Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6#include <linux/export.h>
7#include <linux/fs.h>
8#include <linux/mm.h>
9#include <linux/backing-dev.h>
10#include <linux/hash.h>
11#include <linux/swap.h>
12#include <linux/security.h>
13#include <linux/cdev.h>
14#include <linux/memblock.h>
15#include <linux/fsnotify.h>
16#include <linux/mount.h>
17#include <linux/posix_acl.h>
18#include <linux/prefetch.h>
19#include <linux/buffer_head.h> /* for inode_has_buffers */
20#include <linux/ratelimit.h>
21#include <linux/list_lru.h>
22#include <linux/iversion.h>
23#include <trace/events/writeback.h>
24#include "internal.h"
25
26/*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57static unsigned int i_hash_mask __read_mostly;
58static unsigned int i_hash_shift __read_mostly;
59static struct hlist_head *inode_hashtable __read_mostly;
60static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62/*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66const struct address_space_operations empty_aops = {
67};
68EXPORT_SYMBOL(empty_aops);
69
70static DEFINE_PER_CPU(unsigned long, nr_inodes);
71static DEFINE_PER_CPU(unsigned long, nr_unused);
72
73static struct kmem_cache *inode_cachep __read_mostly;
74
75static long get_nr_inodes(void)
76{
77 int i;
78 long sum = 0;
79 for_each_possible_cpu(i)
80 sum += per_cpu(nr_inodes, i);
81 return sum < 0 ? 0 : sum;
82}
83
84static inline long get_nr_inodes_unused(void)
85{
86 int i;
87 long sum = 0;
88 for_each_possible_cpu(i)
89 sum += per_cpu(nr_unused, i);
90 return sum < 0 ? 0 : sum;
91}
92
93long get_nr_dirty_inodes(void)
94{
95 /* not actually dirty inodes, but a wild approximation */
96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
97 return nr_dirty > 0 ? nr_dirty : 0;
98}
99
100/*
101 * Handle nr_inode sysctl
102 */
103#ifdef CONFIG_SYSCTL
104/*
105 * Statistics gathering..
106 */
107static struct inodes_stat_t inodes_stat;
108
109static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
110 size_t *lenp, loff_t *ppos)
111{
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115}
116
117static struct ctl_table inodes_sysctls[] = {
118 {
119 .procname = "inode-nr",
120 .data = &inodes_stat,
121 .maxlen = 2*sizeof(long),
122 .mode = 0444,
123 .proc_handler = proc_nr_inodes,
124 },
125 {
126 .procname = "inode-state",
127 .data = &inodes_stat,
128 .maxlen = 7*sizeof(long),
129 .mode = 0444,
130 .proc_handler = proc_nr_inodes,
131 },
132 { }
133};
134
135static int __init init_fs_inode_sysctls(void)
136{
137 register_sysctl_init("fs", inodes_sysctls);
138 return 0;
139}
140early_initcall(init_fs_inode_sysctls);
141#endif
142
143static int no_open(struct inode *inode, struct file *file)
144{
145 return -ENXIO;
146}
147
148/**
149 * inode_init_always - perform inode structure initialisation
150 * @sb: superblock inode belongs to
151 * @inode: inode to initialise
152 *
153 * These are initializations that need to be done on every inode
154 * allocation as the fields are not initialised by slab allocation.
155 */
156int inode_init_always(struct super_block *sb, struct inode *inode)
157{
158 static const struct inode_operations empty_iops;
159 static const struct file_operations no_open_fops = {.open = no_open};
160 struct address_space *const mapping = &inode->i_data;
161
162 inode->i_sb = sb;
163 inode->i_blkbits = sb->s_blocksize_bits;
164 inode->i_flags = 0;
165 atomic64_set(&inode->i_sequence, 0);
166 atomic_set(&inode->i_count, 1);
167 inode->i_op = &empty_iops;
168 inode->i_fop = &no_open_fops;
169 inode->i_ino = 0;
170 inode->__i_nlink = 1;
171 inode->i_opflags = 0;
172 if (sb->s_xattr)
173 inode->i_opflags |= IOP_XATTR;
174 i_uid_write(inode, 0);
175 i_gid_write(inode, 0);
176 atomic_set(&inode->i_writecount, 0);
177 inode->i_size = 0;
178 inode->i_write_hint = WRITE_LIFE_NOT_SET;
179 inode->i_blocks = 0;
180 inode->i_bytes = 0;
181 inode->i_generation = 0;
182 inode->i_pipe = NULL;
183 inode->i_cdev = NULL;
184 inode->i_link = NULL;
185 inode->i_dir_seq = 0;
186 inode->i_rdev = 0;
187 inode->dirtied_when = 0;
188
189#ifdef CONFIG_CGROUP_WRITEBACK
190 inode->i_wb_frn_winner = 0;
191 inode->i_wb_frn_avg_time = 0;
192 inode->i_wb_frn_history = 0;
193#endif
194
195 spin_lock_init(&inode->i_lock);
196 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
197
198 init_rwsem(&inode->i_rwsem);
199 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
200
201 atomic_set(&inode->i_dio_count, 0);
202
203 mapping->a_ops = &empty_aops;
204 mapping->host = inode;
205 mapping->flags = 0;
206 mapping->wb_err = 0;
207 atomic_set(&mapping->i_mmap_writable, 0);
208#ifdef CONFIG_READ_ONLY_THP_FOR_FS
209 atomic_set(&mapping->nr_thps, 0);
210#endif
211 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
212 mapping->private_data = NULL;
213 mapping->writeback_index = 0;
214 init_rwsem(&mapping->invalidate_lock);
215 lockdep_set_class_and_name(&mapping->invalidate_lock,
216 &sb->s_type->invalidate_lock_key,
217 "mapping.invalidate_lock");
218 inode->i_private = NULL;
219 inode->i_mapping = mapping;
220 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
221#ifdef CONFIG_FS_POSIX_ACL
222 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
223#endif
224
225#ifdef CONFIG_FSNOTIFY
226 inode->i_fsnotify_mask = 0;
227#endif
228 inode->i_flctx = NULL;
229
230 if (unlikely(security_inode_alloc(inode)))
231 return -ENOMEM;
232 this_cpu_inc(nr_inodes);
233
234 return 0;
235}
236EXPORT_SYMBOL(inode_init_always);
237
238void free_inode_nonrcu(struct inode *inode)
239{
240 kmem_cache_free(inode_cachep, inode);
241}
242EXPORT_SYMBOL(free_inode_nonrcu);
243
244static void i_callback(struct rcu_head *head)
245{
246 struct inode *inode = container_of(head, struct inode, i_rcu);
247 if (inode->free_inode)
248 inode->free_inode(inode);
249 else
250 free_inode_nonrcu(inode);
251}
252
253static struct inode *alloc_inode(struct super_block *sb)
254{
255 const struct super_operations *ops = sb->s_op;
256 struct inode *inode;
257
258 if (ops->alloc_inode)
259 inode = ops->alloc_inode(sb);
260 else
261 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
262
263 if (!inode)
264 return NULL;
265
266 if (unlikely(inode_init_always(sb, inode))) {
267 if (ops->destroy_inode) {
268 ops->destroy_inode(inode);
269 if (!ops->free_inode)
270 return NULL;
271 }
272 inode->free_inode = ops->free_inode;
273 i_callback(&inode->i_rcu);
274 return NULL;
275 }
276
277 return inode;
278}
279
280void __destroy_inode(struct inode *inode)
281{
282 BUG_ON(inode_has_buffers(inode));
283 inode_detach_wb(inode);
284 security_inode_free(inode);
285 fsnotify_inode_delete(inode);
286 locks_free_lock_context(inode);
287 if (!inode->i_nlink) {
288 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
289 atomic_long_dec(&inode->i_sb->s_remove_count);
290 }
291
292#ifdef CONFIG_FS_POSIX_ACL
293 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
294 posix_acl_release(inode->i_acl);
295 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
296 posix_acl_release(inode->i_default_acl);
297#endif
298 this_cpu_dec(nr_inodes);
299}
300EXPORT_SYMBOL(__destroy_inode);
301
302static void destroy_inode(struct inode *inode)
303{
304 const struct super_operations *ops = inode->i_sb->s_op;
305
306 BUG_ON(!list_empty(&inode->i_lru));
307 __destroy_inode(inode);
308 if (ops->destroy_inode) {
309 ops->destroy_inode(inode);
310 if (!ops->free_inode)
311 return;
312 }
313 inode->free_inode = ops->free_inode;
314 call_rcu(&inode->i_rcu, i_callback);
315}
316
317/**
318 * drop_nlink - directly drop an inode's link count
319 * @inode: inode
320 *
321 * This is a low-level filesystem helper to replace any
322 * direct filesystem manipulation of i_nlink. In cases
323 * where we are attempting to track writes to the
324 * filesystem, a decrement to zero means an imminent
325 * write when the file is truncated and actually unlinked
326 * on the filesystem.
327 */
328void drop_nlink(struct inode *inode)
329{
330 WARN_ON(inode->i_nlink == 0);
331 inode->__i_nlink--;
332 if (!inode->i_nlink)
333 atomic_long_inc(&inode->i_sb->s_remove_count);
334}
335EXPORT_SYMBOL(drop_nlink);
336
337/**
338 * clear_nlink - directly zero an inode's link count
339 * @inode: inode
340 *
341 * This is a low-level filesystem helper to replace any
342 * direct filesystem manipulation of i_nlink. See
343 * drop_nlink() for why we care about i_nlink hitting zero.
344 */
345void clear_nlink(struct inode *inode)
346{
347 if (inode->i_nlink) {
348 inode->__i_nlink = 0;
349 atomic_long_inc(&inode->i_sb->s_remove_count);
350 }
351}
352EXPORT_SYMBOL(clear_nlink);
353
354/**
355 * set_nlink - directly set an inode's link count
356 * @inode: inode
357 * @nlink: new nlink (should be non-zero)
358 *
359 * This is a low-level filesystem helper to replace any
360 * direct filesystem manipulation of i_nlink.
361 */
362void set_nlink(struct inode *inode, unsigned int nlink)
363{
364 if (!nlink) {
365 clear_nlink(inode);
366 } else {
367 /* Yes, some filesystems do change nlink from zero to one */
368 if (inode->i_nlink == 0)
369 atomic_long_dec(&inode->i_sb->s_remove_count);
370
371 inode->__i_nlink = nlink;
372 }
373}
374EXPORT_SYMBOL(set_nlink);
375
376/**
377 * inc_nlink - directly increment an inode's link count
378 * @inode: inode
379 *
380 * This is a low-level filesystem helper to replace any
381 * direct filesystem manipulation of i_nlink. Currently,
382 * it is only here for parity with dec_nlink().
383 */
384void inc_nlink(struct inode *inode)
385{
386 if (unlikely(inode->i_nlink == 0)) {
387 WARN_ON(!(inode->i_state & I_LINKABLE));
388 atomic_long_dec(&inode->i_sb->s_remove_count);
389 }
390
391 inode->__i_nlink++;
392}
393EXPORT_SYMBOL(inc_nlink);
394
395static void __address_space_init_once(struct address_space *mapping)
396{
397 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
398 init_rwsem(&mapping->i_mmap_rwsem);
399 INIT_LIST_HEAD(&mapping->private_list);
400 spin_lock_init(&mapping->private_lock);
401 mapping->i_mmap = RB_ROOT_CACHED;
402}
403
404void address_space_init_once(struct address_space *mapping)
405{
406 memset(mapping, 0, sizeof(*mapping));
407 __address_space_init_once(mapping);
408}
409EXPORT_SYMBOL(address_space_init_once);
410
411/*
412 * These are initializations that only need to be done
413 * once, because the fields are idempotent across use
414 * of the inode, so let the slab aware of that.
415 */
416void inode_init_once(struct inode *inode)
417{
418 memset(inode, 0, sizeof(*inode));
419 INIT_HLIST_NODE(&inode->i_hash);
420 INIT_LIST_HEAD(&inode->i_devices);
421 INIT_LIST_HEAD(&inode->i_io_list);
422 INIT_LIST_HEAD(&inode->i_wb_list);
423 INIT_LIST_HEAD(&inode->i_lru);
424 INIT_LIST_HEAD(&inode->i_sb_list);
425 __address_space_init_once(&inode->i_data);
426 i_size_ordered_init(inode);
427}
428EXPORT_SYMBOL(inode_init_once);
429
430static void init_once(void *foo)
431{
432 struct inode *inode = (struct inode *) foo;
433
434 inode_init_once(inode);
435}
436
437/*
438 * inode->i_lock must be held
439 */
440void __iget(struct inode *inode)
441{
442 atomic_inc(&inode->i_count);
443}
444
445/*
446 * get additional reference to inode; caller must already hold one.
447 */
448void ihold(struct inode *inode)
449{
450 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
451}
452EXPORT_SYMBOL(ihold);
453
454static void __inode_add_lru(struct inode *inode, bool rotate)
455{
456 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
457 return;
458 if (atomic_read(&inode->i_count))
459 return;
460 if (!(inode->i_sb->s_flags & SB_ACTIVE))
461 return;
462 if (!mapping_shrinkable(&inode->i_data))
463 return;
464
465 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
466 this_cpu_inc(nr_unused);
467 else if (rotate)
468 inode->i_state |= I_REFERENCED;
469}
470
471/*
472 * Add inode to LRU if needed (inode is unused and clean).
473 *
474 * Needs inode->i_lock held.
475 */
476void inode_add_lru(struct inode *inode)
477{
478 __inode_add_lru(inode, false);
479}
480
481static void inode_lru_list_del(struct inode *inode)
482{
483 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
484 this_cpu_dec(nr_unused);
485}
486
487/**
488 * inode_sb_list_add - add inode to the superblock list of inodes
489 * @inode: inode to add
490 */
491void inode_sb_list_add(struct inode *inode)
492{
493 spin_lock(&inode->i_sb->s_inode_list_lock);
494 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
495 spin_unlock(&inode->i_sb->s_inode_list_lock);
496}
497EXPORT_SYMBOL_GPL(inode_sb_list_add);
498
499static inline void inode_sb_list_del(struct inode *inode)
500{
501 if (!list_empty(&inode->i_sb_list)) {
502 spin_lock(&inode->i_sb->s_inode_list_lock);
503 list_del_init(&inode->i_sb_list);
504 spin_unlock(&inode->i_sb->s_inode_list_lock);
505 }
506}
507
508static unsigned long hash(struct super_block *sb, unsigned long hashval)
509{
510 unsigned long tmp;
511
512 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
513 L1_CACHE_BYTES;
514 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
515 return tmp & i_hash_mask;
516}
517
518/**
519 * __insert_inode_hash - hash an inode
520 * @inode: unhashed inode
521 * @hashval: unsigned long value used to locate this object in the
522 * inode_hashtable.
523 *
524 * Add an inode to the inode hash for this superblock.
525 */
526void __insert_inode_hash(struct inode *inode, unsigned long hashval)
527{
528 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
529
530 spin_lock(&inode_hash_lock);
531 spin_lock(&inode->i_lock);
532 hlist_add_head_rcu(&inode->i_hash, b);
533 spin_unlock(&inode->i_lock);
534 spin_unlock(&inode_hash_lock);
535}
536EXPORT_SYMBOL(__insert_inode_hash);
537
538/**
539 * __remove_inode_hash - remove an inode from the hash
540 * @inode: inode to unhash
541 *
542 * Remove an inode from the superblock.
543 */
544void __remove_inode_hash(struct inode *inode)
545{
546 spin_lock(&inode_hash_lock);
547 spin_lock(&inode->i_lock);
548 hlist_del_init_rcu(&inode->i_hash);
549 spin_unlock(&inode->i_lock);
550 spin_unlock(&inode_hash_lock);
551}
552EXPORT_SYMBOL(__remove_inode_hash);
553
554void dump_mapping(const struct address_space *mapping)
555{
556 struct inode *host;
557 const struct address_space_operations *a_ops;
558 struct hlist_node *dentry_first;
559 struct dentry *dentry_ptr;
560 struct dentry dentry;
561 unsigned long ino;
562
563 /*
564 * If mapping is an invalid pointer, we don't want to crash
565 * accessing it, so probe everything depending on it carefully.
566 */
567 if (get_kernel_nofault(host, &mapping->host) ||
568 get_kernel_nofault(a_ops, &mapping->a_ops)) {
569 pr_warn("invalid mapping:%px\n", mapping);
570 return;
571 }
572
573 if (!host) {
574 pr_warn("aops:%ps\n", a_ops);
575 return;
576 }
577
578 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
579 get_kernel_nofault(ino, &host->i_ino)) {
580 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
581 return;
582 }
583
584 if (!dentry_first) {
585 pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
586 return;
587 }
588
589 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
590 if (get_kernel_nofault(dentry, dentry_ptr)) {
591 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
592 a_ops, ino, dentry_ptr);
593 return;
594 }
595
596 /*
597 * if dentry is corrupted, the %pd handler may still crash,
598 * but it's unlikely that we reach here with a corrupt mapping
599 */
600 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
601}
602
603void clear_inode(struct inode *inode)
604{
605 /*
606 * We have to cycle the i_pages lock here because reclaim can be in the
607 * process of removing the last page (in __filemap_remove_folio())
608 * and we must not free the mapping under it.
609 */
610 xa_lock_irq(&inode->i_data.i_pages);
611 BUG_ON(inode->i_data.nrpages);
612 /*
613 * Almost always, mapping_empty(&inode->i_data) here; but there are
614 * two known and long-standing ways in which nodes may get left behind
615 * (when deep radix-tree node allocation failed partway; or when THP
616 * collapse_file() failed). Until those two known cases are cleaned up,
617 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
618 * nor even WARN_ON(!mapping_empty).
619 */
620 xa_unlock_irq(&inode->i_data.i_pages);
621 BUG_ON(!list_empty(&inode->i_data.private_list));
622 BUG_ON(!(inode->i_state & I_FREEING));
623 BUG_ON(inode->i_state & I_CLEAR);
624 BUG_ON(!list_empty(&inode->i_wb_list));
625 /* don't need i_lock here, no concurrent mods to i_state */
626 inode->i_state = I_FREEING | I_CLEAR;
627}
628EXPORT_SYMBOL(clear_inode);
629
630/*
631 * Free the inode passed in, removing it from the lists it is still connected
632 * to. We remove any pages still attached to the inode and wait for any IO that
633 * is still in progress before finally destroying the inode.
634 *
635 * An inode must already be marked I_FREEING so that we avoid the inode being
636 * moved back onto lists if we race with other code that manipulates the lists
637 * (e.g. writeback_single_inode). The caller is responsible for setting this.
638 *
639 * An inode must already be removed from the LRU list before being evicted from
640 * the cache. This should occur atomically with setting the I_FREEING state
641 * flag, so no inodes here should ever be on the LRU when being evicted.
642 */
643static void evict(struct inode *inode)
644{
645 const struct super_operations *op = inode->i_sb->s_op;
646
647 BUG_ON(!(inode->i_state & I_FREEING));
648 BUG_ON(!list_empty(&inode->i_lru));
649
650 if (!list_empty(&inode->i_io_list))
651 inode_io_list_del(inode);
652
653 inode_sb_list_del(inode);
654
655 /*
656 * Wait for flusher thread to be done with the inode so that filesystem
657 * does not start destroying it while writeback is still running. Since
658 * the inode has I_FREEING set, flusher thread won't start new work on
659 * the inode. We just have to wait for running writeback to finish.
660 */
661 inode_wait_for_writeback(inode);
662
663 if (op->evict_inode) {
664 op->evict_inode(inode);
665 } else {
666 truncate_inode_pages_final(&inode->i_data);
667 clear_inode(inode);
668 }
669 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
670 cd_forget(inode);
671
672 remove_inode_hash(inode);
673
674 spin_lock(&inode->i_lock);
675 wake_up_bit(&inode->i_state, __I_NEW);
676 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
677 spin_unlock(&inode->i_lock);
678
679 destroy_inode(inode);
680}
681
682/*
683 * dispose_list - dispose of the contents of a local list
684 * @head: the head of the list to free
685 *
686 * Dispose-list gets a local list with local inodes in it, so it doesn't
687 * need to worry about list corruption and SMP locks.
688 */
689static void dispose_list(struct list_head *head)
690{
691 while (!list_empty(head)) {
692 struct inode *inode;
693
694 inode = list_first_entry(head, struct inode, i_lru);
695 list_del_init(&inode->i_lru);
696
697 evict(inode);
698 cond_resched();
699 }
700}
701
702/**
703 * evict_inodes - evict all evictable inodes for a superblock
704 * @sb: superblock to operate on
705 *
706 * Make sure that no inodes with zero refcount are retained. This is
707 * called by superblock shutdown after having SB_ACTIVE flag removed,
708 * so any inode reaching zero refcount during or after that call will
709 * be immediately evicted.
710 */
711void evict_inodes(struct super_block *sb)
712{
713 struct inode *inode, *next;
714 LIST_HEAD(dispose);
715
716again:
717 spin_lock(&sb->s_inode_list_lock);
718 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
719 if (atomic_read(&inode->i_count))
720 continue;
721
722 spin_lock(&inode->i_lock);
723 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
724 spin_unlock(&inode->i_lock);
725 continue;
726 }
727
728 inode->i_state |= I_FREEING;
729 inode_lru_list_del(inode);
730 spin_unlock(&inode->i_lock);
731 list_add(&inode->i_lru, &dispose);
732
733 /*
734 * We can have a ton of inodes to evict at unmount time given
735 * enough memory, check to see if we need to go to sleep for a
736 * bit so we don't livelock.
737 */
738 if (need_resched()) {
739 spin_unlock(&sb->s_inode_list_lock);
740 cond_resched();
741 dispose_list(&dispose);
742 goto again;
743 }
744 }
745 spin_unlock(&sb->s_inode_list_lock);
746
747 dispose_list(&dispose);
748}
749EXPORT_SYMBOL_GPL(evict_inodes);
750
751/**
752 * invalidate_inodes - attempt to free all inodes on a superblock
753 * @sb: superblock to operate on
754 * @kill_dirty: flag to guide handling of dirty inodes
755 *
756 * Attempts to free all inodes for a given superblock. If there were any
757 * busy inodes return a non-zero value, else zero.
758 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
759 * them as busy.
760 */
761int invalidate_inodes(struct super_block *sb, bool kill_dirty)
762{
763 int busy = 0;
764 struct inode *inode, *next;
765 LIST_HEAD(dispose);
766
767again:
768 spin_lock(&sb->s_inode_list_lock);
769 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
770 spin_lock(&inode->i_lock);
771 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
772 spin_unlock(&inode->i_lock);
773 continue;
774 }
775 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
776 spin_unlock(&inode->i_lock);
777 busy = 1;
778 continue;
779 }
780 if (atomic_read(&inode->i_count)) {
781 spin_unlock(&inode->i_lock);
782 busy = 1;
783 continue;
784 }
785
786 inode->i_state |= I_FREEING;
787 inode_lru_list_del(inode);
788 spin_unlock(&inode->i_lock);
789 list_add(&inode->i_lru, &dispose);
790 if (need_resched()) {
791 spin_unlock(&sb->s_inode_list_lock);
792 cond_resched();
793 dispose_list(&dispose);
794 goto again;
795 }
796 }
797 spin_unlock(&sb->s_inode_list_lock);
798
799 dispose_list(&dispose);
800
801 return busy;
802}
803
804/*
805 * Isolate the inode from the LRU in preparation for freeing it.
806 *
807 * If the inode has the I_REFERENCED flag set, then it means that it has been
808 * used recently - the flag is set in iput_final(). When we encounter such an
809 * inode, clear the flag and move it to the back of the LRU so it gets another
810 * pass through the LRU before it gets reclaimed. This is necessary because of
811 * the fact we are doing lazy LRU updates to minimise lock contention so the
812 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
813 * with this flag set because they are the inodes that are out of order.
814 */
815static enum lru_status inode_lru_isolate(struct list_head *item,
816 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
817{
818 struct list_head *freeable = arg;
819 struct inode *inode = container_of(item, struct inode, i_lru);
820
821 /*
822 * We are inverting the lru lock/inode->i_lock here, so use a
823 * trylock. If we fail to get the lock, just skip it.
824 */
825 if (!spin_trylock(&inode->i_lock))
826 return LRU_SKIP;
827
828 /*
829 * Inodes can get referenced, redirtied, or repopulated while
830 * they're already on the LRU, and this can make them
831 * unreclaimable for a while. Remove them lazily here; iput,
832 * sync, or the last page cache deletion will requeue them.
833 */
834 if (atomic_read(&inode->i_count) ||
835 (inode->i_state & ~I_REFERENCED) ||
836 !mapping_shrinkable(&inode->i_data)) {
837 list_lru_isolate(lru, &inode->i_lru);
838 spin_unlock(&inode->i_lock);
839 this_cpu_dec(nr_unused);
840 return LRU_REMOVED;
841 }
842
843 /* Recently referenced inodes get one more pass */
844 if (inode->i_state & I_REFERENCED) {
845 inode->i_state &= ~I_REFERENCED;
846 spin_unlock(&inode->i_lock);
847 return LRU_ROTATE;
848 }
849
850 /*
851 * On highmem systems, mapping_shrinkable() permits dropping
852 * page cache in order to free up struct inodes: lowmem might
853 * be under pressure before the cache inside the highmem zone.
854 */
855 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
856 __iget(inode);
857 spin_unlock(&inode->i_lock);
858 spin_unlock(lru_lock);
859 if (remove_inode_buffers(inode)) {
860 unsigned long reap;
861 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
862 if (current_is_kswapd())
863 __count_vm_events(KSWAPD_INODESTEAL, reap);
864 else
865 __count_vm_events(PGINODESTEAL, reap);
866 if (current->reclaim_state)
867 current->reclaim_state->reclaimed_slab += reap;
868 }
869 iput(inode);
870 spin_lock(lru_lock);
871 return LRU_RETRY;
872 }
873
874 WARN_ON(inode->i_state & I_NEW);
875 inode->i_state |= I_FREEING;
876 list_lru_isolate_move(lru, &inode->i_lru, freeable);
877 spin_unlock(&inode->i_lock);
878
879 this_cpu_dec(nr_unused);
880 return LRU_REMOVED;
881}
882
883/*
884 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
885 * This is called from the superblock shrinker function with a number of inodes
886 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
887 * then are freed outside inode_lock by dispose_list().
888 */
889long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
890{
891 LIST_HEAD(freeable);
892 long freed;
893
894 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
895 inode_lru_isolate, &freeable);
896 dispose_list(&freeable);
897 return freed;
898}
899
900static void __wait_on_freeing_inode(struct inode *inode);
901/*
902 * Called with the inode lock held.
903 */
904static struct inode *find_inode(struct super_block *sb,
905 struct hlist_head *head,
906 int (*test)(struct inode *, void *),
907 void *data)
908{
909 struct inode *inode = NULL;
910
911repeat:
912 hlist_for_each_entry(inode, head, i_hash) {
913 if (inode->i_sb != sb)
914 continue;
915 if (!test(inode, data))
916 continue;
917 spin_lock(&inode->i_lock);
918 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
919 __wait_on_freeing_inode(inode);
920 goto repeat;
921 }
922 if (unlikely(inode->i_state & I_CREATING)) {
923 spin_unlock(&inode->i_lock);
924 return ERR_PTR(-ESTALE);
925 }
926 __iget(inode);
927 spin_unlock(&inode->i_lock);
928 return inode;
929 }
930 return NULL;
931}
932
933/*
934 * find_inode_fast is the fast path version of find_inode, see the comment at
935 * iget_locked for details.
936 */
937static struct inode *find_inode_fast(struct super_block *sb,
938 struct hlist_head *head, unsigned long ino)
939{
940 struct inode *inode = NULL;
941
942repeat:
943 hlist_for_each_entry(inode, head, i_hash) {
944 if (inode->i_ino != ino)
945 continue;
946 if (inode->i_sb != sb)
947 continue;
948 spin_lock(&inode->i_lock);
949 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
950 __wait_on_freeing_inode(inode);
951 goto repeat;
952 }
953 if (unlikely(inode->i_state & I_CREATING)) {
954 spin_unlock(&inode->i_lock);
955 return ERR_PTR(-ESTALE);
956 }
957 __iget(inode);
958 spin_unlock(&inode->i_lock);
959 return inode;
960 }
961 return NULL;
962}
963
964/*
965 * Each cpu owns a range of LAST_INO_BATCH numbers.
966 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
967 * to renew the exhausted range.
968 *
969 * This does not significantly increase overflow rate because every CPU can
970 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
971 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
972 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
973 * overflow rate by 2x, which does not seem too significant.
974 *
975 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
976 * error if st_ino won't fit in target struct field. Use 32bit counter
977 * here to attempt to avoid that.
978 */
979#define LAST_INO_BATCH 1024
980static DEFINE_PER_CPU(unsigned int, last_ino);
981
982unsigned int get_next_ino(void)
983{
984 unsigned int *p = &get_cpu_var(last_ino);
985 unsigned int res = *p;
986
987#ifdef CONFIG_SMP
988 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
989 static atomic_t shared_last_ino;
990 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
991
992 res = next - LAST_INO_BATCH;
993 }
994#endif
995
996 res++;
997 /* get_next_ino should not provide a 0 inode number */
998 if (unlikely(!res))
999 res++;
1000 *p = res;
1001 put_cpu_var(last_ino);
1002 return res;
1003}
1004EXPORT_SYMBOL(get_next_ino);
1005
1006/**
1007 * new_inode_pseudo - obtain an inode
1008 * @sb: superblock
1009 *
1010 * Allocates a new inode for given superblock.
1011 * Inode wont be chained in superblock s_inodes list
1012 * This means :
1013 * - fs can't be unmount
1014 * - quotas, fsnotify, writeback can't work
1015 */
1016struct inode *new_inode_pseudo(struct super_block *sb)
1017{
1018 struct inode *inode = alloc_inode(sb);
1019
1020 if (inode) {
1021 spin_lock(&inode->i_lock);
1022 inode->i_state = 0;
1023 spin_unlock(&inode->i_lock);
1024 }
1025 return inode;
1026}
1027
1028/**
1029 * new_inode - obtain an inode
1030 * @sb: superblock
1031 *
1032 * Allocates a new inode for given superblock. The default gfp_mask
1033 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1034 * If HIGHMEM pages are unsuitable or it is known that pages allocated
1035 * for the page cache are not reclaimable or migratable,
1036 * mapping_set_gfp_mask() must be called with suitable flags on the
1037 * newly created inode's mapping
1038 *
1039 */
1040struct inode *new_inode(struct super_block *sb)
1041{
1042 struct inode *inode;
1043
1044 spin_lock_prefetch(&sb->s_inode_list_lock);
1045
1046 inode = new_inode_pseudo(sb);
1047 if (inode)
1048 inode_sb_list_add(inode);
1049 return inode;
1050}
1051EXPORT_SYMBOL(new_inode);
1052
1053#ifdef CONFIG_DEBUG_LOCK_ALLOC
1054void lockdep_annotate_inode_mutex_key(struct inode *inode)
1055{
1056 if (S_ISDIR(inode->i_mode)) {
1057 struct file_system_type *type = inode->i_sb->s_type;
1058
1059 /* Set new key only if filesystem hasn't already changed it */
1060 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1061 /*
1062 * ensure nobody is actually holding i_mutex
1063 */
1064 // mutex_destroy(&inode->i_mutex);
1065 init_rwsem(&inode->i_rwsem);
1066 lockdep_set_class(&inode->i_rwsem,
1067 &type->i_mutex_dir_key);
1068 }
1069 }
1070}
1071EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1072#endif
1073
1074/**
1075 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1076 * @inode: new inode to unlock
1077 *
1078 * Called when the inode is fully initialised to clear the new state of the
1079 * inode and wake up anyone waiting for the inode to finish initialisation.
1080 */
1081void unlock_new_inode(struct inode *inode)
1082{
1083 lockdep_annotate_inode_mutex_key(inode);
1084 spin_lock(&inode->i_lock);
1085 WARN_ON(!(inode->i_state & I_NEW));
1086 inode->i_state &= ~I_NEW & ~I_CREATING;
1087 smp_mb();
1088 wake_up_bit(&inode->i_state, __I_NEW);
1089 spin_unlock(&inode->i_lock);
1090}
1091EXPORT_SYMBOL(unlock_new_inode);
1092
1093void discard_new_inode(struct inode *inode)
1094{
1095 lockdep_annotate_inode_mutex_key(inode);
1096 spin_lock(&inode->i_lock);
1097 WARN_ON(!(inode->i_state & I_NEW));
1098 inode->i_state &= ~I_NEW;
1099 smp_mb();
1100 wake_up_bit(&inode->i_state, __I_NEW);
1101 spin_unlock(&inode->i_lock);
1102 iput(inode);
1103}
1104EXPORT_SYMBOL(discard_new_inode);
1105
1106/**
1107 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1108 *
1109 * Lock any non-NULL argument that is not a directory.
1110 * Zero, one or two objects may be locked by this function.
1111 *
1112 * @inode1: first inode to lock
1113 * @inode2: second inode to lock
1114 */
1115void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1116{
1117 if (inode1 > inode2)
1118 swap(inode1, inode2);
1119
1120 if (inode1 && !S_ISDIR(inode1->i_mode))
1121 inode_lock(inode1);
1122 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1123 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1124}
1125EXPORT_SYMBOL(lock_two_nondirectories);
1126
1127/**
1128 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1129 * @inode1: first inode to unlock
1130 * @inode2: second inode to unlock
1131 */
1132void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1133{
1134 if (inode1 && !S_ISDIR(inode1->i_mode))
1135 inode_unlock(inode1);
1136 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1137 inode_unlock(inode2);
1138}
1139EXPORT_SYMBOL(unlock_two_nondirectories);
1140
1141/**
1142 * inode_insert5 - obtain an inode from a mounted file system
1143 * @inode: pre-allocated inode to use for insert to cache
1144 * @hashval: hash value (usually inode number) to get
1145 * @test: callback used for comparisons between inodes
1146 * @set: callback used to initialize a new struct inode
1147 * @data: opaque data pointer to pass to @test and @set
1148 *
1149 * Search for the inode specified by @hashval and @data in the inode cache,
1150 * and if present it is return it with an increased reference count. This is
1151 * a variant of iget5_locked() for callers that don't want to fail on memory
1152 * allocation of inode.
1153 *
1154 * If the inode is not in cache, insert the pre-allocated inode to cache and
1155 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1156 * to fill it in before unlocking it via unlock_new_inode().
1157 *
1158 * Note both @test and @set are called with the inode_hash_lock held, so can't
1159 * sleep.
1160 */
1161struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1162 int (*test)(struct inode *, void *),
1163 int (*set)(struct inode *, void *), void *data)
1164{
1165 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1166 struct inode *old;
1167
1168again:
1169 spin_lock(&inode_hash_lock);
1170 old = find_inode(inode->i_sb, head, test, data);
1171 if (unlikely(old)) {
1172 /*
1173 * Uhhuh, somebody else created the same inode under us.
1174 * Use the old inode instead of the preallocated one.
1175 */
1176 spin_unlock(&inode_hash_lock);
1177 if (IS_ERR(old))
1178 return NULL;
1179 wait_on_inode(old);
1180 if (unlikely(inode_unhashed(old))) {
1181 iput(old);
1182 goto again;
1183 }
1184 return old;
1185 }
1186
1187 if (set && unlikely(set(inode, data))) {
1188 inode = NULL;
1189 goto unlock;
1190 }
1191
1192 /*
1193 * Return the locked inode with I_NEW set, the
1194 * caller is responsible for filling in the contents
1195 */
1196 spin_lock(&inode->i_lock);
1197 inode->i_state |= I_NEW;
1198 hlist_add_head_rcu(&inode->i_hash, head);
1199 spin_unlock(&inode->i_lock);
1200
1201 /*
1202 * Add inode to the sb list if it's not already. It has I_NEW at this
1203 * point, so it should be safe to test i_sb_list locklessly.
1204 */
1205 if (list_empty(&inode->i_sb_list))
1206 inode_sb_list_add(inode);
1207unlock:
1208 spin_unlock(&inode_hash_lock);
1209
1210 return inode;
1211}
1212EXPORT_SYMBOL(inode_insert5);
1213
1214/**
1215 * iget5_locked - obtain an inode from a mounted file system
1216 * @sb: super block of file system
1217 * @hashval: hash value (usually inode number) to get
1218 * @test: callback used for comparisons between inodes
1219 * @set: callback used to initialize a new struct inode
1220 * @data: opaque data pointer to pass to @test and @set
1221 *
1222 * Search for the inode specified by @hashval and @data in the inode cache,
1223 * and if present it is return it with an increased reference count. This is
1224 * a generalized version of iget_locked() for file systems where the inode
1225 * number is not sufficient for unique identification of an inode.
1226 *
1227 * If the inode is not in cache, allocate a new inode and return it locked,
1228 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1229 * before unlocking it via unlock_new_inode().
1230 *
1231 * Note both @test and @set are called with the inode_hash_lock held, so can't
1232 * sleep.
1233 */
1234struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1235 int (*test)(struct inode *, void *),
1236 int (*set)(struct inode *, void *), void *data)
1237{
1238 struct inode *inode = ilookup5(sb, hashval, test, data);
1239
1240 if (!inode) {
1241 struct inode *new = alloc_inode(sb);
1242
1243 if (new) {
1244 new->i_state = 0;
1245 inode = inode_insert5(new, hashval, test, set, data);
1246 if (unlikely(inode != new))
1247 destroy_inode(new);
1248 }
1249 }
1250 return inode;
1251}
1252EXPORT_SYMBOL(iget5_locked);
1253
1254/**
1255 * iget_locked - obtain an inode from a mounted file system
1256 * @sb: super block of file system
1257 * @ino: inode number to get
1258 *
1259 * Search for the inode specified by @ino in the inode cache and if present
1260 * return it with an increased reference count. This is for file systems
1261 * where the inode number is sufficient for unique identification of an inode.
1262 *
1263 * If the inode is not in cache, allocate a new inode and return it locked,
1264 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1265 * before unlocking it via unlock_new_inode().
1266 */
1267struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1268{
1269 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1270 struct inode *inode;
1271again:
1272 spin_lock(&inode_hash_lock);
1273 inode = find_inode_fast(sb, head, ino);
1274 spin_unlock(&inode_hash_lock);
1275 if (inode) {
1276 if (IS_ERR(inode))
1277 return NULL;
1278 wait_on_inode(inode);
1279 if (unlikely(inode_unhashed(inode))) {
1280 iput(inode);
1281 goto again;
1282 }
1283 return inode;
1284 }
1285
1286 inode = alloc_inode(sb);
1287 if (inode) {
1288 struct inode *old;
1289
1290 spin_lock(&inode_hash_lock);
1291 /* We released the lock, so.. */
1292 old = find_inode_fast(sb, head, ino);
1293 if (!old) {
1294 inode->i_ino = ino;
1295 spin_lock(&inode->i_lock);
1296 inode->i_state = I_NEW;
1297 hlist_add_head_rcu(&inode->i_hash, head);
1298 spin_unlock(&inode->i_lock);
1299 inode_sb_list_add(inode);
1300 spin_unlock(&inode_hash_lock);
1301
1302 /* Return the locked inode with I_NEW set, the
1303 * caller is responsible for filling in the contents
1304 */
1305 return inode;
1306 }
1307
1308 /*
1309 * Uhhuh, somebody else created the same inode under
1310 * us. Use the old inode instead of the one we just
1311 * allocated.
1312 */
1313 spin_unlock(&inode_hash_lock);
1314 destroy_inode(inode);
1315 if (IS_ERR(old))
1316 return NULL;
1317 inode = old;
1318 wait_on_inode(inode);
1319 if (unlikely(inode_unhashed(inode))) {
1320 iput(inode);
1321 goto again;
1322 }
1323 }
1324 return inode;
1325}
1326EXPORT_SYMBOL(iget_locked);
1327
1328/*
1329 * search the inode cache for a matching inode number.
1330 * If we find one, then the inode number we are trying to
1331 * allocate is not unique and so we should not use it.
1332 *
1333 * Returns 1 if the inode number is unique, 0 if it is not.
1334 */
1335static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1336{
1337 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1338 struct inode *inode;
1339
1340 hlist_for_each_entry_rcu(inode, b, i_hash) {
1341 if (inode->i_ino == ino && inode->i_sb == sb)
1342 return 0;
1343 }
1344 return 1;
1345}
1346
1347/**
1348 * iunique - get a unique inode number
1349 * @sb: superblock
1350 * @max_reserved: highest reserved inode number
1351 *
1352 * Obtain an inode number that is unique on the system for a given
1353 * superblock. This is used by file systems that have no natural
1354 * permanent inode numbering system. An inode number is returned that
1355 * is higher than the reserved limit but unique.
1356 *
1357 * BUGS:
1358 * With a large number of inodes live on the file system this function
1359 * currently becomes quite slow.
1360 */
1361ino_t iunique(struct super_block *sb, ino_t max_reserved)
1362{
1363 /*
1364 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1365 * error if st_ino won't fit in target struct field. Use 32bit counter
1366 * here to attempt to avoid that.
1367 */
1368 static DEFINE_SPINLOCK(iunique_lock);
1369 static unsigned int counter;
1370 ino_t res;
1371
1372 rcu_read_lock();
1373 spin_lock(&iunique_lock);
1374 do {
1375 if (counter <= max_reserved)
1376 counter = max_reserved + 1;
1377 res = counter++;
1378 } while (!test_inode_iunique(sb, res));
1379 spin_unlock(&iunique_lock);
1380 rcu_read_unlock();
1381
1382 return res;
1383}
1384EXPORT_SYMBOL(iunique);
1385
1386struct inode *igrab(struct inode *inode)
1387{
1388 spin_lock(&inode->i_lock);
1389 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1390 __iget(inode);
1391 spin_unlock(&inode->i_lock);
1392 } else {
1393 spin_unlock(&inode->i_lock);
1394 /*
1395 * Handle the case where s_op->clear_inode is not been
1396 * called yet, and somebody is calling igrab
1397 * while the inode is getting freed.
1398 */
1399 inode = NULL;
1400 }
1401 return inode;
1402}
1403EXPORT_SYMBOL(igrab);
1404
1405/**
1406 * ilookup5_nowait - search for an inode in the inode cache
1407 * @sb: super block of file system to search
1408 * @hashval: hash value (usually inode number) to search for
1409 * @test: callback used for comparisons between inodes
1410 * @data: opaque data pointer to pass to @test
1411 *
1412 * Search for the inode specified by @hashval and @data in the inode cache.
1413 * If the inode is in the cache, the inode is returned with an incremented
1414 * reference count.
1415 *
1416 * Note: I_NEW is not waited upon so you have to be very careful what you do
1417 * with the returned inode. You probably should be using ilookup5() instead.
1418 *
1419 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1420 */
1421struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1422 int (*test)(struct inode *, void *), void *data)
1423{
1424 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1425 struct inode *inode;
1426
1427 spin_lock(&inode_hash_lock);
1428 inode = find_inode(sb, head, test, data);
1429 spin_unlock(&inode_hash_lock);
1430
1431 return IS_ERR(inode) ? NULL : inode;
1432}
1433EXPORT_SYMBOL(ilookup5_nowait);
1434
1435/**
1436 * ilookup5 - search for an inode in the inode cache
1437 * @sb: super block of file system to search
1438 * @hashval: hash value (usually inode number) to search for
1439 * @test: callback used for comparisons between inodes
1440 * @data: opaque data pointer to pass to @test
1441 *
1442 * Search for the inode specified by @hashval and @data in the inode cache,
1443 * and if the inode is in the cache, return the inode with an incremented
1444 * reference count. Waits on I_NEW before returning the inode.
1445 * returned with an incremented reference count.
1446 *
1447 * This is a generalized version of ilookup() for file systems where the
1448 * inode number is not sufficient for unique identification of an inode.
1449 *
1450 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1451 */
1452struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1453 int (*test)(struct inode *, void *), void *data)
1454{
1455 struct inode *inode;
1456again:
1457 inode = ilookup5_nowait(sb, hashval, test, data);
1458 if (inode) {
1459 wait_on_inode(inode);
1460 if (unlikely(inode_unhashed(inode))) {
1461 iput(inode);
1462 goto again;
1463 }
1464 }
1465 return inode;
1466}
1467EXPORT_SYMBOL(ilookup5);
1468
1469/**
1470 * ilookup - search for an inode in the inode cache
1471 * @sb: super block of file system to search
1472 * @ino: inode number to search for
1473 *
1474 * Search for the inode @ino in the inode cache, and if the inode is in the
1475 * cache, the inode is returned with an incremented reference count.
1476 */
1477struct inode *ilookup(struct super_block *sb, unsigned long ino)
1478{
1479 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1480 struct inode *inode;
1481again:
1482 spin_lock(&inode_hash_lock);
1483 inode = find_inode_fast(sb, head, ino);
1484 spin_unlock(&inode_hash_lock);
1485
1486 if (inode) {
1487 if (IS_ERR(inode))
1488 return NULL;
1489 wait_on_inode(inode);
1490 if (unlikely(inode_unhashed(inode))) {
1491 iput(inode);
1492 goto again;
1493 }
1494 }
1495 return inode;
1496}
1497EXPORT_SYMBOL(ilookup);
1498
1499/**
1500 * find_inode_nowait - find an inode in the inode cache
1501 * @sb: super block of file system to search
1502 * @hashval: hash value (usually inode number) to search for
1503 * @match: callback used for comparisons between inodes
1504 * @data: opaque data pointer to pass to @match
1505 *
1506 * Search for the inode specified by @hashval and @data in the inode
1507 * cache, where the helper function @match will return 0 if the inode
1508 * does not match, 1 if the inode does match, and -1 if the search
1509 * should be stopped. The @match function must be responsible for
1510 * taking the i_lock spin_lock and checking i_state for an inode being
1511 * freed or being initialized, and incrementing the reference count
1512 * before returning 1. It also must not sleep, since it is called with
1513 * the inode_hash_lock spinlock held.
1514 *
1515 * This is a even more generalized version of ilookup5() when the
1516 * function must never block --- find_inode() can block in
1517 * __wait_on_freeing_inode() --- or when the caller can not increment
1518 * the reference count because the resulting iput() might cause an
1519 * inode eviction. The tradeoff is that the @match funtion must be
1520 * very carefully implemented.
1521 */
1522struct inode *find_inode_nowait(struct super_block *sb,
1523 unsigned long hashval,
1524 int (*match)(struct inode *, unsigned long,
1525 void *),
1526 void *data)
1527{
1528 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1529 struct inode *inode, *ret_inode = NULL;
1530 int mval;
1531
1532 spin_lock(&inode_hash_lock);
1533 hlist_for_each_entry(inode, head, i_hash) {
1534 if (inode->i_sb != sb)
1535 continue;
1536 mval = match(inode, hashval, data);
1537 if (mval == 0)
1538 continue;
1539 if (mval == 1)
1540 ret_inode = inode;
1541 goto out;
1542 }
1543out:
1544 spin_unlock(&inode_hash_lock);
1545 return ret_inode;
1546}
1547EXPORT_SYMBOL(find_inode_nowait);
1548
1549/**
1550 * find_inode_rcu - find an inode in the inode cache
1551 * @sb: Super block of file system to search
1552 * @hashval: Key to hash
1553 * @test: Function to test match on an inode
1554 * @data: Data for test function
1555 *
1556 * Search for the inode specified by @hashval and @data in the inode cache,
1557 * where the helper function @test will return 0 if the inode does not match
1558 * and 1 if it does. The @test function must be responsible for taking the
1559 * i_lock spin_lock and checking i_state for an inode being freed or being
1560 * initialized.
1561 *
1562 * If successful, this will return the inode for which the @test function
1563 * returned 1 and NULL otherwise.
1564 *
1565 * The @test function is not permitted to take a ref on any inode presented.
1566 * It is also not permitted to sleep.
1567 *
1568 * The caller must hold the RCU read lock.
1569 */
1570struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1571 int (*test)(struct inode *, void *), void *data)
1572{
1573 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1574 struct inode *inode;
1575
1576 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1577 "suspicious find_inode_rcu() usage");
1578
1579 hlist_for_each_entry_rcu(inode, head, i_hash) {
1580 if (inode->i_sb == sb &&
1581 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1582 test(inode, data))
1583 return inode;
1584 }
1585 return NULL;
1586}
1587EXPORT_SYMBOL(find_inode_rcu);
1588
1589/**
1590 * find_inode_by_ino_rcu - Find an inode in the inode cache
1591 * @sb: Super block of file system to search
1592 * @ino: The inode number to match
1593 *
1594 * Search for the inode specified by @hashval and @data in the inode cache,
1595 * where the helper function @test will return 0 if the inode does not match
1596 * and 1 if it does. The @test function must be responsible for taking the
1597 * i_lock spin_lock and checking i_state for an inode being freed or being
1598 * initialized.
1599 *
1600 * If successful, this will return the inode for which the @test function
1601 * returned 1 and NULL otherwise.
1602 *
1603 * The @test function is not permitted to take a ref on any inode presented.
1604 * It is also not permitted to sleep.
1605 *
1606 * The caller must hold the RCU read lock.
1607 */
1608struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1609 unsigned long ino)
1610{
1611 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1612 struct inode *inode;
1613
1614 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1615 "suspicious find_inode_by_ino_rcu() usage");
1616
1617 hlist_for_each_entry_rcu(inode, head, i_hash) {
1618 if (inode->i_ino == ino &&
1619 inode->i_sb == sb &&
1620 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1621 return inode;
1622 }
1623 return NULL;
1624}
1625EXPORT_SYMBOL(find_inode_by_ino_rcu);
1626
1627int insert_inode_locked(struct inode *inode)
1628{
1629 struct super_block *sb = inode->i_sb;
1630 ino_t ino = inode->i_ino;
1631 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1632
1633 while (1) {
1634 struct inode *old = NULL;
1635 spin_lock(&inode_hash_lock);
1636 hlist_for_each_entry(old, head, i_hash) {
1637 if (old->i_ino != ino)
1638 continue;
1639 if (old->i_sb != sb)
1640 continue;
1641 spin_lock(&old->i_lock);
1642 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1643 spin_unlock(&old->i_lock);
1644 continue;
1645 }
1646 break;
1647 }
1648 if (likely(!old)) {
1649 spin_lock(&inode->i_lock);
1650 inode->i_state |= I_NEW | I_CREATING;
1651 hlist_add_head_rcu(&inode->i_hash, head);
1652 spin_unlock(&inode->i_lock);
1653 spin_unlock(&inode_hash_lock);
1654 return 0;
1655 }
1656 if (unlikely(old->i_state & I_CREATING)) {
1657 spin_unlock(&old->i_lock);
1658 spin_unlock(&inode_hash_lock);
1659 return -EBUSY;
1660 }
1661 __iget(old);
1662 spin_unlock(&old->i_lock);
1663 spin_unlock(&inode_hash_lock);
1664 wait_on_inode(old);
1665 if (unlikely(!inode_unhashed(old))) {
1666 iput(old);
1667 return -EBUSY;
1668 }
1669 iput(old);
1670 }
1671}
1672EXPORT_SYMBOL(insert_inode_locked);
1673
1674int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1675 int (*test)(struct inode *, void *), void *data)
1676{
1677 struct inode *old;
1678
1679 inode->i_state |= I_CREATING;
1680 old = inode_insert5(inode, hashval, test, NULL, data);
1681
1682 if (old != inode) {
1683 iput(old);
1684 return -EBUSY;
1685 }
1686 return 0;
1687}
1688EXPORT_SYMBOL(insert_inode_locked4);
1689
1690
1691int generic_delete_inode(struct inode *inode)
1692{
1693 return 1;
1694}
1695EXPORT_SYMBOL(generic_delete_inode);
1696
1697/*
1698 * Called when we're dropping the last reference
1699 * to an inode.
1700 *
1701 * Call the FS "drop_inode()" function, defaulting to
1702 * the legacy UNIX filesystem behaviour. If it tells
1703 * us to evict inode, do so. Otherwise, retain inode
1704 * in cache if fs is alive, sync and evict if fs is
1705 * shutting down.
1706 */
1707static void iput_final(struct inode *inode)
1708{
1709 struct super_block *sb = inode->i_sb;
1710 const struct super_operations *op = inode->i_sb->s_op;
1711 unsigned long state;
1712 int drop;
1713
1714 WARN_ON(inode->i_state & I_NEW);
1715
1716 if (op->drop_inode)
1717 drop = op->drop_inode(inode);
1718 else
1719 drop = generic_drop_inode(inode);
1720
1721 if (!drop &&
1722 !(inode->i_state & I_DONTCACHE) &&
1723 (sb->s_flags & SB_ACTIVE)) {
1724 __inode_add_lru(inode, true);
1725 spin_unlock(&inode->i_lock);
1726 return;
1727 }
1728
1729 state = inode->i_state;
1730 if (!drop) {
1731 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1732 spin_unlock(&inode->i_lock);
1733
1734 write_inode_now(inode, 1);
1735
1736 spin_lock(&inode->i_lock);
1737 state = inode->i_state;
1738 WARN_ON(state & I_NEW);
1739 state &= ~I_WILL_FREE;
1740 }
1741
1742 WRITE_ONCE(inode->i_state, state | I_FREEING);
1743 if (!list_empty(&inode->i_lru))
1744 inode_lru_list_del(inode);
1745 spin_unlock(&inode->i_lock);
1746
1747 evict(inode);
1748}
1749
1750/**
1751 * iput - put an inode
1752 * @inode: inode to put
1753 *
1754 * Puts an inode, dropping its usage count. If the inode use count hits
1755 * zero, the inode is then freed and may also be destroyed.
1756 *
1757 * Consequently, iput() can sleep.
1758 */
1759void iput(struct inode *inode)
1760{
1761 if (!inode)
1762 return;
1763 BUG_ON(inode->i_state & I_CLEAR);
1764retry:
1765 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1766 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1767 atomic_inc(&inode->i_count);
1768 spin_unlock(&inode->i_lock);
1769 trace_writeback_lazytime_iput(inode);
1770 mark_inode_dirty_sync(inode);
1771 goto retry;
1772 }
1773 iput_final(inode);
1774 }
1775}
1776EXPORT_SYMBOL(iput);
1777
1778#ifdef CONFIG_BLOCK
1779/**
1780 * bmap - find a block number in a file
1781 * @inode: inode owning the block number being requested
1782 * @block: pointer containing the block to find
1783 *
1784 * Replaces the value in ``*block`` with the block number on the device holding
1785 * corresponding to the requested block number in the file.
1786 * That is, asked for block 4 of inode 1 the function will replace the
1787 * 4 in ``*block``, with disk block relative to the disk start that holds that
1788 * block of the file.
1789 *
1790 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1791 * hole, returns 0 and ``*block`` is also set to 0.
1792 */
1793int bmap(struct inode *inode, sector_t *block)
1794{
1795 if (!inode->i_mapping->a_ops->bmap)
1796 return -EINVAL;
1797
1798 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1799 return 0;
1800}
1801EXPORT_SYMBOL(bmap);
1802#endif
1803
1804/*
1805 * With relative atime, only update atime if the previous atime is
1806 * earlier than either the ctime or mtime or if at least a day has
1807 * passed since the last atime update.
1808 */
1809static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1810 struct timespec64 now)
1811{
1812
1813 if (!(mnt->mnt_flags & MNT_RELATIME))
1814 return 1;
1815 /*
1816 * Is mtime younger than atime? If yes, update atime:
1817 */
1818 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1819 return 1;
1820 /*
1821 * Is ctime younger than atime? If yes, update atime:
1822 */
1823 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1824 return 1;
1825
1826 /*
1827 * Is the previous atime value older than a day? If yes,
1828 * update atime:
1829 */
1830 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1831 return 1;
1832 /*
1833 * Good, we can skip the atime update:
1834 */
1835 return 0;
1836}
1837
1838int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1839{
1840 int dirty_flags = 0;
1841
1842 if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1843 if (flags & S_ATIME)
1844 inode->i_atime = *time;
1845 if (flags & S_CTIME)
1846 inode->i_ctime = *time;
1847 if (flags & S_MTIME)
1848 inode->i_mtime = *time;
1849
1850 if (inode->i_sb->s_flags & SB_LAZYTIME)
1851 dirty_flags |= I_DIRTY_TIME;
1852 else
1853 dirty_flags |= I_DIRTY_SYNC;
1854 }
1855
1856 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1857 dirty_flags |= I_DIRTY_SYNC;
1858
1859 __mark_inode_dirty(inode, dirty_flags);
1860 return 0;
1861}
1862EXPORT_SYMBOL(generic_update_time);
1863
1864/*
1865 * This does the actual work of updating an inodes time or version. Must have
1866 * had called mnt_want_write() before calling this.
1867 */
1868int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1869{
1870 if (inode->i_op->update_time)
1871 return inode->i_op->update_time(inode, time, flags);
1872 return generic_update_time(inode, time, flags);
1873}
1874EXPORT_SYMBOL(inode_update_time);
1875
1876/**
1877 * atime_needs_update - update the access time
1878 * @path: the &struct path to update
1879 * @inode: inode to update
1880 *
1881 * Update the accessed time on an inode and mark it for writeback.
1882 * This function automatically handles read only file systems and media,
1883 * as well as the "noatime" flag and inode specific "noatime" markers.
1884 */
1885bool atime_needs_update(const struct path *path, struct inode *inode)
1886{
1887 struct vfsmount *mnt = path->mnt;
1888 struct timespec64 now;
1889
1890 if (inode->i_flags & S_NOATIME)
1891 return false;
1892
1893 /* Atime updates will likely cause i_uid and i_gid to be written
1894 * back improprely if their true value is unknown to the vfs.
1895 */
1896 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1897 return false;
1898
1899 if (IS_NOATIME(inode))
1900 return false;
1901 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1902 return false;
1903
1904 if (mnt->mnt_flags & MNT_NOATIME)
1905 return false;
1906 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1907 return false;
1908
1909 now = current_time(inode);
1910
1911 if (!relatime_need_update(mnt, inode, now))
1912 return false;
1913
1914 if (timespec64_equal(&inode->i_atime, &now))
1915 return false;
1916
1917 return true;
1918}
1919
1920void touch_atime(const struct path *path)
1921{
1922 struct vfsmount *mnt = path->mnt;
1923 struct inode *inode = d_inode(path->dentry);
1924 struct timespec64 now;
1925
1926 if (!atime_needs_update(path, inode))
1927 return;
1928
1929 if (!sb_start_write_trylock(inode->i_sb))
1930 return;
1931
1932 if (__mnt_want_write(mnt) != 0)
1933 goto skip_update;
1934 /*
1935 * File systems can error out when updating inodes if they need to
1936 * allocate new space to modify an inode (such is the case for
1937 * Btrfs), but since we touch atime while walking down the path we
1938 * really don't care if we failed to update the atime of the file,
1939 * so just ignore the return value.
1940 * We may also fail on filesystems that have the ability to make parts
1941 * of the fs read only, e.g. subvolumes in Btrfs.
1942 */
1943 now = current_time(inode);
1944 inode_update_time(inode, &now, S_ATIME);
1945 __mnt_drop_write(mnt);
1946skip_update:
1947 sb_end_write(inode->i_sb);
1948}
1949EXPORT_SYMBOL(touch_atime);
1950
1951/*
1952 * Return mask of changes for notify_change() that need to be done as a
1953 * response to write or truncate. Return 0 if nothing has to be changed.
1954 * Negative value on error (change should be denied).
1955 */
1956int dentry_needs_remove_privs(struct user_namespace *mnt_userns,
1957 struct dentry *dentry)
1958{
1959 struct inode *inode = d_inode(dentry);
1960 int mask = 0;
1961 int ret;
1962
1963 if (IS_NOSEC(inode))
1964 return 0;
1965
1966 mask = setattr_should_drop_suidgid(mnt_userns, inode);
1967 ret = security_inode_need_killpriv(dentry);
1968 if (ret < 0)
1969 return ret;
1970 if (ret)
1971 mask |= ATTR_KILL_PRIV;
1972 return mask;
1973}
1974
1975static int __remove_privs(struct user_namespace *mnt_userns,
1976 struct dentry *dentry, int kill)
1977{
1978 struct iattr newattrs;
1979
1980 newattrs.ia_valid = ATTR_FORCE | kill;
1981 /*
1982 * Note we call this on write, so notify_change will not
1983 * encounter any conflicting delegations:
1984 */
1985 return notify_change(mnt_userns, dentry, &newattrs, NULL);
1986}
1987
1988static int __file_remove_privs(struct file *file, unsigned int flags)
1989{
1990 struct dentry *dentry = file_dentry(file);
1991 struct inode *inode = file_inode(file);
1992 int error = 0;
1993 int kill;
1994
1995 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1996 return 0;
1997
1998 kill = dentry_needs_remove_privs(file_mnt_user_ns(file), dentry);
1999 if (kill < 0)
2000 return kill;
2001
2002 if (kill) {
2003 if (flags & IOCB_NOWAIT)
2004 return -EAGAIN;
2005
2006 error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
2007 }
2008
2009 if (!error)
2010 inode_has_no_xattr(inode);
2011 return error;
2012}
2013
2014/**
2015 * file_remove_privs - remove special file privileges (suid, capabilities)
2016 * @file: file to remove privileges from
2017 *
2018 * When file is modified by a write or truncation ensure that special
2019 * file privileges are removed.
2020 *
2021 * Return: 0 on success, negative errno on failure.
2022 */
2023int file_remove_privs(struct file *file)
2024{
2025 return __file_remove_privs(file, 0);
2026}
2027EXPORT_SYMBOL(file_remove_privs);
2028
2029static int inode_needs_update_time(struct inode *inode, struct timespec64 *now)
2030{
2031 int sync_it = 0;
2032
2033 /* First try to exhaust all avenues to not sync */
2034 if (IS_NOCMTIME(inode))
2035 return 0;
2036
2037 if (!timespec64_equal(&inode->i_mtime, now))
2038 sync_it = S_MTIME;
2039
2040 if (!timespec64_equal(&inode->i_ctime, now))
2041 sync_it |= S_CTIME;
2042
2043 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2044 sync_it |= S_VERSION;
2045
2046 return sync_it;
2047}
2048
2049static int __file_update_time(struct file *file, struct timespec64 *now,
2050 int sync_mode)
2051{
2052 int ret = 0;
2053 struct inode *inode = file_inode(file);
2054
2055 /* try to update time settings */
2056 if (!__mnt_want_write_file(file)) {
2057 ret = inode_update_time(inode, now, sync_mode);
2058 __mnt_drop_write_file(file);
2059 }
2060
2061 return ret;
2062}
2063
2064/**
2065 * file_update_time - update mtime and ctime time
2066 * @file: file accessed
2067 *
2068 * Update the mtime and ctime members of an inode and mark the inode for
2069 * writeback. Note that this function is meant exclusively for usage in
2070 * the file write path of filesystems, and filesystems may choose to
2071 * explicitly ignore updates via this function with the _NOCMTIME inode
2072 * flag, e.g. for network filesystem where these imestamps are handled
2073 * by the server. This can return an error for file systems who need to
2074 * allocate space in order to update an inode.
2075 *
2076 * Return: 0 on success, negative errno on failure.
2077 */
2078int file_update_time(struct file *file)
2079{
2080 int ret;
2081 struct inode *inode = file_inode(file);
2082 struct timespec64 now = current_time(inode);
2083
2084 ret = inode_needs_update_time(inode, &now);
2085 if (ret <= 0)
2086 return ret;
2087
2088 return __file_update_time(file, &now, ret);
2089}
2090EXPORT_SYMBOL(file_update_time);
2091
2092/**
2093 * file_modified_flags - handle mandated vfs changes when modifying a file
2094 * @file: file that was modified
2095 * @flags: kiocb flags
2096 *
2097 * When file has been modified ensure that special
2098 * file privileges are removed and time settings are updated.
2099 *
2100 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2101 * time settings will not be updated. It will return -EAGAIN.
2102 *
2103 * Context: Caller must hold the file's inode lock.
2104 *
2105 * Return: 0 on success, negative errno on failure.
2106 */
2107static int file_modified_flags(struct file *file, int flags)
2108{
2109 int ret;
2110 struct inode *inode = file_inode(file);
2111 struct timespec64 now = current_time(inode);
2112
2113 /*
2114 * Clear the security bits if the process is not being run by root.
2115 * This keeps people from modifying setuid and setgid binaries.
2116 */
2117 ret = __file_remove_privs(file, flags);
2118 if (ret)
2119 return ret;
2120
2121 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2122 return 0;
2123
2124 ret = inode_needs_update_time(inode, &now);
2125 if (ret <= 0)
2126 return ret;
2127 if (flags & IOCB_NOWAIT)
2128 return -EAGAIN;
2129
2130 return __file_update_time(file, &now, ret);
2131}
2132
2133/**
2134 * file_modified - handle mandated vfs changes when modifying a file
2135 * @file: file that was modified
2136 *
2137 * When file has been modified ensure that special
2138 * file privileges are removed and time settings are updated.
2139 *
2140 * Context: Caller must hold the file's inode lock.
2141 *
2142 * Return: 0 on success, negative errno on failure.
2143 */
2144int file_modified(struct file *file)
2145{
2146 return file_modified_flags(file, 0);
2147}
2148EXPORT_SYMBOL(file_modified);
2149
2150/**
2151 * kiocb_modified - handle mandated vfs changes when modifying a file
2152 * @iocb: iocb that was modified
2153 *
2154 * When file has been modified ensure that special
2155 * file privileges are removed and time settings are updated.
2156 *
2157 * Context: Caller must hold the file's inode lock.
2158 *
2159 * Return: 0 on success, negative errno on failure.
2160 */
2161int kiocb_modified(struct kiocb *iocb)
2162{
2163 return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2164}
2165EXPORT_SYMBOL_GPL(kiocb_modified);
2166
2167int inode_needs_sync(struct inode *inode)
2168{
2169 if (IS_SYNC(inode))
2170 return 1;
2171 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2172 return 1;
2173 return 0;
2174}
2175EXPORT_SYMBOL(inode_needs_sync);
2176
2177/*
2178 * If we try to find an inode in the inode hash while it is being
2179 * deleted, we have to wait until the filesystem completes its
2180 * deletion before reporting that it isn't found. This function waits
2181 * until the deletion _might_ have completed. Callers are responsible
2182 * to recheck inode state.
2183 *
2184 * It doesn't matter if I_NEW is not set initially, a call to
2185 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2186 * will DTRT.
2187 */
2188static void __wait_on_freeing_inode(struct inode *inode)
2189{
2190 wait_queue_head_t *wq;
2191 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2192 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2193 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2194 spin_unlock(&inode->i_lock);
2195 spin_unlock(&inode_hash_lock);
2196 schedule();
2197 finish_wait(wq, &wait.wq_entry);
2198 spin_lock(&inode_hash_lock);
2199}
2200
2201static __initdata unsigned long ihash_entries;
2202static int __init set_ihash_entries(char *str)
2203{
2204 if (!str)
2205 return 0;
2206 ihash_entries = simple_strtoul(str, &str, 0);
2207 return 1;
2208}
2209__setup("ihash_entries=", set_ihash_entries);
2210
2211/*
2212 * Initialize the waitqueues and inode hash table.
2213 */
2214void __init inode_init_early(void)
2215{
2216 /* If hashes are distributed across NUMA nodes, defer
2217 * hash allocation until vmalloc space is available.
2218 */
2219 if (hashdist)
2220 return;
2221
2222 inode_hashtable =
2223 alloc_large_system_hash("Inode-cache",
2224 sizeof(struct hlist_head),
2225 ihash_entries,
2226 14,
2227 HASH_EARLY | HASH_ZERO,
2228 &i_hash_shift,
2229 &i_hash_mask,
2230 0,
2231 0);
2232}
2233
2234void __init inode_init(void)
2235{
2236 /* inode slab cache */
2237 inode_cachep = kmem_cache_create("inode_cache",
2238 sizeof(struct inode),
2239 0,
2240 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2241 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2242 init_once);
2243
2244 /* Hash may have been set up in inode_init_early */
2245 if (!hashdist)
2246 return;
2247
2248 inode_hashtable =
2249 alloc_large_system_hash("Inode-cache",
2250 sizeof(struct hlist_head),
2251 ihash_entries,
2252 14,
2253 HASH_ZERO,
2254 &i_hash_shift,
2255 &i_hash_mask,
2256 0,
2257 0);
2258}
2259
2260void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2261{
2262 inode->i_mode = mode;
2263 if (S_ISCHR(mode)) {
2264 inode->i_fop = &def_chr_fops;
2265 inode->i_rdev = rdev;
2266 } else if (S_ISBLK(mode)) {
2267 inode->i_fop = &def_blk_fops;
2268 inode->i_rdev = rdev;
2269 } else if (S_ISFIFO(mode))
2270 inode->i_fop = &pipefifo_fops;
2271 else if (S_ISSOCK(mode))
2272 ; /* leave it no_open_fops */
2273 else
2274 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2275 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2276 inode->i_ino);
2277}
2278EXPORT_SYMBOL(init_special_inode);
2279
2280/**
2281 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2282 * @mnt_userns: User namespace of the mount the inode was created from
2283 * @inode: New inode
2284 * @dir: Directory inode
2285 * @mode: mode of the new inode
2286 *
2287 * If the inode has been created through an idmapped mount the user namespace of
2288 * the vfsmount must be passed through @mnt_userns. This function will then take
2289 * care to map the inode according to @mnt_userns before checking permissions
2290 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2291 * checking is to be performed on the raw inode simply passs init_user_ns.
2292 */
2293void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2294 const struct inode *dir, umode_t mode)
2295{
2296 inode_fsuid_set(inode, mnt_userns);
2297 if (dir && dir->i_mode & S_ISGID) {
2298 inode->i_gid = dir->i_gid;
2299
2300 /* Directories are special, and always inherit S_ISGID */
2301 if (S_ISDIR(mode))
2302 mode |= S_ISGID;
2303 } else
2304 inode_fsgid_set(inode, mnt_userns);
2305 inode->i_mode = mode;
2306}
2307EXPORT_SYMBOL(inode_init_owner);
2308
2309/**
2310 * inode_owner_or_capable - check current task permissions to inode
2311 * @mnt_userns: user namespace of the mount the inode was found from
2312 * @inode: inode being checked
2313 *
2314 * Return true if current either has CAP_FOWNER in a namespace with the
2315 * inode owner uid mapped, or owns the file.
2316 *
2317 * If the inode has been found through an idmapped mount the user namespace of
2318 * the vfsmount must be passed through @mnt_userns. This function will then take
2319 * care to map the inode according to @mnt_userns before checking permissions.
2320 * On non-idmapped mounts or if permission checking is to be performed on the
2321 * raw inode simply passs init_user_ns.
2322 */
2323bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2324 const struct inode *inode)
2325{
2326 vfsuid_t vfsuid;
2327 struct user_namespace *ns;
2328
2329 vfsuid = i_uid_into_vfsuid(mnt_userns, inode);
2330 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2331 return true;
2332
2333 ns = current_user_ns();
2334 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2335 return true;
2336 return false;
2337}
2338EXPORT_SYMBOL(inode_owner_or_capable);
2339
2340/*
2341 * Direct i/o helper functions
2342 */
2343static void __inode_dio_wait(struct inode *inode)
2344{
2345 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2346 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2347
2348 do {
2349 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2350 if (atomic_read(&inode->i_dio_count))
2351 schedule();
2352 } while (atomic_read(&inode->i_dio_count));
2353 finish_wait(wq, &q.wq_entry);
2354}
2355
2356/**
2357 * inode_dio_wait - wait for outstanding DIO requests to finish
2358 * @inode: inode to wait for
2359 *
2360 * Waits for all pending direct I/O requests to finish so that we can
2361 * proceed with a truncate or equivalent operation.
2362 *
2363 * Must be called under a lock that serializes taking new references
2364 * to i_dio_count, usually by inode->i_mutex.
2365 */
2366void inode_dio_wait(struct inode *inode)
2367{
2368 if (atomic_read(&inode->i_dio_count))
2369 __inode_dio_wait(inode);
2370}
2371EXPORT_SYMBOL(inode_dio_wait);
2372
2373/*
2374 * inode_set_flags - atomically set some inode flags
2375 *
2376 * Note: the caller should be holding i_mutex, or else be sure that
2377 * they have exclusive access to the inode structure (i.e., while the
2378 * inode is being instantiated). The reason for the cmpxchg() loop
2379 * --- which wouldn't be necessary if all code paths which modify
2380 * i_flags actually followed this rule, is that there is at least one
2381 * code path which doesn't today so we use cmpxchg() out of an abundance
2382 * of caution.
2383 *
2384 * In the long run, i_mutex is overkill, and we should probably look
2385 * at using the i_lock spinlock to protect i_flags, and then make sure
2386 * it is so documented in include/linux/fs.h and that all code follows
2387 * the locking convention!!
2388 */
2389void inode_set_flags(struct inode *inode, unsigned int flags,
2390 unsigned int mask)
2391{
2392 WARN_ON_ONCE(flags & ~mask);
2393 set_mask_bits(&inode->i_flags, mask, flags);
2394}
2395EXPORT_SYMBOL(inode_set_flags);
2396
2397void inode_nohighmem(struct inode *inode)
2398{
2399 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2400}
2401EXPORT_SYMBOL(inode_nohighmem);
2402
2403/**
2404 * timestamp_truncate - Truncate timespec to a granularity
2405 * @t: Timespec
2406 * @inode: inode being updated
2407 *
2408 * Truncate a timespec to the granularity supported by the fs
2409 * containing the inode. Always rounds down. gran must
2410 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2411 */
2412struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2413{
2414 struct super_block *sb = inode->i_sb;
2415 unsigned int gran = sb->s_time_gran;
2416
2417 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2418 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2419 t.tv_nsec = 0;
2420
2421 /* Avoid division in the common cases 1 ns and 1 s. */
2422 if (gran == 1)
2423 ; /* nothing */
2424 else if (gran == NSEC_PER_SEC)
2425 t.tv_nsec = 0;
2426 else if (gran > 1 && gran < NSEC_PER_SEC)
2427 t.tv_nsec -= t.tv_nsec % gran;
2428 else
2429 WARN(1, "invalid file time granularity: %u", gran);
2430 return t;
2431}
2432EXPORT_SYMBOL(timestamp_truncate);
2433
2434/**
2435 * current_time - Return FS time
2436 * @inode: inode.
2437 *
2438 * Return the current time truncated to the time granularity supported by
2439 * the fs.
2440 *
2441 * Note that inode and inode->sb cannot be NULL.
2442 * Otherwise, the function warns and returns time without truncation.
2443 */
2444struct timespec64 current_time(struct inode *inode)
2445{
2446 struct timespec64 now;
2447
2448 ktime_get_coarse_real_ts64(&now);
2449
2450 if (unlikely(!inode->i_sb)) {
2451 WARN(1, "current_time() called with uninitialized super_block in the inode");
2452 return now;
2453 }
2454
2455 return timestamp_truncate(now, inode);
2456}
2457EXPORT_SYMBOL(current_time);
2458
2459/**
2460 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2461 * @mnt_userns: user namespace of the mount @inode was found from
2462 * @inode: inode to check
2463 * @vfsgid: the new/current vfsgid of @inode
2464 *
2465 * Check wether @vfsgid is in the caller's group list or if the caller is
2466 * privileged with CAP_FSETID over @inode. This can be used to determine
2467 * whether the setgid bit can be kept or must be dropped.
2468 *
2469 * Return: true if the caller is sufficiently privileged, false if not.
2470 */
2471bool in_group_or_capable(struct user_namespace *mnt_userns,
2472 const struct inode *inode, vfsgid_t vfsgid)
2473{
2474 if (vfsgid_in_group_p(vfsgid))
2475 return true;
2476 if (capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
2477 return true;
2478 return false;
2479}
2480
2481/**
2482 * mode_strip_sgid - handle the sgid bit for non-directories
2483 * @mnt_userns: User namespace of the mount the inode was created from
2484 * @dir: parent directory inode
2485 * @mode: mode of the file to be created in @dir
2486 *
2487 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2488 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2489 * either in the group of the parent directory or they have CAP_FSETID
2490 * in their user namespace and are privileged over the parent directory.
2491 * In all other cases, strip the S_ISGID bit from @mode.
2492 *
2493 * Return: the new mode to use for the file
2494 */
2495umode_t mode_strip_sgid(struct user_namespace *mnt_userns,
2496 const struct inode *dir, umode_t mode)
2497{
2498 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2499 return mode;
2500 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2501 return mode;
2502 if (in_group_or_capable(mnt_userns, dir,
2503 i_gid_into_vfsgid(mnt_userns, dir)))
2504 return mode;
2505 return mode & ~S_ISGID;
2506}
2507EXPORT_SYMBOL(mode_strip_sgid);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6#include <linux/export.h>
7#include <linux/fs.h>
8#include <linux/mm.h>
9#include <linux/backing-dev.h>
10#include <linux/hash.h>
11#include <linux/swap.h>
12#include <linux/security.h>
13#include <linux/cdev.h>
14#include <linux/memblock.h>
15#include <linux/fsnotify.h>
16#include <linux/mount.h>
17#include <linux/posix_acl.h>
18#include <linux/prefetch.h>
19#include <linux/buffer_head.h> /* for inode_has_buffers */
20#include <linux/ratelimit.h>
21#include <linux/list_lru.h>
22#include <linux/iversion.h>
23#include <trace/events/writeback.h>
24#include "internal.h"
25
26/*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget()
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57static unsigned int i_hash_mask __read_mostly;
58static unsigned int i_hash_shift __read_mostly;
59static struct hlist_head *inode_hashtable __read_mostly;
60static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62/*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66const struct address_space_operations empty_aops = {
67};
68EXPORT_SYMBOL(empty_aops);
69
70/*
71 * Statistics gathering..
72 */
73struct inodes_stat_t inodes_stat;
74
75static DEFINE_PER_CPU(unsigned long, nr_inodes);
76static DEFINE_PER_CPU(unsigned long, nr_unused);
77
78static struct kmem_cache *inode_cachep __read_mostly;
79
80static long get_nr_inodes(void)
81{
82 int i;
83 long sum = 0;
84 for_each_possible_cpu(i)
85 sum += per_cpu(nr_inodes, i);
86 return sum < 0 ? 0 : sum;
87}
88
89static inline long get_nr_inodes_unused(void)
90{
91 int i;
92 long sum = 0;
93 for_each_possible_cpu(i)
94 sum += per_cpu(nr_unused, i);
95 return sum < 0 ? 0 : sum;
96}
97
98long get_nr_dirty_inodes(void)
99{
100 /* not actually dirty inodes, but a wild approximation */
101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 return nr_dirty > 0 ? nr_dirty : 0;
103}
104
105/*
106 * Handle nr_inode sysctl
107 */
108#ifdef CONFIG_SYSCTL
109int proc_nr_inodes(struct ctl_table *table, int write,
110 void *buffer, size_t *lenp, loff_t *ppos)
111{
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115}
116#endif
117
118static int no_open(struct inode *inode, struct file *file)
119{
120 return -ENXIO;
121}
122
123/**
124 * inode_init_always - perform inode structure initialisation
125 * @sb: superblock inode belongs to
126 * @inode: inode to initialise
127 *
128 * These are initializations that need to be done on every inode
129 * allocation as the fields are not initialised by slab allocation.
130 */
131int inode_init_always(struct super_block *sb, struct inode *inode)
132{
133 static const struct inode_operations empty_iops;
134 static const struct file_operations no_open_fops = {.open = no_open};
135 struct address_space *const mapping = &inode->i_data;
136
137 inode->i_sb = sb;
138 inode->i_blkbits = sb->s_blocksize_bits;
139 inode->i_flags = 0;
140 atomic64_set(&inode->i_sequence, 0);
141 atomic_set(&inode->i_count, 1);
142 inode->i_op = &empty_iops;
143 inode->i_fop = &no_open_fops;
144 inode->i_ino = 0;
145 inode->__i_nlink = 1;
146 inode->i_opflags = 0;
147 if (sb->s_xattr)
148 inode->i_opflags |= IOP_XATTR;
149 i_uid_write(inode, 0);
150 i_gid_write(inode, 0);
151 atomic_set(&inode->i_writecount, 0);
152 inode->i_size = 0;
153 inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 inode->i_blocks = 0;
155 inode->i_bytes = 0;
156 inode->i_generation = 0;
157 inode->i_pipe = NULL;
158 inode->i_cdev = NULL;
159 inode->i_link = NULL;
160 inode->i_dir_seq = 0;
161 inode->i_rdev = 0;
162 inode->dirtied_when = 0;
163
164#ifdef CONFIG_CGROUP_WRITEBACK
165 inode->i_wb_frn_winner = 0;
166 inode->i_wb_frn_avg_time = 0;
167 inode->i_wb_frn_history = 0;
168#endif
169
170 if (security_inode_alloc(inode))
171 goto out;
172 spin_lock_init(&inode->i_lock);
173 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
174
175 init_rwsem(&inode->i_rwsem);
176 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
177
178 atomic_set(&inode->i_dio_count, 0);
179
180 mapping->a_ops = &empty_aops;
181 mapping->host = inode;
182 mapping->flags = 0;
183 if (sb->s_type->fs_flags & FS_THP_SUPPORT)
184 __set_bit(AS_THP_SUPPORT, &mapping->flags);
185 mapping->wb_err = 0;
186 atomic_set(&mapping->i_mmap_writable, 0);
187#ifdef CONFIG_READ_ONLY_THP_FOR_FS
188 atomic_set(&mapping->nr_thps, 0);
189#endif
190 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
191 mapping->private_data = NULL;
192 mapping->writeback_index = 0;
193 inode->i_private = NULL;
194 inode->i_mapping = mapping;
195 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
196#ifdef CONFIG_FS_POSIX_ACL
197 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
198#endif
199
200#ifdef CONFIG_FSNOTIFY
201 inode->i_fsnotify_mask = 0;
202#endif
203 inode->i_flctx = NULL;
204 this_cpu_inc(nr_inodes);
205
206 return 0;
207out:
208 return -ENOMEM;
209}
210EXPORT_SYMBOL(inode_init_always);
211
212void free_inode_nonrcu(struct inode *inode)
213{
214 kmem_cache_free(inode_cachep, inode);
215}
216EXPORT_SYMBOL(free_inode_nonrcu);
217
218static void i_callback(struct rcu_head *head)
219{
220 struct inode *inode = container_of(head, struct inode, i_rcu);
221 if (inode->free_inode)
222 inode->free_inode(inode);
223 else
224 free_inode_nonrcu(inode);
225}
226
227static struct inode *alloc_inode(struct super_block *sb)
228{
229 const struct super_operations *ops = sb->s_op;
230 struct inode *inode;
231
232 if (ops->alloc_inode)
233 inode = ops->alloc_inode(sb);
234 else
235 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
236
237 if (!inode)
238 return NULL;
239
240 if (unlikely(inode_init_always(sb, inode))) {
241 if (ops->destroy_inode) {
242 ops->destroy_inode(inode);
243 if (!ops->free_inode)
244 return NULL;
245 }
246 inode->free_inode = ops->free_inode;
247 i_callback(&inode->i_rcu);
248 return NULL;
249 }
250
251 return inode;
252}
253
254void __destroy_inode(struct inode *inode)
255{
256 BUG_ON(inode_has_buffers(inode));
257 inode_detach_wb(inode);
258 security_inode_free(inode);
259 fsnotify_inode_delete(inode);
260 locks_free_lock_context(inode);
261 if (!inode->i_nlink) {
262 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
263 atomic_long_dec(&inode->i_sb->s_remove_count);
264 }
265
266#ifdef CONFIG_FS_POSIX_ACL
267 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
268 posix_acl_release(inode->i_acl);
269 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
270 posix_acl_release(inode->i_default_acl);
271#endif
272 this_cpu_dec(nr_inodes);
273}
274EXPORT_SYMBOL(__destroy_inode);
275
276static void destroy_inode(struct inode *inode)
277{
278 const struct super_operations *ops = inode->i_sb->s_op;
279
280 BUG_ON(!list_empty(&inode->i_lru));
281 __destroy_inode(inode);
282 if (ops->destroy_inode) {
283 ops->destroy_inode(inode);
284 if (!ops->free_inode)
285 return;
286 }
287 inode->free_inode = ops->free_inode;
288 call_rcu(&inode->i_rcu, i_callback);
289}
290
291/**
292 * drop_nlink - directly drop an inode's link count
293 * @inode: inode
294 *
295 * This is a low-level filesystem helper to replace any
296 * direct filesystem manipulation of i_nlink. In cases
297 * where we are attempting to track writes to the
298 * filesystem, a decrement to zero means an imminent
299 * write when the file is truncated and actually unlinked
300 * on the filesystem.
301 */
302void drop_nlink(struct inode *inode)
303{
304 WARN_ON(inode->i_nlink == 0);
305 inode->__i_nlink--;
306 if (!inode->i_nlink)
307 atomic_long_inc(&inode->i_sb->s_remove_count);
308}
309EXPORT_SYMBOL(drop_nlink);
310
311/**
312 * clear_nlink - directly zero an inode's link count
313 * @inode: inode
314 *
315 * This is a low-level filesystem helper to replace any
316 * direct filesystem manipulation of i_nlink. See
317 * drop_nlink() for why we care about i_nlink hitting zero.
318 */
319void clear_nlink(struct inode *inode)
320{
321 if (inode->i_nlink) {
322 inode->__i_nlink = 0;
323 atomic_long_inc(&inode->i_sb->s_remove_count);
324 }
325}
326EXPORT_SYMBOL(clear_nlink);
327
328/**
329 * set_nlink - directly set an inode's link count
330 * @inode: inode
331 * @nlink: new nlink (should be non-zero)
332 *
333 * This is a low-level filesystem helper to replace any
334 * direct filesystem manipulation of i_nlink.
335 */
336void set_nlink(struct inode *inode, unsigned int nlink)
337{
338 if (!nlink) {
339 clear_nlink(inode);
340 } else {
341 /* Yes, some filesystems do change nlink from zero to one */
342 if (inode->i_nlink == 0)
343 atomic_long_dec(&inode->i_sb->s_remove_count);
344
345 inode->__i_nlink = nlink;
346 }
347}
348EXPORT_SYMBOL(set_nlink);
349
350/**
351 * inc_nlink - directly increment an inode's link count
352 * @inode: inode
353 *
354 * This is a low-level filesystem helper to replace any
355 * direct filesystem manipulation of i_nlink. Currently,
356 * it is only here for parity with dec_nlink().
357 */
358void inc_nlink(struct inode *inode)
359{
360 if (unlikely(inode->i_nlink == 0)) {
361 WARN_ON(!(inode->i_state & I_LINKABLE));
362 atomic_long_dec(&inode->i_sb->s_remove_count);
363 }
364
365 inode->__i_nlink++;
366}
367EXPORT_SYMBOL(inc_nlink);
368
369static void __address_space_init_once(struct address_space *mapping)
370{
371 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
372 init_rwsem(&mapping->i_mmap_rwsem);
373 INIT_LIST_HEAD(&mapping->private_list);
374 spin_lock_init(&mapping->private_lock);
375 mapping->i_mmap = RB_ROOT_CACHED;
376}
377
378void address_space_init_once(struct address_space *mapping)
379{
380 memset(mapping, 0, sizeof(*mapping));
381 __address_space_init_once(mapping);
382}
383EXPORT_SYMBOL(address_space_init_once);
384
385/*
386 * These are initializations that only need to be done
387 * once, because the fields are idempotent across use
388 * of the inode, so let the slab aware of that.
389 */
390void inode_init_once(struct inode *inode)
391{
392 memset(inode, 0, sizeof(*inode));
393 INIT_HLIST_NODE(&inode->i_hash);
394 INIT_LIST_HEAD(&inode->i_devices);
395 INIT_LIST_HEAD(&inode->i_io_list);
396 INIT_LIST_HEAD(&inode->i_wb_list);
397 INIT_LIST_HEAD(&inode->i_lru);
398 __address_space_init_once(&inode->i_data);
399 i_size_ordered_init(inode);
400}
401EXPORT_SYMBOL(inode_init_once);
402
403static void init_once(void *foo)
404{
405 struct inode *inode = (struct inode *) foo;
406
407 inode_init_once(inode);
408}
409
410/*
411 * inode->i_lock must be held
412 */
413void __iget(struct inode *inode)
414{
415 atomic_inc(&inode->i_count);
416}
417
418/*
419 * get additional reference to inode; caller must already hold one.
420 */
421void ihold(struct inode *inode)
422{
423 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
424}
425EXPORT_SYMBOL(ihold);
426
427static void inode_lru_list_add(struct inode *inode)
428{
429 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
430 this_cpu_inc(nr_unused);
431 else
432 inode->i_state |= I_REFERENCED;
433}
434
435/*
436 * Add inode to LRU if needed (inode is unused and clean).
437 *
438 * Needs inode->i_lock held.
439 */
440void inode_add_lru(struct inode *inode)
441{
442 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
443 I_FREEING | I_WILL_FREE)) &&
444 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
445 inode_lru_list_add(inode);
446}
447
448
449static void inode_lru_list_del(struct inode *inode)
450{
451
452 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
453 this_cpu_dec(nr_unused);
454}
455
456/**
457 * inode_sb_list_add - add inode to the superblock list of inodes
458 * @inode: inode to add
459 */
460void inode_sb_list_add(struct inode *inode)
461{
462 spin_lock(&inode->i_sb->s_inode_list_lock);
463 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
464 spin_unlock(&inode->i_sb->s_inode_list_lock);
465}
466EXPORT_SYMBOL_GPL(inode_sb_list_add);
467
468static inline void inode_sb_list_del(struct inode *inode)
469{
470 if (!list_empty(&inode->i_sb_list)) {
471 spin_lock(&inode->i_sb->s_inode_list_lock);
472 list_del_init(&inode->i_sb_list);
473 spin_unlock(&inode->i_sb->s_inode_list_lock);
474 }
475}
476
477static unsigned long hash(struct super_block *sb, unsigned long hashval)
478{
479 unsigned long tmp;
480
481 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
482 L1_CACHE_BYTES;
483 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
484 return tmp & i_hash_mask;
485}
486
487/**
488 * __insert_inode_hash - hash an inode
489 * @inode: unhashed inode
490 * @hashval: unsigned long value used to locate this object in the
491 * inode_hashtable.
492 *
493 * Add an inode to the inode hash for this superblock.
494 */
495void __insert_inode_hash(struct inode *inode, unsigned long hashval)
496{
497 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
498
499 spin_lock(&inode_hash_lock);
500 spin_lock(&inode->i_lock);
501 hlist_add_head_rcu(&inode->i_hash, b);
502 spin_unlock(&inode->i_lock);
503 spin_unlock(&inode_hash_lock);
504}
505EXPORT_SYMBOL(__insert_inode_hash);
506
507/**
508 * __remove_inode_hash - remove an inode from the hash
509 * @inode: inode to unhash
510 *
511 * Remove an inode from the superblock.
512 */
513void __remove_inode_hash(struct inode *inode)
514{
515 spin_lock(&inode_hash_lock);
516 spin_lock(&inode->i_lock);
517 hlist_del_init_rcu(&inode->i_hash);
518 spin_unlock(&inode->i_lock);
519 spin_unlock(&inode_hash_lock);
520}
521EXPORT_SYMBOL(__remove_inode_hash);
522
523void clear_inode(struct inode *inode)
524{
525 /*
526 * We have to cycle the i_pages lock here because reclaim can be in the
527 * process of removing the last page (in __delete_from_page_cache())
528 * and we must not free the mapping under it.
529 */
530 xa_lock_irq(&inode->i_data.i_pages);
531 BUG_ON(inode->i_data.nrpages);
532 /*
533 * Almost always, mapping_empty(&inode->i_data) here; but there are
534 * two known and long-standing ways in which nodes may get left behind
535 * (when deep radix-tree node allocation failed partway; or when THP
536 * collapse_file() failed). Until those two known cases are cleaned up,
537 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
538 * nor even WARN_ON(!mapping_empty).
539 */
540 xa_unlock_irq(&inode->i_data.i_pages);
541 BUG_ON(!list_empty(&inode->i_data.private_list));
542 BUG_ON(!(inode->i_state & I_FREEING));
543 BUG_ON(inode->i_state & I_CLEAR);
544 BUG_ON(!list_empty(&inode->i_wb_list));
545 /* don't need i_lock here, no concurrent mods to i_state */
546 inode->i_state = I_FREEING | I_CLEAR;
547}
548EXPORT_SYMBOL(clear_inode);
549
550/*
551 * Free the inode passed in, removing it from the lists it is still connected
552 * to. We remove any pages still attached to the inode and wait for any IO that
553 * is still in progress before finally destroying the inode.
554 *
555 * An inode must already be marked I_FREEING so that we avoid the inode being
556 * moved back onto lists if we race with other code that manipulates the lists
557 * (e.g. writeback_single_inode). The caller is responsible for setting this.
558 *
559 * An inode must already be removed from the LRU list before being evicted from
560 * the cache. This should occur atomically with setting the I_FREEING state
561 * flag, so no inodes here should ever be on the LRU when being evicted.
562 */
563static void evict(struct inode *inode)
564{
565 const struct super_operations *op = inode->i_sb->s_op;
566
567 BUG_ON(!(inode->i_state & I_FREEING));
568 BUG_ON(!list_empty(&inode->i_lru));
569
570 if (!list_empty(&inode->i_io_list))
571 inode_io_list_del(inode);
572
573 inode_sb_list_del(inode);
574
575 /*
576 * Wait for flusher thread to be done with the inode so that filesystem
577 * does not start destroying it while writeback is still running. Since
578 * the inode has I_FREEING set, flusher thread won't start new work on
579 * the inode. We just have to wait for running writeback to finish.
580 */
581 inode_wait_for_writeback(inode);
582
583 if (op->evict_inode) {
584 op->evict_inode(inode);
585 } else {
586 truncate_inode_pages_final(&inode->i_data);
587 clear_inode(inode);
588 }
589 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
590 cd_forget(inode);
591
592 remove_inode_hash(inode);
593
594 spin_lock(&inode->i_lock);
595 wake_up_bit(&inode->i_state, __I_NEW);
596 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
597 spin_unlock(&inode->i_lock);
598
599 destroy_inode(inode);
600}
601
602/*
603 * dispose_list - dispose of the contents of a local list
604 * @head: the head of the list to free
605 *
606 * Dispose-list gets a local list with local inodes in it, so it doesn't
607 * need to worry about list corruption and SMP locks.
608 */
609static void dispose_list(struct list_head *head)
610{
611 while (!list_empty(head)) {
612 struct inode *inode;
613
614 inode = list_first_entry(head, struct inode, i_lru);
615 list_del_init(&inode->i_lru);
616
617 evict(inode);
618 cond_resched();
619 }
620}
621
622/**
623 * evict_inodes - evict all evictable inodes for a superblock
624 * @sb: superblock to operate on
625 *
626 * Make sure that no inodes with zero refcount are retained. This is
627 * called by superblock shutdown after having SB_ACTIVE flag removed,
628 * so any inode reaching zero refcount during or after that call will
629 * be immediately evicted.
630 */
631void evict_inodes(struct super_block *sb)
632{
633 struct inode *inode, *next;
634 LIST_HEAD(dispose);
635
636again:
637 spin_lock(&sb->s_inode_list_lock);
638 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
639 if (atomic_read(&inode->i_count))
640 continue;
641
642 spin_lock(&inode->i_lock);
643 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
644 spin_unlock(&inode->i_lock);
645 continue;
646 }
647
648 inode->i_state |= I_FREEING;
649 inode_lru_list_del(inode);
650 spin_unlock(&inode->i_lock);
651 list_add(&inode->i_lru, &dispose);
652
653 /*
654 * We can have a ton of inodes to evict at unmount time given
655 * enough memory, check to see if we need to go to sleep for a
656 * bit so we don't livelock.
657 */
658 if (need_resched()) {
659 spin_unlock(&sb->s_inode_list_lock);
660 cond_resched();
661 dispose_list(&dispose);
662 goto again;
663 }
664 }
665 spin_unlock(&sb->s_inode_list_lock);
666
667 dispose_list(&dispose);
668}
669EXPORT_SYMBOL_GPL(evict_inodes);
670
671/**
672 * invalidate_inodes - attempt to free all inodes on a superblock
673 * @sb: superblock to operate on
674 * @kill_dirty: flag to guide handling of dirty inodes
675 *
676 * Attempts to free all inodes for a given superblock. If there were any
677 * busy inodes return a non-zero value, else zero.
678 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
679 * them as busy.
680 */
681int invalidate_inodes(struct super_block *sb, bool kill_dirty)
682{
683 int busy = 0;
684 struct inode *inode, *next;
685 LIST_HEAD(dispose);
686
687again:
688 spin_lock(&sb->s_inode_list_lock);
689 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
690 spin_lock(&inode->i_lock);
691 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
692 spin_unlock(&inode->i_lock);
693 continue;
694 }
695 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
696 spin_unlock(&inode->i_lock);
697 busy = 1;
698 continue;
699 }
700 if (atomic_read(&inode->i_count)) {
701 spin_unlock(&inode->i_lock);
702 busy = 1;
703 continue;
704 }
705
706 inode->i_state |= I_FREEING;
707 inode_lru_list_del(inode);
708 spin_unlock(&inode->i_lock);
709 list_add(&inode->i_lru, &dispose);
710 if (need_resched()) {
711 spin_unlock(&sb->s_inode_list_lock);
712 cond_resched();
713 dispose_list(&dispose);
714 goto again;
715 }
716 }
717 spin_unlock(&sb->s_inode_list_lock);
718
719 dispose_list(&dispose);
720
721 return busy;
722}
723
724/*
725 * Isolate the inode from the LRU in preparation for freeing it.
726 *
727 * Any inodes which are pinned purely because of attached pagecache have their
728 * pagecache removed. If the inode has metadata buffers attached to
729 * mapping->private_list then try to remove them.
730 *
731 * If the inode has the I_REFERENCED flag set, then it means that it has been
732 * used recently - the flag is set in iput_final(). When we encounter such an
733 * inode, clear the flag and move it to the back of the LRU so it gets another
734 * pass through the LRU before it gets reclaimed. This is necessary because of
735 * the fact we are doing lazy LRU updates to minimise lock contention so the
736 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
737 * with this flag set because they are the inodes that are out of order.
738 */
739static enum lru_status inode_lru_isolate(struct list_head *item,
740 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
741{
742 struct list_head *freeable = arg;
743 struct inode *inode = container_of(item, struct inode, i_lru);
744
745 /*
746 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
747 * If we fail to get the lock, just skip it.
748 */
749 if (!spin_trylock(&inode->i_lock))
750 return LRU_SKIP;
751
752 /*
753 * Referenced or dirty inodes are still in use. Give them another pass
754 * through the LRU as we canot reclaim them now.
755 */
756 if (atomic_read(&inode->i_count) ||
757 (inode->i_state & ~I_REFERENCED)) {
758 list_lru_isolate(lru, &inode->i_lru);
759 spin_unlock(&inode->i_lock);
760 this_cpu_dec(nr_unused);
761 return LRU_REMOVED;
762 }
763
764 /* recently referenced inodes get one more pass */
765 if (inode->i_state & I_REFERENCED) {
766 inode->i_state &= ~I_REFERENCED;
767 spin_unlock(&inode->i_lock);
768 return LRU_ROTATE;
769 }
770
771 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
772 __iget(inode);
773 spin_unlock(&inode->i_lock);
774 spin_unlock(lru_lock);
775 if (remove_inode_buffers(inode)) {
776 unsigned long reap;
777 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
778 if (current_is_kswapd())
779 __count_vm_events(KSWAPD_INODESTEAL, reap);
780 else
781 __count_vm_events(PGINODESTEAL, reap);
782 if (current->reclaim_state)
783 current->reclaim_state->reclaimed_slab += reap;
784 }
785 iput(inode);
786 spin_lock(lru_lock);
787 return LRU_RETRY;
788 }
789
790 WARN_ON(inode->i_state & I_NEW);
791 inode->i_state |= I_FREEING;
792 list_lru_isolate_move(lru, &inode->i_lru, freeable);
793 spin_unlock(&inode->i_lock);
794
795 this_cpu_dec(nr_unused);
796 return LRU_REMOVED;
797}
798
799/*
800 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
801 * This is called from the superblock shrinker function with a number of inodes
802 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
803 * then are freed outside inode_lock by dispose_list().
804 */
805long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
806{
807 LIST_HEAD(freeable);
808 long freed;
809
810 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
811 inode_lru_isolate, &freeable);
812 dispose_list(&freeable);
813 return freed;
814}
815
816static void __wait_on_freeing_inode(struct inode *inode);
817/*
818 * Called with the inode lock held.
819 */
820static struct inode *find_inode(struct super_block *sb,
821 struct hlist_head *head,
822 int (*test)(struct inode *, void *),
823 void *data)
824{
825 struct inode *inode = NULL;
826
827repeat:
828 hlist_for_each_entry(inode, head, i_hash) {
829 if (inode->i_sb != sb)
830 continue;
831 if (!test(inode, data))
832 continue;
833 spin_lock(&inode->i_lock);
834 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
835 __wait_on_freeing_inode(inode);
836 goto repeat;
837 }
838 if (unlikely(inode->i_state & I_CREATING)) {
839 spin_unlock(&inode->i_lock);
840 return ERR_PTR(-ESTALE);
841 }
842 __iget(inode);
843 spin_unlock(&inode->i_lock);
844 return inode;
845 }
846 return NULL;
847}
848
849/*
850 * find_inode_fast is the fast path version of find_inode, see the comment at
851 * iget_locked for details.
852 */
853static struct inode *find_inode_fast(struct super_block *sb,
854 struct hlist_head *head, unsigned long ino)
855{
856 struct inode *inode = NULL;
857
858repeat:
859 hlist_for_each_entry(inode, head, i_hash) {
860 if (inode->i_ino != ino)
861 continue;
862 if (inode->i_sb != sb)
863 continue;
864 spin_lock(&inode->i_lock);
865 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
866 __wait_on_freeing_inode(inode);
867 goto repeat;
868 }
869 if (unlikely(inode->i_state & I_CREATING)) {
870 spin_unlock(&inode->i_lock);
871 return ERR_PTR(-ESTALE);
872 }
873 __iget(inode);
874 spin_unlock(&inode->i_lock);
875 return inode;
876 }
877 return NULL;
878}
879
880/*
881 * Each cpu owns a range of LAST_INO_BATCH numbers.
882 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
883 * to renew the exhausted range.
884 *
885 * This does not significantly increase overflow rate because every CPU can
886 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
887 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
888 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
889 * overflow rate by 2x, which does not seem too significant.
890 *
891 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
892 * error if st_ino won't fit in target struct field. Use 32bit counter
893 * here to attempt to avoid that.
894 */
895#define LAST_INO_BATCH 1024
896static DEFINE_PER_CPU(unsigned int, last_ino);
897
898unsigned int get_next_ino(void)
899{
900 unsigned int *p = &get_cpu_var(last_ino);
901 unsigned int res = *p;
902
903#ifdef CONFIG_SMP
904 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
905 static atomic_t shared_last_ino;
906 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
907
908 res = next - LAST_INO_BATCH;
909 }
910#endif
911
912 res++;
913 /* get_next_ino should not provide a 0 inode number */
914 if (unlikely(!res))
915 res++;
916 *p = res;
917 put_cpu_var(last_ino);
918 return res;
919}
920EXPORT_SYMBOL(get_next_ino);
921
922/**
923 * new_inode_pseudo - obtain an inode
924 * @sb: superblock
925 *
926 * Allocates a new inode for given superblock.
927 * Inode wont be chained in superblock s_inodes list
928 * This means :
929 * - fs can't be unmount
930 * - quotas, fsnotify, writeback can't work
931 */
932struct inode *new_inode_pseudo(struct super_block *sb)
933{
934 struct inode *inode = alloc_inode(sb);
935
936 if (inode) {
937 spin_lock(&inode->i_lock);
938 inode->i_state = 0;
939 spin_unlock(&inode->i_lock);
940 INIT_LIST_HEAD(&inode->i_sb_list);
941 }
942 return inode;
943}
944
945/**
946 * new_inode - obtain an inode
947 * @sb: superblock
948 *
949 * Allocates a new inode for given superblock. The default gfp_mask
950 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
951 * If HIGHMEM pages are unsuitable or it is known that pages allocated
952 * for the page cache are not reclaimable or migratable,
953 * mapping_set_gfp_mask() must be called with suitable flags on the
954 * newly created inode's mapping
955 *
956 */
957struct inode *new_inode(struct super_block *sb)
958{
959 struct inode *inode;
960
961 spin_lock_prefetch(&sb->s_inode_list_lock);
962
963 inode = new_inode_pseudo(sb);
964 if (inode)
965 inode_sb_list_add(inode);
966 return inode;
967}
968EXPORT_SYMBOL(new_inode);
969
970#ifdef CONFIG_DEBUG_LOCK_ALLOC
971void lockdep_annotate_inode_mutex_key(struct inode *inode)
972{
973 if (S_ISDIR(inode->i_mode)) {
974 struct file_system_type *type = inode->i_sb->s_type;
975
976 /* Set new key only if filesystem hasn't already changed it */
977 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
978 /*
979 * ensure nobody is actually holding i_mutex
980 */
981 // mutex_destroy(&inode->i_mutex);
982 init_rwsem(&inode->i_rwsem);
983 lockdep_set_class(&inode->i_rwsem,
984 &type->i_mutex_dir_key);
985 }
986 }
987}
988EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
989#endif
990
991/**
992 * unlock_new_inode - clear the I_NEW state and wake up any waiters
993 * @inode: new inode to unlock
994 *
995 * Called when the inode is fully initialised to clear the new state of the
996 * inode and wake up anyone waiting for the inode to finish initialisation.
997 */
998void unlock_new_inode(struct inode *inode)
999{
1000 lockdep_annotate_inode_mutex_key(inode);
1001 spin_lock(&inode->i_lock);
1002 WARN_ON(!(inode->i_state & I_NEW));
1003 inode->i_state &= ~I_NEW & ~I_CREATING;
1004 smp_mb();
1005 wake_up_bit(&inode->i_state, __I_NEW);
1006 spin_unlock(&inode->i_lock);
1007}
1008EXPORT_SYMBOL(unlock_new_inode);
1009
1010void discard_new_inode(struct inode *inode)
1011{
1012 lockdep_annotate_inode_mutex_key(inode);
1013 spin_lock(&inode->i_lock);
1014 WARN_ON(!(inode->i_state & I_NEW));
1015 inode->i_state &= ~I_NEW;
1016 smp_mb();
1017 wake_up_bit(&inode->i_state, __I_NEW);
1018 spin_unlock(&inode->i_lock);
1019 iput(inode);
1020}
1021EXPORT_SYMBOL(discard_new_inode);
1022
1023/**
1024 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1025 *
1026 * Lock any non-NULL argument that is not a directory.
1027 * Zero, one or two objects may be locked by this function.
1028 *
1029 * @inode1: first inode to lock
1030 * @inode2: second inode to lock
1031 */
1032void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1033{
1034 if (inode1 > inode2)
1035 swap(inode1, inode2);
1036
1037 if (inode1 && !S_ISDIR(inode1->i_mode))
1038 inode_lock(inode1);
1039 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1040 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1041}
1042EXPORT_SYMBOL(lock_two_nondirectories);
1043
1044/**
1045 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1046 * @inode1: first inode to unlock
1047 * @inode2: second inode to unlock
1048 */
1049void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1050{
1051 if (inode1 && !S_ISDIR(inode1->i_mode))
1052 inode_unlock(inode1);
1053 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1054 inode_unlock(inode2);
1055}
1056EXPORT_SYMBOL(unlock_two_nondirectories);
1057
1058/**
1059 * inode_insert5 - obtain an inode from a mounted file system
1060 * @inode: pre-allocated inode to use for insert to cache
1061 * @hashval: hash value (usually inode number) to get
1062 * @test: callback used for comparisons between inodes
1063 * @set: callback used to initialize a new struct inode
1064 * @data: opaque data pointer to pass to @test and @set
1065 *
1066 * Search for the inode specified by @hashval and @data in the inode cache,
1067 * and if present it is return it with an increased reference count. This is
1068 * a variant of iget5_locked() for callers that don't want to fail on memory
1069 * allocation of inode.
1070 *
1071 * If the inode is not in cache, insert the pre-allocated inode to cache and
1072 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1073 * to fill it in before unlocking it via unlock_new_inode().
1074 *
1075 * Note both @test and @set are called with the inode_hash_lock held, so can't
1076 * sleep.
1077 */
1078struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1079 int (*test)(struct inode *, void *),
1080 int (*set)(struct inode *, void *), void *data)
1081{
1082 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1083 struct inode *old;
1084 bool creating = inode->i_state & I_CREATING;
1085
1086again:
1087 spin_lock(&inode_hash_lock);
1088 old = find_inode(inode->i_sb, head, test, data);
1089 if (unlikely(old)) {
1090 /*
1091 * Uhhuh, somebody else created the same inode under us.
1092 * Use the old inode instead of the preallocated one.
1093 */
1094 spin_unlock(&inode_hash_lock);
1095 if (IS_ERR(old))
1096 return NULL;
1097 wait_on_inode(old);
1098 if (unlikely(inode_unhashed(old))) {
1099 iput(old);
1100 goto again;
1101 }
1102 return old;
1103 }
1104
1105 if (set && unlikely(set(inode, data))) {
1106 inode = NULL;
1107 goto unlock;
1108 }
1109
1110 /*
1111 * Return the locked inode with I_NEW set, the
1112 * caller is responsible for filling in the contents
1113 */
1114 spin_lock(&inode->i_lock);
1115 inode->i_state |= I_NEW;
1116 hlist_add_head_rcu(&inode->i_hash, head);
1117 spin_unlock(&inode->i_lock);
1118 if (!creating)
1119 inode_sb_list_add(inode);
1120unlock:
1121 spin_unlock(&inode_hash_lock);
1122
1123 return inode;
1124}
1125EXPORT_SYMBOL(inode_insert5);
1126
1127/**
1128 * iget5_locked - obtain an inode from a mounted file system
1129 * @sb: super block of file system
1130 * @hashval: hash value (usually inode number) to get
1131 * @test: callback used for comparisons between inodes
1132 * @set: callback used to initialize a new struct inode
1133 * @data: opaque data pointer to pass to @test and @set
1134 *
1135 * Search for the inode specified by @hashval and @data in the inode cache,
1136 * and if present it is return it with an increased reference count. This is
1137 * a generalized version of iget_locked() for file systems where the inode
1138 * number is not sufficient for unique identification of an inode.
1139 *
1140 * If the inode is not in cache, allocate a new inode and return it locked,
1141 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1142 * before unlocking it via unlock_new_inode().
1143 *
1144 * Note both @test and @set are called with the inode_hash_lock held, so can't
1145 * sleep.
1146 */
1147struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1148 int (*test)(struct inode *, void *),
1149 int (*set)(struct inode *, void *), void *data)
1150{
1151 struct inode *inode = ilookup5(sb, hashval, test, data);
1152
1153 if (!inode) {
1154 struct inode *new = alloc_inode(sb);
1155
1156 if (new) {
1157 new->i_state = 0;
1158 inode = inode_insert5(new, hashval, test, set, data);
1159 if (unlikely(inode != new))
1160 destroy_inode(new);
1161 }
1162 }
1163 return inode;
1164}
1165EXPORT_SYMBOL(iget5_locked);
1166
1167/**
1168 * iget_locked - obtain an inode from a mounted file system
1169 * @sb: super block of file system
1170 * @ino: inode number to get
1171 *
1172 * Search for the inode specified by @ino in the inode cache and if present
1173 * return it with an increased reference count. This is for file systems
1174 * where the inode number is sufficient for unique identification of an inode.
1175 *
1176 * If the inode is not in cache, allocate a new inode and return it locked,
1177 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1178 * before unlocking it via unlock_new_inode().
1179 */
1180struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1181{
1182 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1183 struct inode *inode;
1184again:
1185 spin_lock(&inode_hash_lock);
1186 inode = find_inode_fast(sb, head, ino);
1187 spin_unlock(&inode_hash_lock);
1188 if (inode) {
1189 if (IS_ERR(inode))
1190 return NULL;
1191 wait_on_inode(inode);
1192 if (unlikely(inode_unhashed(inode))) {
1193 iput(inode);
1194 goto again;
1195 }
1196 return inode;
1197 }
1198
1199 inode = alloc_inode(sb);
1200 if (inode) {
1201 struct inode *old;
1202
1203 spin_lock(&inode_hash_lock);
1204 /* We released the lock, so.. */
1205 old = find_inode_fast(sb, head, ino);
1206 if (!old) {
1207 inode->i_ino = ino;
1208 spin_lock(&inode->i_lock);
1209 inode->i_state = I_NEW;
1210 hlist_add_head_rcu(&inode->i_hash, head);
1211 spin_unlock(&inode->i_lock);
1212 inode_sb_list_add(inode);
1213 spin_unlock(&inode_hash_lock);
1214
1215 /* Return the locked inode with I_NEW set, the
1216 * caller is responsible for filling in the contents
1217 */
1218 return inode;
1219 }
1220
1221 /*
1222 * Uhhuh, somebody else created the same inode under
1223 * us. Use the old inode instead of the one we just
1224 * allocated.
1225 */
1226 spin_unlock(&inode_hash_lock);
1227 destroy_inode(inode);
1228 if (IS_ERR(old))
1229 return NULL;
1230 inode = old;
1231 wait_on_inode(inode);
1232 if (unlikely(inode_unhashed(inode))) {
1233 iput(inode);
1234 goto again;
1235 }
1236 }
1237 return inode;
1238}
1239EXPORT_SYMBOL(iget_locked);
1240
1241/*
1242 * search the inode cache for a matching inode number.
1243 * If we find one, then the inode number we are trying to
1244 * allocate is not unique and so we should not use it.
1245 *
1246 * Returns 1 if the inode number is unique, 0 if it is not.
1247 */
1248static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1249{
1250 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1251 struct inode *inode;
1252
1253 hlist_for_each_entry_rcu(inode, b, i_hash) {
1254 if (inode->i_ino == ino && inode->i_sb == sb)
1255 return 0;
1256 }
1257 return 1;
1258}
1259
1260/**
1261 * iunique - get a unique inode number
1262 * @sb: superblock
1263 * @max_reserved: highest reserved inode number
1264 *
1265 * Obtain an inode number that is unique on the system for a given
1266 * superblock. This is used by file systems that have no natural
1267 * permanent inode numbering system. An inode number is returned that
1268 * is higher than the reserved limit but unique.
1269 *
1270 * BUGS:
1271 * With a large number of inodes live on the file system this function
1272 * currently becomes quite slow.
1273 */
1274ino_t iunique(struct super_block *sb, ino_t max_reserved)
1275{
1276 /*
1277 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1278 * error if st_ino won't fit in target struct field. Use 32bit counter
1279 * here to attempt to avoid that.
1280 */
1281 static DEFINE_SPINLOCK(iunique_lock);
1282 static unsigned int counter;
1283 ino_t res;
1284
1285 rcu_read_lock();
1286 spin_lock(&iunique_lock);
1287 do {
1288 if (counter <= max_reserved)
1289 counter = max_reserved + 1;
1290 res = counter++;
1291 } while (!test_inode_iunique(sb, res));
1292 spin_unlock(&iunique_lock);
1293 rcu_read_unlock();
1294
1295 return res;
1296}
1297EXPORT_SYMBOL(iunique);
1298
1299struct inode *igrab(struct inode *inode)
1300{
1301 spin_lock(&inode->i_lock);
1302 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1303 __iget(inode);
1304 spin_unlock(&inode->i_lock);
1305 } else {
1306 spin_unlock(&inode->i_lock);
1307 /*
1308 * Handle the case where s_op->clear_inode is not been
1309 * called yet, and somebody is calling igrab
1310 * while the inode is getting freed.
1311 */
1312 inode = NULL;
1313 }
1314 return inode;
1315}
1316EXPORT_SYMBOL(igrab);
1317
1318/**
1319 * ilookup5_nowait - search for an inode in the inode cache
1320 * @sb: super block of file system to search
1321 * @hashval: hash value (usually inode number) to search for
1322 * @test: callback used for comparisons between inodes
1323 * @data: opaque data pointer to pass to @test
1324 *
1325 * Search for the inode specified by @hashval and @data in the inode cache.
1326 * If the inode is in the cache, the inode is returned with an incremented
1327 * reference count.
1328 *
1329 * Note: I_NEW is not waited upon so you have to be very careful what you do
1330 * with the returned inode. You probably should be using ilookup5() instead.
1331 *
1332 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1333 */
1334struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1335 int (*test)(struct inode *, void *), void *data)
1336{
1337 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1338 struct inode *inode;
1339
1340 spin_lock(&inode_hash_lock);
1341 inode = find_inode(sb, head, test, data);
1342 spin_unlock(&inode_hash_lock);
1343
1344 return IS_ERR(inode) ? NULL : inode;
1345}
1346EXPORT_SYMBOL(ilookup5_nowait);
1347
1348/**
1349 * ilookup5 - search for an inode in the inode cache
1350 * @sb: super block of file system to search
1351 * @hashval: hash value (usually inode number) to search for
1352 * @test: callback used for comparisons between inodes
1353 * @data: opaque data pointer to pass to @test
1354 *
1355 * Search for the inode specified by @hashval and @data in the inode cache,
1356 * and if the inode is in the cache, return the inode with an incremented
1357 * reference count. Waits on I_NEW before returning the inode.
1358 * returned with an incremented reference count.
1359 *
1360 * This is a generalized version of ilookup() for file systems where the
1361 * inode number is not sufficient for unique identification of an inode.
1362 *
1363 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1364 */
1365struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1366 int (*test)(struct inode *, void *), void *data)
1367{
1368 struct inode *inode;
1369again:
1370 inode = ilookup5_nowait(sb, hashval, test, data);
1371 if (inode) {
1372 wait_on_inode(inode);
1373 if (unlikely(inode_unhashed(inode))) {
1374 iput(inode);
1375 goto again;
1376 }
1377 }
1378 return inode;
1379}
1380EXPORT_SYMBOL(ilookup5);
1381
1382/**
1383 * ilookup - search for an inode in the inode cache
1384 * @sb: super block of file system to search
1385 * @ino: inode number to search for
1386 *
1387 * Search for the inode @ino in the inode cache, and if the inode is in the
1388 * cache, the inode is returned with an incremented reference count.
1389 */
1390struct inode *ilookup(struct super_block *sb, unsigned long ino)
1391{
1392 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1393 struct inode *inode;
1394again:
1395 spin_lock(&inode_hash_lock);
1396 inode = find_inode_fast(sb, head, ino);
1397 spin_unlock(&inode_hash_lock);
1398
1399 if (inode) {
1400 if (IS_ERR(inode))
1401 return NULL;
1402 wait_on_inode(inode);
1403 if (unlikely(inode_unhashed(inode))) {
1404 iput(inode);
1405 goto again;
1406 }
1407 }
1408 return inode;
1409}
1410EXPORT_SYMBOL(ilookup);
1411
1412/**
1413 * find_inode_nowait - find an inode in the inode cache
1414 * @sb: super block of file system to search
1415 * @hashval: hash value (usually inode number) to search for
1416 * @match: callback used for comparisons between inodes
1417 * @data: opaque data pointer to pass to @match
1418 *
1419 * Search for the inode specified by @hashval and @data in the inode
1420 * cache, where the helper function @match will return 0 if the inode
1421 * does not match, 1 if the inode does match, and -1 if the search
1422 * should be stopped. The @match function must be responsible for
1423 * taking the i_lock spin_lock and checking i_state for an inode being
1424 * freed or being initialized, and incrementing the reference count
1425 * before returning 1. It also must not sleep, since it is called with
1426 * the inode_hash_lock spinlock held.
1427 *
1428 * This is a even more generalized version of ilookup5() when the
1429 * function must never block --- find_inode() can block in
1430 * __wait_on_freeing_inode() --- or when the caller can not increment
1431 * the reference count because the resulting iput() might cause an
1432 * inode eviction. The tradeoff is that the @match funtion must be
1433 * very carefully implemented.
1434 */
1435struct inode *find_inode_nowait(struct super_block *sb,
1436 unsigned long hashval,
1437 int (*match)(struct inode *, unsigned long,
1438 void *),
1439 void *data)
1440{
1441 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1442 struct inode *inode, *ret_inode = NULL;
1443 int mval;
1444
1445 spin_lock(&inode_hash_lock);
1446 hlist_for_each_entry(inode, head, i_hash) {
1447 if (inode->i_sb != sb)
1448 continue;
1449 mval = match(inode, hashval, data);
1450 if (mval == 0)
1451 continue;
1452 if (mval == 1)
1453 ret_inode = inode;
1454 goto out;
1455 }
1456out:
1457 spin_unlock(&inode_hash_lock);
1458 return ret_inode;
1459}
1460EXPORT_SYMBOL(find_inode_nowait);
1461
1462/**
1463 * find_inode_rcu - find an inode in the inode cache
1464 * @sb: Super block of file system to search
1465 * @hashval: Key to hash
1466 * @test: Function to test match on an inode
1467 * @data: Data for test function
1468 *
1469 * Search for the inode specified by @hashval and @data in the inode cache,
1470 * where the helper function @test will return 0 if the inode does not match
1471 * and 1 if it does. The @test function must be responsible for taking the
1472 * i_lock spin_lock and checking i_state for an inode being freed or being
1473 * initialized.
1474 *
1475 * If successful, this will return the inode for which the @test function
1476 * returned 1 and NULL otherwise.
1477 *
1478 * The @test function is not permitted to take a ref on any inode presented.
1479 * It is also not permitted to sleep.
1480 *
1481 * The caller must hold the RCU read lock.
1482 */
1483struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1484 int (*test)(struct inode *, void *), void *data)
1485{
1486 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1487 struct inode *inode;
1488
1489 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1490 "suspicious find_inode_rcu() usage");
1491
1492 hlist_for_each_entry_rcu(inode, head, i_hash) {
1493 if (inode->i_sb == sb &&
1494 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1495 test(inode, data))
1496 return inode;
1497 }
1498 return NULL;
1499}
1500EXPORT_SYMBOL(find_inode_rcu);
1501
1502/**
1503 * find_inode_by_ino_rcu - Find an inode in the inode cache
1504 * @sb: Super block of file system to search
1505 * @ino: The inode number to match
1506 *
1507 * Search for the inode specified by @hashval and @data in the inode cache,
1508 * where the helper function @test will return 0 if the inode does not match
1509 * and 1 if it does. The @test function must be responsible for taking the
1510 * i_lock spin_lock and checking i_state for an inode being freed or being
1511 * initialized.
1512 *
1513 * If successful, this will return the inode for which the @test function
1514 * returned 1 and NULL otherwise.
1515 *
1516 * The @test function is not permitted to take a ref on any inode presented.
1517 * It is also not permitted to sleep.
1518 *
1519 * The caller must hold the RCU read lock.
1520 */
1521struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1522 unsigned long ino)
1523{
1524 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1525 struct inode *inode;
1526
1527 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1528 "suspicious find_inode_by_ino_rcu() usage");
1529
1530 hlist_for_each_entry_rcu(inode, head, i_hash) {
1531 if (inode->i_ino == ino &&
1532 inode->i_sb == sb &&
1533 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1534 return inode;
1535 }
1536 return NULL;
1537}
1538EXPORT_SYMBOL(find_inode_by_ino_rcu);
1539
1540int insert_inode_locked(struct inode *inode)
1541{
1542 struct super_block *sb = inode->i_sb;
1543 ino_t ino = inode->i_ino;
1544 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1545
1546 while (1) {
1547 struct inode *old = NULL;
1548 spin_lock(&inode_hash_lock);
1549 hlist_for_each_entry(old, head, i_hash) {
1550 if (old->i_ino != ino)
1551 continue;
1552 if (old->i_sb != sb)
1553 continue;
1554 spin_lock(&old->i_lock);
1555 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1556 spin_unlock(&old->i_lock);
1557 continue;
1558 }
1559 break;
1560 }
1561 if (likely(!old)) {
1562 spin_lock(&inode->i_lock);
1563 inode->i_state |= I_NEW | I_CREATING;
1564 hlist_add_head_rcu(&inode->i_hash, head);
1565 spin_unlock(&inode->i_lock);
1566 spin_unlock(&inode_hash_lock);
1567 return 0;
1568 }
1569 if (unlikely(old->i_state & I_CREATING)) {
1570 spin_unlock(&old->i_lock);
1571 spin_unlock(&inode_hash_lock);
1572 return -EBUSY;
1573 }
1574 __iget(old);
1575 spin_unlock(&old->i_lock);
1576 spin_unlock(&inode_hash_lock);
1577 wait_on_inode(old);
1578 if (unlikely(!inode_unhashed(old))) {
1579 iput(old);
1580 return -EBUSY;
1581 }
1582 iput(old);
1583 }
1584}
1585EXPORT_SYMBOL(insert_inode_locked);
1586
1587int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1588 int (*test)(struct inode *, void *), void *data)
1589{
1590 struct inode *old;
1591
1592 inode->i_state |= I_CREATING;
1593 old = inode_insert5(inode, hashval, test, NULL, data);
1594
1595 if (old != inode) {
1596 iput(old);
1597 return -EBUSY;
1598 }
1599 return 0;
1600}
1601EXPORT_SYMBOL(insert_inode_locked4);
1602
1603
1604int generic_delete_inode(struct inode *inode)
1605{
1606 return 1;
1607}
1608EXPORT_SYMBOL(generic_delete_inode);
1609
1610/*
1611 * Called when we're dropping the last reference
1612 * to an inode.
1613 *
1614 * Call the FS "drop_inode()" function, defaulting to
1615 * the legacy UNIX filesystem behaviour. If it tells
1616 * us to evict inode, do so. Otherwise, retain inode
1617 * in cache if fs is alive, sync and evict if fs is
1618 * shutting down.
1619 */
1620static void iput_final(struct inode *inode)
1621{
1622 struct super_block *sb = inode->i_sb;
1623 const struct super_operations *op = inode->i_sb->s_op;
1624 unsigned long state;
1625 int drop;
1626
1627 WARN_ON(inode->i_state & I_NEW);
1628
1629 if (op->drop_inode)
1630 drop = op->drop_inode(inode);
1631 else
1632 drop = generic_drop_inode(inode);
1633
1634 if (!drop &&
1635 !(inode->i_state & I_DONTCACHE) &&
1636 (sb->s_flags & SB_ACTIVE)) {
1637 inode_add_lru(inode);
1638 spin_unlock(&inode->i_lock);
1639 return;
1640 }
1641
1642 state = inode->i_state;
1643 if (!drop) {
1644 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1645 spin_unlock(&inode->i_lock);
1646
1647 write_inode_now(inode, 1);
1648
1649 spin_lock(&inode->i_lock);
1650 state = inode->i_state;
1651 WARN_ON(state & I_NEW);
1652 state &= ~I_WILL_FREE;
1653 }
1654
1655 WRITE_ONCE(inode->i_state, state | I_FREEING);
1656 if (!list_empty(&inode->i_lru))
1657 inode_lru_list_del(inode);
1658 spin_unlock(&inode->i_lock);
1659
1660 evict(inode);
1661}
1662
1663/**
1664 * iput - put an inode
1665 * @inode: inode to put
1666 *
1667 * Puts an inode, dropping its usage count. If the inode use count hits
1668 * zero, the inode is then freed and may also be destroyed.
1669 *
1670 * Consequently, iput() can sleep.
1671 */
1672void iput(struct inode *inode)
1673{
1674 if (!inode)
1675 return;
1676 BUG_ON(inode->i_state & I_CLEAR);
1677retry:
1678 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1679 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1680 atomic_inc(&inode->i_count);
1681 spin_unlock(&inode->i_lock);
1682 trace_writeback_lazytime_iput(inode);
1683 mark_inode_dirty_sync(inode);
1684 goto retry;
1685 }
1686 iput_final(inode);
1687 }
1688}
1689EXPORT_SYMBOL(iput);
1690
1691#ifdef CONFIG_BLOCK
1692/**
1693 * bmap - find a block number in a file
1694 * @inode: inode owning the block number being requested
1695 * @block: pointer containing the block to find
1696 *
1697 * Replaces the value in ``*block`` with the block number on the device holding
1698 * corresponding to the requested block number in the file.
1699 * That is, asked for block 4 of inode 1 the function will replace the
1700 * 4 in ``*block``, with disk block relative to the disk start that holds that
1701 * block of the file.
1702 *
1703 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1704 * hole, returns 0 and ``*block`` is also set to 0.
1705 */
1706int bmap(struct inode *inode, sector_t *block)
1707{
1708 if (!inode->i_mapping->a_ops->bmap)
1709 return -EINVAL;
1710
1711 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1712 return 0;
1713}
1714EXPORT_SYMBOL(bmap);
1715#endif
1716
1717/*
1718 * With relative atime, only update atime if the previous atime is
1719 * earlier than either the ctime or mtime or if at least a day has
1720 * passed since the last atime update.
1721 */
1722static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1723 struct timespec64 now)
1724{
1725
1726 if (!(mnt->mnt_flags & MNT_RELATIME))
1727 return 1;
1728 /*
1729 * Is mtime younger than atime? If yes, update atime:
1730 */
1731 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1732 return 1;
1733 /*
1734 * Is ctime younger than atime? If yes, update atime:
1735 */
1736 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1737 return 1;
1738
1739 /*
1740 * Is the previous atime value older than a day? If yes,
1741 * update atime:
1742 */
1743 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1744 return 1;
1745 /*
1746 * Good, we can skip the atime update:
1747 */
1748 return 0;
1749}
1750
1751int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1752{
1753 int dirty_flags = 0;
1754
1755 if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1756 if (flags & S_ATIME)
1757 inode->i_atime = *time;
1758 if (flags & S_CTIME)
1759 inode->i_ctime = *time;
1760 if (flags & S_MTIME)
1761 inode->i_mtime = *time;
1762
1763 if (inode->i_sb->s_flags & SB_LAZYTIME)
1764 dirty_flags |= I_DIRTY_TIME;
1765 else
1766 dirty_flags |= I_DIRTY_SYNC;
1767 }
1768
1769 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1770 dirty_flags |= I_DIRTY_SYNC;
1771
1772 __mark_inode_dirty(inode, dirty_flags);
1773 return 0;
1774}
1775EXPORT_SYMBOL(generic_update_time);
1776
1777/*
1778 * This does the actual work of updating an inodes time or version. Must have
1779 * had called mnt_want_write() before calling this.
1780 */
1781static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1782{
1783 if (inode->i_op->update_time)
1784 return inode->i_op->update_time(inode, time, flags);
1785 return generic_update_time(inode, time, flags);
1786}
1787
1788/**
1789 * atime_needs_update - update the access time
1790 * @path: the &struct path to update
1791 * @inode: inode to update
1792 *
1793 * Update the accessed time on an inode and mark it for writeback.
1794 * This function automatically handles read only file systems and media,
1795 * as well as the "noatime" flag and inode specific "noatime" markers.
1796 */
1797bool atime_needs_update(const struct path *path, struct inode *inode)
1798{
1799 struct vfsmount *mnt = path->mnt;
1800 struct timespec64 now;
1801
1802 if (inode->i_flags & S_NOATIME)
1803 return false;
1804
1805 /* Atime updates will likely cause i_uid and i_gid to be written
1806 * back improprely if their true value is unknown to the vfs.
1807 */
1808 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1809 return false;
1810
1811 if (IS_NOATIME(inode))
1812 return false;
1813 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1814 return false;
1815
1816 if (mnt->mnt_flags & MNT_NOATIME)
1817 return false;
1818 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1819 return false;
1820
1821 now = current_time(inode);
1822
1823 if (!relatime_need_update(mnt, inode, now))
1824 return false;
1825
1826 if (timespec64_equal(&inode->i_atime, &now))
1827 return false;
1828
1829 return true;
1830}
1831
1832void touch_atime(const struct path *path)
1833{
1834 struct vfsmount *mnt = path->mnt;
1835 struct inode *inode = d_inode(path->dentry);
1836 struct timespec64 now;
1837
1838 if (!atime_needs_update(path, inode))
1839 return;
1840
1841 if (!sb_start_write_trylock(inode->i_sb))
1842 return;
1843
1844 if (__mnt_want_write(mnt) != 0)
1845 goto skip_update;
1846 /*
1847 * File systems can error out when updating inodes if they need to
1848 * allocate new space to modify an inode (such is the case for
1849 * Btrfs), but since we touch atime while walking down the path we
1850 * really don't care if we failed to update the atime of the file,
1851 * so just ignore the return value.
1852 * We may also fail on filesystems that have the ability to make parts
1853 * of the fs read only, e.g. subvolumes in Btrfs.
1854 */
1855 now = current_time(inode);
1856 update_time(inode, &now, S_ATIME);
1857 __mnt_drop_write(mnt);
1858skip_update:
1859 sb_end_write(inode->i_sb);
1860}
1861EXPORT_SYMBOL(touch_atime);
1862
1863/*
1864 * The logic we want is
1865 *
1866 * if suid or (sgid and xgrp)
1867 * remove privs
1868 */
1869int should_remove_suid(struct dentry *dentry)
1870{
1871 umode_t mode = d_inode(dentry)->i_mode;
1872 int kill = 0;
1873
1874 /* suid always must be killed */
1875 if (unlikely(mode & S_ISUID))
1876 kill = ATTR_KILL_SUID;
1877
1878 /*
1879 * sgid without any exec bits is just a mandatory locking mark; leave
1880 * it alone. If some exec bits are set, it's a real sgid; kill it.
1881 */
1882 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1883 kill |= ATTR_KILL_SGID;
1884
1885 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1886 return kill;
1887
1888 return 0;
1889}
1890EXPORT_SYMBOL(should_remove_suid);
1891
1892/*
1893 * Return mask of changes for notify_change() that need to be done as a
1894 * response to write or truncate. Return 0 if nothing has to be changed.
1895 * Negative value on error (change should be denied).
1896 */
1897int dentry_needs_remove_privs(struct dentry *dentry)
1898{
1899 struct inode *inode = d_inode(dentry);
1900 int mask = 0;
1901 int ret;
1902
1903 if (IS_NOSEC(inode))
1904 return 0;
1905
1906 mask = should_remove_suid(dentry);
1907 ret = security_inode_need_killpriv(dentry);
1908 if (ret < 0)
1909 return ret;
1910 if (ret)
1911 mask |= ATTR_KILL_PRIV;
1912 return mask;
1913}
1914
1915static int __remove_privs(struct user_namespace *mnt_userns,
1916 struct dentry *dentry, int kill)
1917{
1918 struct iattr newattrs;
1919
1920 newattrs.ia_valid = ATTR_FORCE | kill;
1921 /*
1922 * Note we call this on write, so notify_change will not
1923 * encounter any conflicting delegations:
1924 */
1925 return notify_change(mnt_userns, dentry, &newattrs, NULL);
1926}
1927
1928/*
1929 * Remove special file priviledges (suid, capabilities) when file is written
1930 * to or truncated.
1931 */
1932int file_remove_privs(struct file *file)
1933{
1934 struct dentry *dentry = file_dentry(file);
1935 struct inode *inode = file_inode(file);
1936 int kill;
1937 int error = 0;
1938
1939 /*
1940 * Fast path for nothing security related.
1941 * As well for non-regular files, e.g. blkdev inodes.
1942 * For example, blkdev_write_iter() might get here
1943 * trying to remove privs which it is not allowed to.
1944 */
1945 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1946 return 0;
1947
1948 kill = dentry_needs_remove_privs(dentry);
1949 if (kill < 0)
1950 return kill;
1951 if (kill)
1952 error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
1953 if (!error)
1954 inode_has_no_xattr(inode);
1955
1956 return error;
1957}
1958EXPORT_SYMBOL(file_remove_privs);
1959
1960/**
1961 * file_update_time - update mtime and ctime time
1962 * @file: file accessed
1963 *
1964 * Update the mtime and ctime members of an inode and mark the inode
1965 * for writeback. Note that this function is meant exclusively for
1966 * usage in the file write path of filesystems, and filesystems may
1967 * choose to explicitly ignore update via this function with the
1968 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1969 * timestamps are handled by the server. This can return an error for
1970 * file systems who need to allocate space in order to update an inode.
1971 */
1972
1973int file_update_time(struct file *file)
1974{
1975 struct inode *inode = file_inode(file);
1976 struct timespec64 now;
1977 int sync_it = 0;
1978 int ret;
1979
1980 /* First try to exhaust all avenues to not sync */
1981 if (IS_NOCMTIME(inode))
1982 return 0;
1983
1984 now = current_time(inode);
1985 if (!timespec64_equal(&inode->i_mtime, &now))
1986 sync_it = S_MTIME;
1987
1988 if (!timespec64_equal(&inode->i_ctime, &now))
1989 sync_it |= S_CTIME;
1990
1991 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1992 sync_it |= S_VERSION;
1993
1994 if (!sync_it)
1995 return 0;
1996
1997 /* Finally allowed to write? Takes lock. */
1998 if (__mnt_want_write_file(file))
1999 return 0;
2000
2001 ret = update_time(inode, &now, sync_it);
2002 __mnt_drop_write_file(file);
2003
2004 return ret;
2005}
2006EXPORT_SYMBOL(file_update_time);
2007
2008/* Caller must hold the file's inode lock */
2009int file_modified(struct file *file)
2010{
2011 int err;
2012
2013 /*
2014 * Clear the security bits if the process is not being run by root.
2015 * This keeps people from modifying setuid and setgid binaries.
2016 */
2017 err = file_remove_privs(file);
2018 if (err)
2019 return err;
2020
2021 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2022 return 0;
2023
2024 return file_update_time(file);
2025}
2026EXPORT_SYMBOL(file_modified);
2027
2028int inode_needs_sync(struct inode *inode)
2029{
2030 if (IS_SYNC(inode))
2031 return 1;
2032 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2033 return 1;
2034 return 0;
2035}
2036EXPORT_SYMBOL(inode_needs_sync);
2037
2038/*
2039 * If we try to find an inode in the inode hash while it is being
2040 * deleted, we have to wait until the filesystem completes its
2041 * deletion before reporting that it isn't found. This function waits
2042 * until the deletion _might_ have completed. Callers are responsible
2043 * to recheck inode state.
2044 *
2045 * It doesn't matter if I_NEW is not set initially, a call to
2046 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2047 * will DTRT.
2048 */
2049static void __wait_on_freeing_inode(struct inode *inode)
2050{
2051 wait_queue_head_t *wq;
2052 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2053 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2054 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2055 spin_unlock(&inode->i_lock);
2056 spin_unlock(&inode_hash_lock);
2057 schedule();
2058 finish_wait(wq, &wait.wq_entry);
2059 spin_lock(&inode_hash_lock);
2060}
2061
2062static __initdata unsigned long ihash_entries;
2063static int __init set_ihash_entries(char *str)
2064{
2065 if (!str)
2066 return 0;
2067 ihash_entries = simple_strtoul(str, &str, 0);
2068 return 1;
2069}
2070__setup("ihash_entries=", set_ihash_entries);
2071
2072/*
2073 * Initialize the waitqueues and inode hash table.
2074 */
2075void __init inode_init_early(void)
2076{
2077 /* If hashes are distributed across NUMA nodes, defer
2078 * hash allocation until vmalloc space is available.
2079 */
2080 if (hashdist)
2081 return;
2082
2083 inode_hashtable =
2084 alloc_large_system_hash("Inode-cache",
2085 sizeof(struct hlist_head),
2086 ihash_entries,
2087 14,
2088 HASH_EARLY | HASH_ZERO,
2089 &i_hash_shift,
2090 &i_hash_mask,
2091 0,
2092 0);
2093}
2094
2095void __init inode_init(void)
2096{
2097 /* inode slab cache */
2098 inode_cachep = kmem_cache_create("inode_cache",
2099 sizeof(struct inode),
2100 0,
2101 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2102 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2103 init_once);
2104
2105 /* Hash may have been set up in inode_init_early */
2106 if (!hashdist)
2107 return;
2108
2109 inode_hashtable =
2110 alloc_large_system_hash("Inode-cache",
2111 sizeof(struct hlist_head),
2112 ihash_entries,
2113 14,
2114 HASH_ZERO,
2115 &i_hash_shift,
2116 &i_hash_mask,
2117 0,
2118 0);
2119}
2120
2121void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2122{
2123 inode->i_mode = mode;
2124 if (S_ISCHR(mode)) {
2125 inode->i_fop = &def_chr_fops;
2126 inode->i_rdev = rdev;
2127 } else if (S_ISBLK(mode)) {
2128 inode->i_fop = &def_blk_fops;
2129 inode->i_rdev = rdev;
2130 } else if (S_ISFIFO(mode))
2131 inode->i_fop = &pipefifo_fops;
2132 else if (S_ISSOCK(mode))
2133 ; /* leave it no_open_fops */
2134 else
2135 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2136 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2137 inode->i_ino);
2138}
2139EXPORT_SYMBOL(init_special_inode);
2140
2141/**
2142 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2143 * @mnt_userns: User namespace of the mount the inode was created from
2144 * @inode: New inode
2145 * @dir: Directory inode
2146 * @mode: mode of the new inode
2147 *
2148 * If the inode has been created through an idmapped mount the user namespace of
2149 * the vfsmount must be passed through @mnt_userns. This function will then take
2150 * care to map the inode according to @mnt_userns before checking permissions
2151 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2152 * checking is to be performed on the raw inode simply passs init_user_ns.
2153 */
2154void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2155 const struct inode *dir, umode_t mode)
2156{
2157 inode_fsuid_set(inode, mnt_userns);
2158 if (dir && dir->i_mode & S_ISGID) {
2159 inode->i_gid = dir->i_gid;
2160
2161 /* Directories are special, and always inherit S_ISGID */
2162 if (S_ISDIR(mode))
2163 mode |= S_ISGID;
2164 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2165 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
2166 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2167 mode &= ~S_ISGID;
2168 } else
2169 inode_fsgid_set(inode, mnt_userns);
2170 inode->i_mode = mode;
2171}
2172EXPORT_SYMBOL(inode_init_owner);
2173
2174/**
2175 * inode_owner_or_capable - check current task permissions to inode
2176 * @mnt_userns: user namespace of the mount the inode was found from
2177 * @inode: inode being checked
2178 *
2179 * Return true if current either has CAP_FOWNER in a namespace with the
2180 * inode owner uid mapped, or owns the file.
2181 *
2182 * If the inode has been found through an idmapped mount the user namespace of
2183 * the vfsmount must be passed through @mnt_userns. This function will then take
2184 * care to map the inode according to @mnt_userns before checking permissions.
2185 * On non-idmapped mounts or if permission checking is to be performed on the
2186 * raw inode simply passs init_user_ns.
2187 */
2188bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2189 const struct inode *inode)
2190{
2191 kuid_t i_uid;
2192 struct user_namespace *ns;
2193
2194 i_uid = i_uid_into_mnt(mnt_userns, inode);
2195 if (uid_eq(current_fsuid(), i_uid))
2196 return true;
2197
2198 ns = current_user_ns();
2199 if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2200 return true;
2201 return false;
2202}
2203EXPORT_SYMBOL(inode_owner_or_capable);
2204
2205/*
2206 * Direct i/o helper functions
2207 */
2208static void __inode_dio_wait(struct inode *inode)
2209{
2210 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2211 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2212
2213 do {
2214 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2215 if (atomic_read(&inode->i_dio_count))
2216 schedule();
2217 } while (atomic_read(&inode->i_dio_count));
2218 finish_wait(wq, &q.wq_entry);
2219}
2220
2221/**
2222 * inode_dio_wait - wait for outstanding DIO requests to finish
2223 * @inode: inode to wait for
2224 *
2225 * Waits for all pending direct I/O requests to finish so that we can
2226 * proceed with a truncate or equivalent operation.
2227 *
2228 * Must be called under a lock that serializes taking new references
2229 * to i_dio_count, usually by inode->i_mutex.
2230 */
2231void inode_dio_wait(struct inode *inode)
2232{
2233 if (atomic_read(&inode->i_dio_count))
2234 __inode_dio_wait(inode);
2235}
2236EXPORT_SYMBOL(inode_dio_wait);
2237
2238/*
2239 * inode_set_flags - atomically set some inode flags
2240 *
2241 * Note: the caller should be holding i_mutex, or else be sure that
2242 * they have exclusive access to the inode structure (i.e., while the
2243 * inode is being instantiated). The reason for the cmpxchg() loop
2244 * --- which wouldn't be necessary if all code paths which modify
2245 * i_flags actually followed this rule, is that there is at least one
2246 * code path which doesn't today so we use cmpxchg() out of an abundance
2247 * of caution.
2248 *
2249 * In the long run, i_mutex is overkill, and we should probably look
2250 * at using the i_lock spinlock to protect i_flags, and then make sure
2251 * it is so documented in include/linux/fs.h and that all code follows
2252 * the locking convention!!
2253 */
2254void inode_set_flags(struct inode *inode, unsigned int flags,
2255 unsigned int mask)
2256{
2257 WARN_ON_ONCE(flags & ~mask);
2258 set_mask_bits(&inode->i_flags, mask, flags);
2259}
2260EXPORT_SYMBOL(inode_set_flags);
2261
2262void inode_nohighmem(struct inode *inode)
2263{
2264 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2265}
2266EXPORT_SYMBOL(inode_nohighmem);
2267
2268/**
2269 * timestamp_truncate - Truncate timespec to a granularity
2270 * @t: Timespec
2271 * @inode: inode being updated
2272 *
2273 * Truncate a timespec to the granularity supported by the fs
2274 * containing the inode. Always rounds down. gran must
2275 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2276 */
2277struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2278{
2279 struct super_block *sb = inode->i_sb;
2280 unsigned int gran = sb->s_time_gran;
2281
2282 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2283 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2284 t.tv_nsec = 0;
2285
2286 /* Avoid division in the common cases 1 ns and 1 s. */
2287 if (gran == 1)
2288 ; /* nothing */
2289 else if (gran == NSEC_PER_SEC)
2290 t.tv_nsec = 0;
2291 else if (gran > 1 && gran < NSEC_PER_SEC)
2292 t.tv_nsec -= t.tv_nsec % gran;
2293 else
2294 WARN(1, "invalid file time granularity: %u", gran);
2295 return t;
2296}
2297EXPORT_SYMBOL(timestamp_truncate);
2298
2299/**
2300 * current_time - Return FS time
2301 * @inode: inode.
2302 *
2303 * Return the current time truncated to the time granularity supported by
2304 * the fs.
2305 *
2306 * Note that inode and inode->sb cannot be NULL.
2307 * Otherwise, the function warns and returns time without truncation.
2308 */
2309struct timespec64 current_time(struct inode *inode)
2310{
2311 struct timespec64 now;
2312
2313 ktime_get_coarse_real_ts64(&now);
2314
2315 if (unlikely(!inode->i_sb)) {
2316 WARN(1, "current_time() called with uninitialized super_block in the inode");
2317 return now;
2318 }
2319
2320 return timestamp_truncate(now, inode);
2321}
2322EXPORT_SYMBOL(current_time);