Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  Copyright (C) 1991, 1992  Linus Torvalds
  4 *
  5 *  This file contains the interface functions for the various time related
  6 *  system calls: time, stime, gettimeofday, settimeofday, adjtime
  7 *
  8 * Modification history:
 
 
 
 
 
  9 *
 10 * 1993-09-02    Philip Gladstone
 11 *      Created file with time related functions from sched/core.c and adjtimex()
 12 * 1993-10-08    Torsten Duwe
 13 *      adjtime interface update and CMOS clock write code
 14 * 1995-08-13    Torsten Duwe
 15 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 16 * 1999-01-16    Ulrich Windl
 17 *	Introduced error checking for many cases in adjtimex().
 18 *	Updated NTP code according to technical memorandum Jan '96
 19 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 20 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 21 *	(Even though the technical memorandum forbids it)
 22 * 2004-07-14	 Christoph Lameter
 23 *	Added getnstimeofday to allow the posix timer functions to return
 24 *	with nanosecond accuracy
 25 */
 26
 27#include <linux/export.h>
 28#include <linux/kernel.h>
 29#include <linux/timex.h>
 30#include <linux/capability.h>
 31#include <linux/timekeeper_internal.h>
 32#include <linux/errno.h>
 33#include <linux/syscalls.h>
 34#include <linux/security.h>
 35#include <linux/fs.h>
 36#include <linux/math64.h>
 37#include <linux/ptrace.h>
 38
 39#include <linux/uaccess.h>
 40#include <linux/compat.h>
 41#include <asm/unistd.h>
 42
 43#include <generated/timeconst.h>
 44#include "timekeeping.h"
 45
 46/*
 47 * The timezone where the local system is located.  Used as a default by some
 48 * programs who obtain this value by using gettimeofday.
 49 */
 50struct timezone sys_tz;
 51
 52EXPORT_SYMBOL(sys_tz);
 53
 54#ifdef __ARCH_WANT_SYS_TIME
 55
 56/*
 57 * sys_time() can be implemented in user-level using
 58 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 59 * why not move it into the appropriate arch directory (for those
 60 * architectures that need it).
 61 */
 62SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc)
 63{
 64	__kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds();
 65
 66	if (tloc) {
 67		if (put_user(i,tloc))
 68			return -EFAULT;
 69	}
 70	force_successful_syscall_return();
 71	return i;
 72}
 73
 74/*
 75 * sys_stime() can be implemented in user-level using
 76 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 77 * why not move it into the appropriate arch directory (for those
 78 * architectures that need it).
 79 */
 80
 81SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr)
 82{
 83	struct timespec64 tv;
 84	int err;
 85
 86	if (get_user(tv.tv_sec, tptr))
 87		return -EFAULT;
 88
 89	tv.tv_nsec = 0;
 90
 91	err = security_settime64(&tv, NULL);
 92	if (err)
 93		return err;
 94
 95	do_settimeofday64(&tv);
 96	return 0;
 97}
 98
 99#endif /* __ARCH_WANT_SYS_TIME */
100
101#ifdef CONFIG_COMPAT_32BIT_TIME
102#ifdef __ARCH_WANT_SYS_TIME32
103
104/* old_time32_t is a 32 bit "long" and needs to get converted. */
105SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
106{
107	old_time32_t i;
 
108
109	i = (old_time32_t)ktime_get_real_seconds();
 
110
111	if (tloc) {
112		if (put_user(i,tloc))
113			return -EFAULT;
114	}
115	force_successful_syscall_return();
116	return i;
117}
118
119SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
120{
121	struct timespec64 tv;
122	int err;
123
124	if (get_user(tv.tv_sec, tptr))
125		return -EFAULT;
126
127	tv.tv_nsec = 0;
128
129	err = security_settime64(&tv, NULL);
130	if (err)
131		return err;
132
133	do_settimeofday64(&tv);
134	return 0;
135}
136
137#endif /* __ARCH_WANT_SYS_TIME32 */
138#endif
139
140SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
141		struct timezone __user *, tz)
142{
143	if (likely(tv != NULL)) {
144		struct timespec64 ts;
145
146		ktime_get_real_ts64(&ts);
147		if (put_user(ts.tv_sec, &tv->tv_sec) ||
148		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
149			return -EFAULT;
150	}
151	if (unlikely(tz != NULL)) {
152		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153			return -EFAULT;
154	}
155	return 0;
156}
157
158/*
159 * In case for some reason the CMOS clock has not already been running
160 * in UTC, but in some local time: The first time we set the timezone,
161 * we will warp the clock so that it is ticking UTC time instead of
162 * local time. Presumably, if someone is setting the timezone then we
163 * are running in an environment where the programs understand about
164 * timezones. This should be done at boot time in the /etc/rc script,
165 * as soon as possible, so that the clock can be set right. Otherwise,
166 * various programs will get confused when the clock gets warped.
167 */
168
169int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
170{
171	static int firsttime = 1;
172	int error = 0;
173
174	if (tv && !timespec64_valid_settod(tv))
175		return -EINVAL;
176
177	error = security_settime64(tv, tz);
178	if (error)
179		return error;
180
181	if (tz) {
182		/* Verify we're within the +-15 hrs range */
183		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184			return -EINVAL;
185
186		sys_tz = *tz;
187		update_vsyscall_tz();
188		if (firsttime) {
189			firsttime = 0;
190			if (!tv)
191				timekeeping_warp_clock();
192		}
193	}
194	if (tv)
195		return do_settimeofday64(tv);
196	return 0;
197}
198
199SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv,
200		struct timezone __user *, tz)
201{
202	struct timespec64 new_ts;
 
203	struct timezone new_tz;
204
205	if (tv) {
206		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
207		    get_user(new_ts.tv_nsec, &tv->tv_usec))
208			return -EFAULT;
209
210		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
211			return -EINVAL;
212
213		new_ts.tv_nsec *= NSEC_PER_USEC;
 
214	}
215	if (tz) {
216		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
217			return -EFAULT;
218	}
219
220	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
221}
222
223#ifdef CONFIG_COMPAT
224COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
225		       struct timezone __user *, tz)
226{
227	if (tv) {
228		struct timespec64 ts;
229
230		ktime_get_real_ts64(&ts);
231		if (put_user(ts.tv_sec, &tv->tv_sec) ||
232		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
233			return -EFAULT;
234	}
235	if (tz) {
236		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
237			return -EFAULT;
238	}
239
240	return 0;
241}
242
243COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
244		       struct timezone __user *, tz)
245{
246	struct timespec64 new_ts;
 
247	struct timezone new_tz;
248
249	if (tv) {
250		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
251		    get_user(new_ts.tv_nsec, &tv->tv_usec))
252			return -EFAULT;
253
254		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
255			return -EINVAL;
256
257		new_ts.tv_nsec *= NSEC_PER_USEC;
258	}
259	if (tz) {
260		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
261			return -EFAULT;
262	}
263
264	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
265}
266#endif
267
268#ifdef CONFIG_64BIT
269SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
270{
271	struct __kernel_timex txc;		/* Local copy of parameter */
272	int ret;
273
274	/* Copy the user data space into the kernel copy
275	 * structure. But bear in mind that the structures
276	 * may change
277	 */
278	if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
279		return -EFAULT;
280	ret = do_adjtimex(&txc);
281	return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
282}
283#endif
284
285#ifdef CONFIG_COMPAT_32BIT_TIME
286int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
287{
288	struct old_timex32 tx32;
289
290	memset(txc, 0, sizeof(struct __kernel_timex));
291	if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
292		return -EFAULT;
293
294	txc->modes = tx32.modes;
295	txc->offset = tx32.offset;
296	txc->freq = tx32.freq;
297	txc->maxerror = tx32.maxerror;
298	txc->esterror = tx32.esterror;
299	txc->status = tx32.status;
300	txc->constant = tx32.constant;
301	txc->precision = tx32.precision;
302	txc->tolerance = tx32.tolerance;
303	txc->time.tv_sec = tx32.time.tv_sec;
304	txc->time.tv_usec = tx32.time.tv_usec;
305	txc->tick = tx32.tick;
306	txc->ppsfreq = tx32.ppsfreq;
307	txc->jitter = tx32.jitter;
308	txc->shift = tx32.shift;
309	txc->stabil = tx32.stabil;
310	txc->jitcnt = tx32.jitcnt;
311	txc->calcnt = tx32.calcnt;
312	txc->errcnt = tx32.errcnt;
313	txc->stbcnt = tx32.stbcnt;
314
315	return 0;
316}
317
318int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
319{
320	struct old_timex32 tx32;
321
322	memset(&tx32, 0, sizeof(struct old_timex32));
323	tx32.modes = txc->modes;
324	tx32.offset = txc->offset;
325	tx32.freq = txc->freq;
326	tx32.maxerror = txc->maxerror;
327	tx32.esterror = txc->esterror;
328	tx32.status = txc->status;
329	tx32.constant = txc->constant;
330	tx32.precision = txc->precision;
331	tx32.tolerance = txc->tolerance;
332	tx32.time.tv_sec = txc->time.tv_sec;
333	tx32.time.tv_usec = txc->time.tv_usec;
334	tx32.tick = txc->tick;
335	tx32.ppsfreq = txc->ppsfreq;
336	tx32.jitter = txc->jitter;
337	tx32.shift = txc->shift;
338	tx32.stabil = txc->stabil;
339	tx32.jitcnt = txc->jitcnt;
340	tx32.calcnt = txc->calcnt;
341	tx32.errcnt = txc->errcnt;
342	tx32.stbcnt = txc->stbcnt;
343	tx32.tai = txc->tai;
344	if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
345		return -EFAULT;
346	return 0;
347}
348
349SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
350{
351	struct __kernel_timex txc;
352	int err, ret;
353
354	err = get_old_timex32(&txc, utp);
355	if (err)
356		return err;
357
358	ret = do_adjtimex(&txc);
359
360	err = put_old_timex32(utp, &txc);
361	if (err)
362		return err;
363
364	return ret;
365}
366#endif
367
368/*
369 * Convert jiffies to milliseconds and back.
370 *
371 * Avoid unnecessary multiplications/divisions in the
372 * two most common HZ cases:
373 */
374unsigned int jiffies_to_msecs(const unsigned long j)
375{
376#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
377	return (MSEC_PER_SEC / HZ) * j;
378#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
379	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
380#else
381# if BITS_PER_LONG == 32
382	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
383	       HZ_TO_MSEC_SHR32;
384# else
385	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
386# endif
387#endif
388}
389EXPORT_SYMBOL(jiffies_to_msecs);
390
391unsigned int jiffies_to_usecs(const unsigned long j)
392{
393	/*
394	 * Hz usually doesn't go much further MSEC_PER_SEC.
395	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
396	 */
397	BUILD_BUG_ON(HZ > USEC_PER_SEC);
398
399#if !(USEC_PER_SEC % HZ)
400	return (USEC_PER_SEC / HZ) * j;
401#else
402# if BITS_PER_LONG == 32
403	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
404# else
405	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
406# endif
407#endif
408}
409EXPORT_SYMBOL(jiffies_to_usecs);
410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
411/*
412 * mktime64 - Converts date to seconds.
413 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
414 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
415 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
416 *
417 * [For the Julian calendar (which was used in Russia before 1917,
418 * Britain & colonies before 1752, anywhere else before 1582,
419 * and is still in use by some communities) leave out the
420 * -year/100+year/400 terms, and add 10.]
421 *
422 * This algorithm was first published by Gauss (I think).
423 *
424 * A leap second can be indicated by calling this function with sec as
425 * 60 (allowable under ISO 8601).  The leap second is treated the same
426 * as the following second since they don't exist in UNIX time.
427 *
428 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
429 * tomorrow - (allowable under ISO 8601) is supported.
430 */
431time64_t mktime64(const unsigned int year0, const unsigned int mon0,
432		const unsigned int day, const unsigned int hour,
433		const unsigned int min, const unsigned int sec)
434{
435	unsigned int mon = mon0, year = year0;
436
437	/* 1..12 -> 11,12,1..10 */
438	if (0 >= (int) (mon -= 2)) {
439		mon += 12;	/* Puts Feb last since it has leap day */
440		year -= 1;
441	}
442
443	return ((((time64_t)
444		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
445		  year*365 - 719499
446	    )*24 + hour /* now have hours - midnight tomorrow handled here */
447	  )*60 + min /* now have minutes */
448	)*60 + sec; /* finally seconds */
449}
450EXPORT_SYMBOL(mktime64);
451
452struct __kernel_old_timeval ns_to_kernel_old_timeval(s64 nsec)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453{
454	struct timespec64 ts = ns_to_timespec64(nsec);
455	struct __kernel_old_timeval tv;
456
457	tv.tv_sec = ts.tv_sec;
458	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
459
460	return tv;
461}
462EXPORT_SYMBOL(ns_to_kernel_old_timeval);
463
464/**
465 * set_normalized_timespec64 - set timespec sec and nsec parts and normalize
466 *
467 * @ts:		pointer to timespec variable to be set
468 * @sec:	seconds to set
469 * @nsec:	nanoseconds to set
470 *
471 * Set seconds and nanoseconds field of a timespec variable and
472 * normalize to the timespec storage format
473 *
474 * Note: The tv_nsec part is always in the range of
475 *	0 <= tv_nsec < NSEC_PER_SEC
476 * For negative values only the tv_sec field is negative !
477 */
478void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
479{
480	while (nsec >= NSEC_PER_SEC) {
481		/*
482		 * The following asm() prevents the compiler from
483		 * optimising this loop into a modulo operation. See
484		 * also __iter_div_u64_rem() in include/linux/time.h
485		 */
486		asm("" : "+rm"(nsec));
487		nsec -= NSEC_PER_SEC;
488		++sec;
489	}
490	while (nsec < 0) {
491		asm("" : "+rm"(nsec));
492		nsec += NSEC_PER_SEC;
493		--sec;
494	}
495	ts->tv_sec = sec;
496	ts->tv_nsec = nsec;
497}
498EXPORT_SYMBOL(set_normalized_timespec64);
499
500/**
501 * ns_to_timespec64 - Convert nanoseconds to timespec64
502 * @nsec:       the nanoseconds value to be converted
503 *
504 * Returns the timespec64 representation of the nsec parameter.
505 */
506struct timespec64 ns_to_timespec64(s64 nsec)
507{
508	struct timespec64 ts = { 0, 0 };
509	s32 rem;
510
511	if (likely(nsec > 0)) {
512		ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
513		ts.tv_nsec = rem;
514	} else if (nsec < 0) {
515		/*
516		 * With negative times, tv_sec points to the earlier
517		 * second, and tv_nsec counts the nanoseconds since
518		 * then, so tv_nsec is always a positive number.
519		 */
520		ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1;
521		ts.tv_nsec = NSEC_PER_SEC - rem - 1;
522	}
 
523
524	return ts;
525}
526EXPORT_SYMBOL(ns_to_timespec64);
527
528/**
529 * __msecs_to_jiffies: - convert milliseconds to jiffies
530 * @m:	time in milliseconds
531 *
532 * conversion is done as follows:
533 *
534 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
535 *
536 * - 'too large' values [that would result in larger than
537 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
538 *
539 * - all other values are converted to jiffies by either multiplying
540 *   the input value by a factor or dividing it with a factor and
541 *   handling any 32-bit overflows.
542 *   for the details see __msecs_to_jiffies()
543 *
544 * __msecs_to_jiffies() checks for the passed in value being a constant
545 * via __builtin_constant_p() allowing gcc to eliminate most of the
546 * code, __msecs_to_jiffies() is called if the value passed does not
547 * allow constant folding and the actual conversion must be done at
548 * runtime.
549 * The _msecs_to_jiffies helpers are the HZ dependent conversion
550 * routines found in include/linux/jiffies.h
551 */
552unsigned long __msecs_to_jiffies(const unsigned int m)
553{
554	/*
555	 * Negative value, means infinite timeout:
556	 */
557	if ((int)m < 0)
558		return MAX_JIFFY_OFFSET;
559	return _msecs_to_jiffies(m);
560}
561EXPORT_SYMBOL(__msecs_to_jiffies);
562
563unsigned long __usecs_to_jiffies(const unsigned int u)
564{
565	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
566		return MAX_JIFFY_OFFSET;
567	return _usecs_to_jiffies(u);
568}
569EXPORT_SYMBOL(__usecs_to_jiffies);
570
571/*
572 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
573 * that a remainder subtract here would not do the right thing as the
574 * resolution values don't fall on second boundaries.  I.e. the line:
575 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
576 * Note that due to the small error in the multiplier here, this
577 * rounding is incorrect for sufficiently large values of tv_nsec, but
578 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
579 * OK.
580 *
581 * Rather, we just shift the bits off the right.
582 *
583 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
584 * value to a scaled second value.
585 */
586
587unsigned long
588timespec64_to_jiffies(const struct timespec64 *value)
589{
590	u64 sec = value->tv_sec;
591	long nsec = value->tv_nsec + TICK_NSEC - 1;
592
593	if (sec >= MAX_SEC_IN_JIFFIES){
594		sec = MAX_SEC_IN_JIFFIES;
595		nsec = 0;
596	}
597	return ((sec * SEC_CONVERSION) +
598		(((u64)nsec * NSEC_CONVERSION) >>
599		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
600
601}
 
 
 
 
 
 
 
 
 
 
 
 
602EXPORT_SYMBOL(timespec64_to_jiffies);
603
604void
605jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
606{
607	/*
608	 * Convert jiffies to nanoseconds and separate with
609	 * one divide.
610	 */
611	u32 rem;
612	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
613				    NSEC_PER_SEC, &rem);
614	value->tv_nsec = rem;
615}
616EXPORT_SYMBOL(jiffies_to_timespec64);
617
618/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
619 * Convert jiffies/jiffies_64 to clock_t and back.
620 */
621clock_t jiffies_to_clock_t(unsigned long x)
622{
623#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
624# if HZ < USER_HZ
625	return x * (USER_HZ / HZ);
626# else
627	return x / (HZ / USER_HZ);
628# endif
629#else
630	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
631#endif
632}
633EXPORT_SYMBOL(jiffies_to_clock_t);
634
635unsigned long clock_t_to_jiffies(unsigned long x)
636{
637#if (HZ % USER_HZ)==0
638	if (x >= ~0UL / (HZ / USER_HZ))
639		return ~0UL;
640	return x * (HZ / USER_HZ);
641#else
642	/* Don't worry about loss of precision here .. */
643	if (x >= ~0UL / HZ * USER_HZ)
644		return ~0UL;
645
646	/* .. but do try to contain it here */
647	return div_u64((u64)x * HZ, USER_HZ);
648#endif
649}
650EXPORT_SYMBOL(clock_t_to_jiffies);
651
652u64 jiffies_64_to_clock_t(u64 x)
653{
654#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
655# if HZ < USER_HZ
656	x = div_u64(x * USER_HZ, HZ);
657# elif HZ > USER_HZ
658	x = div_u64(x, HZ / USER_HZ);
659# else
660	/* Nothing to do */
661# endif
662#else
663	/*
664	 * There are better ways that don't overflow early,
665	 * but even this doesn't overflow in hundreds of years
666	 * in 64 bits, so..
667	 */
668	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
669#endif
670	return x;
671}
672EXPORT_SYMBOL(jiffies_64_to_clock_t);
673
674u64 nsec_to_clock_t(u64 x)
675{
676#if (NSEC_PER_SEC % USER_HZ) == 0
677	return div_u64(x, NSEC_PER_SEC / USER_HZ);
678#elif (USER_HZ % 512) == 0
679	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
680#else
681	/*
682         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
683         * overflow after 64.99 years.
684         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
685         */
686	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
687#endif
688}
689
690u64 jiffies64_to_nsecs(u64 j)
691{
692#if !(NSEC_PER_SEC % HZ)
693	return (NSEC_PER_SEC / HZ) * j;
694# else
695	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
696#endif
697}
698EXPORT_SYMBOL(jiffies64_to_nsecs);
699
700u64 jiffies64_to_msecs(const u64 j)
701{
702#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
703	return (MSEC_PER_SEC / HZ) * j;
704#else
705	return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
706#endif
707}
708EXPORT_SYMBOL(jiffies64_to_msecs);
709
710/**
711 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
712 *
713 * @n:	nsecs in u64
714 *
715 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
716 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
717 * for scheduler, not for use in device drivers to calculate timeout value.
718 *
719 * note:
720 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
721 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
722 */
723u64 nsecs_to_jiffies64(u64 n)
724{
725#if (NSEC_PER_SEC % HZ) == 0
726	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
727	return div_u64(n, NSEC_PER_SEC / HZ);
728#elif (HZ % 512) == 0
729	/* overflow after 292 years if HZ = 1024 */
730	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
731#else
732	/*
733	 * Generic case - optimized for cases where HZ is a multiple of 3.
734	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
735	 */
736	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
737#endif
738}
739EXPORT_SYMBOL(nsecs_to_jiffies64);
740
741/**
742 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
743 *
744 * @n:	nsecs in u64
745 *
746 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
747 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
748 * for scheduler, not for use in device drivers to calculate timeout value.
749 *
750 * note:
751 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
752 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
753 */
754unsigned long nsecs_to_jiffies(u64 n)
755{
756	return (unsigned long)nsecs_to_jiffies64(n);
757}
758EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
759
760/*
761 * Add two timespec64 values and do a safety check for overflow.
762 * It's assumed that both values are valid (>= 0).
763 * And, each timespec64 is in normalized form.
764 */
765struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
766				const struct timespec64 rhs)
767{
768	struct timespec64 res;
769
770	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
771			lhs.tv_nsec + rhs.tv_nsec);
772
773	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
774		res.tv_sec = TIME64_MAX;
775		res.tv_nsec = 0;
776	}
777
778	return res;
779}
780
781int get_timespec64(struct timespec64 *ts,
782		   const struct __kernel_timespec __user *uts)
783{
784	struct __kernel_timespec kts;
785	int ret;
786
787	ret = copy_from_user(&kts, uts, sizeof(kts));
788	if (ret)
789		return -EFAULT;
790
791	ts->tv_sec = kts.tv_sec;
792
793	/* Zero out the padding in compat mode */
794	if (in_compat_syscall())
795		kts.tv_nsec &= 0xFFFFFFFFUL;
796
797	/* In 32-bit mode, this drops the padding */
798	ts->tv_nsec = kts.tv_nsec;
799
800	return 0;
801}
802EXPORT_SYMBOL_GPL(get_timespec64);
803
804int put_timespec64(const struct timespec64 *ts,
805		   struct __kernel_timespec __user *uts)
806{
807	struct __kernel_timespec kts = {
808		.tv_sec = ts->tv_sec,
809		.tv_nsec = ts->tv_nsec
810	};
811
812	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
813}
814EXPORT_SYMBOL_GPL(put_timespec64);
815
816static int __get_old_timespec32(struct timespec64 *ts64,
817				   const struct old_timespec32 __user *cts)
818{
819	struct old_timespec32 ts;
820	int ret;
821
822	ret = copy_from_user(&ts, cts, sizeof(ts));
823	if (ret)
824		return -EFAULT;
825
826	ts64->tv_sec = ts.tv_sec;
827	ts64->tv_nsec = ts.tv_nsec;
828
829	return 0;
830}
831
832static int __put_old_timespec32(const struct timespec64 *ts64,
833				   struct old_timespec32 __user *cts)
834{
835	struct old_timespec32 ts = {
836		.tv_sec = ts64->tv_sec,
837		.tv_nsec = ts64->tv_nsec
838	};
839	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
840}
841
842int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
843{
844	if (COMPAT_USE_64BIT_TIME)
845		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
846	else
847		return __get_old_timespec32(ts, uts);
848}
849EXPORT_SYMBOL_GPL(get_old_timespec32);
850
851int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
852{
853	if (COMPAT_USE_64BIT_TIME)
854		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
855	else
856		return __put_old_timespec32(ts, uts);
857}
858EXPORT_SYMBOL_GPL(put_old_timespec32);
859
860int get_itimerspec64(struct itimerspec64 *it,
861			const struct __kernel_itimerspec __user *uit)
862{
863	int ret;
864
865	ret = get_timespec64(&it->it_interval, &uit->it_interval);
866	if (ret)
867		return ret;
868
869	ret = get_timespec64(&it->it_value, &uit->it_value);
870
871	return ret;
872}
873EXPORT_SYMBOL_GPL(get_itimerspec64);
874
875int put_itimerspec64(const struct itimerspec64 *it,
876			struct __kernel_itimerspec __user *uit)
877{
878	int ret;
879
880	ret = put_timespec64(&it->it_interval, &uit->it_interval);
881	if (ret)
882		return ret;
883
884	ret = put_timespec64(&it->it_value, &uit->it_value);
885
886	return ret;
887}
888EXPORT_SYMBOL_GPL(put_itimerspec64);
889
890int get_old_itimerspec32(struct itimerspec64 *its,
891			const struct old_itimerspec32 __user *uits)
892{
893
894	if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
895	    __get_old_timespec32(&its->it_value, &uits->it_value))
896		return -EFAULT;
897	return 0;
898}
899EXPORT_SYMBOL_GPL(get_old_itimerspec32);
900
901int put_old_itimerspec32(const struct itimerspec64 *its,
902			struct old_itimerspec32 __user *uits)
903{
904	if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
905	    __put_old_timespec32(&its->it_value, &uits->it_value))
906		return -EFAULT;
907	return 0;
908}
909EXPORT_SYMBOL_GPL(put_old_itimerspec32);
v4.17
 
  1/*
  2 *  linux/kernel/time.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
 
  5 *
  6 *  This file contains the interface functions for the various
  7 *  time related system calls: time, stime, gettimeofday, settimeofday,
  8 *			       adjtime
  9 */
 10/*
 11 * Modification history kernel/time.c
 12 *
 13 * 1993-09-02    Philip Gladstone
 14 *      Created file with time related functions from sched/core.c and adjtimex()
 15 * 1993-10-08    Torsten Duwe
 16 *      adjtime interface update and CMOS clock write code
 17 * 1995-08-13    Torsten Duwe
 18 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 19 * 1999-01-16    Ulrich Windl
 20 *	Introduced error checking for many cases in adjtimex().
 21 *	Updated NTP code according to technical memorandum Jan '96
 22 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 23 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 24 *	(Even though the technical memorandum forbids it)
 25 * 2004-07-14	 Christoph Lameter
 26 *	Added getnstimeofday to allow the posix timer functions to return
 27 *	with nanosecond accuracy
 28 */
 29
 30#include <linux/export.h>
 
 31#include <linux/timex.h>
 32#include <linux/capability.h>
 33#include <linux/timekeeper_internal.h>
 34#include <linux/errno.h>
 35#include <linux/syscalls.h>
 36#include <linux/security.h>
 37#include <linux/fs.h>
 38#include <linux/math64.h>
 39#include <linux/ptrace.h>
 40
 41#include <linux/uaccess.h>
 42#include <linux/compat.h>
 43#include <asm/unistd.h>
 44
 45#include <generated/timeconst.h>
 46#include "timekeeping.h"
 47
 48/*
 49 * The timezone where the local system is located.  Used as a default by some
 50 * programs who obtain this value by using gettimeofday.
 51 */
 52struct timezone sys_tz;
 53
 54EXPORT_SYMBOL(sys_tz);
 55
 56#ifdef __ARCH_WANT_SYS_TIME
 57
 58/*
 59 * sys_time() can be implemented in user-level using
 60 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 61 * why not move it into the appropriate arch directory (for those
 62 * architectures that need it).
 63 */
 64SYSCALL_DEFINE1(time, time_t __user *, tloc)
 65{
 66	time_t i = get_seconds();
 67
 68	if (tloc) {
 69		if (put_user(i,tloc))
 70			return -EFAULT;
 71	}
 72	force_successful_syscall_return();
 73	return i;
 74}
 75
 76/*
 77 * sys_stime() can be implemented in user-level using
 78 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 79 * why not move it into the appropriate arch directory (for those
 80 * architectures that need it).
 81 */
 82
 83SYSCALL_DEFINE1(stime, time_t __user *, tptr)
 84{
 85	struct timespec64 tv;
 86	int err;
 87
 88	if (get_user(tv.tv_sec, tptr))
 89		return -EFAULT;
 90
 91	tv.tv_nsec = 0;
 92
 93	err = security_settime64(&tv, NULL);
 94	if (err)
 95		return err;
 96
 97	do_settimeofday64(&tv);
 98	return 0;
 99}
100
101#endif /* __ARCH_WANT_SYS_TIME */
102
103#ifdef CONFIG_COMPAT
104#ifdef __ARCH_WANT_COMPAT_SYS_TIME
105
106/* compat_time_t is a 32 bit "long" and needs to get converted. */
107COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
108{
109	struct timeval tv;
110	compat_time_t i;
111
112	do_gettimeofday(&tv);
113	i = tv.tv_sec;
114
115	if (tloc) {
116		if (put_user(i,tloc))
117			return -EFAULT;
118	}
119	force_successful_syscall_return();
120	return i;
121}
122
123COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
124{
125	struct timespec64 tv;
126	int err;
127
128	if (get_user(tv.tv_sec, tptr))
129		return -EFAULT;
130
131	tv.tv_nsec = 0;
132
133	err = security_settime64(&tv, NULL);
134	if (err)
135		return err;
136
137	do_settimeofday64(&tv);
138	return 0;
139}
140
141#endif /* __ARCH_WANT_COMPAT_SYS_TIME */
142#endif
143
144SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
145		struct timezone __user *, tz)
146{
147	if (likely(tv != NULL)) {
148		struct timeval ktv;
149		do_gettimeofday(&ktv);
150		if (copy_to_user(tv, &ktv, sizeof(ktv)))
 
 
151			return -EFAULT;
152	}
153	if (unlikely(tz != NULL)) {
154		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
155			return -EFAULT;
156	}
157	return 0;
158}
159
160/*
161 * In case for some reason the CMOS clock has not already been running
162 * in UTC, but in some local time: The first time we set the timezone,
163 * we will warp the clock so that it is ticking UTC time instead of
164 * local time. Presumably, if someone is setting the timezone then we
165 * are running in an environment where the programs understand about
166 * timezones. This should be done at boot time in the /etc/rc script,
167 * as soon as possible, so that the clock can be set right. Otherwise,
168 * various programs will get confused when the clock gets warped.
169 */
170
171int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
172{
173	static int firsttime = 1;
174	int error = 0;
175
176	if (tv && !timespec64_valid(tv))
177		return -EINVAL;
178
179	error = security_settime64(tv, tz);
180	if (error)
181		return error;
182
183	if (tz) {
184		/* Verify we're witin the +-15 hrs range */
185		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
186			return -EINVAL;
187
188		sys_tz = *tz;
189		update_vsyscall_tz();
190		if (firsttime) {
191			firsttime = 0;
192			if (!tv)
193				timekeeping_warp_clock();
194		}
195	}
196	if (tv)
197		return do_settimeofday64(tv);
198	return 0;
199}
200
201SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
202		struct timezone __user *, tz)
203{
204	struct timespec64 new_ts;
205	struct timeval user_tv;
206	struct timezone new_tz;
207
208	if (tv) {
209		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
 
210			return -EFAULT;
211
212		if (!timeval_valid(&user_tv))
213			return -EINVAL;
214
215		new_ts.tv_sec = user_tv.tv_sec;
216		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
217	}
218	if (tz) {
219		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
220			return -EFAULT;
221	}
222
223	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
224}
225
226#ifdef CONFIG_COMPAT
227COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
228		       struct timezone __user *, tz)
229{
230	if (tv) {
231		struct timeval ktv;
232
233		do_gettimeofday(&ktv);
234		if (compat_put_timeval(&ktv, tv))
 
235			return -EFAULT;
236	}
237	if (tz) {
238		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
239			return -EFAULT;
240	}
241
242	return 0;
243}
244
245COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
246		       struct timezone __user *, tz)
247{
248	struct timespec64 new_ts;
249	struct timeval user_tv;
250	struct timezone new_tz;
251
252	if (tv) {
253		if (compat_get_timeval(&user_tv, tv))
 
254			return -EFAULT;
255		new_ts.tv_sec = user_tv.tv_sec;
256		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
 
 
 
257	}
258	if (tz) {
259		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
260			return -EFAULT;
261	}
262
263	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
264}
265#endif
266
267SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
 
268{
269	struct timex txc;		/* Local copy of parameter */
270	int ret;
271
272	/* Copy the user data space into the kernel copy
273	 * structure. But bear in mind that the structures
274	 * may change
275	 */
276	if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
277		return -EFAULT;
278	ret = do_adjtimex(&txc);
279	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280}
281
282#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283
284COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
285{
286	struct timex txc;
287	int err, ret;
288
289	err = compat_get_timex(&txc, utp);
290	if (err)
291		return err;
292
293	ret = do_adjtimex(&txc);
294
295	err = compat_put_timex(utp, &txc);
296	if (err)
297		return err;
298
299	return ret;
300}
301#endif
302
303/*
304 * Convert jiffies to milliseconds and back.
305 *
306 * Avoid unnecessary multiplications/divisions in the
307 * two most common HZ cases:
308 */
309unsigned int jiffies_to_msecs(const unsigned long j)
310{
311#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
312	return (MSEC_PER_SEC / HZ) * j;
313#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
314	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
315#else
316# if BITS_PER_LONG == 32
317	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
 
318# else
319	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
320# endif
321#endif
322}
323EXPORT_SYMBOL(jiffies_to_msecs);
324
325unsigned int jiffies_to_usecs(const unsigned long j)
326{
327	/*
328	 * Hz usually doesn't go much further MSEC_PER_SEC.
329	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
330	 */
331	BUILD_BUG_ON(HZ > USEC_PER_SEC);
332
333#if !(USEC_PER_SEC % HZ)
334	return (USEC_PER_SEC / HZ) * j;
335#else
336# if BITS_PER_LONG == 32
337	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
338# else
339	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
340# endif
341#endif
342}
343EXPORT_SYMBOL(jiffies_to_usecs);
344
345/**
346 * timespec_trunc - Truncate timespec to a granularity
347 * @t: Timespec
348 * @gran: Granularity in ns.
349 *
350 * Truncate a timespec to a granularity. Always rounds down. gran must
351 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
352 */
353struct timespec timespec_trunc(struct timespec t, unsigned gran)
354{
355	/* Avoid division in the common cases 1 ns and 1 s. */
356	if (gran == 1) {
357		/* nothing */
358	} else if (gran == NSEC_PER_SEC) {
359		t.tv_nsec = 0;
360	} else if (gran > 1 && gran < NSEC_PER_SEC) {
361		t.tv_nsec -= t.tv_nsec % gran;
362	} else {
363		WARN(1, "illegal file time granularity: %u", gran);
364	}
365	return t;
366}
367EXPORT_SYMBOL(timespec_trunc);
368
369/*
370 * mktime64 - Converts date to seconds.
371 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
372 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
373 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
374 *
375 * [For the Julian calendar (which was used in Russia before 1917,
376 * Britain & colonies before 1752, anywhere else before 1582,
377 * and is still in use by some communities) leave out the
378 * -year/100+year/400 terms, and add 10.]
379 *
380 * This algorithm was first published by Gauss (I think).
381 *
382 * A leap second can be indicated by calling this function with sec as
383 * 60 (allowable under ISO 8601).  The leap second is treated the same
384 * as the following second since they don't exist in UNIX time.
385 *
386 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
387 * tomorrow - (allowable under ISO 8601) is supported.
388 */
389time64_t mktime64(const unsigned int year0, const unsigned int mon0,
390		const unsigned int day, const unsigned int hour,
391		const unsigned int min, const unsigned int sec)
392{
393	unsigned int mon = mon0, year = year0;
394
395	/* 1..12 -> 11,12,1..10 */
396	if (0 >= (int) (mon -= 2)) {
397		mon += 12;	/* Puts Feb last since it has leap day */
398		year -= 1;
399	}
400
401	return ((((time64_t)
402		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
403		  year*365 - 719499
404	    )*24 + hour /* now have hours - midnight tomorrow handled here */
405	  )*60 + min /* now have minutes */
406	)*60 + sec; /* finally seconds */
407}
408EXPORT_SYMBOL(mktime64);
409
410#if __BITS_PER_LONG == 32
411/**
412 * set_normalized_timespec - set timespec sec and nsec parts and normalize
413 *
414 * @ts:		pointer to timespec variable to be set
415 * @sec:	seconds to set
416 * @nsec:	nanoseconds to set
417 *
418 * Set seconds and nanoseconds field of a timespec variable and
419 * normalize to the timespec storage format
420 *
421 * Note: The tv_nsec part is always in the range of
422 *	0 <= tv_nsec < NSEC_PER_SEC
423 * For negative values only the tv_sec field is negative !
424 */
425void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
426{
427	while (nsec >= NSEC_PER_SEC) {
428		/*
429		 * The following asm() prevents the compiler from
430		 * optimising this loop into a modulo operation. See
431		 * also __iter_div_u64_rem() in include/linux/time.h
432		 */
433		asm("" : "+rm"(nsec));
434		nsec -= NSEC_PER_SEC;
435		++sec;
436	}
437	while (nsec < 0) {
438		asm("" : "+rm"(nsec));
439		nsec += NSEC_PER_SEC;
440		--sec;
441	}
442	ts->tv_sec = sec;
443	ts->tv_nsec = nsec;
444}
445EXPORT_SYMBOL(set_normalized_timespec);
446
447/**
448 * ns_to_timespec - Convert nanoseconds to timespec
449 * @nsec:       the nanoseconds value to be converted
450 *
451 * Returns the timespec representation of the nsec parameter.
452 */
453struct timespec ns_to_timespec(const s64 nsec)
454{
455	struct timespec ts;
456	s32 rem;
457
458	if (!nsec)
459		return (struct timespec) {0, 0};
460
461	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
462	if (unlikely(rem < 0)) {
463		ts.tv_sec--;
464		rem += NSEC_PER_SEC;
465	}
466	ts.tv_nsec = rem;
467
468	return ts;
469}
470EXPORT_SYMBOL(ns_to_timespec);
471#endif
472
473/**
474 * ns_to_timeval - Convert nanoseconds to timeval
475 * @nsec:       the nanoseconds value to be converted
476 *
477 * Returns the timeval representation of the nsec parameter.
478 */
479struct timeval ns_to_timeval(const s64 nsec)
480{
481	struct timespec ts = ns_to_timespec(nsec);
482	struct timeval tv;
483
484	tv.tv_sec = ts.tv_sec;
485	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
486
487	return tv;
488}
489EXPORT_SYMBOL(ns_to_timeval);
490
491struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
492{
493	struct timespec64 ts = ns_to_timespec64(nsec);
494	struct __kernel_old_timeval tv;
495
496	tv.tv_sec = ts.tv_sec;
497	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
498
499	return tv;
500}
501EXPORT_SYMBOL(ns_to_kernel_old_timeval);
502
503/**
504 * set_normalized_timespec - set timespec sec and nsec parts and normalize
505 *
506 * @ts:		pointer to timespec variable to be set
507 * @sec:	seconds to set
508 * @nsec:	nanoseconds to set
509 *
510 * Set seconds and nanoseconds field of a timespec variable and
511 * normalize to the timespec storage format
512 *
513 * Note: The tv_nsec part is always in the range of
514 *	0 <= tv_nsec < NSEC_PER_SEC
515 * For negative values only the tv_sec field is negative !
516 */
517void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
518{
519	while (nsec >= NSEC_PER_SEC) {
520		/*
521		 * The following asm() prevents the compiler from
522		 * optimising this loop into a modulo operation. See
523		 * also __iter_div_u64_rem() in include/linux/time.h
524		 */
525		asm("" : "+rm"(nsec));
526		nsec -= NSEC_PER_SEC;
527		++sec;
528	}
529	while (nsec < 0) {
530		asm("" : "+rm"(nsec));
531		nsec += NSEC_PER_SEC;
532		--sec;
533	}
534	ts->tv_sec = sec;
535	ts->tv_nsec = nsec;
536}
537EXPORT_SYMBOL(set_normalized_timespec64);
538
539/**
540 * ns_to_timespec64 - Convert nanoseconds to timespec64
541 * @nsec:       the nanoseconds value to be converted
542 *
543 * Returns the timespec64 representation of the nsec parameter.
544 */
545struct timespec64 ns_to_timespec64(const s64 nsec)
546{
547	struct timespec64 ts;
548	s32 rem;
549
550	if (!nsec)
551		return (struct timespec64) {0, 0};
552
553	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
554	if (unlikely(rem < 0)) {
555		ts.tv_sec--;
556		rem += NSEC_PER_SEC;
 
 
 
 
557	}
558	ts.tv_nsec = rem;
559
560	return ts;
561}
562EXPORT_SYMBOL(ns_to_timespec64);
563
564/**
565 * msecs_to_jiffies: - convert milliseconds to jiffies
566 * @m:	time in milliseconds
567 *
568 * conversion is done as follows:
569 *
570 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
571 *
572 * - 'too large' values [that would result in larger than
573 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
574 *
575 * - all other values are converted to jiffies by either multiplying
576 *   the input value by a factor or dividing it with a factor and
577 *   handling any 32-bit overflows.
578 *   for the details see __msecs_to_jiffies()
579 *
580 * msecs_to_jiffies() checks for the passed in value being a constant
581 * via __builtin_constant_p() allowing gcc to eliminate most of the
582 * code, __msecs_to_jiffies() is called if the value passed does not
583 * allow constant folding and the actual conversion must be done at
584 * runtime.
585 * the _msecs_to_jiffies helpers are the HZ dependent conversion
586 * routines found in include/linux/jiffies.h
587 */
588unsigned long __msecs_to_jiffies(const unsigned int m)
589{
590	/*
591	 * Negative value, means infinite timeout:
592	 */
593	if ((int)m < 0)
594		return MAX_JIFFY_OFFSET;
595	return _msecs_to_jiffies(m);
596}
597EXPORT_SYMBOL(__msecs_to_jiffies);
598
599unsigned long __usecs_to_jiffies(const unsigned int u)
600{
601	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
602		return MAX_JIFFY_OFFSET;
603	return _usecs_to_jiffies(u);
604}
605EXPORT_SYMBOL(__usecs_to_jiffies);
606
607/*
608 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
609 * that a remainder subtract here would not do the right thing as the
610 * resolution values don't fall on second boundries.  I.e. the line:
611 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
612 * Note that due to the small error in the multiplier here, this
613 * rounding is incorrect for sufficiently large values of tv_nsec, but
614 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
615 * OK.
616 *
617 * Rather, we just shift the bits off the right.
618 *
619 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
620 * value to a scaled second value.
621 */
622static unsigned long
623__timespec64_to_jiffies(u64 sec, long nsec)
 
624{
625	nsec = nsec + TICK_NSEC - 1;
 
626
627	if (sec >= MAX_SEC_IN_JIFFIES){
628		sec = MAX_SEC_IN_JIFFIES;
629		nsec = 0;
630	}
631	return ((sec * SEC_CONVERSION) +
632		(((u64)nsec * NSEC_CONVERSION) >>
633		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
634
635}
636
637static unsigned long
638__timespec_to_jiffies(unsigned long sec, long nsec)
639{
640	return __timespec64_to_jiffies((u64)sec, nsec);
641}
642
643unsigned long
644timespec64_to_jiffies(const struct timespec64 *value)
645{
646	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
647}
648EXPORT_SYMBOL(timespec64_to_jiffies);
649
650void
651jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
652{
653	/*
654	 * Convert jiffies to nanoseconds and separate with
655	 * one divide.
656	 */
657	u32 rem;
658	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
659				    NSEC_PER_SEC, &rem);
660	value->tv_nsec = rem;
661}
662EXPORT_SYMBOL(jiffies_to_timespec64);
663
664/*
665 * We could use a similar algorithm to timespec_to_jiffies (with a
666 * different multiplier for usec instead of nsec). But this has a
667 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
668 * usec value, since it's not necessarily integral.
669 *
670 * We could instead round in the intermediate scaled representation
671 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
672 * perilous: the scaling introduces a small positive error, which
673 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
674 * units to the intermediate before shifting) leads to accidental
675 * overflow and overestimates.
676 *
677 * At the cost of one additional multiplication by a constant, just
678 * use the timespec implementation.
679 */
680unsigned long
681timeval_to_jiffies(const struct timeval *value)
682{
683	return __timespec_to_jiffies(value->tv_sec,
684				     value->tv_usec * NSEC_PER_USEC);
685}
686EXPORT_SYMBOL(timeval_to_jiffies);
687
688void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
689{
690	/*
691	 * Convert jiffies to nanoseconds and separate with
692	 * one divide.
693	 */
694	u32 rem;
695
696	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
697				    NSEC_PER_SEC, &rem);
698	value->tv_usec = rem / NSEC_PER_USEC;
699}
700EXPORT_SYMBOL(jiffies_to_timeval);
701
702/*
703 * Convert jiffies/jiffies_64 to clock_t and back.
704 */
705clock_t jiffies_to_clock_t(unsigned long x)
706{
707#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
708# if HZ < USER_HZ
709	return x * (USER_HZ / HZ);
710# else
711	return x / (HZ / USER_HZ);
712# endif
713#else
714	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
715#endif
716}
717EXPORT_SYMBOL(jiffies_to_clock_t);
718
719unsigned long clock_t_to_jiffies(unsigned long x)
720{
721#if (HZ % USER_HZ)==0
722	if (x >= ~0UL / (HZ / USER_HZ))
723		return ~0UL;
724	return x * (HZ / USER_HZ);
725#else
726	/* Don't worry about loss of precision here .. */
727	if (x >= ~0UL / HZ * USER_HZ)
728		return ~0UL;
729
730	/* .. but do try to contain it here */
731	return div_u64((u64)x * HZ, USER_HZ);
732#endif
733}
734EXPORT_SYMBOL(clock_t_to_jiffies);
735
736u64 jiffies_64_to_clock_t(u64 x)
737{
738#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
739# if HZ < USER_HZ
740	x = div_u64(x * USER_HZ, HZ);
741# elif HZ > USER_HZ
742	x = div_u64(x, HZ / USER_HZ);
743# else
744	/* Nothing to do */
745# endif
746#else
747	/*
748	 * There are better ways that don't overflow early,
749	 * but even this doesn't overflow in hundreds of years
750	 * in 64 bits, so..
751	 */
752	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
753#endif
754	return x;
755}
756EXPORT_SYMBOL(jiffies_64_to_clock_t);
757
758u64 nsec_to_clock_t(u64 x)
759{
760#if (NSEC_PER_SEC % USER_HZ) == 0
761	return div_u64(x, NSEC_PER_SEC / USER_HZ);
762#elif (USER_HZ % 512) == 0
763	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
764#else
765	/*
766         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
767         * overflow after 64.99 years.
768         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
769         */
770	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
771#endif
772}
773
774u64 jiffies64_to_nsecs(u64 j)
775{
776#if !(NSEC_PER_SEC % HZ)
777	return (NSEC_PER_SEC / HZ) * j;
778# else
779	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
780#endif
781}
782EXPORT_SYMBOL(jiffies64_to_nsecs);
783
 
 
 
 
 
 
 
 
 
 
784/**
785 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
786 *
787 * @n:	nsecs in u64
788 *
789 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
790 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
791 * for scheduler, not for use in device drivers to calculate timeout value.
792 *
793 * note:
794 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
795 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
796 */
797u64 nsecs_to_jiffies64(u64 n)
798{
799#if (NSEC_PER_SEC % HZ) == 0
800	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
801	return div_u64(n, NSEC_PER_SEC / HZ);
802#elif (HZ % 512) == 0
803	/* overflow after 292 years if HZ = 1024 */
804	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
805#else
806	/*
807	 * Generic case - optimized for cases where HZ is a multiple of 3.
808	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
809	 */
810	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
811#endif
812}
813EXPORT_SYMBOL(nsecs_to_jiffies64);
814
815/**
816 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
817 *
818 * @n:	nsecs in u64
819 *
820 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
821 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
822 * for scheduler, not for use in device drivers to calculate timeout value.
823 *
824 * note:
825 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
826 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
827 */
828unsigned long nsecs_to_jiffies(u64 n)
829{
830	return (unsigned long)nsecs_to_jiffies64(n);
831}
832EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
833
834/*
835 * Add two timespec64 values and do a safety check for overflow.
836 * It's assumed that both values are valid (>= 0).
837 * And, each timespec64 is in normalized form.
838 */
839struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
840				const struct timespec64 rhs)
841{
842	struct timespec64 res;
843
844	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
845			lhs.tv_nsec + rhs.tv_nsec);
846
847	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
848		res.tv_sec = TIME64_MAX;
849		res.tv_nsec = 0;
850	}
851
852	return res;
853}
854
855int get_timespec64(struct timespec64 *ts,
856		   const struct timespec __user *uts)
857{
858	struct timespec kts;
859	int ret;
860
861	ret = copy_from_user(&kts, uts, sizeof(kts));
862	if (ret)
863		return -EFAULT;
864
865	ts->tv_sec = kts.tv_sec;
 
 
 
 
 
 
866	ts->tv_nsec = kts.tv_nsec;
867
868	return 0;
869}
870EXPORT_SYMBOL_GPL(get_timespec64);
871
872int put_timespec64(const struct timespec64 *ts,
873		   struct timespec __user *uts)
874{
875	struct timespec kts = {
876		.tv_sec = ts->tv_sec,
877		.tv_nsec = ts->tv_nsec
878	};
 
879	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
880}
881EXPORT_SYMBOL_GPL(put_timespec64);
882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
883int get_itimerspec64(struct itimerspec64 *it,
884			const struct itimerspec __user *uit)
885{
886	int ret;
887
888	ret = get_timespec64(&it->it_interval, &uit->it_interval);
889	if (ret)
890		return ret;
891
892	ret = get_timespec64(&it->it_value, &uit->it_value);
893
894	return ret;
895}
896EXPORT_SYMBOL_GPL(get_itimerspec64);
897
898int put_itimerspec64(const struct itimerspec64 *it,
899			struct itimerspec __user *uit)
900{
901	int ret;
902
903	ret = put_timespec64(&it->it_interval, &uit->it_interval);
904	if (ret)
905		return ret;
906
907	ret = put_timespec64(&it->it_value, &uit->it_value);
908
909	return ret;
910}
911EXPORT_SYMBOL_GPL(put_itimerspec64);