTR_RW(dma_op_mode);
 598
 599static const struct attribute *additional_attrs[] = {
 600	&dev_attr_max_tx_thres.attr,
 601	&dev_attr_max_rx_thres.attr,
 602	&dev_attr_dma_op_mode.attr,
 603	NULL,
 604};
 605
 606static const struct attribute_group additional_attr_group = {
 607	.attrs = (struct attribute **)additional_attrs,
 608};
 609
 610/*
 611 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
 612 * 730 has only 2 McBSP, and both of them are MPU peripherals.
 613 */
 614static int omap_mcbsp_init(struct platform_device *pdev)
 615{
 616	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
 617	struct resource *res;
 618	int ret;
 619
 620	spin_lock_init(&mcbsp->lock);
 621	mcbsp->free = true;
 622
 623	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
 624	if (!res)
 625		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 626
 627	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
 628	if (IS_ERR(mcbsp->io_base))
 629		return PTR_ERR(mcbsp->io_base);
 630
 631	mcbsp->phys_base = res->start;
 632	mcbsp->reg_cache_size = resource_size(res);
 633
 634	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
 635	if (!res)
 636		mcbsp->phys_dma_base = mcbsp->phys_base;
 637	else
 638		mcbsp->phys_dma_base = res->start;
 639
 640	/*
 641	 * OMAP1, 2 uses two interrupt lines: TX, RX
 642	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
 643	 * OMAP4 and newer SoC only have the combined IRQ line.
 644	 * Use the combined IRQ if available since it gives better debugging
 645	 * possibilities.
 646	 */
 647	mcbsp->irq = platform_get_irq_byname(pdev, "common");
 648	if (mcbsp->irq == -ENXIO) {
 649		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
 650
 651		if (mcbsp->tx_irq == -ENXIO) {
 652			mcbsp->irq = platform_get_irq(pdev, 0);
 653			mcbsp->tx_irq = 0;
 654		} else {
 655			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
 656			mcbsp->irq = 0;
 657		}
 658	}
 659
 660	if (!pdev->dev.of_node) {
 661		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
 662		if (!res) {
 663			dev_err(&pdev->dev, "invalid tx DMA channel\n");
 664			return -ENODEV;
 665		}
 666		mcbsp->dma_req[0] = res->start;
 667		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
 668
 669		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
 670		if (!res) {
 671			dev_err(&pdev->dev, "invalid rx DMA channel\n");
 672			return -ENODEV;
 673		}
 674		mcbsp->dma_req[1] = res->start;
 675		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
 676	} else {
 677		mcbsp->dma_data[0].filter_data = "tx";
 678		mcbsp->dma_data[1].filter_data = "rx";
 679	}
 680
 681	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
 682						SNDRV_PCM_STREAM_PLAYBACK);
 683	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
 684						SNDRV_PCM_STREAM_CAPTURE);
 685
 686	mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
 687	if (IS_ERR(mcbsp->fclk)) {
 688		ret = PTR_ERR(mcbsp->fclk);
 689		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
 690		return ret;
 691	}
 692
 693	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
 694	if (mcbsp->pdata->buffer_size) {
 695		/*
 696		 * Initially configure the maximum thresholds to a safe value.
 697		 * The McBSP FIFO usage with these values should not go under
 698		 * 16 locations.
 699		 * If the whole FIFO without safety buffer is used, than there
 700		 * is a possibility that the DMA will be not able to push the
 701		 * new data on time, causing channel shifts in runtime.
 702		 */
 703		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
 704		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
 705
 706		ret = devm_device_add_group(mcbsp->dev, &additional_attr_group);
 707		if (ret) {
 708			dev_err(mcbsp->dev,
 709				"Unable to create additional controls\n");
 710			return ret;
 711		}
 712	}
 713
 714	return omap_mcbsp_st_init(pdev);
 715}
 716
 717/*
 718 * Stream DMA parameters. DMA request line and port address are set runtime
 719 * since they are different between OMAP1 and later OMAPs
 720 */
 721static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
 722		unsigned int packet_size)
 723{
 724	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
 725	struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0);
 726	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 727	int words;
 728
 729	/* No need to proceed further if McBSP does not have FIFO */
 730	if (mcbsp->pdata->buffer_size == 0)
 731		return;
 732
 733	/*
 734	 * Configure McBSP threshold based on either:
 735	 * packet_size, when the sDMA is in packet mode, or based on the
 736	 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
 737	 * for mono streams.
 738	 */
 739	if (packet_size)
 740		words = packet_size;
 741	else
 742		words = 1;
 743
 744	/* Configure McBSP internal buffer usage */
 745	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 746		omap_mcbsp_set_tx_threshold(mcbsp, words);
 747	else
 748		omap_mcbsp_set_rx_threshold(mcbsp, words);
 749}
 750
 751static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
 752				    struct snd_pcm_hw_rule *rule)
 753{
 754	struct snd_interval *buffer_size = hw_param_interval(params,
 755					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
 756	struct snd_interval *channels = hw_param_interval(params,
 757					SNDRV_PCM_HW_PARAM_CHANNELS);
 758	struct omap_mcbsp *mcbsp = rule->private;
 759	struct snd_interval frames;
 760	int size;
 761
 762	snd_interval_any(&frames);
 763	size = mcbsp->pdata->buffer_size;
 764
 765	frames.min = size / channels->min;
 766	frames.integer = 1;
 767	return snd_interval_refine(buffer_size, &frames);
 768}
 769
 770static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
 771				  struct snd_soc_dai *cpu_dai)
 772{
 773	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 774	int err = 0;
 775
 776	if (!snd_soc_dai_active(cpu_dai))
 777		err = omap_mcbsp_request(mcbsp);
 778
 779	/*
 780	 * OMAP3 McBSP FIFO is word structured.
 781	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
 782	 * McBSP1,3,4,5 has 128 word long buffer
 783	 * This means that the size of the FIFO depends on the sample format.
 784	 * For example on McBSP3:
 785	 * 16bit samples: size is 128 * 2 = 256 bytes
 786	 * 32bit samples: size is 128 * 4 = 512 bytes
 787	 * It is simpler to place constraint for buffer and period based on
 788	 * channels.
 789	 * McBSP3 as example again (16 or 32 bit samples):
 790	 * 1 channel (mono): size is 128 frames (128 words)
 791	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
 792	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
 793	 */
 794	if (mcbsp->pdata->buffer_size) {
 795		/*
 796		* Rule for the buffer size. We should not allow
 797		* smaller buffer than the FIFO size to avoid underruns.
 798		* This applies only for the playback stream.
 799		*/
 800		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 801			snd_pcm_hw_rule_add(substream->runtime, 0,
 802					    SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 803					    omap_mcbsp_hwrule_min_buffersize,
 804					    mcbsp,
 805					    SNDRV_PCM_HW_PARAM_CHANNELS, -1);
 806
 807		/* Make sure, that the period size is always even */
 808		snd_pcm_hw_constraint_step(substream->runtime, 0,
 809					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
 810	}
 811
 812	return err;
 813}
 814
 815static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
 816				    struct snd_soc_dai *cpu_dai)
 817{
 818	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 819	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
 820	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
 821	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
 822
 823	if (mcbsp->latency[stream2])
 824		cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
 825					       mcbsp->latency[stream2]);
 826	else if (mcbsp->latency[stream1])
 827		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
 828
 829	mcbsp->latency[stream1] = 0;
 830
 831	if (!snd_soc_dai_active(cpu_dai)) {
 832		omap_mcbsp_free(mcbsp);
 833		mcbsp->configured = 0;
 834	}
 835}
 836
 837static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
 838				  struct snd_soc_dai *cpu_dai)
 839{
 840	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 841	struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
 842	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
 843	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
 844	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
 845	int latency = mcbsp->latency[stream2];
 846
 847	/* Prevent omap hardware from hitting off between FIFO fills */
 848	if (!latency || mcbsp->latency[stream1] < latency)
 849		latency = mcbsp->latency[stream1];
 850
 851	if (cpu_latency_qos_request_active(pm_qos_req))
 852		cpu_latency_qos_update_request(pm_qos_req, latency);
 853	else if (latency)
 854		cpu_latency_qos_add_request(pm_qos_req, latency);
 855
 856	return 0;
 857}
 858
 859static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
 860				  struct snd_soc_dai *cpu_dai)
 861{
 862	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 863
 864	switch (cmd) {
 865	case SNDRV_PCM_TRIGGER_START:
 866	case SNDRV_PCM_TRIGGER_RESUME:
 867	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 868		mcbsp->active++;
 869		omap_mcbsp_start(mcbsp, substream->stream);
 870		break;
 871
 872	case SNDRV_PCM_TRIGGER_STOP:
 873	case SNDRV_PCM_TRIGGER_SUSPEND:
 874	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 875		omap_mcbsp_stop(mcbsp, substream->stream);
 876		mcbsp->active--;
 877		break;
 878	default:
 879		return -EINVAL;
 880	}
 881
 882	return 0;
 883}
 884
 885static snd_pcm_sframes_t omap_mcbsp_dai_delay(
 886			struct snd_pcm_substream *substream,
 887			struct snd_soc_dai *dai)
 888{
 889	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
 890	struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0);
 891	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 892	u16 fifo_use;
 893	snd_pcm_sframes_t delay;
 894
 895	/* No need to proceed further if McBSP does not have FIFO */
 896	if (mcbsp->pdata->buffer_size == 0)
 897		return 0;
 898
 899	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 900		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
 901	else
 902		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
 903
 904	/*
 905	 * Divide the used locations with the channel count to get the
 906	 * FIFO usage in samples (don't care about partial samples in the
 907	 * buffer).
 908	 */
 909	delay = fifo_use / substream->runtime->channels;
 910
 911	return delay;
 912}
 913
 914static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
 915				    struct snd_pcm_hw_params *params,
 916				    struct snd_soc_dai *cpu_dai)
 917{
 918	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 919	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
 920	struct snd_dmaengine_dai_dma_data *dma_data;
 921	int wlen, channels, wpf;
 922	int pkt_size = 0;
 923	unsigned int format, div, framesize, master;
 924	unsigned int buffer_size = mcbsp->pdata->buffer_size;
 925
 926	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
 927	channels = params_channels(params);
 928
 929	switch (params_format(params)) {
 930	case SNDRV_PCM_FORMAT_S16_LE:
 931		wlen = 16;
 932		break;
 933	case SNDRV_PCM_FORMAT_S32_LE:
 934		wlen = 32;
 935		break;
 936	default:
 937		return -EINVAL;
 938	}
 939	if (buffer_size) {
 940		int latency;
 941
 942		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
 943			int period_words, max_thrsh;
 944			int divider = 0;
 945
 946			period_words = params_period_bytes(params) / (wlen / 8);
 947			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 948				max_thrsh = mcbsp->max_tx_thres;
 949			else
 950				max_thrsh = mcbsp->max_rx_thres;
 951			/*
 952			 * Use sDMA packet mode if McBSP is in threshold mode:
 953			 * If period words less than the FIFO size the packet
 954			 * size is set to the number of period words, otherwise
 955			 * Look for the biggest threshold value which divides
 956			 * the period size evenly.
 957			 */
 958			divider = period_words / max_thrsh;
 959			if (period_words % max_thrsh)
 960				divider++;
 961			while (period_words % divider &&
 962				divider < period_words)
 963				divider++;
 964			if (divider == period_words)
 965				return -EINVAL;
 966
 967			pkt_size = period_words / divider;
 968		} else if (channels > 1) {
 969			/* Use packet mode for non mono streams */
 970			pkt_size = channels;
 971		}
 972
 973		latency = (buffer_size - pkt_size) / channels;
 974		latency = latency * USEC_PER_SEC /
 975			  (params->rate_num / params->rate_den);
 976		mcbsp->latency[substream->stream] = latency;
 977
 978		omap_mcbsp_set_threshold(substream, pkt_size);
 979	}
 980
 981	dma_data->maxburst = pkt_size;
 982
 983	if (mcbsp->configured) {
 984		/* McBSP already configured by another stream */
 985		return 0;
 986	}
 987
 988	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
 989	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
 990	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
 991	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
 992	format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
 993	wpf = channels;
 994	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
 995			      format == SND_SOC_DAIFMT_LEFT_J)) {
 996		/* Use dual-phase frames */
 997		regs->rcr2	|= RPHASE;
 998		regs->xcr2	|= XPHASE;
 999		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
1000		wpf--;
1001		regs->rcr2	|= RFRLEN2(wpf - 1);
1002		regs->xcr2	|= XFRLEN2(wpf - 1);
1003	}
1004
1005	regs->rcr1	|= RFRLEN1(wpf - 1);
1006	regs->xcr1	|= XFRLEN1(wpf - 1);
1007
1008	switch (params_format(params)) {
1009	case SNDRV_PCM_FORMAT_S16_LE:
1010		/* Set word lengths */
1011		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
1012		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
1013		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
1014		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
1015		break;
1016	case SNDRV_PCM_FORMAT_S32_LE:
1017		/* Set word lengths */
1018		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
1019		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
1020		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
1021		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
1022		break;
1023	default:
1024		/* Unsupported PCM format */
1025		return -EINVAL;
1026	}
1027
1028	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
1029	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1030	master = mcbsp->fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK;
1031	if (master == SND_SOC_DAIFMT_BP_FP) {
1032		div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1033		framesize = (mcbsp->in_freq / div) / params_rate(params);
1034
1035		if (framesize < wlen * channels) {
1036			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1037					"channels\n", __func__);
1038			return -EINVAL;
1039		}
1040	} else
1041		framesize = wlen * channels;
1042
1043	/* Set FS period and length in terms of bit clock periods */
1044	regs->srgr2	&= ~FPER(0xfff);
1045	regs->srgr1	&= ~FWID(0xff);
1046	switch (format) {
1047	case SND_SOC_DAIFMT_I2S:
1048	case SND_SOC_DAIFMT_LEFT_J:
1049		regs->srgr2	|= FPER(framesize - 1);
1050		regs->srgr1	|= FWID((framesize >> 1) - 1);
1051		break;
1052	case SND_SOC_DAIFMT_DSP_A:
1053	case SND_SOC_DAIFMT_DSP_B:
1054		regs->srgr2	|= FPER(framesize - 1);
1055		regs->srgr1	|= FWID(0);
1056		break;
1057	}
1058
1059	omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1060	mcbsp->wlen = wlen;
1061	mcbsp->configured = 1;
1062
1063	return 0;
1064}
1065
1066/*
1067 * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1068 * cache is initialized here
1069 */
1070static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1071				      unsigned int fmt)
1072{
1073	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1074	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1075	bool inv_fs = false;
1076
1077	if (mcbsp->configured)
1078		return 0;
1079
1080	mcbsp->fmt = fmt;
1081	memset(regs, 0, sizeof(*regs));
1082	/* Generic McBSP register settings */
1083	regs->spcr2	|= XINTM(3) | FREE;
1084	regs->spcr1	|= RINTM(3);
1085	/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1086	if (!mcbsp->pdata->has_ccr) {
1087		regs->rcr2	|= RFIG;
1088		regs->xcr2	|= XFIG;
1089	}
1090
1091	/* Configure XCCR/RCCR only for revisions which have ccr registers */
1092	if (mcbsp->pdata->has_ccr) {
1093		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1094		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1095	}
1096
1097	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1098	case SND_SOC_DAIFMT_I2S:
1099		/* 1-bit data delay */
1100		regs->rcr2	|= RDATDLY(1);
1101		regs->xcr2	|= XDATDLY(1);
1102		break;
1103	case SND_SOC_DAIFMT_LEFT_J:
1104		/* 0-bit data delay */
1105		regs->rcr2	|= RDATDLY(0);
1106		regs->xcr2	|= XDATDLY(0);
1107		regs->spcr1	|= RJUST(2);
1108		/* Invert FS polarity configuration */
1109		inv_fs = true;
1110		break;
1111	case SND_SOC_DAIFMT_DSP_A:
1112		/* 1-bit data delay */
1113		regs->rcr2      |= RDATDLY(1);
1114		regs->xcr2      |= XDATDLY(1);
1115		/* Invert FS polarity configuration */
1116		inv_fs = true;
1117		break;
1118	case SND_SOC_DAIFMT_DSP_B:
1119		/* 0-bit data delay */
1120		regs->rcr2      |= RDATDLY(0);
1121		regs->xcr2      |= XDATDLY(0);
1122		/* Invert FS polarity configuration */
1123		inv_fs = true;
1124		break;
1125	default:
1126		/* Unsupported data format */
1127		return -EINVAL;
1128	}
1129
1130	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
1131	case SND_SOC_DAIFMT_BP_FP:
1132		/* McBSP master. Set FS and bit clocks as outputs */
1133		regs->pcr0	|= FSXM | FSRM |
1134				   CLKXM | CLKRM;
1135		/* Sample rate generator drives the FS */
1136		regs->srgr2	|= FSGM;
1137		break;
1138	case SND_SOC_DAIFMT_BC_FP:
1139		/* McBSP slave. FS clock as output */
1140		regs->srgr2	|= FSGM;
1141		regs->pcr0	|= FSXM | FSRM;
1142		break;
1143	case SND_SOC_DAIFMT_BC_FC:
1144		/* McBSP slave */
1145		break;
1146	default:
1147		/* Unsupported master/slave configuration */
1148		return -EINVAL;
1149	}
1150
1151	/* Set bit clock (CLKX/CLKR) and FS polarities */
1152	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1153	case SND_SOC_DAIFMT_NB_NF:
1154		/*
1155		 * Normal BCLK + FS.
1156		 * FS active low. TX data driven on falling edge of bit clock
1157		 * and RX data sampled on rising edge of bit clock.
1158		 */
1159		regs->pcr0	|= FSXP | FSRP |
1160				   CLKXP | CLKRP;
1161		break;
1162	case SND_SOC_DAIFMT_NB_IF:
1163		regs->pcr0	|= CLKXP | CLKRP;
1164		break;
1165	case SND_SOC_DAIFMT_IB_NF:
1166		regs->pcr0	|= FSXP | FSRP;
1167		break;
1168	case SND_SOC_DAIFMT_IB_IF:
1169		break;
1170	default:
1171		return -EINVAL;
1172	}
1173	if (inv_fs)
1174		regs->pcr0 ^= FSXP | FSRP;
1175
1176	return 0;
1177}
1178
1179static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1180				     int div_id, int div)
1181{
1182	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1183	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1184
1185	if (div_id != OMAP_MCBSP_CLKGDV)
1186		return -ENODEV;
1187
1188	mcbsp->clk_div = div;
1189	regs->srgr1	&= ~CLKGDV(0xff);
1190	regs->srgr1	|= CLKGDV(div - 1);
1191
1192	return 0;
1193}
1194
1195static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1196					 int clk_id, unsigned int freq,
1197					 int dir)
1198{
1199	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1200	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1201	int err = 0;
1202
1203	if (mcbsp->active) {
1204		if (freq == mcbsp->in_freq)
1205			return 0;
1206		else
1207			return -EBUSY;
1208	}
1209
1210	mcbsp->in_freq = freq;
1211	regs->srgr2 &= ~CLKSM;
1212	regs->pcr0 &= ~SCLKME;
1213
1214	switch (clk_id) {
1215	case OMAP_MCBSP_SYSCLK_CLK:
1216		regs->srgr2	|= CLKSM;
1217		break;
1218	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1219		if (mcbsp_omap1()) {
1220			err = -EINVAL;
1221			break;
1222		}
1223		err = omap2_mcbsp_set_clks_src(mcbsp,
1224					       MCBSP_CLKS_PRCM_SRC);
1225		break;
1226	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1227		if (mcbsp_omap1()) {
1228			err = 0;
1229			break;
1230		}
1231		err = omap2_mcbsp_set_clks_src(mcbsp,
1232					       MCBSP_CLKS_PAD_SRC);
1233		break;
1234
1235	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1236		regs->srgr2	|= CLKSM;
1237		regs->pcr0	|= SCLKME;
1238		/*
1239		 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1240		 * disable output on those pins. This enables to inject the
1241		 * reference clock through CLKX/CLKR. For this to work
1242		 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1243		 */
1244		regs->pcr0	&= ~CLKXM;
1245		break;
1246	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1247		regs->pcr0	|= SCLKME;
1248		/* Disable ouput on CLKR pin in master mode */
1249		regs->pcr0	&= ~CLKRM;
1250		break;
1251	default:
1252		err = -ENODEV;
1253	}
1254
1255	return err;
1256}
1257
 
 
 
 
 
 
 
 
 
 
 
 
1258static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1259{
1260	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1261
1262	pm_runtime_enable(mcbsp->dev);
1263
1264	snd_soc_dai_init_dma_data(dai,
1265				  &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1266				  &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1267
1268	return 0;
1269}
1270
1271static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1272{
1273	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1274
1275	pm_runtime_disable(mcbsp->dev);
1276
1277	return 0;
1278}
1279
1280static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1281	.probe		= omap_mcbsp_probe,
1282	.remove		= omap_mcbsp_remove,
1283	.startup	= omap_mcbsp_dai_startup,
1284	.shutdown	= omap_mcbsp_dai_shutdown,
1285	.prepare	= omap_mcbsp_dai_prepare,
1286	.trigger	= omap_mcbsp_dai_trigger,
1287	.delay		= omap_mcbsp_dai_delay,
1288	.hw_params	= omap_mcbsp_dai_hw_params,
1289	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
1290	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
1291	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
1292};
1293
1294static struct snd_soc_dai_driver omap_mcbsp_dai = {
 
 
1295	.playback = {
1296		.channels_min = 1,
1297		.channels_max = 16,
1298		.rates = OMAP_MCBSP_RATES,
1299		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1300	},
1301	.capture = {
1302		.channels_min = 1,
1303		.channels_max = 16,
1304		.rates = OMAP_MCBSP_RATES,
1305		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1306	},
1307	.ops = &mcbsp_dai_ops,
1308};
1309
1310static const struct snd_soc_component_driver omap_mcbsp_component = {
1311	.name			= "omap-mcbsp",
1312	.legacy_dai_naming	= 1,
1313};
1314
1315static struct omap_mcbsp_platform_data omap2420_pdata = {
1316	.reg_step = 4,
1317	.reg_size = 2,
1318};
1319
1320static struct omap_mcbsp_platform_data omap2430_pdata = {
1321	.reg_step = 4,
1322	.reg_size = 4,
1323	.has_ccr = true,
1324};
1325
1326static struct omap_mcbsp_platform_data omap3_pdata = {
1327	.reg_step = 4,
1328	.reg_size = 4,
1329	.has_ccr = true,
1330	.has_wakeup = true,
1331};
1332
1333static struct omap_mcbsp_platform_data omap4_pdata = {
1334	.reg_step = 4,
1335	.reg_size = 4,
1336	.has_ccr = true,
1337	.has_wakeup = true,
1338};
1339
1340static const struct of_device_id omap_mcbsp_of_match[] = {
1341	{
1342		.compatible = "ti,omap2420-mcbsp",
1343		.data = &omap2420_pdata,
1344	},
1345	{
1346		.compatible = "ti,omap2430-mcbsp",
1347		.data = &omap2430_pdata,
1348	},
1349	{
1350		.compatible = "ti,omap3-mcbsp",
1351		.data = &omap3_pdata,
1352	},
1353	{
1354		.compatible = "ti,omap4-mcbsp",
1355		.data = &omap4_pdata,
1356	},
1357	{ },
1358};
1359MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1360
1361static int asoc_mcbsp_probe(struct platform_device *pdev)
1362{
1363	struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1364	const struct omap_mcbsp_platform_data *match_pdata =
1365		device_get_match_data(&pdev->dev);
1366	struct omap_mcbsp *mcbsp;
 
1367	int ret;
1368
1369	if (match_pdata) {
 
1370		struct device_node *node = pdev->dev.of_node;
1371		struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1372		int buffer_size;
1373
1374		pdata = devm_kmemdup(&pdev->dev, match_pdata,
1375				     sizeof(struct omap_mcbsp_platform_data),
1376				     GFP_KERNEL);
1377		if (!pdata)
1378			return -ENOMEM;
1379
 
1380		if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1381			pdata->buffer_size = buffer_size;
1382		if (pdata_quirk)
1383			pdata->force_ick_on = pdata_quirk->force_ick_on;
1384	} else if (!pdata) {
1385		dev_err(&pdev->dev, "missing platform data.\n");
1386		return -EINVAL;
1387	}
1388	mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1389	if (!mcbsp)
1390		return -ENOMEM;
1391
1392	mcbsp->id = pdev->id;
1393	mcbsp->pdata = pdata;
1394	mcbsp->dev = &pdev->dev;
1395	platform_set_drvdata(pdev, mcbsp);
1396
1397	ret = omap_mcbsp_init(pdev);
1398	if (ret)
1399		return ret;
1400
1401	if (mcbsp->pdata->reg_size == 2) {
1402		omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1403		omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1404	}
1405
1406	ret = devm_snd_soc_register_component(&pdev->dev,
1407					      &omap_mcbsp_component,
1408					      &omap_mcbsp_dai, 1);
1409	if (ret)
1410		return ret;
1411
1412	return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1413}
1414
1415static void asoc_mcbsp_remove(struct platform_device *pdev)
1416{
1417	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1418
1419	if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1420		mcbsp->pdata->ops->free(mcbsp->id);
1421
1422	if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
1423		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
 
 
1424}
1425
1426static struct platform_driver asoc_mcbsp_driver = {
1427	.driver = {
1428			.name = "omap-mcbsp",
1429			.of_match_table = omap_mcbsp_of_match,
1430	},
1431
1432	.probe = asoc_mcbsp_probe,
1433	.remove_new = asoc_mcbsp_remove,
1434};
1435
1436module_platform_driver(asoc_mcbsp_driver);
1437
1438MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1439MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1440MODULE_LICENSE("GPL");
1441MODULE_ALIAS("platform:omap-mcbsp");