Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_format.h"
9#include "xfs_log_format.h"
10#include "xfs_shared.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_defer.h"
15#include "xfs_btree.h"
16#include "xfs_rmap.h"
17#include "xfs_alloc_btree.h"
18#include "xfs_alloc.h"
19#include "xfs_extent_busy.h"
20#include "xfs_errortag.h"
21#include "xfs_error.h"
22#include "xfs_trace.h"
23#include "xfs_trans.h"
24#include "xfs_buf_item.h"
25#include "xfs_log.h"
26#include "xfs_ag.h"
27#include "xfs_ag_resv.h"
28#include "xfs_bmap.h"
29
30struct kmem_cache *xfs_extfree_item_cache;
31
32struct workqueue_struct *xfs_alloc_wq;
33
34#define XFS_ABSDIFF(a,b) (((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
35
36#define XFSA_FIXUP_BNO_OK 1
37#define XFSA_FIXUP_CNT_OK 2
38
39STATIC int xfs_alloc_ag_vextent_exact(xfs_alloc_arg_t *);
40STATIC int xfs_alloc_ag_vextent_near(xfs_alloc_arg_t *);
41STATIC int xfs_alloc_ag_vextent_size(xfs_alloc_arg_t *);
42
43/*
44 * Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in
45 * the beginning of the block for a proper header with the location information
46 * and CRC.
47 */
48unsigned int
49xfs_agfl_size(
50 struct xfs_mount *mp)
51{
52 unsigned int size = mp->m_sb.sb_sectsize;
53
54 if (xfs_has_crc(mp))
55 size -= sizeof(struct xfs_agfl);
56
57 return size / sizeof(xfs_agblock_t);
58}
59
60unsigned int
61xfs_refc_block(
62 struct xfs_mount *mp)
63{
64 if (xfs_has_rmapbt(mp))
65 return XFS_RMAP_BLOCK(mp) + 1;
66 if (xfs_has_finobt(mp))
67 return XFS_FIBT_BLOCK(mp) + 1;
68 return XFS_IBT_BLOCK(mp) + 1;
69}
70
71xfs_extlen_t
72xfs_prealloc_blocks(
73 struct xfs_mount *mp)
74{
75 if (xfs_has_reflink(mp))
76 return xfs_refc_block(mp) + 1;
77 if (xfs_has_rmapbt(mp))
78 return XFS_RMAP_BLOCK(mp) + 1;
79 if (xfs_has_finobt(mp))
80 return XFS_FIBT_BLOCK(mp) + 1;
81 return XFS_IBT_BLOCK(mp) + 1;
82}
83
84/*
85 * The number of blocks per AG that we withhold from xfs_mod_fdblocks to
86 * guarantee that we can refill the AGFL prior to allocating space in a nearly
87 * full AG. Although the space described by the free space btrees, the
88 * blocks used by the freesp btrees themselves, and the blocks owned by the
89 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
90 * free space in the AG drop so low that the free space btrees cannot refill an
91 * empty AGFL up to the minimum level. Rather than grind through empty AGs
92 * until the fs goes down, we subtract this many AG blocks from the incore
93 * fdblocks to ensure user allocation does not overcommit the space the
94 * filesystem needs for the AGFLs. The rmap btree uses a per-AG reservation to
95 * withhold space from xfs_mod_fdblocks, so we do not account for that here.
96 */
97#define XFS_ALLOCBT_AGFL_RESERVE 4
98
99/*
100 * Compute the number of blocks that we set aside to guarantee the ability to
101 * refill the AGFL and handle a full bmap btree split.
102 *
103 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
104 * AGF buffer (PV 947395), we place constraints on the relationship among
105 * actual allocations for data blocks, freelist blocks, and potential file data
106 * bmap btree blocks. However, these restrictions may result in no actual space
107 * allocated for a delayed extent, for example, a data block in a certain AG is
108 * allocated but there is no additional block for the additional bmap btree
109 * block due to a split of the bmap btree of the file. The result of this may
110 * lead to an infinite loop when the file gets flushed to disk and all delayed
111 * extents need to be actually allocated. To get around this, we explicitly set
112 * aside a few blocks which will not be reserved in delayed allocation.
113 *
114 * For each AG, we need to reserve enough blocks to replenish a totally empty
115 * AGFL and 4 more to handle a potential split of the file's bmap btree.
116 */
117unsigned int
118xfs_alloc_set_aside(
119 struct xfs_mount *mp)
120{
121 return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
122}
123
124/*
125 * When deciding how much space to allocate out of an AG, we limit the
126 * allocation maximum size to the size the AG. However, we cannot use all the
127 * blocks in the AG - some are permanently used by metadata. These
128 * blocks are generally:
129 * - the AG superblock, AGF, AGI and AGFL
130 * - the AGF (bno and cnt) and AGI btree root blocks, and optionally
131 * the AGI free inode and rmap btree root blocks.
132 * - blocks on the AGFL according to xfs_alloc_set_aside() limits
133 * - the rmapbt root block
134 *
135 * The AG headers are sector sized, so the amount of space they take up is
136 * dependent on filesystem geometry. The others are all single blocks.
137 */
138unsigned int
139xfs_alloc_ag_max_usable(
140 struct xfs_mount *mp)
141{
142 unsigned int blocks;
143
144 blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
145 blocks += XFS_ALLOCBT_AGFL_RESERVE;
146 blocks += 3; /* AGF, AGI btree root blocks */
147 if (xfs_has_finobt(mp))
148 blocks++; /* finobt root block */
149 if (xfs_has_rmapbt(mp))
150 blocks++; /* rmap root block */
151 if (xfs_has_reflink(mp))
152 blocks++; /* refcount root block */
153
154 return mp->m_sb.sb_agblocks - blocks;
155}
156
157/*
158 * Lookup the record equal to [bno, len] in the btree given by cur.
159 */
160STATIC int /* error */
161xfs_alloc_lookup_eq(
162 struct xfs_btree_cur *cur, /* btree cursor */
163 xfs_agblock_t bno, /* starting block of extent */
164 xfs_extlen_t len, /* length of extent */
165 int *stat) /* success/failure */
166{
167 int error;
168
169 cur->bc_rec.a.ar_startblock = bno;
170 cur->bc_rec.a.ar_blockcount = len;
171 error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat);
172 cur->bc_ag.abt.active = (*stat == 1);
173 return error;
174}
175
176/*
177 * Lookup the first record greater than or equal to [bno, len]
178 * in the btree given by cur.
179 */
180int /* error */
181xfs_alloc_lookup_ge(
182 struct xfs_btree_cur *cur, /* btree cursor */
183 xfs_agblock_t bno, /* starting block of extent */
184 xfs_extlen_t len, /* length of extent */
185 int *stat) /* success/failure */
186{
187 int error;
188
189 cur->bc_rec.a.ar_startblock = bno;
190 cur->bc_rec.a.ar_blockcount = len;
191 error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat);
192 cur->bc_ag.abt.active = (*stat == 1);
193 return error;
194}
195
196/*
197 * Lookup the first record less than or equal to [bno, len]
198 * in the btree given by cur.
199 */
200int /* error */
201xfs_alloc_lookup_le(
202 struct xfs_btree_cur *cur, /* btree cursor */
203 xfs_agblock_t bno, /* starting block of extent */
204 xfs_extlen_t len, /* length of extent */
205 int *stat) /* success/failure */
206{
207 int error;
208 cur->bc_rec.a.ar_startblock = bno;
209 cur->bc_rec.a.ar_blockcount = len;
210 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat);
211 cur->bc_ag.abt.active = (*stat == 1);
212 return error;
213}
214
215static inline bool
216xfs_alloc_cur_active(
217 struct xfs_btree_cur *cur)
218{
219 return cur && cur->bc_ag.abt.active;
220}
221
222/*
223 * Update the record referred to by cur to the value given
224 * by [bno, len].
225 * This either works (return 0) or gets an EFSCORRUPTED error.
226 */
227STATIC int /* error */
228xfs_alloc_update(
229 struct xfs_btree_cur *cur, /* btree cursor */
230 xfs_agblock_t bno, /* starting block of extent */
231 xfs_extlen_t len) /* length of extent */
232{
233 union xfs_btree_rec rec;
234
235 rec.alloc.ar_startblock = cpu_to_be32(bno);
236 rec.alloc.ar_blockcount = cpu_to_be32(len);
237 return xfs_btree_update(cur, &rec);
238}
239
240/*
241 * Get the data from the pointed-to record.
242 */
243int /* error */
244xfs_alloc_get_rec(
245 struct xfs_btree_cur *cur, /* btree cursor */
246 xfs_agblock_t *bno, /* output: starting block of extent */
247 xfs_extlen_t *len, /* output: length of extent */
248 int *stat) /* output: success/failure */
249{
250 struct xfs_mount *mp = cur->bc_mp;
251 struct xfs_perag *pag = cur->bc_ag.pag;
252 union xfs_btree_rec *rec;
253 int error;
254
255 error = xfs_btree_get_rec(cur, &rec, stat);
256 if (error || !(*stat))
257 return error;
258
259 *bno = be32_to_cpu(rec->alloc.ar_startblock);
260 *len = be32_to_cpu(rec->alloc.ar_blockcount);
261
262 if (*len == 0)
263 goto out_bad_rec;
264
265 /* check for valid extent range, including overflow */
266 if (!xfs_verify_agbext(pag, *bno, *len))
267 goto out_bad_rec;
268
269 return 0;
270
271out_bad_rec:
272 xfs_warn(mp,
273 "%s Freespace BTree record corruption in AG %d detected!",
274 cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size",
275 pag->pag_agno);
276 xfs_warn(mp,
277 "start block 0x%x block count 0x%x", *bno, *len);
278 return -EFSCORRUPTED;
279}
280
281/*
282 * Compute aligned version of the found extent.
283 * Takes alignment and min length into account.
284 */
285STATIC bool
286xfs_alloc_compute_aligned(
287 xfs_alloc_arg_t *args, /* allocation argument structure */
288 xfs_agblock_t foundbno, /* starting block in found extent */
289 xfs_extlen_t foundlen, /* length in found extent */
290 xfs_agblock_t *resbno, /* result block number */
291 xfs_extlen_t *reslen, /* result length */
292 unsigned *busy_gen)
293{
294 xfs_agblock_t bno = foundbno;
295 xfs_extlen_t len = foundlen;
296 xfs_extlen_t diff;
297 bool busy;
298
299 /* Trim busy sections out of found extent */
300 busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
301
302 /*
303 * If we have a largish extent that happens to start before min_agbno,
304 * see if we can shift it into range...
305 */
306 if (bno < args->min_agbno && bno + len > args->min_agbno) {
307 diff = args->min_agbno - bno;
308 if (len > diff) {
309 bno += diff;
310 len -= diff;
311 }
312 }
313
314 if (args->alignment > 1 && len >= args->minlen) {
315 xfs_agblock_t aligned_bno = roundup(bno, args->alignment);
316
317 diff = aligned_bno - bno;
318
319 *resbno = aligned_bno;
320 *reslen = diff >= len ? 0 : len - diff;
321 } else {
322 *resbno = bno;
323 *reslen = len;
324 }
325
326 return busy;
327}
328
329/*
330 * Compute best start block and diff for "near" allocations.
331 * freelen >= wantlen already checked by caller.
332 */
333STATIC xfs_extlen_t /* difference value (absolute) */
334xfs_alloc_compute_diff(
335 xfs_agblock_t wantbno, /* target starting block */
336 xfs_extlen_t wantlen, /* target length */
337 xfs_extlen_t alignment, /* target alignment */
338 int datatype, /* are we allocating data? */
339 xfs_agblock_t freebno, /* freespace's starting block */
340 xfs_extlen_t freelen, /* freespace's length */
341 xfs_agblock_t *newbnop) /* result: best start block from free */
342{
343 xfs_agblock_t freeend; /* end of freespace extent */
344 xfs_agblock_t newbno1; /* return block number */
345 xfs_agblock_t newbno2; /* other new block number */
346 xfs_extlen_t newlen1=0; /* length with newbno1 */
347 xfs_extlen_t newlen2=0; /* length with newbno2 */
348 xfs_agblock_t wantend; /* end of target extent */
349 bool userdata = datatype & XFS_ALLOC_USERDATA;
350
351 ASSERT(freelen >= wantlen);
352 freeend = freebno + freelen;
353 wantend = wantbno + wantlen;
354 /*
355 * We want to allocate from the start of a free extent if it is past
356 * the desired block or if we are allocating user data and the free
357 * extent is before desired block. The second case is there to allow
358 * for contiguous allocation from the remaining free space if the file
359 * grows in the short term.
360 */
361 if (freebno >= wantbno || (userdata && freeend < wantend)) {
362 if ((newbno1 = roundup(freebno, alignment)) >= freeend)
363 newbno1 = NULLAGBLOCK;
364 } else if (freeend >= wantend && alignment > 1) {
365 newbno1 = roundup(wantbno, alignment);
366 newbno2 = newbno1 - alignment;
367 if (newbno1 >= freeend)
368 newbno1 = NULLAGBLOCK;
369 else
370 newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
371 if (newbno2 < freebno)
372 newbno2 = NULLAGBLOCK;
373 else
374 newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
375 if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
376 if (newlen1 < newlen2 ||
377 (newlen1 == newlen2 &&
378 XFS_ABSDIFF(newbno1, wantbno) >
379 XFS_ABSDIFF(newbno2, wantbno)))
380 newbno1 = newbno2;
381 } else if (newbno2 != NULLAGBLOCK)
382 newbno1 = newbno2;
383 } else if (freeend >= wantend) {
384 newbno1 = wantbno;
385 } else if (alignment > 1) {
386 newbno1 = roundup(freeend - wantlen, alignment);
387 if (newbno1 > freeend - wantlen &&
388 newbno1 - alignment >= freebno)
389 newbno1 -= alignment;
390 else if (newbno1 >= freeend)
391 newbno1 = NULLAGBLOCK;
392 } else
393 newbno1 = freeend - wantlen;
394 *newbnop = newbno1;
395 return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
396}
397
398/*
399 * Fix up the length, based on mod and prod.
400 * len should be k * prod + mod for some k.
401 * If len is too small it is returned unchanged.
402 * If len hits maxlen it is left alone.
403 */
404STATIC void
405xfs_alloc_fix_len(
406 xfs_alloc_arg_t *args) /* allocation argument structure */
407{
408 xfs_extlen_t k;
409 xfs_extlen_t rlen;
410
411 ASSERT(args->mod < args->prod);
412 rlen = args->len;
413 ASSERT(rlen >= args->minlen);
414 ASSERT(rlen <= args->maxlen);
415 if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
416 (args->mod == 0 && rlen < args->prod))
417 return;
418 k = rlen % args->prod;
419 if (k == args->mod)
420 return;
421 if (k > args->mod)
422 rlen = rlen - (k - args->mod);
423 else
424 rlen = rlen - args->prod + (args->mod - k);
425 /* casts to (int) catch length underflows */
426 if ((int)rlen < (int)args->minlen)
427 return;
428 ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
429 ASSERT(rlen % args->prod == args->mod);
430 ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
431 rlen + args->minleft);
432 args->len = rlen;
433}
434
435/*
436 * Update the two btrees, logically removing from freespace the extent
437 * starting at rbno, rlen blocks. The extent is contained within the
438 * actual (current) free extent fbno for flen blocks.
439 * Flags are passed in indicating whether the cursors are set to the
440 * relevant records.
441 */
442STATIC int /* error code */
443xfs_alloc_fixup_trees(
444 struct xfs_btree_cur *cnt_cur, /* cursor for by-size btree */
445 struct xfs_btree_cur *bno_cur, /* cursor for by-block btree */
446 xfs_agblock_t fbno, /* starting block of free extent */
447 xfs_extlen_t flen, /* length of free extent */
448 xfs_agblock_t rbno, /* starting block of returned extent */
449 xfs_extlen_t rlen, /* length of returned extent */
450 int flags) /* flags, XFSA_FIXUP_... */
451{
452 int error; /* error code */
453 int i; /* operation results */
454 xfs_agblock_t nfbno1; /* first new free startblock */
455 xfs_agblock_t nfbno2; /* second new free startblock */
456 xfs_extlen_t nflen1=0; /* first new free length */
457 xfs_extlen_t nflen2=0; /* second new free length */
458 struct xfs_mount *mp;
459
460 mp = cnt_cur->bc_mp;
461
462 /*
463 * Look up the record in the by-size tree if necessary.
464 */
465 if (flags & XFSA_FIXUP_CNT_OK) {
466#ifdef DEBUG
467 if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
468 return error;
469 if (XFS_IS_CORRUPT(mp,
470 i != 1 ||
471 nfbno1 != fbno ||
472 nflen1 != flen))
473 return -EFSCORRUPTED;
474#endif
475 } else {
476 if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
477 return error;
478 if (XFS_IS_CORRUPT(mp, i != 1))
479 return -EFSCORRUPTED;
480 }
481 /*
482 * Look up the record in the by-block tree if necessary.
483 */
484 if (flags & XFSA_FIXUP_BNO_OK) {
485#ifdef DEBUG
486 if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
487 return error;
488 if (XFS_IS_CORRUPT(mp,
489 i != 1 ||
490 nfbno1 != fbno ||
491 nflen1 != flen))
492 return -EFSCORRUPTED;
493#endif
494 } else {
495 if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
496 return error;
497 if (XFS_IS_CORRUPT(mp, i != 1))
498 return -EFSCORRUPTED;
499 }
500
501#ifdef DEBUG
502 if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
503 struct xfs_btree_block *bnoblock;
504 struct xfs_btree_block *cntblock;
505
506 bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
507 cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
508
509 if (XFS_IS_CORRUPT(mp,
510 bnoblock->bb_numrecs !=
511 cntblock->bb_numrecs))
512 return -EFSCORRUPTED;
513 }
514#endif
515
516 /*
517 * Deal with all four cases: the allocated record is contained
518 * within the freespace record, so we can have new freespace
519 * at either (or both) end, or no freespace remaining.
520 */
521 if (rbno == fbno && rlen == flen)
522 nfbno1 = nfbno2 = NULLAGBLOCK;
523 else if (rbno == fbno) {
524 nfbno1 = rbno + rlen;
525 nflen1 = flen - rlen;
526 nfbno2 = NULLAGBLOCK;
527 } else if (rbno + rlen == fbno + flen) {
528 nfbno1 = fbno;
529 nflen1 = flen - rlen;
530 nfbno2 = NULLAGBLOCK;
531 } else {
532 nfbno1 = fbno;
533 nflen1 = rbno - fbno;
534 nfbno2 = rbno + rlen;
535 nflen2 = (fbno + flen) - nfbno2;
536 }
537 /*
538 * Delete the entry from the by-size btree.
539 */
540 if ((error = xfs_btree_delete(cnt_cur, &i)))
541 return error;
542 if (XFS_IS_CORRUPT(mp, i != 1))
543 return -EFSCORRUPTED;
544 /*
545 * Add new by-size btree entry(s).
546 */
547 if (nfbno1 != NULLAGBLOCK) {
548 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
549 return error;
550 if (XFS_IS_CORRUPT(mp, i != 0))
551 return -EFSCORRUPTED;
552 if ((error = xfs_btree_insert(cnt_cur, &i)))
553 return error;
554 if (XFS_IS_CORRUPT(mp, i != 1))
555 return -EFSCORRUPTED;
556 }
557 if (nfbno2 != NULLAGBLOCK) {
558 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
559 return error;
560 if (XFS_IS_CORRUPT(mp, i != 0))
561 return -EFSCORRUPTED;
562 if ((error = xfs_btree_insert(cnt_cur, &i)))
563 return error;
564 if (XFS_IS_CORRUPT(mp, i != 1))
565 return -EFSCORRUPTED;
566 }
567 /*
568 * Fix up the by-block btree entry(s).
569 */
570 if (nfbno1 == NULLAGBLOCK) {
571 /*
572 * No remaining freespace, just delete the by-block tree entry.
573 */
574 if ((error = xfs_btree_delete(bno_cur, &i)))
575 return error;
576 if (XFS_IS_CORRUPT(mp, i != 1))
577 return -EFSCORRUPTED;
578 } else {
579 /*
580 * Update the by-block entry to start later|be shorter.
581 */
582 if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
583 return error;
584 }
585 if (nfbno2 != NULLAGBLOCK) {
586 /*
587 * 2 resulting free entries, need to add one.
588 */
589 if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
590 return error;
591 if (XFS_IS_CORRUPT(mp, i != 0))
592 return -EFSCORRUPTED;
593 if ((error = xfs_btree_insert(bno_cur, &i)))
594 return error;
595 if (XFS_IS_CORRUPT(mp, i != 1))
596 return -EFSCORRUPTED;
597 }
598 return 0;
599}
600
601static xfs_failaddr_t
602xfs_agfl_verify(
603 struct xfs_buf *bp)
604{
605 struct xfs_mount *mp = bp->b_mount;
606 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
607 __be32 *agfl_bno = xfs_buf_to_agfl_bno(bp);
608 int i;
609
610 /*
611 * There is no verification of non-crc AGFLs because mkfs does not
612 * initialise the AGFL to zero or NULL. Hence the only valid part of the
613 * AGFL is what the AGF says is active. We can't get to the AGF, so we
614 * can't verify just those entries are valid.
615 */
616 if (!xfs_has_crc(mp))
617 return NULL;
618
619 if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
620 return __this_address;
621 if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
622 return __this_address;
623 /*
624 * during growfs operations, the perag is not fully initialised,
625 * so we can't use it for any useful checking. growfs ensures we can't
626 * use it by using uncached buffers that don't have the perag attached
627 * so we can detect and avoid this problem.
628 */
629 if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
630 return __this_address;
631
632 for (i = 0; i < xfs_agfl_size(mp); i++) {
633 if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
634 be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
635 return __this_address;
636 }
637
638 if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
639 return __this_address;
640 return NULL;
641}
642
643static void
644xfs_agfl_read_verify(
645 struct xfs_buf *bp)
646{
647 struct xfs_mount *mp = bp->b_mount;
648 xfs_failaddr_t fa;
649
650 /*
651 * There is no verification of non-crc AGFLs because mkfs does not
652 * initialise the AGFL to zero or NULL. Hence the only valid part of the
653 * AGFL is what the AGF says is active. We can't get to the AGF, so we
654 * can't verify just those entries are valid.
655 */
656 if (!xfs_has_crc(mp))
657 return;
658
659 if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
660 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
661 else {
662 fa = xfs_agfl_verify(bp);
663 if (fa)
664 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
665 }
666}
667
668static void
669xfs_agfl_write_verify(
670 struct xfs_buf *bp)
671{
672 struct xfs_mount *mp = bp->b_mount;
673 struct xfs_buf_log_item *bip = bp->b_log_item;
674 xfs_failaddr_t fa;
675
676 /* no verification of non-crc AGFLs */
677 if (!xfs_has_crc(mp))
678 return;
679
680 fa = xfs_agfl_verify(bp);
681 if (fa) {
682 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
683 return;
684 }
685
686 if (bip)
687 XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
688
689 xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
690}
691
692const struct xfs_buf_ops xfs_agfl_buf_ops = {
693 .name = "xfs_agfl",
694 .magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
695 .verify_read = xfs_agfl_read_verify,
696 .verify_write = xfs_agfl_write_verify,
697 .verify_struct = xfs_agfl_verify,
698};
699
700/*
701 * Read in the allocation group free block array.
702 */
703int
704xfs_alloc_read_agfl(
705 struct xfs_perag *pag,
706 struct xfs_trans *tp,
707 struct xfs_buf **bpp)
708{
709 struct xfs_mount *mp = pag->pag_mount;
710 struct xfs_buf *bp;
711 int error;
712
713 error = xfs_trans_read_buf(
714 mp, tp, mp->m_ddev_targp,
715 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)),
716 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
717 if (error)
718 return error;
719 xfs_buf_set_ref(bp, XFS_AGFL_REF);
720 *bpp = bp;
721 return 0;
722}
723
724STATIC int
725xfs_alloc_update_counters(
726 struct xfs_trans *tp,
727 struct xfs_buf *agbp,
728 long len)
729{
730 struct xfs_agf *agf = agbp->b_addr;
731
732 agbp->b_pag->pagf_freeblks += len;
733 be32_add_cpu(&agf->agf_freeblks, len);
734
735 if (unlikely(be32_to_cpu(agf->agf_freeblks) >
736 be32_to_cpu(agf->agf_length))) {
737 xfs_buf_mark_corrupt(agbp);
738 return -EFSCORRUPTED;
739 }
740
741 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
742 return 0;
743}
744
745/*
746 * Block allocation algorithm and data structures.
747 */
748struct xfs_alloc_cur {
749 struct xfs_btree_cur *cnt; /* btree cursors */
750 struct xfs_btree_cur *bnolt;
751 struct xfs_btree_cur *bnogt;
752 xfs_extlen_t cur_len;/* current search length */
753 xfs_agblock_t rec_bno;/* extent startblock */
754 xfs_extlen_t rec_len;/* extent length */
755 xfs_agblock_t bno; /* alloc bno */
756 xfs_extlen_t len; /* alloc len */
757 xfs_extlen_t diff; /* diff from search bno */
758 unsigned int busy_gen;/* busy state */
759 bool busy;
760};
761
762/*
763 * Set up cursors, etc. in the extent allocation cursor. This function can be
764 * called multiple times to reset an initialized structure without having to
765 * reallocate cursors.
766 */
767static int
768xfs_alloc_cur_setup(
769 struct xfs_alloc_arg *args,
770 struct xfs_alloc_cur *acur)
771{
772 int error;
773 int i;
774
775 ASSERT(args->alignment == 1 || args->type != XFS_ALLOCTYPE_THIS_BNO);
776
777 acur->cur_len = args->maxlen;
778 acur->rec_bno = 0;
779 acur->rec_len = 0;
780 acur->bno = 0;
781 acur->len = 0;
782 acur->diff = -1;
783 acur->busy = false;
784 acur->busy_gen = 0;
785
786 /*
787 * Perform an initial cntbt lookup to check for availability of maxlen
788 * extents. If this fails, we'll return -ENOSPC to signal the caller to
789 * attempt a small allocation.
790 */
791 if (!acur->cnt)
792 acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp,
793 args->agbp, args->pag, XFS_BTNUM_CNT);
794 error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
795 if (error)
796 return error;
797
798 /*
799 * Allocate the bnobt left and right search cursors.
800 */
801 if (!acur->bnolt)
802 acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp,
803 args->agbp, args->pag, XFS_BTNUM_BNO);
804 if (!acur->bnogt)
805 acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp,
806 args->agbp, args->pag, XFS_BTNUM_BNO);
807 return i == 1 ? 0 : -ENOSPC;
808}
809
810static void
811xfs_alloc_cur_close(
812 struct xfs_alloc_cur *acur,
813 bool error)
814{
815 int cur_error = XFS_BTREE_NOERROR;
816
817 if (error)
818 cur_error = XFS_BTREE_ERROR;
819
820 if (acur->cnt)
821 xfs_btree_del_cursor(acur->cnt, cur_error);
822 if (acur->bnolt)
823 xfs_btree_del_cursor(acur->bnolt, cur_error);
824 if (acur->bnogt)
825 xfs_btree_del_cursor(acur->bnogt, cur_error);
826 acur->cnt = acur->bnolt = acur->bnogt = NULL;
827}
828
829/*
830 * Check an extent for allocation and track the best available candidate in the
831 * allocation structure. The cursor is deactivated if it has entered an out of
832 * range state based on allocation arguments. Optionally return the extent
833 * extent geometry and allocation status if requested by the caller.
834 */
835static int
836xfs_alloc_cur_check(
837 struct xfs_alloc_arg *args,
838 struct xfs_alloc_cur *acur,
839 struct xfs_btree_cur *cur,
840 int *new)
841{
842 int error, i;
843 xfs_agblock_t bno, bnoa, bnew;
844 xfs_extlen_t len, lena, diff = -1;
845 bool busy;
846 unsigned busy_gen = 0;
847 bool deactivate = false;
848 bool isbnobt = cur->bc_btnum == XFS_BTNUM_BNO;
849
850 *new = 0;
851
852 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
853 if (error)
854 return error;
855 if (XFS_IS_CORRUPT(args->mp, i != 1))
856 return -EFSCORRUPTED;
857
858 /*
859 * Check minlen and deactivate a cntbt cursor if out of acceptable size
860 * range (i.e., walking backwards looking for a minlen extent).
861 */
862 if (len < args->minlen) {
863 deactivate = !isbnobt;
864 goto out;
865 }
866
867 busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
868 &busy_gen);
869 acur->busy |= busy;
870 if (busy)
871 acur->busy_gen = busy_gen;
872 /* deactivate a bnobt cursor outside of locality range */
873 if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
874 deactivate = isbnobt;
875 goto out;
876 }
877 if (lena < args->minlen)
878 goto out;
879
880 args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
881 xfs_alloc_fix_len(args);
882 ASSERT(args->len >= args->minlen);
883 if (args->len < acur->len)
884 goto out;
885
886 /*
887 * We have an aligned record that satisfies minlen and beats or matches
888 * the candidate extent size. Compare locality for near allocation mode.
889 */
890 ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO);
891 diff = xfs_alloc_compute_diff(args->agbno, args->len,
892 args->alignment, args->datatype,
893 bnoa, lena, &bnew);
894 if (bnew == NULLAGBLOCK)
895 goto out;
896
897 /*
898 * Deactivate a bnobt cursor with worse locality than the current best.
899 */
900 if (diff > acur->diff) {
901 deactivate = isbnobt;
902 goto out;
903 }
904
905 ASSERT(args->len > acur->len ||
906 (args->len == acur->len && diff <= acur->diff));
907 acur->rec_bno = bno;
908 acur->rec_len = len;
909 acur->bno = bnew;
910 acur->len = args->len;
911 acur->diff = diff;
912 *new = 1;
913
914 /*
915 * We're done if we found a perfect allocation. This only deactivates
916 * the current cursor, but this is just an optimization to terminate a
917 * cntbt search that otherwise runs to the edge of the tree.
918 */
919 if (acur->diff == 0 && acur->len == args->maxlen)
920 deactivate = true;
921out:
922 if (deactivate)
923 cur->bc_ag.abt.active = false;
924 trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff,
925 *new);
926 return 0;
927}
928
929/*
930 * Complete an allocation of a candidate extent. Remove the extent from both
931 * trees and update the args structure.
932 */
933STATIC int
934xfs_alloc_cur_finish(
935 struct xfs_alloc_arg *args,
936 struct xfs_alloc_cur *acur)
937{
938 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
939 int error;
940
941 ASSERT(acur->cnt && acur->bnolt);
942 ASSERT(acur->bno >= acur->rec_bno);
943 ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
944 ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
945
946 error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
947 acur->rec_len, acur->bno, acur->len, 0);
948 if (error)
949 return error;
950
951 args->agbno = acur->bno;
952 args->len = acur->len;
953 args->wasfromfl = 0;
954
955 trace_xfs_alloc_cur(args);
956 return 0;
957}
958
959/*
960 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
961 * bno optimized lookup to search for extents with ideal size and locality.
962 */
963STATIC int
964xfs_alloc_cntbt_iter(
965 struct xfs_alloc_arg *args,
966 struct xfs_alloc_cur *acur)
967{
968 struct xfs_btree_cur *cur = acur->cnt;
969 xfs_agblock_t bno;
970 xfs_extlen_t len, cur_len;
971 int error;
972 int i;
973
974 if (!xfs_alloc_cur_active(cur))
975 return 0;
976
977 /* locality optimized lookup */
978 cur_len = acur->cur_len;
979 error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
980 if (error)
981 return error;
982 if (i == 0)
983 return 0;
984 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
985 if (error)
986 return error;
987
988 /* check the current record and update search length from it */
989 error = xfs_alloc_cur_check(args, acur, cur, &i);
990 if (error)
991 return error;
992 ASSERT(len >= acur->cur_len);
993 acur->cur_len = len;
994
995 /*
996 * We looked up the first record >= [agbno, len] above. The agbno is a
997 * secondary key and so the current record may lie just before or after
998 * agbno. If it is past agbno, check the previous record too so long as
999 * the length matches as it may be closer. Don't check a smaller record
1000 * because that could deactivate our cursor.
1001 */
1002 if (bno > args->agbno) {
1003 error = xfs_btree_decrement(cur, 0, &i);
1004 if (!error && i) {
1005 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1006 if (!error && i && len == acur->cur_len)
1007 error = xfs_alloc_cur_check(args, acur, cur,
1008 &i);
1009 }
1010 if (error)
1011 return error;
1012 }
1013
1014 /*
1015 * Increment the search key until we find at least one allocation
1016 * candidate or if the extent we found was larger. Otherwise, double the
1017 * search key to optimize the search. Efficiency is more important here
1018 * than absolute best locality.
1019 */
1020 cur_len <<= 1;
1021 if (!acur->len || acur->cur_len >= cur_len)
1022 acur->cur_len++;
1023 else
1024 acur->cur_len = cur_len;
1025
1026 return error;
1027}
1028
1029/*
1030 * Deal with the case where only small freespaces remain. Either return the
1031 * contents of the last freespace record, or allocate space from the freelist if
1032 * there is nothing in the tree.
1033 */
1034STATIC int /* error */
1035xfs_alloc_ag_vextent_small(
1036 struct xfs_alloc_arg *args, /* allocation argument structure */
1037 struct xfs_btree_cur *ccur, /* optional by-size cursor */
1038 xfs_agblock_t *fbnop, /* result block number */
1039 xfs_extlen_t *flenp, /* result length */
1040 int *stat) /* status: 0-freelist, 1-normal/none */
1041{
1042 struct xfs_agf *agf = args->agbp->b_addr;
1043 int error = 0;
1044 xfs_agblock_t fbno = NULLAGBLOCK;
1045 xfs_extlen_t flen = 0;
1046 int i = 0;
1047
1048 /*
1049 * If a cntbt cursor is provided, try to allocate the largest record in
1050 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1051 * allocation. Make sure to respect minleft even when pulling from the
1052 * freelist.
1053 */
1054 if (ccur)
1055 error = xfs_btree_decrement(ccur, 0, &i);
1056 if (error)
1057 goto error;
1058 if (i) {
1059 error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1060 if (error)
1061 goto error;
1062 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1063 error = -EFSCORRUPTED;
1064 goto error;
1065 }
1066 goto out;
1067 }
1068
1069 if (args->minlen != 1 || args->alignment != 1 ||
1070 args->resv == XFS_AG_RESV_AGFL ||
1071 be32_to_cpu(agf->agf_flcount) <= args->minleft)
1072 goto out;
1073
1074 error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1075 &fbno, 0);
1076 if (error)
1077 goto error;
1078 if (fbno == NULLAGBLOCK)
1079 goto out;
1080
1081 xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
1082 (args->datatype & XFS_ALLOC_NOBUSY));
1083
1084 if (args->datatype & XFS_ALLOC_USERDATA) {
1085 struct xfs_buf *bp;
1086
1087 error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1088 XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1089 args->mp->m_bsize, 0, &bp);
1090 if (error)
1091 goto error;
1092 xfs_trans_binval(args->tp, bp);
1093 }
1094 *fbnop = args->agbno = fbno;
1095 *flenp = args->len = 1;
1096 if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1097 error = -EFSCORRUPTED;
1098 goto error;
1099 }
1100 args->wasfromfl = 1;
1101 trace_xfs_alloc_small_freelist(args);
1102
1103 /*
1104 * If we're feeding an AGFL block to something that doesn't live in the
1105 * free space, we need to clear out the OWN_AG rmap.
1106 */
1107 error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1108 &XFS_RMAP_OINFO_AG);
1109 if (error)
1110 goto error;
1111
1112 *stat = 0;
1113 return 0;
1114
1115out:
1116 /*
1117 * Can't do the allocation, give up.
1118 */
1119 if (flen < args->minlen) {
1120 args->agbno = NULLAGBLOCK;
1121 trace_xfs_alloc_small_notenough(args);
1122 flen = 0;
1123 }
1124 *fbnop = fbno;
1125 *flenp = flen;
1126 *stat = 1;
1127 trace_xfs_alloc_small_done(args);
1128 return 0;
1129
1130error:
1131 trace_xfs_alloc_small_error(args);
1132 return error;
1133}
1134
1135/*
1136 * Allocate a variable extent in the allocation group agno.
1137 * Type and bno are used to determine where in the allocation group the
1138 * extent will start.
1139 * Extent's length (returned in *len) will be between minlen and maxlen,
1140 * and of the form k * prod + mod unless there's nothing that large.
1141 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1142 */
1143STATIC int /* error */
1144xfs_alloc_ag_vextent(
1145 xfs_alloc_arg_t *args) /* argument structure for allocation */
1146{
1147 int error=0;
1148
1149 ASSERT(args->minlen > 0);
1150 ASSERT(args->maxlen > 0);
1151 ASSERT(args->minlen <= args->maxlen);
1152 ASSERT(args->mod < args->prod);
1153 ASSERT(args->alignment > 0);
1154
1155 /*
1156 * Branch to correct routine based on the type.
1157 */
1158 args->wasfromfl = 0;
1159 switch (args->type) {
1160 case XFS_ALLOCTYPE_THIS_AG:
1161 error = xfs_alloc_ag_vextent_size(args);
1162 break;
1163 case XFS_ALLOCTYPE_NEAR_BNO:
1164 error = xfs_alloc_ag_vextent_near(args);
1165 break;
1166 case XFS_ALLOCTYPE_THIS_BNO:
1167 error = xfs_alloc_ag_vextent_exact(args);
1168 break;
1169 default:
1170 ASSERT(0);
1171 /* NOTREACHED */
1172 }
1173
1174 if (error || args->agbno == NULLAGBLOCK)
1175 return error;
1176
1177 ASSERT(args->len >= args->minlen);
1178 ASSERT(args->len <= args->maxlen);
1179 ASSERT(!args->wasfromfl || args->resv != XFS_AG_RESV_AGFL);
1180 ASSERT(args->agbno % args->alignment == 0);
1181
1182 /* if not file data, insert new block into the reverse map btree */
1183 if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
1184 error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
1185 args->agbno, args->len, &args->oinfo);
1186 if (error)
1187 return error;
1188 }
1189
1190 if (!args->wasfromfl) {
1191 error = xfs_alloc_update_counters(args->tp, args->agbp,
1192 -((long)(args->len)));
1193 if (error)
1194 return error;
1195
1196 ASSERT(!xfs_extent_busy_search(args->mp, args->pag,
1197 args->agbno, args->len));
1198 }
1199
1200 xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
1201
1202 XFS_STATS_INC(args->mp, xs_allocx);
1203 XFS_STATS_ADD(args->mp, xs_allocb, args->len);
1204 return error;
1205}
1206
1207/*
1208 * Allocate a variable extent at exactly agno/bno.
1209 * Extent's length (returned in *len) will be between minlen and maxlen,
1210 * and of the form k * prod + mod unless there's nothing that large.
1211 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1212 */
1213STATIC int /* error */
1214xfs_alloc_ag_vextent_exact(
1215 xfs_alloc_arg_t *args) /* allocation argument structure */
1216{
1217 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1218 struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1219 struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1220 int error;
1221 xfs_agblock_t fbno; /* start block of found extent */
1222 xfs_extlen_t flen; /* length of found extent */
1223 xfs_agblock_t tbno; /* start block of busy extent */
1224 xfs_extlen_t tlen; /* length of busy extent */
1225 xfs_agblock_t tend; /* end block of busy extent */
1226 int i; /* success/failure of operation */
1227 unsigned busy_gen;
1228
1229 ASSERT(args->alignment == 1);
1230
1231 /*
1232 * Allocate/initialize a cursor for the by-number freespace btree.
1233 */
1234 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1235 args->pag, XFS_BTNUM_BNO);
1236
1237 /*
1238 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1239 * Look for the closest free block <= bno, it must contain bno
1240 * if any free block does.
1241 */
1242 error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1243 if (error)
1244 goto error0;
1245 if (!i)
1246 goto not_found;
1247
1248 /*
1249 * Grab the freespace record.
1250 */
1251 error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1252 if (error)
1253 goto error0;
1254 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1255 error = -EFSCORRUPTED;
1256 goto error0;
1257 }
1258 ASSERT(fbno <= args->agbno);
1259
1260 /*
1261 * Check for overlapping busy extents.
1262 */
1263 tbno = fbno;
1264 tlen = flen;
1265 xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
1266
1267 /*
1268 * Give up if the start of the extent is busy, or the freespace isn't
1269 * long enough for the minimum request.
1270 */
1271 if (tbno > args->agbno)
1272 goto not_found;
1273 if (tlen < args->minlen)
1274 goto not_found;
1275 tend = tbno + tlen;
1276 if (tend < args->agbno + args->minlen)
1277 goto not_found;
1278
1279 /*
1280 * End of extent will be smaller of the freespace end and the
1281 * maximal requested end.
1282 *
1283 * Fix the length according to mod and prod if given.
1284 */
1285 args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1286 - args->agbno;
1287 xfs_alloc_fix_len(args);
1288 ASSERT(args->agbno + args->len <= tend);
1289
1290 /*
1291 * We are allocating agbno for args->len
1292 * Allocate/initialize a cursor for the by-size btree.
1293 */
1294 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1295 args->pag, XFS_BTNUM_CNT);
1296 ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
1297 error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1298 args->len, XFSA_FIXUP_BNO_OK);
1299 if (error) {
1300 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1301 goto error0;
1302 }
1303
1304 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1305 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1306
1307 args->wasfromfl = 0;
1308 trace_xfs_alloc_exact_done(args);
1309 return 0;
1310
1311not_found:
1312 /* Didn't find it, return null. */
1313 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1314 args->agbno = NULLAGBLOCK;
1315 trace_xfs_alloc_exact_notfound(args);
1316 return 0;
1317
1318error0:
1319 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1320 trace_xfs_alloc_exact_error(args);
1321 return error;
1322}
1323
1324/*
1325 * Search a given number of btree records in a given direction. Check each
1326 * record against the good extent we've already found.
1327 */
1328STATIC int
1329xfs_alloc_walk_iter(
1330 struct xfs_alloc_arg *args,
1331 struct xfs_alloc_cur *acur,
1332 struct xfs_btree_cur *cur,
1333 bool increment,
1334 bool find_one, /* quit on first candidate */
1335 int count, /* rec count (-1 for infinite) */
1336 int *stat)
1337{
1338 int error;
1339 int i;
1340
1341 *stat = 0;
1342
1343 /*
1344 * Search so long as the cursor is active or we find a better extent.
1345 * The cursor is deactivated if it extends beyond the range of the
1346 * current allocation candidate.
1347 */
1348 while (xfs_alloc_cur_active(cur) && count) {
1349 error = xfs_alloc_cur_check(args, acur, cur, &i);
1350 if (error)
1351 return error;
1352 if (i == 1) {
1353 *stat = 1;
1354 if (find_one)
1355 break;
1356 }
1357 if (!xfs_alloc_cur_active(cur))
1358 break;
1359
1360 if (increment)
1361 error = xfs_btree_increment(cur, 0, &i);
1362 else
1363 error = xfs_btree_decrement(cur, 0, &i);
1364 if (error)
1365 return error;
1366 if (i == 0)
1367 cur->bc_ag.abt.active = false;
1368
1369 if (count > 0)
1370 count--;
1371 }
1372
1373 return 0;
1374}
1375
1376/*
1377 * Search the by-bno and by-size btrees in parallel in search of an extent with
1378 * ideal locality based on the NEAR mode ->agbno locality hint.
1379 */
1380STATIC int
1381xfs_alloc_ag_vextent_locality(
1382 struct xfs_alloc_arg *args,
1383 struct xfs_alloc_cur *acur,
1384 int *stat)
1385{
1386 struct xfs_btree_cur *fbcur = NULL;
1387 int error;
1388 int i;
1389 bool fbinc;
1390
1391 ASSERT(acur->len == 0);
1392 ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO);
1393
1394 *stat = 0;
1395
1396 error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1397 if (error)
1398 return error;
1399 error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1400 if (error)
1401 return error;
1402 error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1403 if (error)
1404 return error;
1405
1406 /*
1407 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1408 * right and lookup the closest extent to the locality hint for each
1409 * extent size key in the cntbt. The entire search terminates
1410 * immediately on a bnobt hit because that means we've found best case
1411 * locality. Otherwise the search continues until the cntbt cursor runs
1412 * off the end of the tree. If no allocation candidate is found at this
1413 * point, give up on locality, walk backwards from the end of the cntbt
1414 * and take the first available extent.
1415 *
1416 * The parallel tree searches balance each other out to provide fairly
1417 * consistent performance for various situations. The bnobt search can
1418 * have pathological behavior in the worst case scenario of larger
1419 * allocation requests and fragmented free space. On the other hand, the
1420 * bnobt is able to satisfy most smaller allocation requests much more
1421 * quickly than the cntbt. The cntbt search can sift through fragmented
1422 * free space and sets of free extents for larger allocation requests
1423 * more quickly than the bnobt. Since the locality hint is just a hint
1424 * and we don't want to scan the entire bnobt for perfect locality, the
1425 * cntbt search essentially bounds the bnobt search such that we can
1426 * find good enough locality at reasonable performance in most cases.
1427 */
1428 while (xfs_alloc_cur_active(acur->bnolt) ||
1429 xfs_alloc_cur_active(acur->bnogt) ||
1430 xfs_alloc_cur_active(acur->cnt)) {
1431
1432 trace_xfs_alloc_cur_lookup(args);
1433
1434 /*
1435 * Search the bnobt left and right. In the case of a hit, finish
1436 * the search in the opposite direction and we're done.
1437 */
1438 error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1439 true, 1, &i);
1440 if (error)
1441 return error;
1442 if (i == 1) {
1443 trace_xfs_alloc_cur_left(args);
1444 fbcur = acur->bnogt;
1445 fbinc = true;
1446 break;
1447 }
1448 error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1449 1, &i);
1450 if (error)
1451 return error;
1452 if (i == 1) {
1453 trace_xfs_alloc_cur_right(args);
1454 fbcur = acur->bnolt;
1455 fbinc = false;
1456 break;
1457 }
1458
1459 /*
1460 * Check the extent with best locality based on the current
1461 * extent size search key and keep track of the best candidate.
1462 */
1463 error = xfs_alloc_cntbt_iter(args, acur);
1464 if (error)
1465 return error;
1466 if (!xfs_alloc_cur_active(acur->cnt)) {
1467 trace_xfs_alloc_cur_lookup_done(args);
1468 break;
1469 }
1470 }
1471
1472 /*
1473 * If we failed to find anything due to busy extents, return empty
1474 * handed so the caller can flush and retry. If no busy extents were
1475 * found, walk backwards from the end of the cntbt as a last resort.
1476 */
1477 if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1478 error = xfs_btree_decrement(acur->cnt, 0, &i);
1479 if (error)
1480 return error;
1481 if (i) {
1482 acur->cnt->bc_ag.abt.active = true;
1483 fbcur = acur->cnt;
1484 fbinc = false;
1485 }
1486 }
1487
1488 /*
1489 * Search in the opposite direction for a better entry in the case of
1490 * a bnobt hit or walk backwards from the end of the cntbt.
1491 */
1492 if (fbcur) {
1493 error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1494 &i);
1495 if (error)
1496 return error;
1497 }
1498
1499 if (acur->len)
1500 *stat = 1;
1501
1502 return 0;
1503}
1504
1505/* Check the last block of the cnt btree for allocations. */
1506static int
1507xfs_alloc_ag_vextent_lastblock(
1508 struct xfs_alloc_arg *args,
1509 struct xfs_alloc_cur *acur,
1510 xfs_agblock_t *bno,
1511 xfs_extlen_t *len,
1512 bool *allocated)
1513{
1514 int error;
1515 int i;
1516
1517#ifdef DEBUG
1518 /* Randomly don't execute the first algorithm. */
1519 if (get_random_u32_below(2))
1520 return 0;
1521#endif
1522
1523 /*
1524 * Start from the entry that lookup found, sequence through all larger
1525 * free blocks. If we're actually pointing at a record smaller than
1526 * maxlen, go to the start of this block, and skip all those smaller
1527 * than minlen.
1528 */
1529 if (*len || args->alignment > 1) {
1530 acur->cnt->bc_levels[0].ptr = 1;
1531 do {
1532 error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1533 if (error)
1534 return error;
1535 if (XFS_IS_CORRUPT(args->mp, i != 1))
1536 return -EFSCORRUPTED;
1537 if (*len >= args->minlen)
1538 break;
1539 error = xfs_btree_increment(acur->cnt, 0, &i);
1540 if (error)
1541 return error;
1542 } while (i);
1543 ASSERT(*len >= args->minlen);
1544 if (!i)
1545 return 0;
1546 }
1547
1548 error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1549 if (error)
1550 return error;
1551
1552 /*
1553 * It didn't work. We COULD be in a case where there's a good record
1554 * somewhere, so try again.
1555 */
1556 if (acur->len == 0)
1557 return 0;
1558
1559 trace_xfs_alloc_near_first(args);
1560 *allocated = true;
1561 return 0;
1562}
1563
1564/*
1565 * Allocate a variable extent near bno in the allocation group agno.
1566 * Extent's length (returned in len) will be between minlen and maxlen,
1567 * and of the form k * prod + mod unless there's nothing that large.
1568 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1569 */
1570STATIC int
1571xfs_alloc_ag_vextent_near(
1572 struct xfs_alloc_arg *args)
1573{
1574 struct xfs_alloc_cur acur = {};
1575 int error; /* error code */
1576 int i; /* result code, temporary */
1577 xfs_agblock_t bno;
1578 xfs_extlen_t len;
1579
1580 /* handle uninitialized agbno range so caller doesn't have to */
1581 if (!args->min_agbno && !args->max_agbno)
1582 args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1583 ASSERT(args->min_agbno <= args->max_agbno);
1584
1585 /* clamp agbno to the range if it's outside */
1586 if (args->agbno < args->min_agbno)
1587 args->agbno = args->min_agbno;
1588 if (args->agbno > args->max_agbno)
1589 args->agbno = args->max_agbno;
1590
1591restart:
1592 len = 0;
1593
1594 /*
1595 * Set up cursors and see if there are any free extents as big as
1596 * maxlen. If not, pick the last entry in the tree unless the tree is
1597 * empty.
1598 */
1599 error = xfs_alloc_cur_setup(args, &acur);
1600 if (error == -ENOSPC) {
1601 error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1602 &len, &i);
1603 if (error)
1604 goto out;
1605 if (i == 0 || len == 0) {
1606 trace_xfs_alloc_near_noentry(args);
1607 goto out;
1608 }
1609 ASSERT(i == 1);
1610 } else if (error) {
1611 goto out;
1612 }
1613
1614 /*
1615 * First algorithm.
1616 * If the requested extent is large wrt the freespaces available
1617 * in this a.g., then the cursor will be pointing to a btree entry
1618 * near the right edge of the tree. If it's in the last btree leaf
1619 * block, then we just examine all the entries in that block
1620 * that are big enough, and pick the best one.
1621 */
1622 if (xfs_btree_islastblock(acur.cnt, 0)) {
1623 bool allocated = false;
1624
1625 error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1626 &allocated);
1627 if (error)
1628 goto out;
1629 if (allocated)
1630 goto alloc_finish;
1631 }
1632
1633 /*
1634 * Second algorithm. Combined cntbt and bnobt search to find ideal
1635 * locality.
1636 */
1637 error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1638 if (error)
1639 goto out;
1640
1641 /*
1642 * If we couldn't get anything, give up.
1643 */
1644 if (!acur.len) {
1645 if (acur.busy) {
1646 trace_xfs_alloc_near_busy(args);
1647 xfs_extent_busy_flush(args->mp, args->pag,
1648 acur.busy_gen);
1649 goto restart;
1650 }
1651 trace_xfs_alloc_size_neither(args);
1652 args->agbno = NULLAGBLOCK;
1653 goto out;
1654 }
1655
1656alloc_finish:
1657 /* fix up btrees on a successful allocation */
1658 error = xfs_alloc_cur_finish(args, &acur);
1659
1660out:
1661 xfs_alloc_cur_close(&acur, error);
1662 return error;
1663}
1664
1665/*
1666 * Allocate a variable extent anywhere in the allocation group agno.
1667 * Extent's length (returned in len) will be between minlen and maxlen,
1668 * and of the form k * prod + mod unless there's nothing that large.
1669 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1670 */
1671STATIC int /* error */
1672xfs_alloc_ag_vextent_size(
1673 xfs_alloc_arg_t *args) /* allocation argument structure */
1674{
1675 struct xfs_agf *agf = args->agbp->b_addr;
1676 struct xfs_btree_cur *bno_cur; /* cursor for bno btree */
1677 struct xfs_btree_cur *cnt_cur; /* cursor for cnt btree */
1678 int error; /* error result */
1679 xfs_agblock_t fbno; /* start of found freespace */
1680 xfs_extlen_t flen; /* length of found freespace */
1681 int i; /* temp status variable */
1682 xfs_agblock_t rbno; /* returned block number */
1683 xfs_extlen_t rlen; /* length of returned extent */
1684 bool busy;
1685 unsigned busy_gen;
1686
1687restart:
1688 /*
1689 * Allocate and initialize a cursor for the by-size btree.
1690 */
1691 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1692 args->pag, XFS_BTNUM_CNT);
1693 bno_cur = NULL;
1694
1695 /*
1696 * Look for an entry >= maxlen+alignment-1 blocks.
1697 */
1698 if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1699 args->maxlen + args->alignment - 1, &i)))
1700 goto error0;
1701
1702 /*
1703 * If none then we have to settle for a smaller extent. In the case that
1704 * there are no large extents, this will return the last entry in the
1705 * tree unless the tree is empty. In the case that there are only busy
1706 * large extents, this will return the largest small extent unless there
1707 * are no smaller extents available.
1708 */
1709 if (!i) {
1710 error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1711 &fbno, &flen, &i);
1712 if (error)
1713 goto error0;
1714 if (i == 0 || flen == 0) {
1715 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1716 trace_xfs_alloc_size_noentry(args);
1717 return 0;
1718 }
1719 ASSERT(i == 1);
1720 busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1721 &rlen, &busy_gen);
1722 } else {
1723 /*
1724 * Search for a non-busy extent that is large enough.
1725 */
1726 for (;;) {
1727 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1728 if (error)
1729 goto error0;
1730 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1731 error = -EFSCORRUPTED;
1732 goto error0;
1733 }
1734
1735 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1736 &rbno, &rlen, &busy_gen);
1737
1738 if (rlen >= args->maxlen)
1739 break;
1740
1741 error = xfs_btree_increment(cnt_cur, 0, &i);
1742 if (error)
1743 goto error0;
1744 if (i == 0) {
1745 /*
1746 * Our only valid extents must have been busy.
1747 * Make it unbusy by forcing the log out and
1748 * retrying.
1749 */
1750 xfs_btree_del_cursor(cnt_cur,
1751 XFS_BTREE_NOERROR);
1752 trace_xfs_alloc_size_busy(args);
1753 xfs_extent_busy_flush(args->mp,
1754 args->pag, busy_gen);
1755 goto restart;
1756 }
1757 }
1758 }
1759
1760 /*
1761 * In the first case above, we got the last entry in the
1762 * by-size btree. Now we check to see if the space hits maxlen
1763 * once aligned; if not, we search left for something better.
1764 * This can't happen in the second case above.
1765 */
1766 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1767 if (XFS_IS_CORRUPT(args->mp,
1768 rlen != 0 &&
1769 (rlen > flen ||
1770 rbno + rlen > fbno + flen))) {
1771 error = -EFSCORRUPTED;
1772 goto error0;
1773 }
1774 if (rlen < args->maxlen) {
1775 xfs_agblock_t bestfbno;
1776 xfs_extlen_t bestflen;
1777 xfs_agblock_t bestrbno;
1778 xfs_extlen_t bestrlen;
1779
1780 bestrlen = rlen;
1781 bestrbno = rbno;
1782 bestflen = flen;
1783 bestfbno = fbno;
1784 for (;;) {
1785 if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1786 goto error0;
1787 if (i == 0)
1788 break;
1789 if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1790 &i)))
1791 goto error0;
1792 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1793 error = -EFSCORRUPTED;
1794 goto error0;
1795 }
1796 if (flen < bestrlen)
1797 break;
1798 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1799 &rbno, &rlen, &busy_gen);
1800 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1801 if (XFS_IS_CORRUPT(args->mp,
1802 rlen != 0 &&
1803 (rlen > flen ||
1804 rbno + rlen > fbno + flen))) {
1805 error = -EFSCORRUPTED;
1806 goto error0;
1807 }
1808 if (rlen > bestrlen) {
1809 bestrlen = rlen;
1810 bestrbno = rbno;
1811 bestflen = flen;
1812 bestfbno = fbno;
1813 if (rlen == args->maxlen)
1814 break;
1815 }
1816 }
1817 if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1818 &i)))
1819 goto error0;
1820 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1821 error = -EFSCORRUPTED;
1822 goto error0;
1823 }
1824 rlen = bestrlen;
1825 rbno = bestrbno;
1826 flen = bestflen;
1827 fbno = bestfbno;
1828 }
1829 args->wasfromfl = 0;
1830 /*
1831 * Fix up the length.
1832 */
1833 args->len = rlen;
1834 if (rlen < args->minlen) {
1835 if (busy) {
1836 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1837 trace_xfs_alloc_size_busy(args);
1838 xfs_extent_busy_flush(args->mp, args->pag, busy_gen);
1839 goto restart;
1840 }
1841 goto out_nominleft;
1842 }
1843 xfs_alloc_fix_len(args);
1844
1845 rlen = args->len;
1846 if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1847 error = -EFSCORRUPTED;
1848 goto error0;
1849 }
1850 /*
1851 * Allocate and initialize a cursor for the by-block tree.
1852 */
1853 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1854 args->pag, XFS_BTNUM_BNO);
1855 if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
1856 rbno, rlen, XFSA_FIXUP_CNT_OK)))
1857 goto error0;
1858 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1859 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1860 cnt_cur = bno_cur = NULL;
1861 args->len = rlen;
1862 args->agbno = rbno;
1863 if (XFS_IS_CORRUPT(args->mp,
1864 args->agbno + args->len >
1865 be32_to_cpu(agf->agf_length))) {
1866 error = -EFSCORRUPTED;
1867 goto error0;
1868 }
1869 trace_xfs_alloc_size_done(args);
1870 return 0;
1871
1872error0:
1873 trace_xfs_alloc_size_error(args);
1874 if (cnt_cur)
1875 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1876 if (bno_cur)
1877 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1878 return error;
1879
1880out_nominleft:
1881 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1882 trace_xfs_alloc_size_nominleft(args);
1883 args->agbno = NULLAGBLOCK;
1884 return 0;
1885}
1886
1887/*
1888 * Free the extent starting at agno/bno for length.
1889 */
1890STATIC int
1891xfs_free_ag_extent(
1892 struct xfs_trans *tp,
1893 struct xfs_buf *agbp,
1894 xfs_agnumber_t agno,
1895 xfs_agblock_t bno,
1896 xfs_extlen_t len,
1897 const struct xfs_owner_info *oinfo,
1898 enum xfs_ag_resv_type type)
1899{
1900 struct xfs_mount *mp;
1901 struct xfs_btree_cur *bno_cur;
1902 struct xfs_btree_cur *cnt_cur;
1903 xfs_agblock_t gtbno; /* start of right neighbor */
1904 xfs_extlen_t gtlen; /* length of right neighbor */
1905 xfs_agblock_t ltbno; /* start of left neighbor */
1906 xfs_extlen_t ltlen; /* length of left neighbor */
1907 xfs_agblock_t nbno; /* new starting block of freesp */
1908 xfs_extlen_t nlen; /* new length of freespace */
1909 int haveleft; /* have a left neighbor */
1910 int haveright; /* have a right neighbor */
1911 int i;
1912 int error;
1913 struct xfs_perag *pag = agbp->b_pag;
1914
1915 bno_cur = cnt_cur = NULL;
1916 mp = tp->t_mountp;
1917
1918 if (!xfs_rmap_should_skip_owner_update(oinfo)) {
1919 error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
1920 if (error)
1921 goto error0;
1922 }
1923
1924 /*
1925 * Allocate and initialize a cursor for the by-block btree.
1926 */
1927 bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO);
1928 /*
1929 * Look for a neighboring block on the left (lower block numbers)
1930 * that is contiguous with this space.
1931 */
1932 if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
1933 goto error0;
1934 if (haveleft) {
1935 /*
1936 * There is a block to our left.
1937 */
1938 if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i)))
1939 goto error0;
1940 if (XFS_IS_CORRUPT(mp, i != 1)) {
1941 error = -EFSCORRUPTED;
1942 goto error0;
1943 }
1944 /*
1945 * It's not contiguous, though.
1946 */
1947 if (ltbno + ltlen < bno)
1948 haveleft = 0;
1949 else {
1950 /*
1951 * If this failure happens the request to free this
1952 * space was invalid, it's (partly) already free.
1953 * Very bad.
1954 */
1955 if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
1956 error = -EFSCORRUPTED;
1957 goto error0;
1958 }
1959 }
1960 }
1961 /*
1962 * Look for a neighboring block on the right (higher block numbers)
1963 * that is contiguous with this space.
1964 */
1965 if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
1966 goto error0;
1967 if (haveright) {
1968 /*
1969 * There is a block to our right.
1970 */
1971 if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i)))
1972 goto error0;
1973 if (XFS_IS_CORRUPT(mp, i != 1)) {
1974 error = -EFSCORRUPTED;
1975 goto error0;
1976 }
1977 /*
1978 * It's not contiguous, though.
1979 */
1980 if (bno + len < gtbno)
1981 haveright = 0;
1982 else {
1983 /*
1984 * If this failure happens the request to free this
1985 * space was invalid, it's (partly) already free.
1986 * Very bad.
1987 */
1988 if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
1989 error = -EFSCORRUPTED;
1990 goto error0;
1991 }
1992 }
1993 }
1994 /*
1995 * Now allocate and initialize a cursor for the by-size tree.
1996 */
1997 cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT);
1998 /*
1999 * Have both left and right contiguous neighbors.
2000 * Merge all three into a single free block.
2001 */
2002 if (haveleft && haveright) {
2003 /*
2004 * Delete the old by-size entry on the left.
2005 */
2006 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2007 goto error0;
2008 if (XFS_IS_CORRUPT(mp, i != 1)) {
2009 error = -EFSCORRUPTED;
2010 goto error0;
2011 }
2012 if ((error = xfs_btree_delete(cnt_cur, &i)))
2013 goto error0;
2014 if (XFS_IS_CORRUPT(mp, i != 1)) {
2015 error = -EFSCORRUPTED;
2016 goto error0;
2017 }
2018 /*
2019 * Delete the old by-size entry on the right.
2020 */
2021 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2022 goto error0;
2023 if (XFS_IS_CORRUPT(mp, i != 1)) {
2024 error = -EFSCORRUPTED;
2025 goto error0;
2026 }
2027 if ((error = xfs_btree_delete(cnt_cur, &i)))
2028 goto error0;
2029 if (XFS_IS_CORRUPT(mp, i != 1)) {
2030 error = -EFSCORRUPTED;
2031 goto error0;
2032 }
2033 /*
2034 * Delete the old by-block entry for the right block.
2035 */
2036 if ((error = xfs_btree_delete(bno_cur, &i)))
2037 goto error0;
2038 if (XFS_IS_CORRUPT(mp, i != 1)) {
2039 error = -EFSCORRUPTED;
2040 goto error0;
2041 }
2042 /*
2043 * Move the by-block cursor back to the left neighbor.
2044 */
2045 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2046 goto error0;
2047 if (XFS_IS_CORRUPT(mp, i != 1)) {
2048 error = -EFSCORRUPTED;
2049 goto error0;
2050 }
2051#ifdef DEBUG
2052 /*
2053 * Check that this is the right record: delete didn't
2054 * mangle the cursor.
2055 */
2056 {
2057 xfs_agblock_t xxbno;
2058 xfs_extlen_t xxlen;
2059
2060 if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2061 &i)))
2062 goto error0;
2063 if (XFS_IS_CORRUPT(mp,
2064 i != 1 ||
2065 xxbno != ltbno ||
2066 xxlen != ltlen)) {
2067 error = -EFSCORRUPTED;
2068 goto error0;
2069 }
2070 }
2071#endif
2072 /*
2073 * Update remaining by-block entry to the new, joined block.
2074 */
2075 nbno = ltbno;
2076 nlen = len + ltlen + gtlen;
2077 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2078 goto error0;
2079 }
2080 /*
2081 * Have only a left contiguous neighbor.
2082 * Merge it together with the new freespace.
2083 */
2084 else if (haveleft) {
2085 /*
2086 * Delete the old by-size entry on the left.
2087 */
2088 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2089 goto error0;
2090 if (XFS_IS_CORRUPT(mp, i != 1)) {
2091 error = -EFSCORRUPTED;
2092 goto error0;
2093 }
2094 if ((error = xfs_btree_delete(cnt_cur, &i)))
2095 goto error0;
2096 if (XFS_IS_CORRUPT(mp, i != 1)) {
2097 error = -EFSCORRUPTED;
2098 goto error0;
2099 }
2100 /*
2101 * Back up the by-block cursor to the left neighbor, and
2102 * update its length.
2103 */
2104 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2105 goto error0;
2106 if (XFS_IS_CORRUPT(mp, i != 1)) {
2107 error = -EFSCORRUPTED;
2108 goto error0;
2109 }
2110 nbno = ltbno;
2111 nlen = len + ltlen;
2112 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2113 goto error0;
2114 }
2115 /*
2116 * Have only a right contiguous neighbor.
2117 * Merge it together with the new freespace.
2118 */
2119 else if (haveright) {
2120 /*
2121 * Delete the old by-size entry on the right.
2122 */
2123 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2124 goto error0;
2125 if (XFS_IS_CORRUPT(mp, i != 1)) {
2126 error = -EFSCORRUPTED;
2127 goto error0;
2128 }
2129 if ((error = xfs_btree_delete(cnt_cur, &i)))
2130 goto error0;
2131 if (XFS_IS_CORRUPT(mp, i != 1)) {
2132 error = -EFSCORRUPTED;
2133 goto error0;
2134 }
2135 /*
2136 * Update the starting block and length of the right
2137 * neighbor in the by-block tree.
2138 */
2139 nbno = bno;
2140 nlen = len + gtlen;
2141 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2142 goto error0;
2143 }
2144 /*
2145 * No contiguous neighbors.
2146 * Insert the new freespace into the by-block tree.
2147 */
2148 else {
2149 nbno = bno;
2150 nlen = len;
2151 if ((error = xfs_btree_insert(bno_cur, &i)))
2152 goto error0;
2153 if (XFS_IS_CORRUPT(mp, i != 1)) {
2154 error = -EFSCORRUPTED;
2155 goto error0;
2156 }
2157 }
2158 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2159 bno_cur = NULL;
2160 /*
2161 * In all cases we need to insert the new freespace in the by-size tree.
2162 */
2163 if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2164 goto error0;
2165 if (XFS_IS_CORRUPT(mp, i != 0)) {
2166 error = -EFSCORRUPTED;
2167 goto error0;
2168 }
2169 if ((error = xfs_btree_insert(cnt_cur, &i)))
2170 goto error0;
2171 if (XFS_IS_CORRUPT(mp, i != 1)) {
2172 error = -EFSCORRUPTED;
2173 goto error0;
2174 }
2175 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2176 cnt_cur = NULL;
2177
2178 /*
2179 * Update the freespace totals in the ag and superblock.
2180 */
2181 error = xfs_alloc_update_counters(tp, agbp, len);
2182 xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2183 if (error)
2184 goto error0;
2185
2186 XFS_STATS_INC(mp, xs_freex);
2187 XFS_STATS_ADD(mp, xs_freeb, len);
2188
2189 trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2190
2191 return 0;
2192
2193 error0:
2194 trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2195 if (bno_cur)
2196 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2197 if (cnt_cur)
2198 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2199 return error;
2200}
2201
2202/*
2203 * Visible (exported) allocation/free functions.
2204 * Some of these are used just by xfs_alloc_btree.c and this file.
2205 */
2206
2207/*
2208 * Compute and fill in value of m_alloc_maxlevels.
2209 */
2210void
2211xfs_alloc_compute_maxlevels(
2212 xfs_mount_t *mp) /* file system mount structure */
2213{
2214 mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2215 (mp->m_sb.sb_agblocks + 1) / 2);
2216 ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2217}
2218
2219/*
2220 * Find the length of the longest extent in an AG. The 'need' parameter
2221 * specifies how much space we're going to need for the AGFL and the
2222 * 'reserved' parameter tells us how many blocks in this AG are reserved for
2223 * other callers.
2224 */
2225xfs_extlen_t
2226xfs_alloc_longest_free_extent(
2227 struct xfs_perag *pag,
2228 xfs_extlen_t need,
2229 xfs_extlen_t reserved)
2230{
2231 xfs_extlen_t delta = 0;
2232
2233 /*
2234 * If the AGFL needs a recharge, we'll have to subtract that from the
2235 * longest extent.
2236 */
2237 if (need > pag->pagf_flcount)
2238 delta = need - pag->pagf_flcount;
2239
2240 /*
2241 * If we cannot maintain others' reservations with space from the
2242 * not-longest freesp extents, we'll have to subtract /that/ from
2243 * the longest extent too.
2244 */
2245 if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2246 delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2247
2248 /*
2249 * If the longest extent is long enough to satisfy all the
2250 * reservations and AGFL rules in place, we can return this extent.
2251 */
2252 if (pag->pagf_longest > delta)
2253 return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2254 pag->pagf_longest - delta);
2255
2256 /* Otherwise, let the caller try for 1 block if there's space. */
2257 return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2258}
2259
2260/*
2261 * Compute the minimum length of the AGFL in the given AG. If @pag is NULL,
2262 * return the largest possible minimum length.
2263 */
2264unsigned int
2265xfs_alloc_min_freelist(
2266 struct xfs_mount *mp,
2267 struct xfs_perag *pag)
2268{
2269 /* AG btrees have at least 1 level. */
2270 static const uint8_t fake_levels[XFS_BTNUM_AGF] = {1, 1, 1};
2271 const uint8_t *levels = pag ? pag->pagf_levels : fake_levels;
2272 unsigned int min_free;
2273
2274 ASSERT(mp->m_alloc_maxlevels > 0);
2275
2276 /* space needed by-bno freespace btree */
2277 min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1,
2278 mp->m_alloc_maxlevels);
2279 /* space needed by-size freespace btree */
2280 min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1,
2281 mp->m_alloc_maxlevels);
2282 /* space needed reverse mapping used space btree */
2283 if (xfs_has_rmapbt(mp))
2284 min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1,
2285 mp->m_rmap_maxlevels);
2286
2287 return min_free;
2288}
2289
2290/*
2291 * Check if the operation we are fixing up the freelist for should go ahead or
2292 * not. If we are freeing blocks, we always allow it, otherwise the allocation
2293 * is dependent on whether the size and shape of free space available will
2294 * permit the requested allocation to take place.
2295 */
2296static bool
2297xfs_alloc_space_available(
2298 struct xfs_alloc_arg *args,
2299 xfs_extlen_t min_free,
2300 int flags)
2301{
2302 struct xfs_perag *pag = args->pag;
2303 xfs_extlen_t alloc_len, longest;
2304 xfs_extlen_t reservation; /* blocks that are still reserved */
2305 int available;
2306 xfs_extlen_t agflcount;
2307
2308 if (flags & XFS_ALLOC_FLAG_FREEING)
2309 return true;
2310
2311 reservation = xfs_ag_resv_needed(pag, args->resv);
2312
2313 /* do we have enough contiguous free space for the allocation? */
2314 alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2315 longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2316 if (longest < alloc_len)
2317 return false;
2318
2319 /*
2320 * Do we have enough free space remaining for the allocation? Don't
2321 * account extra agfl blocks because we are about to defer free them,
2322 * making them unavailable until the current transaction commits.
2323 */
2324 agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2325 available = (int)(pag->pagf_freeblks + agflcount -
2326 reservation - min_free - args->minleft);
2327 if (available < (int)max(args->total, alloc_len))
2328 return false;
2329
2330 /*
2331 * Clamp maxlen to the amount of free space available for the actual
2332 * extent allocation.
2333 */
2334 if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2335 args->maxlen = available;
2336 ASSERT(args->maxlen > 0);
2337 ASSERT(args->maxlen >= args->minlen);
2338 }
2339
2340 return true;
2341}
2342
2343int
2344xfs_free_agfl_block(
2345 struct xfs_trans *tp,
2346 xfs_agnumber_t agno,
2347 xfs_agblock_t agbno,
2348 struct xfs_buf *agbp,
2349 struct xfs_owner_info *oinfo)
2350{
2351 int error;
2352 struct xfs_buf *bp;
2353
2354 error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
2355 XFS_AG_RESV_AGFL);
2356 if (error)
2357 return error;
2358
2359 error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
2360 XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
2361 tp->t_mountp->m_bsize, 0, &bp);
2362 if (error)
2363 return error;
2364 xfs_trans_binval(tp, bp);
2365
2366 return 0;
2367}
2368
2369/*
2370 * Check the agfl fields of the agf for inconsistency or corruption. The purpose
2371 * is to detect an agfl header padding mismatch between current and early v5
2372 * kernels. This problem manifests as a 1-slot size difference between the
2373 * on-disk flcount and the active [first, last] range of a wrapped agfl. This
2374 * may also catch variants of agfl count corruption unrelated to padding. Either
2375 * way, we'll reset the agfl and warn the user.
2376 *
2377 * Return true if a reset is required before the agfl can be used, false
2378 * otherwise.
2379 */
2380static bool
2381xfs_agfl_needs_reset(
2382 struct xfs_mount *mp,
2383 struct xfs_agf *agf)
2384{
2385 uint32_t f = be32_to_cpu(agf->agf_flfirst);
2386 uint32_t l = be32_to_cpu(agf->agf_fllast);
2387 uint32_t c = be32_to_cpu(agf->agf_flcount);
2388 int agfl_size = xfs_agfl_size(mp);
2389 int active;
2390
2391 /* no agfl header on v4 supers */
2392 if (!xfs_has_crc(mp))
2393 return false;
2394
2395 /*
2396 * The agf read verifier catches severe corruption of these fields.
2397 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2398 * the verifier allows it.
2399 */
2400 if (f >= agfl_size || l >= agfl_size)
2401 return true;
2402 if (c > agfl_size)
2403 return true;
2404
2405 /*
2406 * Check consistency between the on-disk count and the active range. An
2407 * agfl padding mismatch manifests as an inconsistent flcount.
2408 */
2409 if (c && l >= f)
2410 active = l - f + 1;
2411 else if (c)
2412 active = agfl_size - f + l + 1;
2413 else
2414 active = 0;
2415
2416 return active != c;
2417}
2418
2419/*
2420 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2421 * agfl content cannot be trusted. Warn the user that a repair is required to
2422 * recover leaked blocks.
2423 *
2424 * The purpose of this mechanism is to handle filesystems affected by the agfl
2425 * header padding mismatch problem. A reset keeps the filesystem online with a
2426 * relatively minor free space accounting inconsistency rather than suffer the
2427 * inevitable crash from use of an invalid agfl block.
2428 */
2429static void
2430xfs_agfl_reset(
2431 struct xfs_trans *tp,
2432 struct xfs_buf *agbp,
2433 struct xfs_perag *pag)
2434{
2435 struct xfs_mount *mp = tp->t_mountp;
2436 struct xfs_agf *agf = agbp->b_addr;
2437
2438 ASSERT(pag->pagf_agflreset);
2439 trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2440
2441 xfs_warn(mp,
2442 "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2443 "Please unmount and run xfs_repair.",
2444 pag->pag_agno, pag->pagf_flcount);
2445
2446 agf->agf_flfirst = 0;
2447 agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2448 agf->agf_flcount = 0;
2449 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2450 XFS_AGF_FLCOUNT);
2451
2452 pag->pagf_flcount = 0;
2453 pag->pagf_agflreset = false;
2454}
2455
2456/*
2457 * Defer an AGFL block free. This is effectively equivalent to
2458 * xfs_free_extent_later() with some special handling particular to AGFL blocks.
2459 *
2460 * Deferring AGFL frees helps prevent log reservation overruns due to too many
2461 * allocation operations in a transaction. AGFL frees are prone to this problem
2462 * because for one they are always freed one at a time. Further, an immediate
2463 * AGFL block free can cause a btree join and require another block free before
2464 * the real allocation can proceed. Deferring the free disconnects freeing up
2465 * the AGFL slot from freeing the block.
2466 */
2467STATIC void
2468xfs_defer_agfl_block(
2469 struct xfs_trans *tp,
2470 xfs_agnumber_t agno,
2471 xfs_fsblock_t agbno,
2472 struct xfs_owner_info *oinfo)
2473{
2474 struct xfs_mount *mp = tp->t_mountp;
2475 struct xfs_extent_free_item *new; /* new element */
2476
2477 ASSERT(xfs_extfree_item_cache != NULL);
2478 ASSERT(oinfo != NULL);
2479
2480 new = kmem_cache_zalloc(xfs_extfree_item_cache,
2481 GFP_KERNEL | __GFP_NOFAIL);
2482 new->xefi_startblock = XFS_AGB_TO_FSB(mp, agno, agbno);
2483 new->xefi_blockcount = 1;
2484 new->xefi_owner = oinfo->oi_owner;
2485
2486 trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
2487
2488 xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_AGFL_FREE, &new->xefi_list);
2489}
2490
2491/*
2492 * Add the extent to the list of extents to be free at transaction end.
2493 * The list is maintained sorted (by block number).
2494 */
2495void
2496__xfs_free_extent_later(
2497 struct xfs_trans *tp,
2498 xfs_fsblock_t bno,
2499 xfs_filblks_t len,
2500 const struct xfs_owner_info *oinfo,
2501 bool skip_discard)
2502{
2503 struct xfs_extent_free_item *new; /* new element */
2504#ifdef DEBUG
2505 struct xfs_mount *mp = tp->t_mountp;
2506 xfs_agnumber_t agno;
2507 xfs_agblock_t agbno;
2508
2509 ASSERT(bno != NULLFSBLOCK);
2510 ASSERT(len > 0);
2511 ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
2512 ASSERT(!isnullstartblock(bno));
2513 agno = XFS_FSB_TO_AGNO(mp, bno);
2514 agbno = XFS_FSB_TO_AGBNO(mp, bno);
2515 ASSERT(agno < mp->m_sb.sb_agcount);
2516 ASSERT(agbno < mp->m_sb.sb_agblocks);
2517 ASSERT(len < mp->m_sb.sb_agblocks);
2518 ASSERT(agbno + len <= mp->m_sb.sb_agblocks);
2519#endif
2520 ASSERT(xfs_extfree_item_cache != NULL);
2521
2522 new = kmem_cache_zalloc(xfs_extfree_item_cache,
2523 GFP_KERNEL | __GFP_NOFAIL);
2524 new->xefi_startblock = bno;
2525 new->xefi_blockcount = (xfs_extlen_t)len;
2526 if (skip_discard)
2527 new->xefi_flags |= XFS_EFI_SKIP_DISCARD;
2528 if (oinfo) {
2529 ASSERT(oinfo->oi_offset == 0);
2530
2531 if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2532 new->xefi_flags |= XFS_EFI_ATTR_FORK;
2533 if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2534 new->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2535 new->xefi_owner = oinfo->oi_owner;
2536 } else {
2537 new->xefi_owner = XFS_RMAP_OWN_NULL;
2538 }
2539 trace_xfs_bmap_free_defer(tp->t_mountp,
2540 XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0,
2541 XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len);
2542 xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_FREE, &new->xefi_list);
2543}
2544
2545#ifdef DEBUG
2546/*
2547 * Check if an AGF has a free extent record whose length is equal to
2548 * args->minlen.
2549 */
2550STATIC int
2551xfs_exact_minlen_extent_available(
2552 struct xfs_alloc_arg *args,
2553 struct xfs_buf *agbp,
2554 int *stat)
2555{
2556 struct xfs_btree_cur *cnt_cur;
2557 xfs_agblock_t fbno;
2558 xfs_extlen_t flen;
2559 int error = 0;
2560
2561 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp,
2562 args->pag, XFS_BTNUM_CNT);
2563 error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2564 if (error)
2565 goto out;
2566
2567 if (*stat == 0) {
2568 error = -EFSCORRUPTED;
2569 goto out;
2570 }
2571
2572 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2573 if (error)
2574 goto out;
2575
2576 if (*stat == 1 && flen != args->minlen)
2577 *stat = 0;
2578
2579out:
2580 xfs_btree_del_cursor(cnt_cur, error);
2581
2582 return error;
2583}
2584#endif
2585
2586/*
2587 * Decide whether to use this allocation group for this allocation.
2588 * If so, fix up the btree freelist's size.
2589 */
2590int /* error */
2591xfs_alloc_fix_freelist(
2592 struct xfs_alloc_arg *args, /* allocation argument structure */
2593 int flags) /* XFS_ALLOC_FLAG_... */
2594{
2595 struct xfs_mount *mp = args->mp;
2596 struct xfs_perag *pag = args->pag;
2597 struct xfs_trans *tp = args->tp;
2598 struct xfs_buf *agbp = NULL;
2599 struct xfs_buf *agflbp = NULL;
2600 struct xfs_alloc_arg targs; /* local allocation arguments */
2601 xfs_agblock_t bno; /* freelist block */
2602 xfs_extlen_t need; /* total blocks needed in freelist */
2603 int error = 0;
2604
2605 /* deferred ops (AGFL block frees) require permanent transactions */
2606 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2607
2608 if (!pag->pagf_init) {
2609 error = xfs_alloc_read_agf(pag, tp, flags, &agbp);
2610 if (error) {
2611 /* Couldn't lock the AGF so skip this AG. */
2612 if (error == -EAGAIN)
2613 error = 0;
2614 goto out_no_agbp;
2615 }
2616 }
2617
2618 /*
2619 * If this is a metadata preferred pag and we are user data then try
2620 * somewhere else if we are not being asked to try harder at this
2621 * point
2622 */
2623 if (pag->pagf_metadata && (args->datatype & XFS_ALLOC_USERDATA) &&
2624 (flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2625 ASSERT(!(flags & XFS_ALLOC_FLAG_FREEING));
2626 goto out_agbp_relse;
2627 }
2628
2629 need = xfs_alloc_min_freelist(mp, pag);
2630 if (!xfs_alloc_space_available(args, need, flags |
2631 XFS_ALLOC_FLAG_CHECK))
2632 goto out_agbp_relse;
2633
2634 /*
2635 * Get the a.g. freespace buffer.
2636 * Can fail if we're not blocking on locks, and it's held.
2637 */
2638 if (!agbp) {
2639 error = xfs_alloc_read_agf(pag, tp, flags, &agbp);
2640 if (error) {
2641 /* Couldn't lock the AGF so skip this AG. */
2642 if (error == -EAGAIN)
2643 error = 0;
2644 goto out_no_agbp;
2645 }
2646 }
2647
2648 /* reset a padding mismatched agfl before final free space check */
2649 if (pag->pagf_agflreset)
2650 xfs_agfl_reset(tp, agbp, pag);
2651
2652 /* If there isn't enough total space or single-extent, reject it. */
2653 need = xfs_alloc_min_freelist(mp, pag);
2654 if (!xfs_alloc_space_available(args, need, flags))
2655 goto out_agbp_relse;
2656
2657#ifdef DEBUG
2658 if (args->alloc_minlen_only) {
2659 int stat;
2660
2661 error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2662 if (error || !stat)
2663 goto out_agbp_relse;
2664 }
2665#endif
2666 /*
2667 * Make the freelist shorter if it's too long.
2668 *
2669 * Note that from this point onwards, we will always release the agf and
2670 * agfl buffers on error. This handles the case where we error out and
2671 * the buffers are clean or may not have been joined to the transaction
2672 * and hence need to be released manually. If they have been joined to
2673 * the transaction, then xfs_trans_brelse() will handle them
2674 * appropriately based on the recursion count and dirty state of the
2675 * buffer.
2676 *
2677 * XXX (dgc): When we have lots of free space, does this buy us
2678 * anything other than extra overhead when we need to put more blocks
2679 * back on the free list? Maybe we should only do this when space is
2680 * getting low or the AGFL is more than half full?
2681 *
2682 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2683 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2684 * updating the rmapbt. Both flags are used in xfs_repair while we're
2685 * rebuilding the rmapbt, and neither are used by the kernel. They're
2686 * both required to ensure that rmaps are correctly recorded for the
2687 * regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and
2688 * repair/rmap.c in xfsprogs for details.
2689 */
2690 memset(&targs, 0, sizeof(targs));
2691 /* struct copy below */
2692 if (flags & XFS_ALLOC_FLAG_NORMAP)
2693 targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2694 else
2695 targs.oinfo = XFS_RMAP_OINFO_AG;
2696 while (!(flags & XFS_ALLOC_FLAG_NOSHRINK) && pag->pagf_flcount > need) {
2697 error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
2698 if (error)
2699 goto out_agbp_relse;
2700
2701 /* defer agfl frees */
2702 xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
2703 }
2704
2705 targs.tp = tp;
2706 targs.mp = mp;
2707 targs.agbp = agbp;
2708 targs.agno = args->agno;
2709 targs.alignment = targs.minlen = targs.prod = 1;
2710 targs.type = XFS_ALLOCTYPE_THIS_AG;
2711 targs.pag = pag;
2712 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2713 if (error)
2714 goto out_agbp_relse;
2715
2716 /* Make the freelist longer if it's too short. */
2717 while (pag->pagf_flcount < need) {
2718 targs.agbno = 0;
2719 targs.maxlen = need - pag->pagf_flcount;
2720 targs.resv = XFS_AG_RESV_AGFL;
2721
2722 /* Allocate as many blocks as possible at once. */
2723 error = xfs_alloc_ag_vextent(&targs);
2724 if (error)
2725 goto out_agflbp_relse;
2726
2727 /*
2728 * Stop if we run out. Won't happen if callers are obeying
2729 * the restrictions correctly. Can happen for free calls
2730 * on a completely full ag.
2731 */
2732 if (targs.agbno == NULLAGBLOCK) {
2733 if (flags & XFS_ALLOC_FLAG_FREEING)
2734 break;
2735 goto out_agflbp_relse;
2736 }
2737 /*
2738 * Put each allocated block on the list.
2739 */
2740 for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2741 error = xfs_alloc_put_freelist(pag, tp, agbp,
2742 agflbp, bno, 0);
2743 if (error)
2744 goto out_agflbp_relse;
2745 }
2746 }
2747 xfs_trans_brelse(tp, agflbp);
2748 args->agbp = agbp;
2749 return 0;
2750
2751out_agflbp_relse:
2752 xfs_trans_brelse(tp, agflbp);
2753out_agbp_relse:
2754 if (agbp)
2755 xfs_trans_brelse(tp, agbp);
2756out_no_agbp:
2757 args->agbp = NULL;
2758 return error;
2759}
2760
2761/*
2762 * Get a block from the freelist.
2763 * Returns with the buffer for the block gotten.
2764 */
2765int
2766xfs_alloc_get_freelist(
2767 struct xfs_perag *pag,
2768 struct xfs_trans *tp,
2769 struct xfs_buf *agbp,
2770 xfs_agblock_t *bnop,
2771 int btreeblk)
2772{
2773 struct xfs_agf *agf = agbp->b_addr;
2774 struct xfs_buf *agflbp;
2775 xfs_agblock_t bno;
2776 __be32 *agfl_bno;
2777 int error;
2778 uint32_t logflags;
2779 struct xfs_mount *mp = tp->t_mountp;
2780
2781 /*
2782 * Freelist is empty, give up.
2783 */
2784 if (!agf->agf_flcount) {
2785 *bnop = NULLAGBLOCK;
2786 return 0;
2787 }
2788 /*
2789 * Read the array of free blocks.
2790 */
2791 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2792 if (error)
2793 return error;
2794
2795
2796 /*
2797 * Get the block number and update the data structures.
2798 */
2799 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2800 bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
2801 be32_add_cpu(&agf->agf_flfirst, 1);
2802 xfs_trans_brelse(tp, agflbp);
2803 if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
2804 agf->agf_flfirst = 0;
2805
2806 ASSERT(!pag->pagf_agflreset);
2807 be32_add_cpu(&agf->agf_flcount, -1);
2808 pag->pagf_flcount--;
2809
2810 logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
2811 if (btreeblk) {
2812 be32_add_cpu(&agf->agf_btreeblks, 1);
2813 pag->pagf_btreeblks++;
2814 logflags |= XFS_AGF_BTREEBLKS;
2815 }
2816
2817 xfs_alloc_log_agf(tp, agbp, logflags);
2818 *bnop = bno;
2819
2820 return 0;
2821}
2822
2823/*
2824 * Log the given fields from the agf structure.
2825 */
2826void
2827xfs_alloc_log_agf(
2828 struct xfs_trans *tp,
2829 struct xfs_buf *bp,
2830 uint32_t fields)
2831{
2832 int first; /* first byte offset */
2833 int last; /* last byte offset */
2834 static const short offsets[] = {
2835 offsetof(xfs_agf_t, agf_magicnum),
2836 offsetof(xfs_agf_t, agf_versionnum),
2837 offsetof(xfs_agf_t, agf_seqno),
2838 offsetof(xfs_agf_t, agf_length),
2839 offsetof(xfs_agf_t, agf_roots[0]),
2840 offsetof(xfs_agf_t, agf_levels[0]),
2841 offsetof(xfs_agf_t, agf_flfirst),
2842 offsetof(xfs_agf_t, agf_fllast),
2843 offsetof(xfs_agf_t, agf_flcount),
2844 offsetof(xfs_agf_t, agf_freeblks),
2845 offsetof(xfs_agf_t, agf_longest),
2846 offsetof(xfs_agf_t, agf_btreeblks),
2847 offsetof(xfs_agf_t, agf_uuid),
2848 offsetof(xfs_agf_t, agf_rmap_blocks),
2849 offsetof(xfs_agf_t, agf_refcount_blocks),
2850 offsetof(xfs_agf_t, agf_refcount_root),
2851 offsetof(xfs_agf_t, agf_refcount_level),
2852 /* needed so that we don't log the whole rest of the structure: */
2853 offsetof(xfs_agf_t, agf_spare64),
2854 sizeof(xfs_agf_t)
2855 };
2856
2857 trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
2858
2859 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
2860
2861 xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
2862 xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
2863}
2864
2865/*
2866 * Put the block on the freelist for the allocation group.
2867 */
2868int
2869xfs_alloc_put_freelist(
2870 struct xfs_perag *pag,
2871 struct xfs_trans *tp,
2872 struct xfs_buf *agbp,
2873 struct xfs_buf *agflbp,
2874 xfs_agblock_t bno,
2875 int btreeblk)
2876{
2877 struct xfs_mount *mp = tp->t_mountp;
2878 struct xfs_agf *agf = agbp->b_addr;
2879 __be32 *blockp;
2880 int error;
2881 uint32_t logflags;
2882 __be32 *agfl_bno;
2883 int startoff;
2884
2885 if (!agflbp) {
2886 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2887 if (error)
2888 return error;
2889 }
2890
2891 be32_add_cpu(&agf->agf_fllast, 1);
2892 if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
2893 agf->agf_fllast = 0;
2894
2895 ASSERT(!pag->pagf_agflreset);
2896 be32_add_cpu(&agf->agf_flcount, 1);
2897 pag->pagf_flcount++;
2898
2899 logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
2900 if (btreeblk) {
2901 be32_add_cpu(&agf->agf_btreeblks, -1);
2902 pag->pagf_btreeblks--;
2903 logflags |= XFS_AGF_BTREEBLKS;
2904 }
2905
2906 xfs_alloc_log_agf(tp, agbp, logflags);
2907
2908 ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
2909
2910 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2911 blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
2912 *blockp = cpu_to_be32(bno);
2913 startoff = (char *)blockp - (char *)agflbp->b_addr;
2914
2915 xfs_alloc_log_agf(tp, agbp, logflags);
2916
2917 xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
2918 xfs_trans_log_buf(tp, agflbp, startoff,
2919 startoff + sizeof(xfs_agblock_t) - 1);
2920 return 0;
2921}
2922
2923static xfs_failaddr_t
2924xfs_agf_verify(
2925 struct xfs_buf *bp)
2926{
2927 struct xfs_mount *mp = bp->b_mount;
2928 struct xfs_agf *agf = bp->b_addr;
2929
2930 if (xfs_has_crc(mp)) {
2931 if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
2932 return __this_address;
2933 if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
2934 return __this_address;
2935 }
2936
2937 if (!xfs_verify_magic(bp, agf->agf_magicnum))
2938 return __this_address;
2939
2940 if (!(XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)) &&
2941 be32_to_cpu(agf->agf_freeblks) <= be32_to_cpu(agf->agf_length) &&
2942 be32_to_cpu(agf->agf_flfirst) < xfs_agfl_size(mp) &&
2943 be32_to_cpu(agf->agf_fllast) < xfs_agfl_size(mp) &&
2944 be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp)))
2945 return __this_address;
2946
2947 if (be32_to_cpu(agf->agf_length) > mp->m_sb.sb_dblocks)
2948 return __this_address;
2949
2950 if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
2951 be32_to_cpu(agf->agf_freeblks) > be32_to_cpu(agf->agf_length))
2952 return __this_address;
2953
2954 if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 ||
2955 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 ||
2956 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) >
2957 mp->m_alloc_maxlevels ||
2958 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) >
2959 mp->m_alloc_maxlevels)
2960 return __this_address;
2961
2962 if (xfs_has_rmapbt(mp) &&
2963 (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 ||
2964 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) >
2965 mp->m_rmap_maxlevels))
2966 return __this_address;
2967
2968 if (xfs_has_rmapbt(mp) &&
2969 be32_to_cpu(agf->agf_rmap_blocks) > be32_to_cpu(agf->agf_length))
2970 return __this_address;
2971
2972 /*
2973 * during growfs operations, the perag is not fully initialised,
2974 * so we can't use it for any useful checking. growfs ensures we can't
2975 * use it by using uncached buffers that don't have the perag attached
2976 * so we can detect and avoid this problem.
2977 */
2978 if (bp->b_pag && be32_to_cpu(agf->agf_seqno) != bp->b_pag->pag_agno)
2979 return __this_address;
2980
2981 if (xfs_has_lazysbcount(mp) &&
2982 be32_to_cpu(agf->agf_btreeblks) > be32_to_cpu(agf->agf_length))
2983 return __this_address;
2984
2985 if (xfs_has_reflink(mp) &&
2986 be32_to_cpu(agf->agf_refcount_blocks) >
2987 be32_to_cpu(agf->agf_length))
2988 return __this_address;
2989
2990 if (xfs_has_reflink(mp) &&
2991 (be32_to_cpu(agf->agf_refcount_level) < 1 ||
2992 be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels))
2993 return __this_address;
2994
2995 return NULL;
2996
2997}
2998
2999static void
3000xfs_agf_read_verify(
3001 struct xfs_buf *bp)
3002{
3003 struct xfs_mount *mp = bp->b_mount;
3004 xfs_failaddr_t fa;
3005
3006 if (xfs_has_crc(mp) &&
3007 !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
3008 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3009 else {
3010 fa = xfs_agf_verify(bp);
3011 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3012 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3013 }
3014}
3015
3016static void
3017xfs_agf_write_verify(
3018 struct xfs_buf *bp)
3019{
3020 struct xfs_mount *mp = bp->b_mount;
3021 struct xfs_buf_log_item *bip = bp->b_log_item;
3022 struct xfs_agf *agf = bp->b_addr;
3023 xfs_failaddr_t fa;
3024
3025 fa = xfs_agf_verify(bp);
3026 if (fa) {
3027 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3028 return;
3029 }
3030
3031 if (!xfs_has_crc(mp))
3032 return;
3033
3034 if (bip)
3035 agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
3036
3037 xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
3038}
3039
3040const struct xfs_buf_ops xfs_agf_buf_ops = {
3041 .name = "xfs_agf",
3042 .magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
3043 .verify_read = xfs_agf_read_verify,
3044 .verify_write = xfs_agf_write_verify,
3045 .verify_struct = xfs_agf_verify,
3046};
3047
3048/*
3049 * Read in the allocation group header (free/alloc section).
3050 */
3051int
3052xfs_read_agf(
3053 struct xfs_perag *pag,
3054 struct xfs_trans *tp,
3055 int flags,
3056 struct xfs_buf **agfbpp)
3057{
3058 struct xfs_mount *mp = pag->pag_mount;
3059 int error;
3060
3061 trace_xfs_read_agf(pag->pag_mount, pag->pag_agno);
3062
3063 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3064 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)),
3065 XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
3066 if (error)
3067 return error;
3068
3069 xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
3070 return 0;
3071}
3072
3073/*
3074 * Read in the allocation group header (free/alloc section) and initialise the
3075 * perag structure if necessary. If the caller provides @agfbpp, then return the
3076 * locked buffer to the caller, otherwise free it.
3077 */
3078int
3079xfs_alloc_read_agf(
3080 struct xfs_perag *pag,
3081 struct xfs_trans *tp,
3082 int flags,
3083 struct xfs_buf **agfbpp)
3084{
3085 struct xfs_buf *agfbp;
3086 struct xfs_agf *agf;
3087 int error;
3088 int allocbt_blks;
3089
3090 trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno);
3091
3092 /* We don't support trylock when freeing. */
3093 ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3094 (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3095 error = xfs_read_agf(pag, tp,
3096 (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3097 &agfbp);
3098 if (error)
3099 return error;
3100
3101 agf = agfbp->b_addr;
3102 if (!pag->pagf_init) {
3103 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3104 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3105 pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3106 pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3107 pag->pagf_levels[XFS_BTNUM_BNOi] =
3108 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]);
3109 pag->pagf_levels[XFS_BTNUM_CNTi] =
3110 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]);
3111 pag->pagf_levels[XFS_BTNUM_RMAPi] =
3112 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]);
3113 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3114 pag->pagf_init = 1;
3115 pag->pagf_agflreset = xfs_agfl_needs_reset(pag->pag_mount, agf);
3116
3117 /*
3118 * Update the in-core allocbt counter. Filter out the rmapbt
3119 * subset of the btreeblks counter because the rmapbt is managed
3120 * by perag reservation. Subtract one for the rmapbt root block
3121 * because the rmap counter includes it while the btreeblks
3122 * counter only tracks non-root blocks.
3123 */
3124 allocbt_blks = pag->pagf_btreeblks;
3125 if (xfs_has_rmapbt(pag->pag_mount))
3126 allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3127 if (allocbt_blks > 0)
3128 atomic64_add(allocbt_blks,
3129 &pag->pag_mount->m_allocbt_blks);
3130 }
3131#ifdef DEBUG
3132 else if (!xfs_is_shutdown(pag->pag_mount)) {
3133 ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3134 ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3135 ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3136 ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3137 ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] ==
3138 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]));
3139 ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] ==
3140 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]));
3141 }
3142#endif
3143 if (agfbpp)
3144 *agfbpp = agfbp;
3145 else
3146 xfs_trans_brelse(tp, agfbp);
3147 return 0;
3148}
3149
3150/*
3151 * Allocate an extent (variable-size).
3152 * Depending on the allocation type, we either look in a single allocation
3153 * group or loop over the allocation groups to find the result.
3154 */
3155int /* error */
3156xfs_alloc_vextent(
3157 struct xfs_alloc_arg *args) /* allocation argument structure */
3158{
3159 xfs_agblock_t agsize; /* allocation group size */
3160 int error;
3161 int flags; /* XFS_ALLOC_FLAG_... locking flags */
3162 struct xfs_mount *mp; /* mount structure pointer */
3163 xfs_agnumber_t sagno; /* starting allocation group number */
3164 xfs_alloctype_t type; /* input allocation type */
3165 int bump_rotor = 0;
3166 xfs_agnumber_t rotorstep = xfs_rotorstep; /* inode32 agf stepper */
3167
3168 mp = args->mp;
3169 type = args->otype = args->type;
3170 args->agbno = NULLAGBLOCK;
3171 /*
3172 * Just fix this up, for the case where the last a.g. is shorter
3173 * (or there's only one a.g.) and the caller couldn't easily figure
3174 * that out (xfs_bmap_alloc).
3175 */
3176 agsize = mp->m_sb.sb_agblocks;
3177 if (args->maxlen > agsize)
3178 args->maxlen = agsize;
3179 if (args->alignment == 0)
3180 args->alignment = 1;
3181 ASSERT(XFS_FSB_TO_AGNO(mp, args->fsbno) < mp->m_sb.sb_agcount);
3182 ASSERT(XFS_FSB_TO_AGBNO(mp, args->fsbno) < agsize);
3183 ASSERT(args->minlen <= args->maxlen);
3184 ASSERT(args->minlen <= agsize);
3185 ASSERT(args->mod < args->prod);
3186 if (XFS_FSB_TO_AGNO(mp, args->fsbno) >= mp->m_sb.sb_agcount ||
3187 XFS_FSB_TO_AGBNO(mp, args->fsbno) >= agsize ||
3188 args->minlen > args->maxlen || args->minlen > agsize ||
3189 args->mod >= args->prod) {
3190 args->fsbno = NULLFSBLOCK;
3191 trace_xfs_alloc_vextent_badargs(args);
3192 return 0;
3193 }
3194
3195 switch (type) {
3196 case XFS_ALLOCTYPE_THIS_AG:
3197 case XFS_ALLOCTYPE_NEAR_BNO:
3198 case XFS_ALLOCTYPE_THIS_BNO:
3199 /*
3200 * These three force us into a single a.g.
3201 */
3202 args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3203 args->pag = xfs_perag_get(mp, args->agno);
3204 error = xfs_alloc_fix_freelist(args, 0);
3205 if (error) {
3206 trace_xfs_alloc_vextent_nofix(args);
3207 goto error0;
3208 }
3209 if (!args->agbp) {
3210 trace_xfs_alloc_vextent_noagbp(args);
3211 break;
3212 }
3213 args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
3214 if ((error = xfs_alloc_ag_vextent(args)))
3215 goto error0;
3216 break;
3217 case XFS_ALLOCTYPE_START_BNO:
3218 /*
3219 * Try near allocation first, then anywhere-in-ag after
3220 * the first a.g. fails.
3221 */
3222 if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3223 xfs_is_inode32(mp)) {
3224 args->fsbno = XFS_AGB_TO_FSB(mp,
3225 ((mp->m_agfrotor / rotorstep) %
3226 mp->m_sb.sb_agcount), 0);
3227 bump_rotor = 1;
3228 }
3229 args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
3230 args->type = XFS_ALLOCTYPE_NEAR_BNO;
3231 fallthrough;
3232 case XFS_ALLOCTYPE_FIRST_AG:
3233 /*
3234 * Rotate through the allocation groups looking for a winner.
3235 */
3236 if (type == XFS_ALLOCTYPE_FIRST_AG) {
3237 /*
3238 * Start with allocation group given by bno.
3239 */
3240 args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3241 args->type = XFS_ALLOCTYPE_THIS_AG;
3242 sagno = 0;
3243 flags = 0;
3244 } else {
3245 /*
3246 * Start with the given allocation group.
3247 */
3248 args->agno = sagno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3249 flags = XFS_ALLOC_FLAG_TRYLOCK;
3250 }
3251 /*
3252 * Loop over allocation groups twice; first time with
3253 * trylock set, second time without.
3254 */
3255 for (;;) {
3256 args->pag = xfs_perag_get(mp, args->agno);
3257 error = xfs_alloc_fix_freelist(args, flags);
3258 if (error) {
3259 trace_xfs_alloc_vextent_nofix(args);
3260 goto error0;
3261 }
3262 /*
3263 * If we get a buffer back then the allocation will fly.
3264 */
3265 if (args->agbp) {
3266 if ((error = xfs_alloc_ag_vextent(args)))
3267 goto error0;
3268 break;
3269 }
3270
3271 trace_xfs_alloc_vextent_loopfailed(args);
3272
3273 /*
3274 * Didn't work, figure out the next iteration.
3275 */
3276 if (args->agno == sagno &&
3277 type == XFS_ALLOCTYPE_START_BNO)
3278 args->type = XFS_ALLOCTYPE_THIS_AG;
3279 /*
3280 * For the first allocation, we can try any AG to get
3281 * space. However, if we already have allocated a
3282 * block, we don't want to try AGs whose number is below
3283 * sagno. Otherwise, we may end up with out-of-order
3284 * locking of AGF, which might cause deadlock.
3285 */
3286 if (++(args->agno) == mp->m_sb.sb_agcount) {
3287 if (args->tp->t_firstblock != NULLFSBLOCK)
3288 args->agno = sagno;
3289 else
3290 args->agno = 0;
3291 }
3292 /*
3293 * Reached the starting a.g., must either be done
3294 * or switch to non-trylock mode.
3295 */
3296 if (args->agno == sagno) {
3297 if (flags == 0) {
3298 args->agbno = NULLAGBLOCK;
3299 trace_xfs_alloc_vextent_allfailed(args);
3300 break;
3301 }
3302
3303 flags = 0;
3304 if (type == XFS_ALLOCTYPE_START_BNO) {
3305 args->agbno = XFS_FSB_TO_AGBNO(mp,
3306 args->fsbno);
3307 args->type = XFS_ALLOCTYPE_NEAR_BNO;
3308 }
3309 }
3310 xfs_perag_put(args->pag);
3311 }
3312 if (bump_rotor) {
3313 if (args->agno == sagno)
3314 mp->m_agfrotor = (mp->m_agfrotor + 1) %
3315 (mp->m_sb.sb_agcount * rotorstep);
3316 else
3317 mp->m_agfrotor = (args->agno * rotorstep + 1) %
3318 (mp->m_sb.sb_agcount * rotorstep);
3319 }
3320 break;
3321 default:
3322 ASSERT(0);
3323 /* NOTREACHED */
3324 }
3325 if (args->agbno == NULLAGBLOCK)
3326 args->fsbno = NULLFSBLOCK;
3327 else {
3328 args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3329#ifdef DEBUG
3330 ASSERT(args->len >= args->minlen);
3331 ASSERT(args->len <= args->maxlen);
3332 ASSERT(args->agbno % args->alignment == 0);
3333 XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno),
3334 args->len);
3335#endif
3336
3337 }
3338 xfs_perag_put(args->pag);
3339 return 0;
3340error0:
3341 xfs_perag_put(args->pag);
3342 return error;
3343}
3344
3345/* Ensure that the freelist is at full capacity. */
3346int
3347xfs_free_extent_fix_freelist(
3348 struct xfs_trans *tp,
3349 struct xfs_perag *pag,
3350 struct xfs_buf **agbp)
3351{
3352 struct xfs_alloc_arg args;
3353 int error;
3354
3355 memset(&args, 0, sizeof(struct xfs_alloc_arg));
3356 args.tp = tp;
3357 args.mp = tp->t_mountp;
3358 args.agno = pag->pag_agno;
3359 args.pag = pag;
3360
3361 /*
3362 * validate that the block number is legal - the enables us to detect
3363 * and handle a silent filesystem corruption rather than crashing.
3364 */
3365 if (args.agno >= args.mp->m_sb.sb_agcount)
3366 return -EFSCORRUPTED;
3367
3368 error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3369 if (error)
3370 return error;
3371
3372 *agbp = args.agbp;
3373 return 0;
3374}
3375
3376/*
3377 * Free an extent.
3378 * Just break up the extent address and hand off to xfs_free_ag_extent
3379 * after fixing up the freelist.
3380 */
3381int
3382__xfs_free_extent(
3383 struct xfs_trans *tp,
3384 xfs_fsblock_t bno,
3385 xfs_extlen_t len,
3386 const struct xfs_owner_info *oinfo,
3387 enum xfs_ag_resv_type type,
3388 bool skip_discard)
3389{
3390 struct xfs_mount *mp = tp->t_mountp;
3391 struct xfs_buf *agbp;
3392 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, bno);
3393 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, bno);
3394 struct xfs_agf *agf;
3395 int error;
3396 unsigned int busy_flags = 0;
3397 struct xfs_perag *pag;
3398
3399 ASSERT(len != 0);
3400 ASSERT(type != XFS_AG_RESV_AGFL);
3401
3402 if (XFS_TEST_ERROR(false, mp,
3403 XFS_ERRTAG_FREE_EXTENT))
3404 return -EIO;
3405
3406 pag = xfs_perag_get(mp, agno);
3407 error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
3408 if (error)
3409 goto err;
3410 agf = agbp->b_addr;
3411
3412 if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
3413 error = -EFSCORRUPTED;
3414 goto err_release;
3415 }
3416
3417 /* validate the extent size is legal now we have the agf locked */
3418 if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
3419 error = -EFSCORRUPTED;
3420 goto err_release;
3421 }
3422
3423 error = xfs_free_ag_extent(tp, agbp, agno, agbno, len, oinfo, type);
3424 if (error)
3425 goto err_release;
3426
3427 if (skip_discard)
3428 busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
3429 xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
3430 xfs_perag_put(pag);
3431 return 0;
3432
3433err_release:
3434 xfs_trans_brelse(tp, agbp);
3435err:
3436 xfs_perag_put(pag);
3437 return error;
3438}
3439
3440struct xfs_alloc_query_range_info {
3441 xfs_alloc_query_range_fn fn;
3442 void *priv;
3443};
3444
3445/* Format btree record and pass to our callback. */
3446STATIC int
3447xfs_alloc_query_range_helper(
3448 struct xfs_btree_cur *cur,
3449 const union xfs_btree_rec *rec,
3450 void *priv)
3451{
3452 struct xfs_alloc_query_range_info *query = priv;
3453 struct xfs_alloc_rec_incore irec;
3454
3455 irec.ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
3456 irec.ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
3457 return query->fn(cur, &irec, query->priv);
3458}
3459
3460/* Find all free space within a given range of blocks. */
3461int
3462xfs_alloc_query_range(
3463 struct xfs_btree_cur *cur,
3464 const struct xfs_alloc_rec_incore *low_rec,
3465 const struct xfs_alloc_rec_incore *high_rec,
3466 xfs_alloc_query_range_fn fn,
3467 void *priv)
3468{
3469 union xfs_btree_irec low_brec;
3470 union xfs_btree_irec high_brec;
3471 struct xfs_alloc_query_range_info query;
3472
3473 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3474 low_brec.a = *low_rec;
3475 high_brec.a = *high_rec;
3476 query.priv = priv;
3477 query.fn = fn;
3478 return xfs_btree_query_range(cur, &low_brec, &high_brec,
3479 xfs_alloc_query_range_helper, &query);
3480}
3481
3482/* Find all free space records. */
3483int
3484xfs_alloc_query_all(
3485 struct xfs_btree_cur *cur,
3486 xfs_alloc_query_range_fn fn,
3487 void *priv)
3488{
3489 struct xfs_alloc_query_range_info query;
3490
3491 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3492 query.priv = priv;
3493 query.fn = fn;
3494 return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
3495}
3496
3497/* Is there a record covering a given extent? */
3498int
3499xfs_alloc_has_record(
3500 struct xfs_btree_cur *cur,
3501 xfs_agblock_t bno,
3502 xfs_extlen_t len,
3503 bool *exists)
3504{
3505 union xfs_btree_irec low;
3506 union xfs_btree_irec high;
3507
3508 memset(&low, 0, sizeof(low));
3509 low.a.ar_startblock = bno;
3510 memset(&high, 0xFF, sizeof(high));
3511 high.a.ar_startblock = bno + len - 1;
3512
3513 return xfs_btree_has_record(cur, &low, &high, exists);
3514}
3515
3516/*
3517 * Walk all the blocks in the AGFL. The @walk_fn can return any negative
3518 * error code or XFS_ITER_*.
3519 */
3520int
3521xfs_agfl_walk(
3522 struct xfs_mount *mp,
3523 struct xfs_agf *agf,
3524 struct xfs_buf *agflbp,
3525 xfs_agfl_walk_fn walk_fn,
3526 void *priv)
3527{
3528 __be32 *agfl_bno;
3529 unsigned int i;
3530 int error;
3531
3532 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3533 i = be32_to_cpu(agf->agf_flfirst);
3534
3535 /* Nothing to walk in an empty AGFL. */
3536 if (agf->agf_flcount == cpu_to_be32(0))
3537 return 0;
3538
3539 /* Otherwise, walk from first to last, wrapping as needed. */
3540 for (;;) {
3541 error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
3542 if (error)
3543 return error;
3544 if (i == be32_to_cpu(agf->agf_fllast))
3545 break;
3546 if (++i == xfs_agfl_size(mp))
3547 i = 0;
3548 }
3549
3550 return 0;
3551}
3552
3553int __init
3554xfs_extfree_intent_init_cache(void)
3555{
3556 xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
3557 sizeof(struct xfs_extent_free_item),
3558 0, 0, NULL);
3559
3560 return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
3561}
3562
3563void
3564xfs_extfree_intent_destroy_cache(void)
3565{
3566 kmem_cache_destroy(xfs_extfree_item_cache);
3567 xfs_extfree_item_cache = NULL;
3568}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_format.h"
9#include "xfs_log_format.h"
10#include "xfs_shared.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_defer.h"
16#include "xfs_btree.h"
17#include "xfs_rmap.h"
18#include "xfs_alloc_btree.h"
19#include "xfs_alloc.h"
20#include "xfs_extent_busy.h"
21#include "xfs_errortag.h"
22#include "xfs_error.h"
23#include "xfs_trace.h"
24#include "xfs_trans.h"
25#include "xfs_buf_item.h"
26#include "xfs_log.h"
27#include "xfs_ag_resv.h"
28#include "xfs_bmap.h"
29
30extern kmem_zone_t *xfs_bmap_free_item_zone;
31
32struct workqueue_struct *xfs_alloc_wq;
33
34#define XFS_ABSDIFF(a,b) (((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
35
36#define XFSA_FIXUP_BNO_OK 1
37#define XFSA_FIXUP_CNT_OK 2
38
39STATIC int xfs_alloc_ag_vextent_exact(xfs_alloc_arg_t *);
40STATIC int xfs_alloc_ag_vextent_near(xfs_alloc_arg_t *);
41STATIC int xfs_alloc_ag_vextent_size(xfs_alloc_arg_t *);
42
43/*
44 * Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in
45 * the beginning of the block for a proper header with the location information
46 * and CRC.
47 */
48unsigned int
49xfs_agfl_size(
50 struct xfs_mount *mp)
51{
52 unsigned int size = mp->m_sb.sb_sectsize;
53
54 if (xfs_sb_version_hascrc(&mp->m_sb))
55 size -= sizeof(struct xfs_agfl);
56
57 return size / sizeof(xfs_agblock_t);
58}
59
60unsigned int
61xfs_refc_block(
62 struct xfs_mount *mp)
63{
64 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
65 return XFS_RMAP_BLOCK(mp) + 1;
66 if (xfs_sb_version_hasfinobt(&mp->m_sb))
67 return XFS_FIBT_BLOCK(mp) + 1;
68 return XFS_IBT_BLOCK(mp) + 1;
69}
70
71xfs_extlen_t
72xfs_prealloc_blocks(
73 struct xfs_mount *mp)
74{
75 if (xfs_sb_version_hasreflink(&mp->m_sb))
76 return xfs_refc_block(mp) + 1;
77 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
78 return XFS_RMAP_BLOCK(mp) + 1;
79 if (xfs_sb_version_hasfinobt(&mp->m_sb))
80 return XFS_FIBT_BLOCK(mp) + 1;
81 return XFS_IBT_BLOCK(mp) + 1;
82}
83
84/*
85 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
86 * AGF buffer (PV 947395), we place constraints on the relationship among
87 * actual allocations for data blocks, freelist blocks, and potential file data
88 * bmap btree blocks. However, these restrictions may result in no actual space
89 * allocated for a delayed extent, for example, a data block in a certain AG is
90 * allocated but there is no additional block for the additional bmap btree
91 * block due to a split of the bmap btree of the file. The result of this may
92 * lead to an infinite loop when the file gets flushed to disk and all delayed
93 * extents need to be actually allocated. To get around this, we explicitly set
94 * aside a few blocks which will not be reserved in delayed allocation.
95 *
96 * We need to reserve 4 fsbs _per AG_ for the freelist and 4 more to handle a
97 * potential split of the file's bmap btree.
98 */
99unsigned int
100xfs_alloc_set_aside(
101 struct xfs_mount *mp)
102{
103 return mp->m_sb.sb_agcount * (XFS_ALLOC_AGFL_RESERVE + 4);
104}
105
106/*
107 * When deciding how much space to allocate out of an AG, we limit the
108 * allocation maximum size to the size the AG. However, we cannot use all the
109 * blocks in the AG - some are permanently used by metadata. These
110 * blocks are generally:
111 * - the AG superblock, AGF, AGI and AGFL
112 * - the AGF (bno and cnt) and AGI btree root blocks, and optionally
113 * the AGI free inode and rmap btree root blocks.
114 * - blocks on the AGFL according to xfs_alloc_set_aside() limits
115 * - the rmapbt root block
116 *
117 * The AG headers are sector sized, so the amount of space they take up is
118 * dependent on filesystem geometry. The others are all single blocks.
119 */
120unsigned int
121xfs_alloc_ag_max_usable(
122 struct xfs_mount *mp)
123{
124 unsigned int blocks;
125
126 blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
127 blocks += XFS_ALLOC_AGFL_RESERVE;
128 blocks += 3; /* AGF, AGI btree root blocks */
129 if (xfs_sb_version_hasfinobt(&mp->m_sb))
130 blocks++; /* finobt root block */
131 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
132 blocks++; /* rmap root block */
133 if (xfs_sb_version_hasreflink(&mp->m_sb))
134 blocks++; /* refcount root block */
135
136 return mp->m_sb.sb_agblocks - blocks;
137}
138
139/*
140 * Lookup the record equal to [bno, len] in the btree given by cur.
141 */
142STATIC int /* error */
143xfs_alloc_lookup_eq(
144 struct xfs_btree_cur *cur, /* btree cursor */
145 xfs_agblock_t bno, /* starting block of extent */
146 xfs_extlen_t len, /* length of extent */
147 int *stat) /* success/failure */
148{
149 int error;
150
151 cur->bc_rec.a.ar_startblock = bno;
152 cur->bc_rec.a.ar_blockcount = len;
153 error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat);
154 cur->bc_ag.abt.active = (*stat == 1);
155 return error;
156}
157
158/*
159 * Lookup the first record greater than or equal to [bno, len]
160 * in the btree given by cur.
161 */
162int /* error */
163xfs_alloc_lookup_ge(
164 struct xfs_btree_cur *cur, /* btree cursor */
165 xfs_agblock_t bno, /* starting block of extent */
166 xfs_extlen_t len, /* length of extent */
167 int *stat) /* success/failure */
168{
169 int error;
170
171 cur->bc_rec.a.ar_startblock = bno;
172 cur->bc_rec.a.ar_blockcount = len;
173 error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat);
174 cur->bc_ag.abt.active = (*stat == 1);
175 return error;
176}
177
178/*
179 * Lookup the first record less than or equal to [bno, len]
180 * in the btree given by cur.
181 */
182int /* error */
183xfs_alloc_lookup_le(
184 struct xfs_btree_cur *cur, /* btree cursor */
185 xfs_agblock_t bno, /* starting block of extent */
186 xfs_extlen_t len, /* length of extent */
187 int *stat) /* success/failure */
188{
189 int error;
190 cur->bc_rec.a.ar_startblock = bno;
191 cur->bc_rec.a.ar_blockcount = len;
192 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat);
193 cur->bc_ag.abt.active = (*stat == 1);
194 return error;
195}
196
197static inline bool
198xfs_alloc_cur_active(
199 struct xfs_btree_cur *cur)
200{
201 return cur && cur->bc_ag.abt.active;
202}
203
204/*
205 * Update the record referred to by cur to the value given
206 * by [bno, len].
207 * This either works (return 0) or gets an EFSCORRUPTED error.
208 */
209STATIC int /* error */
210xfs_alloc_update(
211 struct xfs_btree_cur *cur, /* btree cursor */
212 xfs_agblock_t bno, /* starting block of extent */
213 xfs_extlen_t len) /* length of extent */
214{
215 union xfs_btree_rec rec;
216
217 rec.alloc.ar_startblock = cpu_to_be32(bno);
218 rec.alloc.ar_blockcount = cpu_to_be32(len);
219 return xfs_btree_update(cur, &rec);
220}
221
222/*
223 * Get the data from the pointed-to record.
224 */
225int /* error */
226xfs_alloc_get_rec(
227 struct xfs_btree_cur *cur, /* btree cursor */
228 xfs_agblock_t *bno, /* output: starting block of extent */
229 xfs_extlen_t *len, /* output: length of extent */
230 int *stat) /* output: success/failure */
231{
232 struct xfs_mount *mp = cur->bc_mp;
233 xfs_agnumber_t agno = cur->bc_ag.agno;
234 union xfs_btree_rec *rec;
235 int error;
236
237 error = xfs_btree_get_rec(cur, &rec, stat);
238 if (error || !(*stat))
239 return error;
240
241 *bno = be32_to_cpu(rec->alloc.ar_startblock);
242 *len = be32_to_cpu(rec->alloc.ar_blockcount);
243
244 if (*len == 0)
245 goto out_bad_rec;
246
247 /* check for valid extent range, including overflow */
248 if (!xfs_verify_agbno(mp, agno, *bno))
249 goto out_bad_rec;
250 if (*bno > *bno + *len)
251 goto out_bad_rec;
252 if (!xfs_verify_agbno(mp, agno, *bno + *len - 1))
253 goto out_bad_rec;
254
255 return 0;
256
257out_bad_rec:
258 xfs_warn(mp,
259 "%s Freespace BTree record corruption in AG %d detected!",
260 cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size", agno);
261 xfs_warn(mp,
262 "start block 0x%x block count 0x%x", *bno, *len);
263 return -EFSCORRUPTED;
264}
265
266/*
267 * Compute aligned version of the found extent.
268 * Takes alignment and min length into account.
269 */
270STATIC bool
271xfs_alloc_compute_aligned(
272 xfs_alloc_arg_t *args, /* allocation argument structure */
273 xfs_agblock_t foundbno, /* starting block in found extent */
274 xfs_extlen_t foundlen, /* length in found extent */
275 xfs_agblock_t *resbno, /* result block number */
276 xfs_extlen_t *reslen, /* result length */
277 unsigned *busy_gen)
278{
279 xfs_agblock_t bno = foundbno;
280 xfs_extlen_t len = foundlen;
281 xfs_extlen_t diff;
282 bool busy;
283
284 /* Trim busy sections out of found extent */
285 busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
286
287 /*
288 * If we have a largish extent that happens to start before min_agbno,
289 * see if we can shift it into range...
290 */
291 if (bno < args->min_agbno && bno + len > args->min_agbno) {
292 diff = args->min_agbno - bno;
293 if (len > diff) {
294 bno += diff;
295 len -= diff;
296 }
297 }
298
299 if (args->alignment > 1 && len >= args->minlen) {
300 xfs_agblock_t aligned_bno = roundup(bno, args->alignment);
301
302 diff = aligned_bno - bno;
303
304 *resbno = aligned_bno;
305 *reslen = diff >= len ? 0 : len - diff;
306 } else {
307 *resbno = bno;
308 *reslen = len;
309 }
310
311 return busy;
312}
313
314/*
315 * Compute best start block and diff for "near" allocations.
316 * freelen >= wantlen already checked by caller.
317 */
318STATIC xfs_extlen_t /* difference value (absolute) */
319xfs_alloc_compute_diff(
320 xfs_agblock_t wantbno, /* target starting block */
321 xfs_extlen_t wantlen, /* target length */
322 xfs_extlen_t alignment, /* target alignment */
323 int datatype, /* are we allocating data? */
324 xfs_agblock_t freebno, /* freespace's starting block */
325 xfs_extlen_t freelen, /* freespace's length */
326 xfs_agblock_t *newbnop) /* result: best start block from free */
327{
328 xfs_agblock_t freeend; /* end of freespace extent */
329 xfs_agblock_t newbno1; /* return block number */
330 xfs_agblock_t newbno2; /* other new block number */
331 xfs_extlen_t newlen1=0; /* length with newbno1 */
332 xfs_extlen_t newlen2=0; /* length with newbno2 */
333 xfs_agblock_t wantend; /* end of target extent */
334 bool userdata = datatype & XFS_ALLOC_USERDATA;
335
336 ASSERT(freelen >= wantlen);
337 freeend = freebno + freelen;
338 wantend = wantbno + wantlen;
339 /*
340 * We want to allocate from the start of a free extent if it is past
341 * the desired block or if we are allocating user data and the free
342 * extent is before desired block. The second case is there to allow
343 * for contiguous allocation from the remaining free space if the file
344 * grows in the short term.
345 */
346 if (freebno >= wantbno || (userdata && freeend < wantend)) {
347 if ((newbno1 = roundup(freebno, alignment)) >= freeend)
348 newbno1 = NULLAGBLOCK;
349 } else if (freeend >= wantend && alignment > 1) {
350 newbno1 = roundup(wantbno, alignment);
351 newbno2 = newbno1 - alignment;
352 if (newbno1 >= freeend)
353 newbno1 = NULLAGBLOCK;
354 else
355 newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
356 if (newbno2 < freebno)
357 newbno2 = NULLAGBLOCK;
358 else
359 newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
360 if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
361 if (newlen1 < newlen2 ||
362 (newlen1 == newlen2 &&
363 XFS_ABSDIFF(newbno1, wantbno) >
364 XFS_ABSDIFF(newbno2, wantbno)))
365 newbno1 = newbno2;
366 } else if (newbno2 != NULLAGBLOCK)
367 newbno1 = newbno2;
368 } else if (freeend >= wantend) {
369 newbno1 = wantbno;
370 } else if (alignment > 1) {
371 newbno1 = roundup(freeend - wantlen, alignment);
372 if (newbno1 > freeend - wantlen &&
373 newbno1 - alignment >= freebno)
374 newbno1 -= alignment;
375 else if (newbno1 >= freeend)
376 newbno1 = NULLAGBLOCK;
377 } else
378 newbno1 = freeend - wantlen;
379 *newbnop = newbno1;
380 return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
381}
382
383/*
384 * Fix up the length, based on mod and prod.
385 * len should be k * prod + mod for some k.
386 * If len is too small it is returned unchanged.
387 * If len hits maxlen it is left alone.
388 */
389STATIC void
390xfs_alloc_fix_len(
391 xfs_alloc_arg_t *args) /* allocation argument structure */
392{
393 xfs_extlen_t k;
394 xfs_extlen_t rlen;
395
396 ASSERT(args->mod < args->prod);
397 rlen = args->len;
398 ASSERT(rlen >= args->minlen);
399 ASSERT(rlen <= args->maxlen);
400 if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
401 (args->mod == 0 && rlen < args->prod))
402 return;
403 k = rlen % args->prod;
404 if (k == args->mod)
405 return;
406 if (k > args->mod)
407 rlen = rlen - (k - args->mod);
408 else
409 rlen = rlen - args->prod + (args->mod - k);
410 /* casts to (int) catch length underflows */
411 if ((int)rlen < (int)args->minlen)
412 return;
413 ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
414 ASSERT(rlen % args->prod == args->mod);
415 ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
416 rlen + args->minleft);
417 args->len = rlen;
418}
419
420/*
421 * Update the two btrees, logically removing from freespace the extent
422 * starting at rbno, rlen blocks. The extent is contained within the
423 * actual (current) free extent fbno for flen blocks.
424 * Flags are passed in indicating whether the cursors are set to the
425 * relevant records.
426 */
427STATIC int /* error code */
428xfs_alloc_fixup_trees(
429 xfs_btree_cur_t *cnt_cur, /* cursor for by-size btree */
430 xfs_btree_cur_t *bno_cur, /* cursor for by-block btree */
431 xfs_agblock_t fbno, /* starting block of free extent */
432 xfs_extlen_t flen, /* length of free extent */
433 xfs_agblock_t rbno, /* starting block of returned extent */
434 xfs_extlen_t rlen, /* length of returned extent */
435 int flags) /* flags, XFSA_FIXUP_... */
436{
437 int error; /* error code */
438 int i; /* operation results */
439 xfs_agblock_t nfbno1; /* first new free startblock */
440 xfs_agblock_t nfbno2; /* second new free startblock */
441 xfs_extlen_t nflen1=0; /* first new free length */
442 xfs_extlen_t nflen2=0; /* second new free length */
443 struct xfs_mount *mp;
444
445 mp = cnt_cur->bc_mp;
446
447 /*
448 * Look up the record in the by-size tree if necessary.
449 */
450 if (flags & XFSA_FIXUP_CNT_OK) {
451#ifdef DEBUG
452 if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
453 return error;
454 if (XFS_IS_CORRUPT(mp,
455 i != 1 ||
456 nfbno1 != fbno ||
457 nflen1 != flen))
458 return -EFSCORRUPTED;
459#endif
460 } else {
461 if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
462 return error;
463 if (XFS_IS_CORRUPT(mp, i != 1))
464 return -EFSCORRUPTED;
465 }
466 /*
467 * Look up the record in the by-block tree if necessary.
468 */
469 if (flags & XFSA_FIXUP_BNO_OK) {
470#ifdef DEBUG
471 if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
472 return error;
473 if (XFS_IS_CORRUPT(mp,
474 i != 1 ||
475 nfbno1 != fbno ||
476 nflen1 != flen))
477 return -EFSCORRUPTED;
478#endif
479 } else {
480 if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
481 return error;
482 if (XFS_IS_CORRUPT(mp, i != 1))
483 return -EFSCORRUPTED;
484 }
485
486#ifdef DEBUG
487 if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
488 struct xfs_btree_block *bnoblock;
489 struct xfs_btree_block *cntblock;
490
491 bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_bufs[0]);
492 cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_bufs[0]);
493
494 if (XFS_IS_CORRUPT(mp,
495 bnoblock->bb_numrecs !=
496 cntblock->bb_numrecs))
497 return -EFSCORRUPTED;
498 }
499#endif
500
501 /*
502 * Deal with all four cases: the allocated record is contained
503 * within the freespace record, so we can have new freespace
504 * at either (or both) end, or no freespace remaining.
505 */
506 if (rbno == fbno && rlen == flen)
507 nfbno1 = nfbno2 = NULLAGBLOCK;
508 else if (rbno == fbno) {
509 nfbno1 = rbno + rlen;
510 nflen1 = flen - rlen;
511 nfbno2 = NULLAGBLOCK;
512 } else if (rbno + rlen == fbno + flen) {
513 nfbno1 = fbno;
514 nflen1 = flen - rlen;
515 nfbno2 = NULLAGBLOCK;
516 } else {
517 nfbno1 = fbno;
518 nflen1 = rbno - fbno;
519 nfbno2 = rbno + rlen;
520 nflen2 = (fbno + flen) - nfbno2;
521 }
522 /*
523 * Delete the entry from the by-size btree.
524 */
525 if ((error = xfs_btree_delete(cnt_cur, &i)))
526 return error;
527 if (XFS_IS_CORRUPT(mp, i != 1))
528 return -EFSCORRUPTED;
529 /*
530 * Add new by-size btree entry(s).
531 */
532 if (nfbno1 != NULLAGBLOCK) {
533 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
534 return error;
535 if (XFS_IS_CORRUPT(mp, i != 0))
536 return -EFSCORRUPTED;
537 if ((error = xfs_btree_insert(cnt_cur, &i)))
538 return error;
539 if (XFS_IS_CORRUPT(mp, i != 1))
540 return -EFSCORRUPTED;
541 }
542 if (nfbno2 != NULLAGBLOCK) {
543 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
544 return error;
545 if (XFS_IS_CORRUPT(mp, i != 0))
546 return -EFSCORRUPTED;
547 if ((error = xfs_btree_insert(cnt_cur, &i)))
548 return error;
549 if (XFS_IS_CORRUPT(mp, i != 1))
550 return -EFSCORRUPTED;
551 }
552 /*
553 * Fix up the by-block btree entry(s).
554 */
555 if (nfbno1 == NULLAGBLOCK) {
556 /*
557 * No remaining freespace, just delete the by-block tree entry.
558 */
559 if ((error = xfs_btree_delete(bno_cur, &i)))
560 return error;
561 if (XFS_IS_CORRUPT(mp, i != 1))
562 return -EFSCORRUPTED;
563 } else {
564 /*
565 * Update the by-block entry to start later|be shorter.
566 */
567 if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
568 return error;
569 }
570 if (nfbno2 != NULLAGBLOCK) {
571 /*
572 * 2 resulting free entries, need to add one.
573 */
574 if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
575 return error;
576 if (XFS_IS_CORRUPT(mp, i != 0))
577 return -EFSCORRUPTED;
578 if ((error = xfs_btree_insert(bno_cur, &i)))
579 return error;
580 if (XFS_IS_CORRUPT(mp, i != 1))
581 return -EFSCORRUPTED;
582 }
583 return 0;
584}
585
586static xfs_failaddr_t
587xfs_agfl_verify(
588 struct xfs_buf *bp)
589{
590 struct xfs_mount *mp = bp->b_mount;
591 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
592 __be32 *agfl_bno = xfs_buf_to_agfl_bno(bp);
593 int i;
594
595 /*
596 * There is no verification of non-crc AGFLs because mkfs does not
597 * initialise the AGFL to zero or NULL. Hence the only valid part of the
598 * AGFL is what the AGF says is active. We can't get to the AGF, so we
599 * can't verify just those entries are valid.
600 */
601 if (!xfs_sb_version_hascrc(&mp->m_sb))
602 return NULL;
603
604 if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
605 return __this_address;
606 if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
607 return __this_address;
608 /*
609 * during growfs operations, the perag is not fully initialised,
610 * so we can't use it for any useful checking. growfs ensures we can't
611 * use it by using uncached buffers that don't have the perag attached
612 * so we can detect and avoid this problem.
613 */
614 if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
615 return __this_address;
616
617 for (i = 0; i < xfs_agfl_size(mp); i++) {
618 if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
619 be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
620 return __this_address;
621 }
622
623 if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
624 return __this_address;
625 return NULL;
626}
627
628static void
629xfs_agfl_read_verify(
630 struct xfs_buf *bp)
631{
632 struct xfs_mount *mp = bp->b_mount;
633 xfs_failaddr_t fa;
634
635 /*
636 * There is no verification of non-crc AGFLs because mkfs does not
637 * initialise the AGFL to zero or NULL. Hence the only valid part of the
638 * AGFL is what the AGF says is active. We can't get to the AGF, so we
639 * can't verify just those entries are valid.
640 */
641 if (!xfs_sb_version_hascrc(&mp->m_sb))
642 return;
643
644 if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
645 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
646 else {
647 fa = xfs_agfl_verify(bp);
648 if (fa)
649 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
650 }
651}
652
653static void
654xfs_agfl_write_verify(
655 struct xfs_buf *bp)
656{
657 struct xfs_mount *mp = bp->b_mount;
658 struct xfs_buf_log_item *bip = bp->b_log_item;
659 xfs_failaddr_t fa;
660
661 /* no verification of non-crc AGFLs */
662 if (!xfs_sb_version_hascrc(&mp->m_sb))
663 return;
664
665 fa = xfs_agfl_verify(bp);
666 if (fa) {
667 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
668 return;
669 }
670
671 if (bip)
672 XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
673
674 xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
675}
676
677const struct xfs_buf_ops xfs_agfl_buf_ops = {
678 .name = "xfs_agfl",
679 .magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
680 .verify_read = xfs_agfl_read_verify,
681 .verify_write = xfs_agfl_write_verify,
682 .verify_struct = xfs_agfl_verify,
683};
684
685/*
686 * Read in the allocation group free block array.
687 */
688int /* error */
689xfs_alloc_read_agfl(
690 xfs_mount_t *mp, /* mount point structure */
691 xfs_trans_t *tp, /* transaction pointer */
692 xfs_agnumber_t agno, /* allocation group number */
693 xfs_buf_t **bpp) /* buffer for the ag free block array */
694{
695 xfs_buf_t *bp; /* return value */
696 int error;
697
698 ASSERT(agno != NULLAGNUMBER);
699 error = xfs_trans_read_buf(
700 mp, tp, mp->m_ddev_targp,
701 XFS_AG_DADDR(mp, agno, XFS_AGFL_DADDR(mp)),
702 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
703 if (error)
704 return error;
705 xfs_buf_set_ref(bp, XFS_AGFL_REF);
706 *bpp = bp;
707 return 0;
708}
709
710STATIC int
711xfs_alloc_update_counters(
712 struct xfs_trans *tp,
713 struct xfs_buf *agbp,
714 long len)
715{
716 struct xfs_agf *agf = agbp->b_addr;
717
718 agbp->b_pag->pagf_freeblks += len;
719 be32_add_cpu(&agf->agf_freeblks, len);
720
721 xfs_trans_agblocks_delta(tp, len);
722 if (unlikely(be32_to_cpu(agf->agf_freeblks) >
723 be32_to_cpu(agf->agf_length))) {
724 xfs_buf_mark_corrupt(agbp);
725 return -EFSCORRUPTED;
726 }
727
728 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
729 return 0;
730}
731
732/*
733 * Block allocation algorithm and data structures.
734 */
735struct xfs_alloc_cur {
736 struct xfs_btree_cur *cnt; /* btree cursors */
737 struct xfs_btree_cur *bnolt;
738 struct xfs_btree_cur *bnogt;
739 xfs_extlen_t cur_len;/* current search length */
740 xfs_agblock_t rec_bno;/* extent startblock */
741 xfs_extlen_t rec_len;/* extent length */
742 xfs_agblock_t bno; /* alloc bno */
743 xfs_extlen_t len; /* alloc len */
744 xfs_extlen_t diff; /* diff from search bno */
745 unsigned int busy_gen;/* busy state */
746 bool busy;
747};
748
749/*
750 * Set up cursors, etc. in the extent allocation cursor. This function can be
751 * called multiple times to reset an initialized structure without having to
752 * reallocate cursors.
753 */
754static int
755xfs_alloc_cur_setup(
756 struct xfs_alloc_arg *args,
757 struct xfs_alloc_cur *acur)
758{
759 int error;
760 int i;
761
762 ASSERT(args->alignment == 1 || args->type != XFS_ALLOCTYPE_THIS_BNO);
763
764 acur->cur_len = args->maxlen;
765 acur->rec_bno = 0;
766 acur->rec_len = 0;
767 acur->bno = 0;
768 acur->len = 0;
769 acur->diff = -1;
770 acur->busy = false;
771 acur->busy_gen = 0;
772
773 /*
774 * Perform an initial cntbt lookup to check for availability of maxlen
775 * extents. If this fails, we'll return -ENOSPC to signal the caller to
776 * attempt a small allocation.
777 */
778 if (!acur->cnt)
779 acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp,
780 args->agbp, args->agno, XFS_BTNUM_CNT);
781 error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
782 if (error)
783 return error;
784
785 /*
786 * Allocate the bnobt left and right search cursors.
787 */
788 if (!acur->bnolt)
789 acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp,
790 args->agbp, args->agno, XFS_BTNUM_BNO);
791 if (!acur->bnogt)
792 acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp,
793 args->agbp, args->agno, XFS_BTNUM_BNO);
794 return i == 1 ? 0 : -ENOSPC;
795}
796
797static void
798xfs_alloc_cur_close(
799 struct xfs_alloc_cur *acur,
800 bool error)
801{
802 int cur_error = XFS_BTREE_NOERROR;
803
804 if (error)
805 cur_error = XFS_BTREE_ERROR;
806
807 if (acur->cnt)
808 xfs_btree_del_cursor(acur->cnt, cur_error);
809 if (acur->bnolt)
810 xfs_btree_del_cursor(acur->bnolt, cur_error);
811 if (acur->bnogt)
812 xfs_btree_del_cursor(acur->bnogt, cur_error);
813 acur->cnt = acur->bnolt = acur->bnogt = NULL;
814}
815
816/*
817 * Check an extent for allocation and track the best available candidate in the
818 * allocation structure. The cursor is deactivated if it has entered an out of
819 * range state based on allocation arguments. Optionally return the extent
820 * extent geometry and allocation status if requested by the caller.
821 */
822static int
823xfs_alloc_cur_check(
824 struct xfs_alloc_arg *args,
825 struct xfs_alloc_cur *acur,
826 struct xfs_btree_cur *cur,
827 int *new)
828{
829 int error, i;
830 xfs_agblock_t bno, bnoa, bnew;
831 xfs_extlen_t len, lena, diff = -1;
832 bool busy;
833 unsigned busy_gen = 0;
834 bool deactivate = false;
835 bool isbnobt = cur->bc_btnum == XFS_BTNUM_BNO;
836
837 *new = 0;
838
839 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
840 if (error)
841 return error;
842 if (XFS_IS_CORRUPT(args->mp, i != 1))
843 return -EFSCORRUPTED;
844
845 /*
846 * Check minlen and deactivate a cntbt cursor if out of acceptable size
847 * range (i.e., walking backwards looking for a minlen extent).
848 */
849 if (len < args->minlen) {
850 deactivate = !isbnobt;
851 goto out;
852 }
853
854 busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
855 &busy_gen);
856 acur->busy |= busy;
857 if (busy)
858 acur->busy_gen = busy_gen;
859 /* deactivate a bnobt cursor outside of locality range */
860 if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
861 deactivate = isbnobt;
862 goto out;
863 }
864 if (lena < args->minlen)
865 goto out;
866
867 args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
868 xfs_alloc_fix_len(args);
869 ASSERT(args->len >= args->minlen);
870 if (args->len < acur->len)
871 goto out;
872
873 /*
874 * We have an aligned record that satisfies minlen and beats or matches
875 * the candidate extent size. Compare locality for near allocation mode.
876 */
877 ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO);
878 diff = xfs_alloc_compute_diff(args->agbno, args->len,
879 args->alignment, args->datatype,
880 bnoa, lena, &bnew);
881 if (bnew == NULLAGBLOCK)
882 goto out;
883
884 /*
885 * Deactivate a bnobt cursor with worse locality than the current best.
886 */
887 if (diff > acur->diff) {
888 deactivate = isbnobt;
889 goto out;
890 }
891
892 ASSERT(args->len > acur->len ||
893 (args->len == acur->len && diff <= acur->diff));
894 acur->rec_bno = bno;
895 acur->rec_len = len;
896 acur->bno = bnew;
897 acur->len = args->len;
898 acur->diff = diff;
899 *new = 1;
900
901 /*
902 * We're done if we found a perfect allocation. This only deactivates
903 * the current cursor, but this is just an optimization to terminate a
904 * cntbt search that otherwise runs to the edge of the tree.
905 */
906 if (acur->diff == 0 && acur->len == args->maxlen)
907 deactivate = true;
908out:
909 if (deactivate)
910 cur->bc_ag.abt.active = false;
911 trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff,
912 *new);
913 return 0;
914}
915
916/*
917 * Complete an allocation of a candidate extent. Remove the extent from both
918 * trees and update the args structure.
919 */
920STATIC int
921xfs_alloc_cur_finish(
922 struct xfs_alloc_arg *args,
923 struct xfs_alloc_cur *acur)
924{
925 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
926 int error;
927
928 ASSERT(acur->cnt && acur->bnolt);
929 ASSERT(acur->bno >= acur->rec_bno);
930 ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
931 ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
932
933 error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
934 acur->rec_len, acur->bno, acur->len, 0);
935 if (error)
936 return error;
937
938 args->agbno = acur->bno;
939 args->len = acur->len;
940 args->wasfromfl = 0;
941
942 trace_xfs_alloc_cur(args);
943 return 0;
944}
945
946/*
947 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
948 * bno optimized lookup to search for extents with ideal size and locality.
949 */
950STATIC int
951xfs_alloc_cntbt_iter(
952 struct xfs_alloc_arg *args,
953 struct xfs_alloc_cur *acur)
954{
955 struct xfs_btree_cur *cur = acur->cnt;
956 xfs_agblock_t bno;
957 xfs_extlen_t len, cur_len;
958 int error;
959 int i;
960
961 if (!xfs_alloc_cur_active(cur))
962 return 0;
963
964 /* locality optimized lookup */
965 cur_len = acur->cur_len;
966 error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
967 if (error)
968 return error;
969 if (i == 0)
970 return 0;
971 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
972 if (error)
973 return error;
974
975 /* check the current record and update search length from it */
976 error = xfs_alloc_cur_check(args, acur, cur, &i);
977 if (error)
978 return error;
979 ASSERT(len >= acur->cur_len);
980 acur->cur_len = len;
981
982 /*
983 * We looked up the first record >= [agbno, len] above. The agbno is a
984 * secondary key and so the current record may lie just before or after
985 * agbno. If it is past agbno, check the previous record too so long as
986 * the length matches as it may be closer. Don't check a smaller record
987 * because that could deactivate our cursor.
988 */
989 if (bno > args->agbno) {
990 error = xfs_btree_decrement(cur, 0, &i);
991 if (!error && i) {
992 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
993 if (!error && i && len == acur->cur_len)
994 error = xfs_alloc_cur_check(args, acur, cur,
995 &i);
996 }
997 if (error)
998 return error;
999 }
1000
1001 /*
1002 * Increment the search key until we find at least one allocation
1003 * candidate or if the extent we found was larger. Otherwise, double the
1004 * search key to optimize the search. Efficiency is more important here
1005 * than absolute best locality.
1006 */
1007 cur_len <<= 1;
1008 if (!acur->len || acur->cur_len >= cur_len)
1009 acur->cur_len++;
1010 else
1011 acur->cur_len = cur_len;
1012
1013 return error;
1014}
1015
1016/*
1017 * Deal with the case where only small freespaces remain. Either return the
1018 * contents of the last freespace record, or allocate space from the freelist if
1019 * there is nothing in the tree.
1020 */
1021STATIC int /* error */
1022xfs_alloc_ag_vextent_small(
1023 struct xfs_alloc_arg *args, /* allocation argument structure */
1024 struct xfs_btree_cur *ccur, /* optional by-size cursor */
1025 xfs_agblock_t *fbnop, /* result block number */
1026 xfs_extlen_t *flenp, /* result length */
1027 int *stat) /* status: 0-freelist, 1-normal/none */
1028{
1029 struct xfs_agf *agf = args->agbp->b_addr;
1030 int error = 0;
1031 xfs_agblock_t fbno = NULLAGBLOCK;
1032 xfs_extlen_t flen = 0;
1033 int i = 0;
1034
1035 /*
1036 * If a cntbt cursor is provided, try to allocate the largest record in
1037 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1038 * allocation. Make sure to respect minleft even when pulling from the
1039 * freelist.
1040 */
1041 if (ccur)
1042 error = xfs_btree_decrement(ccur, 0, &i);
1043 if (error)
1044 goto error;
1045 if (i) {
1046 error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1047 if (error)
1048 goto error;
1049 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1050 error = -EFSCORRUPTED;
1051 goto error;
1052 }
1053 goto out;
1054 }
1055
1056 if (args->minlen != 1 || args->alignment != 1 ||
1057 args->resv == XFS_AG_RESV_AGFL ||
1058 be32_to_cpu(agf->agf_flcount) <= args->minleft)
1059 goto out;
1060
1061 error = xfs_alloc_get_freelist(args->tp, args->agbp, &fbno, 0);
1062 if (error)
1063 goto error;
1064 if (fbno == NULLAGBLOCK)
1065 goto out;
1066
1067 xfs_extent_busy_reuse(args->mp, args->agno, fbno, 1,
1068 (args->datatype & XFS_ALLOC_NOBUSY));
1069
1070 if (args->datatype & XFS_ALLOC_USERDATA) {
1071 struct xfs_buf *bp;
1072
1073 error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1074 XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1075 args->mp->m_bsize, 0, &bp);
1076 if (error)
1077 goto error;
1078 xfs_trans_binval(args->tp, bp);
1079 }
1080 *fbnop = args->agbno = fbno;
1081 *flenp = args->len = 1;
1082 if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1083 error = -EFSCORRUPTED;
1084 goto error;
1085 }
1086 args->wasfromfl = 1;
1087 trace_xfs_alloc_small_freelist(args);
1088
1089 /*
1090 * If we're feeding an AGFL block to something that doesn't live in the
1091 * free space, we need to clear out the OWN_AG rmap.
1092 */
1093 error = xfs_rmap_free(args->tp, args->agbp, args->agno, fbno, 1,
1094 &XFS_RMAP_OINFO_AG);
1095 if (error)
1096 goto error;
1097
1098 *stat = 0;
1099 return 0;
1100
1101out:
1102 /*
1103 * Can't do the allocation, give up.
1104 */
1105 if (flen < args->minlen) {
1106 args->agbno = NULLAGBLOCK;
1107 trace_xfs_alloc_small_notenough(args);
1108 flen = 0;
1109 }
1110 *fbnop = fbno;
1111 *flenp = flen;
1112 *stat = 1;
1113 trace_xfs_alloc_small_done(args);
1114 return 0;
1115
1116error:
1117 trace_xfs_alloc_small_error(args);
1118 return error;
1119}
1120
1121/*
1122 * Allocate a variable extent in the allocation group agno.
1123 * Type and bno are used to determine where in the allocation group the
1124 * extent will start.
1125 * Extent's length (returned in *len) will be between minlen and maxlen,
1126 * and of the form k * prod + mod unless there's nothing that large.
1127 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1128 */
1129STATIC int /* error */
1130xfs_alloc_ag_vextent(
1131 xfs_alloc_arg_t *args) /* argument structure for allocation */
1132{
1133 int error=0;
1134
1135 ASSERT(args->minlen > 0);
1136 ASSERT(args->maxlen > 0);
1137 ASSERT(args->minlen <= args->maxlen);
1138 ASSERT(args->mod < args->prod);
1139 ASSERT(args->alignment > 0);
1140
1141 /*
1142 * Branch to correct routine based on the type.
1143 */
1144 args->wasfromfl = 0;
1145 switch (args->type) {
1146 case XFS_ALLOCTYPE_THIS_AG:
1147 error = xfs_alloc_ag_vextent_size(args);
1148 break;
1149 case XFS_ALLOCTYPE_NEAR_BNO:
1150 error = xfs_alloc_ag_vextent_near(args);
1151 break;
1152 case XFS_ALLOCTYPE_THIS_BNO:
1153 error = xfs_alloc_ag_vextent_exact(args);
1154 break;
1155 default:
1156 ASSERT(0);
1157 /* NOTREACHED */
1158 }
1159
1160 if (error || args->agbno == NULLAGBLOCK)
1161 return error;
1162
1163 ASSERT(args->len >= args->minlen);
1164 ASSERT(args->len <= args->maxlen);
1165 ASSERT(!args->wasfromfl || args->resv != XFS_AG_RESV_AGFL);
1166 ASSERT(args->agbno % args->alignment == 0);
1167
1168 /* if not file data, insert new block into the reverse map btree */
1169 if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
1170 error = xfs_rmap_alloc(args->tp, args->agbp, args->agno,
1171 args->agbno, args->len, &args->oinfo);
1172 if (error)
1173 return error;
1174 }
1175
1176 if (!args->wasfromfl) {
1177 error = xfs_alloc_update_counters(args->tp, args->agbp,
1178 -((long)(args->len)));
1179 if (error)
1180 return error;
1181
1182 ASSERT(!xfs_extent_busy_search(args->mp, args->agno,
1183 args->agbno, args->len));
1184 }
1185
1186 xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
1187
1188 XFS_STATS_INC(args->mp, xs_allocx);
1189 XFS_STATS_ADD(args->mp, xs_allocb, args->len);
1190 return error;
1191}
1192
1193/*
1194 * Allocate a variable extent at exactly agno/bno.
1195 * Extent's length (returned in *len) will be between minlen and maxlen,
1196 * and of the form k * prod + mod unless there's nothing that large.
1197 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1198 */
1199STATIC int /* error */
1200xfs_alloc_ag_vextent_exact(
1201 xfs_alloc_arg_t *args) /* allocation argument structure */
1202{
1203 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1204 xfs_btree_cur_t *bno_cur;/* by block-number btree cursor */
1205 xfs_btree_cur_t *cnt_cur;/* by count btree cursor */
1206 int error;
1207 xfs_agblock_t fbno; /* start block of found extent */
1208 xfs_extlen_t flen; /* length of found extent */
1209 xfs_agblock_t tbno; /* start block of busy extent */
1210 xfs_extlen_t tlen; /* length of busy extent */
1211 xfs_agblock_t tend; /* end block of busy extent */
1212 int i; /* success/failure of operation */
1213 unsigned busy_gen;
1214
1215 ASSERT(args->alignment == 1);
1216
1217 /*
1218 * Allocate/initialize a cursor for the by-number freespace btree.
1219 */
1220 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1221 args->agno, XFS_BTNUM_BNO);
1222
1223 /*
1224 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1225 * Look for the closest free block <= bno, it must contain bno
1226 * if any free block does.
1227 */
1228 error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1229 if (error)
1230 goto error0;
1231 if (!i)
1232 goto not_found;
1233
1234 /*
1235 * Grab the freespace record.
1236 */
1237 error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1238 if (error)
1239 goto error0;
1240 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1241 error = -EFSCORRUPTED;
1242 goto error0;
1243 }
1244 ASSERT(fbno <= args->agbno);
1245
1246 /*
1247 * Check for overlapping busy extents.
1248 */
1249 tbno = fbno;
1250 tlen = flen;
1251 xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
1252
1253 /*
1254 * Give up if the start of the extent is busy, or the freespace isn't
1255 * long enough for the minimum request.
1256 */
1257 if (tbno > args->agbno)
1258 goto not_found;
1259 if (tlen < args->minlen)
1260 goto not_found;
1261 tend = tbno + tlen;
1262 if (tend < args->agbno + args->minlen)
1263 goto not_found;
1264
1265 /*
1266 * End of extent will be smaller of the freespace end and the
1267 * maximal requested end.
1268 *
1269 * Fix the length according to mod and prod if given.
1270 */
1271 args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1272 - args->agbno;
1273 xfs_alloc_fix_len(args);
1274 ASSERT(args->agbno + args->len <= tend);
1275
1276 /*
1277 * We are allocating agbno for args->len
1278 * Allocate/initialize a cursor for the by-size btree.
1279 */
1280 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1281 args->agno, XFS_BTNUM_CNT);
1282 ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
1283 error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1284 args->len, XFSA_FIXUP_BNO_OK);
1285 if (error) {
1286 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1287 goto error0;
1288 }
1289
1290 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1291 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1292
1293 args->wasfromfl = 0;
1294 trace_xfs_alloc_exact_done(args);
1295 return 0;
1296
1297not_found:
1298 /* Didn't find it, return null. */
1299 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1300 args->agbno = NULLAGBLOCK;
1301 trace_xfs_alloc_exact_notfound(args);
1302 return 0;
1303
1304error0:
1305 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1306 trace_xfs_alloc_exact_error(args);
1307 return error;
1308}
1309
1310/*
1311 * Search a given number of btree records in a given direction. Check each
1312 * record against the good extent we've already found.
1313 */
1314STATIC int
1315xfs_alloc_walk_iter(
1316 struct xfs_alloc_arg *args,
1317 struct xfs_alloc_cur *acur,
1318 struct xfs_btree_cur *cur,
1319 bool increment,
1320 bool find_one, /* quit on first candidate */
1321 int count, /* rec count (-1 for infinite) */
1322 int *stat)
1323{
1324 int error;
1325 int i;
1326
1327 *stat = 0;
1328
1329 /*
1330 * Search so long as the cursor is active or we find a better extent.
1331 * The cursor is deactivated if it extends beyond the range of the
1332 * current allocation candidate.
1333 */
1334 while (xfs_alloc_cur_active(cur) && count) {
1335 error = xfs_alloc_cur_check(args, acur, cur, &i);
1336 if (error)
1337 return error;
1338 if (i == 1) {
1339 *stat = 1;
1340 if (find_one)
1341 break;
1342 }
1343 if (!xfs_alloc_cur_active(cur))
1344 break;
1345
1346 if (increment)
1347 error = xfs_btree_increment(cur, 0, &i);
1348 else
1349 error = xfs_btree_decrement(cur, 0, &i);
1350 if (error)
1351 return error;
1352 if (i == 0)
1353 cur->bc_ag.abt.active = false;
1354
1355 if (count > 0)
1356 count--;
1357 }
1358
1359 return 0;
1360}
1361
1362/*
1363 * Search the by-bno and by-size btrees in parallel in search of an extent with
1364 * ideal locality based on the NEAR mode ->agbno locality hint.
1365 */
1366STATIC int
1367xfs_alloc_ag_vextent_locality(
1368 struct xfs_alloc_arg *args,
1369 struct xfs_alloc_cur *acur,
1370 int *stat)
1371{
1372 struct xfs_btree_cur *fbcur = NULL;
1373 int error;
1374 int i;
1375 bool fbinc;
1376
1377 ASSERT(acur->len == 0);
1378 ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO);
1379
1380 *stat = 0;
1381
1382 error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1383 if (error)
1384 return error;
1385 error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1386 if (error)
1387 return error;
1388 error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1389 if (error)
1390 return error;
1391
1392 /*
1393 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1394 * right and lookup the closest extent to the locality hint for each
1395 * extent size key in the cntbt. The entire search terminates
1396 * immediately on a bnobt hit because that means we've found best case
1397 * locality. Otherwise the search continues until the cntbt cursor runs
1398 * off the end of the tree. If no allocation candidate is found at this
1399 * point, give up on locality, walk backwards from the end of the cntbt
1400 * and take the first available extent.
1401 *
1402 * The parallel tree searches balance each other out to provide fairly
1403 * consistent performance for various situations. The bnobt search can
1404 * have pathological behavior in the worst case scenario of larger
1405 * allocation requests and fragmented free space. On the other hand, the
1406 * bnobt is able to satisfy most smaller allocation requests much more
1407 * quickly than the cntbt. The cntbt search can sift through fragmented
1408 * free space and sets of free extents for larger allocation requests
1409 * more quickly than the bnobt. Since the locality hint is just a hint
1410 * and we don't want to scan the entire bnobt for perfect locality, the
1411 * cntbt search essentially bounds the bnobt search such that we can
1412 * find good enough locality at reasonable performance in most cases.
1413 */
1414 while (xfs_alloc_cur_active(acur->bnolt) ||
1415 xfs_alloc_cur_active(acur->bnogt) ||
1416 xfs_alloc_cur_active(acur->cnt)) {
1417
1418 trace_xfs_alloc_cur_lookup(args);
1419
1420 /*
1421 * Search the bnobt left and right. In the case of a hit, finish
1422 * the search in the opposite direction and we're done.
1423 */
1424 error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1425 true, 1, &i);
1426 if (error)
1427 return error;
1428 if (i == 1) {
1429 trace_xfs_alloc_cur_left(args);
1430 fbcur = acur->bnogt;
1431 fbinc = true;
1432 break;
1433 }
1434 error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1435 1, &i);
1436 if (error)
1437 return error;
1438 if (i == 1) {
1439 trace_xfs_alloc_cur_right(args);
1440 fbcur = acur->bnolt;
1441 fbinc = false;
1442 break;
1443 }
1444
1445 /*
1446 * Check the extent with best locality based on the current
1447 * extent size search key and keep track of the best candidate.
1448 */
1449 error = xfs_alloc_cntbt_iter(args, acur);
1450 if (error)
1451 return error;
1452 if (!xfs_alloc_cur_active(acur->cnt)) {
1453 trace_xfs_alloc_cur_lookup_done(args);
1454 break;
1455 }
1456 }
1457
1458 /*
1459 * If we failed to find anything due to busy extents, return empty
1460 * handed so the caller can flush and retry. If no busy extents were
1461 * found, walk backwards from the end of the cntbt as a last resort.
1462 */
1463 if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1464 error = xfs_btree_decrement(acur->cnt, 0, &i);
1465 if (error)
1466 return error;
1467 if (i) {
1468 acur->cnt->bc_ag.abt.active = true;
1469 fbcur = acur->cnt;
1470 fbinc = false;
1471 }
1472 }
1473
1474 /*
1475 * Search in the opposite direction for a better entry in the case of
1476 * a bnobt hit or walk backwards from the end of the cntbt.
1477 */
1478 if (fbcur) {
1479 error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1480 &i);
1481 if (error)
1482 return error;
1483 }
1484
1485 if (acur->len)
1486 *stat = 1;
1487
1488 return 0;
1489}
1490
1491/* Check the last block of the cnt btree for allocations. */
1492static int
1493xfs_alloc_ag_vextent_lastblock(
1494 struct xfs_alloc_arg *args,
1495 struct xfs_alloc_cur *acur,
1496 xfs_agblock_t *bno,
1497 xfs_extlen_t *len,
1498 bool *allocated)
1499{
1500 int error;
1501 int i;
1502
1503#ifdef DEBUG
1504 /* Randomly don't execute the first algorithm. */
1505 if (prandom_u32() & 1)
1506 return 0;
1507#endif
1508
1509 /*
1510 * Start from the entry that lookup found, sequence through all larger
1511 * free blocks. If we're actually pointing at a record smaller than
1512 * maxlen, go to the start of this block, and skip all those smaller
1513 * than minlen.
1514 */
1515 if (*len || args->alignment > 1) {
1516 acur->cnt->bc_ptrs[0] = 1;
1517 do {
1518 error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1519 if (error)
1520 return error;
1521 if (XFS_IS_CORRUPT(args->mp, i != 1))
1522 return -EFSCORRUPTED;
1523 if (*len >= args->minlen)
1524 break;
1525 error = xfs_btree_increment(acur->cnt, 0, &i);
1526 if (error)
1527 return error;
1528 } while (i);
1529 ASSERT(*len >= args->minlen);
1530 if (!i)
1531 return 0;
1532 }
1533
1534 error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1535 if (error)
1536 return error;
1537
1538 /*
1539 * It didn't work. We COULD be in a case where there's a good record
1540 * somewhere, so try again.
1541 */
1542 if (acur->len == 0)
1543 return 0;
1544
1545 trace_xfs_alloc_near_first(args);
1546 *allocated = true;
1547 return 0;
1548}
1549
1550/*
1551 * Allocate a variable extent near bno in the allocation group agno.
1552 * Extent's length (returned in len) will be between minlen and maxlen,
1553 * and of the form k * prod + mod unless there's nothing that large.
1554 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1555 */
1556STATIC int
1557xfs_alloc_ag_vextent_near(
1558 struct xfs_alloc_arg *args)
1559{
1560 struct xfs_alloc_cur acur = {};
1561 int error; /* error code */
1562 int i; /* result code, temporary */
1563 xfs_agblock_t bno;
1564 xfs_extlen_t len;
1565
1566 /* handle uninitialized agbno range so caller doesn't have to */
1567 if (!args->min_agbno && !args->max_agbno)
1568 args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1569 ASSERT(args->min_agbno <= args->max_agbno);
1570
1571 /* clamp agbno to the range if it's outside */
1572 if (args->agbno < args->min_agbno)
1573 args->agbno = args->min_agbno;
1574 if (args->agbno > args->max_agbno)
1575 args->agbno = args->max_agbno;
1576
1577restart:
1578 len = 0;
1579
1580 /*
1581 * Set up cursors and see if there are any free extents as big as
1582 * maxlen. If not, pick the last entry in the tree unless the tree is
1583 * empty.
1584 */
1585 error = xfs_alloc_cur_setup(args, &acur);
1586 if (error == -ENOSPC) {
1587 error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1588 &len, &i);
1589 if (error)
1590 goto out;
1591 if (i == 0 || len == 0) {
1592 trace_xfs_alloc_near_noentry(args);
1593 goto out;
1594 }
1595 ASSERT(i == 1);
1596 } else if (error) {
1597 goto out;
1598 }
1599
1600 /*
1601 * First algorithm.
1602 * If the requested extent is large wrt the freespaces available
1603 * in this a.g., then the cursor will be pointing to a btree entry
1604 * near the right edge of the tree. If it's in the last btree leaf
1605 * block, then we just examine all the entries in that block
1606 * that are big enough, and pick the best one.
1607 */
1608 if (xfs_btree_islastblock(acur.cnt, 0)) {
1609 bool allocated = false;
1610
1611 error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1612 &allocated);
1613 if (error)
1614 goto out;
1615 if (allocated)
1616 goto alloc_finish;
1617 }
1618
1619 /*
1620 * Second algorithm. Combined cntbt and bnobt search to find ideal
1621 * locality.
1622 */
1623 error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1624 if (error)
1625 goto out;
1626
1627 /*
1628 * If we couldn't get anything, give up.
1629 */
1630 if (!acur.len) {
1631 if (acur.busy) {
1632 trace_xfs_alloc_near_busy(args);
1633 xfs_extent_busy_flush(args->mp, args->pag,
1634 acur.busy_gen);
1635 goto restart;
1636 }
1637 trace_xfs_alloc_size_neither(args);
1638 args->agbno = NULLAGBLOCK;
1639 goto out;
1640 }
1641
1642alloc_finish:
1643 /* fix up btrees on a successful allocation */
1644 error = xfs_alloc_cur_finish(args, &acur);
1645
1646out:
1647 xfs_alloc_cur_close(&acur, error);
1648 return error;
1649}
1650
1651/*
1652 * Allocate a variable extent anywhere in the allocation group agno.
1653 * Extent's length (returned in len) will be between minlen and maxlen,
1654 * and of the form k * prod + mod unless there's nothing that large.
1655 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1656 */
1657STATIC int /* error */
1658xfs_alloc_ag_vextent_size(
1659 xfs_alloc_arg_t *args) /* allocation argument structure */
1660{
1661 struct xfs_agf *agf = args->agbp->b_addr;
1662 xfs_btree_cur_t *bno_cur; /* cursor for bno btree */
1663 xfs_btree_cur_t *cnt_cur; /* cursor for cnt btree */
1664 int error; /* error result */
1665 xfs_agblock_t fbno; /* start of found freespace */
1666 xfs_extlen_t flen; /* length of found freespace */
1667 int i; /* temp status variable */
1668 xfs_agblock_t rbno; /* returned block number */
1669 xfs_extlen_t rlen; /* length of returned extent */
1670 bool busy;
1671 unsigned busy_gen;
1672
1673restart:
1674 /*
1675 * Allocate and initialize a cursor for the by-size btree.
1676 */
1677 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1678 args->agno, XFS_BTNUM_CNT);
1679 bno_cur = NULL;
1680 busy = false;
1681
1682 /*
1683 * Look for an entry >= maxlen+alignment-1 blocks.
1684 */
1685 if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1686 args->maxlen + args->alignment - 1, &i)))
1687 goto error0;
1688
1689 /*
1690 * If none then we have to settle for a smaller extent. In the case that
1691 * there are no large extents, this will return the last entry in the
1692 * tree unless the tree is empty. In the case that there are only busy
1693 * large extents, this will return the largest small extent unless there
1694 * are no smaller extents available.
1695 */
1696 if (!i) {
1697 error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1698 &fbno, &flen, &i);
1699 if (error)
1700 goto error0;
1701 if (i == 0 || flen == 0) {
1702 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1703 trace_xfs_alloc_size_noentry(args);
1704 return 0;
1705 }
1706 ASSERT(i == 1);
1707 busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1708 &rlen, &busy_gen);
1709 } else {
1710 /*
1711 * Search for a non-busy extent that is large enough.
1712 */
1713 for (;;) {
1714 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1715 if (error)
1716 goto error0;
1717 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1718 error = -EFSCORRUPTED;
1719 goto error0;
1720 }
1721
1722 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1723 &rbno, &rlen, &busy_gen);
1724
1725 if (rlen >= args->maxlen)
1726 break;
1727
1728 error = xfs_btree_increment(cnt_cur, 0, &i);
1729 if (error)
1730 goto error0;
1731 if (i == 0) {
1732 /*
1733 * Our only valid extents must have been busy.
1734 * Make it unbusy by forcing the log out and
1735 * retrying.
1736 */
1737 xfs_btree_del_cursor(cnt_cur,
1738 XFS_BTREE_NOERROR);
1739 trace_xfs_alloc_size_busy(args);
1740 xfs_extent_busy_flush(args->mp,
1741 args->pag, busy_gen);
1742 goto restart;
1743 }
1744 }
1745 }
1746
1747 /*
1748 * In the first case above, we got the last entry in the
1749 * by-size btree. Now we check to see if the space hits maxlen
1750 * once aligned; if not, we search left for something better.
1751 * This can't happen in the second case above.
1752 */
1753 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1754 if (XFS_IS_CORRUPT(args->mp,
1755 rlen != 0 &&
1756 (rlen > flen ||
1757 rbno + rlen > fbno + flen))) {
1758 error = -EFSCORRUPTED;
1759 goto error0;
1760 }
1761 if (rlen < args->maxlen) {
1762 xfs_agblock_t bestfbno;
1763 xfs_extlen_t bestflen;
1764 xfs_agblock_t bestrbno;
1765 xfs_extlen_t bestrlen;
1766
1767 bestrlen = rlen;
1768 bestrbno = rbno;
1769 bestflen = flen;
1770 bestfbno = fbno;
1771 for (;;) {
1772 if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1773 goto error0;
1774 if (i == 0)
1775 break;
1776 if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1777 &i)))
1778 goto error0;
1779 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1780 error = -EFSCORRUPTED;
1781 goto error0;
1782 }
1783 if (flen < bestrlen)
1784 break;
1785 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1786 &rbno, &rlen, &busy_gen);
1787 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1788 if (XFS_IS_CORRUPT(args->mp,
1789 rlen != 0 &&
1790 (rlen > flen ||
1791 rbno + rlen > fbno + flen))) {
1792 error = -EFSCORRUPTED;
1793 goto error0;
1794 }
1795 if (rlen > bestrlen) {
1796 bestrlen = rlen;
1797 bestrbno = rbno;
1798 bestflen = flen;
1799 bestfbno = fbno;
1800 if (rlen == args->maxlen)
1801 break;
1802 }
1803 }
1804 if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1805 &i)))
1806 goto error0;
1807 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1808 error = -EFSCORRUPTED;
1809 goto error0;
1810 }
1811 rlen = bestrlen;
1812 rbno = bestrbno;
1813 flen = bestflen;
1814 fbno = bestfbno;
1815 }
1816 args->wasfromfl = 0;
1817 /*
1818 * Fix up the length.
1819 */
1820 args->len = rlen;
1821 if (rlen < args->minlen) {
1822 if (busy) {
1823 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1824 trace_xfs_alloc_size_busy(args);
1825 xfs_extent_busy_flush(args->mp, args->pag, busy_gen);
1826 goto restart;
1827 }
1828 goto out_nominleft;
1829 }
1830 xfs_alloc_fix_len(args);
1831
1832 rlen = args->len;
1833 if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1834 error = -EFSCORRUPTED;
1835 goto error0;
1836 }
1837 /*
1838 * Allocate and initialize a cursor for the by-block tree.
1839 */
1840 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1841 args->agno, XFS_BTNUM_BNO);
1842 if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
1843 rbno, rlen, XFSA_FIXUP_CNT_OK)))
1844 goto error0;
1845 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1846 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1847 cnt_cur = bno_cur = NULL;
1848 args->len = rlen;
1849 args->agbno = rbno;
1850 if (XFS_IS_CORRUPT(args->mp,
1851 args->agbno + args->len >
1852 be32_to_cpu(agf->agf_length))) {
1853 error = -EFSCORRUPTED;
1854 goto error0;
1855 }
1856 trace_xfs_alloc_size_done(args);
1857 return 0;
1858
1859error0:
1860 trace_xfs_alloc_size_error(args);
1861 if (cnt_cur)
1862 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1863 if (bno_cur)
1864 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1865 return error;
1866
1867out_nominleft:
1868 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1869 trace_xfs_alloc_size_nominleft(args);
1870 args->agbno = NULLAGBLOCK;
1871 return 0;
1872}
1873
1874/*
1875 * Free the extent starting at agno/bno for length.
1876 */
1877STATIC int
1878xfs_free_ag_extent(
1879 struct xfs_trans *tp,
1880 struct xfs_buf *agbp,
1881 xfs_agnumber_t agno,
1882 xfs_agblock_t bno,
1883 xfs_extlen_t len,
1884 const struct xfs_owner_info *oinfo,
1885 enum xfs_ag_resv_type type)
1886{
1887 struct xfs_mount *mp;
1888 struct xfs_btree_cur *bno_cur;
1889 struct xfs_btree_cur *cnt_cur;
1890 xfs_agblock_t gtbno; /* start of right neighbor */
1891 xfs_extlen_t gtlen; /* length of right neighbor */
1892 xfs_agblock_t ltbno; /* start of left neighbor */
1893 xfs_extlen_t ltlen; /* length of left neighbor */
1894 xfs_agblock_t nbno; /* new starting block of freesp */
1895 xfs_extlen_t nlen; /* new length of freespace */
1896 int haveleft; /* have a left neighbor */
1897 int haveright; /* have a right neighbor */
1898 int i;
1899 int error;
1900
1901 bno_cur = cnt_cur = NULL;
1902 mp = tp->t_mountp;
1903
1904 if (!xfs_rmap_should_skip_owner_update(oinfo)) {
1905 error = xfs_rmap_free(tp, agbp, agno, bno, len, oinfo);
1906 if (error)
1907 goto error0;
1908 }
1909
1910 /*
1911 * Allocate and initialize a cursor for the by-block btree.
1912 */
1913 bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_BNO);
1914 /*
1915 * Look for a neighboring block on the left (lower block numbers)
1916 * that is contiguous with this space.
1917 */
1918 if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
1919 goto error0;
1920 if (haveleft) {
1921 /*
1922 * There is a block to our left.
1923 */
1924 if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i)))
1925 goto error0;
1926 if (XFS_IS_CORRUPT(mp, i != 1)) {
1927 error = -EFSCORRUPTED;
1928 goto error0;
1929 }
1930 /*
1931 * It's not contiguous, though.
1932 */
1933 if (ltbno + ltlen < bno)
1934 haveleft = 0;
1935 else {
1936 /*
1937 * If this failure happens the request to free this
1938 * space was invalid, it's (partly) already free.
1939 * Very bad.
1940 */
1941 if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
1942 error = -EFSCORRUPTED;
1943 goto error0;
1944 }
1945 }
1946 }
1947 /*
1948 * Look for a neighboring block on the right (higher block numbers)
1949 * that is contiguous with this space.
1950 */
1951 if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
1952 goto error0;
1953 if (haveright) {
1954 /*
1955 * There is a block to our right.
1956 */
1957 if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i)))
1958 goto error0;
1959 if (XFS_IS_CORRUPT(mp, i != 1)) {
1960 error = -EFSCORRUPTED;
1961 goto error0;
1962 }
1963 /*
1964 * It's not contiguous, though.
1965 */
1966 if (bno + len < gtbno)
1967 haveright = 0;
1968 else {
1969 /*
1970 * If this failure happens the request to free this
1971 * space was invalid, it's (partly) already free.
1972 * Very bad.
1973 */
1974 if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
1975 error = -EFSCORRUPTED;
1976 goto error0;
1977 }
1978 }
1979 }
1980 /*
1981 * Now allocate and initialize a cursor for the by-size tree.
1982 */
1983 cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_CNT);
1984 /*
1985 * Have both left and right contiguous neighbors.
1986 * Merge all three into a single free block.
1987 */
1988 if (haveleft && haveright) {
1989 /*
1990 * Delete the old by-size entry on the left.
1991 */
1992 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
1993 goto error0;
1994 if (XFS_IS_CORRUPT(mp, i != 1)) {
1995 error = -EFSCORRUPTED;
1996 goto error0;
1997 }
1998 if ((error = xfs_btree_delete(cnt_cur, &i)))
1999 goto error0;
2000 if (XFS_IS_CORRUPT(mp, i != 1)) {
2001 error = -EFSCORRUPTED;
2002 goto error0;
2003 }
2004 /*
2005 * Delete the old by-size entry on the right.
2006 */
2007 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2008 goto error0;
2009 if (XFS_IS_CORRUPT(mp, i != 1)) {
2010 error = -EFSCORRUPTED;
2011 goto error0;
2012 }
2013 if ((error = xfs_btree_delete(cnt_cur, &i)))
2014 goto error0;
2015 if (XFS_IS_CORRUPT(mp, i != 1)) {
2016 error = -EFSCORRUPTED;
2017 goto error0;
2018 }
2019 /*
2020 * Delete the old by-block entry for the right block.
2021 */
2022 if ((error = xfs_btree_delete(bno_cur, &i)))
2023 goto error0;
2024 if (XFS_IS_CORRUPT(mp, i != 1)) {
2025 error = -EFSCORRUPTED;
2026 goto error0;
2027 }
2028 /*
2029 * Move the by-block cursor back to the left neighbor.
2030 */
2031 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2032 goto error0;
2033 if (XFS_IS_CORRUPT(mp, i != 1)) {
2034 error = -EFSCORRUPTED;
2035 goto error0;
2036 }
2037#ifdef DEBUG
2038 /*
2039 * Check that this is the right record: delete didn't
2040 * mangle the cursor.
2041 */
2042 {
2043 xfs_agblock_t xxbno;
2044 xfs_extlen_t xxlen;
2045
2046 if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2047 &i)))
2048 goto error0;
2049 if (XFS_IS_CORRUPT(mp,
2050 i != 1 ||
2051 xxbno != ltbno ||
2052 xxlen != ltlen)) {
2053 error = -EFSCORRUPTED;
2054 goto error0;
2055 }
2056 }
2057#endif
2058 /*
2059 * Update remaining by-block entry to the new, joined block.
2060 */
2061 nbno = ltbno;
2062 nlen = len + ltlen + gtlen;
2063 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2064 goto error0;
2065 }
2066 /*
2067 * Have only a left contiguous neighbor.
2068 * Merge it together with the new freespace.
2069 */
2070 else if (haveleft) {
2071 /*
2072 * Delete the old by-size entry on the left.
2073 */
2074 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2075 goto error0;
2076 if (XFS_IS_CORRUPT(mp, i != 1)) {
2077 error = -EFSCORRUPTED;
2078 goto error0;
2079 }
2080 if ((error = xfs_btree_delete(cnt_cur, &i)))
2081 goto error0;
2082 if (XFS_IS_CORRUPT(mp, i != 1)) {
2083 error = -EFSCORRUPTED;
2084 goto error0;
2085 }
2086 /*
2087 * Back up the by-block cursor to the left neighbor, and
2088 * update its length.
2089 */
2090 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2091 goto error0;
2092 if (XFS_IS_CORRUPT(mp, i != 1)) {
2093 error = -EFSCORRUPTED;
2094 goto error0;
2095 }
2096 nbno = ltbno;
2097 nlen = len + ltlen;
2098 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2099 goto error0;
2100 }
2101 /*
2102 * Have only a right contiguous neighbor.
2103 * Merge it together with the new freespace.
2104 */
2105 else if (haveright) {
2106 /*
2107 * Delete the old by-size entry on the right.
2108 */
2109 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2110 goto error0;
2111 if (XFS_IS_CORRUPT(mp, i != 1)) {
2112 error = -EFSCORRUPTED;
2113 goto error0;
2114 }
2115 if ((error = xfs_btree_delete(cnt_cur, &i)))
2116 goto error0;
2117 if (XFS_IS_CORRUPT(mp, i != 1)) {
2118 error = -EFSCORRUPTED;
2119 goto error0;
2120 }
2121 /*
2122 * Update the starting block and length of the right
2123 * neighbor in the by-block tree.
2124 */
2125 nbno = bno;
2126 nlen = len + gtlen;
2127 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2128 goto error0;
2129 }
2130 /*
2131 * No contiguous neighbors.
2132 * Insert the new freespace into the by-block tree.
2133 */
2134 else {
2135 nbno = bno;
2136 nlen = len;
2137 if ((error = xfs_btree_insert(bno_cur, &i)))
2138 goto error0;
2139 if (XFS_IS_CORRUPT(mp, i != 1)) {
2140 error = -EFSCORRUPTED;
2141 goto error0;
2142 }
2143 }
2144 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2145 bno_cur = NULL;
2146 /*
2147 * In all cases we need to insert the new freespace in the by-size tree.
2148 */
2149 if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2150 goto error0;
2151 if (XFS_IS_CORRUPT(mp, i != 0)) {
2152 error = -EFSCORRUPTED;
2153 goto error0;
2154 }
2155 if ((error = xfs_btree_insert(cnt_cur, &i)))
2156 goto error0;
2157 if (XFS_IS_CORRUPT(mp, i != 1)) {
2158 error = -EFSCORRUPTED;
2159 goto error0;
2160 }
2161 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2162 cnt_cur = NULL;
2163
2164 /*
2165 * Update the freespace totals in the ag and superblock.
2166 */
2167 error = xfs_alloc_update_counters(tp, agbp, len);
2168 xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2169 if (error)
2170 goto error0;
2171
2172 XFS_STATS_INC(mp, xs_freex);
2173 XFS_STATS_ADD(mp, xs_freeb, len);
2174
2175 trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2176
2177 return 0;
2178
2179 error0:
2180 trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2181 if (bno_cur)
2182 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2183 if (cnt_cur)
2184 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2185 return error;
2186}
2187
2188/*
2189 * Visible (exported) allocation/free functions.
2190 * Some of these are used just by xfs_alloc_btree.c and this file.
2191 */
2192
2193/*
2194 * Compute and fill in value of m_ag_maxlevels.
2195 */
2196void
2197xfs_alloc_compute_maxlevels(
2198 xfs_mount_t *mp) /* file system mount structure */
2199{
2200 mp->m_ag_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2201 (mp->m_sb.sb_agblocks + 1) / 2);
2202}
2203
2204/*
2205 * Find the length of the longest extent in an AG. The 'need' parameter
2206 * specifies how much space we're going to need for the AGFL and the
2207 * 'reserved' parameter tells us how many blocks in this AG are reserved for
2208 * other callers.
2209 */
2210xfs_extlen_t
2211xfs_alloc_longest_free_extent(
2212 struct xfs_perag *pag,
2213 xfs_extlen_t need,
2214 xfs_extlen_t reserved)
2215{
2216 xfs_extlen_t delta = 0;
2217
2218 /*
2219 * If the AGFL needs a recharge, we'll have to subtract that from the
2220 * longest extent.
2221 */
2222 if (need > pag->pagf_flcount)
2223 delta = need - pag->pagf_flcount;
2224
2225 /*
2226 * If we cannot maintain others' reservations with space from the
2227 * not-longest freesp extents, we'll have to subtract /that/ from
2228 * the longest extent too.
2229 */
2230 if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2231 delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2232
2233 /*
2234 * If the longest extent is long enough to satisfy all the
2235 * reservations and AGFL rules in place, we can return this extent.
2236 */
2237 if (pag->pagf_longest > delta)
2238 return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2239 pag->pagf_longest - delta);
2240
2241 /* Otherwise, let the caller try for 1 block if there's space. */
2242 return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2243}
2244
2245/*
2246 * Compute the minimum length of the AGFL in the given AG. If @pag is NULL,
2247 * return the largest possible minimum length.
2248 */
2249unsigned int
2250xfs_alloc_min_freelist(
2251 struct xfs_mount *mp,
2252 struct xfs_perag *pag)
2253{
2254 /* AG btrees have at least 1 level. */
2255 static const uint8_t fake_levels[XFS_BTNUM_AGF] = {1, 1, 1};
2256 const uint8_t *levels = pag ? pag->pagf_levels : fake_levels;
2257 unsigned int min_free;
2258
2259 ASSERT(mp->m_ag_maxlevels > 0);
2260
2261 /* space needed by-bno freespace btree */
2262 min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1,
2263 mp->m_ag_maxlevels);
2264 /* space needed by-size freespace btree */
2265 min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1,
2266 mp->m_ag_maxlevels);
2267 /* space needed reverse mapping used space btree */
2268 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2269 min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1,
2270 mp->m_rmap_maxlevels);
2271
2272 return min_free;
2273}
2274
2275/*
2276 * Check if the operation we are fixing up the freelist for should go ahead or
2277 * not. If we are freeing blocks, we always allow it, otherwise the allocation
2278 * is dependent on whether the size and shape of free space available will
2279 * permit the requested allocation to take place.
2280 */
2281static bool
2282xfs_alloc_space_available(
2283 struct xfs_alloc_arg *args,
2284 xfs_extlen_t min_free,
2285 int flags)
2286{
2287 struct xfs_perag *pag = args->pag;
2288 xfs_extlen_t alloc_len, longest;
2289 xfs_extlen_t reservation; /* blocks that are still reserved */
2290 int available;
2291 xfs_extlen_t agflcount;
2292
2293 if (flags & XFS_ALLOC_FLAG_FREEING)
2294 return true;
2295
2296 reservation = xfs_ag_resv_needed(pag, args->resv);
2297
2298 /* do we have enough contiguous free space for the allocation? */
2299 alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2300 longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2301 if (longest < alloc_len)
2302 return false;
2303
2304 /*
2305 * Do we have enough free space remaining for the allocation? Don't
2306 * account extra agfl blocks because we are about to defer free them,
2307 * making them unavailable until the current transaction commits.
2308 */
2309 agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2310 available = (int)(pag->pagf_freeblks + agflcount -
2311 reservation - min_free - args->minleft);
2312 if (available < (int)max(args->total, alloc_len))
2313 return false;
2314
2315 /*
2316 * Clamp maxlen to the amount of free space available for the actual
2317 * extent allocation.
2318 */
2319 if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2320 args->maxlen = available;
2321 ASSERT(args->maxlen > 0);
2322 ASSERT(args->maxlen >= args->minlen);
2323 }
2324
2325 return true;
2326}
2327
2328int
2329xfs_free_agfl_block(
2330 struct xfs_trans *tp,
2331 xfs_agnumber_t agno,
2332 xfs_agblock_t agbno,
2333 struct xfs_buf *agbp,
2334 struct xfs_owner_info *oinfo)
2335{
2336 int error;
2337 struct xfs_buf *bp;
2338
2339 error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
2340 XFS_AG_RESV_AGFL);
2341 if (error)
2342 return error;
2343
2344 error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
2345 XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
2346 tp->t_mountp->m_bsize, 0, &bp);
2347 if (error)
2348 return error;
2349 xfs_trans_binval(tp, bp);
2350
2351 return 0;
2352}
2353
2354/*
2355 * Check the agfl fields of the agf for inconsistency or corruption. The purpose
2356 * is to detect an agfl header padding mismatch between current and early v5
2357 * kernels. This problem manifests as a 1-slot size difference between the
2358 * on-disk flcount and the active [first, last] range of a wrapped agfl. This
2359 * may also catch variants of agfl count corruption unrelated to padding. Either
2360 * way, we'll reset the agfl and warn the user.
2361 *
2362 * Return true if a reset is required before the agfl can be used, false
2363 * otherwise.
2364 */
2365static bool
2366xfs_agfl_needs_reset(
2367 struct xfs_mount *mp,
2368 struct xfs_agf *agf)
2369{
2370 uint32_t f = be32_to_cpu(agf->agf_flfirst);
2371 uint32_t l = be32_to_cpu(agf->agf_fllast);
2372 uint32_t c = be32_to_cpu(agf->agf_flcount);
2373 int agfl_size = xfs_agfl_size(mp);
2374 int active;
2375
2376 /* no agfl header on v4 supers */
2377 if (!xfs_sb_version_hascrc(&mp->m_sb))
2378 return false;
2379
2380 /*
2381 * The agf read verifier catches severe corruption of these fields.
2382 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2383 * the verifier allows it.
2384 */
2385 if (f >= agfl_size || l >= agfl_size)
2386 return true;
2387 if (c > agfl_size)
2388 return true;
2389
2390 /*
2391 * Check consistency between the on-disk count and the active range. An
2392 * agfl padding mismatch manifests as an inconsistent flcount.
2393 */
2394 if (c && l >= f)
2395 active = l - f + 1;
2396 else if (c)
2397 active = agfl_size - f + l + 1;
2398 else
2399 active = 0;
2400
2401 return active != c;
2402}
2403
2404/*
2405 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2406 * agfl content cannot be trusted. Warn the user that a repair is required to
2407 * recover leaked blocks.
2408 *
2409 * The purpose of this mechanism is to handle filesystems affected by the agfl
2410 * header padding mismatch problem. A reset keeps the filesystem online with a
2411 * relatively minor free space accounting inconsistency rather than suffer the
2412 * inevitable crash from use of an invalid agfl block.
2413 */
2414static void
2415xfs_agfl_reset(
2416 struct xfs_trans *tp,
2417 struct xfs_buf *agbp,
2418 struct xfs_perag *pag)
2419{
2420 struct xfs_mount *mp = tp->t_mountp;
2421 struct xfs_agf *agf = agbp->b_addr;
2422
2423 ASSERT(pag->pagf_agflreset);
2424 trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2425
2426 xfs_warn(mp,
2427 "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2428 "Please unmount and run xfs_repair.",
2429 pag->pag_agno, pag->pagf_flcount);
2430
2431 agf->agf_flfirst = 0;
2432 agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2433 agf->agf_flcount = 0;
2434 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2435 XFS_AGF_FLCOUNT);
2436
2437 pag->pagf_flcount = 0;
2438 pag->pagf_agflreset = false;
2439}
2440
2441/*
2442 * Defer an AGFL block free. This is effectively equivalent to
2443 * xfs_bmap_add_free() with some special handling particular to AGFL blocks.
2444 *
2445 * Deferring AGFL frees helps prevent log reservation overruns due to too many
2446 * allocation operations in a transaction. AGFL frees are prone to this problem
2447 * because for one they are always freed one at a time. Further, an immediate
2448 * AGFL block free can cause a btree join and require another block free before
2449 * the real allocation can proceed. Deferring the free disconnects freeing up
2450 * the AGFL slot from freeing the block.
2451 */
2452STATIC void
2453xfs_defer_agfl_block(
2454 struct xfs_trans *tp,
2455 xfs_agnumber_t agno,
2456 xfs_fsblock_t agbno,
2457 struct xfs_owner_info *oinfo)
2458{
2459 struct xfs_mount *mp = tp->t_mountp;
2460 struct xfs_extent_free_item *new; /* new element */
2461
2462 ASSERT(xfs_bmap_free_item_zone != NULL);
2463 ASSERT(oinfo != NULL);
2464
2465 new = kmem_cache_alloc(xfs_bmap_free_item_zone,
2466 GFP_KERNEL | __GFP_NOFAIL);
2467 new->xefi_startblock = XFS_AGB_TO_FSB(mp, agno, agbno);
2468 new->xefi_blockcount = 1;
2469 new->xefi_oinfo = *oinfo;
2470
2471 trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
2472
2473 xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_AGFL_FREE, &new->xefi_list);
2474}
2475
2476/*
2477 * Decide whether to use this allocation group for this allocation.
2478 * If so, fix up the btree freelist's size.
2479 */
2480int /* error */
2481xfs_alloc_fix_freelist(
2482 struct xfs_alloc_arg *args, /* allocation argument structure */
2483 int flags) /* XFS_ALLOC_FLAG_... */
2484{
2485 struct xfs_mount *mp = args->mp;
2486 struct xfs_perag *pag = args->pag;
2487 struct xfs_trans *tp = args->tp;
2488 struct xfs_buf *agbp = NULL;
2489 struct xfs_buf *agflbp = NULL;
2490 struct xfs_alloc_arg targs; /* local allocation arguments */
2491 xfs_agblock_t bno; /* freelist block */
2492 xfs_extlen_t need; /* total blocks needed in freelist */
2493 int error = 0;
2494
2495 /* deferred ops (AGFL block frees) require permanent transactions */
2496 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2497
2498 if (!pag->pagf_init) {
2499 error = xfs_alloc_read_agf(mp, tp, args->agno, flags, &agbp);
2500 if (error) {
2501 /* Couldn't lock the AGF so skip this AG. */
2502 if (error == -EAGAIN)
2503 error = 0;
2504 goto out_no_agbp;
2505 }
2506 }
2507
2508 /*
2509 * If this is a metadata preferred pag and we are user data then try
2510 * somewhere else if we are not being asked to try harder at this
2511 * point
2512 */
2513 if (pag->pagf_metadata && (args->datatype & XFS_ALLOC_USERDATA) &&
2514 (flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2515 ASSERT(!(flags & XFS_ALLOC_FLAG_FREEING));
2516 goto out_agbp_relse;
2517 }
2518
2519 need = xfs_alloc_min_freelist(mp, pag);
2520 if (!xfs_alloc_space_available(args, need, flags |
2521 XFS_ALLOC_FLAG_CHECK))
2522 goto out_agbp_relse;
2523
2524 /*
2525 * Get the a.g. freespace buffer.
2526 * Can fail if we're not blocking on locks, and it's held.
2527 */
2528 if (!agbp) {
2529 error = xfs_alloc_read_agf(mp, tp, args->agno, flags, &agbp);
2530 if (error) {
2531 /* Couldn't lock the AGF so skip this AG. */
2532 if (error == -EAGAIN)
2533 error = 0;
2534 goto out_no_agbp;
2535 }
2536 }
2537
2538 /* reset a padding mismatched agfl before final free space check */
2539 if (pag->pagf_agflreset)
2540 xfs_agfl_reset(tp, agbp, pag);
2541
2542 /* If there isn't enough total space or single-extent, reject it. */
2543 need = xfs_alloc_min_freelist(mp, pag);
2544 if (!xfs_alloc_space_available(args, need, flags))
2545 goto out_agbp_relse;
2546
2547 /*
2548 * Make the freelist shorter if it's too long.
2549 *
2550 * Note that from this point onwards, we will always release the agf and
2551 * agfl buffers on error. This handles the case where we error out and
2552 * the buffers are clean or may not have been joined to the transaction
2553 * and hence need to be released manually. If they have been joined to
2554 * the transaction, then xfs_trans_brelse() will handle them
2555 * appropriately based on the recursion count and dirty state of the
2556 * buffer.
2557 *
2558 * XXX (dgc): When we have lots of free space, does this buy us
2559 * anything other than extra overhead when we need to put more blocks
2560 * back on the free list? Maybe we should only do this when space is
2561 * getting low or the AGFL is more than half full?
2562 *
2563 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2564 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2565 * updating the rmapbt. Both flags are used in xfs_repair while we're
2566 * rebuilding the rmapbt, and neither are used by the kernel. They're
2567 * both required to ensure that rmaps are correctly recorded for the
2568 * regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and
2569 * repair/rmap.c in xfsprogs for details.
2570 */
2571 memset(&targs, 0, sizeof(targs));
2572 /* struct copy below */
2573 if (flags & XFS_ALLOC_FLAG_NORMAP)
2574 targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2575 else
2576 targs.oinfo = XFS_RMAP_OINFO_AG;
2577 while (!(flags & XFS_ALLOC_FLAG_NOSHRINK) && pag->pagf_flcount > need) {
2578 error = xfs_alloc_get_freelist(tp, agbp, &bno, 0);
2579 if (error)
2580 goto out_agbp_relse;
2581
2582 /* defer agfl frees */
2583 xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
2584 }
2585
2586 targs.tp = tp;
2587 targs.mp = mp;
2588 targs.agbp = agbp;
2589 targs.agno = args->agno;
2590 targs.alignment = targs.minlen = targs.prod = 1;
2591 targs.type = XFS_ALLOCTYPE_THIS_AG;
2592 targs.pag = pag;
2593 error = xfs_alloc_read_agfl(mp, tp, targs.agno, &agflbp);
2594 if (error)
2595 goto out_agbp_relse;
2596
2597 /* Make the freelist longer if it's too short. */
2598 while (pag->pagf_flcount < need) {
2599 targs.agbno = 0;
2600 targs.maxlen = need - pag->pagf_flcount;
2601 targs.resv = XFS_AG_RESV_AGFL;
2602
2603 /* Allocate as many blocks as possible at once. */
2604 error = xfs_alloc_ag_vextent(&targs);
2605 if (error)
2606 goto out_agflbp_relse;
2607
2608 /*
2609 * Stop if we run out. Won't happen if callers are obeying
2610 * the restrictions correctly. Can happen for free calls
2611 * on a completely full ag.
2612 */
2613 if (targs.agbno == NULLAGBLOCK) {
2614 if (flags & XFS_ALLOC_FLAG_FREEING)
2615 break;
2616 goto out_agflbp_relse;
2617 }
2618 /*
2619 * Put each allocated block on the list.
2620 */
2621 for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2622 error = xfs_alloc_put_freelist(tp, agbp,
2623 agflbp, bno, 0);
2624 if (error)
2625 goto out_agflbp_relse;
2626 }
2627 }
2628 xfs_trans_brelse(tp, agflbp);
2629 args->agbp = agbp;
2630 return 0;
2631
2632out_agflbp_relse:
2633 xfs_trans_brelse(tp, agflbp);
2634out_agbp_relse:
2635 if (agbp)
2636 xfs_trans_brelse(tp, agbp);
2637out_no_agbp:
2638 args->agbp = NULL;
2639 return error;
2640}
2641
2642/*
2643 * Get a block from the freelist.
2644 * Returns with the buffer for the block gotten.
2645 */
2646int /* error */
2647xfs_alloc_get_freelist(
2648 xfs_trans_t *tp, /* transaction pointer */
2649 xfs_buf_t *agbp, /* buffer containing the agf structure */
2650 xfs_agblock_t *bnop, /* block address retrieved from freelist */
2651 int btreeblk) /* destination is a AGF btree */
2652{
2653 struct xfs_agf *agf = agbp->b_addr;
2654 xfs_buf_t *agflbp;/* buffer for a.g. freelist structure */
2655 xfs_agblock_t bno; /* block number returned */
2656 __be32 *agfl_bno;
2657 int error;
2658 int logflags;
2659 xfs_mount_t *mp = tp->t_mountp;
2660 xfs_perag_t *pag; /* per allocation group data */
2661
2662 /*
2663 * Freelist is empty, give up.
2664 */
2665 if (!agf->agf_flcount) {
2666 *bnop = NULLAGBLOCK;
2667 return 0;
2668 }
2669 /*
2670 * Read the array of free blocks.
2671 */
2672 error = xfs_alloc_read_agfl(mp, tp, be32_to_cpu(agf->agf_seqno),
2673 &agflbp);
2674 if (error)
2675 return error;
2676
2677
2678 /*
2679 * Get the block number and update the data structures.
2680 */
2681 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2682 bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
2683 be32_add_cpu(&agf->agf_flfirst, 1);
2684 xfs_trans_brelse(tp, agflbp);
2685 if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
2686 agf->agf_flfirst = 0;
2687
2688 pag = agbp->b_pag;
2689 ASSERT(!pag->pagf_agflreset);
2690 be32_add_cpu(&agf->agf_flcount, -1);
2691 xfs_trans_agflist_delta(tp, -1);
2692 pag->pagf_flcount--;
2693
2694 logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
2695 if (btreeblk) {
2696 be32_add_cpu(&agf->agf_btreeblks, 1);
2697 pag->pagf_btreeblks++;
2698 logflags |= XFS_AGF_BTREEBLKS;
2699 }
2700
2701 xfs_alloc_log_agf(tp, agbp, logflags);
2702 *bnop = bno;
2703
2704 return 0;
2705}
2706
2707/*
2708 * Log the given fields from the agf structure.
2709 */
2710void
2711xfs_alloc_log_agf(
2712 xfs_trans_t *tp, /* transaction pointer */
2713 xfs_buf_t *bp, /* buffer for a.g. freelist header */
2714 int fields) /* mask of fields to be logged (XFS_AGF_...) */
2715{
2716 int first; /* first byte offset */
2717 int last; /* last byte offset */
2718 static const short offsets[] = {
2719 offsetof(xfs_agf_t, agf_magicnum),
2720 offsetof(xfs_agf_t, agf_versionnum),
2721 offsetof(xfs_agf_t, agf_seqno),
2722 offsetof(xfs_agf_t, agf_length),
2723 offsetof(xfs_agf_t, agf_roots[0]),
2724 offsetof(xfs_agf_t, agf_levels[0]),
2725 offsetof(xfs_agf_t, agf_flfirst),
2726 offsetof(xfs_agf_t, agf_fllast),
2727 offsetof(xfs_agf_t, agf_flcount),
2728 offsetof(xfs_agf_t, agf_freeblks),
2729 offsetof(xfs_agf_t, agf_longest),
2730 offsetof(xfs_agf_t, agf_btreeblks),
2731 offsetof(xfs_agf_t, agf_uuid),
2732 offsetof(xfs_agf_t, agf_rmap_blocks),
2733 offsetof(xfs_agf_t, agf_refcount_blocks),
2734 offsetof(xfs_agf_t, agf_refcount_root),
2735 offsetof(xfs_agf_t, agf_refcount_level),
2736 /* needed so that we don't log the whole rest of the structure: */
2737 offsetof(xfs_agf_t, agf_spare64),
2738 sizeof(xfs_agf_t)
2739 };
2740
2741 trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
2742
2743 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
2744
2745 xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
2746 xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
2747}
2748
2749/*
2750 * Interface for inode allocation to force the pag data to be initialized.
2751 */
2752int /* error */
2753xfs_alloc_pagf_init(
2754 xfs_mount_t *mp, /* file system mount structure */
2755 xfs_trans_t *tp, /* transaction pointer */
2756 xfs_agnumber_t agno, /* allocation group number */
2757 int flags) /* XFS_ALLOC_FLAGS_... */
2758{
2759 xfs_buf_t *bp;
2760 int error;
2761
2762 error = xfs_alloc_read_agf(mp, tp, agno, flags, &bp);
2763 if (!error)
2764 xfs_trans_brelse(tp, bp);
2765 return error;
2766}
2767
2768/*
2769 * Put the block on the freelist for the allocation group.
2770 */
2771int /* error */
2772xfs_alloc_put_freelist(
2773 xfs_trans_t *tp, /* transaction pointer */
2774 xfs_buf_t *agbp, /* buffer for a.g. freelist header */
2775 xfs_buf_t *agflbp,/* buffer for a.g. free block array */
2776 xfs_agblock_t bno, /* block being freed */
2777 int btreeblk) /* block came from a AGF btree */
2778{
2779 struct xfs_mount *mp = tp->t_mountp;
2780 struct xfs_agf *agf = agbp->b_addr;
2781 __be32 *blockp;/* pointer to array entry */
2782 int error;
2783 int logflags;
2784 xfs_perag_t *pag; /* per allocation group data */
2785 __be32 *agfl_bno;
2786 int startoff;
2787
2788 if (!agflbp && (error = xfs_alloc_read_agfl(mp, tp,
2789 be32_to_cpu(agf->agf_seqno), &agflbp)))
2790 return error;
2791 be32_add_cpu(&agf->agf_fllast, 1);
2792 if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
2793 agf->agf_fllast = 0;
2794
2795 pag = agbp->b_pag;
2796 ASSERT(!pag->pagf_agflreset);
2797 be32_add_cpu(&agf->agf_flcount, 1);
2798 xfs_trans_agflist_delta(tp, 1);
2799 pag->pagf_flcount++;
2800
2801 logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
2802 if (btreeblk) {
2803 be32_add_cpu(&agf->agf_btreeblks, -1);
2804 pag->pagf_btreeblks--;
2805 logflags |= XFS_AGF_BTREEBLKS;
2806 }
2807
2808 xfs_alloc_log_agf(tp, agbp, logflags);
2809
2810 ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
2811
2812 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2813 blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
2814 *blockp = cpu_to_be32(bno);
2815 startoff = (char *)blockp - (char *)agflbp->b_addr;
2816
2817 xfs_alloc_log_agf(tp, agbp, logflags);
2818
2819 xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
2820 xfs_trans_log_buf(tp, agflbp, startoff,
2821 startoff + sizeof(xfs_agblock_t) - 1);
2822 return 0;
2823}
2824
2825static xfs_failaddr_t
2826xfs_agf_verify(
2827 struct xfs_buf *bp)
2828{
2829 struct xfs_mount *mp = bp->b_mount;
2830 struct xfs_agf *agf = bp->b_addr;
2831
2832 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2833 if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
2834 return __this_address;
2835 if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
2836 return __this_address;
2837 }
2838
2839 if (!xfs_verify_magic(bp, agf->agf_magicnum))
2840 return __this_address;
2841
2842 if (!(XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)) &&
2843 be32_to_cpu(agf->agf_freeblks) <= be32_to_cpu(agf->agf_length) &&
2844 be32_to_cpu(agf->agf_flfirst) < xfs_agfl_size(mp) &&
2845 be32_to_cpu(agf->agf_fllast) < xfs_agfl_size(mp) &&
2846 be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp)))
2847 return __this_address;
2848
2849 if (be32_to_cpu(agf->agf_length) > mp->m_sb.sb_dblocks)
2850 return __this_address;
2851
2852 if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
2853 be32_to_cpu(agf->agf_freeblks) > be32_to_cpu(agf->agf_length))
2854 return __this_address;
2855
2856 if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 ||
2857 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 ||
2858 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) > XFS_BTREE_MAXLEVELS ||
2859 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) > XFS_BTREE_MAXLEVELS)
2860 return __this_address;
2861
2862 if (xfs_sb_version_hasrmapbt(&mp->m_sb) &&
2863 (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 ||
2864 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) > XFS_BTREE_MAXLEVELS))
2865 return __this_address;
2866
2867 if (xfs_sb_version_hasrmapbt(&mp->m_sb) &&
2868 be32_to_cpu(agf->agf_rmap_blocks) > be32_to_cpu(agf->agf_length))
2869 return __this_address;
2870
2871 /*
2872 * during growfs operations, the perag is not fully initialised,
2873 * so we can't use it for any useful checking. growfs ensures we can't
2874 * use it by using uncached buffers that don't have the perag attached
2875 * so we can detect and avoid this problem.
2876 */
2877 if (bp->b_pag && be32_to_cpu(agf->agf_seqno) != bp->b_pag->pag_agno)
2878 return __this_address;
2879
2880 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
2881 be32_to_cpu(agf->agf_btreeblks) > be32_to_cpu(agf->agf_length))
2882 return __this_address;
2883
2884 if (xfs_sb_version_hasreflink(&mp->m_sb) &&
2885 be32_to_cpu(agf->agf_refcount_blocks) >
2886 be32_to_cpu(agf->agf_length))
2887 return __this_address;
2888
2889 if (xfs_sb_version_hasreflink(&mp->m_sb) &&
2890 (be32_to_cpu(agf->agf_refcount_level) < 1 ||
2891 be32_to_cpu(agf->agf_refcount_level) > XFS_BTREE_MAXLEVELS))
2892 return __this_address;
2893
2894 return NULL;
2895
2896}
2897
2898static void
2899xfs_agf_read_verify(
2900 struct xfs_buf *bp)
2901{
2902 struct xfs_mount *mp = bp->b_mount;
2903 xfs_failaddr_t fa;
2904
2905 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2906 !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
2907 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2908 else {
2909 fa = xfs_agf_verify(bp);
2910 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
2911 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2912 }
2913}
2914
2915static void
2916xfs_agf_write_verify(
2917 struct xfs_buf *bp)
2918{
2919 struct xfs_mount *mp = bp->b_mount;
2920 struct xfs_buf_log_item *bip = bp->b_log_item;
2921 struct xfs_agf *agf = bp->b_addr;
2922 xfs_failaddr_t fa;
2923
2924 fa = xfs_agf_verify(bp);
2925 if (fa) {
2926 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2927 return;
2928 }
2929
2930 if (!xfs_sb_version_hascrc(&mp->m_sb))
2931 return;
2932
2933 if (bip)
2934 agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2935
2936 xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
2937}
2938
2939const struct xfs_buf_ops xfs_agf_buf_ops = {
2940 .name = "xfs_agf",
2941 .magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
2942 .verify_read = xfs_agf_read_verify,
2943 .verify_write = xfs_agf_write_verify,
2944 .verify_struct = xfs_agf_verify,
2945};
2946
2947/*
2948 * Read in the allocation group header (free/alloc section).
2949 */
2950int /* error */
2951xfs_read_agf(
2952 struct xfs_mount *mp, /* mount point structure */
2953 struct xfs_trans *tp, /* transaction pointer */
2954 xfs_agnumber_t agno, /* allocation group number */
2955 int flags, /* XFS_BUF_ */
2956 struct xfs_buf **bpp) /* buffer for the ag freelist header */
2957{
2958 int error;
2959
2960 trace_xfs_read_agf(mp, agno);
2961
2962 ASSERT(agno != NULLAGNUMBER);
2963 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2964 XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)),
2965 XFS_FSS_TO_BB(mp, 1), flags, bpp, &xfs_agf_buf_ops);
2966 if (error)
2967 return error;
2968
2969 ASSERT(!(*bpp)->b_error);
2970 xfs_buf_set_ref(*bpp, XFS_AGF_REF);
2971 return 0;
2972}
2973
2974/*
2975 * Read in the allocation group header (free/alloc section).
2976 */
2977int /* error */
2978xfs_alloc_read_agf(
2979 struct xfs_mount *mp, /* mount point structure */
2980 struct xfs_trans *tp, /* transaction pointer */
2981 xfs_agnumber_t agno, /* allocation group number */
2982 int flags, /* XFS_ALLOC_FLAG_... */
2983 struct xfs_buf **bpp) /* buffer for the ag freelist header */
2984{
2985 struct xfs_agf *agf; /* ag freelist header */
2986 struct xfs_perag *pag; /* per allocation group data */
2987 int error;
2988
2989 trace_xfs_alloc_read_agf(mp, agno);
2990
2991 /* We don't support trylock when freeing. */
2992 ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
2993 (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
2994 ASSERT(agno != NULLAGNUMBER);
2995 error = xfs_read_agf(mp, tp, agno,
2996 (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
2997 bpp);
2998 if (error)
2999 return error;
3000 ASSERT(!(*bpp)->b_error);
3001
3002 agf = (*bpp)->b_addr;
3003 pag = (*bpp)->b_pag;
3004 if (!pag->pagf_init) {
3005 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3006 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3007 pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3008 pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3009 pag->pagf_levels[XFS_BTNUM_BNOi] =
3010 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]);
3011 pag->pagf_levels[XFS_BTNUM_CNTi] =
3012 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]);
3013 pag->pagf_levels[XFS_BTNUM_RMAPi] =
3014 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]);
3015 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3016 pag->pagf_init = 1;
3017 pag->pagf_agflreset = xfs_agfl_needs_reset(mp, agf);
3018 }
3019#ifdef DEBUG
3020 else if (!XFS_FORCED_SHUTDOWN(mp)) {
3021 ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3022 ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3023 ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3024 ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3025 ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] ==
3026 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]));
3027 ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] ==
3028 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]));
3029 }
3030#endif
3031 return 0;
3032}
3033
3034/*
3035 * Allocate an extent (variable-size).
3036 * Depending on the allocation type, we either look in a single allocation
3037 * group or loop over the allocation groups to find the result.
3038 */
3039int /* error */
3040xfs_alloc_vextent(
3041 struct xfs_alloc_arg *args) /* allocation argument structure */
3042{
3043 xfs_agblock_t agsize; /* allocation group size */
3044 int error;
3045 int flags; /* XFS_ALLOC_FLAG_... locking flags */
3046 struct xfs_mount *mp; /* mount structure pointer */
3047 xfs_agnumber_t sagno; /* starting allocation group number */
3048 xfs_alloctype_t type; /* input allocation type */
3049 int bump_rotor = 0;
3050 xfs_agnumber_t rotorstep = xfs_rotorstep; /* inode32 agf stepper */
3051
3052 mp = args->mp;
3053 type = args->otype = args->type;
3054 args->agbno = NULLAGBLOCK;
3055 /*
3056 * Just fix this up, for the case where the last a.g. is shorter
3057 * (or there's only one a.g.) and the caller couldn't easily figure
3058 * that out (xfs_bmap_alloc).
3059 */
3060 agsize = mp->m_sb.sb_agblocks;
3061 if (args->maxlen > agsize)
3062 args->maxlen = agsize;
3063 if (args->alignment == 0)
3064 args->alignment = 1;
3065 ASSERT(XFS_FSB_TO_AGNO(mp, args->fsbno) < mp->m_sb.sb_agcount);
3066 ASSERT(XFS_FSB_TO_AGBNO(mp, args->fsbno) < agsize);
3067 ASSERT(args->minlen <= args->maxlen);
3068 ASSERT(args->minlen <= agsize);
3069 ASSERT(args->mod < args->prod);
3070 if (XFS_FSB_TO_AGNO(mp, args->fsbno) >= mp->m_sb.sb_agcount ||
3071 XFS_FSB_TO_AGBNO(mp, args->fsbno) >= agsize ||
3072 args->minlen > args->maxlen || args->minlen > agsize ||
3073 args->mod >= args->prod) {
3074 args->fsbno = NULLFSBLOCK;
3075 trace_xfs_alloc_vextent_badargs(args);
3076 return 0;
3077 }
3078
3079 switch (type) {
3080 case XFS_ALLOCTYPE_THIS_AG:
3081 case XFS_ALLOCTYPE_NEAR_BNO:
3082 case XFS_ALLOCTYPE_THIS_BNO:
3083 /*
3084 * These three force us into a single a.g.
3085 */
3086 args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3087 args->pag = xfs_perag_get(mp, args->agno);
3088 error = xfs_alloc_fix_freelist(args, 0);
3089 if (error) {
3090 trace_xfs_alloc_vextent_nofix(args);
3091 goto error0;
3092 }
3093 if (!args->agbp) {
3094 trace_xfs_alloc_vextent_noagbp(args);
3095 break;
3096 }
3097 args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
3098 if ((error = xfs_alloc_ag_vextent(args)))
3099 goto error0;
3100 break;
3101 case XFS_ALLOCTYPE_START_BNO:
3102 /*
3103 * Try near allocation first, then anywhere-in-ag after
3104 * the first a.g. fails.
3105 */
3106 if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3107 (mp->m_flags & XFS_MOUNT_32BITINODES)) {
3108 args->fsbno = XFS_AGB_TO_FSB(mp,
3109 ((mp->m_agfrotor / rotorstep) %
3110 mp->m_sb.sb_agcount), 0);
3111 bump_rotor = 1;
3112 }
3113 args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
3114 args->type = XFS_ALLOCTYPE_NEAR_BNO;
3115 /* FALLTHROUGH */
3116 case XFS_ALLOCTYPE_FIRST_AG:
3117 /*
3118 * Rotate through the allocation groups looking for a winner.
3119 */
3120 if (type == XFS_ALLOCTYPE_FIRST_AG) {
3121 /*
3122 * Start with allocation group given by bno.
3123 */
3124 args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3125 args->type = XFS_ALLOCTYPE_THIS_AG;
3126 sagno = 0;
3127 flags = 0;
3128 } else {
3129 /*
3130 * Start with the given allocation group.
3131 */
3132 args->agno = sagno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3133 flags = XFS_ALLOC_FLAG_TRYLOCK;
3134 }
3135 /*
3136 * Loop over allocation groups twice; first time with
3137 * trylock set, second time without.
3138 */
3139 for (;;) {
3140 args->pag = xfs_perag_get(mp, args->agno);
3141 error = xfs_alloc_fix_freelist(args, flags);
3142 if (error) {
3143 trace_xfs_alloc_vextent_nofix(args);
3144 goto error0;
3145 }
3146 /*
3147 * If we get a buffer back then the allocation will fly.
3148 */
3149 if (args->agbp) {
3150 if ((error = xfs_alloc_ag_vextent(args)))
3151 goto error0;
3152 break;
3153 }
3154
3155 trace_xfs_alloc_vextent_loopfailed(args);
3156
3157 /*
3158 * Didn't work, figure out the next iteration.
3159 */
3160 if (args->agno == sagno &&
3161 type == XFS_ALLOCTYPE_START_BNO)
3162 args->type = XFS_ALLOCTYPE_THIS_AG;
3163 /*
3164 * For the first allocation, we can try any AG to get
3165 * space. However, if we already have allocated a
3166 * block, we don't want to try AGs whose number is below
3167 * sagno. Otherwise, we may end up with out-of-order
3168 * locking of AGF, which might cause deadlock.
3169 */
3170 if (++(args->agno) == mp->m_sb.sb_agcount) {
3171 if (args->tp->t_firstblock != NULLFSBLOCK)
3172 args->agno = sagno;
3173 else
3174 args->agno = 0;
3175 }
3176 /*
3177 * Reached the starting a.g., must either be done
3178 * or switch to non-trylock mode.
3179 */
3180 if (args->agno == sagno) {
3181 if (flags == 0) {
3182 args->agbno = NULLAGBLOCK;
3183 trace_xfs_alloc_vextent_allfailed(args);
3184 break;
3185 }
3186
3187 flags = 0;
3188 if (type == XFS_ALLOCTYPE_START_BNO) {
3189 args->agbno = XFS_FSB_TO_AGBNO(mp,
3190 args->fsbno);
3191 args->type = XFS_ALLOCTYPE_NEAR_BNO;
3192 }
3193 }
3194 xfs_perag_put(args->pag);
3195 }
3196 if (bump_rotor) {
3197 if (args->agno == sagno)
3198 mp->m_agfrotor = (mp->m_agfrotor + 1) %
3199 (mp->m_sb.sb_agcount * rotorstep);
3200 else
3201 mp->m_agfrotor = (args->agno * rotorstep + 1) %
3202 (mp->m_sb.sb_agcount * rotorstep);
3203 }
3204 break;
3205 default:
3206 ASSERT(0);
3207 /* NOTREACHED */
3208 }
3209 if (args->agbno == NULLAGBLOCK)
3210 args->fsbno = NULLFSBLOCK;
3211 else {
3212 args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3213#ifdef DEBUG
3214 ASSERT(args->len >= args->minlen);
3215 ASSERT(args->len <= args->maxlen);
3216 ASSERT(args->agbno % args->alignment == 0);
3217 XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno),
3218 args->len);
3219#endif
3220
3221 }
3222 xfs_perag_put(args->pag);
3223 return 0;
3224error0:
3225 xfs_perag_put(args->pag);
3226 return error;
3227}
3228
3229/* Ensure that the freelist is at full capacity. */
3230int
3231xfs_free_extent_fix_freelist(
3232 struct xfs_trans *tp,
3233 xfs_agnumber_t agno,
3234 struct xfs_buf **agbp)
3235{
3236 struct xfs_alloc_arg args;
3237 int error;
3238
3239 memset(&args, 0, sizeof(struct xfs_alloc_arg));
3240 args.tp = tp;
3241 args.mp = tp->t_mountp;
3242 args.agno = agno;
3243
3244 /*
3245 * validate that the block number is legal - the enables us to detect
3246 * and handle a silent filesystem corruption rather than crashing.
3247 */
3248 if (args.agno >= args.mp->m_sb.sb_agcount)
3249 return -EFSCORRUPTED;
3250
3251 args.pag = xfs_perag_get(args.mp, args.agno);
3252 ASSERT(args.pag);
3253
3254 error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3255 if (error)
3256 goto out;
3257
3258 *agbp = args.agbp;
3259out:
3260 xfs_perag_put(args.pag);
3261 return error;
3262}
3263
3264/*
3265 * Free an extent.
3266 * Just break up the extent address and hand off to xfs_free_ag_extent
3267 * after fixing up the freelist.
3268 */
3269int
3270__xfs_free_extent(
3271 struct xfs_trans *tp,
3272 xfs_fsblock_t bno,
3273 xfs_extlen_t len,
3274 const struct xfs_owner_info *oinfo,
3275 enum xfs_ag_resv_type type,
3276 bool skip_discard)
3277{
3278 struct xfs_mount *mp = tp->t_mountp;
3279 struct xfs_buf *agbp;
3280 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, bno);
3281 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, bno);
3282 struct xfs_agf *agf;
3283 int error;
3284 unsigned int busy_flags = 0;
3285
3286 ASSERT(len != 0);
3287 ASSERT(type != XFS_AG_RESV_AGFL);
3288
3289 if (XFS_TEST_ERROR(false, mp,
3290 XFS_ERRTAG_FREE_EXTENT))
3291 return -EIO;
3292
3293 error = xfs_free_extent_fix_freelist(tp, agno, &agbp);
3294 if (error)
3295 return error;
3296 agf = agbp->b_addr;
3297
3298 if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
3299 error = -EFSCORRUPTED;
3300 goto err;
3301 }
3302
3303 /* validate the extent size is legal now we have the agf locked */
3304 if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
3305 error = -EFSCORRUPTED;
3306 goto err;
3307 }
3308
3309 error = xfs_free_ag_extent(tp, agbp, agno, agbno, len, oinfo, type);
3310 if (error)
3311 goto err;
3312
3313 if (skip_discard)
3314 busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
3315 xfs_extent_busy_insert(tp, agno, agbno, len, busy_flags);
3316 return 0;
3317
3318err:
3319 xfs_trans_brelse(tp, agbp);
3320 return error;
3321}
3322
3323struct xfs_alloc_query_range_info {
3324 xfs_alloc_query_range_fn fn;
3325 void *priv;
3326};
3327
3328/* Format btree record and pass to our callback. */
3329STATIC int
3330xfs_alloc_query_range_helper(
3331 struct xfs_btree_cur *cur,
3332 union xfs_btree_rec *rec,
3333 void *priv)
3334{
3335 struct xfs_alloc_query_range_info *query = priv;
3336 struct xfs_alloc_rec_incore irec;
3337
3338 irec.ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
3339 irec.ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
3340 return query->fn(cur, &irec, query->priv);
3341}
3342
3343/* Find all free space within a given range of blocks. */
3344int
3345xfs_alloc_query_range(
3346 struct xfs_btree_cur *cur,
3347 struct xfs_alloc_rec_incore *low_rec,
3348 struct xfs_alloc_rec_incore *high_rec,
3349 xfs_alloc_query_range_fn fn,
3350 void *priv)
3351{
3352 union xfs_btree_irec low_brec;
3353 union xfs_btree_irec high_brec;
3354 struct xfs_alloc_query_range_info query;
3355
3356 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3357 low_brec.a = *low_rec;
3358 high_brec.a = *high_rec;
3359 query.priv = priv;
3360 query.fn = fn;
3361 return xfs_btree_query_range(cur, &low_brec, &high_brec,
3362 xfs_alloc_query_range_helper, &query);
3363}
3364
3365/* Find all free space records. */
3366int
3367xfs_alloc_query_all(
3368 struct xfs_btree_cur *cur,
3369 xfs_alloc_query_range_fn fn,
3370 void *priv)
3371{
3372 struct xfs_alloc_query_range_info query;
3373
3374 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3375 query.priv = priv;
3376 query.fn = fn;
3377 return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
3378}
3379
3380/* Is there a record covering a given extent? */
3381int
3382xfs_alloc_has_record(
3383 struct xfs_btree_cur *cur,
3384 xfs_agblock_t bno,
3385 xfs_extlen_t len,
3386 bool *exists)
3387{
3388 union xfs_btree_irec low;
3389 union xfs_btree_irec high;
3390
3391 memset(&low, 0, sizeof(low));
3392 low.a.ar_startblock = bno;
3393 memset(&high, 0xFF, sizeof(high));
3394 high.a.ar_startblock = bno + len - 1;
3395
3396 return xfs_btree_has_record(cur, &low, &high, exists);
3397}
3398
3399/*
3400 * Walk all the blocks in the AGFL. The @walk_fn can return any negative
3401 * error code or XFS_ITER_*.
3402 */
3403int
3404xfs_agfl_walk(
3405 struct xfs_mount *mp,
3406 struct xfs_agf *agf,
3407 struct xfs_buf *agflbp,
3408 xfs_agfl_walk_fn walk_fn,
3409 void *priv)
3410{
3411 __be32 *agfl_bno;
3412 unsigned int i;
3413 int error;
3414
3415 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3416 i = be32_to_cpu(agf->agf_flfirst);
3417
3418 /* Nothing to walk in an empty AGFL. */
3419 if (agf->agf_flcount == cpu_to_be32(0))
3420 return 0;
3421
3422 /* Otherwise, walk from first to last, wrapping as needed. */
3423 for (;;) {
3424 error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
3425 if (error)
3426 return error;
3427 if (i == be32_to_cpu(agf->agf_fllast))
3428 break;
3429 if (++i == xfs_agfl_size(mp))
3430 i = 0;
3431 }
3432
3433 return 0;
3434}