Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
   4 *
   5 * Copyright (C) 2008 Nokia Corporation
   6 *
   7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
   8 *          Peter Ujfalusi <peter.ujfalusi@ti.com>
   9 */
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/of.h>
  16#include <linux/of_device.h>
  17#include <sound/core.h>
  18#include <sound/pcm.h>
  19#include <sound/pcm_params.h>
  20#include <sound/initval.h>
  21#include <sound/soc.h>
  22#include <sound/dmaengine_pcm.h>
  23
  24#include "omap-mcbsp-priv.h"
  25#include "omap-mcbsp.h"
  26#include "sdma-pcm.h"
  27
  28#define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
  29
  30enum {
  31	OMAP_MCBSP_WORD_8 = 0,
  32	OMAP_MCBSP_WORD_12,
  33	OMAP_MCBSP_WORD_16,
  34	OMAP_MCBSP_WORD_20,
  35	OMAP_MCBSP_WORD_24,
  36	OMAP_MCBSP_WORD_32,
  37};
  38
  39static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
  40{
  41	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
  42	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n", MCBSP_READ(mcbsp, DRR2));
  43	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n", MCBSP_READ(mcbsp, DRR1));
  44	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n", MCBSP_READ(mcbsp, DXR2));
  45	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n", MCBSP_READ(mcbsp, DXR1));
  46	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
  47	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
  48	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n", MCBSP_READ(mcbsp, RCR2));
  49	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n", MCBSP_READ(mcbsp, RCR1));
  50	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n", MCBSP_READ(mcbsp, XCR2));
  51	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n", MCBSP_READ(mcbsp, XCR1));
  52	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
  53	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
  54	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n", MCBSP_READ(mcbsp, PCR0));
  55	dev_dbg(mcbsp->dev, "***********************\n");
  56}
  57
  58static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
  59{
  60	struct clk *fck_src;
  61	const char *src;
  62	int r;
  63
  64	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
  65		src = "pad_fck";
  66	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
  67		src = "prcm_fck";
  68	else
  69		return -EINVAL;
  70
  71	fck_src = clk_get(mcbsp->dev, src);
  72	if (IS_ERR(fck_src)) {
  73		dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
  74		return -EINVAL;
  75	}
  76
  77	pm_runtime_put_sync(mcbsp->dev);
  78
  79	r = clk_set_parent(mcbsp->fclk, fck_src);
  80	if (r)
  81		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
  82			src);
  83
  84	pm_runtime_get_sync(mcbsp->dev);
  85
  86	clk_put(fck_src);
  87
  88	return r;
  89}
  90
  91static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
  92{
  93	struct omap_mcbsp *mcbsp = data;
  94	u16 irqst;
  95
  96	irqst = MCBSP_READ(mcbsp, IRQST);
  97	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
  98
  99	if (irqst & RSYNCERREN)
 100		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
 101	if (irqst & RFSREN)
 102		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
 103	if (irqst & REOFEN)
 104		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
 105	if (irqst & RRDYEN)
 106		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
 107	if (irqst & RUNDFLEN)
 108		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
 109	if (irqst & ROVFLEN)
 110		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
 111
 112	if (irqst & XSYNCERREN)
 113		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
 114	if (irqst & XFSXEN)
 115		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
 116	if (irqst & XEOFEN)
 117		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
 118	if (irqst & XRDYEN)
 119		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
 120	if (irqst & XUNDFLEN)
 121		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
 122	if (irqst & XOVFLEN)
 123		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
 124	if (irqst & XEMPTYEOFEN)
 125		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
 126
 127	MCBSP_WRITE(mcbsp, IRQST, irqst);
 128
 129	return IRQ_HANDLED;
 130}
 131
 132static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
 133{
 134	struct omap_mcbsp *mcbsp = data;
 135	u16 irqst_spcr2;
 136
 137	irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
 138	dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
 139
 140	if (irqst_spcr2 & XSYNC_ERR) {
 141		dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
 142			irqst_spcr2);
 143		/* Writing zero to XSYNC_ERR clears the IRQ */
 144		MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
 145	}
 146
 147	return IRQ_HANDLED;
 148}
 149
 150static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
 151{
 152	struct omap_mcbsp *mcbsp = data;
 153	u16 irqst_spcr1;
 154
 155	irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
 156	dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
 157
 158	if (irqst_spcr1 & RSYNC_ERR) {
 159		dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
 160			irqst_spcr1);
 161		/* Writing zero to RSYNC_ERR clears the IRQ */
 162		MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
 163	}
 164
 165	return IRQ_HANDLED;
 166}
 167
 168/*
 169 * omap_mcbsp_config simply write a config to the
 170 * appropriate McBSP.
 171 * You either call this function or set the McBSP registers
 172 * by yourself before calling omap_mcbsp_start().
 173 */
 174static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
 175			      const struct omap_mcbsp_reg_cfg *config)
 176{
 177	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
 178		mcbsp->id, mcbsp->phys_base);
 179
 180	/* We write the given config */
 181	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
 182	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
 183	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
 184	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
 185	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
 186	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
 187	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
 188	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
 189	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
 190	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
 191	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
 192	if (mcbsp->pdata->has_ccr) {
 193		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
 194		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
 195	}
 196	/* Enable wakeup behavior */
 197	if (mcbsp->pdata->has_wakeup)
 198		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
 199
 200	/* Enable TX/RX sync error interrupts by default */
 201	if (mcbsp->irq)
 202		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
 203			    RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
 204}
 205
 206/**
 207 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
 208 * @mcbsp: omap_mcbsp struct for the McBSP instance
 209 * @stream: Stream direction (playback/capture)
 210 *
 211 * Returns the address of mcbsp data transmit register or data receive register
 212 * to be used by DMA for transferring/receiving data
 213 */
 214static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
 215				     unsigned int stream)
 216{
 217	int data_reg;
 218
 219	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
 220		if (mcbsp->pdata->reg_size == 2)
 221			data_reg = OMAP_MCBSP_REG_DXR1;
 222		else
 223			data_reg = OMAP_MCBSP_REG_DXR;
 224	} else {
 225		if (mcbsp->pdata->reg_size == 2)
 226			data_reg = OMAP_MCBSP_REG_DRR1;
 227		else
 228			data_reg = OMAP_MCBSP_REG_DRR;
 229	}
 230
 231	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
 232}
 233
 234/*
 235 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
 236 * The threshold parameter is 1 based, and it is converted (threshold - 1)
 237 * for the THRSH2 register.
 238 */
 239static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
 240{
 241	if (threshold && threshold <= mcbsp->max_tx_thres)
 242		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
 243}
 244
 245/*
 246 * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
 247 * The threshold parameter is 1 based, and it is converted (threshold - 1)
 248 * for the THRSH1 register.
 249 */
 250static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
 251{
 252	if (threshold && threshold <= mcbsp->max_rx_thres)
 253		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
 254}
 255
 256/*
 257 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
 258 */
 259static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
 260{
 261	u16 buffstat;
 262
 263	/* Returns the number of free locations in the buffer */
 264	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
 265
 266	/* Number of slots are different in McBSP ports */
 267	return mcbsp->pdata->buffer_size - buffstat;
 268}
 269
 270/*
 271 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
 272 * to reach the threshold value (when the DMA will be triggered to read it)
 273 */
 274static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
 275{
 276	u16 buffstat, threshold;
 277
 278	/* Returns the number of used locations in the buffer */
 279	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
 280	/* RX threshold */
 281	threshold = MCBSP_READ(mcbsp, THRSH1);
 282
 283	/* Return the number of location till we reach the threshold limit */
 284	if (threshold <= buffstat)
 285		return 0;
 286	else
 287		return threshold - buffstat;
 288}
 289
 290static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
 291{
 292	void *reg_cache;
 293	int err;
 294
 295	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
 296	if (!reg_cache)
 297		return -ENOMEM;
 298
 299	spin_lock(&mcbsp->lock);
 300	if (!mcbsp->free) {
 301		dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
 302		err = -EBUSY;
 303		goto err_kfree;
 304	}
 305
 306	mcbsp->free = false;
 307	mcbsp->reg_cache = reg_cache;
 308	spin_unlock(&mcbsp->lock);
 309
 310	if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
 311		mcbsp->pdata->ops->request(mcbsp->id - 1);
 312
 313	/*
 314	 * Make sure that transmitter, receiver and sample-rate generator are
 315	 * not running before activating IRQs.
 316	 */
 317	MCBSP_WRITE(mcbsp, SPCR1, 0);
 318	MCBSP_WRITE(mcbsp, SPCR2, 0);
 319
 320	if (mcbsp->irq) {
 321		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
 322				  "McBSP", (void *)mcbsp);
 323		if (err != 0) {
 324			dev_err(mcbsp->dev, "Unable to request IRQ\n");
 325			goto err_clk_disable;
 326		}
 327	} else {
 328		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
 329				  "McBSP TX", (void *)mcbsp);
 330		if (err != 0) {
 331			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
 332			goto err_clk_disable;
 333		}
 334
 335		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
 336				  "McBSP RX", (void *)mcbsp);
 337		if (err != 0) {
 338			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
 339			goto err_free_irq;
 340		}
 341	}
 342
 343	return 0;
 344err_free_irq:
 345	free_irq(mcbsp->tx_irq, (void *)mcbsp);
 346err_clk_disable:
 347	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
 348		mcbsp->pdata->ops->free(mcbsp->id - 1);
 349
 350	/* Disable wakeup behavior */
 351	if (mcbsp->pdata->has_wakeup)
 352		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
 353
 354	spin_lock(&mcbsp->lock);
 355	mcbsp->free = true;
 356	mcbsp->reg_cache = NULL;
 357err_kfree:
 358	spin_unlock(&mcbsp->lock);
 359	kfree(reg_cache);
 360
 361	return err;
 362}
 363
 364static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
 365{
 366	void *reg_cache;
 367
 368	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
 369		mcbsp->pdata->ops->free(mcbsp->id - 1);
 370
 371	/* Disable wakeup behavior */
 372	if (mcbsp->pdata->has_wakeup)
 373		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
 374
 375	/* Disable interrupt requests */
 376	if (mcbsp->irq) {
 377		MCBSP_WRITE(mcbsp, IRQEN, 0);
 378
 
 379		free_irq(mcbsp->irq, (void *)mcbsp);
 380	} else {
 381		free_irq(mcbsp->rx_irq, (void *)mcbsp);
 382		free_irq(mcbsp->tx_irq, (void *)mcbsp);
 383	}
 384
 385	reg_cache = mcbsp->reg_cache;
 386
 387	/*
 388	 * Select CLKS source from internal source unconditionally before
 389	 * marking the McBSP port as free.
 390	 * If the external clock source via MCBSP_CLKS pin has been selected the
 391	 * system will refuse to enter idle if the CLKS pin source is not reset
 392	 * back to internal source.
 393	 */
 394	if (!mcbsp_omap1())
 395		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
 396
 397	spin_lock(&mcbsp->lock);
 398	if (mcbsp->free)
 399		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
 400	else
 401		mcbsp->free = true;
 402	mcbsp->reg_cache = NULL;
 403	spin_unlock(&mcbsp->lock);
 404
 405	kfree(reg_cache);
 406}
 407
 408/*
 409 * Here we start the McBSP, by enabling transmitter, receiver or both.
 410 * If no transmitter or receiver is active prior calling, then sample-rate
 411 * generator and frame sync are started.
 412 */
 413static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
 414{
 415	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
 416	int rx = !tx;
 417	int enable_srg = 0;
 418	u16 w;
 419
 420	if (mcbsp->st_data)
 421		omap_mcbsp_st_start(mcbsp);
 422
 423	/* Only enable SRG, if McBSP is master */
 424	w = MCBSP_READ_CACHE(mcbsp, PCR0);
 425	if (w & (FSXM | FSRM | CLKXM | CLKRM))
 426		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
 427				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
 428
 429	if (enable_srg) {
 430		/* Start the sample generator */
 431		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 432		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
 433	}
 434
 435	/* Enable transmitter and receiver */
 436	tx &= 1;
 437	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 438	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
 439
 440	rx &= 1;
 441	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
 442	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
 443
 444	/*
 445	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
 446	 * REVISIT: 100us may give enough time for two CLKSRG, however
 447	 * due to some unknown PM related, clock gating etc. reason it
 448	 * is now at 500us.
 449	 */
 450	udelay(500);
 451
 452	if (enable_srg) {
 453		/* Start frame sync */
 454		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 455		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
 456	}
 457
 458	if (mcbsp->pdata->has_ccr) {
 459		/* Release the transmitter and receiver */
 460		w = MCBSP_READ_CACHE(mcbsp, XCCR);
 461		w &= ~(tx ? XDISABLE : 0);
 462		MCBSP_WRITE(mcbsp, XCCR, w);
 463		w = MCBSP_READ_CACHE(mcbsp, RCCR);
 464		w &= ~(rx ? RDISABLE : 0);
 465		MCBSP_WRITE(mcbsp, RCCR, w);
 466	}
 467
 468	/* Dump McBSP Regs */
 469	omap_mcbsp_dump_reg(mcbsp);
 470}
 471
 472static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
 473{
 474	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
 475	int rx = !tx;
 476	int idle;
 477	u16 w;
 478
 479	/* Reset transmitter */
 480	tx &= 1;
 481	if (mcbsp->pdata->has_ccr) {
 482		w = MCBSP_READ_CACHE(mcbsp, XCCR);
 483		w |= (tx ? XDISABLE : 0);
 484		MCBSP_WRITE(mcbsp, XCCR, w);
 485	}
 486	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 487	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
 488
 489	/* Reset receiver */
 490	rx &= 1;
 491	if (mcbsp->pdata->has_ccr) {
 492		w = MCBSP_READ_CACHE(mcbsp, RCCR);
 493		w |= (rx ? RDISABLE : 0);
 494		MCBSP_WRITE(mcbsp, RCCR, w);
 495	}
 496	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
 497	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
 498
 499	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
 500			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
 501
 502	if (idle) {
 503		/* Reset the sample rate generator */
 504		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 505		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
 506	}
 507
 508	if (mcbsp->st_data)
 509		omap_mcbsp_st_stop(mcbsp);
 510}
 511
 512#define max_thres(m)			(mcbsp->pdata->buffer_size)
 513#define valid_threshold(m, val)		((val) <= max_thres(m))
 514#define THRESHOLD_PROP_BUILDER(prop)					\
 515static ssize_t prop##_show(struct device *dev,				\
 516			struct device_attribute *attr, char *buf)	\
 517{									\
 518	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
 519									\
 520	return sysfs_emit(buf, "%u\n", mcbsp->prop);			\
 521}									\
 522									\
 523static ssize_t prop##_store(struct device *dev,				\
 524				struct device_attribute *attr,		\
 525				const char *buf, size_t size)		\
 526{									\
 527	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
 528	unsigned long val;						\
 529	int status;							\
 530									\
 531	status = kstrtoul(buf, 0, &val);				\
 532	if (status)							\
 533		return status;						\
 534									\
 535	if (!valid_threshold(mcbsp, val))				\
 536		return -EDOM;						\
 537									\
 538	mcbsp->prop = val;						\
 539	return size;							\
 540}									\
 541									\
 542static DEVICE_ATTR_RW(prop)
 543
 544THRESHOLD_PROP_BUILDER(max_tx_thres);
 545THRESHOLD_PROP_BUILDER(max_rx_thres);
 546
 547static const char * const dma_op_modes[] = {
 548	"element", "threshold",
 549};
 550
 551static ssize_t dma_op_mode_show(struct device *dev,
 552				struct device_attribute *attr, char *buf)
 553{
 554	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
 555	int dma_op_mode, i = 0;
 556	ssize_t len = 0;
 557	const char * const *s;
 558
 559	dma_op_mode = mcbsp->dma_op_mode;
 560
 561	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
 562		if (dma_op_mode == i)
 563			len += sysfs_emit_at(buf, len, "[%s] ", *s);
 564		else
 565			len += sysfs_emit_at(buf, len, "%s ", *s);
 566	}
 567	len += sysfs_emit_at(buf, len, "\n");
 568
 569	return len;
 570}
 571
 572static ssize_t dma_op_mode_store(struct device *dev,
 573				 struct device_attribute *attr, const char *buf,
 574				 size_t size)
 575{
 576	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
 577	int i;
 578
 579	i = sysfs_match_string(dma_op_modes, buf);
 580	if (i < 0)
 581		return i;
 582
 583	spin_lock_irq(&mcbsp->lock);
 584	if (!mcbsp->free) {
 585		size = -EBUSY;
 586		goto unlock;
 587	}
 588	mcbsp->dma_op_mode = i;
 589
 590unlock:
 591	spin_unlock_irq(&mcbsp->lock);
 592
 593	return size;
 594}
 595
 596static DEVICE_ATTR_RW(dma_op_mode);
 597
 598static const struct attribute *additional_attrs[] = {
 599	&dev_attr_max_tx_thres.attr,
 600	&dev_attr_max_rx_thres.attr,
 601	&dev_attr_dma_op_mode.attr,
 602	NULL,
 603};
 604
 605static const struct attribute_group additional_attr_group = {
 606	.attrs = (struct attribute **)additional_attrs,
 607};
 608
 609/*
 610 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
 611 * 730 has only 2 McBSP, and both of them are MPU peripherals.
 612 */
 613static int omap_mcbsp_init(struct platform_device *pdev)
 614{
 615	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
 616	struct resource *res;
 617	int ret;
 618
 619	spin_lock_init(&mcbsp->lock);
 620	mcbsp->free = true;
 621
 622	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
 623	if (!res)
 624		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 625
 626	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
 627	if (IS_ERR(mcbsp->io_base))
 628		return PTR_ERR(mcbsp->io_base);
 629
 630	mcbsp->phys_base = res->start;
 631	mcbsp->reg_cache_size = resource_size(res);
 632
 633	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
 634	if (!res)
 635		mcbsp->phys_dma_base = mcbsp->phys_base;
 636	else
 637		mcbsp->phys_dma_base = res->start;
 638
 639	/*
 640	 * OMAP1, 2 uses two interrupt lines: TX, RX
 641	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
 642	 * OMAP4 and newer SoC only have the combined IRQ line.
 643	 * Use the combined IRQ if available since it gives better debugging
 644	 * possibilities.
 645	 */
 646	mcbsp->irq = platform_get_irq_byname(pdev, "common");
 647	if (mcbsp->irq == -ENXIO) {
 648		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
 649
 650		if (mcbsp->tx_irq == -ENXIO) {
 651			mcbsp->irq = platform_get_irq(pdev, 0);
 652			mcbsp->tx_irq = 0;
 653		} else {
 654			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
 655			mcbsp->irq = 0;
 656		}
 657	}
 658
 659	if (!pdev->dev.of_node) {
 660		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
 661		if (!res) {
 662			dev_err(&pdev->dev, "invalid tx DMA channel\n");
 663			return -ENODEV;
 664		}
 665		mcbsp->dma_req[0] = res->start;
 666		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
 667
 668		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
 669		if (!res) {
 670			dev_err(&pdev->dev, "invalid rx DMA channel\n");
 671			return -ENODEV;
 672		}
 673		mcbsp->dma_req[1] = res->start;
 674		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
 675	} else {
 676		mcbsp->dma_data[0].filter_data = "tx";
 677		mcbsp->dma_data[1].filter_data = "rx";
 678	}
 679
 680	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
 681						SNDRV_PCM_STREAM_PLAYBACK);
 682	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
 683						SNDRV_PCM_STREAM_CAPTURE);
 684
 685	mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
 686	if (IS_ERR(mcbsp->fclk)) {
 687		ret = PTR_ERR(mcbsp->fclk);
 688		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
 689		return ret;
 690	}
 691
 692	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
 693	if (mcbsp->pdata->buffer_size) {
 694		/*
 695		 * Initially configure the maximum thresholds to a safe value.
 696		 * The McBSP FIFO usage with these values should not go under
 697		 * 16 locations.
 698		 * If the whole FIFO without safety buffer is used, than there
 699		 * is a possibility that the DMA will be not able to push the
 700		 * new data on time, causing channel shifts in runtime.
 701		 */
 702		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
 703		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
 704
 705		ret = devm_device_add_group(mcbsp->dev, &additional_attr_group);
 
 706		if (ret) {
 707			dev_err(mcbsp->dev,
 708				"Unable to create additional controls\n");
 709			return ret;
 710		}
 711	}
 712
 713	return omap_mcbsp_st_init(pdev);
 
 
 
 
 
 
 
 
 
 714}
 715
 716/*
 717 * Stream DMA parameters. DMA request line and port address are set runtime
 718 * since they are different between OMAP1 and later OMAPs
 719 */
 720static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
 721		unsigned int packet_size)
 722{
 723	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
 724	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
 725	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 726	int words;
 727
 728	/* No need to proceed further if McBSP does not have FIFO */
 729	if (mcbsp->pdata->buffer_size == 0)
 730		return;
 731
 732	/*
 733	 * Configure McBSP threshold based on either:
 734	 * packet_size, when the sDMA is in packet mode, or based on the
 735	 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
 736	 * for mono streams.
 737	 */
 738	if (packet_size)
 739		words = packet_size;
 740	else
 741		words = 1;
 742
 743	/* Configure McBSP internal buffer usage */
 744	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 745		omap_mcbsp_set_tx_threshold(mcbsp, words);
 746	else
 747		omap_mcbsp_set_rx_threshold(mcbsp, words);
 748}
 749
 750static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
 751				    struct snd_pcm_hw_rule *rule)
 752{
 753	struct snd_interval *buffer_size = hw_param_interval(params,
 754					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
 755	struct snd_interval *channels = hw_param_interval(params,
 756					SNDRV_PCM_HW_PARAM_CHANNELS);
 757	struct omap_mcbsp *mcbsp = rule->private;
 758	struct snd_interval frames;
 759	int size;
 760
 761	snd_interval_any(&frames);
 762	size = mcbsp->pdata->buffer_size;
 763
 764	frames.min = size / channels->min;
 765	frames.integer = 1;
 766	return snd_interval_refine(buffer_size, &frames);
 767}
 768
 769static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
 770				  struct snd_soc_dai *cpu_dai)
 771{
 772	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 773	int err = 0;
 774
 775	if (!snd_soc_dai_active(cpu_dai))
 776		err = omap_mcbsp_request(mcbsp);
 777
 778	/*
 779	 * OMAP3 McBSP FIFO is word structured.
 780	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
 781	 * McBSP1,3,4,5 has 128 word long buffer
 782	 * This means that the size of the FIFO depends on the sample format.
 783	 * For example on McBSP3:
 784	 * 16bit samples: size is 128 * 2 = 256 bytes
 785	 * 32bit samples: size is 128 * 4 = 512 bytes
 786	 * It is simpler to place constraint for buffer and period based on
 787	 * channels.
 788	 * McBSP3 as example again (16 or 32 bit samples):
 789	 * 1 channel (mono): size is 128 frames (128 words)
 790	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
 791	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
 792	 */
 793	if (mcbsp->pdata->buffer_size) {
 794		/*
 795		* Rule for the buffer size. We should not allow
 796		* smaller buffer than the FIFO size to avoid underruns.
 797		* This applies only for the playback stream.
 798		*/
 799		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 800			snd_pcm_hw_rule_add(substream->runtime, 0,
 801					    SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 802					    omap_mcbsp_hwrule_min_buffersize,
 803					    mcbsp,
 804					    SNDRV_PCM_HW_PARAM_CHANNELS, -1);
 805
 806		/* Make sure, that the period size is always even */
 807		snd_pcm_hw_constraint_step(substream->runtime, 0,
 808					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
 809	}
 810
 811	return err;
 812}
 813
 814static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
 815				    struct snd_soc_dai *cpu_dai)
 816{
 817	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 818	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
 819	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
 820	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
 821
 822	if (mcbsp->latency[stream2])
 823		cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
 824					       mcbsp->latency[stream2]);
 825	else if (mcbsp->latency[stream1])
 826		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
 827
 828	mcbsp->latency[stream1] = 0;
 829
 830	if (!snd_soc_dai_active(cpu_dai)) {
 831		omap_mcbsp_free(mcbsp);
 832		mcbsp->configured = 0;
 833	}
 834}
 835
 836static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
 837				  struct snd_soc_dai *cpu_dai)
 838{
 839	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 840	struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
 841	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
 842	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
 843	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
 844	int latency = mcbsp->latency[stream2];
 845
 846	/* Prevent omap hardware from hitting off between FIFO fills */
 847	if (!latency || mcbsp->latency[stream1] < latency)
 848		latency = mcbsp->latency[stream1];
 849
 850	if (cpu_latency_qos_request_active(pm_qos_req))
 851		cpu_latency_qos_update_request(pm_qos_req, latency);
 852	else if (latency)
 853		cpu_latency_qos_add_request(pm_qos_req, latency);
 854
 855	return 0;
 856}
 857
 858static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
 859				  struct snd_soc_dai *cpu_dai)
 860{
 861	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 862
 863	switch (cmd) {
 864	case SNDRV_PCM_TRIGGER_START:
 865	case SNDRV_PCM_TRIGGER_RESUME:
 866	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 867		mcbsp->active++;
 868		omap_mcbsp_start(mcbsp, substream->stream);
 869		break;
 870
 871	case SNDRV_PCM_TRIGGER_STOP:
 872	case SNDRV_PCM_TRIGGER_SUSPEND:
 873	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 874		omap_mcbsp_stop(mcbsp, substream->stream);
 875		mcbsp->active--;
 876		break;
 877	default:
 878		return -EINVAL;
 879	}
 880
 881	return 0;
 882}
 883
 884static snd_pcm_sframes_t omap_mcbsp_dai_delay(
 885			struct snd_pcm_substream *substream,
 886			struct snd_soc_dai *dai)
 887{
 888	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
 889	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
 890	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 891	u16 fifo_use;
 892	snd_pcm_sframes_t delay;
 893
 894	/* No need to proceed further if McBSP does not have FIFO */
 895	if (mcbsp->pdata->buffer_size == 0)
 896		return 0;
 897
 898	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 899		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
 900	else
 901		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
 902
 903	/*
 904	 * Divide the used locations with the channel count to get the
 905	 * FIFO usage in samples (don't care about partial samples in the
 906	 * buffer).
 907	 */
 908	delay = fifo_use / substream->runtime->channels;
 909
 910	return delay;
 911}
 912
 913static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
 914				    struct snd_pcm_hw_params *params,
 915				    struct snd_soc_dai *cpu_dai)
 916{
 917	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 918	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
 919	struct snd_dmaengine_dai_dma_data *dma_data;
 920	int wlen, channels, wpf;
 921	int pkt_size = 0;
 922	unsigned int format, div, framesize, master;
 923	unsigned int buffer_size = mcbsp->pdata->buffer_size;
 924
 925	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
 926	channels = params_channels(params);
 927
 928	switch (params_format(params)) {
 929	case SNDRV_PCM_FORMAT_S16_LE:
 930		wlen = 16;
 931		break;
 932	case SNDRV_PCM_FORMAT_S32_LE:
 933		wlen = 32;
 934		break;
 935	default:
 936		return -EINVAL;
 937	}
 938	if (buffer_size) {
 939		int latency;
 940
 941		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
 942			int period_words, max_thrsh;
 943			int divider = 0;
 944
 945			period_words = params_period_bytes(params) / (wlen / 8);
 946			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 947				max_thrsh = mcbsp->max_tx_thres;
 948			else
 949				max_thrsh = mcbsp->max_rx_thres;
 950			/*
 951			 * Use sDMA packet mode if McBSP is in threshold mode:
 952			 * If period words less than the FIFO size the packet
 953			 * size is set to the number of period words, otherwise
 954			 * Look for the biggest threshold value which divides
 955			 * the period size evenly.
 956			 */
 957			divider = period_words / max_thrsh;
 958			if (period_words % max_thrsh)
 959				divider++;
 960			while (period_words % divider &&
 961				divider < period_words)
 962				divider++;
 963			if (divider == period_words)
 964				return -EINVAL;
 965
 966			pkt_size = period_words / divider;
 967		} else if (channels > 1) {
 968			/* Use packet mode for non mono streams */
 969			pkt_size = channels;
 970		}
 971
 972		latency = (buffer_size - pkt_size) / channels;
 973		latency = latency * USEC_PER_SEC /
 974			  (params->rate_num / params->rate_den);
 975		mcbsp->latency[substream->stream] = latency;
 976
 977		omap_mcbsp_set_threshold(substream, pkt_size);
 978	}
 979
 980	dma_data->maxburst = pkt_size;
 981
 982	if (mcbsp->configured) {
 983		/* McBSP already configured by another stream */
 984		return 0;
 985	}
 986
 987	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
 988	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
 989	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
 990	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
 991	format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
 992	wpf = channels;
 993	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
 994			      format == SND_SOC_DAIFMT_LEFT_J)) {
 995		/* Use dual-phase frames */
 996		regs->rcr2	|= RPHASE;
 997		regs->xcr2	|= XPHASE;
 998		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
 999		wpf--;
1000		regs->rcr2	|= RFRLEN2(wpf - 1);
1001		regs->xcr2	|= XFRLEN2(wpf - 1);
1002	}
1003
1004	regs->rcr1	|= RFRLEN1(wpf - 1);
1005	regs->xcr1	|= XFRLEN1(wpf - 1);
1006
1007	switch (params_format(params)) {
1008	case SNDRV_PCM_FORMAT_S16_LE:
1009		/* Set word lengths */
1010		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
1011		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
1012		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
1013		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
1014		break;
1015	case SNDRV_PCM_FORMAT_S32_LE:
1016		/* Set word lengths */
1017		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
1018		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
1019		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
1020		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
1021		break;
1022	default:
1023		/* Unsupported PCM format */
1024		return -EINVAL;
1025	}
1026
1027	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
1028	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1029	master = mcbsp->fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK;
1030	if (master == SND_SOC_DAIFMT_BP_FP) {
1031		div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1032		framesize = (mcbsp->in_freq / div) / params_rate(params);
1033
1034		if (framesize < wlen * channels) {
1035			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1036					"channels\n", __func__);
1037			return -EINVAL;
1038		}
1039	} else
1040		framesize = wlen * channels;
1041
1042	/* Set FS period and length in terms of bit clock periods */
1043	regs->srgr2	&= ~FPER(0xfff);
1044	regs->srgr1	&= ~FWID(0xff);
1045	switch (format) {
1046	case SND_SOC_DAIFMT_I2S:
1047	case SND_SOC_DAIFMT_LEFT_J:
1048		regs->srgr2	|= FPER(framesize - 1);
1049		regs->srgr1	|= FWID((framesize >> 1) - 1);
1050		break;
1051	case SND_SOC_DAIFMT_DSP_A:
1052	case SND_SOC_DAIFMT_DSP_B:
1053		regs->srgr2	|= FPER(framesize - 1);
1054		regs->srgr1	|= FWID(0);
1055		break;
1056	}
1057
1058	omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1059	mcbsp->wlen = wlen;
1060	mcbsp->configured = 1;
1061
1062	return 0;
1063}
1064
1065/*
1066 * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1067 * cache is initialized here
1068 */
1069static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1070				      unsigned int fmt)
1071{
1072	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1073	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1074	bool inv_fs = false;
1075
1076	if (mcbsp->configured)
1077		return 0;
1078
1079	mcbsp->fmt = fmt;
1080	memset(regs, 0, sizeof(*regs));
1081	/* Generic McBSP register settings */
1082	regs->spcr2	|= XINTM(3) | FREE;
1083	regs->spcr1	|= RINTM(3);
1084	/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1085	if (!mcbsp->pdata->has_ccr) {
1086		regs->rcr2	|= RFIG;
1087		regs->xcr2	|= XFIG;
1088	}
1089
1090	/* Configure XCCR/RCCR only for revisions which have ccr registers */
1091	if (mcbsp->pdata->has_ccr) {
1092		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1093		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1094	}
1095
1096	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1097	case SND_SOC_DAIFMT_I2S:
1098		/* 1-bit data delay */
1099		regs->rcr2	|= RDATDLY(1);
1100		regs->xcr2	|= XDATDLY(1);
1101		break;
1102	case SND_SOC_DAIFMT_LEFT_J:
1103		/* 0-bit data delay */
1104		regs->rcr2	|= RDATDLY(0);
1105		regs->xcr2	|= XDATDLY(0);
1106		regs->spcr1	|= RJUST(2);
1107		/* Invert FS polarity configuration */
1108		inv_fs = true;
1109		break;
1110	case SND_SOC_DAIFMT_DSP_A:
1111		/* 1-bit data delay */
1112		regs->rcr2      |= RDATDLY(1);
1113		regs->xcr2      |= XDATDLY(1);
1114		/* Invert FS polarity configuration */
1115		inv_fs = true;
1116		break;
1117	case SND_SOC_DAIFMT_DSP_B:
1118		/* 0-bit data delay */
1119		regs->rcr2      |= RDATDLY(0);
1120		regs->xcr2      |= XDATDLY(0);
1121		/* Invert FS polarity configuration */
1122		inv_fs = true;
1123		break;
1124	default:
1125		/* Unsupported data format */
1126		return -EINVAL;
1127	}
1128
1129	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
1130	case SND_SOC_DAIFMT_BP_FP:
1131		/* McBSP master. Set FS and bit clocks as outputs */
1132		regs->pcr0	|= FSXM | FSRM |
1133				   CLKXM | CLKRM;
1134		/* Sample rate generator drives the FS */
1135		regs->srgr2	|= FSGM;
1136		break;
1137	case SND_SOC_DAIFMT_BC_FP:
1138		/* McBSP slave. FS clock as output */
1139		regs->srgr2	|= FSGM;
1140		regs->pcr0	|= FSXM | FSRM;
1141		break;
1142	case SND_SOC_DAIFMT_BC_FC:
1143		/* McBSP slave */
1144		break;
1145	default:
1146		/* Unsupported master/slave configuration */
1147		return -EINVAL;
1148	}
1149
1150	/* Set bit clock (CLKX/CLKR) and FS polarities */
1151	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1152	case SND_SOC_DAIFMT_NB_NF:
1153		/*
1154		 * Normal BCLK + FS.
1155		 * FS active low. TX data driven on falling edge of bit clock
1156		 * and RX data sampled on rising edge of bit clock.
1157		 */
1158		regs->pcr0	|= FSXP | FSRP |
1159				   CLKXP | CLKRP;
1160		break;
1161	case SND_SOC_DAIFMT_NB_IF:
1162		regs->pcr0	|= CLKXP | CLKRP;
1163		break;
1164	case SND_SOC_DAIFMT_IB_NF:
1165		regs->pcr0	|= FSXP | FSRP;
1166		break;
1167	case SND_SOC_DAIFMT_IB_IF:
1168		break;
1169	default:
1170		return -EINVAL;
1171	}
1172	if (inv_fs)
1173		regs->pcr0 ^= FSXP | FSRP;
1174
1175	return 0;
1176}
1177
1178static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1179				     int div_id, int div)
1180{
1181	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1182	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1183
1184	if (div_id != OMAP_MCBSP_CLKGDV)
1185		return -ENODEV;
1186
1187	mcbsp->clk_div = div;
1188	regs->srgr1	&= ~CLKGDV(0xff);
1189	regs->srgr1	|= CLKGDV(div - 1);
1190
1191	return 0;
1192}
1193
1194static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1195					 int clk_id, unsigned int freq,
1196					 int dir)
1197{
1198	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1199	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1200	int err = 0;
1201
1202	if (mcbsp->active) {
1203		if (freq == mcbsp->in_freq)
1204			return 0;
1205		else
1206			return -EBUSY;
1207	}
1208
1209	mcbsp->in_freq = freq;
1210	regs->srgr2 &= ~CLKSM;
1211	regs->pcr0 &= ~SCLKME;
1212
1213	switch (clk_id) {
1214	case OMAP_MCBSP_SYSCLK_CLK:
1215		regs->srgr2	|= CLKSM;
1216		break;
1217	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1218		if (mcbsp_omap1()) {
1219			err = -EINVAL;
1220			break;
1221		}
1222		err = omap2_mcbsp_set_clks_src(mcbsp,
1223					       MCBSP_CLKS_PRCM_SRC);
1224		break;
1225	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1226		if (mcbsp_omap1()) {
1227			err = 0;
1228			break;
1229		}
1230		err = omap2_mcbsp_set_clks_src(mcbsp,
1231					       MCBSP_CLKS_PAD_SRC);
1232		break;
1233
1234	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1235		regs->srgr2	|= CLKSM;
1236		regs->pcr0	|= SCLKME;
1237		/*
1238		 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1239		 * disable output on those pins. This enables to inject the
1240		 * reference clock through CLKX/CLKR. For this to work
1241		 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1242		 */
1243		regs->pcr0	&= ~CLKXM;
1244		break;
1245	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1246		regs->pcr0	|= SCLKME;
1247		/* Disable ouput on CLKR pin in master mode */
1248		regs->pcr0	&= ~CLKRM;
1249		break;
1250	default:
1251		err = -ENODEV;
1252	}
1253
1254	return err;
1255}
1256
1257static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1258	.startup	= omap_mcbsp_dai_startup,
1259	.shutdown	= omap_mcbsp_dai_shutdown,
1260	.prepare	= omap_mcbsp_dai_prepare,
1261	.trigger	= omap_mcbsp_dai_trigger,
1262	.delay		= omap_mcbsp_dai_delay,
1263	.hw_params	= omap_mcbsp_dai_hw_params,
1264	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
1265	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
1266	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
1267};
1268
1269static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1270{
1271	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1272
1273	pm_runtime_enable(mcbsp->dev);
1274
1275	snd_soc_dai_init_dma_data(dai,
1276				  &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1277				  &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1278
1279	return 0;
1280}
1281
1282static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1283{
1284	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1285
1286	pm_runtime_disable(mcbsp->dev);
1287
1288	return 0;
1289}
1290
1291static struct snd_soc_dai_driver omap_mcbsp_dai = {
1292	.probe = omap_mcbsp_probe,
1293	.remove = omap_mcbsp_remove,
1294	.playback = {
1295		.channels_min = 1,
1296		.channels_max = 16,
1297		.rates = OMAP_MCBSP_RATES,
1298		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1299	},
1300	.capture = {
1301		.channels_min = 1,
1302		.channels_max = 16,
1303		.rates = OMAP_MCBSP_RATES,
1304		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1305	},
1306	.ops = &mcbsp_dai_ops,
1307};
1308
1309static const struct snd_soc_component_driver omap_mcbsp_component = {
1310	.name			= "omap-mcbsp",
1311	.legacy_dai_naming	= 1,
1312};
1313
1314static struct omap_mcbsp_platform_data omap2420_pdata = {
1315	.reg_step = 4,
1316	.reg_size = 2,
1317};
1318
1319static struct omap_mcbsp_platform_data omap2430_pdata = {
1320	.reg_step = 4,
1321	.reg_size = 4,
1322	.has_ccr = true,
1323};
1324
1325static struct omap_mcbsp_platform_data omap3_pdata = {
1326	.reg_step = 4,
1327	.reg_size = 4,
1328	.has_ccr = true,
1329	.has_wakeup = true,
1330};
1331
1332static struct omap_mcbsp_platform_data omap4_pdata = {
1333	.reg_step = 4,
1334	.reg_size = 4,
1335	.has_ccr = true,
1336	.has_wakeup = true,
1337};
1338
1339static const struct of_device_id omap_mcbsp_of_match[] = {
1340	{
1341		.compatible = "ti,omap2420-mcbsp",
1342		.data = &omap2420_pdata,
1343	},
1344	{
1345		.compatible = "ti,omap2430-mcbsp",
1346		.data = &omap2430_pdata,
1347	},
1348	{
1349		.compatible = "ti,omap3-mcbsp",
1350		.data = &omap3_pdata,
1351	},
1352	{
1353		.compatible = "ti,omap4-mcbsp",
1354		.data = &omap4_pdata,
1355	},
1356	{ },
1357};
1358MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1359
1360static int asoc_mcbsp_probe(struct platform_device *pdev)
1361{
1362	struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1363	struct omap_mcbsp *mcbsp;
1364	const struct of_device_id *match;
1365	int ret;
1366
1367	match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
1368	if (match) {
1369		struct device_node *node = pdev->dev.of_node;
1370		struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1371		int buffer_size;
1372
1373		pdata = devm_kzalloc(&pdev->dev,
1374				     sizeof(struct omap_mcbsp_platform_data),
1375				     GFP_KERNEL);
1376		if (!pdata)
1377			return -ENOMEM;
1378
1379		memcpy(pdata, match->data, sizeof(*pdata));
1380		if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1381			pdata->buffer_size = buffer_size;
1382		if (pdata_quirk)
1383			pdata->force_ick_on = pdata_quirk->force_ick_on;
1384	} else if (!pdata) {
1385		dev_err(&pdev->dev, "missing platform data.\n");
1386		return -EINVAL;
1387	}
1388	mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1389	if (!mcbsp)
1390		return -ENOMEM;
1391
1392	mcbsp->id = pdev->id;
1393	mcbsp->pdata = pdata;
1394	mcbsp->dev = &pdev->dev;
1395	platform_set_drvdata(pdev, mcbsp);
1396
1397	ret = omap_mcbsp_init(pdev);
1398	if (ret)
1399		return ret;
1400
1401	if (mcbsp->pdata->reg_size == 2) {
1402		omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1403		omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1404	}
1405
1406	ret = devm_snd_soc_register_component(&pdev->dev,
1407					      &omap_mcbsp_component,
1408					      &omap_mcbsp_dai, 1);
1409	if (ret)
1410		return ret;
1411
1412	return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1413}
1414
1415static int asoc_mcbsp_remove(struct platform_device *pdev)
1416{
1417	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1418
1419	if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1420		mcbsp->pdata->ops->free(mcbsp->id);
1421
1422	if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
1423		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
 
 
 
 
 
1424
1425	return 0;
1426}
1427
1428static struct platform_driver asoc_mcbsp_driver = {
1429	.driver = {
1430			.name = "omap-mcbsp",
1431			.of_match_table = omap_mcbsp_of_match,
1432	},
1433
1434	.probe = asoc_mcbsp_probe,
1435	.remove = asoc_mcbsp_remove,
1436};
1437
1438module_platform_driver(asoc_mcbsp_driver);
1439
1440MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1441MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1442MODULE_LICENSE("GPL");
1443MODULE_ALIAS("platform:omap-mcbsp");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
   4 *
   5 * Copyright (C) 2008 Nokia Corporation
   6 *
   7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
   8 *          Peter Ujfalusi <peter.ujfalusi@ti.com>
   9 */
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/of.h>
  16#include <linux/of_device.h>
  17#include <sound/core.h>
  18#include <sound/pcm.h>
  19#include <sound/pcm_params.h>
  20#include <sound/initval.h>
  21#include <sound/soc.h>
  22#include <sound/dmaengine_pcm.h>
  23
  24#include "omap-mcbsp-priv.h"
  25#include "omap-mcbsp.h"
  26#include "sdma-pcm.h"
  27
  28#define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
  29
  30enum {
  31	OMAP_MCBSP_WORD_8 = 0,
  32	OMAP_MCBSP_WORD_12,
  33	OMAP_MCBSP_WORD_16,
  34	OMAP_MCBSP_WORD_20,
  35	OMAP_MCBSP_WORD_24,
  36	OMAP_MCBSP_WORD_32,
  37};
  38
  39static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
  40{
  41	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
  42	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n", MCBSP_READ(mcbsp, DRR2));
  43	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n", MCBSP_READ(mcbsp, DRR1));
  44	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n", MCBSP_READ(mcbsp, DXR2));
  45	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n", MCBSP_READ(mcbsp, DXR1));
  46	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
  47	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
  48	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n", MCBSP_READ(mcbsp, RCR2));
  49	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n", MCBSP_READ(mcbsp, RCR1));
  50	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n", MCBSP_READ(mcbsp, XCR2));
  51	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n", MCBSP_READ(mcbsp, XCR1));
  52	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
  53	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
  54	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n", MCBSP_READ(mcbsp, PCR0));
  55	dev_dbg(mcbsp->dev, "***********************\n");
  56}
  57
  58static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
  59{
  60	struct clk *fck_src;
  61	const char *src;
  62	int r;
  63
  64	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
  65		src = "pad_fck";
  66	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
  67		src = "prcm_fck";
  68	else
  69		return -EINVAL;
  70
  71	fck_src = clk_get(mcbsp->dev, src);
  72	if (IS_ERR(fck_src)) {
  73		dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
  74		return -EINVAL;
  75	}
  76
  77	pm_runtime_put_sync(mcbsp->dev);
  78
  79	r = clk_set_parent(mcbsp->fclk, fck_src);
  80	if (r)
  81		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
  82			src);
  83
  84	pm_runtime_get_sync(mcbsp->dev);
  85
  86	clk_put(fck_src);
  87
  88	return r;
  89}
  90
  91static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
  92{
  93	struct omap_mcbsp *mcbsp = data;
  94	u16 irqst;
  95
  96	irqst = MCBSP_READ(mcbsp, IRQST);
  97	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
  98
  99	if (irqst & RSYNCERREN)
 100		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
 101	if (irqst & RFSREN)
 102		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
 103	if (irqst & REOFEN)
 104		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
 105	if (irqst & RRDYEN)
 106		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
 107	if (irqst & RUNDFLEN)
 108		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
 109	if (irqst & ROVFLEN)
 110		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
 111
 112	if (irqst & XSYNCERREN)
 113		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
 114	if (irqst & XFSXEN)
 115		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
 116	if (irqst & XEOFEN)
 117		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
 118	if (irqst & XRDYEN)
 119		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
 120	if (irqst & XUNDFLEN)
 121		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
 122	if (irqst & XOVFLEN)
 123		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
 124	if (irqst & XEMPTYEOFEN)
 125		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
 126
 127	MCBSP_WRITE(mcbsp, IRQST, irqst);
 128
 129	return IRQ_HANDLED;
 130}
 131
 132static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
 133{
 134	struct omap_mcbsp *mcbsp = data;
 135	u16 irqst_spcr2;
 136
 137	irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
 138	dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
 139
 140	if (irqst_spcr2 & XSYNC_ERR) {
 141		dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
 142			irqst_spcr2);
 143		/* Writing zero to XSYNC_ERR clears the IRQ */
 144		MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
 145	}
 146
 147	return IRQ_HANDLED;
 148}
 149
 150static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
 151{
 152	struct omap_mcbsp *mcbsp = data;
 153	u16 irqst_spcr1;
 154
 155	irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
 156	dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
 157
 158	if (irqst_spcr1 & RSYNC_ERR) {
 159		dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
 160			irqst_spcr1);
 161		/* Writing zero to RSYNC_ERR clears the IRQ */
 162		MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
 163	}
 164
 165	return IRQ_HANDLED;
 166}
 167
 168/*
 169 * omap_mcbsp_config simply write a config to the
 170 * appropriate McBSP.
 171 * You either call this function or set the McBSP registers
 172 * by yourself before calling omap_mcbsp_start().
 173 */
 174static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
 175			      const struct omap_mcbsp_reg_cfg *config)
 176{
 177	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
 178		mcbsp->id, mcbsp->phys_base);
 179
 180	/* We write the given config */
 181	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
 182	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
 183	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
 184	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
 185	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
 186	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
 187	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
 188	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
 189	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
 190	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
 191	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
 192	if (mcbsp->pdata->has_ccr) {
 193		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
 194		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
 195	}
 196	/* Enable wakeup behavior */
 197	if (mcbsp->pdata->has_wakeup)
 198		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
 199
 200	/* Enable TX/RX sync error interrupts by default */
 201	if (mcbsp->irq)
 202		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
 203			    RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
 204}
 205
 206/**
 207 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
 208 * @mcbsp: omap_mcbsp struct for the McBSP instance
 209 * @stream: Stream direction (playback/capture)
 210 *
 211 * Returns the address of mcbsp data transmit register or data receive register
 212 * to be used by DMA for transferring/receiving data
 213 */
 214static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
 215				     unsigned int stream)
 216{
 217	int data_reg;
 218
 219	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
 220		if (mcbsp->pdata->reg_size == 2)
 221			data_reg = OMAP_MCBSP_REG_DXR1;
 222		else
 223			data_reg = OMAP_MCBSP_REG_DXR;
 224	} else {
 225		if (mcbsp->pdata->reg_size == 2)
 226			data_reg = OMAP_MCBSP_REG_DRR1;
 227		else
 228			data_reg = OMAP_MCBSP_REG_DRR;
 229	}
 230
 231	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
 232}
 233
 234/*
 235 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
 236 * The threshold parameter is 1 based, and it is converted (threshold - 1)
 237 * for the THRSH2 register.
 238 */
 239static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
 240{
 241	if (threshold && threshold <= mcbsp->max_tx_thres)
 242		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
 243}
 244
 245/*
 246 * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
 247 * The threshold parameter is 1 based, and it is converted (threshold - 1)
 248 * for the THRSH1 register.
 249 */
 250static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
 251{
 252	if (threshold && threshold <= mcbsp->max_rx_thres)
 253		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
 254}
 255
 256/*
 257 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
 258 */
 259static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
 260{
 261	u16 buffstat;
 262
 263	/* Returns the number of free locations in the buffer */
 264	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
 265
 266	/* Number of slots are different in McBSP ports */
 267	return mcbsp->pdata->buffer_size - buffstat;
 268}
 269
 270/*
 271 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
 272 * to reach the threshold value (when the DMA will be triggered to read it)
 273 */
 274static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
 275{
 276	u16 buffstat, threshold;
 277
 278	/* Returns the number of used locations in the buffer */
 279	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
 280	/* RX threshold */
 281	threshold = MCBSP_READ(mcbsp, THRSH1);
 282
 283	/* Return the number of location till we reach the threshold limit */
 284	if (threshold <= buffstat)
 285		return 0;
 286	else
 287		return threshold - buffstat;
 288}
 289
 290static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
 291{
 292	void *reg_cache;
 293	int err;
 294
 295	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
 296	if (!reg_cache)
 297		return -ENOMEM;
 298
 299	spin_lock(&mcbsp->lock);
 300	if (!mcbsp->free) {
 301		dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
 302		err = -EBUSY;
 303		goto err_kfree;
 304	}
 305
 306	mcbsp->free = false;
 307	mcbsp->reg_cache = reg_cache;
 308	spin_unlock(&mcbsp->lock);
 309
 310	if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
 311		mcbsp->pdata->ops->request(mcbsp->id - 1);
 312
 313	/*
 314	 * Make sure that transmitter, receiver and sample-rate generator are
 315	 * not running before activating IRQs.
 316	 */
 317	MCBSP_WRITE(mcbsp, SPCR1, 0);
 318	MCBSP_WRITE(mcbsp, SPCR2, 0);
 319
 320	if (mcbsp->irq) {
 321		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
 322				  "McBSP", (void *)mcbsp);
 323		if (err != 0) {
 324			dev_err(mcbsp->dev, "Unable to request IRQ\n");
 325			goto err_clk_disable;
 326		}
 327	} else {
 328		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
 329				  "McBSP TX", (void *)mcbsp);
 330		if (err != 0) {
 331			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
 332			goto err_clk_disable;
 333		}
 334
 335		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
 336				  "McBSP RX", (void *)mcbsp);
 337		if (err != 0) {
 338			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
 339			goto err_free_irq;
 340		}
 341	}
 342
 343	return 0;
 344err_free_irq:
 345	free_irq(mcbsp->tx_irq, (void *)mcbsp);
 346err_clk_disable:
 347	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
 348		mcbsp->pdata->ops->free(mcbsp->id - 1);
 349
 350	/* Disable wakeup behavior */
 351	if (mcbsp->pdata->has_wakeup)
 352		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
 353
 354	spin_lock(&mcbsp->lock);
 355	mcbsp->free = true;
 356	mcbsp->reg_cache = NULL;
 357err_kfree:
 358	spin_unlock(&mcbsp->lock);
 359	kfree(reg_cache);
 360
 361	return err;
 362}
 363
 364static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
 365{
 366	void *reg_cache;
 367
 368	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
 369		mcbsp->pdata->ops->free(mcbsp->id - 1);
 370
 371	/* Disable wakeup behavior */
 372	if (mcbsp->pdata->has_wakeup)
 373		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
 374
 375	/* Disable interrupt requests */
 376	if (mcbsp->irq)
 377		MCBSP_WRITE(mcbsp, IRQEN, 0);
 378
 379	if (mcbsp->irq) {
 380		free_irq(mcbsp->irq, (void *)mcbsp);
 381	} else {
 382		free_irq(mcbsp->rx_irq, (void *)mcbsp);
 383		free_irq(mcbsp->tx_irq, (void *)mcbsp);
 384	}
 385
 386	reg_cache = mcbsp->reg_cache;
 387
 388	/*
 389	 * Select CLKS source from internal source unconditionally before
 390	 * marking the McBSP port as free.
 391	 * If the external clock source via MCBSP_CLKS pin has been selected the
 392	 * system will refuse to enter idle if the CLKS pin source is not reset
 393	 * back to internal source.
 394	 */
 395	if (!mcbsp_omap1())
 396		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
 397
 398	spin_lock(&mcbsp->lock);
 399	if (mcbsp->free)
 400		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
 401	else
 402		mcbsp->free = true;
 403	mcbsp->reg_cache = NULL;
 404	spin_unlock(&mcbsp->lock);
 405
 406	kfree(reg_cache);
 407}
 408
 409/*
 410 * Here we start the McBSP, by enabling transmitter, receiver or both.
 411 * If no transmitter or receiver is active prior calling, then sample-rate
 412 * generator and frame sync are started.
 413 */
 414static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
 415{
 416	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
 417	int rx = !tx;
 418	int enable_srg = 0;
 419	u16 w;
 420
 421	if (mcbsp->st_data)
 422		omap_mcbsp_st_start(mcbsp);
 423
 424	/* Only enable SRG, if McBSP is master */
 425	w = MCBSP_READ_CACHE(mcbsp, PCR0);
 426	if (w & (FSXM | FSRM | CLKXM | CLKRM))
 427		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
 428				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
 429
 430	if (enable_srg) {
 431		/* Start the sample generator */
 432		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 433		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
 434	}
 435
 436	/* Enable transmitter and receiver */
 437	tx &= 1;
 438	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 439	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
 440
 441	rx &= 1;
 442	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
 443	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
 444
 445	/*
 446	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
 447	 * REVISIT: 100us may give enough time for two CLKSRG, however
 448	 * due to some unknown PM related, clock gating etc. reason it
 449	 * is now at 500us.
 450	 */
 451	udelay(500);
 452
 453	if (enable_srg) {
 454		/* Start frame sync */
 455		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 456		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
 457	}
 458
 459	if (mcbsp->pdata->has_ccr) {
 460		/* Release the transmitter and receiver */
 461		w = MCBSP_READ_CACHE(mcbsp, XCCR);
 462		w &= ~(tx ? XDISABLE : 0);
 463		MCBSP_WRITE(mcbsp, XCCR, w);
 464		w = MCBSP_READ_CACHE(mcbsp, RCCR);
 465		w &= ~(rx ? RDISABLE : 0);
 466		MCBSP_WRITE(mcbsp, RCCR, w);
 467	}
 468
 469	/* Dump McBSP Regs */
 470	omap_mcbsp_dump_reg(mcbsp);
 471}
 472
 473static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
 474{
 475	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
 476	int rx = !tx;
 477	int idle;
 478	u16 w;
 479
 480	/* Reset transmitter */
 481	tx &= 1;
 482	if (mcbsp->pdata->has_ccr) {
 483		w = MCBSP_READ_CACHE(mcbsp, XCCR);
 484		w |= (tx ? XDISABLE : 0);
 485		MCBSP_WRITE(mcbsp, XCCR, w);
 486	}
 487	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 488	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
 489
 490	/* Reset receiver */
 491	rx &= 1;
 492	if (mcbsp->pdata->has_ccr) {
 493		w = MCBSP_READ_CACHE(mcbsp, RCCR);
 494		w |= (rx ? RDISABLE : 0);
 495		MCBSP_WRITE(mcbsp, RCCR, w);
 496	}
 497	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
 498	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
 499
 500	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
 501			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
 502
 503	if (idle) {
 504		/* Reset the sample rate generator */
 505		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 506		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
 507	}
 508
 509	if (mcbsp->st_data)
 510		omap_mcbsp_st_stop(mcbsp);
 511}
 512
 513#define max_thres(m)			(mcbsp->pdata->buffer_size)
 514#define valid_threshold(m, val)		((val) <= max_thres(m))
 515#define THRESHOLD_PROP_BUILDER(prop)					\
 516static ssize_t prop##_show(struct device *dev,				\
 517			struct device_attribute *attr, char *buf)	\
 518{									\
 519	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
 520									\
 521	return sprintf(buf, "%u\n", mcbsp->prop);			\
 522}									\
 523									\
 524static ssize_t prop##_store(struct device *dev,				\
 525				struct device_attribute *attr,		\
 526				const char *buf, size_t size)		\
 527{									\
 528	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
 529	unsigned long val;						\
 530	int status;							\
 531									\
 532	status = kstrtoul(buf, 0, &val);				\
 533	if (status)							\
 534		return status;						\
 535									\
 536	if (!valid_threshold(mcbsp, val))				\
 537		return -EDOM;						\
 538									\
 539	mcbsp->prop = val;						\
 540	return size;							\
 541}									\
 542									\
 543static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store)
 544
 545THRESHOLD_PROP_BUILDER(max_tx_thres);
 546THRESHOLD_PROP_BUILDER(max_rx_thres);
 547
 548static const char * const dma_op_modes[] = {
 549	"element", "threshold",
 550};
 551
 552static ssize_t dma_op_mode_show(struct device *dev,
 553				struct device_attribute *attr, char *buf)
 554{
 555	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
 556	int dma_op_mode, i = 0;
 557	ssize_t len = 0;
 558	const char * const *s;
 559
 560	dma_op_mode = mcbsp->dma_op_mode;
 561
 562	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
 563		if (dma_op_mode == i)
 564			len += sprintf(buf + len, "[%s] ", *s);
 565		else
 566			len += sprintf(buf + len, "%s ", *s);
 567	}
 568	len += sprintf(buf + len, "\n");
 569
 570	return len;
 571}
 572
 573static ssize_t dma_op_mode_store(struct device *dev,
 574				 struct device_attribute *attr, const char *buf,
 575				 size_t size)
 576{
 577	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
 578	int i;
 579
 580	i = sysfs_match_string(dma_op_modes, buf);
 581	if (i < 0)
 582		return i;
 583
 584	spin_lock_irq(&mcbsp->lock);
 585	if (!mcbsp->free) {
 586		size = -EBUSY;
 587		goto unlock;
 588	}
 589	mcbsp->dma_op_mode = i;
 590
 591unlock:
 592	spin_unlock_irq(&mcbsp->lock);
 593
 594	return size;
 595}
 596
 597static DEVICE_ATTR_RW(dma_op_mode);
 598
 599static const struct attribute *additional_attrs[] = {
 600	&dev_attr_max_tx_thres.attr,
 601	&dev_attr_max_rx_thres.attr,
 602	&dev_attr_dma_op_mode.attr,
 603	NULL,
 604};
 605
 606static const struct attribute_group additional_attr_group = {
 607	.attrs = (struct attribute **)additional_attrs,
 608};
 609
 610/*
 611 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
 612 * 730 has only 2 McBSP, and both of them are MPU peripherals.
 613 */
 614static int omap_mcbsp_init(struct platform_device *pdev)
 615{
 616	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
 617	struct resource *res;
 618	int ret = 0;
 619
 620	spin_lock_init(&mcbsp->lock);
 621	mcbsp->free = true;
 622
 623	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
 624	if (!res)
 625		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 626
 627	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
 628	if (IS_ERR(mcbsp->io_base))
 629		return PTR_ERR(mcbsp->io_base);
 630
 631	mcbsp->phys_base = res->start;
 632	mcbsp->reg_cache_size = resource_size(res);
 633
 634	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
 635	if (!res)
 636		mcbsp->phys_dma_base = mcbsp->phys_base;
 637	else
 638		mcbsp->phys_dma_base = res->start;
 639
 640	/*
 641	 * OMAP1, 2 uses two interrupt lines: TX, RX
 642	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
 643	 * OMAP4 and newer SoC only have the combined IRQ line.
 644	 * Use the combined IRQ if available since it gives better debugging
 645	 * possibilities.
 646	 */
 647	mcbsp->irq = platform_get_irq_byname(pdev, "common");
 648	if (mcbsp->irq == -ENXIO) {
 649		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
 650
 651		if (mcbsp->tx_irq == -ENXIO) {
 652			mcbsp->irq = platform_get_irq(pdev, 0);
 653			mcbsp->tx_irq = 0;
 654		} else {
 655			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
 656			mcbsp->irq = 0;
 657		}
 658	}
 659
 660	if (!pdev->dev.of_node) {
 661		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
 662		if (!res) {
 663			dev_err(&pdev->dev, "invalid tx DMA channel\n");
 664			return -ENODEV;
 665		}
 666		mcbsp->dma_req[0] = res->start;
 667		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
 668
 669		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
 670		if (!res) {
 671			dev_err(&pdev->dev, "invalid rx DMA channel\n");
 672			return -ENODEV;
 673		}
 674		mcbsp->dma_req[1] = res->start;
 675		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
 676	} else {
 677		mcbsp->dma_data[0].filter_data = "tx";
 678		mcbsp->dma_data[1].filter_data = "rx";
 679	}
 680
 681	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
 682						SNDRV_PCM_STREAM_PLAYBACK);
 683	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
 684						SNDRV_PCM_STREAM_CAPTURE);
 685
 686	mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
 687	if (IS_ERR(mcbsp->fclk)) {
 688		ret = PTR_ERR(mcbsp->fclk);
 689		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
 690		return ret;
 691	}
 692
 693	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
 694	if (mcbsp->pdata->buffer_size) {
 695		/*
 696		 * Initially configure the maximum thresholds to a safe value.
 697		 * The McBSP FIFO usage with these values should not go under
 698		 * 16 locations.
 699		 * If the whole FIFO without safety buffer is used, than there
 700		 * is a possibility that the DMA will be not able to push the
 701		 * new data on time, causing channel shifts in runtime.
 702		 */
 703		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
 704		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
 705
 706		ret = sysfs_create_group(&mcbsp->dev->kobj,
 707					 &additional_attr_group);
 708		if (ret) {
 709			dev_err(mcbsp->dev,
 710				"Unable to create additional controls\n");
 711			return ret;
 712		}
 713	}
 714
 715	ret = omap_mcbsp_st_init(pdev);
 716	if (ret)
 717		goto err_st;
 718
 719	return 0;
 720
 721err_st:
 722	if (mcbsp->pdata->buffer_size)
 723		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
 724	return ret;
 725}
 726
 727/*
 728 * Stream DMA parameters. DMA request line and port address are set runtime
 729 * since they are different between OMAP1 and later OMAPs
 730 */
 731static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
 732		unsigned int packet_size)
 733{
 734	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
 735	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
 736	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 737	int words;
 738
 739	/* No need to proceed further if McBSP does not have FIFO */
 740	if (mcbsp->pdata->buffer_size == 0)
 741		return;
 742
 743	/*
 744	 * Configure McBSP threshold based on either:
 745	 * packet_size, when the sDMA is in packet mode, or based on the
 746	 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
 747	 * for mono streams.
 748	 */
 749	if (packet_size)
 750		words = packet_size;
 751	else
 752		words = 1;
 753
 754	/* Configure McBSP internal buffer usage */
 755	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 756		omap_mcbsp_set_tx_threshold(mcbsp, words);
 757	else
 758		omap_mcbsp_set_rx_threshold(mcbsp, words);
 759}
 760
 761static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
 762				    struct snd_pcm_hw_rule *rule)
 763{
 764	struct snd_interval *buffer_size = hw_param_interval(params,
 765					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
 766	struct snd_interval *channels = hw_param_interval(params,
 767					SNDRV_PCM_HW_PARAM_CHANNELS);
 768	struct omap_mcbsp *mcbsp = rule->private;
 769	struct snd_interval frames;
 770	int size;
 771
 772	snd_interval_any(&frames);
 773	size = mcbsp->pdata->buffer_size;
 774
 775	frames.min = size / channels->min;
 776	frames.integer = 1;
 777	return snd_interval_refine(buffer_size, &frames);
 778}
 779
 780static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
 781				  struct snd_soc_dai *cpu_dai)
 782{
 783	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 784	int err = 0;
 785
 786	if (!snd_soc_dai_active(cpu_dai))
 787		err = omap_mcbsp_request(mcbsp);
 788
 789	/*
 790	 * OMAP3 McBSP FIFO is word structured.
 791	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
 792	 * McBSP1,3,4,5 has 128 word long buffer
 793	 * This means that the size of the FIFO depends on the sample format.
 794	 * For example on McBSP3:
 795	 * 16bit samples: size is 128 * 2 = 256 bytes
 796	 * 32bit samples: size is 128 * 4 = 512 bytes
 797	 * It is simpler to place constraint for buffer and period based on
 798	 * channels.
 799	 * McBSP3 as example again (16 or 32 bit samples):
 800	 * 1 channel (mono): size is 128 frames (128 words)
 801	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
 802	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
 803	 */
 804	if (mcbsp->pdata->buffer_size) {
 805		/*
 806		* Rule for the buffer size. We should not allow
 807		* smaller buffer than the FIFO size to avoid underruns.
 808		* This applies only for the playback stream.
 809		*/
 810		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 811			snd_pcm_hw_rule_add(substream->runtime, 0,
 812					    SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 813					    omap_mcbsp_hwrule_min_buffersize,
 814					    mcbsp,
 815					    SNDRV_PCM_HW_PARAM_CHANNELS, -1);
 816
 817		/* Make sure, that the period size is always even */
 818		snd_pcm_hw_constraint_step(substream->runtime, 0,
 819					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
 820	}
 821
 822	return err;
 823}
 824
 825static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
 826				    struct snd_soc_dai *cpu_dai)
 827{
 828	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 829	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
 830	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
 831	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
 832
 833	if (mcbsp->latency[stream2])
 834		cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
 835					       mcbsp->latency[stream2]);
 836	else if (mcbsp->latency[stream1])
 837		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
 838
 839	mcbsp->latency[stream1] = 0;
 840
 841	if (!snd_soc_dai_active(cpu_dai)) {
 842		omap_mcbsp_free(mcbsp);
 843		mcbsp->configured = 0;
 844	}
 845}
 846
 847static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
 848				  struct snd_soc_dai *cpu_dai)
 849{
 850	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 851	struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
 852	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
 853	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
 854	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
 855	int latency = mcbsp->latency[stream2];
 856
 857	/* Prevent omap hardware from hitting off between FIFO fills */
 858	if (!latency || mcbsp->latency[stream1] < latency)
 859		latency = mcbsp->latency[stream1];
 860
 861	if (cpu_latency_qos_request_active(pm_qos_req))
 862		cpu_latency_qos_update_request(pm_qos_req, latency);
 863	else if (latency)
 864		cpu_latency_qos_add_request(pm_qos_req, latency);
 865
 866	return 0;
 867}
 868
 869static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
 870				  struct snd_soc_dai *cpu_dai)
 871{
 872	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 873
 874	switch (cmd) {
 875	case SNDRV_PCM_TRIGGER_START:
 876	case SNDRV_PCM_TRIGGER_RESUME:
 877	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 878		mcbsp->active++;
 879		omap_mcbsp_start(mcbsp, substream->stream);
 880		break;
 881
 882	case SNDRV_PCM_TRIGGER_STOP:
 883	case SNDRV_PCM_TRIGGER_SUSPEND:
 884	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 885		omap_mcbsp_stop(mcbsp, substream->stream);
 886		mcbsp->active--;
 887		break;
 888	default:
 889		return -EINVAL;
 890	}
 891
 892	return 0;
 893}
 894
 895static snd_pcm_sframes_t omap_mcbsp_dai_delay(
 896			struct snd_pcm_substream *substream,
 897			struct snd_soc_dai *dai)
 898{
 899	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
 900	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
 901	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 902	u16 fifo_use;
 903	snd_pcm_sframes_t delay;
 904
 905	/* No need to proceed further if McBSP does not have FIFO */
 906	if (mcbsp->pdata->buffer_size == 0)
 907		return 0;
 908
 909	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 910		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
 911	else
 912		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
 913
 914	/*
 915	 * Divide the used locations with the channel count to get the
 916	 * FIFO usage in samples (don't care about partial samples in the
 917	 * buffer).
 918	 */
 919	delay = fifo_use / substream->runtime->channels;
 920
 921	return delay;
 922}
 923
 924static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
 925				    struct snd_pcm_hw_params *params,
 926				    struct snd_soc_dai *cpu_dai)
 927{
 928	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
 929	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
 930	struct snd_dmaengine_dai_dma_data *dma_data;
 931	int wlen, channels, wpf;
 932	int pkt_size = 0;
 933	unsigned int format, div, framesize, master;
 934	unsigned int buffer_size = mcbsp->pdata->buffer_size;
 935
 936	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
 937	channels = params_channels(params);
 938
 939	switch (params_format(params)) {
 940	case SNDRV_PCM_FORMAT_S16_LE:
 941		wlen = 16;
 942		break;
 943	case SNDRV_PCM_FORMAT_S32_LE:
 944		wlen = 32;
 945		break;
 946	default:
 947		return -EINVAL;
 948	}
 949	if (buffer_size) {
 950		int latency;
 951
 952		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
 953			int period_words, max_thrsh;
 954			int divider = 0;
 955
 956			period_words = params_period_bytes(params) / (wlen / 8);
 957			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 958				max_thrsh = mcbsp->max_tx_thres;
 959			else
 960				max_thrsh = mcbsp->max_rx_thres;
 961			/*
 962			 * Use sDMA packet mode if McBSP is in threshold mode:
 963			 * If period words less than the FIFO size the packet
 964			 * size is set to the number of period words, otherwise
 965			 * Look for the biggest threshold value which divides
 966			 * the period size evenly.
 967			 */
 968			divider = period_words / max_thrsh;
 969			if (period_words % max_thrsh)
 970				divider++;
 971			while (period_words % divider &&
 972				divider < period_words)
 973				divider++;
 974			if (divider == period_words)
 975				return -EINVAL;
 976
 977			pkt_size = period_words / divider;
 978		} else if (channels > 1) {
 979			/* Use packet mode for non mono streams */
 980			pkt_size = channels;
 981		}
 982
 983		latency = (buffer_size - pkt_size) / channels;
 984		latency = latency * USEC_PER_SEC /
 985			  (params->rate_num / params->rate_den);
 986		mcbsp->latency[substream->stream] = latency;
 987
 988		omap_mcbsp_set_threshold(substream, pkt_size);
 989	}
 990
 991	dma_data->maxburst = pkt_size;
 992
 993	if (mcbsp->configured) {
 994		/* McBSP already configured by another stream */
 995		return 0;
 996	}
 997
 998	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
 999	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
1000	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
1001	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
1002	format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
1003	wpf = channels;
1004	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
1005			      format == SND_SOC_DAIFMT_LEFT_J)) {
1006		/* Use dual-phase frames */
1007		regs->rcr2	|= RPHASE;
1008		regs->xcr2	|= XPHASE;
1009		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
1010		wpf--;
1011		regs->rcr2	|= RFRLEN2(wpf - 1);
1012		regs->xcr2	|= XFRLEN2(wpf - 1);
1013	}
1014
1015	regs->rcr1	|= RFRLEN1(wpf - 1);
1016	regs->xcr1	|= XFRLEN1(wpf - 1);
1017
1018	switch (params_format(params)) {
1019	case SNDRV_PCM_FORMAT_S16_LE:
1020		/* Set word lengths */
1021		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
1022		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
1023		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
1024		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
1025		break;
1026	case SNDRV_PCM_FORMAT_S32_LE:
1027		/* Set word lengths */
1028		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
1029		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
1030		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
1031		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
1032		break;
1033	default:
1034		/* Unsupported PCM format */
1035		return -EINVAL;
1036	}
1037
1038	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
1039	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1040	master = mcbsp->fmt & SND_SOC_DAIFMT_MASTER_MASK;
1041	if (master ==	SND_SOC_DAIFMT_CBS_CFS) {
1042		div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1043		framesize = (mcbsp->in_freq / div) / params_rate(params);
1044
1045		if (framesize < wlen * channels) {
1046			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1047					"channels\n", __func__);
1048			return -EINVAL;
1049		}
1050	} else
1051		framesize = wlen * channels;
1052
1053	/* Set FS period and length in terms of bit clock periods */
1054	regs->srgr2	&= ~FPER(0xfff);
1055	regs->srgr1	&= ~FWID(0xff);
1056	switch (format) {
1057	case SND_SOC_DAIFMT_I2S:
1058	case SND_SOC_DAIFMT_LEFT_J:
1059		regs->srgr2	|= FPER(framesize - 1);
1060		regs->srgr1	|= FWID((framesize >> 1) - 1);
1061		break;
1062	case SND_SOC_DAIFMT_DSP_A:
1063	case SND_SOC_DAIFMT_DSP_B:
1064		regs->srgr2	|= FPER(framesize - 1);
1065		regs->srgr1	|= FWID(0);
1066		break;
1067	}
1068
1069	omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1070	mcbsp->wlen = wlen;
1071	mcbsp->configured = 1;
1072
1073	return 0;
1074}
1075
1076/*
1077 * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1078 * cache is initialized here
1079 */
1080static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1081				      unsigned int fmt)
1082{
1083	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1084	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1085	bool inv_fs = false;
1086
1087	if (mcbsp->configured)
1088		return 0;
1089
1090	mcbsp->fmt = fmt;
1091	memset(regs, 0, sizeof(*regs));
1092	/* Generic McBSP register settings */
1093	regs->spcr2	|= XINTM(3) | FREE;
1094	regs->spcr1	|= RINTM(3);
1095	/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1096	if (!mcbsp->pdata->has_ccr) {
1097		regs->rcr2	|= RFIG;
1098		regs->xcr2	|= XFIG;
1099	}
1100
1101	/* Configure XCCR/RCCR only for revisions which have ccr registers */
1102	if (mcbsp->pdata->has_ccr) {
1103		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1104		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1105	}
1106
1107	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1108	case SND_SOC_DAIFMT_I2S:
1109		/* 1-bit data delay */
1110		regs->rcr2	|= RDATDLY(1);
1111		regs->xcr2	|= XDATDLY(1);
1112		break;
1113	case SND_SOC_DAIFMT_LEFT_J:
1114		/* 0-bit data delay */
1115		regs->rcr2	|= RDATDLY(0);
1116		regs->xcr2	|= XDATDLY(0);
1117		regs->spcr1	|= RJUST(2);
1118		/* Invert FS polarity configuration */
1119		inv_fs = true;
1120		break;
1121	case SND_SOC_DAIFMT_DSP_A:
1122		/* 1-bit data delay */
1123		regs->rcr2      |= RDATDLY(1);
1124		regs->xcr2      |= XDATDLY(1);
1125		/* Invert FS polarity configuration */
1126		inv_fs = true;
1127		break;
1128	case SND_SOC_DAIFMT_DSP_B:
1129		/* 0-bit data delay */
1130		regs->rcr2      |= RDATDLY(0);
1131		regs->xcr2      |= XDATDLY(0);
1132		/* Invert FS polarity configuration */
1133		inv_fs = true;
1134		break;
1135	default:
1136		/* Unsupported data format */
1137		return -EINVAL;
1138	}
1139
1140	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1141	case SND_SOC_DAIFMT_CBS_CFS:
1142		/* McBSP master. Set FS and bit clocks as outputs */
1143		regs->pcr0	|= FSXM | FSRM |
1144				   CLKXM | CLKRM;
1145		/* Sample rate generator drives the FS */
1146		regs->srgr2	|= FSGM;
1147		break;
1148	case SND_SOC_DAIFMT_CBM_CFS:
1149		/* McBSP slave. FS clock as output */
1150		regs->srgr2	|= FSGM;
1151		regs->pcr0	|= FSXM | FSRM;
1152		break;
1153	case SND_SOC_DAIFMT_CBM_CFM:
1154		/* McBSP slave */
1155		break;
1156	default:
1157		/* Unsupported master/slave configuration */
1158		return -EINVAL;
1159	}
1160
1161	/* Set bit clock (CLKX/CLKR) and FS polarities */
1162	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1163	case SND_SOC_DAIFMT_NB_NF:
1164		/*
1165		 * Normal BCLK + FS.
1166		 * FS active low. TX data driven on falling edge of bit clock
1167		 * and RX data sampled on rising edge of bit clock.
1168		 */
1169		regs->pcr0	|= FSXP | FSRP |
1170				   CLKXP | CLKRP;
1171		break;
1172	case SND_SOC_DAIFMT_NB_IF:
1173		regs->pcr0	|= CLKXP | CLKRP;
1174		break;
1175	case SND_SOC_DAIFMT_IB_NF:
1176		regs->pcr0	|= FSXP | FSRP;
1177		break;
1178	case SND_SOC_DAIFMT_IB_IF:
1179		break;
1180	default:
1181		return -EINVAL;
1182	}
1183	if (inv_fs)
1184		regs->pcr0 ^= FSXP | FSRP;
1185
1186	return 0;
1187}
1188
1189static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1190				     int div_id, int div)
1191{
1192	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1193	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1194
1195	if (div_id != OMAP_MCBSP_CLKGDV)
1196		return -ENODEV;
1197
1198	mcbsp->clk_div = div;
1199	regs->srgr1	&= ~CLKGDV(0xff);
1200	regs->srgr1	|= CLKGDV(div - 1);
1201
1202	return 0;
1203}
1204
1205static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1206					 int clk_id, unsigned int freq,
1207					 int dir)
1208{
1209	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1210	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1211	int err = 0;
1212
1213	if (mcbsp->active) {
1214		if (freq == mcbsp->in_freq)
1215			return 0;
1216		else
1217			return -EBUSY;
1218	}
1219
1220	mcbsp->in_freq = freq;
1221	regs->srgr2 &= ~CLKSM;
1222	regs->pcr0 &= ~SCLKME;
1223
1224	switch (clk_id) {
1225	case OMAP_MCBSP_SYSCLK_CLK:
1226		regs->srgr2	|= CLKSM;
1227		break;
1228	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1229		if (mcbsp_omap1()) {
1230			err = -EINVAL;
1231			break;
1232		}
1233		err = omap2_mcbsp_set_clks_src(mcbsp,
1234					       MCBSP_CLKS_PRCM_SRC);
1235		break;
1236	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1237		if (mcbsp_omap1()) {
1238			err = 0;
1239			break;
1240		}
1241		err = omap2_mcbsp_set_clks_src(mcbsp,
1242					       MCBSP_CLKS_PAD_SRC);
1243		break;
1244
1245	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1246		regs->srgr2	|= CLKSM;
1247		regs->pcr0	|= SCLKME;
1248		/*
1249		 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1250		 * disable output on those pins. This enables to inject the
1251		 * reference clock through CLKX/CLKR. For this to work
1252		 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1253		 */
1254		regs->pcr0	&= ~CLKXM;
1255		break;
1256	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1257		regs->pcr0	|= SCLKME;
1258		/* Disable ouput on CLKR pin in master mode */
1259		regs->pcr0	&= ~CLKRM;
1260		break;
1261	default:
1262		err = -ENODEV;
1263	}
1264
1265	return err;
1266}
1267
1268static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1269	.startup	= omap_mcbsp_dai_startup,
1270	.shutdown	= omap_mcbsp_dai_shutdown,
1271	.prepare	= omap_mcbsp_dai_prepare,
1272	.trigger	= omap_mcbsp_dai_trigger,
1273	.delay		= omap_mcbsp_dai_delay,
1274	.hw_params	= omap_mcbsp_dai_hw_params,
1275	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
1276	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
1277	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
1278};
1279
1280static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1281{
1282	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1283
1284	pm_runtime_enable(mcbsp->dev);
1285
1286	snd_soc_dai_init_dma_data(dai,
1287				  &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1288				  &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1289
1290	return 0;
1291}
1292
1293static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1294{
1295	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1296
1297	pm_runtime_disable(mcbsp->dev);
1298
1299	return 0;
1300}
1301
1302static struct snd_soc_dai_driver omap_mcbsp_dai = {
1303	.probe = omap_mcbsp_probe,
1304	.remove = omap_mcbsp_remove,
1305	.playback = {
1306		.channels_min = 1,
1307		.channels_max = 16,
1308		.rates = OMAP_MCBSP_RATES,
1309		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1310	},
1311	.capture = {
1312		.channels_min = 1,
1313		.channels_max = 16,
1314		.rates = OMAP_MCBSP_RATES,
1315		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1316	},
1317	.ops = &mcbsp_dai_ops,
1318};
1319
1320static const struct snd_soc_component_driver omap_mcbsp_component = {
1321	.name		= "omap-mcbsp",
 
1322};
1323
1324static struct omap_mcbsp_platform_data omap2420_pdata = {
1325	.reg_step = 4,
1326	.reg_size = 2,
1327};
1328
1329static struct omap_mcbsp_platform_data omap2430_pdata = {
1330	.reg_step = 4,
1331	.reg_size = 4,
1332	.has_ccr = true,
1333};
1334
1335static struct omap_mcbsp_platform_data omap3_pdata = {
1336	.reg_step = 4,
1337	.reg_size = 4,
1338	.has_ccr = true,
1339	.has_wakeup = true,
1340};
1341
1342static struct omap_mcbsp_platform_data omap4_pdata = {
1343	.reg_step = 4,
1344	.reg_size = 4,
1345	.has_ccr = true,
1346	.has_wakeup = true,
1347};
1348
1349static const struct of_device_id omap_mcbsp_of_match[] = {
1350	{
1351		.compatible = "ti,omap2420-mcbsp",
1352		.data = &omap2420_pdata,
1353	},
1354	{
1355		.compatible = "ti,omap2430-mcbsp",
1356		.data = &omap2430_pdata,
1357	},
1358	{
1359		.compatible = "ti,omap3-mcbsp",
1360		.data = &omap3_pdata,
1361	},
1362	{
1363		.compatible = "ti,omap4-mcbsp",
1364		.data = &omap4_pdata,
1365	},
1366	{ },
1367};
1368MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1369
1370static int asoc_mcbsp_probe(struct platform_device *pdev)
1371{
1372	struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1373	struct omap_mcbsp *mcbsp;
1374	const struct of_device_id *match;
1375	int ret;
1376
1377	match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
1378	if (match) {
1379		struct device_node *node = pdev->dev.of_node;
1380		struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1381		int buffer_size;
1382
1383		pdata = devm_kzalloc(&pdev->dev,
1384				     sizeof(struct omap_mcbsp_platform_data),
1385				     GFP_KERNEL);
1386		if (!pdata)
1387			return -ENOMEM;
1388
1389		memcpy(pdata, match->data, sizeof(*pdata));
1390		if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1391			pdata->buffer_size = buffer_size;
1392		if (pdata_quirk)
1393			pdata->force_ick_on = pdata_quirk->force_ick_on;
1394	} else if (!pdata) {
1395		dev_err(&pdev->dev, "missing platform data.\n");
1396		return -EINVAL;
1397	}
1398	mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1399	if (!mcbsp)
1400		return -ENOMEM;
1401
1402	mcbsp->id = pdev->id;
1403	mcbsp->pdata = pdata;
1404	mcbsp->dev = &pdev->dev;
1405	platform_set_drvdata(pdev, mcbsp);
1406
1407	ret = omap_mcbsp_init(pdev);
1408	if (ret)
1409		return ret;
1410
1411	if (mcbsp->pdata->reg_size == 2) {
1412		omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1413		omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1414	}
1415
1416	ret = devm_snd_soc_register_component(&pdev->dev,
1417					      &omap_mcbsp_component,
1418					      &omap_mcbsp_dai, 1);
1419	if (ret)
1420		return ret;
1421
1422	return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1423}
1424
1425static int asoc_mcbsp_remove(struct platform_device *pdev)
1426{
1427	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1428
1429	if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1430		mcbsp->pdata->ops->free(mcbsp->id);
1431
1432	if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
1433		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
1434
1435	if (mcbsp->pdata->buffer_size)
1436		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1437
1438	omap_mcbsp_st_cleanup(pdev);
1439
1440	return 0;
1441}
1442
1443static struct platform_driver asoc_mcbsp_driver = {
1444	.driver = {
1445			.name = "omap-mcbsp",
1446			.of_match_table = omap_mcbsp_of_match,
1447	},
1448
1449	.probe = asoc_mcbsp_probe,
1450	.remove = asoc_mcbsp_remove,
1451};
1452
1453module_platform_driver(asoc_mcbsp_driver);
1454
1455MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1456MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1457MODULE_LICENSE("GPL");
1458MODULE_ALIAS("platform:omap-mcbsp");