Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 *
5 * This file contains the interface functions for the various time related
6 * system calls: time, stime, gettimeofday, settimeofday, adjtime
7 *
8 * Modification history:
9 *
10 * 1993-09-02 Philip Gladstone
11 * Created file with time related functions from sched/core.c and adjtimex()
12 * 1993-10-08 Torsten Duwe
13 * adjtime interface update and CMOS clock write code
14 * 1995-08-13 Torsten Duwe
15 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
16 * 1999-01-16 Ulrich Windl
17 * Introduced error checking for many cases in adjtimex().
18 * Updated NTP code according to technical memorandum Jan '96
19 * "A Kernel Model for Precision Timekeeping" by Dave Mills
20 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
21 * (Even though the technical memorandum forbids it)
22 * 2004-07-14 Christoph Lameter
23 * Added getnstimeofday to allow the posix timer functions to return
24 * with nanosecond accuracy
25 */
26
27#include <linux/export.h>
28#include <linux/kernel.h>
29#include <linux/timex.h>
30#include <linux/capability.h>
31#include <linux/timekeeper_internal.h>
32#include <linux/errno.h>
33#include <linux/syscalls.h>
34#include <linux/security.h>
35#include <linux/fs.h>
36#include <linux/math64.h>
37#include <linux/ptrace.h>
38
39#include <linux/uaccess.h>
40#include <linux/compat.h>
41#include <asm/unistd.h>
42
43#include <generated/timeconst.h>
44#include "timekeeping.h"
45
46/*
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
49 */
50struct timezone sys_tz;
51
52EXPORT_SYMBOL(sys_tz);
53
54#ifdef __ARCH_WANT_SYS_TIME
55
56/*
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
61 */
62SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc)
63{
64 __kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds();
65
66 if (tloc) {
67 if (put_user(i,tloc))
68 return -EFAULT;
69 }
70 force_successful_syscall_return();
71 return i;
72}
73
74/*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
80
81SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr)
82{
83 struct timespec64 tv;
84 int err;
85
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
88
89 tv.tv_nsec = 0;
90
91 err = security_settime64(&tv, NULL);
92 if (err)
93 return err;
94
95 do_settimeofday64(&tv);
96 return 0;
97}
98
99#endif /* __ARCH_WANT_SYS_TIME */
100
101#ifdef CONFIG_COMPAT_32BIT_TIME
102#ifdef __ARCH_WANT_SYS_TIME32
103
104/* old_time32_t is a 32 bit "long" and needs to get converted. */
105SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
106{
107 old_time32_t i;
108
109 i = (old_time32_t)ktime_get_real_seconds();
110
111 if (tloc) {
112 if (put_user(i,tloc))
113 return -EFAULT;
114 }
115 force_successful_syscall_return();
116 return i;
117}
118
119SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
120{
121 struct timespec64 tv;
122 int err;
123
124 if (get_user(tv.tv_sec, tptr))
125 return -EFAULT;
126
127 tv.tv_nsec = 0;
128
129 err = security_settime64(&tv, NULL);
130 if (err)
131 return err;
132
133 do_settimeofday64(&tv);
134 return 0;
135}
136
137#endif /* __ARCH_WANT_SYS_TIME32 */
138#endif
139
140SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
141 struct timezone __user *, tz)
142{
143 if (likely(tv != NULL)) {
144 struct timespec64 ts;
145
146 ktime_get_real_ts64(&ts);
147 if (put_user(ts.tv_sec, &tv->tv_sec) ||
148 put_user(ts.tv_nsec / 1000, &tv->tv_usec))
149 return -EFAULT;
150 }
151 if (unlikely(tz != NULL)) {
152 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153 return -EFAULT;
154 }
155 return 0;
156}
157
158/*
159 * In case for some reason the CMOS clock has not already been running
160 * in UTC, but in some local time: The first time we set the timezone,
161 * we will warp the clock so that it is ticking UTC time instead of
162 * local time. Presumably, if someone is setting the timezone then we
163 * are running in an environment where the programs understand about
164 * timezones. This should be done at boot time in the /etc/rc script,
165 * as soon as possible, so that the clock can be set right. Otherwise,
166 * various programs will get confused when the clock gets warped.
167 */
168
169int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
170{
171 static int firsttime = 1;
172 int error = 0;
173
174 if (tv && !timespec64_valid_settod(tv))
175 return -EINVAL;
176
177 error = security_settime64(tv, tz);
178 if (error)
179 return error;
180
181 if (tz) {
182 /* Verify we're within the +-15 hrs range */
183 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184 return -EINVAL;
185
186 sys_tz = *tz;
187 update_vsyscall_tz();
188 if (firsttime) {
189 firsttime = 0;
190 if (!tv)
191 timekeeping_warp_clock();
192 }
193 }
194 if (tv)
195 return do_settimeofday64(tv);
196 return 0;
197}
198
199SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv,
200 struct timezone __user *, tz)
201{
202 struct timespec64 new_ts;
203 struct timezone new_tz;
204
205 if (tv) {
206 if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
207 get_user(new_ts.tv_nsec, &tv->tv_usec))
208 return -EFAULT;
209
210 if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
211 return -EINVAL;
212
213 new_ts.tv_nsec *= NSEC_PER_USEC;
214 }
215 if (tz) {
216 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
217 return -EFAULT;
218 }
219
220 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
221}
222
223#ifdef CONFIG_COMPAT
224COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
225 struct timezone __user *, tz)
226{
227 if (tv) {
228 struct timespec64 ts;
229
230 ktime_get_real_ts64(&ts);
231 if (put_user(ts.tv_sec, &tv->tv_sec) ||
232 put_user(ts.tv_nsec / 1000, &tv->tv_usec))
233 return -EFAULT;
234 }
235 if (tz) {
236 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
237 return -EFAULT;
238 }
239
240 return 0;
241}
242
243COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
244 struct timezone __user *, tz)
245{
246 struct timespec64 new_ts;
247 struct timezone new_tz;
248
249 if (tv) {
250 if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
251 get_user(new_ts.tv_nsec, &tv->tv_usec))
252 return -EFAULT;
253
254 if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
255 return -EINVAL;
256
257 new_ts.tv_nsec *= NSEC_PER_USEC;
258 }
259 if (tz) {
260 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
261 return -EFAULT;
262 }
263
264 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
265}
266#endif
267
268#ifdef CONFIG_64BIT
269SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
270{
271 struct __kernel_timex txc; /* Local copy of parameter */
272 int ret;
273
274 /* Copy the user data space into the kernel copy
275 * structure. But bear in mind that the structures
276 * may change
277 */
278 if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
279 return -EFAULT;
280 ret = do_adjtimex(&txc);
281 return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
282}
283#endif
284
285#ifdef CONFIG_COMPAT_32BIT_TIME
286int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
287{
288 struct old_timex32 tx32;
289
290 memset(txc, 0, sizeof(struct __kernel_timex));
291 if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
292 return -EFAULT;
293
294 txc->modes = tx32.modes;
295 txc->offset = tx32.offset;
296 txc->freq = tx32.freq;
297 txc->maxerror = tx32.maxerror;
298 txc->esterror = tx32.esterror;
299 txc->status = tx32.status;
300 txc->constant = tx32.constant;
301 txc->precision = tx32.precision;
302 txc->tolerance = tx32.tolerance;
303 txc->time.tv_sec = tx32.time.tv_sec;
304 txc->time.tv_usec = tx32.time.tv_usec;
305 txc->tick = tx32.tick;
306 txc->ppsfreq = tx32.ppsfreq;
307 txc->jitter = tx32.jitter;
308 txc->shift = tx32.shift;
309 txc->stabil = tx32.stabil;
310 txc->jitcnt = tx32.jitcnt;
311 txc->calcnt = tx32.calcnt;
312 txc->errcnt = tx32.errcnt;
313 txc->stbcnt = tx32.stbcnt;
314
315 return 0;
316}
317
318int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
319{
320 struct old_timex32 tx32;
321
322 memset(&tx32, 0, sizeof(struct old_timex32));
323 tx32.modes = txc->modes;
324 tx32.offset = txc->offset;
325 tx32.freq = txc->freq;
326 tx32.maxerror = txc->maxerror;
327 tx32.esterror = txc->esterror;
328 tx32.status = txc->status;
329 tx32.constant = txc->constant;
330 tx32.precision = txc->precision;
331 tx32.tolerance = txc->tolerance;
332 tx32.time.tv_sec = txc->time.tv_sec;
333 tx32.time.tv_usec = txc->time.tv_usec;
334 tx32.tick = txc->tick;
335 tx32.ppsfreq = txc->ppsfreq;
336 tx32.jitter = txc->jitter;
337 tx32.shift = txc->shift;
338 tx32.stabil = txc->stabil;
339 tx32.jitcnt = txc->jitcnt;
340 tx32.calcnt = txc->calcnt;
341 tx32.errcnt = txc->errcnt;
342 tx32.stbcnt = txc->stbcnt;
343 tx32.tai = txc->tai;
344 if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
345 return -EFAULT;
346 return 0;
347}
348
349SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
350{
351 struct __kernel_timex txc;
352 int err, ret;
353
354 err = get_old_timex32(&txc, utp);
355 if (err)
356 return err;
357
358 ret = do_adjtimex(&txc);
359
360 err = put_old_timex32(utp, &txc);
361 if (err)
362 return err;
363
364 return ret;
365}
366#endif
367
368/*
369 * Convert jiffies to milliseconds and back.
370 *
371 * Avoid unnecessary multiplications/divisions in the
372 * two most common HZ cases:
373 */
374unsigned int jiffies_to_msecs(const unsigned long j)
375{
376#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
377 return (MSEC_PER_SEC / HZ) * j;
378#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
379 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
380#else
381# if BITS_PER_LONG == 32
382 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
383 HZ_TO_MSEC_SHR32;
384# else
385 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
386# endif
387#endif
388}
389EXPORT_SYMBOL(jiffies_to_msecs);
390
391unsigned int jiffies_to_usecs(const unsigned long j)
392{
393 /*
394 * Hz usually doesn't go much further MSEC_PER_SEC.
395 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
396 */
397 BUILD_BUG_ON(HZ > USEC_PER_SEC);
398
399#if !(USEC_PER_SEC % HZ)
400 return (USEC_PER_SEC / HZ) * j;
401#else
402# if BITS_PER_LONG == 32
403 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
404# else
405 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
406# endif
407#endif
408}
409EXPORT_SYMBOL(jiffies_to_usecs);
410
411/*
412 * mktime64 - Converts date to seconds.
413 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
414 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
415 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
416 *
417 * [For the Julian calendar (which was used in Russia before 1917,
418 * Britain & colonies before 1752, anywhere else before 1582,
419 * and is still in use by some communities) leave out the
420 * -year/100+year/400 terms, and add 10.]
421 *
422 * This algorithm was first published by Gauss (I think).
423 *
424 * A leap second can be indicated by calling this function with sec as
425 * 60 (allowable under ISO 8601). The leap second is treated the same
426 * as the following second since they don't exist in UNIX time.
427 *
428 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
429 * tomorrow - (allowable under ISO 8601) is supported.
430 */
431time64_t mktime64(const unsigned int year0, const unsigned int mon0,
432 const unsigned int day, const unsigned int hour,
433 const unsigned int min, const unsigned int sec)
434{
435 unsigned int mon = mon0, year = year0;
436
437 /* 1..12 -> 11,12,1..10 */
438 if (0 >= (int) (mon -= 2)) {
439 mon += 12; /* Puts Feb last since it has leap day */
440 year -= 1;
441 }
442
443 return ((((time64_t)
444 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
445 year*365 - 719499
446 )*24 + hour /* now have hours - midnight tomorrow handled here */
447 )*60 + min /* now have minutes */
448 )*60 + sec; /* finally seconds */
449}
450EXPORT_SYMBOL(mktime64);
451
452struct __kernel_old_timeval ns_to_kernel_old_timeval(s64 nsec)
453{
454 struct timespec64 ts = ns_to_timespec64(nsec);
455 struct __kernel_old_timeval tv;
456
457 tv.tv_sec = ts.tv_sec;
458 tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
459
460 return tv;
461}
462EXPORT_SYMBOL(ns_to_kernel_old_timeval);
463
464/**
465 * set_normalized_timespec64 - set timespec sec and nsec parts and normalize
466 *
467 * @ts: pointer to timespec variable to be set
468 * @sec: seconds to set
469 * @nsec: nanoseconds to set
470 *
471 * Set seconds and nanoseconds field of a timespec variable and
472 * normalize to the timespec storage format
473 *
474 * Note: The tv_nsec part is always in the range of
475 * 0 <= tv_nsec < NSEC_PER_SEC
476 * For negative values only the tv_sec field is negative !
477 */
478void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
479{
480 while (nsec >= NSEC_PER_SEC) {
481 /*
482 * The following asm() prevents the compiler from
483 * optimising this loop into a modulo operation. See
484 * also __iter_div_u64_rem() in include/linux/time.h
485 */
486 asm("" : "+rm"(nsec));
487 nsec -= NSEC_PER_SEC;
488 ++sec;
489 }
490 while (nsec < 0) {
491 asm("" : "+rm"(nsec));
492 nsec += NSEC_PER_SEC;
493 --sec;
494 }
495 ts->tv_sec = sec;
496 ts->tv_nsec = nsec;
497}
498EXPORT_SYMBOL(set_normalized_timespec64);
499
500/**
501 * ns_to_timespec64 - Convert nanoseconds to timespec64
502 * @nsec: the nanoseconds value to be converted
503 *
504 * Returns the timespec64 representation of the nsec parameter.
505 */
506struct timespec64 ns_to_timespec64(s64 nsec)
507{
508 struct timespec64 ts = { 0, 0 };
509 s32 rem;
510
511 if (likely(nsec > 0)) {
512 ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
513 ts.tv_nsec = rem;
514 } else if (nsec < 0) {
515 /*
516 * With negative times, tv_sec points to the earlier
517 * second, and tv_nsec counts the nanoseconds since
518 * then, so tv_nsec is always a positive number.
519 */
520 ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1;
521 ts.tv_nsec = NSEC_PER_SEC - rem - 1;
522 }
523
524 return ts;
525}
526EXPORT_SYMBOL(ns_to_timespec64);
527
528/**
529 * __msecs_to_jiffies: - convert milliseconds to jiffies
530 * @m: time in milliseconds
531 *
532 * conversion is done as follows:
533 *
534 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
535 *
536 * - 'too large' values [that would result in larger than
537 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
538 *
539 * - all other values are converted to jiffies by either multiplying
540 * the input value by a factor or dividing it with a factor and
541 * handling any 32-bit overflows.
542 * for the details see __msecs_to_jiffies()
543 *
544 * __msecs_to_jiffies() checks for the passed in value being a constant
545 * via __builtin_constant_p() allowing gcc to eliminate most of the
546 * code, __msecs_to_jiffies() is called if the value passed does not
547 * allow constant folding and the actual conversion must be done at
548 * runtime.
549 * The _msecs_to_jiffies helpers are the HZ dependent conversion
550 * routines found in include/linux/jiffies.h
551 */
552unsigned long __msecs_to_jiffies(const unsigned int m)
553{
554 /*
555 * Negative value, means infinite timeout:
556 */
557 if ((int)m < 0)
558 return MAX_JIFFY_OFFSET;
559 return _msecs_to_jiffies(m);
560}
561EXPORT_SYMBOL(__msecs_to_jiffies);
562
563unsigned long __usecs_to_jiffies(const unsigned int u)
564{
565 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
566 return MAX_JIFFY_OFFSET;
567 return _usecs_to_jiffies(u);
568}
569EXPORT_SYMBOL(__usecs_to_jiffies);
570
571/*
572 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
573 * that a remainder subtract here would not do the right thing as the
574 * resolution values don't fall on second boundaries. I.e. the line:
575 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
576 * Note that due to the small error in the multiplier here, this
577 * rounding is incorrect for sufficiently large values of tv_nsec, but
578 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
579 * OK.
580 *
581 * Rather, we just shift the bits off the right.
582 *
583 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
584 * value to a scaled second value.
585 */
586
587unsigned long
588timespec64_to_jiffies(const struct timespec64 *value)
589{
590 u64 sec = value->tv_sec;
591 long nsec = value->tv_nsec + TICK_NSEC - 1;
592
593 if (sec >= MAX_SEC_IN_JIFFIES){
594 sec = MAX_SEC_IN_JIFFIES;
595 nsec = 0;
596 }
597 return ((sec * SEC_CONVERSION) +
598 (((u64)nsec * NSEC_CONVERSION) >>
599 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
600
601}
602EXPORT_SYMBOL(timespec64_to_jiffies);
603
604void
605jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
606{
607 /*
608 * Convert jiffies to nanoseconds and separate with
609 * one divide.
610 */
611 u32 rem;
612 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
613 NSEC_PER_SEC, &rem);
614 value->tv_nsec = rem;
615}
616EXPORT_SYMBOL(jiffies_to_timespec64);
617
618/*
619 * Convert jiffies/jiffies_64 to clock_t and back.
620 */
621clock_t jiffies_to_clock_t(unsigned long x)
622{
623#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
624# if HZ < USER_HZ
625 return x * (USER_HZ / HZ);
626# else
627 return x / (HZ / USER_HZ);
628# endif
629#else
630 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
631#endif
632}
633EXPORT_SYMBOL(jiffies_to_clock_t);
634
635unsigned long clock_t_to_jiffies(unsigned long x)
636{
637#if (HZ % USER_HZ)==0
638 if (x >= ~0UL / (HZ / USER_HZ))
639 return ~0UL;
640 return x * (HZ / USER_HZ);
641#else
642 /* Don't worry about loss of precision here .. */
643 if (x >= ~0UL / HZ * USER_HZ)
644 return ~0UL;
645
646 /* .. but do try to contain it here */
647 return div_u64((u64)x * HZ, USER_HZ);
648#endif
649}
650EXPORT_SYMBOL(clock_t_to_jiffies);
651
652u64 jiffies_64_to_clock_t(u64 x)
653{
654#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
655# if HZ < USER_HZ
656 x = div_u64(x * USER_HZ, HZ);
657# elif HZ > USER_HZ
658 x = div_u64(x, HZ / USER_HZ);
659# else
660 /* Nothing to do */
661# endif
662#else
663 /*
664 * There are better ways that don't overflow early,
665 * but even this doesn't overflow in hundreds of years
666 * in 64 bits, so..
667 */
668 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
669#endif
670 return x;
671}
672EXPORT_SYMBOL(jiffies_64_to_clock_t);
673
674u64 nsec_to_clock_t(u64 x)
675{
676#if (NSEC_PER_SEC % USER_HZ) == 0
677 return div_u64(x, NSEC_PER_SEC / USER_HZ);
678#elif (USER_HZ % 512) == 0
679 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
680#else
681 /*
682 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
683 * overflow after 64.99 years.
684 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
685 */
686 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
687#endif
688}
689
690u64 jiffies64_to_nsecs(u64 j)
691{
692#if !(NSEC_PER_SEC % HZ)
693 return (NSEC_PER_SEC / HZ) * j;
694# else
695 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
696#endif
697}
698EXPORT_SYMBOL(jiffies64_to_nsecs);
699
700u64 jiffies64_to_msecs(const u64 j)
701{
702#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
703 return (MSEC_PER_SEC / HZ) * j;
704#else
705 return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
706#endif
707}
708EXPORT_SYMBOL(jiffies64_to_msecs);
709
710/**
711 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
712 *
713 * @n: nsecs in u64
714 *
715 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
716 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
717 * for scheduler, not for use in device drivers to calculate timeout value.
718 *
719 * note:
720 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
721 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
722 */
723u64 nsecs_to_jiffies64(u64 n)
724{
725#if (NSEC_PER_SEC % HZ) == 0
726 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
727 return div_u64(n, NSEC_PER_SEC / HZ);
728#elif (HZ % 512) == 0
729 /* overflow after 292 years if HZ = 1024 */
730 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
731#else
732 /*
733 * Generic case - optimized for cases where HZ is a multiple of 3.
734 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
735 */
736 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
737#endif
738}
739EXPORT_SYMBOL(nsecs_to_jiffies64);
740
741/**
742 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
743 *
744 * @n: nsecs in u64
745 *
746 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
747 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
748 * for scheduler, not for use in device drivers to calculate timeout value.
749 *
750 * note:
751 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
752 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
753 */
754unsigned long nsecs_to_jiffies(u64 n)
755{
756 return (unsigned long)nsecs_to_jiffies64(n);
757}
758EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
759
760/*
761 * Add two timespec64 values and do a safety check for overflow.
762 * It's assumed that both values are valid (>= 0).
763 * And, each timespec64 is in normalized form.
764 */
765struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
766 const struct timespec64 rhs)
767{
768 struct timespec64 res;
769
770 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
771 lhs.tv_nsec + rhs.tv_nsec);
772
773 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
774 res.tv_sec = TIME64_MAX;
775 res.tv_nsec = 0;
776 }
777
778 return res;
779}
780
781int get_timespec64(struct timespec64 *ts,
782 const struct __kernel_timespec __user *uts)
783{
784 struct __kernel_timespec kts;
785 int ret;
786
787 ret = copy_from_user(&kts, uts, sizeof(kts));
788 if (ret)
789 return -EFAULT;
790
791 ts->tv_sec = kts.tv_sec;
792
793 /* Zero out the padding in compat mode */
794 if (in_compat_syscall())
795 kts.tv_nsec &= 0xFFFFFFFFUL;
796
797 /* In 32-bit mode, this drops the padding */
798 ts->tv_nsec = kts.tv_nsec;
799
800 return 0;
801}
802EXPORT_SYMBOL_GPL(get_timespec64);
803
804int put_timespec64(const struct timespec64 *ts,
805 struct __kernel_timespec __user *uts)
806{
807 struct __kernel_timespec kts = {
808 .tv_sec = ts->tv_sec,
809 .tv_nsec = ts->tv_nsec
810 };
811
812 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
813}
814EXPORT_SYMBOL_GPL(put_timespec64);
815
816static int __get_old_timespec32(struct timespec64 *ts64,
817 const struct old_timespec32 __user *cts)
818{
819 struct old_timespec32 ts;
820 int ret;
821
822 ret = copy_from_user(&ts, cts, sizeof(ts));
823 if (ret)
824 return -EFAULT;
825
826 ts64->tv_sec = ts.tv_sec;
827 ts64->tv_nsec = ts.tv_nsec;
828
829 return 0;
830}
831
832static int __put_old_timespec32(const struct timespec64 *ts64,
833 struct old_timespec32 __user *cts)
834{
835 struct old_timespec32 ts = {
836 .tv_sec = ts64->tv_sec,
837 .tv_nsec = ts64->tv_nsec
838 };
839 return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
840}
841
842int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
843{
844 if (COMPAT_USE_64BIT_TIME)
845 return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
846 else
847 return __get_old_timespec32(ts, uts);
848}
849EXPORT_SYMBOL_GPL(get_old_timespec32);
850
851int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
852{
853 if (COMPAT_USE_64BIT_TIME)
854 return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
855 else
856 return __put_old_timespec32(ts, uts);
857}
858EXPORT_SYMBOL_GPL(put_old_timespec32);
859
860int get_itimerspec64(struct itimerspec64 *it,
861 const struct __kernel_itimerspec __user *uit)
862{
863 int ret;
864
865 ret = get_timespec64(&it->it_interval, &uit->it_interval);
866 if (ret)
867 return ret;
868
869 ret = get_timespec64(&it->it_value, &uit->it_value);
870
871 return ret;
872}
873EXPORT_SYMBOL_GPL(get_itimerspec64);
874
875int put_itimerspec64(const struct itimerspec64 *it,
876 struct __kernel_itimerspec __user *uit)
877{
878 int ret;
879
880 ret = put_timespec64(&it->it_interval, &uit->it_interval);
881 if (ret)
882 return ret;
883
884 ret = put_timespec64(&it->it_value, &uit->it_value);
885
886 return ret;
887}
888EXPORT_SYMBOL_GPL(put_itimerspec64);
889
890int get_old_itimerspec32(struct itimerspec64 *its,
891 const struct old_itimerspec32 __user *uits)
892{
893
894 if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
895 __get_old_timespec32(&its->it_value, &uits->it_value))
896 return -EFAULT;
897 return 0;
898}
899EXPORT_SYMBOL_GPL(get_old_itimerspec32);
900
901int put_old_itimerspec32(const struct itimerspec64 *its,
902 struct old_itimerspec32 __user *uits)
903{
904 if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
905 __put_old_timespec32(&its->it_value, &uits->it_value))
906 return -EFAULT;
907 return 0;
908}
909EXPORT_SYMBOL_GPL(put_old_itimerspec32);
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/export.h>
31#include <linux/timex.h>
32#include <linux/capability.h>
33#include <linux/timekeeper_internal.h>
34#include <linux/errno.h>
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
38#include <linux/math64.h>
39#include <linux/ptrace.h>
40
41#include <linux/uaccess.h>
42#include <asm/unistd.h>
43
44#include <generated/timeconst.h>
45#include "timekeeping.h"
46
47/*
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
50 */
51struct timezone sys_tz;
52
53EXPORT_SYMBOL(sys_tz);
54
55#ifdef __ARCH_WANT_SYS_TIME
56
57/*
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
62 */
63SYSCALL_DEFINE1(time, time_t __user *, tloc)
64{
65 time_t i = get_seconds();
66
67 if (tloc) {
68 if (put_user(i,tloc))
69 return -EFAULT;
70 }
71 force_successful_syscall_return();
72 return i;
73}
74
75/*
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
80 */
81
82SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83{
84 struct timespec tv;
85 int err;
86
87 if (get_user(tv.tv_sec, tptr))
88 return -EFAULT;
89
90 tv.tv_nsec = 0;
91
92 err = security_settime(&tv, NULL);
93 if (err)
94 return err;
95
96 do_settimeofday(&tv);
97 return 0;
98}
99
100#endif /* __ARCH_WANT_SYS_TIME */
101
102SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 struct timezone __user *, tz)
104{
105 if (likely(tv != NULL)) {
106 struct timeval ktv;
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 return -EFAULT;
110 }
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 return -EFAULT;
114 }
115 return 0;
116}
117
118/*
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
121 */
122int persistent_clock_is_local;
123
124/*
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
127 *
128 * This is ugly, but preferable to the alternatives. Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
130 * confusion if the program gets run more than once; it would also be
131 * hard to make the program warp the clock precisely n hours) or
132 * compile in the timezone information into the kernel. Bad, bad....
133 *
134 * - TYT, 1992-01-01
135 *
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
139 */
140static inline void warp_clock(void)
141{
142 if (sys_tz.tz_minuteswest != 0) {
143 struct timespec adjust;
144
145 persistent_clock_is_local = 1;
146 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 adjust.tv_nsec = 0;
148 timekeeping_inject_offset(&adjust);
149 }
150}
151
152/*
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
161 */
162
163int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
164{
165 static int firsttime = 1;
166 int error = 0;
167
168 if (tv && !timespec64_valid(tv))
169 return -EINVAL;
170
171 error = security_settime64(tv, tz);
172 if (error)
173 return error;
174
175 if (tz) {
176 /* Verify we're witin the +-15 hrs range */
177 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
178 return -EINVAL;
179
180 sys_tz = *tz;
181 update_vsyscall_tz();
182 if (firsttime) {
183 firsttime = 0;
184 if (!tv)
185 warp_clock();
186 }
187 }
188 if (tv)
189 return do_settimeofday64(tv);
190 return 0;
191}
192
193SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
194 struct timezone __user *, tz)
195{
196 struct timeval user_tv;
197 struct timespec new_ts;
198 struct timezone new_tz;
199
200 if (tv) {
201 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
202 return -EFAULT;
203
204 if (!timeval_valid(&user_tv))
205 return -EINVAL;
206
207 new_ts.tv_sec = user_tv.tv_sec;
208 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
209 }
210 if (tz) {
211 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
212 return -EFAULT;
213 }
214
215 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
216}
217
218SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
219{
220 struct timex txc; /* Local copy of parameter */
221 int ret;
222
223 /* Copy the user data space into the kernel copy
224 * structure. But bear in mind that the structures
225 * may change
226 */
227 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
228 return -EFAULT;
229 ret = do_adjtimex(&txc);
230 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
231}
232
233/**
234 * current_fs_time - Return FS time
235 * @sb: Superblock.
236 *
237 * Return the current time truncated to the time granularity supported by
238 * the fs.
239 */
240struct timespec current_fs_time(struct super_block *sb)
241{
242 struct timespec now = current_kernel_time();
243 return timespec_trunc(now, sb->s_time_gran);
244}
245EXPORT_SYMBOL(current_fs_time);
246
247/*
248 * Convert jiffies to milliseconds and back.
249 *
250 * Avoid unnecessary multiplications/divisions in the
251 * two most common HZ cases:
252 */
253unsigned int jiffies_to_msecs(const unsigned long j)
254{
255#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
256 return (MSEC_PER_SEC / HZ) * j;
257#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
258 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
259#else
260# if BITS_PER_LONG == 32
261 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
262# else
263 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
264# endif
265#endif
266}
267EXPORT_SYMBOL(jiffies_to_msecs);
268
269unsigned int jiffies_to_usecs(const unsigned long j)
270{
271 /*
272 * Hz usually doesn't go much further MSEC_PER_SEC.
273 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
274 */
275 BUILD_BUG_ON(HZ > USEC_PER_SEC);
276
277#if !(USEC_PER_SEC % HZ)
278 return (USEC_PER_SEC / HZ) * j;
279#else
280# if BITS_PER_LONG == 32
281 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
282# else
283 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
284# endif
285#endif
286}
287EXPORT_SYMBOL(jiffies_to_usecs);
288
289/**
290 * timespec_trunc - Truncate timespec to a granularity
291 * @t: Timespec
292 * @gran: Granularity in ns.
293 *
294 * Truncate a timespec to a granularity. Always rounds down. gran must
295 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
296 */
297struct timespec timespec_trunc(struct timespec t, unsigned gran)
298{
299 /* Avoid division in the common cases 1 ns and 1 s. */
300 if (gran == 1) {
301 /* nothing */
302 } else if (gran == NSEC_PER_SEC) {
303 t.tv_nsec = 0;
304 } else if (gran > 1 && gran < NSEC_PER_SEC) {
305 t.tv_nsec -= t.tv_nsec % gran;
306 } else {
307 WARN(1, "illegal file time granularity: %u", gran);
308 }
309 return t;
310}
311EXPORT_SYMBOL(timespec_trunc);
312
313/*
314 * mktime64 - Converts date to seconds.
315 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
316 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
317 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
318 *
319 * [For the Julian calendar (which was used in Russia before 1917,
320 * Britain & colonies before 1752, anywhere else before 1582,
321 * and is still in use by some communities) leave out the
322 * -year/100+year/400 terms, and add 10.]
323 *
324 * This algorithm was first published by Gauss (I think).
325 *
326 * A leap second can be indicated by calling this function with sec as
327 * 60 (allowable under ISO 8601). The leap second is treated the same
328 * as the following second since they don't exist in UNIX time.
329 *
330 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
331 * tomorrow - (allowable under ISO 8601) is supported.
332 */
333time64_t mktime64(const unsigned int year0, const unsigned int mon0,
334 const unsigned int day, const unsigned int hour,
335 const unsigned int min, const unsigned int sec)
336{
337 unsigned int mon = mon0, year = year0;
338
339 /* 1..12 -> 11,12,1..10 */
340 if (0 >= (int) (mon -= 2)) {
341 mon += 12; /* Puts Feb last since it has leap day */
342 year -= 1;
343 }
344
345 return ((((time64_t)
346 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
347 year*365 - 719499
348 )*24 + hour /* now have hours - midnight tomorrow handled here */
349 )*60 + min /* now have minutes */
350 )*60 + sec; /* finally seconds */
351}
352EXPORT_SYMBOL(mktime64);
353
354/**
355 * set_normalized_timespec - set timespec sec and nsec parts and normalize
356 *
357 * @ts: pointer to timespec variable to be set
358 * @sec: seconds to set
359 * @nsec: nanoseconds to set
360 *
361 * Set seconds and nanoseconds field of a timespec variable and
362 * normalize to the timespec storage format
363 *
364 * Note: The tv_nsec part is always in the range of
365 * 0 <= tv_nsec < NSEC_PER_SEC
366 * For negative values only the tv_sec field is negative !
367 */
368void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
369{
370 while (nsec >= NSEC_PER_SEC) {
371 /*
372 * The following asm() prevents the compiler from
373 * optimising this loop into a modulo operation. See
374 * also __iter_div_u64_rem() in include/linux/time.h
375 */
376 asm("" : "+rm"(nsec));
377 nsec -= NSEC_PER_SEC;
378 ++sec;
379 }
380 while (nsec < 0) {
381 asm("" : "+rm"(nsec));
382 nsec += NSEC_PER_SEC;
383 --sec;
384 }
385 ts->tv_sec = sec;
386 ts->tv_nsec = nsec;
387}
388EXPORT_SYMBOL(set_normalized_timespec);
389
390/**
391 * ns_to_timespec - Convert nanoseconds to timespec
392 * @nsec: the nanoseconds value to be converted
393 *
394 * Returns the timespec representation of the nsec parameter.
395 */
396struct timespec ns_to_timespec(const s64 nsec)
397{
398 struct timespec ts;
399 s32 rem;
400
401 if (!nsec)
402 return (struct timespec) {0, 0};
403
404 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
405 if (unlikely(rem < 0)) {
406 ts.tv_sec--;
407 rem += NSEC_PER_SEC;
408 }
409 ts.tv_nsec = rem;
410
411 return ts;
412}
413EXPORT_SYMBOL(ns_to_timespec);
414
415/**
416 * ns_to_timeval - Convert nanoseconds to timeval
417 * @nsec: the nanoseconds value to be converted
418 *
419 * Returns the timeval representation of the nsec parameter.
420 */
421struct timeval ns_to_timeval(const s64 nsec)
422{
423 struct timespec ts = ns_to_timespec(nsec);
424 struct timeval tv;
425
426 tv.tv_sec = ts.tv_sec;
427 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
428
429 return tv;
430}
431EXPORT_SYMBOL(ns_to_timeval);
432
433#if BITS_PER_LONG == 32
434/**
435 * set_normalized_timespec - set timespec sec and nsec parts and normalize
436 *
437 * @ts: pointer to timespec variable to be set
438 * @sec: seconds to set
439 * @nsec: nanoseconds to set
440 *
441 * Set seconds and nanoseconds field of a timespec variable and
442 * normalize to the timespec storage format
443 *
444 * Note: The tv_nsec part is always in the range of
445 * 0 <= tv_nsec < NSEC_PER_SEC
446 * For negative values only the tv_sec field is negative !
447 */
448void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
449{
450 while (nsec >= NSEC_PER_SEC) {
451 /*
452 * The following asm() prevents the compiler from
453 * optimising this loop into a modulo operation. See
454 * also __iter_div_u64_rem() in include/linux/time.h
455 */
456 asm("" : "+rm"(nsec));
457 nsec -= NSEC_PER_SEC;
458 ++sec;
459 }
460 while (nsec < 0) {
461 asm("" : "+rm"(nsec));
462 nsec += NSEC_PER_SEC;
463 --sec;
464 }
465 ts->tv_sec = sec;
466 ts->tv_nsec = nsec;
467}
468EXPORT_SYMBOL(set_normalized_timespec64);
469
470/**
471 * ns_to_timespec64 - Convert nanoseconds to timespec64
472 * @nsec: the nanoseconds value to be converted
473 *
474 * Returns the timespec64 representation of the nsec parameter.
475 */
476struct timespec64 ns_to_timespec64(const s64 nsec)
477{
478 struct timespec64 ts;
479 s32 rem;
480
481 if (!nsec)
482 return (struct timespec64) {0, 0};
483
484 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
485 if (unlikely(rem < 0)) {
486 ts.tv_sec--;
487 rem += NSEC_PER_SEC;
488 }
489 ts.tv_nsec = rem;
490
491 return ts;
492}
493EXPORT_SYMBOL(ns_to_timespec64);
494#endif
495/**
496 * msecs_to_jiffies: - convert milliseconds to jiffies
497 * @m: time in milliseconds
498 *
499 * conversion is done as follows:
500 *
501 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
502 *
503 * - 'too large' values [that would result in larger than
504 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
505 *
506 * - all other values are converted to jiffies by either multiplying
507 * the input value by a factor or dividing it with a factor and
508 * handling any 32-bit overflows.
509 * for the details see __msecs_to_jiffies()
510 *
511 * msecs_to_jiffies() checks for the passed in value being a constant
512 * via __builtin_constant_p() allowing gcc to eliminate most of the
513 * code, __msecs_to_jiffies() is called if the value passed does not
514 * allow constant folding and the actual conversion must be done at
515 * runtime.
516 * the _msecs_to_jiffies helpers are the HZ dependent conversion
517 * routines found in include/linux/jiffies.h
518 */
519unsigned long __msecs_to_jiffies(const unsigned int m)
520{
521 /*
522 * Negative value, means infinite timeout:
523 */
524 if ((int)m < 0)
525 return MAX_JIFFY_OFFSET;
526 return _msecs_to_jiffies(m);
527}
528EXPORT_SYMBOL(__msecs_to_jiffies);
529
530unsigned long __usecs_to_jiffies(const unsigned int u)
531{
532 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
533 return MAX_JIFFY_OFFSET;
534 return _usecs_to_jiffies(u);
535}
536EXPORT_SYMBOL(__usecs_to_jiffies);
537
538/*
539 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
540 * that a remainder subtract here would not do the right thing as the
541 * resolution values don't fall on second boundries. I.e. the line:
542 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
543 * Note that due to the small error in the multiplier here, this
544 * rounding is incorrect for sufficiently large values of tv_nsec, but
545 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
546 * OK.
547 *
548 * Rather, we just shift the bits off the right.
549 *
550 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
551 * value to a scaled second value.
552 */
553static unsigned long
554__timespec64_to_jiffies(u64 sec, long nsec)
555{
556 nsec = nsec + TICK_NSEC - 1;
557
558 if (sec >= MAX_SEC_IN_JIFFIES){
559 sec = MAX_SEC_IN_JIFFIES;
560 nsec = 0;
561 }
562 return ((sec * SEC_CONVERSION) +
563 (((u64)nsec * NSEC_CONVERSION) >>
564 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
565
566}
567
568static unsigned long
569__timespec_to_jiffies(unsigned long sec, long nsec)
570{
571 return __timespec64_to_jiffies((u64)sec, nsec);
572}
573
574unsigned long
575timespec64_to_jiffies(const struct timespec64 *value)
576{
577 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
578}
579EXPORT_SYMBOL(timespec64_to_jiffies);
580
581void
582jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
583{
584 /*
585 * Convert jiffies to nanoseconds and separate with
586 * one divide.
587 */
588 u32 rem;
589 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
590 NSEC_PER_SEC, &rem);
591 value->tv_nsec = rem;
592}
593EXPORT_SYMBOL(jiffies_to_timespec64);
594
595/*
596 * We could use a similar algorithm to timespec_to_jiffies (with a
597 * different multiplier for usec instead of nsec). But this has a
598 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
599 * usec value, since it's not necessarily integral.
600 *
601 * We could instead round in the intermediate scaled representation
602 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
603 * perilous: the scaling introduces a small positive error, which
604 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
605 * units to the intermediate before shifting) leads to accidental
606 * overflow and overestimates.
607 *
608 * At the cost of one additional multiplication by a constant, just
609 * use the timespec implementation.
610 */
611unsigned long
612timeval_to_jiffies(const struct timeval *value)
613{
614 return __timespec_to_jiffies(value->tv_sec,
615 value->tv_usec * NSEC_PER_USEC);
616}
617EXPORT_SYMBOL(timeval_to_jiffies);
618
619void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
620{
621 /*
622 * Convert jiffies to nanoseconds and separate with
623 * one divide.
624 */
625 u32 rem;
626
627 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
628 NSEC_PER_SEC, &rem);
629 value->tv_usec = rem / NSEC_PER_USEC;
630}
631EXPORT_SYMBOL(jiffies_to_timeval);
632
633/*
634 * Convert jiffies/jiffies_64 to clock_t and back.
635 */
636clock_t jiffies_to_clock_t(unsigned long x)
637{
638#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
639# if HZ < USER_HZ
640 return x * (USER_HZ / HZ);
641# else
642 return x / (HZ / USER_HZ);
643# endif
644#else
645 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
646#endif
647}
648EXPORT_SYMBOL(jiffies_to_clock_t);
649
650unsigned long clock_t_to_jiffies(unsigned long x)
651{
652#if (HZ % USER_HZ)==0
653 if (x >= ~0UL / (HZ / USER_HZ))
654 return ~0UL;
655 return x * (HZ / USER_HZ);
656#else
657 /* Don't worry about loss of precision here .. */
658 if (x >= ~0UL / HZ * USER_HZ)
659 return ~0UL;
660
661 /* .. but do try to contain it here */
662 return div_u64((u64)x * HZ, USER_HZ);
663#endif
664}
665EXPORT_SYMBOL(clock_t_to_jiffies);
666
667u64 jiffies_64_to_clock_t(u64 x)
668{
669#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
670# if HZ < USER_HZ
671 x = div_u64(x * USER_HZ, HZ);
672# elif HZ > USER_HZ
673 x = div_u64(x, HZ / USER_HZ);
674# else
675 /* Nothing to do */
676# endif
677#else
678 /*
679 * There are better ways that don't overflow early,
680 * but even this doesn't overflow in hundreds of years
681 * in 64 bits, so..
682 */
683 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
684#endif
685 return x;
686}
687EXPORT_SYMBOL(jiffies_64_to_clock_t);
688
689u64 nsec_to_clock_t(u64 x)
690{
691#if (NSEC_PER_SEC % USER_HZ) == 0
692 return div_u64(x, NSEC_PER_SEC / USER_HZ);
693#elif (USER_HZ % 512) == 0
694 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
695#else
696 /*
697 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
698 * overflow after 64.99 years.
699 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
700 */
701 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
702#endif
703}
704
705/**
706 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
707 *
708 * @n: nsecs in u64
709 *
710 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
711 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
712 * for scheduler, not for use in device drivers to calculate timeout value.
713 *
714 * note:
715 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
716 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
717 */
718u64 nsecs_to_jiffies64(u64 n)
719{
720#if (NSEC_PER_SEC % HZ) == 0
721 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
722 return div_u64(n, NSEC_PER_SEC / HZ);
723#elif (HZ % 512) == 0
724 /* overflow after 292 years if HZ = 1024 */
725 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
726#else
727 /*
728 * Generic case - optimized for cases where HZ is a multiple of 3.
729 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
730 */
731 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
732#endif
733}
734EXPORT_SYMBOL(nsecs_to_jiffies64);
735
736/**
737 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
738 *
739 * @n: nsecs in u64
740 *
741 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
742 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
743 * for scheduler, not for use in device drivers to calculate timeout value.
744 *
745 * note:
746 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
747 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
748 */
749unsigned long nsecs_to_jiffies(u64 n)
750{
751 return (unsigned long)nsecs_to_jiffies64(n);
752}
753EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
754
755/*
756 * Add two timespec values and do a safety check for overflow.
757 * It's assumed that both values are valid (>= 0)
758 */
759struct timespec timespec_add_safe(const struct timespec lhs,
760 const struct timespec rhs)
761{
762 struct timespec res;
763
764 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
765 lhs.tv_nsec + rhs.tv_nsec);
766
767 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
768 res.tv_sec = TIME_T_MAX;
769
770 return res;
771}
772
773/*
774 * Add two timespec64 values and do a safety check for overflow.
775 * It's assumed that both values are valid (>= 0).
776 * And, each timespec64 is in normalized form.
777 */
778struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
779 const struct timespec64 rhs)
780{
781 struct timespec64 res;
782
783 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
784 lhs.tv_nsec + rhs.tv_nsec);
785
786 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
787 res.tv_sec = TIME64_MAX;
788 res.tv_nsec = 0;
789 }
790
791 return res;
792}