Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
   4 *
   5 * Copyright (C) 2008 Nokia Corporation
   6 *
   7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
   8 *          Peter Ujfalusi <peter.ujfalusi@ti.com>
   9 */
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/of.h>
  16#include <linux/of_device.h>
  17#include <sound/core.h>
  18#include <sound/pcm.h>
  19#include <sound/pcm_params.h>
  20#include <sound/initval.h>
  21#include <sound/soc.h>
  22#include <sound/dmaengine_pcm.h>
  23
  24#include "omap-mcbsp-priv.h"
  25#include "omap-mcbsp.h"
  26#include "sdma-pcm.h"
  27
  28#define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
  29
  30enum {
  31	OMAP_MCBSP_WORD_8 = 0,
  32	OMAP_MCBSP_WORD_12,
  33	OMAP_MCBSP_WORD_16,
  34	OMAP_MCBSP_WORD_20,
  35	OMAP_MCBSP_WORD_24,
  36	OMAP_MCBSP_WORD_32,
  37};
  38
  39static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
  40{
  41	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
  42	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n", MCBSP_READ(mcbsp, DRR2));
  43	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n", MCBSP_READ(mcbsp, DRR1));
  44	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n", MCBSP_READ(mcbsp, DXR2));
  45	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n", MCBSP_READ(mcbsp, DXR1));
  46	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
  47	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
  48	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n", MCBSP_READ(mcbsp, RCR2));
  49	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n", MCBSP_READ(mcbsp, RCR1));
  50	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n", MCBSP_READ(mcbsp, XCR2));
  51	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n", MCBSP_READ(mcbsp, XCR1));
  52	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
  53	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
  54	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n", MCBSP_READ(mcbsp, PCR0));
  55	dev_dbg(mcbsp->dev, "***********************\n");
  56}
  57
  58static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
  59{
  60	struct clk *fck_src;
  61	const char *src;
  62	int r;
  63
  64	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
  65		src = "pad_fck";
  66	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
  67		src = "prcm_fck";
  68	else
  69		return -EINVAL;
  70
  71	fck_src = clk_get(mcbsp->dev, src);
  72	if (IS_ERR(fck_src)) {
  73		dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
  74		return -EINVAL;
  75	}
  76
  77	pm_runtime_put_sync(mcbsp->dev);
  78
  79	r = clk_set_parent(mcbsp->fclk, fck_src);
  80	if (r)
  81		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
  82			src);
 
 
 
  83
  84	pm_runtime_get_sync(mcbsp->dev);
  85
  86	clk_put(fck_src);
  87
  88	return r;
  89}
  90
  91static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
  92{
  93	struct omap_mcbsp *mcbsp = data;
  94	u16 irqst;
  95
  96	irqst = MCBSP_READ(mcbsp, IRQST);
  97	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
  98
  99	if (irqst & RSYNCERREN)
 100		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
 101	if (irqst & RFSREN)
 102		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
 103	if (irqst & REOFEN)
 104		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
 105	if (irqst & RRDYEN)
 106		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
 107	if (irqst & RUNDFLEN)
 108		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
 109	if (irqst & ROVFLEN)
 110		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
 111
 112	if (irqst & XSYNCERREN)
 113		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
 114	if (irqst & XFSXEN)
 115		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
 116	if (irqst & XEOFEN)
 117		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
 118	if (irqst & XRDYEN)
 119		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
 120	if (irqst & XUNDFLEN)
 121		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
 122	if (irqst & XOVFLEN)
 123		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
 124	if (irqst & XEMPTYEOFEN)
 125		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
 126
 127	MCBSP_WRITE(mcbsp, IRQST, irqst);
 128
 129	return IRQ_HANDLED;
 130}
 131
 132static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
 133{
 134	struct omap_mcbsp *mcbsp = data;
 135	u16 irqst_spcr2;
 136
 137	irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
 138	dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
 139
 140	if (irqst_spcr2 & XSYNC_ERR) {
 141		dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
 142			irqst_spcr2);
 143		/* Writing zero to XSYNC_ERR clears the IRQ */
 144		MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
 145	}
 146
 147	return IRQ_HANDLED;
 148}
 149
 150static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
 151{
 152	struct omap_mcbsp *mcbsp = data;
 153	u16 irqst_spcr1;
 154
 155	irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
 156	dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
 157
 158	if (irqst_spcr1 & RSYNC_ERR) {
 159		dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
 160			irqst_spcr1);
 161		/* Writing zero to RSYNC_ERR clears the IRQ */
 162		MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
 163	}
 164
 165	return IRQ_HANDLED;
 166}
 167
 168/*
 169 * omap_mcbsp_config simply write a config to the
 170 * appropriate McBSP.
 171 * You either call this function or set the McBSP registers
 172 * by yourself before calling omap_mcbsp_start().
 173 */
 174static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
 175			      const struct omap_mcbsp_reg_cfg *config)
 176{
 177	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
 178		mcbsp->id, mcbsp->phys_base);
 179
 180	/* We write the given config */
 181	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
 182	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
 183	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
 184	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
 185	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
 186	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
 187	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
 188	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
 189	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
 190	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
 191	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
 192	if (mcbsp->pdata->has_ccr) {
 193		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
 194		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
 195	}
 196	/* Enable wakeup behavior */
 197	if (mcbsp->pdata->has_wakeup)
 198		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
 199
 200	/* Enable TX/RX sync error interrupts by default */
 201	if (mcbsp->irq)
 202		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
 203			    RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
 204}
 205
 206/**
 207 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
 208 * @mcbsp: omap_mcbsp struct for the McBSP instance
 209 * @stream: Stream direction (playback/capture)
 210 *
 211 * Returns the address of mcbsp data transmit register or data receive register
 212 * to be used by DMA for transferring/receiving data
 213 */
 214static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
 215				     unsigned int stream)
 216{
 217	int data_reg;
 218
 219	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
 220		if (mcbsp->pdata->reg_size == 2)
 221			data_reg = OMAP_MCBSP_REG_DXR1;
 222		else
 223			data_reg = OMAP_MCBSP_REG_DXR;
 224	} else {
 225		if (mcbsp->pdata->reg_size == 2)
 226			data_reg = OMAP_MCBSP_REG_DRR1;
 227		else
 228			data_reg = OMAP_MCBSP_REG_DRR;
 229	}
 230
 231	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
 232}
 233
 234/*
 235 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
 236 * The threshold parameter is 1 based, and it is converted (threshold - 1)
 237 * for the THRSH2 register.
 238 */
 239static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
 240{
 241	if (threshold && threshold <= mcbsp->max_tx_thres)
 242		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
 243}
 244
 245/*
 246 * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
 247 * The threshold parameter is 1 based, and it is converted (threshold - 1)
 248 * for the THRSH1 register.
 249 */
 250static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
 251{
 252	if (threshold && threshold <= mcbsp->max_rx_thres)
 253		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
 254}
 255
 256/*
 257 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
 258 */
 259static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
 260{
 261	u16 buffstat;
 262
 263	/* Returns the number of free locations in the buffer */
 264	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
 265
 266	/* Number of slots are different in McBSP ports */
 267	return mcbsp->pdata->buffer_size - buffstat;
 268}
 269
 270/*
 271 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
 272 * to reach the threshold value (when the DMA will be triggered to read it)
 273 */
 274static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
 275{
 276	u16 buffstat, threshold;
 277
 278	/* Returns the number of used locations in the buffer */
 279	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
 280	/* RX threshold */
 281	threshold = MCBSP_READ(mcbsp, THRSH1);
 282
 283	/* Return the number of location till we reach the threshold limit */
 284	if (threshold <= buffstat)
 285		return 0;
 286	else
 287		return threshold - buffstat;
 288}
 289
 290static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
 291{
 292	void *reg_cache;
 293	int err;
 294
 295	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
 296	if (!reg_cache)
 297		return -ENOMEM;
 298
 299	spin_lock(&mcbsp->lock);
 300	if (!mcbsp->free) {
 301		dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
 302		err = -EBUSY;
 303		goto err_kfree;
 304	}
 305
 306	mcbsp->free = false;
 307	mcbsp->reg_cache = reg_cache;
 308	spin_unlock(&mcbsp->lock);
 309
 310	if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
 311		mcbsp->pdata->ops->request(mcbsp->id - 1);
 312
 313	/*
 314	 * Make sure that transmitter, receiver and sample-rate generator are
 315	 * not running before activating IRQs.
 316	 */
 317	MCBSP_WRITE(mcbsp, SPCR1, 0);
 318	MCBSP_WRITE(mcbsp, SPCR2, 0);
 319
 320	if (mcbsp->irq) {
 321		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
 322				  "McBSP", (void *)mcbsp);
 323		if (err != 0) {
 324			dev_err(mcbsp->dev, "Unable to request IRQ\n");
 325			goto err_clk_disable;
 326		}
 327	} else {
 328		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
 329				  "McBSP TX", (void *)mcbsp);
 330		if (err != 0) {
 331			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
 332			goto err_clk_disable;
 333		}
 334
 335		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
 336				  "McBSP RX", (void *)mcbsp);
 337		if (err != 0) {
 338			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
 339			goto err_free_irq;
 340		}
 341	}
 342
 343	return 0;
 344err_free_irq:
 345	free_irq(mcbsp->tx_irq, (void *)mcbsp);
 346err_clk_disable:
 347	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
 348		mcbsp->pdata->ops->free(mcbsp->id - 1);
 349
 350	/* Disable wakeup behavior */
 351	if (mcbsp->pdata->has_wakeup)
 352		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
 353
 354	spin_lock(&mcbsp->lock);
 355	mcbsp->free = true;
 356	mcbsp->reg_cache = NULL;
 357err_kfree:
 358	spin_unlock(&mcbsp->lock);
 359	kfree(reg_cache);
 360
 361	return err;
 362}
 363
 364static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
 365{
 366	void *reg_cache;
 367
 368	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
 369		mcbsp->pdata->ops->free(mcbsp->id - 1);
 370
 371	/* Disable wakeup behavior */
 372	if (mcbsp->pdata->has_wakeup)
 373		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
 374
 375	/* Disable interrupt requests */
 376	if (mcbsp->irq) {
 377		MCBSP_WRITE(mcbsp, IRQEN, 0);
 378
 
 379		free_irq(mcbsp->irq, (void *)mcbsp);
 380	} else {
 381		free_irq(mcbsp->rx_irq, (void *)mcbsp);
 382		free_irq(mcbsp->tx_irq, (void *)mcbsp);
 383	}
 384
 385	reg_cache = mcbsp->reg_cache;
 386
 387	/*
 388	 * Select CLKS source from internal source unconditionally before
 389	 * marking the McBSP port as free.
 390	 * If the external clock source via MCBSP_CLKS pin has been selected the
 391	 * system will refuse to enter idle if the CLKS pin source is not reset
 392	 * back to internal source.
 393	 */
 394	if (!mcbsp_omap1())
 395		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
 396
 397	spin_lock(&mcbsp->lock);
 398	if (mcbsp->free)
 399		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
 400	else
 401		mcbsp->free = true;
 402	mcbsp->reg_cache = NULL;
 403	spin_unlock(&mcbsp->lock);
 404
 405	kfree(reg_cache);
 406}
 407
 408/*
 409 * Here we start the McBSP, by enabling transmitter, receiver or both.
 410 * If no transmitter or receiver is active prior calling, then sample-rate
 411 * generator and frame sync are started.
 412 */
 413static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
 414{
 415	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
 416	int rx = !tx;
 417	int enable_srg = 0;
 418	u16 w;
 419
 420	if (mcbsp->st_data)
 421		omap_mcbsp_st_start(mcbsp);
 422
 423	/* Only enable SRG, if McBSP is master */
 424	w = MCBSP_READ_CACHE(mcbsp, PCR0);
 425	if (w & (FSXM | FSRM | CLKXM | CLKRM))
 426		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
 427				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
 428
 429	if (enable_srg) {
 430		/* Start the sample generator */
 431		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 432		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
 433	}
 434
 435	/* Enable transmitter and receiver */
 436	tx &= 1;
 437	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 438	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
 439
 440	rx &= 1;
 441	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
 442	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
 443
 444	/*
 445	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
 446	 * REVISIT: 100us may give enough time for two CLKSRG, however
 447	 * due to some unknown PM related, clock gating etc. reason it
 448	 * is now at 500us.
 449	 */
 450	udelay(500);
 451
 452	if (enable_srg) {
 453		/* Start frame sync */
 454		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 455		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
 456	}
 457
 458	if (mcbsp->pdata->has_ccr) {
 459		/* Release the transmitter and receiver */
 460		w = MCBSP_READ_CACHE(mcbsp, XCCR);
 461		w &= ~(tx ? XDISABLE : 0);
 462		MCBSP_WRITE(mcbsp, XCCR, w);
 463		w = MCBSP_READ_CACHE(mcbsp, RCCR);
 464		w &= ~(rx ? RDISABLE : 0);
 465		MCBSP_WRITE(mcbsp, RCCR, w);
 466	}
 467
 468	/* Dump McBSP Regs */
 469	omap_mcbsp_dump_reg(mcbsp);
 470}
 471
 472static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
 473{
 474	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
 475	int rx = !tx;
 476	int idle;
 477	u16 w;
 478
 479	/* Reset transmitter */
 480	tx &= 1;
 481	if (mcbsp->pdata->has_ccr) {
 482		w = MCBSP_READ_CACHE(mcbsp, XCCR);
 483		w |= (tx ? XDISABLE : 0);
 484		MCBSP_WRITE(mcbsp, XCCR, w);
 485	}
 486	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 487	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
 488
 489	/* Reset receiver */
 490	rx &= 1;
 491	if (mcbsp->pdata->has_ccr) {
 492		w = MCBSP_READ_CACHE(mcbsp, RCCR);
 493		w |= (rx ? RDISABLE : 0);
 494		MCBSP_WRITE(mcbsp, RCCR, w);
 495	}
 496	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
 497	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
 498
 499	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
 500			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
 501
 502	if (idle) {
 503		/* Reset the sample rate generator */
 504		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 505		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
 506	}
 507
 508	if (mcbsp->st_data)
 509		omap_mcbsp_st_stop(mcbsp);
 510}
 511
 512#define max_thres(m)			(mcbsp->pdata->buffer_size)
 513#define valid_threshold(m, val)		((val) <= max_thres(m))
 514#define THRESHOLD_PROP_BUILDER(prop)					\
 515static ssize_t prop##_show(struct device *dev,				\
 516			struct device_attribute *attr, char *buf)	\
 517{									\
 518	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
 519									\
 520	return sysfs_emit(buf, "%u\n", mcbsp->prop);			\
 521}									\
 522									\
 523static ssize_t prop##_store(struct device *dev,				\
 524				struct device_attribute *attr,		\
 525				const char *buf, size_t size)		\
 526{									\
 527	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
 528	unsigned long val;						\
 529	int status;							\
 530									\
 531	status = kstrtoul(buf, 0, &val);				\
 532	if (status)							\
 533		return status;						\
 534									\
 535	if (!valid_threshold(mcbsp, val))				\
 536		return -EDOM;						\
 537									\
 538	mcbsp->prop = val;						\
 539	return size;							\
 540}									\
 541									\
 542static DEVICE_ATTR_RW(prop)
 543
 544THRESHOLD_PROP_BUILDER(max_tx_thres);
 545THRESHOLD_PROP_BUILDER(max_rx_thres);
 546
 547static const char * const dma_op_modes[] = {
 548	"element", "threshold",
 549};
 550
 551static ssize_t dma_op_mode_show(struct device *dev,
 552				struct device_attribute *attr, char *buf)
 553{
 554	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
 555	int dma_op_mode, i = 0;
 556	ssize_t len = 0;
 557	const char * const *s;
 558
 559	dma_op_mode = mcbsp->dma_op_mode;
 560
 561	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
 562		if (dma_op_mode == i)
 563			len += sysfs_emit_at(buf, len, "[%s] ", *s);
 564		else
 565			len += sysfs_emit_at(buf, len, "%s ", *s);
 566	}
 567	len += sysfs_emit_at(buf, len, "\n");
 568
 569	return len;
 570}
 571
 572static ssize_t dma_op_mode_store(struct device *dev,
 573				 struct device_attribute *attr, const char *buf,
 574				 size_t size)
 575{
 576	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
 577	int i;
 578
 579	i = sysfs_match_string(dma_op_modes, buf);
 580	if (i < 0)
 581		return i;
 582
 583	spin_lock_irq(&mcbsp->lock);
 584	if (!mcbsp->free) {
 585		size = -EBUSY;
 586		goto unlock;
 587	}
 588	mcbsp->dma_op_mode = i;
 589
 590unlock:
 591	spin_unlock_irq(&mcbsp->lock);
 592
 593	return size;
 594}
 595
 596static DEVICE_ATTR_RW(dma_op_mode);
 597
 598static const struct attribute *additional_attrs[] = {
 599	&dev_attr_max_tx_thres.attr,
 600	&dev_attr_max_rx_thres.attr,
 601	&dev_attr_dma_op_mode.attr,
 602	NULL,
 603};
 604
 605static const struct attribute_group additional_attr_group = {
 606	.attrs = (struct attribute **)additional_attrs,
 607};
 608
 609/*
 610 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
 611 * 730 has only 2 McBSP, and both of them are MPU peripherals.
 612 */
 613static int omap_mcbsp_init(struct platform_device *pdev)
 614{
 615	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
 616	struct resource *res;
 617	int ret;
 618
 619	spin_lock_init(&mcbsp->lock);
 620	mcbsp->free = true;
 621
 622	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
 623	if (!res)
 624		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 625
 626	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
 627	if (IS_ERR(mcbsp->io_base))
 628		return PTR_ERR(mcbsp->io_base);
 629
 630	mcbsp->phys_base = res->start;
 631	mcbsp->reg_cache_size = resource_size(res);
 632
 633	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
 634	if (!res)
 635		mcbsp->phys_dma_base = mcbsp->phys_base;
 636	else
 637		mcbsp->phys_dma_base = res->start;
 638
 639	/*
 640	 * OMAP1, 2 uses two interrupt lines: TX, RX
 641	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
 642	 * OMAP4 and newer SoC only have the combined IRQ line.
 643	 * Use the combined IRQ if available since it gives better debugging
 644	 * possibilities.
 645	 */
 646	mcbsp->irq = platform_get_irq_byname(pdev, "common");
 647	if (mcbsp->irq == -ENXIO) {
 648		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
 649
 650		if (mcbsp->tx_irq == -ENXIO) {
 651			mcbsp->irq = platform_get_irq(pdev, 0);
 652			mcbsp->tx_irq = 0;
 653		} else {
 654			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
 655			mcbsp->irq = 0;
 656		}
 657	}
 658
 659	if (!pdev->dev.of_node) {
 660		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
 661		if (!res) {
 662			dev_err(&pdev->dev, "invalid tx DMA channel\n");
 663			return -ENODEV;
 664		}
 665		mcbsp->dma_req[0] = res->start;
 666		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
 667
 668		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
 669		if (!res) {
 670			dev_err(&pdev->dev, "invalid rx DMA channel\n");
 671			return -ENODEV;
 672		}
 673		mcbsp->dma_req[1] = res->start;
 674		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
 675	} else {
 676		mcbsp->dma_data[0].filter_data = "tx";
 677		mcbsp->dma_data[1].filter_data = "rx";
 678	}
 679
 680	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
 681						SNDRV_PCM_STREAM_PLAYBACK);
 682	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
 683						SNDRV_PCM_STREAM_CAPTURE);
 684
 685	mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
 686	if (IS_ERR(mcbsp->fclk)) {
 687		ret = PTR_ERR(mcbsp->fclk);
 688		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
 689		return ret;
 690	}
 691
 692	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
 693	if (mcbsp->pdata->buffer_size) {
 694		/*
 695		 * Initially configure the maximum thresholds to a safe value.
 696		 * The McBSP FIFO usage with these values should not go under
 697		 * 16 locations.
 698		 * If the whole FIFO without safety buffer is used, than there
 699		 * is a possibility that the DMA will be not able to push the
 700		 * new data on time, causing channel shifts in runtime.
 701		 */
 702		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
 703		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
 704
 705		ret = devm_device_add_group(mcbsp->dev, &additional_attr_group);
 
 706		if (ret) {
 707			dev_err(mcbsp->dev,
 708				"Unable to create additional controls\n");
 709			return ret;
 710		}
 711	}
 712
 713	return omap_mcbsp_st_init(pdev);
 
 
 
 
 
 
 
 
 
 
 
 714}
 715
 716/*
 717 * Stream DMA parameters. DMA request line and port address are set runtime
 718 * since they are different between OMAP1 and later OMAPs
 719 */
 720static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
 721		unsigned int packet_size)
 722{
 723	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
 724	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
 725	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 726	int words;
 727
 728	/* No need to proceed further if McBSP does not have FIFO */
 729	if (mcbsp->pdata->buffer_size == 0)
 730		return;
 731
 732	/*
 733	 * Configure McBSP threshold based on either:
 734	 * packet_size, when the sDMA is in packet mode, or based on the
 735	 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
 736	 * for mono streams.
 737	 */
 738	if (packet_size)
 739		words = packet_size;
 740	else
 741		words = 1;
 742
 743	/* Configure McBSP internal buffer usage */
 744	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 745		omap_mcbsp_set_tx_threshold(mcbsp, words);
 746	else
 747		omap_mcbsp_set_rx_threshold(mcbsp, words);
 748}
 749
 750static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
 751				    struct snd_pcm_hw_rule *rule)
 752{
 753	struct snd_interval *buffer_size = hw_param_interval(params,
 754					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
 755	struct snd_interval *channels = hw_param_interval(params,
 756					SNDRV_PCM_HW_PARAM_CHANNELS);
 757	struct omap_mcbsp *mcbsp = rule->private;
 758	struct snd_interval frames;
 759	int size;
 760
 761	snd_interval_any(&frames);
 762	size = mcbsp->pdata->buffer_size;
 763
 764	frames.min = size / channels->min;
 765	frames.integer = 1;
 766	return snd_interval_refine(buffer_size, &frames);
 767}
 768
 769static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
 770				  struct snd_soc_dai *cpu_dai)
 771{
 772	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 773	int err = 0;
 774
 775	if (!snd_soc_dai_active(cpu_dai))
 776		err = omap_mcbsp_request(mcbsp);
 777
 778	/*
 779	 * OMAP3 McBSP FIFO is word structured.
 780	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
 781	 * McBSP1,3,4,5 has 128 word long buffer
 782	 * This means that the size of the FIFO depends on the sample format.
 783	 * For example on McBSP3:
 784	 * 16bit samples: size is 128 * 2 = 256 bytes
 785	 * 32bit samples: size is 128 * 4 = 512 bytes
 786	 * It is simpler to place constraint for buffer and period based on
 787	 * channels.
 788	 * McBSP3 as example again (16 or 32 bit samples):
 789	 * 1 channel (mono): size is 128 frames (128 words)
 790	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
 791	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
 792	 */
 793	if (mcbsp->pdata->buffer_size) {
 794		/*
 795		* Rule for the buffer size. We should not allow
 796		* smaller buffer than the FIFO size to avoid underruns.
 797		* This applies only for the playback stream.
 798		*/
 799		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 800			snd_pcm_hw_rule_add(substream->runtime, 0,
 801					    SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 802					    omap_mcbsp_hwrule_min_buffersize,
 803					    mcbsp,
 804					    SNDRV_PCM_HW_PARAM_CHANNELS, -1);
 805
 806		/* Make sure, that the period size is always even */
 807		snd_pcm_hw_constraint_step(substream->runtime, 0,
 808					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
 809	}
 810
 811	return err;
 812}
 813
 814static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
 815				    struct snd_soc_dai *cpu_dai)
 816{
 817	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 818	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
 819	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
 820	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
 821
 822	if (mcbsp->latency[stream2])
 823		cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
 824					       mcbsp->latency[stream2]);
 825	else if (mcbsp->latency[stream1])
 826		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
 827
 828	mcbsp->latency[stream1] = 0;
 829
 830	if (!snd_soc_dai_active(cpu_dai)) {
 831		omap_mcbsp_free(mcbsp);
 832		mcbsp->configured = 0;
 833	}
 834}
 835
 836static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
 837				  struct snd_soc_dai *cpu_dai)
 838{
 839	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 840	struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
 841	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
 842	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
 843	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
 844	int latency = mcbsp->latency[stream2];
 845
 846	/* Prevent omap hardware from hitting off between FIFO fills */
 847	if (!latency || mcbsp->latency[stream1] < latency)
 848		latency = mcbsp->latency[stream1];
 849
 850	if (cpu_latency_qos_request_active(pm_qos_req))
 851		cpu_latency_qos_update_request(pm_qos_req, latency);
 852	else if (latency)
 853		cpu_latency_qos_add_request(pm_qos_req, latency);
 854
 855	return 0;
 856}
 857
 858static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
 859				  struct snd_soc_dai *cpu_dai)
 860{
 861	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 862
 863	switch (cmd) {
 864	case SNDRV_PCM_TRIGGER_START:
 865	case SNDRV_PCM_TRIGGER_RESUME:
 866	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 867		mcbsp->active++;
 868		omap_mcbsp_start(mcbsp, substream->stream);
 869		break;
 870
 871	case SNDRV_PCM_TRIGGER_STOP:
 872	case SNDRV_PCM_TRIGGER_SUSPEND:
 873	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 874		omap_mcbsp_stop(mcbsp, substream->stream);
 875		mcbsp->active--;
 876		break;
 877	default:
 878		return -EINVAL;
 879	}
 880
 881	return 0;
 882}
 883
 884static snd_pcm_sframes_t omap_mcbsp_dai_delay(
 885			struct snd_pcm_substream *substream,
 886			struct snd_soc_dai *dai)
 887{
 888	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
 889	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
 890	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 891	u16 fifo_use;
 892	snd_pcm_sframes_t delay;
 893
 894	/* No need to proceed further if McBSP does not have FIFO */
 895	if (mcbsp->pdata->buffer_size == 0)
 896		return 0;
 897
 898	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 899		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
 900	else
 901		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
 902
 903	/*
 904	 * Divide the used locations with the channel count to get the
 905	 * FIFO usage in samples (don't care about partial samples in the
 906	 * buffer).
 907	 */
 908	delay = fifo_use / substream->runtime->channels;
 909
 910	return delay;
 911}
 912
 913static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
 914				    struct snd_pcm_hw_params *params,
 915				    struct snd_soc_dai *cpu_dai)
 916{
 917	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 918	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
 919	struct snd_dmaengine_dai_dma_data *dma_data;
 920	int wlen, channels, wpf;
 921	int pkt_size = 0;
 922	unsigned int format, div, framesize, master;
 923	unsigned int buffer_size = mcbsp->pdata->buffer_size;
 924
 925	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
 926	channels = params_channels(params);
 927
 928	switch (params_format(params)) {
 929	case SNDRV_PCM_FORMAT_S16_LE:
 930		wlen = 16;
 931		break;
 932	case SNDRV_PCM_FORMAT_S32_LE:
 933		wlen = 32;
 934		break;
 935	default:
 936		return -EINVAL;
 937	}
 938	if (buffer_size) {
 939		int latency;
 940
 941		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
 942			int period_words, max_thrsh;
 943			int divider = 0;
 944
 945			period_words = params_period_bytes(params) / (wlen / 8);
 946			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 947				max_thrsh = mcbsp->max_tx_thres;
 948			else
 949				max_thrsh = mcbsp->max_rx_thres;
 950			/*
 951			 * Use sDMA packet mode if McBSP is in threshold mode:
 952			 * If period words less than the FIFO size the packet
 953			 * size is set to the number of period words, otherwise
 954			 * Look for the biggest threshold value which divides
 955			 * the period size evenly.
 956			 */
 957			divider = period_words / max_thrsh;
 958			if (period_words % max_thrsh)
 959				divider++;
 960			while (period_words % divider &&
 961				divider < period_words)
 962				divider++;
 963			if (divider == period_words)
 964				return -EINVAL;
 965
 966			pkt_size = period_words / divider;
 967		} else if (channels > 1) {
 968			/* Use packet mode for non mono streams */
 969			pkt_size = channels;
 970		}
 971
 972		latency = (buffer_size - pkt_size) / channels;
 973		latency = latency * USEC_PER_SEC /
 974			  (params->rate_num / params->rate_den);
 975		mcbsp->latency[substream->stream] = latency;
 976
 977		omap_mcbsp_set_threshold(substream, pkt_size);
 978	}
 979
 980	dma_data->maxburst = pkt_size;
 981
 982	if (mcbsp->configured) {
 983		/* McBSP already configured by another stream */
 984		return 0;
 985	}
 986
 987	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
 988	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
 989	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
 990	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
 991	format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
 992	wpf = channels;
 993	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
 994			      format == SND_SOC_DAIFMT_LEFT_J)) {
 995		/* Use dual-phase frames */
 996		regs->rcr2	|= RPHASE;
 997		regs->xcr2	|= XPHASE;
 998		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
 999		wpf--;
1000		regs->rcr2	|= RFRLEN2(wpf - 1);
1001		regs->xcr2	|= XFRLEN2(wpf - 1);
1002	}
1003
1004	regs->rcr1	|= RFRLEN1(wpf - 1);
1005	regs->xcr1	|= XFRLEN1(wpf - 1);
1006
1007	switch (params_format(params)) {
1008	case SNDRV_PCM_FORMAT_S16_LE:
1009		/* Set word lengths */
1010		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
1011		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
1012		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
1013		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
1014		break;
1015	case SNDRV_PCM_FORMAT_S32_LE:
1016		/* Set word lengths */
1017		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
1018		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
1019		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
1020		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
1021		break;
1022	default:
1023		/* Unsupported PCM format */
1024		return -EINVAL;
1025	}
1026
1027	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
1028	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1029	master = mcbsp->fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK;
1030	if (master == SND_SOC_DAIFMT_BP_FP) {
1031		div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1032		framesize = (mcbsp->in_freq / div) / params_rate(params);
1033
1034		if (framesize < wlen * channels) {
1035			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1036					"channels\n", __func__);
1037			return -EINVAL;
1038		}
1039	} else
1040		framesize = wlen * channels;
1041
1042	/* Set FS period and length in terms of bit clock periods */
1043	regs->srgr2	&= ~FPER(0xfff);
1044	regs->srgr1	&= ~FWID(0xff);
1045	switch (format) {
1046	case SND_SOC_DAIFMT_I2S:
1047	case SND_SOC_DAIFMT_LEFT_J:
1048		regs->srgr2	|= FPER(framesize - 1);
1049		regs->srgr1	|= FWID((framesize >> 1) - 1);
1050		break;
1051	case SND_SOC_DAIFMT_DSP_A:
1052	case SND_SOC_DAIFMT_DSP_B:
1053		regs->srgr2	|= FPER(framesize - 1);
1054		regs->srgr1	|= FWID(0);
1055		break;
1056	}
1057
1058	omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1059	mcbsp->wlen = wlen;
1060	mcbsp->configured = 1;
1061
1062	return 0;
1063}
1064
1065/*
1066 * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1067 * cache is initialized here
1068 */
1069static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1070				      unsigned int fmt)
1071{
1072	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1073	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1074	bool inv_fs = false;
1075
1076	if (mcbsp->configured)
1077		return 0;
1078
1079	mcbsp->fmt = fmt;
1080	memset(regs, 0, sizeof(*regs));
1081	/* Generic McBSP register settings */
1082	regs->spcr2	|= XINTM(3) | FREE;
1083	regs->spcr1	|= RINTM(3);
1084	/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1085	if (!mcbsp->pdata->has_ccr) {
1086		regs->rcr2	|= RFIG;
1087		regs->xcr2	|= XFIG;
1088	}
1089
1090	/* Configure XCCR/RCCR only for revisions which have ccr registers */
1091	if (mcbsp->pdata->has_ccr) {
1092		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1093		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1094	}
1095
1096	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1097	case SND_SOC_DAIFMT_I2S:
1098		/* 1-bit data delay */
1099		regs->rcr2	|= RDATDLY(1);
1100		regs->xcr2	|= XDATDLY(1);
1101		break;
1102	case SND_SOC_DAIFMT_LEFT_J:
1103		/* 0-bit data delay */
1104		regs->rcr2	|= RDATDLY(0);
1105		regs->xcr2	|= XDATDLY(0);
1106		regs->spcr1	|= RJUST(2);
1107		/* Invert FS polarity configuration */
1108		inv_fs = true;
1109		break;
1110	case SND_SOC_DAIFMT_DSP_A:
1111		/* 1-bit data delay */
1112		regs->rcr2      |= RDATDLY(1);
1113		regs->xcr2      |= XDATDLY(1);
1114		/* Invert FS polarity configuration */
1115		inv_fs = true;
1116		break;
1117	case SND_SOC_DAIFMT_DSP_B:
1118		/* 0-bit data delay */
1119		regs->rcr2      |= RDATDLY(0);
1120		regs->xcr2      |= XDATDLY(0);
1121		/* Invert FS polarity configuration */
1122		inv_fs = true;
1123		break;
1124	default:
1125		/* Unsupported data format */
1126		return -EINVAL;
1127	}
1128
1129	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
1130	case SND_SOC_DAIFMT_BP_FP:
1131		/* McBSP master. Set FS and bit clocks as outputs */
1132		regs->pcr0	|= FSXM | FSRM |
1133				   CLKXM | CLKRM;
1134		/* Sample rate generator drives the FS */
1135		regs->srgr2	|= FSGM;
1136		break;
1137	case SND_SOC_DAIFMT_BC_FP:
1138		/* McBSP slave. FS clock as output */
1139		regs->srgr2	|= FSGM;
1140		regs->pcr0	|= FSXM | FSRM;
1141		break;
1142	case SND_SOC_DAIFMT_BC_FC:
1143		/* McBSP slave */
1144		break;
1145	default:
1146		/* Unsupported master/slave configuration */
1147		return -EINVAL;
1148	}
1149
1150	/* Set bit clock (CLKX/CLKR) and FS polarities */
1151	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1152	case SND_SOC_DAIFMT_NB_NF:
1153		/*
1154		 * Normal BCLK + FS.
1155		 * FS active low. TX data driven on falling edge of bit clock
1156		 * and RX data sampled on rising edge of bit clock.
1157		 */
1158		regs->pcr0	|= FSXP | FSRP |
1159				   CLKXP | CLKRP;
1160		break;
1161	case SND_SOC_DAIFMT_NB_IF:
1162		regs->pcr0	|= CLKXP | CLKRP;
1163		break;
1164	case SND_SOC_DAIFMT_IB_NF:
1165		regs->pcr0	|= FSXP | FSRP;
1166		break;
1167	case SND_SOC_DAIFMT_IB_IF:
1168		break;
1169	default:
1170		return -EINVAL;
1171	}
1172	if (inv_fs)
1173		regs->pcr0 ^= FSXP | FSRP;
1174
1175	return 0;
1176}
1177
1178static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1179				     int div_id, int div)
1180{
1181	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1182	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1183
1184	if (div_id != OMAP_MCBSP_CLKGDV)
1185		return -ENODEV;
1186
1187	mcbsp->clk_div = div;
1188	regs->srgr1	&= ~CLKGDV(0xff);
1189	regs->srgr1	|= CLKGDV(div - 1);
1190
1191	return 0;
1192}
1193
1194static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1195					 int clk_id, unsigned int freq,
1196					 int dir)
1197{
1198	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1199	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1200	int err = 0;
1201
1202	if (mcbsp->active) {
1203		if (freq == mcbsp->in_freq)
1204			return 0;
1205		else
1206			return -EBUSY;
1207	}
1208
1209	mcbsp->in_freq = freq;
1210	regs->srgr2 &= ~CLKSM;
1211	regs->pcr0 &= ~SCLKME;
1212
1213	switch (clk_id) {
1214	case OMAP_MCBSP_SYSCLK_CLK:
1215		regs->srgr2	|= CLKSM;
1216		break;
1217	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1218		if (mcbsp_omap1()) {
1219			err = -EINVAL;
1220			break;
1221		}
1222		err = omap2_mcbsp_set_clks_src(mcbsp,
1223					       MCBSP_CLKS_PRCM_SRC);
1224		break;
1225	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1226		if (mcbsp_omap1()) {
1227			err = 0;
1228			break;
1229		}
1230		err = omap2_mcbsp_set_clks_src(mcbsp,
1231					       MCBSP_CLKS_PAD_SRC);
1232		break;
1233
1234	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1235		regs->srgr2	|= CLKSM;
1236		regs->pcr0	|= SCLKME;
1237		/*
1238		 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1239		 * disable output on those pins. This enables to inject the
1240		 * reference clock through CLKX/CLKR. For this to work
1241		 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1242		 */
1243		regs->pcr0	&= ~CLKXM;
1244		break;
1245	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1246		regs->pcr0	|= SCLKME;
1247		/* Disable ouput on CLKR pin in master mode */
1248		regs->pcr0	&= ~CLKRM;
1249		break;
1250	default:
1251		err = -ENODEV;
1252	}
1253
1254	return err;
1255}
1256
1257static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1258	.startup	= omap_mcbsp_dai_startup,
1259	.shutdown	= omap_mcbsp_dai_shutdown,
1260	.prepare	= omap_mcbsp_dai_prepare,
1261	.trigger	= omap_mcbsp_dai_trigger,
1262	.delay		= omap_mcbsp_dai_delay,
1263	.hw_params	= omap_mcbsp_dai_hw_params,
1264	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
1265	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
1266	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
1267};
1268
1269static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1270{
1271	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1272
1273	pm_runtime_enable(mcbsp->dev);
1274
1275	snd_soc_dai_init_dma_data(dai,
1276				  &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1277				  &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1278
1279	return 0;
1280}
1281
1282static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1283{
1284	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1285
1286	pm_runtime_disable(mcbsp->dev);
1287
1288	return 0;
1289}
1290
1291static struct snd_soc_dai_driver omap_mcbsp_dai = {
1292	.probe = omap_mcbsp_probe,
1293	.remove = omap_mcbsp_remove,
1294	.playback = {
1295		.channels_min = 1,
1296		.channels_max = 16,
1297		.rates = OMAP_MCBSP_RATES,
1298		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1299	},
1300	.capture = {
1301		.channels_min = 1,
1302		.channels_max = 16,
1303		.rates = OMAP_MCBSP_RATES,
1304		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1305	},
1306	.ops = &mcbsp_dai_ops,
1307};
1308
1309static const struct snd_soc_component_driver omap_mcbsp_component = {
1310	.name			= "omap-mcbsp",
1311	.legacy_dai_naming	= 1,
1312};
1313
1314static struct omap_mcbsp_platform_data omap2420_pdata = {
1315	.reg_step = 4,
1316	.reg_size = 2,
1317};
1318
1319static struct omap_mcbsp_platform_data omap2430_pdata = {
1320	.reg_step = 4,
1321	.reg_size = 4,
1322	.has_ccr = true,
1323};
1324
1325static struct omap_mcbsp_platform_data omap3_pdata = {
1326	.reg_step = 4,
1327	.reg_size = 4,
1328	.has_ccr = true,
1329	.has_wakeup = true,
1330};
1331
1332static struct omap_mcbsp_platform_data omap4_pdata = {
1333	.reg_step = 4,
1334	.reg_size = 4,
1335	.has_ccr = true,
1336	.has_wakeup = true,
1337};
1338
1339static const struct of_device_id omap_mcbsp_of_match[] = {
1340	{
1341		.compatible = "ti,omap2420-mcbsp",
1342		.data = &omap2420_pdata,
1343	},
1344	{
1345		.compatible = "ti,omap2430-mcbsp",
1346		.data = &omap2430_pdata,
1347	},
1348	{
1349		.compatible = "ti,omap3-mcbsp",
1350		.data = &omap3_pdata,
1351	},
1352	{
1353		.compatible = "ti,omap4-mcbsp",
1354		.data = &omap4_pdata,
1355	},
1356	{ },
1357};
1358MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1359
1360static int asoc_mcbsp_probe(struct platform_device *pdev)
1361{
1362	struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1363	struct omap_mcbsp *mcbsp;
1364	const struct of_device_id *match;
1365	int ret;
1366
1367	match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
1368	if (match) {
1369		struct device_node *node = pdev->dev.of_node;
1370		struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1371		int buffer_size;
1372
1373		pdata = devm_kzalloc(&pdev->dev,
1374				     sizeof(struct omap_mcbsp_platform_data),
1375				     GFP_KERNEL);
1376		if (!pdata)
1377			return -ENOMEM;
1378
1379		memcpy(pdata, match->data, sizeof(*pdata));
1380		if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1381			pdata->buffer_size = buffer_size;
1382		if (pdata_quirk)
1383			pdata->force_ick_on = pdata_quirk->force_ick_on;
1384	} else if (!pdata) {
1385		dev_err(&pdev->dev, "missing platform data.\n");
1386		return -EINVAL;
1387	}
1388	mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1389	if (!mcbsp)
1390		return -ENOMEM;
1391
1392	mcbsp->id = pdev->id;
1393	mcbsp->pdata = pdata;
1394	mcbsp->dev = &pdev->dev;
1395	platform_set_drvdata(pdev, mcbsp);
1396
1397	ret = omap_mcbsp_init(pdev);
1398	if (ret)
1399		return ret;
1400
1401	if (mcbsp->pdata->reg_size == 2) {
1402		omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1403		omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1404	}
1405
1406	ret = devm_snd_soc_register_component(&pdev->dev,
1407					      &omap_mcbsp_component,
1408					      &omap_mcbsp_dai, 1);
1409	if (ret)
1410		return ret;
1411
1412	return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1413}
1414
1415static int asoc_mcbsp_remove(struct platform_device *pdev)
1416{
1417	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1418
1419	if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1420		mcbsp->pdata->ops->free(mcbsp->id);
1421
1422	if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
1423		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
 
 
 
 
 
 
 
1424
1425	return 0;
1426}
1427
1428static struct platform_driver asoc_mcbsp_driver = {
1429	.driver = {
1430			.name = "omap-mcbsp",
1431			.of_match_table = omap_mcbsp_of_match,
1432	},
1433
1434	.probe = asoc_mcbsp_probe,
1435	.remove = asoc_mcbsp_remove,
1436};
1437
1438module_platform_driver(asoc_mcbsp_driver);
1439
1440MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1441MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1442MODULE_LICENSE("GPL");
1443MODULE_ALIAS("platform:omap-mcbsp");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
   4 *
   5 * Copyright (C) 2008 Nokia Corporation
   6 *
   7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
   8 *          Peter Ujfalusi <peter.ujfalusi@ti.com>
   9 */
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/of.h>
  16#include <linux/of_device.h>
  17#include <sound/core.h>
  18#include <sound/pcm.h>
  19#include <sound/pcm_params.h>
  20#include <sound/initval.h>
  21#include <sound/soc.h>
  22#include <sound/dmaengine_pcm.h>
  23
  24#include "omap-mcbsp-priv.h"
  25#include "omap-mcbsp.h"
  26#include "sdma-pcm.h"
  27
  28#define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
  29
  30enum {
  31	OMAP_MCBSP_WORD_8 = 0,
  32	OMAP_MCBSP_WORD_12,
  33	OMAP_MCBSP_WORD_16,
  34	OMAP_MCBSP_WORD_20,
  35	OMAP_MCBSP_WORD_24,
  36	OMAP_MCBSP_WORD_32,
  37};
  38
  39static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
  40{
  41	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
  42	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n", MCBSP_READ(mcbsp, DRR2));
  43	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n", MCBSP_READ(mcbsp, DRR1));
  44	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n", MCBSP_READ(mcbsp, DXR2));
  45	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n", MCBSP_READ(mcbsp, DXR1));
  46	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
  47	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
  48	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n", MCBSP_READ(mcbsp, RCR2));
  49	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n", MCBSP_READ(mcbsp, RCR1));
  50	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n", MCBSP_READ(mcbsp, XCR2));
  51	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n", MCBSP_READ(mcbsp, XCR1));
  52	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
  53	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
  54	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n", MCBSP_READ(mcbsp, PCR0));
  55	dev_dbg(mcbsp->dev, "***********************\n");
  56}
  57
  58static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
  59{
  60	struct clk *fck_src;
  61	const char *src;
  62	int r;
  63
  64	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
  65		src = "pad_fck";
  66	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
  67		src = "prcm_fck";
  68	else
  69		return -EINVAL;
  70
  71	fck_src = clk_get(mcbsp->dev, src);
  72	if (IS_ERR(fck_src)) {
  73		dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
  74		return -EINVAL;
  75	}
  76
  77	pm_runtime_put_sync(mcbsp->dev);
  78
  79	r = clk_set_parent(mcbsp->fclk, fck_src);
  80	if (r) {
  81		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
  82			src);
  83		clk_put(fck_src);
  84		return r;
  85	}
  86
  87	pm_runtime_get_sync(mcbsp->dev);
  88
  89	clk_put(fck_src);
  90
  91	return 0;
  92}
  93
  94static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
  95{
  96	struct omap_mcbsp *mcbsp = data;
  97	u16 irqst;
  98
  99	irqst = MCBSP_READ(mcbsp, IRQST);
 100	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
 101
 102	if (irqst & RSYNCERREN)
 103		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
 104	if (irqst & RFSREN)
 105		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
 106	if (irqst & REOFEN)
 107		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
 108	if (irqst & RRDYEN)
 109		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
 110	if (irqst & RUNDFLEN)
 111		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
 112	if (irqst & ROVFLEN)
 113		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
 114
 115	if (irqst & XSYNCERREN)
 116		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
 117	if (irqst & XFSXEN)
 118		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
 119	if (irqst & XEOFEN)
 120		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
 121	if (irqst & XRDYEN)
 122		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
 123	if (irqst & XUNDFLEN)
 124		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
 125	if (irqst & XOVFLEN)
 126		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
 127	if (irqst & XEMPTYEOFEN)
 128		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
 129
 130	MCBSP_WRITE(mcbsp, IRQST, irqst);
 131
 132	return IRQ_HANDLED;
 133}
 134
 135static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
 136{
 137	struct omap_mcbsp *mcbsp = data;
 138	u16 irqst_spcr2;
 139
 140	irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
 141	dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
 142
 143	if (irqst_spcr2 & XSYNC_ERR) {
 144		dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
 145			irqst_spcr2);
 146		/* Writing zero to XSYNC_ERR clears the IRQ */
 147		MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
 148	}
 149
 150	return IRQ_HANDLED;
 151}
 152
 153static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
 154{
 155	struct omap_mcbsp *mcbsp = data;
 156	u16 irqst_spcr1;
 157
 158	irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
 159	dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
 160
 161	if (irqst_spcr1 & RSYNC_ERR) {
 162		dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
 163			irqst_spcr1);
 164		/* Writing zero to RSYNC_ERR clears the IRQ */
 165		MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
 166	}
 167
 168	return IRQ_HANDLED;
 169}
 170
 171/*
 172 * omap_mcbsp_config simply write a config to the
 173 * appropriate McBSP.
 174 * You either call this function or set the McBSP registers
 175 * by yourself before calling omap_mcbsp_start().
 176 */
 177static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
 178			      const struct omap_mcbsp_reg_cfg *config)
 179{
 180	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
 181		mcbsp->id, mcbsp->phys_base);
 182
 183	/* We write the given config */
 184	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
 185	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
 186	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
 187	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
 188	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
 189	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
 190	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
 191	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
 192	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
 193	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
 194	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
 195	if (mcbsp->pdata->has_ccr) {
 196		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
 197		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
 198	}
 199	/* Enable wakeup behavior */
 200	if (mcbsp->pdata->has_wakeup)
 201		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
 202
 203	/* Enable TX/RX sync error interrupts by default */
 204	if (mcbsp->irq)
 205		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
 206			    RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
 207}
 208
 209/**
 210 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
 211 * @mcbsp: omap_mcbsp struct for the McBSP instance
 212 * @stream: Stream direction (playback/capture)
 213 *
 214 * Returns the address of mcbsp data transmit register or data receive register
 215 * to be used by DMA for transferring/receiving data
 216 */
 217static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
 218				     unsigned int stream)
 219{
 220	int data_reg;
 221
 222	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
 223		if (mcbsp->pdata->reg_size == 2)
 224			data_reg = OMAP_MCBSP_REG_DXR1;
 225		else
 226			data_reg = OMAP_MCBSP_REG_DXR;
 227	} else {
 228		if (mcbsp->pdata->reg_size == 2)
 229			data_reg = OMAP_MCBSP_REG_DRR1;
 230		else
 231			data_reg = OMAP_MCBSP_REG_DRR;
 232	}
 233
 234	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
 235}
 236
 237/*
 238 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
 239 * The threshold parameter is 1 based, and it is converted (threshold - 1)
 240 * for the THRSH2 register.
 241 */
 242static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
 243{
 244	if (threshold && threshold <= mcbsp->max_tx_thres)
 245		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
 246}
 247
 248/*
 249 * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
 250 * The threshold parameter is 1 based, and it is converted (threshold - 1)
 251 * for the THRSH1 register.
 252 */
 253static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
 254{
 255	if (threshold && threshold <= mcbsp->max_rx_thres)
 256		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
 257}
 258
 259/*
 260 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
 261 */
 262static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
 263{
 264	u16 buffstat;
 265
 266	/* Returns the number of free locations in the buffer */
 267	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
 268
 269	/* Number of slots are different in McBSP ports */
 270	return mcbsp->pdata->buffer_size - buffstat;
 271}
 272
 273/*
 274 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
 275 * to reach the threshold value (when the DMA will be triggered to read it)
 276 */
 277static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
 278{
 279	u16 buffstat, threshold;
 280
 281	/* Returns the number of used locations in the buffer */
 282	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
 283	/* RX threshold */
 284	threshold = MCBSP_READ(mcbsp, THRSH1);
 285
 286	/* Return the number of location till we reach the threshold limit */
 287	if (threshold <= buffstat)
 288		return 0;
 289	else
 290		return threshold - buffstat;
 291}
 292
 293static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
 294{
 295	void *reg_cache;
 296	int err;
 297
 298	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
 299	if (!reg_cache)
 300		return -ENOMEM;
 301
 302	spin_lock(&mcbsp->lock);
 303	if (!mcbsp->free) {
 304		dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
 305		err = -EBUSY;
 306		goto err_kfree;
 307	}
 308
 309	mcbsp->free = false;
 310	mcbsp->reg_cache = reg_cache;
 311	spin_unlock(&mcbsp->lock);
 312
 313	if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
 314		mcbsp->pdata->ops->request(mcbsp->id - 1);
 315
 316	/*
 317	 * Make sure that transmitter, receiver and sample-rate generator are
 318	 * not running before activating IRQs.
 319	 */
 320	MCBSP_WRITE(mcbsp, SPCR1, 0);
 321	MCBSP_WRITE(mcbsp, SPCR2, 0);
 322
 323	if (mcbsp->irq) {
 324		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
 325				  "McBSP", (void *)mcbsp);
 326		if (err != 0) {
 327			dev_err(mcbsp->dev, "Unable to request IRQ\n");
 328			goto err_clk_disable;
 329		}
 330	} else {
 331		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
 332				  "McBSP TX", (void *)mcbsp);
 333		if (err != 0) {
 334			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
 335			goto err_clk_disable;
 336		}
 337
 338		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
 339				  "McBSP RX", (void *)mcbsp);
 340		if (err != 0) {
 341			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
 342			goto err_free_irq;
 343		}
 344	}
 345
 346	return 0;
 347err_free_irq:
 348	free_irq(mcbsp->tx_irq, (void *)mcbsp);
 349err_clk_disable:
 350	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
 351		mcbsp->pdata->ops->free(mcbsp->id - 1);
 352
 353	/* Disable wakeup behavior */
 354	if (mcbsp->pdata->has_wakeup)
 355		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
 356
 357	spin_lock(&mcbsp->lock);
 358	mcbsp->free = true;
 359	mcbsp->reg_cache = NULL;
 360err_kfree:
 361	spin_unlock(&mcbsp->lock);
 362	kfree(reg_cache);
 363
 364	return err;
 365}
 366
 367static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
 368{
 369	void *reg_cache;
 370
 371	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
 372		mcbsp->pdata->ops->free(mcbsp->id - 1);
 373
 374	/* Disable wakeup behavior */
 375	if (mcbsp->pdata->has_wakeup)
 376		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
 377
 378	/* Disable interrupt requests */
 379	if (mcbsp->irq)
 380		MCBSP_WRITE(mcbsp, IRQEN, 0);
 381
 382	if (mcbsp->irq) {
 383		free_irq(mcbsp->irq, (void *)mcbsp);
 384	} else {
 385		free_irq(mcbsp->rx_irq, (void *)mcbsp);
 386		free_irq(mcbsp->tx_irq, (void *)mcbsp);
 387	}
 388
 389	reg_cache = mcbsp->reg_cache;
 390
 391	/*
 392	 * Select CLKS source from internal source unconditionally before
 393	 * marking the McBSP port as free.
 394	 * If the external clock source via MCBSP_CLKS pin has been selected the
 395	 * system will refuse to enter idle if the CLKS pin source is not reset
 396	 * back to internal source.
 397	 */
 398	if (!mcbsp_omap1())
 399		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
 400
 401	spin_lock(&mcbsp->lock);
 402	if (mcbsp->free)
 403		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
 404	else
 405		mcbsp->free = true;
 406	mcbsp->reg_cache = NULL;
 407	spin_unlock(&mcbsp->lock);
 408
 409	kfree(reg_cache);
 410}
 411
 412/*
 413 * Here we start the McBSP, by enabling transmitter, receiver or both.
 414 * If no transmitter or receiver is active prior calling, then sample-rate
 415 * generator and frame sync are started.
 416 */
 417static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
 418{
 419	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
 420	int rx = !tx;
 421	int enable_srg = 0;
 422	u16 w;
 423
 424	if (mcbsp->st_data)
 425		omap_mcbsp_st_start(mcbsp);
 426
 427	/* Only enable SRG, if McBSP is master */
 428	w = MCBSP_READ_CACHE(mcbsp, PCR0);
 429	if (w & (FSXM | FSRM | CLKXM | CLKRM))
 430		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
 431				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
 432
 433	if (enable_srg) {
 434		/* Start the sample generator */
 435		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 436		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
 437	}
 438
 439	/* Enable transmitter and receiver */
 440	tx &= 1;
 441	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 442	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
 443
 444	rx &= 1;
 445	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
 446	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
 447
 448	/*
 449	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
 450	 * REVISIT: 100us may give enough time for two CLKSRG, however
 451	 * due to some unknown PM related, clock gating etc. reason it
 452	 * is now at 500us.
 453	 */
 454	udelay(500);
 455
 456	if (enable_srg) {
 457		/* Start frame sync */
 458		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 459		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
 460	}
 461
 462	if (mcbsp->pdata->has_ccr) {
 463		/* Release the transmitter and receiver */
 464		w = MCBSP_READ_CACHE(mcbsp, XCCR);
 465		w &= ~(tx ? XDISABLE : 0);
 466		MCBSP_WRITE(mcbsp, XCCR, w);
 467		w = MCBSP_READ_CACHE(mcbsp, RCCR);
 468		w &= ~(rx ? RDISABLE : 0);
 469		MCBSP_WRITE(mcbsp, RCCR, w);
 470	}
 471
 472	/* Dump McBSP Regs */
 473	omap_mcbsp_dump_reg(mcbsp);
 474}
 475
 476static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
 477{
 478	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
 479	int rx = !tx;
 480	int idle;
 481	u16 w;
 482
 483	/* Reset transmitter */
 484	tx &= 1;
 485	if (mcbsp->pdata->has_ccr) {
 486		w = MCBSP_READ_CACHE(mcbsp, XCCR);
 487		w |= (tx ? XDISABLE : 0);
 488		MCBSP_WRITE(mcbsp, XCCR, w);
 489	}
 490	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 491	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
 492
 493	/* Reset receiver */
 494	rx &= 1;
 495	if (mcbsp->pdata->has_ccr) {
 496		w = MCBSP_READ_CACHE(mcbsp, RCCR);
 497		w |= (rx ? RDISABLE : 0);
 498		MCBSP_WRITE(mcbsp, RCCR, w);
 499	}
 500	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
 501	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
 502
 503	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
 504			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
 505
 506	if (idle) {
 507		/* Reset the sample rate generator */
 508		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 509		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
 510	}
 511
 512	if (mcbsp->st_data)
 513		omap_mcbsp_st_stop(mcbsp);
 514}
 515
 516#define max_thres(m)			(mcbsp->pdata->buffer_size)
 517#define valid_threshold(m, val)		((val) <= max_thres(m))
 518#define THRESHOLD_PROP_BUILDER(prop)					\
 519static ssize_t prop##_show(struct device *dev,				\
 520			struct device_attribute *attr, char *buf)	\
 521{									\
 522	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
 523									\
 524	return sprintf(buf, "%u\n", mcbsp->prop);			\
 525}									\
 526									\
 527static ssize_t prop##_store(struct device *dev,				\
 528				struct device_attribute *attr,		\
 529				const char *buf, size_t size)		\
 530{									\
 531	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
 532	unsigned long val;						\
 533	int status;							\
 534									\
 535	status = kstrtoul(buf, 0, &val);				\
 536	if (status)							\
 537		return status;						\
 538									\
 539	if (!valid_threshold(mcbsp, val))				\
 540		return -EDOM;						\
 541									\
 542	mcbsp->prop = val;						\
 543	return size;							\
 544}									\
 545									\
 546static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store)
 547
 548THRESHOLD_PROP_BUILDER(max_tx_thres);
 549THRESHOLD_PROP_BUILDER(max_rx_thres);
 550
 551static const char * const dma_op_modes[] = {
 552	"element", "threshold",
 553};
 554
 555static ssize_t dma_op_mode_show(struct device *dev,
 556				struct device_attribute *attr, char *buf)
 557{
 558	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
 559	int dma_op_mode, i = 0;
 560	ssize_t len = 0;
 561	const char * const *s;
 562
 563	dma_op_mode = mcbsp->dma_op_mode;
 564
 565	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
 566		if (dma_op_mode == i)
 567			len += sprintf(buf + len, "[%s] ", *s);
 568		else
 569			len += sprintf(buf + len, "%s ", *s);
 570	}
 571	len += sprintf(buf + len, "\n");
 572
 573	return len;
 574}
 575
 576static ssize_t dma_op_mode_store(struct device *dev,
 577				 struct device_attribute *attr, const char *buf,
 578				 size_t size)
 579{
 580	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
 581	int i;
 582
 583	i = sysfs_match_string(dma_op_modes, buf);
 584	if (i < 0)
 585		return i;
 586
 587	spin_lock_irq(&mcbsp->lock);
 588	if (!mcbsp->free) {
 589		size = -EBUSY;
 590		goto unlock;
 591	}
 592	mcbsp->dma_op_mode = i;
 593
 594unlock:
 595	spin_unlock_irq(&mcbsp->lock);
 596
 597	return size;
 598}
 599
 600static DEVICE_ATTR_RW(dma_op_mode);
 601
 602static const struct attribute *additional_attrs[] = {
 603	&dev_attr_max_tx_thres.attr,
 604	&dev_attr_max_rx_thres.attr,
 605	&dev_attr_dma_op_mode.attr,
 606	NULL,
 607};
 608
 609static const struct attribute_group additional_attr_group = {
 610	.attrs = (struct attribute **)additional_attrs,
 611};
 612
 613/*
 614 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
 615 * 730 has only 2 McBSP, and both of them are MPU peripherals.
 616 */
 617static int omap_mcbsp_init(struct platform_device *pdev)
 618{
 619	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
 620	struct resource *res;
 621	int ret = 0;
 622
 623	spin_lock_init(&mcbsp->lock);
 624	mcbsp->free = true;
 625
 626	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
 627	if (!res)
 628		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 629
 630	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
 631	if (IS_ERR(mcbsp->io_base))
 632		return PTR_ERR(mcbsp->io_base);
 633
 634	mcbsp->phys_base = res->start;
 635	mcbsp->reg_cache_size = resource_size(res);
 636
 637	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
 638	if (!res)
 639		mcbsp->phys_dma_base = mcbsp->phys_base;
 640	else
 641		mcbsp->phys_dma_base = res->start;
 642
 643	/*
 644	 * OMAP1, 2 uses two interrupt lines: TX, RX
 645	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
 646	 * OMAP4 and newer SoC only have the combined IRQ line.
 647	 * Use the combined IRQ if available since it gives better debugging
 648	 * possibilities.
 649	 */
 650	mcbsp->irq = platform_get_irq_byname(pdev, "common");
 651	if (mcbsp->irq == -ENXIO) {
 652		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
 653
 654		if (mcbsp->tx_irq == -ENXIO) {
 655			mcbsp->irq = platform_get_irq(pdev, 0);
 656			mcbsp->tx_irq = 0;
 657		} else {
 658			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
 659			mcbsp->irq = 0;
 660		}
 661	}
 662
 663	if (!pdev->dev.of_node) {
 664		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
 665		if (!res) {
 666			dev_err(&pdev->dev, "invalid tx DMA channel\n");
 667			return -ENODEV;
 668		}
 669		mcbsp->dma_req[0] = res->start;
 670		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
 671
 672		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
 673		if (!res) {
 674			dev_err(&pdev->dev, "invalid rx DMA channel\n");
 675			return -ENODEV;
 676		}
 677		mcbsp->dma_req[1] = res->start;
 678		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
 679	} else {
 680		mcbsp->dma_data[0].filter_data = "tx";
 681		mcbsp->dma_data[1].filter_data = "rx";
 682	}
 683
 684	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
 685						SNDRV_PCM_STREAM_PLAYBACK);
 686	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
 687						SNDRV_PCM_STREAM_CAPTURE);
 688
 689	mcbsp->fclk = clk_get(&pdev->dev, "fck");
 690	if (IS_ERR(mcbsp->fclk)) {
 691		ret = PTR_ERR(mcbsp->fclk);
 692		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
 693		return ret;
 694	}
 695
 696	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
 697	if (mcbsp->pdata->buffer_size) {
 698		/*
 699		 * Initially configure the maximum thresholds to a safe value.
 700		 * The McBSP FIFO usage with these values should not go under
 701		 * 16 locations.
 702		 * If the whole FIFO without safety buffer is used, than there
 703		 * is a possibility that the DMA will be not able to push the
 704		 * new data on time, causing channel shifts in runtime.
 705		 */
 706		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
 707		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
 708
 709		ret = sysfs_create_group(&mcbsp->dev->kobj,
 710					 &additional_attr_group);
 711		if (ret) {
 712			dev_err(mcbsp->dev,
 713				"Unable to create additional controls\n");
 714			goto err_thres;
 715		}
 716	}
 717
 718	ret = omap_mcbsp_st_init(pdev);
 719	if (ret)
 720		goto err_st;
 721
 722	return 0;
 723
 724err_st:
 725	if (mcbsp->pdata->buffer_size)
 726		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
 727err_thres:
 728	clk_put(mcbsp->fclk);
 729	return ret;
 730}
 731
 732/*
 733 * Stream DMA parameters. DMA request line and port address are set runtime
 734 * since they are different between OMAP1 and later OMAPs
 735 */
 736static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
 737		unsigned int packet_size)
 738{
 739	struct snd_soc_pcm_runtime *rtd = substream->private_data;
 740	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
 741	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 742	int words;
 743
 744	/* No need to proceed further if McBSP does not have FIFO */
 745	if (mcbsp->pdata->buffer_size == 0)
 746		return;
 747
 748	/*
 749	 * Configure McBSP threshold based on either:
 750	 * packet_size, when the sDMA is in packet mode, or based on the
 751	 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
 752	 * for mono streams.
 753	 */
 754	if (packet_size)
 755		words = packet_size;
 756	else
 757		words = 1;
 758
 759	/* Configure McBSP internal buffer usage */
 760	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 761		omap_mcbsp_set_tx_threshold(mcbsp, words);
 762	else
 763		omap_mcbsp_set_rx_threshold(mcbsp, words);
 764}
 765
 766static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
 767				    struct snd_pcm_hw_rule *rule)
 768{
 769	struct snd_interval *buffer_size = hw_param_interval(params,
 770					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
 771	struct snd_interval *channels = hw_param_interval(params,
 772					SNDRV_PCM_HW_PARAM_CHANNELS);
 773	struct omap_mcbsp *mcbsp = rule->private;
 774	struct snd_interval frames;
 775	int size;
 776
 777	snd_interval_any(&frames);
 778	size = mcbsp->pdata->buffer_size;
 779
 780	frames.min = size / channels->min;
 781	frames.integer = 1;
 782	return snd_interval_refine(buffer_size, &frames);
 783}
 784
 785static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
 786				  struct snd_soc_dai *cpu_dai)
 787{
 788	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 789	int err = 0;
 790
 791	if (!cpu_dai->active)
 792		err = omap_mcbsp_request(mcbsp);
 793
 794	/*
 795	 * OMAP3 McBSP FIFO is word structured.
 796	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
 797	 * McBSP1,3,4,5 has 128 word long buffer
 798	 * This means that the size of the FIFO depends on the sample format.
 799	 * For example on McBSP3:
 800	 * 16bit samples: size is 128 * 2 = 256 bytes
 801	 * 32bit samples: size is 128 * 4 = 512 bytes
 802	 * It is simpler to place constraint for buffer and period based on
 803	 * channels.
 804	 * McBSP3 as example again (16 or 32 bit samples):
 805	 * 1 channel (mono): size is 128 frames (128 words)
 806	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
 807	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
 808	 */
 809	if (mcbsp->pdata->buffer_size) {
 810		/*
 811		* Rule for the buffer size. We should not allow
 812		* smaller buffer than the FIFO size to avoid underruns.
 813		* This applies only for the playback stream.
 814		*/
 815		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 816			snd_pcm_hw_rule_add(substream->runtime, 0,
 817					    SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 818					    omap_mcbsp_hwrule_min_buffersize,
 819					    mcbsp,
 820					    SNDRV_PCM_HW_PARAM_CHANNELS, -1);
 821
 822		/* Make sure, that the period size is always even */
 823		snd_pcm_hw_constraint_step(substream->runtime, 0,
 824					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
 825	}
 826
 827	return err;
 828}
 829
 830static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
 831				    struct snd_soc_dai *cpu_dai)
 832{
 833	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 834	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
 835	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
 836	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
 837
 838	if (mcbsp->latency[stream2])
 839		pm_qos_update_request(&mcbsp->pm_qos_req,
 840				      mcbsp->latency[stream2]);
 841	else if (mcbsp->latency[stream1])
 842		pm_qos_remove_request(&mcbsp->pm_qos_req);
 843
 844	mcbsp->latency[stream1] = 0;
 845
 846	if (!cpu_dai->active) {
 847		omap_mcbsp_free(mcbsp);
 848		mcbsp->configured = 0;
 849	}
 850}
 851
 852static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
 853				  struct snd_soc_dai *cpu_dai)
 854{
 855	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 856	struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
 857	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
 858	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
 859	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
 860	int latency = mcbsp->latency[stream2];
 861
 862	/* Prevent omap hardware from hitting off between FIFO fills */
 863	if (!latency || mcbsp->latency[stream1] < latency)
 864		latency = mcbsp->latency[stream1];
 865
 866	if (pm_qos_request_active(pm_qos_req))
 867		pm_qos_update_request(pm_qos_req, latency);
 868	else if (latency)
 869		pm_qos_add_request(pm_qos_req, PM_QOS_CPU_DMA_LATENCY, latency);
 870
 871	return 0;
 872}
 873
 874static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
 875				  struct snd_soc_dai *cpu_dai)
 876{
 877	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 878
 879	switch (cmd) {
 880	case SNDRV_PCM_TRIGGER_START:
 881	case SNDRV_PCM_TRIGGER_RESUME:
 882	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 883		mcbsp->active++;
 884		omap_mcbsp_start(mcbsp, substream->stream);
 885		break;
 886
 887	case SNDRV_PCM_TRIGGER_STOP:
 888	case SNDRV_PCM_TRIGGER_SUSPEND:
 889	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 890		omap_mcbsp_stop(mcbsp, substream->stream);
 891		mcbsp->active--;
 892		break;
 893	default:
 894		return -EINVAL;
 895	}
 896
 897	return 0;
 898}
 899
 900static snd_pcm_sframes_t omap_mcbsp_dai_delay(
 901			struct snd_pcm_substream *substream,
 902			struct snd_soc_dai *dai)
 903{
 904	struct snd_soc_pcm_runtime *rtd = substream->private_data;
 905	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
 906	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 907	u16 fifo_use;
 908	snd_pcm_sframes_t delay;
 909
 910	/* No need to proceed further if McBSP does not have FIFO */
 911	if (mcbsp->pdata->buffer_size == 0)
 912		return 0;
 913
 914	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 915		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
 916	else
 917		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
 918
 919	/*
 920	 * Divide the used locations with the channel count to get the
 921	 * FIFO usage in samples (don't care about partial samples in the
 922	 * buffer).
 923	 */
 924	delay = fifo_use / substream->runtime->channels;
 925
 926	return delay;
 927}
 928
 929static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
 930				    struct snd_pcm_hw_params *params,
 931				    struct snd_soc_dai *cpu_dai)
 932{
 933	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 934	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
 935	struct snd_dmaengine_dai_dma_data *dma_data;
 936	int wlen, channels, wpf;
 937	int pkt_size = 0;
 938	unsigned int format, div, framesize, master;
 939	unsigned int buffer_size = mcbsp->pdata->buffer_size;
 940
 941	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
 942	channels = params_channels(params);
 943
 944	switch (params_format(params)) {
 945	case SNDRV_PCM_FORMAT_S16_LE:
 946		wlen = 16;
 947		break;
 948	case SNDRV_PCM_FORMAT_S32_LE:
 949		wlen = 32;
 950		break;
 951	default:
 952		return -EINVAL;
 953	}
 954	if (buffer_size) {
 955		int latency;
 956
 957		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
 958			int period_words, max_thrsh;
 959			int divider = 0;
 960
 961			period_words = params_period_bytes(params) / (wlen / 8);
 962			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 963				max_thrsh = mcbsp->max_tx_thres;
 964			else
 965				max_thrsh = mcbsp->max_rx_thres;
 966			/*
 967			 * Use sDMA packet mode if McBSP is in threshold mode:
 968			 * If period words less than the FIFO size the packet
 969			 * size is set to the number of period words, otherwise
 970			 * Look for the biggest threshold value which divides
 971			 * the period size evenly.
 972			 */
 973			divider = period_words / max_thrsh;
 974			if (period_words % max_thrsh)
 975				divider++;
 976			while (period_words % divider &&
 977				divider < period_words)
 978				divider++;
 979			if (divider == period_words)
 980				return -EINVAL;
 981
 982			pkt_size = period_words / divider;
 983		} else if (channels > 1) {
 984			/* Use packet mode for non mono streams */
 985			pkt_size = channels;
 986		}
 987
 988		latency = (buffer_size - pkt_size) / channels;
 989		latency = latency * USEC_PER_SEC /
 990			  (params->rate_num / params->rate_den);
 991		mcbsp->latency[substream->stream] = latency;
 992
 993		omap_mcbsp_set_threshold(substream, pkt_size);
 994	}
 995
 996	dma_data->maxburst = pkt_size;
 997
 998	if (mcbsp->configured) {
 999		/* McBSP already configured by another stream */
1000		return 0;
1001	}
1002
1003	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
1004	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
1005	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
1006	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
1007	format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
1008	wpf = channels;
1009	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
1010			      format == SND_SOC_DAIFMT_LEFT_J)) {
1011		/* Use dual-phase frames */
1012		regs->rcr2	|= RPHASE;
1013		regs->xcr2	|= XPHASE;
1014		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
1015		wpf--;
1016		regs->rcr2	|= RFRLEN2(wpf - 1);
1017		regs->xcr2	|= XFRLEN2(wpf - 1);
1018	}
1019
1020	regs->rcr1	|= RFRLEN1(wpf - 1);
1021	regs->xcr1	|= XFRLEN1(wpf - 1);
1022
1023	switch (params_format(params)) {
1024	case SNDRV_PCM_FORMAT_S16_LE:
1025		/* Set word lengths */
1026		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
1027		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
1028		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
1029		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
1030		break;
1031	case SNDRV_PCM_FORMAT_S32_LE:
1032		/* Set word lengths */
1033		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
1034		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
1035		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
1036		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
1037		break;
1038	default:
1039		/* Unsupported PCM format */
1040		return -EINVAL;
1041	}
1042
1043	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
1044	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1045	master = mcbsp->fmt & SND_SOC_DAIFMT_MASTER_MASK;
1046	if (master ==	SND_SOC_DAIFMT_CBS_CFS) {
1047		div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1048		framesize = (mcbsp->in_freq / div) / params_rate(params);
1049
1050		if (framesize < wlen * channels) {
1051			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1052					"channels\n", __func__);
1053			return -EINVAL;
1054		}
1055	} else
1056		framesize = wlen * channels;
1057
1058	/* Set FS period and length in terms of bit clock periods */
1059	regs->srgr2	&= ~FPER(0xfff);
1060	regs->srgr1	&= ~FWID(0xff);
1061	switch (format) {
1062	case SND_SOC_DAIFMT_I2S:
1063	case SND_SOC_DAIFMT_LEFT_J:
1064		regs->srgr2	|= FPER(framesize - 1);
1065		regs->srgr1	|= FWID((framesize >> 1) - 1);
1066		break;
1067	case SND_SOC_DAIFMT_DSP_A:
1068	case SND_SOC_DAIFMT_DSP_B:
1069		regs->srgr2	|= FPER(framesize - 1);
1070		regs->srgr1	|= FWID(0);
1071		break;
1072	}
1073
1074	omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1075	mcbsp->wlen = wlen;
1076	mcbsp->configured = 1;
1077
1078	return 0;
1079}
1080
1081/*
1082 * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1083 * cache is initialized here
1084 */
1085static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1086				      unsigned int fmt)
1087{
1088	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1089	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1090	bool inv_fs = false;
1091
1092	if (mcbsp->configured)
1093		return 0;
1094
1095	mcbsp->fmt = fmt;
1096	memset(regs, 0, sizeof(*regs));
1097	/* Generic McBSP register settings */
1098	regs->spcr2	|= XINTM(3) | FREE;
1099	regs->spcr1	|= RINTM(3);
1100	/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1101	if (!mcbsp->pdata->has_ccr) {
1102		regs->rcr2	|= RFIG;
1103		regs->xcr2	|= XFIG;
1104	}
1105
1106	/* Configure XCCR/RCCR only for revisions which have ccr registers */
1107	if (mcbsp->pdata->has_ccr) {
1108		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1109		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1110	}
1111
1112	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1113	case SND_SOC_DAIFMT_I2S:
1114		/* 1-bit data delay */
1115		regs->rcr2	|= RDATDLY(1);
1116		regs->xcr2	|= XDATDLY(1);
1117		break;
1118	case SND_SOC_DAIFMT_LEFT_J:
1119		/* 0-bit data delay */
1120		regs->rcr2	|= RDATDLY(0);
1121		regs->xcr2	|= XDATDLY(0);
1122		regs->spcr1	|= RJUST(2);
1123		/* Invert FS polarity configuration */
1124		inv_fs = true;
1125		break;
1126	case SND_SOC_DAIFMT_DSP_A:
1127		/* 1-bit data delay */
1128		regs->rcr2      |= RDATDLY(1);
1129		regs->xcr2      |= XDATDLY(1);
1130		/* Invert FS polarity configuration */
1131		inv_fs = true;
1132		break;
1133	case SND_SOC_DAIFMT_DSP_B:
1134		/* 0-bit data delay */
1135		regs->rcr2      |= RDATDLY(0);
1136		regs->xcr2      |= XDATDLY(0);
1137		/* Invert FS polarity configuration */
1138		inv_fs = true;
1139		break;
1140	default:
1141		/* Unsupported data format */
1142		return -EINVAL;
1143	}
1144
1145	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1146	case SND_SOC_DAIFMT_CBS_CFS:
1147		/* McBSP master. Set FS and bit clocks as outputs */
1148		regs->pcr0	|= FSXM | FSRM |
1149				   CLKXM | CLKRM;
1150		/* Sample rate generator drives the FS */
1151		regs->srgr2	|= FSGM;
1152		break;
1153	case SND_SOC_DAIFMT_CBM_CFS:
1154		/* McBSP slave. FS clock as output */
1155		regs->srgr2	|= FSGM;
1156		regs->pcr0	|= FSXM | FSRM;
1157		break;
1158	case SND_SOC_DAIFMT_CBM_CFM:
1159		/* McBSP slave */
1160		break;
1161	default:
1162		/* Unsupported master/slave configuration */
1163		return -EINVAL;
1164	}
1165
1166	/* Set bit clock (CLKX/CLKR) and FS polarities */
1167	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1168	case SND_SOC_DAIFMT_NB_NF:
1169		/*
1170		 * Normal BCLK + FS.
1171		 * FS active low. TX data driven on falling edge of bit clock
1172		 * and RX data sampled on rising edge of bit clock.
1173		 */
1174		regs->pcr0	|= FSXP | FSRP |
1175				   CLKXP | CLKRP;
1176		break;
1177	case SND_SOC_DAIFMT_NB_IF:
1178		regs->pcr0	|= CLKXP | CLKRP;
1179		break;
1180	case SND_SOC_DAIFMT_IB_NF:
1181		regs->pcr0	|= FSXP | FSRP;
1182		break;
1183	case SND_SOC_DAIFMT_IB_IF:
1184		break;
1185	default:
1186		return -EINVAL;
1187	}
1188	if (inv_fs == true)
1189		regs->pcr0 ^= FSXP | FSRP;
1190
1191	return 0;
1192}
1193
1194static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1195				     int div_id, int div)
1196{
1197	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1198	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1199
1200	if (div_id != OMAP_MCBSP_CLKGDV)
1201		return -ENODEV;
1202
1203	mcbsp->clk_div = div;
1204	regs->srgr1	&= ~CLKGDV(0xff);
1205	regs->srgr1	|= CLKGDV(div - 1);
1206
1207	return 0;
1208}
1209
1210static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1211					 int clk_id, unsigned int freq,
1212					 int dir)
1213{
1214	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1215	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1216	int err = 0;
1217
1218	if (mcbsp->active) {
1219		if (freq == mcbsp->in_freq)
1220			return 0;
1221		else
1222			return -EBUSY;
1223	}
1224
1225	mcbsp->in_freq = freq;
1226	regs->srgr2 &= ~CLKSM;
1227	regs->pcr0 &= ~SCLKME;
1228
1229	switch (clk_id) {
1230	case OMAP_MCBSP_SYSCLK_CLK:
1231		regs->srgr2	|= CLKSM;
1232		break;
1233	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1234		if (mcbsp_omap1()) {
1235			err = -EINVAL;
1236			break;
1237		}
1238		err = omap2_mcbsp_set_clks_src(mcbsp,
1239					       MCBSP_CLKS_PRCM_SRC);
1240		break;
1241	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1242		if (mcbsp_omap1()) {
1243			err = 0;
1244			break;
1245		}
1246		err = omap2_mcbsp_set_clks_src(mcbsp,
1247					       MCBSP_CLKS_PAD_SRC);
1248		break;
1249
1250	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1251		regs->srgr2	|= CLKSM;
1252		regs->pcr0	|= SCLKME;
1253		/*
1254		 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1255		 * disable output on those pins. This enables to inject the
1256		 * reference clock through CLKX/CLKR. For this to work
1257		 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1258		 */
1259		regs->pcr0	&= ~CLKXM;
1260		break;
1261	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1262		regs->pcr0	|= SCLKME;
1263		/* Disable ouput on CLKR pin in master mode */
1264		regs->pcr0	&= ~CLKRM;
1265		break;
1266	default:
1267		err = -ENODEV;
1268	}
1269
1270	return err;
1271}
1272
1273static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1274	.startup	= omap_mcbsp_dai_startup,
1275	.shutdown	= omap_mcbsp_dai_shutdown,
1276	.prepare	= omap_mcbsp_dai_prepare,
1277	.trigger	= omap_mcbsp_dai_trigger,
1278	.delay		= omap_mcbsp_dai_delay,
1279	.hw_params	= omap_mcbsp_dai_hw_params,
1280	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
1281	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
1282	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
1283};
1284
1285static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1286{
1287	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1288
1289	pm_runtime_enable(mcbsp->dev);
1290
1291	snd_soc_dai_init_dma_data(dai,
1292				  &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1293				  &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1294
1295	return 0;
1296}
1297
1298static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1299{
1300	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1301
1302	pm_runtime_disable(mcbsp->dev);
1303
1304	return 0;
1305}
1306
1307static struct snd_soc_dai_driver omap_mcbsp_dai = {
1308	.probe = omap_mcbsp_probe,
1309	.remove = omap_mcbsp_remove,
1310	.playback = {
1311		.channels_min = 1,
1312		.channels_max = 16,
1313		.rates = OMAP_MCBSP_RATES,
1314		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1315	},
1316	.capture = {
1317		.channels_min = 1,
1318		.channels_max = 16,
1319		.rates = OMAP_MCBSP_RATES,
1320		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1321	},
1322	.ops = &mcbsp_dai_ops,
1323};
1324
1325static const struct snd_soc_component_driver omap_mcbsp_component = {
1326	.name		= "omap-mcbsp",
 
1327};
1328
1329static struct omap_mcbsp_platform_data omap2420_pdata = {
1330	.reg_step = 4,
1331	.reg_size = 2,
1332};
1333
1334static struct omap_mcbsp_platform_data omap2430_pdata = {
1335	.reg_step = 4,
1336	.reg_size = 4,
1337	.has_ccr = true,
1338};
1339
1340static struct omap_mcbsp_platform_data omap3_pdata = {
1341	.reg_step = 4,
1342	.reg_size = 4,
1343	.has_ccr = true,
1344	.has_wakeup = true,
1345};
1346
1347static struct omap_mcbsp_platform_data omap4_pdata = {
1348	.reg_step = 4,
1349	.reg_size = 4,
1350	.has_ccr = true,
1351	.has_wakeup = true,
1352};
1353
1354static const struct of_device_id omap_mcbsp_of_match[] = {
1355	{
1356		.compatible = "ti,omap2420-mcbsp",
1357		.data = &omap2420_pdata,
1358	},
1359	{
1360		.compatible = "ti,omap2430-mcbsp",
1361		.data = &omap2430_pdata,
1362	},
1363	{
1364		.compatible = "ti,omap3-mcbsp",
1365		.data = &omap3_pdata,
1366	},
1367	{
1368		.compatible = "ti,omap4-mcbsp",
1369		.data = &omap4_pdata,
1370	},
1371	{ },
1372};
1373MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1374
1375static int asoc_mcbsp_probe(struct platform_device *pdev)
1376{
1377	struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1378	struct omap_mcbsp *mcbsp;
1379	const struct of_device_id *match;
1380	int ret;
1381
1382	match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
1383	if (match) {
1384		struct device_node *node = pdev->dev.of_node;
1385		struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1386		int buffer_size;
1387
1388		pdata = devm_kzalloc(&pdev->dev,
1389				     sizeof(struct omap_mcbsp_platform_data),
1390				     GFP_KERNEL);
1391		if (!pdata)
1392			return -ENOMEM;
1393
1394		memcpy(pdata, match->data, sizeof(*pdata));
1395		if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1396			pdata->buffer_size = buffer_size;
1397		if (pdata_quirk)
1398			pdata->force_ick_on = pdata_quirk->force_ick_on;
1399	} else if (!pdata) {
1400		dev_err(&pdev->dev, "missing platform data.\n");
1401		return -EINVAL;
1402	}
1403	mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1404	if (!mcbsp)
1405		return -ENOMEM;
1406
1407	mcbsp->id = pdev->id;
1408	mcbsp->pdata = pdata;
1409	mcbsp->dev = &pdev->dev;
1410	platform_set_drvdata(pdev, mcbsp);
1411
1412	ret = omap_mcbsp_init(pdev);
1413	if (ret)
1414		return ret;
1415
1416	if (mcbsp->pdata->reg_size == 2) {
1417		omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1418		omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1419	}
1420
1421	ret = devm_snd_soc_register_component(&pdev->dev,
1422					      &omap_mcbsp_component,
1423					      &omap_mcbsp_dai, 1);
1424	if (ret)
1425		return ret;
1426
1427	return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1428}
1429
1430static int asoc_mcbsp_remove(struct platform_device *pdev)
1431{
1432	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1433
1434	if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1435		mcbsp->pdata->ops->free(mcbsp->id);
1436
1437	if (pm_qos_request_active(&mcbsp->pm_qos_req))
1438		pm_qos_remove_request(&mcbsp->pm_qos_req);
1439
1440	if (mcbsp->pdata->buffer_size)
1441		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1442
1443	omap_mcbsp_st_cleanup(pdev);
1444
1445	clk_put(mcbsp->fclk);
1446
1447	return 0;
1448}
1449
1450static struct platform_driver asoc_mcbsp_driver = {
1451	.driver = {
1452			.name = "omap-mcbsp",
1453			.of_match_table = omap_mcbsp_of_match,
1454	},
1455
1456	.probe = asoc_mcbsp_probe,
1457	.remove = asoc_mcbsp_remove,
1458};
1459
1460module_platform_driver(asoc_mcbsp_driver);
1461
1462MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1463MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1464MODULE_LICENSE("GPL");
1465MODULE_ALIAS("platform:omap-mcbsp");