Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * (C) 1997 Linus Torvalds
   4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   5 */
   6#include <linux/export.h>
   7#include <linux/fs.h>
 
   8#include <linux/mm.h>
   9#include <linux/backing-dev.h>
  10#include <linux/hash.h>
  11#include <linux/swap.h>
  12#include <linux/security.h>
  13#include <linux/cdev.h>
  14#include <linux/memblock.h>
  15#include <linux/fsnotify.h>
  16#include <linux/mount.h>
  17#include <linux/posix_acl.h>
  18#include <linux/prefetch.h>
  19#include <linux/buffer_head.h> /* for inode_has_buffers */
  20#include <linux/ratelimit.h>
  21#include <linux/list_lru.h>
  22#include <linux/iversion.h>
 
  23#include <trace/events/writeback.h>
  24#include "internal.h"
  25
  26/*
  27 * Inode locking rules:
  28 *
  29 * inode->i_lock protects:
  30 *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
  31 * Inode LRU list locks protect:
  32 *   inode->i_sb->s_inode_lru, inode->i_lru
  33 * inode->i_sb->s_inode_list_lock protects:
  34 *   inode->i_sb->s_inodes, inode->i_sb_list
  35 * bdi->wb.list_lock protects:
  36 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  37 * inode_hash_lock protects:
  38 *   inode_hashtable, inode->i_hash
  39 *
  40 * Lock ordering:
  41 *
  42 * inode->i_sb->s_inode_list_lock
  43 *   inode->i_lock
  44 *     Inode LRU list locks
  45 *
  46 * bdi->wb.list_lock
  47 *   inode->i_lock
  48 *
  49 * inode_hash_lock
  50 *   inode->i_sb->s_inode_list_lock
  51 *   inode->i_lock
  52 *
  53 * iunique_lock
  54 *   inode_hash_lock
  55 */
  56
  57static unsigned int i_hash_mask __read_mostly;
  58static unsigned int i_hash_shift __read_mostly;
  59static struct hlist_head *inode_hashtable __read_mostly;
  60static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  61
  62/*
  63 * Empty aops. Can be used for the cases where the user does not
  64 * define any of the address_space operations.
  65 */
  66const struct address_space_operations empty_aops = {
  67};
  68EXPORT_SYMBOL(empty_aops);
  69
  70static DEFINE_PER_CPU(unsigned long, nr_inodes);
  71static DEFINE_PER_CPU(unsigned long, nr_unused);
  72
  73static struct kmem_cache *inode_cachep __read_mostly;
  74
  75static long get_nr_inodes(void)
  76{
  77	int i;
  78	long sum = 0;
  79	for_each_possible_cpu(i)
  80		sum += per_cpu(nr_inodes, i);
  81	return sum < 0 ? 0 : sum;
  82}
  83
  84static inline long get_nr_inodes_unused(void)
  85{
  86	int i;
  87	long sum = 0;
  88	for_each_possible_cpu(i)
  89		sum += per_cpu(nr_unused, i);
  90	return sum < 0 ? 0 : sum;
  91}
  92
  93long get_nr_dirty_inodes(void)
  94{
  95	/* not actually dirty inodes, but a wild approximation */
  96	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
  97	return nr_dirty > 0 ? nr_dirty : 0;
  98}
  99
 100/*
 101 * Handle nr_inode sysctl
 102 */
 103#ifdef CONFIG_SYSCTL
 104/*
 105 * Statistics gathering..
 106 */
 107static struct inodes_stat_t inodes_stat;
 108
 109static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
 110			  size_t *lenp, loff_t *ppos)
 111{
 112	inodes_stat.nr_inodes = get_nr_inodes();
 113	inodes_stat.nr_unused = get_nr_inodes_unused();
 114	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 115}
 116
 117static struct ctl_table inodes_sysctls[] = {
 118	{
 119		.procname	= "inode-nr",
 120		.data		= &inodes_stat,
 121		.maxlen		= 2*sizeof(long),
 122		.mode		= 0444,
 123		.proc_handler	= proc_nr_inodes,
 124	},
 125	{
 126		.procname	= "inode-state",
 127		.data		= &inodes_stat,
 128		.maxlen		= 7*sizeof(long),
 129		.mode		= 0444,
 130		.proc_handler	= proc_nr_inodes,
 131	},
 132	{ }
 133};
 134
 135static int __init init_fs_inode_sysctls(void)
 136{
 137	register_sysctl_init("fs", inodes_sysctls);
 138	return 0;
 139}
 140early_initcall(init_fs_inode_sysctls);
 141#endif
 142
 143static int no_open(struct inode *inode, struct file *file)
 144{
 145	return -ENXIO;
 146}
 147
 148/**
 149 * inode_init_always - perform inode structure initialisation
 150 * @sb: superblock inode belongs to
 151 * @inode: inode to initialise
 152 *
 153 * These are initializations that need to be done on every inode
 154 * allocation as the fields are not initialised by slab allocation.
 155 */
 156int inode_init_always(struct super_block *sb, struct inode *inode)
 157{
 158	static const struct inode_operations empty_iops;
 159	static const struct file_operations no_open_fops = {.open = no_open};
 160	struct address_space *const mapping = &inode->i_data;
 161
 162	inode->i_sb = sb;
 163	inode->i_blkbits = sb->s_blocksize_bits;
 164	inode->i_flags = 0;
 165	atomic64_set(&inode->i_sequence, 0);
 166	atomic_set(&inode->i_count, 1);
 167	inode->i_op = &empty_iops;
 168	inode->i_fop = &no_open_fops;
 169	inode->i_ino = 0;
 170	inode->__i_nlink = 1;
 171	inode->i_opflags = 0;
 172	if (sb->s_xattr)
 173		inode->i_opflags |= IOP_XATTR;
 174	i_uid_write(inode, 0);
 175	i_gid_write(inode, 0);
 176	atomic_set(&inode->i_writecount, 0);
 177	inode->i_size = 0;
 178	inode->i_write_hint = WRITE_LIFE_NOT_SET;
 179	inode->i_blocks = 0;
 180	inode->i_bytes = 0;
 181	inode->i_generation = 0;
 182	inode->i_pipe = NULL;
 183	inode->i_cdev = NULL;
 184	inode->i_link = NULL;
 185	inode->i_dir_seq = 0;
 186	inode->i_rdev = 0;
 187	inode->dirtied_when = 0;
 188
 189#ifdef CONFIG_CGROUP_WRITEBACK
 190	inode->i_wb_frn_winner = 0;
 191	inode->i_wb_frn_avg_time = 0;
 192	inode->i_wb_frn_history = 0;
 193#endif
 194
 195	spin_lock_init(&inode->i_lock);
 196	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 197
 198	init_rwsem(&inode->i_rwsem);
 199	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 200
 201	atomic_set(&inode->i_dio_count, 0);
 202
 203	mapping->a_ops = &empty_aops;
 204	mapping->host = inode;
 205	mapping->flags = 0;
 206	mapping->wb_err = 0;
 207	atomic_set(&mapping->i_mmap_writable, 0);
 208#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 209	atomic_set(&mapping->nr_thps, 0);
 210#endif
 211	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 212	mapping->private_data = NULL;
 213	mapping->writeback_index = 0;
 214	init_rwsem(&mapping->invalidate_lock);
 215	lockdep_set_class_and_name(&mapping->invalidate_lock,
 216				   &sb->s_type->invalidate_lock_key,
 217				   "mapping.invalidate_lock");
 
 
 218	inode->i_private = NULL;
 219	inode->i_mapping = mapping;
 220	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
 221#ifdef CONFIG_FS_POSIX_ACL
 222	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 223#endif
 224
 225#ifdef CONFIG_FSNOTIFY
 226	inode->i_fsnotify_mask = 0;
 227#endif
 228	inode->i_flctx = NULL;
 229
 230	if (unlikely(security_inode_alloc(inode)))
 231		return -ENOMEM;
 232	this_cpu_inc(nr_inodes);
 233
 234	return 0;
 235}
 236EXPORT_SYMBOL(inode_init_always);
 237
 238void free_inode_nonrcu(struct inode *inode)
 239{
 240	kmem_cache_free(inode_cachep, inode);
 241}
 242EXPORT_SYMBOL(free_inode_nonrcu);
 243
 244static void i_callback(struct rcu_head *head)
 245{
 246	struct inode *inode = container_of(head, struct inode, i_rcu);
 247	if (inode->free_inode)
 248		inode->free_inode(inode);
 249	else
 250		free_inode_nonrcu(inode);
 251}
 252
 253static struct inode *alloc_inode(struct super_block *sb)
 254{
 255	const struct super_operations *ops = sb->s_op;
 256	struct inode *inode;
 257
 258	if (ops->alloc_inode)
 259		inode = ops->alloc_inode(sb);
 260	else
 261		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
 262
 263	if (!inode)
 264		return NULL;
 265
 266	if (unlikely(inode_init_always(sb, inode))) {
 267		if (ops->destroy_inode) {
 268			ops->destroy_inode(inode);
 269			if (!ops->free_inode)
 270				return NULL;
 271		}
 272		inode->free_inode = ops->free_inode;
 273		i_callback(&inode->i_rcu);
 274		return NULL;
 275	}
 276
 277	return inode;
 278}
 279
 280void __destroy_inode(struct inode *inode)
 281{
 282	BUG_ON(inode_has_buffers(inode));
 283	inode_detach_wb(inode);
 284	security_inode_free(inode);
 285	fsnotify_inode_delete(inode);
 286	locks_free_lock_context(inode);
 287	if (!inode->i_nlink) {
 288		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 289		atomic_long_dec(&inode->i_sb->s_remove_count);
 290	}
 291
 292#ifdef CONFIG_FS_POSIX_ACL
 293	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 294		posix_acl_release(inode->i_acl);
 295	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 296		posix_acl_release(inode->i_default_acl);
 297#endif
 298	this_cpu_dec(nr_inodes);
 299}
 300EXPORT_SYMBOL(__destroy_inode);
 301
 302static void destroy_inode(struct inode *inode)
 303{
 304	const struct super_operations *ops = inode->i_sb->s_op;
 305
 306	BUG_ON(!list_empty(&inode->i_lru));
 307	__destroy_inode(inode);
 308	if (ops->destroy_inode) {
 309		ops->destroy_inode(inode);
 310		if (!ops->free_inode)
 311			return;
 312	}
 313	inode->free_inode = ops->free_inode;
 314	call_rcu(&inode->i_rcu, i_callback);
 315}
 316
 317/**
 318 * drop_nlink - directly drop an inode's link count
 319 * @inode: inode
 320 *
 321 * This is a low-level filesystem helper to replace any
 322 * direct filesystem manipulation of i_nlink.  In cases
 323 * where we are attempting to track writes to the
 324 * filesystem, a decrement to zero means an imminent
 325 * write when the file is truncated and actually unlinked
 326 * on the filesystem.
 327 */
 328void drop_nlink(struct inode *inode)
 329{
 330	WARN_ON(inode->i_nlink == 0);
 331	inode->__i_nlink--;
 332	if (!inode->i_nlink)
 333		atomic_long_inc(&inode->i_sb->s_remove_count);
 334}
 335EXPORT_SYMBOL(drop_nlink);
 336
 337/**
 338 * clear_nlink - directly zero an inode's link count
 339 * @inode: inode
 340 *
 341 * This is a low-level filesystem helper to replace any
 342 * direct filesystem manipulation of i_nlink.  See
 343 * drop_nlink() for why we care about i_nlink hitting zero.
 344 */
 345void clear_nlink(struct inode *inode)
 346{
 347	if (inode->i_nlink) {
 348		inode->__i_nlink = 0;
 349		atomic_long_inc(&inode->i_sb->s_remove_count);
 350	}
 351}
 352EXPORT_SYMBOL(clear_nlink);
 353
 354/**
 355 * set_nlink - directly set an inode's link count
 356 * @inode: inode
 357 * @nlink: new nlink (should be non-zero)
 358 *
 359 * This is a low-level filesystem helper to replace any
 360 * direct filesystem manipulation of i_nlink.
 361 */
 362void set_nlink(struct inode *inode, unsigned int nlink)
 363{
 364	if (!nlink) {
 365		clear_nlink(inode);
 366	} else {
 367		/* Yes, some filesystems do change nlink from zero to one */
 368		if (inode->i_nlink == 0)
 369			atomic_long_dec(&inode->i_sb->s_remove_count);
 370
 371		inode->__i_nlink = nlink;
 372	}
 373}
 374EXPORT_SYMBOL(set_nlink);
 375
 376/**
 377 * inc_nlink - directly increment an inode's link count
 378 * @inode: inode
 379 *
 380 * This is a low-level filesystem helper to replace any
 381 * direct filesystem manipulation of i_nlink.  Currently,
 382 * it is only here for parity with dec_nlink().
 383 */
 384void inc_nlink(struct inode *inode)
 385{
 386	if (unlikely(inode->i_nlink == 0)) {
 387		WARN_ON(!(inode->i_state & I_LINKABLE));
 388		atomic_long_dec(&inode->i_sb->s_remove_count);
 389	}
 390
 391	inode->__i_nlink++;
 392}
 393EXPORT_SYMBOL(inc_nlink);
 394
 395static void __address_space_init_once(struct address_space *mapping)
 396{
 397	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
 398	init_rwsem(&mapping->i_mmap_rwsem);
 399	INIT_LIST_HEAD(&mapping->private_list);
 400	spin_lock_init(&mapping->private_lock);
 401	mapping->i_mmap = RB_ROOT_CACHED;
 402}
 403
 404void address_space_init_once(struct address_space *mapping)
 405{
 406	memset(mapping, 0, sizeof(*mapping));
 407	__address_space_init_once(mapping);
 408}
 409EXPORT_SYMBOL(address_space_init_once);
 410
 411/*
 412 * These are initializations that only need to be done
 413 * once, because the fields are idempotent across use
 414 * of the inode, so let the slab aware of that.
 415 */
 416void inode_init_once(struct inode *inode)
 417{
 418	memset(inode, 0, sizeof(*inode));
 419	INIT_HLIST_NODE(&inode->i_hash);
 420	INIT_LIST_HEAD(&inode->i_devices);
 421	INIT_LIST_HEAD(&inode->i_io_list);
 422	INIT_LIST_HEAD(&inode->i_wb_list);
 423	INIT_LIST_HEAD(&inode->i_lru);
 424	INIT_LIST_HEAD(&inode->i_sb_list);
 425	__address_space_init_once(&inode->i_data);
 426	i_size_ordered_init(inode);
 427}
 428EXPORT_SYMBOL(inode_init_once);
 429
 430static void init_once(void *foo)
 431{
 432	struct inode *inode = (struct inode *) foo;
 433
 434	inode_init_once(inode);
 435}
 436
 437/*
 438 * inode->i_lock must be held
 439 */
 440void __iget(struct inode *inode)
 441{
 442	atomic_inc(&inode->i_count);
 443}
 444
 445/*
 446 * get additional reference to inode; caller must already hold one.
 447 */
 448void ihold(struct inode *inode)
 449{
 450	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 451}
 452EXPORT_SYMBOL(ihold);
 453
 454static void __inode_add_lru(struct inode *inode, bool rotate)
 455{
 456	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
 457		return;
 458	if (atomic_read(&inode->i_count))
 459		return;
 460	if (!(inode->i_sb->s_flags & SB_ACTIVE))
 461		return;
 462	if (!mapping_shrinkable(&inode->i_data))
 463		return;
 464
 465	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 466		this_cpu_inc(nr_unused);
 467	else if (rotate)
 468		inode->i_state |= I_REFERENCED;
 469}
 470
 471/*
 472 * Add inode to LRU if needed (inode is unused and clean).
 473 *
 474 * Needs inode->i_lock held.
 475 */
 476void inode_add_lru(struct inode *inode)
 477{
 478	__inode_add_lru(inode, false);
 479}
 480
 481static void inode_lru_list_del(struct inode *inode)
 482{
 483	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 484		this_cpu_dec(nr_unused);
 485}
 486
 487/**
 488 * inode_sb_list_add - add inode to the superblock list of inodes
 489 * @inode: inode to add
 490 */
 491void inode_sb_list_add(struct inode *inode)
 492{
 493	spin_lock(&inode->i_sb->s_inode_list_lock);
 494	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 495	spin_unlock(&inode->i_sb->s_inode_list_lock);
 496}
 497EXPORT_SYMBOL_GPL(inode_sb_list_add);
 498
 499static inline void inode_sb_list_del(struct inode *inode)
 500{
 501	if (!list_empty(&inode->i_sb_list)) {
 502		spin_lock(&inode->i_sb->s_inode_list_lock);
 503		list_del_init(&inode->i_sb_list);
 504		spin_unlock(&inode->i_sb->s_inode_list_lock);
 505	}
 506}
 507
 508static unsigned long hash(struct super_block *sb, unsigned long hashval)
 509{
 510	unsigned long tmp;
 511
 512	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 513			L1_CACHE_BYTES;
 514	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 515	return tmp & i_hash_mask;
 516}
 517
 518/**
 519 *	__insert_inode_hash - hash an inode
 520 *	@inode: unhashed inode
 521 *	@hashval: unsigned long value used to locate this object in the
 522 *		inode_hashtable.
 523 *
 524 *	Add an inode to the inode hash for this superblock.
 525 */
 526void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 527{
 528	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 529
 530	spin_lock(&inode_hash_lock);
 531	spin_lock(&inode->i_lock);
 532	hlist_add_head_rcu(&inode->i_hash, b);
 533	spin_unlock(&inode->i_lock);
 534	spin_unlock(&inode_hash_lock);
 535}
 536EXPORT_SYMBOL(__insert_inode_hash);
 537
 538/**
 539 *	__remove_inode_hash - remove an inode from the hash
 540 *	@inode: inode to unhash
 541 *
 542 *	Remove an inode from the superblock.
 543 */
 544void __remove_inode_hash(struct inode *inode)
 545{
 546	spin_lock(&inode_hash_lock);
 547	spin_lock(&inode->i_lock);
 548	hlist_del_init_rcu(&inode->i_hash);
 549	spin_unlock(&inode->i_lock);
 550	spin_unlock(&inode_hash_lock);
 551}
 552EXPORT_SYMBOL(__remove_inode_hash);
 553
 554void dump_mapping(const struct address_space *mapping)
 555{
 556	struct inode *host;
 557	const struct address_space_operations *a_ops;
 558	struct hlist_node *dentry_first;
 559	struct dentry *dentry_ptr;
 560	struct dentry dentry;
 561	unsigned long ino;
 562
 563	/*
 564	 * If mapping is an invalid pointer, we don't want to crash
 565	 * accessing it, so probe everything depending on it carefully.
 566	 */
 567	if (get_kernel_nofault(host, &mapping->host) ||
 568	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
 569		pr_warn("invalid mapping:%px\n", mapping);
 570		return;
 571	}
 572
 573	if (!host) {
 574		pr_warn("aops:%ps\n", a_ops);
 575		return;
 576	}
 577
 578	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
 579	    get_kernel_nofault(ino, &host->i_ino)) {
 580		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
 581		return;
 582	}
 583
 584	if (!dentry_first) {
 585		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
 586		return;
 587	}
 588
 589	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
 590	if (get_kernel_nofault(dentry, dentry_ptr)) {
 
 591		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
 592				a_ops, ino, dentry_ptr);
 593		return;
 594	}
 595
 596	/*
 597	 * if dentry is corrupted, the %pd handler may still crash,
 598	 * but it's unlikely that we reach here with a corrupt mapping
 599	 */
 600	pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
 601}
 602
 603void clear_inode(struct inode *inode)
 604{
 605	/*
 606	 * We have to cycle the i_pages lock here because reclaim can be in the
 607	 * process of removing the last page (in __filemap_remove_folio())
 608	 * and we must not free the mapping under it.
 609	 */
 610	xa_lock_irq(&inode->i_data.i_pages);
 611	BUG_ON(inode->i_data.nrpages);
 612	/*
 613	 * Almost always, mapping_empty(&inode->i_data) here; but there are
 614	 * two known and long-standing ways in which nodes may get left behind
 615	 * (when deep radix-tree node allocation failed partway; or when THP
 616	 * collapse_file() failed). Until those two known cases are cleaned up,
 617	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
 618	 * nor even WARN_ON(!mapping_empty).
 619	 */
 620	xa_unlock_irq(&inode->i_data.i_pages);
 621	BUG_ON(!list_empty(&inode->i_data.private_list));
 622	BUG_ON(!(inode->i_state & I_FREEING));
 623	BUG_ON(inode->i_state & I_CLEAR);
 624	BUG_ON(!list_empty(&inode->i_wb_list));
 625	/* don't need i_lock here, no concurrent mods to i_state */
 626	inode->i_state = I_FREEING | I_CLEAR;
 627}
 628EXPORT_SYMBOL(clear_inode);
 629
 630/*
 631 * Free the inode passed in, removing it from the lists it is still connected
 632 * to. We remove any pages still attached to the inode and wait for any IO that
 633 * is still in progress before finally destroying the inode.
 634 *
 635 * An inode must already be marked I_FREEING so that we avoid the inode being
 636 * moved back onto lists if we race with other code that manipulates the lists
 637 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 638 *
 639 * An inode must already be removed from the LRU list before being evicted from
 640 * the cache. This should occur atomically with setting the I_FREEING state
 641 * flag, so no inodes here should ever be on the LRU when being evicted.
 642 */
 643static void evict(struct inode *inode)
 644{
 645	const struct super_operations *op = inode->i_sb->s_op;
 646
 647	BUG_ON(!(inode->i_state & I_FREEING));
 648	BUG_ON(!list_empty(&inode->i_lru));
 649
 650	if (!list_empty(&inode->i_io_list))
 651		inode_io_list_del(inode);
 652
 653	inode_sb_list_del(inode);
 654
 655	/*
 656	 * Wait for flusher thread to be done with the inode so that filesystem
 657	 * does not start destroying it while writeback is still running. Since
 658	 * the inode has I_FREEING set, flusher thread won't start new work on
 659	 * the inode.  We just have to wait for running writeback to finish.
 660	 */
 661	inode_wait_for_writeback(inode);
 662
 663	if (op->evict_inode) {
 664		op->evict_inode(inode);
 665	} else {
 666		truncate_inode_pages_final(&inode->i_data);
 667		clear_inode(inode);
 668	}
 669	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 670		cd_forget(inode);
 671
 672	remove_inode_hash(inode);
 673
 674	spin_lock(&inode->i_lock);
 675	wake_up_bit(&inode->i_state, __I_NEW);
 676	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 677	spin_unlock(&inode->i_lock);
 678
 679	destroy_inode(inode);
 680}
 681
 682/*
 683 * dispose_list - dispose of the contents of a local list
 684 * @head: the head of the list to free
 685 *
 686 * Dispose-list gets a local list with local inodes in it, so it doesn't
 687 * need to worry about list corruption and SMP locks.
 688 */
 689static void dispose_list(struct list_head *head)
 690{
 691	while (!list_empty(head)) {
 692		struct inode *inode;
 693
 694		inode = list_first_entry(head, struct inode, i_lru);
 695		list_del_init(&inode->i_lru);
 696
 697		evict(inode);
 698		cond_resched();
 699	}
 700}
 701
 702/**
 703 * evict_inodes	- evict all evictable inodes for a superblock
 704 * @sb:		superblock to operate on
 705 *
 706 * Make sure that no inodes with zero refcount are retained.  This is
 707 * called by superblock shutdown after having SB_ACTIVE flag removed,
 708 * so any inode reaching zero refcount during or after that call will
 709 * be immediately evicted.
 710 */
 711void evict_inodes(struct super_block *sb)
 712{
 713	struct inode *inode, *next;
 714	LIST_HEAD(dispose);
 715
 716again:
 717	spin_lock(&sb->s_inode_list_lock);
 718	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 719		if (atomic_read(&inode->i_count))
 720			continue;
 721
 722		spin_lock(&inode->i_lock);
 723		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 724			spin_unlock(&inode->i_lock);
 725			continue;
 726		}
 727
 728		inode->i_state |= I_FREEING;
 729		inode_lru_list_del(inode);
 730		spin_unlock(&inode->i_lock);
 731		list_add(&inode->i_lru, &dispose);
 732
 733		/*
 734		 * We can have a ton of inodes to evict at unmount time given
 735		 * enough memory, check to see if we need to go to sleep for a
 736		 * bit so we don't livelock.
 737		 */
 738		if (need_resched()) {
 739			spin_unlock(&sb->s_inode_list_lock);
 740			cond_resched();
 741			dispose_list(&dispose);
 742			goto again;
 743		}
 744	}
 745	spin_unlock(&sb->s_inode_list_lock);
 746
 747	dispose_list(&dispose);
 748}
 749EXPORT_SYMBOL_GPL(evict_inodes);
 750
 751/**
 752 * invalidate_inodes	- attempt to free all inodes on a superblock
 753 * @sb:		superblock to operate on
 754 * @kill_dirty: flag to guide handling of dirty inodes
 755 *
 756 * Attempts to free all inodes for a given superblock.  If there were any
 757 * busy inodes return a non-zero value, else zero.
 758 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 759 * them as busy.
 760 */
 761int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 762{
 763	int busy = 0;
 764	struct inode *inode, *next;
 765	LIST_HEAD(dispose);
 766
 767again:
 768	spin_lock(&sb->s_inode_list_lock);
 769	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 770		spin_lock(&inode->i_lock);
 771		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 772			spin_unlock(&inode->i_lock);
 773			continue;
 774		}
 775		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 776			spin_unlock(&inode->i_lock);
 777			busy = 1;
 778			continue;
 779		}
 780		if (atomic_read(&inode->i_count)) {
 781			spin_unlock(&inode->i_lock);
 782			busy = 1;
 783			continue;
 784		}
 785
 786		inode->i_state |= I_FREEING;
 787		inode_lru_list_del(inode);
 788		spin_unlock(&inode->i_lock);
 789		list_add(&inode->i_lru, &dispose);
 790		if (need_resched()) {
 791			spin_unlock(&sb->s_inode_list_lock);
 792			cond_resched();
 793			dispose_list(&dispose);
 794			goto again;
 795		}
 796	}
 797	spin_unlock(&sb->s_inode_list_lock);
 798
 799	dispose_list(&dispose);
 800
 801	return busy;
 802}
 803
 804/*
 805 * Isolate the inode from the LRU in preparation for freeing it.
 806 *
 807 * If the inode has the I_REFERENCED flag set, then it means that it has been
 808 * used recently - the flag is set in iput_final(). When we encounter such an
 809 * inode, clear the flag and move it to the back of the LRU so it gets another
 810 * pass through the LRU before it gets reclaimed. This is necessary because of
 811 * the fact we are doing lazy LRU updates to minimise lock contention so the
 812 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 813 * with this flag set because they are the inodes that are out of order.
 814 */
 815static enum lru_status inode_lru_isolate(struct list_head *item,
 816		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 817{
 818	struct list_head *freeable = arg;
 819	struct inode	*inode = container_of(item, struct inode, i_lru);
 820
 821	/*
 822	 * We are inverting the lru lock/inode->i_lock here, so use a
 823	 * trylock. If we fail to get the lock, just skip it.
 824	 */
 825	if (!spin_trylock(&inode->i_lock))
 826		return LRU_SKIP;
 827
 828	/*
 829	 * Inodes can get referenced, redirtied, or repopulated while
 830	 * they're already on the LRU, and this can make them
 831	 * unreclaimable for a while. Remove them lazily here; iput,
 832	 * sync, or the last page cache deletion will requeue them.
 833	 */
 834	if (atomic_read(&inode->i_count) ||
 835	    (inode->i_state & ~I_REFERENCED) ||
 836	    !mapping_shrinkable(&inode->i_data)) {
 837		list_lru_isolate(lru, &inode->i_lru);
 838		spin_unlock(&inode->i_lock);
 839		this_cpu_dec(nr_unused);
 840		return LRU_REMOVED;
 841	}
 842
 843	/* Recently referenced inodes get one more pass */
 844	if (inode->i_state & I_REFERENCED) {
 845		inode->i_state &= ~I_REFERENCED;
 846		spin_unlock(&inode->i_lock);
 847		return LRU_ROTATE;
 848	}
 849
 850	/*
 851	 * On highmem systems, mapping_shrinkable() permits dropping
 852	 * page cache in order to free up struct inodes: lowmem might
 853	 * be under pressure before the cache inside the highmem zone.
 854	 */
 855	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
 856		__iget(inode);
 857		spin_unlock(&inode->i_lock);
 858		spin_unlock(lru_lock);
 859		if (remove_inode_buffers(inode)) {
 860			unsigned long reap;
 861			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 862			if (current_is_kswapd())
 863				__count_vm_events(KSWAPD_INODESTEAL, reap);
 864			else
 865				__count_vm_events(PGINODESTEAL, reap);
 866			if (current->reclaim_state)
 867				current->reclaim_state->reclaimed_slab += reap;
 868		}
 869		iput(inode);
 870		spin_lock(lru_lock);
 871		return LRU_RETRY;
 872	}
 873
 874	WARN_ON(inode->i_state & I_NEW);
 875	inode->i_state |= I_FREEING;
 876	list_lru_isolate_move(lru, &inode->i_lru, freeable);
 877	spin_unlock(&inode->i_lock);
 878
 879	this_cpu_dec(nr_unused);
 880	return LRU_REMOVED;
 881}
 882
 883/*
 884 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 885 * This is called from the superblock shrinker function with a number of inodes
 886 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 887 * then are freed outside inode_lock by dispose_list().
 888 */
 889long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 890{
 891	LIST_HEAD(freeable);
 892	long freed;
 893
 894	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 895				     inode_lru_isolate, &freeable);
 896	dispose_list(&freeable);
 897	return freed;
 898}
 899
 900static void __wait_on_freeing_inode(struct inode *inode);
 901/*
 902 * Called with the inode lock held.
 903 */
 904static struct inode *find_inode(struct super_block *sb,
 905				struct hlist_head *head,
 906				int (*test)(struct inode *, void *),
 907				void *data)
 908{
 909	struct inode *inode = NULL;
 910
 911repeat:
 912	hlist_for_each_entry(inode, head, i_hash) {
 913		if (inode->i_sb != sb)
 914			continue;
 915		if (!test(inode, data))
 916			continue;
 917		spin_lock(&inode->i_lock);
 918		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 919			__wait_on_freeing_inode(inode);
 920			goto repeat;
 921		}
 922		if (unlikely(inode->i_state & I_CREATING)) {
 923			spin_unlock(&inode->i_lock);
 924			return ERR_PTR(-ESTALE);
 925		}
 926		__iget(inode);
 927		spin_unlock(&inode->i_lock);
 928		return inode;
 929	}
 930	return NULL;
 931}
 932
 933/*
 934 * find_inode_fast is the fast path version of find_inode, see the comment at
 935 * iget_locked for details.
 936 */
 937static struct inode *find_inode_fast(struct super_block *sb,
 938				struct hlist_head *head, unsigned long ino)
 939{
 940	struct inode *inode = NULL;
 941
 942repeat:
 943	hlist_for_each_entry(inode, head, i_hash) {
 944		if (inode->i_ino != ino)
 945			continue;
 946		if (inode->i_sb != sb)
 947			continue;
 948		spin_lock(&inode->i_lock);
 949		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 950			__wait_on_freeing_inode(inode);
 951			goto repeat;
 952		}
 953		if (unlikely(inode->i_state & I_CREATING)) {
 954			spin_unlock(&inode->i_lock);
 955			return ERR_PTR(-ESTALE);
 956		}
 957		__iget(inode);
 958		spin_unlock(&inode->i_lock);
 959		return inode;
 960	}
 961	return NULL;
 962}
 963
 964/*
 965 * Each cpu owns a range of LAST_INO_BATCH numbers.
 966 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 967 * to renew the exhausted range.
 968 *
 969 * This does not significantly increase overflow rate because every CPU can
 970 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 971 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 972 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 973 * overflow rate by 2x, which does not seem too significant.
 974 *
 975 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 976 * error if st_ino won't fit in target struct field. Use 32bit counter
 977 * here to attempt to avoid that.
 978 */
 979#define LAST_INO_BATCH 1024
 980static DEFINE_PER_CPU(unsigned int, last_ino);
 981
 982unsigned int get_next_ino(void)
 983{
 984	unsigned int *p = &get_cpu_var(last_ino);
 985	unsigned int res = *p;
 986
 987#ifdef CONFIG_SMP
 988	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 989		static atomic_t shared_last_ino;
 990		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 991
 992		res = next - LAST_INO_BATCH;
 993	}
 994#endif
 995
 996	res++;
 997	/* get_next_ino should not provide a 0 inode number */
 998	if (unlikely(!res))
 999		res++;
1000	*p = res;
1001	put_cpu_var(last_ino);
1002	return res;
1003}
1004EXPORT_SYMBOL(get_next_ino);
1005
1006/**
1007 *	new_inode_pseudo 	- obtain an inode
1008 *	@sb: superblock
1009 *
1010 *	Allocates a new inode for given superblock.
1011 *	Inode wont be chained in superblock s_inodes list
1012 *	This means :
1013 *	- fs can't be unmount
1014 *	- quotas, fsnotify, writeback can't work
1015 */
1016struct inode *new_inode_pseudo(struct super_block *sb)
1017{
1018	struct inode *inode = alloc_inode(sb);
1019
1020	if (inode) {
1021		spin_lock(&inode->i_lock);
1022		inode->i_state = 0;
1023		spin_unlock(&inode->i_lock);
1024	}
1025	return inode;
1026}
1027
1028/**
1029 *	new_inode 	- obtain an inode
1030 *	@sb: superblock
1031 *
1032 *	Allocates a new inode for given superblock. The default gfp_mask
1033 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1034 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1035 *	for the page cache are not reclaimable or migratable,
1036 *	mapping_set_gfp_mask() must be called with suitable flags on the
1037 *	newly created inode's mapping
1038 *
1039 */
1040struct inode *new_inode(struct super_block *sb)
1041{
1042	struct inode *inode;
1043
1044	spin_lock_prefetch(&sb->s_inode_list_lock);
1045
1046	inode = new_inode_pseudo(sb);
1047	if (inode)
1048		inode_sb_list_add(inode);
1049	return inode;
1050}
1051EXPORT_SYMBOL(new_inode);
1052
1053#ifdef CONFIG_DEBUG_LOCK_ALLOC
1054void lockdep_annotate_inode_mutex_key(struct inode *inode)
1055{
1056	if (S_ISDIR(inode->i_mode)) {
1057		struct file_system_type *type = inode->i_sb->s_type;
1058
1059		/* Set new key only if filesystem hasn't already changed it */
1060		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1061			/*
1062			 * ensure nobody is actually holding i_mutex
1063			 */
1064			// mutex_destroy(&inode->i_mutex);
1065			init_rwsem(&inode->i_rwsem);
1066			lockdep_set_class(&inode->i_rwsem,
1067					  &type->i_mutex_dir_key);
1068		}
1069	}
1070}
1071EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1072#endif
1073
1074/**
1075 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1076 * @inode:	new inode to unlock
1077 *
1078 * Called when the inode is fully initialised to clear the new state of the
1079 * inode and wake up anyone waiting for the inode to finish initialisation.
1080 */
1081void unlock_new_inode(struct inode *inode)
1082{
1083	lockdep_annotate_inode_mutex_key(inode);
1084	spin_lock(&inode->i_lock);
1085	WARN_ON(!(inode->i_state & I_NEW));
1086	inode->i_state &= ~I_NEW & ~I_CREATING;
1087	smp_mb();
1088	wake_up_bit(&inode->i_state, __I_NEW);
1089	spin_unlock(&inode->i_lock);
1090}
1091EXPORT_SYMBOL(unlock_new_inode);
1092
1093void discard_new_inode(struct inode *inode)
1094{
1095	lockdep_annotate_inode_mutex_key(inode);
1096	spin_lock(&inode->i_lock);
1097	WARN_ON(!(inode->i_state & I_NEW));
1098	inode->i_state &= ~I_NEW;
1099	smp_mb();
1100	wake_up_bit(&inode->i_state, __I_NEW);
1101	spin_unlock(&inode->i_lock);
1102	iput(inode);
1103}
1104EXPORT_SYMBOL(discard_new_inode);
1105
1106/**
1107 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1108 *
1109 * Lock any non-NULL argument that is not a directory.
1110 * Zero, one or two objects may be locked by this function.
1111 *
1112 * @inode1: first inode to lock
1113 * @inode2: second inode to lock
1114 */
1115void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1116{
 
 
 
 
1117	if (inode1 > inode2)
1118		swap(inode1, inode2);
1119
1120	if (inode1 && !S_ISDIR(inode1->i_mode))
1121		inode_lock(inode1);
1122	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1123		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1124}
1125EXPORT_SYMBOL(lock_two_nondirectories);
1126
1127/**
1128 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1129 * @inode1: first inode to unlock
1130 * @inode2: second inode to unlock
1131 */
1132void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1133{
1134	if (inode1 && !S_ISDIR(inode1->i_mode))
 
1135		inode_unlock(inode1);
1136	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
 
 
1137		inode_unlock(inode2);
 
1138}
1139EXPORT_SYMBOL(unlock_two_nondirectories);
1140
1141/**
1142 * inode_insert5 - obtain an inode from a mounted file system
1143 * @inode:	pre-allocated inode to use for insert to cache
1144 * @hashval:	hash value (usually inode number) to get
1145 * @test:	callback used for comparisons between inodes
1146 * @set:	callback used to initialize a new struct inode
1147 * @data:	opaque data pointer to pass to @test and @set
1148 *
1149 * Search for the inode specified by @hashval and @data in the inode cache,
1150 * and if present it is return it with an increased reference count. This is
1151 * a variant of iget5_locked() for callers that don't want to fail on memory
1152 * allocation of inode.
1153 *
1154 * If the inode is not in cache, insert the pre-allocated inode to cache and
1155 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1156 * to fill it in before unlocking it via unlock_new_inode().
1157 *
1158 * Note both @test and @set are called with the inode_hash_lock held, so can't
1159 * sleep.
1160 */
1161struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1162			    int (*test)(struct inode *, void *),
1163			    int (*set)(struct inode *, void *), void *data)
1164{
1165	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1166	struct inode *old;
1167
1168again:
1169	spin_lock(&inode_hash_lock);
1170	old = find_inode(inode->i_sb, head, test, data);
1171	if (unlikely(old)) {
1172		/*
1173		 * Uhhuh, somebody else created the same inode under us.
1174		 * Use the old inode instead of the preallocated one.
1175		 */
1176		spin_unlock(&inode_hash_lock);
1177		if (IS_ERR(old))
1178			return NULL;
1179		wait_on_inode(old);
1180		if (unlikely(inode_unhashed(old))) {
1181			iput(old);
1182			goto again;
1183		}
1184		return old;
1185	}
1186
1187	if (set && unlikely(set(inode, data))) {
1188		inode = NULL;
1189		goto unlock;
1190	}
1191
1192	/*
1193	 * Return the locked inode with I_NEW set, the
1194	 * caller is responsible for filling in the contents
1195	 */
1196	spin_lock(&inode->i_lock);
1197	inode->i_state |= I_NEW;
1198	hlist_add_head_rcu(&inode->i_hash, head);
1199	spin_unlock(&inode->i_lock);
1200
1201	/*
1202	 * Add inode to the sb list if it's not already. It has I_NEW at this
1203	 * point, so it should be safe to test i_sb_list locklessly.
1204	 */
1205	if (list_empty(&inode->i_sb_list))
1206		inode_sb_list_add(inode);
1207unlock:
1208	spin_unlock(&inode_hash_lock);
1209
1210	return inode;
1211}
1212EXPORT_SYMBOL(inode_insert5);
1213
1214/**
1215 * iget5_locked - obtain an inode from a mounted file system
1216 * @sb:		super block of file system
1217 * @hashval:	hash value (usually inode number) to get
1218 * @test:	callback used for comparisons between inodes
1219 * @set:	callback used to initialize a new struct inode
1220 * @data:	opaque data pointer to pass to @test and @set
1221 *
1222 * Search for the inode specified by @hashval and @data in the inode cache,
1223 * and if present it is return it with an increased reference count. This is
1224 * a generalized version of iget_locked() for file systems where the inode
1225 * number is not sufficient for unique identification of an inode.
1226 *
1227 * If the inode is not in cache, allocate a new inode and return it locked,
1228 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1229 * before unlocking it via unlock_new_inode().
1230 *
1231 * Note both @test and @set are called with the inode_hash_lock held, so can't
1232 * sleep.
1233 */
1234struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1235		int (*test)(struct inode *, void *),
1236		int (*set)(struct inode *, void *), void *data)
1237{
1238	struct inode *inode = ilookup5(sb, hashval, test, data);
1239
1240	if (!inode) {
1241		struct inode *new = alloc_inode(sb);
1242
1243		if (new) {
1244			new->i_state = 0;
1245			inode = inode_insert5(new, hashval, test, set, data);
1246			if (unlikely(inode != new))
1247				destroy_inode(new);
1248		}
1249	}
1250	return inode;
1251}
1252EXPORT_SYMBOL(iget5_locked);
1253
1254/**
1255 * iget_locked - obtain an inode from a mounted file system
1256 * @sb:		super block of file system
1257 * @ino:	inode number to get
1258 *
1259 * Search for the inode specified by @ino in the inode cache and if present
1260 * return it with an increased reference count. This is for file systems
1261 * where the inode number is sufficient for unique identification of an inode.
1262 *
1263 * If the inode is not in cache, allocate a new inode and return it locked,
1264 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1265 * before unlocking it via unlock_new_inode().
1266 */
1267struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1268{
1269	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1270	struct inode *inode;
1271again:
1272	spin_lock(&inode_hash_lock);
1273	inode = find_inode_fast(sb, head, ino);
1274	spin_unlock(&inode_hash_lock);
1275	if (inode) {
1276		if (IS_ERR(inode))
1277			return NULL;
1278		wait_on_inode(inode);
1279		if (unlikely(inode_unhashed(inode))) {
1280			iput(inode);
1281			goto again;
1282		}
1283		return inode;
1284	}
1285
1286	inode = alloc_inode(sb);
1287	if (inode) {
1288		struct inode *old;
1289
1290		spin_lock(&inode_hash_lock);
1291		/* We released the lock, so.. */
1292		old = find_inode_fast(sb, head, ino);
1293		if (!old) {
1294			inode->i_ino = ino;
1295			spin_lock(&inode->i_lock);
1296			inode->i_state = I_NEW;
1297			hlist_add_head_rcu(&inode->i_hash, head);
1298			spin_unlock(&inode->i_lock);
1299			inode_sb_list_add(inode);
1300			spin_unlock(&inode_hash_lock);
1301
1302			/* Return the locked inode with I_NEW set, the
1303			 * caller is responsible for filling in the contents
1304			 */
1305			return inode;
1306		}
1307
1308		/*
1309		 * Uhhuh, somebody else created the same inode under
1310		 * us. Use the old inode instead of the one we just
1311		 * allocated.
1312		 */
1313		spin_unlock(&inode_hash_lock);
1314		destroy_inode(inode);
1315		if (IS_ERR(old))
1316			return NULL;
1317		inode = old;
1318		wait_on_inode(inode);
1319		if (unlikely(inode_unhashed(inode))) {
1320			iput(inode);
1321			goto again;
1322		}
1323	}
1324	return inode;
1325}
1326EXPORT_SYMBOL(iget_locked);
1327
1328/*
1329 * search the inode cache for a matching inode number.
1330 * If we find one, then the inode number we are trying to
1331 * allocate is not unique and so we should not use it.
1332 *
1333 * Returns 1 if the inode number is unique, 0 if it is not.
1334 */
1335static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1336{
1337	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1338	struct inode *inode;
1339
1340	hlist_for_each_entry_rcu(inode, b, i_hash) {
1341		if (inode->i_ino == ino && inode->i_sb == sb)
1342			return 0;
1343	}
1344	return 1;
1345}
1346
1347/**
1348 *	iunique - get a unique inode number
1349 *	@sb: superblock
1350 *	@max_reserved: highest reserved inode number
1351 *
1352 *	Obtain an inode number that is unique on the system for a given
1353 *	superblock. This is used by file systems that have no natural
1354 *	permanent inode numbering system. An inode number is returned that
1355 *	is higher than the reserved limit but unique.
1356 *
1357 *	BUGS:
1358 *	With a large number of inodes live on the file system this function
1359 *	currently becomes quite slow.
1360 */
1361ino_t iunique(struct super_block *sb, ino_t max_reserved)
1362{
1363	/*
1364	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1365	 * error if st_ino won't fit in target struct field. Use 32bit counter
1366	 * here to attempt to avoid that.
1367	 */
1368	static DEFINE_SPINLOCK(iunique_lock);
1369	static unsigned int counter;
1370	ino_t res;
1371
1372	rcu_read_lock();
1373	spin_lock(&iunique_lock);
1374	do {
1375		if (counter <= max_reserved)
1376			counter = max_reserved + 1;
1377		res = counter++;
1378	} while (!test_inode_iunique(sb, res));
1379	spin_unlock(&iunique_lock);
1380	rcu_read_unlock();
1381
1382	return res;
1383}
1384EXPORT_SYMBOL(iunique);
1385
1386struct inode *igrab(struct inode *inode)
1387{
1388	spin_lock(&inode->i_lock);
1389	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1390		__iget(inode);
1391		spin_unlock(&inode->i_lock);
1392	} else {
1393		spin_unlock(&inode->i_lock);
1394		/*
1395		 * Handle the case where s_op->clear_inode is not been
1396		 * called yet, and somebody is calling igrab
1397		 * while the inode is getting freed.
1398		 */
1399		inode = NULL;
1400	}
1401	return inode;
1402}
1403EXPORT_SYMBOL(igrab);
1404
1405/**
1406 * ilookup5_nowait - search for an inode in the inode cache
1407 * @sb:		super block of file system to search
1408 * @hashval:	hash value (usually inode number) to search for
1409 * @test:	callback used for comparisons between inodes
1410 * @data:	opaque data pointer to pass to @test
1411 *
1412 * Search for the inode specified by @hashval and @data in the inode cache.
1413 * If the inode is in the cache, the inode is returned with an incremented
1414 * reference count.
1415 *
1416 * Note: I_NEW is not waited upon so you have to be very careful what you do
1417 * with the returned inode.  You probably should be using ilookup5() instead.
1418 *
1419 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1420 */
1421struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1422		int (*test)(struct inode *, void *), void *data)
1423{
1424	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1425	struct inode *inode;
1426
1427	spin_lock(&inode_hash_lock);
1428	inode = find_inode(sb, head, test, data);
1429	spin_unlock(&inode_hash_lock);
1430
1431	return IS_ERR(inode) ? NULL : inode;
1432}
1433EXPORT_SYMBOL(ilookup5_nowait);
1434
1435/**
1436 * ilookup5 - search for an inode in the inode cache
1437 * @sb:		super block of file system to search
1438 * @hashval:	hash value (usually inode number) to search for
1439 * @test:	callback used for comparisons between inodes
1440 * @data:	opaque data pointer to pass to @test
1441 *
1442 * Search for the inode specified by @hashval and @data in the inode cache,
1443 * and if the inode is in the cache, return the inode with an incremented
1444 * reference count.  Waits on I_NEW before returning the inode.
1445 * returned with an incremented reference count.
1446 *
1447 * This is a generalized version of ilookup() for file systems where the
1448 * inode number is not sufficient for unique identification of an inode.
1449 *
1450 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1451 */
1452struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1453		int (*test)(struct inode *, void *), void *data)
1454{
1455	struct inode *inode;
1456again:
1457	inode = ilookup5_nowait(sb, hashval, test, data);
1458	if (inode) {
1459		wait_on_inode(inode);
1460		if (unlikely(inode_unhashed(inode))) {
1461			iput(inode);
1462			goto again;
1463		}
1464	}
1465	return inode;
1466}
1467EXPORT_SYMBOL(ilookup5);
1468
1469/**
1470 * ilookup - search for an inode in the inode cache
1471 * @sb:		super block of file system to search
1472 * @ino:	inode number to search for
1473 *
1474 * Search for the inode @ino in the inode cache, and if the inode is in the
1475 * cache, the inode is returned with an incremented reference count.
1476 */
1477struct inode *ilookup(struct super_block *sb, unsigned long ino)
1478{
1479	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1480	struct inode *inode;
1481again:
1482	spin_lock(&inode_hash_lock);
1483	inode = find_inode_fast(sb, head, ino);
1484	spin_unlock(&inode_hash_lock);
1485
1486	if (inode) {
1487		if (IS_ERR(inode))
1488			return NULL;
1489		wait_on_inode(inode);
1490		if (unlikely(inode_unhashed(inode))) {
1491			iput(inode);
1492			goto again;
1493		}
1494	}
1495	return inode;
1496}
1497EXPORT_SYMBOL(ilookup);
1498
1499/**
1500 * find_inode_nowait - find an inode in the inode cache
1501 * @sb:		super block of file system to search
1502 * @hashval:	hash value (usually inode number) to search for
1503 * @match:	callback used for comparisons between inodes
1504 * @data:	opaque data pointer to pass to @match
1505 *
1506 * Search for the inode specified by @hashval and @data in the inode
1507 * cache, where the helper function @match will return 0 if the inode
1508 * does not match, 1 if the inode does match, and -1 if the search
1509 * should be stopped.  The @match function must be responsible for
1510 * taking the i_lock spin_lock and checking i_state for an inode being
1511 * freed or being initialized, and incrementing the reference count
1512 * before returning 1.  It also must not sleep, since it is called with
1513 * the inode_hash_lock spinlock held.
1514 *
1515 * This is a even more generalized version of ilookup5() when the
1516 * function must never block --- find_inode() can block in
1517 * __wait_on_freeing_inode() --- or when the caller can not increment
1518 * the reference count because the resulting iput() might cause an
1519 * inode eviction.  The tradeoff is that the @match funtion must be
1520 * very carefully implemented.
1521 */
1522struct inode *find_inode_nowait(struct super_block *sb,
1523				unsigned long hashval,
1524				int (*match)(struct inode *, unsigned long,
1525					     void *),
1526				void *data)
1527{
1528	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1529	struct inode *inode, *ret_inode = NULL;
1530	int mval;
1531
1532	spin_lock(&inode_hash_lock);
1533	hlist_for_each_entry(inode, head, i_hash) {
1534		if (inode->i_sb != sb)
1535			continue;
1536		mval = match(inode, hashval, data);
1537		if (mval == 0)
1538			continue;
1539		if (mval == 1)
1540			ret_inode = inode;
1541		goto out;
1542	}
1543out:
1544	spin_unlock(&inode_hash_lock);
1545	return ret_inode;
1546}
1547EXPORT_SYMBOL(find_inode_nowait);
1548
1549/**
1550 * find_inode_rcu - find an inode in the inode cache
1551 * @sb:		Super block of file system to search
1552 * @hashval:	Key to hash
1553 * @test:	Function to test match on an inode
1554 * @data:	Data for test function
1555 *
1556 * Search for the inode specified by @hashval and @data in the inode cache,
1557 * where the helper function @test will return 0 if the inode does not match
1558 * and 1 if it does.  The @test function must be responsible for taking the
1559 * i_lock spin_lock and checking i_state for an inode being freed or being
1560 * initialized.
1561 *
1562 * If successful, this will return the inode for which the @test function
1563 * returned 1 and NULL otherwise.
1564 *
1565 * The @test function is not permitted to take a ref on any inode presented.
1566 * It is also not permitted to sleep.
1567 *
1568 * The caller must hold the RCU read lock.
1569 */
1570struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1571			     int (*test)(struct inode *, void *), void *data)
1572{
1573	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1574	struct inode *inode;
1575
1576	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1577			 "suspicious find_inode_rcu() usage");
1578
1579	hlist_for_each_entry_rcu(inode, head, i_hash) {
1580		if (inode->i_sb == sb &&
1581		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1582		    test(inode, data))
1583			return inode;
1584	}
1585	return NULL;
1586}
1587EXPORT_SYMBOL(find_inode_rcu);
1588
1589/**
1590 * find_inode_by_ino_rcu - Find an inode in the inode cache
1591 * @sb:		Super block of file system to search
1592 * @ino:	The inode number to match
1593 *
1594 * Search for the inode specified by @hashval and @data in the inode cache,
1595 * where the helper function @test will return 0 if the inode does not match
1596 * and 1 if it does.  The @test function must be responsible for taking the
1597 * i_lock spin_lock and checking i_state for an inode being freed or being
1598 * initialized.
1599 *
1600 * If successful, this will return the inode for which the @test function
1601 * returned 1 and NULL otherwise.
1602 *
1603 * The @test function is not permitted to take a ref on any inode presented.
1604 * It is also not permitted to sleep.
1605 *
1606 * The caller must hold the RCU read lock.
1607 */
1608struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1609				    unsigned long ino)
1610{
1611	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1612	struct inode *inode;
1613
1614	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1615			 "suspicious find_inode_by_ino_rcu() usage");
1616
1617	hlist_for_each_entry_rcu(inode, head, i_hash) {
1618		if (inode->i_ino == ino &&
1619		    inode->i_sb == sb &&
1620		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1621		    return inode;
1622	}
1623	return NULL;
1624}
1625EXPORT_SYMBOL(find_inode_by_ino_rcu);
1626
1627int insert_inode_locked(struct inode *inode)
1628{
1629	struct super_block *sb = inode->i_sb;
1630	ino_t ino = inode->i_ino;
1631	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1632
1633	while (1) {
1634		struct inode *old = NULL;
1635		spin_lock(&inode_hash_lock);
1636		hlist_for_each_entry(old, head, i_hash) {
1637			if (old->i_ino != ino)
1638				continue;
1639			if (old->i_sb != sb)
1640				continue;
1641			spin_lock(&old->i_lock);
1642			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1643				spin_unlock(&old->i_lock);
1644				continue;
1645			}
1646			break;
1647		}
1648		if (likely(!old)) {
1649			spin_lock(&inode->i_lock);
1650			inode->i_state |= I_NEW | I_CREATING;
1651			hlist_add_head_rcu(&inode->i_hash, head);
1652			spin_unlock(&inode->i_lock);
1653			spin_unlock(&inode_hash_lock);
1654			return 0;
1655		}
1656		if (unlikely(old->i_state & I_CREATING)) {
1657			spin_unlock(&old->i_lock);
1658			spin_unlock(&inode_hash_lock);
1659			return -EBUSY;
1660		}
1661		__iget(old);
1662		spin_unlock(&old->i_lock);
1663		spin_unlock(&inode_hash_lock);
1664		wait_on_inode(old);
1665		if (unlikely(!inode_unhashed(old))) {
1666			iput(old);
1667			return -EBUSY;
1668		}
1669		iput(old);
1670	}
1671}
1672EXPORT_SYMBOL(insert_inode_locked);
1673
1674int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1675		int (*test)(struct inode *, void *), void *data)
1676{
1677	struct inode *old;
1678
1679	inode->i_state |= I_CREATING;
1680	old = inode_insert5(inode, hashval, test, NULL, data);
1681
1682	if (old != inode) {
1683		iput(old);
1684		return -EBUSY;
1685	}
1686	return 0;
1687}
1688EXPORT_SYMBOL(insert_inode_locked4);
1689
1690
1691int generic_delete_inode(struct inode *inode)
1692{
1693	return 1;
1694}
1695EXPORT_SYMBOL(generic_delete_inode);
1696
1697/*
1698 * Called when we're dropping the last reference
1699 * to an inode.
1700 *
1701 * Call the FS "drop_inode()" function, defaulting to
1702 * the legacy UNIX filesystem behaviour.  If it tells
1703 * us to evict inode, do so.  Otherwise, retain inode
1704 * in cache if fs is alive, sync and evict if fs is
1705 * shutting down.
1706 */
1707static void iput_final(struct inode *inode)
1708{
1709	struct super_block *sb = inode->i_sb;
1710	const struct super_operations *op = inode->i_sb->s_op;
1711	unsigned long state;
1712	int drop;
1713
1714	WARN_ON(inode->i_state & I_NEW);
1715
1716	if (op->drop_inode)
1717		drop = op->drop_inode(inode);
1718	else
1719		drop = generic_drop_inode(inode);
1720
1721	if (!drop &&
1722	    !(inode->i_state & I_DONTCACHE) &&
1723	    (sb->s_flags & SB_ACTIVE)) {
1724		__inode_add_lru(inode, true);
1725		spin_unlock(&inode->i_lock);
1726		return;
1727	}
1728
1729	state = inode->i_state;
1730	if (!drop) {
1731		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1732		spin_unlock(&inode->i_lock);
1733
1734		write_inode_now(inode, 1);
1735
1736		spin_lock(&inode->i_lock);
1737		state = inode->i_state;
1738		WARN_ON(state & I_NEW);
1739		state &= ~I_WILL_FREE;
1740	}
1741
1742	WRITE_ONCE(inode->i_state, state | I_FREEING);
1743	if (!list_empty(&inode->i_lru))
1744		inode_lru_list_del(inode);
1745	spin_unlock(&inode->i_lock);
1746
1747	evict(inode);
1748}
1749
1750/**
1751 *	iput	- put an inode
1752 *	@inode: inode to put
1753 *
1754 *	Puts an inode, dropping its usage count. If the inode use count hits
1755 *	zero, the inode is then freed and may also be destroyed.
1756 *
1757 *	Consequently, iput() can sleep.
1758 */
1759void iput(struct inode *inode)
1760{
1761	if (!inode)
1762		return;
1763	BUG_ON(inode->i_state & I_CLEAR);
1764retry:
1765	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1766		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1767			atomic_inc(&inode->i_count);
1768			spin_unlock(&inode->i_lock);
1769			trace_writeback_lazytime_iput(inode);
1770			mark_inode_dirty_sync(inode);
1771			goto retry;
1772		}
1773		iput_final(inode);
1774	}
1775}
1776EXPORT_SYMBOL(iput);
1777
1778#ifdef CONFIG_BLOCK
1779/**
1780 *	bmap	- find a block number in a file
1781 *	@inode:  inode owning the block number being requested
1782 *	@block: pointer containing the block to find
1783 *
1784 *	Replaces the value in ``*block`` with the block number on the device holding
1785 *	corresponding to the requested block number in the file.
1786 *	That is, asked for block 4 of inode 1 the function will replace the
1787 *	4 in ``*block``, with disk block relative to the disk start that holds that
1788 *	block of the file.
1789 *
1790 *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1791 *	hole, returns 0 and ``*block`` is also set to 0.
1792 */
1793int bmap(struct inode *inode, sector_t *block)
1794{
1795	if (!inode->i_mapping->a_ops->bmap)
1796		return -EINVAL;
1797
1798	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1799	return 0;
1800}
1801EXPORT_SYMBOL(bmap);
1802#endif
1803
1804/*
1805 * With relative atime, only update atime if the previous atime is
1806 * earlier than either the ctime or mtime or if at least a day has
1807 * passed since the last atime update.
1808 */
1809static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1810			     struct timespec64 now)
1811{
 
1812
1813	if (!(mnt->mnt_flags & MNT_RELATIME))
1814		return 1;
1815	/*
1816	 * Is mtime younger than atime? If yes, update atime:
1817	 */
1818	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1819		return 1;
 
 
1820	/*
1821	 * Is ctime younger than atime? If yes, update atime:
1822	 */
1823	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1824		return 1;
 
1825
1826	/*
1827	 * Is the previous atime value older than a day? If yes,
1828	 * update atime:
1829	 */
1830	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1831		return 1;
1832	/*
1833	 * Good, we can skip the atime update:
1834	 */
1835	return 0;
1836}
1837
1838int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1839{
1840	int dirty_flags = 0;
 
1841
1842	if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1843		if (flags & S_ATIME)
1844			inode->i_atime = *time;
1845		if (flags & S_CTIME)
1846			inode->i_ctime = *time;
1847		if (flags & S_MTIME)
1848			inode->i_mtime = *time;
1849
1850		if (inode->i_sb->s_flags & SB_LAZYTIME)
1851			dirty_flags |= I_DIRTY_TIME;
1852		else
1853			dirty_flags |= I_DIRTY_SYNC;
 
 
 
1854	}
1855
1856	if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1857		dirty_flags |= I_DIRTY_SYNC;
 
 
 
 
 
 
 
 
 
1858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1859	__mark_inode_dirty(inode, dirty_flags);
1860	return 0;
1861}
1862EXPORT_SYMBOL(generic_update_time);
1863
1864/*
1865 * This does the actual work of updating an inodes time or version.  Must have
1866 * had called mnt_want_write() before calling this.
1867 */
1868int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1869{
1870	if (inode->i_op->update_time)
1871		return inode->i_op->update_time(inode, time, flags);
1872	return generic_update_time(inode, time, flags);
 
1873}
1874EXPORT_SYMBOL(inode_update_time);
1875
1876/**
1877 *	atime_needs_update	-	update the access time
1878 *	@path: the &struct path to update
1879 *	@inode: inode to update
1880 *
1881 *	Update the accessed time on an inode and mark it for writeback.
1882 *	This function automatically handles read only file systems and media,
1883 *	as well as the "noatime" flag and inode specific "noatime" markers.
1884 */
1885bool atime_needs_update(const struct path *path, struct inode *inode)
1886{
1887	struct vfsmount *mnt = path->mnt;
1888	struct timespec64 now;
1889
1890	if (inode->i_flags & S_NOATIME)
1891		return false;
1892
1893	/* Atime updates will likely cause i_uid and i_gid to be written
1894	 * back improprely if their true value is unknown to the vfs.
1895	 */
1896	if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1897		return false;
1898
1899	if (IS_NOATIME(inode))
1900		return false;
1901	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1902		return false;
1903
1904	if (mnt->mnt_flags & MNT_NOATIME)
1905		return false;
1906	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1907		return false;
1908
1909	now = current_time(inode);
1910
1911	if (!relatime_need_update(mnt, inode, now))
1912		return false;
1913
1914	if (timespec64_equal(&inode->i_atime, &now))
 
1915		return false;
1916
1917	return true;
1918}
1919
1920void touch_atime(const struct path *path)
1921{
1922	struct vfsmount *mnt = path->mnt;
1923	struct inode *inode = d_inode(path->dentry);
1924	struct timespec64 now;
1925
1926	if (!atime_needs_update(path, inode))
1927		return;
1928
1929	if (!sb_start_write_trylock(inode->i_sb))
1930		return;
1931
1932	if (__mnt_want_write(mnt) != 0)
1933		goto skip_update;
1934	/*
1935	 * File systems can error out when updating inodes if they need to
1936	 * allocate new space to modify an inode (such is the case for
1937	 * Btrfs), but since we touch atime while walking down the path we
1938	 * really don't care if we failed to update the atime of the file,
1939	 * so just ignore the return value.
1940	 * We may also fail on filesystems that have the ability to make parts
1941	 * of the fs read only, e.g. subvolumes in Btrfs.
1942	 */
1943	now = current_time(inode);
1944	inode_update_time(inode, &now, S_ATIME);
1945	__mnt_drop_write(mnt);
1946skip_update:
1947	sb_end_write(inode->i_sb);
1948}
1949EXPORT_SYMBOL(touch_atime);
1950
1951/*
1952 * Return mask of changes for notify_change() that need to be done as a
1953 * response to write or truncate. Return 0 if nothing has to be changed.
1954 * Negative value on error (change should be denied).
1955 */
1956int dentry_needs_remove_privs(struct user_namespace *mnt_userns,
1957			      struct dentry *dentry)
1958{
1959	struct inode *inode = d_inode(dentry);
1960	int mask = 0;
1961	int ret;
1962
1963	if (IS_NOSEC(inode))
1964		return 0;
1965
1966	mask = setattr_should_drop_suidgid(mnt_userns, inode);
1967	ret = security_inode_need_killpriv(dentry);
1968	if (ret < 0)
1969		return ret;
1970	if (ret)
1971		mask |= ATTR_KILL_PRIV;
1972	return mask;
1973}
1974
1975static int __remove_privs(struct user_namespace *mnt_userns,
1976			  struct dentry *dentry, int kill)
1977{
1978	struct iattr newattrs;
1979
1980	newattrs.ia_valid = ATTR_FORCE | kill;
1981	/*
1982	 * Note we call this on write, so notify_change will not
1983	 * encounter any conflicting delegations:
1984	 */
1985	return notify_change(mnt_userns, dentry, &newattrs, NULL);
1986}
1987
1988static int __file_remove_privs(struct file *file, unsigned int flags)
1989{
1990	struct dentry *dentry = file_dentry(file);
1991	struct inode *inode = file_inode(file);
1992	int error = 0;
1993	int kill;
1994
1995	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1996		return 0;
1997
1998	kill = dentry_needs_remove_privs(file_mnt_user_ns(file), dentry);
1999	if (kill < 0)
2000		return kill;
2001
2002	if (kill) {
2003		if (flags & IOCB_NOWAIT)
2004			return -EAGAIN;
2005
2006		error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
2007	}
2008
2009	if (!error)
2010		inode_has_no_xattr(inode);
2011	return error;
2012}
 
2013
2014/**
2015 * file_remove_privs - remove special file privileges (suid, capabilities)
2016 * @file: file to remove privileges from
2017 *
2018 * When file is modified by a write or truncation ensure that special
2019 * file privileges are removed.
2020 *
2021 * Return: 0 on success, negative errno on failure.
2022 */
2023int file_remove_privs(struct file *file)
2024{
2025	return __file_remove_privs(file, 0);
2026}
2027EXPORT_SYMBOL(file_remove_privs);
2028
2029static int inode_needs_update_time(struct inode *inode, struct timespec64 *now)
2030{
2031	int sync_it = 0;
 
 
2032
2033	/* First try to exhaust all avenues to not sync */
2034	if (IS_NOCMTIME(inode))
2035		return 0;
2036
2037	if (!timespec64_equal(&inode->i_mtime, now))
 
2038		sync_it = S_MTIME;
2039
2040	if (!timespec64_equal(&inode->i_ctime, now))
 
2041		sync_it |= S_CTIME;
2042
2043	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2044		sync_it |= S_VERSION;
2045
2046	return sync_it;
2047}
2048
2049static int __file_update_time(struct file *file, struct timespec64 *now,
2050			int sync_mode)
2051{
2052	int ret = 0;
2053	struct inode *inode = file_inode(file);
2054
2055	/* try to update time settings */
2056	if (!__mnt_want_write_file(file)) {
2057		ret = inode_update_time(inode, now, sync_mode);
2058		__mnt_drop_write_file(file);
2059	}
2060
2061	return ret;
2062}
2063
2064/**
2065 * file_update_time - update mtime and ctime time
2066 * @file: file accessed
2067 *
2068 * Update the mtime and ctime members of an inode and mark the inode for
2069 * writeback. Note that this function is meant exclusively for usage in
2070 * the file write path of filesystems, and filesystems may choose to
2071 * explicitly ignore updates via this function with the _NOCMTIME inode
2072 * flag, e.g. for network filesystem where these imestamps are handled
2073 * by the server. This can return an error for file systems who need to
2074 * allocate space in order to update an inode.
2075 *
2076 * Return: 0 on success, negative errno on failure.
2077 */
2078int file_update_time(struct file *file)
2079{
2080	int ret;
2081	struct inode *inode = file_inode(file);
2082	struct timespec64 now = current_time(inode);
2083
2084	ret = inode_needs_update_time(inode, &now);
2085	if (ret <= 0)
2086		return ret;
2087
2088	return __file_update_time(file, &now, ret);
2089}
2090EXPORT_SYMBOL(file_update_time);
2091
2092/**
2093 * file_modified_flags - handle mandated vfs changes when modifying a file
2094 * @file: file that was modified
2095 * @flags: kiocb flags
2096 *
2097 * When file has been modified ensure that special
2098 * file privileges are removed and time settings are updated.
2099 *
2100 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2101 * time settings will not be updated. It will return -EAGAIN.
2102 *
2103 * Context: Caller must hold the file's inode lock.
2104 *
2105 * Return: 0 on success, negative errno on failure.
2106 */
2107static int file_modified_flags(struct file *file, int flags)
2108{
2109	int ret;
2110	struct inode *inode = file_inode(file);
2111	struct timespec64 now = current_time(inode);
2112
2113	/*
2114	 * Clear the security bits if the process is not being run by root.
2115	 * This keeps people from modifying setuid and setgid binaries.
2116	 */
2117	ret = __file_remove_privs(file, flags);
2118	if (ret)
2119		return ret;
2120
2121	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2122		return 0;
2123
2124	ret = inode_needs_update_time(inode, &now);
2125	if (ret <= 0)
2126		return ret;
2127	if (flags & IOCB_NOWAIT)
2128		return -EAGAIN;
2129
2130	return __file_update_time(file, &now, ret);
2131}
2132
2133/**
2134 * file_modified - handle mandated vfs changes when modifying a file
2135 * @file: file that was modified
2136 *
2137 * When file has been modified ensure that special
2138 * file privileges are removed and time settings are updated.
2139 *
2140 * Context: Caller must hold the file's inode lock.
2141 *
2142 * Return: 0 on success, negative errno on failure.
2143 */
2144int file_modified(struct file *file)
2145{
2146	return file_modified_flags(file, 0);
2147}
2148EXPORT_SYMBOL(file_modified);
2149
2150/**
2151 * kiocb_modified - handle mandated vfs changes when modifying a file
2152 * @iocb: iocb that was modified
2153 *
2154 * When file has been modified ensure that special
2155 * file privileges are removed and time settings are updated.
2156 *
2157 * Context: Caller must hold the file's inode lock.
2158 *
2159 * Return: 0 on success, negative errno on failure.
2160 */
2161int kiocb_modified(struct kiocb *iocb)
2162{
2163	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2164}
2165EXPORT_SYMBOL_GPL(kiocb_modified);
2166
2167int inode_needs_sync(struct inode *inode)
2168{
2169	if (IS_SYNC(inode))
2170		return 1;
2171	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2172		return 1;
2173	return 0;
2174}
2175EXPORT_SYMBOL(inode_needs_sync);
2176
2177/*
2178 * If we try to find an inode in the inode hash while it is being
2179 * deleted, we have to wait until the filesystem completes its
2180 * deletion before reporting that it isn't found.  This function waits
2181 * until the deletion _might_ have completed.  Callers are responsible
2182 * to recheck inode state.
2183 *
2184 * It doesn't matter if I_NEW is not set initially, a call to
2185 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2186 * will DTRT.
2187 */
2188static void __wait_on_freeing_inode(struct inode *inode)
2189{
2190	wait_queue_head_t *wq;
2191	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2192	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2193	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2194	spin_unlock(&inode->i_lock);
2195	spin_unlock(&inode_hash_lock);
2196	schedule();
2197	finish_wait(wq, &wait.wq_entry);
2198	spin_lock(&inode_hash_lock);
2199}
2200
2201static __initdata unsigned long ihash_entries;
2202static int __init set_ihash_entries(char *str)
2203{
2204	if (!str)
2205		return 0;
2206	ihash_entries = simple_strtoul(str, &str, 0);
2207	return 1;
2208}
2209__setup("ihash_entries=", set_ihash_entries);
2210
2211/*
2212 * Initialize the waitqueues and inode hash table.
2213 */
2214void __init inode_init_early(void)
2215{
2216	/* If hashes are distributed across NUMA nodes, defer
2217	 * hash allocation until vmalloc space is available.
2218	 */
2219	if (hashdist)
2220		return;
2221
2222	inode_hashtable =
2223		alloc_large_system_hash("Inode-cache",
2224					sizeof(struct hlist_head),
2225					ihash_entries,
2226					14,
2227					HASH_EARLY | HASH_ZERO,
2228					&i_hash_shift,
2229					&i_hash_mask,
2230					0,
2231					0);
2232}
2233
2234void __init inode_init(void)
2235{
2236	/* inode slab cache */
2237	inode_cachep = kmem_cache_create("inode_cache",
2238					 sizeof(struct inode),
2239					 0,
2240					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2241					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2242					 init_once);
2243
2244	/* Hash may have been set up in inode_init_early */
2245	if (!hashdist)
2246		return;
2247
2248	inode_hashtable =
2249		alloc_large_system_hash("Inode-cache",
2250					sizeof(struct hlist_head),
2251					ihash_entries,
2252					14,
2253					HASH_ZERO,
2254					&i_hash_shift,
2255					&i_hash_mask,
2256					0,
2257					0);
2258}
2259
2260void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2261{
2262	inode->i_mode = mode;
2263	if (S_ISCHR(mode)) {
2264		inode->i_fop = &def_chr_fops;
2265		inode->i_rdev = rdev;
2266	} else if (S_ISBLK(mode)) {
2267		inode->i_fop = &def_blk_fops;
 
2268		inode->i_rdev = rdev;
2269	} else if (S_ISFIFO(mode))
2270		inode->i_fop = &pipefifo_fops;
2271	else if (S_ISSOCK(mode))
2272		;	/* leave it no_open_fops */
2273	else
2274		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2275				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2276				  inode->i_ino);
2277}
2278EXPORT_SYMBOL(init_special_inode);
2279
2280/**
2281 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2282 * @mnt_userns:	User namespace of the mount the inode was created from
2283 * @inode: New inode
2284 * @dir: Directory inode
2285 * @mode: mode of the new inode
2286 *
2287 * If the inode has been created through an idmapped mount the user namespace of
2288 * the vfsmount must be passed through @mnt_userns. This function will then take
2289 * care to map the inode according to @mnt_userns before checking permissions
2290 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2291 * checking is to be performed on the raw inode simply passs init_user_ns.
2292 */
2293void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2294		      const struct inode *dir, umode_t mode)
2295{
2296	inode_fsuid_set(inode, mnt_userns);
2297	if (dir && dir->i_mode & S_ISGID) {
2298		inode->i_gid = dir->i_gid;
2299
2300		/* Directories are special, and always inherit S_ISGID */
2301		if (S_ISDIR(mode))
2302			mode |= S_ISGID;
2303	} else
2304		inode_fsgid_set(inode, mnt_userns);
2305	inode->i_mode = mode;
2306}
2307EXPORT_SYMBOL(inode_init_owner);
2308
2309/**
2310 * inode_owner_or_capable - check current task permissions to inode
2311 * @mnt_userns:	user namespace of the mount the inode was found from
2312 * @inode: inode being checked
2313 *
2314 * Return true if current either has CAP_FOWNER in a namespace with the
2315 * inode owner uid mapped, or owns the file.
2316 *
2317 * If the inode has been found through an idmapped mount the user namespace of
2318 * the vfsmount must be passed through @mnt_userns. This function will then take
2319 * care to map the inode according to @mnt_userns before checking permissions.
2320 * On non-idmapped mounts or if permission checking is to be performed on the
2321 * raw inode simply passs init_user_ns.
2322 */
2323bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2324			    const struct inode *inode)
2325{
2326	vfsuid_t vfsuid;
2327	struct user_namespace *ns;
2328
2329	vfsuid = i_uid_into_vfsuid(mnt_userns, inode);
2330	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2331		return true;
2332
2333	ns = current_user_ns();
2334	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2335		return true;
2336	return false;
2337}
2338EXPORT_SYMBOL(inode_owner_or_capable);
2339
2340/*
2341 * Direct i/o helper functions
2342 */
2343static void __inode_dio_wait(struct inode *inode)
2344{
2345	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2346	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2347
2348	do {
2349		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2350		if (atomic_read(&inode->i_dio_count))
2351			schedule();
2352	} while (atomic_read(&inode->i_dio_count));
2353	finish_wait(wq, &q.wq_entry);
2354}
2355
2356/**
2357 * inode_dio_wait - wait for outstanding DIO requests to finish
2358 * @inode: inode to wait for
2359 *
2360 * Waits for all pending direct I/O requests to finish so that we can
2361 * proceed with a truncate or equivalent operation.
2362 *
2363 * Must be called under a lock that serializes taking new references
2364 * to i_dio_count, usually by inode->i_mutex.
2365 */
2366void inode_dio_wait(struct inode *inode)
2367{
2368	if (atomic_read(&inode->i_dio_count))
2369		__inode_dio_wait(inode);
2370}
2371EXPORT_SYMBOL(inode_dio_wait);
2372
2373/*
2374 * inode_set_flags - atomically set some inode flags
2375 *
2376 * Note: the caller should be holding i_mutex, or else be sure that
2377 * they have exclusive access to the inode structure (i.e., while the
2378 * inode is being instantiated).  The reason for the cmpxchg() loop
2379 * --- which wouldn't be necessary if all code paths which modify
2380 * i_flags actually followed this rule, is that there is at least one
2381 * code path which doesn't today so we use cmpxchg() out of an abundance
2382 * of caution.
2383 *
2384 * In the long run, i_mutex is overkill, and we should probably look
2385 * at using the i_lock spinlock to protect i_flags, and then make sure
2386 * it is so documented in include/linux/fs.h and that all code follows
2387 * the locking convention!!
2388 */
2389void inode_set_flags(struct inode *inode, unsigned int flags,
2390		     unsigned int mask)
2391{
2392	WARN_ON_ONCE(flags & ~mask);
2393	set_mask_bits(&inode->i_flags, mask, flags);
2394}
2395EXPORT_SYMBOL(inode_set_flags);
2396
2397void inode_nohighmem(struct inode *inode)
2398{
2399	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2400}
2401EXPORT_SYMBOL(inode_nohighmem);
2402
2403/**
2404 * timestamp_truncate - Truncate timespec to a granularity
2405 * @t: Timespec
2406 * @inode: inode being updated
2407 *
2408 * Truncate a timespec to the granularity supported by the fs
2409 * containing the inode. Always rounds down. gran must
2410 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2411 */
2412struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2413{
2414	struct super_block *sb = inode->i_sb;
2415	unsigned int gran = sb->s_time_gran;
2416
2417	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2418	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2419		t.tv_nsec = 0;
2420
2421	/* Avoid division in the common cases 1 ns and 1 s. */
2422	if (gran == 1)
2423		; /* nothing */
2424	else if (gran == NSEC_PER_SEC)
2425		t.tv_nsec = 0;
2426	else if (gran > 1 && gran < NSEC_PER_SEC)
2427		t.tv_nsec -= t.tv_nsec % gran;
2428	else
2429		WARN(1, "invalid file time granularity: %u", gran);
2430	return t;
2431}
2432EXPORT_SYMBOL(timestamp_truncate);
2433
2434/**
2435 * current_time - Return FS time
2436 * @inode: inode.
2437 *
2438 * Return the current time truncated to the time granularity supported by
2439 * the fs.
2440 *
2441 * Note that inode and inode->sb cannot be NULL.
2442 * Otherwise, the function warns and returns time without truncation.
2443 */
2444struct timespec64 current_time(struct inode *inode)
2445{
2446	struct timespec64 now;
2447
2448	ktime_get_coarse_real_ts64(&now);
2449
2450	if (unlikely(!inode->i_sb)) {
2451		WARN(1, "current_time() called with uninitialized super_block in the inode");
2452		return now;
2453	}
2454
2455	return timestamp_truncate(now, inode);
2456}
2457EXPORT_SYMBOL(current_time);
2458
2459/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2460 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2461 * @mnt_userns: user namespace of the mount @inode was found from
2462 * @inode:	inode to check
2463 * @vfsgid:	the new/current vfsgid of @inode
2464 *
2465 * Check wether @vfsgid is in the caller's group list or if the caller is
2466 * privileged with CAP_FSETID over @inode. This can be used to determine
2467 * whether the setgid bit can be kept or must be dropped.
2468 *
2469 * Return: true if the caller is sufficiently privileged, false if not.
2470 */
2471bool in_group_or_capable(struct user_namespace *mnt_userns,
2472			 const struct inode *inode, vfsgid_t vfsgid)
2473{
2474	if (vfsgid_in_group_p(vfsgid))
2475		return true;
2476	if (capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
2477		return true;
2478	return false;
2479}
2480
2481/**
2482 * mode_strip_sgid - handle the sgid bit for non-directories
2483 * @mnt_userns: User namespace of the mount the inode was created from
2484 * @dir: parent directory inode
2485 * @mode: mode of the file to be created in @dir
2486 *
2487 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2488 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2489 * either in the group of the parent directory or they have CAP_FSETID
2490 * in their user namespace and are privileged over the parent directory.
2491 * In all other cases, strip the S_ISGID bit from @mode.
2492 *
2493 * Return: the new mode to use for the file
2494 */
2495umode_t mode_strip_sgid(struct user_namespace *mnt_userns,
2496			const struct inode *dir, umode_t mode)
2497{
2498	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2499		return mode;
2500	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2501		return mode;
2502	if (in_group_or_capable(mnt_userns, dir,
2503				i_gid_into_vfsgid(mnt_userns, dir)))
2504		return mode;
2505	return mode & ~S_ISGID;
2506}
2507EXPORT_SYMBOL(mode_strip_sgid);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * (C) 1997 Linus Torvalds
   4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   5 */
   6#include <linux/export.h>
   7#include <linux/fs.h>
   8#include <linux/filelock.h>
   9#include <linux/mm.h>
  10#include <linux/backing-dev.h>
  11#include <linux/hash.h>
  12#include <linux/swap.h>
  13#include <linux/security.h>
  14#include <linux/cdev.h>
  15#include <linux/memblock.h>
  16#include <linux/fsnotify.h>
  17#include <linux/mount.h>
  18#include <linux/posix_acl.h>
 
  19#include <linux/buffer_head.h> /* for inode_has_buffers */
  20#include <linux/ratelimit.h>
  21#include <linux/list_lru.h>
  22#include <linux/iversion.h>
  23#include <linux/rw_hint.h>
  24#include <trace/events/writeback.h>
  25#include "internal.h"
  26
  27/*
  28 * Inode locking rules:
  29 *
  30 * inode->i_lock protects:
  31 *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
  32 * Inode LRU list locks protect:
  33 *   inode->i_sb->s_inode_lru, inode->i_lru
  34 * inode->i_sb->s_inode_list_lock protects:
  35 *   inode->i_sb->s_inodes, inode->i_sb_list
  36 * bdi->wb.list_lock protects:
  37 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  38 * inode_hash_lock protects:
  39 *   inode_hashtable, inode->i_hash
  40 *
  41 * Lock ordering:
  42 *
  43 * inode->i_sb->s_inode_list_lock
  44 *   inode->i_lock
  45 *     Inode LRU list locks
  46 *
  47 * bdi->wb.list_lock
  48 *   inode->i_lock
  49 *
  50 * inode_hash_lock
  51 *   inode->i_sb->s_inode_list_lock
  52 *   inode->i_lock
  53 *
  54 * iunique_lock
  55 *   inode_hash_lock
  56 */
  57
  58static unsigned int i_hash_mask __ro_after_init;
  59static unsigned int i_hash_shift __ro_after_init;
  60static struct hlist_head *inode_hashtable __ro_after_init;
  61static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  62
  63/*
  64 * Empty aops. Can be used for the cases where the user does not
  65 * define any of the address_space operations.
  66 */
  67const struct address_space_operations empty_aops = {
  68};
  69EXPORT_SYMBOL(empty_aops);
  70
  71static DEFINE_PER_CPU(unsigned long, nr_inodes);
  72static DEFINE_PER_CPU(unsigned long, nr_unused);
  73
  74static struct kmem_cache *inode_cachep __ro_after_init;
  75
  76static long get_nr_inodes(void)
  77{
  78	int i;
  79	long sum = 0;
  80	for_each_possible_cpu(i)
  81		sum += per_cpu(nr_inodes, i);
  82	return sum < 0 ? 0 : sum;
  83}
  84
  85static inline long get_nr_inodes_unused(void)
  86{
  87	int i;
  88	long sum = 0;
  89	for_each_possible_cpu(i)
  90		sum += per_cpu(nr_unused, i);
  91	return sum < 0 ? 0 : sum;
  92}
  93
  94long get_nr_dirty_inodes(void)
  95{
  96	/* not actually dirty inodes, but a wild approximation */
  97	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
  98	return nr_dirty > 0 ? nr_dirty : 0;
  99}
 100
 101/*
 102 * Handle nr_inode sysctl
 103 */
 104#ifdef CONFIG_SYSCTL
 105/*
 106 * Statistics gathering..
 107 */
 108static struct inodes_stat_t inodes_stat;
 109
 110static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
 111			  size_t *lenp, loff_t *ppos)
 112{
 113	inodes_stat.nr_inodes = get_nr_inodes();
 114	inodes_stat.nr_unused = get_nr_inodes_unused();
 115	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 116}
 117
 118static struct ctl_table inodes_sysctls[] = {
 119	{
 120		.procname	= "inode-nr",
 121		.data		= &inodes_stat,
 122		.maxlen		= 2*sizeof(long),
 123		.mode		= 0444,
 124		.proc_handler	= proc_nr_inodes,
 125	},
 126	{
 127		.procname	= "inode-state",
 128		.data		= &inodes_stat,
 129		.maxlen		= 7*sizeof(long),
 130		.mode		= 0444,
 131		.proc_handler	= proc_nr_inodes,
 132	},
 
 133};
 134
 135static int __init init_fs_inode_sysctls(void)
 136{
 137	register_sysctl_init("fs", inodes_sysctls);
 138	return 0;
 139}
 140early_initcall(init_fs_inode_sysctls);
 141#endif
 142
 143static int no_open(struct inode *inode, struct file *file)
 144{
 145	return -ENXIO;
 146}
 147
 148/**
 149 * inode_init_always - perform inode structure initialisation
 150 * @sb: superblock inode belongs to
 151 * @inode: inode to initialise
 152 *
 153 * These are initializations that need to be done on every inode
 154 * allocation as the fields are not initialised by slab allocation.
 155 */
 156int inode_init_always(struct super_block *sb, struct inode *inode)
 157{
 158	static const struct inode_operations empty_iops;
 159	static const struct file_operations no_open_fops = {.open = no_open};
 160	struct address_space *const mapping = &inode->i_data;
 161
 162	inode->i_sb = sb;
 163	inode->i_blkbits = sb->s_blocksize_bits;
 164	inode->i_flags = 0;
 165	atomic64_set(&inode->i_sequence, 0);
 166	atomic_set(&inode->i_count, 1);
 167	inode->i_op = &empty_iops;
 168	inode->i_fop = &no_open_fops;
 169	inode->i_ino = 0;
 170	inode->__i_nlink = 1;
 171	inode->i_opflags = 0;
 172	if (sb->s_xattr)
 173		inode->i_opflags |= IOP_XATTR;
 174	i_uid_write(inode, 0);
 175	i_gid_write(inode, 0);
 176	atomic_set(&inode->i_writecount, 0);
 177	inode->i_size = 0;
 178	inode->i_write_hint = WRITE_LIFE_NOT_SET;
 179	inode->i_blocks = 0;
 180	inode->i_bytes = 0;
 181	inode->i_generation = 0;
 182	inode->i_pipe = NULL;
 183	inode->i_cdev = NULL;
 184	inode->i_link = NULL;
 185	inode->i_dir_seq = 0;
 186	inode->i_rdev = 0;
 187	inode->dirtied_when = 0;
 188
 189#ifdef CONFIG_CGROUP_WRITEBACK
 190	inode->i_wb_frn_winner = 0;
 191	inode->i_wb_frn_avg_time = 0;
 192	inode->i_wb_frn_history = 0;
 193#endif
 194
 195	spin_lock_init(&inode->i_lock);
 196	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 197
 198	init_rwsem(&inode->i_rwsem);
 199	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 200
 201	atomic_set(&inode->i_dio_count, 0);
 202
 203	mapping->a_ops = &empty_aops;
 204	mapping->host = inode;
 205	mapping->flags = 0;
 206	mapping->wb_err = 0;
 207	atomic_set(&mapping->i_mmap_writable, 0);
 208#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 209	atomic_set(&mapping->nr_thps, 0);
 210#endif
 211	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 212	mapping->i_private_data = NULL;
 213	mapping->writeback_index = 0;
 214	init_rwsem(&mapping->invalidate_lock);
 215	lockdep_set_class_and_name(&mapping->invalidate_lock,
 216				   &sb->s_type->invalidate_lock_key,
 217				   "mapping.invalidate_lock");
 218	if (sb->s_iflags & SB_I_STABLE_WRITES)
 219		mapping_set_stable_writes(mapping);
 220	inode->i_private = NULL;
 221	inode->i_mapping = mapping;
 222	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
 223#ifdef CONFIG_FS_POSIX_ACL
 224	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 225#endif
 226
 227#ifdef CONFIG_FSNOTIFY
 228	inode->i_fsnotify_mask = 0;
 229#endif
 230	inode->i_flctx = NULL;
 231
 232	if (unlikely(security_inode_alloc(inode)))
 233		return -ENOMEM;
 234	this_cpu_inc(nr_inodes);
 235
 236	return 0;
 237}
 238EXPORT_SYMBOL(inode_init_always);
 239
 240void free_inode_nonrcu(struct inode *inode)
 241{
 242	kmem_cache_free(inode_cachep, inode);
 243}
 244EXPORT_SYMBOL(free_inode_nonrcu);
 245
 246static void i_callback(struct rcu_head *head)
 247{
 248	struct inode *inode = container_of(head, struct inode, i_rcu);
 249	if (inode->free_inode)
 250		inode->free_inode(inode);
 251	else
 252		free_inode_nonrcu(inode);
 253}
 254
 255static struct inode *alloc_inode(struct super_block *sb)
 256{
 257	const struct super_operations *ops = sb->s_op;
 258	struct inode *inode;
 259
 260	if (ops->alloc_inode)
 261		inode = ops->alloc_inode(sb);
 262	else
 263		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
 264
 265	if (!inode)
 266		return NULL;
 267
 268	if (unlikely(inode_init_always(sb, inode))) {
 269		if (ops->destroy_inode) {
 270			ops->destroy_inode(inode);
 271			if (!ops->free_inode)
 272				return NULL;
 273		}
 274		inode->free_inode = ops->free_inode;
 275		i_callback(&inode->i_rcu);
 276		return NULL;
 277	}
 278
 279	return inode;
 280}
 281
 282void __destroy_inode(struct inode *inode)
 283{
 284	BUG_ON(inode_has_buffers(inode));
 285	inode_detach_wb(inode);
 286	security_inode_free(inode);
 287	fsnotify_inode_delete(inode);
 288	locks_free_lock_context(inode);
 289	if (!inode->i_nlink) {
 290		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 291		atomic_long_dec(&inode->i_sb->s_remove_count);
 292	}
 293
 294#ifdef CONFIG_FS_POSIX_ACL
 295	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 296		posix_acl_release(inode->i_acl);
 297	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 298		posix_acl_release(inode->i_default_acl);
 299#endif
 300	this_cpu_dec(nr_inodes);
 301}
 302EXPORT_SYMBOL(__destroy_inode);
 303
 304static void destroy_inode(struct inode *inode)
 305{
 306	const struct super_operations *ops = inode->i_sb->s_op;
 307
 308	BUG_ON(!list_empty(&inode->i_lru));
 309	__destroy_inode(inode);
 310	if (ops->destroy_inode) {
 311		ops->destroy_inode(inode);
 312		if (!ops->free_inode)
 313			return;
 314	}
 315	inode->free_inode = ops->free_inode;
 316	call_rcu(&inode->i_rcu, i_callback);
 317}
 318
 319/**
 320 * drop_nlink - directly drop an inode's link count
 321 * @inode: inode
 322 *
 323 * This is a low-level filesystem helper to replace any
 324 * direct filesystem manipulation of i_nlink.  In cases
 325 * where we are attempting to track writes to the
 326 * filesystem, a decrement to zero means an imminent
 327 * write when the file is truncated and actually unlinked
 328 * on the filesystem.
 329 */
 330void drop_nlink(struct inode *inode)
 331{
 332	WARN_ON(inode->i_nlink == 0);
 333	inode->__i_nlink--;
 334	if (!inode->i_nlink)
 335		atomic_long_inc(&inode->i_sb->s_remove_count);
 336}
 337EXPORT_SYMBOL(drop_nlink);
 338
 339/**
 340 * clear_nlink - directly zero an inode's link count
 341 * @inode: inode
 342 *
 343 * This is a low-level filesystem helper to replace any
 344 * direct filesystem manipulation of i_nlink.  See
 345 * drop_nlink() for why we care about i_nlink hitting zero.
 346 */
 347void clear_nlink(struct inode *inode)
 348{
 349	if (inode->i_nlink) {
 350		inode->__i_nlink = 0;
 351		atomic_long_inc(&inode->i_sb->s_remove_count);
 352	}
 353}
 354EXPORT_SYMBOL(clear_nlink);
 355
 356/**
 357 * set_nlink - directly set an inode's link count
 358 * @inode: inode
 359 * @nlink: new nlink (should be non-zero)
 360 *
 361 * This is a low-level filesystem helper to replace any
 362 * direct filesystem manipulation of i_nlink.
 363 */
 364void set_nlink(struct inode *inode, unsigned int nlink)
 365{
 366	if (!nlink) {
 367		clear_nlink(inode);
 368	} else {
 369		/* Yes, some filesystems do change nlink from zero to one */
 370		if (inode->i_nlink == 0)
 371			atomic_long_dec(&inode->i_sb->s_remove_count);
 372
 373		inode->__i_nlink = nlink;
 374	}
 375}
 376EXPORT_SYMBOL(set_nlink);
 377
 378/**
 379 * inc_nlink - directly increment an inode's link count
 380 * @inode: inode
 381 *
 382 * This is a low-level filesystem helper to replace any
 383 * direct filesystem manipulation of i_nlink.  Currently,
 384 * it is only here for parity with dec_nlink().
 385 */
 386void inc_nlink(struct inode *inode)
 387{
 388	if (unlikely(inode->i_nlink == 0)) {
 389		WARN_ON(!(inode->i_state & I_LINKABLE));
 390		atomic_long_dec(&inode->i_sb->s_remove_count);
 391	}
 392
 393	inode->__i_nlink++;
 394}
 395EXPORT_SYMBOL(inc_nlink);
 396
 397static void __address_space_init_once(struct address_space *mapping)
 398{
 399	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
 400	init_rwsem(&mapping->i_mmap_rwsem);
 401	INIT_LIST_HEAD(&mapping->i_private_list);
 402	spin_lock_init(&mapping->i_private_lock);
 403	mapping->i_mmap = RB_ROOT_CACHED;
 404}
 405
 406void address_space_init_once(struct address_space *mapping)
 407{
 408	memset(mapping, 0, sizeof(*mapping));
 409	__address_space_init_once(mapping);
 410}
 411EXPORT_SYMBOL(address_space_init_once);
 412
 413/*
 414 * These are initializations that only need to be done
 415 * once, because the fields are idempotent across use
 416 * of the inode, so let the slab aware of that.
 417 */
 418void inode_init_once(struct inode *inode)
 419{
 420	memset(inode, 0, sizeof(*inode));
 421	INIT_HLIST_NODE(&inode->i_hash);
 422	INIT_LIST_HEAD(&inode->i_devices);
 423	INIT_LIST_HEAD(&inode->i_io_list);
 424	INIT_LIST_HEAD(&inode->i_wb_list);
 425	INIT_LIST_HEAD(&inode->i_lru);
 426	INIT_LIST_HEAD(&inode->i_sb_list);
 427	__address_space_init_once(&inode->i_data);
 428	i_size_ordered_init(inode);
 429}
 430EXPORT_SYMBOL(inode_init_once);
 431
 432static void init_once(void *foo)
 433{
 434	struct inode *inode = (struct inode *) foo;
 435
 436	inode_init_once(inode);
 437}
 438
 439/*
 440 * inode->i_lock must be held
 441 */
 442void __iget(struct inode *inode)
 443{
 444	atomic_inc(&inode->i_count);
 445}
 446
 447/*
 448 * get additional reference to inode; caller must already hold one.
 449 */
 450void ihold(struct inode *inode)
 451{
 452	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 453}
 454EXPORT_SYMBOL(ihold);
 455
 456static void __inode_add_lru(struct inode *inode, bool rotate)
 457{
 458	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
 459		return;
 460	if (atomic_read(&inode->i_count))
 461		return;
 462	if (!(inode->i_sb->s_flags & SB_ACTIVE))
 463		return;
 464	if (!mapping_shrinkable(&inode->i_data))
 465		return;
 466
 467	if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
 468		this_cpu_inc(nr_unused);
 469	else if (rotate)
 470		inode->i_state |= I_REFERENCED;
 471}
 472
 473/*
 474 * Add inode to LRU if needed (inode is unused and clean).
 475 *
 476 * Needs inode->i_lock held.
 477 */
 478void inode_add_lru(struct inode *inode)
 479{
 480	__inode_add_lru(inode, false);
 481}
 482
 483static void inode_lru_list_del(struct inode *inode)
 484{
 485	if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
 486		this_cpu_dec(nr_unused);
 487}
 488
 489/**
 490 * inode_sb_list_add - add inode to the superblock list of inodes
 491 * @inode: inode to add
 492 */
 493void inode_sb_list_add(struct inode *inode)
 494{
 495	spin_lock(&inode->i_sb->s_inode_list_lock);
 496	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 497	spin_unlock(&inode->i_sb->s_inode_list_lock);
 498}
 499EXPORT_SYMBOL_GPL(inode_sb_list_add);
 500
 501static inline void inode_sb_list_del(struct inode *inode)
 502{
 503	if (!list_empty(&inode->i_sb_list)) {
 504		spin_lock(&inode->i_sb->s_inode_list_lock);
 505		list_del_init(&inode->i_sb_list);
 506		spin_unlock(&inode->i_sb->s_inode_list_lock);
 507	}
 508}
 509
 510static unsigned long hash(struct super_block *sb, unsigned long hashval)
 511{
 512	unsigned long tmp;
 513
 514	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 515			L1_CACHE_BYTES;
 516	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 517	return tmp & i_hash_mask;
 518}
 519
 520/**
 521 *	__insert_inode_hash - hash an inode
 522 *	@inode: unhashed inode
 523 *	@hashval: unsigned long value used to locate this object in the
 524 *		inode_hashtable.
 525 *
 526 *	Add an inode to the inode hash for this superblock.
 527 */
 528void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 529{
 530	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 531
 532	spin_lock(&inode_hash_lock);
 533	spin_lock(&inode->i_lock);
 534	hlist_add_head_rcu(&inode->i_hash, b);
 535	spin_unlock(&inode->i_lock);
 536	spin_unlock(&inode_hash_lock);
 537}
 538EXPORT_SYMBOL(__insert_inode_hash);
 539
 540/**
 541 *	__remove_inode_hash - remove an inode from the hash
 542 *	@inode: inode to unhash
 543 *
 544 *	Remove an inode from the superblock.
 545 */
 546void __remove_inode_hash(struct inode *inode)
 547{
 548	spin_lock(&inode_hash_lock);
 549	spin_lock(&inode->i_lock);
 550	hlist_del_init_rcu(&inode->i_hash);
 551	spin_unlock(&inode->i_lock);
 552	spin_unlock(&inode_hash_lock);
 553}
 554EXPORT_SYMBOL(__remove_inode_hash);
 555
 556void dump_mapping(const struct address_space *mapping)
 557{
 558	struct inode *host;
 559	const struct address_space_operations *a_ops;
 560	struct hlist_node *dentry_first;
 561	struct dentry *dentry_ptr;
 562	struct dentry dentry;
 563	unsigned long ino;
 564
 565	/*
 566	 * If mapping is an invalid pointer, we don't want to crash
 567	 * accessing it, so probe everything depending on it carefully.
 568	 */
 569	if (get_kernel_nofault(host, &mapping->host) ||
 570	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
 571		pr_warn("invalid mapping:%px\n", mapping);
 572		return;
 573	}
 574
 575	if (!host) {
 576		pr_warn("aops:%ps\n", a_ops);
 577		return;
 578	}
 579
 580	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
 581	    get_kernel_nofault(ino, &host->i_ino)) {
 582		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
 583		return;
 584	}
 585
 586	if (!dentry_first) {
 587		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
 588		return;
 589	}
 590
 591	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
 592	if (get_kernel_nofault(dentry, dentry_ptr) ||
 593	    !dentry.d_parent || !dentry.d_name.name) {
 594		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
 595				a_ops, ino, dentry_ptr);
 596		return;
 597	}
 598
 599	/*
 600	 * if dentry is corrupted, the %pd handler may still crash,
 601	 * but it's unlikely that we reach here with a corrupt mapping
 602	 */
 603	pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
 604}
 605
 606void clear_inode(struct inode *inode)
 607{
 608	/*
 609	 * We have to cycle the i_pages lock here because reclaim can be in the
 610	 * process of removing the last page (in __filemap_remove_folio())
 611	 * and we must not free the mapping under it.
 612	 */
 613	xa_lock_irq(&inode->i_data.i_pages);
 614	BUG_ON(inode->i_data.nrpages);
 615	/*
 616	 * Almost always, mapping_empty(&inode->i_data) here; but there are
 617	 * two known and long-standing ways in which nodes may get left behind
 618	 * (when deep radix-tree node allocation failed partway; or when THP
 619	 * collapse_file() failed). Until those two known cases are cleaned up,
 620	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
 621	 * nor even WARN_ON(!mapping_empty).
 622	 */
 623	xa_unlock_irq(&inode->i_data.i_pages);
 624	BUG_ON(!list_empty(&inode->i_data.i_private_list));
 625	BUG_ON(!(inode->i_state & I_FREEING));
 626	BUG_ON(inode->i_state & I_CLEAR);
 627	BUG_ON(!list_empty(&inode->i_wb_list));
 628	/* don't need i_lock here, no concurrent mods to i_state */
 629	inode->i_state = I_FREEING | I_CLEAR;
 630}
 631EXPORT_SYMBOL(clear_inode);
 632
 633/*
 634 * Free the inode passed in, removing it from the lists it is still connected
 635 * to. We remove any pages still attached to the inode and wait for any IO that
 636 * is still in progress before finally destroying the inode.
 637 *
 638 * An inode must already be marked I_FREEING so that we avoid the inode being
 639 * moved back onto lists if we race with other code that manipulates the lists
 640 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 641 *
 642 * An inode must already be removed from the LRU list before being evicted from
 643 * the cache. This should occur atomically with setting the I_FREEING state
 644 * flag, so no inodes here should ever be on the LRU when being evicted.
 645 */
 646static void evict(struct inode *inode)
 647{
 648	const struct super_operations *op = inode->i_sb->s_op;
 649
 650	BUG_ON(!(inode->i_state & I_FREEING));
 651	BUG_ON(!list_empty(&inode->i_lru));
 652
 653	if (!list_empty(&inode->i_io_list))
 654		inode_io_list_del(inode);
 655
 656	inode_sb_list_del(inode);
 657
 658	/*
 659	 * Wait for flusher thread to be done with the inode so that filesystem
 660	 * does not start destroying it while writeback is still running. Since
 661	 * the inode has I_FREEING set, flusher thread won't start new work on
 662	 * the inode.  We just have to wait for running writeback to finish.
 663	 */
 664	inode_wait_for_writeback(inode);
 665
 666	if (op->evict_inode) {
 667		op->evict_inode(inode);
 668	} else {
 669		truncate_inode_pages_final(&inode->i_data);
 670		clear_inode(inode);
 671	}
 672	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 673		cd_forget(inode);
 674
 675	remove_inode_hash(inode);
 676
 677	spin_lock(&inode->i_lock);
 678	wake_up_bit(&inode->i_state, __I_NEW);
 679	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 680	spin_unlock(&inode->i_lock);
 681
 682	destroy_inode(inode);
 683}
 684
 685/*
 686 * dispose_list - dispose of the contents of a local list
 687 * @head: the head of the list to free
 688 *
 689 * Dispose-list gets a local list with local inodes in it, so it doesn't
 690 * need to worry about list corruption and SMP locks.
 691 */
 692static void dispose_list(struct list_head *head)
 693{
 694	while (!list_empty(head)) {
 695		struct inode *inode;
 696
 697		inode = list_first_entry(head, struct inode, i_lru);
 698		list_del_init(&inode->i_lru);
 699
 700		evict(inode);
 701		cond_resched();
 702	}
 703}
 704
 705/**
 706 * evict_inodes	- evict all evictable inodes for a superblock
 707 * @sb:		superblock to operate on
 708 *
 709 * Make sure that no inodes with zero refcount are retained.  This is
 710 * called by superblock shutdown after having SB_ACTIVE flag removed,
 711 * so any inode reaching zero refcount during or after that call will
 712 * be immediately evicted.
 713 */
 714void evict_inodes(struct super_block *sb)
 715{
 716	struct inode *inode, *next;
 717	LIST_HEAD(dispose);
 718
 719again:
 720	spin_lock(&sb->s_inode_list_lock);
 721	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 722		if (atomic_read(&inode->i_count))
 723			continue;
 724
 725		spin_lock(&inode->i_lock);
 726		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 727			spin_unlock(&inode->i_lock);
 728			continue;
 729		}
 730
 731		inode->i_state |= I_FREEING;
 732		inode_lru_list_del(inode);
 733		spin_unlock(&inode->i_lock);
 734		list_add(&inode->i_lru, &dispose);
 735
 736		/*
 737		 * We can have a ton of inodes to evict at unmount time given
 738		 * enough memory, check to see if we need to go to sleep for a
 739		 * bit so we don't livelock.
 740		 */
 741		if (need_resched()) {
 742			spin_unlock(&sb->s_inode_list_lock);
 743			cond_resched();
 744			dispose_list(&dispose);
 745			goto again;
 746		}
 747	}
 748	spin_unlock(&sb->s_inode_list_lock);
 749
 750	dispose_list(&dispose);
 751}
 752EXPORT_SYMBOL_GPL(evict_inodes);
 753
 754/**
 755 * invalidate_inodes	- attempt to free all inodes on a superblock
 756 * @sb:		superblock to operate on
 
 757 *
 758 * Attempts to free all inodes (including dirty inodes) for a given superblock.
 
 
 
 759 */
 760void invalidate_inodes(struct super_block *sb)
 761{
 
 762	struct inode *inode, *next;
 763	LIST_HEAD(dispose);
 764
 765again:
 766	spin_lock(&sb->s_inode_list_lock);
 767	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 768		spin_lock(&inode->i_lock);
 769		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 770			spin_unlock(&inode->i_lock);
 771			continue;
 772		}
 
 
 
 
 
 773		if (atomic_read(&inode->i_count)) {
 774			spin_unlock(&inode->i_lock);
 
 775			continue;
 776		}
 777
 778		inode->i_state |= I_FREEING;
 779		inode_lru_list_del(inode);
 780		spin_unlock(&inode->i_lock);
 781		list_add(&inode->i_lru, &dispose);
 782		if (need_resched()) {
 783			spin_unlock(&sb->s_inode_list_lock);
 784			cond_resched();
 785			dispose_list(&dispose);
 786			goto again;
 787		}
 788	}
 789	spin_unlock(&sb->s_inode_list_lock);
 790
 791	dispose_list(&dispose);
 
 
 792}
 793
 794/*
 795 * Isolate the inode from the LRU in preparation for freeing it.
 796 *
 797 * If the inode has the I_REFERENCED flag set, then it means that it has been
 798 * used recently - the flag is set in iput_final(). When we encounter such an
 799 * inode, clear the flag and move it to the back of the LRU so it gets another
 800 * pass through the LRU before it gets reclaimed. This is necessary because of
 801 * the fact we are doing lazy LRU updates to minimise lock contention so the
 802 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 803 * with this flag set because they are the inodes that are out of order.
 804 */
 805static enum lru_status inode_lru_isolate(struct list_head *item,
 806		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 807{
 808	struct list_head *freeable = arg;
 809	struct inode	*inode = container_of(item, struct inode, i_lru);
 810
 811	/*
 812	 * We are inverting the lru lock/inode->i_lock here, so use a
 813	 * trylock. If we fail to get the lock, just skip it.
 814	 */
 815	if (!spin_trylock(&inode->i_lock))
 816		return LRU_SKIP;
 817
 818	/*
 819	 * Inodes can get referenced, redirtied, or repopulated while
 820	 * they're already on the LRU, and this can make them
 821	 * unreclaimable for a while. Remove them lazily here; iput,
 822	 * sync, or the last page cache deletion will requeue them.
 823	 */
 824	if (atomic_read(&inode->i_count) ||
 825	    (inode->i_state & ~I_REFERENCED) ||
 826	    !mapping_shrinkable(&inode->i_data)) {
 827		list_lru_isolate(lru, &inode->i_lru);
 828		spin_unlock(&inode->i_lock);
 829		this_cpu_dec(nr_unused);
 830		return LRU_REMOVED;
 831	}
 832
 833	/* Recently referenced inodes get one more pass */
 834	if (inode->i_state & I_REFERENCED) {
 835		inode->i_state &= ~I_REFERENCED;
 836		spin_unlock(&inode->i_lock);
 837		return LRU_ROTATE;
 838	}
 839
 840	/*
 841	 * On highmem systems, mapping_shrinkable() permits dropping
 842	 * page cache in order to free up struct inodes: lowmem might
 843	 * be under pressure before the cache inside the highmem zone.
 844	 */
 845	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
 846		__iget(inode);
 847		spin_unlock(&inode->i_lock);
 848		spin_unlock(lru_lock);
 849		if (remove_inode_buffers(inode)) {
 850			unsigned long reap;
 851			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 852			if (current_is_kswapd())
 853				__count_vm_events(KSWAPD_INODESTEAL, reap);
 854			else
 855				__count_vm_events(PGINODESTEAL, reap);
 856			mm_account_reclaimed_pages(reap);
 
 857		}
 858		iput(inode);
 859		spin_lock(lru_lock);
 860		return LRU_RETRY;
 861	}
 862
 863	WARN_ON(inode->i_state & I_NEW);
 864	inode->i_state |= I_FREEING;
 865	list_lru_isolate_move(lru, &inode->i_lru, freeable);
 866	spin_unlock(&inode->i_lock);
 867
 868	this_cpu_dec(nr_unused);
 869	return LRU_REMOVED;
 870}
 871
 872/*
 873 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 874 * This is called from the superblock shrinker function with a number of inodes
 875 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 876 * then are freed outside inode_lock by dispose_list().
 877 */
 878long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 879{
 880	LIST_HEAD(freeable);
 881	long freed;
 882
 883	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 884				     inode_lru_isolate, &freeable);
 885	dispose_list(&freeable);
 886	return freed;
 887}
 888
 889static void __wait_on_freeing_inode(struct inode *inode);
 890/*
 891 * Called with the inode lock held.
 892 */
 893static struct inode *find_inode(struct super_block *sb,
 894				struct hlist_head *head,
 895				int (*test)(struct inode *, void *),
 896				void *data)
 897{
 898	struct inode *inode = NULL;
 899
 900repeat:
 901	hlist_for_each_entry(inode, head, i_hash) {
 902		if (inode->i_sb != sb)
 903			continue;
 904		if (!test(inode, data))
 905			continue;
 906		spin_lock(&inode->i_lock);
 907		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 908			__wait_on_freeing_inode(inode);
 909			goto repeat;
 910		}
 911		if (unlikely(inode->i_state & I_CREATING)) {
 912			spin_unlock(&inode->i_lock);
 913			return ERR_PTR(-ESTALE);
 914		}
 915		__iget(inode);
 916		spin_unlock(&inode->i_lock);
 917		return inode;
 918	}
 919	return NULL;
 920}
 921
 922/*
 923 * find_inode_fast is the fast path version of find_inode, see the comment at
 924 * iget_locked for details.
 925 */
 926static struct inode *find_inode_fast(struct super_block *sb,
 927				struct hlist_head *head, unsigned long ino)
 928{
 929	struct inode *inode = NULL;
 930
 931repeat:
 932	hlist_for_each_entry(inode, head, i_hash) {
 933		if (inode->i_ino != ino)
 934			continue;
 935		if (inode->i_sb != sb)
 936			continue;
 937		spin_lock(&inode->i_lock);
 938		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 939			__wait_on_freeing_inode(inode);
 940			goto repeat;
 941		}
 942		if (unlikely(inode->i_state & I_CREATING)) {
 943			spin_unlock(&inode->i_lock);
 944			return ERR_PTR(-ESTALE);
 945		}
 946		__iget(inode);
 947		spin_unlock(&inode->i_lock);
 948		return inode;
 949	}
 950	return NULL;
 951}
 952
 953/*
 954 * Each cpu owns a range of LAST_INO_BATCH numbers.
 955 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 956 * to renew the exhausted range.
 957 *
 958 * This does not significantly increase overflow rate because every CPU can
 959 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 960 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 961 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 962 * overflow rate by 2x, which does not seem too significant.
 963 *
 964 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 965 * error if st_ino won't fit in target struct field. Use 32bit counter
 966 * here to attempt to avoid that.
 967 */
 968#define LAST_INO_BATCH 1024
 969static DEFINE_PER_CPU(unsigned int, last_ino);
 970
 971unsigned int get_next_ino(void)
 972{
 973	unsigned int *p = &get_cpu_var(last_ino);
 974	unsigned int res = *p;
 975
 976#ifdef CONFIG_SMP
 977	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 978		static atomic_t shared_last_ino;
 979		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 980
 981		res = next - LAST_INO_BATCH;
 982	}
 983#endif
 984
 985	res++;
 986	/* get_next_ino should not provide a 0 inode number */
 987	if (unlikely(!res))
 988		res++;
 989	*p = res;
 990	put_cpu_var(last_ino);
 991	return res;
 992}
 993EXPORT_SYMBOL(get_next_ino);
 994
 995/**
 996 *	new_inode_pseudo 	- obtain an inode
 997 *	@sb: superblock
 998 *
 999 *	Allocates a new inode for given superblock.
1000 *	Inode wont be chained in superblock s_inodes list
1001 *	This means :
1002 *	- fs can't be unmount
1003 *	- quotas, fsnotify, writeback can't work
1004 */
1005struct inode *new_inode_pseudo(struct super_block *sb)
1006{
1007	struct inode *inode = alloc_inode(sb);
1008
1009	if (inode) {
1010		spin_lock(&inode->i_lock);
1011		inode->i_state = 0;
1012		spin_unlock(&inode->i_lock);
1013	}
1014	return inode;
1015}
1016
1017/**
1018 *	new_inode 	- obtain an inode
1019 *	@sb: superblock
1020 *
1021 *	Allocates a new inode for given superblock. The default gfp_mask
1022 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1023 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1024 *	for the page cache are not reclaimable or migratable,
1025 *	mapping_set_gfp_mask() must be called with suitable flags on the
1026 *	newly created inode's mapping
1027 *
1028 */
1029struct inode *new_inode(struct super_block *sb)
1030{
1031	struct inode *inode;
1032
 
 
1033	inode = new_inode_pseudo(sb);
1034	if (inode)
1035		inode_sb_list_add(inode);
1036	return inode;
1037}
1038EXPORT_SYMBOL(new_inode);
1039
1040#ifdef CONFIG_DEBUG_LOCK_ALLOC
1041void lockdep_annotate_inode_mutex_key(struct inode *inode)
1042{
1043	if (S_ISDIR(inode->i_mode)) {
1044		struct file_system_type *type = inode->i_sb->s_type;
1045
1046		/* Set new key only if filesystem hasn't already changed it */
1047		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1048			/*
1049			 * ensure nobody is actually holding i_mutex
1050			 */
1051			// mutex_destroy(&inode->i_mutex);
1052			init_rwsem(&inode->i_rwsem);
1053			lockdep_set_class(&inode->i_rwsem,
1054					  &type->i_mutex_dir_key);
1055		}
1056	}
1057}
1058EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1059#endif
1060
1061/**
1062 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1063 * @inode:	new inode to unlock
1064 *
1065 * Called when the inode is fully initialised to clear the new state of the
1066 * inode and wake up anyone waiting for the inode to finish initialisation.
1067 */
1068void unlock_new_inode(struct inode *inode)
1069{
1070	lockdep_annotate_inode_mutex_key(inode);
1071	spin_lock(&inode->i_lock);
1072	WARN_ON(!(inode->i_state & I_NEW));
1073	inode->i_state &= ~I_NEW & ~I_CREATING;
1074	smp_mb();
1075	wake_up_bit(&inode->i_state, __I_NEW);
1076	spin_unlock(&inode->i_lock);
1077}
1078EXPORT_SYMBOL(unlock_new_inode);
1079
1080void discard_new_inode(struct inode *inode)
1081{
1082	lockdep_annotate_inode_mutex_key(inode);
1083	spin_lock(&inode->i_lock);
1084	WARN_ON(!(inode->i_state & I_NEW));
1085	inode->i_state &= ~I_NEW;
1086	smp_mb();
1087	wake_up_bit(&inode->i_state, __I_NEW);
1088	spin_unlock(&inode->i_lock);
1089	iput(inode);
1090}
1091EXPORT_SYMBOL(discard_new_inode);
1092
1093/**
1094 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1095 *
1096 * Lock any non-NULL argument. Passed objects must not be directories.
1097 * Zero, one or two objects may be locked by this function.
1098 *
1099 * @inode1: first inode to lock
1100 * @inode2: second inode to lock
1101 */
1102void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1103{
1104	if (inode1)
1105		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1106	if (inode2)
1107		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1108	if (inode1 > inode2)
1109		swap(inode1, inode2);
1110	if (inode1)
 
1111		inode_lock(inode1);
1112	if (inode2 && inode2 != inode1)
1113		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1114}
1115EXPORT_SYMBOL(lock_two_nondirectories);
1116
1117/**
1118 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1119 * @inode1: first inode to unlock
1120 * @inode2: second inode to unlock
1121 */
1122void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1123{
1124	if (inode1) {
1125		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1126		inode_unlock(inode1);
1127	}
1128	if (inode2 && inode2 != inode1) {
1129		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1130		inode_unlock(inode2);
1131	}
1132}
1133EXPORT_SYMBOL(unlock_two_nondirectories);
1134
1135/**
1136 * inode_insert5 - obtain an inode from a mounted file system
1137 * @inode:	pre-allocated inode to use for insert to cache
1138 * @hashval:	hash value (usually inode number) to get
1139 * @test:	callback used for comparisons between inodes
1140 * @set:	callback used to initialize a new struct inode
1141 * @data:	opaque data pointer to pass to @test and @set
1142 *
1143 * Search for the inode specified by @hashval and @data in the inode cache,
1144 * and if present it is return it with an increased reference count. This is
1145 * a variant of iget5_locked() for callers that don't want to fail on memory
1146 * allocation of inode.
1147 *
1148 * If the inode is not in cache, insert the pre-allocated inode to cache and
1149 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1150 * to fill it in before unlocking it via unlock_new_inode().
1151 *
1152 * Note both @test and @set are called with the inode_hash_lock held, so can't
1153 * sleep.
1154 */
1155struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1156			    int (*test)(struct inode *, void *),
1157			    int (*set)(struct inode *, void *), void *data)
1158{
1159	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1160	struct inode *old;
1161
1162again:
1163	spin_lock(&inode_hash_lock);
1164	old = find_inode(inode->i_sb, head, test, data);
1165	if (unlikely(old)) {
1166		/*
1167		 * Uhhuh, somebody else created the same inode under us.
1168		 * Use the old inode instead of the preallocated one.
1169		 */
1170		spin_unlock(&inode_hash_lock);
1171		if (IS_ERR(old))
1172			return NULL;
1173		wait_on_inode(old);
1174		if (unlikely(inode_unhashed(old))) {
1175			iput(old);
1176			goto again;
1177		}
1178		return old;
1179	}
1180
1181	if (set && unlikely(set(inode, data))) {
1182		inode = NULL;
1183		goto unlock;
1184	}
1185
1186	/*
1187	 * Return the locked inode with I_NEW set, the
1188	 * caller is responsible for filling in the contents
1189	 */
1190	spin_lock(&inode->i_lock);
1191	inode->i_state |= I_NEW;
1192	hlist_add_head_rcu(&inode->i_hash, head);
1193	spin_unlock(&inode->i_lock);
1194
1195	/*
1196	 * Add inode to the sb list if it's not already. It has I_NEW at this
1197	 * point, so it should be safe to test i_sb_list locklessly.
1198	 */
1199	if (list_empty(&inode->i_sb_list))
1200		inode_sb_list_add(inode);
1201unlock:
1202	spin_unlock(&inode_hash_lock);
1203
1204	return inode;
1205}
1206EXPORT_SYMBOL(inode_insert5);
1207
1208/**
1209 * iget5_locked - obtain an inode from a mounted file system
1210 * @sb:		super block of file system
1211 * @hashval:	hash value (usually inode number) to get
1212 * @test:	callback used for comparisons between inodes
1213 * @set:	callback used to initialize a new struct inode
1214 * @data:	opaque data pointer to pass to @test and @set
1215 *
1216 * Search for the inode specified by @hashval and @data in the inode cache,
1217 * and if present it is return it with an increased reference count. This is
1218 * a generalized version of iget_locked() for file systems where the inode
1219 * number is not sufficient for unique identification of an inode.
1220 *
1221 * If the inode is not in cache, allocate a new inode and return it locked,
1222 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1223 * before unlocking it via unlock_new_inode().
1224 *
1225 * Note both @test and @set are called with the inode_hash_lock held, so can't
1226 * sleep.
1227 */
1228struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1229		int (*test)(struct inode *, void *),
1230		int (*set)(struct inode *, void *), void *data)
1231{
1232	struct inode *inode = ilookup5(sb, hashval, test, data);
1233
1234	if (!inode) {
1235		struct inode *new = alloc_inode(sb);
1236
1237		if (new) {
1238			new->i_state = 0;
1239			inode = inode_insert5(new, hashval, test, set, data);
1240			if (unlikely(inode != new))
1241				destroy_inode(new);
1242		}
1243	}
1244	return inode;
1245}
1246EXPORT_SYMBOL(iget5_locked);
1247
1248/**
1249 * iget_locked - obtain an inode from a mounted file system
1250 * @sb:		super block of file system
1251 * @ino:	inode number to get
1252 *
1253 * Search for the inode specified by @ino in the inode cache and if present
1254 * return it with an increased reference count. This is for file systems
1255 * where the inode number is sufficient for unique identification of an inode.
1256 *
1257 * If the inode is not in cache, allocate a new inode and return it locked,
1258 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1259 * before unlocking it via unlock_new_inode().
1260 */
1261struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1262{
1263	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1264	struct inode *inode;
1265again:
1266	spin_lock(&inode_hash_lock);
1267	inode = find_inode_fast(sb, head, ino);
1268	spin_unlock(&inode_hash_lock);
1269	if (inode) {
1270		if (IS_ERR(inode))
1271			return NULL;
1272		wait_on_inode(inode);
1273		if (unlikely(inode_unhashed(inode))) {
1274			iput(inode);
1275			goto again;
1276		}
1277		return inode;
1278	}
1279
1280	inode = alloc_inode(sb);
1281	if (inode) {
1282		struct inode *old;
1283
1284		spin_lock(&inode_hash_lock);
1285		/* We released the lock, so.. */
1286		old = find_inode_fast(sb, head, ino);
1287		if (!old) {
1288			inode->i_ino = ino;
1289			spin_lock(&inode->i_lock);
1290			inode->i_state = I_NEW;
1291			hlist_add_head_rcu(&inode->i_hash, head);
1292			spin_unlock(&inode->i_lock);
1293			inode_sb_list_add(inode);
1294			spin_unlock(&inode_hash_lock);
1295
1296			/* Return the locked inode with I_NEW set, the
1297			 * caller is responsible for filling in the contents
1298			 */
1299			return inode;
1300		}
1301
1302		/*
1303		 * Uhhuh, somebody else created the same inode under
1304		 * us. Use the old inode instead of the one we just
1305		 * allocated.
1306		 */
1307		spin_unlock(&inode_hash_lock);
1308		destroy_inode(inode);
1309		if (IS_ERR(old))
1310			return NULL;
1311		inode = old;
1312		wait_on_inode(inode);
1313		if (unlikely(inode_unhashed(inode))) {
1314			iput(inode);
1315			goto again;
1316		}
1317	}
1318	return inode;
1319}
1320EXPORT_SYMBOL(iget_locked);
1321
1322/*
1323 * search the inode cache for a matching inode number.
1324 * If we find one, then the inode number we are trying to
1325 * allocate is not unique and so we should not use it.
1326 *
1327 * Returns 1 if the inode number is unique, 0 if it is not.
1328 */
1329static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1330{
1331	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1332	struct inode *inode;
1333
1334	hlist_for_each_entry_rcu(inode, b, i_hash) {
1335		if (inode->i_ino == ino && inode->i_sb == sb)
1336			return 0;
1337	}
1338	return 1;
1339}
1340
1341/**
1342 *	iunique - get a unique inode number
1343 *	@sb: superblock
1344 *	@max_reserved: highest reserved inode number
1345 *
1346 *	Obtain an inode number that is unique on the system for a given
1347 *	superblock. This is used by file systems that have no natural
1348 *	permanent inode numbering system. An inode number is returned that
1349 *	is higher than the reserved limit but unique.
1350 *
1351 *	BUGS:
1352 *	With a large number of inodes live on the file system this function
1353 *	currently becomes quite slow.
1354 */
1355ino_t iunique(struct super_block *sb, ino_t max_reserved)
1356{
1357	/*
1358	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1359	 * error if st_ino won't fit in target struct field. Use 32bit counter
1360	 * here to attempt to avoid that.
1361	 */
1362	static DEFINE_SPINLOCK(iunique_lock);
1363	static unsigned int counter;
1364	ino_t res;
1365
1366	rcu_read_lock();
1367	spin_lock(&iunique_lock);
1368	do {
1369		if (counter <= max_reserved)
1370			counter = max_reserved + 1;
1371		res = counter++;
1372	} while (!test_inode_iunique(sb, res));
1373	spin_unlock(&iunique_lock);
1374	rcu_read_unlock();
1375
1376	return res;
1377}
1378EXPORT_SYMBOL(iunique);
1379
1380struct inode *igrab(struct inode *inode)
1381{
1382	spin_lock(&inode->i_lock);
1383	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1384		__iget(inode);
1385		spin_unlock(&inode->i_lock);
1386	} else {
1387		spin_unlock(&inode->i_lock);
1388		/*
1389		 * Handle the case where s_op->clear_inode is not been
1390		 * called yet, and somebody is calling igrab
1391		 * while the inode is getting freed.
1392		 */
1393		inode = NULL;
1394	}
1395	return inode;
1396}
1397EXPORT_SYMBOL(igrab);
1398
1399/**
1400 * ilookup5_nowait - search for an inode in the inode cache
1401 * @sb:		super block of file system to search
1402 * @hashval:	hash value (usually inode number) to search for
1403 * @test:	callback used for comparisons between inodes
1404 * @data:	opaque data pointer to pass to @test
1405 *
1406 * Search for the inode specified by @hashval and @data in the inode cache.
1407 * If the inode is in the cache, the inode is returned with an incremented
1408 * reference count.
1409 *
1410 * Note: I_NEW is not waited upon so you have to be very careful what you do
1411 * with the returned inode.  You probably should be using ilookup5() instead.
1412 *
1413 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1414 */
1415struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1416		int (*test)(struct inode *, void *), void *data)
1417{
1418	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1419	struct inode *inode;
1420
1421	spin_lock(&inode_hash_lock);
1422	inode = find_inode(sb, head, test, data);
1423	spin_unlock(&inode_hash_lock);
1424
1425	return IS_ERR(inode) ? NULL : inode;
1426}
1427EXPORT_SYMBOL(ilookup5_nowait);
1428
1429/**
1430 * ilookup5 - search for an inode in the inode cache
1431 * @sb:		super block of file system to search
1432 * @hashval:	hash value (usually inode number) to search for
1433 * @test:	callback used for comparisons between inodes
1434 * @data:	opaque data pointer to pass to @test
1435 *
1436 * Search for the inode specified by @hashval and @data in the inode cache,
1437 * and if the inode is in the cache, return the inode with an incremented
1438 * reference count.  Waits on I_NEW before returning the inode.
1439 * returned with an incremented reference count.
1440 *
1441 * This is a generalized version of ilookup() for file systems where the
1442 * inode number is not sufficient for unique identification of an inode.
1443 *
1444 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1445 */
1446struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1447		int (*test)(struct inode *, void *), void *data)
1448{
1449	struct inode *inode;
1450again:
1451	inode = ilookup5_nowait(sb, hashval, test, data);
1452	if (inode) {
1453		wait_on_inode(inode);
1454		if (unlikely(inode_unhashed(inode))) {
1455			iput(inode);
1456			goto again;
1457		}
1458	}
1459	return inode;
1460}
1461EXPORT_SYMBOL(ilookup5);
1462
1463/**
1464 * ilookup - search for an inode in the inode cache
1465 * @sb:		super block of file system to search
1466 * @ino:	inode number to search for
1467 *
1468 * Search for the inode @ino in the inode cache, and if the inode is in the
1469 * cache, the inode is returned with an incremented reference count.
1470 */
1471struct inode *ilookup(struct super_block *sb, unsigned long ino)
1472{
1473	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1474	struct inode *inode;
1475again:
1476	spin_lock(&inode_hash_lock);
1477	inode = find_inode_fast(sb, head, ino);
1478	spin_unlock(&inode_hash_lock);
1479
1480	if (inode) {
1481		if (IS_ERR(inode))
1482			return NULL;
1483		wait_on_inode(inode);
1484		if (unlikely(inode_unhashed(inode))) {
1485			iput(inode);
1486			goto again;
1487		}
1488	}
1489	return inode;
1490}
1491EXPORT_SYMBOL(ilookup);
1492
1493/**
1494 * find_inode_nowait - find an inode in the inode cache
1495 * @sb:		super block of file system to search
1496 * @hashval:	hash value (usually inode number) to search for
1497 * @match:	callback used for comparisons between inodes
1498 * @data:	opaque data pointer to pass to @match
1499 *
1500 * Search for the inode specified by @hashval and @data in the inode
1501 * cache, where the helper function @match will return 0 if the inode
1502 * does not match, 1 if the inode does match, and -1 if the search
1503 * should be stopped.  The @match function must be responsible for
1504 * taking the i_lock spin_lock and checking i_state for an inode being
1505 * freed or being initialized, and incrementing the reference count
1506 * before returning 1.  It also must not sleep, since it is called with
1507 * the inode_hash_lock spinlock held.
1508 *
1509 * This is a even more generalized version of ilookup5() when the
1510 * function must never block --- find_inode() can block in
1511 * __wait_on_freeing_inode() --- or when the caller can not increment
1512 * the reference count because the resulting iput() might cause an
1513 * inode eviction.  The tradeoff is that the @match funtion must be
1514 * very carefully implemented.
1515 */
1516struct inode *find_inode_nowait(struct super_block *sb,
1517				unsigned long hashval,
1518				int (*match)(struct inode *, unsigned long,
1519					     void *),
1520				void *data)
1521{
1522	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1523	struct inode *inode, *ret_inode = NULL;
1524	int mval;
1525
1526	spin_lock(&inode_hash_lock);
1527	hlist_for_each_entry(inode, head, i_hash) {
1528		if (inode->i_sb != sb)
1529			continue;
1530		mval = match(inode, hashval, data);
1531		if (mval == 0)
1532			continue;
1533		if (mval == 1)
1534			ret_inode = inode;
1535		goto out;
1536	}
1537out:
1538	spin_unlock(&inode_hash_lock);
1539	return ret_inode;
1540}
1541EXPORT_SYMBOL(find_inode_nowait);
1542
1543/**
1544 * find_inode_rcu - find an inode in the inode cache
1545 * @sb:		Super block of file system to search
1546 * @hashval:	Key to hash
1547 * @test:	Function to test match on an inode
1548 * @data:	Data for test function
1549 *
1550 * Search for the inode specified by @hashval and @data in the inode cache,
1551 * where the helper function @test will return 0 if the inode does not match
1552 * and 1 if it does.  The @test function must be responsible for taking the
1553 * i_lock spin_lock and checking i_state for an inode being freed or being
1554 * initialized.
1555 *
1556 * If successful, this will return the inode for which the @test function
1557 * returned 1 and NULL otherwise.
1558 *
1559 * The @test function is not permitted to take a ref on any inode presented.
1560 * It is also not permitted to sleep.
1561 *
1562 * The caller must hold the RCU read lock.
1563 */
1564struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1565			     int (*test)(struct inode *, void *), void *data)
1566{
1567	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1568	struct inode *inode;
1569
1570	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1571			 "suspicious find_inode_rcu() usage");
1572
1573	hlist_for_each_entry_rcu(inode, head, i_hash) {
1574		if (inode->i_sb == sb &&
1575		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1576		    test(inode, data))
1577			return inode;
1578	}
1579	return NULL;
1580}
1581EXPORT_SYMBOL(find_inode_rcu);
1582
1583/**
1584 * find_inode_by_ino_rcu - Find an inode in the inode cache
1585 * @sb:		Super block of file system to search
1586 * @ino:	The inode number to match
1587 *
1588 * Search for the inode specified by @hashval and @data in the inode cache,
1589 * where the helper function @test will return 0 if the inode does not match
1590 * and 1 if it does.  The @test function must be responsible for taking the
1591 * i_lock spin_lock and checking i_state for an inode being freed or being
1592 * initialized.
1593 *
1594 * If successful, this will return the inode for which the @test function
1595 * returned 1 and NULL otherwise.
1596 *
1597 * The @test function is not permitted to take a ref on any inode presented.
1598 * It is also not permitted to sleep.
1599 *
1600 * The caller must hold the RCU read lock.
1601 */
1602struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1603				    unsigned long ino)
1604{
1605	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1606	struct inode *inode;
1607
1608	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1609			 "suspicious find_inode_by_ino_rcu() usage");
1610
1611	hlist_for_each_entry_rcu(inode, head, i_hash) {
1612		if (inode->i_ino == ino &&
1613		    inode->i_sb == sb &&
1614		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1615		    return inode;
1616	}
1617	return NULL;
1618}
1619EXPORT_SYMBOL(find_inode_by_ino_rcu);
1620
1621int insert_inode_locked(struct inode *inode)
1622{
1623	struct super_block *sb = inode->i_sb;
1624	ino_t ino = inode->i_ino;
1625	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1626
1627	while (1) {
1628		struct inode *old = NULL;
1629		spin_lock(&inode_hash_lock);
1630		hlist_for_each_entry(old, head, i_hash) {
1631			if (old->i_ino != ino)
1632				continue;
1633			if (old->i_sb != sb)
1634				continue;
1635			spin_lock(&old->i_lock);
1636			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1637				spin_unlock(&old->i_lock);
1638				continue;
1639			}
1640			break;
1641		}
1642		if (likely(!old)) {
1643			spin_lock(&inode->i_lock);
1644			inode->i_state |= I_NEW | I_CREATING;
1645			hlist_add_head_rcu(&inode->i_hash, head);
1646			spin_unlock(&inode->i_lock);
1647			spin_unlock(&inode_hash_lock);
1648			return 0;
1649		}
1650		if (unlikely(old->i_state & I_CREATING)) {
1651			spin_unlock(&old->i_lock);
1652			spin_unlock(&inode_hash_lock);
1653			return -EBUSY;
1654		}
1655		__iget(old);
1656		spin_unlock(&old->i_lock);
1657		spin_unlock(&inode_hash_lock);
1658		wait_on_inode(old);
1659		if (unlikely(!inode_unhashed(old))) {
1660			iput(old);
1661			return -EBUSY;
1662		}
1663		iput(old);
1664	}
1665}
1666EXPORT_SYMBOL(insert_inode_locked);
1667
1668int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1669		int (*test)(struct inode *, void *), void *data)
1670{
1671	struct inode *old;
1672
1673	inode->i_state |= I_CREATING;
1674	old = inode_insert5(inode, hashval, test, NULL, data);
1675
1676	if (old != inode) {
1677		iput(old);
1678		return -EBUSY;
1679	}
1680	return 0;
1681}
1682EXPORT_SYMBOL(insert_inode_locked4);
1683
1684
1685int generic_delete_inode(struct inode *inode)
1686{
1687	return 1;
1688}
1689EXPORT_SYMBOL(generic_delete_inode);
1690
1691/*
1692 * Called when we're dropping the last reference
1693 * to an inode.
1694 *
1695 * Call the FS "drop_inode()" function, defaulting to
1696 * the legacy UNIX filesystem behaviour.  If it tells
1697 * us to evict inode, do so.  Otherwise, retain inode
1698 * in cache if fs is alive, sync and evict if fs is
1699 * shutting down.
1700 */
1701static void iput_final(struct inode *inode)
1702{
1703	struct super_block *sb = inode->i_sb;
1704	const struct super_operations *op = inode->i_sb->s_op;
1705	unsigned long state;
1706	int drop;
1707
1708	WARN_ON(inode->i_state & I_NEW);
1709
1710	if (op->drop_inode)
1711		drop = op->drop_inode(inode);
1712	else
1713		drop = generic_drop_inode(inode);
1714
1715	if (!drop &&
1716	    !(inode->i_state & I_DONTCACHE) &&
1717	    (sb->s_flags & SB_ACTIVE)) {
1718		__inode_add_lru(inode, true);
1719		spin_unlock(&inode->i_lock);
1720		return;
1721	}
1722
1723	state = inode->i_state;
1724	if (!drop) {
1725		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1726		spin_unlock(&inode->i_lock);
1727
1728		write_inode_now(inode, 1);
1729
1730		spin_lock(&inode->i_lock);
1731		state = inode->i_state;
1732		WARN_ON(state & I_NEW);
1733		state &= ~I_WILL_FREE;
1734	}
1735
1736	WRITE_ONCE(inode->i_state, state | I_FREEING);
1737	if (!list_empty(&inode->i_lru))
1738		inode_lru_list_del(inode);
1739	spin_unlock(&inode->i_lock);
1740
1741	evict(inode);
1742}
1743
1744/**
1745 *	iput	- put an inode
1746 *	@inode: inode to put
1747 *
1748 *	Puts an inode, dropping its usage count. If the inode use count hits
1749 *	zero, the inode is then freed and may also be destroyed.
1750 *
1751 *	Consequently, iput() can sleep.
1752 */
1753void iput(struct inode *inode)
1754{
1755	if (!inode)
1756		return;
1757	BUG_ON(inode->i_state & I_CLEAR);
1758retry:
1759	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1760		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1761			atomic_inc(&inode->i_count);
1762			spin_unlock(&inode->i_lock);
1763			trace_writeback_lazytime_iput(inode);
1764			mark_inode_dirty_sync(inode);
1765			goto retry;
1766		}
1767		iput_final(inode);
1768	}
1769}
1770EXPORT_SYMBOL(iput);
1771
1772#ifdef CONFIG_BLOCK
1773/**
1774 *	bmap	- find a block number in a file
1775 *	@inode:  inode owning the block number being requested
1776 *	@block: pointer containing the block to find
1777 *
1778 *	Replaces the value in ``*block`` with the block number on the device holding
1779 *	corresponding to the requested block number in the file.
1780 *	That is, asked for block 4 of inode 1 the function will replace the
1781 *	4 in ``*block``, with disk block relative to the disk start that holds that
1782 *	block of the file.
1783 *
1784 *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1785 *	hole, returns 0 and ``*block`` is also set to 0.
1786 */
1787int bmap(struct inode *inode, sector_t *block)
1788{
1789	if (!inode->i_mapping->a_ops->bmap)
1790		return -EINVAL;
1791
1792	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1793	return 0;
1794}
1795EXPORT_SYMBOL(bmap);
1796#endif
1797
1798/*
1799 * With relative atime, only update atime if the previous atime is
1800 * earlier than or equal to either the ctime or mtime,
1801 * or if at least a day has passed since the last atime update.
1802 */
1803static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1804			     struct timespec64 now)
1805{
1806	struct timespec64 atime, mtime, ctime;
1807
1808	if (!(mnt->mnt_flags & MNT_RELATIME))
1809		return true;
1810	/*
1811	 * Is mtime younger than or equal to atime? If yes, update atime:
1812	 */
1813	atime = inode_get_atime(inode);
1814	mtime = inode_get_mtime(inode);
1815	if (timespec64_compare(&mtime, &atime) >= 0)
1816		return true;
1817	/*
1818	 * Is ctime younger than or equal to atime? If yes, update atime:
1819	 */
1820	ctime = inode_get_ctime(inode);
1821	if (timespec64_compare(&ctime, &atime) >= 0)
1822		return true;
1823
1824	/*
1825	 * Is the previous atime value older than a day? If yes,
1826	 * update atime:
1827	 */
1828	if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
1829		return true;
1830	/*
1831	 * Good, we can skip the atime update:
1832	 */
1833	return false;
1834}
1835
1836/**
1837 * inode_update_timestamps - update the timestamps on the inode
1838 * @inode: inode to be updated
1839 * @flags: S_* flags that needed to be updated
1840 *
1841 * The update_time function is called when an inode's timestamps need to be
1842 * updated for a read or write operation. This function handles updating the
1843 * actual timestamps. It's up to the caller to ensure that the inode is marked
1844 * dirty appropriately.
1845 *
1846 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1847 * attempt to update all three of them. S_ATIME updates can be handled
1848 * independently of the rest.
1849 *
1850 * Returns a set of S_* flags indicating which values changed.
1851 */
1852int inode_update_timestamps(struct inode *inode, int flags)
1853{
1854	int updated = 0;
1855	struct timespec64 now;
1856
1857	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
1858		struct timespec64 ctime = inode_get_ctime(inode);
1859		struct timespec64 mtime = inode_get_mtime(inode);
1860
1861		now = inode_set_ctime_current(inode);
1862		if (!timespec64_equal(&now, &ctime))
1863			updated |= S_CTIME;
1864		if (!timespec64_equal(&now, &mtime)) {
1865			inode_set_mtime_to_ts(inode, now);
1866			updated |= S_MTIME;
1867		}
1868		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
1869			updated |= S_VERSION;
1870	} else {
1871		now = current_time(inode);
1872	}
1873
1874	if (flags & S_ATIME) {
1875		struct timespec64 atime = inode_get_atime(inode);
1876
1877		if (!timespec64_equal(&now, &atime)) {
1878			inode_set_atime_to_ts(inode, now);
1879			updated |= S_ATIME;
1880		}
1881	}
1882	return updated;
1883}
1884EXPORT_SYMBOL(inode_update_timestamps);
1885
1886/**
1887 * generic_update_time - update the timestamps on the inode
1888 * @inode: inode to be updated
1889 * @flags: S_* flags that needed to be updated
1890 *
1891 * The update_time function is called when an inode's timestamps need to be
1892 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
1893 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
1894 * updates can be handled done independently of the rest.
1895 *
1896 * Returns a S_* mask indicating which fields were updated.
1897 */
1898int generic_update_time(struct inode *inode, int flags)
1899{
1900	int updated = inode_update_timestamps(inode, flags);
1901	int dirty_flags = 0;
1902
1903	if (updated & (S_ATIME|S_MTIME|S_CTIME))
1904		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
1905	if (updated & S_VERSION)
1906		dirty_flags |= I_DIRTY_SYNC;
1907	__mark_inode_dirty(inode, dirty_flags);
1908	return updated;
1909}
1910EXPORT_SYMBOL(generic_update_time);
1911
1912/*
1913 * This does the actual work of updating an inodes time or version.  Must have
1914 * had called mnt_want_write() before calling this.
1915 */
1916int inode_update_time(struct inode *inode, int flags)
1917{
1918	if (inode->i_op->update_time)
1919		return inode->i_op->update_time(inode, flags);
1920	generic_update_time(inode, flags);
1921	return 0;
1922}
1923EXPORT_SYMBOL(inode_update_time);
1924
1925/**
1926 *	atime_needs_update	-	update the access time
1927 *	@path: the &struct path to update
1928 *	@inode: inode to update
1929 *
1930 *	Update the accessed time on an inode and mark it for writeback.
1931 *	This function automatically handles read only file systems and media,
1932 *	as well as the "noatime" flag and inode specific "noatime" markers.
1933 */
1934bool atime_needs_update(const struct path *path, struct inode *inode)
1935{
1936	struct vfsmount *mnt = path->mnt;
1937	struct timespec64 now, atime;
1938
1939	if (inode->i_flags & S_NOATIME)
1940		return false;
1941
1942	/* Atime updates will likely cause i_uid and i_gid to be written
1943	 * back improprely if their true value is unknown to the vfs.
1944	 */
1945	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
1946		return false;
1947
1948	if (IS_NOATIME(inode))
1949		return false;
1950	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1951		return false;
1952
1953	if (mnt->mnt_flags & MNT_NOATIME)
1954		return false;
1955	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1956		return false;
1957
1958	now = current_time(inode);
1959
1960	if (!relatime_need_update(mnt, inode, now))
1961		return false;
1962
1963	atime = inode_get_atime(inode);
1964	if (timespec64_equal(&atime, &now))
1965		return false;
1966
1967	return true;
1968}
1969
1970void touch_atime(const struct path *path)
1971{
1972	struct vfsmount *mnt = path->mnt;
1973	struct inode *inode = d_inode(path->dentry);
 
1974
1975	if (!atime_needs_update(path, inode))
1976		return;
1977
1978	if (!sb_start_write_trylock(inode->i_sb))
1979		return;
1980
1981	if (mnt_get_write_access(mnt) != 0)
1982		goto skip_update;
1983	/*
1984	 * File systems can error out when updating inodes if they need to
1985	 * allocate new space to modify an inode (such is the case for
1986	 * Btrfs), but since we touch atime while walking down the path we
1987	 * really don't care if we failed to update the atime of the file,
1988	 * so just ignore the return value.
1989	 * We may also fail on filesystems that have the ability to make parts
1990	 * of the fs read only, e.g. subvolumes in Btrfs.
1991	 */
1992	inode_update_time(inode, S_ATIME);
1993	mnt_put_write_access(mnt);
 
1994skip_update:
1995	sb_end_write(inode->i_sb);
1996}
1997EXPORT_SYMBOL(touch_atime);
1998
1999/*
2000 * Return mask of changes for notify_change() that need to be done as a
2001 * response to write or truncate. Return 0 if nothing has to be changed.
2002 * Negative value on error (change should be denied).
2003 */
2004int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2005			      struct dentry *dentry)
2006{
2007	struct inode *inode = d_inode(dentry);
2008	int mask = 0;
2009	int ret;
2010
2011	if (IS_NOSEC(inode))
2012		return 0;
2013
2014	mask = setattr_should_drop_suidgid(idmap, inode);
2015	ret = security_inode_need_killpriv(dentry);
2016	if (ret < 0)
2017		return ret;
2018	if (ret)
2019		mask |= ATTR_KILL_PRIV;
2020	return mask;
2021}
2022
2023static int __remove_privs(struct mnt_idmap *idmap,
2024			  struct dentry *dentry, int kill)
2025{
2026	struct iattr newattrs;
2027
2028	newattrs.ia_valid = ATTR_FORCE | kill;
2029	/*
2030	 * Note we call this on write, so notify_change will not
2031	 * encounter any conflicting delegations:
2032	 */
2033	return notify_change(idmap, dentry, &newattrs, NULL);
2034}
2035
2036int file_remove_privs_flags(struct file *file, unsigned int flags)
2037{
2038	struct dentry *dentry = file_dentry(file);
2039	struct inode *inode = file_inode(file);
2040	int error = 0;
2041	int kill;
2042
2043	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2044		return 0;
2045
2046	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2047	if (kill < 0)
2048		return kill;
2049
2050	if (kill) {
2051		if (flags & IOCB_NOWAIT)
2052			return -EAGAIN;
2053
2054		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2055	}
2056
2057	if (!error)
2058		inode_has_no_xattr(inode);
2059	return error;
2060}
2061EXPORT_SYMBOL_GPL(file_remove_privs_flags);
2062
2063/**
2064 * file_remove_privs - remove special file privileges (suid, capabilities)
2065 * @file: file to remove privileges from
2066 *
2067 * When file is modified by a write or truncation ensure that special
2068 * file privileges are removed.
2069 *
2070 * Return: 0 on success, negative errno on failure.
2071 */
2072int file_remove_privs(struct file *file)
2073{
2074	return file_remove_privs_flags(file, 0);
2075}
2076EXPORT_SYMBOL(file_remove_privs);
2077
2078static int inode_needs_update_time(struct inode *inode)
2079{
2080	int sync_it = 0;
2081	struct timespec64 now = current_time(inode);
2082	struct timespec64 ts;
2083
2084	/* First try to exhaust all avenues to not sync */
2085	if (IS_NOCMTIME(inode))
2086		return 0;
2087
2088	ts = inode_get_mtime(inode);
2089	if (!timespec64_equal(&ts, &now))
2090		sync_it = S_MTIME;
2091
2092	ts = inode_get_ctime(inode);
2093	if (!timespec64_equal(&ts, &now))
2094		sync_it |= S_CTIME;
2095
2096	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2097		sync_it |= S_VERSION;
2098
2099	return sync_it;
2100}
2101
2102static int __file_update_time(struct file *file, int sync_mode)
 
2103{
2104	int ret = 0;
2105	struct inode *inode = file_inode(file);
2106
2107	/* try to update time settings */
2108	if (!mnt_get_write_access_file(file)) {
2109		ret = inode_update_time(inode, sync_mode);
2110		mnt_put_write_access_file(file);
2111	}
2112
2113	return ret;
2114}
2115
2116/**
2117 * file_update_time - update mtime and ctime time
2118 * @file: file accessed
2119 *
2120 * Update the mtime and ctime members of an inode and mark the inode for
2121 * writeback. Note that this function is meant exclusively for usage in
2122 * the file write path of filesystems, and filesystems may choose to
2123 * explicitly ignore updates via this function with the _NOCMTIME inode
2124 * flag, e.g. for network filesystem where these imestamps are handled
2125 * by the server. This can return an error for file systems who need to
2126 * allocate space in order to update an inode.
2127 *
2128 * Return: 0 on success, negative errno on failure.
2129 */
2130int file_update_time(struct file *file)
2131{
2132	int ret;
2133	struct inode *inode = file_inode(file);
 
2134
2135	ret = inode_needs_update_time(inode);
2136	if (ret <= 0)
2137		return ret;
2138
2139	return __file_update_time(file, ret);
2140}
2141EXPORT_SYMBOL(file_update_time);
2142
2143/**
2144 * file_modified_flags - handle mandated vfs changes when modifying a file
2145 * @file: file that was modified
2146 * @flags: kiocb flags
2147 *
2148 * When file has been modified ensure that special
2149 * file privileges are removed and time settings are updated.
2150 *
2151 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2152 * time settings will not be updated. It will return -EAGAIN.
2153 *
2154 * Context: Caller must hold the file's inode lock.
2155 *
2156 * Return: 0 on success, negative errno on failure.
2157 */
2158static int file_modified_flags(struct file *file, int flags)
2159{
2160	int ret;
2161	struct inode *inode = file_inode(file);
 
2162
2163	/*
2164	 * Clear the security bits if the process is not being run by root.
2165	 * This keeps people from modifying setuid and setgid binaries.
2166	 */
2167	ret = file_remove_privs_flags(file, flags);
2168	if (ret)
2169		return ret;
2170
2171	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2172		return 0;
2173
2174	ret = inode_needs_update_time(inode);
2175	if (ret <= 0)
2176		return ret;
2177	if (flags & IOCB_NOWAIT)
2178		return -EAGAIN;
2179
2180	return __file_update_time(file, ret);
2181}
2182
2183/**
2184 * file_modified - handle mandated vfs changes when modifying a file
2185 * @file: file that was modified
2186 *
2187 * When file has been modified ensure that special
2188 * file privileges are removed and time settings are updated.
2189 *
2190 * Context: Caller must hold the file's inode lock.
2191 *
2192 * Return: 0 on success, negative errno on failure.
2193 */
2194int file_modified(struct file *file)
2195{
2196	return file_modified_flags(file, 0);
2197}
2198EXPORT_SYMBOL(file_modified);
2199
2200/**
2201 * kiocb_modified - handle mandated vfs changes when modifying a file
2202 * @iocb: iocb that was modified
2203 *
2204 * When file has been modified ensure that special
2205 * file privileges are removed and time settings are updated.
2206 *
2207 * Context: Caller must hold the file's inode lock.
2208 *
2209 * Return: 0 on success, negative errno on failure.
2210 */
2211int kiocb_modified(struct kiocb *iocb)
2212{
2213	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2214}
2215EXPORT_SYMBOL_GPL(kiocb_modified);
2216
2217int inode_needs_sync(struct inode *inode)
2218{
2219	if (IS_SYNC(inode))
2220		return 1;
2221	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2222		return 1;
2223	return 0;
2224}
2225EXPORT_SYMBOL(inode_needs_sync);
2226
2227/*
2228 * If we try to find an inode in the inode hash while it is being
2229 * deleted, we have to wait until the filesystem completes its
2230 * deletion before reporting that it isn't found.  This function waits
2231 * until the deletion _might_ have completed.  Callers are responsible
2232 * to recheck inode state.
2233 *
2234 * It doesn't matter if I_NEW is not set initially, a call to
2235 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2236 * will DTRT.
2237 */
2238static void __wait_on_freeing_inode(struct inode *inode)
2239{
2240	wait_queue_head_t *wq;
2241	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2242	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2243	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2244	spin_unlock(&inode->i_lock);
2245	spin_unlock(&inode_hash_lock);
2246	schedule();
2247	finish_wait(wq, &wait.wq_entry);
2248	spin_lock(&inode_hash_lock);
2249}
2250
2251static __initdata unsigned long ihash_entries;
2252static int __init set_ihash_entries(char *str)
2253{
2254	if (!str)
2255		return 0;
2256	ihash_entries = simple_strtoul(str, &str, 0);
2257	return 1;
2258}
2259__setup("ihash_entries=", set_ihash_entries);
2260
2261/*
2262 * Initialize the waitqueues and inode hash table.
2263 */
2264void __init inode_init_early(void)
2265{
2266	/* If hashes are distributed across NUMA nodes, defer
2267	 * hash allocation until vmalloc space is available.
2268	 */
2269	if (hashdist)
2270		return;
2271
2272	inode_hashtable =
2273		alloc_large_system_hash("Inode-cache",
2274					sizeof(struct hlist_head),
2275					ihash_entries,
2276					14,
2277					HASH_EARLY | HASH_ZERO,
2278					&i_hash_shift,
2279					&i_hash_mask,
2280					0,
2281					0);
2282}
2283
2284void __init inode_init(void)
2285{
2286	/* inode slab cache */
2287	inode_cachep = kmem_cache_create("inode_cache",
2288					 sizeof(struct inode),
2289					 0,
2290					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2291					 SLAB_ACCOUNT),
2292					 init_once);
2293
2294	/* Hash may have been set up in inode_init_early */
2295	if (!hashdist)
2296		return;
2297
2298	inode_hashtable =
2299		alloc_large_system_hash("Inode-cache",
2300					sizeof(struct hlist_head),
2301					ihash_entries,
2302					14,
2303					HASH_ZERO,
2304					&i_hash_shift,
2305					&i_hash_mask,
2306					0,
2307					0);
2308}
2309
2310void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2311{
2312	inode->i_mode = mode;
2313	if (S_ISCHR(mode)) {
2314		inode->i_fop = &def_chr_fops;
2315		inode->i_rdev = rdev;
2316	} else if (S_ISBLK(mode)) {
2317		if (IS_ENABLED(CONFIG_BLOCK))
2318			inode->i_fop = &def_blk_fops;
2319		inode->i_rdev = rdev;
2320	} else if (S_ISFIFO(mode))
2321		inode->i_fop = &pipefifo_fops;
2322	else if (S_ISSOCK(mode))
2323		;	/* leave it no_open_fops */
2324	else
2325		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2326				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2327				  inode->i_ino);
2328}
2329EXPORT_SYMBOL(init_special_inode);
2330
2331/**
2332 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2333 * @idmap: idmap of the mount the inode was created from
2334 * @inode: New inode
2335 * @dir: Directory inode
2336 * @mode: mode of the new inode
2337 *
2338 * If the inode has been created through an idmapped mount the idmap of
2339 * the vfsmount must be passed through @idmap. This function will then take
2340 * care to map the inode according to @idmap before checking permissions
2341 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2342 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2343 */
2344void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2345		      const struct inode *dir, umode_t mode)
2346{
2347	inode_fsuid_set(inode, idmap);
2348	if (dir && dir->i_mode & S_ISGID) {
2349		inode->i_gid = dir->i_gid;
2350
2351		/* Directories are special, and always inherit S_ISGID */
2352		if (S_ISDIR(mode))
2353			mode |= S_ISGID;
2354	} else
2355		inode_fsgid_set(inode, idmap);
2356	inode->i_mode = mode;
2357}
2358EXPORT_SYMBOL(inode_init_owner);
2359
2360/**
2361 * inode_owner_or_capable - check current task permissions to inode
2362 * @idmap: idmap of the mount the inode was found from
2363 * @inode: inode being checked
2364 *
2365 * Return true if current either has CAP_FOWNER in a namespace with the
2366 * inode owner uid mapped, or owns the file.
2367 *
2368 * If the inode has been found through an idmapped mount the idmap of
2369 * the vfsmount must be passed through @idmap. This function will then take
2370 * care to map the inode according to @idmap before checking permissions.
2371 * On non-idmapped mounts or if permission checking is to be performed on the
2372 * raw inode simply pass @nop_mnt_idmap.
2373 */
2374bool inode_owner_or_capable(struct mnt_idmap *idmap,
2375			    const struct inode *inode)
2376{
2377	vfsuid_t vfsuid;
2378	struct user_namespace *ns;
2379
2380	vfsuid = i_uid_into_vfsuid(idmap, inode);
2381	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2382		return true;
2383
2384	ns = current_user_ns();
2385	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2386		return true;
2387	return false;
2388}
2389EXPORT_SYMBOL(inode_owner_or_capable);
2390
2391/*
2392 * Direct i/o helper functions
2393 */
2394static void __inode_dio_wait(struct inode *inode)
2395{
2396	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2397	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2398
2399	do {
2400		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2401		if (atomic_read(&inode->i_dio_count))
2402			schedule();
2403	} while (atomic_read(&inode->i_dio_count));
2404	finish_wait(wq, &q.wq_entry);
2405}
2406
2407/**
2408 * inode_dio_wait - wait for outstanding DIO requests to finish
2409 * @inode: inode to wait for
2410 *
2411 * Waits for all pending direct I/O requests to finish so that we can
2412 * proceed with a truncate or equivalent operation.
2413 *
2414 * Must be called under a lock that serializes taking new references
2415 * to i_dio_count, usually by inode->i_mutex.
2416 */
2417void inode_dio_wait(struct inode *inode)
2418{
2419	if (atomic_read(&inode->i_dio_count))
2420		__inode_dio_wait(inode);
2421}
2422EXPORT_SYMBOL(inode_dio_wait);
2423
2424/*
2425 * inode_set_flags - atomically set some inode flags
2426 *
2427 * Note: the caller should be holding i_mutex, or else be sure that
2428 * they have exclusive access to the inode structure (i.e., while the
2429 * inode is being instantiated).  The reason for the cmpxchg() loop
2430 * --- which wouldn't be necessary if all code paths which modify
2431 * i_flags actually followed this rule, is that there is at least one
2432 * code path which doesn't today so we use cmpxchg() out of an abundance
2433 * of caution.
2434 *
2435 * In the long run, i_mutex is overkill, and we should probably look
2436 * at using the i_lock spinlock to protect i_flags, and then make sure
2437 * it is so documented in include/linux/fs.h and that all code follows
2438 * the locking convention!!
2439 */
2440void inode_set_flags(struct inode *inode, unsigned int flags,
2441		     unsigned int mask)
2442{
2443	WARN_ON_ONCE(flags & ~mask);
2444	set_mask_bits(&inode->i_flags, mask, flags);
2445}
2446EXPORT_SYMBOL(inode_set_flags);
2447
2448void inode_nohighmem(struct inode *inode)
2449{
2450	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2451}
2452EXPORT_SYMBOL(inode_nohighmem);
2453
2454/**
2455 * timestamp_truncate - Truncate timespec to a granularity
2456 * @t: Timespec
2457 * @inode: inode being updated
2458 *
2459 * Truncate a timespec to the granularity supported by the fs
2460 * containing the inode. Always rounds down. gran must
2461 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2462 */
2463struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2464{
2465	struct super_block *sb = inode->i_sb;
2466	unsigned int gran = sb->s_time_gran;
2467
2468	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2469	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2470		t.tv_nsec = 0;
2471
2472	/* Avoid division in the common cases 1 ns and 1 s. */
2473	if (gran == 1)
2474		; /* nothing */
2475	else if (gran == NSEC_PER_SEC)
2476		t.tv_nsec = 0;
2477	else if (gran > 1 && gran < NSEC_PER_SEC)
2478		t.tv_nsec -= t.tv_nsec % gran;
2479	else
2480		WARN(1, "invalid file time granularity: %u", gran);
2481	return t;
2482}
2483EXPORT_SYMBOL(timestamp_truncate);
2484
2485/**
2486 * current_time - Return FS time
2487 * @inode: inode.
2488 *
2489 * Return the current time truncated to the time granularity supported by
2490 * the fs.
2491 *
2492 * Note that inode and inode->sb cannot be NULL.
2493 * Otherwise, the function warns and returns time without truncation.
2494 */
2495struct timespec64 current_time(struct inode *inode)
2496{
2497	struct timespec64 now;
2498
2499	ktime_get_coarse_real_ts64(&now);
 
 
 
 
 
 
2500	return timestamp_truncate(now, inode);
2501}
2502EXPORT_SYMBOL(current_time);
2503
2504/**
2505 * inode_set_ctime_current - set the ctime to current_time
2506 * @inode: inode
2507 *
2508 * Set the inode->i_ctime to the current value for the inode. Returns
2509 * the current value that was assigned to i_ctime.
2510 */
2511struct timespec64 inode_set_ctime_current(struct inode *inode)
2512{
2513	struct timespec64 now = current_time(inode);
2514
2515	inode_set_ctime_to_ts(inode, now);
2516	return now;
2517}
2518EXPORT_SYMBOL(inode_set_ctime_current);
2519
2520/**
2521 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2522 * @idmap:	idmap of the mount @inode was found from
2523 * @inode:	inode to check
2524 * @vfsgid:	the new/current vfsgid of @inode
2525 *
2526 * Check wether @vfsgid is in the caller's group list or if the caller is
2527 * privileged with CAP_FSETID over @inode. This can be used to determine
2528 * whether the setgid bit can be kept or must be dropped.
2529 *
2530 * Return: true if the caller is sufficiently privileged, false if not.
2531 */
2532bool in_group_or_capable(struct mnt_idmap *idmap,
2533			 const struct inode *inode, vfsgid_t vfsgid)
2534{
2535	if (vfsgid_in_group_p(vfsgid))
2536		return true;
2537	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2538		return true;
2539	return false;
2540}
2541
2542/**
2543 * mode_strip_sgid - handle the sgid bit for non-directories
2544 * @idmap: idmap of the mount the inode was created from
2545 * @dir: parent directory inode
2546 * @mode: mode of the file to be created in @dir
2547 *
2548 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2549 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2550 * either in the group of the parent directory or they have CAP_FSETID
2551 * in their user namespace and are privileged over the parent directory.
2552 * In all other cases, strip the S_ISGID bit from @mode.
2553 *
2554 * Return: the new mode to use for the file
2555 */
2556umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2557			const struct inode *dir, umode_t mode)
2558{
2559	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2560		return mode;
2561	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2562		return mode;
2563	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
 
2564		return mode;
2565	return mode & ~S_ISGID;
2566}
2567EXPORT_SYMBOL(mode_strip_sgid);