Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  Copyright (C) 1991, 1992  Linus Torvalds
  4 *
  5 *  This file contains the interface functions for the various time related
  6 *  system calls: time, stime, gettimeofday, settimeofday, adjtime
  7 *
  8 * Modification history:
  9 *
 10 * 1993-09-02    Philip Gladstone
 11 *      Created file with time related functions from sched/core.c and adjtimex()
 12 * 1993-10-08    Torsten Duwe
 13 *      adjtime interface update and CMOS clock write code
 14 * 1995-08-13    Torsten Duwe
 15 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 16 * 1999-01-16    Ulrich Windl
 17 *	Introduced error checking for many cases in adjtimex().
 18 *	Updated NTP code according to technical memorandum Jan '96
 19 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 20 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 21 *	(Even though the technical memorandum forbids it)
 22 * 2004-07-14	 Christoph Lameter
 23 *	Added getnstimeofday to allow the posix timer functions to return
 24 *	with nanosecond accuracy
 25 */
 26
 27#include <linux/export.h>
 28#include <linux/kernel.h>
 29#include <linux/timex.h>
 30#include <linux/capability.h>
 31#include <linux/timekeeper_internal.h>
 32#include <linux/errno.h>
 33#include <linux/syscalls.h>
 34#include <linux/security.h>
 35#include <linux/fs.h>
 36#include <linux/math64.h>
 37#include <linux/ptrace.h>
 38
 39#include <linux/uaccess.h>
 40#include <linux/compat.h>
 41#include <asm/unistd.h>
 42
 43#include <generated/timeconst.h>
 44#include "timekeeping.h"
 45
 46/*
 47 * The timezone where the local system is located.  Used as a default by some
 48 * programs who obtain this value by using gettimeofday.
 49 */
 50struct timezone sys_tz;
 51
 52EXPORT_SYMBOL(sys_tz);
 53
 54#ifdef __ARCH_WANT_SYS_TIME
 55
 56/*
 57 * sys_time() can be implemented in user-level using
 58 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 59 * why not move it into the appropriate arch directory (for those
 60 * architectures that need it).
 61 */
 62SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc)
 63{
 64	__kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds();
 65
 66	if (tloc) {
 67		if (put_user(i,tloc))
 68			return -EFAULT;
 69	}
 70	force_successful_syscall_return();
 71	return i;
 72}
 73
 74/*
 75 * sys_stime() can be implemented in user-level using
 76 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 77 * why not move it into the appropriate arch directory (for those
 78 * architectures that need it).
 79 */
 80
 81SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr)
 82{
 83	struct timespec64 tv;
 84	int err;
 85
 86	if (get_user(tv.tv_sec, tptr))
 87		return -EFAULT;
 88
 89	tv.tv_nsec = 0;
 90
 91	err = security_settime64(&tv, NULL);
 92	if (err)
 93		return err;
 94
 95	do_settimeofday64(&tv);
 96	return 0;
 97}
 98
 99#endif /* __ARCH_WANT_SYS_TIME */
100
101#ifdef CONFIG_COMPAT_32BIT_TIME
102#ifdef __ARCH_WANT_SYS_TIME32
103
104/* old_time32_t is a 32 bit "long" and needs to get converted. */
105SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
106{
107	old_time32_t i;
108
109	i = (old_time32_t)ktime_get_real_seconds();
110
111	if (tloc) {
112		if (put_user(i,tloc))
113			return -EFAULT;
114	}
115	force_successful_syscall_return();
116	return i;
117}
118
119SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
120{
121	struct timespec64 tv;
122	int err;
123
124	if (get_user(tv.tv_sec, tptr))
125		return -EFAULT;
126
127	tv.tv_nsec = 0;
128
129	err = security_settime64(&tv, NULL);
130	if (err)
131		return err;
132
133	do_settimeofday64(&tv);
134	return 0;
135}
136
137#endif /* __ARCH_WANT_SYS_TIME32 */
138#endif
139
140SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
141		struct timezone __user *, tz)
142{
143	if (likely(tv != NULL)) {
144		struct timespec64 ts;
145
146		ktime_get_real_ts64(&ts);
147		if (put_user(ts.tv_sec, &tv->tv_sec) ||
148		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
149			return -EFAULT;
150	}
151	if (unlikely(tz != NULL)) {
152		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153			return -EFAULT;
154	}
155	return 0;
156}
157
158/*
159 * In case for some reason the CMOS clock has not already been running
160 * in UTC, but in some local time: The first time we set the timezone,
161 * we will warp the clock so that it is ticking UTC time instead of
162 * local time. Presumably, if someone is setting the timezone then we
163 * are running in an environment where the programs understand about
164 * timezones. This should be done at boot time in the /etc/rc script,
165 * as soon as possible, so that the clock can be set right. Otherwise,
166 * various programs will get confused when the clock gets warped.
167 */
168
169int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
170{
171	static int firsttime = 1;
172	int error = 0;
173
174	if (tv && !timespec64_valid_settod(tv))
175		return -EINVAL;
176
177	error = security_settime64(tv, tz);
178	if (error)
179		return error;
180
181	if (tz) {
182		/* Verify we're within the +-15 hrs range */
183		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184			return -EINVAL;
185
186		sys_tz = *tz;
187		update_vsyscall_tz();
188		if (firsttime) {
189			firsttime = 0;
190			if (!tv)
191				timekeeping_warp_clock();
192		}
193	}
194	if (tv)
195		return do_settimeofday64(tv);
196	return 0;
197}
198
199SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv,
200		struct timezone __user *, tz)
201{
202	struct timespec64 new_ts;
203	struct timezone new_tz;
204
205	if (tv) {
206		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
207		    get_user(new_ts.tv_nsec, &tv->tv_usec))
208			return -EFAULT;
209
210		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
211			return -EINVAL;
212
213		new_ts.tv_nsec *= NSEC_PER_USEC;
214	}
215	if (tz) {
216		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
217			return -EFAULT;
218	}
219
220	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
221}
222
223#ifdef CONFIG_COMPAT
224COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
225		       struct timezone __user *, tz)
226{
227	if (tv) {
228		struct timespec64 ts;
229
230		ktime_get_real_ts64(&ts);
231		if (put_user(ts.tv_sec, &tv->tv_sec) ||
232		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
233			return -EFAULT;
234	}
235	if (tz) {
236		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
237			return -EFAULT;
238	}
239
240	return 0;
241}
242
243COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
244		       struct timezone __user *, tz)
245{
246	struct timespec64 new_ts;
247	struct timezone new_tz;
248
249	if (tv) {
250		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
251		    get_user(new_ts.tv_nsec, &tv->tv_usec))
252			return -EFAULT;
253
254		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
255			return -EINVAL;
256
257		new_ts.tv_nsec *= NSEC_PER_USEC;
258	}
259	if (tz) {
260		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
261			return -EFAULT;
262	}
263
264	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
265}
266#endif
267
268#ifdef CONFIG_64BIT
269SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
270{
271	struct __kernel_timex txc;		/* Local copy of parameter */
272	int ret;
273
274	/* Copy the user data space into the kernel copy
275	 * structure. But bear in mind that the structures
276	 * may change
277	 */
278	if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
279		return -EFAULT;
280	ret = do_adjtimex(&txc);
281	return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
282}
283#endif
284
285#ifdef CONFIG_COMPAT_32BIT_TIME
286int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
287{
288	struct old_timex32 tx32;
289
290	memset(txc, 0, sizeof(struct __kernel_timex));
291	if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
292		return -EFAULT;
293
294	txc->modes = tx32.modes;
295	txc->offset = tx32.offset;
296	txc->freq = tx32.freq;
297	txc->maxerror = tx32.maxerror;
298	txc->esterror = tx32.esterror;
299	txc->status = tx32.status;
300	txc->constant = tx32.constant;
301	txc->precision = tx32.precision;
302	txc->tolerance = tx32.tolerance;
303	txc->time.tv_sec = tx32.time.tv_sec;
304	txc->time.tv_usec = tx32.time.tv_usec;
305	txc->tick = tx32.tick;
306	txc->ppsfreq = tx32.ppsfreq;
307	txc->jitter = tx32.jitter;
308	txc->shift = tx32.shift;
309	txc->stabil = tx32.stabil;
310	txc->jitcnt = tx32.jitcnt;
311	txc->calcnt = tx32.calcnt;
312	txc->errcnt = tx32.errcnt;
313	txc->stbcnt = tx32.stbcnt;
314
315	return 0;
316}
317
318int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
319{
320	struct old_timex32 tx32;
321
322	memset(&tx32, 0, sizeof(struct old_timex32));
323	tx32.modes = txc->modes;
324	tx32.offset = txc->offset;
325	tx32.freq = txc->freq;
326	tx32.maxerror = txc->maxerror;
327	tx32.esterror = txc->esterror;
328	tx32.status = txc->status;
329	tx32.constant = txc->constant;
330	tx32.precision = txc->precision;
331	tx32.tolerance = txc->tolerance;
332	tx32.time.tv_sec = txc->time.tv_sec;
333	tx32.time.tv_usec = txc->time.tv_usec;
334	tx32.tick = txc->tick;
335	tx32.ppsfreq = txc->ppsfreq;
336	tx32.jitter = txc->jitter;
337	tx32.shift = txc->shift;
338	tx32.stabil = txc->stabil;
339	tx32.jitcnt = txc->jitcnt;
340	tx32.calcnt = txc->calcnt;
341	tx32.errcnt = txc->errcnt;
342	tx32.stbcnt = txc->stbcnt;
343	tx32.tai = txc->tai;
344	if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
345		return -EFAULT;
346	return 0;
347}
348
349SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
350{
351	struct __kernel_timex txc;
352	int err, ret;
353
354	err = get_old_timex32(&txc, utp);
355	if (err)
356		return err;
357
358	ret = do_adjtimex(&txc);
359
360	err = put_old_timex32(utp, &txc);
361	if (err)
362		return err;
363
364	return ret;
365}
366#endif
367
368/*
369 * Convert jiffies to milliseconds and back.
 
370 *
371 * Avoid unnecessary multiplications/divisions in the
372 * two most common HZ cases:
 
 
373 */
374unsigned int jiffies_to_msecs(const unsigned long j)
375{
376#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
377	return (MSEC_PER_SEC / HZ) * j;
378#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
379	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
380#else
381# if BITS_PER_LONG == 32
382	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
383	       HZ_TO_MSEC_SHR32;
384# else
385	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
386# endif
387#endif
388}
389EXPORT_SYMBOL(jiffies_to_msecs);
390
 
 
 
 
 
 
391unsigned int jiffies_to_usecs(const unsigned long j)
392{
393	/*
394	 * Hz usually doesn't go much further MSEC_PER_SEC.
395	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
396	 */
397	BUILD_BUG_ON(HZ > USEC_PER_SEC);
398
399#if !(USEC_PER_SEC % HZ)
400	return (USEC_PER_SEC / HZ) * j;
401#else
402# if BITS_PER_LONG == 32
403	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
404# else
405	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
406# endif
407#endif
408}
409EXPORT_SYMBOL(jiffies_to_usecs);
410
411/*
412 * mktime64 - Converts date to seconds.
 
 
 
 
 
 
 
413 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
414 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
415 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
416 *
417 * [For the Julian calendar (which was used in Russia before 1917,
418 * Britain & colonies before 1752, anywhere else before 1582,
419 * and is still in use by some communities) leave out the
420 * -year/100+year/400 terms, and add 10.]
421 *
422 * This algorithm was first published by Gauss (I think).
423 *
424 * A leap second can be indicated by calling this function with sec as
425 * 60 (allowable under ISO 8601).  The leap second is treated the same
426 * as the following second since they don't exist in UNIX time.
427 *
428 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
429 * tomorrow - (allowable under ISO 8601) is supported.
 
 
430 */
431time64_t mktime64(const unsigned int year0, const unsigned int mon0,
432		const unsigned int day, const unsigned int hour,
433		const unsigned int min, const unsigned int sec)
434{
435	unsigned int mon = mon0, year = year0;
436
437	/* 1..12 -> 11,12,1..10 */
438	if (0 >= (int) (mon -= 2)) {
439		mon += 12;	/* Puts Feb last since it has leap day */
440		year -= 1;
441	}
442
443	return ((((time64_t)
444		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
445		  year*365 - 719499
446	    )*24 + hour /* now have hours - midnight tomorrow handled here */
447	  )*60 + min /* now have minutes */
448	)*60 + sec; /* finally seconds */
449}
450EXPORT_SYMBOL(mktime64);
451
452struct __kernel_old_timeval ns_to_kernel_old_timeval(s64 nsec)
453{
454	struct timespec64 ts = ns_to_timespec64(nsec);
455	struct __kernel_old_timeval tv;
456
457	tv.tv_sec = ts.tv_sec;
458	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
459
460	return tv;
461}
462EXPORT_SYMBOL(ns_to_kernel_old_timeval);
463
464/**
465 * set_normalized_timespec64 - set timespec sec and nsec parts and normalize
466 *
467 * @ts:		pointer to timespec variable to be set
468 * @sec:	seconds to set
469 * @nsec:	nanoseconds to set
470 *
471 * Set seconds and nanoseconds field of a timespec variable and
472 * normalize to the timespec storage format
473 *
474 * Note: The tv_nsec part is always in the range of
475 *	0 <= tv_nsec < NSEC_PER_SEC
476 * For negative values only the tv_sec field is negative !
477 */
478void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
479{
480	while (nsec >= NSEC_PER_SEC) {
481		/*
482		 * The following asm() prevents the compiler from
483		 * optimising this loop into a modulo operation. See
484		 * also __iter_div_u64_rem() in include/linux/time.h
485		 */
486		asm("" : "+rm"(nsec));
487		nsec -= NSEC_PER_SEC;
488		++sec;
489	}
490	while (nsec < 0) {
491		asm("" : "+rm"(nsec));
492		nsec += NSEC_PER_SEC;
493		--sec;
494	}
495	ts->tv_sec = sec;
496	ts->tv_nsec = nsec;
497}
498EXPORT_SYMBOL(set_normalized_timespec64);
499
500/**
501 * ns_to_timespec64 - Convert nanoseconds to timespec64
502 * @nsec:       the nanoseconds value to be converted
503 *
504 * Returns the timespec64 representation of the nsec parameter.
505 */
506struct timespec64 ns_to_timespec64(s64 nsec)
507{
508	struct timespec64 ts = { 0, 0 };
509	s32 rem;
510
511	if (likely(nsec > 0)) {
512		ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
513		ts.tv_nsec = rem;
514	} else if (nsec < 0) {
515		/*
516		 * With negative times, tv_sec points to the earlier
517		 * second, and tv_nsec counts the nanoseconds since
518		 * then, so tv_nsec is always a positive number.
519		 */
520		ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1;
521		ts.tv_nsec = NSEC_PER_SEC - rem - 1;
522	}
523
524	return ts;
525}
526EXPORT_SYMBOL(ns_to_timespec64);
527
528/**
529 * __msecs_to_jiffies: - convert milliseconds to jiffies
530 * @m:	time in milliseconds
531 *
532 * conversion is done as follows:
533 *
534 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
535 *
536 * - 'too large' values [that would result in larger than
537 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
538 *
539 * - all other values are converted to jiffies by either multiplying
540 *   the input value by a factor or dividing it with a factor and
541 *   handling any 32-bit overflows.
542 *   for the details see __msecs_to_jiffies()
543 *
544 * __msecs_to_jiffies() checks for the passed in value being a constant
545 * via __builtin_constant_p() allowing gcc to eliminate most of the
546 * code, __msecs_to_jiffies() is called if the value passed does not
547 * allow constant folding and the actual conversion must be done at
548 * runtime.
549 * The _msecs_to_jiffies helpers are the HZ dependent conversion
550 * routines found in include/linux/jiffies.h
 
 
551 */
552unsigned long __msecs_to_jiffies(const unsigned int m)
553{
554	/*
555	 * Negative value, means infinite timeout:
556	 */
557	if ((int)m < 0)
558		return MAX_JIFFY_OFFSET;
559	return _msecs_to_jiffies(m);
560}
561EXPORT_SYMBOL(__msecs_to_jiffies);
562
 
 
 
 
 
 
563unsigned long __usecs_to_jiffies(const unsigned int u)
564{
565	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
566		return MAX_JIFFY_OFFSET;
567	return _usecs_to_jiffies(u);
568}
569EXPORT_SYMBOL(__usecs_to_jiffies);
570
571/*
 
 
 
572 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
573 * that a remainder subtract here would not do the right thing as the
574 * resolution values don't fall on second boundaries.  I.e. the line:
575 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
576 * Note that due to the small error in the multiplier here, this
577 * rounding is incorrect for sufficiently large values of tv_nsec, but
578 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
579 * OK.
580 *
581 * Rather, we just shift the bits off the right.
582 *
583 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
584 * value to a scaled second value.
 
 
585 */
586
587unsigned long
588timespec64_to_jiffies(const struct timespec64 *value)
589{
590	u64 sec = value->tv_sec;
591	long nsec = value->tv_nsec + TICK_NSEC - 1;
592
593	if (sec >= MAX_SEC_IN_JIFFIES){
594		sec = MAX_SEC_IN_JIFFIES;
595		nsec = 0;
596	}
597	return ((sec * SEC_CONVERSION) +
598		(((u64)nsec * NSEC_CONVERSION) >>
599		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
600
601}
602EXPORT_SYMBOL(timespec64_to_jiffies);
603
 
 
 
 
 
604void
605jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
606{
607	/*
608	 * Convert jiffies to nanoseconds and separate with
609	 * one divide.
610	 */
611	u32 rem;
612	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
613				    NSEC_PER_SEC, &rem);
614	value->tv_nsec = rem;
615}
616EXPORT_SYMBOL(jiffies_to_timespec64);
617
618/*
619 * Convert jiffies/jiffies_64 to clock_t and back.
620 */
 
 
 
 
 
 
 
621clock_t jiffies_to_clock_t(unsigned long x)
622{
623#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
624# if HZ < USER_HZ
625	return x * (USER_HZ / HZ);
626# else
627	return x / (HZ / USER_HZ);
628# endif
629#else
630	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
631#endif
632}
633EXPORT_SYMBOL(jiffies_to_clock_t);
634
 
 
 
 
 
 
635unsigned long clock_t_to_jiffies(unsigned long x)
636{
637#if (HZ % USER_HZ)==0
638	if (x >= ~0UL / (HZ / USER_HZ))
639		return ~0UL;
640	return x * (HZ / USER_HZ);
641#else
642	/* Don't worry about loss of precision here .. */
643	if (x >= ~0UL / HZ * USER_HZ)
644		return ~0UL;
645
646	/* .. but do try to contain it here */
647	return div_u64((u64)x * HZ, USER_HZ);
648#endif
649}
650EXPORT_SYMBOL(clock_t_to_jiffies);
651
 
 
 
 
 
 
652u64 jiffies_64_to_clock_t(u64 x)
653{
654#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
655# if HZ < USER_HZ
656	x = div_u64(x * USER_HZ, HZ);
657# elif HZ > USER_HZ
658	x = div_u64(x, HZ / USER_HZ);
659# else
660	/* Nothing to do */
661# endif
662#else
663	/*
664	 * There are better ways that don't overflow early,
665	 * but even this doesn't overflow in hundreds of years
666	 * in 64 bits, so..
667	 */
668	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
669#endif
670	return x;
671}
672EXPORT_SYMBOL(jiffies_64_to_clock_t);
673
 
 
 
 
 
 
674u64 nsec_to_clock_t(u64 x)
675{
676#if (NSEC_PER_SEC % USER_HZ) == 0
677	return div_u64(x, NSEC_PER_SEC / USER_HZ);
678#elif (USER_HZ % 512) == 0
679	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
680#else
681	/*
682         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
683         * overflow after 64.99 years.
684         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
685         */
686	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
687#endif
688}
689
 
 
 
 
 
 
690u64 jiffies64_to_nsecs(u64 j)
691{
692#if !(NSEC_PER_SEC % HZ)
693	return (NSEC_PER_SEC / HZ) * j;
694# else
695	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
696#endif
697}
698EXPORT_SYMBOL(jiffies64_to_nsecs);
699
 
 
 
 
 
 
700u64 jiffies64_to_msecs(const u64 j)
701{
702#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
703	return (MSEC_PER_SEC / HZ) * j;
704#else
705	return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
706#endif
707}
708EXPORT_SYMBOL(jiffies64_to_msecs);
709
710/**
711 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
712 *
713 * @n:	nsecs in u64
714 *
715 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
716 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
717 * for scheduler, not for use in device drivers to calculate timeout value.
718 *
719 * note:
720 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
721 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 
 
722 */
723u64 nsecs_to_jiffies64(u64 n)
724{
725#if (NSEC_PER_SEC % HZ) == 0
726	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
727	return div_u64(n, NSEC_PER_SEC / HZ);
728#elif (HZ % 512) == 0
729	/* overflow after 292 years if HZ = 1024 */
730	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
731#else
732	/*
733	 * Generic case - optimized for cases where HZ is a multiple of 3.
734	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
735	 */
736	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
737#endif
738}
739EXPORT_SYMBOL(nsecs_to_jiffies64);
740
741/**
742 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
743 *
744 * @n:	nsecs in u64
745 *
746 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
747 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
748 * for scheduler, not for use in device drivers to calculate timeout value.
749 *
750 * note:
751 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
752 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 
 
753 */
754unsigned long nsecs_to_jiffies(u64 n)
755{
756	return (unsigned long)nsecs_to_jiffies64(n);
757}
758EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
759
760/*
761 * Add two timespec64 values and do a safety check for overflow.
 
 
 
 
762 * It's assumed that both values are valid (>= 0).
763 * And, each timespec64 is in normalized form.
 
 
764 */
765struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
766				const struct timespec64 rhs)
767{
768	struct timespec64 res;
769
770	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
771			lhs.tv_nsec + rhs.tv_nsec);
772
773	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
774		res.tv_sec = TIME64_MAX;
775		res.tv_nsec = 0;
776	}
777
778	return res;
779}
780
 
 
 
 
 
 
 
 
 
781int get_timespec64(struct timespec64 *ts,
782		   const struct __kernel_timespec __user *uts)
783{
784	struct __kernel_timespec kts;
785	int ret;
786
787	ret = copy_from_user(&kts, uts, sizeof(kts));
788	if (ret)
789		return -EFAULT;
790
791	ts->tv_sec = kts.tv_sec;
792
793	/* Zero out the padding in compat mode */
794	if (in_compat_syscall())
795		kts.tv_nsec &= 0xFFFFFFFFUL;
796
797	/* In 32-bit mode, this drops the padding */
798	ts->tv_nsec = kts.tv_nsec;
799
800	return 0;
801}
802EXPORT_SYMBOL_GPL(get_timespec64);
803
 
 
 
 
 
 
 
 
804int put_timespec64(const struct timespec64 *ts,
805		   struct __kernel_timespec __user *uts)
806{
807	struct __kernel_timespec kts = {
808		.tv_sec = ts->tv_sec,
809		.tv_nsec = ts->tv_nsec
810	};
811
812	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
813}
814EXPORT_SYMBOL_GPL(put_timespec64);
815
816static int __get_old_timespec32(struct timespec64 *ts64,
817				   const struct old_timespec32 __user *cts)
818{
819	struct old_timespec32 ts;
820	int ret;
821
822	ret = copy_from_user(&ts, cts, sizeof(ts));
823	if (ret)
824		return -EFAULT;
825
826	ts64->tv_sec = ts.tv_sec;
827	ts64->tv_nsec = ts.tv_nsec;
828
829	return 0;
830}
831
832static int __put_old_timespec32(const struct timespec64 *ts64,
833				   struct old_timespec32 __user *cts)
834{
835	struct old_timespec32 ts = {
836		.tv_sec = ts64->tv_sec,
837		.tv_nsec = ts64->tv_nsec
838	};
839	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
840}
841
 
 
 
 
 
 
 
 
 
842int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
843{
844	if (COMPAT_USE_64BIT_TIME)
845		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
846	else
847		return __get_old_timespec32(ts, uts);
848}
849EXPORT_SYMBOL_GPL(get_old_timespec32);
850
 
 
 
 
 
 
 
 
 
 
851int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
852{
853	if (COMPAT_USE_64BIT_TIME)
854		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
855	else
856		return __put_old_timespec32(ts, uts);
857}
858EXPORT_SYMBOL_GPL(put_old_timespec32);
859
 
 
 
 
 
 
 
860int get_itimerspec64(struct itimerspec64 *it,
861			const struct __kernel_itimerspec __user *uit)
862{
863	int ret;
864
865	ret = get_timespec64(&it->it_interval, &uit->it_interval);
866	if (ret)
867		return ret;
868
869	ret = get_timespec64(&it->it_value, &uit->it_value);
870
871	return ret;
872}
873EXPORT_SYMBOL_GPL(get_itimerspec64);
874
 
 
 
 
 
 
 
 
875int put_itimerspec64(const struct itimerspec64 *it,
876			struct __kernel_itimerspec __user *uit)
877{
878	int ret;
879
880	ret = put_timespec64(&it->it_interval, &uit->it_interval);
881	if (ret)
882		return ret;
883
884	ret = put_timespec64(&it->it_value, &uit->it_value);
885
886	return ret;
887}
888EXPORT_SYMBOL_GPL(put_itimerspec64);
889
 
 
 
 
 
 
 
890int get_old_itimerspec32(struct itimerspec64 *its,
891			const struct old_itimerspec32 __user *uits)
892{
893
894	if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
895	    __get_old_timespec32(&its->it_value, &uits->it_value))
896		return -EFAULT;
897	return 0;
898}
899EXPORT_SYMBOL_GPL(get_old_itimerspec32);
900
 
 
 
 
 
 
 
 
901int put_old_itimerspec32(const struct itimerspec64 *its,
902			struct old_itimerspec32 __user *uits)
903{
904	if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
905	    __put_old_timespec32(&its->it_value, &uits->it_value))
906		return -EFAULT;
907	return 0;
908}
909EXPORT_SYMBOL_GPL(put_old_itimerspec32);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 *
   5 *  This file contains the interface functions for the various time related
   6 *  system calls: time, stime, gettimeofday, settimeofday, adjtime
   7 *
   8 * Modification history:
   9 *
  10 * 1993-09-02    Philip Gladstone
  11 *      Created file with time related functions from sched/core.c and adjtimex()
  12 * 1993-10-08    Torsten Duwe
  13 *      adjtime interface update and CMOS clock write code
  14 * 1995-08-13    Torsten Duwe
  15 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
  16 * 1999-01-16    Ulrich Windl
  17 *	Introduced error checking for many cases in adjtimex().
  18 *	Updated NTP code according to technical memorandum Jan '96
  19 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
  20 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  21 *	(Even though the technical memorandum forbids it)
  22 * 2004-07-14	 Christoph Lameter
  23 *	Added getnstimeofday to allow the posix timer functions to return
  24 *	with nanosecond accuracy
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kernel.h>
  29#include <linux/timex.h>
  30#include <linux/capability.h>
  31#include <linux/timekeeper_internal.h>
  32#include <linux/errno.h>
  33#include <linux/syscalls.h>
  34#include <linux/security.h>
  35#include <linux/fs.h>
  36#include <linux/math64.h>
  37#include <linux/ptrace.h>
  38
  39#include <linux/uaccess.h>
  40#include <linux/compat.h>
  41#include <asm/unistd.h>
  42
  43#include <generated/timeconst.h>
  44#include "timekeeping.h"
  45
  46/*
  47 * The timezone where the local system is located.  Used as a default by some
  48 * programs who obtain this value by using gettimeofday.
  49 */
  50struct timezone sys_tz;
  51
  52EXPORT_SYMBOL(sys_tz);
  53
  54#ifdef __ARCH_WANT_SYS_TIME
  55
  56/*
  57 * sys_time() can be implemented in user-level using
  58 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
  59 * why not move it into the appropriate arch directory (for those
  60 * architectures that need it).
  61 */
  62SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc)
  63{
  64	__kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds();
  65
  66	if (tloc) {
  67		if (put_user(i,tloc))
  68			return -EFAULT;
  69	}
  70	force_successful_syscall_return();
  71	return i;
  72}
  73
  74/*
  75 * sys_stime() can be implemented in user-level using
  76 * sys_settimeofday().  Is this for backwards compatibility?  If so,
  77 * why not move it into the appropriate arch directory (for those
  78 * architectures that need it).
  79 */
  80
  81SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr)
  82{
  83	struct timespec64 tv;
  84	int err;
  85
  86	if (get_user(tv.tv_sec, tptr))
  87		return -EFAULT;
  88
  89	tv.tv_nsec = 0;
  90
  91	err = security_settime64(&tv, NULL);
  92	if (err)
  93		return err;
  94
  95	do_settimeofday64(&tv);
  96	return 0;
  97}
  98
  99#endif /* __ARCH_WANT_SYS_TIME */
 100
 101#ifdef CONFIG_COMPAT_32BIT_TIME
 102#ifdef __ARCH_WANT_SYS_TIME32
 103
 104/* old_time32_t is a 32 bit "long" and needs to get converted. */
 105SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
 106{
 107	old_time32_t i;
 108
 109	i = (old_time32_t)ktime_get_real_seconds();
 110
 111	if (tloc) {
 112		if (put_user(i,tloc))
 113			return -EFAULT;
 114	}
 115	force_successful_syscall_return();
 116	return i;
 117}
 118
 119SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
 120{
 121	struct timespec64 tv;
 122	int err;
 123
 124	if (get_user(tv.tv_sec, tptr))
 125		return -EFAULT;
 126
 127	tv.tv_nsec = 0;
 128
 129	err = security_settime64(&tv, NULL);
 130	if (err)
 131		return err;
 132
 133	do_settimeofday64(&tv);
 134	return 0;
 135}
 136
 137#endif /* __ARCH_WANT_SYS_TIME32 */
 138#endif
 139
 140SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
 141		struct timezone __user *, tz)
 142{
 143	if (likely(tv != NULL)) {
 144		struct timespec64 ts;
 145
 146		ktime_get_real_ts64(&ts);
 147		if (put_user(ts.tv_sec, &tv->tv_sec) ||
 148		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
 149			return -EFAULT;
 150	}
 151	if (unlikely(tz != NULL)) {
 152		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
 153			return -EFAULT;
 154	}
 155	return 0;
 156}
 157
 158/*
 159 * In case for some reason the CMOS clock has not already been running
 160 * in UTC, but in some local time: The first time we set the timezone,
 161 * we will warp the clock so that it is ticking UTC time instead of
 162 * local time. Presumably, if someone is setting the timezone then we
 163 * are running in an environment where the programs understand about
 164 * timezones. This should be done at boot time in the /etc/rc script,
 165 * as soon as possible, so that the clock can be set right. Otherwise,
 166 * various programs will get confused when the clock gets warped.
 167 */
 168
 169int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
 170{
 171	static int firsttime = 1;
 172	int error = 0;
 173
 174	if (tv && !timespec64_valid_settod(tv))
 175		return -EINVAL;
 176
 177	error = security_settime64(tv, tz);
 178	if (error)
 179		return error;
 180
 181	if (tz) {
 182		/* Verify we're within the +-15 hrs range */
 183		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
 184			return -EINVAL;
 185
 186		sys_tz = *tz;
 187		update_vsyscall_tz();
 188		if (firsttime) {
 189			firsttime = 0;
 190			if (!tv)
 191				timekeeping_warp_clock();
 192		}
 193	}
 194	if (tv)
 195		return do_settimeofday64(tv);
 196	return 0;
 197}
 198
 199SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv,
 200		struct timezone __user *, tz)
 201{
 202	struct timespec64 new_ts;
 203	struct timezone new_tz;
 204
 205	if (tv) {
 206		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
 207		    get_user(new_ts.tv_nsec, &tv->tv_usec))
 208			return -EFAULT;
 209
 210		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
 211			return -EINVAL;
 212
 213		new_ts.tv_nsec *= NSEC_PER_USEC;
 214	}
 215	if (tz) {
 216		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
 217			return -EFAULT;
 218	}
 219
 220	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
 221}
 222
 223#ifdef CONFIG_COMPAT
 224COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
 225		       struct timezone __user *, tz)
 226{
 227	if (tv) {
 228		struct timespec64 ts;
 229
 230		ktime_get_real_ts64(&ts);
 231		if (put_user(ts.tv_sec, &tv->tv_sec) ||
 232		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
 233			return -EFAULT;
 234	}
 235	if (tz) {
 236		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
 237			return -EFAULT;
 238	}
 239
 240	return 0;
 241}
 242
 243COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
 244		       struct timezone __user *, tz)
 245{
 246	struct timespec64 new_ts;
 247	struct timezone new_tz;
 248
 249	if (tv) {
 250		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
 251		    get_user(new_ts.tv_nsec, &tv->tv_usec))
 252			return -EFAULT;
 253
 254		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
 255			return -EINVAL;
 256
 257		new_ts.tv_nsec *= NSEC_PER_USEC;
 258	}
 259	if (tz) {
 260		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
 261			return -EFAULT;
 262	}
 263
 264	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
 265}
 266#endif
 267
 268#ifdef CONFIG_64BIT
 269SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
 270{
 271	struct __kernel_timex txc;		/* Local copy of parameter */
 272	int ret;
 273
 274	/* Copy the user data space into the kernel copy
 275	 * structure. But bear in mind that the structures
 276	 * may change
 277	 */
 278	if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
 279		return -EFAULT;
 280	ret = do_adjtimex(&txc);
 281	return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
 282}
 283#endif
 284
 285#ifdef CONFIG_COMPAT_32BIT_TIME
 286int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
 287{
 288	struct old_timex32 tx32;
 289
 290	memset(txc, 0, sizeof(struct __kernel_timex));
 291	if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
 292		return -EFAULT;
 293
 294	txc->modes = tx32.modes;
 295	txc->offset = tx32.offset;
 296	txc->freq = tx32.freq;
 297	txc->maxerror = tx32.maxerror;
 298	txc->esterror = tx32.esterror;
 299	txc->status = tx32.status;
 300	txc->constant = tx32.constant;
 301	txc->precision = tx32.precision;
 302	txc->tolerance = tx32.tolerance;
 303	txc->time.tv_sec = tx32.time.tv_sec;
 304	txc->time.tv_usec = tx32.time.tv_usec;
 305	txc->tick = tx32.tick;
 306	txc->ppsfreq = tx32.ppsfreq;
 307	txc->jitter = tx32.jitter;
 308	txc->shift = tx32.shift;
 309	txc->stabil = tx32.stabil;
 310	txc->jitcnt = tx32.jitcnt;
 311	txc->calcnt = tx32.calcnt;
 312	txc->errcnt = tx32.errcnt;
 313	txc->stbcnt = tx32.stbcnt;
 314
 315	return 0;
 316}
 317
 318int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
 319{
 320	struct old_timex32 tx32;
 321
 322	memset(&tx32, 0, sizeof(struct old_timex32));
 323	tx32.modes = txc->modes;
 324	tx32.offset = txc->offset;
 325	tx32.freq = txc->freq;
 326	tx32.maxerror = txc->maxerror;
 327	tx32.esterror = txc->esterror;
 328	tx32.status = txc->status;
 329	tx32.constant = txc->constant;
 330	tx32.precision = txc->precision;
 331	tx32.tolerance = txc->tolerance;
 332	tx32.time.tv_sec = txc->time.tv_sec;
 333	tx32.time.tv_usec = txc->time.tv_usec;
 334	tx32.tick = txc->tick;
 335	tx32.ppsfreq = txc->ppsfreq;
 336	tx32.jitter = txc->jitter;
 337	tx32.shift = txc->shift;
 338	tx32.stabil = txc->stabil;
 339	tx32.jitcnt = txc->jitcnt;
 340	tx32.calcnt = txc->calcnt;
 341	tx32.errcnt = txc->errcnt;
 342	tx32.stbcnt = txc->stbcnt;
 343	tx32.tai = txc->tai;
 344	if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
 345		return -EFAULT;
 346	return 0;
 347}
 348
 349SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
 350{
 351	struct __kernel_timex txc;
 352	int err, ret;
 353
 354	err = get_old_timex32(&txc, utp);
 355	if (err)
 356		return err;
 357
 358	ret = do_adjtimex(&txc);
 359
 360	err = put_old_timex32(utp, &txc);
 361	if (err)
 362		return err;
 363
 364	return ret;
 365}
 366#endif
 367
 368/**
 369 * jiffies_to_msecs - Convert jiffies to milliseconds
 370 * @j: jiffies value
 371 *
 372 * Avoid unnecessary multiplications/divisions in the
 373 * two most common HZ cases.
 374 *
 375 * Return: milliseconds value
 376 */
 377unsigned int jiffies_to_msecs(const unsigned long j)
 378{
 379#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 380	return (MSEC_PER_SEC / HZ) * j;
 381#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 382	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
 383#else
 384# if BITS_PER_LONG == 32
 385	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
 386	       HZ_TO_MSEC_SHR32;
 387# else
 388	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
 389# endif
 390#endif
 391}
 392EXPORT_SYMBOL(jiffies_to_msecs);
 393
 394/**
 395 * jiffies_to_usecs - Convert jiffies to microseconds
 396 * @j: jiffies value
 397 *
 398 * Return: microseconds value
 399 */
 400unsigned int jiffies_to_usecs(const unsigned long j)
 401{
 402	/*
 403	 * Hz usually doesn't go much further MSEC_PER_SEC.
 404	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
 405	 */
 406	BUILD_BUG_ON(HZ > USEC_PER_SEC);
 407
 408#if !(USEC_PER_SEC % HZ)
 409	return (USEC_PER_SEC / HZ) * j;
 410#else
 411# if BITS_PER_LONG == 32
 412	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
 413# else
 414	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
 415# endif
 416#endif
 417}
 418EXPORT_SYMBOL(jiffies_to_usecs);
 419
 420/**
 421 * mktime64 - Converts date to seconds.
 422 * @year0: year to convert
 423 * @mon0: month to convert
 424 * @day: day to convert
 425 * @hour: hour to convert
 426 * @min: minute to convert
 427 * @sec: second to convert
 428 *
 429 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 430 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 431 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 432 *
 433 * [For the Julian calendar (which was used in Russia before 1917,
 434 * Britain & colonies before 1752, anywhere else before 1582,
 435 * and is still in use by some communities) leave out the
 436 * -year/100+year/400 terms, and add 10.]
 437 *
 438 * This algorithm was first published by Gauss (I think).
 439 *
 440 * A leap second can be indicated by calling this function with sec as
 441 * 60 (allowable under ISO 8601).  The leap second is treated the same
 442 * as the following second since they don't exist in UNIX time.
 443 *
 444 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
 445 * tomorrow - (allowable under ISO 8601) is supported.
 446 *
 447 * Return: seconds since the epoch time for the given input date
 448 */
 449time64_t mktime64(const unsigned int year0, const unsigned int mon0,
 450		const unsigned int day, const unsigned int hour,
 451		const unsigned int min, const unsigned int sec)
 452{
 453	unsigned int mon = mon0, year = year0;
 454
 455	/* 1..12 -> 11,12,1..10 */
 456	if (0 >= (int) (mon -= 2)) {
 457		mon += 12;	/* Puts Feb last since it has leap day */
 458		year -= 1;
 459	}
 460
 461	return ((((time64_t)
 462		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
 463		  year*365 - 719499
 464	    )*24 + hour /* now have hours - midnight tomorrow handled here */
 465	  )*60 + min /* now have minutes */
 466	)*60 + sec; /* finally seconds */
 467}
 468EXPORT_SYMBOL(mktime64);
 469
 470struct __kernel_old_timeval ns_to_kernel_old_timeval(s64 nsec)
 471{
 472	struct timespec64 ts = ns_to_timespec64(nsec);
 473	struct __kernel_old_timeval tv;
 474
 475	tv.tv_sec = ts.tv_sec;
 476	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
 477
 478	return tv;
 479}
 480EXPORT_SYMBOL(ns_to_kernel_old_timeval);
 481
 482/**
 483 * set_normalized_timespec64 - set timespec sec and nsec parts and normalize
 484 *
 485 * @ts:		pointer to timespec variable to be set
 486 * @sec:	seconds to set
 487 * @nsec:	nanoseconds to set
 488 *
 489 * Set seconds and nanoseconds field of a timespec variable and
 490 * normalize to the timespec storage format
 491 *
 492 * Note: The tv_nsec part is always in the range of 0 <= tv_nsec < NSEC_PER_SEC.
 
 493 * For negative values only the tv_sec field is negative !
 494 */
 495void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
 496{
 497	while (nsec >= NSEC_PER_SEC) {
 498		/*
 499		 * The following asm() prevents the compiler from
 500		 * optimising this loop into a modulo operation. See
 501		 * also __iter_div_u64_rem() in include/linux/time.h
 502		 */
 503		asm("" : "+rm"(nsec));
 504		nsec -= NSEC_PER_SEC;
 505		++sec;
 506	}
 507	while (nsec < 0) {
 508		asm("" : "+rm"(nsec));
 509		nsec += NSEC_PER_SEC;
 510		--sec;
 511	}
 512	ts->tv_sec = sec;
 513	ts->tv_nsec = nsec;
 514}
 515EXPORT_SYMBOL(set_normalized_timespec64);
 516
 517/**
 518 * ns_to_timespec64 - Convert nanoseconds to timespec64
 519 * @nsec:       the nanoseconds value to be converted
 520 *
 521 * Return: the timespec64 representation of the nsec parameter.
 522 */
 523struct timespec64 ns_to_timespec64(s64 nsec)
 524{
 525	struct timespec64 ts = { 0, 0 };
 526	s32 rem;
 527
 528	if (likely(nsec > 0)) {
 529		ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
 530		ts.tv_nsec = rem;
 531	} else if (nsec < 0) {
 532		/*
 533		 * With negative times, tv_sec points to the earlier
 534		 * second, and tv_nsec counts the nanoseconds since
 535		 * then, so tv_nsec is always a positive number.
 536		 */
 537		ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1;
 538		ts.tv_nsec = NSEC_PER_SEC - rem - 1;
 539	}
 540
 541	return ts;
 542}
 543EXPORT_SYMBOL(ns_to_timespec64);
 544
 545/**
 546 * __msecs_to_jiffies: - convert milliseconds to jiffies
 547 * @m:	time in milliseconds
 548 *
 549 * conversion is done as follows:
 550 *
 551 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 552 *
 553 * - 'too large' values [that would result in larger than
 554 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 555 *
 556 * - all other values are converted to jiffies by either multiplying
 557 *   the input value by a factor or dividing it with a factor and
 558 *   handling any 32-bit overflows.
 559 *   for the details see __msecs_to_jiffies()
 560 *
 561 * __msecs_to_jiffies() checks for the passed in value being a constant
 562 * via __builtin_constant_p() allowing gcc to eliminate most of the
 563 * code, __msecs_to_jiffies() is called if the value passed does not
 564 * allow constant folding and the actual conversion must be done at
 565 * runtime.
 566 * The _msecs_to_jiffies helpers are the HZ dependent conversion
 567 * routines found in include/linux/jiffies.h
 568 *
 569 * Return: jiffies value
 570 */
 571unsigned long __msecs_to_jiffies(const unsigned int m)
 572{
 573	/*
 574	 * Negative value, means infinite timeout:
 575	 */
 576	if ((int)m < 0)
 577		return MAX_JIFFY_OFFSET;
 578	return _msecs_to_jiffies(m);
 579}
 580EXPORT_SYMBOL(__msecs_to_jiffies);
 581
 582/**
 583 * __usecs_to_jiffies: - convert microseconds to jiffies
 584 * @u:	time in milliseconds
 585 *
 586 * Return: jiffies value
 587 */
 588unsigned long __usecs_to_jiffies(const unsigned int u)
 589{
 590	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
 591		return MAX_JIFFY_OFFSET;
 592	return _usecs_to_jiffies(u);
 593}
 594EXPORT_SYMBOL(__usecs_to_jiffies);
 595
 596/**
 597 * timespec64_to_jiffies - convert a timespec64 value to jiffies
 598 * @value: pointer to &struct timespec64
 599 *
 600 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 601 * that a remainder subtract here would not do the right thing as the
 602 * resolution values don't fall on second boundaries.  I.e. the line:
 603 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
 604 * Note that due to the small error in the multiplier here, this
 605 * rounding is incorrect for sufficiently large values of tv_nsec, but
 606 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
 607 * OK.
 608 *
 609 * Rather, we just shift the bits off the right.
 610 *
 611 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 612 * value to a scaled second value.
 613 *
 614 * Return: jiffies value
 615 */
 
 616unsigned long
 617timespec64_to_jiffies(const struct timespec64 *value)
 618{
 619	u64 sec = value->tv_sec;
 620	long nsec = value->tv_nsec + TICK_NSEC - 1;
 621
 622	if (sec >= MAX_SEC_IN_JIFFIES){
 623		sec = MAX_SEC_IN_JIFFIES;
 624		nsec = 0;
 625	}
 626	return ((sec * SEC_CONVERSION) +
 627		(((u64)nsec * NSEC_CONVERSION) >>
 628		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
 629
 630}
 631EXPORT_SYMBOL(timespec64_to_jiffies);
 632
 633/**
 634 * jiffies_to_timespec64 - convert jiffies value to &struct timespec64
 635 * @jiffies: jiffies value
 636 * @value: pointer to &struct timespec64
 637 */
 638void
 639jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
 640{
 641	/*
 642	 * Convert jiffies to nanoseconds and separate with
 643	 * one divide.
 644	 */
 645	u32 rem;
 646	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
 647				    NSEC_PER_SEC, &rem);
 648	value->tv_nsec = rem;
 649}
 650EXPORT_SYMBOL(jiffies_to_timespec64);
 651
 652/*
 653 * Convert jiffies/jiffies_64 to clock_t and back.
 654 */
 655
 656/**
 657 * jiffies_to_clock_t - Convert jiffies to clock_t
 658 * @x: jiffies value
 659 *
 660 * Return: jiffies converted to clock_t (CLOCKS_PER_SEC)
 661 */
 662clock_t jiffies_to_clock_t(unsigned long x)
 663{
 664#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 665# if HZ < USER_HZ
 666	return x * (USER_HZ / HZ);
 667# else
 668	return x / (HZ / USER_HZ);
 669# endif
 670#else
 671	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
 672#endif
 673}
 674EXPORT_SYMBOL(jiffies_to_clock_t);
 675
 676/**
 677 * clock_t_to_jiffies - Convert clock_t to jiffies
 678 * @x: clock_t value
 679 *
 680 * Return: clock_t value converted to jiffies
 681 */
 682unsigned long clock_t_to_jiffies(unsigned long x)
 683{
 684#if (HZ % USER_HZ)==0
 685	if (x >= ~0UL / (HZ / USER_HZ))
 686		return ~0UL;
 687	return x * (HZ / USER_HZ);
 688#else
 689	/* Don't worry about loss of precision here .. */
 690	if (x >= ~0UL / HZ * USER_HZ)
 691		return ~0UL;
 692
 693	/* .. but do try to contain it here */
 694	return div_u64((u64)x * HZ, USER_HZ);
 695#endif
 696}
 697EXPORT_SYMBOL(clock_t_to_jiffies);
 698
 699/**
 700 * jiffies_64_to_clock_t - Convert jiffies_64 to clock_t
 701 * @x: jiffies_64 value
 702 *
 703 * Return: jiffies_64 value converted to 64-bit "clock_t" (CLOCKS_PER_SEC)
 704 */
 705u64 jiffies_64_to_clock_t(u64 x)
 706{
 707#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 708# if HZ < USER_HZ
 709	x = div_u64(x * USER_HZ, HZ);
 710# elif HZ > USER_HZ
 711	x = div_u64(x, HZ / USER_HZ);
 712# else
 713	/* Nothing to do */
 714# endif
 715#else
 716	/*
 717	 * There are better ways that don't overflow early,
 718	 * but even this doesn't overflow in hundreds of years
 719	 * in 64 bits, so..
 720	 */
 721	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
 722#endif
 723	return x;
 724}
 725EXPORT_SYMBOL(jiffies_64_to_clock_t);
 726
 727/**
 728 * nsec_to_clock_t - Convert nsec value to clock_t
 729 * @x: nsec value
 730 *
 731 * Return: nsec value converted to 64-bit "clock_t" (CLOCKS_PER_SEC)
 732 */
 733u64 nsec_to_clock_t(u64 x)
 734{
 735#if (NSEC_PER_SEC % USER_HZ) == 0
 736	return div_u64(x, NSEC_PER_SEC / USER_HZ);
 737#elif (USER_HZ % 512) == 0
 738	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
 739#else
 740	/*
 741         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
 742         * overflow after 64.99 years.
 743         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
 744         */
 745	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
 746#endif
 747}
 748
 749/**
 750 * jiffies64_to_nsecs - Convert jiffies64 to nanoseconds
 751 * @j: jiffies64 value
 752 *
 753 * Return: nanoseconds value
 754 */
 755u64 jiffies64_to_nsecs(u64 j)
 756{
 757#if !(NSEC_PER_SEC % HZ)
 758	return (NSEC_PER_SEC / HZ) * j;
 759# else
 760	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
 761#endif
 762}
 763EXPORT_SYMBOL(jiffies64_to_nsecs);
 764
 765/**
 766 * jiffies64_to_msecs - Convert jiffies64 to milliseconds
 767 * @j: jiffies64 value
 768 *
 769 * Return: milliseconds value
 770 */
 771u64 jiffies64_to_msecs(const u64 j)
 772{
 773#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 774	return (MSEC_PER_SEC / HZ) * j;
 775#else
 776	return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
 777#endif
 778}
 779EXPORT_SYMBOL(jiffies64_to_msecs);
 780
 781/**
 782 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
 783 *
 784 * @n:	nsecs in u64
 785 *
 786 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 787 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 788 * for scheduler, not for use in device drivers to calculate timeout value.
 789 *
 790 * note:
 791 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 792 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 793 *
 794 * Return: nsecs converted to jiffies64 value
 795 */
 796u64 nsecs_to_jiffies64(u64 n)
 797{
 798#if (NSEC_PER_SEC % HZ) == 0
 799	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
 800	return div_u64(n, NSEC_PER_SEC / HZ);
 801#elif (HZ % 512) == 0
 802	/* overflow after 292 years if HZ = 1024 */
 803	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
 804#else
 805	/*
 806	 * Generic case - optimized for cases where HZ is a multiple of 3.
 807	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
 808	 */
 809	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
 810#endif
 811}
 812EXPORT_SYMBOL(nsecs_to_jiffies64);
 813
 814/**
 815 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
 816 *
 817 * @n:	nsecs in u64
 818 *
 819 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 820 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 821 * for scheduler, not for use in device drivers to calculate timeout value.
 822 *
 823 * note:
 824 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 825 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 826 *
 827 * Return: nsecs converted to jiffies value
 828 */
 829unsigned long nsecs_to_jiffies(u64 n)
 830{
 831	return (unsigned long)nsecs_to_jiffies64(n);
 832}
 833EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
 834
 835/**
 836 * timespec64_add_safe - Add two timespec64 values and do a safety check
 837 * for overflow.
 838 * @lhs: first (left) timespec64 to add
 839 * @rhs: second (right) timespec64 to add
 840 *
 841 * It's assumed that both values are valid (>= 0).
 842 * And, each timespec64 is in normalized form.
 843 *
 844 * Return: sum of @lhs + @rhs
 845 */
 846struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
 847				const struct timespec64 rhs)
 848{
 849	struct timespec64 res;
 850
 851	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
 852			lhs.tv_nsec + rhs.tv_nsec);
 853
 854	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
 855		res.tv_sec = TIME64_MAX;
 856		res.tv_nsec = 0;
 857	}
 858
 859	return res;
 860}
 861
 862/**
 863 * get_timespec64 - get user's time value into kernel space
 864 * @ts: destination &struct timespec64
 865 * @uts: user's time value as &struct __kernel_timespec
 866 *
 867 * Handles compat or 32-bit modes.
 868 *
 869 * Return: %0 on success or negative errno on error
 870 */
 871int get_timespec64(struct timespec64 *ts,
 872		   const struct __kernel_timespec __user *uts)
 873{
 874	struct __kernel_timespec kts;
 875	int ret;
 876
 877	ret = copy_from_user(&kts, uts, sizeof(kts));
 878	if (ret)
 879		return -EFAULT;
 880
 881	ts->tv_sec = kts.tv_sec;
 882
 883	/* Zero out the padding in compat mode */
 884	if (in_compat_syscall())
 885		kts.tv_nsec &= 0xFFFFFFFFUL;
 886
 887	/* In 32-bit mode, this drops the padding */
 888	ts->tv_nsec = kts.tv_nsec;
 889
 890	return 0;
 891}
 892EXPORT_SYMBOL_GPL(get_timespec64);
 893
 894/**
 895 * put_timespec64 - convert timespec64 value to __kernel_timespec format and
 896 * 		    copy the latter to userspace
 897 * @ts: input &struct timespec64
 898 * @uts: user's &struct __kernel_timespec
 899 *
 900 * Return: %0 on success or negative errno on error
 901 */
 902int put_timespec64(const struct timespec64 *ts,
 903		   struct __kernel_timespec __user *uts)
 904{
 905	struct __kernel_timespec kts = {
 906		.tv_sec = ts->tv_sec,
 907		.tv_nsec = ts->tv_nsec
 908	};
 909
 910	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
 911}
 912EXPORT_SYMBOL_GPL(put_timespec64);
 913
 914static int __get_old_timespec32(struct timespec64 *ts64,
 915				   const struct old_timespec32 __user *cts)
 916{
 917	struct old_timespec32 ts;
 918	int ret;
 919
 920	ret = copy_from_user(&ts, cts, sizeof(ts));
 921	if (ret)
 922		return -EFAULT;
 923
 924	ts64->tv_sec = ts.tv_sec;
 925	ts64->tv_nsec = ts.tv_nsec;
 926
 927	return 0;
 928}
 929
 930static int __put_old_timespec32(const struct timespec64 *ts64,
 931				   struct old_timespec32 __user *cts)
 932{
 933	struct old_timespec32 ts = {
 934		.tv_sec = ts64->tv_sec,
 935		.tv_nsec = ts64->tv_nsec
 936	};
 937	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
 938}
 939
 940/**
 941 * get_old_timespec32 - get user's old-format time value into kernel space
 942 * @ts: destination &struct timespec64
 943 * @uts: user's old-format time value (&struct old_timespec32)
 944 *
 945 * Handles X86_X32_ABI compatibility conversion.
 946 *
 947 * Return: %0 on success or negative errno on error
 948 */
 949int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
 950{
 951	if (COMPAT_USE_64BIT_TIME)
 952		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
 953	else
 954		return __get_old_timespec32(ts, uts);
 955}
 956EXPORT_SYMBOL_GPL(get_old_timespec32);
 957
 958/**
 959 * put_old_timespec32 - convert timespec64 value to &struct old_timespec32 and
 960 * 			copy the latter to userspace
 961 * @ts: input &struct timespec64
 962 * @uts: user's &struct old_timespec32
 963 *
 964 * Handles X86_X32_ABI compatibility conversion.
 965 *
 966 * Return: %0 on success or negative errno on error
 967 */
 968int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
 969{
 970	if (COMPAT_USE_64BIT_TIME)
 971		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
 972	else
 973		return __put_old_timespec32(ts, uts);
 974}
 975EXPORT_SYMBOL_GPL(put_old_timespec32);
 976
 977/**
 978 * get_itimerspec64 - get user's &struct __kernel_itimerspec into kernel space
 979 * @it: destination &struct itimerspec64
 980 * @uit: user's &struct __kernel_itimerspec
 981 *
 982 * Return: %0 on success or negative errno on error
 983 */
 984int get_itimerspec64(struct itimerspec64 *it,
 985			const struct __kernel_itimerspec __user *uit)
 986{
 987	int ret;
 988
 989	ret = get_timespec64(&it->it_interval, &uit->it_interval);
 990	if (ret)
 991		return ret;
 992
 993	ret = get_timespec64(&it->it_value, &uit->it_value);
 994
 995	return ret;
 996}
 997EXPORT_SYMBOL_GPL(get_itimerspec64);
 998
 999/**
1000 * put_itimerspec64 - convert &struct itimerspec64 to __kernel_itimerspec format
1001 * 		      and copy the latter to userspace
1002 * @it: input &struct itimerspec64
1003 * @uit: user's &struct __kernel_itimerspec
1004 *
1005 * Return: %0 on success or negative errno on error
1006 */
1007int put_itimerspec64(const struct itimerspec64 *it,
1008			struct __kernel_itimerspec __user *uit)
1009{
1010	int ret;
1011
1012	ret = put_timespec64(&it->it_interval, &uit->it_interval);
1013	if (ret)
1014		return ret;
1015
1016	ret = put_timespec64(&it->it_value, &uit->it_value);
1017
1018	return ret;
1019}
1020EXPORT_SYMBOL_GPL(put_itimerspec64);
1021
1022/**
1023 * get_old_itimerspec32 - get user's &struct old_itimerspec32 into kernel space
1024 * @its: destination &struct itimerspec64
1025 * @uits: user's &struct old_itimerspec32
1026 *
1027 * Return: %0 on success or negative errno on error
1028 */
1029int get_old_itimerspec32(struct itimerspec64 *its,
1030			const struct old_itimerspec32 __user *uits)
1031{
1032
1033	if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
1034	    __get_old_timespec32(&its->it_value, &uits->it_value))
1035		return -EFAULT;
1036	return 0;
1037}
1038EXPORT_SYMBOL_GPL(get_old_itimerspec32);
1039
1040/**
1041 * put_old_itimerspec32 - convert &struct itimerspec64 to &struct
1042 *			  old_itimerspec32 and copy the latter to userspace
1043 * @its: input &struct itimerspec64
1044 * @uits: user's &struct old_itimerspec32
1045 *
1046 * Return: %0 on success or negative errno on error
1047 */
1048int put_old_itimerspec32(const struct itimerspec64 *its,
1049			struct old_itimerspec32 __user *uits)
1050{
1051	if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
1052	    __put_old_timespec32(&its->it_value, &uits->it_value))
1053		return -EFAULT;
1054	return 0;
1055}
1056EXPORT_SYMBOL_GPL(put_old_itimerspec32);