Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6#include <linux/export.h>
7#include <linux/fs.h>
8#include <linux/mm.h>
9#include <linux/backing-dev.h>
10#include <linux/hash.h>
11#include <linux/swap.h>
12#include <linux/security.h>
13#include <linux/cdev.h>
14#include <linux/memblock.h>
15#include <linux/fsnotify.h>
16#include <linux/mount.h>
17#include <linux/posix_acl.h>
18#include <linux/prefetch.h>
19#include <linux/buffer_head.h> /* for inode_has_buffers */
20#include <linux/ratelimit.h>
21#include <linux/list_lru.h>
22#include <linux/iversion.h>
23#include <trace/events/writeback.h>
24#include "internal.h"
25
26/*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57static unsigned int i_hash_mask __read_mostly;
58static unsigned int i_hash_shift __read_mostly;
59static struct hlist_head *inode_hashtable __read_mostly;
60static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62/*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66const struct address_space_operations empty_aops = {
67};
68EXPORT_SYMBOL(empty_aops);
69
70static DEFINE_PER_CPU(unsigned long, nr_inodes);
71static DEFINE_PER_CPU(unsigned long, nr_unused);
72
73static struct kmem_cache *inode_cachep __read_mostly;
74
75static long get_nr_inodes(void)
76{
77 int i;
78 long sum = 0;
79 for_each_possible_cpu(i)
80 sum += per_cpu(nr_inodes, i);
81 return sum < 0 ? 0 : sum;
82}
83
84static inline long get_nr_inodes_unused(void)
85{
86 int i;
87 long sum = 0;
88 for_each_possible_cpu(i)
89 sum += per_cpu(nr_unused, i);
90 return sum < 0 ? 0 : sum;
91}
92
93long get_nr_dirty_inodes(void)
94{
95 /* not actually dirty inodes, but a wild approximation */
96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
97 return nr_dirty > 0 ? nr_dirty : 0;
98}
99
100/*
101 * Handle nr_inode sysctl
102 */
103#ifdef CONFIG_SYSCTL
104/*
105 * Statistics gathering..
106 */
107static struct inodes_stat_t inodes_stat;
108
109static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
110 size_t *lenp, loff_t *ppos)
111{
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115}
116
117static struct ctl_table inodes_sysctls[] = {
118 {
119 .procname = "inode-nr",
120 .data = &inodes_stat,
121 .maxlen = 2*sizeof(long),
122 .mode = 0444,
123 .proc_handler = proc_nr_inodes,
124 },
125 {
126 .procname = "inode-state",
127 .data = &inodes_stat,
128 .maxlen = 7*sizeof(long),
129 .mode = 0444,
130 .proc_handler = proc_nr_inodes,
131 },
132 { }
133};
134
135static int __init init_fs_inode_sysctls(void)
136{
137 register_sysctl_init("fs", inodes_sysctls);
138 return 0;
139}
140early_initcall(init_fs_inode_sysctls);
141#endif
142
143static int no_open(struct inode *inode, struct file *file)
144{
145 return -ENXIO;
146}
147
148/**
149 * inode_init_always - perform inode structure initialisation
150 * @sb: superblock inode belongs to
151 * @inode: inode to initialise
152 *
153 * These are initializations that need to be done on every inode
154 * allocation as the fields are not initialised by slab allocation.
155 */
156int inode_init_always(struct super_block *sb, struct inode *inode)
157{
158 static const struct inode_operations empty_iops;
159 static const struct file_operations no_open_fops = {.open = no_open};
160 struct address_space *const mapping = &inode->i_data;
161
162 inode->i_sb = sb;
163 inode->i_blkbits = sb->s_blocksize_bits;
164 inode->i_flags = 0;
165 atomic64_set(&inode->i_sequence, 0);
166 atomic_set(&inode->i_count, 1);
167 inode->i_op = &empty_iops;
168 inode->i_fop = &no_open_fops;
169 inode->i_ino = 0;
170 inode->__i_nlink = 1;
171 inode->i_opflags = 0;
172 if (sb->s_xattr)
173 inode->i_opflags |= IOP_XATTR;
174 i_uid_write(inode, 0);
175 i_gid_write(inode, 0);
176 atomic_set(&inode->i_writecount, 0);
177 inode->i_size = 0;
178 inode->i_write_hint = WRITE_LIFE_NOT_SET;
179 inode->i_blocks = 0;
180 inode->i_bytes = 0;
181 inode->i_generation = 0;
182 inode->i_pipe = NULL;
183 inode->i_cdev = NULL;
184 inode->i_link = NULL;
185 inode->i_dir_seq = 0;
186 inode->i_rdev = 0;
187 inode->dirtied_when = 0;
188
189#ifdef CONFIG_CGROUP_WRITEBACK
190 inode->i_wb_frn_winner = 0;
191 inode->i_wb_frn_avg_time = 0;
192 inode->i_wb_frn_history = 0;
193#endif
194
195 spin_lock_init(&inode->i_lock);
196 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
197
198 init_rwsem(&inode->i_rwsem);
199 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
200
201 atomic_set(&inode->i_dio_count, 0);
202
203 mapping->a_ops = &empty_aops;
204 mapping->host = inode;
205 mapping->flags = 0;
206 mapping->wb_err = 0;
207 atomic_set(&mapping->i_mmap_writable, 0);
208#ifdef CONFIG_READ_ONLY_THP_FOR_FS
209 atomic_set(&mapping->nr_thps, 0);
210#endif
211 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
212 mapping->private_data = NULL;
213 mapping->writeback_index = 0;
214 init_rwsem(&mapping->invalidate_lock);
215 lockdep_set_class_and_name(&mapping->invalidate_lock,
216 &sb->s_type->invalidate_lock_key,
217 "mapping.invalidate_lock");
218 inode->i_private = NULL;
219 inode->i_mapping = mapping;
220 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
221#ifdef CONFIG_FS_POSIX_ACL
222 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
223#endif
224
225#ifdef CONFIG_FSNOTIFY
226 inode->i_fsnotify_mask = 0;
227#endif
228 inode->i_flctx = NULL;
229
230 if (unlikely(security_inode_alloc(inode)))
231 return -ENOMEM;
232 this_cpu_inc(nr_inodes);
233
234 return 0;
235}
236EXPORT_SYMBOL(inode_init_always);
237
238void free_inode_nonrcu(struct inode *inode)
239{
240 kmem_cache_free(inode_cachep, inode);
241}
242EXPORT_SYMBOL(free_inode_nonrcu);
243
244static void i_callback(struct rcu_head *head)
245{
246 struct inode *inode = container_of(head, struct inode, i_rcu);
247 if (inode->free_inode)
248 inode->free_inode(inode);
249 else
250 free_inode_nonrcu(inode);
251}
252
253static struct inode *alloc_inode(struct super_block *sb)
254{
255 const struct super_operations *ops = sb->s_op;
256 struct inode *inode;
257
258 if (ops->alloc_inode)
259 inode = ops->alloc_inode(sb);
260 else
261 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
262
263 if (!inode)
264 return NULL;
265
266 if (unlikely(inode_init_always(sb, inode))) {
267 if (ops->destroy_inode) {
268 ops->destroy_inode(inode);
269 if (!ops->free_inode)
270 return NULL;
271 }
272 inode->free_inode = ops->free_inode;
273 i_callback(&inode->i_rcu);
274 return NULL;
275 }
276
277 return inode;
278}
279
280void __destroy_inode(struct inode *inode)
281{
282 BUG_ON(inode_has_buffers(inode));
283 inode_detach_wb(inode);
284 security_inode_free(inode);
285 fsnotify_inode_delete(inode);
286 locks_free_lock_context(inode);
287 if (!inode->i_nlink) {
288 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
289 atomic_long_dec(&inode->i_sb->s_remove_count);
290 }
291
292#ifdef CONFIG_FS_POSIX_ACL
293 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
294 posix_acl_release(inode->i_acl);
295 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
296 posix_acl_release(inode->i_default_acl);
297#endif
298 this_cpu_dec(nr_inodes);
299}
300EXPORT_SYMBOL(__destroy_inode);
301
302static void destroy_inode(struct inode *inode)
303{
304 const struct super_operations *ops = inode->i_sb->s_op;
305
306 BUG_ON(!list_empty(&inode->i_lru));
307 __destroy_inode(inode);
308 if (ops->destroy_inode) {
309 ops->destroy_inode(inode);
310 if (!ops->free_inode)
311 return;
312 }
313 inode->free_inode = ops->free_inode;
314 call_rcu(&inode->i_rcu, i_callback);
315}
316
317/**
318 * drop_nlink - directly drop an inode's link count
319 * @inode: inode
320 *
321 * This is a low-level filesystem helper to replace any
322 * direct filesystem manipulation of i_nlink. In cases
323 * where we are attempting to track writes to the
324 * filesystem, a decrement to zero means an imminent
325 * write when the file is truncated and actually unlinked
326 * on the filesystem.
327 */
328void drop_nlink(struct inode *inode)
329{
330 WARN_ON(inode->i_nlink == 0);
331 inode->__i_nlink--;
332 if (!inode->i_nlink)
333 atomic_long_inc(&inode->i_sb->s_remove_count);
334}
335EXPORT_SYMBOL(drop_nlink);
336
337/**
338 * clear_nlink - directly zero an inode's link count
339 * @inode: inode
340 *
341 * This is a low-level filesystem helper to replace any
342 * direct filesystem manipulation of i_nlink. See
343 * drop_nlink() for why we care about i_nlink hitting zero.
344 */
345void clear_nlink(struct inode *inode)
346{
347 if (inode->i_nlink) {
348 inode->__i_nlink = 0;
349 atomic_long_inc(&inode->i_sb->s_remove_count);
350 }
351}
352EXPORT_SYMBOL(clear_nlink);
353
354/**
355 * set_nlink - directly set an inode's link count
356 * @inode: inode
357 * @nlink: new nlink (should be non-zero)
358 *
359 * This is a low-level filesystem helper to replace any
360 * direct filesystem manipulation of i_nlink.
361 */
362void set_nlink(struct inode *inode, unsigned int nlink)
363{
364 if (!nlink) {
365 clear_nlink(inode);
366 } else {
367 /* Yes, some filesystems do change nlink from zero to one */
368 if (inode->i_nlink == 0)
369 atomic_long_dec(&inode->i_sb->s_remove_count);
370
371 inode->__i_nlink = nlink;
372 }
373}
374EXPORT_SYMBOL(set_nlink);
375
376/**
377 * inc_nlink - directly increment an inode's link count
378 * @inode: inode
379 *
380 * This is a low-level filesystem helper to replace any
381 * direct filesystem manipulation of i_nlink. Currently,
382 * it is only here for parity with dec_nlink().
383 */
384void inc_nlink(struct inode *inode)
385{
386 if (unlikely(inode->i_nlink == 0)) {
387 WARN_ON(!(inode->i_state & I_LINKABLE));
388 atomic_long_dec(&inode->i_sb->s_remove_count);
389 }
390
391 inode->__i_nlink++;
392}
393EXPORT_SYMBOL(inc_nlink);
394
395static void __address_space_init_once(struct address_space *mapping)
396{
397 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
398 init_rwsem(&mapping->i_mmap_rwsem);
399 INIT_LIST_HEAD(&mapping->private_list);
400 spin_lock_init(&mapping->private_lock);
401 mapping->i_mmap = RB_ROOT_CACHED;
402}
403
404void address_space_init_once(struct address_space *mapping)
405{
406 memset(mapping, 0, sizeof(*mapping));
407 __address_space_init_once(mapping);
408}
409EXPORT_SYMBOL(address_space_init_once);
410
411/*
412 * These are initializations that only need to be done
413 * once, because the fields are idempotent across use
414 * of the inode, so let the slab aware of that.
415 */
416void inode_init_once(struct inode *inode)
417{
418 memset(inode, 0, sizeof(*inode));
419 INIT_HLIST_NODE(&inode->i_hash);
420 INIT_LIST_HEAD(&inode->i_devices);
421 INIT_LIST_HEAD(&inode->i_io_list);
422 INIT_LIST_HEAD(&inode->i_wb_list);
423 INIT_LIST_HEAD(&inode->i_lru);
424 INIT_LIST_HEAD(&inode->i_sb_list);
425 __address_space_init_once(&inode->i_data);
426 i_size_ordered_init(inode);
427}
428EXPORT_SYMBOL(inode_init_once);
429
430static void init_once(void *foo)
431{
432 struct inode *inode = (struct inode *) foo;
433
434 inode_init_once(inode);
435}
436
437/*
438 * inode->i_lock must be held
439 */
440void __iget(struct inode *inode)
441{
442 atomic_inc(&inode->i_count);
443}
444
445/*
446 * get additional reference to inode; caller must already hold one.
447 */
448void ihold(struct inode *inode)
449{
450 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
451}
452EXPORT_SYMBOL(ihold);
453
454static void __inode_add_lru(struct inode *inode, bool rotate)
455{
456 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
457 return;
458 if (atomic_read(&inode->i_count))
459 return;
460 if (!(inode->i_sb->s_flags & SB_ACTIVE))
461 return;
462 if (!mapping_shrinkable(&inode->i_data))
463 return;
464
465 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
466 this_cpu_inc(nr_unused);
467 else if (rotate)
468 inode->i_state |= I_REFERENCED;
469}
470
471/*
472 * Add inode to LRU if needed (inode is unused and clean).
473 *
474 * Needs inode->i_lock held.
475 */
476void inode_add_lru(struct inode *inode)
477{
478 __inode_add_lru(inode, false);
479}
480
481static void inode_lru_list_del(struct inode *inode)
482{
483 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
484 this_cpu_dec(nr_unused);
485}
486
487/**
488 * inode_sb_list_add - add inode to the superblock list of inodes
489 * @inode: inode to add
490 */
491void inode_sb_list_add(struct inode *inode)
492{
493 spin_lock(&inode->i_sb->s_inode_list_lock);
494 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
495 spin_unlock(&inode->i_sb->s_inode_list_lock);
496}
497EXPORT_SYMBOL_GPL(inode_sb_list_add);
498
499static inline void inode_sb_list_del(struct inode *inode)
500{
501 if (!list_empty(&inode->i_sb_list)) {
502 spin_lock(&inode->i_sb->s_inode_list_lock);
503 list_del_init(&inode->i_sb_list);
504 spin_unlock(&inode->i_sb->s_inode_list_lock);
505 }
506}
507
508static unsigned long hash(struct super_block *sb, unsigned long hashval)
509{
510 unsigned long tmp;
511
512 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
513 L1_CACHE_BYTES;
514 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
515 return tmp & i_hash_mask;
516}
517
518/**
519 * __insert_inode_hash - hash an inode
520 * @inode: unhashed inode
521 * @hashval: unsigned long value used to locate this object in the
522 * inode_hashtable.
523 *
524 * Add an inode to the inode hash for this superblock.
525 */
526void __insert_inode_hash(struct inode *inode, unsigned long hashval)
527{
528 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
529
530 spin_lock(&inode_hash_lock);
531 spin_lock(&inode->i_lock);
532 hlist_add_head_rcu(&inode->i_hash, b);
533 spin_unlock(&inode->i_lock);
534 spin_unlock(&inode_hash_lock);
535}
536EXPORT_SYMBOL(__insert_inode_hash);
537
538/**
539 * __remove_inode_hash - remove an inode from the hash
540 * @inode: inode to unhash
541 *
542 * Remove an inode from the superblock.
543 */
544void __remove_inode_hash(struct inode *inode)
545{
546 spin_lock(&inode_hash_lock);
547 spin_lock(&inode->i_lock);
548 hlist_del_init_rcu(&inode->i_hash);
549 spin_unlock(&inode->i_lock);
550 spin_unlock(&inode_hash_lock);
551}
552EXPORT_SYMBOL(__remove_inode_hash);
553
554void dump_mapping(const struct address_space *mapping)
555{
556 struct inode *host;
557 const struct address_space_operations *a_ops;
558 struct hlist_node *dentry_first;
559 struct dentry *dentry_ptr;
560 struct dentry dentry;
561 unsigned long ino;
562
563 /*
564 * If mapping is an invalid pointer, we don't want to crash
565 * accessing it, so probe everything depending on it carefully.
566 */
567 if (get_kernel_nofault(host, &mapping->host) ||
568 get_kernel_nofault(a_ops, &mapping->a_ops)) {
569 pr_warn("invalid mapping:%px\n", mapping);
570 return;
571 }
572
573 if (!host) {
574 pr_warn("aops:%ps\n", a_ops);
575 return;
576 }
577
578 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
579 get_kernel_nofault(ino, &host->i_ino)) {
580 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
581 return;
582 }
583
584 if (!dentry_first) {
585 pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
586 return;
587 }
588
589 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
590 if (get_kernel_nofault(dentry, dentry_ptr)) {
591 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
592 a_ops, ino, dentry_ptr);
593 return;
594 }
595
596 /*
597 * if dentry is corrupted, the %pd handler may still crash,
598 * but it's unlikely that we reach here with a corrupt mapping
599 */
600 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
601}
602
603void clear_inode(struct inode *inode)
604{
605 /*
606 * We have to cycle the i_pages lock here because reclaim can be in the
607 * process of removing the last page (in __filemap_remove_folio())
608 * and we must not free the mapping under it.
609 */
610 xa_lock_irq(&inode->i_data.i_pages);
611 BUG_ON(inode->i_data.nrpages);
612 /*
613 * Almost always, mapping_empty(&inode->i_data) here; but there are
614 * two known and long-standing ways in which nodes may get left behind
615 * (when deep radix-tree node allocation failed partway; or when THP
616 * collapse_file() failed). Until those two known cases are cleaned up,
617 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
618 * nor even WARN_ON(!mapping_empty).
619 */
620 xa_unlock_irq(&inode->i_data.i_pages);
621 BUG_ON(!list_empty(&inode->i_data.private_list));
622 BUG_ON(!(inode->i_state & I_FREEING));
623 BUG_ON(inode->i_state & I_CLEAR);
624 BUG_ON(!list_empty(&inode->i_wb_list));
625 /* don't need i_lock here, no concurrent mods to i_state */
626 inode->i_state = I_FREEING | I_CLEAR;
627}
628EXPORT_SYMBOL(clear_inode);
629
630/*
631 * Free the inode passed in, removing it from the lists it is still connected
632 * to. We remove any pages still attached to the inode and wait for any IO that
633 * is still in progress before finally destroying the inode.
634 *
635 * An inode must already be marked I_FREEING so that we avoid the inode being
636 * moved back onto lists if we race with other code that manipulates the lists
637 * (e.g. writeback_single_inode). The caller is responsible for setting this.
638 *
639 * An inode must already be removed from the LRU list before being evicted from
640 * the cache. This should occur atomically with setting the I_FREEING state
641 * flag, so no inodes here should ever be on the LRU when being evicted.
642 */
643static void evict(struct inode *inode)
644{
645 const struct super_operations *op = inode->i_sb->s_op;
646
647 BUG_ON(!(inode->i_state & I_FREEING));
648 BUG_ON(!list_empty(&inode->i_lru));
649
650 if (!list_empty(&inode->i_io_list))
651 inode_io_list_del(inode);
652
653 inode_sb_list_del(inode);
654
655 /*
656 * Wait for flusher thread to be done with the inode so that filesystem
657 * does not start destroying it while writeback is still running. Since
658 * the inode has I_FREEING set, flusher thread won't start new work on
659 * the inode. We just have to wait for running writeback to finish.
660 */
661 inode_wait_for_writeback(inode);
662
663 if (op->evict_inode) {
664 op->evict_inode(inode);
665 } else {
666 truncate_inode_pages_final(&inode->i_data);
667 clear_inode(inode);
668 }
669 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
670 cd_forget(inode);
671
672 remove_inode_hash(inode);
673
674 spin_lock(&inode->i_lock);
675 wake_up_bit(&inode->i_state, __I_NEW);
676 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
677 spin_unlock(&inode->i_lock);
678
679 destroy_inode(inode);
680}
681
682/*
683 * dispose_list - dispose of the contents of a local list
684 * @head: the head of the list to free
685 *
686 * Dispose-list gets a local list with local inodes in it, so it doesn't
687 * need to worry about list corruption and SMP locks.
688 */
689static void dispose_list(struct list_head *head)
690{
691 while (!list_empty(head)) {
692 struct inode *inode;
693
694 inode = list_first_entry(head, struct inode, i_lru);
695 list_del_init(&inode->i_lru);
696
697 evict(inode);
698 cond_resched();
699 }
700}
701
702/**
703 * evict_inodes - evict all evictable inodes for a superblock
704 * @sb: superblock to operate on
705 *
706 * Make sure that no inodes with zero refcount are retained. This is
707 * called by superblock shutdown after having SB_ACTIVE flag removed,
708 * so any inode reaching zero refcount during or after that call will
709 * be immediately evicted.
710 */
711void evict_inodes(struct super_block *sb)
712{
713 struct inode *inode, *next;
714 LIST_HEAD(dispose);
715
716again:
717 spin_lock(&sb->s_inode_list_lock);
718 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
719 if (atomic_read(&inode->i_count))
720 continue;
721
722 spin_lock(&inode->i_lock);
723 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
724 spin_unlock(&inode->i_lock);
725 continue;
726 }
727
728 inode->i_state |= I_FREEING;
729 inode_lru_list_del(inode);
730 spin_unlock(&inode->i_lock);
731 list_add(&inode->i_lru, &dispose);
732
733 /*
734 * We can have a ton of inodes to evict at unmount time given
735 * enough memory, check to see if we need to go to sleep for a
736 * bit so we don't livelock.
737 */
738 if (need_resched()) {
739 spin_unlock(&sb->s_inode_list_lock);
740 cond_resched();
741 dispose_list(&dispose);
742 goto again;
743 }
744 }
745 spin_unlock(&sb->s_inode_list_lock);
746
747 dispose_list(&dispose);
748}
749EXPORT_SYMBOL_GPL(evict_inodes);
750
751/**
752 * invalidate_inodes - attempt to free all inodes on a superblock
753 * @sb: superblock to operate on
754 * @kill_dirty: flag to guide handling of dirty inodes
755 *
756 * Attempts to free all inodes for a given superblock. If there were any
757 * busy inodes return a non-zero value, else zero.
758 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
759 * them as busy.
760 */
761int invalidate_inodes(struct super_block *sb, bool kill_dirty)
762{
763 int busy = 0;
764 struct inode *inode, *next;
765 LIST_HEAD(dispose);
766
767again:
768 spin_lock(&sb->s_inode_list_lock);
769 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
770 spin_lock(&inode->i_lock);
771 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
772 spin_unlock(&inode->i_lock);
773 continue;
774 }
775 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
776 spin_unlock(&inode->i_lock);
777 busy = 1;
778 continue;
779 }
780 if (atomic_read(&inode->i_count)) {
781 spin_unlock(&inode->i_lock);
782 busy = 1;
783 continue;
784 }
785
786 inode->i_state |= I_FREEING;
787 inode_lru_list_del(inode);
788 spin_unlock(&inode->i_lock);
789 list_add(&inode->i_lru, &dispose);
790 if (need_resched()) {
791 spin_unlock(&sb->s_inode_list_lock);
792 cond_resched();
793 dispose_list(&dispose);
794 goto again;
795 }
796 }
797 spin_unlock(&sb->s_inode_list_lock);
798
799 dispose_list(&dispose);
800
801 return busy;
802}
803
804/*
805 * Isolate the inode from the LRU in preparation for freeing it.
806 *
807 * If the inode has the I_REFERENCED flag set, then it means that it has been
808 * used recently - the flag is set in iput_final(). When we encounter such an
809 * inode, clear the flag and move it to the back of the LRU so it gets another
810 * pass through the LRU before it gets reclaimed. This is necessary because of
811 * the fact we are doing lazy LRU updates to minimise lock contention so the
812 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
813 * with this flag set because they are the inodes that are out of order.
814 */
815static enum lru_status inode_lru_isolate(struct list_head *item,
816 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
817{
818 struct list_head *freeable = arg;
819 struct inode *inode = container_of(item, struct inode, i_lru);
820
821 /*
822 * We are inverting the lru lock/inode->i_lock here, so use a
823 * trylock. If we fail to get the lock, just skip it.
824 */
825 if (!spin_trylock(&inode->i_lock))
826 return LRU_SKIP;
827
828 /*
829 * Inodes can get referenced, redirtied, or repopulated while
830 * they're already on the LRU, and this can make them
831 * unreclaimable for a while. Remove them lazily here; iput,
832 * sync, or the last page cache deletion will requeue them.
833 */
834 if (atomic_read(&inode->i_count) ||
835 (inode->i_state & ~I_REFERENCED) ||
836 !mapping_shrinkable(&inode->i_data)) {
837 list_lru_isolate(lru, &inode->i_lru);
838 spin_unlock(&inode->i_lock);
839 this_cpu_dec(nr_unused);
840 return LRU_REMOVED;
841 }
842
843 /* Recently referenced inodes get one more pass */
844 if (inode->i_state & I_REFERENCED) {
845 inode->i_state &= ~I_REFERENCED;
846 spin_unlock(&inode->i_lock);
847 return LRU_ROTATE;
848 }
849
850 /*
851 * On highmem systems, mapping_shrinkable() permits dropping
852 * page cache in order to free up struct inodes: lowmem might
853 * be under pressure before the cache inside the highmem zone.
854 */
855 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
856 __iget(inode);
857 spin_unlock(&inode->i_lock);
858 spin_unlock(lru_lock);
859 if (remove_inode_buffers(inode)) {
860 unsigned long reap;
861 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
862 if (current_is_kswapd())
863 __count_vm_events(KSWAPD_INODESTEAL, reap);
864 else
865 __count_vm_events(PGINODESTEAL, reap);
866 if (current->reclaim_state)
867 current->reclaim_state->reclaimed_slab += reap;
868 }
869 iput(inode);
870 spin_lock(lru_lock);
871 return LRU_RETRY;
872 }
873
874 WARN_ON(inode->i_state & I_NEW);
875 inode->i_state |= I_FREEING;
876 list_lru_isolate_move(lru, &inode->i_lru, freeable);
877 spin_unlock(&inode->i_lock);
878
879 this_cpu_dec(nr_unused);
880 return LRU_REMOVED;
881}
882
883/*
884 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
885 * This is called from the superblock shrinker function with a number of inodes
886 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
887 * then are freed outside inode_lock by dispose_list().
888 */
889long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
890{
891 LIST_HEAD(freeable);
892 long freed;
893
894 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
895 inode_lru_isolate, &freeable);
896 dispose_list(&freeable);
897 return freed;
898}
899
900static void __wait_on_freeing_inode(struct inode *inode);
901/*
902 * Called with the inode lock held.
903 */
904static struct inode *find_inode(struct super_block *sb,
905 struct hlist_head *head,
906 int (*test)(struct inode *, void *),
907 void *data)
908{
909 struct inode *inode = NULL;
910
911repeat:
912 hlist_for_each_entry(inode, head, i_hash) {
913 if (inode->i_sb != sb)
914 continue;
915 if (!test(inode, data))
916 continue;
917 spin_lock(&inode->i_lock);
918 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
919 __wait_on_freeing_inode(inode);
920 goto repeat;
921 }
922 if (unlikely(inode->i_state & I_CREATING)) {
923 spin_unlock(&inode->i_lock);
924 return ERR_PTR(-ESTALE);
925 }
926 __iget(inode);
927 spin_unlock(&inode->i_lock);
928 return inode;
929 }
930 return NULL;
931}
932
933/*
934 * find_inode_fast is the fast path version of find_inode, see the comment at
935 * iget_locked for details.
936 */
937static struct inode *find_inode_fast(struct super_block *sb,
938 struct hlist_head *head, unsigned long ino)
939{
940 struct inode *inode = NULL;
941
942repeat:
943 hlist_for_each_entry(inode, head, i_hash) {
944 if (inode->i_ino != ino)
945 continue;
946 if (inode->i_sb != sb)
947 continue;
948 spin_lock(&inode->i_lock);
949 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
950 __wait_on_freeing_inode(inode);
951 goto repeat;
952 }
953 if (unlikely(inode->i_state & I_CREATING)) {
954 spin_unlock(&inode->i_lock);
955 return ERR_PTR(-ESTALE);
956 }
957 __iget(inode);
958 spin_unlock(&inode->i_lock);
959 return inode;
960 }
961 return NULL;
962}
963
964/*
965 * Each cpu owns a range of LAST_INO_BATCH numbers.
966 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
967 * to renew the exhausted range.
968 *
969 * This does not significantly increase overflow rate because every CPU can
970 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
971 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
972 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
973 * overflow rate by 2x, which does not seem too significant.
974 *
975 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
976 * error if st_ino won't fit in target struct field. Use 32bit counter
977 * here to attempt to avoid that.
978 */
979#define LAST_INO_BATCH 1024
980static DEFINE_PER_CPU(unsigned int, last_ino);
981
982unsigned int get_next_ino(void)
983{
984 unsigned int *p = &get_cpu_var(last_ino);
985 unsigned int res = *p;
986
987#ifdef CONFIG_SMP
988 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
989 static atomic_t shared_last_ino;
990 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
991
992 res = next - LAST_INO_BATCH;
993 }
994#endif
995
996 res++;
997 /* get_next_ino should not provide a 0 inode number */
998 if (unlikely(!res))
999 res++;
1000 *p = res;
1001 put_cpu_var(last_ino);
1002 return res;
1003}
1004EXPORT_SYMBOL(get_next_ino);
1005
1006/**
1007 * new_inode_pseudo - obtain an inode
1008 * @sb: superblock
1009 *
1010 * Allocates a new inode for given superblock.
1011 * Inode wont be chained in superblock s_inodes list
1012 * This means :
1013 * - fs can't be unmount
1014 * - quotas, fsnotify, writeback can't work
1015 */
1016struct inode *new_inode_pseudo(struct super_block *sb)
1017{
1018 struct inode *inode = alloc_inode(sb);
1019
1020 if (inode) {
1021 spin_lock(&inode->i_lock);
1022 inode->i_state = 0;
1023 spin_unlock(&inode->i_lock);
1024 }
1025 return inode;
1026}
1027
1028/**
1029 * new_inode - obtain an inode
1030 * @sb: superblock
1031 *
1032 * Allocates a new inode for given superblock. The default gfp_mask
1033 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1034 * If HIGHMEM pages are unsuitable or it is known that pages allocated
1035 * for the page cache are not reclaimable or migratable,
1036 * mapping_set_gfp_mask() must be called with suitable flags on the
1037 * newly created inode's mapping
1038 *
1039 */
1040struct inode *new_inode(struct super_block *sb)
1041{
1042 struct inode *inode;
1043
1044 spin_lock_prefetch(&sb->s_inode_list_lock);
1045
1046 inode = new_inode_pseudo(sb);
1047 if (inode)
1048 inode_sb_list_add(inode);
1049 return inode;
1050}
1051EXPORT_SYMBOL(new_inode);
1052
1053#ifdef CONFIG_DEBUG_LOCK_ALLOC
1054void lockdep_annotate_inode_mutex_key(struct inode *inode)
1055{
1056 if (S_ISDIR(inode->i_mode)) {
1057 struct file_system_type *type = inode->i_sb->s_type;
1058
1059 /* Set new key only if filesystem hasn't already changed it */
1060 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1061 /*
1062 * ensure nobody is actually holding i_mutex
1063 */
1064 // mutex_destroy(&inode->i_mutex);
1065 init_rwsem(&inode->i_rwsem);
1066 lockdep_set_class(&inode->i_rwsem,
1067 &type->i_mutex_dir_key);
1068 }
1069 }
1070}
1071EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1072#endif
1073
1074/**
1075 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1076 * @inode: new inode to unlock
1077 *
1078 * Called when the inode is fully initialised to clear the new state of the
1079 * inode and wake up anyone waiting for the inode to finish initialisation.
1080 */
1081void unlock_new_inode(struct inode *inode)
1082{
1083 lockdep_annotate_inode_mutex_key(inode);
1084 spin_lock(&inode->i_lock);
1085 WARN_ON(!(inode->i_state & I_NEW));
1086 inode->i_state &= ~I_NEW & ~I_CREATING;
1087 smp_mb();
1088 wake_up_bit(&inode->i_state, __I_NEW);
1089 spin_unlock(&inode->i_lock);
1090}
1091EXPORT_SYMBOL(unlock_new_inode);
1092
1093void discard_new_inode(struct inode *inode)
1094{
1095 lockdep_annotate_inode_mutex_key(inode);
1096 spin_lock(&inode->i_lock);
1097 WARN_ON(!(inode->i_state & I_NEW));
1098 inode->i_state &= ~I_NEW;
1099 smp_mb();
1100 wake_up_bit(&inode->i_state, __I_NEW);
1101 spin_unlock(&inode->i_lock);
1102 iput(inode);
1103}
1104EXPORT_SYMBOL(discard_new_inode);
1105
1106/**
1107 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1108 *
1109 * Lock any non-NULL argument that is not a directory.
1110 * Zero, one or two objects may be locked by this function.
1111 *
1112 * @inode1: first inode to lock
1113 * @inode2: second inode to lock
1114 */
1115void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1116{
1117 if (inode1 > inode2)
1118 swap(inode1, inode2);
1119
1120 if (inode1 && !S_ISDIR(inode1->i_mode))
1121 inode_lock(inode1);
1122 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1123 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1124}
1125EXPORT_SYMBOL(lock_two_nondirectories);
1126
1127/**
1128 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1129 * @inode1: first inode to unlock
1130 * @inode2: second inode to unlock
1131 */
1132void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1133{
1134 if (inode1 && !S_ISDIR(inode1->i_mode))
1135 inode_unlock(inode1);
1136 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1137 inode_unlock(inode2);
1138}
1139EXPORT_SYMBOL(unlock_two_nondirectories);
1140
1141/**
1142 * inode_insert5 - obtain an inode from a mounted file system
1143 * @inode: pre-allocated inode to use for insert to cache
1144 * @hashval: hash value (usually inode number) to get
1145 * @test: callback used for comparisons between inodes
1146 * @set: callback used to initialize a new struct inode
1147 * @data: opaque data pointer to pass to @test and @set
1148 *
1149 * Search for the inode specified by @hashval and @data in the inode cache,
1150 * and if present it is return it with an increased reference count. This is
1151 * a variant of iget5_locked() for callers that don't want to fail on memory
1152 * allocation of inode.
1153 *
1154 * If the inode is not in cache, insert the pre-allocated inode to cache and
1155 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1156 * to fill it in before unlocking it via unlock_new_inode().
1157 *
1158 * Note both @test and @set are called with the inode_hash_lock held, so can't
1159 * sleep.
1160 */
1161struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1162 int (*test)(struct inode *, void *),
1163 int (*set)(struct inode *, void *), void *data)
1164{
1165 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1166 struct inode *old;
1167
1168again:
1169 spin_lock(&inode_hash_lock);
1170 old = find_inode(inode->i_sb, head, test, data);
1171 if (unlikely(old)) {
1172 /*
1173 * Uhhuh, somebody else created the same inode under us.
1174 * Use the old inode instead of the preallocated one.
1175 */
1176 spin_unlock(&inode_hash_lock);
1177 if (IS_ERR(old))
1178 return NULL;
1179 wait_on_inode(old);
1180 if (unlikely(inode_unhashed(old))) {
1181 iput(old);
1182 goto again;
1183 }
1184 return old;
1185 }
1186
1187 if (set && unlikely(set(inode, data))) {
1188 inode = NULL;
1189 goto unlock;
1190 }
1191
1192 /*
1193 * Return the locked inode with I_NEW set, the
1194 * caller is responsible for filling in the contents
1195 */
1196 spin_lock(&inode->i_lock);
1197 inode->i_state |= I_NEW;
1198 hlist_add_head_rcu(&inode->i_hash, head);
1199 spin_unlock(&inode->i_lock);
1200
1201 /*
1202 * Add inode to the sb list if it's not already. It has I_NEW at this
1203 * point, so it should be safe to test i_sb_list locklessly.
1204 */
1205 if (list_empty(&inode->i_sb_list))
1206 inode_sb_list_add(inode);
1207unlock:
1208 spin_unlock(&inode_hash_lock);
1209
1210 return inode;
1211}
1212EXPORT_SYMBOL(inode_insert5);
1213
1214/**
1215 * iget5_locked - obtain an inode from a mounted file system
1216 * @sb: super block of file system
1217 * @hashval: hash value (usually inode number) to get
1218 * @test: callback used for comparisons between inodes
1219 * @set: callback used to initialize a new struct inode
1220 * @data: opaque data pointer to pass to @test and @set
1221 *
1222 * Search for the inode specified by @hashval and @data in the inode cache,
1223 * and if present it is return it with an increased reference count. This is
1224 * a generalized version of iget_locked() for file systems where the inode
1225 * number is not sufficient for unique identification of an inode.
1226 *
1227 * If the inode is not in cache, allocate a new inode and return it locked,
1228 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1229 * before unlocking it via unlock_new_inode().
1230 *
1231 * Note both @test and @set are called with the inode_hash_lock held, so can't
1232 * sleep.
1233 */
1234struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1235 int (*test)(struct inode *, void *),
1236 int (*set)(struct inode *, void *), void *data)
1237{
1238 struct inode *inode = ilookup5(sb, hashval, test, data);
1239
1240 if (!inode) {
1241 struct inode *new = alloc_inode(sb);
1242
1243 if (new) {
1244 new->i_state = 0;
1245 inode = inode_insert5(new, hashval, test, set, data);
1246 if (unlikely(inode != new))
1247 destroy_inode(new);
1248 }
1249 }
1250 return inode;
1251}
1252EXPORT_SYMBOL(iget5_locked);
1253
1254/**
1255 * iget_locked - obtain an inode from a mounted file system
1256 * @sb: super block of file system
1257 * @ino: inode number to get
1258 *
1259 * Search for the inode specified by @ino in the inode cache and if present
1260 * return it with an increased reference count. This is for file systems
1261 * where the inode number is sufficient for unique identification of an inode.
1262 *
1263 * If the inode is not in cache, allocate a new inode and return it locked,
1264 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1265 * before unlocking it via unlock_new_inode().
1266 */
1267struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1268{
1269 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1270 struct inode *inode;
1271again:
1272 spin_lock(&inode_hash_lock);
1273 inode = find_inode_fast(sb, head, ino);
1274 spin_unlock(&inode_hash_lock);
1275 if (inode) {
1276 if (IS_ERR(inode))
1277 return NULL;
1278 wait_on_inode(inode);
1279 if (unlikely(inode_unhashed(inode))) {
1280 iput(inode);
1281 goto again;
1282 }
1283 return inode;
1284 }
1285
1286 inode = alloc_inode(sb);
1287 if (inode) {
1288 struct inode *old;
1289
1290 spin_lock(&inode_hash_lock);
1291 /* We released the lock, so.. */
1292 old = find_inode_fast(sb, head, ino);
1293 if (!old) {
1294 inode->i_ino = ino;
1295 spin_lock(&inode->i_lock);
1296 inode->i_state = I_NEW;
1297 hlist_add_head_rcu(&inode->i_hash, head);
1298 spin_unlock(&inode->i_lock);
1299 inode_sb_list_add(inode);
1300 spin_unlock(&inode_hash_lock);
1301
1302 /* Return the locked inode with I_NEW set, the
1303 * caller is responsible for filling in the contents
1304 */
1305 return inode;
1306 }
1307
1308 /*
1309 * Uhhuh, somebody else created the same inode under
1310 * us. Use the old inode instead of the one we just
1311 * allocated.
1312 */
1313 spin_unlock(&inode_hash_lock);
1314 destroy_inode(inode);
1315 if (IS_ERR(old))
1316 return NULL;
1317 inode = old;
1318 wait_on_inode(inode);
1319 if (unlikely(inode_unhashed(inode))) {
1320 iput(inode);
1321 goto again;
1322 }
1323 }
1324 return inode;
1325}
1326EXPORT_SYMBOL(iget_locked);
1327
1328/*
1329 * search the inode cache for a matching inode number.
1330 * If we find one, then the inode number we are trying to
1331 * allocate is not unique and so we should not use it.
1332 *
1333 * Returns 1 if the inode number is unique, 0 if it is not.
1334 */
1335static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1336{
1337 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1338 struct inode *inode;
1339
1340 hlist_for_each_entry_rcu(inode, b, i_hash) {
1341 if (inode->i_ino == ino && inode->i_sb == sb)
1342 return 0;
1343 }
1344 return 1;
1345}
1346
1347/**
1348 * iunique - get a unique inode number
1349 * @sb: superblock
1350 * @max_reserved: highest reserved inode number
1351 *
1352 * Obtain an inode number that is unique on the system for a given
1353 * superblock. This is used by file systems that have no natural
1354 * permanent inode numbering system. An inode number is returned that
1355 * is higher than the reserved limit but unique.
1356 *
1357 * BUGS:
1358 * With a large number of inodes live on the file system this function
1359 * currently becomes quite slow.
1360 */
1361ino_t iunique(struct super_block *sb, ino_t max_reserved)
1362{
1363 /*
1364 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1365 * error if st_ino won't fit in target struct field. Use 32bit counter
1366 * here to attempt to avoid that.
1367 */
1368 static DEFINE_SPINLOCK(iunique_lock);
1369 static unsigned int counter;
1370 ino_t res;
1371
1372 rcu_read_lock();
1373 spin_lock(&iunique_lock);
1374 do {
1375 if (counter <= max_reserved)
1376 counter = max_reserved + 1;
1377 res = counter++;
1378 } while (!test_inode_iunique(sb, res));
1379 spin_unlock(&iunique_lock);
1380 rcu_read_unlock();
1381
1382 return res;
1383}
1384EXPORT_SYMBOL(iunique);
1385
1386struct inode *igrab(struct inode *inode)
1387{
1388 spin_lock(&inode->i_lock);
1389 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1390 __iget(inode);
1391 spin_unlock(&inode->i_lock);
1392 } else {
1393 spin_unlock(&inode->i_lock);
1394 /*
1395 * Handle the case where s_op->clear_inode is not been
1396 * called yet, and somebody is calling igrab
1397 * while the inode is getting freed.
1398 */
1399 inode = NULL;
1400 }
1401 return inode;
1402}
1403EXPORT_SYMBOL(igrab);
1404
1405/**
1406 * ilookup5_nowait - search for an inode in the inode cache
1407 * @sb: super block of file system to search
1408 * @hashval: hash value (usually inode number) to search for
1409 * @test: callback used for comparisons between inodes
1410 * @data: opaque data pointer to pass to @test
1411 *
1412 * Search for the inode specified by @hashval and @data in the inode cache.
1413 * If the inode is in the cache, the inode is returned with an incremented
1414 * reference count.
1415 *
1416 * Note: I_NEW is not waited upon so you have to be very careful what you do
1417 * with the returned inode. You probably should be using ilookup5() instead.
1418 *
1419 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1420 */
1421struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1422 int (*test)(struct inode *, void *), void *data)
1423{
1424 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1425 struct inode *inode;
1426
1427 spin_lock(&inode_hash_lock);
1428 inode = find_inode(sb, head, test, data);
1429 spin_unlock(&inode_hash_lock);
1430
1431 return IS_ERR(inode) ? NULL : inode;
1432}
1433EXPORT_SYMBOL(ilookup5_nowait);
1434
1435/**
1436 * ilookup5 - search for an inode in the inode cache
1437 * @sb: super block of file system to search
1438 * @hashval: hash value (usually inode number) to search for
1439 * @test: callback used for comparisons between inodes
1440 * @data: opaque data pointer to pass to @test
1441 *
1442 * Search for the inode specified by @hashval and @data in the inode cache,
1443 * and if the inode is in the cache, return the inode with an incremented
1444 * reference count. Waits on I_NEW before returning the inode.
1445 * returned with an incremented reference count.
1446 *
1447 * This is a generalized version of ilookup() for file systems where the
1448 * inode number is not sufficient for unique identification of an inode.
1449 *
1450 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1451 */
1452struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1453 int (*test)(struct inode *, void *), void *data)
1454{
1455 struct inode *inode;
1456again:
1457 inode = ilookup5_nowait(sb, hashval, test, data);
1458 if (inode) {
1459 wait_on_inode(inode);
1460 if (unlikely(inode_unhashed(inode))) {
1461 iput(inode);
1462 goto again;
1463 }
1464 }
1465 return inode;
1466}
1467EXPORT_SYMBOL(ilookup5);
1468
1469/**
1470 * ilookup - search for an inode in the inode cache
1471 * @sb: super block of file system to search
1472 * @ino: inode number to search for
1473 *
1474 * Search for the inode @ino in the inode cache, and if the inode is in the
1475 * cache, the inode is returned with an incremented reference count.
1476 */
1477struct inode *ilookup(struct super_block *sb, unsigned long ino)
1478{
1479 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1480 struct inode *inode;
1481again:
1482 spin_lock(&inode_hash_lock);
1483 inode = find_inode_fast(sb, head, ino);
1484 spin_unlock(&inode_hash_lock);
1485
1486 if (inode) {
1487 if (IS_ERR(inode))
1488 return NULL;
1489 wait_on_inode(inode);
1490 if (unlikely(inode_unhashed(inode))) {
1491 iput(inode);
1492 goto again;
1493 }
1494 }
1495 return inode;
1496}
1497EXPORT_SYMBOL(ilookup);
1498
1499/**
1500 * find_inode_nowait - find an inode in the inode cache
1501 * @sb: super block of file system to search
1502 * @hashval: hash value (usually inode number) to search for
1503 * @match: callback used for comparisons between inodes
1504 * @data: opaque data pointer to pass to @match
1505 *
1506 * Search for the inode specified by @hashval and @data in the inode
1507 * cache, where the helper function @match will return 0 if the inode
1508 * does not match, 1 if the inode does match, and -1 if the search
1509 * should be stopped. The @match function must be responsible for
1510 * taking the i_lock spin_lock and checking i_state for an inode being
1511 * freed or being initialized, and incrementing the reference count
1512 * before returning 1. It also must not sleep, since it is called with
1513 * the inode_hash_lock spinlock held.
1514 *
1515 * This is a even more generalized version of ilookup5() when the
1516 * function must never block --- find_inode() can block in
1517 * __wait_on_freeing_inode() --- or when the caller can not increment
1518 * the reference count because the resulting iput() might cause an
1519 * inode eviction. The tradeoff is that the @match funtion must be
1520 * very carefully implemented.
1521 */
1522struct inode *find_inode_nowait(struct super_block *sb,
1523 unsigned long hashval,
1524 int (*match)(struct inode *, unsigned long,
1525 void *),
1526 void *data)
1527{
1528 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1529 struct inode *inode, *ret_inode = NULL;
1530 int mval;
1531
1532 spin_lock(&inode_hash_lock);
1533 hlist_for_each_entry(inode, head, i_hash) {
1534 if (inode->i_sb != sb)
1535 continue;
1536 mval = match(inode, hashval, data);
1537 if (mval == 0)
1538 continue;
1539 if (mval == 1)
1540 ret_inode = inode;
1541 goto out;
1542 }
1543out:
1544 spin_unlock(&inode_hash_lock);
1545 return ret_inode;
1546}
1547EXPORT_SYMBOL(find_inode_nowait);
1548
1549/**
1550 * find_inode_rcu - find an inode in the inode cache
1551 * @sb: Super block of file system to search
1552 * @hashval: Key to hash
1553 * @test: Function to test match on an inode
1554 * @data: Data for test function
1555 *
1556 * Search for the inode specified by @hashval and @data in the inode cache,
1557 * where the helper function @test will return 0 if the inode does not match
1558 * and 1 if it does. The @test function must be responsible for taking the
1559 * i_lock spin_lock and checking i_state for an inode being freed or being
1560 * initialized.
1561 *
1562 * If successful, this will return the inode for which the @test function
1563 * returned 1 and NULL otherwise.
1564 *
1565 * The @test function is not permitted to take a ref on any inode presented.
1566 * It is also not permitted to sleep.
1567 *
1568 * The caller must hold the RCU read lock.
1569 */
1570struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1571 int (*test)(struct inode *, void *), void *data)
1572{
1573 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1574 struct inode *inode;
1575
1576 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1577 "suspicious find_inode_rcu() usage");
1578
1579 hlist_for_each_entry_rcu(inode, head, i_hash) {
1580 if (inode->i_sb == sb &&
1581 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1582 test(inode, data))
1583 return inode;
1584 }
1585 return NULL;
1586}
1587EXPORT_SYMBOL(find_inode_rcu);
1588
1589/**
1590 * find_inode_by_ino_rcu - Find an inode in the inode cache
1591 * @sb: Super block of file system to search
1592 * @ino: The inode number to match
1593 *
1594 * Search for the inode specified by @hashval and @data in the inode cache,
1595 * where the helper function @test will return 0 if the inode does not match
1596 * and 1 if it does. The @test function must be responsible for taking the
1597 * i_lock spin_lock and checking i_state for an inode being freed or being
1598 * initialized.
1599 *
1600 * If successful, this will return the inode for which the @test function
1601 * returned 1 and NULL otherwise.
1602 *
1603 * The @test function is not permitted to take a ref on any inode presented.
1604 * It is also not permitted to sleep.
1605 *
1606 * The caller must hold the RCU read lock.
1607 */
1608struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1609 unsigned long ino)
1610{
1611 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1612 struct inode *inode;
1613
1614 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1615 "suspicious find_inode_by_ino_rcu() usage");
1616
1617 hlist_for_each_entry_rcu(inode, head, i_hash) {
1618 if (inode->i_ino == ino &&
1619 inode->i_sb == sb &&
1620 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1621 return inode;
1622 }
1623 return NULL;
1624}
1625EXPORT_SYMBOL(find_inode_by_ino_rcu);
1626
1627int insert_inode_locked(struct inode *inode)
1628{
1629 struct super_block *sb = inode->i_sb;
1630 ino_t ino = inode->i_ino;
1631 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1632
1633 while (1) {
1634 struct inode *old = NULL;
1635 spin_lock(&inode_hash_lock);
1636 hlist_for_each_entry(old, head, i_hash) {
1637 if (old->i_ino != ino)
1638 continue;
1639 if (old->i_sb != sb)
1640 continue;
1641 spin_lock(&old->i_lock);
1642 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1643 spin_unlock(&old->i_lock);
1644 continue;
1645 }
1646 break;
1647 }
1648 if (likely(!old)) {
1649 spin_lock(&inode->i_lock);
1650 inode->i_state |= I_NEW | I_CREATING;
1651 hlist_add_head_rcu(&inode->i_hash, head);
1652 spin_unlock(&inode->i_lock);
1653 spin_unlock(&inode_hash_lock);
1654 return 0;
1655 }
1656 if (unlikely(old->i_state & I_CREATING)) {
1657 spin_unlock(&old->i_lock);
1658 spin_unlock(&inode_hash_lock);
1659 return -EBUSY;
1660 }
1661 __iget(old);
1662 spin_unlock(&old->i_lock);
1663 spin_unlock(&inode_hash_lock);
1664 wait_on_inode(old);
1665 if (unlikely(!inode_unhashed(old))) {
1666 iput(old);
1667 return -EBUSY;
1668 }
1669 iput(old);
1670 }
1671}
1672EXPORT_SYMBOL(insert_inode_locked);
1673
1674int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1675 int (*test)(struct inode *, void *), void *data)
1676{
1677 struct inode *old;
1678
1679 inode->i_state |= I_CREATING;
1680 old = inode_insert5(inode, hashval, test, NULL, data);
1681
1682 if (old != inode) {
1683 iput(old);
1684 return -EBUSY;
1685 }
1686 return 0;
1687}
1688EXPORT_SYMBOL(insert_inode_locked4);
1689
1690
1691int generic_delete_inode(struct inode *inode)
1692{
1693 return 1;
1694}
1695EXPORT_SYMBOL(generic_delete_inode);
1696
1697/*
1698 * Called when we're dropping the last reference
1699 * to an inode.
1700 *
1701 * Call the FS "drop_inode()" function, defaulting to
1702 * the legacy UNIX filesystem behaviour. If it tells
1703 * us to evict inode, do so. Otherwise, retain inode
1704 * in cache if fs is alive, sync and evict if fs is
1705 * shutting down.
1706 */
1707static void iput_final(struct inode *inode)
1708{
1709 struct super_block *sb = inode->i_sb;
1710 const struct super_operations *op = inode->i_sb->s_op;
1711 unsigned long state;
1712 int drop;
1713
1714 WARN_ON(inode->i_state & I_NEW);
1715
1716 if (op->drop_inode)
1717 drop = op->drop_inode(inode);
1718 else
1719 drop = generic_drop_inode(inode);
1720
1721 if (!drop &&
1722 !(inode->i_state & I_DONTCACHE) &&
1723 (sb->s_flags & SB_ACTIVE)) {
1724 __inode_add_lru(inode, true);
1725 spin_unlock(&inode->i_lock);
1726 return;
1727 }
1728
1729 state = inode->i_state;
1730 if (!drop) {
1731 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1732 spin_unlock(&inode->i_lock);
1733
1734 write_inode_now(inode, 1);
1735
1736 spin_lock(&inode->i_lock);
1737 state = inode->i_state;
1738 WARN_ON(state & I_NEW);
1739 state &= ~I_WILL_FREE;
1740 }
1741
1742 WRITE_ONCE(inode->i_state, state | I_FREEING);
1743 if (!list_empty(&inode->i_lru))
1744 inode_lru_list_del(inode);
1745 spin_unlock(&inode->i_lock);
1746
1747 evict(inode);
1748}
1749
1750/**
1751 * iput - put an inode
1752 * @inode: inode to put
1753 *
1754 * Puts an inode, dropping its usage count. If the inode use count hits
1755 * zero, the inode is then freed and may also be destroyed.
1756 *
1757 * Consequently, iput() can sleep.
1758 */
1759void iput(struct inode *inode)
1760{
1761 if (!inode)
1762 return;
1763 BUG_ON(inode->i_state & I_CLEAR);
1764retry:
1765 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1766 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1767 atomic_inc(&inode->i_count);
1768 spin_unlock(&inode->i_lock);
1769 trace_writeback_lazytime_iput(inode);
1770 mark_inode_dirty_sync(inode);
1771 goto retry;
1772 }
1773 iput_final(inode);
1774 }
1775}
1776EXPORT_SYMBOL(iput);
1777
1778#ifdef CONFIG_BLOCK
1779/**
1780 * bmap - find a block number in a file
1781 * @inode: inode owning the block number being requested
1782 * @block: pointer containing the block to find
1783 *
1784 * Replaces the value in ``*block`` with the block number on the device holding
1785 * corresponding to the requested block number in the file.
1786 * That is, asked for block 4 of inode 1 the function will replace the
1787 * 4 in ``*block``, with disk block relative to the disk start that holds that
1788 * block of the file.
1789 *
1790 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1791 * hole, returns 0 and ``*block`` is also set to 0.
1792 */
1793int bmap(struct inode *inode, sector_t *block)
1794{
1795 if (!inode->i_mapping->a_ops->bmap)
1796 return -EINVAL;
1797
1798 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1799 return 0;
1800}
1801EXPORT_SYMBOL(bmap);
1802#endif
1803
1804/*
1805 * With relative atime, only update atime if the previous atime is
1806 * earlier than either the ctime or mtime or if at least a day has
1807 * passed since the last atime update.
1808 */
1809static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1810 struct timespec64 now)
1811{
1812
1813 if (!(mnt->mnt_flags & MNT_RELATIME))
1814 return 1;
1815 /*
1816 * Is mtime younger than atime? If yes, update atime:
1817 */
1818 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1819 return 1;
1820 /*
1821 * Is ctime younger than atime? If yes, update atime:
1822 */
1823 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1824 return 1;
1825
1826 /*
1827 * Is the previous atime value older than a day? If yes,
1828 * update atime:
1829 */
1830 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1831 return 1;
1832 /*
1833 * Good, we can skip the atime update:
1834 */
1835 return 0;
1836}
1837
1838int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1839{
1840 int dirty_flags = 0;
1841
1842 if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1843 if (flags & S_ATIME)
1844 inode->i_atime = *time;
1845 if (flags & S_CTIME)
1846 inode->i_ctime = *time;
1847 if (flags & S_MTIME)
1848 inode->i_mtime = *time;
1849
1850 if (inode->i_sb->s_flags & SB_LAZYTIME)
1851 dirty_flags |= I_DIRTY_TIME;
1852 else
1853 dirty_flags |= I_DIRTY_SYNC;
1854 }
1855
1856 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1857 dirty_flags |= I_DIRTY_SYNC;
1858
1859 __mark_inode_dirty(inode, dirty_flags);
1860 return 0;
1861}
1862EXPORT_SYMBOL(generic_update_time);
1863
1864/*
1865 * This does the actual work of updating an inodes time or version. Must have
1866 * had called mnt_want_write() before calling this.
1867 */
1868int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1869{
1870 if (inode->i_op->update_time)
1871 return inode->i_op->update_time(inode, time, flags);
1872 return generic_update_time(inode, time, flags);
1873}
1874EXPORT_SYMBOL(inode_update_time);
1875
1876/**
1877 * atime_needs_update - update the access time
1878 * @path: the &struct path to update
1879 * @inode: inode to update
1880 *
1881 * Update the accessed time on an inode and mark it for writeback.
1882 * This function automatically handles read only file systems and media,
1883 * as well as the "noatime" flag and inode specific "noatime" markers.
1884 */
1885bool atime_needs_update(const struct path *path, struct inode *inode)
1886{
1887 struct vfsmount *mnt = path->mnt;
1888 struct timespec64 now;
1889
1890 if (inode->i_flags & S_NOATIME)
1891 return false;
1892
1893 /* Atime updates will likely cause i_uid and i_gid to be written
1894 * back improprely if their true value is unknown to the vfs.
1895 */
1896 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1897 return false;
1898
1899 if (IS_NOATIME(inode))
1900 return false;
1901 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1902 return false;
1903
1904 if (mnt->mnt_flags & MNT_NOATIME)
1905 return false;
1906 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1907 return false;
1908
1909 now = current_time(inode);
1910
1911 if (!relatime_need_update(mnt, inode, now))
1912 return false;
1913
1914 if (timespec64_equal(&inode->i_atime, &now))
1915 return false;
1916
1917 return true;
1918}
1919
1920void touch_atime(const struct path *path)
1921{
1922 struct vfsmount *mnt = path->mnt;
1923 struct inode *inode = d_inode(path->dentry);
1924 struct timespec64 now;
1925
1926 if (!atime_needs_update(path, inode))
1927 return;
1928
1929 if (!sb_start_write_trylock(inode->i_sb))
1930 return;
1931
1932 if (__mnt_want_write(mnt) != 0)
1933 goto skip_update;
1934 /*
1935 * File systems can error out when updating inodes if they need to
1936 * allocate new space to modify an inode (such is the case for
1937 * Btrfs), but since we touch atime while walking down the path we
1938 * really don't care if we failed to update the atime of the file,
1939 * so just ignore the return value.
1940 * We may also fail on filesystems that have the ability to make parts
1941 * of the fs read only, e.g. subvolumes in Btrfs.
1942 */
1943 now = current_time(inode);
1944 inode_update_time(inode, &now, S_ATIME);
1945 __mnt_drop_write(mnt);
1946skip_update:
1947 sb_end_write(inode->i_sb);
1948}
1949EXPORT_SYMBOL(touch_atime);
1950
1951/*
1952 * Return mask of changes for notify_change() that need to be done as a
1953 * response to write or truncate. Return 0 if nothing has to be changed.
1954 * Negative value on error (change should be denied).
1955 */
1956int dentry_needs_remove_privs(struct user_namespace *mnt_userns,
1957 struct dentry *dentry)
1958{
1959 struct inode *inode = d_inode(dentry);
1960 int mask = 0;
1961 int ret;
1962
1963 if (IS_NOSEC(inode))
1964 return 0;
1965
1966 mask = setattr_should_drop_suidgid(mnt_userns, inode);
1967 ret = security_inode_need_killpriv(dentry);
1968 if (ret < 0)
1969 return ret;
1970 if (ret)
1971 mask |= ATTR_KILL_PRIV;
1972 return mask;
1973}
1974
1975static int __remove_privs(struct user_namespace *mnt_userns,
1976 struct dentry *dentry, int kill)
1977{
1978 struct iattr newattrs;
1979
1980 newattrs.ia_valid = ATTR_FORCE | kill;
1981 /*
1982 * Note we call this on write, so notify_change will not
1983 * encounter any conflicting delegations:
1984 */
1985 return notify_change(mnt_userns, dentry, &newattrs, NULL);
1986}
1987
1988static int __file_remove_privs(struct file *file, unsigned int flags)
1989{
1990 struct dentry *dentry = file_dentry(file);
1991 struct inode *inode = file_inode(file);
1992 int error = 0;
1993 int kill;
1994
1995 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1996 return 0;
1997
1998 kill = dentry_needs_remove_privs(file_mnt_user_ns(file), dentry);
1999 if (kill < 0)
2000 return kill;
2001
2002 if (kill) {
2003 if (flags & IOCB_NOWAIT)
2004 return -EAGAIN;
2005
2006 error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
2007 }
2008
2009 if (!error)
2010 inode_has_no_xattr(inode);
2011 return error;
2012}
2013
2014/**
2015 * file_remove_privs - remove special file privileges (suid, capabilities)
2016 * @file: file to remove privileges from
2017 *
2018 * When file is modified by a write or truncation ensure that special
2019 * file privileges are removed.
2020 *
2021 * Return: 0 on success, negative errno on failure.
2022 */
2023int file_remove_privs(struct file *file)
2024{
2025 return __file_remove_privs(file, 0);
2026}
2027EXPORT_SYMBOL(file_remove_privs);
2028
2029static int inode_needs_update_time(struct inode *inode, struct timespec64 *now)
2030{
2031 int sync_it = 0;
2032
2033 /* First try to exhaust all avenues to not sync */
2034 if (IS_NOCMTIME(inode))
2035 return 0;
2036
2037 if (!timespec64_equal(&inode->i_mtime, now))
2038 sync_it = S_MTIME;
2039
2040 if (!timespec64_equal(&inode->i_ctime, now))
2041 sync_it |= S_CTIME;
2042
2043 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2044 sync_it |= S_VERSION;
2045
2046 return sync_it;
2047}
2048
2049static int __file_update_time(struct file *file, struct timespec64 *now,
2050 int sync_mode)
2051{
2052 int ret = 0;
2053 struct inode *inode = file_inode(file);
2054
2055 /* try to update time settings */
2056 if (!__mnt_want_write_file(file)) {
2057 ret = inode_update_time(inode, now, sync_mode);
2058 __mnt_drop_write_file(file);
2059 }
2060
2061 return ret;
2062}
2063
2064/**
2065 * file_update_time - update mtime and ctime time
2066 * @file: file accessed
2067 *
2068 * Update the mtime and ctime members of an inode and mark the inode for
2069 * writeback. Note that this function is meant exclusively for usage in
2070 * the file write path of filesystems, and filesystems may choose to
2071 * explicitly ignore updates via this function with the _NOCMTIME inode
2072 * flag, e.g. for network filesystem where these imestamps are handled
2073 * by the server. This can return an error for file systems who need to
2074 * allocate space in order to update an inode.
2075 *
2076 * Return: 0 on success, negative errno on failure.
2077 */
2078int file_update_time(struct file *file)
2079{
2080 int ret;
2081 struct inode *inode = file_inode(file);
2082 struct timespec64 now = current_time(inode);
2083
2084 ret = inode_needs_update_time(inode, &now);
2085 if (ret <= 0)
2086 return ret;
2087
2088 return __file_update_time(file, &now, ret);
2089}
2090EXPORT_SYMBOL(file_update_time);
2091
2092/**
2093 * file_modified_flags - handle mandated vfs changes when modifying a file
2094 * @file: file that was modified
2095 * @flags: kiocb flags
2096 *
2097 * When file has been modified ensure that special
2098 * file privileges are removed and time settings are updated.
2099 *
2100 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2101 * time settings will not be updated. It will return -EAGAIN.
2102 *
2103 * Context: Caller must hold the file's inode lock.
2104 *
2105 * Return: 0 on success, negative errno on failure.
2106 */
2107static int file_modified_flags(struct file *file, int flags)
2108{
2109 int ret;
2110 struct inode *inode = file_inode(file);
2111 struct timespec64 now = current_time(inode);
2112
2113 /*
2114 * Clear the security bits if the process is not being run by root.
2115 * This keeps people from modifying setuid and setgid binaries.
2116 */
2117 ret = __file_remove_privs(file, flags);
2118 if (ret)
2119 return ret;
2120
2121 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2122 return 0;
2123
2124 ret = inode_needs_update_time(inode, &now);
2125 if (ret <= 0)
2126 return ret;
2127 if (flags & IOCB_NOWAIT)
2128 return -EAGAIN;
2129
2130 return __file_update_time(file, &now, ret);
2131}
2132
2133/**
2134 * file_modified - handle mandated vfs changes when modifying a file
2135 * @file: file that was modified
2136 *
2137 * When file has been modified ensure that special
2138 * file privileges are removed and time settings are updated.
2139 *
2140 * Context: Caller must hold the file's inode lock.
2141 *
2142 * Return: 0 on success, negative errno on failure.
2143 */
2144int file_modified(struct file *file)
2145{
2146 return file_modified_flags(file, 0);
2147}
2148EXPORT_SYMBOL(file_modified);
2149
2150/**
2151 * kiocb_modified - handle mandated vfs changes when modifying a file
2152 * @iocb: iocb that was modified
2153 *
2154 * When file has been modified ensure that special
2155 * file privileges are removed and time settings are updated.
2156 *
2157 * Context: Caller must hold the file's inode lock.
2158 *
2159 * Return: 0 on success, negative errno on failure.
2160 */
2161int kiocb_modified(struct kiocb *iocb)
2162{
2163 return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2164}
2165EXPORT_SYMBOL_GPL(kiocb_modified);
2166
2167int inode_needs_sync(struct inode *inode)
2168{
2169 if (IS_SYNC(inode))
2170 return 1;
2171 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2172 return 1;
2173 return 0;
2174}
2175EXPORT_SYMBOL(inode_needs_sync);
2176
2177/*
2178 * If we try to find an inode in the inode hash while it is being
2179 * deleted, we have to wait until the filesystem completes its
2180 * deletion before reporting that it isn't found. This function waits
2181 * until the deletion _might_ have completed. Callers are responsible
2182 * to recheck inode state.
2183 *
2184 * It doesn't matter if I_NEW is not set initially, a call to
2185 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2186 * will DTRT.
2187 */
2188static void __wait_on_freeing_inode(struct inode *inode)
2189{
2190 wait_queue_head_t *wq;
2191 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2192 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2193 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2194 spin_unlock(&inode->i_lock);
2195 spin_unlock(&inode_hash_lock);
2196 schedule();
2197 finish_wait(wq, &wait.wq_entry);
2198 spin_lock(&inode_hash_lock);
2199}
2200
2201static __initdata unsigned long ihash_entries;
2202static int __init set_ihash_entries(char *str)
2203{
2204 if (!str)
2205 return 0;
2206 ihash_entries = simple_strtoul(str, &str, 0);
2207 return 1;
2208}
2209__setup("ihash_entries=", set_ihash_entries);
2210
2211/*
2212 * Initialize the waitqueues and inode hash table.
2213 */
2214void __init inode_init_early(void)
2215{
2216 /* If hashes are distributed across NUMA nodes, defer
2217 * hash allocation until vmalloc space is available.
2218 */
2219 if (hashdist)
2220 return;
2221
2222 inode_hashtable =
2223 alloc_large_system_hash("Inode-cache",
2224 sizeof(struct hlist_head),
2225 ihash_entries,
2226 14,
2227 HASH_EARLY | HASH_ZERO,
2228 &i_hash_shift,
2229 &i_hash_mask,
2230 0,
2231 0);
2232}
2233
2234void __init inode_init(void)
2235{
2236 /* inode slab cache */
2237 inode_cachep = kmem_cache_create("inode_cache",
2238 sizeof(struct inode),
2239 0,
2240 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2241 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2242 init_once);
2243
2244 /* Hash may have been set up in inode_init_early */
2245 if (!hashdist)
2246 return;
2247
2248 inode_hashtable =
2249 alloc_large_system_hash("Inode-cache",
2250 sizeof(struct hlist_head),
2251 ihash_entries,
2252 14,
2253 HASH_ZERO,
2254 &i_hash_shift,
2255 &i_hash_mask,
2256 0,
2257 0);
2258}
2259
2260void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2261{
2262 inode->i_mode = mode;
2263 if (S_ISCHR(mode)) {
2264 inode->i_fop = &def_chr_fops;
2265 inode->i_rdev = rdev;
2266 } else if (S_ISBLK(mode)) {
2267 inode->i_fop = &def_blk_fops;
2268 inode->i_rdev = rdev;
2269 } else if (S_ISFIFO(mode))
2270 inode->i_fop = &pipefifo_fops;
2271 else if (S_ISSOCK(mode))
2272 ; /* leave it no_open_fops */
2273 else
2274 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2275 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2276 inode->i_ino);
2277}
2278EXPORT_SYMBOL(init_special_inode);
2279
2280/**
2281 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2282 * @mnt_userns: User namespace of the mount the inode was created from
2283 * @inode: New inode
2284 * @dir: Directory inode
2285 * @mode: mode of the new inode
2286 *
2287 * If the inode has been created through an idmapped mount the user namespace of
2288 * the vfsmount must be passed through @mnt_userns. This function will then take
2289 * care to map the inode according to @mnt_userns before checking permissions
2290 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2291 * checking is to be performed on the raw inode simply passs init_user_ns.
2292 */
2293void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2294 const struct inode *dir, umode_t mode)
2295{
2296 inode_fsuid_set(inode, mnt_userns);
2297 if (dir && dir->i_mode & S_ISGID) {
2298 inode->i_gid = dir->i_gid;
2299
2300 /* Directories are special, and always inherit S_ISGID */
2301 if (S_ISDIR(mode))
2302 mode |= S_ISGID;
2303 } else
2304 inode_fsgid_set(inode, mnt_userns);
2305 inode->i_mode = mode;
2306}
2307EXPORT_SYMBOL(inode_init_owner);
2308
2309/**
2310 * inode_owner_or_capable - check current task permissions to inode
2311 * @mnt_userns: user namespace of the mount the inode was found from
2312 * @inode: inode being checked
2313 *
2314 * Return true if current either has CAP_FOWNER in a namespace with the
2315 * inode owner uid mapped, or owns the file.
2316 *
2317 * If the inode has been found through an idmapped mount the user namespace of
2318 * the vfsmount must be passed through @mnt_userns. This function will then take
2319 * care to map the inode according to @mnt_userns before checking permissions.
2320 * On non-idmapped mounts or if permission checking is to be performed on the
2321 * raw inode simply passs init_user_ns.
2322 */
2323bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2324 const struct inode *inode)
2325{
2326 vfsuid_t vfsuid;
2327 struct user_namespace *ns;
2328
2329 vfsuid = i_uid_into_vfsuid(mnt_userns, inode);
2330 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2331 return true;
2332
2333 ns = current_user_ns();
2334 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2335 return true;
2336 return false;
2337}
2338EXPORT_SYMBOL(inode_owner_or_capable);
2339
2340/*
2341 * Direct i/o helper functions
2342 */
2343static void __inode_dio_wait(struct inode *inode)
2344{
2345 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2346 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2347
2348 do {
2349 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2350 if (atomic_read(&inode->i_dio_count))
2351 schedule();
2352 } while (atomic_read(&inode->i_dio_count));
2353 finish_wait(wq, &q.wq_entry);
2354}
2355
2356/**
2357 * inode_dio_wait - wait for outstanding DIO requests to finish
2358 * @inode: inode to wait for
2359 *
2360 * Waits for all pending direct I/O requests to finish so that we can
2361 * proceed with a truncate or equivalent operation.
2362 *
2363 * Must be called under a lock that serializes taking new references
2364 * to i_dio_count, usually by inode->i_mutex.
2365 */
2366void inode_dio_wait(struct inode *inode)
2367{
2368 if (atomic_read(&inode->i_dio_count))
2369 __inode_dio_wait(inode);
2370}
2371EXPORT_SYMBOL(inode_dio_wait);
2372
2373/*
2374 * inode_set_flags - atomically set some inode flags
2375 *
2376 * Note: the caller should be holding i_mutex, or else be sure that
2377 * they have exclusive access to the inode structure (i.e., while the
2378 * inode is being instantiated). The reason for the cmpxchg() loop
2379 * --- which wouldn't be necessary if all code paths which modify
2380 * i_flags actually followed this rule, is that there is at least one
2381 * code path which doesn't today so we use cmpxchg() out of an abundance
2382 * of caution.
2383 *
2384 * In the long run, i_mutex is overkill, and we should probably look
2385 * at using the i_lock spinlock to protect i_flags, and then make sure
2386 * it is so documented in include/linux/fs.h and that all code follows
2387 * the locking convention!!
2388 */
2389void inode_set_flags(struct inode *inode, unsigned int flags,
2390 unsigned int mask)
2391{
2392 WARN_ON_ONCE(flags & ~mask);
2393 set_mask_bits(&inode->i_flags, mask, flags);
2394}
2395EXPORT_SYMBOL(inode_set_flags);
2396
2397void inode_nohighmem(struct inode *inode)
2398{
2399 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2400}
2401EXPORT_SYMBOL(inode_nohighmem);
2402
2403/**
2404 * timestamp_truncate - Truncate timespec to a granularity
2405 * @t: Timespec
2406 * @inode: inode being updated
2407 *
2408 * Truncate a timespec to the granularity supported by the fs
2409 * containing the inode. Always rounds down. gran must
2410 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2411 */
2412struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2413{
2414 struct super_block *sb = inode->i_sb;
2415 unsigned int gran = sb->s_time_gran;
2416
2417 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2418 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2419 t.tv_nsec = 0;
2420
2421 /* Avoid division in the common cases 1 ns and 1 s. */
2422 if (gran == 1)
2423 ; /* nothing */
2424 else if (gran == NSEC_PER_SEC)
2425 t.tv_nsec = 0;
2426 else if (gran > 1 && gran < NSEC_PER_SEC)
2427 t.tv_nsec -= t.tv_nsec % gran;
2428 else
2429 WARN(1, "invalid file time granularity: %u", gran);
2430 return t;
2431}
2432EXPORT_SYMBOL(timestamp_truncate);
2433
2434/**
2435 * current_time - Return FS time
2436 * @inode: inode.
2437 *
2438 * Return the current time truncated to the time granularity supported by
2439 * the fs.
2440 *
2441 * Note that inode and inode->sb cannot be NULL.
2442 * Otherwise, the function warns and returns time without truncation.
2443 */
2444struct timespec64 current_time(struct inode *inode)
2445{
2446 struct timespec64 now;
2447
2448 ktime_get_coarse_real_ts64(&now);
2449
2450 if (unlikely(!inode->i_sb)) {
2451 WARN(1, "current_time() called with uninitialized super_block in the inode");
2452 return now;
2453 }
2454
2455 return timestamp_truncate(now, inode);
2456}
2457EXPORT_SYMBOL(current_time);
2458
2459/**
2460 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2461 * @mnt_userns: user namespace of the mount @inode was found from
2462 * @inode: inode to check
2463 * @vfsgid: the new/current vfsgid of @inode
2464 *
2465 * Check wether @vfsgid is in the caller's group list or if the caller is
2466 * privileged with CAP_FSETID over @inode. This can be used to determine
2467 * whether the setgid bit can be kept or must be dropped.
2468 *
2469 * Return: true if the caller is sufficiently privileged, false if not.
2470 */
2471bool in_group_or_capable(struct user_namespace *mnt_userns,
2472 const struct inode *inode, vfsgid_t vfsgid)
2473{
2474 if (vfsgid_in_group_p(vfsgid))
2475 return true;
2476 if (capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
2477 return true;
2478 return false;
2479}
2480
2481/**
2482 * mode_strip_sgid - handle the sgid bit for non-directories
2483 * @mnt_userns: User namespace of the mount the inode was created from
2484 * @dir: parent directory inode
2485 * @mode: mode of the file to be created in @dir
2486 *
2487 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2488 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2489 * either in the group of the parent directory or they have CAP_FSETID
2490 * in their user namespace and are privileged over the parent directory.
2491 * In all other cases, strip the S_ISGID bit from @mode.
2492 *
2493 * Return: the new mode to use for the file
2494 */
2495umode_t mode_strip_sgid(struct user_namespace *mnt_userns,
2496 const struct inode *dir, umode_t mode)
2497{
2498 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2499 return mode;
2500 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2501 return mode;
2502 if (in_group_or_capable(mnt_userns, dir,
2503 i_gid_into_vfsgid(mnt_userns, dir)))
2504 return mode;
2505 return mode & ~S_ISGID;
2506}
2507EXPORT_SYMBOL(mode_strip_sgid);
1/*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5#include <linux/export.h>
6#include <linux/fs.h>
7#include <linux/mm.h>
8#include <linux/backing-dev.h>
9#include <linux/hash.h>
10#include <linux/swap.h>
11#include <linux/security.h>
12#include <linux/cdev.h>
13#include <linux/bootmem.h>
14#include <linux/fsnotify.h>
15#include <linux/mount.h>
16#include <linux/posix_acl.h>
17#include <linux/prefetch.h>
18#include <linux/buffer_head.h> /* for inode_has_buffers */
19#include <linux/ratelimit.h>
20#include <linux/list_lru.h>
21#include <trace/events/writeback.h>
22#include "internal.h"
23
24/*
25 * Inode locking rules:
26 *
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
37 *
38 * Lock ordering:
39 *
40 * inode->i_sb->s_inode_list_lock
41 * inode->i_lock
42 * Inode LRU list locks
43 *
44 * bdi->wb.list_lock
45 * inode->i_lock
46 *
47 * inode_hash_lock
48 * inode->i_sb->s_inode_list_lock
49 * inode->i_lock
50 *
51 * iunique_lock
52 * inode_hash_lock
53 */
54
55static unsigned int i_hash_mask __read_mostly;
56static unsigned int i_hash_shift __read_mostly;
57static struct hlist_head *inode_hashtable __read_mostly;
58static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59
60/*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64const struct address_space_operations empty_aops = {
65};
66EXPORT_SYMBOL(empty_aops);
67
68/*
69 * Statistics gathering..
70 */
71struct inodes_stat_t inodes_stat;
72
73static DEFINE_PER_CPU(unsigned long, nr_inodes);
74static DEFINE_PER_CPU(unsigned long, nr_unused);
75
76static struct kmem_cache *inode_cachep __read_mostly;
77
78static long get_nr_inodes(void)
79{
80 int i;
81 long sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
85}
86
87static inline long get_nr_inodes_unused(void)
88{
89 int i;
90 long sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
94}
95
96long get_nr_dirty_inodes(void)
97{
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
101}
102
103/*
104 * Handle nr_inode sysctl
105 */
106#ifdef CONFIG_SYSCTL
107int proc_nr_inodes(struct ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109{
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113}
114#endif
115
116static int no_open(struct inode *inode, struct file *file)
117{
118 return -ENXIO;
119}
120
121/**
122 * inode_init_always - perform inode structure intialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
125 *
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
128 */
129int inode_init_always(struct super_block *sb, struct inode *inode)
130{
131 static const struct inode_operations empty_iops;
132 static const struct file_operations no_open_fops = {.open = no_open};
133 struct address_space *const mapping = &inode->i_data;
134
135 inode->i_sb = sb;
136 inode->i_blkbits = sb->s_blocksize_bits;
137 inode->i_flags = 0;
138 atomic_set(&inode->i_count, 1);
139 inode->i_op = &empty_iops;
140 inode->i_fop = &no_open_fops;
141 inode->__i_nlink = 1;
142 inode->i_opflags = 0;
143 i_uid_write(inode, 0);
144 i_gid_write(inode, 0);
145 atomic_set(&inode->i_writecount, 0);
146 inode->i_size = 0;
147 inode->i_blocks = 0;
148 inode->i_bytes = 0;
149 inode->i_generation = 0;
150 inode->i_pipe = NULL;
151 inode->i_bdev = NULL;
152 inode->i_cdev = NULL;
153 inode->i_link = NULL;
154 inode->i_rdev = 0;
155 inode->dirtied_when = 0;
156
157#ifdef CONFIG_CGROUP_WRITEBACK
158 inode->i_wb_frn_winner = 0;
159 inode->i_wb_frn_avg_time = 0;
160 inode->i_wb_frn_history = 0;
161#endif
162
163 if (security_inode_alloc(inode))
164 goto out;
165 spin_lock_init(&inode->i_lock);
166 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
167
168 mutex_init(&inode->i_mutex);
169 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
170
171 atomic_set(&inode->i_dio_count, 0);
172
173 mapping->a_ops = &empty_aops;
174 mapping->host = inode;
175 mapping->flags = 0;
176 atomic_set(&mapping->i_mmap_writable, 0);
177 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
178 mapping->private_data = NULL;
179 mapping->writeback_index = 0;
180 inode->i_private = NULL;
181 inode->i_mapping = mapping;
182 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
183#ifdef CONFIG_FS_POSIX_ACL
184 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
185#endif
186
187#ifdef CONFIG_FSNOTIFY
188 inode->i_fsnotify_mask = 0;
189#endif
190 inode->i_flctx = NULL;
191 this_cpu_inc(nr_inodes);
192
193 return 0;
194out:
195 return -ENOMEM;
196}
197EXPORT_SYMBOL(inode_init_always);
198
199static struct inode *alloc_inode(struct super_block *sb)
200{
201 struct inode *inode;
202
203 if (sb->s_op->alloc_inode)
204 inode = sb->s_op->alloc_inode(sb);
205 else
206 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
207
208 if (!inode)
209 return NULL;
210
211 if (unlikely(inode_init_always(sb, inode))) {
212 if (inode->i_sb->s_op->destroy_inode)
213 inode->i_sb->s_op->destroy_inode(inode);
214 else
215 kmem_cache_free(inode_cachep, inode);
216 return NULL;
217 }
218
219 return inode;
220}
221
222void free_inode_nonrcu(struct inode *inode)
223{
224 kmem_cache_free(inode_cachep, inode);
225}
226EXPORT_SYMBOL(free_inode_nonrcu);
227
228void __destroy_inode(struct inode *inode)
229{
230 BUG_ON(inode_has_buffers(inode));
231 inode_detach_wb(inode);
232 security_inode_free(inode);
233 fsnotify_inode_delete(inode);
234 locks_free_lock_context(inode);
235 if (!inode->i_nlink) {
236 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
237 atomic_long_dec(&inode->i_sb->s_remove_count);
238 }
239
240#ifdef CONFIG_FS_POSIX_ACL
241 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
242 posix_acl_release(inode->i_acl);
243 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
244 posix_acl_release(inode->i_default_acl);
245#endif
246 this_cpu_dec(nr_inodes);
247}
248EXPORT_SYMBOL(__destroy_inode);
249
250static void i_callback(struct rcu_head *head)
251{
252 struct inode *inode = container_of(head, struct inode, i_rcu);
253 kmem_cache_free(inode_cachep, inode);
254}
255
256static void destroy_inode(struct inode *inode)
257{
258 BUG_ON(!list_empty(&inode->i_lru));
259 __destroy_inode(inode);
260 if (inode->i_sb->s_op->destroy_inode)
261 inode->i_sb->s_op->destroy_inode(inode);
262 else
263 call_rcu(&inode->i_rcu, i_callback);
264}
265
266/**
267 * drop_nlink - directly drop an inode's link count
268 * @inode: inode
269 *
270 * This is a low-level filesystem helper to replace any
271 * direct filesystem manipulation of i_nlink. In cases
272 * where we are attempting to track writes to the
273 * filesystem, a decrement to zero means an imminent
274 * write when the file is truncated and actually unlinked
275 * on the filesystem.
276 */
277void drop_nlink(struct inode *inode)
278{
279 WARN_ON(inode->i_nlink == 0);
280 inode->__i_nlink--;
281 if (!inode->i_nlink)
282 atomic_long_inc(&inode->i_sb->s_remove_count);
283}
284EXPORT_SYMBOL(drop_nlink);
285
286/**
287 * clear_nlink - directly zero an inode's link count
288 * @inode: inode
289 *
290 * This is a low-level filesystem helper to replace any
291 * direct filesystem manipulation of i_nlink. See
292 * drop_nlink() for why we care about i_nlink hitting zero.
293 */
294void clear_nlink(struct inode *inode)
295{
296 if (inode->i_nlink) {
297 inode->__i_nlink = 0;
298 atomic_long_inc(&inode->i_sb->s_remove_count);
299 }
300}
301EXPORT_SYMBOL(clear_nlink);
302
303/**
304 * set_nlink - directly set an inode's link count
305 * @inode: inode
306 * @nlink: new nlink (should be non-zero)
307 *
308 * This is a low-level filesystem helper to replace any
309 * direct filesystem manipulation of i_nlink.
310 */
311void set_nlink(struct inode *inode, unsigned int nlink)
312{
313 if (!nlink) {
314 clear_nlink(inode);
315 } else {
316 /* Yes, some filesystems do change nlink from zero to one */
317 if (inode->i_nlink == 0)
318 atomic_long_dec(&inode->i_sb->s_remove_count);
319
320 inode->__i_nlink = nlink;
321 }
322}
323EXPORT_SYMBOL(set_nlink);
324
325/**
326 * inc_nlink - directly increment an inode's link count
327 * @inode: inode
328 *
329 * This is a low-level filesystem helper to replace any
330 * direct filesystem manipulation of i_nlink. Currently,
331 * it is only here for parity with dec_nlink().
332 */
333void inc_nlink(struct inode *inode)
334{
335 if (unlikely(inode->i_nlink == 0)) {
336 WARN_ON(!(inode->i_state & I_LINKABLE));
337 atomic_long_dec(&inode->i_sb->s_remove_count);
338 }
339
340 inode->__i_nlink++;
341}
342EXPORT_SYMBOL(inc_nlink);
343
344void address_space_init_once(struct address_space *mapping)
345{
346 memset(mapping, 0, sizeof(*mapping));
347 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
348 spin_lock_init(&mapping->tree_lock);
349 init_rwsem(&mapping->i_mmap_rwsem);
350 INIT_LIST_HEAD(&mapping->private_list);
351 spin_lock_init(&mapping->private_lock);
352 mapping->i_mmap = RB_ROOT;
353}
354EXPORT_SYMBOL(address_space_init_once);
355
356/*
357 * These are initializations that only need to be done
358 * once, because the fields are idempotent across use
359 * of the inode, so let the slab aware of that.
360 */
361void inode_init_once(struct inode *inode)
362{
363 memset(inode, 0, sizeof(*inode));
364 INIT_HLIST_NODE(&inode->i_hash);
365 INIT_LIST_HEAD(&inode->i_devices);
366 INIT_LIST_HEAD(&inode->i_io_list);
367 INIT_LIST_HEAD(&inode->i_lru);
368 address_space_init_once(&inode->i_data);
369 i_size_ordered_init(inode);
370#ifdef CONFIG_FSNOTIFY
371 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
372#endif
373}
374EXPORT_SYMBOL(inode_init_once);
375
376static void init_once(void *foo)
377{
378 struct inode *inode = (struct inode *) foo;
379
380 inode_init_once(inode);
381}
382
383/*
384 * inode->i_lock must be held
385 */
386void __iget(struct inode *inode)
387{
388 atomic_inc(&inode->i_count);
389}
390
391/*
392 * get additional reference to inode; caller must already hold one.
393 */
394void ihold(struct inode *inode)
395{
396 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
397}
398EXPORT_SYMBOL(ihold);
399
400static void inode_lru_list_add(struct inode *inode)
401{
402 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
403 this_cpu_inc(nr_unused);
404}
405
406/*
407 * Add inode to LRU if needed (inode is unused and clean).
408 *
409 * Needs inode->i_lock held.
410 */
411void inode_add_lru(struct inode *inode)
412{
413 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
414 I_FREEING | I_WILL_FREE)) &&
415 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
416 inode_lru_list_add(inode);
417}
418
419
420static void inode_lru_list_del(struct inode *inode)
421{
422
423 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
424 this_cpu_dec(nr_unused);
425}
426
427/**
428 * inode_sb_list_add - add inode to the superblock list of inodes
429 * @inode: inode to add
430 */
431void inode_sb_list_add(struct inode *inode)
432{
433 spin_lock(&inode->i_sb->s_inode_list_lock);
434 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
435 spin_unlock(&inode->i_sb->s_inode_list_lock);
436}
437EXPORT_SYMBOL_GPL(inode_sb_list_add);
438
439static inline void inode_sb_list_del(struct inode *inode)
440{
441 if (!list_empty(&inode->i_sb_list)) {
442 spin_lock(&inode->i_sb->s_inode_list_lock);
443 list_del_init(&inode->i_sb_list);
444 spin_unlock(&inode->i_sb->s_inode_list_lock);
445 }
446}
447
448static unsigned long hash(struct super_block *sb, unsigned long hashval)
449{
450 unsigned long tmp;
451
452 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
453 L1_CACHE_BYTES;
454 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
455 return tmp & i_hash_mask;
456}
457
458/**
459 * __insert_inode_hash - hash an inode
460 * @inode: unhashed inode
461 * @hashval: unsigned long value used to locate this object in the
462 * inode_hashtable.
463 *
464 * Add an inode to the inode hash for this superblock.
465 */
466void __insert_inode_hash(struct inode *inode, unsigned long hashval)
467{
468 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
469
470 spin_lock(&inode_hash_lock);
471 spin_lock(&inode->i_lock);
472 hlist_add_head(&inode->i_hash, b);
473 spin_unlock(&inode->i_lock);
474 spin_unlock(&inode_hash_lock);
475}
476EXPORT_SYMBOL(__insert_inode_hash);
477
478/**
479 * __remove_inode_hash - remove an inode from the hash
480 * @inode: inode to unhash
481 *
482 * Remove an inode from the superblock.
483 */
484void __remove_inode_hash(struct inode *inode)
485{
486 spin_lock(&inode_hash_lock);
487 spin_lock(&inode->i_lock);
488 hlist_del_init(&inode->i_hash);
489 spin_unlock(&inode->i_lock);
490 spin_unlock(&inode_hash_lock);
491}
492EXPORT_SYMBOL(__remove_inode_hash);
493
494void clear_inode(struct inode *inode)
495{
496 might_sleep();
497 /*
498 * We have to cycle tree_lock here because reclaim can be still in the
499 * process of removing the last page (in __delete_from_page_cache())
500 * and we must not free mapping under it.
501 */
502 spin_lock_irq(&inode->i_data.tree_lock);
503 BUG_ON(inode->i_data.nrpages);
504 BUG_ON(inode->i_data.nrexceptional);
505 spin_unlock_irq(&inode->i_data.tree_lock);
506 BUG_ON(!list_empty(&inode->i_data.private_list));
507 BUG_ON(!(inode->i_state & I_FREEING));
508 BUG_ON(inode->i_state & I_CLEAR);
509 /* don't need i_lock here, no concurrent mods to i_state */
510 inode->i_state = I_FREEING | I_CLEAR;
511}
512EXPORT_SYMBOL(clear_inode);
513
514/*
515 * Free the inode passed in, removing it from the lists it is still connected
516 * to. We remove any pages still attached to the inode and wait for any IO that
517 * is still in progress before finally destroying the inode.
518 *
519 * An inode must already be marked I_FREEING so that we avoid the inode being
520 * moved back onto lists if we race with other code that manipulates the lists
521 * (e.g. writeback_single_inode). The caller is responsible for setting this.
522 *
523 * An inode must already be removed from the LRU list before being evicted from
524 * the cache. This should occur atomically with setting the I_FREEING state
525 * flag, so no inodes here should ever be on the LRU when being evicted.
526 */
527static void evict(struct inode *inode)
528{
529 const struct super_operations *op = inode->i_sb->s_op;
530
531 BUG_ON(!(inode->i_state & I_FREEING));
532 BUG_ON(!list_empty(&inode->i_lru));
533
534 if (!list_empty(&inode->i_io_list))
535 inode_io_list_del(inode);
536
537 inode_sb_list_del(inode);
538
539 /*
540 * Wait for flusher thread to be done with the inode so that filesystem
541 * does not start destroying it while writeback is still running. Since
542 * the inode has I_FREEING set, flusher thread won't start new work on
543 * the inode. We just have to wait for running writeback to finish.
544 */
545 inode_wait_for_writeback(inode);
546
547 if (op->evict_inode) {
548 op->evict_inode(inode);
549 } else {
550 truncate_inode_pages_final(&inode->i_data);
551 clear_inode(inode);
552 }
553 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
554 bd_forget(inode);
555 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
556 cd_forget(inode);
557
558 remove_inode_hash(inode);
559
560 spin_lock(&inode->i_lock);
561 wake_up_bit(&inode->i_state, __I_NEW);
562 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
563 spin_unlock(&inode->i_lock);
564
565 destroy_inode(inode);
566}
567
568/*
569 * dispose_list - dispose of the contents of a local list
570 * @head: the head of the list to free
571 *
572 * Dispose-list gets a local list with local inodes in it, so it doesn't
573 * need to worry about list corruption and SMP locks.
574 */
575static void dispose_list(struct list_head *head)
576{
577 while (!list_empty(head)) {
578 struct inode *inode;
579
580 inode = list_first_entry(head, struct inode, i_lru);
581 list_del_init(&inode->i_lru);
582
583 evict(inode);
584 cond_resched();
585 }
586}
587
588/**
589 * evict_inodes - evict all evictable inodes for a superblock
590 * @sb: superblock to operate on
591 *
592 * Make sure that no inodes with zero refcount are retained. This is
593 * called by superblock shutdown after having MS_ACTIVE flag removed,
594 * so any inode reaching zero refcount during or after that call will
595 * be immediately evicted.
596 */
597void evict_inodes(struct super_block *sb)
598{
599 struct inode *inode, *next;
600 LIST_HEAD(dispose);
601
602again:
603 spin_lock(&sb->s_inode_list_lock);
604 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
605 if (atomic_read(&inode->i_count))
606 continue;
607
608 spin_lock(&inode->i_lock);
609 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
610 spin_unlock(&inode->i_lock);
611 continue;
612 }
613
614 inode->i_state |= I_FREEING;
615 inode_lru_list_del(inode);
616 spin_unlock(&inode->i_lock);
617 list_add(&inode->i_lru, &dispose);
618
619 /*
620 * We can have a ton of inodes to evict at unmount time given
621 * enough memory, check to see if we need to go to sleep for a
622 * bit so we don't livelock.
623 */
624 if (need_resched()) {
625 spin_unlock(&sb->s_inode_list_lock);
626 cond_resched();
627 dispose_list(&dispose);
628 goto again;
629 }
630 }
631 spin_unlock(&sb->s_inode_list_lock);
632
633 dispose_list(&dispose);
634}
635
636/**
637 * invalidate_inodes - attempt to free all inodes on a superblock
638 * @sb: superblock to operate on
639 * @kill_dirty: flag to guide handling of dirty inodes
640 *
641 * Attempts to free all inodes for a given superblock. If there were any
642 * busy inodes return a non-zero value, else zero.
643 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
644 * them as busy.
645 */
646int invalidate_inodes(struct super_block *sb, bool kill_dirty)
647{
648 int busy = 0;
649 struct inode *inode, *next;
650 LIST_HEAD(dispose);
651
652 spin_lock(&sb->s_inode_list_lock);
653 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
654 spin_lock(&inode->i_lock);
655 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
656 spin_unlock(&inode->i_lock);
657 continue;
658 }
659 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
660 spin_unlock(&inode->i_lock);
661 busy = 1;
662 continue;
663 }
664 if (atomic_read(&inode->i_count)) {
665 spin_unlock(&inode->i_lock);
666 busy = 1;
667 continue;
668 }
669
670 inode->i_state |= I_FREEING;
671 inode_lru_list_del(inode);
672 spin_unlock(&inode->i_lock);
673 list_add(&inode->i_lru, &dispose);
674 }
675 spin_unlock(&sb->s_inode_list_lock);
676
677 dispose_list(&dispose);
678
679 return busy;
680}
681
682/*
683 * Isolate the inode from the LRU in preparation for freeing it.
684 *
685 * Any inodes which are pinned purely because of attached pagecache have their
686 * pagecache removed. If the inode has metadata buffers attached to
687 * mapping->private_list then try to remove them.
688 *
689 * If the inode has the I_REFERENCED flag set, then it means that it has been
690 * used recently - the flag is set in iput_final(). When we encounter such an
691 * inode, clear the flag and move it to the back of the LRU so it gets another
692 * pass through the LRU before it gets reclaimed. This is necessary because of
693 * the fact we are doing lazy LRU updates to minimise lock contention so the
694 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
695 * with this flag set because they are the inodes that are out of order.
696 */
697static enum lru_status inode_lru_isolate(struct list_head *item,
698 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
699{
700 struct list_head *freeable = arg;
701 struct inode *inode = container_of(item, struct inode, i_lru);
702
703 /*
704 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
705 * If we fail to get the lock, just skip it.
706 */
707 if (!spin_trylock(&inode->i_lock))
708 return LRU_SKIP;
709
710 /*
711 * Referenced or dirty inodes are still in use. Give them another pass
712 * through the LRU as we canot reclaim them now.
713 */
714 if (atomic_read(&inode->i_count) ||
715 (inode->i_state & ~I_REFERENCED)) {
716 list_lru_isolate(lru, &inode->i_lru);
717 spin_unlock(&inode->i_lock);
718 this_cpu_dec(nr_unused);
719 return LRU_REMOVED;
720 }
721
722 /* recently referenced inodes get one more pass */
723 if (inode->i_state & I_REFERENCED) {
724 inode->i_state &= ~I_REFERENCED;
725 spin_unlock(&inode->i_lock);
726 return LRU_ROTATE;
727 }
728
729 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
730 __iget(inode);
731 spin_unlock(&inode->i_lock);
732 spin_unlock(lru_lock);
733 if (remove_inode_buffers(inode)) {
734 unsigned long reap;
735 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
736 if (current_is_kswapd())
737 __count_vm_events(KSWAPD_INODESTEAL, reap);
738 else
739 __count_vm_events(PGINODESTEAL, reap);
740 if (current->reclaim_state)
741 current->reclaim_state->reclaimed_slab += reap;
742 }
743 iput(inode);
744 spin_lock(lru_lock);
745 return LRU_RETRY;
746 }
747
748 WARN_ON(inode->i_state & I_NEW);
749 inode->i_state |= I_FREEING;
750 list_lru_isolate_move(lru, &inode->i_lru, freeable);
751 spin_unlock(&inode->i_lock);
752
753 this_cpu_dec(nr_unused);
754 return LRU_REMOVED;
755}
756
757/*
758 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
759 * This is called from the superblock shrinker function with a number of inodes
760 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
761 * then are freed outside inode_lock by dispose_list().
762 */
763long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
764{
765 LIST_HEAD(freeable);
766 long freed;
767
768 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
769 inode_lru_isolate, &freeable);
770 dispose_list(&freeable);
771 return freed;
772}
773
774static void __wait_on_freeing_inode(struct inode *inode);
775/*
776 * Called with the inode lock held.
777 */
778static struct inode *find_inode(struct super_block *sb,
779 struct hlist_head *head,
780 int (*test)(struct inode *, void *),
781 void *data)
782{
783 struct inode *inode = NULL;
784
785repeat:
786 hlist_for_each_entry(inode, head, i_hash) {
787 if (inode->i_sb != sb)
788 continue;
789 if (!test(inode, data))
790 continue;
791 spin_lock(&inode->i_lock);
792 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
793 __wait_on_freeing_inode(inode);
794 goto repeat;
795 }
796 __iget(inode);
797 spin_unlock(&inode->i_lock);
798 return inode;
799 }
800 return NULL;
801}
802
803/*
804 * find_inode_fast is the fast path version of find_inode, see the comment at
805 * iget_locked for details.
806 */
807static struct inode *find_inode_fast(struct super_block *sb,
808 struct hlist_head *head, unsigned long ino)
809{
810 struct inode *inode = NULL;
811
812repeat:
813 hlist_for_each_entry(inode, head, i_hash) {
814 if (inode->i_ino != ino)
815 continue;
816 if (inode->i_sb != sb)
817 continue;
818 spin_lock(&inode->i_lock);
819 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
820 __wait_on_freeing_inode(inode);
821 goto repeat;
822 }
823 __iget(inode);
824 spin_unlock(&inode->i_lock);
825 return inode;
826 }
827 return NULL;
828}
829
830/*
831 * Each cpu owns a range of LAST_INO_BATCH numbers.
832 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
833 * to renew the exhausted range.
834 *
835 * This does not significantly increase overflow rate because every CPU can
836 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
837 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
838 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
839 * overflow rate by 2x, which does not seem too significant.
840 *
841 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
842 * error if st_ino won't fit in target struct field. Use 32bit counter
843 * here to attempt to avoid that.
844 */
845#define LAST_INO_BATCH 1024
846static DEFINE_PER_CPU(unsigned int, last_ino);
847
848unsigned int get_next_ino(void)
849{
850 unsigned int *p = &get_cpu_var(last_ino);
851 unsigned int res = *p;
852
853#ifdef CONFIG_SMP
854 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
855 static atomic_t shared_last_ino;
856 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
857
858 res = next - LAST_INO_BATCH;
859 }
860#endif
861
862 res++;
863 /* get_next_ino should not provide a 0 inode number */
864 if (unlikely(!res))
865 res++;
866 *p = res;
867 put_cpu_var(last_ino);
868 return res;
869}
870EXPORT_SYMBOL(get_next_ino);
871
872/**
873 * new_inode_pseudo - obtain an inode
874 * @sb: superblock
875 *
876 * Allocates a new inode for given superblock.
877 * Inode wont be chained in superblock s_inodes list
878 * This means :
879 * - fs can't be unmount
880 * - quotas, fsnotify, writeback can't work
881 */
882struct inode *new_inode_pseudo(struct super_block *sb)
883{
884 struct inode *inode = alloc_inode(sb);
885
886 if (inode) {
887 spin_lock(&inode->i_lock);
888 inode->i_state = 0;
889 spin_unlock(&inode->i_lock);
890 INIT_LIST_HEAD(&inode->i_sb_list);
891 }
892 return inode;
893}
894
895/**
896 * new_inode - obtain an inode
897 * @sb: superblock
898 *
899 * Allocates a new inode for given superblock. The default gfp_mask
900 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
901 * If HIGHMEM pages are unsuitable or it is known that pages allocated
902 * for the page cache are not reclaimable or migratable,
903 * mapping_set_gfp_mask() must be called with suitable flags on the
904 * newly created inode's mapping
905 *
906 */
907struct inode *new_inode(struct super_block *sb)
908{
909 struct inode *inode;
910
911 spin_lock_prefetch(&sb->s_inode_list_lock);
912
913 inode = new_inode_pseudo(sb);
914 if (inode)
915 inode_sb_list_add(inode);
916 return inode;
917}
918EXPORT_SYMBOL(new_inode);
919
920#ifdef CONFIG_DEBUG_LOCK_ALLOC
921void lockdep_annotate_inode_mutex_key(struct inode *inode)
922{
923 if (S_ISDIR(inode->i_mode)) {
924 struct file_system_type *type = inode->i_sb->s_type;
925
926 /* Set new key only if filesystem hasn't already changed it */
927 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
928 /*
929 * ensure nobody is actually holding i_mutex
930 */
931 mutex_destroy(&inode->i_mutex);
932 mutex_init(&inode->i_mutex);
933 lockdep_set_class(&inode->i_mutex,
934 &type->i_mutex_dir_key);
935 }
936 }
937}
938EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
939#endif
940
941/**
942 * unlock_new_inode - clear the I_NEW state and wake up any waiters
943 * @inode: new inode to unlock
944 *
945 * Called when the inode is fully initialised to clear the new state of the
946 * inode and wake up anyone waiting for the inode to finish initialisation.
947 */
948void unlock_new_inode(struct inode *inode)
949{
950 lockdep_annotate_inode_mutex_key(inode);
951 spin_lock(&inode->i_lock);
952 WARN_ON(!(inode->i_state & I_NEW));
953 inode->i_state &= ~I_NEW;
954 smp_mb();
955 wake_up_bit(&inode->i_state, __I_NEW);
956 spin_unlock(&inode->i_lock);
957}
958EXPORT_SYMBOL(unlock_new_inode);
959
960/**
961 * lock_two_nondirectories - take two i_mutexes on non-directory objects
962 *
963 * Lock any non-NULL argument that is not a directory.
964 * Zero, one or two objects may be locked by this function.
965 *
966 * @inode1: first inode to lock
967 * @inode2: second inode to lock
968 */
969void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
970{
971 if (inode1 > inode2)
972 swap(inode1, inode2);
973
974 if (inode1 && !S_ISDIR(inode1->i_mode))
975 inode_lock(inode1);
976 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
977 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
978}
979EXPORT_SYMBOL(lock_two_nondirectories);
980
981/**
982 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
983 * @inode1: first inode to unlock
984 * @inode2: second inode to unlock
985 */
986void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
987{
988 if (inode1 && !S_ISDIR(inode1->i_mode))
989 inode_unlock(inode1);
990 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
991 inode_unlock(inode2);
992}
993EXPORT_SYMBOL(unlock_two_nondirectories);
994
995/**
996 * iget5_locked - obtain an inode from a mounted file system
997 * @sb: super block of file system
998 * @hashval: hash value (usually inode number) to get
999 * @test: callback used for comparisons between inodes
1000 * @set: callback used to initialize a new struct inode
1001 * @data: opaque data pointer to pass to @test and @set
1002 *
1003 * Search for the inode specified by @hashval and @data in the inode cache,
1004 * and if present it is return it with an increased reference count. This is
1005 * a generalized version of iget_locked() for file systems where the inode
1006 * number is not sufficient for unique identification of an inode.
1007 *
1008 * If the inode is not in cache, allocate a new inode and return it locked,
1009 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1010 * before unlocking it via unlock_new_inode().
1011 *
1012 * Note both @test and @set are called with the inode_hash_lock held, so can't
1013 * sleep.
1014 */
1015struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1016 int (*test)(struct inode *, void *),
1017 int (*set)(struct inode *, void *), void *data)
1018{
1019 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1020 struct inode *inode;
1021
1022 spin_lock(&inode_hash_lock);
1023 inode = find_inode(sb, head, test, data);
1024 spin_unlock(&inode_hash_lock);
1025
1026 if (inode) {
1027 wait_on_inode(inode);
1028 return inode;
1029 }
1030
1031 inode = alloc_inode(sb);
1032 if (inode) {
1033 struct inode *old;
1034
1035 spin_lock(&inode_hash_lock);
1036 /* We released the lock, so.. */
1037 old = find_inode(sb, head, test, data);
1038 if (!old) {
1039 if (set(inode, data))
1040 goto set_failed;
1041
1042 spin_lock(&inode->i_lock);
1043 inode->i_state = I_NEW;
1044 hlist_add_head(&inode->i_hash, head);
1045 spin_unlock(&inode->i_lock);
1046 inode_sb_list_add(inode);
1047 spin_unlock(&inode_hash_lock);
1048
1049 /* Return the locked inode with I_NEW set, the
1050 * caller is responsible for filling in the contents
1051 */
1052 return inode;
1053 }
1054
1055 /*
1056 * Uhhuh, somebody else created the same inode under
1057 * us. Use the old inode instead of the one we just
1058 * allocated.
1059 */
1060 spin_unlock(&inode_hash_lock);
1061 destroy_inode(inode);
1062 inode = old;
1063 wait_on_inode(inode);
1064 }
1065 return inode;
1066
1067set_failed:
1068 spin_unlock(&inode_hash_lock);
1069 destroy_inode(inode);
1070 return NULL;
1071}
1072EXPORT_SYMBOL(iget5_locked);
1073
1074/**
1075 * iget_locked - obtain an inode from a mounted file system
1076 * @sb: super block of file system
1077 * @ino: inode number to get
1078 *
1079 * Search for the inode specified by @ino in the inode cache and if present
1080 * return it with an increased reference count. This is for file systems
1081 * where the inode number is sufficient for unique identification of an inode.
1082 *
1083 * If the inode is not in cache, allocate a new inode and return it locked,
1084 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1085 * before unlocking it via unlock_new_inode().
1086 */
1087struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1088{
1089 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1090 struct inode *inode;
1091
1092 spin_lock(&inode_hash_lock);
1093 inode = find_inode_fast(sb, head, ino);
1094 spin_unlock(&inode_hash_lock);
1095 if (inode) {
1096 wait_on_inode(inode);
1097 return inode;
1098 }
1099
1100 inode = alloc_inode(sb);
1101 if (inode) {
1102 struct inode *old;
1103
1104 spin_lock(&inode_hash_lock);
1105 /* We released the lock, so.. */
1106 old = find_inode_fast(sb, head, ino);
1107 if (!old) {
1108 inode->i_ino = ino;
1109 spin_lock(&inode->i_lock);
1110 inode->i_state = I_NEW;
1111 hlist_add_head(&inode->i_hash, head);
1112 spin_unlock(&inode->i_lock);
1113 inode_sb_list_add(inode);
1114 spin_unlock(&inode_hash_lock);
1115
1116 /* Return the locked inode with I_NEW set, the
1117 * caller is responsible for filling in the contents
1118 */
1119 return inode;
1120 }
1121
1122 /*
1123 * Uhhuh, somebody else created the same inode under
1124 * us. Use the old inode instead of the one we just
1125 * allocated.
1126 */
1127 spin_unlock(&inode_hash_lock);
1128 destroy_inode(inode);
1129 inode = old;
1130 wait_on_inode(inode);
1131 }
1132 return inode;
1133}
1134EXPORT_SYMBOL(iget_locked);
1135
1136/*
1137 * search the inode cache for a matching inode number.
1138 * If we find one, then the inode number we are trying to
1139 * allocate is not unique and so we should not use it.
1140 *
1141 * Returns 1 if the inode number is unique, 0 if it is not.
1142 */
1143static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1144{
1145 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1146 struct inode *inode;
1147
1148 spin_lock(&inode_hash_lock);
1149 hlist_for_each_entry(inode, b, i_hash) {
1150 if (inode->i_ino == ino && inode->i_sb == sb) {
1151 spin_unlock(&inode_hash_lock);
1152 return 0;
1153 }
1154 }
1155 spin_unlock(&inode_hash_lock);
1156
1157 return 1;
1158}
1159
1160/**
1161 * iunique - get a unique inode number
1162 * @sb: superblock
1163 * @max_reserved: highest reserved inode number
1164 *
1165 * Obtain an inode number that is unique on the system for a given
1166 * superblock. This is used by file systems that have no natural
1167 * permanent inode numbering system. An inode number is returned that
1168 * is higher than the reserved limit but unique.
1169 *
1170 * BUGS:
1171 * With a large number of inodes live on the file system this function
1172 * currently becomes quite slow.
1173 */
1174ino_t iunique(struct super_block *sb, ino_t max_reserved)
1175{
1176 /*
1177 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1178 * error if st_ino won't fit in target struct field. Use 32bit counter
1179 * here to attempt to avoid that.
1180 */
1181 static DEFINE_SPINLOCK(iunique_lock);
1182 static unsigned int counter;
1183 ino_t res;
1184
1185 spin_lock(&iunique_lock);
1186 do {
1187 if (counter <= max_reserved)
1188 counter = max_reserved + 1;
1189 res = counter++;
1190 } while (!test_inode_iunique(sb, res));
1191 spin_unlock(&iunique_lock);
1192
1193 return res;
1194}
1195EXPORT_SYMBOL(iunique);
1196
1197struct inode *igrab(struct inode *inode)
1198{
1199 spin_lock(&inode->i_lock);
1200 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1201 __iget(inode);
1202 spin_unlock(&inode->i_lock);
1203 } else {
1204 spin_unlock(&inode->i_lock);
1205 /*
1206 * Handle the case where s_op->clear_inode is not been
1207 * called yet, and somebody is calling igrab
1208 * while the inode is getting freed.
1209 */
1210 inode = NULL;
1211 }
1212 return inode;
1213}
1214EXPORT_SYMBOL(igrab);
1215
1216/**
1217 * ilookup5_nowait - search for an inode in the inode cache
1218 * @sb: super block of file system to search
1219 * @hashval: hash value (usually inode number) to search for
1220 * @test: callback used for comparisons between inodes
1221 * @data: opaque data pointer to pass to @test
1222 *
1223 * Search for the inode specified by @hashval and @data in the inode cache.
1224 * If the inode is in the cache, the inode is returned with an incremented
1225 * reference count.
1226 *
1227 * Note: I_NEW is not waited upon so you have to be very careful what you do
1228 * with the returned inode. You probably should be using ilookup5() instead.
1229 *
1230 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1231 */
1232struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1233 int (*test)(struct inode *, void *), void *data)
1234{
1235 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1236 struct inode *inode;
1237
1238 spin_lock(&inode_hash_lock);
1239 inode = find_inode(sb, head, test, data);
1240 spin_unlock(&inode_hash_lock);
1241
1242 return inode;
1243}
1244EXPORT_SYMBOL(ilookup5_nowait);
1245
1246/**
1247 * ilookup5 - search for an inode in the inode cache
1248 * @sb: super block of file system to search
1249 * @hashval: hash value (usually inode number) to search for
1250 * @test: callback used for comparisons between inodes
1251 * @data: opaque data pointer to pass to @test
1252 *
1253 * Search for the inode specified by @hashval and @data in the inode cache,
1254 * and if the inode is in the cache, return the inode with an incremented
1255 * reference count. Waits on I_NEW before returning the inode.
1256 * returned with an incremented reference count.
1257 *
1258 * This is a generalized version of ilookup() for file systems where the
1259 * inode number is not sufficient for unique identification of an inode.
1260 *
1261 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1262 */
1263struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1264 int (*test)(struct inode *, void *), void *data)
1265{
1266 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1267
1268 if (inode)
1269 wait_on_inode(inode);
1270 return inode;
1271}
1272EXPORT_SYMBOL(ilookup5);
1273
1274/**
1275 * ilookup - search for an inode in the inode cache
1276 * @sb: super block of file system to search
1277 * @ino: inode number to search for
1278 *
1279 * Search for the inode @ino in the inode cache, and if the inode is in the
1280 * cache, the inode is returned with an incremented reference count.
1281 */
1282struct inode *ilookup(struct super_block *sb, unsigned long ino)
1283{
1284 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1285 struct inode *inode;
1286
1287 spin_lock(&inode_hash_lock);
1288 inode = find_inode_fast(sb, head, ino);
1289 spin_unlock(&inode_hash_lock);
1290
1291 if (inode)
1292 wait_on_inode(inode);
1293 return inode;
1294}
1295EXPORT_SYMBOL(ilookup);
1296
1297/**
1298 * find_inode_nowait - find an inode in the inode cache
1299 * @sb: super block of file system to search
1300 * @hashval: hash value (usually inode number) to search for
1301 * @match: callback used for comparisons between inodes
1302 * @data: opaque data pointer to pass to @match
1303 *
1304 * Search for the inode specified by @hashval and @data in the inode
1305 * cache, where the helper function @match will return 0 if the inode
1306 * does not match, 1 if the inode does match, and -1 if the search
1307 * should be stopped. The @match function must be responsible for
1308 * taking the i_lock spin_lock and checking i_state for an inode being
1309 * freed or being initialized, and incrementing the reference count
1310 * before returning 1. It also must not sleep, since it is called with
1311 * the inode_hash_lock spinlock held.
1312 *
1313 * This is a even more generalized version of ilookup5() when the
1314 * function must never block --- find_inode() can block in
1315 * __wait_on_freeing_inode() --- or when the caller can not increment
1316 * the reference count because the resulting iput() might cause an
1317 * inode eviction. The tradeoff is that the @match funtion must be
1318 * very carefully implemented.
1319 */
1320struct inode *find_inode_nowait(struct super_block *sb,
1321 unsigned long hashval,
1322 int (*match)(struct inode *, unsigned long,
1323 void *),
1324 void *data)
1325{
1326 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1327 struct inode *inode, *ret_inode = NULL;
1328 int mval;
1329
1330 spin_lock(&inode_hash_lock);
1331 hlist_for_each_entry(inode, head, i_hash) {
1332 if (inode->i_sb != sb)
1333 continue;
1334 mval = match(inode, hashval, data);
1335 if (mval == 0)
1336 continue;
1337 if (mval == 1)
1338 ret_inode = inode;
1339 goto out;
1340 }
1341out:
1342 spin_unlock(&inode_hash_lock);
1343 return ret_inode;
1344}
1345EXPORT_SYMBOL(find_inode_nowait);
1346
1347int insert_inode_locked(struct inode *inode)
1348{
1349 struct super_block *sb = inode->i_sb;
1350 ino_t ino = inode->i_ino;
1351 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1352
1353 while (1) {
1354 struct inode *old = NULL;
1355 spin_lock(&inode_hash_lock);
1356 hlist_for_each_entry(old, head, i_hash) {
1357 if (old->i_ino != ino)
1358 continue;
1359 if (old->i_sb != sb)
1360 continue;
1361 spin_lock(&old->i_lock);
1362 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1363 spin_unlock(&old->i_lock);
1364 continue;
1365 }
1366 break;
1367 }
1368 if (likely(!old)) {
1369 spin_lock(&inode->i_lock);
1370 inode->i_state |= I_NEW;
1371 hlist_add_head(&inode->i_hash, head);
1372 spin_unlock(&inode->i_lock);
1373 spin_unlock(&inode_hash_lock);
1374 return 0;
1375 }
1376 __iget(old);
1377 spin_unlock(&old->i_lock);
1378 spin_unlock(&inode_hash_lock);
1379 wait_on_inode(old);
1380 if (unlikely(!inode_unhashed(old))) {
1381 iput(old);
1382 return -EBUSY;
1383 }
1384 iput(old);
1385 }
1386}
1387EXPORT_SYMBOL(insert_inode_locked);
1388
1389int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1390 int (*test)(struct inode *, void *), void *data)
1391{
1392 struct super_block *sb = inode->i_sb;
1393 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1394
1395 while (1) {
1396 struct inode *old = NULL;
1397
1398 spin_lock(&inode_hash_lock);
1399 hlist_for_each_entry(old, head, i_hash) {
1400 if (old->i_sb != sb)
1401 continue;
1402 if (!test(old, data))
1403 continue;
1404 spin_lock(&old->i_lock);
1405 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1406 spin_unlock(&old->i_lock);
1407 continue;
1408 }
1409 break;
1410 }
1411 if (likely(!old)) {
1412 spin_lock(&inode->i_lock);
1413 inode->i_state |= I_NEW;
1414 hlist_add_head(&inode->i_hash, head);
1415 spin_unlock(&inode->i_lock);
1416 spin_unlock(&inode_hash_lock);
1417 return 0;
1418 }
1419 __iget(old);
1420 spin_unlock(&old->i_lock);
1421 spin_unlock(&inode_hash_lock);
1422 wait_on_inode(old);
1423 if (unlikely(!inode_unhashed(old))) {
1424 iput(old);
1425 return -EBUSY;
1426 }
1427 iput(old);
1428 }
1429}
1430EXPORT_SYMBOL(insert_inode_locked4);
1431
1432
1433int generic_delete_inode(struct inode *inode)
1434{
1435 return 1;
1436}
1437EXPORT_SYMBOL(generic_delete_inode);
1438
1439/*
1440 * Called when we're dropping the last reference
1441 * to an inode.
1442 *
1443 * Call the FS "drop_inode()" function, defaulting to
1444 * the legacy UNIX filesystem behaviour. If it tells
1445 * us to evict inode, do so. Otherwise, retain inode
1446 * in cache if fs is alive, sync and evict if fs is
1447 * shutting down.
1448 */
1449static void iput_final(struct inode *inode)
1450{
1451 struct super_block *sb = inode->i_sb;
1452 const struct super_operations *op = inode->i_sb->s_op;
1453 int drop;
1454
1455 WARN_ON(inode->i_state & I_NEW);
1456
1457 if (op->drop_inode)
1458 drop = op->drop_inode(inode);
1459 else
1460 drop = generic_drop_inode(inode);
1461
1462 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1463 inode->i_state |= I_REFERENCED;
1464 inode_add_lru(inode);
1465 spin_unlock(&inode->i_lock);
1466 return;
1467 }
1468
1469 if (!drop) {
1470 inode->i_state |= I_WILL_FREE;
1471 spin_unlock(&inode->i_lock);
1472 write_inode_now(inode, 1);
1473 spin_lock(&inode->i_lock);
1474 WARN_ON(inode->i_state & I_NEW);
1475 inode->i_state &= ~I_WILL_FREE;
1476 }
1477
1478 inode->i_state |= I_FREEING;
1479 if (!list_empty(&inode->i_lru))
1480 inode_lru_list_del(inode);
1481 spin_unlock(&inode->i_lock);
1482
1483 evict(inode);
1484}
1485
1486/**
1487 * iput - put an inode
1488 * @inode: inode to put
1489 *
1490 * Puts an inode, dropping its usage count. If the inode use count hits
1491 * zero, the inode is then freed and may also be destroyed.
1492 *
1493 * Consequently, iput() can sleep.
1494 */
1495void iput(struct inode *inode)
1496{
1497 if (!inode)
1498 return;
1499 BUG_ON(inode->i_state & I_CLEAR);
1500retry:
1501 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1502 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1503 atomic_inc(&inode->i_count);
1504 inode->i_state &= ~I_DIRTY_TIME;
1505 spin_unlock(&inode->i_lock);
1506 trace_writeback_lazytime_iput(inode);
1507 mark_inode_dirty_sync(inode);
1508 goto retry;
1509 }
1510 iput_final(inode);
1511 }
1512}
1513EXPORT_SYMBOL(iput);
1514
1515/**
1516 * bmap - find a block number in a file
1517 * @inode: inode of file
1518 * @block: block to find
1519 *
1520 * Returns the block number on the device holding the inode that
1521 * is the disk block number for the block of the file requested.
1522 * That is, asked for block 4 of inode 1 the function will return the
1523 * disk block relative to the disk start that holds that block of the
1524 * file.
1525 */
1526sector_t bmap(struct inode *inode, sector_t block)
1527{
1528 sector_t res = 0;
1529 if (inode->i_mapping->a_ops->bmap)
1530 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1531 return res;
1532}
1533EXPORT_SYMBOL(bmap);
1534
1535/*
1536 * With relative atime, only update atime if the previous atime is
1537 * earlier than either the ctime or mtime or if at least a day has
1538 * passed since the last atime update.
1539 */
1540static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1541 struct timespec now)
1542{
1543
1544 if (!(mnt->mnt_flags & MNT_RELATIME))
1545 return 1;
1546 /*
1547 * Is mtime younger than atime? If yes, update atime:
1548 */
1549 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1550 return 1;
1551 /*
1552 * Is ctime younger than atime? If yes, update atime:
1553 */
1554 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1555 return 1;
1556
1557 /*
1558 * Is the previous atime value older than a day? If yes,
1559 * update atime:
1560 */
1561 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1562 return 1;
1563 /*
1564 * Good, we can skip the atime update:
1565 */
1566 return 0;
1567}
1568
1569int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1570{
1571 int iflags = I_DIRTY_TIME;
1572
1573 if (flags & S_ATIME)
1574 inode->i_atime = *time;
1575 if (flags & S_VERSION)
1576 inode_inc_iversion(inode);
1577 if (flags & S_CTIME)
1578 inode->i_ctime = *time;
1579 if (flags & S_MTIME)
1580 inode->i_mtime = *time;
1581
1582 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1583 iflags |= I_DIRTY_SYNC;
1584 __mark_inode_dirty(inode, iflags);
1585 return 0;
1586}
1587EXPORT_SYMBOL(generic_update_time);
1588
1589/*
1590 * This does the actual work of updating an inodes time or version. Must have
1591 * had called mnt_want_write() before calling this.
1592 */
1593static int update_time(struct inode *inode, struct timespec *time, int flags)
1594{
1595 int (*update_time)(struct inode *, struct timespec *, int);
1596
1597 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1598 generic_update_time;
1599
1600 return update_time(inode, time, flags);
1601}
1602
1603/**
1604 * touch_atime - update the access time
1605 * @path: the &struct path to update
1606 * @inode: inode to update
1607 *
1608 * Update the accessed time on an inode and mark it for writeback.
1609 * This function automatically handles read only file systems and media,
1610 * as well as the "noatime" flag and inode specific "noatime" markers.
1611 */
1612bool atime_needs_update(const struct path *path, struct inode *inode)
1613{
1614 struct vfsmount *mnt = path->mnt;
1615 struct timespec now;
1616
1617 if (inode->i_flags & S_NOATIME)
1618 return false;
1619 if (IS_NOATIME(inode))
1620 return false;
1621 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1622 return false;
1623
1624 if (mnt->mnt_flags & MNT_NOATIME)
1625 return false;
1626 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1627 return false;
1628
1629 now = current_fs_time(inode->i_sb);
1630
1631 if (!relatime_need_update(mnt, inode, now))
1632 return false;
1633
1634 if (timespec_equal(&inode->i_atime, &now))
1635 return false;
1636
1637 return true;
1638}
1639
1640void touch_atime(const struct path *path)
1641{
1642 struct vfsmount *mnt = path->mnt;
1643 struct inode *inode = d_inode(path->dentry);
1644 struct timespec now;
1645
1646 if (!atime_needs_update(path, inode))
1647 return;
1648
1649 if (!sb_start_write_trylock(inode->i_sb))
1650 return;
1651
1652 if (__mnt_want_write(mnt) != 0)
1653 goto skip_update;
1654 /*
1655 * File systems can error out when updating inodes if they need to
1656 * allocate new space to modify an inode (such is the case for
1657 * Btrfs), but since we touch atime while walking down the path we
1658 * really don't care if we failed to update the atime of the file,
1659 * so just ignore the return value.
1660 * We may also fail on filesystems that have the ability to make parts
1661 * of the fs read only, e.g. subvolumes in Btrfs.
1662 */
1663 now = current_fs_time(inode->i_sb);
1664 update_time(inode, &now, S_ATIME);
1665 __mnt_drop_write(mnt);
1666skip_update:
1667 sb_end_write(inode->i_sb);
1668}
1669EXPORT_SYMBOL(touch_atime);
1670
1671/*
1672 * The logic we want is
1673 *
1674 * if suid or (sgid and xgrp)
1675 * remove privs
1676 */
1677int should_remove_suid(struct dentry *dentry)
1678{
1679 umode_t mode = d_inode(dentry)->i_mode;
1680 int kill = 0;
1681
1682 /* suid always must be killed */
1683 if (unlikely(mode & S_ISUID))
1684 kill = ATTR_KILL_SUID;
1685
1686 /*
1687 * sgid without any exec bits is just a mandatory locking mark; leave
1688 * it alone. If some exec bits are set, it's a real sgid; kill it.
1689 */
1690 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1691 kill |= ATTR_KILL_SGID;
1692
1693 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1694 return kill;
1695
1696 return 0;
1697}
1698EXPORT_SYMBOL(should_remove_suid);
1699
1700/*
1701 * Return mask of changes for notify_change() that need to be done as a
1702 * response to write or truncate. Return 0 if nothing has to be changed.
1703 * Negative value on error (change should be denied).
1704 */
1705int dentry_needs_remove_privs(struct dentry *dentry)
1706{
1707 struct inode *inode = d_inode(dentry);
1708 int mask = 0;
1709 int ret;
1710
1711 if (IS_NOSEC(inode))
1712 return 0;
1713
1714 mask = should_remove_suid(dentry);
1715 ret = security_inode_need_killpriv(dentry);
1716 if (ret < 0)
1717 return ret;
1718 if (ret)
1719 mask |= ATTR_KILL_PRIV;
1720 return mask;
1721}
1722EXPORT_SYMBOL(dentry_needs_remove_privs);
1723
1724static int __remove_privs(struct dentry *dentry, int kill)
1725{
1726 struct iattr newattrs;
1727
1728 newattrs.ia_valid = ATTR_FORCE | kill;
1729 /*
1730 * Note we call this on write, so notify_change will not
1731 * encounter any conflicting delegations:
1732 */
1733 return notify_change(dentry, &newattrs, NULL);
1734}
1735
1736/*
1737 * Remove special file priviledges (suid, capabilities) when file is written
1738 * to or truncated.
1739 */
1740int file_remove_privs(struct file *file)
1741{
1742 struct dentry *dentry = file->f_path.dentry;
1743 struct inode *inode = d_inode(dentry);
1744 int kill;
1745 int error = 0;
1746
1747 /* Fast path for nothing security related */
1748 if (IS_NOSEC(inode))
1749 return 0;
1750
1751 kill = file_needs_remove_privs(file);
1752 if (kill < 0)
1753 return kill;
1754 if (kill)
1755 error = __remove_privs(dentry, kill);
1756 if (!error)
1757 inode_has_no_xattr(inode);
1758
1759 return error;
1760}
1761EXPORT_SYMBOL(file_remove_privs);
1762
1763/**
1764 * file_update_time - update mtime and ctime time
1765 * @file: file accessed
1766 *
1767 * Update the mtime and ctime members of an inode and mark the inode
1768 * for writeback. Note that this function is meant exclusively for
1769 * usage in the file write path of filesystems, and filesystems may
1770 * choose to explicitly ignore update via this function with the
1771 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1772 * timestamps are handled by the server. This can return an error for
1773 * file systems who need to allocate space in order to update an inode.
1774 */
1775
1776int file_update_time(struct file *file)
1777{
1778 struct inode *inode = file_inode(file);
1779 struct timespec now;
1780 int sync_it = 0;
1781 int ret;
1782
1783 /* First try to exhaust all avenues to not sync */
1784 if (IS_NOCMTIME(inode))
1785 return 0;
1786
1787 now = current_fs_time(inode->i_sb);
1788 if (!timespec_equal(&inode->i_mtime, &now))
1789 sync_it = S_MTIME;
1790
1791 if (!timespec_equal(&inode->i_ctime, &now))
1792 sync_it |= S_CTIME;
1793
1794 if (IS_I_VERSION(inode))
1795 sync_it |= S_VERSION;
1796
1797 if (!sync_it)
1798 return 0;
1799
1800 /* Finally allowed to write? Takes lock. */
1801 if (__mnt_want_write_file(file))
1802 return 0;
1803
1804 ret = update_time(inode, &now, sync_it);
1805 __mnt_drop_write_file(file);
1806
1807 return ret;
1808}
1809EXPORT_SYMBOL(file_update_time);
1810
1811int inode_needs_sync(struct inode *inode)
1812{
1813 if (IS_SYNC(inode))
1814 return 1;
1815 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1816 return 1;
1817 return 0;
1818}
1819EXPORT_SYMBOL(inode_needs_sync);
1820
1821/*
1822 * If we try to find an inode in the inode hash while it is being
1823 * deleted, we have to wait until the filesystem completes its
1824 * deletion before reporting that it isn't found. This function waits
1825 * until the deletion _might_ have completed. Callers are responsible
1826 * to recheck inode state.
1827 *
1828 * It doesn't matter if I_NEW is not set initially, a call to
1829 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1830 * will DTRT.
1831 */
1832static void __wait_on_freeing_inode(struct inode *inode)
1833{
1834 wait_queue_head_t *wq;
1835 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1836 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1837 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1838 spin_unlock(&inode->i_lock);
1839 spin_unlock(&inode_hash_lock);
1840 schedule();
1841 finish_wait(wq, &wait.wait);
1842 spin_lock(&inode_hash_lock);
1843}
1844
1845static __initdata unsigned long ihash_entries;
1846static int __init set_ihash_entries(char *str)
1847{
1848 if (!str)
1849 return 0;
1850 ihash_entries = simple_strtoul(str, &str, 0);
1851 return 1;
1852}
1853__setup("ihash_entries=", set_ihash_entries);
1854
1855/*
1856 * Initialize the waitqueues and inode hash table.
1857 */
1858void __init inode_init_early(void)
1859{
1860 unsigned int loop;
1861
1862 /* If hashes are distributed across NUMA nodes, defer
1863 * hash allocation until vmalloc space is available.
1864 */
1865 if (hashdist)
1866 return;
1867
1868 inode_hashtable =
1869 alloc_large_system_hash("Inode-cache",
1870 sizeof(struct hlist_head),
1871 ihash_entries,
1872 14,
1873 HASH_EARLY,
1874 &i_hash_shift,
1875 &i_hash_mask,
1876 0,
1877 0);
1878
1879 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1880 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1881}
1882
1883void __init inode_init(void)
1884{
1885 unsigned int loop;
1886
1887 /* inode slab cache */
1888 inode_cachep = kmem_cache_create("inode_cache",
1889 sizeof(struct inode),
1890 0,
1891 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1892 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1893 init_once);
1894
1895 /* Hash may have been set up in inode_init_early */
1896 if (!hashdist)
1897 return;
1898
1899 inode_hashtable =
1900 alloc_large_system_hash("Inode-cache",
1901 sizeof(struct hlist_head),
1902 ihash_entries,
1903 14,
1904 0,
1905 &i_hash_shift,
1906 &i_hash_mask,
1907 0,
1908 0);
1909
1910 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1911 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1912}
1913
1914void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1915{
1916 inode->i_mode = mode;
1917 if (S_ISCHR(mode)) {
1918 inode->i_fop = &def_chr_fops;
1919 inode->i_rdev = rdev;
1920 } else if (S_ISBLK(mode)) {
1921 inode->i_fop = &def_blk_fops;
1922 inode->i_rdev = rdev;
1923 } else if (S_ISFIFO(mode))
1924 inode->i_fop = &pipefifo_fops;
1925 else if (S_ISSOCK(mode))
1926 ; /* leave it no_open_fops */
1927 else
1928 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1929 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1930 inode->i_ino);
1931}
1932EXPORT_SYMBOL(init_special_inode);
1933
1934/**
1935 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1936 * @inode: New inode
1937 * @dir: Directory inode
1938 * @mode: mode of the new inode
1939 */
1940void inode_init_owner(struct inode *inode, const struct inode *dir,
1941 umode_t mode)
1942{
1943 inode->i_uid = current_fsuid();
1944 if (dir && dir->i_mode & S_ISGID) {
1945 inode->i_gid = dir->i_gid;
1946 if (S_ISDIR(mode))
1947 mode |= S_ISGID;
1948 } else
1949 inode->i_gid = current_fsgid();
1950 inode->i_mode = mode;
1951}
1952EXPORT_SYMBOL(inode_init_owner);
1953
1954/**
1955 * inode_owner_or_capable - check current task permissions to inode
1956 * @inode: inode being checked
1957 *
1958 * Return true if current either has CAP_FOWNER in a namespace with the
1959 * inode owner uid mapped, or owns the file.
1960 */
1961bool inode_owner_or_capable(const struct inode *inode)
1962{
1963 struct user_namespace *ns;
1964
1965 if (uid_eq(current_fsuid(), inode->i_uid))
1966 return true;
1967
1968 ns = current_user_ns();
1969 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1970 return true;
1971 return false;
1972}
1973EXPORT_SYMBOL(inode_owner_or_capable);
1974
1975/*
1976 * Direct i/o helper functions
1977 */
1978static void __inode_dio_wait(struct inode *inode)
1979{
1980 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1981 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1982
1983 do {
1984 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1985 if (atomic_read(&inode->i_dio_count))
1986 schedule();
1987 } while (atomic_read(&inode->i_dio_count));
1988 finish_wait(wq, &q.wait);
1989}
1990
1991/**
1992 * inode_dio_wait - wait for outstanding DIO requests to finish
1993 * @inode: inode to wait for
1994 *
1995 * Waits for all pending direct I/O requests to finish so that we can
1996 * proceed with a truncate or equivalent operation.
1997 *
1998 * Must be called under a lock that serializes taking new references
1999 * to i_dio_count, usually by inode->i_mutex.
2000 */
2001void inode_dio_wait(struct inode *inode)
2002{
2003 if (atomic_read(&inode->i_dio_count))
2004 __inode_dio_wait(inode);
2005}
2006EXPORT_SYMBOL(inode_dio_wait);
2007
2008/*
2009 * inode_set_flags - atomically set some inode flags
2010 *
2011 * Note: the caller should be holding i_mutex, or else be sure that
2012 * they have exclusive access to the inode structure (i.e., while the
2013 * inode is being instantiated). The reason for the cmpxchg() loop
2014 * --- which wouldn't be necessary if all code paths which modify
2015 * i_flags actually followed this rule, is that there is at least one
2016 * code path which doesn't today so we use cmpxchg() out of an abundance
2017 * of caution.
2018 *
2019 * In the long run, i_mutex is overkill, and we should probably look
2020 * at using the i_lock spinlock to protect i_flags, and then make sure
2021 * it is so documented in include/linux/fs.h and that all code follows
2022 * the locking convention!!
2023 */
2024void inode_set_flags(struct inode *inode, unsigned int flags,
2025 unsigned int mask)
2026{
2027 unsigned int old_flags, new_flags;
2028
2029 WARN_ON_ONCE(flags & ~mask);
2030 do {
2031 old_flags = ACCESS_ONCE(inode->i_flags);
2032 new_flags = (old_flags & ~mask) | flags;
2033 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2034 new_flags) != old_flags));
2035}
2036EXPORT_SYMBOL(inode_set_flags);
2037
2038void inode_nohighmem(struct inode *inode)
2039{
2040 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2041}
2042EXPORT_SYMBOL(inode_nohighmem);