Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_format.h"
   9#include "xfs_log_format.h"
  10#include "xfs_shared.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_mount.h"
  14#include "xfs_defer.h"
  15#include "xfs_btree.h"
  16#include "xfs_rmap.h"
  17#include "xfs_alloc_btree.h"
  18#include "xfs_alloc.h"
  19#include "xfs_extent_busy.h"
  20#include "xfs_errortag.h"
  21#include "xfs_error.h"
  22#include "xfs_trace.h"
  23#include "xfs_trans.h"
  24#include "xfs_buf_item.h"
  25#include "xfs_log.h"
  26#include "xfs_ag.h"
  27#include "xfs_ag_resv.h"
  28#include "xfs_bmap.h"
 
  29
  30struct kmem_cache	*xfs_extfree_item_cache;
  31
  32struct workqueue_struct *xfs_alloc_wq;
  33
  34#define XFS_ABSDIFF(a,b)	(((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
  35
  36#define	XFSA_FIXUP_BNO_OK	1
  37#define	XFSA_FIXUP_CNT_OK	2
  38
  39STATIC int xfs_alloc_ag_vextent_exact(xfs_alloc_arg_t *);
  40STATIC int xfs_alloc_ag_vextent_near(xfs_alloc_arg_t *);
  41STATIC int xfs_alloc_ag_vextent_size(xfs_alloc_arg_t *);
  42
  43/*
  44 * Size of the AGFL.  For CRC-enabled filesystes we steal a couple of slots in
  45 * the beginning of the block for a proper header with the location information
  46 * and CRC.
  47 */
  48unsigned int
  49xfs_agfl_size(
  50	struct xfs_mount	*mp)
  51{
  52	unsigned int		size = mp->m_sb.sb_sectsize;
  53
  54	if (xfs_has_crc(mp))
  55		size -= sizeof(struct xfs_agfl);
  56
  57	return size / sizeof(xfs_agblock_t);
  58}
  59
  60unsigned int
  61xfs_refc_block(
  62	struct xfs_mount	*mp)
  63{
  64	if (xfs_has_rmapbt(mp))
  65		return XFS_RMAP_BLOCK(mp) + 1;
  66	if (xfs_has_finobt(mp))
  67		return XFS_FIBT_BLOCK(mp) + 1;
  68	return XFS_IBT_BLOCK(mp) + 1;
  69}
  70
  71xfs_extlen_t
  72xfs_prealloc_blocks(
  73	struct xfs_mount	*mp)
  74{
  75	if (xfs_has_reflink(mp))
  76		return xfs_refc_block(mp) + 1;
  77	if (xfs_has_rmapbt(mp))
  78		return XFS_RMAP_BLOCK(mp) + 1;
  79	if (xfs_has_finobt(mp))
  80		return XFS_FIBT_BLOCK(mp) + 1;
  81	return XFS_IBT_BLOCK(mp) + 1;
  82}
  83
  84/*
  85 * The number of blocks per AG that we withhold from xfs_mod_fdblocks to
  86 * guarantee that we can refill the AGFL prior to allocating space in a nearly
  87 * full AG.  Although the space described by the free space btrees, the
  88 * blocks used by the freesp btrees themselves, and the blocks owned by the
  89 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
  90 * free space in the AG drop so low that the free space btrees cannot refill an
  91 * empty AGFL up to the minimum level.  Rather than grind through empty AGs
  92 * until the fs goes down, we subtract this many AG blocks from the incore
  93 * fdblocks to ensure user allocation does not overcommit the space the
  94 * filesystem needs for the AGFLs.  The rmap btree uses a per-AG reservation to
  95 * withhold space from xfs_mod_fdblocks, so we do not account for that here.
  96 */
  97#define XFS_ALLOCBT_AGFL_RESERVE	4
  98
  99/*
 100 * Compute the number of blocks that we set aside to guarantee the ability to
 101 * refill the AGFL and handle a full bmap btree split.
 102 *
 103 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
 104 * AGF buffer (PV 947395), we place constraints on the relationship among
 105 * actual allocations for data blocks, freelist blocks, and potential file data
 106 * bmap btree blocks. However, these restrictions may result in no actual space
 107 * allocated for a delayed extent, for example, a data block in a certain AG is
 108 * allocated but there is no additional block for the additional bmap btree
 109 * block due to a split of the bmap btree of the file. The result of this may
 110 * lead to an infinite loop when the file gets flushed to disk and all delayed
 111 * extents need to be actually allocated. To get around this, we explicitly set
 112 * aside a few blocks which will not be reserved in delayed allocation.
 113 *
 114 * For each AG, we need to reserve enough blocks to replenish a totally empty
 115 * AGFL and 4 more to handle a potential split of the file's bmap btree.
 116 */
 117unsigned int
 118xfs_alloc_set_aside(
 119	struct xfs_mount	*mp)
 120{
 121	return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
 122}
 123
 124/*
 125 * When deciding how much space to allocate out of an AG, we limit the
 126 * allocation maximum size to the size the AG. However, we cannot use all the
 127 * blocks in the AG - some are permanently used by metadata. These
 128 * blocks are generally:
 129 *	- the AG superblock, AGF, AGI and AGFL
 130 *	- the AGF (bno and cnt) and AGI btree root blocks, and optionally
 131 *	  the AGI free inode and rmap btree root blocks.
 132 *	- blocks on the AGFL according to xfs_alloc_set_aside() limits
 133 *	- the rmapbt root block
 134 *
 135 * The AG headers are sector sized, so the amount of space they take up is
 136 * dependent on filesystem geometry. The others are all single blocks.
 137 */
 138unsigned int
 139xfs_alloc_ag_max_usable(
 140	struct xfs_mount	*mp)
 141{
 142	unsigned int		blocks;
 143
 144	blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
 145	blocks += XFS_ALLOCBT_AGFL_RESERVE;
 146	blocks += 3;			/* AGF, AGI btree root blocks */
 147	if (xfs_has_finobt(mp))
 148		blocks++;		/* finobt root block */
 149	if (xfs_has_rmapbt(mp))
 150		blocks++;		/* rmap root block */
 151	if (xfs_has_reflink(mp))
 152		blocks++;		/* refcount root block */
 153
 154	return mp->m_sb.sb_agblocks - blocks;
 155}
 156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157/*
 158 * Lookup the record equal to [bno, len] in the btree given by cur.
 159 */
 160STATIC int				/* error */
 161xfs_alloc_lookup_eq(
 162	struct xfs_btree_cur	*cur,	/* btree cursor */
 163	xfs_agblock_t		bno,	/* starting block of extent */
 164	xfs_extlen_t		len,	/* length of extent */
 165	int			*stat)	/* success/failure */
 166{
 167	int			error;
 168
 169	cur->bc_rec.a.ar_startblock = bno;
 170	cur->bc_rec.a.ar_blockcount = len;
 171	error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat);
 172	cur->bc_ag.abt.active = (*stat == 1);
 173	return error;
 174}
 175
 176/*
 177 * Lookup the first record greater than or equal to [bno, len]
 178 * in the btree given by cur.
 179 */
 180int				/* error */
 181xfs_alloc_lookup_ge(
 182	struct xfs_btree_cur	*cur,	/* btree cursor */
 183	xfs_agblock_t		bno,	/* starting block of extent */
 184	xfs_extlen_t		len,	/* length of extent */
 185	int			*stat)	/* success/failure */
 186{
 187	int			error;
 188
 189	cur->bc_rec.a.ar_startblock = bno;
 190	cur->bc_rec.a.ar_blockcount = len;
 191	error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat);
 192	cur->bc_ag.abt.active = (*stat == 1);
 193	return error;
 194}
 195
 196/*
 197 * Lookup the first record less than or equal to [bno, len]
 198 * in the btree given by cur.
 199 */
 200int					/* error */
 201xfs_alloc_lookup_le(
 202	struct xfs_btree_cur	*cur,	/* btree cursor */
 203	xfs_agblock_t		bno,	/* starting block of extent */
 204	xfs_extlen_t		len,	/* length of extent */
 205	int			*stat)	/* success/failure */
 206{
 207	int			error;
 208	cur->bc_rec.a.ar_startblock = bno;
 209	cur->bc_rec.a.ar_blockcount = len;
 210	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat);
 211	cur->bc_ag.abt.active = (*stat == 1);
 212	return error;
 213}
 214
 215static inline bool
 216xfs_alloc_cur_active(
 217	struct xfs_btree_cur	*cur)
 218{
 219	return cur && cur->bc_ag.abt.active;
 220}
 221
 222/*
 223 * Update the record referred to by cur to the value given
 224 * by [bno, len].
 225 * This either works (return 0) or gets an EFSCORRUPTED error.
 226 */
 227STATIC int				/* error */
 228xfs_alloc_update(
 229	struct xfs_btree_cur	*cur,	/* btree cursor */
 230	xfs_agblock_t		bno,	/* starting block of extent */
 231	xfs_extlen_t		len)	/* length of extent */
 232{
 233	union xfs_btree_rec	rec;
 234
 235	rec.alloc.ar_startblock = cpu_to_be32(bno);
 236	rec.alloc.ar_blockcount = cpu_to_be32(len);
 237	return xfs_btree_update(cur, &rec);
 238}
 239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240/*
 241 * Get the data from the pointed-to record.
 242 */
 243int					/* error */
 244xfs_alloc_get_rec(
 245	struct xfs_btree_cur	*cur,	/* btree cursor */
 246	xfs_agblock_t		*bno,	/* output: starting block of extent */
 247	xfs_extlen_t		*len,	/* output: length of extent */
 248	int			*stat)	/* output: success/failure */
 249{
 250	struct xfs_mount	*mp = cur->bc_mp;
 251	struct xfs_perag	*pag = cur->bc_ag.pag;
 252	union xfs_btree_rec	*rec;
 
 253	int			error;
 254
 255	error = xfs_btree_get_rec(cur, &rec, stat);
 256	if (error || !(*stat))
 257		return error;
 258
 259	*bno = be32_to_cpu(rec->alloc.ar_startblock);
 260	*len = be32_to_cpu(rec->alloc.ar_blockcount);
 261
 262	if (*len == 0)
 263		goto out_bad_rec;
 264
 265	/* check for valid extent range, including overflow */
 266	if (!xfs_verify_agbext(pag, *bno, *len))
 267		goto out_bad_rec;
 268
 
 
 269	return 0;
 270
 271out_bad_rec:
 272	xfs_warn(mp,
 273		"%s Freespace BTree record corruption in AG %d detected!",
 274		cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size",
 275		pag->pag_agno);
 276	xfs_warn(mp,
 277		"start block 0x%x block count 0x%x", *bno, *len);
 278	return -EFSCORRUPTED;
 279}
 280
 281/*
 282 * Compute aligned version of the found extent.
 283 * Takes alignment and min length into account.
 284 */
 285STATIC bool
 286xfs_alloc_compute_aligned(
 287	xfs_alloc_arg_t	*args,		/* allocation argument structure */
 288	xfs_agblock_t	foundbno,	/* starting block in found extent */
 289	xfs_extlen_t	foundlen,	/* length in found extent */
 290	xfs_agblock_t	*resbno,	/* result block number */
 291	xfs_extlen_t	*reslen,	/* result length */
 292	unsigned	*busy_gen)
 293{
 294	xfs_agblock_t	bno = foundbno;
 295	xfs_extlen_t	len = foundlen;
 296	xfs_extlen_t	diff;
 297	bool		busy;
 298
 299	/* Trim busy sections out of found extent */
 300	busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
 301
 302	/*
 303	 * If we have a largish extent that happens to start before min_agbno,
 304	 * see if we can shift it into range...
 305	 */
 306	if (bno < args->min_agbno && bno + len > args->min_agbno) {
 307		diff = args->min_agbno - bno;
 308		if (len > diff) {
 309			bno += diff;
 310			len -= diff;
 311		}
 312	}
 313
 314	if (args->alignment > 1 && len >= args->minlen) {
 315		xfs_agblock_t	aligned_bno = roundup(bno, args->alignment);
 316
 317		diff = aligned_bno - bno;
 318
 319		*resbno = aligned_bno;
 320		*reslen = diff >= len ? 0 : len - diff;
 321	} else {
 322		*resbno = bno;
 323		*reslen = len;
 324	}
 325
 326	return busy;
 327}
 328
 329/*
 330 * Compute best start block and diff for "near" allocations.
 331 * freelen >= wantlen already checked by caller.
 332 */
 333STATIC xfs_extlen_t			/* difference value (absolute) */
 334xfs_alloc_compute_diff(
 335	xfs_agblock_t	wantbno,	/* target starting block */
 336	xfs_extlen_t	wantlen,	/* target length */
 337	xfs_extlen_t	alignment,	/* target alignment */
 338	int		datatype,	/* are we allocating data? */
 339	xfs_agblock_t	freebno,	/* freespace's starting block */
 340	xfs_extlen_t	freelen,	/* freespace's length */
 341	xfs_agblock_t	*newbnop)	/* result: best start block from free */
 342{
 343	xfs_agblock_t	freeend;	/* end of freespace extent */
 344	xfs_agblock_t	newbno1;	/* return block number */
 345	xfs_agblock_t	newbno2;	/* other new block number */
 346	xfs_extlen_t	newlen1=0;	/* length with newbno1 */
 347	xfs_extlen_t	newlen2=0;	/* length with newbno2 */
 348	xfs_agblock_t	wantend;	/* end of target extent */
 349	bool		userdata = datatype & XFS_ALLOC_USERDATA;
 350
 351	ASSERT(freelen >= wantlen);
 352	freeend = freebno + freelen;
 353	wantend = wantbno + wantlen;
 354	/*
 355	 * We want to allocate from the start of a free extent if it is past
 356	 * the desired block or if we are allocating user data and the free
 357	 * extent is before desired block. The second case is there to allow
 358	 * for contiguous allocation from the remaining free space if the file
 359	 * grows in the short term.
 360	 */
 361	if (freebno >= wantbno || (userdata && freeend < wantend)) {
 362		if ((newbno1 = roundup(freebno, alignment)) >= freeend)
 363			newbno1 = NULLAGBLOCK;
 364	} else if (freeend >= wantend && alignment > 1) {
 365		newbno1 = roundup(wantbno, alignment);
 366		newbno2 = newbno1 - alignment;
 367		if (newbno1 >= freeend)
 368			newbno1 = NULLAGBLOCK;
 369		else
 370			newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
 371		if (newbno2 < freebno)
 372			newbno2 = NULLAGBLOCK;
 373		else
 374			newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
 375		if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
 376			if (newlen1 < newlen2 ||
 377			    (newlen1 == newlen2 &&
 378			     XFS_ABSDIFF(newbno1, wantbno) >
 379			     XFS_ABSDIFF(newbno2, wantbno)))
 380				newbno1 = newbno2;
 381		} else if (newbno2 != NULLAGBLOCK)
 382			newbno1 = newbno2;
 383	} else if (freeend >= wantend) {
 384		newbno1 = wantbno;
 385	} else if (alignment > 1) {
 386		newbno1 = roundup(freeend - wantlen, alignment);
 387		if (newbno1 > freeend - wantlen &&
 388		    newbno1 - alignment >= freebno)
 389			newbno1 -= alignment;
 390		else if (newbno1 >= freeend)
 391			newbno1 = NULLAGBLOCK;
 392	} else
 393		newbno1 = freeend - wantlen;
 394	*newbnop = newbno1;
 395	return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
 396}
 397
 398/*
 399 * Fix up the length, based on mod and prod.
 400 * len should be k * prod + mod for some k.
 401 * If len is too small it is returned unchanged.
 402 * If len hits maxlen it is left alone.
 403 */
 404STATIC void
 405xfs_alloc_fix_len(
 406	xfs_alloc_arg_t	*args)		/* allocation argument structure */
 407{
 408	xfs_extlen_t	k;
 409	xfs_extlen_t	rlen;
 410
 411	ASSERT(args->mod < args->prod);
 412	rlen = args->len;
 413	ASSERT(rlen >= args->minlen);
 414	ASSERT(rlen <= args->maxlen);
 415	if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
 416	    (args->mod == 0 && rlen < args->prod))
 417		return;
 418	k = rlen % args->prod;
 419	if (k == args->mod)
 420		return;
 421	if (k > args->mod)
 422		rlen = rlen - (k - args->mod);
 423	else
 424		rlen = rlen - args->prod + (args->mod - k);
 425	/* casts to (int) catch length underflows */
 426	if ((int)rlen < (int)args->minlen)
 427		return;
 428	ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
 429	ASSERT(rlen % args->prod == args->mod);
 430	ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
 431		rlen + args->minleft);
 432	args->len = rlen;
 433}
 434
 435/*
 436 * Update the two btrees, logically removing from freespace the extent
 437 * starting at rbno, rlen blocks.  The extent is contained within the
 438 * actual (current) free extent fbno for flen blocks.
 439 * Flags are passed in indicating whether the cursors are set to the
 440 * relevant records.
 441 */
 442STATIC int				/* error code */
 443xfs_alloc_fixup_trees(
 444	struct xfs_btree_cur *cnt_cur,	/* cursor for by-size btree */
 445	struct xfs_btree_cur *bno_cur,	/* cursor for by-block btree */
 446	xfs_agblock_t	fbno,		/* starting block of free extent */
 447	xfs_extlen_t	flen,		/* length of free extent */
 448	xfs_agblock_t	rbno,		/* starting block of returned extent */
 449	xfs_extlen_t	rlen,		/* length of returned extent */
 450	int		flags)		/* flags, XFSA_FIXUP_... */
 451{
 452	int		error;		/* error code */
 453	int		i;		/* operation results */
 454	xfs_agblock_t	nfbno1;		/* first new free startblock */
 455	xfs_agblock_t	nfbno2;		/* second new free startblock */
 456	xfs_extlen_t	nflen1=0;	/* first new free length */
 457	xfs_extlen_t	nflen2=0;	/* second new free length */
 458	struct xfs_mount *mp;
 459
 460	mp = cnt_cur->bc_mp;
 461
 462	/*
 463	 * Look up the record in the by-size tree if necessary.
 464	 */
 465	if (flags & XFSA_FIXUP_CNT_OK) {
 466#ifdef DEBUG
 467		if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
 468			return error;
 469		if (XFS_IS_CORRUPT(mp,
 470				   i != 1 ||
 471				   nfbno1 != fbno ||
 472				   nflen1 != flen))
 
 473			return -EFSCORRUPTED;
 
 474#endif
 475	} else {
 476		if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
 477			return error;
 478		if (XFS_IS_CORRUPT(mp, i != 1))
 
 479			return -EFSCORRUPTED;
 
 480	}
 481	/*
 482	 * Look up the record in the by-block tree if necessary.
 483	 */
 484	if (flags & XFSA_FIXUP_BNO_OK) {
 485#ifdef DEBUG
 486		if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
 487			return error;
 488		if (XFS_IS_CORRUPT(mp,
 489				   i != 1 ||
 490				   nfbno1 != fbno ||
 491				   nflen1 != flen))
 
 492			return -EFSCORRUPTED;
 
 493#endif
 494	} else {
 495		if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
 496			return error;
 497		if (XFS_IS_CORRUPT(mp, i != 1))
 
 498			return -EFSCORRUPTED;
 
 499	}
 500
 501#ifdef DEBUG
 502	if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
 503		struct xfs_btree_block	*bnoblock;
 504		struct xfs_btree_block	*cntblock;
 505
 506		bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
 507		cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
 508
 509		if (XFS_IS_CORRUPT(mp,
 510				   bnoblock->bb_numrecs !=
 511				   cntblock->bb_numrecs))
 
 512			return -EFSCORRUPTED;
 
 513	}
 514#endif
 515
 516	/*
 517	 * Deal with all four cases: the allocated record is contained
 518	 * within the freespace record, so we can have new freespace
 519	 * at either (or both) end, or no freespace remaining.
 520	 */
 521	if (rbno == fbno && rlen == flen)
 522		nfbno1 = nfbno2 = NULLAGBLOCK;
 523	else if (rbno == fbno) {
 524		nfbno1 = rbno + rlen;
 525		nflen1 = flen - rlen;
 526		nfbno2 = NULLAGBLOCK;
 527	} else if (rbno + rlen == fbno + flen) {
 528		nfbno1 = fbno;
 529		nflen1 = flen - rlen;
 530		nfbno2 = NULLAGBLOCK;
 531	} else {
 532		nfbno1 = fbno;
 533		nflen1 = rbno - fbno;
 534		nfbno2 = rbno + rlen;
 535		nflen2 = (fbno + flen) - nfbno2;
 536	}
 537	/*
 538	 * Delete the entry from the by-size btree.
 539	 */
 540	if ((error = xfs_btree_delete(cnt_cur, &i)))
 541		return error;
 542	if (XFS_IS_CORRUPT(mp, i != 1))
 
 543		return -EFSCORRUPTED;
 
 544	/*
 545	 * Add new by-size btree entry(s).
 546	 */
 547	if (nfbno1 != NULLAGBLOCK) {
 548		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
 549			return error;
 550		if (XFS_IS_CORRUPT(mp, i != 0))
 
 551			return -EFSCORRUPTED;
 
 552		if ((error = xfs_btree_insert(cnt_cur, &i)))
 553			return error;
 554		if (XFS_IS_CORRUPT(mp, i != 1))
 
 555			return -EFSCORRUPTED;
 
 556	}
 557	if (nfbno2 != NULLAGBLOCK) {
 558		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
 559			return error;
 560		if (XFS_IS_CORRUPT(mp, i != 0))
 
 561			return -EFSCORRUPTED;
 
 562		if ((error = xfs_btree_insert(cnt_cur, &i)))
 563			return error;
 564		if (XFS_IS_CORRUPT(mp, i != 1))
 
 565			return -EFSCORRUPTED;
 
 566	}
 567	/*
 568	 * Fix up the by-block btree entry(s).
 569	 */
 570	if (nfbno1 == NULLAGBLOCK) {
 571		/*
 572		 * No remaining freespace, just delete the by-block tree entry.
 573		 */
 574		if ((error = xfs_btree_delete(bno_cur, &i)))
 575			return error;
 576		if (XFS_IS_CORRUPT(mp, i != 1))
 
 577			return -EFSCORRUPTED;
 
 578	} else {
 579		/*
 580		 * Update the by-block entry to start later|be shorter.
 581		 */
 582		if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
 583			return error;
 584	}
 585	if (nfbno2 != NULLAGBLOCK) {
 586		/*
 587		 * 2 resulting free entries, need to add one.
 588		 */
 589		if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
 590			return error;
 591		if (XFS_IS_CORRUPT(mp, i != 0))
 
 592			return -EFSCORRUPTED;
 
 593		if ((error = xfs_btree_insert(bno_cur, &i)))
 594			return error;
 595		if (XFS_IS_CORRUPT(mp, i != 1))
 
 596			return -EFSCORRUPTED;
 
 597	}
 598	return 0;
 599}
 600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601static xfs_failaddr_t
 602xfs_agfl_verify(
 603	struct xfs_buf	*bp)
 604{
 605	struct xfs_mount *mp = bp->b_mount;
 606	struct xfs_agfl	*agfl = XFS_BUF_TO_AGFL(bp);
 607	__be32		*agfl_bno = xfs_buf_to_agfl_bno(bp);
 608	int		i;
 609
 610	/*
 611	 * There is no verification of non-crc AGFLs because mkfs does not
 612	 * initialise the AGFL to zero or NULL. Hence the only valid part of the
 613	 * AGFL is what the AGF says is active. We can't get to the AGF, so we
 614	 * can't verify just those entries are valid.
 615	 */
 616	if (!xfs_has_crc(mp))
 617		return NULL;
 618
 619	if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
 620		return __this_address;
 621	if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
 622		return __this_address;
 623	/*
 624	 * during growfs operations, the perag is not fully initialised,
 625	 * so we can't use it for any useful checking. growfs ensures we can't
 626	 * use it by using uncached buffers that don't have the perag attached
 627	 * so we can detect and avoid this problem.
 628	 */
 629	if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
 630		return __this_address;
 631
 632	for (i = 0; i < xfs_agfl_size(mp); i++) {
 633		if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
 634		    be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
 635			return __this_address;
 636	}
 637
 638	if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
 639		return __this_address;
 640	return NULL;
 641}
 642
 643static void
 644xfs_agfl_read_verify(
 645	struct xfs_buf	*bp)
 646{
 647	struct xfs_mount *mp = bp->b_mount;
 648	xfs_failaddr_t	fa;
 649
 650	/*
 651	 * There is no verification of non-crc AGFLs because mkfs does not
 652	 * initialise the AGFL to zero or NULL. Hence the only valid part of the
 653	 * AGFL is what the AGF says is active. We can't get to the AGF, so we
 654	 * can't verify just those entries are valid.
 655	 */
 656	if (!xfs_has_crc(mp))
 657		return;
 658
 659	if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
 660		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 661	else {
 662		fa = xfs_agfl_verify(bp);
 663		if (fa)
 664			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 665	}
 666}
 667
 668static void
 669xfs_agfl_write_verify(
 670	struct xfs_buf	*bp)
 671{
 672	struct xfs_mount	*mp = bp->b_mount;
 673	struct xfs_buf_log_item	*bip = bp->b_log_item;
 674	xfs_failaddr_t		fa;
 675
 676	/* no verification of non-crc AGFLs */
 677	if (!xfs_has_crc(mp))
 678		return;
 679
 680	fa = xfs_agfl_verify(bp);
 681	if (fa) {
 682		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 683		return;
 684	}
 685
 686	if (bip)
 687		XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 688
 689	xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
 690}
 691
 692const struct xfs_buf_ops xfs_agfl_buf_ops = {
 693	.name = "xfs_agfl",
 694	.magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
 695	.verify_read = xfs_agfl_read_verify,
 696	.verify_write = xfs_agfl_write_verify,
 697	.verify_struct = xfs_agfl_verify,
 698};
 699
 700/*
 701 * Read in the allocation group free block array.
 702 */
 703int
 704xfs_alloc_read_agfl(
 705	struct xfs_perag	*pag,
 706	struct xfs_trans	*tp,
 707	struct xfs_buf		**bpp)
 708{
 709	struct xfs_mount	*mp = pag->pag_mount;
 710	struct xfs_buf		*bp;
 711	int			error;
 712
 713	error = xfs_trans_read_buf(
 714			mp, tp, mp->m_ddev_targp,
 715			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)),
 716			XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
 
 
 717	if (error)
 718		return error;
 719	xfs_buf_set_ref(bp, XFS_AGFL_REF);
 720	*bpp = bp;
 721	return 0;
 722}
 723
 724STATIC int
 725xfs_alloc_update_counters(
 726	struct xfs_trans	*tp,
 727	struct xfs_buf		*agbp,
 728	long			len)
 729{
 730	struct xfs_agf		*agf = agbp->b_addr;
 731
 732	agbp->b_pag->pagf_freeblks += len;
 733	be32_add_cpu(&agf->agf_freeblks, len);
 734
 735	if (unlikely(be32_to_cpu(agf->agf_freeblks) >
 736		     be32_to_cpu(agf->agf_length))) {
 737		xfs_buf_mark_corrupt(agbp);
 
 738		return -EFSCORRUPTED;
 739	}
 740
 741	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
 742	return 0;
 743}
 744
 745/*
 746 * Block allocation algorithm and data structures.
 747 */
 748struct xfs_alloc_cur {
 749	struct xfs_btree_cur		*cnt;	/* btree cursors */
 750	struct xfs_btree_cur		*bnolt;
 751	struct xfs_btree_cur		*bnogt;
 752	xfs_extlen_t			cur_len;/* current search length */
 753	xfs_agblock_t			rec_bno;/* extent startblock */
 754	xfs_extlen_t			rec_len;/* extent length */
 755	xfs_agblock_t			bno;	/* alloc bno */
 756	xfs_extlen_t			len;	/* alloc len */
 757	xfs_extlen_t			diff;	/* diff from search bno */
 758	unsigned int			busy_gen;/* busy state */
 759	bool				busy;
 760};
 761
 762/*
 763 * Set up cursors, etc. in the extent allocation cursor. This function can be
 764 * called multiple times to reset an initialized structure without having to
 765 * reallocate cursors.
 766 */
 767static int
 768xfs_alloc_cur_setup(
 769	struct xfs_alloc_arg	*args,
 770	struct xfs_alloc_cur	*acur)
 771{
 772	int			error;
 773	int			i;
 774
 775	ASSERT(args->alignment == 1 || args->type != XFS_ALLOCTYPE_THIS_BNO);
 776
 777	acur->cur_len = args->maxlen;
 778	acur->rec_bno = 0;
 779	acur->rec_len = 0;
 780	acur->bno = 0;
 781	acur->len = 0;
 782	acur->diff = -1;
 783	acur->busy = false;
 784	acur->busy_gen = 0;
 785
 786	/*
 787	 * Perform an initial cntbt lookup to check for availability of maxlen
 788	 * extents. If this fails, we'll return -ENOSPC to signal the caller to
 789	 * attempt a small allocation.
 790	 */
 791	if (!acur->cnt)
 792		acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp,
 793					args->agbp, args->pag, XFS_BTNUM_CNT);
 794	error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
 795	if (error)
 796		return error;
 797
 798	/*
 799	 * Allocate the bnobt left and right search cursors.
 800	 */
 801	if (!acur->bnolt)
 802		acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp,
 803					args->agbp, args->pag, XFS_BTNUM_BNO);
 804	if (!acur->bnogt)
 805		acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp,
 806					args->agbp, args->pag, XFS_BTNUM_BNO);
 807	return i == 1 ? 0 : -ENOSPC;
 808}
 809
 810static void
 811xfs_alloc_cur_close(
 812	struct xfs_alloc_cur	*acur,
 813	bool			error)
 814{
 815	int			cur_error = XFS_BTREE_NOERROR;
 816
 817	if (error)
 818		cur_error = XFS_BTREE_ERROR;
 819
 820	if (acur->cnt)
 821		xfs_btree_del_cursor(acur->cnt, cur_error);
 822	if (acur->bnolt)
 823		xfs_btree_del_cursor(acur->bnolt, cur_error);
 824	if (acur->bnogt)
 825		xfs_btree_del_cursor(acur->bnogt, cur_error);
 826	acur->cnt = acur->bnolt = acur->bnogt = NULL;
 827}
 828
 829/*
 830 * Check an extent for allocation and track the best available candidate in the
 831 * allocation structure. The cursor is deactivated if it has entered an out of
 832 * range state based on allocation arguments. Optionally return the extent
 833 * extent geometry and allocation status if requested by the caller.
 834 */
 835static int
 836xfs_alloc_cur_check(
 837	struct xfs_alloc_arg	*args,
 838	struct xfs_alloc_cur	*acur,
 839	struct xfs_btree_cur	*cur,
 840	int			*new)
 841{
 842	int			error, i;
 843	xfs_agblock_t		bno, bnoa, bnew;
 844	xfs_extlen_t		len, lena, diff = -1;
 845	bool			busy;
 846	unsigned		busy_gen = 0;
 847	bool			deactivate = false;
 848	bool			isbnobt = cur->bc_btnum == XFS_BTNUM_BNO;
 849
 850	*new = 0;
 851
 852	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
 853	if (error)
 854		return error;
 855	if (XFS_IS_CORRUPT(args->mp, i != 1))
 
 856		return -EFSCORRUPTED;
 
 857
 858	/*
 859	 * Check minlen and deactivate a cntbt cursor if out of acceptable size
 860	 * range (i.e., walking backwards looking for a minlen extent).
 861	 */
 862	if (len < args->minlen) {
 863		deactivate = !isbnobt;
 864		goto out;
 865	}
 866
 867	busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
 868					 &busy_gen);
 869	acur->busy |= busy;
 870	if (busy)
 871		acur->busy_gen = busy_gen;
 872	/* deactivate a bnobt cursor outside of locality range */
 873	if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
 874		deactivate = isbnobt;
 875		goto out;
 876	}
 877	if (lena < args->minlen)
 878		goto out;
 879
 880	args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
 881	xfs_alloc_fix_len(args);
 882	ASSERT(args->len >= args->minlen);
 883	if (args->len < acur->len)
 884		goto out;
 885
 886	/*
 887	 * We have an aligned record that satisfies minlen and beats or matches
 888	 * the candidate extent size. Compare locality for near allocation mode.
 889	 */
 890	ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO);
 891	diff = xfs_alloc_compute_diff(args->agbno, args->len,
 892				      args->alignment, args->datatype,
 893				      bnoa, lena, &bnew);
 894	if (bnew == NULLAGBLOCK)
 895		goto out;
 896
 897	/*
 898	 * Deactivate a bnobt cursor with worse locality than the current best.
 899	 */
 900	if (diff > acur->diff) {
 901		deactivate = isbnobt;
 902		goto out;
 903	}
 904
 905	ASSERT(args->len > acur->len ||
 906	       (args->len == acur->len && diff <= acur->diff));
 907	acur->rec_bno = bno;
 908	acur->rec_len = len;
 909	acur->bno = bnew;
 910	acur->len = args->len;
 911	acur->diff = diff;
 912	*new = 1;
 913
 914	/*
 915	 * We're done if we found a perfect allocation. This only deactivates
 916	 * the current cursor, but this is just an optimization to terminate a
 917	 * cntbt search that otherwise runs to the edge of the tree.
 918	 */
 919	if (acur->diff == 0 && acur->len == args->maxlen)
 920		deactivate = true;
 921out:
 922	if (deactivate)
 923		cur->bc_ag.abt.active = false;
 924	trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff,
 925				  *new);
 926	return 0;
 927}
 928
 929/*
 930 * Complete an allocation of a candidate extent. Remove the extent from both
 931 * trees and update the args structure.
 932 */
 933STATIC int
 934xfs_alloc_cur_finish(
 935	struct xfs_alloc_arg	*args,
 936	struct xfs_alloc_cur	*acur)
 937{
 938	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
 939	int			error;
 940
 941	ASSERT(acur->cnt && acur->bnolt);
 942	ASSERT(acur->bno >= acur->rec_bno);
 943	ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
 944	ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
 945
 946	error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
 947				      acur->rec_len, acur->bno, acur->len, 0);
 948	if (error)
 949		return error;
 950
 951	args->agbno = acur->bno;
 952	args->len = acur->len;
 953	args->wasfromfl = 0;
 954
 955	trace_xfs_alloc_cur(args);
 956	return 0;
 957}
 958
 959/*
 960 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
 961 * bno optimized lookup to search for extents with ideal size and locality.
 962 */
 963STATIC int
 964xfs_alloc_cntbt_iter(
 965	struct xfs_alloc_arg		*args,
 966	struct xfs_alloc_cur		*acur)
 967{
 968	struct xfs_btree_cur	*cur = acur->cnt;
 969	xfs_agblock_t		bno;
 970	xfs_extlen_t		len, cur_len;
 971	int			error;
 972	int			i;
 973
 974	if (!xfs_alloc_cur_active(cur))
 975		return 0;
 976
 977	/* locality optimized lookup */
 978	cur_len = acur->cur_len;
 979	error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
 980	if (error)
 981		return error;
 982	if (i == 0)
 983		return 0;
 984	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
 985	if (error)
 986		return error;
 987
 988	/* check the current record and update search length from it */
 989	error = xfs_alloc_cur_check(args, acur, cur, &i);
 990	if (error)
 991		return error;
 992	ASSERT(len >= acur->cur_len);
 993	acur->cur_len = len;
 994
 995	/*
 996	 * We looked up the first record >= [agbno, len] above. The agbno is a
 997	 * secondary key and so the current record may lie just before or after
 998	 * agbno. If it is past agbno, check the previous record too so long as
 999	 * the length matches as it may be closer. Don't check a smaller record
1000	 * because that could deactivate our cursor.
1001	 */
1002	if (bno > args->agbno) {
1003		error = xfs_btree_decrement(cur, 0, &i);
1004		if (!error && i) {
1005			error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1006			if (!error && i && len == acur->cur_len)
1007				error = xfs_alloc_cur_check(args, acur, cur,
1008							    &i);
1009		}
1010		if (error)
1011			return error;
1012	}
1013
1014	/*
1015	 * Increment the search key until we find at least one allocation
1016	 * candidate or if the extent we found was larger. Otherwise, double the
1017	 * search key to optimize the search. Efficiency is more important here
1018	 * than absolute best locality.
1019	 */
1020	cur_len <<= 1;
1021	if (!acur->len || acur->cur_len >= cur_len)
1022		acur->cur_len++;
1023	else
1024		acur->cur_len = cur_len;
1025
1026	return error;
1027}
1028
1029/*
1030 * Deal with the case where only small freespaces remain. Either return the
1031 * contents of the last freespace record, or allocate space from the freelist if
1032 * there is nothing in the tree.
1033 */
1034STATIC int			/* error */
1035xfs_alloc_ag_vextent_small(
1036	struct xfs_alloc_arg	*args,	/* allocation argument structure */
1037	struct xfs_btree_cur	*ccur,	/* optional by-size cursor */
1038	xfs_agblock_t		*fbnop,	/* result block number */
1039	xfs_extlen_t		*flenp,	/* result length */
1040	int			*stat)	/* status: 0-freelist, 1-normal/none */
1041{
1042	struct xfs_agf		*agf = args->agbp->b_addr;
1043	int			error = 0;
1044	xfs_agblock_t		fbno = NULLAGBLOCK;
1045	xfs_extlen_t		flen = 0;
1046	int			i = 0;
1047
1048	/*
1049	 * If a cntbt cursor is provided, try to allocate the largest record in
1050	 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1051	 * allocation. Make sure to respect minleft even when pulling from the
1052	 * freelist.
1053	 */
1054	if (ccur)
1055		error = xfs_btree_decrement(ccur, 0, &i);
1056	if (error)
1057		goto error;
1058	if (i) {
1059		error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1060		if (error)
1061			goto error;
1062		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 
1063			error = -EFSCORRUPTED;
1064			goto error;
1065		}
1066		goto out;
1067	}
1068
1069	if (args->minlen != 1 || args->alignment != 1 ||
1070	    args->resv == XFS_AG_RESV_AGFL ||
1071	    be32_to_cpu(agf->agf_flcount) <= args->minleft)
1072		goto out;
1073
1074	error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1075			&fbno, 0);
1076	if (error)
1077		goto error;
1078	if (fbno == NULLAGBLOCK)
1079		goto out;
1080
1081	xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
1082			      (args->datatype & XFS_ALLOC_NOBUSY));
1083
1084	if (args->datatype & XFS_ALLOC_USERDATA) {
1085		struct xfs_buf	*bp;
1086
1087		error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1088				XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1089				args->mp->m_bsize, 0, &bp);
1090		if (error)
1091			goto error;
1092		xfs_trans_binval(args->tp, bp);
1093	}
1094	*fbnop = args->agbno = fbno;
1095	*flenp = args->len = 1;
1096	if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
 
1097		error = -EFSCORRUPTED;
1098		goto error;
1099	}
1100	args->wasfromfl = 1;
1101	trace_xfs_alloc_small_freelist(args);
1102
1103	/*
1104	 * If we're feeding an AGFL block to something that doesn't live in the
1105	 * free space, we need to clear out the OWN_AG rmap.
1106	 */
1107	error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1108			      &XFS_RMAP_OINFO_AG);
1109	if (error)
1110		goto error;
1111
1112	*stat = 0;
1113	return 0;
1114
1115out:
1116	/*
1117	 * Can't do the allocation, give up.
1118	 */
1119	if (flen < args->minlen) {
1120		args->agbno = NULLAGBLOCK;
1121		trace_xfs_alloc_small_notenough(args);
1122		flen = 0;
1123	}
1124	*fbnop = fbno;
1125	*flenp = flen;
1126	*stat = 1;
1127	trace_xfs_alloc_small_done(args);
1128	return 0;
1129
1130error:
1131	trace_xfs_alloc_small_error(args);
1132	return error;
1133}
1134
1135/*
1136 * Allocate a variable extent in the allocation group agno.
1137 * Type and bno are used to determine where in the allocation group the
1138 * extent will start.
1139 * Extent's length (returned in *len) will be between minlen and maxlen,
1140 * and of the form k * prod + mod unless there's nothing that large.
1141 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1142 */
1143STATIC int			/* error */
1144xfs_alloc_ag_vextent(
1145	xfs_alloc_arg_t	*args)	/* argument structure for allocation */
1146{
1147	int		error=0;
1148
1149	ASSERT(args->minlen > 0);
1150	ASSERT(args->maxlen > 0);
1151	ASSERT(args->minlen <= args->maxlen);
1152	ASSERT(args->mod < args->prod);
1153	ASSERT(args->alignment > 0);
1154
1155	/*
1156	 * Branch to correct routine based on the type.
1157	 */
1158	args->wasfromfl = 0;
1159	switch (args->type) {
1160	case XFS_ALLOCTYPE_THIS_AG:
1161		error = xfs_alloc_ag_vextent_size(args);
1162		break;
1163	case XFS_ALLOCTYPE_NEAR_BNO:
1164		error = xfs_alloc_ag_vextent_near(args);
1165		break;
1166	case XFS_ALLOCTYPE_THIS_BNO:
1167		error = xfs_alloc_ag_vextent_exact(args);
1168		break;
1169	default:
1170		ASSERT(0);
1171		/* NOTREACHED */
1172	}
1173
1174	if (error || args->agbno == NULLAGBLOCK)
1175		return error;
1176
1177	ASSERT(args->len >= args->minlen);
1178	ASSERT(args->len <= args->maxlen);
1179	ASSERT(!args->wasfromfl || args->resv != XFS_AG_RESV_AGFL);
1180	ASSERT(args->agbno % args->alignment == 0);
1181
1182	/* if not file data, insert new block into the reverse map btree */
1183	if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
1184		error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
1185				       args->agbno, args->len, &args->oinfo);
1186		if (error)
1187			return error;
1188	}
1189
1190	if (!args->wasfromfl) {
1191		error = xfs_alloc_update_counters(args->tp, args->agbp,
1192						  -((long)(args->len)));
1193		if (error)
1194			return error;
1195
1196		ASSERT(!xfs_extent_busy_search(args->mp, args->pag,
1197					      args->agbno, args->len));
1198	}
1199
1200	xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
1201
1202	XFS_STATS_INC(args->mp, xs_allocx);
1203	XFS_STATS_ADD(args->mp, xs_allocb, args->len);
1204	return error;
1205}
1206
1207/*
1208 * Allocate a variable extent at exactly agno/bno.
1209 * Extent's length (returned in *len) will be between minlen and maxlen,
1210 * and of the form k * prod + mod unless there's nothing that large.
1211 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1212 */
1213STATIC int			/* error */
1214xfs_alloc_ag_vextent_exact(
1215	xfs_alloc_arg_t	*args)	/* allocation argument structure */
1216{
1217	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1218	struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1219	struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1220	int		error;
1221	xfs_agblock_t	fbno;	/* start block of found extent */
1222	xfs_extlen_t	flen;	/* length of found extent */
1223	xfs_agblock_t	tbno;	/* start block of busy extent */
1224	xfs_extlen_t	tlen;	/* length of busy extent */
1225	xfs_agblock_t	tend;	/* end block of busy extent */
1226	int		i;	/* success/failure of operation */
1227	unsigned	busy_gen;
1228
1229	ASSERT(args->alignment == 1);
1230
1231	/*
1232	 * Allocate/initialize a cursor for the by-number freespace btree.
1233	 */
1234	bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1235					  args->pag, XFS_BTNUM_BNO);
1236
1237	/*
1238	 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1239	 * Look for the closest free block <= bno, it must contain bno
1240	 * if any free block does.
1241	 */
1242	error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1243	if (error)
1244		goto error0;
1245	if (!i)
1246		goto not_found;
1247
1248	/*
1249	 * Grab the freespace record.
1250	 */
1251	error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1252	if (error)
1253		goto error0;
1254	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 
1255		error = -EFSCORRUPTED;
1256		goto error0;
1257	}
1258	ASSERT(fbno <= args->agbno);
1259
1260	/*
1261	 * Check for overlapping busy extents.
1262	 */
1263	tbno = fbno;
1264	tlen = flen;
1265	xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
1266
1267	/*
1268	 * Give up if the start of the extent is busy, or the freespace isn't
1269	 * long enough for the minimum request.
1270	 */
1271	if (tbno > args->agbno)
1272		goto not_found;
1273	if (tlen < args->minlen)
1274		goto not_found;
1275	tend = tbno + tlen;
1276	if (tend < args->agbno + args->minlen)
1277		goto not_found;
1278
1279	/*
1280	 * End of extent will be smaller of the freespace end and the
1281	 * maximal requested end.
1282	 *
1283	 * Fix the length according to mod and prod if given.
1284	 */
1285	args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1286						- args->agbno;
1287	xfs_alloc_fix_len(args);
1288	ASSERT(args->agbno + args->len <= tend);
1289
1290	/*
1291	 * We are allocating agbno for args->len
1292	 * Allocate/initialize a cursor for the by-size btree.
1293	 */
1294	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1295					args->pag, XFS_BTNUM_CNT);
1296	ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
1297	error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1298				      args->len, XFSA_FIXUP_BNO_OK);
1299	if (error) {
1300		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1301		goto error0;
1302	}
1303
1304	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1305	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1306
1307	args->wasfromfl = 0;
1308	trace_xfs_alloc_exact_done(args);
1309	return 0;
1310
1311not_found:
1312	/* Didn't find it, return null. */
1313	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1314	args->agbno = NULLAGBLOCK;
1315	trace_xfs_alloc_exact_notfound(args);
1316	return 0;
1317
1318error0:
1319	xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1320	trace_xfs_alloc_exact_error(args);
1321	return error;
1322}
1323
1324/*
1325 * Search a given number of btree records in a given direction. Check each
1326 * record against the good extent we've already found.
1327 */
1328STATIC int
1329xfs_alloc_walk_iter(
1330	struct xfs_alloc_arg	*args,
1331	struct xfs_alloc_cur	*acur,
1332	struct xfs_btree_cur	*cur,
1333	bool			increment,
1334	bool			find_one, /* quit on first candidate */
1335	int			count,    /* rec count (-1 for infinite) */
1336	int			*stat)
1337{
1338	int			error;
1339	int			i;
1340
1341	*stat = 0;
1342
1343	/*
1344	 * Search so long as the cursor is active or we find a better extent.
1345	 * The cursor is deactivated if it extends beyond the range of the
1346	 * current allocation candidate.
1347	 */
1348	while (xfs_alloc_cur_active(cur) && count) {
1349		error = xfs_alloc_cur_check(args, acur, cur, &i);
1350		if (error)
1351			return error;
1352		if (i == 1) {
1353			*stat = 1;
1354			if (find_one)
1355				break;
1356		}
1357		if (!xfs_alloc_cur_active(cur))
1358			break;
1359
1360		if (increment)
1361			error = xfs_btree_increment(cur, 0, &i);
1362		else
1363			error = xfs_btree_decrement(cur, 0, &i);
1364		if (error)
1365			return error;
1366		if (i == 0)
1367			cur->bc_ag.abt.active = false;
1368
1369		if (count > 0)
1370			count--;
1371	}
1372
1373	return 0;
1374}
1375
1376/*
1377 * Search the by-bno and by-size btrees in parallel in search of an extent with
1378 * ideal locality based on the NEAR mode ->agbno locality hint.
1379 */
1380STATIC int
1381xfs_alloc_ag_vextent_locality(
1382	struct xfs_alloc_arg	*args,
1383	struct xfs_alloc_cur	*acur,
1384	int			*stat)
1385{
1386	struct xfs_btree_cur	*fbcur = NULL;
1387	int			error;
1388	int			i;
1389	bool			fbinc;
1390
1391	ASSERT(acur->len == 0);
1392	ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO);
1393
1394	*stat = 0;
1395
1396	error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1397	if (error)
1398		return error;
1399	error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1400	if (error)
1401		return error;
1402	error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1403	if (error)
1404		return error;
1405
1406	/*
1407	 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1408	 * right and lookup the closest extent to the locality hint for each
1409	 * extent size key in the cntbt. The entire search terminates
1410	 * immediately on a bnobt hit because that means we've found best case
1411	 * locality. Otherwise the search continues until the cntbt cursor runs
1412	 * off the end of the tree. If no allocation candidate is found at this
1413	 * point, give up on locality, walk backwards from the end of the cntbt
1414	 * and take the first available extent.
1415	 *
1416	 * The parallel tree searches balance each other out to provide fairly
1417	 * consistent performance for various situations. The bnobt search can
1418	 * have pathological behavior in the worst case scenario of larger
1419	 * allocation requests and fragmented free space. On the other hand, the
1420	 * bnobt is able to satisfy most smaller allocation requests much more
1421	 * quickly than the cntbt. The cntbt search can sift through fragmented
1422	 * free space and sets of free extents for larger allocation requests
1423	 * more quickly than the bnobt. Since the locality hint is just a hint
1424	 * and we don't want to scan the entire bnobt for perfect locality, the
1425	 * cntbt search essentially bounds the bnobt search such that we can
1426	 * find good enough locality at reasonable performance in most cases.
1427	 */
1428	while (xfs_alloc_cur_active(acur->bnolt) ||
1429	       xfs_alloc_cur_active(acur->bnogt) ||
1430	       xfs_alloc_cur_active(acur->cnt)) {
1431
1432		trace_xfs_alloc_cur_lookup(args);
1433
1434		/*
1435		 * Search the bnobt left and right. In the case of a hit, finish
1436		 * the search in the opposite direction and we're done.
1437		 */
1438		error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1439					    true, 1, &i);
1440		if (error)
1441			return error;
1442		if (i == 1) {
1443			trace_xfs_alloc_cur_left(args);
1444			fbcur = acur->bnogt;
1445			fbinc = true;
1446			break;
1447		}
1448		error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1449					    1, &i);
1450		if (error)
1451			return error;
1452		if (i == 1) {
1453			trace_xfs_alloc_cur_right(args);
1454			fbcur = acur->bnolt;
1455			fbinc = false;
1456			break;
1457		}
1458
1459		/*
1460		 * Check the extent with best locality based on the current
1461		 * extent size search key and keep track of the best candidate.
1462		 */
1463		error = xfs_alloc_cntbt_iter(args, acur);
1464		if (error)
1465			return error;
1466		if (!xfs_alloc_cur_active(acur->cnt)) {
1467			trace_xfs_alloc_cur_lookup_done(args);
1468			break;
1469		}
1470	}
1471
1472	/*
1473	 * If we failed to find anything due to busy extents, return empty
1474	 * handed so the caller can flush and retry. If no busy extents were
1475	 * found, walk backwards from the end of the cntbt as a last resort.
1476	 */
1477	if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1478		error = xfs_btree_decrement(acur->cnt, 0, &i);
1479		if (error)
1480			return error;
1481		if (i) {
1482			acur->cnt->bc_ag.abt.active = true;
1483			fbcur = acur->cnt;
1484			fbinc = false;
1485		}
1486	}
1487
1488	/*
1489	 * Search in the opposite direction for a better entry in the case of
1490	 * a bnobt hit or walk backwards from the end of the cntbt.
1491	 */
1492	if (fbcur) {
1493		error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1494					    &i);
1495		if (error)
1496			return error;
1497	}
1498
1499	if (acur->len)
1500		*stat = 1;
1501
1502	return 0;
1503}
1504
1505/* Check the last block of the cnt btree for allocations. */
1506static int
1507xfs_alloc_ag_vextent_lastblock(
1508	struct xfs_alloc_arg	*args,
1509	struct xfs_alloc_cur	*acur,
1510	xfs_agblock_t		*bno,
1511	xfs_extlen_t		*len,
1512	bool			*allocated)
1513{
1514	int			error;
1515	int			i;
1516
1517#ifdef DEBUG
1518	/* Randomly don't execute the first algorithm. */
1519	if (get_random_u32_below(2))
1520		return 0;
1521#endif
1522
1523	/*
1524	 * Start from the entry that lookup found, sequence through all larger
1525	 * free blocks.  If we're actually pointing at a record smaller than
1526	 * maxlen, go to the start of this block, and skip all those smaller
1527	 * than minlen.
1528	 */
1529	if (*len || args->alignment > 1) {
1530		acur->cnt->bc_levels[0].ptr = 1;
1531		do {
1532			error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1533			if (error)
1534				return error;
1535			if (XFS_IS_CORRUPT(args->mp, i != 1))
 
1536				return -EFSCORRUPTED;
 
1537			if (*len >= args->minlen)
1538				break;
1539			error = xfs_btree_increment(acur->cnt, 0, &i);
1540			if (error)
1541				return error;
1542		} while (i);
1543		ASSERT(*len >= args->minlen);
1544		if (!i)
1545			return 0;
1546	}
1547
1548	error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1549	if (error)
1550		return error;
1551
1552	/*
1553	 * It didn't work.  We COULD be in a case where there's a good record
1554	 * somewhere, so try again.
1555	 */
1556	if (acur->len == 0)
1557		return 0;
1558
1559	trace_xfs_alloc_near_first(args);
1560	*allocated = true;
1561	return 0;
1562}
1563
1564/*
1565 * Allocate a variable extent near bno in the allocation group agno.
1566 * Extent's length (returned in len) will be between minlen and maxlen,
1567 * and of the form k * prod + mod unless there's nothing that large.
1568 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1569 */
1570STATIC int
1571xfs_alloc_ag_vextent_near(
1572	struct xfs_alloc_arg	*args)
 
1573{
1574	struct xfs_alloc_cur	acur = {};
1575	int			error;		/* error code */
1576	int			i;		/* result code, temporary */
1577	xfs_agblock_t		bno;
1578	xfs_extlen_t		len;
1579
1580	/* handle uninitialized agbno range so caller doesn't have to */
1581	if (!args->min_agbno && !args->max_agbno)
1582		args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1583	ASSERT(args->min_agbno <= args->max_agbno);
1584
1585	/* clamp agbno to the range if it's outside */
1586	if (args->agbno < args->min_agbno)
1587		args->agbno = args->min_agbno;
1588	if (args->agbno > args->max_agbno)
1589		args->agbno = args->max_agbno;
1590
 
 
1591restart:
1592	len = 0;
1593
1594	/*
1595	 * Set up cursors and see if there are any free extents as big as
1596	 * maxlen. If not, pick the last entry in the tree unless the tree is
1597	 * empty.
1598	 */
1599	error = xfs_alloc_cur_setup(args, &acur);
1600	if (error == -ENOSPC) {
1601		error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1602				&len, &i);
1603		if (error)
1604			goto out;
1605		if (i == 0 || len == 0) {
1606			trace_xfs_alloc_near_noentry(args);
1607			goto out;
1608		}
1609		ASSERT(i == 1);
1610	} else if (error) {
1611		goto out;
1612	}
1613
1614	/*
1615	 * First algorithm.
1616	 * If the requested extent is large wrt the freespaces available
1617	 * in this a.g., then the cursor will be pointing to a btree entry
1618	 * near the right edge of the tree.  If it's in the last btree leaf
1619	 * block, then we just examine all the entries in that block
1620	 * that are big enough, and pick the best one.
1621	 */
1622	if (xfs_btree_islastblock(acur.cnt, 0)) {
1623		bool		allocated = false;
1624
1625		error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1626				&allocated);
1627		if (error)
1628			goto out;
1629		if (allocated)
1630			goto alloc_finish;
1631	}
1632
1633	/*
1634	 * Second algorithm. Combined cntbt and bnobt search to find ideal
1635	 * locality.
1636	 */
1637	error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1638	if (error)
1639		goto out;
1640
1641	/*
1642	 * If we couldn't get anything, give up.
1643	 */
1644	if (!acur.len) {
1645		if (acur.busy) {
 
 
 
 
 
 
 
1646			trace_xfs_alloc_near_busy(args);
1647			xfs_extent_busy_flush(args->mp, args->pag,
1648					      acur.busy_gen);
 
 
 
 
1649			goto restart;
1650		}
1651		trace_xfs_alloc_size_neither(args);
1652		args->agbno = NULLAGBLOCK;
1653		goto out;
1654	}
1655
1656alloc_finish:
1657	/* fix up btrees on a successful allocation */
1658	error = xfs_alloc_cur_finish(args, &acur);
1659
1660out:
1661	xfs_alloc_cur_close(&acur, error);
1662	return error;
1663}
1664
1665/*
1666 * Allocate a variable extent anywhere in the allocation group agno.
1667 * Extent's length (returned in len) will be between minlen and maxlen,
1668 * and of the form k * prod + mod unless there's nothing that large.
1669 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1670 */
1671STATIC int				/* error */
1672xfs_alloc_ag_vextent_size(
1673	xfs_alloc_arg_t	*args)		/* allocation argument structure */
 
1674{
1675	struct xfs_agf	*agf = args->agbp->b_addr;
1676	struct xfs_btree_cur *bno_cur;	/* cursor for bno btree */
1677	struct xfs_btree_cur *cnt_cur;	/* cursor for cnt btree */
1678	int		error;		/* error result */
1679	xfs_agblock_t	fbno;		/* start of found freespace */
1680	xfs_extlen_t	flen;		/* length of found freespace */
1681	int		i;		/* temp status variable */
1682	xfs_agblock_t	rbno;		/* returned block number */
1683	xfs_extlen_t	rlen;		/* length of returned extent */
1684	bool		busy;
1685	unsigned	busy_gen;
1686
 
 
1687restart:
1688	/*
1689	 * Allocate and initialize a cursor for the by-size btree.
1690	 */
1691	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1692					args->pag, XFS_BTNUM_CNT);
1693	bno_cur = NULL;
1694
1695	/*
1696	 * Look for an entry >= maxlen+alignment-1 blocks.
1697	 */
1698	if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1699			args->maxlen + args->alignment - 1, &i)))
1700		goto error0;
1701
1702	/*
1703	 * If none then we have to settle for a smaller extent. In the case that
1704	 * there are no large extents, this will return the last entry in the
1705	 * tree unless the tree is empty. In the case that there are only busy
1706	 * large extents, this will return the largest small extent unless there
1707	 * are no smaller extents available.
1708	 */
1709	if (!i) {
1710		error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1711						   &fbno, &flen, &i);
1712		if (error)
1713			goto error0;
1714		if (i == 0 || flen == 0) {
1715			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1716			trace_xfs_alloc_size_noentry(args);
1717			return 0;
1718		}
1719		ASSERT(i == 1);
1720		busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1721				&rlen, &busy_gen);
1722	} else {
1723		/*
1724		 * Search for a non-busy extent that is large enough.
1725		 */
1726		for (;;) {
1727			error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1728			if (error)
1729				goto error0;
1730			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 
1731				error = -EFSCORRUPTED;
1732				goto error0;
1733			}
1734
1735			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1736					&rbno, &rlen, &busy_gen);
1737
1738			if (rlen >= args->maxlen)
1739				break;
1740
1741			error = xfs_btree_increment(cnt_cur, 0, &i);
1742			if (error)
1743				goto error0;
1744			if (i == 0) {
1745				/*
1746				 * Our only valid extents must have been busy.
1747				 * Make it unbusy by forcing the log out and
1748				 * retrying.
1749				 */
1750				xfs_btree_del_cursor(cnt_cur,
1751						     XFS_BTREE_NOERROR);
1752				trace_xfs_alloc_size_busy(args);
1753				xfs_extent_busy_flush(args->mp,
1754							args->pag, busy_gen);
1755				goto restart;
1756			}
 
 
 
 
 
 
1757		}
1758	}
1759
1760	/*
1761	 * In the first case above, we got the last entry in the
1762	 * by-size btree.  Now we check to see if the space hits maxlen
1763	 * once aligned; if not, we search left for something better.
1764	 * This can't happen in the second case above.
1765	 */
1766	rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1767	if (XFS_IS_CORRUPT(args->mp,
1768			   rlen != 0 &&
1769			   (rlen > flen ||
1770			    rbno + rlen > fbno + flen))) {
 
1771		error = -EFSCORRUPTED;
1772		goto error0;
1773	}
1774	if (rlen < args->maxlen) {
1775		xfs_agblock_t	bestfbno;
1776		xfs_extlen_t	bestflen;
1777		xfs_agblock_t	bestrbno;
1778		xfs_extlen_t	bestrlen;
1779
1780		bestrlen = rlen;
1781		bestrbno = rbno;
1782		bestflen = flen;
1783		bestfbno = fbno;
1784		for (;;) {
1785			if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1786				goto error0;
1787			if (i == 0)
1788				break;
1789			if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1790					&i)))
1791				goto error0;
1792			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 
1793				error = -EFSCORRUPTED;
1794				goto error0;
1795			}
1796			if (flen < bestrlen)
1797				break;
1798			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1799					&rbno, &rlen, &busy_gen);
1800			rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1801			if (XFS_IS_CORRUPT(args->mp,
1802					   rlen != 0 &&
1803					   (rlen > flen ||
1804					    rbno + rlen > fbno + flen))) {
 
1805				error = -EFSCORRUPTED;
1806				goto error0;
1807			}
1808			if (rlen > bestrlen) {
1809				bestrlen = rlen;
1810				bestrbno = rbno;
1811				bestflen = flen;
1812				bestfbno = fbno;
1813				if (rlen == args->maxlen)
1814					break;
1815			}
1816		}
1817		if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1818				&i)))
1819			goto error0;
1820		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 
1821			error = -EFSCORRUPTED;
1822			goto error0;
1823		}
1824		rlen = bestrlen;
1825		rbno = bestrbno;
1826		flen = bestflen;
1827		fbno = bestfbno;
1828	}
1829	args->wasfromfl = 0;
1830	/*
1831	 * Fix up the length.
1832	 */
1833	args->len = rlen;
1834	if (rlen < args->minlen) {
1835		if (busy) {
1836			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
 
 
 
 
 
 
1837			trace_xfs_alloc_size_busy(args);
1838			xfs_extent_busy_flush(args->mp, args->pag, busy_gen);
 
 
 
 
 
 
1839			goto restart;
1840		}
1841		goto out_nominleft;
1842	}
1843	xfs_alloc_fix_len(args);
1844
1845	rlen = args->len;
1846	if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
 
1847		error = -EFSCORRUPTED;
1848		goto error0;
1849	}
1850	/*
1851	 * Allocate and initialize a cursor for the by-block tree.
1852	 */
1853	bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1854					args->pag, XFS_BTNUM_BNO);
1855	if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
1856			rbno, rlen, XFSA_FIXUP_CNT_OK)))
1857		goto error0;
1858	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1859	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1860	cnt_cur = bno_cur = NULL;
1861	args->len = rlen;
1862	args->agbno = rbno;
1863	if (XFS_IS_CORRUPT(args->mp,
1864			   args->agbno + args->len >
1865			   be32_to_cpu(agf->agf_length))) {
 
1866		error = -EFSCORRUPTED;
1867		goto error0;
1868	}
1869	trace_xfs_alloc_size_done(args);
1870	return 0;
1871
1872error0:
1873	trace_xfs_alloc_size_error(args);
1874	if (cnt_cur)
1875		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1876	if (bno_cur)
1877		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1878	return error;
1879
1880out_nominleft:
1881	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1882	trace_xfs_alloc_size_nominleft(args);
1883	args->agbno = NULLAGBLOCK;
1884	return 0;
1885}
1886
1887/*
1888 * Free the extent starting at agno/bno for length.
1889 */
1890STATIC int
1891xfs_free_ag_extent(
1892	struct xfs_trans		*tp,
1893	struct xfs_buf			*agbp,
1894	xfs_agnumber_t			agno,
1895	xfs_agblock_t			bno,
1896	xfs_extlen_t			len,
1897	const struct xfs_owner_info	*oinfo,
1898	enum xfs_ag_resv_type		type)
1899{
1900	struct xfs_mount		*mp;
1901	struct xfs_btree_cur		*bno_cur;
1902	struct xfs_btree_cur		*cnt_cur;
1903	xfs_agblock_t			gtbno; /* start of right neighbor */
1904	xfs_extlen_t			gtlen; /* length of right neighbor */
1905	xfs_agblock_t			ltbno; /* start of left neighbor */
1906	xfs_extlen_t			ltlen; /* length of left neighbor */
1907	xfs_agblock_t			nbno; /* new starting block of freesp */
1908	xfs_extlen_t			nlen; /* new length of freespace */
1909	int				haveleft; /* have a left neighbor */
1910	int				haveright; /* have a right neighbor */
1911	int				i;
1912	int				error;
1913	struct xfs_perag		*pag = agbp->b_pag;
1914
1915	bno_cur = cnt_cur = NULL;
1916	mp = tp->t_mountp;
1917
1918	if (!xfs_rmap_should_skip_owner_update(oinfo)) {
1919		error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
1920		if (error)
1921			goto error0;
1922	}
1923
1924	/*
1925	 * Allocate and initialize a cursor for the by-block btree.
1926	 */
1927	bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO);
1928	/*
1929	 * Look for a neighboring block on the left (lower block numbers)
1930	 * that is contiguous with this space.
1931	 */
1932	if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
1933		goto error0;
1934	if (haveleft) {
1935		/*
1936		 * There is a block to our left.
1937		 */
1938		if ((error = xfs_alloc_get_rec(bno_cur, &ltbno, &ltlen, &i)))
1939			goto error0;
1940		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
1941			error = -EFSCORRUPTED;
1942			goto error0;
1943		}
1944		/*
1945		 * It's not contiguous, though.
1946		 */
1947		if (ltbno + ltlen < bno)
1948			haveleft = 0;
1949		else {
1950			/*
1951			 * If this failure happens the request to free this
1952			 * space was invalid, it's (partly) already free.
1953			 * Very bad.
1954			 */
1955			if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
 
1956				error = -EFSCORRUPTED;
1957				goto error0;
1958			}
1959		}
1960	}
1961	/*
1962	 * Look for a neighboring block on the right (higher block numbers)
1963	 * that is contiguous with this space.
1964	 */
1965	if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
1966		goto error0;
1967	if (haveright) {
1968		/*
1969		 * There is a block to our right.
1970		 */
1971		if ((error = xfs_alloc_get_rec(bno_cur, &gtbno, &gtlen, &i)))
1972			goto error0;
1973		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
1974			error = -EFSCORRUPTED;
1975			goto error0;
1976		}
1977		/*
1978		 * It's not contiguous, though.
1979		 */
1980		if (bno + len < gtbno)
1981			haveright = 0;
1982		else {
1983			/*
1984			 * If this failure happens the request to free this
1985			 * space was invalid, it's (partly) already free.
1986			 * Very bad.
1987			 */
1988			if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
 
1989				error = -EFSCORRUPTED;
1990				goto error0;
1991			}
1992		}
1993	}
1994	/*
1995	 * Now allocate and initialize a cursor for the by-size tree.
1996	 */
1997	cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT);
1998	/*
1999	 * Have both left and right contiguous neighbors.
2000	 * Merge all three into a single free block.
2001	 */
2002	if (haveleft && haveright) {
2003		/*
2004		 * Delete the old by-size entry on the left.
2005		 */
2006		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2007			goto error0;
2008		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2009			error = -EFSCORRUPTED;
2010			goto error0;
2011		}
2012		if ((error = xfs_btree_delete(cnt_cur, &i)))
2013			goto error0;
2014		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2015			error = -EFSCORRUPTED;
2016			goto error0;
2017		}
2018		/*
2019		 * Delete the old by-size entry on the right.
2020		 */
2021		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2022			goto error0;
2023		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2024			error = -EFSCORRUPTED;
2025			goto error0;
2026		}
2027		if ((error = xfs_btree_delete(cnt_cur, &i)))
2028			goto error0;
2029		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2030			error = -EFSCORRUPTED;
2031			goto error0;
2032		}
2033		/*
2034		 * Delete the old by-block entry for the right block.
2035		 */
2036		if ((error = xfs_btree_delete(bno_cur, &i)))
2037			goto error0;
2038		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2039			error = -EFSCORRUPTED;
2040			goto error0;
2041		}
2042		/*
2043		 * Move the by-block cursor back to the left neighbor.
2044		 */
2045		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2046			goto error0;
2047		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2048			error = -EFSCORRUPTED;
2049			goto error0;
2050		}
2051#ifdef DEBUG
2052		/*
2053		 * Check that this is the right record: delete didn't
2054		 * mangle the cursor.
2055		 */
2056		{
2057			xfs_agblock_t	xxbno;
2058			xfs_extlen_t	xxlen;
2059
2060			if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2061					&i)))
2062				goto error0;
2063			if (XFS_IS_CORRUPT(mp,
2064					   i != 1 ||
2065					   xxbno != ltbno ||
2066					   xxlen != ltlen)) {
 
2067				error = -EFSCORRUPTED;
2068				goto error0;
2069			}
2070		}
2071#endif
2072		/*
2073		 * Update remaining by-block entry to the new, joined block.
2074		 */
2075		nbno = ltbno;
2076		nlen = len + ltlen + gtlen;
2077		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2078			goto error0;
2079	}
2080	/*
2081	 * Have only a left contiguous neighbor.
2082	 * Merge it together with the new freespace.
2083	 */
2084	else if (haveleft) {
2085		/*
2086		 * Delete the old by-size entry on the left.
2087		 */
2088		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2089			goto error0;
2090		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2091			error = -EFSCORRUPTED;
2092			goto error0;
2093		}
2094		if ((error = xfs_btree_delete(cnt_cur, &i)))
2095			goto error0;
2096		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2097			error = -EFSCORRUPTED;
2098			goto error0;
2099		}
2100		/*
2101		 * Back up the by-block cursor to the left neighbor, and
2102		 * update its length.
2103		 */
2104		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2105			goto error0;
2106		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2107			error = -EFSCORRUPTED;
2108			goto error0;
2109		}
2110		nbno = ltbno;
2111		nlen = len + ltlen;
2112		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2113			goto error0;
2114	}
2115	/*
2116	 * Have only a right contiguous neighbor.
2117	 * Merge it together with the new freespace.
2118	 */
2119	else if (haveright) {
2120		/*
2121		 * Delete the old by-size entry on the right.
2122		 */
2123		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2124			goto error0;
2125		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2126			error = -EFSCORRUPTED;
2127			goto error0;
2128		}
2129		if ((error = xfs_btree_delete(cnt_cur, &i)))
2130			goto error0;
2131		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2132			error = -EFSCORRUPTED;
2133			goto error0;
2134		}
2135		/*
2136		 * Update the starting block and length of the right
2137		 * neighbor in the by-block tree.
2138		 */
2139		nbno = bno;
2140		nlen = len + gtlen;
2141		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2142			goto error0;
2143	}
2144	/*
2145	 * No contiguous neighbors.
2146	 * Insert the new freespace into the by-block tree.
2147	 */
2148	else {
2149		nbno = bno;
2150		nlen = len;
2151		if ((error = xfs_btree_insert(bno_cur, &i)))
2152			goto error0;
2153		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2154			error = -EFSCORRUPTED;
2155			goto error0;
2156		}
2157	}
2158	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2159	bno_cur = NULL;
2160	/*
2161	 * In all cases we need to insert the new freespace in the by-size tree.
2162	 */
2163	if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2164		goto error0;
2165	if (XFS_IS_CORRUPT(mp, i != 0)) {
 
2166		error = -EFSCORRUPTED;
2167		goto error0;
2168	}
2169	if ((error = xfs_btree_insert(cnt_cur, &i)))
2170		goto error0;
2171	if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2172		error = -EFSCORRUPTED;
2173		goto error0;
2174	}
2175	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2176	cnt_cur = NULL;
2177
2178	/*
2179	 * Update the freespace totals in the ag and superblock.
2180	 */
2181	error = xfs_alloc_update_counters(tp, agbp, len);
2182	xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2183	if (error)
2184		goto error0;
2185
2186	XFS_STATS_INC(mp, xs_freex);
2187	XFS_STATS_ADD(mp, xs_freeb, len);
2188
2189	trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2190
2191	return 0;
2192
2193 error0:
2194	trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2195	if (bno_cur)
2196		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2197	if (cnt_cur)
2198		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2199	return error;
2200}
2201
2202/*
2203 * Visible (exported) allocation/free functions.
2204 * Some of these are used just by xfs_alloc_btree.c and this file.
2205 */
2206
2207/*
2208 * Compute and fill in value of m_alloc_maxlevels.
2209 */
2210void
2211xfs_alloc_compute_maxlevels(
2212	xfs_mount_t	*mp)	/* file system mount structure */
2213{
2214	mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2215			(mp->m_sb.sb_agblocks + 1) / 2);
2216	ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2217}
2218
2219/*
2220 * Find the length of the longest extent in an AG.  The 'need' parameter
2221 * specifies how much space we're going to need for the AGFL and the
2222 * 'reserved' parameter tells us how many blocks in this AG are reserved for
2223 * other callers.
2224 */
2225xfs_extlen_t
2226xfs_alloc_longest_free_extent(
2227	struct xfs_perag	*pag,
2228	xfs_extlen_t		need,
2229	xfs_extlen_t		reserved)
2230{
2231	xfs_extlen_t		delta = 0;
2232
2233	/*
2234	 * If the AGFL needs a recharge, we'll have to subtract that from the
2235	 * longest extent.
2236	 */
2237	if (need > pag->pagf_flcount)
2238		delta = need - pag->pagf_flcount;
2239
2240	/*
2241	 * If we cannot maintain others' reservations with space from the
2242	 * not-longest freesp extents, we'll have to subtract /that/ from
2243	 * the longest extent too.
2244	 */
2245	if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2246		delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2247
2248	/*
2249	 * If the longest extent is long enough to satisfy all the
2250	 * reservations and AGFL rules in place, we can return this extent.
2251	 */
2252	if (pag->pagf_longest > delta)
2253		return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2254				pag->pagf_longest - delta);
2255
2256	/* Otherwise, let the caller try for 1 block if there's space. */
2257	return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2258}
2259
2260/*
2261 * Compute the minimum length of the AGFL in the given AG.  If @pag is NULL,
2262 * return the largest possible minimum length.
2263 */
2264unsigned int
2265xfs_alloc_min_freelist(
2266	struct xfs_mount	*mp,
2267	struct xfs_perag	*pag)
2268{
2269	/* AG btrees have at least 1 level. */
2270	static const uint8_t	fake_levels[XFS_BTNUM_AGF] = {1, 1, 1};
2271	const uint8_t		*levels = pag ? pag->pagf_levels : fake_levels;
 
2272	unsigned int		min_free;
2273
2274	ASSERT(mp->m_alloc_maxlevels > 0);
2275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2276	/* space needed by-bno freespace btree */
2277	min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1,
2278				       mp->m_alloc_maxlevels);
2279	/* space needed by-size freespace btree */
2280	min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1,
2281				       mp->m_alloc_maxlevels);
2282	/* space needed reverse mapping used space btree */
2283	if (xfs_has_rmapbt(mp))
2284		min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1,
2285						mp->m_rmap_maxlevels);
2286
2287	return min_free;
2288}
2289
2290/*
2291 * Check if the operation we are fixing up the freelist for should go ahead or
2292 * not. If we are freeing blocks, we always allow it, otherwise the allocation
2293 * is dependent on whether the size and shape of free space available will
2294 * permit the requested allocation to take place.
2295 */
2296static bool
2297xfs_alloc_space_available(
2298	struct xfs_alloc_arg	*args,
2299	xfs_extlen_t		min_free,
2300	int			flags)
2301{
2302	struct xfs_perag	*pag = args->pag;
2303	xfs_extlen_t		alloc_len, longest;
2304	xfs_extlen_t		reservation; /* blocks that are still reserved */
2305	int			available;
2306	xfs_extlen_t		agflcount;
2307
2308	if (flags & XFS_ALLOC_FLAG_FREEING)
2309		return true;
2310
2311	reservation = xfs_ag_resv_needed(pag, args->resv);
2312
2313	/* do we have enough contiguous free space for the allocation? */
2314	alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2315	longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2316	if (longest < alloc_len)
2317		return false;
2318
2319	/*
2320	 * Do we have enough free space remaining for the allocation? Don't
2321	 * account extra agfl blocks because we are about to defer free them,
2322	 * making them unavailable until the current transaction commits.
2323	 */
2324	agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2325	available = (int)(pag->pagf_freeblks + agflcount -
2326			  reservation - min_free - args->minleft);
2327	if (available < (int)max(args->total, alloc_len))
2328		return false;
2329
2330	/*
2331	 * Clamp maxlen to the amount of free space available for the actual
2332	 * extent allocation.
2333	 */
2334	if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2335		args->maxlen = available;
2336		ASSERT(args->maxlen > 0);
2337		ASSERT(args->maxlen >= args->minlen);
2338	}
2339
2340	return true;
2341}
2342
2343int
2344xfs_free_agfl_block(
2345	struct xfs_trans	*tp,
2346	xfs_agnumber_t		agno,
2347	xfs_agblock_t		agbno,
2348	struct xfs_buf		*agbp,
2349	struct xfs_owner_info	*oinfo)
2350{
2351	int			error;
2352	struct xfs_buf		*bp;
2353
2354	error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
2355				   XFS_AG_RESV_AGFL);
2356	if (error)
2357		return error;
2358
2359	error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
2360			XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
2361			tp->t_mountp->m_bsize, 0, &bp);
2362	if (error)
2363		return error;
2364	xfs_trans_binval(tp, bp);
2365
2366	return 0;
2367}
2368
2369/*
2370 * Check the agfl fields of the agf for inconsistency or corruption. The purpose
2371 * is to detect an agfl header padding mismatch between current and early v5
2372 * kernels. This problem manifests as a 1-slot size difference between the
2373 * on-disk flcount and the active [first, last] range of a wrapped agfl. This
2374 * may also catch variants of agfl count corruption unrelated to padding. Either
2375 * way, we'll reset the agfl and warn the user.
 
 
 
 
2376 *
2377 * Return true if a reset is required before the agfl can be used, false
2378 * otherwise.
2379 */
2380static bool
2381xfs_agfl_needs_reset(
2382	struct xfs_mount	*mp,
2383	struct xfs_agf		*agf)
2384{
2385	uint32_t		f = be32_to_cpu(agf->agf_flfirst);
2386	uint32_t		l = be32_to_cpu(agf->agf_fllast);
2387	uint32_t		c = be32_to_cpu(agf->agf_flcount);
2388	int			agfl_size = xfs_agfl_size(mp);
2389	int			active;
2390
2391	/* no agfl header on v4 supers */
2392	if (!xfs_has_crc(mp))
2393		return false;
2394
2395	/*
2396	 * The agf read verifier catches severe corruption of these fields.
2397	 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2398	 * the verifier allows it.
2399	 */
2400	if (f >= agfl_size || l >= agfl_size)
2401		return true;
2402	if (c > agfl_size)
2403		return true;
2404
2405	/*
2406	 * Check consistency between the on-disk count and the active range. An
2407	 * agfl padding mismatch manifests as an inconsistent flcount.
2408	 */
2409	if (c && l >= f)
2410		active = l - f + 1;
2411	else if (c)
2412		active = agfl_size - f + l + 1;
2413	else
2414		active = 0;
2415
2416	return active != c;
2417}
2418
2419/*
2420 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2421 * agfl content cannot be trusted. Warn the user that a repair is required to
2422 * recover leaked blocks.
2423 *
2424 * The purpose of this mechanism is to handle filesystems affected by the agfl
2425 * header padding mismatch problem. A reset keeps the filesystem online with a
2426 * relatively minor free space accounting inconsistency rather than suffer the
2427 * inevitable crash from use of an invalid agfl block.
2428 */
2429static void
2430xfs_agfl_reset(
2431	struct xfs_trans	*tp,
2432	struct xfs_buf		*agbp,
2433	struct xfs_perag	*pag)
2434{
2435	struct xfs_mount	*mp = tp->t_mountp;
2436	struct xfs_agf		*agf = agbp->b_addr;
2437
2438	ASSERT(pag->pagf_agflreset);
2439	trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2440
2441	xfs_warn(mp,
2442	       "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2443	       "Please unmount and run xfs_repair.",
2444	         pag->pag_agno, pag->pagf_flcount);
2445
2446	agf->agf_flfirst = 0;
2447	agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2448	agf->agf_flcount = 0;
2449	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2450				    XFS_AGF_FLCOUNT);
2451
2452	pag->pagf_flcount = 0;
2453	pag->pagf_agflreset = false;
2454}
2455
2456/*
2457 * Defer an AGFL block free. This is effectively equivalent to
2458 * xfs_free_extent_later() with some special handling particular to AGFL blocks.
2459 *
2460 * Deferring AGFL frees helps prevent log reservation overruns due to too many
2461 * allocation operations in a transaction. AGFL frees are prone to this problem
2462 * because for one they are always freed one at a time. Further, an immediate
2463 * AGFL block free can cause a btree join and require another block free before
2464 * the real allocation can proceed. Deferring the free disconnects freeing up
2465 * the AGFL slot from freeing the block.
2466 */
2467STATIC void
2468xfs_defer_agfl_block(
2469	struct xfs_trans		*tp,
2470	xfs_agnumber_t			agno,
2471	xfs_fsblock_t			agbno,
2472	struct xfs_owner_info		*oinfo)
2473{
2474	struct xfs_mount		*mp = tp->t_mountp;
2475	struct xfs_extent_free_item	*new;		/* new element */
 
2476
2477	ASSERT(xfs_extfree_item_cache != NULL);
2478	ASSERT(oinfo != NULL);
2479
2480	new = kmem_cache_zalloc(xfs_extfree_item_cache,
 
 
 
2481			       GFP_KERNEL | __GFP_NOFAIL);
2482	new->xefi_startblock = XFS_AGB_TO_FSB(mp, agno, agbno);
2483	new->xefi_blockcount = 1;
2484	new->xefi_owner = oinfo->oi_owner;
 
2485
2486	trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
2487
2488	xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_AGFL_FREE, &new->xefi_list);
 
 
2489}
2490
2491/*
2492 * Add the extent to the list of extents to be free at transaction end.
2493 * The list is maintained sorted (by block number).
2494 */
2495void
2496__xfs_free_extent_later(
2497	struct xfs_trans		*tp,
2498	xfs_fsblock_t			bno,
2499	xfs_filblks_t			len,
2500	const struct xfs_owner_info	*oinfo,
2501	bool				skip_discard)
 
 
2502{
2503	struct xfs_extent_free_item	*new;		/* new element */
2504#ifdef DEBUG
2505	struct xfs_mount		*mp = tp->t_mountp;
 
2506	xfs_agnumber_t			agno;
2507	xfs_agblock_t			agbno;
2508
2509	ASSERT(bno != NULLFSBLOCK);
2510	ASSERT(len > 0);
2511	ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
2512	ASSERT(!isnullstartblock(bno));
2513	agno = XFS_FSB_TO_AGNO(mp, bno);
2514	agbno = XFS_FSB_TO_AGBNO(mp, bno);
2515	ASSERT(agno < mp->m_sb.sb_agcount);
2516	ASSERT(agbno < mp->m_sb.sb_agblocks);
2517	ASSERT(len < mp->m_sb.sb_agblocks);
2518	ASSERT(agbno + len <= mp->m_sb.sb_agblocks);
2519#endif
2520	ASSERT(xfs_extfree_item_cache != NULL);
 
 
 
 
2521
2522	new = kmem_cache_zalloc(xfs_extfree_item_cache,
2523			       GFP_KERNEL | __GFP_NOFAIL);
2524	new->xefi_startblock = bno;
2525	new->xefi_blockcount = (xfs_extlen_t)len;
 
2526	if (skip_discard)
2527		new->xefi_flags |= XFS_EFI_SKIP_DISCARD;
2528	if (oinfo) {
2529		ASSERT(oinfo->oi_offset == 0);
2530
2531		if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2532			new->xefi_flags |= XFS_EFI_ATTR_FORK;
2533		if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2534			new->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2535		new->xefi_owner = oinfo->oi_owner;
2536	} else {
2537		new->xefi_owner = XFS_RMAP_OWN_NULL;
2538	}
2539	trace_xfs_bmap_free_defer(tp->t_mountp,
2540			XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0,
2541			XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len);
2542	xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_FREE, &new->xefi_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2543}
2544
2545#ifdef DEBUG
2546/*
2547 * Check if an AGF has a free extent record whose length is equal to
2548 * args->minlen.
2549 */
2550STATIC int
2551xfs_exact_minlen_extent_available(
2552	struct xfs_alloc_arg	*args,
2553	struct xfs_buf		*agbp,
2554	int			*stat)
2555{
2556	struct xfs_btree_cur	*cnt_cur;
2557	xfs_agblock_t		fbno;
2558	xfs_extlen_t		flen;
2559	int			error = 0;
2560
2561	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp,
2562					args->pag, XFS_BTNUM_CNT);
2563	error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2564	if (error)
2565		goto out;
2566
2567	if (*stat == 0) {
 
2568		error = -EFSCORRUPTED;
2569		goto out;
2570	}
2571
2572	error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2573	if (error)
2574		goto out;
2575
2576	if (*stat == 1 && flen != args->minlen)
2577		*stat = 0;
2578
2579out:
2580	xfs_btree_del_cursor(cnt_cur, error);
2581
2582	return error;
2583}
2584#endif
2585
2586/*
2587 * Decide whether to use this allocation group for this allocation.
2588 * If so, fix up the btree freelist's size.
2589 */
2590int			/* error */
2591xfs_alloc_fix_freelist(
2592	struct xfs_alloc_arg	*args,	/* allocation argument structure */
2593	int			flags)	/* XFS_ALLOC_FLAG_... */
2594{
2595	struct xfs_mount	*mp = args->mp;
2596	struct xfs_perag	*pag = args->pag;
2597	struct xfs_trans	*tp = args->tp;
2598	struct xfs_buf		*agbp = NULL;
2599	struct xfs_buf		*agflbp = NULL;
2600	struct xfs_alloc_arg	targs;	/* local allocation arguments */
2601	xfs_agblock_t		bno;	/* freelist block */
2602	xfs_extlen_t		need;	/* total blocks needed in freelist */
2603	int			error = 0;
2604
2605	/* deferred ops (AGFL block frees) require permanent transactions */
2606	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2607
2608	if (!pag->pagf_init) {
2609		error = xfs_alloc_read_agf(pag, tp, flags, &agbp);
2610		if (error) {
2611			/* Couldn't lock the AGF so skip this AG. */
2612			if (error == -EAGAIN)
2613				error = 0;
2614			goto out_no_agbp;
2615		}
2616	}
2617
2618	/*
2619	 * If this is a metadata preferred pag and we are user data then try
2620	 * somewhere else if we are not being asked to try harder at this
2621	 * point
2622	 */
2623	if (pag->pagf_metadata && (args->datatype & XFS_ALLOC_USERDATA) &&
2624	    (flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2625		ASSERT(!(flags & XFS_ALLOC_FLAG_FREEING));
 
2626		goto out_agbp_relse;
2627	}
2628
2629	need = xfs_alloc_min_freelist(mp, pag);
2630	if (!xfs_alloc_space_available(args, need, flags |
2631			XFS_ALLOC_FLAG_CHECK))
2632		goto out_agbp_relse;
2633
2634	/*
2635	 * Get the a.g. freespace buffer.
2636	 * Can fail if we're not blocking on locks, and it's held.
2637	 */
2638	if (!agbp) {
2639		error = xfs_alloc_read_agf(pag, tp, flags, &agbp);
2640		if (error) {
2641			/* Couldn't lock the AGF so skip this AG. */
2642			if (error == -EAGAIN)
2643				error = 0;
2644			goto out_no_agbp;
2645		}
2646	}
2647
2648	/* reset a padding mismatched agfl before final free space check */
2649	if (pag->pagf_agflreset)
2650		xfs_agfl_reset(tp, agbp, pag);
2651
2652	/* If there isn't enough total space or single-extent, reject it. */
2653	need = xfs_alloc_min_freelist(mp, pag);
2654	if (!xfs_alloc_space_available(args, need, flags))
2655		goto out_agbp_relse;
2656
2657#ifdef DEBUG
2658	if (args->alloc_minlen_only) {
2659		int stat;
2660
2661		error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2662		if (error || !stat)
2663			goto out_agbp_relse;
2664	}
2665#endif
2666	/*
2667	 * Make the freelist shorter if it's too long.
2668	 *
2669	 * Note that from this point onwards, we will always release the agf and
2670	 * agfl buffers on error. This handles the case where we error out and
2671	 * the buffers are clean or may not have been joined to the transaction
2672	 * and hence need to be released manually. If they have been joined to
2673	 * the transaction, then xfs_trans_brelse() will handle them
2674	 * appropriately based on the recursion count and dirty state of the
2675	 * buffer.
2676	 *
2677	 * XXX (dgc): When we have lots of free space, does this buy us
2678	 * anything other than extra overhead when we need to put more blocks
2679	 * back on the free list? Maybe we should only do this when space is
2680	 * getting low or the AGFL is more than half full?
2681	 *
2682	 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2683	 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2684	 * updating the rmapbt.  Both flags are used in xfs_repair while we're
2685	 * rebuilding the rmapbt, and neither are used by the kernel.  They're
2686	 * both required to ensure that rmaps are correctly recorded for the
2687	 * regenerated AGFL, bnobt, and cntbt.  See repair/phase5.c and
2688	 * repair/rmap.c in xfsprogs for details.
2689	 */
2690	memset(&targs, 0, sizeof(targs));
2691	/* struct copy below */
2692	if (flags & XFS_ALLOC_FLAG_NORMAP)
2693		targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2694	else
2695		targs.oinfo = XFS_RMAP_OINFO_AG;
2696	while (!(flags & XFS_ALLOC_FLAG_NOSHRINK) && pag->pagf_flcount > need) {
 
2697		error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
2698		if (error)
2699			goto out_agbp_relse;
2700
2701		/* defer agfl frees */
2702		xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
 
 
2703	}
2704
2705	targs.tp = tp;
2706	targs.mp = mp;
2707	targs.agbp = agbp;
2708	targs.agno = args->agno;
2709	targs.alignment = targs.minlen = targs.prod = 1;
2710	targs.type = XFS_ALLOCTYPE_THIS_AG;
2711	targs.pag = pag;
2712	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2713	if (error)
2714		goto out_agbp_relse;
2715
2716	/* Make the freelist longer if it's too short. */
2717	while (pag->pagf_flcount < need) {
2718		targs.agbno = 0;
2719		targs.maxlen = need - pag->pagf_flcount;
2720		targs.resv = XFS_AG_RESV_AGFL;
2721
2722		/* Allocate as many blocks as possible at once. */
2723		error = xfs_alloc_ag_vextent(&targs);
2724		if (error)
2725			goto out_agflbp_relse;
2726
2727		/*
2728		 * Stop if we run out.  Won't happen if callers are obeying
2729		 * the restrictions correctly.  Can happen for free calls
2730		 * on a completely full ag.
2731		 */
2732		if (targs.agbno == NULLAGBLOCK) {
2733			if (flags & XFS_ALLOC_FLAG_FREEING)
2734				break;
2735			goto out_agflbp_relse;
2736		}
 
 
 
 
 
 
 
 
 
 
 
 
2737		/*
2738		 * Put each allocated block on the list.
2739		 */
2740		for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2741			error = xfs_alloc_put_freelist(pag, tp, agbp,
2742							agflbp, bno, 0);
2743			if (error)
2744				goto out_agflbp_relse;
2745		}
2746	}
2747	xfs_trans_brelse(tp, agflbp);
2748	args->agbp = agbp;
2749	return 0;
2750
2751out_agflbp_relse:
2752	xfs_trans_brelse(tp, agflbp);
2753out_agbp_relse:
2754	if (agbp)
2755		xfs_trans_brelse(tp, agbp);
2756out_no_agbp:
2757	args->agbp = NULL;
2758	return error;
2759}
2760
2761/*
2762 * Get a block from the freelist.
2763 * Returns with the buffer for the block gotten.
2764 */
2765int
2766xfs_alloc_get_freelist(
2767	struct xfs_perag	*pag,
2768	struct xfs_trans	*tp,
2769	struct xfs_buf		*agbp,
2770	xfs_agblock_t		*bnop,
2771	int			btreeblk)
2772{
2773	struct xfs_agf		*agf = agbp->b_addr;
2774	struct xfs_buf		*agflbp;
2775	xfs_agblock_t		bno;
2776	__be32			*agfl_bno;
2777	int			error;
2778	uint32_t		logflags;
2779	struct xfs_mount	*mp = tp->t_mountp;
2780
2781	/*
2782	 * Freelist is empty, give up.
2783	 */
2784	if (!agf->agf_flcount) {
2785		*bnop = NULLAGBLOCK;
2786		return 0;
2787	}
2788	/*
2789	 * Read the array of free blocks.
2790	 */
2791	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2792	if (error)
2793		return error;
2794
2795
2796	/*
2797	 * Get the block number and update the data structures.
2798	 */
2799	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2800	bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
 
 
 
2801	be32_add_cpu(&agf->agf_flfirst, 1);
2802	xfs_trans_brelse(tp, agflbp);
2803	if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
2804		agf->agf_flfirst = 0;
2805
2806	ASSERT(!pag->pagf_agflreset);
2807	be32_add_cpu(&agf->agf_flcount, -1);
2808	pag->pagf_flcount--;
2809
2810	logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
2811	if (btreeblk) {
2812		be32_add_cpu(&agf->agf_btreeblks, 1);
2813		pag->pagf_btreeblks++;
2814		logflags |= XFS_AGF_BTREEBLKS;
2815	}
2816
2817	xfs_alloc_log_agf(tp, agbp, logflags);
2818	*bnop = bno;
2819
2820	return 0;
2821}
2822
2823/*
2824 * Log the given fields from the agf structure.
2825 */
2826void
2827xfs_alloc_log_agf(
2828	struct xfs_trans	*tp,
2829	struct xfs_buf		*bp,
2830	uint32_t		fields)
2831{
2832	int	first;		/* first byte offset */
2833	int	last;		/* last byte offset */
2834	static const short	offsets[] = {
2835		offsetof(xfs_agf_t, agf_magicnum),
2836		offsetof(xfs_agf_t, agf_versionnum),
2837		offsetof(xfs_agf_t, agf_seqno),
2838		offsetof(xfs_agf_t, agf_length),
2839		offsetof(xfs_agf_t, agf_roots[0]),
2840		offsetof(xfs_agf_t, agf_levels[0]),
2841		offsetof(xfs_agf_t, agf_flfirst),
2842		offsetof(xfs_agf_t, agf_fllast),
2843		offsetof(xfs_agf_t, agf_flcount),
2844		offsetof(xfs_agf_t, agf_freeblks),
2845		offsetof(xfs_agf_t, agf_longest),
2846		offsetof(xfs_agf_t, agf_btreeblks),
2847		offsetof(xfs_agf_t, agf_uuid),
2848		offsetof(xfs_agf_t, agf_rmap_blocks),
2849		offsetof(xfs_agf_t, agf_refcount_blocks),
2850		offsetof(xfs_agf_t, agf_refcount_root),
2851		offsetof(xfs_agf_t, agf_refcount_level),
2852		/* needed so that we don't log the whole rest of the structure: */
2853		offsetof(xfs_agf_t, agf_spare64),
2854		sizeof(xfs_agf_t)
2855	};
2856
2857	trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
2858
2859	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
2860
2861	xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
2862	xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
2863}
2864
2865/*
2866 * Put the block on the freelist for the allocation group.
2867 */
2868int
2869xfs_alloc_put_freelist(
2870	struct xfs_perag	*pag,
2871	struct xfs_trans	*tp,
2872	struct xfs_buf		*agbp,
2873	struct xfs_buf		*agflbp,
2874	xfs_agblock_t		bno,
2875	int			btreeblk)
2876{
2877	struct xfs_mount	*mp = tp->t_mountp;
2878	struct xfs_agf		*agf = agbp->b_addr;
2879	__be32			*blockp;
2880	int			error;
2881	uint32_t		logflags;
2882	__be32			*agfl_bno;
2883	int			startoff;
2884
2885	if (!agflbp) {
2886		error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2887		if (error)
2888			return error;
2889	}
2890
2891	be32_add_cpu(&agf->agf_fllast, 1);
2892	if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
2893		agf->agf_fllast = 0;
2894
2895	ASSERT(!pag->pagf_agflreset);
2896	be32_add_cpu(&agf->agf_flcount, 1);
2897	pag->pagf_flcount++;
2898
2899	logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
2900	if (btreeblk) {
2901		be32_add_cpu(&agf->agf_btreeblks, -1);
2902		pag->pagf_btreeblks--;
2903		logflags |= XFS_AGF_BTREEBLKS;
2904	}
2905
2906	xfs_alloc_log_agf(tp, agbp, logflags);
2907
2908	ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
2909
2910	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2911	blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
2912	*blockp = cpu_to_be32(bno);
2913	startoff = (char *)blockp - (char *)agflbp->b_addr;
2914
2915	xfs_alloc_log_agf(tp, agbp, logflags);
2916
2917	xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
2918	xfs_trans_log_buf(tp, agflbp, startoff,
2919			  startoff + sizeof(xfs_agblock_t) - 1);
2920	return 0;
2921}
2922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2923static xfs_failaddr_t
2924xfs_agf_verify(
2925	struct xfs_buf		*bp)
2926{
2927	struct xfs_mount	*mp = bp->b_mount;
2928	struct xfs_agf		*agf = bp->b_addr;
 
 
 
2929
2930	if (xfs_has_crc(mp)) {
2931		if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
2932			return __this_address;
2933		if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
2934			return __this_address;
2935	}
2936
2937	if (!xfs_verify_magic(bp, agf->agf_magicnum))
2938		return __this_address;
2939
2940	if (!(XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)) &&
2941	      be32_to_cpu(agf->agf_freeblks) <= be32_to_cpu(agf->agf_length) &&
2942	      be32_to_cpu(agf->agf_flfirst) < xfs_agfl_size(mp) &&
2943	      be32_to_cpu(agf->agf_fllast) < xfs_agfl_size(mp) &&
2944	      be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp)))
2945		return __this_address;
2946
2947	if (be32_to_cpu(agf->agf_length) > mp->m_sb.sb_dblocks)
2948		return __this_address;
 
 
 
 
 
2949
2950	if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
2951	    be32_to_cpu(agf->agf_freeblks) > be32_to_cpu(agf->agf_length))
2952		return __this_address;
2953
2954	if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 ||
2955	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 ||
2956	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) >
2957						mp->m_alloc_maxlevels ||
2958	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) >
2959						mp->m_alloc_maxlevels)
2960		return __this_address;
2961
2962	if (xfs_has_rmapbt(mp) &&
2963	    (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 ||
2964	     be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) >
2965						mp->m_rmap_maxlevels))
2966		return __this_address;
2967
2968	if (xfs_has_rmapbt(mp) &&
2969	    be32_to_cpu(agf->agf_rmap_blocks) > be32_to_cpu(agf->agf_length))
2970		return __this_address;
2971
2972	/*
2973	 * during growfs operations, the perag is not fully initialised,
2974	 * so we can't use it for any useful checking. growfs ensures we can't
2975	 * use it by using uncached buffers that don't have the perag attached
2976	 * so we can detect and avoid this problem.
2977	 */
2978	if (bp->b_pag && be32_to_cpu(agf->agf_seqno) != bp->b_pag->pag_agno)
2979		return __this_address;
2980
2981	if (xfs_has_lazysbcount(mp) &&
2982	    be32_to_cpu(agf->agf_btreeblks) > be32_to_cpu(agf->agf_length))
2983		return __this_address;
2984
2985	if (xfs_has_reflink(mp) &&
2986	    be32_to_cpu(agf->agf_refcount_blocks) >
2987	    be32_to_cpu(agf->agf_length))
2988		return __this_address;
2989
2990	if (xfs_has_reflink(mp) &&
2991	    (be32_to_cpu(agf->agf_refcount_level) < 1 ||
2992	     be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels))
2993		return __this_address;
2994
2995	return NULL;
 
 
 
 
 
 
 
2996
 
2997}
2998
2999static void
3000xfs_agf_read_verify(
3001	struct xfs_buf	*bp)
3002{
3003	struct xfs_mount *mp = bp->b_mount;
3004	xfs_failaddr_t	fa;
3005
3006	if (xfs_has_crc(mp) &&
3007	    !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
3008		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3009	else {
3010		fa = xfs_agf_verify(bp);
3011		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3012			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3013	}
3014}
3015
3016static void
3017xfs_agf_write_verify(
3018	struct xfs_buf	*bp)
3019{
3020	struct xfs_mount	*mp = bp->b_mount;
3021	struct xfs_buf_log_item	*bip = bp->b_log_item;
3022	struct xfs_agf		*agf = bp->b_addr;
3023	xfs_failaddr_t		fa;
3024
3025	fa = xfs_agf_verify(bp);
3026	if (fa) {
3027		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3028		return;
3029	}
3030
3031	if (!xfs_has_crc(mp))
3032		return;
3033
3034	if (bip)
3035		agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
3036
3037	xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
3038}
3039
3040const struct xfs_buf_ops xfs_agf_buf_ops = {
3041	.name = "xfs_agf",
3042	.magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
3043	.verify_read = xfs_agf_read_verify,
3044	.verify_write = xfs_agf_write_verify,
3045	.verify_struct = xfs_agf_verify,
3046};
3047
3048/*
3049 * Read in the allocation group header (free/alloc section).
3050 */
3051int
3052xfs_read_agf(
3053	struct xfs_perag	*pag,
3054	struct xfs_trans	*tp,
3055	int			flags,
3056	struct xfs_buf		**agfbpp)
3057{
3058	struct xfs_mount	*mp = pag->pag_mount;
3059	int			error;
3060
3061	trace_xfs_read_agf(pag->pag_mount, pag->pag_agno);
3062
3063	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3064			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)),
3065			XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
 
 
3066	if (error)
3067		return error;
3068
3069	xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
3070	return 0;
3071}
3072
3073/*
3074 * Read in the allocation group header (free/alloc section) and initialise the
3075 * perag structure if necessary. If the caller provides @agfbpp, then return the
3076 * locked buffer to the caller, otherwise free it.
3077 */
3078int
3079xfs_alloc_read_agf(
3080	struct xfs_perag	*pag,
3081	struct xfs_trans	*tp,
3082	int			flags,
3083	struct xfs_buf		**agfbpp)
3084{
3085	struct xfs_buf		*agfbp;
3086	struct xfs_agf		*agf;
3087	int			error;
3088	int			allocbt_blks;
3089
3090	trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno);
3091
3092	/* We don't support trylock when freeing. */
3093	ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3094			(XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3095	error = xfs_read_agf(pag, tp,
3096			(flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3097			&agfbp);
3098	if (error)
3099		return error;
3100
3101	agf = agfbp->b_addr;
3102	if (!pag->pagf_init) {
3103		pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3104		pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3105		pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3106		pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3107		pag->pagf_levels[XFS_BTNUM_BNOi] =
3108			be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]);
3109		pag->pagf_levels[XFS_BTNUM_CNTi] =
3110			be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]);
3111		pag->pagf_levels[XFS_BTNUM_RMAPi] =
3112			be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]);
3113		pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3114		pag->pagf_init = 1;
3115		pag->pagf_agflreset = xfs_agfl_needs_reset(pag->pag_mount, agf);
 
 
3116
3117		/*
3118		 * Update the in-core allocbt counter. Filter out the rmapbt
3119		 * subset of the btreeblks counter because the rmapbt is managed
3120		 * by perag reservation. Subtract one for the rmapbt root block
3121		 * because the rmap counter includes it while the btreeblks
3122		 * counter only tracks non-root blocks.
3123		 */
3124		allocbt_blks = pag->pagf_btreeblks;
3125		if (xfs_has_rmapbt(pag->pag_mount))
3126			allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3127		if (allocbt_blks > 0)
3128			atomic64_add(allocbt_blks,
3129					&pag->pag_mount->m_allocbt_blks);
 
 
3130	}
3131#ifdef DEBUG
3132	else if (!xfs_is_shutdown(pag->pag_mount)) {
3133		ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3134		ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3135		ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3136		ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3137		ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] ==
3138		       be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]));
3139		ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] ==
3140		       be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]));
3141	}
3142#endif
3143	if (agfbpp)
3144		*agfbpp = agfbp;
3145	else
3146		xfs_trans_brelse(tp, agfbp);
3147	return 0;
3148}
3149
3150/*
3151 * Allocate an extent (variable-size).
3152 * Depending on the allocation type, we either look in a single allocation
3153 * group or loop over the allocation groups to find the result.
3154 */
3155int				/* error */
3156xfs_alloc_vextent(
3157	struct xfs_alloc_arg	*args)	/* allocation argument structure */
 
 
3158{
3159	xfs_agblock_t		agsize;	/* allocation group size */
3160	int			error;
3161	int			flags;	/* XFS_ALLOC_FLAG_... locking flags */
3162	struct xfs_mount	*mp;	/* mount structure pointer */
3163	xfs_agnumber_t		sagno;	/* starting allocation group number */
3164	xfs_alloctype_t		type;	/* input allocation type */
3165	int			bump_rotor = 0;
3166	xfs_agnumber_t		rotorstep = xfs_rotorstep; /* inode32 agf stepper */
3167
3168	mp = args->mp;
3169	type = args->otype = args->type;
3170	args->agbno = NULLAGBLOCK;
3171	/*
3172	 * Just fix this up, for the case where the last a.g. is shorter
3173	 * (or there's only one a.g.) and the caller couldn't easily figure
3174	 * that out (xfs_bmap_alloc).
3175	 */
3176	agsize = mp->m_sb.sb_agblocks;
3177	if (args->maxlen > agsize)
3178		args->maxlen = agsize;
3179	if (args->alignment == 0)
3180		args->alignment = 1;
3181	ASSERT(XFS_FSB_TO_AGNO(mp, args->fsbno) < mp->m_sb.sb_agcount);
3182	ASSERT(XFS_FSB_TO_AGBNO(mp, args->fsbno) < agsize);
 
 
 
 
 
 
3183	ASSERT(args->minlen <= args->maxlen);
3184	ASSERT(args->minlen <= agsize);
3185	ASSERT(args->mod < args->prod);
3186	if (XFS_FSB_TO_AGNO(mp, args->fsbno) >= mp->m_sb.sb_agcount ||
3187	    XFS_FSB_TO_AGBNO(mp, args->fsbno) >= agsize ||
 
3188	    args->minlen > args->maxlen || args->minlen > agsize ||
3189	    args->mod >= args->prod) {
3190		args->fsbno = NULLFSBLOCK;
3191		trace_xfs_alloc_vextent_badargs(args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3192		return 0;
3193	}
 
 
 
3194
3195	switch (type) {
3196	case XFS_ALLOCTYPE_THIS_AG:
3197	case XFS_ALLOCTYPE_NEAR_BNO:
3198	case XFS_ALLOCTYPE_THIS_BNO:
3199		/*
3200		 * These three force us into a single a.g.
3201		 */
3202		args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3203		args->pag = xfs_perag_get(mp, args->agno);
3204		error = xfs_alloc_fix_freelist(args, 0);
3205		if (error) {
3206			trace_xfs_alloc_vextent_nofix(args);
3207			goto error0;
3208		}
3209		if (!args->agbp) {
3210			trace_xfs_alloc_vextent_noagbp(args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3211			break;
 
 
 
3212		}
3213		args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
3214		if ((error = xfs_alloc_ag_vextent(args)))
3215			goto error0;
3216		break;
3217	case XFS_ALLOCTYPE_START_BNO:
3218		/*
3219		 * Try near allocation first, then anywhere-in-ag after
3220		 * the first a.g. fails.
3221		 */
3222		if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3223		    xfs_is_inode32(mp)) {
3224			args->fsbno = XFS_AGB_TO_FSB(mp,
3225					((mp->m_agfrotor / rotorstep) %
3226					mp->m_sb.sb_agcount), 0);
3227			bump_rotor = 1;
3228		}
3229		args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
3230		args->type = XFS_ALLOCTYPE_NEAR_BNO;
3231		fallthrough;
3232	case XFS_ALLOCTYPE_FIRST_AG:
3233		/*
3234		 * Rotate through the allocation groups looking for a winner.
 
3235		 */
3236		if (type == XFS_ALLOCTYPE_FIRST_AG) {
3237			/*
3238			 * Start with allocation group given by bno.
3239			 */
3240			args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3241			args->type = XFS_ALLOCTYPE_THIS_AG;
3242			sagno = 0;
3243			flags = 0;
3244		} else {
3245			/*
3246			 * Start with the given allocation group.
3247			 */
3248			args->agno = sagno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3249			flags = XFS_ALLOC_FLAG_TRYLOCK;
3250		}
3251		/*
3252		 * Loop over allocation groups twice; first time with
3253		 * trylock set, second time without.
3254		 */
3255		for (;;) {
3256			args->pag = xfs_perag_get(mp, args->agno);
3257			error = xfs_alloc_fix_freelist(args, flags);
3258			if (error) {
3259				trace_xfs_alloc_vextent_nofix(args);
3260				goto error0;
3261			}
3262			/*
3263			 * If we get a buffer back then the allocation will fly.
3264			 */
3265			if (args->agbp) {
3266				if ((error = xfs_alloc_ag_vextent(args)))
3267					goto error0;
3268				break;
3269			}
3270
3271			trace_xfs_alloc_vextent_loopfailed(args);
 
 
 
 
 
 
 
 
 
3272
3273			/*
3274			 * Didn't work, figure out the next iteration.
3275			 */
3276			if (args->agno == sagno &&
3277			    type == XFS_ALLOCTYPE_START_BNO)
3278				args->type = XFS_ALLOCTYPE_THIS_AG;
3279			/*
3280			* For the first allocation, we can try any AG to get
3281			* space.  However, if we already have allocated a
3282			* block, we don't want to try AGs whose number is below
3283			* sagno. Otherwise, we may end up with out-of-order
3284			* locking of AGF, which might cause deadlock.
3285			*/
3286			if (++(args->agno) == mp->m_sb.sb_agcount) {
3287				if (args->tp->t_firstblock != NULLFSBLOCK)
3288					args->agno = sagno;
3289				else
3290					args->agno = 0;
3291			}
3292			/*
3293			 * Reached the starting a.g., must either be done
3294			 * or switch to non-trylock mode.
3295			 */
3296			if (args->agno == sagno) {
3297				if (flags == 0) {
3298					args->agbno = NULLAGBLOCK;
3299					trace_xfs_alloc_vextent_allfailed(args);
3300					break;
3301				}
3302
3303				flags = 0;
3304				if (type == XFS_ALLOCTYPE_START_BNO) {
3305					args->agbno = XFS_FSB_TO_AGBNO(mp,
3306						args->fsbno);
3307					args->type = XFS_ALLOCTYPE_NEAR_BNO;
3308				}
3309			}
3310			xfs_perag_put(args->pag);
3311		}
3312		if (bump_rotor) {
3313			if (args->agno == sagno)
3314				mp->m_agfrotor = (mp->m_agfrotor + 1) %
3315					(mp->m_sb.sb_agcount * rotorstep);
3316			else
3317				mp->m_agfrotor = (args->agno * rotorstep + 1) %
3318					(mp->m_sb.sb_agcount * rotorstep);
3319		}
3320		break;
3321	default:
3322		ASSERT(0);
3323		/* NOTREACHED */
 
 
 
 
 
 
 
 
 
 
 
 
3324	}
3325	if (args->agbno == NULLAGBLOCK)
3326		args->fsbno = NULLFSBLOCK;
3327	else {
3328		args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3329#ifdef DEBUG
3330		ASSERT(args->len >= args->minlen);
3331		ASSERT(args->len <= args->maxlen);
3332		ASSERT(args->agbno % args->alignment == 0);
3333		XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno),
3334			args->len);
3335#endif
3336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3337	}
3338	xfs_perag_put(args->pag);
3339	return 0;
3340error0:
3341	xfs_perag_put(args->pag);
3342	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3343}
3344
3345/* Ensure that the freelist is at full capacity. */
3346int
3347xfs_free_extent_fix_freelist(
3348	struct xfs_trans	*tp,
3349	struct xfs_perag	*pag,
3350	struct xfs_buf		**agbp)
3351{
3352	struct xfs_alloc_arg	args;
3353	int			error;
3354
3355	memset(&args, 0, sizeof(struct xfs_alloc_arg));
3356	args.tp = tp;
3357	args.mp = tp->t_mountp;
3358	args.agno = pag->pag_agno;
3359	args.pag = pag;
3360
3361	/*
3362	 * validate that the block number is legal - the enables us to detect
3363	 * and handle a silent filesystem corruption rather than crashing.
3364	 */
3365	if (args.agno >= args.mp->m_sb.sb_agcount)
3366		return -EFSCORRUPTED;
3367
3368	error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3369	if (error)
3370		return error;
3371
3372	*agbp = args.agbp;
3373	return 0;
3374}
3375
3376/*
3377 * Free an extent.
3378 * Just break up the extent address and hand off to xfs_free_ag_extent
3379 * after fixing up the freelist.
3380 */
3381int
3382__xfs_free_extent(
3383	struct xfs_trans		*tp,
3384	xfs_fsblock_t			bno,
 
3385	xfs_extlen_t			len,
3386	const struct xfs_owner_info	*oinfo,
3387	enum xfs_ag_resv_type		type,
3388	bool				skip_discard)
3389{
3390	struct xfs_mount		*mp = tp->t_mountp;
3391	struct xfs_buf			*agbp;
3392	xfs_agnumber_t			agno = XFS_FSB_TO_AGNO(mp, bno);
3393	xfs_agblock_t			agbno = XFS_FSB_TO_AGBNO(mp, bno);
3394	struct xfs_agf			*agf;
3395	int				error;
3396	unsigned int			busy_flags = 0;
3397	struct xfs_perag		*pag;
3398
3399	ASSERT(len != 0);
3400	ASSERT(type != XFS_AG_RESV_AGFL);
3401
3402	if (XFS_TEST_ERROR(false, mp,
3403			XFS_ERRTAG_FREE_EXTENT))
3404		return -EIO;
3405
3406	pag = xfs_perag_get(mp, agno);
3407	error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
3408	if (error)
3409		goto err;
 
 
 
 
3410	agf = agbp->b_addr;
3411
3412	if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
 
3413		error = -EFSCORRUPTED;
3414		goto err_release;
3415	}
3416
3417	/* validate the extent size is legal now we have the agf locked */
3418	if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
 
3419		error = -EFSCORRUPTED;
3420		goto err_release;
3421	}
3422
3423	error = xfs_free_ag_extent(tp, agbp, agno, agbno, len, oinfo, type);
 
3424	if (error)
3425		goto err_release;
3426
3427	if (skip_discard)
3428		busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
3429	xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
3430	xfs_perag_put(pag);
3431	return 0;
3432
3433err_release:
3434	xfs_trans_brelse(tp, agbp);
3435err:
3436	xfs_perag_put(pag);
3437	return error;
3438}
3439
3440struct xfs_alloc_query_range_info {
3441	xfs_alloc_query_range_fn	fn;
3442	void				*priv;
3443};
3444
3445/* Format btree record and pass to our callback. */
3446STATIC int
3447xfs_alloc_query_range_helper(
3448	struct xfs_btree_cur		*cur,
3449	const union xfs_btree_rec	*rec,
3450	void				*priv)
3451{
3452	struct xfs_alloc_query_range_info	*query = priv;
3453	struct xfs_alloc_rec_incore		irec;
 
 
 
 
 
 
3454
3455	irec.ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
3456	irec.ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
3457	return query->fn(cur, &irec, query->priv);
3458}
3459
3460/* Find all free space within a given range of blocks. */
3461int
3462xfs_alloc_query_range(
3463	struct xfs_btree_cur			*cur,
3464	const struct xfs_alloc_rec_incore	*low_rec,
3465	const struct xfs_alloc_rec_incore	*high_rec,
3466	xfs_alloc_query_range_fn		fn,
3467	void					*priv)
3468{
3469	union xfs_btree_irec			low_brec;
3470	union xfs_btree_irec			high_brec;
3471	struct xfs_alloc_query_range_info	query;
3472
3473	ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3474	low_brec.a = *low_rec;
3475	high_brec.a = *high_rec;
3476	query.priv = priv;
3477	query.fn = fn;
3478	return xfs_btree_query_range(cur, &low_brec, &high_brec,
3479			xfs_alloc_query_range_helper, &query);
3480}
3481
3482/* Find all free space records. */
3483int
3484xfs_alloc_query_all(
3485	struct xfs_btree_cur			*cur,
3486	xfs_alloc_query_range_fn		fn,
3487	void					*priv)
3488{
3489	struct xfs_alloc_query_range_info	query;
3490
3491	ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3492	query.priv = priv;
3493	query.fn = fn;
3494	return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
3495}
3496
3497/* Is there a record covering a given extent? */
 
 
 
3498int
3499xfs_alloc_has_record(
3500	struct xfs_btree_cur	*cur,
3501	xfs_agblock_t		bno,
3502	xfs_extlen_t		len,
3503	bool			*exists)
3504{
3505	union xfs_btree_irec	low;
3506	union xfs_btree_irec	high;
3507
3508	memset(&low, 0, sizeof(low));
3509	low.a.ar_startblock = bno;
3510	memset(&high, 0xFF, sizeof(high));
3511	high.a.ar_startblock = bno + len - 1;
3512
3513	return xfs_btree_has_record(cur, &low, &high, exists);
3514}
3515
3516/*
3517 * Walk all the blocks in the AGFL.  The @walk_fn can return any negative
3518 * error code or XFS_ITER_*.
3519 */
3520int
3521xfs_agfl_walk(
3522	struct xfs_mount	*mp,
3523	struct xfs_agf		*agf,
3524	struct xfs_buf		*agflbp,
3525	xfs_agfl_walk_fn	walk_fn,
3526	void			*priv)
3527{
3528	__be32			*agfl_bno;
3529	unsigned int		i;
3530	int			error;
3531
3532	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3533	i = be32_to_cpu(agf->agf_flfirst);
3534
3535	/* Nothing to walk in an empty AGFL. */
3536	if (agf->agf_flcount == cpu_to_be32(0))
3537		return 0;
3538
3539	/* Otherwise, walk from first to last, wrapping as needed. */
3540	for (;;) {
3541		error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
3542		if (error)
3543			return error;
3544		if (i == be32_to_cpu(agf->agf_fllast))
3545			break;
3546		if (++i == xfs_agfl_size(mp))
3547			i = 0;
3548	}
3549
3550	return 0;
3551}
3552
3553int __init
3554xfs_extfree_intent_init_cache(void)
3555{
3556	xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
3557			sizeof(struct xfs_extent_free_item),
3558			0, 0, NULL);
3559
3560	return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
3561}
3562
3563void
3564xfs_extfree_intent_destroy_cache(void)
3565{
3566	kmem_cache_destroy(xfs_extfree_item_cache);
3567	xfs_extfree_item_cache = NULL;
3568}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_format.h"
   9#include "xfs_log_format.h"
  10#include "xfs_shared.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_mount.h"
  14#include "xfs_defer.h"
  15#include "xfs_btree.h"
  16#include "xfs_rmap.h"
  17#include "xfs_alloc_btree.h"
  18#include "xfs_alloc.h"
  19#include "xfs_extent_busy.h"
  20#include "xfs_errortag.h"
  21#include "xfs_error.h"
  22#include "xfs_trace.h"
  23#include "xfs_trans.h"
  24#include "xfs_buf_item.h"
  25#include "xfs_log.h"
  26#include "xfs_ag.h"
  27#include "xfs_ag_resv.h"
  28#include "xfs_bmap.h"
  29#include "xfs_health.h"
  30
  31struct kmem_cache	*xfs_extfree_item_cache;
  32
  33struct workqueue_struct *xfs_alloc_wq;
  34
  35#define XFS_ABSDIFF(a,b)	(((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
  36
  37#define	XFSA_FIXUP_BNO_OK	1
  38#define	XFSA_FIXUP_CNT_OK	2
  39
 
 
 
 
  40/*
  41 * Size of the AGFL.  For CRC-enabled filesystes we steal a couple of slots in
  42 * the beginning of the block for a proper header with the location information
  43 * and CRC.
  44 */
  45unsigned int
  46xfs_agfl_size(
  47	struct xfs_mount	*mp)
  48{
  49	unsigned int		size = mp->m_sb.sb_sectsize;
  50
  51	if (xfs_has_crc(mp))
  52		size -= sizeof(struct xfs_agfl);
  53
  54	return size / sizeof(xfs_agblock_t);
  55}
  56
  57unsigned int
  58xfs_refc_block(
  59	struct xfs_mount	*mp)
  60{
  61	if (xfs_has_rmapbt(mp))
  62		return XFS_RMAP_BLOCK(mp) + 1;
  63	if (xfs_has_finobt(mp))
  64		return XFS_FIBT_BLOCK(mp) + 1;
  65	return XFS_IBT_BLOCK(mp) + 1;
  66}
  67
  68xfs_extlen_t
  69xfs_prealloc_blocks(
  70	struct xfs_mount	*mp)
  71{
  72	if (xfs_has_reflink(mp))
  73		return xfs_refc_block(mp) + 1;
  74	if (xfs_has_rmapbt(mp))
  75		return XFS_RMAP_BLOCK(mp) + 1;
  76	if (xfs_has_finobt(mp))
  77		return XFS_FIBT_BLOCK(mp) + 1;
  78	return XFS_IBT_BLOCK(mp) + 1;
  79}
  80
  81/*
  82 * The number of blocks per AG that we withhold from xfs_mod_fdblocks to
  83 * guarantee that we can refill the AGFL prior to allocating space in a nearly
  84 * full AG.  Although the space described by the free space btrees, the
  85 * blocks used by the freesp btrees themselves, and the blocks owned by the
  86 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
  87 * free space in the AG drop so low that the free space btrees cannot refill an
  88 * empty AGFL up to the minimum level.  Rather than grind through empty AGs
  89 * until the fs goes down, we subtract this many AG blocks from the incore
  90 * fdblocks to ensure user allocation does not overcommit the space the
  91 * filesystem needs for the AGFLs.  The rmap btree uses a per-AG reservation to
  92 * withhold space from xfs_mod_fdblocks, so we do not account for that here.
  93 */
  94#define XFS_ALLOCBT_AGFL_RESERVE	4
  95
  96/*
  97 * Compute the number of blocks that we set aside to guarantee the ability to
  98 * refill the AGFL and handle a full bmap btree split.
  99 *
 100 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
 101 * AGF buffer (PV 947395), we place constraints on the relationship among
 102 * actual allocations for data blocks, freelist blocks, and potential file data
 103 * bmap btree blocks. However, these restrictions may result in no actual space
 104 * allocated for a delayed extent, for example, a data block in a certain AG is
 105 * allocated but there is no additional block for the additional bmap btree
 106 * block due to a split of the bmap btree of the file. The result of this may
 107 * lead to an infinite loop when the file gets flushed to disk and all delayed
 108 * extents need to be actually allocated. To get around this, we explicitly set
 109 * aside a few blocks which will not be reserved in delayed allocation.
 110 *
 111 * For each AG, we need to reserve enough blocks to replenish a totally empty
 112 * AGFL and 4 more to handle a potential split of the file's bmap btree.
 113 */
 114unsigned int
 115xfs_alloc_set_aside(
 116	struct xfs_mount	*mp)
 117{
 118	return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
 119}
 120
 121/*
 122 * When deciding how much space to allocate out of an AG, we limit the
 123 * allocation maximum size to the size the AG. However, we cannot use all the
 124 * blocks in the AG - some are permanently used by metadata. These
 125 * blocks are generally:
 126 *	- the AG superblock, AGF, AGI and AGFL
 127 *	- the AGF (bno and cnt) and AGI btree root blocks, and optionally
 128 *	  the AGI free inode and rmap btree root blocks.
 129 *	- blocks on the AGFL according to xfs_alloc_set_aside() limits
 130 *	- the rmapbt root block
 131 *
 132 * The AG headers are sector sized, so the amount of space they take up is
 133 * dependent on filesystem geometry. The others are all single blocks.
 134 */
 135unsigned int
 136xfs_alloc_ag_max_usable(
 137	struct xfs_mount	*mp)
 138{
 139	unsigned int		blocks;
 140
 141	blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
 142	blocks += XFS_ALLOCBT_AGFL_RESERVE;
 143	blocks += 3;			/* AGF, AGI btree root blocks */
 144	if (xfs_has_finobt(mp))
 145		blocks++;		/* finobt root block */
 146	if (xfs_has_rmapbt(mp))
 147		blocks++;		/* rmap root block */
 148	if (xfs_has_reflink(mp))
 149		blocks++;		/* refcount root block */
 150
 151	return mp->m_sb.sb_agblocks - blocks;
 152}
 153
 154
 155static int
 156xfs_alloc_lookup(
 157	struct xfs_btree_cur	*cur,
 158	xfs_lookup_t		dir,
 159	xfs_agblock_t		bno,
 160	xfs_extlen_t		len,
 161	int			*stat)
 162{
 163	int			error;
 164
 165	cur->bc_rec.a.ar_startblock = bno;
 166	cur->bc_rec.a.ar_blockcount = len;
 167	error = xfs_btree_lookup(cur, dir, stat);
 168	if (*stat == 1)
 169		cur->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
 170	else
 171		cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
 172	return error;
 173}
 174
 175/*
 176 * Lookup the record equal to [bno, len] in the btree given by cur.
 177 */
 178static inline int				/* error */
 179xfs_alloc_lookup_eq(
 180	struct xfs_btree_cur	*cur,	/* btree cursor */
 181	xfs_agblock_t		bno,	/* starting block of extent */
 182	xfs_extlen_t		len,	/* length of extent */
 183	int			*stat)	/* success/failure */
 184{
 185	return xfs_alloc_lookup(cur, XFS_LOOKUP_EQ, bno, len, stat);
 
 
 
 
 
 
 186}
 187
 188/*
 189 * Lookup the first record greater than or equal to [bno, len]
 190 * in the btree given by cur.
 191 */
 192int				/* error */
 193xfs_alloc_lookup_ge(
 194	struct xfs_btree_cur	*cur,	/* btree cursor */
 195	xfs_agblock_t		bno,	/* starting block of extent */
 196	xfs_extlen_t		len,	/* length of extent */
 197	int			*stat)	/* success/failure */
 198{
 199	return xfs_alloc_lookup(cur, XFS_LOOKUP_GE, bno, len, stat);
 
 
 
 
 
 
 200}
 201
 202/*
 203 * Lookup the first record less than or equal to [bno, len]
 204 * in the btree given by cur.
 205 */
 206int					/* error */
 207xfs_alloc_lookup_le(
 208	struct xfs_btree_cur	*cur,	/* btree cursor */
 209	xfs_agblock_t		bno,	/* starting block of extent */
 210	xfs_extlen_t		len,	/* length of extent */
 211	int			*stat)	/* success/failure */
 212{
 213	return xfs_alloc_lookup(cur, XFS_LOOKUP_LE, bno, len, stat);
 
 
 
 
 
 214}
 215
 216static inline bool
 217xfs_alloc_cur_active(
 218	struct xfs_btree_cur	*cur)
 219{
 220	return cur && (cur->bc_flags & XFS_BTREE_ALLOCBT_ACTIVE);
 221}
 222
 223/*
 224 * Update the record referred to by cur to the value given
 225 * by [bno, len].
 226 * This either works (return 0) or gets an EFSCORRUPTED error.
 227 */
 228STATIC int				/* error */
 229xfs_alloc_update(
 230	struct xfs_btree_cur	*cur,	/* btree cursor */
 231	xfs_agblock_t		bno,	/* starting block of extent */
 232	xfs_extlen_t		len)	/* length of extent */
 233{
 234	union xfs_btree_rec	rec;
 235
 236	rec.alloc.ar_startblock = cpu_to_be32(bno);
 237	rec.alloc.ar_blockcount = cpu_to_be32(len);
 238	return xfs_btree_update(cur, &rec);
 239}
 240
 241/* Convert the ondisk btree record to its incore representation. */
 242void
 243xfs_alloc_btrec_to_irec(
 244	const union xfs_btree_rec	*rec,
 245	struct xfs_alloc_rec_incore	*irec)
 246{
 247	irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
 248	irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
 249}
 250
 251/* Simple checks for free space records. */
 252xfs_failaddr_t
 253xfs_alloc_check_irec(
 254	struct xfs_perag			*pag,
 255	const struct xfs_alloc_rec_incore	*irec)
 256{
 257	if (irec->ar_blockcount == 0)
 258		return __this_address;
 259
 260	/* check for valid extent range, including overflow */
 261	if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount))
 262		return __this_address;
 263
 264	return NULL;
 265}
 266
 267static inline int
 268xfs_alloc_complain_bad_rec(
 269	struct xfs_btree_cur		*cur,
 270	xfs_failaddr_t			fa,
 271	const struct xfs_alloc_rec_incore *irec)
 272{
 273	struct xfs_mount		*mp = cur->bc_mp;
 274
 275	xfs_warn(mp,
 276		"%sbt record corruption in AG %d detected at %pS!",
 277		cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa);
 278	xfs_warn(mp,
 279		"start block 0x%x block count 0x%x", irec->ar_startblock,
 280		irec->ar_blockcount);
 281	xfs_btree_mark_sick(cur);
 282	return -EFSCORRUPTED;
 283}
 284
 285/*
 286 * Get the data from the pointed-to record.
 287 */
 288int					/* error */
 289xfs_alloc_get_rec(
 290	struct xfs_btree_cur	*cur,	/* btree cursor */
 291	xfs_agblock_t		*bno,	/* output: starting block of extent */
 292	xfs_extlen_t		*len,	/* output: length of extent */
 293	int			*stat)	/* output: success/failure */
 294{
 295	struct xfs_alloc_rec_incore irec;
 
 296	union xfs_btree_rec	*rec;
 297	xfs_failaddr_t		fa;
 298	int			error;
 299
 300	error = xfs_btree_get_rec(cur, &rec, stat);
 301	if (error || !(*stat))
 302		return error;
 303
 304	xfs_alloc_btrec_to_irec(rec, &irec);
 305	fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
 306	if (fa)
 307		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
 
 
 
 
 
 308
 309	*bno = irec.ar_startblock;
 310	*len = irec.ar_blockcount;
 311	return 0;
 
 
 
 
 
 
 
 
 
 312}
 313
 314/*
 315 * Compute aligned version of the found extent.
 316 * Takes alignment and min length into account.
 317 */
 318STATIC bool
 319xfs_alloc_compute_aligned(
 320	xfs_alloc_arg_t	*args,		/* allocation argument structure */
 321	xfs_agblock_t	foundbno,	/* starting block in found extent */
 322	xfs_extlen_t	foundlen,	/* length in found extent */
 323	xfs_agblock_t	*resbno,	/* result block number */
 324	xfs_extlen_t	*reslen,	/* result length */
 325	unsigned	*busy_gen)
 326{
 327	xfs_agblock_t	bno = foundbno;
 328	xfs_extlen_t	len = foundlen;
 329	xfs_extlen_t	diff;
 330	bool		busy;
 331
 332	/* Trim busy sections out of found extent */
 333	busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
 334
 335	/*
 336	 * If we have a largish extent that happens to start before min_agbno,
 337	 * see if we can shift it into range...
 338	 */
 339	if (bno < args->min_agbno && bno + len > args->min_agbno) {
 340		diff = args->min_agbno - bno;
 341		if (len > diff) {
 342			bno += diff;
 343			len -= diff;
 344		}
 345	}
 346
 347	if (args->alignment > 1 && len >= args->minlen) {
 348		xfs_agblock_t	aligned_bno = roundup(bno, args->alignment);
 349
 350		diff = aligned_bno - bno;
 351
 352		*resbno = aligned_bno;
 353		*reslen = diff >= len ? 0 : len - diff;
 354	} else {
 355		*resbno = bno;
 356		*reslen = len;
 357	}
 358
 359	return busy;
 360}
 361
 362/*
 363 * Compute best start block and diff for "near" allocations.
 364 * freelen >= wantlen already checked by caller.
 365 */
 366STATIC xfs_extlen_t			/* difference value (absolute) */
 367xfs_alloc_compute_diff(
 368	xfs_agblock_t	wantbno,	/* target starting block */
 369	xfs_extlen_t	wantlen,	/* target length */
 370	xfs_extlen_t	alignment,	/* target alignment */
 371	int		datatype,	/* are we allocating data? */
 372	xfs_agblock_t	freebno,	/* freespace's starting block */
 373	xfs_extlen_t	freelen,	/* freespace's length */
 374	xfs_agblock_t	*newbnop)	/* result: best start block from free */
 375{
 376	xfs_agblock_t	freeend;	/* end of freespace extent */
 377	xfs_agblock_t	newbno1;	/* return block number */
 378	xfs_agblock_t	newbno2;	/* other new block number */
 379	xfs_extlen_t	newlen1=0;	/* length with newbno1 */
 380	xfs_extlen_t	newlen2=0;	/* length with newbno2 */
 381	xfs_agblock_t	wantend;	/* end of target extent */
 382	bool		userdata = datatype & XFS_ALLOC_USERDATA;
 383
 384	ASSERT(freelen >= wantlen);
 385	freeend = freebno + freelen;
 386	wantend = wantbno + wantlen;
 387	/*
 388	 * We want to allocate from the start of a free extent if it is past
 389	 * the desired block or if we are allocating user data and the free
 390	 * extent is before desired block. The second case is there to allow
 391	 * for contiguous allocation from the remaining free space if the file
 392	 * grows in the short term.
 393	 */
 394	if (freebno >= wantbno || (userdata && freeend < wantend)) {
 395		if ((newbno1 = roundup(freebno, alignment)) >= freeend)
 396			newbno1 = NULLAGBLOCK;
 397	} else if (freeend >= wantend && alignment > 1) {
 398		newbno1 = roundup(wantbno, alignment);
 399		newbno2 = newbno1 - alignment;
 400		if (newbno1 >= freeend)
 401			newbno1 = NULLAGBLOCK;
 402		else
 403			newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
 404		if (newbno2 < freebno)
 405			newbno2 = NULLAGBLOCK;
 406		else
 407			newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
 408		if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
 409			if (newlen1 < newlen2 ||
 410			    (newlen1 == newlen2 &&
 411			     XFS_ABSDIFF(newbno1, wantbno) >
 412			     XFS_ABSDIFF(newbno2, wantbno)))
 413				newbno1 = newbno2;
 414		} else if (newbno2 != NULLAGBLOCK)
 415			newbno1 = newbno2;
 416	} else if (freeend >= wantend) {
 417		newbno1 = wantbno;
 418	} else if (alignment > 1) {
 419		newbno1 = roundup(freeend - wantlen, alignment);
 420		if (newbno1 > freeend - wantlen &&
 421		    newbno1 - alignment >= freebno)
 422			newbno1 -= alignment;
 423		else if (newbno1 >= freeend)
 424			newbno1 = NULLAGBLOCK;
 425	} else
 426		newbno1 = freeend - wantlen;
 427	*newbnop = newbno1;
 428	return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
 429}
 430
 431/*
 432 * Fix up the length, based on mod and prod.
 433 * len should be k * prod + mod for some k.
 434 * If len is too small it is returned unchanged.
 435 * If len hits maxlen it is left alone.
 436 */
 437STATIC void
 438xfs_alloc_fix_len(
 439	xfs_alloc_arg_t	*args)		/* allocation argument structure */
 440{
 441	xfs_extlen_t	k;
 442	xfs_extlen_t	rlen;
 443
 444	ASSERT(args->mod < args->prod);
 445	rlen = args->len;
 446	ASSERT(rlen >= args->minlen);
 447	ASSERT(rlen <= args->maxlen);
 448	if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
 449	    (args->mod == 0 && rlen < args->prod))
 450		return;
 451	k = rlen % args->prod;
 452	if (k == args->mod)
 453		return;
 454	if (k > args->mod)
 455		rlen = rlen - (k - args->mod);
 456	else
 457		rlen = rlen - args->prod + (args->mod - k);
 458	/* casts to (int) catch length underflows */
 459	if ((int)rlen < (int)args->minlen)
 460		return;
 461	ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
 462	ASSERT(rlen % args->prod == args->mod);
 463	ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
 464		rlen + args->minleft);
 465	args->len = rlen;
 466}
 467
 468/*
 469 * Update the two btrees, logically removing from freespace the extent
 470 * starting at rbno, rlen blocks.  The extent is contained within the
 471 * actual (current) free extent fbno for flen blocks.
 472 * Flags are passed in indicating whether the cursors are set to the
 473 * relevant records.
 474 */
 475STATIC int				/* error code */
 476xfs_alloc_fixup_trees(
 477	struct xfs_btree_cur *cnt_cur,	/* cursor for by-size btree */
 478	struct xfs_btree_cur *bno_cur,	/* cursor for by-block btree */
 479	xfs_agblock_t	fbno,		/* starting block of free extent */
 480	xfs_extlen_t	flen,		/* length of free extent */
 481	xfs_agblock_t	rbno,		/* starting block of returned extent */
 482	xfs_extlen_t	rlen,		/* length of returned extent */
 483	int		flags)		/* flags, XFSA_FIXUP_... */
 484{
 485	int		error;		/* error code */
 486	int		i;		/* operation results */
 487	xfs_agblock_t	nfbno1;		/* first new free startblock */
 488	xfs_agblock_t	nfbno2;		/* second new free startblock */
 489	xfs_extlen_t	nflen1=0;	/* first new free length */
 490	xfs_extlen_t	nflen2=0;	/* second new free length */
 491	struct xfs_mount *mp;
 492
 493	mp = cnt_cur->bc_mp;
 494
 495	/*
 496	 * Look up the record in the by-size tree if necessary.
 497	 */
 498	if (flags & XFSA_FIXUP_CNT_OK) {
 499#ifdef DEBUG
 500		if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
 501			return error;
 502		if (XFS_IS_CORRUPT(mp,
 503				   i != 1 ||
 504				   nfbno1 != fbno ||
 505				   nflen1 != flen)) {
 506			xfs_btree_mark_sick(cnt_cur);
 507			return -EFSCORRUPTED;
 508		}
 509#endif
 510	} else {
 511		if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
 512			return error;
 513		if (XFS_IS_CORRUPT(mp, i != 1)) {
 514			xfs_btree_mark_sick(cnt_cur);
 515			return -EFSCORRUPTED;
 516		}
 517	}
 518	/*
 519	 * Look up the record in the by-block tree if necessary.
 520	 */
 521	if (flags & XFSA_FIXUP_BNO_OK) {
 522#ifdef DEBUG
 523		if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
 524			return error;
 525		if (XFS_IS_CORRUPT(mp,
 526				   i != 1 ||
 527				   nfbno1 != fbno ||
 528				   nflen1 != flen)) {
 529			xfs_btree_mark_sick(bno_cur);
 530			return -EFSCORRUPTED;
 531		}
 532#endif
 533	} else {
 534		if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
 535			return error;
 536		if (XFS_IS_CORRUPT(mp, i != 1)) {
 537			xfs_btree_mark_sick(bno_cur);
 538			return -EFSCORRUPTED;
 539		}
 540	}
 541
 542#ifdef DEBUG
 543	if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
 544		struct xfs_btree_block	*bnoblock;
 545		struct xfs_btree_block	*cntblock;
 546
 547		bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
 548		cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
 549
 550		if (XFS_IS_CORRUPT(mp,
 551				   bnoblock->bb_numrecs !=
 552				   cntblock->bb_numrecs)) {
 553			xfs_btree_mark_sick(bno_cur);
 554			return -EFSCORRUPTED;
 555		}
 556	}
 557#endif
 558
 559	/*
 560	 * Deal with all four cases: the allocated record is contained
 561	 * within the freespace record, so we can have new freespace
 562	 * at either (or both) end, or no freespace remaining.
 563	 */
 564	if (rbno == fbno && rlen == flen)
 565		nfbno1 = nfbno2 = NULLAGBLOCK;
 566	else if (rbno == fbno) {
 567		nfbno1 = rbno + rlen;
 568		nflen1 = flen - rlen;
 569		nfbno2 = NULLAGBLOCK;
 570	} else if (rbno + rlen == fbno + flen) {
 571		nfbno1 = fbno;
 572		nflen1 = flen - rlen;
 573		nfbno2 = NULLAGBLOCK;
 574	} else {
 575		nfbno1 = fbno;
 576		nflen1 = rbno - fbno;
 577		nfbno2 = rbno + rlen;
 578		nflen2 = (fbno + flen) - nfbno2;
 579	}
 580	/*
 581	 * Delete the entry from the by-size btree.
 582	 */
 583	if ((error = xfs_btree_delete(cnt_cur, &i)))
 584		return error;
 585	if (XFS_IS_CORRUPT(mp, i != 1)) {
 586		xfs_btree_mark_sick(cnt_cur);
 587		return -EFSCORRUPTED;
 588	}
 589	/*
 590	 * Add new by-size btree entry(s).
 591	 */
 592	if (nfbno1 != NULLAGBLOCK) {
 593		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
 594			return error;
 595		if (XFS_IS_CORRUPT(mp, i != 0)) {
 596			xfs_btree_mark_sick(cnt_cur);
 597			return -EFSCORRUPTED;
 598		}
 599		if ((error = xfs_btree_insert(cnt_cur, &i)))
 600			return error;
 601		if (XFS_IS_CORRUPT(mp, i != 1)) {
 602			xfs_btree_mark_sick(cnt_cur);
 603			return -EFSCORRUPTED;
 604		}
 605	}
 606	if (nfbno2 != NULLAGBLOCK) {
 607		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
 608			return error;
 609		if (XFS_IS_CORRUPT(mp, i != 0)) {
 610			xfs_btree_mark_sick(cnt_cur);
 611			return -EFSCORRUPTED;
 612		}
 613		if ((error = xfs_btree_insert(cnt_cur, &i)))
 614			return error;
 615		if (XFS_IS_CORRUPT(mp, i != 1)) {
 616			xfs_btree_mark_sick(cnt_cur);
 617			return -EFSCORRUPTED;
 618		}
 619	}
 620	/*
 621	 * Fix up the by-block btree entry(s).
 622	 */
 623	if (nfbno1 == NULLAGBLOCK) {
 624		/*
 625		 * No remaining freespace, just delete the by-block tree entry.
 626		 */
 627		if ((error = xfs_btree_delete(bno_cur, &i)))
 628			return error;
 629		if (XFS_IS_CORRUPT(mp, i != 1)) {
 630			xfs_btree_mark_sick(bno_cur);
 631			return -EFSCORRUPTED;
 632		}
 633	} else {
 634		/*
 635		 * Update the by-block entry to start later|be shorter.
 636		 */
 637		if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
 638			return error;
 639	}
 640	if (nfbno2 != NULLAGBLOCK) {
 641		/*
 642		 * 2 resulting free entries, need to add one.
 643		 */
 644		if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
 645			return error;
 646		if (XFS_IS_CORRUPT(mp, i != 0)) {
 647			xfs_btree_mark_sick(bno_cur);
 648			return -EFSCORRUPTED;
 649		}
 650		if ((error = xfs_btree_insert(bno_cur, &i)))
 651			return error;
 652		if (XFS_IS_CORRUPT(mp, i != 1)) {
 653			xfs_btree_mark_sick(bno_cur);
 654			return -EFSCORRUPTED;
 655		}
 656	}
 657	return 0;
 658}
 659
 660/*
 661 * We do not verify the AGFL contents against AGF-based index counters here,
 662 * even though we may have access to the perag that contains shadow copies. We
 663 * don't know if the AGF based counters have been checked, and if they have they
 664 * still may be inconsistent because they haven't yet been reset on the first
 665 * allocation after the AGF has been read in.
 666 *
 667 * This means we can only check that all agfl entries contain valid or null
 668 * values because we can't reliably determine the active range to exclude
 669 * NULLAGBNO as a valid value.
 670 *
 671 * However, we can't even do that for v4 format filesystems because there are
 672 * old versions of mkfs out there that does not initialise the AGFL to known,
 673 * verifiable values. HEnce we can't tell the difference between a AGFL block
 674 * allocated by mkfs and a corrupted AGFL block here on v4 filesystems.
 675 *
 676 * As a result, we can only fully validate AGFL block numbers when we pull them
 677 * from the freelist in xfs_alloc_get_freelist().
 678 */
 679static xfs_failaddr_t
 680xfs_agfl_verify(
 681	struct xfs_buf	*bp)
 682{
 683	struct xfs_mount *mp = bp->b_mount;
 684	struct xfs_agfl	*agfl = XFS_BUF_TO_AGFL(bp);
 685	__be32		*agfl_bno = xfs_buf_to_agfl_bno(bp);
 686	int		i;
 687
 
 
 
 
 
 
 688	if (!xfs_has_crc(mp))
 689		return NULL;
 690
 691	if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
 692		return __this_address;
 693	if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
 694		return __this_address;
 695	/*
 696	 * during growfs operations, the perag is not fully initialised,
 697	 * so we can't use it for any useful checking. growfs ensures we can't
 698	 * use it by using uncached buffers that don't have the perag attached
 699	 * so we can detect and avoid this problem.
 700	 */
 701	if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
 702		return __this_address;
 703
 704	for (i = 0; i < xfs_agfl_size(mp); i++) {
 705		if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
 706		    be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
 707			return __this_address;
 708	}
 709
 710	if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
 711		return __this_address;
 712	return NULL;
 713}
 714
 715static void
 716xfs_agfl_read_verify(
 717	struct xfs_buf	*bp)
 718{
 719	struct xfs_mount *mp = bp->b_mount;
 720	xfs_failaddr_t	fa;
 721
 722	/*
 723	 * There is no verification of non-crc AGFLs because mkfs does not
 724	 * initialise the AGFL to zero or NULL. Hence the only valid part of the
 725	 * AGFL is what the AGF says is active. We can't get to the AGF, so we
 726	 * can't verify just those entries are valid.
 727	 */
 728	if (!xfs_has_crc(mp))
 729		return;
 730
 731	if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
 732		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 733	else {
 734		fa = xfs_agfl_verify(bp);
 735		if (fa)
 736			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 737	}
 738}
 739
 740static void
 741xfs_agfl_write_verify(
 742	struct xfs_buf	*bp)
 743{
 744	struct xfs_mount	*mp = bp->b_mount;
 745	struct xfs_buf_log_item	*bip = bp->b_log_item;
 746	xfs_failaddr_t		fa;
 747
 748	/* no verification of non-crc AGFLs */
 749	if (!xfs_has_crc(mp))
 750		return;
 751
 752	fa = xfs_agfl_verify(bp);
 753	if (fa) {
 754		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 755		return;
 756	}
 757
 758	if (bip)
 759		XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 760
 761	xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
 762}
 763
 764const struct xfs_buf_ops xfs_agfl_buf_ops = {
 765	.name = "xfs_agfl",
 766	.magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
 767	.verify_read = xfs_agfl_read_verify,
 768	.verify_write = xfs_agfl_write_verify,
 769	.verify_struct = xfs_agfl_verify,
 770};
 771
 772/*
 773 * Read in the allocation group free block array.
 774 */
 775int
 776xfs_alloc_read_agfl(
 777	struct xfs_perag	*pag,
 778	struct xfs_trans	*tp,
 779	struct xfs_buf		**bpp)
 780{
 781	struct xfs_mount	*mp = pag->pag_mount;
 782	struct xfs_buf		*bp;
 783	int			error;
 784
 785	error = xfs_trans_read_buf(
 786			mp, tp, mp->m_ddev_targp,
 787			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)),
 788			XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
 789	if (xfs_metadata_is_sick(error))
 790		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGFL);
 791	if (error)
 792		return error;
 793	xfs_buf_set_ref(bp, XFS_AGFL_REF);
 794	*bpp = bp;
 795	return 0;
 796}
 797
 798STATIC int
 799xfs_alloc_update_counters(
 800	struct xfs_trans	*tp,
 801	struct xfs_buf		*agbp,
 802	long			len)
 803{
 804	struct xfs_agf		*agf = agbp->b_addr;
 805
 806	agbp->b_pag->pagf_freeblks += len;
 807	be32_add_cpu(&agf->agf_freeblks, len);
 808
 809	if (unlikely(be32_to_cpu(agf->agf_freeblks) >
 810		     be32_to_cpu(agf->agf_length))) {
 811		xfs_buf_mark_corrupt(agbp);
 812		xfs_ag_mark_sick(agbp->b_pag, XFS_SICK_AG_AGF);
 813		return -EFSCORRUPTED;
 814	}
 815
 816	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
 817	return 0;
 818}
 819
 820/*
 821 * Block allocation algorithm and data structures.
 822 */
 823struct xfs_alloc_cur {
 824	struct xfs_btree_cur		*cnt;	/* btree cursors */
 825	struct xfs_btree_cur		*bnolt;
 826	struct xfs_btree_cur		*bnogt;
 827	xfs_extlen_t			cur_len;/* current search length */
 828	xfs_agblock_t			rec_bno;/* extent startblock */
 829	xfs_extlen_t			rec_len;/* extent length */
 830	xfs_agblock_t			bno;	/* alloc bno */
 831	xfs_extlen_t			len;	/* alloc len */
 832	xfs_extlen_t			diff;	/* diff from search bno */
 833	unsigned int			busy_gen;/* busy state */
 834	bool				busy;
 835};
 836
 837/*
 838 * Set up cursors, etc. in the extent allocation cursor. This function can be
 839 * called multiple times to reset an initialized structure without having to
 840 * reallocate cursors.
 841 */
 842static int
 843xfs_alloc_cur_setup(
 844	struct xfs_alloc_arg	*args,
 845	struct xfs_alloc_cur	*acur)
 846{
 847	int			error;
 848	int			i;
 849
 
 
 850	acur->cur_len = args->maxlen;
 851	acur->rec_bno = 0;
 852	acur->rec_len = 0;
 853	acur->bno = 0;
 854	acur->len = 0;
 855	acur->diff = -1;
 856	acur->busy = false;
 857	acur->busy_gen = 0;
 858
 859	/*
 860	 * Perform an initial cntbt lookup to check for availability of maxlen
 861	 * extents. If this fails, we'll return -ENOSPC to signal the caller to
 862	 * attempt a small allocation.
 863	 */
 864	if (!acur->cnt)
 865		acur->cnt = xfs_cntbt_init_cursor(args->mp, args->tp,
 866					args->agbp, args->pag);
 867	error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
 868	if (error)
 869		return error;
 870
 871	/*
 872	 * Allocate the bnobt left and right search cursors.
 873	 */
 874	if (!acur->bnolt)
 875		acur->bnolt = xfs_bnobt_init_cursor(args->mp, args->tp,
 876					args->agbp, args->pag);
 877	if (!acur->bnogt)
 878		acur->bnogt = xfs_bnobt_init_cursor(args->mp, args->tp,
 879					args->agbp, args->pag);
 880	return i == 1 ? 0 : -ENOSPC;
 881}
 882
 883static void
 884xfs_alloc_cur_close(
 885	struct xfs_alloc_cur	*acur,
 886	bool			error)
 887{
 888	int			cur_error = XFS_BTREE_NOERROR;
 889
 890	if (error)
 891		cur_error = XFS_BTREE_ERROR;
 892
 893	if (acur->cnt)
 894		xfs_btree_del_cursor(acur->cnt, cur_error);
 895	if (acur->bnolt)
 896		xfs_btree_del_cursor(acur->bnolt, cur_error);
 897	if (acur->bnogt)
 898		xfs_btree_del_cursor(acur->bnogt, cur_error);
 899	acur->cnt = acur->bnolt = acur->bnogt = NULL;
 900}
 901
 902/*
 903 * Check an extent for allocation and track the best available candidate in the
 904 * allocation structure. The cursor is deactivated if it has entered an out of
 905 * range state based on allocation arguments. Optionally return the extent
 906 * extent geometry and allocation status if requested by the caller.
 907 */
 908static int
 909xfs_alloc_cur_check(
 910	struct xfs_alloc_arg	*args,
 911	struct xfs_alloc_cur	*acur,
 912	struct xfs_btree_cur	*cur,
 913	int			*new)
 914{
 915	int			error, i;
 916	xfs_agblock_t		bno, bnoa, bnew;
 917	xfs_extlen_t		len, lena, diff = -1;
 918	bool			busy;
 919	unsigned		busy_gen = 0;
 920	bool			deactivate = false;
 921	bool			isbnobt = xfs_btree_is_bno(cur->bc_ops);
 922
 923	*new = 0;
 924
 925	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
 926	if (error)
 927		return error;
 928	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 929		xfs_btree_mark_sick(cur);
 930		return -EFSCORRUPTED;
 931	}
 932
 933	/*
 934	 * Check minlen and deactivate a cntbt cursor if out of acceptable size
 935	 * range (i.e., walking backwards looking for a minlen extent).
 936	 */
 937	if (len < args->minlen) {
 938		deactivate = !isbnobt;
 939		goto out;
 940	}
 941
 942	busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
 943					 &busy_gen);
 944	acur->busy |= busy;
 945	if (busy)
 946		acur->busy_gen = busy_gen;
 947	/* deactivate a bnobt cursor outside of locality range */
 948	if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
 949		deactivate = isbnobt;
 950		goto out;
 951	}
 952	if (lena < args->minlen)
 953		goto out;
 954
 955	args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
 956	xfs_alloc_fix_len(args);
 957	ASSERT(args->len >= args->minlen);
 958	if (args->len < acur->len)
 959		goto out;
 960
 961	/*
 962	 * We have an aligned record that satisfies minlen and beats or matches
 963	 * the candidate extent size. Compare locality for near allocation mode.
 964	 */
 
 965	diff = xfs_alloc_compute_diff(args->agbno, args->len,
 966				      args->alignment, args->datatype,
 967				      bnoa, lena, &bnew);
 968	if (bnew == NULLAGBLOCK)
 969		goto out;
 970
 971	/*
 972	 * Deactivate a bnobt cursor with worse locality than the current best.
 973	 */
 974	if (diff > acur->diff) {
 975		deactivate = isbnobt;
 976		goto out;
 977	}
 978
 979	ASSERT(args->len > acur->len ||
 980	       (args->len == acur->len && diff <= acur->diff));
 981	acur->rec_bno = bno;
 982	acur->rec_len = len;
 983	acur->bno = bnew;
 984	acur->len = args->len;
 985	acur->diff = diff;
 986	*new = 1;
 987
 988	/*
 989	 * We're done if we found a perfect allocation. This only deactivates
 990	 * the current cursor, but this is just an optimization to terminate a
 991	 * cntbt search that otherwise runs to the edge of the tree.
 992	 */
 993	if (acur->diff == 0 && acur->len == args->maxlen)
 994		deactivate = true;
 995out:
 996	if (deactivate)
 997		cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
 998	trace_xfs_alloc_cur_check(cur, bno, len, diff, *new);
 
 999	return 0;
1000}
1001
1002/*
1003 * Complete an allocation of a candidate extent. Remove the extent from both
1004 * trees and update the args structure.
1005 */
1006STATIC int
1007xfs_alloc_cur_finish(
1008	struct xfs_alloc_arg	*args,
1009	struct xfs_alloc_cur	*acur)
1010{
1011	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1012	int			error;
1013
1014	ASSERT(acur->cnt && acur->bnolt);
1015	ASSERT(acur->bno >= acur->rec_bno);
1016	ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
1017	ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
1018
1019	error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
1020				      acur->rec_len, acur->bno, acur->len, 0);
1021	if (error)
1022		return error;
1023
1024	args->agbno = acur->bno;
1025	args->len = acur->len;
1026	args->wasfromfl = 0;
1027
1028	trace_xfs_alloc_cur(args);
1029	return 0;
1030}
1031
1032/*
1033 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
1034 * bno optimized lookup to search for extents with ideal size and locality.
1035 */
1036STATIC int
1037xfs_alloc_cntbt_iter(
1038	struct xfs_alloc_arg		*args,
1039	struct xfs_alloc_cur		*acur)
1040{
1041	struct xfs_btree_cur	*cur = acur->cnt;
1042	xfs_agblock_t		bno;
1043	xfs_extlen_t		len, cur_len;
1044	int			error;
1045	int			i;
1046
1047	if (!xfs_alloc_cur_active(cur))
1048		return 0;
1049
1050	/* locality optimized lookup */
1051	cur_len = acur->cur_len;
1052	error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
1053	if (error)
1054		return error;
1055	if (i == 0)
1056		return 0;
1057	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1058	if (error)
1059		return error;
1060
1061	/* check the current record and update search length from it */
1062	error = xfs_alloc_cur_check(args, acur, cur, &i);
1063	if (error)
1064		return error;
1065	ASSERT(len >= acur->cur_len);
1066	acur->cur_len = len;
1067
1068	/*
1069	 * We looked up the first record >= [agbno, len] above. The agbno is a
1070	 * secondary key and so the current record may lie just before or after
1071	 * agbno. If it is past agbno, check the previous record too so long as
1072	 * the length matches as it may be closer. Don't check a smaller record
1073	 * because that could deactivate our cursor.
1074	 */
1075	if (bno > args->agbno) {
1076		error = xfs_btree_decrement(cur, 0, &i);
1077		if (!error && i) {
1078			error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1079			if (!error && i && len == acur->cur_len)
1080				error = xfs_alloc_cur_check(args, acur, cur,
1081							    &i);
1082		}
1083		if (error)
1084			return error;
1085	}
1086
1087	/*
1088	 * Increment the search key until we find at least one allocation
1089	 * candidate or if the extent we found was larger. Otherwise, double the
1090	 * search key to optimize the search. Efficiency is more important here
1091	 * than absolute best locality.
1092	 */
1093	cur_len <<= 1;
1094	if (!acur->len || acur->cur_len >= cur_len)
1095		acur->cur_len++;
1096	else
1097		acur->cur_len = cur_len;
1098
1099	return error;
1100}
1101
1102/*
1103 * Deal with the case where only small freespaces remain. Either return the
1104 * contents of the last freespace record, or allocate space from the freelist if
1105 * there is nothing in the tree.
1106 */
1107STATIC int			/* error */
1108xfs_alloc_ag_vextent_small(
1109	struct xfs_alloc_arg	*args,	/* allocation argument structure */
1110	struct xfs_btree_cur	*ccur,	/* optional by-size cursor */
1111	xfs_agblock_t		*fbnop,	/* result block number */
1112	xfs_extlen_t		*flenp,	/* result length */
1113	int			*stat)	/* status: 0-freelist, 1-normal/none */
1114{
1115	struct xfs_agf		*agf = args->agbp->b_addr;
1116	int			error = 0;
1117	xfs_agblock_t		fbno = NULLAGBLOCK;
1118	xfs_extlen_t		flen = 0;
1119	int			i = 0;
1120
1121	/*
1122	 * If a cntbt cursor is provided, try to allocate the largest record in
1123	 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1124	 * allocation. Make sure to respect minleft even when pulling from the
1125	 * freelist.
1126	 */
1127	if (ccur)
1128		error = xfs_btree_decrement(ccur, 0, &i);
1129	if (error)
1130		goto error;
1131	if (i) {
1132		error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1133		if (error)
1134			goto error;
1135		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1136			xfs_btree_mark_sick(ccur);
1137			error = -EFSCORRUPTED;
1138			goto error;
1139		}
1140		goto out;
1141	}
1142
1143	if (args->minlen != 1 || args->alignment != 1 ||
1144	    args->resv == XFS_AG_RESV_AGFL ||
1145	    be32_to_cpu(agf->agf_flcount) <= args->minleft)
1146		goto out;
1147
1148	error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1149			&fbno, 0);
1150	if (error)
1151		goto error;
1152	if (fbno == NULLAGBLOCK)
1153		goto out;
1154
1155	xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
1156			      (args->datatype & XFS_ALLOC_NOBUSY));
1157
1158	if (args->datatype & XFS_ALLOC_USERDATA) {
1159		struct xfs_buf	*bp;
1160
1161		error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1162				XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1163				args->mp->m_bsize, 0, &bp);
1164		if (error)
1165			goto error;
1166		xfs_trans_binval(args->tp, bp);
1167	}
1168	*fbnop = args->agbno = fbno;
1169	*flenp = args->len = 1;
1170	if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1171		xfs_btree_mark_sick(ccur);
1172		error = -EFSCORRUPTED;
1173		goto error;
1174	}
1175	args->wasfromfl = 1;
1176	trace_xfs_alloc_small_freelist(args);
1177
1178	/*
1179	 * If we're feeding an AGFL block to something that doesn't live in the
1180	 * free space, we need to clear out the OWN_AG rmap.
1181	 */
1182	error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1183			      &XFS_RMAP_OINFO_AG);
1184	if (error)
1185		goto error;
1186
1187	*stat = 0;
1188	return 0;
1189
1190out:
1191	/*
1192	 * Can't do the allocation, give up.
1193	 */
1194	if (flen < args->minlen) {
1195		args->agbno = NULLAGBLOCK;
1196		trace_xfs_alloc_small_notenough(args);
1197		flen = 0;
1198	}
1199	*fbnop = fbno;
1200	*flenp = flen;
1201	*stat = 1;
1202	trace_xfs_alloc_small_done(args);
1203	return 0;
1204
1205error:
1206	trace_xfs_alloc_small_error(args);
1207	return error;
1208}
1209
1210/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211 * Allocate a variable extent at exactly agno/bno.
1212 * Extent's length (returned in *len) will be between minlen and maxlen,
1213 * and of the form k * prod + mod unless there's nothing that large.
1214 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1215 */
1216STATIC int			/* error */
1217xfs_alloc_ag_vextent_exact(
1218	xfs_alloc_arg_t	*args)	/* allocation argument structure */
1219{
1220	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1221	struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1222	struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1223	int		error;
1224	xfs_agblock_t	fbno;	/* start block of found extent */
1225	xfs_extlen_t	flen;	/* length of found extent */
1226	xfs_agblock_t	tbno;	/* start block of busy extent */
1227	xfs_extlen_t	tlen;	/* length of busy extent */
1228	xfs_agblock_t	tend;	/* end block of busy extent */
1229	int		i;	/* success/failure of operation */
1230	unsigned	busy_gen;
1231
1232	ASSERT(args->alignment == 1);
1233
1234	/*
1235	 * Allocate/initialize a cursor for the by-number freespace btree.
1236	 */
1237	bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
1238					  args->pag);
1239
1240	/*
1241	 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1242	 * Look for the closest free block <= bno, it must contain bno
1243	 * if any free block does.
1244	 */
1245	error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1246	if (error)
1247		goto error0;
1248	if (!i)
1249		goto not_found;
1250
1251	/*
1252	 * Grab the freespace record.
1253	 */
1254	error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1255	if (error)
1256		goto error0;
1257	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1258		xfs_btree_mark_sick(bno_cur);
1259		error = -EFSCORRUPTED;
1260		goto error0;
1261	}
1262	ASSERT(fbno <= args->agbno);
1263
1264	/*
1265	 * Check for overlapping busy extents.
1266	 */
1267	tbno = fbno;
1268	tlen = flen;
1269	xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
1270
1271	/*
1272	 * Give up if the start of the extent is busy, or the freespace isn't
1273	 * long enough for the minimum request.
1274	 */
1275	if (tbno > args->agbno)
1276		goto not_found;
1277	if (tlen < args->minlen)
1278		goto not_found;
1279	tend = tbno + tlen;
1280	if (tend < args->agbno + args->minlen)
1281		goto not_found;
1282
1283	/*
1284	 * End of extent will be smaller of the freespace end and the
1285	 * maximal requested end.
1286	 *
1287	 * Fix the length according to mod and prod if given.
1288	 */
1289	args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1290						- args->agbno;
1291	xfs_alloc_fix_len(args);
1292	ASSERT(args->agbno + args->len <= tend);
1293
1294	/*
1295	 * We are allocating agbno for args->len
1296	 * Allocate/initialize a cursor for the by-size btree.
1297	 */
1298	cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
1299					args->pag);
1300	ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
1301	error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1302				      args->len, XFSA_FIXUP_BNO_OK);
1303	if (error) {
1304		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1305		goto error0;
1306	}
1307
1308	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1309	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1310
1311	args->wasfromfl = 0;
1312	trace_xfs_alloc_exact_done(args);
1313	return 0;
1314
1315not_found:
1316	/* Didn't find it, return null. */
1317	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1318	args->agbno = NULLAGBLOCK;
1319	trace_xfs_alloc_exact_notfound(args);
1320	return 0;
1321
1322error0:
1323	xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1324	trace_xfs_alloc_exact_error(args);
1325	return error;
1326}
1327
1328/*
1329 * Search a given number of btree records in a given direction. Check each
1330 * record against the good extent we've already found.
1331 */
1332STATIC int
1333xfs_alloc_walk_iter(
1334	struct xfs_alloc_arg	*args,
1335	struct xfs_alloc_cur	*acur,
1336	struct xfs_btree_cur	*cur,
1337	bool			increment,
1338	bool			find_one, /* quit on first candidate */
1339	int			count,    /* rec count (-1 for infinite) */
1340	int			*stat)
1341{
1342	int			error;
1343	int			i;
1344
1345	*stat = 0;
1346
1347	/*
1348	 * Search so long as the cursor is active or we find a better extent.
1349	 * The cursor is deactivated if it extends beyond the range of the
1350	 * current allocation candidate.
1351	 */
1352	while (xfs_alloc_cur_active(cur) && count) {
1353		error = xfs_alloc_cur_check(args, acur, cur, &i);
1354		if (error)
1355			return error;
1356		if (i == 1) {
1357			*stat = 1;
1358			if (find_one)
1359				break;
1360		}
1361		if (!xfs_alloc_cur_active(cur))
1362			break;
1363
1364		if (increment)
1365			error = xfs_btree_increment(cur, 0, &i);
1366		else
1367			error = xfs_btree_decrement(cur, 0, &i);
1368		if (error)
1369			return error;
1370		if (i == 0)
1371			cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
1372
1373		if (count > 0)
1374			count--;
1375	}
1376
1377	return 0;
1378}
1379
1380/*
1381 * Search the by-bno and by-size btrees in parallel in search of an extent with
1382 * ideal locality based on the NEAR mode ->agbno locality hint.
1383 */
1384STATIC int
1385xfs_alloc_ag_vextent_locality(
1386	struct xfs_alloc_arg	*args,
1387	struct xfs_alloc_cur	*acur,
1388	int			*stat)
1389{
1390	struct xfs_btree_cur	*fbcur = NULL;
1391	int			error;
1392	int			i;
1393	bool			fbinc;
1394
1395	ASSERT(acur->len == 0);
 
1396
1397	*stat = 0;
1398
1399	error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1400	if (error)
1401		return error;
1402	error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1403	if (error)
1404		return error;
1405	error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1406	if (error)
1407		return error;
1408
1409	/*
1410	 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1411	 * right and lookup the closest extent to the locality hint for each
1412	 * extent size key in the cntbt. The entire search terminates
1413	 * immediately on a bnobt hit because that means we've found best case
1414	 * locality. Otherwise the search continues until the cntbt cursor runs
1415	 * off the end of the tree. If no allocation candidate is found at this
1416	 * point, give up on locality, walk backwards from the end of the cntbt
1417	 * and take the first available extent.
1418	 *
1419	 * The parallel tree searches balance each other out to provide fairly
1420	 * consistent performance for various situations. The bnobt search can
1421	 * have pathological behavior in the worst case scenario of larger
1422	 * allocation requests and fragmented free space. On the other hand, the
1423	 * bnobt is able to satisfy most smaller allocation requests much more
1424	 * quickly than the cntbt. The cntbt search can sift through fragmented
1425	 * free space and sets of free extents for larger allocation requests
1426	 * more quickly than the bnobt. Since the locality hint is just a hint
1427	 * and we don't want to scan the entire bnobt for perfect locality, the
1428	 * cntbt search essentially bounds the bnobt search such that we can
1429	 * find good enough locality at reasonable performance in most cases.
1430	 */
1431	while (xfs_alloc_cur_active(acur->bnolt) ||
1432	       xfs_alloc_cur_active(acur->bnogt) ||
1433	       xfs_alloc_cur_active(acur->cnt)) {
1434
1435		trace_xfs_alloc_cur_lookup(args);
1436
1437		/*
1438		 * Search the bnobt left and right. In the case of a hit, finish
1439		 * the search in the opposite direction and we're done.
1440		 */
1441		error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1442					    true, 1, &i);
1443		if (error)
1444			return error;
1445		if (i == 1) {
1446			trace_xfs_alloc_cur_left(args);
1447			fbcur = acur->bnogt;
1448			fbinc = true;
1449			break;
1450		}
1451		error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1452					    1, &i);
1453		if (error)
1454			return error;
1455		if (i == 1) {
1456			trace_xfs_alloc_cur_right(args);
1457			fbcur = acur->bnolt;
1458			fbinc = false;
1459			break;
1460		}
1461
1462		/*
1463		 * Check the extent with best locality based on the current
1464		 * extent size search key and keep track of the best candidate.
1465		 */
1466		error = xfs_alloc_cntbt_iter(args, acur);
1467		if (error)
1468			return error;
1469		if (!xfs_alloc_cur_active(acur->cnt)) {
1470			trace_xfs_alloc_cur_lookup_done(args);
1471			break;
1472		}
1473	}
1474
1475	/*
1476	 * If we failed to find anything due to busy extents, return empty
1477	 * handed so the caller can flush and retry. If no busy extents were
1478	 * found, walk backwards from the end of the cntbt as a last resort.
1479	 */
1480	if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1481		error = xfs_btree_decrement(acur->cnt, 0, &i);
1482		if (error)
1483			return error;
1484		if (i) {
1485			acur->cnt->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
1486			fbcur = acur->cnt;
1487			fbinc = false;
1488		}
1489	}
1490
1491	/*
1492	 * Search in the opposite direction for a better entry in the case of
1493	 * a bnobt hit or walk backwards from the end of the cntbt.
1494	 */
1495	if (fbcur) {
1496		error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1497					    &i);
1498		if (error)
1499			return error;
1500	}
1501
1502	if (acur->len)
1503		*stat = 1;
1504
1505	return 0;
1506}
1507
1508/* Check the last block of the cnt btree for allocations. */
1509static int
1510xfs_alloc_ag_vextent_lastblock(
1511	struct xfs_alloc_arg	*args,
1512	struct xfs_alloc_cur	*acur,
1513	xfs_agblock_t		*bno,
1514	xfs_extlen_t		*len,
1515	bool			*allocated)
1516{
1517	int			error;
1518	int			i;
1519
1520#ifdef DEBUG
1521	/* Randomly don't execute the first algorithm. */
1522	if (get_random_u32_below(2))
1523		return 0;
1524#endif
1525
1526	/*
1527	 * Start from the entry that lookup found, sequence through all larger
1528	 * free blocks.  If we're actually pointing at a record smaller than
1529	 * maxlen, go to the start of this block, and skip all those smaller
1530	 * than minlen.
1531	 */
1532	if (*len || args->alignment > 1) {
1533		acur->cnt->bc_levels[0].ptr = 1;
1534		do {
1535			error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1536			if (error)
1537				return error;
1538			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1539				xfs_btree_mark_sick(acur->cnt);
1540				return -EFSCORRUPTED;
1541			}
1542			if (*len >= args->minlen)
1543				break;
1544			error = xfs_btree_increment(acur->cnt, 0, &i);
1545			if (error)
1546				return error;
1547		} while (i);
1548		ASSERT(*len >= args->minlen);
1549		if (!i)
1550			return 0;
1551	}
1552
1553	error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1554	if (error)
1555		return error;
1556
1557	/*
1558	 * It didn't work.  We COULD be in a case where there's a good record
1559	 * somewhere, so try again.
1560	 */
1561	if (acur->len == 0)
1562		return 0;
1563
1564	trace_xfs_alloc_near_first(args);
1565	*allocated = true;
1566	return 0;
1567}
1568
1569/*
1570 * Allocate a variable extent near bno in the allocation group agno.
1571 * Extent's length (returned in len) will be between minlen and maxlen,
1572 * and of the form k * prod + mod unless there's nothing that large.
1573 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1574 */
1575STATIC int
1576xfs_alloc_ag_vextent_near(
1577	struct xfs_alloc_arg	*args,
1578	uint32_t		alloc_flags)
1579{
1580	struct xfs_alloc_cur	acur = {};
1581	int			error;		/* error code */
1582	int			i;		/* result code, temporary */
1583	xfs_agblock_t		bno;
1584	xfs_extlen_t		len;
1585
1586	/* handle uninitialized agbno range so caller doesn't have to */
1587	if (!args->min_agbno && !args->max_agbno)
1588		args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1589	ASSERT(args->min_agbno <= args->max_agbno);
1590
1591	/* clamp agbno to the range if it's outside */
1592	if (args->agbno < args->min_agbno)
1593		args->agbno = args->min_agbno;
1594	if (args->agbno > args->max_agbno)
1595		args->agbno = args->max_agbno;
1596
1597	/* Retry once quickly if we find busy extents before blocking. */
1598	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1599restart:
1600	len = 0;
1601
1602	/*
1603	 * Set up cursors and see if there are any free extents as big as
1604	 * maxlen. If not, pick the last entry in the tree unless the tree is
1605	 * empty.
1606	 */
1607	error = xfs_alloc_cur_setup(args, &acur);
1608	if (error == -ENOSPC) {
1609		error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1610				&len, &i);
1611		if (error)
1612			goto out;
1613		if (i == 0 || len == 0) {
1614			trace_xfs_alloc_near_noentry(args);
1615			goto out;
1616		}
1617		ASSERT(i == 1);
1618	} else if (error) {
1619		goto out;
1620	}
1621
1622	/*
1623	 * First algorithm.
1624	 * If the requested extent is large wrt the freespaces available
1625	 * in this a.g., then the cursor will be pointing to a btree entry
1626	 * near the right edge of the tree.  If it's in the last btree leaf
1627	 * block, then we just examine all the entries in that block
1628	 * that are big enough, and pick the best one.
1629	 */
1630	if (xfs_btree_islastblock(acur.cnt, 0)) {
1631		bool		allocated = false;
1632
1633		error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1634				&allocated);
1635		if (error)
1636			goto out;
1637		if (allocated)
1638			goto alloc_finish;
1639	}
1640
1641	/*
1642	 * Second algorithm. Combined cntbt and bnobt search to find ideal
1643	 * locality.
1644	 */
1645	error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1646	if (error)
1647		goto out;
1648
1649	/*
1650	 * If we couldn't get anything, give up.
1651	 */
1652	if (!acur.len) {
1653		if (acur.busy) {
1654			/*
1655			 * Our only valid extents must have been busy. Flush and
1656			 * retry the allocation again. If we get an -EAGAIN
1657			 * error, we're being told that a deadlock was avoided
1658			 * and the current transaction needs committing before
1659			 * the allocation can be retried.
1660			 */
1661			trace_xfs_alloc_near_busy(args);
1662			error = xfs_extent_busy_flush(args->tp, args->pag,
1663					acur.busy_gen, alloc_flags);
1664			if (error)
1665				goto out;
1666
1667			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1668			goto restart;
1669		}
1670		trace_xfs_alloc_size_neither(args);
1671		args->agbno = NULLAGBLOCK;
1672		goto out;
1673	}
1674
1675alloc_finish:
1676	/* fix up btrees on a successful allocation */
1677	error = xfs_alloc_cur_finish(args, &acur);
1678
1679out:
1680	xfs_alloc_cur_close(&acur, error);
1681	return error;
1682}
1683
1684/*
1685 * Allocate a variable extent anywhere in the allocation group agno.
1686 * Extent's length (returned in len) will be between minlen and maxlen,
1687 * and of the form k * prod + mod unless there's nothing that large.
1688 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1689 */
1690static int
1691xfs_alloc_ag_vextent_size(
1692	struct xfs_alloc_arg	*args,
1693	uint32_t		alloc_flags)
1694{
1695	struct xfs_agf		*agf = args->agbp->b_addr;
1696	struct xfs_btree_cur	*bno_cur;
1697	struct xfs_btree_cur	*cnt_cur;
1698	xfs_agblock_t		fbno;		/* start of found freespace */
1699	xfs_extlen_t		flen;		/* length of found freespace */
1700	xfs_agblock_t		rbno;		/* returned block number */
1701	xfs_extlen_t		rlen;		/* length of returned extent */
1702	bool			busy;
1703	unsigned		busy_gen;
1704	int			error;
1705	int			i;
1706
1707	/* Retry once quickly if we find busy extents before blocking. */
1708	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1709restart:
1710	/*
1711	 * Allocate and initialize a cursor for the by-size btree.
1712	 */
1713	cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
1714					args->pag);
1715	bno_cur = NULL;
1716
1717	/*
1718	 * Look for an entry >= maxlen+alignment-1 blocks.
1719	 */
1720	if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1721			args->maxlen + args->alignment - 1, &i)))
1722		goto error0;
1723
1724	/*
1725	 * If none then we have to settle for a smaller extent. In the case that
1726	 * there are no large extents, this will return the last entry in the
1727	 * tree unless the tree is empty. In the case that there are only busy
1728	 * large extents, this will return the largest small extent unless there
1729	 * are no smaller extents available.
1730	 */
1731	if (!i) {
1732		error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1733						   &fbno, &flen, &i);
1734		if (error)
1735			goto error0;
1736		if (i == 0 || flen == 0) {
1737			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1738			trace_xfs_alloc_size_noentry(args);
1739			return 0;
1740		}
1741		ASSERT(i == 1);
1742		busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1743				&rlen, &busy_gen);
1744	} else {
1745		/*
1746		 * Search for a non-busy extent that is large enough.
1747		 */
1748		for (;;) {
1749			error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1750			if (error)
1751				goto error0;
1752			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1753				xfs_btree_mark_sick(cnt_cur);
1754				error = -EFSCORRUPTED;
1755				goto error0;
1756			}
1757
1758			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1759					&rbno, &rlen, &busy_gen);
1760
1761			if (rlen >= args->maxlen)
1762				break;
1763
1764			error = xfs_btree_increment(cnt_cur, 0, &i);
1765			if (error)
1766				goto error0;
1767			if (i)
1768				continue;
1769
1770			/*
1771			 * Our only valid extents must have been busy. Flush and
1772			 * retry the allocation again. If we get an -EAGAIN
1773			 * error, we're being told that a deadlock was avoided
1774			 * and the current transaction needs committing before
1775			 * the allocation can be retried.
1776			 */
1777			trace_xfs_alloc_size_busy(args);
1778			error = xfs_extent_busy_flush(args->tp, args->pag,
1779					busy_gen, alloc_flags);
1780			if (error)
1781				goto error0;
1782
1783			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1784			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1785			goto restart;
1786		}
1787	}
1788
1789	/*
1790	 * In the first case above, we got the last entry in the
1791	 * by-size btree.  Now we check to see if the space hits maxlen
1792	 * once aligned; if not, we search left for something better.
1793	 * This can't happen in the second case above.
1794	 */
1795	rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1796	if (XFS_IS_CORRUPT(args->mp,
1797			   rlen != 0 &&
1798			   (rlen > flen ||
1799			    rbno + rlen > fbno + flen))) {
1800		xfs_btree_mark_sick(cnt_cur);
1801		error = -EFSCORRUPTED;
1802		goto error0;
1803	}
1804	if (rlen < args->maxlen) {
1805		xfs_agblock_t	bestfbno;
1806		xfs_extlen_t	bestflen;
1807		xfs_agblock_t	bestrbno;
1808		xfs_extlen_t	bestrlen;
1809
1810		bestrlen = rlen;
1811		bestrbno = rbno;
1812		bestflen = flen;
1813		bestfbno = fbno;
1814		for (;;) {
1815			if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1816				goto error0;
1817			if (i == 0)
1818				break;
1819			if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1820					&i)))
1821				goto error0;
1822			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1823				xfs_btree_mark_sick(cnt_cur);
1824				error = -EFSCORRUPTED;
1825				goto error0;
1826			}
1827			if (flen < bestrlen)
1828				break;
1829			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1830					&rbno, &rlen, &busy_gen);
1831			rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1832			if (XFS_IS_CORRUPT(args->mp,
1833					   rlen != 0 &&
1834					   (rlen > flen ||
1835					    rbno + rlen > fbno + flen))) {
1836				xfs_btree_mark_sick(cnt_cur);
1837				error = -EFSCORRUPTED;
1838				goto error0;
1839			}
1840			if (rlen > bestrlen) {
1841				bestrlen = rlen;
1842				bestrbno = rbno;
1843				bestflen = flen;
1844				bestfbno = fbno;
1845				if (rlen == args->maxlen)
1846					break;
1847			}
1848		}
1849		if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1850				&i)))
1851			goto error0;
1852		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1853			xfs_btree_mark_sick(cnt_cur);
1854			error = -EFSCORRUPTED;
1855			goto error0;
1856		}
1857		rlen = bestrlen;
1858		rbno = bestrbno;
1859		flen = bestflen;
1860		fbno = bestfbno;
1861	}
1862	args->wasfromfl = 0;
1863	/*
1864	 * Fix up the length.
1865	 */
1866	args->len = rlen;
1867	if (rlen < args->minlen) {
1868		if (busy) {
1869			/*
1870			 * Our only valid extents must have been busy. Flush and
1871			 * retry the allocation again. If we get an -EAGAIN
1872			 * error, we're being told that a deadlock was avoided
1873			 * and the current transaction needs committing before
1874			 * the allocation can be retried.
1875			 */
1876			trace_xfs_alloc_size_busy(args);
1877			error = xfs_extent_busy_flush(args->tp, args->pag,
1878					busy_gen, alloc_flags);
1879			if (error)
1880				goto error0;
1881
1882			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1883			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1884			goto restart;
1885		}
1886		goto out_nominleft;
1887	}
1888	xfs_alloc_fix_len(args);
1889
1890	rlen = args->len;
1891	if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1892		xfs_btree_mark_sick(cnt_cur);
1893		error = -EFSCORRUPTED;
1894		goto error0;
1895	}
1896	/*
1897	 * Allocate and initialize a cursor for the by-block tree.
1898	 */
1899	bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
1900					args->pag);
1901	if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
1902			rbno, rlen, XFSA_FIXUP_CNT_OK)))
1903		goto error0;
1904	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1905	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1906	cnt_cur = bno_cur = NULL;
1907	args->len = rlen;
1908	args->agbno = rbno;
1909	if (XFS_IS_CORRUPT(args->mp,
1910			   args->agbno + args->len >
1911			   be32_to_cpu(agf->agf_length))) {
1912		xfs_ag_mark_sick(args->pag, XFS_SICK_AG_BNOBT);
1913		error = -EFSCORRUPTED;
1914		goto error0;
1915	}
1916	trace_xfs_alloc_size_done(args);
1917	return 0;
1918
1919error0:
1920	trace_xfs_alloc_size_error(args);
1921	if (cnt_cur)
1922		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1923	if (bno_cur)
1924		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1925	return error;
1926
1927out_nominleft:
1928	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1929	trace_xfs_alloc_size_nominleft(args);
1930	args->agbno = NULLAGBLOCK;
1931	return 0;
1932}
1933
1934/*
1935 * Free the extent starting at agno/bno for length.
1936 */
1937STATIC int
1938xfs_free_ag_extent(
1939	struct xfs_trans		*tp,
1940	struct xfs_buf			*agbp,
1941	xfs_agnumber_t			agno,
1942	xfs_agblock_t			bno,
1943	xfs_extlen_t			len,
1944	const struct xfs_owner_info	*oinfo,
1945	enum xfs_ag_resv_type		type)
1946{
1947	struct xfs_mount		*mp;
1948	struct xfs_btree_cur		*bno_cur;
1949	struct xfs_btree_cur		*cnt_cur;
1950	xfs_agblock_t			gtbno; /* start of right neighbor */
1951	xfs_extlen_t			gtlen; /* length of right neighbor */
1952	xfs_agblock_t			ltbno; /* start of left neighbor */
1953	xfs_extlen_t			ltlen; /* length of left neighbor */
1954	xfs_agblock_t			nbno; /* new starting block of freesp */
1955	xfs_extlen_t			nlen; /* new length of freespace */
1956	int				haveleft; /* have a left neighbor */
1957	int				haveright; /* have a right neighbor */
1958	int				i;
1959	int				error;
1960	struct xfs_perag		*pag = agbp->b_pag;
1961
1962	bno_cur = cnt_cur = NULL;
1963	mp = tp->t_mountp;
1964
1965	if (!xfs_rmap_should_skip_owner_update(oinfo)) {
1966		error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
1967		if (error)
1968			goto error0;
1969	}
1970
1971	/*
1972	 * Allocate and initialize a cursor for the by-block btree.
1973	 */
1974	bno_cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag);
1975	/*
1976	 * Look for a neighboring block on the left (lower block numbers)
1977	 * that is contiguous with this space.
1978	 */
1979	if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
1980		goto error0;
1981	if (haveleft) {
1982		/*
1983		 * There is a block to our left.
1984		 */
1985		if ((error = xfs_alloc_get_rec(bno_cur, &ltbno, &ltlen, &i)))
1986			goto error0;
1987		if (XFS_IS_CORRUPT(mp, i != 1)) {
1988			xfs_btree_mark_sick(bno_cur);
1989			error = -EFSCORRUPTED;
1990			goto error0;
1991		}
1992		/*
1993		 * It's not contiguous, though.
1994		 */
1995		if (ltbno + ltlen < bno)
1996			haveleft = 0;
1997		else {
1998			/*
1999			 * If this failure happens the request to free this
2000			 * space was invalid, it's (partly) already free.
2001			 * Very bad.
2002			 */
2003			if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
2004				xfs_btree_mark_sick(bno_cur);
2005				error = -EFSCORRUPTED;
2006				goto error0;
2007			}
2008		}
2009	}
2010	/*
2011	 * Look for a neighboring block on the right (higher block numbers)
2012	 * that is contiguous with this space.
2013	 */
2014	if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
2015		goto error0;
2016	if (haveright) {
2017		/*
2018		 * There is a block to our right.
2019		 */
2020		if ((error = xfs_alloc_get_rec(bno_cur, &gtbno, &gtlen, &i)))
2021			goto error0;
2022		if (XFS_IS_CORRUPT(mp, i != 1)) {
2023			xfs_btree_mark_sick(bno_cur);
2024			error = -EFSCORRUPTED;
2025			goto error0;
2026		}
2027		/*
2028		 * It's not contiguous, though.
2029		 */
2030		if (bno + len < gtbno)
2031			haveright = 0;
2032		else {
2033			/*
2034			 * If this failure happens the request to free this
2035			 * space was invalid, it's (partly) already free.
2036			 * Very bad.
2037			 */
2038			if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
2039				xfs_btree_mark_sick(bno_cur);
2040				error = -EFSCORRUPTED;
2041				goto error0;
2042			}
2043		}
2044	}
2045	/*
2046	 * Now allocate and initialize a cursor for the by-size tree.
2047	 */
2048	cnt_cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
2049	/*
2050	 * Have both left and right contiguous neighbors.
2051	 * Merge all three into a single free block.
2052	 */
2053	if (haveleft && haveright) {
2054		/*
2055		 * Delete the old by-size entry on the left.
2056		 */
2057		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2058			goto error0;
2059		if (XFS_IS_CORRUPT(mp, i != 1)) {
2060			xfs_btree_mark_sick(cnt_cur);
2061			error = -EFSCORRUPTED;
2062			goto error0;
2063		}
2064		if ((error = xfs_btree_delete(cnt_cur, &i)))
2065			goto error0;
2066		if (XFS_IS_CORRUPT(mp, i != 1)) {
2067			xfs_btree_mark_sick(cnt_cur);
2068			error = -EFSCORRUPTED;
2069			goto error0;
2070		}
2071		/*
2072		 * Delete the old by-size entry on the right.
2073		 */
2074		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2075			goto error0;
2076		if (XFS_IS_CORRUPT(mp, i != 1)) {
2077			xfs_btree_mark_sick(cnt_cur);
2078			error = -EFSCORRUPTED;
2079			goto error0;
2080		}
2081		if ((error = xfs_btree_delete(cnt_cur, &i)))
2082			goto error0;
2083		if (XFS_IS_CORRUPT(mp, i != 1)) {
2084			xfs_btree_mark_sick(cnt_cur);
2085			error = -EFSCORRUPTED;
2086			goto error0;
2087		}
2088		/*
2089		 * Delete the old by-block entry for the right block.
2090		 */
2091		if ((error = xfs_btree_delete(bno_cur, &i)))
2092			goto error0;
2093		if (XFS_IS_CORRUPT(mp, i != 1)) {
2094			xfs_btree_mark_sick(bno_cur);
2095			error = -EFSCORRUPTED;
2096			goto error0;
2097		}
2098		/*
2099		 * Move the by-block cursor back to the left neighbor.
2100		 */
2101		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2102			goto error0;
2103		if (XFS_IS_CORRUPT(mp, i != 1)) {
2104			xfs_btree_mark_sick(bno_cur);
2105			error = -EFSCORRUPTED;
2106			goto error0;
2107		}
2108#ifdef DEBUG
2109		/*
2110		 * Check that this is the right record: delete didn't
2111		 * mangle the cursor.
2112		 */
2113		{
2114			xfs_agblock_t	xxbno;
2115			xfs_extlen_t	xxlen;
2116
2117			if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2118					&i)))
2119				goto error0;
2120			if (XFS_IS_CORRUPT(mp,
2121					   i != 1 ||
2122					   xxbno != ltbno ||
2123					   xxlen != ltlen)) {
2124				xfs_btree_mark_sick(bno_cur);
2125				error = -EFSCORRUPTED;
2126				goto error0;
2127			}
2128		}
2129#endif
2130		/*
2131		 * Update remaining by-block entry to the new, joined block.
2132		 */
2133		nbno = ltbno;
2134		nlen = len + ltlen + gtlen;
2135		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2136			goto error0;
2137	}
2138	/*
2139	 * Have only a left contiguous neighbor.
2140	 * Merge it together with the new freespace.
2141	 */
2142	else if (haveleft) {
2143		/*
2144		 * Delete the old by-size entry on the left.
2145		 */
2146		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2147			goto error0;
2148		if (XFS_IS_CORRUPT(mp, i != 1)) {
2149			xfs_btree_mark_sick(cnt_cur);
2150			error = -EFSCORRUPTED;
2151			goto error0;
2152		}
2153		if ((error = xfs_btree_delete(cnt_cur, &i)))
2154			goto error0;
2155		if (XFS_IS_CORRUPT(mp, i != 1)) {
2156			xfs_btree_mark_sick(cnt_cur);
2157			error = -EFSCORRUPTED;
2158			goto error0;
2159		}
2160		/*
2161		 * Back up the by-block cursor to the left neighbor, and
2162		 * update its length.
2163		 */
2164		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2165			goto error0;
2166		if (XFS_IS_CORRUPT(mp, i != 1)) {
2167			xfs_btree_mark_sick(bno_cur);
2168			error = -EFSCORRUPTED;
2169			goto error0;
2170		}
2171		nbno = ltbno;
2172		nlen = len + ltlen;
2173		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2174			goto error0;
2175	}
2176	/*
2177	 * Have only a right contiguous neighbor.
2178	 * Merge it together with the new freespace.
2179	 */
2180	else if (haveright) {
2181		/*
2182		 * Delete the old by-size entry on the right.
2183		 */
2184		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2185			goto error0;
2186		if (XFS_IS_CORRUPT(mp, i != 1)) {
2187			xfs_btree_mark_sick(cnt_cur);
2188			error = -EFSCORRUPTED;
2189			goto error0;
2190		}
2191		if ((error = xfs_btree_delete(cnt_cur, &i)))
2192			goto error0;
2193		if (XFS_IS_CORRUPT(mp, i != 1)) {
2194			xfs_btree_mark_sick(cnt_cur);
2195			error = -EFSCORRUPTED;
2196			goto error0;
2197		}
2198		/*
2199		 * Update the starting block and length of the right
2200		 * neighbor in the by-block tree.
2201		 */
2202		nbno = bno;
2203		nlen = len + gtlen;
2204		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2205			goto error0;
2206	}
2207	/*
2208	 * No contiguous neighbors.
2209	 * Insert the new freespace into the by-block tree.
2210	 */
2211	else {
2212		nbno = bno;
2213		nlen = len;
2214		if ((error = xfs_btree_insert(bno_cur, &i)))
2215			goto error0;
2216		if (XFS_IS_CORRUPT(mp, i != 1)) {
2217			xfs_btree_mark_sick(bno_cur);
2218			error = -EFSCORRUPTED;
2219			goto error0;
2220		}
2221	}
2222	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2223	bno_cur = NULL;
2224	/*
2225	 * In all cases we need to insert the new freespace in the by-size tree.
2226	 */
2227	if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2228		goto error0;
2229	if (XFS_IS_CORRUPT(mp, i != 0)) {
2230		xfs_btree_mark_sick(cnt_cur);
2231		error = -EFSCORRUPTED;
2232		goto error0;
2233	}
2234	if ((error = xfs_btree_insert(cnt_cur, &i)))
2235		goto error0;
2236	if (XFS_IS_CORRUPT(mp, i != 1)) {
2237		xfs_btree_mark_sick(cnt_cur);
2238		error = -EFSCORRUPTED;
2239		goto error0;
2240	}
2241	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2242	cnt_cur = NULL;
2243
2244	/*
2245	 * Update the freespace totals in the ag and superblock.
2246	 */
2247	error = xfs_alloc_update_counters(tp, agbp, len);
2248	xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2249	if (error)
2250		goto error0;
2251
2252	XFS_STATS_INC(mp, xs_freex);
2253	XFS_STATS_ADD(mp, xs_freeb, len);
2254
2255	trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2256
2257	return 0;
2258
2259 error0:
2260	trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2261	if (bno_cur)
2262		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2263	if (cnt_cur)
2264		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2265	return error;
2266}
2267
2268/*
2269 * Visible (exported) allocation/free functions.
2270 * Some of these are used just by xfs_alloc_btree.c and this file.
2271 */
2272
2273/*
2274 * Compute and fill in value of m_alloc_maxlevels.
2275 */
2276void
2277xfs_alloc_compute_maxlevels(
2278	xfs_mount_t	*mp)	/* file system mount structure */
2279{
2280	mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2281			(mp->m_sb.sb_agblocks + 1) / 2);
2282	ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2283}
2284
2285/*
2286 * Find the length of the longest extent in an AG.  The 'need' parameter
2287 * specifies how much space we're going to need for the AGFL and the
2288 * 'reserved' parameter tells us how many blocks in this AG are reserved for
2289 * other callers.
2290 */
2291xfs_extlen_t
2292xfs_alloc_longest_free_extent(
2293	struct xfs_perag	*pag,
2294	xfs_extlen_t		need,
2295	xfs_extlen_t		reserved)
2296{
2297	xfs_extlen_t		delta = 0;
2298
2299	/*
2300	 * If the AGFL needs a recharge, we'll have to subtract that from the
2301	 * longest extent.
2302	 */
2303	if (need > pag->pagf_flcount)
2304		delta = need - pag->pagf_flcount;
2305
2306	/*
2307	 * If we cannot maintain others' reservations with space from the
2308	 * not-longest freesp extents, we'll have to subtract /that/ from
2309	 * the longest extent too.
2310	 */
2311	if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2312		delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2313
2314	/*
2315	 * If the longest extent is long enough to satisfy all the
2316	 * reservations and AGFL rules in place, we can return this extent.
2317	 */
2318	if (pag->pagf_longest > delta)
2319		return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2320				pag->pagf_longest - delta);
2321
2322	/* Otherwise, let the caller try for 1 block if there's space. */
2323	return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2324}
2325
2326/*
2327 * Compute the minimum length of the AGFL in the given AG.  If @pag is NULL,
2328 * return the largest possible minimum length.
2329 */
2330unsigned int
2331xfs_alloc_min_freelist(
2332	struct xfs_mount	*mp,
2333	struct xfs_perag	*pag)
2334{
2335	/* AG btrees have at least 1 level. */
2336	const unsigned int	bno_level = pag ? pag->pagf_bno_level : 1;
2337	const unsigned int	cnt_level = pag ? pag->pagf_cnt_level : 1;
2338	const unsigned int	rmap_level = pag ? pag->pagf_rmap_level : 1;
2339	unsigned int		min_free;
2340
2341	ASSERT(mp->m_alloc_maxlevels > 0);
2342
2343	/*
2344	 * For a btree shorter than the maximum height, the worst case is that
2345	 * every level gets split and a new level is added, then while inserting
2346	 * another entry to refill the AGFL, every level under the old root gets
2347	 * split again. This is:
2348	 *
2349	 *   (full height split reservation) + (AGFL refill split height)
2350	 * = (current height + 1) + (current height - 1)
2351	 * = (new height) + (new height - 2)
2352	 * = 2 * new height - 2
2353	 *
2354	 * For a btree of maximum height, the worst case is that every level
2355	 * under the root gets split, then while inserting another entry to
2356	 * refill the AGFL, every level under the root gets split again. This is
2357	 * also:
2358	 *
2359	 *   2 * (current height - 1)
2360	 * = 2 * (new height - 1)
2361	 * = 2 * new height - 2
2362	 */
2363
2364	/* space needed by-bno freespace btree */
2365	min_free = min(bno_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
 
2366	/* space needed by-size freespace btree */
2367	min_free += min(cnt_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
 
2368	/* space needed reverse mapping used space btree */
2369	if (xfs_has_rmapbt(mp))
2370		min_free += min(rmap_level + 1, mp->m_rmap_maxlevels) * 2 - 2;
 
 
2371	return min_free;
2372}
2373
2374/*
2375 * Check if the operation we are fixing up the freelist for should go ahead or
2376 * not. If we are freeing blocks, we always allow it, otherwise the allocation
2377 * is dependent on whether the size and shape of free space available will
2378 * permit the requested allocation to take place.
2379 */
2380static bool
2381xfs_alloc_space_available(
2382	struct xfs_alloc_arg	*args,
2383	xfs_extlen_t		min_free,
2384	int			flags)
2385{
2386	struct xfs_perag	*pag = args->pag;
2387	xfs_extlen_t		alloc_len, longest;
2388	xfs_extlen_t		reservation; /* blocks that are still reserved */
2389	int			available;
2390	xfs_extlen_t		agflcount;
2391
2392	if (flags & XFS_ALLOC_FLAG_FREEING)
2393		return true;
2394
2395	reservation = xfs_ag_resv_needed(pag, args->resv);
2396
2397	/* do we have enough contiguous free space for the allocation? */
2398	alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2399	longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2400	if (longest < alloc_len)
2401		return false;
2402
2403	/*
2404	 * Do we have enough free space remaining for the allocation? Don't
2405	 * account extra agfl blocks because we are about to defer free them,
2406	 * making them unavailable until the current transaction commits.
2407	 */
2408	agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2409	available = (int)(pag->pagf_freeblks + agflcount -
2410			  reservation - min_free - args->minleft);
2411	if (available < (int)max(args->total, alloc_len))
2412		return false;
2413
2414	/*
2415	 * Clamp maxlen to the amount of free space available for the actual
2416	 * extent allocation.
2417	 */
2418	if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2419		args->maxlen = available;
2420		ASSERT(args->maxlen > 0);
2421		ASSERT(args->maxlen >= args->minlen);
2422	}
2423
2424	return true;
2425}
2426
2427int
2428xfs_free_agfl_block(
2429	struct xfs_trans	*tp,
2430	xfs_agnumber_t		agno,
2431	xfs_agblock_t		agbno,
2432	struct xfs_buf		*agbp,
2433	struct xfs_owner_info	*oinfo)
2434{
2435	int			error;
2436	struct xfs_buf		*bp;
2437
2438	error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
2439				   XFS_AG_RESV_AGFL);
2440	if (error)
2441		return error;
2442
2443	error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
2444			XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
2445			tp->t_mountp->m_bsize, 0, &bp);
2446	if (error)
2447		return error;
2448	xfs_trans_binval(tp, bp);
2449
2450	return 0;
2451}
2452
2453/*
2454 * Check the agfl fields of the agf for inconsistency or corruption.
2455 *
2456 * The original purpose was to detect an agfl header padding mismatch between
2457 * current and early v5 kernels. This problem manifests as a 1-slot size
2458 * difference between the on-disk flcount and the active [first, last] range of
2459 * a wrapped agfl.
2460 *
2461 * However, we need to use these same checks to catch agfl count corruptions
2462 * unrelated to padding. This could occur on any v4 or v5 filesystem, so either
2463 * way, we need to reset the agfl and warn the user.
2464 *
2465 * Return true if a reset is required before the agfl can be used, false
2466 * otherwise.
2467 */
2468static bool
2469xfs_agfl_needs_reset(
2470	struct xfs_mount	*mp,
2471	struct xfs_agf		*agf)
2472{
2473	uint32_t		f = be32_to_cpu(agf->agf_flfirst);
2474	uint32_t		l = be32_to_cpu(agf->agf_fllast);
2475	uint32_t		c = be32_to_cpu(agf->agf_flcount);
2476	int			agfl_size = xfs_agfl_size(mp);
2477	int			active;
2478
 
 
 
 
2479	/*
2480	 * The agf read verifier catches severe corruption of these fields.
2481	 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2482	 * the verifier allows it.
2483	 */
2484	if (f >= agfl_size || l >= agfl_size)
2485		return true;
2486	if (c > agfl_size)
2487		return true;
2488
2489	/*
2490	 * Check consistency between the on-disk count and the active range. An
2491	 * agfl padding mismatch manifests as an inconsistent flcount.
2492	 */
2493	if (c && l >= f)
2494		active = l - f + 1;
2495	else if (c)
2496		active = agfl_size - f + l + 1;
2497	else
2498		active = 0;
2499
2500	return active != c;
2501}
2502
2503/*
2504 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2505 * agfl content cannot be trusted. Warn the user that a repair is required to
2506 * recover leaked blocks.
2507 *
2508 * The purpose of this mechanism is to handle filesystems affected by the agfl
2509 * header padding mismatch problem. A reset keeps the filesystem online with a
2510 * relatively minor free space accounting inconsistency rather than suffer the
2511 * inevitable crash from use of an invalid agfl block.
2512 */
2513static void
2514xfs_agfl_reset(
2515	struct xfs_trans	*tp,
2516	struct xfs_buf		*agbp,
2517	struct xfs_perag	*pag)
2518{
2519	struct xfs_mount	*mp = tp->t_mountp;
2520	struct xfs_agf		*agf = agbp->b_addr;
2521
2522	ASSERT(xfs_perag_agfl_needs_reset(pag));
2523	trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2524
2525	xfs_warn(mp,
2526	       "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2527	       "Please unmount and run xfs_repair.",
2528	         pag->pag_agno, pag->pagf_flcount);
2529
2530	agf->agf_flfirst = 0;
2531	agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2532	agf->agf_flcount = 0;
2533	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2534				    XFS_AGF_FLCOUNT);
2535
2536	pag->pagf_flcount = 0;
2537	clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
2538}
2539
2540/*
2541 * Defer an AGFL block free. This is effectively equivalent to
2542 * xfs_free_extent_later() with some special handling particular to AGFL blocks.
2543 *
2544 * Deferring AGFL frees helps prevent log reservation overruns due to too many
2545 * allocation operations in a transaction. AGFL frees are prone to this problem
2546 * because for one they are always freed one at a time. Further, an immediate
2547 * AGFL block free can cause a btree join and require another block free before
2548 * the real allocation can proceed. Deferring the free disconnects freeing up
2549 * the AGFL slot from freeing the block.
2550 */
2551static int
2552xfs_defer_agfl_block(
2553	struct xfs_trans		*tp,
2554	xfs_agnumber_t			agno,
2555	xfs_agblock_t			agbno,
2556	struct xfs_owner_info		*oinfo)
2557{
2558	struct xfs_mount		*mp = tp->t_mountp;
2559	struct xfs_extent_free_item	*xefi;
2560	xfs_fsblock_t			fsbno = XFS_AGB_TO_FSB(mp, agno, agbno);
2561
2562	ASSERT(xfs_extfree_item_cache != NULL);
2563	ASSERT(oinfo != NULL);
2564
2565	if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbno(mp, fsbno)))
2566		return -EFSCORRUPTED;
2567
2568	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2569			       GFP_KERNEL | __GFP_NOFAIL);
2570	xefi->xefi_startblock = fsbno;
2571	xefi->xefi_blockcount = 1;
2572	xefi->xefi_owner = oinfo->oi_owner;
2573	xefi->xefi_agresv = XFS_AG_RESV_AGFL;
2574
2575	trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
2576
2577	xfs_extent_free_get_group(mp, xefi);
2578	xfs_defer_add(tp, &xefi->xefi_list, &xfs_agfl_free_defer_type);
2579	return 0;
2580}
2581
2582/*
2583 * Add the extent to the list of extents to be free at transaction end.
2584 * The list is maintained sorted (by block number).
2585 */
2586static int
2587xfs_defer_extent_free(
2588	struct xfs_trans		*tp,
2589	xfs_fsblock_t			bno,
2590	xfs_filblks_t			len,
2591	const struct xfs_owner_info	*oinfo,
2592	enum xfs_ag_resv_type		type,
2593	bool				skip_discard,
2594	struct xfs_defer_pending	**dfpp)
2595{
2596	struct xfs_extent_free_item	*xefi;
 
2597	struct xfs_mount		*mp = tp->t_mountp;
2598#ifdef DEBUG
2599	xfs_agnumber_t			agno;
2600	xfs_agblock_t			agbno;
2601
2602	ASSERT(bno != NULLFSBLOCK);
2603	ASSERT(len > 0);
2604	ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
2605	ASSERT(!isnullstartblock(bno));
2606	agno = XFS_FSB_TO_AGNO(mp, bno);
2607	agbno = XFS_FSB_TO_AGBNO(mp, bno);
2608	ASSERT(agno < mp->m_sb.sb_agcount);
2609	ASSERT(agbno < mp->m_sb.sb_agblocks);
2610	ASSERT(len < mp->m_sb.sb_agblocks);
2611	ASSERT(agbno + len <= mp->m_sb.sb_agblocks);
2612#endif
2613	ASSERT(xfs_extfree_item_cache != NULL);
2614	ASSERT(type != XFS_AG_RESV_AGFL);
2615
2616	if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len)))
2617		return -EFSCORRUPTED;
2618
2619	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2620			       GFP_KERNEL | __GFP_NOFAIL);
2621	xefi->xefi_startblock = bno;
2622	xefi->xefi_blockcount = (xfs_extlen_t)len;
2623	xefi->xefi_agresv = type;
2624	if (skip_discard)
2625		xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
2626	if (oinfo) {
2627		ASSERT(oinfo->oi_offset == 0);
2628
2629		if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2630			xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
2631		if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2632			xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2633		xefi->xefi_owner = oinfo->oi_owner;
2634	} else {
2635		xefi->xefi_owner = XFS_RMAP_OWN_NULL;
2636	}
2637	trace_xfs_bmap_free_defer(mp,
2638			XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0,
2639			XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len);
2640
2641	xfs_extent_free_get_group(mp, xefi);
2642	*dfpp = xfs_defer_add(tp, &xefi->xefi_list, &xfs_extent_free_defer_type);
2643	return 0;
2644}
2645
2646int
2647xfs_free_extent_later(
2648	struct xfs_trans		*tp,
2649	xfs_fsblock_t			bno,
2650	xfs_filblks_t			len,
2651	const struct xfs_owner_info	*oinfo,
2652	enum xfs_ag_resv_type		type,
2653	bool				skip_discard)
2654{
2655	struct xfs_defer_pending	*dontcare = NULL;
2656
2657	return xfs_defer_extent_free(tp, bno, len, oinfo, type, skip_discard,
2658			&dontcare);
2659}
2660
2661/*
2662 * Set up automatic freeing of unwritten space in the filesystem.
2663 *
2664 * This function attached a paused deferred extent free item to the
2665 * transaction.  Pausing means that the EFI will be logged in the next
2666 * transaction commit, but the pending EFI will not be finished until the
2667 * pending item is unpaused.
2668 *
2669 * If the system goes down after the EFI has been persisted to the log but
2670 * before the pending item is unpaused, log recovery will find the EFI, fail to
2671 * find the EFD, and free the space.
2672 *
2673 * If the pending item is unpaused, the next transaction commit will log an EFD
2674 * without freeing the space.
2675 *
2676 * Caller must ensure that the tp, fsbno, len, oinfo, and resv flags of the
2677 * @args structure are set to the relevant values.
2678 */
2679int
2680xfs_alloc_schedule_autoreap(
2681	const struct xfs_alloc_arg	*args,
2682	bool				skip_discard,
2683	struct xfs_alloc_autoreap	*aarp)
2684{
2685	int				error;
2686
2687	error = xfs_defer_extent_free(args->tp, args->fsbno, args->len,
2688			&args->oinfo, args->resv, skip_discard, &aarp->dfp);
2689	if (error)
2690		return error;
2691
2692	xfs_defer_item_pause(args->tp, aarp->dfp);
2693	return 0;
2694}
2695
2696/*
2697 * Cancel automatic freeing of unwritten space in the filesystem.
2698 *
2699 * Earlier, we created a paused deferred extent free item and attached it to
2700 * this transaction so that we could automatically roll back a new space
2701 * allocation if the system went down.  Now we want to cancel the paused work
2702 * item by marking the EFI stale so we don't actually free the space, unpausing
2703 * the pending item and logging an EFD.
2704 *
2705 * The caller generally should have already mapped the space into the ondisk
2706 * filesystem.  If the reserved space was partially used, the caller must call
2707 * xfs_free_extent_later to create a new EFI to free the unused space.
2708 */
2709void
2710xfs_alloc_cancel_autoreap(
2711	struct xfs_trans		*tp,
2712	struct xfs_alloc_autoreap	*aarp)
2713{
2714	struct xfs_defer_pending	*dfp = aarp->dfp;
2715	struct xfs_extent_free_item	*xefi;
2716
2717	if (!dfp)
2718		return;
2719
2720	list_for_each_entry(xefi, &dfp->dfp_work, xefi_list)
2721		xefi->xefi_flags |= XFS_EFI_CANCELLED;
2722
2723	xfs_defer_item_unpause(tp, dfp);
2724}
2725
2726/*
2727 * Commit automatic freeing of unwritten space in the filesystem.
2728 *
2729 * This unpauses an earlier _schedule_autoreap and commits to freeing the
2730 * allocated space.  Call this if none of the reserved space was used.
2731 */
2732void
2733xfs_alloc_commit_autoreap(
2734	struct xfs_trans		*tp,
2735	struct xfs_alloc_autoreap	*aarp)
2736{
2737	if (aarp->dfp)
2738		xfs_defer_item_unpause(tp, aarp->dfp);
2739}
2740
2741#ifdef DEBUG
2742/*
2743 * Check if an AGF has a free extent record whose length is equal to
2744 * args->minlen.
2745 */
2746STATIC int
2747xfs_exact_minlen_extent_available(
2748	struct xfs_alloc_arg	*args,
2749	struct xfs_buf		*agbp,
2750	int			*stat)
2751{
2752	struct xfs_btree_cur	*cnt_cur;
2753	xfs_agblock_t		fbno;
2754	xfs_extlen_t		flen;
2755	int			error = 0;
2756
2757	cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, agbp,
2758					args->pag);
2759	error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2760	if (error)
2761		goto out;
2762
2763	if (*stat == 0) {
2764		xfs_btree_mark_sick(cnt_cur);
2765		error = -EFSCORRUPTED;
2766		goto out;
2767	}
2768
2769	error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2770	if (error)
2771		goto out;
2772
2773	if (*stat == 1 && flen != args->minlen)
2774		*stat = 0;
2775
2776out:
2777	xfs_btree_del_cursor(cnt_cur, error);
2778
2779	return error;
2780}
2781#endif
2782
2783/*
2784 * Decide whether to use this allocation group for this allocation.
2785 * If so, fix up the btree freelist's size.
2786 */
2787int			/* error */
2788xfs_alloc_fix_freelist(
2789	struct xfs_alloc_arg	*args,	/* allocation argument structure */
2790	uint32_t		alloc_flags)
2791{
2792	struct xfs_mount	*mp = args->mp;
2793	struct xfs_perag	*pag = args->pag;
2794	struct xfs_trans	*tp = args->tp;
2795	struct xfs_buf		*agbp = NULL;
2796	struct xfs_buf		*agflbp = NULL;
2797	struct xfs_alloc_arg	targs;	/* local allocation arguments */
2798	xfs_agblock_t		bno;	/* freelist block */
2799	xfs_extlen_t		need;	/* total blocks needed in freelist */
2800	int			error = 0;
2801
2802	/* deferred ops (AGFL block frees) require permanent transactions */
2803	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2804
2805	if (!xfs_perag_initialised_agf(pag)) {
2806		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2807		if (error) {
2808			/* Couldn't lock the AGF so skip this AG. */
2809			if (error == -EAGAIN)
2810				error = 0;
2811			goto out_no_agbp;
2812		}
2813	}
2814
2815	/*
2816	 * If this is a metadata preferred pag and we are user data then try
2817	 * somewhere else if we are not being asked to try harder at this
2818	 * point
2819	 */
2820	if (xfs_perag_prefers_metadata(pag) &&
2821	    (args->datatype & XFS_ALLOC_USERDATA) &&
2822	    (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2823		ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING));
2824		goto out_agbp_relse;
2825	}
2826
2827	need = xfs_alloc_min_freelist(mp, pag);
2828	if (!xfs_alloc_space_available(args, need, alloc_flags |
2829			XFS_ALLOC_FLAG_CHECK))
2830		goto out_agbp_relse;
2831
2832	/*
2833	 * Get the a.g. freespace buffer.
2834	 * Can fail if we're not blocking on locks, and it's held.
2835	 */
2836	if (!agbp) {
2837		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2838		if (error) {
2839			/* Couldn't lock the AGF so skip this AG. */
2840			if (error == -EAGAIN)
2841				error = 0;
2842			goto out_no_agbp;
2843		}
2844	}
2845
2846	/* reset a padding mismatched agfl before final free space check */
2847	if (xfs_perag_agfl_needs_reset(pag))
2848		xfs_agfl_reset(tp, agbp, pag);
2849
2850	/* If there isn't enough total space or single-extent, reject it. */
2851	need = xfs_alloc_min_freelist(mp, pag);
2852	if (!xfs_alloc_space_available(args, need, alloc_flags))
2853		goto out_agbp_relse;
2854
2855#ifdef DEBUG
2856	if (args->alloc_minlen_only) {
2857		int stat;
2858
2859		error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2860		if (error || !stat)
2861			goto out_agbp_relse;
2862	}
2863#endif
2864	/*
2865	 * Make the freelist shorter if it's too long.
2866	 *
2867	 * Note that from this point onwards, we will always release the agf and
2868	 * agfl buffers on error. This handles the case where we error out and
2869	 * the buffers are clean or may not have been joined to the transaction
2870	 * and hence need to be released manually. If they have been joined to
2871	 * the transaction, then xfs_trans_brelse() will handle them
2872	 * appropriately based on the recursion count and dirty state of the
2873	 * buffer.
2874	 *
2875	 * XXX (dgc): When we have lots of free space, does this buy us
2876	 * anything other than extra overhead when we need to put more blocks
2877	 * back on the free list? Maybe we should only do this when space is
2878	 * getting low or the AGFL is more than half full?
2879	 *
2880	 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2881	 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2882	 * updating the rmapbt.  Both flags are used in xfs_repair while we're
2883	 * rebuilding the rmapbt, and neither are used by the kernel.  They're
2884	 * both required to ensure that rmaps are correctly recorded for the
2885	 * regenerated AGFL, bnobt, and cntbt.  See repair/phase5.c and
2886	 * repair/rmap.c in xfsprogs for details.
2887	 */
2888	memset(&targs, 0, sizeof(targs));
2889	/* struct copy below */
2890	if (alloc_flags & XFS_ALLOC_FLAG_NORMAP)
2891		targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2892	else
2893		targs.oinfo = XFS_RMAP_OINFO_AG;
2894	while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) &&
2895			pag->pagf_flcount > need) {
2896		error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
2897		if (error)
2898			goto out_agbp_relse;
2899
2900		/* defer agfl frees */
2901		error = xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
2902		if (error)
2903			goto out_agbp_relse;
2904	}
2905
2906	targs.tp = tp;
2907	targs.mp = mp;
2908	targs.agbp = agbp;
2909	targs.agno = args->agno;
2910	targs.alignment = targs.minlen = targs.prod = 1;
 
2911	targs.pag = pag;
2912	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2913	if (error)
2914		goto out_agbp_relse;
2915
2916	/* Make the freelist longer if it's too short. */
2917	while (pag->pagf_flcount < need) {
2918		targs.agbno = 0;
2919		targs.maxlen = need - pag->pagf_flcount;
2920		targs.resv = XFS_AG_RESV_AGFL;
2921
2922		/* Allocate as many blocks as possible at once. */
2923		error = xfs_alloc_ag_vextent_size(&targs, alloc_flags);
2924		if (error)
2925			goto out_agflbp_relse;
2926
2927		/*
2928		 * Stop if we run out.  Won't happen if callers are obeying
2929		 * the restrictions correctly.  Can happen for free calls
2930		 * on a completely full ag.
2931		 */
2932		if (targs.agbno == NULLAGBLOCK) {
2933			if (alloc_flags & XFS_ALLOC_FLAG_FREEING)
2934				break;
2935			goto out_agflbp_relse;
2936		}
2937
2938		if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
2939			error = xfs_rmap_alloc(tp, agbp, pag,
2940				       targs.agbno, targs.len, &targs.oinfo);
2941			if (error)
2942				goto out_agflbp_relse;
2943		}
2944		error = xfs_alloc_update_counters(tp, agbp,
2945						  -((long)(targs.len)));
2946		if (error)
2947			goto out_agflbp_relse;
2948
2949		/*
2950		 * Put each allocated block on the list.
2951		 */
2952		for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2953			error = xfs_alloc_put_freelist(pag, tp, agbp,
2954							agflbp, bno, 0);
2955			if (error)
2956				goto out_agflbp_relse;
2957		}
2958	}
2959	xfs_trans_brelse(tp, agflbp);
2960	args->agbp = agbp;
2961	return 0;
2962
2963out_agflbp_relse:
2964	xfs_trans_brelse(tp, agflbp);
2965out_agbp_relse:
2966	if (agbp)
2967		xfs_trans_brelse(tp, agbp);
2968out_no_agbp:
2969	args->agbp = NULL;
2970	return error;
2971}
2972
2973/*
2974 * Get a block from the freelist.
2975 * Returns with the buffer for the block gotten.
2976 */
2977int
2978xfs_alloc_get_freelist(
2979	struct xfs_perag	*pag,
2980	struct xfs_trans	*tp,
2981	struct xfs_buf		*agbp,
2982	xfs_agblock_t		*bnop,
2983	int			btreeblk)
2984{
2985	struct xfs_agf		*agf = agbp->b_addr;
2986	struct xfs_buf		*agflbp;
2987	xfs_agblock_t		bno;
2988	__be32			*agfl_bno;
2989	int			error;
2990	uint32_t		logflags;
2991	struct xfs_mount	*mp = tp->t_mountp;
2992
2993	/*
2994	 * Freelist is empty, give up.
2995	 */
2996	if (!agf->agf_flcount) {
2997		*bnop = NULLAGBLOCK;
2998		return 0;
2999	}
3000	/*
3001	 * Read the array of free blocks.
3002	 */
3003	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
3004	if (error)
3005		return error;
3006
3007
3008	/*
3009	 * Get the block number and update the data structures.
3010	 */
3011	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3012	bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
3013	if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno)))
3014		return -EFSCORRUPTED;
3015
3016	be32_add_cpu(&agf->agf_flfirst, 1);
3017	xfs_trans_brelse(tp, agflbp);
3018	if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
3019		agf->agf_flfirst = 0;
3020
3021	ASSERT(!xfs_perag_agfl_needs_reset(pag));
3022	be32_add_cpu(&agf->agf_flcount, -1);
3023	pag->pagf_flcount--;
3024
3025	logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
3026	if (btreeblk) {
3027		be32_add_cpu(&agf->agf_btreeblks, 1);
3028		pag->pagf_btreeblks++;
3029		logflags |= XFS_AGF_BTREEBLKS;
3030	}
3031
3032	xfs_alloc_log_agf(tp, agbp, logflags);
3033	*bnop = bno;
3034
3035	return 0;
3036}
3037
3038/*
3039 * Log the given fields from the agf structure.
3040 */
3041void
3042xfs_alloc_log_agf(
3043	struct xfs_trans	*tp,
3044	struct xfs_buf		*bp,
3045	uint32_t		fields)
3046{
3047	int	first;		/* first byte offset */
3048	int	last;		/* last byte offset */
3049	static const short	offsets[] = {
3050		offsetof(xfs_agf_t, agf_magicnum),
3051		offsetof(xfs_agf_t, agf_versionnum),
3052		offsetof(xfs_agf_t, agf_seqno),
3053		offsetof(xfs_agf_t, agf_length),
3054		offsetof(xfs_agf_t, agf_bno_root),   /* also cnt/rmap root */
3055		offsetof(xfs_agf_t, agf_bno_level),  /* also cnt/rmap levels */
3056		offsetof(xfs_agf_t, agf_flfirst),
3057		offsetof(xfs_agf_t, agf_fllast),
3058		offsetof(xfs_agf_t, agf_flcount),
3059		offsetof(xfs_agf_t, agf_freeblks),
3060		offsetof(xfs_agf_t, agf_longest),
3061		offsetof(xfs_agf_t, agf_btreeblks),
3062		offsetof(xfs_agf_t, agf_uuid),
3063		offsetof(xfs_agf_t, agf_rmap_blocks),
3064		offsetof(xfs_agf_t, agf_refcount_blocks),
3065		offsetof(xfs_agf_t, agf_refcount_root),
3066		offsetof(xfs_agf_t, agf_refcount_level),
3067		/* needed so that we don't log the whole rest of the structure: */
3068		offsetof(xfs_agf_t, agf_spare64),
3069		sizeof(xfs_agf_t)
3070	};
3071
3072	trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
3073
3074	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
3075
3076	xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
3077	xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
3078}
3079
3080/*
3081 * Put the block on the freelist for the allocation group.
3082 */
3083int
3084xfs_alloc_put_freelist(
3085	struct xfs_perag	*pag,
3086	struct xfs_trans	*tp,
3087	struct xfs_buf		*agbp,
3088	struct xfs_buf		*agflbp,
3089	xfs_agblock_t		bno,
3090	int			btreeblk)
3091{
3092	struct xfs_mount	*mp = tp->t_mountp;
3093	struct xfs_agf		*agf = agbp->b_addr;
3094	__be32			*blockp;
3095	int			error;
3096	uint32_t		logflags;
3097	__be32			*agfl_bno;
3098	int			startoff;
3099
3100	if (!agflbp) {
3101		error = xfs_alloc_read_agfl(pag, tp, &agflbp);
3102		if (error)
3103			return error;
3104	}
3105
3106	be32_add_cpu(&agf->agf_fllast, 1);
3107	if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
3108		agf->agf_fllast = 0;
3109
3110	ASSERT(!xfs_perag_agfl_needs_reset(pag));
3111	be32_add_cpu(&agf->agf_flcount, 1);
3112	pag->pagf_flcount++;
3113
3114	logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
3115	if (btreeblk) {
3116		be32_add_cpu(&agf->agf_btreeblks, -1);
3117		pag->pagf_btreeblks--;
3118		logflags |= XFS_AGF_BTREEBLKS;
3119	}
3120
3121	xfs_alloc_log_agf(tp, agbp, logflags);
3122
3123	ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
3124
3125	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3126	blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
3127	*blockp = cpu_to_be32(bno);
3128	startoff = (char *)blockp - (char *)agflbp->b_addr;
3129
3130	xfs_alloc_log_agf(tp, agbp, logflags);
3131
3132	xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
3133	xfs_trans_log_buf(tp, agflbp, startoff,
3134			  startoff + sizeof(xfs_agblock_t) - 1);
3135	return 0;
3136}
3137
3138/*
3139 * Check that this AGF/AGI header's sequence number and length matches the AG
3140 * number and size in fsblocks.
3141 */
3142xfs_failaddr_t
3143xfs_validate_ag_length(
3144	struct xfs_buf		*bp,
3145	uint32_t		seqno,
3146	uint32_t		length)
3147{
3148	struct xfs_mount	*mp = bp->b_mount;
3149	/*
3150	 * During growfs operations, the perag is not fully initialised,
3151	 * so we can't use it for any useful checking. growfs ensures we can't
3152	 * use it by using uncached buffers that don't have the perag attached
3153	 * so we can detect and avoid this problem.
3154	 */
3155	if (bp->b_pag && seqno != bp->b_pag->pag_agno)
3156		return __this_address;
3157
3158	/*
3159	 * Only the last AG in the filesystem is allowed to be shorter
3160	 * than the AG size recorded in the superblock.
3161	 */
3162	if (length != mp->m_sb.sb_agblocks) {
3163		/*
3164		 * During growfs, the new last AG can get here before we
3165		 * have updated the superblock. Give it a pass on the seqno
3166		 * check.
3167		 */
3168		if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1)
3169			return __this_address;
3170		if (length < XFS_MIN_AG_BLOCKS)
3171			return __this_address;
3172		if (length > mp->m_sb.sb_agblocks)
3173			return __this_address;
3174	}
3175
3176	return NULL;
3177}
3178
3179/*
3180 * Verify the AGF is consistent.
3181 *
3182 * We do not verify the AGFL indexes in the AGF are fully consistent here
3183 * because of issues with variable on-disk structure sizes. Instead, we check
3184 * the agfl indexes for consistency when we initialise the perag from the AGF
3185 * information after a read completes.
3186 *
3187 * If the index is inconsistent, then we mark the perag as needing an AGFL
3188 * reset. The first AGFL update performed then resets the AGFL indexes and
3189 * refills the AGFL with known good free blocks, allowing the filesystem to
3190 * continue operating normally at the cost of a few leaked free space blocks.
3191 */
3192static xfs_failaddr_t
3193xfs_agf_verify(
3194	struct xfs_buf		*bp)
3195{
3196	struct xfs_mount	*mp = bp->b_mount;
3197	struct xfs_agf		*agf = bp->b_addr;
3198	xfs_failaddr_t		fa;
3199	uint32_t		agf_seqno = be32_to_cpu(agf->agf_seqno);
3200	uint32_t		agf_length = be32_to_cpu(agf->agf_length);
3201
3202	if (xfs_has_crc(mp)) {
3203		if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
3204			return __this_address;
3205		if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
3206			return __this_address;
3207	}
3208
3209	if (!xfs_verify_magic(bp, agf->agf_magicnum))
3210		return __this_address;
3211
3212	if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)))
 
 
 
 
3213		return __this_address;
3214
3215	/*
3216	 * Both agf_seqno and agf_length need to validated before anything else
3217	 * block number related in the AGF or AGFL can be checked.
3218	 */
3219	fa = xfs_validate_ag_length(bp, agf_seqno, agf_length);
3220	if (fa)
3221		return fa;
3222
3223	if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp))
 
3224		return __this_address;
3225	if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp))
 
 
 
 
 
 
3226		return __this_address;
3227	if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp))
 
 
 
 
3228		return __this_address;
3229
3230	if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
3231	    be32_to_cpu(agf->agf_freeblks) > agf_length)
3232		return __this_address;
3233
3234	if (be32_to_cpu(agf->agf_bno_level) < 1 ||
3235	    be32_to_cpu(agf->agf_cnt_level) < 1 ||
3236	    be32_to_cpu(agf->agf_bno_level) > mp->m_alloc_maxlevels ||
3237	    be32_to_cpu(agf->agf_cnt_level) > mp->m_alloc_maxlevels)
 
 
 
3238		return __this_address;
3239
3240	if (xfs_has_lazysbcount(mp) &&
3241	    be32_to_cpu(agf->agf_btreeblks) > agf_length)
3242		return __this_address;
3243
3244	if (xfs_has_rmapbt(mp)) {
3245		if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length)
3246			return __this_address;
 
3247
3248		if (be32_to_cpu(agf->agf_rmap_level) < 1 ||
3249		    be32_to_cpu(agf->agf_rmap_level) > mp->m_rmap_maxlevels)
3250			return __this_address;
3251	}
3252
3253	if (xfs_has_reflink(mp)) {
3254		if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length)
3255			return __this_address;
3256
3257		if (be32_to_cpu(agf->agf_refcount_level) < 1 ||
3258		    be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)
3259			return __this_address;
3260	}
3261
3262	return NULL;
3263}
3264
3265static void
3266xfs_agf_read_verify(
3267	struct xfs_buf	*bp)
3268{
3269	struct xfs_mount *mp = bp->b_mount;
3270	xfs_failaddr_t	fa;
3271
3272	if (xfs_has_crc(mp) &&
3273	    !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
3274		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3275	else {
3276		fa = xfs_agf_verify(bp);
3277		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3278			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3279	}
3280}
3281
3282static void
3283xfs_agf_write_verify(
3284	struct xfs_buf	*bp)
3285{
3286	struct xfs_mount	*mp = bp->b_mount;
3287	struct xfs_buf_log_item	*bip = bp->b_log_item;
3288	struct xfs_agf		*agf = bp->b_addr;
3289	xfs_failaddr_t		fa;
3290
3291	fa = xfs_agf_verify(bp);
3292	if (fa) {
3293		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3294		return;
3295	}
3296
3297	if (!xfs_has_crc(mp))
3298		return;
3299
3300	if (bip)
3301		agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
3302
3303	xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
3304}
3305
3306const struct xfs_buf_ops xfs_agf_buf_ops = {
3307	.name = "xfs_agf",
3308	.magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
3309	.verify_read = xfs_agf_read_verify,
3310	.verify_write = xfs_agf_write_verify,
3311	.verify_struct = xfs_agf_verify,
3312};
3313
3314/*
3315 * Read in the allocation group header (free/alloc section).
3316 */
3317int
3318xfs_read_agf(
3319	struct xfs_perag	*pag,
3320	struct xfs_trans	*tp,
3321	int			flags,
3322	struct xfs_buf		**agfbpp)
3323{
3324	struct xfs_mount	*mp = pag->pag_mount;
3325	int			error;
3326
3327	trace_xfs_read_agf(pag->pag_mount, pag->pag_agno);
3328
3329	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3330			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)),
3331			XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
3332	if (xfs_metadata_is_sick(error))
3333		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF);
3334	if (error)
3335		return error;
3336
3337	xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
3338	return 0;
3339}
3340
3341/*
3342 * Read in the allocation group header (free/alloc section) and initialise the
3343 * perag structure if necessary. If the caller provides @agfbpp, then return the
3344 * locked buffer to the caller, otherwise free it.
3345 */
3346int
3347xfs_alloc_read_agf(
3348	struct xfs_perag	*pag,
3349	struct xfs_trans	*tp,
3350	int			flags,
3351	struct xfs_buf		**agfbpp)
3352{
3353	struct xfs_buf		*agfbp;
3354	struct xfs_agf		*agf;
3355	int			error;
3356	int			allocbt_blks;
3357
3358	trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno);
3359
3360	/* We don't support trylock when freeing. */
3361	ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3362			(XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3363	error = xfs_read_agf(pag, tp,
3364			(flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3365			&agfbp);
3366	if (error)
3367		return error;
3368
3369	agf = agfbp->b_addr;
3370	if (!xfs_perag_initialised_agf(pag)) {
3371		pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3372		pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3373		pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3374		pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3375		pag->pagf_bno_level = be32_to_cpu(agf->agf_bno_level);
3376		pag->pagf_cnt_level = be32_to_cpu(agf->agf_cnt_level);
3377		pag->pagf_rmap_level = be32_to_cpu(agf->agf_rmap_level);
 
 
 
3378		pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3379		if (xfs_agfl_needs_reset(pag->pag_mount, agf))
3380			set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3381		else
3382			clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3383
3384		/*
3385		 * Update the in-core allocbt counter. Filter out the rmapbt
3386		 * subset of the btreeblks counter because the rmapbt is managed
3387		 * by perag reservation. Subtract one for the rmapbt root block
3388		 * because the rmap counter includes it while the btreeblks
3389		 * counter only tracks non-root blocks.
3390		 */
3391		allocbt_blks = pag->pagf_btreeblks;
3392		if (xfs_has_rmapbt(pag->pag_mount))
3393			allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3394		if (allocbt_blks > 0)
3395			atomic64_add(allocbt_blks,
3396					&pag->pag_mount->m_allocbt_blks);
3397
3398		set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
3399	}
3400#ifdef DEBUG
3401	else if (!xfs_is_shutdown(pag->pag_mount)) {
3402		ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3403		ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3404		ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3405		ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3406		ASSERT(pag->pagf_bno_level == be32_to_cpu(agf->agf_bno_level));
3407		ASSERT(pag->pagf_cnt_level == be32_to_cpu(agf->agf_cnt_level));
 
 
3408	}
3409#endif
3410	if (agfbpp)
3411		*agfbpp = agfbp;
3412	else
3413		xfs_trans_brelse(tp, agfbp);
3414	return 0;
3415}
3416
3417/*
3418 * Pre-proces allocation arguments to set initial state that we don't require
3419 * callers to set up correctly, as well as bounds check the allocation args
3420 * that are set up.
3421 */
3422static int
3423xfs_alloc_vextent_check_args(
3424	struct xfs_alloc_arg	*args,
3425	xfs_fsblock_t		target,
3426	xfs_agnumber_t		*minimum_agno)
3427{
3428	struct xfs_mount	*mp = args->mp;
3429	xfs_agblock_t		agsize;
3430
3431	args->fsbno = NULLFSBLOCK;
3432
3433	*minimum_agno = 0;
3434	if (args->tp->t_highest_agno != NULLAGNUMBER)
3435		*minimum_agno = args->tp->t_highest_agno;
3436
 
 
 
3437	/*
3438	 * Just fix this up, for the case where the last a.g. is shorter
3439	 * (or there's only one a.g.) and the caller couldn't easily figure
3440	 * that out (xfs_bmap_alloc).
3441	 */
3442	agsize = mp->m_sb.sb_agblocks;
3443	if (args->maxlen > agsize)
3444		args->maxlen = agsize;
3445	if (args->alignment == 0)
3446		args->alignment = 1;
3447
3448	ASSERT(args->minlen > 0);
3449	ASSERT(args->maxlen > 0);
3450	ASSERT(args->alignment > 0);
3451	ASSERT(args->resv != XFS_AG_RESV_AGFL);
3452
3453	ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
3454	ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
3455	ASSERT(args->minlen <= args->maxlen);
3456	ASSERT(args->minlen <= agsize);
3457	ASSERT(args->mod < args->prod);
3458
3459	if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
3460	    XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
3461	    args->minlen > args->maxlen || args->minlen > agsize ||
3462	    args->mod >= args->prod) {
 
3463		trace_xfs_alloc_vextent_badargs(args);
3464		return -ENOSPC;
3465	}
3466
3467	if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
3468		trace_xfs_alloc_vextent_skip_deadlock(args);
3469		return -ENOSPC;
3470	}
3471	return 0;
3472
3473}
3474
3475/*
3476 * Prepare an AG for allocation. If the AG is not prepared to accept the
3477 * allocation, return failure.
3478 *
3479 * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
3480 * modified to hold their own perag references.
3481 */
3482static int
3483xfs_alloc_vextent_prepare_ag(
3484	struct xfs_alloc_arg	*args,
3485	uint32_t		alloc_flags)
3486{
3487	bool			need_pag = !args->pag;
3488	int			error;
3489
3490	if (need_pag)
3491		args->pag = xfs_perag_get(args->mp, args->agno);
3492
3493	args->agbp = NULL;
3494	error = xfs_alloc_fix_freelist(args, alloc_flags);
3495	if (error) {
3496		trace_xfs_alloc_vextent_nofix(args);
3497		if (need_pag)
3498			xfs_perag_put(args->pag);
3499		args->agbno = NULLAGBLOCK;
3500		return error;
3501	}
3502	if (!args->agbp) {
3503		/* cannot allocate in this AG at all */
3504		trace_xfs_alloc_vextent_noagbp(args);
3505		args->agbno = NULLAGBLOCK;
3506		return 0;
3507	}
3508	args->wasfromfl = 0;
3509	return 0;
3510}
3511
3512/*
3513 * Post-process allocation results to account for the allocation if it succeed
3514 * and set the allocated block number correctly for the caller.
3515 *
3516 * XXX: we should really be returning ENOSPC for ENOSPC, not
3517 * hiding it behind a "successful" NULLFSBLOCK allocation.
3518 */
3519static int
3520xfs_alloc_vextent_finish(
3521	struct xfs_alloc_arg	*args,
3522	xfs_agnumber_t		minimum_agno,
3523	int			alloc_error,
3524	bool			drop_perag)
3525{
3526	struct xfs_mount	*mp = args->mp;
3527	int			error = 0;
3528
3529	/*
3530	 * We can end up here with a locked AGF. If we failed, the caller is
3531	 * likely going to try to allocate again with different parameters, and
3532	 * that can widen the AGs that are searched for free space. If we have
3533	 * to do BMBT block allocation, we have to do a new allocation.
3534	 *
3535	 * Hence leaving this function with the AGF locked opens up potential
3536	 * ABBA AGF deadlocks because a future allocation attempt in this
3537	 * transaction may attempt to lock a lower number AGF.
3538	 *
3539	 * We can't release the AGF until the transaction is commited, so at
3540	 * this point we must update the "first allocation" tracker to point at
3541	 * this AG if the tracker is empty or points to a lower AG. This allows
3542	 * the next allocation attempt to be modified appropriately to avoid
3543	 * deadlocks.
3544	 */
3545	if (args->agbp &&
3546	    (args->tp->t_highest_agno == NULLAGNUMBER ||
3547	     args->agno > minimum_agno))
3548		args->tp->t_highest_agno = args->agno;
3549
3550	/*
3551	 * If the allocation failed with an error or we had an ENOSPC result,
3552	 * preserve the returned error whilst also marking the allocation result
3553	 * as "no extent allocated". This ensures that callers that fail to
3554	 * capture the error will still treat it as a failed allocation.
3555	 */
3556	if (alloc_error || args->agbno == NULLAGBLOCK) {
3557		args->fsbno = NULLFSBLOCK;
3558		error = alloc_error;
3559		goto out_drop_perag;
3560	}
3561
3562	args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3563
3564	ASSERT(args->len >= args->minlen);
3565	ASSERT(args->len <= args->maxlen);
3566	ASSERT(args->agbno % args->alignment == 0);
3567	XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
3568
3569	/* if not file data, insert new block into the reverse map btree */
3570	if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
3571		error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
3572				       args->agbno, args->len, &args->oinfo);
3573		if (error)
3574			goto out_drop_perag;
3575	}
3576
3577	if (!args->wasfromfl) {
3578		error = xfs_alloc_update_counters(args->tp, args->agbp,
3579						  -((long)(args->len)));
3580		if (error)
3581			goto out_drop_perag;
3582
3583		ASSERT(!xfs_extent_busy_search(mp, args->pag, args->agbno,
3584				args->len));
3585	}
3586
3587	xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
3588
3589	XFS_STATS_INC(mp, xs_allocx);
3590	XFS_STATS_ADD(mp, xs_allocb, args->len);
3591
3592	trace_xfs_alloc_vextent_finish(args);
3593
3594out_drop_perag:
3595	if (drop_perag && args->pag) {
3596		xfs_perag_rele(args->pag);
3597		args->pag = NULL;
3598	}
3599	return error;
3600}
3601
3602/*
3603 * Allocate within a single AG only. This uses a best-fit length algorithm so if
3604 * you need an exact sized allocation without locality constraints, this is the
3605 * fastest way to do it.
3606 *
3607 * Caller is expected to hold a perag reference in args->pag.
3608 */
3609int
3610xfs_alloc_vextent_this_ag(
3611	struct xfs_alloc_arg	*args,
3612	xfs_agnumber_t		agno)
3613{
3614	struct xfs_mount	*mp = args->mp;
3615	xfs_agnumber_t		minimum_agno;
3616	uint32_t		alloc_flags = 0;
3617	int			error;
3618
3619	ASSERT(args->pag != NULL);
3620	ASSERT(args->pag->pag_agno == agno);
3621
3622	args->agno = agno;
3623	args->agbno = 0;
3624
3625	trace_xfs_alloc_vextent_this_ag(args);
3626
3627	error = xfs_alloc_vextent_check_args(args, XFS_AGB_TO_FSB(mp, agno, 0),
3628			&minimum_agno);
3629	if (error) {
3630		if (error == -ENOSPC)
3631			return 0;
3632		return error;
3633	}
3634
3635	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3636	if (!error && args->agbp)
3637		error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3638
3639	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3640}
3641
3642/*
3643 * Iterate all AGs trying to allocate an extent starting from @start_ag.
3644 *
3645 * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
3646 * allocation attempts in @start_agno have locality information. If we fail to
3647 * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
3648 * we attempt to allocation in as there is no locality optimisation possible for
3649 * those allocations.
3650 *
3651 * On return, args->pag may be left referenced if we finish before the "all
3652 * failed" return point. The allocation finish still needs the perag, and
3653 * so the caller will release it once they've finished the allocation.
3654 *
3655 * When we wrap the AG iteration at the end of the filesystem, we have to be
3656 * careful not to wrap into AGs below ones we already have locked in the
3657 * transaction if we are doing a blocking iteration. This will result in an
3658 * out-of-order locking of AGFs and hence can cause deadlocks.
3659 */
3660static int
3661xfs_alloc_vextent_iterate_ags(
3662	struct xfs_alloc_arg	*args,
3663	xfs_agnumber_t		minimum_agno,
3664	xfs_agnumber_t		start_agno,
3665	xfs_agblock_t		target_agbno,
3666	uint32_t		alloc_flags)
3667{
3668	struct xfs_mount	*mp = args->mp;
3669	xfs_agnumber_t		restart_agno = minimum_agno;
3670	xfs_agnumber_t		agno;
3671	int			error = 0;
3672
3673	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)
3674		restart_agno = 0;
3675restart:
3676	for_each_perag_wrap_range(mp, start_agno, restart_agno,
3677			mp->m_sb.sb_agcount, agno, args->pag) {
3678		args->agno = agno;
3679		error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3680		if (error)
3681			break;
3682		if (!args->agbp) {
3683			trace_xfs_alloc_vextent_loopfailed(args);
3684			continue;
3685		}
3686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3687		/*
3688		 * Allocation is supposed to succeed now, so break out of the
3689		 * loop regardless of whether we succeed or not.
3690		 */
3691		if (args->agno == start_agno && target_agbno) {
3692			args->agbno = target_agbno;
3693			error = xfs_alloc_ag_vextent_near(args, alloc_flags);
 
 
 
 
 
3694		} else {
3695			args->agbno = 0;
3696			error = xfs_alloc_ag_vextent_size(args, alloc_flags);
 
 
 
3697		}
3698		break;
3699	}
3700	if (error) {
3701		xfs_perag_rele(args->pag);
3702		args->pag = NULL;
3703		return error;
3704	}
3705	if (args->agbp)
3706		return 0;
 
 
 
 
 
 
 
 
 
 
3707
3708	/*
3709	 * We didn't find an AG we can alloation from. If we were given
3710	 * constraining flags by the caller, drop them and retry the allocation
3711	 * without any constraints being set.
3712	 */
3713	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) {
3714		alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK;
3715		restart_agno = minimum_agno;
3716		goto restart;
3717	}
3718
3719	ASSERT(args->pag == NULL);
3720	trace_xfs_alloc_vextent_allfailed(args);
3721	return 0;
3722}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3723
3724/*
3725 * Iterate from the AGs from the start AG to the end of the filesystem, trying
3726 * to allocate blocks. It starts with a near allocation attempt in the initial
3727 * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
3728 * back to zero if allowed by previous allocations in this transaction,
3729 * otherwise will wrap back to the start AG and run a second blocking pass to
3730 * the end of the filesystem.
3731 */
3732int
3733xfs_alloc_vextent_start_ag(
3734	struct xfs_alloc_arg	*args,
3735	xfs_fsblock_t		target)
3736{
3737	struct xfs_mount	*mp = args->mp;
3738	xfs_agnumber_t		minimum_agno;
3739	xfs_agnumber_t		start_agno;
3740	xfs_agnumber_t		rotorstep = xfs_rotorstep;
3741	bool			bump_rotor = false;
3742	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3743	int			error;
3744
3745	ASSERT(args->pag == NULL);
3746
3747	args->agno = NULLAGNUMBER;
3748	args->agbno = NULLAGBLOCK;
3749
3750	trace_xfs_alloc_vextent_start_ag(args);
3751
3752	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3753	if (error) {
3754		if (error == -ENOSPC)
3755			return 0;
3756		return error;
3757	}
 
 
 
 
 
 
 
 
 
 
 
3758
3759	if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3760	    xfs_is_inode32(mp)) {
3761		target = XFS_AGB_TO_FSB(mp,
3762				((mp->m_agfrotor / rotorstep) %
3763				mp->m_sb.sb_agcount), 0);
3764		bump_rotor = 1;
3765	}
3766
3767	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3768	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3769			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3770
3771	if (bump_rotor) {
3772		if (args->agno == start_agno)
3773			mp->m_agfrotor = (mp->m_agfrotor + 1) %
3774				(mp->m_sb.sb_agcount * rotorstep);
3775		else
3776			mp->m_agfrotor = (args->agno * rotorstep + 1) %
3777				(mp->m_sb.sb_agcount * rotorstep);
3778	}
3779
3780	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3781}
3782
3783/*
3784 * Iterate from the agno indicated via @target through to the end of the
3785 * filesystem attempting blocking allocation. This does not wrap or try a second
3786 * pass, so will not recurse into AGs lower than indicated by the target.
3787 */
3788int
3789xfs_alloc_vextent_first_ag(
3790	struct xfs_alloc_arg	*args,
3791	xfs_fsblock_t		target)
3792 {
3793	struct xfs_mount	*mp = args->mp;
3794	xfs_agnumber_t		minimum_agno;
3795	xfs_agnumber_t		start_agno;
3796	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3797	int			error;
3798
3799	ASSERT(args->pag == NULL);
3800
3801	args->agno = NULLAGNUMBER;
3802	args->agbno = NULLAGBLOCK;
3803
3804	trace_xfs_alloc_vextent_first_ag(args);
3805
3806	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3807	if (error) {
3808		if (error == -ENOSPC)
3809			return 0;
3810		return error;
3811	}
3812
3813	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3814	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3815			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3816	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3817}
3818
3819/*
3820 * Allocate at the exact block target or fail. Caller is expected to hold a
3821 * perag reference in args->pag.
3822 */
3823int
3824xfs_alloc_vextent_exact_bno(
3825	struct xfs_alloc_arg	*args,
3826	xfs_fsblock_t		target)
3827{
3828	struct xfs_mount	*mp = args->mp;
3829	xfs_agnumber_t		minimum_agno;
3830	int			error;
3831
3832	ASSERT(args->pag != NULL);
3833	ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3834
3835	args->agno = XFS_FSB_TO_AGNO(mp, target);
3836	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3837
3838	trace_xfs_alloc_vextent_exact_bno(args);
3839
3840	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3841	if (error) {
3842		if (error == -ENOSPC)
3843			return 0;
3844		return error;
3845	}
3846
3847	error = xfs_alloc_vextent_prepare_ag(args, 0);
3848	if (!error && args->agbp)
3849		error = xfs_alloc_ag_vextent_exact(args);
3850
3851	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3852}
3853
3854/*
3855 * Allocate an extent as close to the target as possible. If there are not
3856 * viable candidates in the AG, then fail the allocation.
3857 *
3858 * Caller may or may not have a per-ag reference in args->pag.
3859 */
3860int
3861xfs_alloc_vextent_near_bno(
3862	struct xfs_alloc_arg	*args,
3863	xfs_fsblock_t		target)
3864{
3865	struct xfs_mount	*mp = args->mp;
3866	xfs_agnumber_t		minimum_agno;
3867	bool			needs_perag = args->pag == NULL;
3868	uint32_t		alloc_flags = 0;
3869	int			error;
3870
3871	if (!needs_perag)
3872		ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3873
3874	args->agno = XFS_FSB_TO_AGNO(mp, target);
3875	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3876
3877	trace_xfs_alloc_vextent_near_bno(args);
3878
3879	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3880	if (error) {
3881		if (error == -ENOSPC)
3882			return 0;
3883		return error;
3884	}
3885
3886	if (needs_perag)
3887		args->pag = xfs_perag_grab(mp, args->agno);
3888
3889	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3890	if (!error && args->agbp)
3891		error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3892
3893	return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
3894}
3895
3896/* Ensure that the freelist is at full capacity. */
3897int
3898xfs_free_extent_fix_freelist(
3899	struct xfs_trans	*tp,
3900	struct xfs_perag	*pag,
3901	struct xfs_buf		**agbp)
3902{
3903	struct xfs_alloc_arg	args;
3904	int			error;
3905
3906	memset(&args, 0, sizeof(struct xfs_alloc_arg));
3907	args.tp = tp;
3908	args.mp = tp->t_mountp;
3909	args.agno = pag->pag_agno;
3910	args.pag = pag;
3911
3912	/*
3913	 * validate that the block number is legal - the enables us to detect
3914	 * and handle a silent filesystem corruption rather than crashing.
3915	 */
3916	if (args.agno >= args.mp->m_sb.sb_agcount)
3917		return -EFSCORRUPTED;
3918
3919	error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3920	if (error)
3921		return error;
3922
3923	*agbp = args.agbp;
3924	return 0;
3925}
3926
3927/*
3928 * Free an extent.
3929 * Just break up the extent address and hand off to xfs_free_ag_extent
3930 * after fixing up the freelist.
3931 */
3932int
3933__xfs_free_extent(
3934	struct xfs_trans		*tp,
3935	struct xfs_perag		*pag,
3936	xfs_agblock_t			agbno,
3937	xfs_extlen_t			len,
3938	const struct xfs_owner_info	*oinfo,
3939	enum xfs_ag_resv_type		type,
3940	bool				skip_discard)
3941{
3942	struct xfs_mount		*mp = tp->t_mountp;
3943	struct xfs_buf			*agbp;
 
 
3944	struct xfs_agf			*agf;
3945	int				error;
3946	unsigned int			busy_flags = 0;
 
3947
3948	ASSERT(len != 0);
3949	ASSERT(type != XFS_AG_RESV_AGFL);
3950
3951	if (XFS_TEST_ERROR(false, mp,
3952			XFS_ERRTAG_FREE_EXTENT))
3953		return -EIO;
3954
 
3955	error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
3956	if (error) {
3957		if (xfs_metadata_is_sick(error))
3958			xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
3959		return error;
3960	}
3961
3962	agf = agbp->b_addr;
3963
3964	if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
3965		xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
3966		error = -EFSCORRUPTED;
3967		goto err_release;
3968	}
3969
3970	/* validate the extent size is legal now we have the agf locked */
3971	if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
3972		xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
3973		error = -EFSCORRUPTED;
3974		goto err_release;
3975	}
3976
3977	error = xfs_free_ag_extent(tp, agbp, pag->pag_agno, agbno, len, oinfo,
3978			type);
3979	if (error)
3980		goto err_release;
3981
3982	if (skip_discard)
3983		busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
3984	xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
 
3985	return 0;
3986
3987err_release:
3988	xfs_trans_brelse(tp, agbp);
 
 
3989	return error;
3990}
3991
3992struct xfs_alloc_query_range_info {
3993	xfs_alloc_query_range_fn	fn;
3994	void				*priv;
3995};
3996
3997/* Format btree record and pass to our callback. */
3998STATIC int
3999xfs_alloc_query_range_helper(
4000	struct xfs_btree_cur		*cur,
4001	const union xfs_btree_rec	*rec,
4002	void				*priv)
4003{
4004	struct xfs_alloc_query_range_info	*query = priv;
4005	struct xfs_alloc_rec_incore		irec;
4006	xfs_failaddr_t				fa;
4007
4008	xfs_alloc_btrec_to_irec(rec, &irec);
4009	fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
4010	if (fa)
4011		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
4012
 
 
4013	return query->fn(cur, &irec, query->priv);
4014}
4015
4016/* Find all free space within a given range of blocks. */
4017int
4018xfs_alloc_query_range(
4019	struct xfs_btree_cur			*cur,
4020	const struct xfs_alloc_rec_incore	*low_rec,
4021	const struct xfs_alloc_rec_incore	*high_rec,
4022	xfs_alloc_query_range_fn		fn,
4023	void					*priv)
4024{
4025	union xfs_btree_irec			low_brec = { .a = *low_rec };
4026	union xfs_btree_irec			high_brec = { .a = *high_rec };
4027	struct xfs_alloc_query_range_info	query = { .priv = priv, .fn = fn };
4028
4029	ASSERT(xfs_btree_is_bno(cur->bc_ops));
 
 
 
 
4030	return xfs_btree_query_range(cur, &low_brec, &high_brec,
4031			xfs_alloc_query_range_helper, &query);
4032}
4033
4034/* Find all free space records. */
4035int
4036xfs_alloc_query_all(
4037	struct xfs_btree_cur			*cur,
4038	xfs_alloc_query_range_fn		fn,
4039	void					*priv)
4040{
4041	struct xfs_alloc_query_range_info	query;
4042
4043	ASSERT(xfs_btree_is_bno(cur->bc_ops));
4044	query.priv = priv;
4045	query.fn = fn;
4046	return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
4047}
4048
4049/*
4050 * Scan part of the keyspace of the free space and tell us if the area has no
4051 * records, is fully mapped by records, or is partially filled.
4052 */
4053int
4054xfs_alloc_has_records(
4055	struct xfs_btree_cur	*cur,
4056	xfs_agblock_t		bno,
4057	xfs_extlen_t		len,
4058	enum xbtree_recpacking	*outcome)
4059{
4060	union xfs_btree_irec	low;
4061	union xfs_btree_irec	high;
4062
4063	memset(&low, 0, sizeof(low));
4064	low.a.ar_startblock = bno;
4065	memset(&high, 0xFF, sizeof(high));
4066	high.a.ar_startblock = bno + len - 1;
4067
4068	return xfs_btree_has_records(cur, &low, &high, NULL, outcome);
4069}
4070
4071/*
4072 * Walk all the blocks in the AGFL.  The @walk_fn can return any negative
4073 * error code or XFS_ITER_*.
4074 */
4075int
4076xfs_agfl_walk(
4077	struct xfs_mount	*mp,
4078	struct xfs_agf		*agf,
4079	struct xfs_buf		*agflbp,
4080	xfs_agfl_walk_fn	walk_fn,
4081	void			*priv)
4082{
4083	__be32			*agfl_bno;
4084	unsigned int		i;
4085	int			error;
4086
4087	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
4088	i = be32_to_cpu(agf->agf_flfirst);
4089
4090	/* Nothing to walk in an empty AGFL. */
4091	if (agf->agf_flcount == cpu_to_be32(0))
4092		return 0;
4093
4094	/* Otherwise, walk from first to last, wrapping as needed. */
4095	for (;;) {
4096		error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
4097		if (error)
4098			return error;
4099		if (i == be32_to_cpu(agf->agf_fllast))
4100			break;
4101		if (++i == xfs_agfl_size(mp))
4102			i = 0;
4103	}
4104
4105	return 0;
4106}
4107
4108int __init
4109xfs_extfree_intent_init_cache(void)
4110{
4111	xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
4112			sizeof(struct xfs_extent_free_item),
4113			0, 0, NULL);
4114
4115	return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
4116}
4117
4118void
4119xfs_extfree_intent_destroy_cache(void)
4120{
4121	kmem_cache_destroy(xfs_extfree_item_cache);
4122	xfs_extfree_item_cache = NULL;
4123}