Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_format.h"
   9#include "xfs_log_format.h"
  10#include "xfs_shared.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_mount.h"
  14#include "xfs_defer.h"
  15#include "xfs_btree.h"
  16#include "xfs_rmap.h"
  17#include "xfs_alloc_btree.h"
  18#include "xfs_alloc.h"
  19#include "xfs_extent_busy.h"
  20#include "xfs_errortag.h"
  21#include "xfs_error.h"
  22#include "xfs_trace.h"
  23#include "xfs_trans.h"
  24#include "xfs_buf_item.h"
  25#include "xfs_log.h"
  26#include "xfs_ag.h"
  27#include "xfs_ag_resv.h"
  28#include "xfs_bmap.h"
  29
  30struct kmem_cache	*xfs_extfree_item_cache;
  31
  32struct workqueue_struct *xfs_alloc_wq;
  33
  34#define XFS_ABSDIFF(a,b)	(((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
  35
  36#define	XFSA_FIXUP_BNO_OK	1
  37#define	XFSA_FIXUP_CNT_OK	2
  38
  39STATIC int xfs_alloc_ag_vextent_exact(xfs_alloc_arg_t *);
  40STATIC int xfs_alloc_ag_vextent_near(xfs_alloc_arg_t *);
  41STATIC int xfs_alloc_ag_vextent_size(xfs_alloc_arg_t *);
  42
  43/*
  44 * Size of the AGFL.  For CRC-enabled filesystes we steal a couple of slots in
  45 * the beginning of the block for a proper header with the location information
  46 * and CRC.
  47 */
  48unsigned int
  49xfs_agfl_size(
  50	struct xfs_mount	*mp)
  51{
  52	unsigned int		size = mp->m_sb.sb_sectsize;
  53
  54	if (xfs_has_crc(mp))
  55		size -= sizeof(struct xfs_agfl);
  56
  57	return size / sizeof(xfs_agblock_t);
  58}
  59
  60unsigned int
  61xfs_refc_block(
  62	struct xfs_mount	*mp)
  63{
  64	if (xfs_has_rmapbt(mp))
  65		return XFS_RMAP_BLOCK(mp) + 1;
  66	if (xfs_has_finobt(mp))
  67		return XFS_FIBT_BLOCK(mp) + 1;
  68	return XFS_IBT_BLOCK(mp) + 1;
  69}
  70
  71xfs_extlen_t
  72xfs_prealloc_blocks(
  73	struct xfs_mount	*mp)
  74{
  75	if (xfs_has_reflink(mp))
  76		return xfs_refc_block(mp) + 1;
  77	if (xfs_has_rmapbt(mp))
  78		return XFS_RMAP_BLOCK(mp) + 1;
  79	if (xfs_has_finobt(mp))
  80		return XFS_FIBT_BLOCK(mp) + 1;
  81	return XFS_IBT_BLOCK(mp) + 1;
  82}
  83
  84/*
  85 * The number of blocks per AG that we withhold from xfs_mod_fdblocks to
  86 * guarantee that we can refill the AGFL prior to allocating space in a nearly
  87 * full AG.  Although the space described by the free space btrees, the
  88 * blocks used by the freesp btrees themselves, and the blocks owned by the
  89 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
  90 * free space in the AG drop so low that the free space btrees cannot refill an
  91 * empty AGFL up to the minimum level.  Rather than grind through empty AGs
  92 * until the fs goes down, we subtract this many AG blocks from the incore
  93 * fdblocks to ensure user allocation does not overcommit the space the
  94 * filesystem needs for the AGFLs.  The rmap btree uses a per-AG reservation to
  95 * withhold space from xfs_mod_fdblocks, so we do not account for that here.
  96 */
  97#define XFS_ALLOCBT_AGFL_RESERVE	4
  98
  99/*
 100 * Compute the number of blocks that we set aside to guarantee the ability to
 101 * refill the AGFL and handle a full bmap btree split.
 102 *
 103 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
 104 * AGF buffer (PV 947395), we place constraints on the relationship among
 105 * actual allocations for data blocks, freelist blocks, and potential file data
 106 * bmap btree blocks. However, these restrictions may result in no actual space
 107 * allocated for a delayed extent, for example, a data block in a certain AG is
 108 * allocated but there is no additional block for the additional bmap btree
 109 * block due to a split of the bmap btree of the file. The result of this may
 110 * lead to an infinite loop when the file gets flushed to disk and all delayed
 111 * extents need to be actually allocated. To get around this, we explicitly set
 112 * aside a few blocks which will not be reserved in delayed allocation.
 113 *
 114 * For each AG, we need to reserve enough blocks to replenish a totally empty
 115 * AGFL and 4 more to handle a potential split of the file's bmap btree.
 116 */
 117unsigned int
 118xfs_alloc_set_aside(
 119	struct xfs_mount	*mp)
 120{
 121	return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
 122}
 123
 124/*
 125 * When deciding how much space to allocate out of an AG, we limit the
 126 * allocation maximum size to the size the AG. However, we cannot use all the
 127 * blocks in the AG - some are permanently used by metadata. These
 128 * blocks are generally:
 129 *	- the AG superblock, AGF, AGI and AGFL
 130 *	- the AGF (bno and cnt) and AGI btree root blocks, and optionally
 131 *	  the AGI free inode and rmap btree root blocks.
 132 *	- blocks on the AGFL according to xfs_alloc_set_aside() limits
 133 *	- the rmapbt root block
 134 *
 135 * The AG headers are sector sized, so the amount of space they take up is
 136 * dependent on filesystem geometry. The others are all single blocks.
 137 */
 138unsigned int
 139xfs_alloc_ag_max_usable(
 140	struct xfs_mount	*mp)
 141{
 142	unsigned int		blocks;
 143
 144	blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
 145	blocks += XFS_ALLOCBT_AGFL_RESERVE;
 146	blocks += 3;			/* AGF, AGI btree root blocks */
 147	if (xfs_has_finobt(mp))
 148		blocks++;		/* finobt root block */
 149	if (xfs_has_rmapbt(mp))
 150		blocks++;		/* rmap root block */
 151	if (xfs_has_reflink(mp))
 152		blocks++;		/* refcount root block */
 153
 154	return mp->m_sb.sb_agblocks - blocks;
 155}
 156
 157/*
 158 * Lookup the record equal to [bno, len] in the btree given by cur.
 159 */
 160STATIC int				/* error */
 161xfs_alloc_lookup_eq(
 162	struct xfs_btree_cur	*cur,	/* btree cursor */
 163	xfs_agblock_t		bno,	/* starting block of extent */
 164	xfs_extlen_t		len,	/* length of extent */
 165	int			*stat)	/* success/failure */
 166{
 167	int			error;
 168
 169	cur->bc_rec.a.ar_startblock = bno;
 170	cur->bc_rec.a.ar_blockcount = len;
 171	error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat);
 172	cur->bc_ag.abt.active = (*stat == 1);
 173	return error;
 174}
 175
 176/*
 177 * Lookup the first record greater than or equal to [bno, len]
 178 * in the btree given by cur.
 179 */
 180int				/* error */
 181xfs_alloc_lookup_ge(
 182	struct xfs_btree_cur	*cur,	/* btree cursor */
 183	xfs_agblock_t		bno,	/* starting block of extent */
 184	xfs_extlen_t		len,	/* length of extent */
 185	int			*stat)	/* success/failure */
 186{
 187	int			error;
 188
 189	cur->bc_rec.a.ar_startblock = bno;
 190	cur->bc_rec.a.ar_blockcount = len;
 191	error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat);
 192	cur->bc_ag.abt.active = (*stat == 1);
 193	return error;
 194}
 195
 196/*
 197 * Lookup the first record less than or equal to [bno, len]
 198 * in the btree given by cur.
 199 */
 200int					/* error */
 201xfs_alloc_lookup_le(
 202	struct xfs_btree_cur	*cur,	/* btree cursor */
 203	xfs_agblock_t		bno,	/* starting block of extent */
 204	xfs_extlen_t		len,	/* length of extent */
 205	int			*stat)	/* success/failure */
 206{
 207	int			error;
 208	cur->bc_rec.a.ar_startblock = bno;
 209	cur->bc_rec.a.ar_blockcount = len;
 210	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat);
 211	cur->bc_ag.abt.active = (*stat == 1);
 212	return error;
 213}
 214
 215static inline bool
 216xfs_alloc_cur_active(
 217	struct xfs_btree_cur	*cur)
 218{
 219	return cur && cur->bc_ag.abt.active;
 220}
 221
 222/*
 223 * Update the record referred to by cur to the value given
 224 * by [bno, len].
 225 * This either works (return 0) or gets an EFSCORRUPTED error.
 226 */
 227STATIC int				/* error */
 228xfs_alloc_update(
 229	struct xfs_btree_cur	*cur,	/* btree cursor */
 230	xfs_agblock_t		bno,	/* starting block of extent */
 231	xfs_extlen_t		len)	/* length of extent */
 232{
 233	union xfs_btree_rec	rec;
 234
 235	rec.alloc.ar_startblock = cpu_to_be32(bno);
 236	rec.alloc.ar_blockcount = cpu_to_be32(len);
 237	return xfs_btree_update(cur, &rec);
 238}
 239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240/*
 241 * Get the data from the pointed-to record.
 242 */
 243int					/* error */
 244xfs_alloc_get_rec(
 245	struct xfs_btree_cur	*cur,	/* btree cursor */
 246	xfs_agblock_t		*bno,	/* output: starting block of extent */
 247	xfs_extlen_t		*len,	/* output: length of extent */
 248	int			*stat)	/* output: success/failure */
 249{
 250	struct xfs_mount	*mp = cur->bc_mp;
 251	struct xfs_perag	*pag = cur->bc_ag.pag;
 252	union xfs_btree_rec	*rec;
 
 253	int			error;
 254
 255	error = xfs_btree_get_rec(cur, &rec, stat);
 256	if (error || !(*stat))
 257		return error;
 258
 259	*bno = be32_to_cpu(rec->alloc.ar_startblock);
 260	*len = be32_to_cpu(rec->alloc.ar_blockcount);
 261
 262	if (*len == 0)
 263		goto out_bad_rec;
 264
 265	/* check for valid extent range, including overflow */
 266	if (!xfs_verify_agbext(pag, *bno, *len))
 267		goto out_bad_rec;
 268
 
 
 269	return 0;
 270
 271out_bad_rec:
 272	xfs_warn(mp,
 273		"%s Freespace BTree record corruption in AG %d detected!",
 274		cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size",
 275		pag->pag_agno);
 276	xfs_warn(mp,
 277		"start block 0x%x block count 0x%x", *bno, *len);
 278	return -EFSCORRUPTED;
 279}
 280
 281/*
 282 * Compute aligned version of the found extent.
 283 * Takes alignment and min length into account.
 284 */
 285STATIC bool
 286xfs_alloc_compute_aligned(
 287	xfs_alloc_arg_t	*args,		/* allocation argument structure */
 288	xfs_agblock_t	foundbno,	/* starting block in found extent */
 289	xfs_extlen_t	foundlen,	/* length in found extent */
 290	xfs_agblock_t	*resbno,	/* result block number */
 291	xfs_extlen_t	*reslen,	/* result length */
 292	unsigned	*busy_gen)
 293{
 294	xfs_agblock_t	bno = foundbno;
 295	xfs_extlen_t	len = foundlen;
 296	xfs_extlen_t	diff;
 297	bool		busy;
 298
 299	/* Trim busy sections out of found extent */
 300	busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
 301
 302	/*
 303	 * If we have a largish extent that happens to start before min_agbno,
 304	 * see if we can shift it into range...
 305	 */
 306	if (bno < args->min_agbno && bno + len > args->min_agbno) {
 307		diff = args->min_agbno - bno;
 308		if (len > diff) {
 309			bno += diff;
 310			len -= diff;
 311		}
 312	}
 313
 314	if (args->alignment > 1 && len >= args->minlen) {
 315		xfs_agblock_t	aligned_bno = roundup(bno, args->alignment);
 316
 317		diff = aligned_bno - bno;
 318
 319		*resbno = aligned_bno;
 320		*reslen = diff >= len ? 0 : len - diff;
 321	} else {
 322		*resbno = bno;
 323		*reslen = len;
 324	}
 325
 326	return busy;
 327}
 328
 329/*
 330 * Compute best start block and diff for "near" allocations.
 331 * freelen >= wantlen already checked by caller.
 332 */
 333STATIC xfs_extlen_t			/* difference value (absolute) */
 334xfs_alloc_compute_diff(
 335	xfs_agblock_t	wantbno,	/* target starting block */
 336	xfs_extlen_t	wantlen,	/* target length */
 337	xfs_extlen_t	alignment,	/* target alignment */
 338	int		datatype,	/* are we allocating data? */
 339	xfs_agblock_t	freebno,	/* freespace's starting block */
 340	xfs_extlen_t	freelen,	/* freespace's length */
 341	xfs_agblock_t	*newbnop)	/* result: best start block from free */
 342{
 343	xfs_agblock_t	freeend;	/* end of freespace extent */
 344	xfs_agblock_t	newbno1;	/* return block number */
 345	xfs_agblock_t	newbno2;	/* other new block number */
 346	xfs_extlen_t	newlen1=0;	/* length with newbno1 */
 347	xfs_extlen_t	newlen2=0;	/* length with newbno2 */
 348	xfs_agblock_t	wantend;	/* end of target extent */
 349	bool		userdata = datatype & XFS_ALLOC_USERDATA;
 350
 351	ASSERT(freelen >= wantlen);
 352	freeend = freebno + freelen;
 353	wantend = wantbno + wantlen;
 354	/*
 355	 * We want to allocate from the start of a free extent if it is past
 356	 * the desired block or if we are allocating user data and the free
 357	 * extent is before desired block. The second case is there to allow
 358	 * for contiguous allocation from the remaining free space if the file
 359	 * grows in the short term.
 360	 */
 361	if (freebno >= wantbno || (userdata && freeend < wantend)) {
 362		if ((newbno1 = roundup(freebno, alignment)) >= freeend)
 363			newbno1 = NULLAGBLOCK;
 364	} else if (freeend >= wantend && alignment > 1) {
 365		newbno1 = roundup(wantbno, alignment);
 366		newbno2 = newbno1 - alignment;
 367		if (newbno1 >= freeend)
 368			newbno1 = NULLAGBLOCK;
 369		else
 370			newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
 371		if (newbno2 < freebno)
 372			newbno2 = NULLAGBLOCK;
 373		else
 374			newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
 375		if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
 376			if (newlen1 < newlen2 ||
 377			    (newlen1 == newlen2 &&
 378			     XFS_ABSDIFF(newbno1, wantbno) >
 379			     XFS_ABSDIFF(newbno2, wantbno)))
 380				newbno1 = newbno2;
 381		} else if (newbno2 != NULLAGBLOCK)
 382			newbno1 = newbno2;
 383	} else if (freeend >= wantend) {
 384		newbno1 = wantbno;
 385	} else if (alignment > 1) {
 386		newbno1 = roundup(freeend - wantlen, alignment);
 387		if (newbno1 > freeend - wantlen &&
 388		    newbno1 - alignment >= freebno)
 389			newbno1 -= alignment;
 390		else if (newbno1 >= freeend)
 391			newbno1 = NULLAGBLOCK;
 392	} else
 393		newbno1 = freeend - wantlen;
 394	*newbnop = newbno1;
 395	return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
 396}
 397
 398/*
 399 * Fix up the length, based on mod and prod.
 400 * len should be k * prod + mod for some k.
 401 * If len is too small it is returned unchanged.
 402 * If len hits maxlen it is left alone.
 403 */
 404STATIC void
 405xfs_alloc_fix_len(
 406	xfs_alloc_arg_t	*args)		/* allocation argument structure */
 407{
 408	xfs_extlen_t	k;
 409	xfs_extlen_t	rlen;
 410
 411	ASSERT(args->mod < args->prod);
 412	rlen = args->len;
 413	ASSERT(rlen >= args->minlen);
 414	ASSERT(rlen <= args->maxlen);
 415	if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
 416	    (args->mod == 0 && rlen < args->prod))
 417		return;
 418	k = rlen % args->prod;
 419	if (k == args->mod)
 420		return;
 421	if (k > args->mod)
 422		rlen = rlen - (k - args->mod);
 423	else
 424		rlen = rlen - args->prod + (args->mod - k);
 425	/* casts to (int) catch length underflows */
 426	if ((int)rlen < (int)args->minlen)
 427		return;
 428	ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
 429	ASSERT(rlen % args->prod == args->mod);
 430	ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
 431		rlen + args->minleft);
 432	args->len = rlen;
 433}
 434
 435/*
 436 * Update the two btrees, logically removing from freespace the extent
 437 * starting at rbno, rlen blocks.  The extent is contained within the
 438 * actual (current) free extent fbno for flen blocks.
 439 * Flags are passed in indicating whether the cursors are set to the
 440 * relevant records.
 441 */
 442STATIC int				/* error code */
 443xfs_alloc_fixup_trees(
 444	struct xfs_btree_cur *cnt_cur,	/* cursor for by-size btree */
 445	struct xfs_btree_cur *bno_cur,	/* cursor for by-block btree */
 446	xfs_agblock_t	fbno,		/* starting block of free extent */
 447	xfs_extlen_t	flen,		/* length of free extent */
 448	xfs_agblock_t	rbno,		/* starting block of returned extent */
 449	xfs_extlen_t	rlen,		/* length of returned extent */
 450	int		flags)		/* flags, XFSA_FIXUP_... */
 451{
 452	int		error;		/* error code */
 453	int		i;		/* operation results */
 454	xfs_agblock_t	nfbno1;		/* first new free startblock */
 455	xfs_agblock_t	nfbno2;		/* second new free startblock */
 456	xfs_extlen_t	nflen1=0;	/* first new free length */
 457	xfs_extlen_t	nflen2=0;	/* second new free length */
 458	struct xfs_mount *mp;
 459
 460	mp = cnt_cur->bc_mp;
 461
 462	/*
 463	 * Look up the record in the by-size tree if necessary.
 464	 */
 465	if (flags & XFSA_FIXUP_CNT_OK) {
 466#ifdef DEBUG
 467		if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
 468			return error;
 469		if (XFS_IS_CORRUPT(mp,
 470				   i != 1 ||
 471				   nfbno1 != fbno ||
 472				   nflen1 != flen))
 473			return -EFSCORRUPTED;
 474#endif
 475	} else {
 476		if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
 477			return error;
 478		if (XFS_IS_CORRUPT(mp, i != 1))
 479			return -EFSCORRUPTED;
 480	}
 481	/*
 482	 * Look up the record in the by-block tree if necessary.
 483	 */
 484	if (flags & XFSA_FIXUP_BNO_OK) {
 485#ifdef DEBUG
 486		if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
 487			return error;
 488		if (XFS_IS_CORRUPT(mp,
 489				   i != 1 ||
 490				   nfbno1 != fbno ||
 491				   nflen1 != flen))
 492			return -EFSCORRUPTED;
 493#endif
 494	} else {
 495		if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
 496			return error;
 497		if (XFS_IS_CORRUPT(mp, i != 1))
 498			return -EFSCORRUPTED;
 499	}
 500
 501#ifdef DEBUG
 502	if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
 503		struct xfs_btree_block	*bnoblock;
 504		struct xfs_btree_block	*cntblock;
 505
 506		bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
 507		cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
 508
 509		if (XFS_IS_CORRUPT(mp,
 510				   bnoblock->bb_numrecs !=
 511				   cntblock->bb_numrecs))
 512			return -EFSCORRUPTED;
 513	}
 514#endif
 515
 516	/*
 517	 * Deal with all four cases: the allocated record is contained
 518	 * within the freespace record, so we can have new freespace
 519	 * at either (or both) end, or no freespace remaining.
 520	 */
 521	if (rbno == fbno && rlen == flen)
 522		nfbno1 = nfbno2 = NULLAGBLOCK;
 523	else if (rbno == fbno) {
 524		nfbno1 = rbno + rlen;
 525		nflen1 = flen - rlen;
 526		nfbno2 = NULLAGBLOCK;
 527	} else if (rbno + rlen == fbno + flen) {
 528		nfbno1 = fbno;
 529		nflen1 = flen - rlen;
 530		nfbno2 = NULLAGBLOCK;
 531	} else {
 532		nfbno1 = fbno;
 533		nflen1 = rbno - fbno;
 534		nfbno2 = rbno + rlen;
 535		nflen2 = (fbno + flen) - nfbno2;
 536	}
 537	/*
 538	 * Delete the entry from the by-size btree.
 539	 */
 540	if ((error = xfs_btree_delete(cnt_cur, &i)))
 541		return error;
 542	if (XFS_IS_CORRUPT(mp, i != 1))
 543		return -EFSCORRUPTED;
 544	/*
 545	 * Add new by-size btree entry(s).
 546	 */
 547	if (nfbno1 != NULLAGBLOCK) {
 548		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
 549			return error;
 550		if (XFS_IS_CORRUPT(mp, i != 0))
 551			return -EFSCORRUPTED;
 552		if ((error = xfs_btree_insert(cnt_cur, &i)))
 553			return error;
 554		if (XFS_IS_CORRUPT(mp, i != 1))
 555			return -EFSCORRUPTED;
 556	}
 557	if (nfbno2 != NULLAGBLOCK) {
 558		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
 559			return error;
 560		if (XFS_IS_CORRUPT(mp, i != 0))
 561			return -EFSCORRUPTED;
 562		if ((error = xfs_btree_insert(cnt_cur, &i)))
 563			return error;
 564		if (XFS_IS_CORRUPT(mp, i != 1))
 565			return -EFSCORRUPTED;
 566	}
 567	/*
 568	 * Fix up the by-block btree entry(s).
 569	 */
 570	if (nfbno1 == NULLAGBLOCK) {
 571		/*
 572		 * No remaining freespace, just delete the by-block tree entry.
 573		 */
 574		if ((error = xfs_btree_delete(bno_cur, &i)))
 575			return error;
 576		if (XFS_IS_CORRUPT(mp, i != 1))
 577			return -EFSCORRUPTED;
 578	} else {
 579		/*
 580		 * Update the by-block entry to start later|be shorter.
 581		 */
 582		if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
 583			return error;
 584	}
 585	if (nfbno2 != NULLAGBLOCK) {
 586		/*
 587		 * 2 resulting free entries, need to add one.
 588		 */
 589		if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
 590			return error;
 591		if (XFS_IS_CORRUPT(mp, i != 0))
 592			return -EFSCORRUPTED;
 593		if ((error = xfs_btree_insert(bno_cur, &i)))
 594			return error;
 595		if (XFS_IS_CORRUPT(mp, i != 1))
 596			return -EFSCORRUPTED;
 597	}
 598	return 0;
 599}
 600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601static xfs_failaddr_t
 602xfs_agfl_verify(
 603	struct xfs_buf	*bp)
 604{
 605	struct xfs_mount *mp = bp->b_mount;
 606	struct xfs_agfl	*agfl = XFS_BUF_TO_AGFL(bp);
 607	__be32		*agfl_bno = xfs_buf_to_agfl_bno(bp);
 608	int		i;
 609
 610	/*
 611	 * There is no verification of non-crc AGFLs because mkfs does not
 612	 * initialise the AGFL to zero or NULL. Hence the only valid part of the
 613	 * AGFL is what the AGF says is active. We can't get to the AGF, so we
 614	 * can't verify just those entries are valid.
 615	 */
 616	if (!xfs_has_crc(mp))
 617		return NULL;
 618
 619	if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
 620		return __this_address;
 621	if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
 622		return __this_address;
 623	/*
 624	 * during growfs operations, the perag is not fully initialised,
 625	 * so we can't use it for any useful checking. growfs ensures we can't
 626	 * use it by using uncached buffers that don't have the perag attached
 627	 * so we can detect and avoid this problem.
 628	 */
 629	if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
 630		return __this_address;
 631
 632	for (i = 0; i < xfs_agfl_size(mp); i++) {
 633		if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
 634		    be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
 635			return __this_address;
 636	}
 637
 638	if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
 639		return __this_address;
 640	return NULL;
 641}
 642
 643static void
 644xfs_agfl_read_verify(
 645	struct xfs_buf	*bp)
 646{
 647	struct xfs_mount *mp = bp->b_mount;
 648	xfs_failaddr_t	fa;
 649
 650	/*
 651	 * There is no verification of non-crc AGFLs because mkfs does not
 652	 * initialise the AGFL to zero or NULL. Hence the only valid part of the
 653	 * AGFL is what the AGF says is active. We can't get to the AGF, so we
 654	 * can't verify just those entries are valid.
 655	 */
 656	if (!xfs_has_crc(mp))
 657		return;
 658
 659	if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
 660		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 661	else {
 662		fa = xfs_agfl_verify(bp);
 663		if (fa)
 664			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 665	}
 666}
 667
 668static void
 669xfs_agfl_write_verify(
 670	struct xfs_buf	*bp)
 671{
 672	struct xfs_mount	*mp = bp->b_mount;
 673	struct xfs_buf_log_item	*bip = bp->b_log_item;
 674	xfs_failaddr_t		fa;
 675
 676	/* no verification of non-crc AGFLs */
 677	if (!xfs_has_crc(mp))
 678		return;
 679
 680	fa = xfs_agfl_verify(bp);
 681	if (fa) {
 682		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 683		return;
 684	}
 685
 686	if (bip)
 687		XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 688
 689	xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
 690}
 691
 692const struct xfs_buf_ops xfs_agfl_buf_ops = {
 693	.name = "xfs_agfl",
 694	.magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
 695	.verify_read = xfs_agfl_read_verify,
 696	.verify_write = xfs_agfl_write_verify,
 697	.verify_struct = xfs_agfl_verify,
 698};
 699
 700/*
 701 * Read in the allocation group free block array.
 702 */
 703int
 704xfs_alloc_read_agfl(
 705	struct xfs_perag	*pag,
 706	struct xfs_trans	*tp,
 707	struct xfs_buf		**bpp)
 708{
 709	struct xfs_mount	*mp = pag->pag_mount;
 710	struct xfs_buf		*bp;
 711	int			error;
 712
 713	error = xfs_trans_read_buf(
 714			mp, tp, mp->m_ddev_targp,
 715			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)),
 716			XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
 717	if (error)
 718		return error;
 719	xfs_buf_set_ref(bp, XFS_AGFL_REF);
 720	*bpp = bp;
 721	return 0;
 722}
 723
 724STATIC int
 725xfs_alloc_update_counters(
 726	struct xfs_trans	*tp,
 727	struct xfs_buf		*agbp,
 728	long			len)
 729{
 730	struct xfs_agf		*agf = agbp->b_addr;
 731
 732	agbp->b_pag->pagf_freeblks += len;
 733	be32_add_cpu(&agf->agf_freeblks, len);
 734
 735	if (unlikely(be32_to_cpu(agf->agf_freeblks) >
 736		     be32_to_cpu(agf->agf_length))) {
 737		xfs_buf_mark_corrupt(agbp);
 738		return -EFSCORRUPTED;
 739	}
 740
 741	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
 742	return 0;
 743}
 744
 745/*
 746 * Block allocation algorithm and data structures.
 747 */
 748struct xfs_alloc_cur {
 749	struct xfs_btree_cur		*cnt;	/* btree cursors */
 750	struct xfs_btree_cur		*bnolt;
 751	struct xfs_btree_cur		*bnogt;
 752	xfs_extlen_t			cur_len;/* current search length */
 753	xfs_agblock_t			rec_bno;/* extent startblock */
 754	xfs_extlen_t			rec_len;/* extent length */
 755	xfs_agblock_t			bno;	/* alloc bno */
 756	xfs_extlen_t			len;	/* alloc len */
 757	xfs_extlen_t			diff;	/* diff from search bno */
 758	unsigned int			busy_gen;/* busy state */
 759	bool				busy;
 760};
 761
 762/*
 763 * Set up cursors, etc. in the extent allocation cursor. This function can be
 764 * called multiple times to reset an initialized structure without having to
 765 * reallocate cursors.
 766 */
 767static int
 768xfs_alloc_cur_setup(
 769	struct xfs_alloc_arg	*args,
 770	struct xfs_alloc_cur	*acur)
 771{
 772	int			error;
 773	int			i;
 774
 775	ASSERT(args->alignment == 1 || args->type != XFS_ALLOCTYPE_THIS_BNO);
 776
 777	acur->cur_len = args->maxlen;
 778	acur->rec_bno = 0;
 779	acur->rec_len = 0;
 780	acur->bno = 0;
 781	acur->len = 0;
 782	acur->diff = -1;
 783	acur->busy = false;
 784	acur->busy_gen = 0;
 785
 786	/*
 787	 * Perform an initial cntbt lookup to check for availability of maxlen
 788	 * extents. If this fails, we'll return -ENOSPC to signal the caller to
 789	 * attempt a small allocation.
 790	 */
 791	if (!acur->cnt)
 792		acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp,
 793					args->agbp, args->pag, XFS_BTNUM_CNT);
 794	error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
 795	if (error)
 796		return error;
 797
 798	/*
 799	 * Allocate the bnobt left and right search cursors.
 800	 */
 801	if (!acur->bnolt)
 802		acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp,
 803					args->agbp, args->pag, XFS_BTNUM_BNO);
 804	if (!acur->bnogt)
 805		acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp,
 806					args->agbp, args->pag, XFS_BTNUM_BNO);
 807	return i == 1 ? 0 : -ENOSPC;
 808}
 809
 810static void
 811xfs_alloc_cur_close(
 812	struct xfs_alloc_cur	*acur,
 813	bool			error)
 814{
 815	int			cur_error = XFS_BTREE_NOERROR;
 816
 817	if (error)
 818		cur_error = XFS_BTREE_ERROR;
 819
 820	if (acur->cnt)
 821		xfs_btree_del_cursor(acur->cnt, cur_error);
 822	if (acur->bnolt)
 823		xfs_btree_del_cursor(acur->bnolt, cur_error);
 824	if (acur->bnogt)
 825		xfs_btree_del_cursor(acur->bnogt, cur_error);
 826	acur->cnt = acur->bnolt = acur->bnogt = NULL;
 827}
 828
 829/*
 830 * Check an extent for allocation and track the best available candidate in the
 831 * allocation structure. The cursor is deactivated if it has entered an out of
 832 * range state based on allocation arguments. Optionally return the extent
 833 * extent geometry and allocation status if requested by the caller.
 834 */
 835static int
 836xfs_alloc_cur_check(
 837	struct xfs_alloc_arg	*args,
 838	struct xfs_alloc_cur	*acur,
 839	struct xfs_btree_cur	*cur,
 840	int			*new)
 841{
 842	int			error, i;
 843	xfs_agblock_t		bno, bnoa, bnew;
 844	xfs_extlen_t		len, lena, diff = -1;
 845	bool			busy;
 846	unsigned		busy_gen = 0;
 847	bool			deactivate = false;
 848	bool			isbnobt = cur->bc_btnum == XFS_BTNUM_BNO;
 849
 850	*new = 0;
 851
 852	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
 853	if (error)
 854		return error;
 855	if (XFS_IS_CORRUPT(args->mp, i != 1))
 856		return -EFSCORRUPTED;
 857
 858	/*
 859	 * Check minlen and deactivate a cntbt cursor if out of acceptable size
 860	 * range (i.e., walking backwards looking for a minlen extent).
 861	 */
 862	if (len < args->minlen) {
 863		deactivate = !isbnobt;
 864		goto out;
 865	}
 866
 867	busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
 868					 &busy_gen);
 869	acur->busy |= busy;
 870	if (busy)
 871		acur->busy_gen = busy_gen;
 872	/* deactivate a bnobt cursor outside of locality range */
 873	if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
 874		deactivate = isbnobt;
 875		goto out;
 876	}
 877	if (lena < args->minlen)
 878		goto out;
 879
 880	args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
 881	xfs_alloc_fix_len(args);
 882	ASSERT(args->len >= args->minlen);
 883	if (args->len < acur->len)
 884		goto out;
 885
 886	/*
 887	 * We have an aligned record that satisfies minlen and beats or matches
 888	 * the candidate extent size. Compare locality for near allocation mode.
 889	 */
 890	ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO);
 891	diff = xfs_alloc_compute_diff(args->agbno, args->len,
 892				      args->alignment, args->datatype,
 893				      bnoa, lena, &bnew);
 894	if (bnew == NULLAGBLOCK)
 895		goto out;
 896
 897	/*
 898	 * Deactivate a bnobt cursor with worse locality than the current best.
 899	 */
 900	if (diff > acur->diff) {
 901		deactivate = isbnobt;
 902		goto out;
 903	}
 904
 905	ASSERT(args->len > acur->len ||
 906	       (args->len == acur->len && diff <= acur->diff));
 907	acur->rec_bno = bno;
 908	acur->rec_len = len;
 909	acur->bno = bnew;
 910	acur->len = args->len;
 911	acur->diff = diff;
 912	*new = 1;
 913
 914	/*
 915	 * We're done if we found a perfect allocation. This only deactivates
 916	 * the current cursor, but this is just an optimization to terminate a
 917	 * cntbt search that otherwise runs to the edge of the tree.
 918	 */
 919	if (acur->diff == 0 && acur->len == args->maxlen)
 920		deactivate = true;
 921out:
 922	if (deactivate)
 923		cur->bc_ag.abt.active = false;
 924	trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff,
 925				  *new);
 926	return 0;
 927}
 928
 929/*
 930 * Complete an allocation of a candidate extent. Remove the extent from both
 931 * trees and update the args structure.
 932 */
 933STATIC int
 934xfs_alloc_cur_finish(
 935	struct xfs_alloc_arg	*args,
 936	struct xfs_alloc_cur	*acur)
 937{
 938	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
 939	int			error;
 940
 941	ASSERT(acur->cnt && acur->bnolt);
 942	ASSERT(acur->bno >= acur->rec_bno);
 943	ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
 944	ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
 945
 946	error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
 947				      acur->rec_len, acur->bno, acur->len, 0);
 948	if (error)
 949		return error;
 950
 951	args->agbno = acur->bno;
 952	args->len = acur->len;
 953	args->wasfromfl = 0;
 954
 955	trace_xfs_alloc_cur(args);
 956	return 0;
 957}
 958
 959/*
 960 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
 961 * bno optimized lookup to search for extents with ideal size and locality.
 962 */
 963STATIC int
 964xfs_alloc_cntbt_iter(
 965	struct xfs_alloc_arg		*args,
 966	struct xfs_alloc_cur		*acur)
 967{
 968	struct xfs_btree_cur	*cur = acur->cnt;
 969	xfs_agblock_t		bno;
 970	xfs_extlen_t		len, cur_len;
 971	int			error;
 972	int			i;
 973
 974	if (!xfs_alloc_cur_active(cur))
 975		return 0;
 976
 977	/* locality optimized lookup */
 978	cur_len = acur->cur_len;
 979	error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
 980	if (error)
 981		return error;
 982	if (i == 0)
 983		return 0;
 984	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
 985	if (error)
 986		return error;
 987
 988	/* check the current record and update search length from it */
 989	error = xfs_alloc_cur_check(args, acur, cur, &i);
 990	if (error)
 991		return error;
 992	ASSERT(len >= acur->cur_len);
 993	acur->cur_len = len;
 994
 995	/*
 996	 * We looked up the first record >= [agbno, len] above. The agbno is a
 997	 * secondary key and so the current record may lie just before or after
 998	 * agbno. If it is past agbno, check the previous record too so long as
 999	 * the length matches as it may be closer. Don't check a smaller record
1000	 * because that could deactivate our cursor.
1001	 */
1002	if (bno > args->agbno) {
1003		error = xfs_btree_decrement(cur, 0, &i);
1004		if (!error && i) {
1005			error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1006			if (!error && i && len == acur->cur_len)
1007				error = xfs_alloc_cur_check(args, acur, cur,
1008							    &i);
1009		}
1010		if (error)
1011			return error;
1012	}
1013
1014	/*
1015	 * Increment the search key until we find at least one allocation
1016	 * candidate or if the extent we found was larger. Otherwise, double the
1017	 * search key to optimize the search. Efficiency is more important here
1018	 * than absolute best locality.
1019	 */
1020	cur_len <<= 1;
1021	if (!acur->len || acur->cur_len >= cur_len)
1022		acur->cur_len++;
1023	else
1024		acur->cur_len = cur_len;
1025
1026	return error;
1027}
1028
1029/*
1030 * Deal with the case where only small freespaces remain. Either return the
1031 * contents of the last freespace record, or allocate space from the freelist if
1032 * there is nothing in the tree.
1033 */
1034STATIC int			/* error */
1035xfs_alloc_ag_vextent_small(
1036	struct xfs_alloc_arg	*args,	/* allocation argument structure */
1037	struct xfs_btree_cur	*ccur,	/* optional by-size cursor */
1038	xfs_agblock_t		*fbnop,	/* result block number */
1039	xfs_extlen_t		*flenp,	/* result length */
1040	int			*stat)	/* status: 0-freelist, 1-normal/none */
1041{
1042	struct xfs_agf		*agf = args->agbp->b_addr;
1043	int			error = 0;
1044	xfs_agblock_t		fbno = NULLAGBLOCK;
1045	xfs_extlen_t		flen = 0;
1046	int			i = 0;
1047
1048	/*
1049	 * If a cntbt cursor is provided, try to allocate the largest record in
1050	 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1051	 * allocation. Make sure to respect minleft even when pulling from the
1052	 * freelist.
1053	 */
1054	if (ccur)
1055		error = xfs_btree_decrement(ccur, 0, &i);
1056	if (error)
1057		goto error;
1058	if (i) {
1059		error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1060		if (error)
1061			goto error;
1062		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1063			error = -EFSCORRUPTED;
1064			goto error;
1065		}
1066		goto out;
1067	}
1068
1069	if (args->minlen != 1 || args->alignment != 1 ||
1070	    args->resv == XFS_AG_RESV_AGFL ||
1071	    be32_to_cpu(agf->agf_flcount) <= args->minleft)
1072		goto out;
1073
1074	error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1075			&fbno, 0);
1076	if (error)
1077		goto error;
1078	if (fbno == NULLAGBLOCK)
1079		goto out;
1080
1081	xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
1082			      (args->datatype & XFS_ALLOC_NOBUSY));
1083
1084	if (args->datatype & XFS_ALLOC_USERDATA) {
1085		struct xfs_buf	*bp;
1086
1087		error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1088				XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1089				args->mp->m_bsize, 0, &bp);
1090		if (error)
1091			goto error;
1092		xfs_trans_binval(args->tp, bp);
1093	}
1094	*fbnop = args->agbno = fbno;
1095	*flenp = args->len = 1;
1096	if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1097		error = -EFSCORRUPTED;
1098		goto error;
1099	}
1100	args->wasfromfl = 1;
1101	trace_xfs_alloc_small_freelist(args);
1102
1103	/*
1104	 * If we're feeding an AGFL block to something that doesn't live in the
1105	 * free space, we need to clear out the OWN_AG rmap.
1106	 */
1107	error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1108			      &XFS_RMAP_OINFO_AG);
1109	if (error)
1110		goto error;
1111
1112	*stat = 0;
1113	return 0;
1114
1115out:
1116	/*
1117	 * Can't do the allocation, give up.
1118	 */
1119	if (flen < args->minlen) {
1120		args->agbno = NULLAGBLOCK;
1121		trace_xfs_alloc_small_notenough(args);
1122		flen = 0;
1123	}
1124	*fbnop = fbno;
1125	*flenp = flen;
1126	*stat = 1;
1127	trace_xfs_alloc_small_done(args);
1128	return 0;
1129
1130error:
1131	trace_xfs_alloc_small_error(args);
1132	return error;
1133}
1134
1135/*
1136 * Allocate a variable extent in the allocation group agno.
1137 * Type and bno are used to determine where in the allocation group the
1138 * extent will start.
1139 * Extent's length (returned in *len) will be between minlen and maxlen,
1140 * and of the form k * prod + mod unless there's nothing that large.
1141 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1142 */
1143STATIC int			/* error */
1144xfs_alloc_ag_vextent(
1145	xfs_alloc_arg_t	*args)	/* argument structure for allocation */
1146{
1147	int		error=0;
1148
1149	ASSERT(args->minlen > 0);
1150	ASSERT(args->maxlen > 0);
1151	ASSERT(args->minlen <= args->maxlen);
1152	ASSERT(args->mod < args->prod);
1153	ASSERT(args->alignment > 0);
1154
1155	/*
1156	 * Branch to correct routine based on the type.
1157	 */
1158	args->wasfromfl = 0;
1159	switch (args->type) {
1160	case XFS_ALLOCTYPE_THIS_AG:
1161		error = xfs_alloc_ag_vextent_size(args);
1162		break;
1163	case XFS_ALLOCTYPE_NEAR_BNO:
1164		error = xfs_alloc_ag_vextent_near(args);
1165		break;
1166	case XFS_ALLOCTYPE_THIS_BNO:
1167		error = xfs_alloc_ag_vextent_exact(args);
1168		break;
1169	default:
1170		ASSERT(0);
1171		/* NOTREACHED */
1172	}
1173
1174	if (error || args->agbno == NULLAGBLOCK)
1175		return error;
1176
1177	ASSERT(args->len >= args->minlen);
1178	ASSERT(args->len <= args->maxlen);
1179	ASSERT(!args->wasfromfl || args->resv != XFS_AG_RESV_AGFL);
1180	ASSERT(args->agbno % args->alignment == 0);
1181
1182	/* if not file data, insert new block into the reverse map btree */
1183	if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
1184		error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
1185				       args->agbno, args->len, &args->oinfo);
1186		if (error)
1187			return error;
1188	}
1189
1190	if (!args->wasfromfl) {
1191		error = xfs_alloc_update_counters(args->tp, args->agbp,
1192						  -((long)(args->len)));
1193		if (error)
1194			return error;
1195
1196		ASSERT(!xfs_extent_busy_search(args->mp, args->pag,
1197					      args->agbno, args->len));
1198	}
1199
1200	xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
1201
1202	XFS_STATS_INC(args->mp, xs_allocx);
1203	XFS_STATS_ADD(args->mp, xs_allocb, args->len);
1204	return error;
1205}
1206
1207/*
1208 * Allocate a variable extent at exactly agno/bno.
1209 * Extent's length (returned in *len) will be between minlen and maxlen,
1210 * and of the form k * prod + mod unless there's nothing that large.
1211 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1212 */
1213STATIC int			/* error */
1214xfs_alloc_ag_vextent_exact(
1215	xfs_alloc_arg_t	*args)	/* allocation argument structure */
1216{
1217	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1218	struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1219	struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1220	int		error;
1221	xfs_agblock_t	fbno;	/* start block of found extent */
1222	xfs_extlen_t	flen;	/* length of found extent */
1223	xfs_agblock_t	tbno;	/* start block of busy extent */
1224	xfs_extlen_t	tlen;	/* length of busy extent */
1225	xfs_agblock_t	tend;	/* end block of busy extent */
1226	int		i;	/* success/failure of operation */
1227	unsigned	busy_gen;
1228
1229	ASSERT(args->alignment == 1);
1230
1231	/*
1232	 * Allocate/initialize a cursor for the by-number freespace btree.
1233	 */
1234	bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1235					  args->pag, XFS_BTNUM_BNO);
1236
1237	/*
1238	 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1239	 * Look for the closest free block <= bno, it must contain bno
1240	 * if any free block does.
1241	 */
1242	error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1243	if (error)
1244		goto error0;
1245	if (!i)
1246		goto not_found;
1247
1248	/*
1249	 * Grab the freespace record.
1250	 */
1251	error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1252	if (error)
1253		goto error0;
1254	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1255		error = -EFSCORRUPTED;
1256		goto error0;
1257	}
1258	ASSERT(fbno <= args->agbno);
1259
1260	/*
1261	 * Check for overlapping busy extents.
1262	 */
1263	tbno = fbno;
1264	tlen = flen;
1265	xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
1266
1267	/*
1268	 * Give up if the start of the extent is busy, or the freespace isn't
1269	 * long enough for the minimum request.
1270	 */
1271	if (tbno > args->agbno)
1272		goto not_found;
1273	if (tlen < args->minlen)
1274		goto not_found;
1275	tend = tbno + tlen;
1276	if (tend < args->agbno + args->minlen)
1277		goto not_found;
1278
1279	/*
1280	 * End of extent will be smaller of the freespace end and the
1281	 * maximal requested end.
1282	 *
1283	 * Fix the length according to mod and prod if given.
1284	 */
1285	args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1286						- args->agbno;
1287	xfs_alloc_fix_len(args);
1288	ASSERT(args->agbno + args->len <= tend);
1289
1290	/*
1291	 * We are allocating agbno for args->len
1292	 * Allocate/initialize a cursor for the by-size btree.
1293	 */
1294	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1295					args->pag, XFS_BTNUM_CNT);
1296	ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
1297	error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1298				      args->len, XFSA_FIXUP_BNO_OK);
1299	if (error) {
1300		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1301		goto error0;
1302	}
1303
1304	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1305	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1306
1307	args->wasfromfl = 0;
1308	trace_xfs_alloc_exact_done(args);
1309	return 0;
1310
1311not_found:
1312	/* Didn't find it, return null. */
1313	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1314	args->agbno = NULLAGBLOCK;
1315	trace_xfs_alloc_exact_notfound(args);
1316	return 0;
1317
1318error0:
1319	xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1320	trace_xfs_alloc_exact_error(args);
1321	return error;
1322}
1323
1324/*
1325 * Search a given number of btree records in a given direction. Check each
1326 * record against the good extent we've already found.
1327 */
1328STATIC int
1329xfs_alloc_walk_iter(
1330	struct xfs_alloc_arg	*args,
1331	struct xfs_alloc_cur	*acur,
1332	struct xfs_btree_cur	*cur,
1333	bool			increment,
1334	bool			find_one, /* quit on first candidate */
1335	int			count,    /* rec count (-1 for infinite) */
1336	int			*stat)
1337{
1338	int			error;
1339	int			i;
1340
1341	*stat = 0;
1342
1343	/*
1344	 * Search so long as the cursor is active or we find a better extent.
1345	 * The cursor is deactivated if it extends beyond the range of the
1346	 * current allocation candidate.
1347	 */
1348	while (xfs_alloc_cur_active(cur) && count) {
1349		error = xfs_alloc_cur_check(args, acur, cur, &i);
1350		if (error)
1351			return error;
1352		if (i == 1) {
1353			*stat = 1;
1354			if (find_one)
1355				break;
1356		}
1357		if (!xfs_alloc_cur_active(cur))
1358			break;
1359
1360		if (increment)
1361			error = xfs_btree_increment(cur, 0, &i);
1362		else
1363			error = xfs_btree_decrement(cur, 0, &i);
1364		if (error)
1365			return error;
1366		if (i == 0)
1367			cur->bc_ag.abt.active = false;
1368
1369		if (count > 0)
1370			count--;
1371	}
1372
1373	return 0;
1374}
1375
1376/*
1377 * Search the by-bno and by-size btrees in parallel in search of an extent with
1378 * ideal locality based on the NEAR mode ->agbno locality hint.
1379 */
1380STATIC int
1381xfs_alloc_ag_vextent_locality(
1382	struct xfs_alloc_arg	*args,
1383	struct xfs_alloc_cur	*acur,
1384	int			*stat)
1385{
1386	struct xfs_btree_cur	*fbcur = NULL;
1387	int			error;
1388	int			i;
1389	bool			fbinc;
1390
1391	ASSERT(acur->len == 0);
1392	ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO);
1393
1394	*stat = 0;
1395
1396	error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1397	if (error)
1398		return error;
1399	error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1400	if (error)
1401		return error;
1402	error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1403	if (error)
1404		return error;
1405
1406	/*
1407	 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1408	 * right and lookup the closest extent to the locality hint for each
1409	 * extent size key in the cntbt. The entire search terminates
1410	 * immediately on a bnobt hit because that means we've found best case
1411	 * locality. Otherwise the search continues until the cntbt cursor runs
1412	 * off the end of the tree. If no allocation candidate is found at this
1413	 * point, give up on locality, walk backwards from the end of the cntbt
1414	 * and take the first available extent.
1415	 *
1416	 * The parallel tree searches balance each other out to provide fairly
1417	 * consistent performance for various situations. The bnobt search can
1418	 * have pathological behavior in the worst case scenario of larger
1419	 * allocation requests and fragmented free space. On the other hand, the
1420	 * bnobt is able to satisfy most smaller allocation requests much more
1421	 * quickly than the cntbt. The cntbt search can sift through fragmented
1422	 * free space and sets of free extents for larger allocation requests
1423	 * more quickly than the bnobt. Since the locality hint is just a hint
1424	 * and we don't want to scan the entire bnobt for perfect locality, the
1425	 * cntbt search essentially bounds the bnobt search such that we can
1426	 * find good enough locality at reasonable performance in most cases.
1427	 */
1428	while (xfs_alloc_cur_active(acur->bnolt) ||
1429	       xfs_alloc_cur_active(acur->bnogt) ||
1430	       xfs_alloc_cur_active(acur->cnt)) {
1431
1432		trace_xfs_alloc_cur_lookup(args);
1433
1434		/*
1435		 * Search the bnobt left and right. In the case of a hit, finish
1436		 * the search in the opposite direction and we're done.
1437		 */
1438		error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1439					    true, 1, &i);
1440		if (error)
1441			return error;
1442		if (i == 1) {
1443			trace_xfs_alloc_cur_left(args);
1444			fbcur = acur->bnogt;
1445			fbinc = true;
1446			break;
1447		}
1448		error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1449					    1, &i);
1450		if (error)
1451			return error;
1452		if (i == 1) {
1453			trace_xfs_alloc_cur_right(args);
1454			fbcur = acur->bnolt;
1455			fbinc = false;
1456			break;
1457		}
1458
1459		/*
1460		 * Check the extent with best locality based on the current
1461		 * extent size search key and keep track of the best candidate.
1462		 */
1463		error = xfs_alloc_cntbt_iter(args, acur);
1464		if (error)
1465			return error;
1466		if (!xfs_alloc_cur_active(acur->cnt)) {
1467			trace_xfs_alloc_cur_lookup_done(args);
1468			break;
1469		}
1470	}
1471
1472	/*
1473	 * If we failed to find anything due to busy extents, return empty
1474	 * handed so the caller can flush and retry. If no busy extents were
1475	 * found, walk backwards from the end of the cntbt as a last resort.
1476	 */
1477	if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1478		error = xfs_btree_decrement(acur->cnt, 0, &i);
1479		if (error)
1480			return error;
1481		if (i) {
1482			acur->cnt->bc_ag.abt.active = true;
1483			fbcur = acur->cnt;
1484			fbinc = false;
1485		}
1486	}
1487
1488	/*
1489	 * Search in the opposite direction for a better entry in the case of
1490	 * a bnobt hit or walk backwards from the end of the cntbt.
1491	 */
1492	if (fbcur) {
1493		error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1494					    &i);
1495		if (error)
1496			return error;
1497	}
1498
1499	if (acur->len)
1500		*stat = 1;
1501
1502	return 0;
1503}
1504
1505/* Check the last block of the cnt btree for allocations. */
1506static int
1507xfs_alloc_ag_vextent_lastblock(
1508	struct xfs_alloc_arg	*args,
1509	struct xfs_alloc_cur	*acur,
1510	xfs_agblock_t		*bno,
1511	xfs_extlen_t		*len,
1512	bool			*allocated)
1513{
1514	int			error;
1515	int			i;
1516
1517#ifdef DEBUG
1518	/* Randomly don't execute the first algorithm. */
1519	if (get_random_u32_below(2))
1520		return 0;
1521#endif
1522
1523	/*
1524	 * Start from the entry that lookup found, sequence through all larger
1525	 * free blocks.  If we're actually pointing at a record smaller than
1526	 * maxlen, go to the start of this block, and skip all those smaller
1527	 * than minlen.
1528	 */
1529	if (*len || args->alignment > 1) {
1530		acur->cnt->bc_levels[0].ptr = 1;
1531		do {
1532			error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1533			if (error)
1534				return error;
1535			if (XFS_IS_CORRUPT(args->mp, i != 1))
1536				return -EFSCORRUPTED;
1537			if (*len >= args->minlen)
1538				break;
1539			error = xfs_btree_increment(acur->cnt, 0, &i);
1540			if (error)
1541				return error;
1542		} while (i);
1543		ASSERT(*len >= args->minlen);
1544		if (!i)
1545			return 0;
1546	}
1547
1548	error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1549	if (error)
1550		return error;
1551
1552	/*
1553	 * It didn't work.  We COULD be in a case where there's a good record
1554	 * somewhere, so try again.
1555	 */
1556	if (acur->len == 0)
1557		return 0;
1558
1559	trace_xfs_alloc_near_first(args);
1560	*allocated = true;
1561	return 0;
1562}
1563
1564/*
1565 * Allocate a variable extent near bno in the allocation group agno.
1566 * Extent's length (returned in len) will be between minlen and maxlen,
1567 * and of the form k * prod + mod unless there's nothing that large.
1568 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1569 */
1570STATIC int
1571xfs_alloc_ag_vextent_near(
1572	struct xfs_alloc_arg	*args)
 
1573{
1574	struct xfs_alloc_cur	acur = {};
1575	int			error;		/* error code */
1576	int			i;		/* result code, temporary */
1577	xfs_agblock_t		bno;
1578	xfs_extlen_t		len;
1579
1580	/* handle uninitialized agbno range so caller doesn't have to */
1581	if (!args->min_agbno && !args->max_agbno)
1582		args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1583	ASSERT(args->min_agbno <= args->max_agbno);
1584
1585	/* clamp agbno to the range if it's outside */
1586	if (args->agbno < args->min_agbno)
1587		args->agbno = args->min_agbno;
1588	if (args->agbno > args->max_agbno)
1589		args->agbno = args->max_agbno;
1590
 
 
1591restart:
1592	len = 0;
1593
1594	/*
1595	 * Set up cursors and see if there are any free extents as big as
1596	 * maxlen. If not, pick the last entry in the tree unless the tree is
1597	 * empty.
1598	 */
1599	error = xfs_alloc_cur_setup(args, &acur);
1600	if (error == -ENOSPC) {
1601		error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1602				&len, &i);
1603		if (error)
1604			goto out;
1605		if (i == 0 || len == 0) {
1606			trace_xfs_alloc_near_noentry(args);
1607			goto out;
1608		}
1609		ASSERT(i == 1);
1610	} else if (error) {
1611		goto out;
1612	}
1613
1614	/*
1615	 * First algorithm.
1616	 * If the requested extent is large wrt the freespaces available
1617	 * in this a.g., then the cursor will be pointing to a btree entry
1618	 * near the right edge of the tree.  If it's in the last btree leaf
1619	 * block, then we just examine all the entries in that block
1620	 * that are big enough, and pick the best one.
1621	 */
1622	if (xfs_btree_islastblock(acur.cnt, 0)) {
1623		bool		allocated = false;
1624
1625		error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1626				&allocated);
1627		if (error)
1628			goto out;
1629		if (allocated)
1630			goto alloc_finish;
1631	}
1632
1633	/*
1634	 * Second algorithm. Combined cntbt and bnobt search to find ideal
1635	 * locality.
1636	 */
1637	error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1638	if (error)
1639		goto out;
1640
1641	/*
1642	 * If we couldn't get anything, give up.
1643	 */
1644	if (!acur.len) {
1645		if (acur.busy) {
 
 
 
 
 
 
 
1646			trace_xfs_alloc_near_busy(args);
1647			xfs_extent_busy_flush(args->mp, args->pag,
1648					      acur.busy_gen);
 
 
 
 
1649			goto restart;
1650		}
1651		trace_xfs_alloc_size_neither(args);
1652		args->agbno = NULLAGBLOCK;
1653		goto out;
1654	}
1655
1656alloc_finish:
1657	/* fix up btrees on a successful allocation */
1658	error = xfs_alloc_cur_finish(args, &acur);
1659
1660out:
1661	xfs_alloc_cur_close(&acur, error);
1662	return error;
1663}
1664
1665/*
1666 * Allocate a variable extent anywhere in the allocation group agno.
1667 * Extent's length (returned in len) will be between minlen and maxlen,
1668 * and of the form k * prod + mod unless there's nothing that large.
1669 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1670 */
1671STATIC int				/* error */
1672xfs_alloc_ag_vextent_size(
1673	xfs_alloc_arg_t	*args)		/* allocation argument structure */
 
1674{
1675	struct xfs_agf	*agf = args->agbp->b_addr;
1676	struct xfs_btree_cur *bno_cur;	/* cursor for bno btree */
1677	struct xfs_btree_cur *cnt_cur;	/* cursor for cnt btree */
1678	int		error;		/* error result */
1679	xfs_agblock_t	fbno;		/* start of found freespace */
1680	xfs_extlen_t	flen;		/* length of found freespace */
1681	int		i;		/* temp status variable */
1682	xfs_agblock_t	rbno;		/* returned block number */
1683	xfs_extlen_t	rlen;		/* length of returned extent */
1684	bool		busy;
1685	unsigned	busy_gen;
1686
 
 
1687restart:
1688	/*
1689	 * Allocate and initialize a cursor for the by-size btree.
1690	 */
1691	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1692					args->pag, XFS_BTNUM_CNT);
1693	bno_cur = NULL;
1694
1695	/*
1696	 * Look for an entry >= maxlen+alignment-1 blocks.
1697	 */
1698	if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1699			args->maxlen + args->alignment - 1, &i)))
1700		goto error0;
1701
1702	/*
1703	 * If none then we have to settle for a smaller extent. In the case that
1704	 * there are no large extents, this will return the last entry in the
1705	 * tree unless the tree is empty. In the case that there are only busy
1706	 * large extents, this will return the largest small extent unless there
1707	 * are no smaller extents available.
1708	 */
1709	if (!i) {
1710		error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1711						   &fbno, &flen, &i);
1712		if (error)
1713			goto error0;
1714		if (i == 0 || flen == 0) {
1715			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1716			trace_xfs_alloc_size_noentry(args);
1717			return 0;
1718		}
1719		ASSERT(i == 1);
1720		busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1721				&rlen, &busy_gen);
1722	} else {
1723		/*
1724		 * Search for a non-busy extent that is large enough.
1725		 */
1726		for (;;) {
1727			error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1728			if (error)
1729				goto error0;
1730			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1731				error = -EFSCORRUPTED;
1732				goto error0;
1733			}
1734
1735			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1736					&rbno, &rlen, &busy_gen);
1737
1738			if (rlen >= args->maxlen)
1739				break;
1740
1741			error = xfs_btree_increment(cnt_cur, 0, &i);
1742			if (error)
1743				goto error0;
1744			if (i == 0) {
1745				/*
1746				 * Our only valid extents must have been busy.
1747				 * Make it unbusy by forcing the log out and
1748				 * retrying.
1749				 */
1750				xfs_btree_del_cursor(cnt_cur,
1751						     XFS_BTREE_NOERROR);
1752				trace_xfs_alloc_size_busy(args);
1753				xfs_extent_busy_flush(args->mp,
1754							args->pag, busy_gen);
1755				goto restart;
1756			}
 
 
 
 
 
 
1757		}
1758	}
1759
1760	/*
1761	 * In the first case above, we got the last entry in the
1762	 * by-size btree.  Now we check to see if the space hits maxlen
1763	 * once aligned; if not, we search left for something better.
1764	 * This can't happen in the second case above.
1765	 */
1766	rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1767	if (XFS_IS_CORRUPT(args->mp,
1768			   rlen != 0 &&
1769			   (rlen > flen ||
1770			    rbno + rlen > fbno + flen))) {
1771		error = -EFSCORRUPTED;
1772		goto error0;
1773	}
1774	if (rlen < args->maxlen) {
1775		xfs_agblock_t	bestfbno;
1776		xfs_extlen_t	bestflen;
1777		xfs_agblock_t	bestrbno;
1778		xfs_extlen_t	bestrlen;
1779
1780		bestrlen = rlen;
1781		bestrbno = rbno;
1782		bestflen = flen;
1783		bestfbno = fbno;
1784		for (;;) {
1785			if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1786				goto error0;
1787			if (i == 0)
1788				break;
1789			if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1790					&i)))
1791				goto error0;
1792			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1793				error = -EFSCORRUPTED;
1794				goto error0;
1795			}
1796			if (flen < bestrlen)
1797				break;
1798			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1799					&rbno, &rlen, &busy_gen);
1800			rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1801			if (XFS_IS_CORRUPT(args->mp,
1802					   rlen != 0 &&
1803					   (rlen > flen ||
1804					    rbno + rlen > fbno + flen))) {
1805				error = -EFSCORRUPTED;
1806				goto error0;
1807			}
1808			if (rlen > bestrlen) {
1809				bestrlen = rlen;
1810				bestrbno = rbno;
1811				bestflen = flen;
1812				bestfbno = fbno;
1813				if (rlen == args->maxlen)
1814					break;
1815			}
1816		}
1817		if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1818				&i)))
1819			goto error0;
1820		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1821			error = -EFSCORRUPTED;
1822			goto error0;
1823		}
1824		rlen = bestrlen;
1825		rbno = bestrbno;
1826		flen = bestflen;
1827		fbno = bestfbno;
1828	}
1829	args->wasfromfl = 0;
1830	/*
1831	 * Fix up the length.
1832	 */
1833	args->len = rlen;
1834	if (rlen < args->minlen) {
1835		if (busy) {
1836			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
 
 
 
 
 
 
1837			trace_xfs_alloc_size_busy(args);
1838			xfs_extent_busy_flush(args->mp, args->pag, busy_gen);
 
 
 
 
 
 
1839			goto restart;
1840		}
1841		goto out_nominleft;
1842	}
1843	xfs_alloc_fix_len(args);
1844
1845	rlen = args->len;
1846	if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1847		error = -EFSCORRUPTED;
1848		goto error0;
1849	}
1850	/*
1851	 * Allocate and initialize a cursor for the by-block tree.
1852	 */
1853	bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1854					args->pag, XFS_BTNUM_BNO);
1855	if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
1856			rbno, rlen, XFSA_FIXUP_CNT_OK)))
1857		goto error0;
1858	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1859	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1860	cnt_cur = bno_cur = NULL;
1861	args->len = rlen;
1862	args->agbno = rbno;
1863	if (XFS_IS_CORRUPT(args->mp,
1864			   args->agbno + args->len >
1865			   be32_to_cpu(agf->agf_length))) {
1866		error = -EFSCORRUPTED;
1867		goto error0;
1868	}
1869	trace_xfs_alloc_size_done(args);
1870	return 0;
1871
1872error0:
1873	trace_xfs_alloc_size_error(args);
1874	if (cnt_cur)
1875		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1876	if (bno_cur)
1877		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1878	return error;
1879
1880out_nominleft:
1881	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1882	trace_xfs_alloc_size_nominleft(args);
1883	args->agbno = NULLAGBLOCK;
1884	return 0;
1885}
1886
1887/*
1888 * Free the extent starting at agno/bno for length.
1889 */
1890STATIC int
1891xfs_free_ag_extent(
1892	struct xfs_trans		*tp,
1893	struct xfs_buf			*agbp,
1894	xfs_agnumber_t			agno,
1895	xfs_agblock_t			bno,
1896	xfs_extlen_t			len,
1897	const struct xfs_owner_info	*oinfo,
1898	enum xfs_ag_resv_type		type)
1899{
1900	struct xfs_mount		*mp;
1901	struct xfs_btree_cur		*bno_cur;
1902	struct xfs_btree_cur		*cnt_cur;
1903	xfs_agblock_t			gtbno; /* start of right neighbor */
1904	xfs_extlen_t			gtlen; /* length of right neighbor */
1905	xfs_agblock_t			ltbno; /* start of left neighbor */
1906	xfs_extlen_t			ltlen; /* length of left neighbor */
1907	xfs_agblock_t			nbno; /* new starting block of freesp */
1908	xfs_extlen_t			nlen; /* new length of freespace */
1909	int				haveleft; /* have a left neighbor */
1910	int				haveright; /* have a right neighbor */
1911	int				i;
1912	int				error;
1913	struct xfs_perag		*pag = agbp->b_pag;
1914
1915	bno_cur = cnt_cur = NULL;
1916	mp = tp->t_mountp;
1917
1918	if (!xfs_rmap_should_skip_owner_update(oinfo)) {
1919		error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
1920		if (error)
1921			goto error0;
1922	}
1923
1924	/*
1925	 * Allocate and initialize a cursor for the by-block btree.
1926	 */
1927	bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO);
1928	/*
1929	 * Look for a neighboring block on the left (lower block numbers)
1930	 * that is contiguous with this space.
1931	 */
1932	if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
1933		goto error0;
1934	if (haveleft) {
1935		/*
1936		 * There is a block to our left.
1937		 */
1938		if ((error = xfs_alloc_get_rec(bno_cur, &ltbno, &ltlen, &i)))
1939			goto error0;
1940		if (XFS_IS_CORRUPT(mp, i != 1)) {
1941			error = -EFSCORRUPTED;
1942			goto error0;
1943		}
1944		/*
1945		 * It's not contiguous, though.
1946		 */
1947		if (ltbno + ltlen < bno)
1948			haveleft = 0;
1949		else {
1950			/*
1951			 * If this failure happens the request to free this
1952			 * space was invalid, it's (partly) already free.
1953			 * Very bad.
1954			 */
1955			if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
1956				error = -EFSCORRUPTED;
1957				goto error0;
1958			}
1959		}
1960	}
1961	/*
1962	 * Look for a neighboring block on the right (higher block numbers)
1963	 * that is contiguous with this space.
1964	 */
1965	if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
1966		goto error0;
1967	if (haveright) {
1968		/*
1969		 * There is a block to our right.
1970		 */
1971		if ((error = xfs_alloc_get_rec(bno_cur, &gtbno, &gtlen, &i)))
1972			goto error0;
1973		if (XFS_IS_CORRUPT(mp, i != 1)) {
1974			error = -EFSCORRUPTED;
1975			goto error0;
1976		}
1977		/*
1978		 * It's not contiguous, though.
1979		 */
1980		if (bno + len < gtbno)
1981			haveright = 0;
1982		else {
1983			/*
1984			 * If this failure happens the request to free this
1985			 * space was invalid, it's (partly) already free.
1986			 * Very bad.
1987			 */
1988			if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
1989				error = -EFSCORRUPTED;
1990				goto error0;
1991			}
1992		}
1993	}
1994	/*
1995	 * Now allocate and initialize a cursor for the by-size tree.
1996	 */
1997	cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT);
1998	/*
1999	 * Have both left and right contiguous neighbors.
2000	 * Merge all three into a single free block.
2001	 */
2002	if (haveleft && haveright) {
2003		/*
2004		 * Delete the old by-size entry on the left.
2005		 */
2006		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2007			goto error0;
2008		if (XFS_IS_CORRUPT(mp, i != 1)) {
2009			error = -EFSCORRUPTED;
2010			goto error0;
2011		}
2012		if ((error = xfs_btree_delete(cnt_cur, &i)))
2013			goto error0;
2014		if (XFS_IS_CORRUPT(mp, i != 1)) {
2015			error = -EFSCORRUPTED;
2016			goto error0;
2017		}
2018		/*
2019		 * Delete the old by-size entry on the right.
2020		 */
2021		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2022			goto error0;
2023		if (XFS_IS_CORRUPT(mp, i != 1)) {
2024			error = -EFSCORRUPTED;
2025			goto error0;
2026		}
2027		if ((error = xfs_btree_delete(cnt_cur, &i)))
2028			goto error0;
2029		if (XFS_IS_CORRUPT(mp, i != 1)) {
2030			error = -EFSCORRUPTED;
2031			goto error0;
2032		}
2033		/*
2034		 * Delete the old by-block entry for the right block.
2035		 */
2036		if ((error = xfs_btree_delete(bno_cur, &i)))
2037			goto error0;
2038		if (XFS_IS_CORRUPT(mp, i != 1)) {
2039			error = -EFSCORRUPTED;
2040			goto error0;
2041		}
2042		/*
2043		 * Move the by-block cursor back to the left neighbor.
2044		 */
2045		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2046			goto error0;
2047		if (XFS_IS_CORRUPT(mp, i != 1)) {
2048			error = -EFSCORRUPTED;
2049			goto error0;
2050		}
2051#ifdef DEBUG
2052		/*
2053		 * Check that this is the right record: delete didn't
2054		 * mangle the cursor.
2055		 */
2056		{
2057			xfs_agblock_t	xxbno;
2058			xfs_extlen_t	xxlen;
2059
2060			if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2061					&i)))
2062				goto error0;
2063			if (XFS_IS_CORRUPT(mp,
2064					   i != 1 ||
2065					   xxbno != ltbno ||
2066					   xxlen != ltlen)) {
2067				error = -EFSCORRUPTED;
2068				goto error0;
2069			}
2070		}
2071#endif
2072		/*
2073		 * Update remaining by-block entry to the new, joined block.
2074		 */
2075		nbno = ltbno;
2076		nlen = len + ltlen + gtlen;
2077		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2078			goto error0;
2079	}
2080	/*
2081	 * Have only a left contiguous neighbor.
2082	 * Merge it together with the new freespace.
2083	 */
2084	else if (haveleft) {
2085		/*
2086		 * Delete the old by-size entry on the left.
2087		 */
2088		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2089			goto error0;
2090		if (XFS_IS_CORRUPT(mp, i != 1)) {
2091			error = -EFSCORRUPTED;
2092			goto error0;
2093		}
2094		if ((error = xfs_btree_delete(cnt_cur, &i)))
2095			goto error0;
2096		if (XFS_IS_CORRUPT(mp, i != 1)) {
2097			error = -EFSCORRUPTED;
2098			goto error0;
2099		}
2100		/*
2101		 * Back up the by-block cursor to the left neighbor, and
2102		 * update its length.
2103		 */
2104		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2105			goto error0;
2106		if (XFS_IS_CORRUPT(mp, i != 1)) {
2107			error = -EFSCORRUPTED;
2108			goto error0;
2109		}
2110		nbno = ltbno;
2111		nlen = len + ltlen;
2112		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2113			goto error0;
2114	}
2115	/*
2116	 * Have only a right contiguous neighbor.
2117	 * Merge it together with the new freespace.
2118	 */
2119	else if (haveright) {
2120		/*
2121		 * Delete the old by-size entry on the right.
2122		 */
2123		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2124			goto error0;
2125		if (XFS_IS_CORRUPT(mp, i != 1)) {
2126			error = -EFSCORRUPTED;
2127			goto error0;
2128		}
2129		if ((error = xfs_btree_delete(cnt_cur, &i)))
2130			goto error0;
2131		if (XFS_IS_CORRUPT(mp, i != 1)) {
2132			error = -EFSCORRUPTED;
2133			goto error0;
2134		}
2135		/*
2136		 * Update the starting block and length of the right
2137		 * neighbor in the by-block tree.
2138		 */
2139		nbno = bno;
2140		nlen = len + gtlen;
2141		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2142			goto error0;
2143	}
2144	/*
2145	 * No contiguous neighbors.
2146	 * Insert the new freespace into the by-block tree.
2147	 */
2148	else {
2149		nbno = bno;
2150		nlen = len;
2151		if ((error = xfs_btree_insert(bno_cur, &i)))
2152			goto error0;
2153		if (XFS_IS_CORRUPT(mp, i != 1)) {
2154			error = -EFSCORRUPTED;
2155			goto error0;
2156		}
2157	}
2158	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2159	bno_cur = NULL;
2160	/*
2161	 * In all cases we need to insert the new freespace in the by-size tree.
2162	 */
2163	if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2164		goto error0;
2165	if (XFS_IS_CORRUPT(mp, i != 0)) {
2166		error = -EFSCORRUPTED;
2167		goto error0;
2168	}
2169	if ((error = xfs_btree_insert(cnt_cur, &i)))
2170		goto error0;
2171	if (XFS_IS_CORRUPT(mp, i != 1)) {
2172		error = -EFSCORRUPTED;
2173		goto error0;
2174	}
2175	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2176	cnt_cur = NULL;
2177
2178	/*
2179	 * Update the freespace totals in the ag and superblock.
2180	 */
2181	error = xfs_alloc_update_counters(tp, agbp, len);
2182	xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2183	if (error)
2184		goto error0;
2185
2186	XFS_STATS_INC(mp, xs_freex);
2187	XFS_STATS_ADD(mp, xs_freeb, len);
2188
2189	trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2190
2191	return 0;
2192
2193 error0:
2194	trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2195	if (bno_cur)
2196		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2197	if (cnt_cur)
2198		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2199	return error;
2200}
2201
2202/*
2203 * Visible (exported) allocation/free functions.
2204 * Some of these are used just by xfs_alloc_btree.c and this file.
2205 */
2206
2207/*
2208 * Compute and fill in value of m_alloc_maxlevels.
2209 */
2210void
2211xfs_alloc_compute_maxlevels(
2212	xfs_mount_t	*mp)	/* file system mount structure */
2213{
2214	mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2215			(mp->m_sb.sb_agblocks + 1) / 2);
2216	ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2217}
2218
2219/*
2220 * Find the length of the longest extent in an AG.  The 'need' parameter
2221 * specifies how much space we're going to need for the AGFL and the
2222 * 'reserved' parameter tells us how many blocks in this AG are reserved for
2223 * other callers.
2224 */
2225xfs_extlen_t
2226xfs_alloc_longest_free_extent(
2227	struct xfs_perag	*pag,
2228	xfs_extlen_t		need,
2229	xfs_extlen_t		reserved)
2230{
2231	xfs_extlen_t		delta = 0;
2232
2233	/*
2234	 * If the AGFL needs a recharge, we'll have to subtract that from the
2235	 * longest extent.
2236	 */
2237	if (need > pag->pagf_flcount)
2238		delta = need - pag->pagf_flcount;
2239
2240	/*
2241	 * If we cannot maintain others' reservations with space from the
2242	 * not-longest freesp extents, we'll have to subtract /that/ from
2243	 * the longest extent too.
2244	 */
2245	if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2246		delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2247
2248	/*
2249	 * If the longest extent is long enough to satisfy all the
2250	 * reservations and AGFL rules in place, we can return this extent.
2251	 */
2252	if (pag->pagf_longest > delta)
2253		return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2254				pag->pagf_longest - delta);
2255
2256	/* Otherwise, let the caller try for 1 block if there's space. */
2257	return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2258}
2259
2260/*
2261 * Compute the minimum length of the AGFL in the given AG.  If @pag is NULL,
2262 * return the largest possible minimum length.
2263 */
2264unsigned int
2265xfs_alloc_min_freelist(
2266	struct xfs_mount	*mp,
2267	struct xfs_perag	*pag)
2268{
2269	/* AG btrees have at least 1 level. */
2270	static const uint8_t	fake_levels[XFS_BTNUM_AGF] = {1, 1, 1};
2271	const uint8_t		*levels = pag ? pag->pagf_levels : fake_levels;
2272	unsigned int		min_free;
2273
2274	ASSERT(mp->m_alloc_maxlevels > 0);
2275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2276	/* space needed by-bno freespace btree */
2277	min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1,
2278				       mp->m_alloc_maxlevels);
2279	/* space needed by-size freespace btree */
2280	min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1,
2281				       mp->m_alloc_maxlevels);
2282	/* space needed reverse mapping used space btree */
2283	if (xfs_has_rmapbt(mp))
2284		min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1,
2285						mp->m_rmap_maxlevels);
2286
2287	return min_free;
2288}
2289
2290/*
2291 * Check if the operation we are fixing up the freelist for should go ahead or
2292 * not. If we are freeing blocks, we always allow it, otherwise the allocation
2293 * is dependent on whether the size and shape of free space available will
2294 * permit the requested allocation to take place.
2295 */
2296static bool
2297xfs_alloc_space_available(
2298	struct xfs_alloc_arg	*args,
2299	xfs_extlen_t		min_free,
2300	int			flags)
2301{
2302	struct xfs_perag	*pag = args->pag;
2303	xfs_extlen_t		alloc_len, longest;
2304	xfs_extlen_t		reservation; /* blocks that are still reserved */
2305	int			available;
2306	xfs_extlen_t		agflcount;
2307
2308	if (flags & XFS_ALLOC_FLAG_FREEING)
2309		return true;
2310
2311	reservation = xfs_ag_resv_needed(pag, args->resv);
2312
2313	/* do we have enough contiguous free space for the allocation? */
2314	alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2315	longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2316	if (longest < alloc_len)
2317		return false;
2318
2319	/*
2320	 * Do we have enough free space remaining for the allocation? Don't
2321	 * account extra agfl blocks because we are about to defer free them,
2322	 * making them unavailable until the current transaction commits.
2323	 */
2324	agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2325	available = (int)(pag->pagf_freeblks + agflcount -
2326			  reservation - min_free - args->minleft);
2327	if (available < (int)max(args->total, alloc_len))
2328		return false;
2329
2330	/*
2331	 * Clamp maxlen to the amount of free space available for the actual
2332	 * extent allocation.
2333	 */
2334	if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2335		args->maxlen = available;
2336		ASSERT(args->maxlen > 0);
2337		ASSERT(args->maxlen >= args->minlen);
2338	}
2339
2340	return true;
2341}
2342
2343int
2344xfs_free_agfl_block(
2345	struct xfs_trans	*tp,
2346	xfs_agnumber_t		agno,
2347	xfs_agblock_t		agbno,
2348	struct xfs_buf		*agbp,
2349	struct xfs_owner_info	*oinfo)
2350{
2351	int			error;
2352	struct xfs_buf		*bp;
2353
2354	error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
2355				   XFS_AG_RESV_AGFL);
2356	if (error)
2357		return error;
2358
2359	error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
2360			XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
2361			tp->t_mountp->m_bsize, 0, &bp);
2362	if (error)
2363		return error;
2364	xfs_trans_binval(tp, bp);
2365
2366	return 0;
2367}
2368
2369/*
2370 * Check the agfl fields of the agf for inconsistency or corruption. The purpose
2371 * is to detect an agfl header padding mismatch between current and early v5
2372 * kernels. This problem manifests as a 1-slot size difference between the
2373 * on-disk flcount and the active [first, last] range of a wrapped agfl. This
2374 * may also catch variants of agfl count corruption unrelated to padding. Either
2375 * way, we'll reset the agfl and warn the user.
 
 
 
 
2376 *
2377 * Return true if a reset is required before the agfl can be used, false
2378 * otherwise.
2379 */
2380static bool
2381xfs_agfl_needs_reset(
2382	struct xfs_mount	*mp,
2383	struct xfs_agf		*agf)
2384{
2385	uint32_t		f = be32_to_cpu(agf->agf_flfirst);
2386	uint32_t		l = be32_to_cpu(agf->agf_fllast);
2387	uint32_t		c = be32_to_cpu(agf->agf_flcount);
2388	int			agfl_size = xfs_agfl_size(mp);
2389	int			active;
2390
2391	/* no agfl header on v4 supers */
2392	if (!xfs_has_crc(mp))
2393		return false;
2394
2395	/*
2396	 * The agf read verifier catches severe corruption of these fields.
2397	 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2398	 * the verifier allows it.
2399	 */
2400	if (f >= agfl_size || l >= agfl_size)
2401		return true;
2402	if (c > agfl_size)
2403		return true;
2404
2405	/*
2406	 * Check consistency between the on-disk count and the active range. An
2407	 * agfl padding mismatch manifests as an inconsistent flcount.
2408	 */
2409	if (c && l >= f)
2410		active = l - f + 1;
2411	else if (c)
2412		active = agfl_size - f + l + 1;
2413	else
2414		active = 0;
2415
2416	return active != c;
2417}
2418
2419/*
2420 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2421 * agfl content cannot be trusted. Warn the user that a repair is required to
2422 * recover leaked blocks.
2423 *
2424 * The purpose of this mechanism is to handle filesystems affected by the agfl
2425 * header padding mismatch problem. A reset keeps the filesystem online with a
2426 * relatively minor free space accounting inconsistency rather than suffer the
2427 * inevitable crash from use of an invalid agfl block.
2428 */
2429static void
2430xfs_agfl_reset(
2431	struct xfs_trans	*tp,
2432	struct xfs_buf		*agbp,
2433	struct xfs_perag	*pag)
2434{
2435	struct xfs_mount	*mp = tp->t_mountp;
2436	struct xfs_agf		*agf = agbp->b_addr;
2437
2438	ASSERT(pag->pagf_agflreset);
2439	trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2440
2441	xfs_warn(mp,
2442	       "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2443	       "Please unmount and run xfs_repair.",
2444	         pag->pag_agno, pag->pagf_flcount);
2445
2446	agf->agf_flfirst = 0;
2447	agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2448	agf->agf_flcount = 0;
2449	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2450				    XFS_AGF_FLCOUNT);
2451
2452	pag->pagf_flcount = 0;
2453	pag->pagf_agflreset = false;
2454}
2455
2456/*
2457 * Defer an AGFL block free. This is effectively equivalent to
2458 * xfs_free_extent_later() with some special handling particular to AGFL blocks.
2459 *
2460 * Deferring AGFL frees helps prevent log reservation overruns due to too many
2461 * allocation operations in a transaction. AGFL frees are prone to this problem
2462 * because for one they are always freed one at a time. Further, an immediate
2463 * AGFL block free can cause a btree join and require another block free before
2464 * the real allocation can proceed. Deferring the free disconnects freeing up
2465 * the AGFL slot from freeing the block.
2466 */
2467STATIC void
2468xfs_defer_agfl_block(
2469	struct xfs_trans		*tp,
2470	xfs_agnumber_t			agno,
2471	xfs_fsblock_t			agbno,
2472	struct xfs_owner_info		*oinfo)
2473{
2474	struct xfs_mount		*mp = tp->t_mountp;
2475	struct xfs_extent_free_item	*new;		/* new element */
 
2476
2477	ASSERT(xfs_extfree_item_cache != NULL);
2478	ASSERT(oinfo != NULL);
2479
2480	new = kmem_cache_zalloc(xfs_extfree_item_cache,
 
 
 
2481			       GFP_KERNEL | __GFP_NOFAIL);
2482	new->xefi_startblock = XFS_AGB_TO_FSB(mp, agno, agbno);
2483	new->xefi_blockcount = 1;
2484	new->xefi_owner = oinfo->oi_owner;
 
2485
2486	trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
2487
2488	xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_AGFL_FREE, &new->xefi_list);
 
 
2489}
2490
2491/*
2492 * Add the extent to the list of extents to be free at transaction end.
2493 * The list is maintained sorted (by block number).
2494 */
2495void
2496__xfs_free_extent_later(
2497	struct xfs_trans		*tp,
2498	xfs_fsblock_t			bno,
2499	xfs_filblks_t			len,
2500	const struct xfs_owner_info	*oinfo,
2501	bool				skip_discard)
 
 
2502{
2503	struct xfs_extent_free_item	*new;		/* new element */
2504#ifdef DEBUG
2505	struct xfs_mount		*mp = tp->t_mountp;
 
2506	xfs_agnumber_t			agno;
2507	xfs_agblock_t			agbno;
2508
2509	ASSERT(bno != NULLFSBLOCK);
2510	ASSERT(len > 0);
2511	ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
2512	ASSERT(!isnullstartblock(bno));
2513	agno = XFS_FSB_TO_AGNO(mp, bno);
2514	agbno = XFS_FSB_TO_AGBNO(mp, bno);
2515	ASSERT(agno < mp->m_sb.sb_agcount);
2516	ASSERT(agbno < mp->m_sb.sb_agblocks);
2517	ASSERT(len < mp->m_sb.sb_agblocks);
2518	ASSERT(agbno + len <= mp->m_sb.sb_agblocks);
2519#endif
2520	ASSERT(xfs_extfree_item_cache != NULL);
 
 
 
 
2521
2522	new = kmem_cache_zalloc(xfs_extfree_item_cache,
2523			       GFP_KERNEL | __GFP_NOFAIL);
2524	new->xefi_startblock = bno;
2525	new->xefi_blockcount = (xfs_extlen_t)len;
 
2526	if (skip_discard)
2527		new->xefi_flags |= XFS_EFI_SKIP_DISCARD;
2528	if (oinfo) {
2529		ASSERT(oinfo->oi_offset == 0);
2530
2531		if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2532			new->xefi_flags |= XFS_EFI_ATTR_FORK;
2533		if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2534			new->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2535		new->xefi_owner = oinfo->oi_owner;
2536	} else {
2537		new->xefi_owner = XFS_RMAP_OWN_NULL;
2538	}
2539	trace_xfs_bmap_free_defer(tp->t_mountp,
2540			XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0,
2541			XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len);
2542	xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_FREE, &new->xefi_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2543}
2544
2545#ifdef DEBUG
2546/*
2547 * Check if an AGF has a free extent record whose length is equal to
2548 * args->minlen.
2549 */
2550STATIC int
2551xfs_exact_minlen_extent_available(
2552	struct xfs_alloc_arg	*args,
2553	struct xfs_buf		*agbp,
2554	int			*stat)
2555{
2556	struct xfs_btree_cur	*cnt_cur;
2557	xfs_agblock_t		fbno;
2558	xfs_extlen_t		flen;
2559	int			error = 0;
2560
2561	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp,
2562					args->pag, XFS_BTNUM_CNT);
2563	error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2564	if (error)
2565		goto out;
2566
2567	if (*stat == 0) {
2568		error = -EFSCORRUPTED;
2569		goto out;
2570	}
2571
2572	error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2573	if (error)
2574		goto out;
2575
2576	if (*stat == 1 && flen != args->minlen)
2577		*stat = 0;
2578
2579out:
2580	xfs_btree_del_cursor(cnt_cur, error);
2581
2582	return error;
2583}
2584#endif
2585
2586/*
2587 * Decide whether to use this allocation group for this allocation.
2588 * If so, fix up the btree freelist's size.
2589 */
2590int			/* error */
2591xfs_alloc_fix_freelist(
2592	struct xfs_alloc_arg	*args,	/* allocation argument structure */
2593	int			flags)	/* XFS_ALLOC_FLAG_... */
2594{
2595	struct xfs_mount	*mp = args->mp;
2596	struct xfs_perag	*pag = args->pag;
2597	struct xfs_trans	*tp = args->tp;
2598	struct xfs_buf		*agbp = NULL;
2599	struct xfs_buf		*agflbp = NULL;
2600	struct xfs_alloc_arg	targs;	/* local allocation arguments */
2601	xfs_agblock_t		bno;	/* freelist block */
2602	xfs_extlen_t		need;	/* total blocks needed in freelist */
2603	int			error = 0;
2604
2605	/* deferred ops (AGFL block frees) require permanent transactions */
2606	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2607
2608	if (!pag->pagf_init) {
2609		error = xfs_alloc_read_agf(pag, tp, flags, &agbp);
2610		if (error) {
2611			/* Couldn't lock the AGF so skip this AG. */
2612			if (error == -EAGAIN)
2613				error = 0;
2614			goto out_no_agbp;
2615		}
2616	}
2617
2618	/*
2619	 * If this is a metadata preferred pag and we are user data then try
2620	 * somewhere else if we are not being asked to try harder at this
2621	 * point
2622	 */
2623	if (pag->pagf_metadata && (args->datatype & XFS_ALLOC_USERDATA) &&
2624	    (flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2625		ASSERT(!(flags & XFS_ALLOC_FLAG_FREEING));
 
2626		goto out_agbp_relse;
2627	}
2628
2629	need = xfs_alloc_min_freelist(mp, pag);
2630	if (!xfs_alloc_space_available(args, need, flags |
2631			XFS_ALLOC_FLAG_CHECK))
2632		goto out_agbp_relse;
2633
2634	/*
2635	 * Get the a.g. freespace buffer.
2636	 * Can fail if we're not blocking on locks, and it's held.
2637	 */
2638	if (!agbp) {
2639		error = xfs_alloc_read_agf(pag, tp, flags, &agbp);
2640		if (error) {
2641			/* Couldn't lock the AGF so skip this AG. */
2642			if (error == -EAGAIN)
2643				error = 0;
2644			goto out_no_agbp;
2645		}
2646	}
2647
2648	/* reset a padding mismatched agfl before final free space check */
2649	if (pag->pagf_agflreset)
2650		xfs_agfl_reset(tp, agbp, pag);
2651
2652	/* If there isn't enough total space or single-extent, reject it. */
2653	need = xfs_alloc_min_freelist(mp, pag);
2654	if (!xfs_alloc_space_available(args, need, flags))
2655		goto out_agbp_relse;
2656
2657#ifdef DEBUG
2658	if (args->alloc_minlen_only) {
2659		int stat;
2660
2661		error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2662		if (error || !stat)
2663			goto out_agbp_relse;
2664	}
2665#endif
2666	/*
2667	 * Make the freelist shorter if it's too long.
2668	 *
2669	 * Note that from this point onwards, we will always release the agf and
2670	 * agfl buffers on error. This handles the case where we error out and
2671	 * the buffers are clean or may not have been joined to the transaction
2672	 * and hence need to be released manually. If they have been joined to
2673	 * the transaction, then xfs_trans_brelse() will handle them
2674	 * appropriately based on the recursion count and dirty state of the
2675	 * buffer.
2676	 *
2677	 * XXX (dgc): When we have lots of free space, does this buy us
2678	 * anything other than extra overhead when we need to put more blocks
2679	 * back on the free list? Maybe we should only do this when space is
2680	 * getting low or the AGFL is more than half full?
2681	 *
2682	 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2683	 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2684	 * updating the rmapbt.  Both flags are used in xfs_repair while we're
2685	 * rebuilding the rmapbt, and neither are used by the kernel.  They're
2686	 * both required to ensure that rmaps are correctly recorded for the
2687	 * regenerated AGFL, bnobt, and cntbt.  See repair/phase5.c and
2688	 * repair/rmap.c in xfsprogs for details.
2689	 */
2690	memset(&targs, 0, sizeof(targs));
2691	/* struct copy below */
2692	if (flags & XFS_ALLOC_FLAG_NORMAP)
2693		targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2694	else
2695		targs.oinfo = XFS_RMAP_OINFO_AG;
2696	while (!(flags & XFS_ALLOC_FLAG_NOSHRINK) && pag->pagf_flcount > need) {
 
2697		error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
2698		if (error)
2699			goto out_agbp_relse;
2700
2701		/* defer agfl frees */
2702		xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
 
 
2703	}
2704
2705	targs.tp = tp;
2706	targs.mp = mp;
2707	targs.agbp = agbp;
2708	targs.agno = args->agno;
2709	targs.alignment = targs.minlen = targs.prod = 1;
2710	targs.type = XFS_ALLOCTYPE_THIS_AG;
2711	targs.pag = pag;
2712	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2713	if (error)
2714		goto out_agbp_relse;
2715
2716	/* Make the freelist longer if it's too short. */
2717	while (pag->pagf_flcount < need) {
2718		targs.agbno = 0;
2719		targs.maxlen = need - pag->pagf_flcount;
2720		targs.resv = XFS_AG_RESV_AGFL;
2721
2722		/* Allocate as many blocks as possible at once. */
2723		error = xfs_alloc_ag_vextent(&targs);
2724		if (error)
2725			goto out_agflbp_relse;
2726
2727		/*
2728		 * Stop if we run out.  Won't happen if callers are obeying
2729		 * the restrictions correctly.  Can happen for free calls
2730		 * on a completely full ag.
2731		 */
2732		if (targs.agbno == NULLAGBLOCK) {
2733			if (flags & XFS_ALLOC_FLAG_FREEING)
2734				break;
2735			goto out_agflbp_relse;
2736		}
 
 
 
 
 
 
 
 
 
 
 
 
2737		/*
2738		 * Put each allocated block on the list.
2739		 */
2740		for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2741			error = xfs_alloc_put_freelist(pag, tp, agbp,
2742							agflbp, bno, 0);
2743			if (error)
2744				goto out_agflbp_relse;
2745		}
2746	}
2747	xfs_trans_brelse(tp, agflbp);
2748	args->agbp = agbp;
2749	return 0;
2750
2751out_agflbp_relse:
2752	xfs_trans_brelse(tp, agflbp);
2753out_agbp_relse:
2754	if (agbp)
2755		xfs_trans_brelse(tp, agbp);
2756out_no_agbp:
2757	args->agbp = NULL;
2758	return error;
2759}
2760
2761/*
2762 * Get a block from the freelist.
2763 * Returns with the buffer for the block gotten.
2764 */
2765int
2766xfs_alloc_get_freelist(
2767	struct xfs_perag	*pag,
2768	struct xfs_trans	*tp,
2769	struct xfs_buf		*agbp,
2770	xfs_agblock_t		*bnop,
2771	int			btreeblk)
2772{
2773	struct xfs_agf		*agf = agbp->b_addr;
2774	struct xfs_buf		*agflbp;
2775	xfs_agblock_t		bno;
2776	__be32			*agfl_bno;
2777	int			error;
2778	uint32_t		logflags;
2779	struct xfs_mount	*mp = tp->t_mountp;
2780
2781	/*
2782	 * Freelist is empty, give up.
2783	 */
2784	if (!agf->agf_flcount) {
2785		*bnop = NULLAGBLOCK;
2786		return 0;
2787	}
2788	/*
2789	 * Read the array of free blocks.
2790	 */
2791	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2792	if (error)
2793		return error;
2794
2795
2796	/*
2797	 * Get the block number and update the data structures.
2798	 */
2799	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2800	bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
 
 
 
2801	be32_add_cpu(&agf->agf_flfirst, 1);
2802	xfs_trans_brelse(tp, agflbp);
2803	if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
2804		agf->agf_flfirst = 0;
2805
2806	ASSERT(!pag->pagf_agflreset);
2807	be32_add_cpu(&agf->agf_flcount, -1);
2808	pag->pagf_flcount--;
2809
2810	logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
2811	if (btreeblk) {
2812		be32_add_cpu(&agf->agf_btreeblks, 1);
2813		pag->pagf_btreeblks++;
2814		logflags |= XFS_AGF_BTREEBLKS;
2815	}
2816
2817	xfs_alloc_log_agf(tp, agbp, logflags);
2818	*bnop = bno;
2819
2820	return 0;
2821}
2822
2823/*
2824 * Log the given fields from the agf structure.
2825 */
2826void
2827xfs_alloc_log_agf(
2828	struct xfs_trans	*tp,
2829	struct xfs_buf		*bp,
2830	uint32_t		fields)
2831{
2832	int	first;		/* first byte offset */
2833	int	last;		/* last byte offset */
2834	static const short	offsets[] = {
2835		offsetof(xfs_agf_t, agf_magicnum),
2836		offsetof(xfs_agf_t, agf_versionnum),
2837		offsetof(xfs_agf_t, agf_seqno),
2838		offsetof(xfs_agf_t, agf_length),
2839		offsetof(xfs_agf_t, agf_roots[0]),
2840		offsetof(xfs_agf_t, agf_levels[0]),
2841		offsetof(xfs_agf_t, agf_flfirst),
2842		offsetof(xfs_agf_t, agf_fllast),
2843		offsetof(xfs_agf_t, agf_flcount),
2844		offsetof(xfs_agf_t, agf_freeblks),
2845		offsetof(xfs_agf_t, agf_longest),
2846		offsetof(xfs_agf_t, agf_btreeblks),
2847		offsetof(xfs_agf_t, agf_uuid),
2848		offsetof(xfs_agf_t, agf_rmap_blocks),
2849		offsetof(xfs_agf_t, agf_refcount_blocks),
2850		offsetof(xfs_agf_t, agf_refcount_root),
2851		offsetof(xfs_agf_t, agf_refcount_level),
2852		/* needed so that we don't log the whole rest of the structure: */
2853		offsetof(xfs_agf_t, agf_spare64),
2854		sizeof(xfs_agf_t)
2855	};
2856
2857	trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
2858
2859	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
2860
2861	xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
2862	xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
2863}
2864
2865/*
2866 * Put the block on the freelist for the allocation group.
2867 */
2868int
2869xfs_alloc_put_freelist(
2870	struct xfs_perag	*pag,
2871	struct xfs_trans	*tp,
2872	struct xfs_buf		*agbp,
2873	struct xfs_buf		*agflbp,
2874	xfs_agblock_t		bno,
2875	int			btreeblk)
2876{
2877	struct xfs_mount	*mp = tp->t_mountp;
2878	struct xfs_agf		*agf = agbp->b_addr;
2879	__be32			*blockp;
2880	int			error;
2881	uint32_t		logflags;
2882	__be32			*agfl_bno;
2883	int			startoff;
2884
2885	if (!agflbp) {
2886		error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2887		if (error)
2888			return error;
2889	}
2890
2891	be32_add_cpu(&agf->agf_fllast, 1);
2892	if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
2893		agf->agf_fllast = 0;
2894
2895	ASSERT(!pag->pagf_agflreset);
2896	be32_add_cpu(&agf->agf_flcount, 1);
2897	pag->pagf_flcount++;
2898
2899	logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
2900	if (btreeblk) {
2901		be32_add_cpu(&agf->agf_btreeblks, -1);
2902		pag->pagf_btreeblks--;
2903		logflags |= XFS_AGF_BTREEBLKS;
2904	}
2905
2906	xfs_alloc_log_agf(tp, agbp, logflags);
2907
2908	ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
2909
2910	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2911	blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
2912	*blockp = cpu_to_be32(bno);
2913	startoff = (char *)blockp - (char *)agflbp->b_addr;
2914
2915	xfs_alloc_log_agf(tp, agbp, logflags);
2916
2917	xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
2918	xfs_trans_log_buf(tp, agflbp, startoff,
2919			  startoff + sizeof(xfs_agblock_t) - 1);
2920	return 0;
2921}
2922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2923static xfs_failaddr_t
2924xfs_agf_verify(
2925	struct xfs_buf		*bp)
2926{
2927	struct xfs_mount	*mp = bp->b_mount;
2928	struct xfs_agf		*agf = bp->b_addr;
 
 
 
2929
2930	if (xfs_has_crc(mp)) {
2931		if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
2932			return __this_address;
2933		if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
2934			return __this_address;
2935	}
2936
2937	if (!xfs_verify_magic(bp, agf->agf_magicnum))
2938		return __this_address;
2939
2940	if (!(XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)) &&
2941	      be32_to_cpu(agf->agf_freeblks) <= be32_to_cpu(agf->agf_length) &&
2942	      be32_to_cpu(agf->agf_flfirst) < xfs_agfl_size(mp) &&
2943	      be32_to_cpu(agf->agf_fllast) < xfs_agfl_size(mp) &&
2944	      be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp)))
2945		return __this_address;
2946
2947	if (be32_to_cpu(agf->agf_length) > mp->m_sb.sb_dblocks)
 
 
 
 
 
 
 
 
 
 
 
 
2948		return __this_address;
2949
2950	if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
2951	    be32_to_cpu(agf->agf_freeblks) > be32_to_cpu(agf->agf_length))
2952		return __this_address;
2953
2954	if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 ||
2955	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 ||
2956	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) >
2957						mp->m_alloc_maxlevels ||
2958	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) >
2959						mp->m_alloc_maxlevels)
2960		return __this_address;
2961
2962	if (xfs_has_rmapbt(mp) &&
2963	    (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 ||
2964	     be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) >
2965						mp->m_rmap_maxlevels))
2966		return __this_address;
2967
2968	if (xfs_has_rmapbt(mp) &&
2969	    be32_to_cpu(agf->agf_rmap_blocks) > be32_to_cpu(agf->agf_length))
2970		return __this_address;
2971
2972	/*
2973	 * during growfs operations, the perag is not fully initialised,
2974	 * so we can't use it for any useful checking. growfs ensures we can't
2975	 * use it by using uncached buffers that don't have the perag attached
2976	 * so we can detect and avoid this problem.
2977	 */
2978	if (bp->b_pag && be32_to_cpu(agf->agf_seqno) != bp->b_pag->pag_agno)
2979		return __this_address;
2980
2981	if (xfs_has_lazysbcount(mp) &&
2982	    be32_to_cpu(agf->agf_btreeblks) > be32_to_cpu(agf->agf_length))
2983		return __this_address;
 
 
2984
2985	if (xfs_has_reflink(mp) &&
2986	    be32_to_cpu(agf->agf_refcount_blocks) >
2987	    be32_to_cpu(agf->agf_length))
2988		return __this_address;
2989
2990	if (xfs_has_reflink(mp) &&
2991	    (be32_to_cpu(agf->agf_refcount_level) < 1 ||
2992	     be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels))
2993		return __this_address;
2994
2995	return NULL;
2996
2997}
2998
2999static void
3000xfs_agf_read_verify(
3001	struct xfs_buf	*bp)
3002{
3003	struct xfs_mount *mp = bp->b_mount;
3004	xfs_failaddr_t	fa;
3005
3006	if (xfs_has_crc(mp) &&
3007	    !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
3008		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3009	else {
3010		fa = xfs_agf_verify(bp);
3011		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3012			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3013	}
3014}
3015
3016static void
3017xfs_agf_write_verify(
3018	struct xfs_buf	*bp)
3019{
3020	struct xfs_mount	*mp = bp->b_mount;
3021	struct xfs_buf_log_item	*bip = bp->b_log_item;
3022	struct xfs_agf		*agf = bp->b_addr;
3023	xfs_failaddr_t		fa;
3024
3025	fa = xfs_agf_verify(bp);
3026	if (fa) {
3027		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3028		return;
3029	}
3030
3031	if (!xfs_has_crc(mp))
3032		return;
3033
3034	if (bip)
3035		agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
3036
3037	xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
3038}
3039
3040const struct xfs_buf_ops xfs_agf_buf_ops = {
3041	.name = "xfs_agf",
3042	.magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
3043	.verify_read = xfs_agf_read_verify,
3044	.verify_write = xfs_agf_write_verify,
3045	.verify_struct = xfs_agf_verify,
3046};
3047
3048/*
3049 * Read in the allocation group header (free/alloc section).
3050 */
3051int
3052xfs_read_agf(
3053	struct xfs_perag	*pag,
3054	struct xfs_trans	*tp,
3055	int			flags,
3056	struct xfs_buf		**agfbpp)
3057{
3058	struct xfs_mount	*mp = pag->pag_mount;
3059	int			error;
3060
3061	trace_xfs_read_agf(pag->pag_mount, pag->pag_agno);
3062
3063	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3064			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)),
3065			XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
3066	if (error)
3067		return error;
3068
3069	xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
3070	return 0;
3071}
3072
3073/*
3074 * Read in the allocation group header (free/alloc section) and initialise the
3075 * perag structure if necessary. If the caller provides @agfbpp, then return the
3076 * locked buffer to the caller, otherwise free it.
3077 */
3078int
3079xfs_alloc_read_agf(
3080	struct xfs_perag	*pag,
3081	struct xfs_trans	*tp,
3082	int			flags,
3083	struct xfs_buf		**agfbpp)
3084{
3085	struct xfs_buf		*agfbp;
3086	struct xfs_agf		*agf;
3087	int			error;
3088	int			allocbt_blks;
3089
3090	trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno);
3091
3092	/* We don't support trylock when freeing. */
3093	ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3094			(XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3095	error = xfs_read_agf(pag, tp,
3096			(flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3097			&agfbp);
3098	if (error)
3099		return error;
3100
3101	agf = agfbp->b_addr;
3102	if (!pag->pagf_init) {
3103		pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3104		pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3105		pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3106		pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3107		pag->pagf_levels[XFS_BTNUM_BNOi] =
3108			be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]);
3109		pag->pagf_levels[XFS_BTNUM_CNTi] =
3110			be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]);
3111		pag->pagf_levels[XFS_BTNUM_RMAPi] =
3112			be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]);
3113		pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3114		pag->pagf_init = 1;
3115		pag->pagf_agflreset = xfs_agfl_needs_reset(pag->pag_mount, agf);
 
 
3116
3117		/*
3118		 * Update the in-core allocbt counter. Filter out the rmapbt
3119		 * subset of the btreeblks counter because the rmapbt is managed
3120		 * by perag reservation. Subtract one for the rmapbt root block
3121		 * because the rmap counter includes it while the btreeblks
3122		 * counter only tracks non-root blocks.
3123		 */
3124		allocbt_blks = pag->pagf_btreeblks;
3125		if (xfs_has_rmapbt(pag->pag_mount))
3126			allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3127		if (allocbt_blks > 0)
3128			atomic64_add(allocbt_blks,
3129					&pag->pag_mount->m_allocbt_blks);
 
 
3130	}
3131#ifdef DEBUG
3132	else if (!xfs_is_shutdown(pag->pag_mount)) {
3133		ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3134		ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3135		ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3136		ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3137		ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] ==
3138		       be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]));
3139		ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] ==
3140		       be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]));
3141	}
3142#endif
3143	if (agfbpp)
3144		*agfbpp = agfbp;
3145	else
3146		xfs_trans_brelse(tp, agfbp);
3147	return 0;
3148}
3149
3150/*
3151 * Allocate an extent (variable-size).
3152 * Depending on the allocation type, we either look in a single allocation
3153 * group or loop over the allocation groups to find the result.
3154 */
3155int				/* error */
3156xfs_alloc_vextent(
3157	struct xfs_alloc_arg	*args)	/* allocation argument structure */
 
 
3158{
3159	xfs_agblock_t		agsize;	/* allocation group size */
3160	int			error;
3161	int			flags;	/* XFS_ALLOC_FLAG_... locking flags */
3162	struct xfs_mount	*mp;	/* mount structure pointer */
3163	xfs_agnumber_t		sagno;	/* starting allocation group number */
3164	xfs_alloctype_t		type;	/* input allocation type */
3165	int			bump_rotor = 0;
3166	xfs_agnumber_t		rotorstep = xfs_rotorstep; /* inode32 agf stepper */
3167
3168	mp = args->mp;
3169	type = args->otype = args->type;
3170	args->agbno = NULLAGBLOCK;
3171	/*
3172	 * Just fix this up, for the case where the last a.g. is shorter
3173	 * (or there's only one a.g.) and the caller couldn't easily figure
3174	 * that out (xfs_bmap_alloc).
3175	 */
3176	agsize = mp->m_sb.sb_agblocks;
3177	if (args->maxlen > agsize)
3178		args->maxlen = agsize;
3179	if (args->alignment == 0)
3180		args->alignment = 1;
3181	ASSERT(XFS_FSB_TO_AGNO(mp, args->fsbno) < mp->m_sb.sb_agcount);
3182	ASSERT(XFS_FSB_TO_AGBNO(mp, args->fsbno) < agsize);
 
 
 
 
 
 
3183	ASSERT(args->minlen <= args->maxlen);
3184	ASSERT(args->minlen <= agsize);
3185	ASSERT(args->mod < args->prod);
3186	if (XFS_FSB_TO_AGNO(mp, args->fsbno) >= mp->m_sb.sb_agcount ||
3187	    XFS_FSB_TO_AGBNO(mp, args->fsbno) >= agsize ||
 
3188	    args->minlen > args->maxlen || args->minlen > agsize ||
3189	    args->mod >= args->prod) {
3190		args->fsbno = NULLFSBLOCK;
3191		trace_xfs_alloc_vextent_badargs(args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3192		return 0;
3193	}
 
 
 
3194
3195	switch (type) {
3196	case XFS_ALLOCTYPE_THIS_AG:
3197	case XFS_ALLOCTYPE_NEAR_BNO:
3198	case XFS_ALLOCTYPE_THIS_BNO:
3199		/*
3200		 * These three force us into a single a.g.
3201		 */
3202		args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3203		args->pag = xfs_perag_get(mp, args->agno);
3204		error = xfs_alloc_fix_freelist(args, 0);
3205		if (error) {
3206			trace_xfs_alloc_vextent_nofix(args);
3207			goto error0;
3208		}
3209		if (!args->agbp) {
3210			trace_xfs_alloc_vextent_noagbp(args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3211			break;
 
 
 
3212		}
3213		args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
3214		if ((error = xfs_alloc_ag_vextent(args)))
3215			goto error0;
3216		break;
3217	case XFS_ALLOCTYPE_START_BNO:
3218		/*
3219		 * Try near allocation first, then anywhere-in-ag after
3220		 * the first a.g. fails.
3221		 */
3222		if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3223		    xfs_is_inode32(mp)) {
3224			args->fsbno = XFS_AGB_TO_FSB(mp,
3225					((mp->m_agfrotor / rotorstep) %
3226					mp->m_sb.sb_agcount), 0);
3227			bump_rotor = 1;
3228		}
3229		args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
3230		args->type = XFS_ALLOCTYPE_NEAR_BNO;
3231		fallthrough;
3232	case XFS_ALLOCTYPE_FIRST_AG:
3233		/*
3234		 * Rotate through the allocation groups looking for a winner.
 
3235		 */
3236		if (type == XFS_ALLOCTYPE_FIRST_AG) {
3237			/*
3238			 * Start with allocation group given by bno.
3239			 */
3240			args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3241			args->type = XFS_ALLOCTYPE_THIS_AG;
3242			sagno = 0;
3243			flags = 0;
3244		} else {
3245			/*
3246			 * Start with the given allocation group.
3247			 */
3248			args->agno = sagno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3249			flags = XFS_ALLOC_FLAG_TRYLOCK;
3250		}
3251		/*
3252		 * Loop over allocation groups twice; first time with
3253		 * trylock set, second time without.
3254		 */
3255		for (;;) {
3256			args->pag = xfs_perag_get(mp, args->agno);
3257			error = xfs_alloc_fix_freelist(args, flags);
3258			if (error) {
3259				trace_xfs_alloc_vextent_nofix(args);
3260				goto error0;
3261			}
3262			/*
3263			 * If we get a buffer back then the allocation will fly.
3264			 */
3265			if (args->agbp) {
3266				if ((error = xfs_alloc_ag_vextent(args)))
3267					goto error0;
3268				break;
3269			}
3270
3271			trace_xfs_alloc_vextent_loopfailed(args);
 
 
 
 
 
 
 
 
 
3272
3273			/*
3274			 * Didn't work, figure out the next iteration.
3275			 */
3276			if (args->agno == sagno &&
3277			    type == XFS_ALLOCTYPE_START_BNO)
3278				args->type = XFS_ALLOCTYPE_THIS_AG;
3279			/*
3280			* For the first allocation, we can try any AG to get
3281			* space.  However, if we already have allocated a
3282			* block, we don't want to try AGs whose number is below
3283			* sagno. Otherwise, we may end up with out-of-order
3284			* locking of AGF, which might cause deadlock.
3285			*/
3286			if (++(args->agno) == mp->m_sb.sb_agcount) {
3287				if (args->tp->t_firstblock != NULLFSBLOCK)
3288					args->agno = sagno;
3289				else
3290					args->agno = 0;
3291			}
3292			/*
3293			 * Reached the starting a.g., must either be done
3294			 * or switch to non-trylock mode.
3295			 */
3296			if (args->agno == sagno) {
3297				if (flags == 0) {
3298					args->agbno = NULLAGBLOCK;
3299					trace_xfs_alloc_vextent_allfailed(args);
3300					break;
3301				}
3302
3303				flags = 0;
3304				if (type == XFS_ALLOCTYPE_START_BNO) {
3305					args->agbno = XFS_FSB_TO_AGBNO(mp,
3306						args->fsbno);
3307					args->type = XFS_ALLOCTYPE_NEAR_BNO;
3308				}
3309			}
3310			xfs_perag_put(args->pag);
3311		}
3312		if (bump_rotor) {
3313			if (args->agno == sagno)
3314				mp->m_agfrotor = (mp->m_agfrotor + 1) %
3315					(mp->m_sb.sb_agcount * rotorstep);
3316			else
3317				mp->m_agfrotor = (args->agno * rotorstep + 1) %
3318					(mp->m_sb.sb_agcount * rotorstep);
3319		}
3320		break;
3321	default:
3322		ASSERT(0);
3323		/* NOTREACHED */
 
 
 
 
 
 
 
 
 
 
 
 
3324	}
3325	if (args->agbno == NULLAGBLOCK)
3326		args->fsbno = NULLFSBLOCK;
3327	else {
3328		args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3329#ifdef DEBUG
3330		ASSERT(args->len >= args->minlen);
3331		ASSERT(args->len <= args->maxlen);
3332		ASSERT(args->agbno % args->alignment == 0);
3333		XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno),
3334			args->len);
3335#endif
3336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3337	}
3338	xfs_perag_put(args->pag);
3339	return 0;
3340error0:
3341	xfs_perag_put(args->pag);
3342	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3343}
3344
3345/* Ensure that the freelist is at full capacity. */
3346int
3347xfs_free_extent_fix_freelist(
3348	struct xfs_trans	*tp,
3349	struct xfs_perag	*pag,
3350	struct xfs_buf		**agbp)
3351{
3352	struct xfs_alloc_arg	args;
3353	int			error;
3354
3355	memset(&args, 0, sizeof(struct xfs_alloc_arg));
3356	args.tp = tp;
3357	args.mp = tp->t_mountp;
3358	args.agno = pag->pag_agno;
3359	args.pag = pag;
3360
3361	/*
3362	 * validate that the block number is legal - the enables us to detect
3363	 * and handle a silent filesystem corruption rather than crashing.
3364	 */
3365	if (args.agno >= args.mp->m_sb.sb_agcount)
3366		return -EFSCORRUPTED;
3367
3368	error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3369	if (error)
3370		return error;
3371
3372	*agbp = args.agbp;
3373	return 0;
3374}
3375
3376/*
3377 * Free an extent.
3378 * Just break up the extent address and hand off to xfs_free_ag_extent
3379 * after fixing up the freelist.
3380 */
3381int
3382__xfs_free_extent(
3383	struct xfs_trans		*tp,
3384	xfs_fsblock_t			bno,
 
3385	xfs_extlen_t			len,
3386	const struct xfs_owner_info	*oinfo,
3387	enum xfs_ag_resv_type		type,
3388	bool				skip_discard)
3389{
3390	struct xfs_mount		*mp = tp->t_mountp;
3391	struct xfs_buf			*agbp;
3392	xfs_agnumber_t			agno = XFS_FSB_TO_AGNO(mp, bno);
3393	xfs_agblock_t			agbno = XFS_FSB_TO_AGBNO(mp, bno);
3394	struct xfs_agf			*agf;
3395	int				error;
3396	unsigned int			busy_flags = 0;
3397	struct xfs_perag		*pag;
3398
3399	ASSERT(len != 0);
3400	ASSERT(type != XFS_AG_RESV_AGFL);
3401
3402	if (XFS_TEST_ERROR(false, mp,
3403			XFS_ERRTAG_FREE_EXTENT))
3404		return -EIO;
3405
3406	pag = xfs_perag_get(mp, agno);
3407	error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
3408	if (error)
3409		goto err;
3410	agf = agbp->b_addr;
3411
3412	if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
3413		error = -EFSCORRUPTED;
3414		goto err_release;
3415	}
3416
3417	/* validate the extent size is legal now we have the agf locked */
3418	if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
3419		error = -EFSCORRUPTED;
3420		goto err_release;
3421	}
3422
3423	error = xfs_free_ag_extent(tp, agbp, agno, agbno, len, oinfo, type);
 
3424	if (error)
3425		goto err_release;
3426
3427	if (skip_discard)
3428		busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
3429	xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
3430	xfs_perag_put(pag);
3431	return 0;
3432
3433err_release:
3434	xfs_trans_brelse(tp, agbp);
3435err:
3436	xfs_perag_put(pag);
3437	return error;
3438}
3439
3440struct xfs_alloc_query_range_info {
3441	xfs_alloc_query_range_fn	fn;
3442	void				*priv;
3443};
3444
3445/* Format btree record and pass to our callback. */
3446STATIC int
3447xfs_alloc_query_range_helper(
3448	struct xfs_btree_cur		*cur,
3449	const union xfs_btree_rec	*rec,
3450	void				*priv)
3451{
3452	struct xfs_alloc_query_range_info	*query = priv;
3453	struct xfs_alloc_rec_incore		irec;
 
 
 
 
 
 
3454
3455	irec.ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
3456	irec.ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
3457	return query->fn(cur, &irec, query->priv);
3458}
3459
3460/* Find all free space within a given range of blocks. */
3461int
3462xfs_alloc_query_range(
3463	struct xfs_btree_cur			*cur,
3464	const struct xfs_alloc_rec_incore	*low_rec,
3465	const struct xfs_alloc_rec_incore	*high_rec,
3466	xfs_alloc_query_range_fn		fn,
3467	void					*priv)
3468{
3469	union xfs_btree_irec			low_brec;
3470	union xfs_btree_irec			high_brec;
3471	struct xfs_alloc_query_range_info	query;
3472
3473	ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3474	low_brec.a = *low_rec;
3475	high_brec.a = *high_rec;
3476	query.priv = priv;
3477	query.fn = fn;
3478	return xfs_btree_query_range(cur, &low_brec, &high_brec,
3479			xfs_alloc_query_range_helper, &query);
3480}
3481
3482/* Find all free space records. */
3483int
3484xfs_alloc_query_all(
3485	struct xfs_btree_cur			*cur,
3486	xfs_alloc_query_range_fn		fn,
3487	void					*priv)
3488{
3489	struct xfs_alloc_query_range_info	query;
3490
3491	ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3492	query.priv = priv;
3493	query.fn = fn;
3494	return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
3495}
3496
3497/* Is there a record covering a given extent? */
 
 
 
3498int
3499xfs_alloc_has_record(
3500	struct xfs_btree_cur	*cur,
3501	xfs_agblock_t		bno,
3502	xfs_extlen_t		len,
3503	bool			*exists)
3504{
3505	union xfs_btree_irec	low;
3506	union xfs_btree_irec	high;
3507
3508	memset(&low, 0, sizeof(low));
3509	low.a.ar_startblock = bno;
3510	memset(&high, 0xFF, sizeof(high));
3511	high.a.ar_startblock = bno + len - 1;
3512
3513	return xfs_btree_has_record(cur, &low, &high, exists);
3514}
3515
3516/*
3517 * Walk all the blocks in the AGFL.  The @walk_fn can return any negative
3518 * error code or XFS_ITER_*.
3519 */
3520int
3521xfs_agfl_walk(
3522	struct xfs_mount	*mp,
3523	struct xfs_agf		*agf,
3524	struct xfs_buf		*agflbp,
3525	xfs_agfl_walk_fn	walk_fn,
3526	void			*priv)
3527{
3528	__be32			*agfl_bno;
3529	unsigned int		i;
3530	int			error;
3531
3532	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3533	i = be32_to_cpu(agf->agf_flfirst);
3534
3535	/* Nothing to walk in an empty AGFL. */
3536	if (agf->agf_flcount == cpu_to_be32(0))
3537		return 0;
3538
3539	/* Otherwise, walk from first to last, wrapping as needed. */
3540	for (;;) {
3541		error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
3542		if (error)
3543			return error;
3544		if (i == be32_to_cpu(agf->agf_fllast))
3545			break;
3546		if (++i == xfs_agfl_size(mp))
3547			i = 0;
3548	}
3549
3550	return 0;
3551}
3552
3553int __init
3554xfs_extfree_intent_init_cache(void)
3555{
3556	xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
3557			sizeof(struct xfs_extent_free_item),
3558			0, 0, NULL);
3559
3560	return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
3561}
3562
3563void
3564xfs_extfree_intent_destroy_cache(void)
3565{
3566	kmem_cache_destroy(xfs_extfree_item_cache);
3567	xfs_extfree_item_cache = NULL;
3568}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_format.h"
   9#include "xfs_log_format.h"
  10#include "xfs_shared.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_mount.h"
  14#include "xfs_defer.h"
  15#include "xfs_btree.h"
  16#include "xfs_rmap.h"
  17#include "xfs_alloc_btree.h"
  18#include "xfs_alloc.h"
  19#include "xfs_extent_busy.h"
  20#include "xfs_errortag.h"
  21#include "xfs_error.h"
  22#include "xfs_trace.h"
  23#include "xfs_trans.h"
  24#include "xfs_buf_item.h"
  25#include "xfs_log.h"
  26#include "xfs_ag.h"
  27#include "xfs_ag_resv.h"
  28#include "xfs_bmap.h"
  29
  30struct kmem_cache	*xfs_extfree_item_cache;
  31
  32struct workqueue_struct *xfs_alloc_wq;
  33
  34#define XFS_ABSDIFF(a,b)	(((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
  35
  36#define	XFSA_FIXUP_BNO_OK	1
  37#define	XFSA_FIXUP_CNT_OK	2
  38
 
 
 
 
  39/*
  40 * Size of the AGFL.  For CRC-enabled filesystes we steal a couple of slots in
  41 * the beginning of the block for a proper header with the location information
  42 * and CRC.
  43 */
  44unsigned int
  45xfs_agfl_size(
  46	struct xfs_mount	*mp)
  47{
  48	unsigned int		size = mp->m_sb.sb_sectsize;
  49
  50	if (xfs_has_crc(mp))
  51		size -= sizeof(struct xfs_agfl);
  52
  53	return size / sizeof(xfs_agblock_t);
  54}
  55
  56unsigned int
  57xfs_refc_block(
  58	struct xfs_mount	*mp)
  59{
  60	if (xfs_has_rmapbt(mp))
  61		return XFS_RMAP_BLOCK(mp) + 1;
  62	if (xfs_has_finobt(mp))
  63		return XFS_FIBT_BLOCK(mp) + 1;
  64	return XFS_IBT_BLOCK(mp) + 1;
  65}
  66
  67xfs_extlen_t
  68xfs_prealloc_blocks(
  69	struct xfs_mount	*mp)
  70{
  71	if (xfs_has_reflink(mp))
  72		return xfs_refc_block(mp) + 1;
  73	if (xfs_has_rmapbt(mp))
  74		return XFS_RMAP_BLOCK(mp) + 1;
  75	if (xfs_has_finobt(mp))
  76		return XFS_FIBT_BLOCK(mp) + 1;
  77	return XFS_IBT_BLOCK(mp) + 1;
  78}
  79
  80/*
  81 * The number of blocks per AG that we withhold from xfs_mod_fdblocks to
  82 * guarantee that we can refill the AGFL prior to allocating space in a nearly
  83 * full AG.  Although the space described by the free space btrees, the
  84 * blocks used by the freesp btrees themselves, and the blocks owned by the
  85 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
  86 * free space in the AG drop so low that the free space btrees cannot refill an
  87 * empty AGFL up to the minimum level.  Rather than grind through empty AGs
  88 * until the fs goes down, we subtract this many AG blocks from the incore
  89 * fdblocks to ensure user allocation does not overcommit the space the
  90 * filesystem needs for the AGFLs.  The rmap btree uses a per-AG reservation to
  91 * withhold space from xfs_mod_fdblocks, so we do not account for that here.
  92 */
  93#define XFS_ALLOCBT_AGFL_RESERVE	4
  94
  95/*
  96 * Compute the number of blocks that we set aside to guarantee the ability to
  97 * refill the AGFL and handle a full bmap btree split.
  98 *
  99 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
 100 * AGF buffer (PV 947395), we place constraints on the relationship among
 101 * actual allocations for data blocks, freelist blocks, and potential file data
 102 * bmap btree blocks. However, these restrictions may result in no actual space
 103 * allocated for a delayed extent, for example, a data block in a certain AG is
 104 * allocated but there is no additional block for the additional bmap btree
 105 * block due to a split of the bmap btree of the file. The result of this may
 106 * lead to an infinite loop when the file gets flushed to disk and all delayed
 107 * extents need to be actually allocated. To get around this, we explicitly set
 108 * aside a few blocks which will not be reserved in delayed allocation.
 109 *
 110 * For each AG, we need to reserve enough blocks to replenish a totally empty
 111 * AGFL and 4 more to handle a potential split of the file's bmap btree.
 112 */
 113unsigned int
 114xfs_alloc_set_aside(
 115	struct xfs_mount	*mp)
 116{
 117	return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
 118}
 119
 120/*
 121 * When deciding how much space to allocate out of an AG, we limit the
 122 * allocation maximum size to the size the AG. However, we cannot use all the
 123 * blocks in the AG - some are permanently used by metadata. These
 124 * blocks are generally:
 125 *	- the AG superblock, AGF, AGI and AGFL
 126 *	- the AGF (bno and cnt) and AGI btree root blocks, and optionally
 127 *	  the AGI free inode and rmap btree root blocks.
 128 *	- blocks on the AGFL according to xfs_alloc_set_aside() limits
 129 *	- the rmapbt root block
 130 *
 131 * The AG headers are sector sized, so the amount of space they take up is
 132 * dependent on filesystem geometry. The others are all single blocks.
 133 */
 134unsigned int
 135xfs_alloc_ag_max_usable(
 136	struct xfs_mount	*mp)
 137{
 138	unsigned int		blocks;
 139
 140	blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
 141	blocks += XFS_ALLOCBT_AGFL_RESERVE;
 142	blocks += 3;			/* AGF, AGI btree root blocks */
 143	if (xfs_has_finobt(mp))
 144		blocks++;		/* finobt root block */
 145	if (xfs_has_rmapbt(mp))
 146		blocks++;		/* rmap root block */
 147	if (xfs_has_reflink(mp))
 148		blocks++;		/* refcount root block */
 149
 150	return mp->m_sb.sb_agblocks - blocks;
 151}
 152
 153/*
 154 * Lookup the record equal to [bno, len] in the btree given by cur.
 155 */
 156STATIC int				/* error */
 157xfs_alloc_lookup_eq(
 158	struct xfs_btree_cur	*cur,	/* btree cursor */
 159	xfs_agblock_t		bno,	/* starting block of extent */
 160	xfs_extlen_t		len,	/* length of extent */
 161	int			*stat)	/* success/failure */
 162{
 163	int			error;
 164
 165	cur->bc_rec.a.ar_startblock = bno;
 166	cur->bc_rec.a.ar_blockcount = len;
 167	error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat);
 168	cur->bc_ag.abt.active = (*stat == 1);
 169	return error;
 170}
 171
 172/*
 173 * Lookup the first record greater than or equal to [bno, len]
 174 * in the btree given by cur.
 175 */
 176int				/* error */
 177xfs_alloc_lookup_ge(
 178	struct xfs_btree_cur	*cur,	/* btree cursor */
 179	xfs_agblock_t		bno,	/* starting block of extent */
 180	xfs_extlen_t		len,	/* length of extent */
 181	int			*stat)	/* success/failure */
 182{
 183	int			error;
 184
 185	cur->bc_rec.a.ar_startblock = bno;
 186	cur->bc_rec.a.ar_blockcount = len;
 187	error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat);
 188	cur->bc_ag.abt.active = (*stat == 1);
 189	return error;
 190}
 191
 192/*
 193 * Lookup the first record less than or equal to [bno, len]
 194 * in the btree given by cur.
 195 */
 196int					/* error */
 197xfs_alloc_lookup_le(
 198	struct xfs_btree_cur	*cur,	/* btree cursor */
 199	xfs_agblock_t		bno,	/* starting block of extent */
 200	xfs_extlen_t		len,	/* length of extent */
 201	int			*stat)	/* success/failure */
 202{
 203	int			error;
 204	cur->bc_rec.a.ar_startblock = bno;
 205	cur->bc_rec.a.ar_blockcount = len;
 206	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat);
 207	cur->bc_ag.abt.active = (*stat == 1);
 208	return error;
 209}
 210
 211static inline bool
 212xfs_alloc_cur_active(
 213	struct xfs_btree_cur	*cur)
 214{
 215	return cur && cur->bc_ag.abt.active;
 216}
 217
 218/*
 219 * Update the record referred to by cur to the value given
 220 * by [bno, len].
 221 * This either works (return 0) or gets an EFSCORRUPTED error.
 222 */
 223STATIC int				/* error */
 224xfs_alloc_update(
 225	struct xfs_btree_cur	*cur,	/* btree cursor */
 226	xfs_agblock_t		bno,	/* starting block of extent */
 227	xfs_extlen_t		len)	/* length of extent */
 228{
 229	union xfs_btree_rec	rec;
 230
 231	rec.alloc.ar_startblock = cpu_to_be32(bno);
 232	rec.alloc.ar_blockcount = cpu_to_be32(len);
 233	return xfs_btree_update(cur, &rec);
 234}
 235
 236/* Convert the ondisk btree record to its incore representation. */
 237void
 238xfs_alloc_btrec_to_irec(
 239	const union xfs_btree_rec	*rec,
 240	struct xfs_alloc_rec_incore	*irec)
 241{
 242	irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
 243	irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
 244}
 245
 246/* Simple checks for free space records. */
 247xfs_failaddr_t
 248xfs_alloc_check_irec(
 249	struct xfs_perag			*pag,
 250	const struct xfs_alloc_rec_incore	*irec)
 251{
 252	if (irec->ar_blockcount == 0)
 253		return __this_address;
 254
 255	/* check for valid extent range, including overflow */
 256	if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount))
 257		return __this_address;
 258
 259	return NULL;
 260}
 261
 262static inline int
 263xfs_alloc_complain_bad_rec(
 264	struct xfs_btree_cur		*cur,
 265	xfs_failaddr_t			fa,
 266	const struct xfs_alloc_rec_incore *irec)
 267{
 268	struct xfs_mount		*mp = cur->bc_mp;
 269
 270	xfs_warn(mp,
 271		"%s Freespace BTree record corruption in AG %d detected at %pS!",
 272		cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size",
 273		cur->bc_ag.pag->pag_agno, fa);
 274	xfs_warn(mp,
 275		"start block 0x%x block count 0x%x", irec->ar_startblock,
 276		irec->ar_blockcount);
 277	return -EFSCORRUPTED;
 278}
 279
 280/*
 281 * Get the data from the pointed-to record.
 282 */
 283int					/* error */
 284xfs_alloc_get_rec(
 285	struct xfs_btree_cur	*cur,	/* btree cursor */
 286	xfs_agblock_t		*bno,	/* output: starting block of extent */
 287	xfs_extlen_t		*len,	/* output: length of extent */
 288	int			*stat)	/* output: success/failure */
 289{
 290	struct xfs_alloc_rec_incore irec;
 
 291	union xfs_btree_rec	*rec;
 292	xfs_failaddr_t		fa;
 293	int			error;
 294
 295	error = xfs_btree_get_rec(cur, &rec, stat);
 296	if (error || !(*stat))
 297		return error;
 298
 299	xfs_alloc_btrec_to_irec(rec, &irec);
 300	fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
 301	if (fa)
 302		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
 
 
 
 
 
 303
 304	*bno = irec.ar_startblock;
 305	*len = irec.ar_blockcount;
 306	return 0;
 
 
 
 
 
 
 
 
 
 307}
 308
 309/*
 310 * Compute aligned version of the found extent.
 311 * Takes alignment and min length into account.
 312 */
 313STATIC bool
 314xfs_alloc_compute_aligned(
 315	xfs_alloc_arg_t	*args,		/* allocation argument structure */
 316	xfs_agblock_t	foundbno,	/* starting block in found extent */
 317	xfs_extlen_t	foundlen,	/* length in found extent */
 318	xfs_agblock_t	*resbno,	/* result block number */
 319	xfs_extlen_t	*reslen,	/* result length */
 320	unsigned	*busy_gen)
 321{
 322	xfs_agblock_t	bno = foundbno;
 323	xfs_extlen_t	len = foundlen;
 324	xfs_extlen_t	diff;
 325	bool		busy;
 326
 327	/* Trim busy sections out of found extent */
 328	busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
 329
 330	/*
 331	 * If we have a largish extent that happens to start before min_agbno,
 332	 * see if we can shift it into range...
 333	 */
 334	if (bno < args->min_agbno && bno + len > args->min_agbno) {
 335		diff = args->min_agbno - bno;
 336		if (len > diff) {
 337			bno += diff;
 338			len -= diff;
 339		}
 340	}
 341
 342	if (args->alignment > 1 && len >= args->minlen) {
 343		xfs_agblock_t	aligned_bno = roundup(bno, args->alignment);
 344
 345		diff = aligned_bno - bno;
 346
 347		*resbno = aligned_bno;
 348		*reslen = diff >= len ? 0 : len - diff;
 349	} else {
 350		*resbno = bno;
 351		*reslen = len;
 352	}
 353
 354	return busy;
 355}
 356
 357/*
 358 * Compute best start block and diff for "near" allocations.
 359 * freelen >= wantlen already checked by caller.
 360 */
 361STATIC xfs_extlen_t			/* difference value (absolute) */
 362xfs_alloc_compute_diff(
 363	xfs_agblock_t	wantbno,	/* target starting block */
 364	xfs_extlen_t	wantlen,	/* target length */
 365	xfs_extlen_t	alignment,	/* target alignment */
 366	int		datatype,	/* are we allocating data? */
 367	xfs_agblock_t	freebno,	/* freespace's starting block */
 368	xfs_extlen_t	freelen,	/* freespace's length */
 369	xfs_agblock_t	*newbnop)	/* result: best start block from free */
 370{
 371	xfs_agblock_t	freeend;	/* end of freespace extent */
 372	xfs_agblock_t	newbno1;	/* return block number */
 373	xfs_agblock_t	newbno2;	/* other new block number */
 374	xfs_extlen_t	newlen1=0;	/* length with newbno1 */
 375	xfs_extlen_t	newlen2=0;	/* length with newbno2 */
 376	xfs_agblock_t	wantend;	/* end of target extent */
 377	bool		userdata = datatype & XFS_ALLOC_USERDATA;
 378
 379	ASSERT(freelen >= wantlen);
 380	freeend = freebno + freelen;
 381	wantend = wantbno + wantlen;
 382	/*
 383	 * We want to allocate from the start of a free extent if it is past
 384	 * the desired block or if we are allocating user data and the free
 385	 * extent is before desired block. The second case is there to allow
 386	 * for contiguous allocation from the remaining free space if the file
 387	 * grows in the short term.
 388	 */
 389	if (freebno >= wantbno || (userdata && freeend < wantend)) {
 390		if ((newbno1 = roundup(freebno, alignment)) >= freeend)
 391			newbno1 = NULLAGBLOCK;
 392	} else if (freeend >= wantend && alignment > 1) {
 393		newbno1 = roundup(wantbno, alignment);
 394		newbno2 = newbno1 - alignment;
 395		if (newbno1 >= freeend)
 396			newbno1 = NULLAGBLOCK;
 397		else
 398			newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
 399		if (newbno2 < freebno)
 400			newbno2 = NULLAGBLOCK;
 401		else
 402			newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
 403		if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
 404			if (newlen1 < newlen2 ||
 405			    (newlen1 == newlen2 &&
 406			     XFS_ABSDIFF(newbno1, wantbno) >
 407			     XFS_ABSDIFF(newbno2, wantbno)))
 408				newbno1 = newbno2;
 409		} else if (newbno2 != NULLAGBLOCK)
 410			newbno1 = newbno2;
 411	} else if (freeend >= wantend) {
 412		newbno1 = wantbno;
 413	} else if (alignment > 1) {
 414		newbno1 = roundup(freeend - wantlen, alignment);
 415		if (newbno1 > freeend - wantlen &&
 416		    newbno1 - alignment >= freebno)
 417			newbno1 -= alignment;
 418		else if (newbno1 >= freeend)
 419			newbno1 = NULLAGBLOCK;
 420	} else
 421		newbno1 = freeend - wantlen;
 422	*newbnop = newbno1;
 423	return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
 424}
 425
 426/*
 427 * Fix up the length, based on mod and prod.
 428 * len should be k * prod + mod for some k.
 429 * If len is too small it is returned unchanged.
 430 * If len hits maxlen it is left alone.
 431 */
 432STATIC void
 433xfs_alloc_fix_len(
 434	xfs_alloc_arg_t	*args)		/* allocation argument structure */
 435{
 436	xfs_extlen_t	k;
 437	xfs_extlen_t	rlen;
 438
 439	ASSERT(args->mod < args->prod);
 440	rlen = args->len;
 441	ASSERT(rlen >= args->minlen);
 442	ASSERT(rlen <= args->maxlen);
 443	if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
 444	    (args->mod == 0 && rlen < args->prod))
 445		return;
 446	k = rlen % args->prod;
 447	if (k == args->mod)
 448		return;
 449	if (k > args->mod)
 450		rlen = rlen - (k - args->mod);
 451	else
 452		rlen = rlen - args->prod + (args->mod - k);
 453	/* casts to (int) catch length underflows */
 454	if ((int)rlen < (int)args->minlen)
 455		return;
 456	ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
 457	ASSERT(rlen % args->prod == args->mod);
 458	ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
 459		rlen + args->minleft);
 460	args->len = rlen;
 461}
 462
 463/*
 464 * Update the two btrees, logically removing from freespace the extent
 465 * starting at rbno, rlen blocks.  The extent is contained within the
 466 * actual (current) free extent fbno for flen blocks.
 467 * Flags are passed in indicating whether the cursors are set to the
 468 * relevant records.
 469 */
 470STATIC int				/* error code */
 471xfs_alloc_fixup_trees(
 472	struct xfs_btree_cur *cnt_cur,	/* cursor for by-size btree */
 473	struct xfs_btree_cur *bno_cur,	/* cursor for by-block btree */
 474	xfs_agblock_t	fbno,		/* starting block of free extent */
 475	xfs_extlen_t	flen,		/* length of free extent */
 476	xfs_agblock_t	rbno,		/* starting block of returned extent */
 477	xfs_extlen_t	rlen,		/* length of returned extent */
 478	int		flags)		/* flags, XFSA_FIXUP_... */
 479{
 480	int		error;		/* error code */
 481	int		i;		/* operation results */
 482	xfs_agblock_t	nfbno1;		/* first new free startblock */
 483	xfs_agblock_t	nfbno2;		/* second new free startblock */
 484	xfs_extlen_t	nflen1=0;	/* first new free length */
 485	xfs_extlen_t	nflen2=0;	/* second new free length */
 486	struct xfs_mount *mp;
 487
 488	mp = cnt_cur->bc_mp;
 489
 490	/*
 491	 * Look up the record in the by-size tree if necessary.
 492	 */
 493	if (flags & XFSA_FIXUP_CNT_OK) {
 494#ifdef DEBUG
 495		if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
 496			return error;
 497		if (XFS_IS_CORRUPT(mp,
 498				   i != 1 ||
 499				   nfbno1 != fbno ||
 500				   nflen1 != flen))
 501			return -EFSCORRUPTED;
 502#endif
 503	} else {
 504		if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
 505			return error;
 506		if (XFS_IS_CORRUPT(mp, i != 1))
 507			return -EFSCORRUPTED;
 508	}
 509	/*
 510	 * Look up the record in the by-block tree if necessary.
 511	 */
 512	if (flags & XFSA_FIXUP_BNO_OK) {
 513#ifdef DEBUG
 514		if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
 515			return error;
 516		if (XFS_IS_CORRUPT(mp,
 517				   i != 1 ||
 518				   nfbno1 != fbno ||
 519				   nflen1 != flen))
 520			return -EFSCORRUPTED;
 521#endif
 522	} else {
 523		if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
 524			return error;
 525		if (XFS_IS_CORRUPT(mp, i != 1))
 526			return -EFSCORRUPTED;
 527	}
 528
 529#ifdef DEBUG
 530	if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
 531		struct xfs_btree_block	*bnoblock;
 532		struct xfs_btree_block	*cntblock;
 533
 534		bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
 535		cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
 536
 537		if (XFS_IS_CORRUPT(mp,
 538				   bnoblock->bb_numrecs !=
 539				   cntblock->bb_numrecs))
 540			return -EFSCORRUPTED;
 541	}
 542#endif
 543
 544	/*
 545	 * Deal with all four cases: the allocated record is contained
 546	 * within the freespace record, so we can have new freespace
 547	 * at either (or both) end, or no freespace remaining.
 548	 */
 549	if (rbno == fbno && rlen == flen)
 550		nfbno1 = nfbno2 = NULLAGBLOCK;
 551	else if (rbno == fbno) {
 552		nfbno1 = rbno + rlen;
 553		nflen1 = flen - rlen;
 554		nfbno2 = NULLAGBLOCK;
 555	} else if (rbno + rlen == fbno + flen) {
 556		nfbno1 = fbno;
 557		nflen1 = flen - rlen;
 558		nfbno2 = NULLAGBLOCK;
 559	} else {
 560		nfbno1 = fbno;
 561		nflen1 = rbno - fbno;
 562		nfbno2 = rbno + rlen;
 563		nflen2 = (fbno + flen) - nfbno2;
 564	}
 565	/*
 566	 * Delete the entry from the by-size btree.
 567	 */
 568	if ((error = xfs_btree_delete(cnt_cur, &i)))
 569		return error;
 570	if (XFS_IS_CORRUPT(mp, i != 1))
 571		return -EFSCORRUPTED;
 572	/*
 573	 * Add new by-size btree entry(s).
 574	 */
 575	if (nfbno1 != NULLAGBLOCK) {
 576		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
 577			return error;
 578		if (XFS_IS_CORRUPT(mp, i != 0))
 579			return -EFSCORRUPTED;
 580		if ((error = xfs_btree_insert(cnt_cur, &i)))
 581			return error;
 582		if (XFS_IS_CORRUPT(mp, i != 1))
 583			return -EFSCORRUPTED;
 584	}
 585	if (nfbno2 != NULLAGBLOCK) {
 586		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
 587			return error;
 588		if (XFS_IS_CORRUPT(mp, i != 0))
 589			return -EFSCORRUPTED;
 590		if ((error = xfs_btree_insert(cnt_cur, &i)))
 591			return error;
 592		if (XFS_IS_CORRUPT(mp, i != 1))
 593			return -EFSCORRUPTED;
 594	}
 595	/*
 596	 * Fix up the by-block btree entry(s).
 597	 */
 598	if (nfbno1 == NULLAGBLOCK) {
 599		/*
 600		 * No remaining freespace, just delete the by-block tree entry.
 601		 */
 602		if ((error = xfs_btree_delete(bno_cur, &i)))
 603			return error;
 604		if (XFS_IS_CORRUPT(mp, i != 1))
 605			return -EFSCORRUPTED;
 606	} else {
 607		/*
 608		 * Update the by-block entry to start later|be shorter.
 609		 */
 610		if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
 611			return error;
 612	}
 613	if (nfbno2 != NULLAGBLOCK) {
 614		/*
 615		 * 2 resulting free entries, need to add one.
 616		 */
 617		if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
 618			return error;
 619		if (XFS_IS_CORRUPT(mp, i != 0))
 620			return -EFSCORRUPTED;
 621		if ((error = xfs_btree_insert(bno_cur, &i)))
 622			return error;
 623		if (XFS_IS_CORRUPT(mp, i != 1))
 624			return -EFSCORRUPTED;
 625	}
 626	return 0;
 627}
 628
 629/*
 630 * We do not verify the AGFL contents against AGF-based index counters here,
 631 * even though we may have access to the perag that contains shadow copies. We
 632 * don't know if the AGF based counters have been checked, and if they have they
 633 * still may be inconsistent because they haven't yet been reset on the first
 634 * allocation after the AGF has been read in.
 635 *
 636 * This means we can only check that all agfl entries contain valid or null
 637 * values because we can't reliably determine the active range to exclude
 638 * NULLAGBNO as a valid value.
 639 *
 640 * However, we can't even do that for v4 format filesystems because there are
 641 * old versions of mkfs out there that does not initialise the AGFL to known,
 642 * verifiable values. HEnce we can't tell the difference between a AGFL block
 643 * allocated by mkfs and a corrupted AGFL block here on v4 filesystems.
 644 *
 645 * As a result, we can only fully validate AGFL block numbers when we pull them
 646 * from the freelist in xfs_alloc_get_freelist().
 647 */
 648static xfs_failaddr_t
 649xfs_agfl_verify(
 650	struct xfs_buf	*bp)
 651{
 652	struct xfs_mount *mp = bp->b_mount;
 653	struct xfs_agfl	*agfl = XFS_BUF_TO_AGFL(bp);
 654	__be32		*agfl_bno = xfs_buf_to_agfl_bno(bp);
 655	int		i;
 656
 
 
 
 
 
 
 657	if (!xfs_has_crc(mp))
 658		return NULL;
 659
 660	if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
 661		return __this_address;
 662	if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
 663		return __this_address;
 664	/*
 665	 * during growfs operations, the perag is not fully initialised,
 666	 * so we can't use it for any useful checking. growfs ensures we can't
 667	 * use it by using uncached buffers that don't have the perag attached
 668	 * so we can detect and avoid this problem.
 669	 */
 670	if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
 671		return __this_address;
 672
 673	for (i = 0; i < xfs_agfl_size(mp); i++) {
 674		if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
 675		    be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
 676			return __this_address;
 677	}
 678
 679	if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
 680		return __this_address;
 681	return NULL;
 682}
 683
 684static void
 685xfs_agfl_read_verify(
 686	struct xfs_buf	*bp)
 687{
 688	struct xfs_mount *mp = bp->b_mount;
 689	xfs_failaddr_t	fa;
 690
 691	/*
 692	 * There is no verification of non-crc AGFLs because mkfs does not
 693	 * initialise the AGFL to zero or NULL. Hence the only valid part of the
 694	 * AGFL is what the AGF says is active. We can't get to the AGF, so we
 695	 * can't verify just those entries are valid.
 696	 */
 697	if (!xfs_has_crc(mp))
 698		return;
 699
 700	if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
 701		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 702	else {
 703		fa = xfs_agfl_verify(bp);
 704		if (fa)
 705			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 706	}
 707}
 708
 709static void
 710xfs_agfl_write_verify(
 711	struct xfs_buf	*bp)
 712{
 713	struct xfs_mount	*mp = bp->b_mount;
 714	struct xfs_buf_log_item	*bip = bp->b_log_item;
 715	xfs_failaddr_t		fa;
 716
 717	/* no verification of non-crc AGFLs */
 718	if (!xfs_has_crc(mp))
 719		return;
 720
 721	fa = xfs_agfl_verify(bp);
 722	if (fa) {
 723		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 724		return;
 725	}
 726
 727	if (bip)
 728		XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 729
 730	xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
 731}
 732
 733const struct xfs_buf_ops xfs_agfl_buf_ops = {
 734	.name = "xfs_agfl",
 735	.magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
 736	.verify_read = xfs_agfl_read_verify,
 737	.verify_write = xfs_agfl_write_verify,
 738	.verify_struct = xfs_agfl_verify,
 739};
 740
 741/*
 742 * Read in the allocation group free block array.
 743 */
 744int
 745xfs_alloc_read_agfl(
 746	struct xfs_perag	*pag,
 747	struct xfs_trans	*tp,
 748	struct xfs_buf		**bpp)
 749{
 750	struct xfs_mount	*mp = pag->pag_mount;
 751	struct xfs_buf		*bp;
 752	int			error;
 753
 754	error = xfs_trans_read_buf(
 755			mp, tp, mp->m_ddev_targp,
 756			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)),
 757			XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
 758	if (error)
 759		return error;
 760	xfs_buf_set_ref(bp, XFS_AGFL_REF);
 761	*bpp = bp;
 762	return 0;
 763}
 764
 765STATIC int
 766xfs_alloc_update_counters(
 767	struct xfs_trans	*tp,
 768	struct xfs_buf		*agbp,
 769	long			len)
 770{
 771	struct xfs_agf		*agf = agbp->b_addr;
 772
 773	agbp->b_pag->pagf_freeblks += len;
 774	be32_add_cpu(&agf->agf_freeblks, len);
 775
 776	if (unlikely(be32_to_cpu(agf->agf_freeblks) >
 777		     be32_to_cpu(agf->agf_length))) {
 778		xfs_buf_mark_corrupt(agbp);
 779		return -EFSCORRUPTED;
 780	}
 781
 782	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
 783	return 0;
 784}
 785
 786/*
 787 * Block allocation algorithm and data structures.
 788 */
 789struct xfs_alloc_cur {
 790	struct xfs_btree_cur		*cnt;	/* btree cursors */
 791	struct xfs_btree_cur		*bnolt;
 792	struct xfs_btree_cur		*bnogt;
 793	xfs_extlen_t			cur_len;/* current search length */
 794	xfs_agblock_t			rec_bno;/* extent startblock */
 795	xfs_extlen_t			rec_len;/* extent length */
 796	xfs_agblock_t			bno;	/* alloc bno */
 797	xfs_extlen_t			len;	/* alloc len */
 798	xfs_extlen_t			diff;	/* diff from search bno */
 799	unsigned int			busy_gen;/* busy state */
 800	bool				busy;
 801};
 802
 803/*
 804 * Set up cursors, etc. in the extent allocation cursor. This function can be
 805 * called multiple times to reset an initialized structure without having to
 806 * reallocate cursors.
 807 */
 808static int
 809xfs_alloc_cur_setup(
 810	struct xfs_alloc_arg	*args,
 811	struct xfs_alloc_cur	*acur)
 812{
 813	int			error;
 814	int			i;
 815
 
 
 816	acur->cur_len = args->maxlen;
 817	acur->rec_bno = 0;
 818	acur->rec_len = 0;
 819	acur->bno = 0;
 820	acur->len = 0;
 821	acur->diff = -1;
 822	acur->busy = false;
 823	acur->busy_gen = 0;
 824
 825	/*
 826	 * Perform an initial cntbt lookup to check for availability of maxlen
 827	 * extents. If this fails, we'll return -ENOSPC to signal the caller to
 828	 * attempt a small allocation.
 829	 */
 830	if (!acur->cnt)
 831		acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp,
 832					args->agbp, args->pag, XFS_BTNUM_CNT);
 833	error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
 834	if (error)
 835		return error;
 836
 837	/*
 838	 * Allocate the bnobt left and right search cursors.
 839	 */
 840	if (!acur->bnolt)
 841		acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp,
 842					args->agbp, args->pag, XFS_BTNUM_BNO);
 843	if (!acur->bnogt)
 844		acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp,
 845					args->agbp, args->pag, XFS_BTNUM_BNO);
 846	return i == 1 ? 0 : -ENOSPC;
 847}
 848
 849static void
 850xfs_alloc_cur_close(
 851	struct xfs_alloc_cur	*acur,
 852	bool			error)
 853{
 854	int			cur_error = XFS_BTREE_NOERROR;
 855
 856	if (error)
 857		cur_error = XFS_BTREE_ERROR;
 858
 859	if (acur->cnt)
 860		xfs_btree_del_cursor(acur->cnt, cur_error);
 861	if (acur->bnolt)
 862		xfs_btree_del_cursor(acur->bnolt, cur_error);
 863	if (acur->bnogt)
 864		xfs_btree_del_cursor(acur->bnogt, cur_error);
 865	acur->cnt = acur->bnolt = acur->bnogt = NULL;
 866}
 867
 868/*
 869 * Check an extent for allocation and track the best available candidate in the
 870 * allocation structure. The cursor is deactivated if it has entered an out of
 871 * range state based on allocation arguments. Optionally return the extent
 872 * extent geometry and allocation status if requested by the caller.
 873 */
 874static int
 875xfs_alloc_cur_check(
 876	struct xfs_alloc_arg	*args,
 877	struct xfs_alloc_cur	*acur,
 878	struct xfs_btree_cur	*cur,
 879	int			*new)
 880{
 881	int			error, i;
 882	xfs_agblock_t		bno, bnoa, bnew;
 883	xfs_extlen_t		len, lena, diff = -1;
 884	bool			busy;
 885	unsigned		busy_gen = 0;
 886	bool			deactivate = false;
 887	bool			isbnobt = cur->bc_btnum == XFS_BTNUM_BNO;
 888
 889	*new = 0;
 890
 891	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
 892	if (error)
 893		return error;
 894	if (XFS_IS_CORRUPT(args->mp, i != 1))
 895		return -EFSCORRUPTED;
 896
 897	/*
 898	 * Check minlen and deactivate a cntbt cursor if out of acceptable size
 899	 * range (i.e., walking backwards looking for a minlen extent).
 900	 */
 901	if (len < args->minlen) {
 902		deactivate = !isbnobt;
 903		goto out;
 904	}
 905
 906	busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
 907					 &busy_gen);
 908	acur->busy |= busy;
 909	if (busy)
 910		acur->busy_gen = busy_gen;
 911	/* deactivate a bnobt cursor outside of locality range */
 912	if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
 913		deactivate = isbnobt;
 914		goto out;
 915	}
 916	if (lena < args->minlen)
 917		goto out;
 918
 919	args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
 920	xfs_alloc_fix_len(args);
 921	ASSERT(args->len >= args->minlen);
 922	if (args->len < acur->len)
 923		goto out;
 924
 925	/*
 926	 * We have an aligned record that satisfies minlen and beats or matches
 927	 * the candidate extent size. Compare locality for near allocation mode.
 928	 */
 
 929	diff = xfs_alloc_compute_diff(args->agbno, args->len,
 930				      args->alignment, args->datatype,
 931				      bnoa, lena, &bnew);
 932	if (bnew == NULLAGBLOCK)
 933		goto out;
 934
 935	/*
 936	 * Deactivate a bnobt cursor with worse locality than the current best.
 937	 */
 938	if (diff > acur->diff) {
 939		deactivate = isbnobt;
 940		goto out;
 941	}
 942
 943	ASSERT(args->len > acur->len ||
 944	       (args->len == acur->len && diff <= acur->diff));
 945	acur->rec_bno = bno;
 946	acur->rec_len = len;
 947	acur->bno = bnew;
 948	acur->len = args->len;
 949	acur->diff = diff;
 950	*new = 1;
 951
 952	/*
 953	 * We're done if we found a perfect allocation. This only deactivates
 954	 * the current cursor, but this is just an optimization to terminate a
 955	 * cntbt search that otherwise runs to the edge of the tree.
 956	 */
 957	if (acur->diff == 0 && acur->len == args->maxlen)
 958		deactivate = true;
 959out:
 960	if (deactivate)
 961		cur->bc_ag.abt.active = false;
 962	trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff,
 963				  *new);
 964	return 0;
 965}
 966
 967/*
 968 * Complete an allocation of a candidate extent. Remove the extent from both
 969 * trees and update the args structure.
 970 */
 971STATIC int
 972xfs_alloc_cur_finish(
 973	struct xfs_alloc_arg	*args,
 974	struct xfs_alloc_cur	*acur)
 975{
 976	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
 977	int			error;
 978
 979	ASSERT(acur->cnt && acur->bnolt);
 980	ASSERT(acur->bno >= acur->rec_bno);
 981	ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
 982	ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
 983
 984	error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
 985				      acur->rec_len, acur->bno, acur->len, 0);
 986	if (error)
 987		return error;
 988
 989	args->agbno = acur->bno;
 990	args->len = acur->len;
 991	args->wasfromfl = 0;
 992
 993	trace_xfs_alloc_cur(args);
 994	return 0;
 995}
 996
 997/*
 998 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
 999 * bno optimized lookup to search for extents with ideal size and locality.
1000 */
1001STATIC int
1002xfs_alloc_cntbt_iter(
1003	struct xfs_alloc_arg		*args,
1004	struct xfs_alloc_cur		*acur)
1005{
1006	struct xfs_btree_cur	*cur = acur->cnt;
1007	xfs_agblock_t		bno;
1008	xfs_extlen_t		len, cur_len;
1009	int			error;
1010	int			i;
1011
1012	if (!xfs_alloc_cur_active(cur))
1013		return 0;
1014
1015	/* locality optimized lookup */
1016	cur_len = acur->cur_len;
1017	error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
1018	if (error)
1019		return error;
1020	if (i == 0)
1021		return 0;
1022	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1023	if (error)
1024		return error;
1025
1026	/* check the current record and update search length from it */
1027	error = xfs_alloc_cur_check(args, acur, cur, &i);
1028	if (error)
1029		return error;
1030	ASSERT(len >= acur->cur_len);
1031	acur->cur_len = len;
1032
1033	/*
1034	 * We looked up the first record >= [agbno, len] above. The agbno is a
1035	 * secondary key and so the current record may lie just before or after
1036	 * agbno. If it is past agbno, check the previous record too so long as
1037	 * the length matches as it may be closer. Don't check a smaller record
1038	 * because that could deactivate our cursor.
1039	 */
1040	if (bno > args->agbno) {
1041		error = xfs_btree_decrement(cur, 0, &i);
1042		if (!error && i) {
1043			error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1044			if (!error && i && len == acur->cur_len)
1045				error = xfs_alloc_cur_check(args, acur, cur,
1046							    &i);
1047		}
1048		if (error)
1049			return error;
1050	}
1051
1052	/*
1053	 * Increment the search key until we find at least one allocation
1054	 * candidate or if the extent we found was larger. Otherwise, double the
1055	 * search key to optimize the search. Efficiency is more important here
1056	 * than absolute best locality.
1057	 */
1058	cur_len <<= 1;
1059	if (!acur->len || acur->cur_len >= cur_len)
1060		acur->cur_len++;
1061	else
1062		acur->cur_len = cur_len;
1063
1064	return error;
1065}
1066
1067/*
1068 * Deal with the case where only small freespaces remain. Either return the
1069 * contents of the last freespace record, or allocate space from the freelist if
1070 * there is nothing in the tree.
1071 */
1072STATIC int			/* error */
1073xfs_alloc_ag_vextent_small(
1074	struct xfs_alloc_arg	*args,	/* allocation argument structure */
1075	struct xfs_btree_cur	*ccur,	/* optional by-size cursor */
1076	xfs_agblock_t		*fbnop,	/* result block number */
1077	xfs_extlen_t		*flenp,	/* result length */
1078	int			*stat)	/* status: 0-freelist, 1-normal/none */
1079{
1080	struct xfs_agf		*agf = args->agbp->b_addr;
1081	int			error = 0;
1082	xfs_agblock_t		fbno = NULLAGBLOCK;
1083	xfs_extlen_t		flen = 0;
1084	int			i = 0;
1085
1086	/*
1087	 * If a cntbt cursor is provided, try to allocate the largest record in
1088	 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1089	 * allocation. Make sure to respect minleft even when pulling from the
1090	 * freelist.
1091	 */
1092	if (ccur)
1093		error = xfs_btree_decrement(ccur, 0, &i);
1094	if (error)
1095		goto error;
1096	if (i) {
1097		error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1098		if (error)
1099			goto error;
1100		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1101			error = -EFSCORRUPTED;
1102			goto error;
1103		}
1104		goto out;
1105	}
1106
1107	if (args->minlen != 1 || args->alignment != 1 ||
1108	    args->resv == XFS_AG_RESV_AGFL ||
1109	    be32_to_cpu(agf->agf_flcount) <= args->minleft)
1110		goto out;
1111
1112	error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1113			&fbno, 0);
1114	if (error)
1115		goto error;
1116	if (fbno == NULLAGBLOCK)
1117		goto out;
1118
1119	xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
1120			      (args->datatype & XFS_ALLOC_NOBUSY));
1121
1122	if (args->datatype & XFS_ALLOC_USERDATA) {
1123		struct xfs_buf	*bp;
1124
1125		error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1126				XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1127				args->mp->m_bsize, 0, &bp);
1128		if (error)
1129			goto error;
1130		xfs_trans_binval(args->tp, bp);
1131	}
1132	*fbnop = args->agbno = fbno;
1133	*flenp = args->len = 1;
1134	if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1135		error = -EFSCORRUPTED;
1136		goto error;
1137	}
1138	args->wasfromfl = 1;
1139	trace_xfs_alloc_small_freelist(args);
1140
1141	/*
1142	 * If we're feeding an AGFL block to something that doesn't live in the
1143	 * free space, we need to clear out the OWN_AG rmap.
1144	 */
1145	error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1146			      &XFS_RMAP_OINFO_AG);
1147	if (error)
1148		goto error;
1149
1150	*stat = 0;
1151	return 0;
1152
1153out:
1154	/*
1155	 * Can't do the allocation, give up.
1156	 */
1157	if (flen < args->minlen) {
1158		args->agbno = NULLAGBLOCK;
1159		trace_xfs_alloc_small_notenough(args);
1160		flen = 0;
1161	}
1162	*fbnop = fbno;
1163	*flenp = flen;
1164	*stat = 1;
1165	trace_xfs_alloc_small_done(args);
1166	return 0;
1167
1168error:
1169	trace_xfs_alloc_small_error(args);
1170	return error;
1171}
1172
1173/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174 * Allocate a variable extent at exactly agno/bno.
1175 * Extent's length (returned in *len) will be between minlen and maxlen,
1176 * and of the form k * prod + mod unless there's nothing that large.
1177 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1178 */
1179STATIC int			/* error */
1180xfs_alloc_ag_vextent_exact(
1181	xfs_alloc_arg_t	*args)	/* allocation argument structure */
1182{
1183	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1184	struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1185	struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1186	int		error;
1187	xfs_agblock_t	fbno;	/* start block of found extent */
1188	xfs_extlen_t	flen;	/* length of found extent */
1189	xfs_agblock_t	tbno;	/* start block of busy extent */
1190	xfs_extlen_t	tlen;	/* length of busy extent */
1191	xfs_agblock_t	tend;	/* end block of busy extent */
1192	int		i;	/* success/failure of operation */
1193	unsigned	busy_gen;
1194
1195	ASSERT(args->alignment == 1);
1196
1197	/*
1198	 * Allocate/initialize a cursor for the by-number freespace btree.
1199	 */
1200	bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1201					  args->pag, XFS_BTNUM_BNO);
1202
1203	/*
1204	 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1205	 * Look for the closest free block <= bno, it must contain bno
1206	 * if any free block does.
1207	 */
1208	error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1209	if (error)
1210		goto error0;
1211	if (!i)
1212		goto not_found;
1213
1214	/*
1215	 * Grab the freespace record.
1216	 */
1217	error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1218	if (error)
1219		goto error0;
1220	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1221		error = -EFSCORRUPTED;
1222		goto error0;
1223	}
1224	ASSERT(fbno <= args->agbno);
1225
1226	/*
1227	 * Check for overlapping busy extents.
1228	 */
1229	tbno = fbno;
1230	tlen = flen;
1231	xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
1232
1233	/*
1234	 * Give up if the start of the extent is busy, or the freespace isn't
1235	 * long enough for the minimum request.
1236	 */
1237	if (tbno > args->agbno)
1238		goto not_found;
1239	if (tlen < args->minlen)
1240		goto not_found;
1241	tend = tbno + tlen;
1242	if (tend < args->agbno + args->minlen)
1243		goto not_found;
1244
1245	/*
1246	 * End of extent will be smaller of the freespace end and the
1247	 * maximal requested end.
1248	 *
1249	 * Fix the length according to mod and prod if given.
1250	 */
1251	args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1252						- args->agbno;
1253	xfs_alloc_fix_len(args);
1254	ASSERT(args->agbno + args->len <= tend);
1255
1256	/*
1257	 * We are allocating agbno for args->len
1258	 * Allocate/initialize a cursor for the by-size btree.
1259	 */
1260	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1261					args->pag, XFS_BTNUM_CNT);
1262	ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
1263	error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1264				      args->len, XFSA_FIXUP_BNO_OK);
1265	if (error) {
1266		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1267		goto error0;
1268	}
1269
1270	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1271	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1272
1273	args->wasfromfl = 0;
1274	trace_xfs_alloc_exact_done(args);
1275	return 0;
1276
1277not_found:
1278	/* Didn't find it, return null. */
1279	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1280	args->agbno = NULLAGBLOCK;
1281	trace_xfs_alloc_exact_notfound(args);
1282	return 0;
1283
1284error0:
1285	xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1286	trace_xfs_alloc_exact_error(args);
1287	return error;
1288}
1289
1290/*
1291 * Search a given number of btree records in a given direction. Check each
1292 * record against the good extent we've already found.
1293 */
1294STATIC int
1295xfs_alloc_walk_iter(
1296	struct xfs_alloc_arg	*args,
1297	struct xfs_alloc_cur	*acur,
1298	struct xfs_btree_cur	*cur,
1299	bool			increment,
1300	bool			find_one, /* quit on first candidate */
1301	int			count,    /* rec count (-1 for infinite) */
1302	int			*stat)
1303{
1304	int			error;
1305	int			i;
1306
1307	*stat = 0;
1308
1309	/*
1310	 * Search so long as the cursor is active or we find a better extent.
1311	 * The cursor is deactivated if it extends beyond the range of the
1312	 * current allocation candidate.
1313	 */
1314	while (xfs_alloc_cur_active(cur) && count) {
1315		error = xfs_alloc_cur_check(args, acur, cur, &i);
1316		if (error)
1317			return error;
1318		if (i == 1) {
1319			*stat = 1;
1320			if (find_one)
1321				break;
1322		}
1323		if (!xfs_alloc_cur_active(cur))
1324			break;
1325
1326		if (increment)
1327			error = xfs_btree_increment(cur, 0, &i);
1328		else
1329			error = xfs_btree_decrement(cur, 0, &i);
1330		if (error)
1331			return error;
1332		if (i == 0)
1333			cur->bc_ag.abt.active = false;
1334
1335		if (count > 0)
1336			count--;
1337	}
1338
1339	return 0;
1340}
1341
1342/*
1343 * Search the by-bno and by-size btrees in parallel in search of an extent with
1344 * ideal locality based on the NEAR mode ->agbno locality hint.
1345 */
1346STATIC int
1347xfs_alloc_ag_vextent_locality(
1348	struct xfs_alloc_arg	*args,
1349	struct xfs_alloc_cur	*acur,
1350	int			*stat)
1351{
1352	struct xfs_btree_cur	*fbcur = NULL;
1353	int			error;
1354	int			i;
1355	bool			fbinc;
1356
1357	ASSERT(acur->len == 0);
 
1358
1359	*stat = 0;
1360
1361	error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1362	if (error)
1363		return error;
1364	error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1365	if (error)
1366		return error;
1367	error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1368	if (error)
1369		return error;
1370
1371	/*
1372	 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1373	 * right and lookup the closest extent to the locality hint for each
1374	 * extent size key in the cntbt. The entire search terminates
1375	 * immediately on a bnobt hit because that means we've found best case
1376	 * locality. Otherwise the search continues until the cntbt cursor runs
1377	 * off the end of the tree. If no allocation candidate is found at this
1378	 * point, give up on locality, walk backwards from the end of the cntbt
1379	 * and take the first available extent.
1380	 *
1381	 * The parallel tree searches balance each other out to provide fairly
1382	 * consistent performance for various situations. The bnobt search can
1383	 * have pathological behavior in the worst case scenario of larger
1384	 * allocation requests and fragmented free space. On the other hand, the
1385	 * bnobt is able to satisfy most smaller allocation requests much more
1386	 * quickly than the cntbt. The cntbt search can sift through fragmented
1387	 * free space and sets of free extents for larger allocation requests
1388	 * more quickly than the bnobt. Since the locality hint is just a hint
1389	 * and we don't want to scan the entire bnobt for perfect locality, the
1390	 * cntbt search essentially bounds the bnobt search such that we can
1391	 * find good enough locality at reasonable performance in most cases.
1392	 */
1393	while (xfs_alloc_cur_active(acur->bnolt) ||
1394	       xfs_alloc_cur_active(acur->bnogt) ||
1395	       xfs_alloc_cur_active(acur->cnt)) {
1396
1397		trace_xfs_alloc_cur_lookup(args);
1398
1399		/*
1400		 * Search the bnobt left and right. In the case of a hit, finish
1401		 * the search in the opposite direction and we're done.
1402		 */
1403		error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1404					    true, 1, &i);
1405		if (error)
1406			return error;
1407		if (i == 1) {
1408			trace_xfs_alloc_cur_left(args);
1409			fbcur = acur->bnogt;
1410			fbinc = true;
1411			break;
1412		}
1413		error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1414					    1, &i);
1415		if (error)
1416			return error;
1417		if (i == 1) {
1418			trace_xfs_alloc_cur_right(args);
1419			fbcur = acur->bnolt;
1420			fbinc = false;
1421			break;
1422		}
1423
1424		/*
1425		 * Check the extent with best locality based on the current
1426		 * extent size search key and keep track of the best candidate.
1427		 */
1428		error = xfs_alloc_cntbt_iter(args, acur);
1429		if (error)
1430			return error;
1431		if (!xfs_alloc_cur_active(acur->cnt)) {
1432			trace_xfs_alloc_cur_lookup_done(args);
1433			break;
1434		}
1435	}
1436
1437	/*
1438	 * If we failed to find anything due to busy extents, return empty
1439	 * handed so the caller can flush and retry. If no busy extents were
1440	 * found, walk backwards from the end of the cntbt as a last resort.
1441	 */
1442	if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1443		error = xfs_btree_decrement(acur->cnt, 0, &i);
1444		if (error)
1445			return error;
1446		if (i) {
1447			acur->cnt->bc_ag.abt.active = true;
1448			fbcur = acur->cnt;
1449			fbinc = false;
1450		}
1451	}
1452
1453	/*
1454	 * Search in the opposite direction for a better entry in the case of
1455	 * a bnobt hit or walk backwards from the end of the cntbt.
1456	 */
1457	if (fbcur) {
1458		error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1459					    &i);
1460		if (error)
1461			return error;
1462	}
1463
1464	if (acur->len)
1465		*stat = 1;
1466
1467	return 0;
1468}
1469
1470/* Check the last block of the cnt btree for allocations. */
1471static int
1472xfs_alloc_ag_vextent_lastblock(
1473	struct xfs_alloc_arg	*args,
1474	struct xfs_alloc_cur	*acur,
1475	xfs_agblock_t		*bno,
1476	xfs_extlen_t		*len,
1477	bool			*allocated)
1478{
1479	int			error;
1480	int			i;
1481
1482#ifdef DEBUG
1483	/* Randomly don't execute the first algorithm. */
1484	if (get_random_u32_below(2))
1485		return 0;
1486#endif
1487
1488	/*
1489	 * Start from the entry that lookup found, sequence through all larger
1490	 * free blocks.  If we're actually pointing at a record smaller than
1491	 * maxlen, go to the start of this block, and skip all those smaller
1492	 * than minlen.
1493	 */
1494	if (*len || args->alignment > 1) {
1495		acur->cnt->bc_levels[0].ptr = 1;
1496		do {
1497			error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1498			if (error)
1499				return error;
1500			if (XFS_IS_CORRUPT(args->mp, i != 1))
1501				return -EFSCORRUPTED;
1502			if (*len >= args->minlen)
1503				break;
1504			error = xfs_btree_increment(acur->cnt, 0, &i);
1505			if (error)
1506				return error;
1507		} while (i);
1508		ASSERT(*len >= args->minlen);
1509		if (!i)
1510			return 0;
1511	}
1512
1513	error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1514	if (error)
1515		return error;
1516
1517	/*
1518	 * It didn't work.  We COULD be in a case where there's a good record
1519	 * somewhere, so try again.
1520	 */
1521	if (acur->len == 0)
1522		return 0;
1523
1524	trace_xfs_alloc_near_first(args);
1525	*allocated = true;
1526	return 0;
1527}
1528
1529/*
1530 * Allocate a variable extent near bno in the allocation group agno.
1531 * Extent's length (returned in len) will be between minlen and maxlen,
1532 * and of the form k * prod + mod unless there's nothing that large.
1533 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1534 */
1535STATIC int
1536xfs_alloc_ag_vextent_near(
1537	struct xfs_alloc_arg	*args,
1538	uint32_t		alloc_flags)
1539{
1540	struct xfs_alloc_cur	acur = {};
1541	int			error;		/* error code */
1542	int			i;		/* result code, temporary */
1543	xfs_agblock_t		bno;
1544	xfs_extlen_t		len;
1545
1546	/* handle uninitialized agbno range so caller doesn't have to */
1547	if (!args->min_agbno && !args->max_agbno)
1548		args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1549	ASSERT(args->min_agbno <= args->max_agbno);
1550
1551	/* clamp agbno to the range if it's outside */
1552	if (args->agbno < args->min_agbno)
1553		args->agbno = args->min_agbno;
1554	if (args->agbno > args->max_agbno)
1555		args->agbno = args->max_agbno;
1556
1557	/* Retry once quickly if we find busy extents before blocking. */
1558	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1559restart:
1560	len = 0;
1561
1562	/*
1563	 * Set up cursors and see if there are any free extents as big as
1564	 * maxlen. If not, pick the last entry in the tree unless the tree is
1565	 * empty.
1566	 */
1567	error = xfs_alloc_cur_setup(args, &acur);
1568	if (error == -ENOSPC) {
1569		error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1570				&len, &i);
1571		if (error)
1572			goto out;
1573		if (i == 0 || len == 0) {
1574			trace_xfs_alloc_near_noentry(args);
1575			goto out;
1576		}
1577		ASSERT(i == 1);
1578	} else if (error) {
1579		goto out;
1580	}
1581
1582	/*
1583	 * First algorithm.
1584	 * If the requested extent is large wrt the freespaces available
1585	 * in this a.g., then the cursor will be pointing to a btree entry
1586	 * near the right edge of the tree.  If it's in the last btree leaf
1587	 * block, then we just examine all the entries in that block
1588	 * that are big enough, and pick the best one.
1589	 */
1590	if (xfs_btree_islastblock(acur.cnt, 0)) {
1591		bool		allocated = false;
1592
1593		error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1594				&allocated);
1595		if (error)
1596			goto out;
1597		if (allocated)
1598			goto alloc_finish;
1599	}
1600
1601	/*
1602	 * Second algorithm. Combined cntbt and bnobt search to find ideal
1603	 * locality.
1604	 */
1605	error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1606	if (error)
1607		goto out;
1608
1609	/*
1610	 * If we couldn't get anything, give up.
1611	 */
1612	if (!acur.len) {
1613		if (acur.busy) {
1614			/*
1615			 * Our only valid extents must have been busy. Flush and
1616			 * retry the allocation again. If we get an -EAGAIN
1617			 * error, we're being told that a deadlock was avoided
1618			 * and the current transaction needs committing before
1619			 * the allocation can be retried.
1620			 */
1621			trace_xfs_alloc_near_busy(args);
1622			error = xfs_extent_busy_flush(args->tp, args->pag,
1623					acur.busy_gen, alloc_flags);
1624			if (error)
1625				goto out;
1626
1627			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1628			goto restart;
1629		}
1630		trace_xfs_alloc_size_neither(args);
1631		args->agbno = NULLAGBLOCK;
1632		goto out;
1633	}
1634
1635alloc_finish:
1636	/* fix up btrees on a successful allocation */
1637	error = xfs_alloc_cur_finish(args, &acur);
1638
1639out:
1640	xfs_alloc_cur_close(&acur, error);
1641	return error;
1642}
1643
1644/*
1645 * Allocate a variable extent anywhere in the allocation group agno.
1646 * Extent's length (returned in len) will be between minlen and maxlen,
1647 * and of the form k * prod + mod unless there's nothing that large.
1648 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1649 */
1650static int
1651xfs_alloc_ag_vextent_size(
1652	struct xfs_alloc_arg	*args,
1653	uint32_t		alloc_flags)
1654{
1655	struct xfs_agf		*agf = args->agbp->b_addr;
1656	struct xfs_btree_cur	*bno_cur;
1657	struct xfs_btree_cur	*cnt_cur;
1658	xfs_agblock_t		fbno;		/* start of found freespace */
1659	xfs_extlen_t		flen;		/* length of found freespace */
1660	xfs_agblock_t		rbno;		/* returned block number */
1661	xfs_extlen_t		rlen;		/* length of returned extent */
1662	bool			busy;
1663	unsigned		busy_gen;
1664	int			error;
1665	int			i;
1666
1667	/* Retry once quickly if we find busy extents before blocking. */
1668	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1669restart:
1670	/*
1671	 * Allocate and initialize a cursor for the by-size btree.
1672	 */
1673	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1674					args->pag, XFS_BTNUM_CNT);
1675	bno_cur = NULL;
1676
1677	/*
1678	 * Look for an entry >= maxlen+alignment-1 blocks.
1679	 */
1680	if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1681			args->maxlen + args->alignment - 1, &i)))
1682		goto error0;
1683
1684	/*
1685	 * If none then we have to settle for a smaller extent. In the case that
1686	 * there are no large extents, this will return the last entry in the
1687	 * tree unless the tree is empty. In the case that there are only busy
1688	 * large extents, this will return the largest small extent unless there
1689	 * are no smaller extents available.
1690	 */
1691	if (!i) {
1692		error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1693						   &fbno, &flen, &i);
1694		if (error)
1695			goto error0;
1696		if (i == 0 || flen == 0) {
1697			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1698			trace_xfs_alloc_size_noentry(args);
1699			return 0;
1700		}
1701		ASSERT(i == 1);
1702		busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1703				&rlen, &busy_gen);
1704	} else {
1705		/*
1706		 * Search for a non-busy extent that is large enough.
1707		 */
1708		for (;;) {
1709			error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1710			if (error)
1711				goto error0;
1712			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1713				error = -EFSCORRUPTED;
1714				goto error0;
1715			}
1716
1717			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1718					&rbno, &rlen, &busy_gen);
1719
1720			if (rlen >= args->maxlen)
1721				break;
1722
1723			error = xfs_btree_increment(cnt_cur, 0, &i);
1724			if (error)
1725				goto error0;
1726			if (i)
1727				continue;
1728
1729			/*
1730			 * Our only valid extents must have been busy. Flush and
1731			 * retry the allocation again. If we get an -EAGAIN
1732			 * error, we're being told that a deadlock was avoided
1733			 * and the current transaction needs committing before
1734			 * the allocation can be retried.
1735			 */
1736			trace_xfs_alloc_size_busy(args);
1737			error = xfs_extent_busy_flush(args->tp, args->pag,
1738					busy_gen, alloc_flags);
1739			if (error)
1740				goto error0;
1741
1742			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1743			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1744			goto restart;
1745		}
1746	}
1747
1748	/*
1749	 * In the first case above, we got the last entry in the
1750	 * by-size btree.  Now we check to see if the space hits maxlen
1751	 * once aligned; if not, we search left for something better.
1752	 * This can't happen in the second case above.
1753	 */
1754	rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1755	if (XFS_IS_CORRUPT(args->mp,
1756			   rlen != 0 &&
1757			   (rlen > flen ||
1758			    rbno + rlen > fbno + flen))) {
1759		error = -EFSCORRUPTED;
1760		goto error0;
1761	}
1762	if (rlen < args->maxlen) {
1763		xfs_agblock_t	bestfbno;
1764		xfs_extlen_t	bestflen;
1765		xfs_agblock_t	bestrbno;
1766		xfs_extlen_t	bestrlen;
1767
1768		bestrlen = rlen;
1769		bestrbno = rbno;
1770		bestflen = flen;
1771		bestfbno = fbno;
1772		for (;;) {
1773			if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1774				goto error0;
1775			if (i == 0)
1776				break;
1777			if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1778					&i)))
1779				goto error0;
1780			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1781				error = -EFSCORRUPTED;
1782				goto error0;
1783			}
1784			if (flen < bestrlen)
1785				break;
1786			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1787					&rbno, &rlen, &busy_gen);
1788			rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1789			if (XFS_IS_CORRUPT(args->mp,
1790					   rlen != 0 &&
1791					   (rlen > flen ||
1792					    rbno + rlen > fbno + flen))) {
1793				error = -EFSCORRUPTED;
1794				goto error0;
1795			}
1796			if (rlen > bestrlen) {
1797				bestrlen = rlen;
1798				bestrbno = rbno;
1799				bestflen = flen;
1800				bestfbno = fbno;
1801				if (rlen == args->maxlen)
1802					break;
1803			}
1804		}
1805		if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1806				&i)))
1807			goto error0;
1808		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1809			error = -EFSCORRUPTED;
1810			goto error0;
1811		}
1812		rlen = bestrlen;
1813		rbno = bestrbno;
1814		flen = bestflen;
1815		fbno = bestfbno;
1816	}
1817	args->wasfromfl = 0;
1818	/*
1819	 * Fix up the length.
1820	 */
1821	args->len = rlen;
1822	if (rlen < args->minlen) {
1823		if (busy) {
1824			/*
1825			 * Our only valid extents must have been busy. Flush and
1826			 * retry the allocation again. If we get an -EAGAIN
1827			 * error, we're being told that a deadlock was avoided
1828			 * and the current transaction needs committing before
1829			 * the allocation can be retried.
1830			 */
1831			trace_xfs_alloc_size_busy(args);
1832			error = xfs_extent_busy_flush(args->tp, args->pag,
1833					busy_gen, alloc_flags);
1834			if (error)
1835				goto error0;
1836
1837			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1838			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1839			goto restart;
1840		}
1841		goto out_nominleft;
1842	}
1843	xfs_alloc_fix_len(args);
1844
1845	rlen = args->len;
1846	if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1847		error = -EFSCORRUPTED;
1848		goto error0;
1849	}
1850	/*
1851	 * Allocate and initialize a cursor for the by-block tree.
1852	 */
1853	bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1854					args->pag, XFS_BTNUM_BNO);
1855	if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
1856			rbno, rlen, XFSA_FIXUP_CNT_OK)))
1857		goto error0;
1858	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1859	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1860	cnt_cur = bno_cur = NULL;
1861	args->len = rlen;
1862	args->agbno = rbno;
1863	if (XFS_IS_CORRUPT(args->mp,
1864			   args->agbno + args->len >
1865			   be32_to_cpu(agf->agf_length))) {
1866		error = -EFSCORRUPTED;
1867		goto error0;
1868	}
1869	trace_xfs_alloc_size_done(args);
1870	return 0;
1871
1872error0:
1873	trace_xfs_alloc_size_error(args);
1874	if (cnt_cur)
1875		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1876	if (bno_cur)
1877		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1878	return error;
1879
1880out_nominleft:
1881	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1882	trace_xfs_alloc_size_nominleft(args);
1883	args->agbno = NULLAGBLOCK;
1884	return 0;
1885}
1886
1887/*
1888 * Free the extent starting at agno/bno for length.
1889 */
1890STATIC int
1891xfs_free_ag_extent(
1892	struct xfs_trans		*tp,
1893	struct xfs_buf			*agbp,
1894	xfs_agnumber_t			agno,
1895	xfs_agblock_t			bno,
1896	xfs_extlen_t			len,
1897	const struct xfs_owner_info	*oinfo,
1898	enum xfs_ag_resv_type		type)
1899{
1900	struct xfs_mount		*mp;
1901	struct xfs_btree_cur		*bno_cur;
1902	struct xfs_btree_cur		*cnt_cur;
1903	xfs_agblock_t			gtbno; /* start of right neighbor */
1904	xfs_extlen_t			gtlen; /* length of right neighbor */
1905	xfs_agblock_t			ltbno; /* start of left neighbor */
1906	xfs_extlen_t			ltlen; /* length of left neighbor */
1907	xfs_agblock_t			nbno; /* new starting block of freesp */
1908	xfs_extlen_t			nlen; /* new length of freespace */
1909	int				haveleft; /* have a left neighbor */
1910	int				haveright; /* have a right neighbor */
1911	int				i;
1912	int				error;
1913	struct xfs_perag		*pag = agbp->b_pag;
1914
1915	bno_cur = cnt_cur = NULL;
1916	mp = tp->t_mountp;
1917
1918	if (!xfs_rmap_should_skip_owner_update(oinfo)) {
1919		error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
1920		if (error)
1921			goto error0;
1922	}
1923
1924	/*
1925	 * Allocate and initialize a cursor for the by-block btree.
1926	 */
1927	bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO);
1928	/*
1929	 * Look for a neighboring block on the left (lower block numbers)
1930	 * that is contiguous with this space.
1931	 */
1932	if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
1933		goto error0;
1934	if (haveleft) {
1935		/*
1936		 * There is a block to our left.
1937		 */
1938		if ((error = xfs_alloc_get_rec(bno_cur, &ltbno, &ltlen, &i)))
1939			goto error0;
1940		if (XFS_IS_CORRUPT(mp, i != 1)) {
1941			error = -EFSCORRUPTED;
1942			goto error0;
1943		}
1944		/*
1945		 * It's not contiguous, though.
1946		 */
1947		if (ltbno + ltlen < bno)
1948			haveleft = 0;
1949		else {
1950			/*
1951			 * If this failure happens the request to free this
1952			 * space was invalid, it's (partly) already free.
1953			 * Very bad.
1954			 */
1955			if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
1956				error = -EFSCORRUPTED;
1957				goto error0;
1958			}
1959		}
1960	}
1961	/*
1962	 * Look for a neighboring block on the right (higher block numbers)
1963	 * that is contiguous with this space.
1964	 */
1965	if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
1966		goto error0;
1967	if (haveright) {
1968		/*
1969		 * There is a block to our right.
1970		 */
1971		if ((error = xfs_alloc_get_rec(bno_cur, &gtbno, &gtlen, &i)))
1972			goto error0;
1973		if (XFS_IS_CORRUPT(mp, i != 1)) {
1974			error = -EFSCORRUPTED;
1975			goto error0;
1976		}
1977		/*
1978		 * It's not contiguous, though.
1979		 */
1980		if (bno + len < gtbno)
1981			haveright = 0;
1982		else {
1983			/*
1984			 * If this failure happens the request to free this
1985			 * space was invalid, it's (partly) already free.
1986			 * Very bad.
1987			 */
1988			if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
1989				error = -EFSCORRUPTED;
1990				goto error0;
1991			}
1992		}
1993	}
1994	/*
1995	 * Now allocate and initialize a cursor for the by-size tree.
1996	 */
1997	cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT);
1998	/*
1999	 * Have both left and right contiguous neighbors.
2000	 * Merge all three into a single free block.
2001	 */
2002	if (haveleft && haveright) {
2003		/*
2004		 * Delete the old by-size entry on the left.
2005		 */
2006		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2007			goto error0;
2008		if (XFS_IS_CORRUPT(mp, i != 1)) {
2009			error = -EFSCORRUPTED;
2010			goto error0;
2011		}
2012		if ((error = xfs_btree_delete(cnt_cur, &i)))
2013			goto error0;
2014		if (XFS_IS_CORRUPT(mp, i != 1)) {
2015			error = -EFSCORRUPTED;
2016			goto error0;
2017		}
2018		/*
2019		 * Delete the old by-size entry on the right.
2020		 */
2021		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2022			goto error0;
2023		if (XFS_IS_CORRUPT(mp, i != 1)) {
2024			error = -EFSCORRUPTED;
2025			goto error0;
2026		}
2027		if ((error = xfs_btree_delete(cnt_cur, &i)))
2028			goto error0;
2029		if (XFS_IS_CORRUPT(mp, i != 1)) {
2030			error = -EFSCORRUPTED;
2031			goto error0;
2032		}
2033		/*
2034		 * Delete the old by-block entry for the right block.
2035		 */
2036		if ((error = xfs_btree_delete(bno_cur, &i)))
2037			goto error0;
2038		if (XFS_IS_CORRUPT(mp, i != 1)) {
2039			error = -EFSCORRUPTED;
2040			goto error0;
2041		}
2042		/*
2043		 * Move the by-block cursor back to the left neighbor.
2044		 */
2045		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2046			goto error0;
2047		if (XFS_IS_CORRUPT(mp, i != 1)) {
2048			error = -EFSCORRUPTED;
2049			goto error0;
2050		}
2051#ifdef DEBUG
2052		/*
2053		 * Check that this is the right record: delete didn't
2054		 * mangle the cursor.
2055		 */
2056		{
2057			xfs_agblock_t	xxbno;
2058			xfs_extlen_t	xxlen;
2059
2060			if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2061					&i)))
2062				goto error0;
2063			if (XFS_IS_CORRUPT(mp,
2064					   i != 1 ||
2065					   xxbno != ltbno ||
2066					   xxlen != ltlen)) {
2067				error = -EFSCORRUPTED;
2068				goto error0;
2069			}
2070		}
2071#endif
2072		/*
2073		 * Update remaining by-block entry to the new, joined block.
2074		 */
2075		nbno = ltbno;
2076		nlen = len + ltlen + gtlen;
2077		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2078			goto error0;
2079	}
2080	/*
2081	 * Have only a left contiguous neighbor.
2082	 * Merge it together with the new freespace.
2083	 */
2084	else if (haveleft) {
2085		/*
2086		 * Delete the old by-size entry on the left.
2087		 */
2088		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2089			goto error0;
2090		if (XFS_IS_CORRUPT(mp, i != 1)) {
2091			error = -EFSCORRUPTED;
2092			goto error0;
2093		}
2094		if ((error = xfs_btree_delete(cnt_cur, &i)))
2095			goto error0;
2096		if (XFS_IS_CORRUPT(mp, i != 1)) {
2097			error = -EFSCORRUPTED;
2098			goto error0;
2099		}
2100		/*
2101		 * Back up the by-block cursor to the left neighbor, and
2102		 * update its length.
2103		 */
2104		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2105			goto error0;
2106		if (XFS_IS_CORRUPT(mp, i != 1)) {
2107			error = -EFSCORRUPTED;
2108			goto error0;
2109		}
2110		nbno = ltbno;
2111		nlen = len + ltlen;
2112		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2113			goto error0;
2114	}
2115	/*
2116	 * Have only a right contiguous neighbor.
2117	 * Merge it together with the new freespace.
2118	 */
2119	else if (haveright) {
2120		/*
2121		 * Delete the old by-size entry on the right.
2122		 */
2123		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2124			goto error0;
2125		if (XFS_IS_CORRUPT(mp, i != 1)) {
2126			error = -EFSCORRUPTED;
2127			goto error0;
2128		}
2129		if ((error = xfs_btree_delete(cnt_cur, &i)))
2130			goto error0;
2131		if (XFS_IS_CORRUPT(mp, i != 1)) {
2132			error = -EFSCORRUPTED;
2133			goto error0;
2134		}
2135		/*
2136		 * Update the starting block and length of the right
2137		 * neighbor in the by-block tree.
2138		 */
2139		nbno = bno;
2140		nlen = len + gtlen;
2141		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2142			goto error0;
2143	}
2144	/*
2145	 * No contiguous neighbors.
2146	 * Insert the new freespace into the by-block tree.
2147	 */
2148	else {
2149		nbno = bno;
2150		nlen = len;
2151		if ((error = xfs_btree_insert(bno_cur, &i)))
2152			goto error0;
2153		if (XFS_IS_CORRUPT(mp, i != 1)) {
2154			error = -EFSCORRUPTED;
2155			goto error0;
2156		}
2157	}
2158	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2159	bno_cur = NULL;
2160	/*
2161	 * In all cases we need to insert the new freespace in the by-size tree.
2162	 */
2163	if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2164		goto error0;
2165	if (XFS_IS_CORRUPT(mp, i != 0)) {
2166		error = -EFSCORRUPTED;
2167		goto error0;
2168	}
2169	if ((error = xfs_btree_insert(cnt_cur, &i)))
2170		goto error0;
2171	if (XFS_IS_CORRUPT(mp, i != 1)) {
2172		error = -EFSCORRUPTED;
2173		goto error0;
2174	}
2175	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2176	cnt_cur = NULL;
2177
2178	/*
2179	 * Update the freespace totals in the ag and superblock.
2180	 */
2181	error = xfs_alloc_update_counters(tp, agbp, len);
2182	xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2183	if (error)
2184		goto error0;
2185
2186	XFS_STATS_INC(mp, xs_freex);
2187	XFS_STATS_ADD(mp, xs_freeb, len);
2188
2189	trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2190
2191	return 0;
2192
2193 error0:
2194	trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2195	if (bno_cur)
2196		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2197	if (cnt_cur)
2198		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2199	return error;
2200}
2201
2202/*
2203 * Visible (exported) allocation/free functions.
2204 * Some of these are used just by xfs_alloc_btree.c and this file.
2205 */
2206
2207/*
2208 * Compute and fill in value of m_alloc_maxlevels.
2209 */
2210void
2211xfs_alloc_compute_maxlevels(
2212	xfs_mount_t	*mp)	/* file system mount structure */
2213{
2214	mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2215			(mp->m_sb.sb_agblocks + 1) / 2);
2216	ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2217}
2218
2219/*
2220 * Find the length of the longest extent in an AG.  The 'need' parameter
2221 * specifies how much space we're going to need for the AGFL and the
2222 * 'reserved' parameter tells us how many blocks in this AG are reserved for
2223 * other callers.
2224 */
2225xfs_extlen_t
2226xfs_alloc_longest_free_extent(
2227	struct xfs_perag	*pag,
2228	xfs_extlen_t		need,
2229	xfs_extlen_t		reserved)
2230{
2231	xfs_extlen_t		delta = 0;
2232
2233	/*
2234	 * If the AGFL needs a recharge, we'll have to subtract that from the
2235	 * longest extent.
2236	 */
2237	if (need > pag->pagf_flcount)
2238		delta = need - pag->pagf_flcount;
2239
2240	/*
2241	 * If we cannot maintain others' reservations with space from the
2242	 * not-longest freesp extents, we'll have to subtract /that/ from
2243	 * the longest extent too.
2244	 */
2245	if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2246		delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2247
2248	/*
2249	 * If the longest extent is long enough to satisfy all the
2250	 * reservations and AGFL rules in place, we can return this extent.
2251	 */
2252	if (pag->pagf_longest > delta)
2253		return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2254				pag->pagf_longest - delta);
2255
2256	/* Otherwise, let the caller try for 1 block if there's space. */
2257	return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2258}
2259
2260/*
2261 * Compute the minimum length of the AGFL in the given AG.  If @pag is NULL,
2262 * return the largest possible minimum length.
2263 */
2264unsigned int
2265xfs_alloc_min_freelist(
2266	struct xfs_mount	*mp,
2267	struct xfs_perag	*pag)
2268{
2269	/* AG btrees have at least 1 level. */
2270	static const uint8_t	fake_levels[XFS_BTNUM_AGF] = {1, 1, 1};
2271	const uint8_t		*levels = pag ? pag->pagf_levels : fake_levels;
2272	unsigned int		min_free;
2273
2274	ASSERT(mp->m_alloc_maxlevels > 0);
2275
2276	/*
2277	 * For a btree shorter than the maximum height, the worst case is that
2278	 * every level gets split and a new level is added, then while inserting
2279	 * another entry to refill the AGFL, every level under the old root gets
2280	 * split again. This is:
2281	 *
2282	 *   (full height split reservation) + (AGFL refill split height)
2283	 * = (current height + 1) + (current height - 1)
2284	 * = (new height) + (new height - 2)
2285	 * = 2 * new height - 2
2286	 *
2287	 * For a btree of maximum height, the worst case is that every level
2288	 * under the root gets split, then while inserting another entry to
2289	 * refill the AGFL, every level under the root gets split again. This is
2290	 * also:
2291	 *
2292	 *   2 * (current height - 1)
2293	 * = 2 * (new height - 1)
2294	 * = 2 * new height - 2
2295	 */
2296
2297	/* space needed by-bno freespace btree */
2298	min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1,
2299				       mp->m_alloc_maxlevels) * 2 - 2;
2300	/* space needed by-size freespace btree */
2301	min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1,
2302				       mp->m_alloc_maxlevels) * 2 - 2;
2303	/* space needed reverse mapping used space btree */
2304	if (xfs_has_rmapbt(mp))
2305		min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1,
2306						mp->m_rmap_maxlevels) * 2 - 2;
2307
2308	return min_free;
2309}
2310
2311/*
2312 * Check if the operation we are fixing up the freelist for should go ahead or
2313 * not. If we are freeing blocks, we always allow it, otherwise the allocation
2314 * is dependent on whether the size and shape of free space available will
2315 * permit the requested allocation to take place.
2316 */
2317static bool
2318xfs_alloc_space_available(
2319	struct xfs_alloc_arg	*args,
2320	xfs_extlen_t		min_free,
2321	int			flags)
2322{
2323	struct xfs_perag	*pag = args->pag;
2324	xfs_extlen_t		alloc_len, longest;
2325	xfs_extlen_t		reservation; /* blocks that are still reserved */
2326	int			available;
2327	xfs_extlen_t		agflcount;
2328
2329	if (flags & XFS_ALLOC_FLAG_FREEING)
2330		return true;
2331
2332	reservation = xfs_ag_resv_needed(pag, args->resv);
2333
2334	/* do we have enough contiguous free space for the allocation? */
2335	alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2336	longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2337	if (longest < alloc_len)
2338		return false;
2339
2340	/*
2341	 * Do we have enough free space remaining for the allocation? Don't
2342	 * account extra agfl blocks because we are about to defer free them,
2343	 * making them unavailable until the current transaction commits.
2344	 */
2345	agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2346	available = (int)(pag->pagf_freeblks + agflcount -
2347			  reservation - min_free - args->minleft);
2348	if (available < (int)max(args->total, alloc_len))
2349		return false;
2350
2351	/*
2352	 * Clamp maxlen to the amount of free space available for the actual
2353	 * extent allocation.
2354	 */
2355	if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2356		args->maxlen = available;
2357		ASSERT(args->maxlen > 0);
2358		ASSERT(args->maxlen >= args->minlen);
2359	}
2360
2361	return true;
2362}
2363
2364int
2365xfs_free_agfl_block(
2366	struct xfs_trans	*tp,
2367	xfs_agnumber_t		agno,
2368	xfs_agblock_t		agbno,
2369	struct xfs_buf		*agbp,
2370	struct xfs_owner_info	*oinfo)
2371{
2372	int			error;
2373	struct xfs_buf		*bp;
2374
2375	error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
2376				   XFS_AG_RESV_AGFL);
2377	if (error)
2378		return error;
2379
2380	error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
2381			XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
2382			tp->t_mountp->m_bsize, 0, &bp);
2383	if (error)
2384		return error;
2385	xfs_trans_binval(tp, bp);
2386
2387	return 0;
2388}
2389
2390/*
2391 * Check the agfl fields of the agf for inconsistency or corruption.
2392 *
2393 * The original purpose was to detect an agfl header padding mismatch between
2394 * current and early v5 kernels. This problem manifests as a 1-slot size
2395 * difference between the on-disk flcount and the active [first, last] range of
2396 * a wrapped agfl.
2397 *
2398 * However, we need to use these same checks to catch agfl count corruptions
2399 * unrelated to padding. This could occur on any v4 or v5 filesystem, so either
2400 * way, we need to reset the agfl and warn the user.
2401 *
2402 * Return true if a reset is required before the agfl can be used, false
2403 * otherwise.
2404 */
2405static bool
2406xfs_agfl_needs_reset(
2407	struct xfs_mount	*mp,
2408	struct xfs_agf		*agf)
2409{
2410	uint32_t		f = be32_to_cpu(agf->agf_flfirst);
2411	uint32_t		l = be32_to_cpu(agf->agf_fllast);
2412	uint32_t		c = be32_to_cpu(agf->agf_flcount);
2413	int			agfl_size = xfs_agfl_size(mp);
2414	int			active;
2415
 
 
 
 
2416	/*
2417	 * The agf read verifier catches severe corruption of these fields.
2418	 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2419	 * the verifier allows it.
2420	 */
2421	if (f >= agfl_size || l >= agfl_size)
2422		return true;
2423	if (c > agfl_size)
2424		return true;
2425
2426	/*
2427	 * Check consistency between the on-disk count and the active range. An
2428	 * agfl padding mismatch manifests as an inconsistent flcount.
2429	 */
2430	if (c && l >= f)
2431		active = l - f + 1;
2432	else if (c)
2433		active = agfl_size - f + l + 1;
2434	else
2435		active = 0;
2436
2437	return active != c;
2438}
2439
2440/*
2441 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2442 * agfl content cannot be trusted. Warn the user that a repair is required to
2443 * recover leaked blocks.
2444 *
2445 * The purpose of this mechanism is to handle filesystems affected by the agfl
2446 * header padding mismatch problem. A reset keeps the filesystem online with a
2447 * relatively minor free space accounting inconsistency rather than suffer the
2448 * inevitable crash from use of an invalid agfl block.
2449 */
2450static void
2451xfs_agfl_reset(
2452	struct xfs_trans	*tp,
2453	struct xfs_buf		*agbp,
2454	struct xfs_perag	*pag)
2455{
2456	struct xfs_mount	*mp = tp->t_mountp;
2457	struct xfs_agf		*agf = agbp->b_addr;
2458
2459	ASSERT(xfs_perag_agfl_needs_reset(pag));
2460	trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2461
2462	xfs_warn(mp,
2463	       "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2464	       "Please unmount and run xfs_repair.",
2465	         pag->pag_agno, pag->pagf_flcount);
2466
2467	agf->agf_flfirst = 0;
2468	agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2469	agf->agf_flcount = 0;
2470	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2471				    XFS_AGF_FLCOUNT);
2472
2473	pag->pagf_flcount = 0;
2474	clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
2475}
2476
2477/*
2478 * Defer an AGFL block free. This is effectively equivalent to
2479 * xfs_free_extent_later() with some special handling particular to AGFL blocks.
2480 *
2481 * Deferring AGFL frees helps prevent log reservation overruns due to too many
2482 * allocation operations in a transaction. AGFL frees are prone to this problem
2483 * because for one they are always freed one at a time. Further, an immediate
2484 * AGFL block free can cause a btree join and require another block free before
2485 * the real allocation can proceed. Deferring the free disconnects freeing up
2486 * the AGFL slot from freeing the block.
2487 */
2488static int
2489xfs_defer_agfl_block(
2490	struct xfs_trans		*tp,
2491	xfs_agnumber_t			agno,
2492	xfs_agblock_t			agbno,
2493	struct xfs_owner_info		*oinfo)
2494{
2495	struct xfs_mount		*mp = tp->t_mountp;
2496	struct xfs_extent_free_item	*xefi;
2497	xfs_fsblock_t			fsbno = XFS_AGB_TO_FSB(mp, agno, agbno);
2498
2499	ASSERT(xfs_extfree_item_cache != NULL);
2500	ASSERT(oinfo != NULL);
2501
2502	if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbno(mp, fsbno)))
2503		return -EFSCORRUPTED;
2504
2505	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2506			       GFP_KERNEL | __GFP_NOFAIL);
2507	xefi->xefi_startblock = fsbno;
2508	xefi->xefi_blockcount = 1;
2509	xefi->xefi_owner = oinfo->oi_owner;
2510	xefi->xefi_agresv = XFS_AG_RESV_AGFL;
2511
2512	trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
2513
2514	xfs_extent_free_get_group(mp, xefi);
2515	xfs_defer_add(tp, &xefi->xefi_list, &xfs_agfl_free_defer_type);
2516	return 0;
2517}
2518
2519/*
2520 * Add the extent to the list of extents to be free at transaction end.
2521 * The list is maintained sorted (by block number).
2522 */
2523static int
2524xfs_defer_extent_free(
2525	struct xfs_trans		*tp,
2526	xfs_fsblock_t			bno,
2527	xfs_filblks_t			len,
2528	const struct xfs_owner_info	*oinfo,
2529	enum xfs_ag_resv_type		type,
2530	bool				skip_discard,
2531	struct xfs_defer_pending	**dfpp)
2532{
2533	struct xfs_extent_free_item	*xefi;
 
2534	struct xfs_mount		*mp = tp->t_mountp;
2535#ifdef DEBUG
2536	xfs_agnumber_t			agno;
2537	xfs_agblock_t			agbno;
2538
2539	ASSERT(bno != NULLFSBLOCK);
2540	ASSERT(len > 0);
2541	ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
2542	ASSERT(!isnullstartblock(bno));
2543	agno = XFS_FSB_TO_AGNO(mp, bno);
2544	agbno = XFS_FSB_TO_AGBNO(mp, bno);
2545	ASSERT(agno < mp->m_sb.sb_agcount);
2546	ASSERT(agbno < mp->m_sb.sb_agblocks);
2547	ASSERT(len < mp->m_sb.sb_agblocks);
2548	ASSERT(agbno + len <= mp->m_sb.sb_agblocks);
2549#endif
2550	ASSERT(xfs_extfree_item_cache != NULL);
2551	ASSERT(type != XFS_AG_RESV_AGFL);
2552
2553	if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len)))
2554		return -EFSCORRUPTED;
2555
2556	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2557			       GFP_KERNEL | __GFP_NOFAIL);
2558	xefi->xefi_startblock = bno;
2559	xefi->xefi_blockcount = (xfs_extlen_t)len;
2560	xefi->xefi_agresv = type;
2561	if (skip_discard)
2562		xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
2563	if (oinfo) {
2564		ASSERT(oinfo->oi_offset == 0);
2565
2566		if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2567			xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
2568		if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2569			xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2570		xefi->xefi_owner = oinfo->oi_owner;
2571	} else {
2572		xefi->xefi_owner = XFS_RMAP_OWN_NULL;
2573	}
2574	trace_xfs_bmap_free_defer(mp,
2575			XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0,
2576			XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len);
2577
2578	xfs_extent_free_get_group(mp, xefi);
2579	*dfpp = xfs_defer_add(tp, &xefi->xefi_list, &xfs_extent_free_defer_type);
2580	return 0;
2581}
2582
2583int
2584xfs_free_extent_later(
2585	struct xfs_trans		*tp,
2586	xfs_fsblock_t			bno,
2587	xfs_filblks_t			len,
2588	const struct xfs_owner_info	*oinfo,
2589	enum xfs_ag_resv_type		type,
2590	bool				skip_discard)
2591{
2592	struct xfs_defer_pending	*dontcare = NULL;
2593
2594	return xfs_defer_extent_free(tp, bno, len, oinfo, type, skip_discard,
2595			&dontcare);
2596}
2597
2598/*
2599 * Set up automatic freeing of unwritten space in the filesystem.
2600 *
2601 * This function attached a paused deferred extent free item to the
2602 * transaction.  Pausing means that the EFI will be logged in the next
2603 * transaction commit, but the pending EFI will not be finished until the
2604 * pending item is unpaused.
2605 *
2606 * If the system goes down after the EFI has been persisted to the log but
2607 * before the pending item is unpaused, log recovery will find the EFI, fail to
2608 * find the EFD, and free the space.
2609 *
2610 * If the pending item is unpaused, the next transaction commit will log an EFD
2611 * without freeing the space.
2612 *
2613 * Caller must ensure that the tp, fsbno, len, oinfo, and resv flags of the
2614 * @args structure are set to the relevant values.
2615 */
2616int
2617xfs_alloc_schedule_autoreap(
2618	const struct xfs_alloc_arg	*args,
2619	bool				skip_discard,
2620	struct xfs_alloc_autoreap	*aarp)
2621{
2622	int				error;
2623
2624	error = xfs_defer_extent_free(args->tp, args->fsbno, args->len,
2625			&args->oinfo, args->resv, skip_discard, &aarp->dfp);
2626	if (error)
2627		return error;
2628
2629	xfs_defer_item_pause(args->tp, aarp->dfp);
2630	return 0;
2631}
2632
2633/*
2634 * Cancel automatic freeing of unwritten space in the filesystem.
2635 *
2636 * Earlier, we created a paused deferred extent free item and attached it to
2637 * this transaction so that we could automatically roll back a new space
2638 * allocation if the system went down.  Now we want to cancel the paused work
2639 * item by marking the EFI stale so we don't actually free the space, unpausing
2640 * the pending item and logging an EFD.
2641 *
2642 * The caller generally should have already mapped the space into the ondisk
2643 * filesystem.  If the reserved space was partially used, the caller must call
2644 * xfs_free_extent_later to create a new EFI to free the unused space.
2645 */
2646void
2647xfs_alloc_cancel_autoreap(
2648	struct xfs_trans		*tp,
2649	struct xfs_alloc_autoreap	*aarp)
2650{
2651	struct xfs_defer_pending	*dfp = aarp->dfp;
2652	struct xfs_extent_free_item	*xefi;
2653
2654	if (!dfp)
2655		return;
2656
2657	list_for_each_entry(xefi, &dfp->dfp_work, xefi_list)
2658		xefi->xefi_flags |= XFS_EFI_CANCELLED;
2659
2660	xfs_defer_item_unpause(tp, dfp);
2661}
2662
2663/*
2664 * Commit automatic freeing of unwritten space in the filesystem.
2665 *
2666 * This unpauses an earlier _schedule_autoreap and commits to freeing the
2667 * allocated space.  Call this if none of the reserved space was used.
2668 */
2669void
2670xfs_alloc_commit_autoreap(
2671	struct xfs_trans		*tp,
2672	struct xfs_alloc_autoreap	*aarp)
2673{
2674	if (aarp->dfp)
2675		xfs_defer_item_unpause(tp, aarp->dfp);
2676}
2677
2678#ifdef DEBUG
2679/*
2680 * Check if an AGF has a free extent record whose length is equal to
2681 * args->minlen.
2682 */
2683STATIC int
2684xfs_exact_minlen_extent_available(
2685	struct xfs_alloc_arg	*args,
2686	struct xfs_buf		*agbp,
2687	int			*stat)
2688{
2689	struct xfs_btree_cur	*cnt_cur;
2690	xfs_agblock_t		fbno;
2691	xfs_extlen_t		flen;
2692	int			error = 0;
2693
2694	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp,
2695					args->pag, XFS_BTNUM_CNT);
2696	error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2697	if (error)
2698		goto out;
2699
2700	if (*stat == 0) {
2701		error = -EFSCORRUPTED;
2702		goto out;
2703	}
2704
2705	error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2706	if (error)
2707		goto out;
2708
2709	if (*stat == 1 && flen != args->minlen)
2710		*stat = 0;
2711
2712out:
2713	xfs_btree_del_cursor(cnt_cur, error);
2714
2715	return error;
2716}
2717#endif
2718
2719/*
2720 * Decide whether to use this allocation group for this allocation.
2721 * If so, fix up the btree freelist's size.
2722 */
2723int			/* error */
2724xfs_alloc_fix_freelist(
2725	struct xfs_alloc_arg	*args,	/* allocation argument structure */
2726	uint32_t		alloc_flags)
2727{
2728	struct xfs_mount	*mp = args->mp;
2729	struct xfs_perag	*pag = args->pag;
2730	struct xfs_trans	*tp = args->tp;
2731	struct xfs_buf		*agbp = NULL;
2732	struct xfs_buf		*agflbp = NULL;
2733	struct xfs_alloc_arg	targs;	/* local allocation arguments */
2734	xfs_agblock_t		bno;	/* freelist block */
2735	xfs_extlen_t		need;	/* total blocks needed in freelist */
2736	int			error = 0;
2737
2738	/* deferred ops (AGFL block frees) require permanent transactions */
2739	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2740
2741	if (!xfs_perag_initialised_agf(pag)) {
2742		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2743		if (error) {
2744			/* Couldn't lock the AGF so skip this AG. */
2745			if (error == -EAGAIN)
2746				error = 0;
2747			goto out_no_agbp;
2748		}
2749	}
2750
2751	/*
2752	 * If this is a metadata preferred pag and we are user data then try
2753	 * somewhere else if we are not being asked to try harder at this
2754	 * point
2755	 */
2756	if (xfs_perag_prefers_metadata(pag) &&
2757	    (args->datatype & XFS_ALLOC_USERDATA) &&
2758	    (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2759		ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING));
2760		goto out_agbp_relse;
2761	}
2762
2763	need = xfs_alloc_min_freelist(mp, pag);
2764	if (!xfs_alloc_space_available(args, need, alloc_flags |
2765			XFS_ALLOC_FLAG_CHECK))
2766		goto out_agbp_relse;
2767
2768	/*
2769	 * Get the a.g. freespace buffer.
2770	 * Can fail if we're not blocking on locks, and it's held.
2771	 */
2772	if (!agbp) {
2773		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2774		if (error) {
2775			/* Couldn't lock the AGF so skip this AG. */
2776			if (error == -EAGAIN)
2777				error = 0;
2778			goto out_no_agbp;
2779		}
2780	}
2781
2782	/* reset a padding mismatched agfl before final free space check */
2783	if (xfs_perag_agfl_needs_reset(pag))
2784		xfs_agfl_reset(tp, agbp, pag);
2785
2786	/* If there isn't enough total space or single-extent, reject it. */
2787	need = xfs_alloc_min_freelist(mp, pag);
2788	if (!xfs_alloc_space_available(args, need, alloc_flags))
2789		goto out_agbp_relse;
2790
2791#ifdef DEBUG
2792	if (args->alloc_minlen_only) {
2793		int stat;
2794
2795		error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2796		if (error || !stat)
2797			goto out_agbp_relse;
2798	}
2799#endif
2800	/*
2801	 * Make the freelist shorter if it's too long.
2802	 *
2803	 * Note that from this point onwards, we will always release the agf and
2804	 * agfl buffers on error. This handles the case where we error out and
2805	 * the buffers are clean or may not have been joined to the transaction
2806	 * and hence need to be released manually. If they have been joined to
2807	 * the transaction, then xfs_trans_brelse() will handle them
2808	 * appropriately based on the recursion count and dirty state of the
2809	 * buffer.
2810	 *
2811	 * XXX (dgc): When we have lots of free space, does this buy us
2812	 * anything other than extra overhead when we need to put more blocks
2813	 * back on the free list? Maybe we should only do this when space is
2814	 * getting low or the AGFL is more than half full?
2815	 *
2816	 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2817	 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2818	 * updating the rmapbt.  Both flags are used in xfs_repair while we're
2819	 * rebuilding the rmapbt, and neither are used by the kernel.  They're
2820	 * both required to ensure that rmaps are correctly recorded for the
2821	 * regenerated AGFL, bnobt, and cntbt.  See repair/phase5.c and
2822	 * repair/rmap.c in xfsprogs for details.
2823	 */
2824	memset(&targs, 0, sizeof(targs));
2825	/* struct copy below */
2826	if (alloc_flags & XFS_ALLOC_FLAG_NORMAP)
2827		targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2828	else
2829		targs.oinfo = XFS_RMAP_OINFO_AG;
2830	while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) &&
2831			pag->pagf_flcount > need) {
2832		error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
2833		if (error)
2834			goto out_agbp_relse;
2835
2836		/* defer agfl frees */
2837		error = xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
2838		if (error)
2839			goto out_agbp_relse;
2840	}
2841
2842	targs.tp = tp;
2843	targs.mp = mp;
2844	targs.agbp = agbp;
2845	targs.agno = args->agno;
2846	targs.alignment = targs.minlen = targs.prod = 1;
 
2847	targs.pag = pag;
2848	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2849	if (error)
2850		goto out_agbp_relse;
2851
2852	/* Make the freelist longer if it's too short. */
2853	while (pag->pagf_flcount < need) {
2854		targs.agbno = 0;
2855		targs.maxlen = need - pag->pagf_flcount;
2856		targs.resv = XFS_AG_RESV_AGFL;
2857
2858		/* Allocate as many blocks as possible at once. */
2859		error = xfs_alloc_ag_vextent_size(&targs, alloc_flags);
2860		if (error)
2861			goto out_agflbp_relse;
2862
2863		/*
2864		 * Stop if we run out.  Won't happen if callers are obeying
2865		 * the restrictions correctly.  Can happen for free calls
2866		 * on a completely full ag.
2867		 */
2868		if (targs.agbno == NULLAGBLOCK) {
2869			if (alloc_flags & XFS_ALLOC_FLAG_FREEING)
2870				break;
2871			goto out_agflbp_relse;
2872		}
2873
2874		if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
2875			error = xfs_rmap_alloc(tp, agbp, pag,
2876				       targs.agbno, targs.len, &targs.oinfo);
2877			if (error)
2878				goto out_agflbp_relse;
2879		}
2880		error = xfs_alloc_update_counters(tp, agbp,
2881						  -((long)(targs.len)));
2882		if (error)
2883			goto out_agflbp_relse;
2884
2885		/*
2886		 * Put each allocated block on the list.
2887		 */
2888		for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2889			error = xfs_alloc_put_freelist(pag, tp, agbp,
2890							agflbp, bno, 0);
2891			if (error)
2892				goto out_agflbp_relse;
2893		}
2894	}
2895	xfs_trans_brelse(tp, agflbp);
2896	args->agbp = agbp;
2897	return 0;
2898
2899out_agflbp_relse:
2900	xfs_trans_brelse(tp, agflbp);
2901out_agbp_relse:
2902	if (agbp)
2903		xfs_trans_brelse(tp, agbp);
2904out_no_agbp:
2905	args->agbp = NULL;
2906	return error;
2907}
2908
2909/*
2910 * Get a block from the freelist.
2911 * Returns with the buffer for the block gotten.
2912 */
2913int
2914xfs_alloc_get_freelist(
2915	struct xfs_perag	*pag,
2916	struct xfs_trans	*tp,
2917	struct xfs_buf		*agbp,
2918	xfs_agblock_t		*bnop,
2919	int			btreeblk)
2920{
2921	struct xfs_agf		*agf = agbp->b_addr;
2922	struct xfs_buf		*agflbp;
2923	xfs_agblock_t		bno;
2924	__be32			*agfl_bno;
2925	int			error;
2926	uint32_t		logflags;
2927	struct xfs_mount	*mp = tp->t_mountp;
2928
2929	/*
2930	 * Freelist is empty, give up.
2931	 */
2932	if (!agf->agf_flcount) {
2933		*bnop = NULLAGBLOCK;
2934		return 0;
2935	}
2936	/*
2937	 * Read the array of free blocks.
2938	 */
2939	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2940	if (error)
2941		return error;
2942
2943
2944	/*
2945	 * Get the block number and update the data structures.
2946	 */
2947	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2948	bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
2949	if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno)))
2950		return -EFSCORRUPTED;
2951
2952	be32_add_cpu(&agf->agf_flfirst, 1);
2953	xfs_trans_brelse(tp, agflbp);
2954	if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
2955		agf->agf_flfirst = 0;
2956
2957	ASSERT(!xfs_perag_agfl_needs_reset(pag));
2958	be32_add_cpu(&agf->agf_flcount, -1);
2959	pag->pagf_flcount--;
2960
2961	logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
2962	if (btreeblk) {
2963		be32_add_cpu(&agf->agf_btreeblks, 1);
2964		pag->pagf_btreeblks++;
2965		logflags |= XFS_AGF_BTREEBLKS;
2966	}
2967
2968	xfs_alloc_log_agf(tp, agbp, logflags);
2969	*bnop = bno;
2970
2971	return 0;
2972}
2973
2974/*
2975 * Log the given fields from the agf structure.
2976 */
2977void
2978xfs_alloc_log_agf(
2979	struct xfs_trans	*tp,
2980	struct xfs_buf		*bp,
2981	uint32_t		fields)
2982{
2983	int	first;		/* first byte offset */
2984	int	last;		/* last byte offset */
2985	static const short	offsets[] = {
2986		offsetof(xfs_agf_t, agf_magicnum),
2987		offsetof(xfs_agf_t, agf_versionnum),
2988		offsetof(xfs_agf_t, agf_seqno),
2989		offsetof(xfs_agf_t, agf_length),
2990		offsetof(xfs_agf_t, agf_roots[0]),
2991		offsetof(xfs_agf_t, agf_levels[0]),
2992		offsetof(xfs_agf_t, agf_flfirst),
2993		offsetof(xfs_agf_t, agf_fllast),
2994		offsetof(xfs_agf_t, agf_flcount),
2995		offsetof(xfs_agf_t, agf_freeblks),
2996		offsetof(xfs_agf_t, agf_longest),
2997		offsetof(xfs_agf_t, agf_btreeblks),
2998		offsetof(xfs_agf_t, agf_uuid),
2999		offsetof(xfs_agf_t, agf_rmap_blocks),
3000		offsetof(xfs_agf_t, agf_refcount_blocks),
3001		offsetof(xfs_agf_t, agf_refcount_root),
3002		offsetof(xfs_agf_t, agf_refcount_level),
3003		/* needed so that we don't log the whole rest of the structure: */
3004		offsetof(xfs_agf_t, agf_spare64),
3005		sizeof(xfs_agf_t)
3006	};
3007
3008	trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
3009
3010	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
3011
3012	xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
3013	xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
3014}
3015
3016/*
3017 * Put the block on the freelist for the allocation group.
3018 */
3019int
3020xfs_alloc_put_freelist(
3021	struct xfs_perag	*pag,
3022	struct xfs_trans	*tp,
3023	struct xfs_buf		*agbp,
3024	struct xfs_buf		*agflbp,
3025	xfs_agblock_t		bno,
3026	int			btreeblk)
3027{
3028	struct xfs_mount	*mp = tp->t_mountp;
3029	struct xfs_agf		*agf = agbp->b_addr;
3030	__be32			*blockp;
3031	int			error;
3032	uint32_t		logflags;
3033	__be32			*agfl_bno;
3034	int			startoff;
3035
3036	if (!agflbp) {
3037		error = xfs_alloc_read_agfl(pag, tp, &agflbp);
3038		if (error)
3039			return error;
3040	}
3041
3042	be32_add_cpu(&agf->agf_fllast, 1);
3043	if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
3044		agf->agf_fllast = 0;
3045
3046	ASSERT(!xfs_perag_agfl_needs_reset(pag));
3047	be32_add_cpu(&agf->agf_flcount, 1);
3048	pag->pagf_flcount++;
3049
3050	logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
3051	if (btreeblk) {
3052		be32_add_cpu(&agf->agf_btreeblks, -1);
3053		pag->pagf_btreeblks--;
3054		logflags |= XFS_AGF_BTREEBLKS;
3055	}
3056
3057	xfs_alloc_log_agf(tp, agbp, logflags);
3058
3059	ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
3060
3061	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3062	blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
3063	*blockp = cpu_to_be32(bno);
3064	startoff = (char *)blockp - (char *)agflbp->b_addr;
3065
3066	xfs_alloc_log_agf(tp, agbp, logflags);
3067
3068	xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
3069	xfs_trans_log_buf(tp, agflbp, startoff,
3070			  startoff + sizeof(xfs_agblock_t) - 1);
3071	return 0;
3072}
3073
3074/*
3075 * Check that this AGF/AGI header's sequence number and length matches the AG
3076 * number and size in fsblocks.
3077 */
3078xfs_failaddr_t
3079xfs_validate_ag_length(
3080	struct xfs_buf		*bp,
3081	uint32_t		seqno,
3082	uint32_t		length)
3083{
3084	struct xfs_mount	*mp = bp->b_mount;
3085	/*
3086	 * During growfs operations, the perag is not fully initialised,
3087	 * so we can't use it for any useful checking. growfs ensures we can't
3088	 * use it by using uncached buffers that don't have the perag attached
3089	 * so we can detect and avoid this problem.
3090	 */
3091	if (bp->b_pag && seqno != bp->b_pag->pag_agno)
3092		return __this_address;
3093
3094	/*
3095	 * Only the last AG in the filesystem is allowed to be shorter
3096	 * than the AG size recorded in the superblock.
3097	 */
3098	if (length != mp->m_sb.sb_agblocks) {
3099		/*
3100		 * During growfs, the new last AG can get here before we
3101		 * have updated the superblock. Give it a pass on the seqno
3102		 * check.
3103		 */
3104		if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1)
3105			return __this_address;
3106		if (length < XFS_MIN_AG_BLOCKS)
3107			return __this_address;
3108		if (length > mp->m_sb.sb_agblocks)
3109			return __this_address;
3110	}
3111
3112	return NULL;
3113}
3114
3115/*
3116 * Verify the AGF is consistent.
3117 *
3118 * We do not verify the AGFL indexes in the AGF are fully consistent here
3119 * because of issues with variable on-disk structure sizes. Instead, we check
3120 * the agfl indexes for consistency when we initialise the perag from the AGF
3121 * information after a read completes.
3122 *
3123 * If the index is inconsistent, then we mark the perag as needing an AGFL
3124 * reset. The first AGFL update performed then resets the AGFL indexes and
3125 * refills the AGFL with known good free blocks, allowing the filesystem to
3126 * continue operating normally at the cost of a few leaked free space blocks.
3127 */
3128static xfs_failaddr_t
3129xfs_agf_verify(
3130	struct xfs_buf		*bp)
3131{
3132	struct xfs_mount	*mp = bp->b_mount;
3133	struct xfs_agf		*agf = bp->b_addr;
3134	xfs_failaddr_t		fa;
3135	uint32_t		agf_seqno = be32_to_cpu(agf->agf_seqno);
3136	uint32_t		agf_length = be32_to_cpu(agf->agf_length);
3137
3138	if (xfs_has_crc(mp)) {
3139		if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
3140			return __this_address;
3141		if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
3142			return __this_address;
3143	}
3144
3145	if (!xfs_verify_magic(bp, agf->agf_magicnum))
3146		return __this_address;
3147
3148	if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)))
 
 
 
 
3149		return __this_address;
3150
3151	/*
3152	 * Both agf_seqno and agf_length need to validated before anything else
3153	 * block number related in the AGF or AGFL can be checked.
3154	 */
3155	fa = xfs_validate_ag_length(bp, agf_seqno, agf_length);
3156	if (fa)
3157		return fa;
3158
3159	if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp))
3160		return __this_address;
3161	if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp))
3162		return __this_address;
3163	if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp))
3164		return __this_address;
3165
3166	if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
3167	    be32_to_cpu(agf->agf_freeblks) > agf_length)
3168		return __this_address;
3169
3170	if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 ||
3171	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 ||
3172	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) >
3173						mp->m_alloc_maxlevels ||
3174	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) >
3175						mp->m_alloc_maxlevels)
3176		return __this_address;
3177
3178	if (xfs_has_lazysbcount(mp) &&
3179	    be32_to_cpu(agf->agf_btreeblks) > agf_length)
 
 
 
 
 
 
3180		return __this_address;
3181
3182	if (xfs_has_rmapbt(mp)) {
3183		if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length)
3184			return __this_address;
 
 
 
 
 
3185
3186		if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 ||
3187		    be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) >
3188							mp->m_rmap_maxlevels)
3189			return __this_address;
3190	}
3191
3192	if (xfs_has_reflink(mp)) {
3193		if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length)
3194			return __this_address;
 
3195
3196		if (be32_to_cpu(agf->agf_refcount_level) < 1 ||
3197		    be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)
3198			return __this_address;
3199	}
3200
3201	return NULL;
 
3202}
3203
3204static void
3205xfs_agf_read_verify(
3206	struct xfs_buf	*bp)
3207{
3208	struct xfs_mount *mp = bp->b_mount;
3209	xfs_failaddr_t	fa;
3210
3211	if (xfs_has_crc(mp) &&
3212	    !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
3213		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3214	else {
3215		fa = xfs_agf_verify(bp);
3216		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3217			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3218	}
3219}
3220
3221static void
3222xfs_agf_write_verify(
3223	struct xfs_buf	*bp)
3224{
3225	struct xfs_mount	*mp = bp->b_mount;
3226	struct xfs_buf_log_item	*bip = bp->b_log_item;
3227	struct xfs_agf		*agf = bp->b_addr;
3228	xfs_failaddr_t		fa;
3229
3230	fa = xfs_agf_verify(bp);
3231	if (fa) {
3232		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3233		return;
3234	}
3235
3236	if (!xfs_has_crc(mp))
3237		return;
3238
3239	if (bip)
3240		agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
3241
3242	xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
3243}
3244
3245const struct xfs_buf_ops xfs_agf_buf_ops = {
3246	.name = "xfs_agf",
3247	.magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
3248	.verify_read = xfs_agf_read_verify,
3249	.verify_write = xfs_agf_write_verify,
3250	.verify_struct = xfs_agf_verify,
3251};
3252
3253/*
3254 * Read in the allocation group header (free/alloc section).
3255 */
3256int
3257xfs_read_agf(
3258	struct xfs_perag	*pag,
3259	struct xfs_trans	*tp,
3260	int			flags,
3261	struct xfs_buf		**agfbpp)
3262{
3263	struct xfs_mount	*mp = pag->pag_mount;
3264	int			error;
3265
3266	trace_xfs_read_agf(pag->pag_mount, pag->pag_agno);
3267
3268	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3269			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)),
3270			XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
3271	if (error)
3272		return error;
3273
3274	xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
3275	return 0;
3276}
3277
3278/*
3279 * Read in the allocation group header (free/alloc section) and initialise the
3280 * perag structure if necessary. If the caller provides @agfbpp, then return the
3281 * locked buffer to the caller, otherwise free it.
3282 */
3283int
3284xfs_alloc_read_agf(
3285	struct xfs_perag	*pag,
3286	struct xfs_trans	*tp,
3287	int			flags,
3288	struct xfs_buf		**agfbpp)
3289{
3290	struct xfs_buf		*agfbp;
3291	struct xfs_agf		*agf;
3292	int			error;
3293	int			allocbt_blks;
3294
3295	trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno);
3296
3297	/* We don't support trylock when freeing. */
3298	ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3299			(XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3300	error = xfs_read_agf(pag, tp,
3301			(flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3302			&agfbp);
3303	if (error)
3304		return error;
3305
3306	agf = agfbp->b_addr;
3307	if (!xfs_perag_initialised_agf(pag)) {
3308		pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3309		pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3310		pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3311		pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3312		pag->pagf_levels[XFS_BTNUM_BNOi] =
3313			be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]);
3314		pag->pagf_levels[XFS_BTNUM_CNTi] =
3315			be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]);
3316		pag->pagf_levels[XFS_BTNUM_RMAPi] =
3317			be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]);
3318		pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3319		if (xfs_agfl_needs_reset(pag->pag_mount, agf))
3320			set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3321		else
3322			clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3323
3324		/*
3325		 * Update the in-core allocbt counter. Filter out the rmapbt
3326		 * subset of the btreeblks counter because the rmapbt is managed
3327		 * by perag reservation. Subtract one for the rmapbt root block
3328		 * because the rmap counter includes it while the btreeblks
3329		 * counter only tracks non-root blocks.
3330		 */
3331		allocbt_blks = pag->pagf_btreeblks;
3332		if (xfs_has_rmapbt(pag->pag_mount))
3333			allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3334		if (allocbt_blks > 0)
3335			atomic64_add(allocbt_blks,
3336					&pag->pag_mount->m_allocbt_blks);
3337
3338		set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
3339	}
3340#ifdef DEBUG
3341	else if (!xfs_is_shutdown(pag->pag_mount)) {
3342		ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3343		ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3344		ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3345		ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3346		ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] ==
3347		       be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]));
3348		ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] ==
3349		       be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]));
3350	}
3351#endif
3352	if (agfbpp)
3353		*agfbpp = agfbp;
3354	else
3355		xfs_trans_brelse(tp, agfbp);
3356	return 0;
3357}
3358
3359/*
3360 * Pre-proces allocation arguments to set initial state that we don't require
3361 * callers to set up correctly, as well as bounds check the allocation args
3362 * that are set up.
3363 */
3364static int
3365xfs_alloc_vextent_check_args(
3366	struct xfs_alloc_arg	*args,
3367	xfs_fsblock_t		target,
3368	xfs_agnumber_t		*minimum_agno)
3369{
3370	struct xfs_mount	*mp = args->mp;
3371	xfs_agblock_t		agsize;
3372
3373	args->fsbno = NULLFSBLOCK;
3374
3375	*minimum_agno = 0;
3376	if (args->tp->t_highest_agno != NULLAGNUMBER)
3377		*minimum_agno = args->tp->t_highest_agno;
3378
 
 
 
3379	/*
3380	 * Just fix this up, for the case where the last a.g. is shorter
3381	 * (or there's only one a.g.) and the caller couldn't easily figure
3382	 * that out (xfs_bmap_alloc).
3383	 */
3384	agsize = mp->m_sb.sb_agblocks;
3385	if (args->maxlen > agsize)
3386		args->maxlen = agsize;
3387	if (args->alignment == 0)
3388		args->alignment = 1;
3389
3390	ASSERT(args->minlen > 0);
3391	ASSERT(args->maxlen > 0);
3392	ASSERT(args->alignment > 0);
3393	ASSERT(args->resv != XFS_AG_RESV_AGFL);
3394
3395	ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
3396	ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
3397	ASSERT(args->minlen <= args->maxlen);
3398	ASSERT(args->minlen <= agsize);
3399	ASSERT(args->mod < args->prod);
3400
3401	if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
3402	    XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
3403	    args->minlen > args->maxlen || args->minlen > agsize ||
3404	    args->mod >= args->prod) {
 
3405		trace_xfs_alloc_vextent_badargs(args);
3406		return -ENOSPC;
3407	}
3408
3409	if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
3410		trace_xfs_alloc_vextent_skip_deadlock(args);
3411		return -ENOSPC;
3412	}
3413	return 0;
3414
3415}
3416
3417/*
3418 * Prepare an AG for allocation. If the AG is not prepared to accept the
3419 * allocation, return failure.
3420 *
3421 * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
3422 * modified to hold their own perag references.
3423 */
3424static int
3425xfs_alloc_vextent_prepare_ag(
3426	struct xfs_alloc_arg	*args,
3427	uint32_t		alloc_flags)
3428{
3429	bool			need_pag = !args->pag;
3430	int			error;
3431
3432	if (need_pag)
3433		args->pag = xfs_perag_get(args->mp, args->agno);
3434
3435	args->agbp = NULL;
3436	error = xfs_alloc_fix_freelist(args, alloc_flags);
3437	if (error) {
3438		trace_xfs_alloc_vextent_nofix(args);
3439		if (need_pag)
3440			xfs_perag_put(args->pag);
3441		args->agbno = NULLAGBLOCK;
3442		return error;
3443	}
3444	if (!args->agbp) {
3445		/* cannot allocate in this AG at all */
3446		trace_xfs_alloc_vextent_noagbp(args);
3447		args->agbno = NULLAGBLOCK;
3448		return 0;
3449	}
3450	args->wasfromfl = 0;
3451	return 0;
3452}
3453
3454/*
3455 * Post-process allocation results to account for the allocation if it succeed
3456 * and set the allocated block number correctly for the caller.
3457 *
3458 * XXX: we should really be returning ENOSPC for ENOSPC, not
3459 * hiding it behind a "successful" NULLFSBLOCK allocation.
3460 */
3461static int
3462xfs_alloc_vextent_finish(
3463	struct xfs_alloc_arg	*args,
3464	xfs_agnumber_t		minimum_agno,
3465	int			alloc_error,
3466	bool			drop_perag)
3467{
3468	struct xfs_mount	*mp = args->mp;
3469	int			error = 0;
3470
3471	/*
3472	 * We can end up here with a locked AGF. If we failed, the caller is
3473	 * likely going to try to allocate again with different parameters, and
3474	 * that can widen the AGs that are searched for free space. If we have
3475	 * to do BMBT block allocation, we have to do a new allocation.
3476	 *
3477	 * Hence leaving this function with the AGF locked opens up potential
3478	 * ABBA AGF deadlocks because a future allocation attempt in this
3479	 * transaction may attempt to lock a lower number AGF.
3480	 *
3481	 * We can't release the AGF until the transaction is commited, so at
3482	 * this point we must update the "first allocation" tracker to point at
3483	 * this AG if the tracker is empty or points to a lower AG. This allows
3484	 * the next allocation attempt to be modified appropriately to avoid
3485	 * deadlocks.
3486	 */
3487	if (args->agbp &&
3488	    (args->tp->t_highest_agno == NULLAGNUMBER ||
3489	     args->agno > minimum_agno))
3490		args->tp->t_highest_agno = args->agno;
3491
3492	/*
3493	 * If the allocation failed with an error or we had an ENOSPC result,
3494	 * preserve the returned error whilst also marking the allocation result
3495	 * as "no extent allocated". This ensures that callers that fail to
3496	 * capture the error will still treat it as a failed allocation.
3497	 */
3498	if (alloc_error || args->agbno == NULLAGBLOCK) {
3499		args->fsbno = NULLFSBLOCK;
3500		error = alloc_error;
3501		goto out_drop_perag;
3502	}
3503
3504	args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3505
3506	ASSERT(args->len >= args->minlen);
3507	ASSERT(args->len <= args->maxlen);
3508	ASSERT(args->agbno % args->alignment == 0);
3509	XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
3510
3511	/* if not file data, insert new block into the reverse map btree */
3512	if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
3513		error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
3514				       args->agbno, args->len, &args->oinfo);
3515		if (error)
3516			goto out_drop_perag;
3517	}
3518
3519	if (!args->wasfromfl) {
3520		error = xfs_alloc_update_counters(args->tp, args->agbp,
3521						  -((long)(args->len)));
3522		if (error)
3523			goto out_drop_perag;
3524
3525		ASSERT(!xfs_extent_busy_search(mp, args->pag, args->agbno,
3526				args->len));
3527	}
3528
3529	xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
3530
3531	XFS_STATS_INC(mp, xs_allocx);
3532	XFS_STATS_ADD(mp, xs_allocb, args->len);
3533
3534	trace_xfs_alloc_vextent_finish(args);
3535
3536out_drop_perag:
3537	if (drop_perag && args->pag) {
3538		xfs_perag_rele(args->pag);
3539		args->pag = NULL;
3540	}
3541	return error;
3542}
3543
3544/*
3545 * Allocate within a single AG only. This uses a best-fit length algorithm so if
3546 * you need an exact sized allocation without locality constraints, this is the
3547 * fastest way to do it.
3548 *
3549 * Caller is expected to hold a perag reference in args->pag.
3550 */
3551int
3552xfs_alloc_vextent_this_ag(
3553	struct xfs_alloc_arg	*args,
3554	xfs_agnumber_t		agno)
3555{
3556	struct xfs_mount	*mp = args->mp;
3557	xfs_agnumber_t		minimum_agno;
3558	uint32_t		alloc_flags = 0;
3559	int			error;
3560
3561	ASSERT(args->pag != NULL);
3562	ASSERT(args->pag->pag_agno == agno);
3563
3564	args->agno = agno;
3565	args->agbno = 0;
3566
3567	trace_xfs_alloc_vextent_this_ag(args);
3568
3569	error = xfs_alloc_vextent_check_args(args, XFS_AGB_TO_FSB(mp, agno, 0),
3570			&minimum_agno);
3571	if (error) {
3572		if (error == -ENOSPC)
3573			return 0;
3574		return error;
3575	}
3576
3577	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3578	if (!error && args->agbp)
3579		error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3580
3581	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3582}
3583
3584/*
3585 * Iterate all AGs trying to allocate an extent starting from @start_ag.
3586 *
3587 * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
3588 * allocation attempts in @start_agno have locality information. If we fail to
3589 * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
3590 * we attempt to allocation in as there is no locality optimisation possible for
3591 * those allocations.
3592 *
3593 * On return, args->pag may be left referenced if we finish before the "all
3594 * failed" return point. The allocation finish still needs the perag, and
3595 * so the caller will release it once they've finished the allocation.
3596 *
3597 * When we wrap the AG iteration at the end of the filesystem, we have to be
3598 * careful not to wrap into AGs below ones we already have locked in the
3599 * transaction if we are doing a blocking iteration. This will result in an
3600 * out-of-order locking of AGFs and hence can cause deadlocks.
3601 */
3602static int
3603xfs_alloc_vextent_iterate_ags(
3604	struct xfs_alloc_arg	*args,
3605	xfs_agnumber_t		minimum_agno,
3606	xfs_agnumber_t		start_agno,
3607	xfs_agblock_t		target_agbno,
3608	uint32_t		alloc_flags)
3609{
3610	struct xfs_mount	*mp = args->mp;
3611	xfs_agnumber_t		restart_agno = minimum_agno;
3612	xfs_agnumber_t		agno;
3613	int			error = 0;
3614
3615	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)
3616		restart_agno = 0;
3617restart:
3618	for_each_perag_wrap_range(mp, start_agno, restart_agno,
3619			mp->m_sb.sb_agcount, agno, args->pag) {
3620		args->agno = agno;
3621		error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3622		if (error)
3623			break;
3624		if (!args->agbp) {
3625			trace_xfs_alloc_vextent_loopfailed(args);
3626			continue;
3627		}
3628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3629		/*
3630		 * Allocation is supposed to succeed now, so break out of the
3631		 * loop regardless of whether we succeed or not.
3632		 */
3633		if (args->agno == start_agno && target_agbno) {
3634			args->agbno = target_agbno;
3635			error = xfs_alloc_ag_vextent_near(args, alloc_flags);
 
 
 
 
 
3636		} else {
3637			args->agbno = 0;
3638			error = xfs_alloc_ag_vextent_size(args, alloc_flags);
 
 
 
3639		}
3640		break;
3641	}
3642	if (error) {
3643		xfs_perag_rele(args->pag);
3644		args->pag = NULL;
3645		return error;
3646	}
3647	if (args->agbp)
3648		return 0;
 
 
 
 
 
 
 
 
 
 
3649
3650	/*
3651	 * We didn't find an AG we can alloation from. If we were given
3652	 * constraining flags by the caller, drop them and retry the allocation
3653	 * without any constraints being set.
3654	 */
3655	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) {
3656		alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK;
3657		restart_agno = minimum_agno;
3658		goto restart;
3659	}
3660
3661	ASSERT(args->pag == NULL);
3662	trace_xfs_alloc_vextent_allfailed(args);
3663	return 0;
3664}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3665
3666/*
3667 * Iterate from the AGs from the start AG to the end of the filesystem, trying
3668 * to allocate blocks. It starts with a near allocation attempt in the initial
3669 * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
3670 * back to zero if allowed by previous allocations in this transaction,
3671 * otherwise will wrap back to the start AG and run a second blocking pass to
3672 * the end of the filesystem.
3673 */
3674int
3675xfs_alloc_vextent_start_ag(
3676	struct xfs_alloc_arg	*args,
3677	xfs_fsblock_t		target)
3678{
3679	struct xfs_mount	*mp = args->mp;
3680	xfs_agnumber_t		minimum_agno;
3681	xfs_agnumber_t		start_agno;
3682	xfs_agnumber_t		rotorstep = xfs_rotorstep;
3683	bool			bump_rotor = false;
3684	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3685	int			error;
3686
3687	ASSERT(args->pag == NULL);
3688
3689	args->agno = NULLAGNUMBER;
3690	args->agbno = NULLAGBLOCK;
3691
3692	trace_xfs_alloc_vextent_start_ag(args);
3693
3694	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3695	if (error) {
3696		if (error == -ENOSPC)
3697			return 0;
3698		return error;
3699	}
 
 
 
 
 
 
 
 
 
 
 
3700
3701	if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3702	    xfs_is_inode32(mp)) {
3703		target = XFS_AGB_TO_FSB(mp,
3704				((mp->m_agfrotor / rotorstep) %
3705				mp->m_sb.sb_agcount), 0);
3706		bump_rotor = 1;
3707	}
3708
3709	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3710	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3711			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3712
3713	if (bump_rotor) {
3714		if (args->agno == start_agno)
3715			mp->m_agfrotor = (mp->m_agfrotor + 1) %
3716				(mp->m_sb.sb_agcount * rotorstep);
3717		else
3718			mp->m_agfrotor = (args->agno * rotorstep + 1) %
3719				(mp->m_sb.sb_agcount * rotorstep);
3720	}
3721
3722	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3723}
3724
3725/*
3726 * Iterate from the agno indicated via @target through to the end of the
3727 * filesystem attempting blocking allocation. This does not wrap or try a second
3728 * pass, so will not recurse into AGs lower than indicated by the target.
3729 */
3730int
3731xfs_alloc_vextent_first_ag(
3732	struct xfs_alloc_arg	*args,
3733	xfs_fsblock_t		target)
3734 {
3735	struct xfs_mount	*mp = args->mp;
3736	xfs_agnumber_t		minimum_agno;
3737	xfs_agnumber_t		start_agno;
3738	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3739	int			error;
3740
3741	ASSERT(args->pag == NULL);
3742
3743	args->agno = NULLAGNUMBER;
3744	args->agbno = NULLAGBLOCK;
3745
3746	trace_xfs_alloc_vextent_first_ag(args);
3747
3748	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3749	if (error) {
3750		if (error == -ENOSPC)
3751			return 0;
3752		return error;
3753	}
3754
3755	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3756	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3757			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3758	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3759}
3760
3761/*
3762 * Allocate at the exact block target or fail. Caller is expected to hold a
3763 * perag reference in args->pag.
3764 */
3765int
3766xfs_alloc_vextent_exact_bno(
3767	struct xfs_alloc_arg	*args,
3768	xfs_fsblock_t		target)
3769{
3770	struct xfs_mount	*mp = args->mp;
3771	xfs_agnumber_t		minimum_agno;
3772	int			error;
3773
3774	ASSERT(args->pag != NULL);
3775	ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3776
3777	args->agno = XFS_FSB_TO_AGNO(mp, target);
3778	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3779
3780	trace_xfs_alloc_vextent_exact_bno(args);
3781
3782	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3783	if (error) {
3784		if (error == -ENOSPC)
3785			return 0;
3786		return error;
3787	}
3788
3789	error = xfs_alloc_vextent_prepare_ag(args, 0);
3790	if (!error && args->agbp)
3791		error = xfs_alloc_ag_vextent_exact(args);
3792
3793	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3794}
3795
3796/*
3797 * Allocate an extent as close to the target as possible. If there are not
3798 * viable candidates in the AG, then fail the allocation.
3799 *
3800 * Caller may or may not have a per-ag reference in args->pag.
3801 */
3802int
3803xfs_alloc_vextent_near_bno(
3804	struct xfs_alloc_arg	*args,
3805	xfs_fsblock_t		target)
3806{
3807	struct xfs_mount	*mp = args->mp;
3808	xfs_agnumber_t		minimum_agno;
3809	bool			needs_perag = args->pag == NULL;
3810	uint32_t		alloc_flags = 0;
3811	int			error;
3812
3813	if (!needs_perag)
3814		ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3815
3816	args->agno = XFS_FSB_TO_AGNO(mp, target);
3817	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3818
3819	trace_xfs_alloc_vextent_near_bno(args);
3820
3821	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3822	if (error) {
3823		if (error == -ENOSPC)
3824			return 0;
3825		return error;
3826	}
3827
3828	if (needs_perag)
3829		args->pag = xfs_perag_grab(mp, args->agno);
3830
3831	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3832	if (!error && args->agbp)
3833		error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3834
3835	return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
3836}
3837
3838/* Ensure that the freelist is at full capacity. */
3839int
3840xfs_free_extent_fix_freelist(
3841	struct xfs_trans	*tp,
3842	struct xfs_perag	*pag,
3843	struct xfs_buf		**agbp)
3844{
3845	struct xfs_alloc_arg	args;
3846	int			error;
3847
3848	memset(&args, 0, sizeof(struct xfs_alloc_arg));
3849	args.tp = tp;
3850	args.mp = tp->t_mountp;
3851	args.agno = pag->pag_agno;
3852	args.pag = pag;
3853
3854	/*
3855	 * validate that the block number is legal - the enables us to detect
3856	 * and handle a silent filesystem corruption rather than crashing.
3857	 */
3858	if (args.agno >= args.mp->m_sb.sb_agcount)
3859		return -EFSCORRUPTED;
3860
3861	error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3862	if (error)
3863		return error;
3864
3865	*agbp = args.agbp;
3866	return 0;
3867}
3868
3869/*
3870 * Free an extent.
3871 * Just break up the extent address and hand off to xfs_free_ag_extent
3872 * after fixing up the freelist.
3873 */
3874int
3875__xfs_free_extent(
3876	struct xfs_trans		*tp,
3877	struct xfs_perag		*pag,
3878	xfs_agblock_t			agbno,
3879	xfs_extlen_t			len,
3880	const struct xfs_owner_info	*oinfo,
3881	enum xfs_ag_resv_type		type,
3882	bool				skip_discard)
3883{
3884	struct xfs_mount		*mp = tp->t_mountp;
3885	struct xfs_buf			*agbp;
 
 
3886	struct xfs_agf			*agf;
3887	int				error;
3888	unsigned int			busy_flags = 0;
 
3889
3890	ASSERT(len != 0);
3891	ASSERT(type != XFS_AG_RESV_AGFL);
3892
3893	if (XFS_TEST_ERROR(false, mp,
3894			XFS_ERRTAG_FREE_EXTENT))
3895		return -EIO;
3896
 
3897	error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
3898	if (error)
3899		return error;
3900	agf = agbp->b_addr;
3901
3902	if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
3903		error = -EFSCORRUPTED;
3904		goto err_release;
3905	}
3906
3907	/* validate the extent size is legal now we have the agf locked */
3908	if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
3909		error = -EFSCORRUPTED;
3910		goto err_release;
3911	}
3912
3913	error = xfs_free_ag_extent(tp, agbp, pag->pag_agno, agbno, len, oinfo,
3914			type);
3915	if (error)
3916		goto err_release;
3917
3918	if (skip_discard)
3919		busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
3920	xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
 
3921	return 0;
3922
3923err_release:
3924	xfs_trans_brelse(tp, agbp);
 
 
3925	return error;
3926}
3927
3928struct xfs_alloc_query_range_info {
3929	xfs_alloc_query_range_fn	fn;
3930	void				*priv;
3931};
3932
3933/* Format btree record and pass to our callback. */
3934STATIC int
3935xfs_alloc_query_range_helper(
3936	struct xfs_btree_cur		*cur,
3937	const union xfs_btree_rec	*rec,
3938	void				*priv)
3939{
3940	struct xfs_alloc_query_range_info	*query = priv;
3941	struct xfs_alloc_rec_incore		irec;
3942	xfs_failaddr_t				fa;
3943
3944	xfs_alloc_btrec_to_irec(rec, &irec);
3945	fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
3946	if (fa)
3947		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
3948
 
 
3949	return query->fn(cur, &irec, query->priv);
3950}
3951
3952/* Find all free space within a given range of blocks. */
3953int
3954xfs_alloc_query_range(
3955	struct xfs_btree_cur			*cur,
3956	const struct xfs_alloc_rec_incore	*low_rec,
3957	const struct xfs_alloc_rec_incore	*high_rec,
3958	xfs_alloc_query_range_fn		fn,
3959	void					*priv)
3960{
3961	union xfs_btree_irec			low_brec = { .a = *low_rec };
3962	union xfs_btree_irec			high_brec = { .a = *high_rec };
3963	struct xfs_alloc_query_range_info	query = { .priv = priv, .fn = fn };
3964
3965	ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
 
 
 
 
3966	return xfs_btree_query_range(cur, &low_brec, &high_brec,
3967			xfs_alloc_query_range_helper, &query);
3968}
3969
3970/* Find all free space records. */
3971int
3972xfs_alloc_query_all(
3973	struct xfs_btree_cur			*cur,
3974	xfs_alloc_query_range_fn		fn,
3975	void					*priv)
3976{
3977	struct xfs_alloc_query_range_info	query;
3978
3979	ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3980	query.priv = priv;
3981	query.fn = fn;
3982	return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
3983}
3984
3985/*
3986 * Scan part of the keyspace of the free space and tell us if the area has no
3987 * records, is fully mapped by records, or is partially filled.
3988 */
3989int
3990xfs_alloc_has_records(
3991	struct xfs_btree_cur	*cur,
3992	xfs_agblock_t		bno,
3993	xfs_extlen_t		len,
3994	enum xbtree_recpacking	*outcome)
3995{
3996	union xfs_btree_irec	low;
3997	union xfs_btree_irec	high;
3998
3999	memset(&low, 0, sizeof(low));
4000	low.a.ar_startblock = bno;
4001	memset(&high, 0xFF, sizeof(high));
4002	high.a.ar_startblock = bno + len - 1;
4003
4004	return xfs_btree_has_records(cur, &low, &high, NULL, outcome);
4005}
4006
4007/*
4008 * Walk all the blocks in the AGFL.  The @walk_fn can return any negative
4009 * error code or XFS_ITER_*.
4010 */
4011int
4012xfs_agfl_walk(
4013	struct xfs_mount	*mp,
4014	struct xfs_agf		*agf,
4015	struct xfs_buf		*agflbp,
4016	xfs_agfl_walk_fn	walk_fn,
4017	void			*priv)
4018{
4019	__be32			*agfl_bno;
4020	unsigned int		i;
4021	int			error;
4022
4023	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
4024	i = be32_to_cpu(agf->agf_flfirst);
4025
4026	/* Nothing to walk in an empty AGFL. */
4027	if (agf->agf_flcount == cpu_to_be32(0))
4028		return 0;
4029
4030	/* Otherwise, walk from first to last, wrapping as needed. */
4031	for (;;) {
4032		error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
4033		if (error)
4034			return error;
4035		if (i == be32_to_cpu(agf->agf_fllast))
4036			break;
4037		if (++i == xfs_agfl_size(mp))
4038			i = 0;
4039	}
4040
4041	return 0;
4042}
4043
4044int __init
4045xfs_extfree_intent_init_cache(void)
4046{
4047	xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
4048			sizeof(struct xfs_extent_free_item),
4049			0, 0, NULL);
4050
4051	return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
4052}
4053
4054void
4055xfs_extfree_intent_destroy_cache(void)
4056{
4057	kmem_cache_destroy(xfs_extfree_item_cache);
4058	xfs_extfree_item_cache = NULL;
4059}