Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/blkdev.h>
   6#include <linux/sched/mm.h>
   7#include <linux/atomic.h>
   8#include <linux/vmalloc.h>
   9#include "ctree.h"
  10#include "volumes.h"
  11#include "zoned.h"
  12#include "rcu-string.h"
  13#include "disk-io.h"
  14#include "block-group.h"
  15#include "transaction.h"
  16#include "dev-replace.h"
  17#include "space-info.h"
  18#include "fs.h"
  19#include "accessors.h"
 
  20
  21/* Maximum number of zones to report per blkdev_report_zones() call */
  22#define BTRFS_REPORT_NR_ZONES   4096
  23/* Invalid allocation pointer value for missing devices */
  24#define WP_MISSING_DEV ((u64)-1)
  25/* Pseudo write pointer value for conventional zone */
  26#define WP_CONVENTIONAL ((u64)-2)
  27
  28/*
  29 * Location of the first zone of superblock logging zone pairs.
  30 *
  31 * - primary superblock:    0B (zone 0)
  32 * - first copy:          512G (zone starting at that offset)
  33 * - second copy:           4T (zone starting at that offset)
  34 */
  35#define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
  36#define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
  37#define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
  38
  39#define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
  40#define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
  41
  42/* Number of superblock log zones */
  43#define BTRFS_NR_SB_LOG_ZONES 2
  44
  45/*
  46 * Minimum of active zones we need:
  47 *
  48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
  49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
  50 * - 1 zone for tree-log dedicated block group
  51 * - 1 zone for relocation
  52 */
  53#define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
  54
  55/*
  56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
  57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
  58 * We do not expect the zone size to become larger than 8GiB or smaller than
  59 * 4MiB in the near future.
  60 */
  61#define BTRFS_MAX_ZONE_SIZE		SZ_8G
  62#define BTRFS_MIN_ZONE_SIZE		SZ_4M
  63
  64#define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
  65
 
 
 
  66static inline bool sb_zone_is_full(const struct blk_zone *zone)
  67{
  68	return (zone->cond == BLK_ZONE_COND_FULL) ||
  69		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
  70}
  71
  72static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
  73{
  74	struct blk_zone *zones = data;
  75
  76	memcpy(&zones[idx], zone, sizeof(*zone));
  77
  78	return 0;
  79}
  80
  81static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
  82			    u64 *wp_ret)
  83{
  84	bool empty[BTRFS_NR_SB_LOG_ZONES];
  85	bool full[BTRFS_NR_SB_LOG_ZONES];
  86	sector_t sector;
  87	int i;
  88
  89	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
  90		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
  91		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
  92		full[i] = sb_zone_is_full(&zones[i]);
  93	}
  94
  95	/*
  96	 * Possible states of log buffer zones
  97	 *
  98	 *           Empty[0]  In use[0]  Full[0]
  99	 * Empty[1]         *          0        1
 100	 * In use[1]        x          x        1
 101	 * Full[1]          0          0        C
 102	 *
 103	 * Log position:
 104	 *   *: Special case, no superblock is written
 105	 *   0: Use write pointer of zones[0]
 106	 *   1: Use write pointer of zones[1]
 107	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
 108	 *      one determined by generation
 109	 *   x: Invalid state
 110	 */
 111
 112	if (empty[0] && empty[1]) {
 113		/* Special case to distinguish no superblock to read */
 114		*wp_ret = zones[0].start << SECTOR_SHIFT;
 115		return -ENOENT;
 116	} else if (full[0] && full[1]) {
 117		/* Compare two super blocks */
 118		struct address_space *mapping = bdev->bd_inode->i_mapping;
 119		struct page *page[BTRFS_NR_SB_LOG_ZONES];
 120		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
 121		int i;
 122
 123		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
 124			u64 bytenr;
 125
 126			bytenr = ((zones[i].start + zones[i].len)
 127				   << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
 128
 129			page[i] = read_cache_page_gfp(mapping,
 130					bytenr >> PAGE_SHIFT, GFP_NOFS);
 131			if (IS_ERR(page[i])) {
 132				if (i == 1)
 133					btrfs_release_disk_super(super[0]);
 134				return PTR_ERR(page[i]);
 135			}
 136			super[i] = page_address(page[i]);
 137		}
 138
 139		if (btrfs_super_generation(super[0]) >
 140		    btrfs_super_generation(super[1]))
 141			sector = zones[1].start;
 142		else
 143			sector = zones[0].start;
 144
 145		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
 146			btrfs_release_disk_super(super[i]);
 147	} else if (!full[0] && (empty[1] || full[1])) {
 148		sector = zones[0].wp;
 149	} else if (full[0]) {
 150		sector = zones[1].wp;
 151	} else {
 152		return -EUCLEAN;
 153	}
 154	*wp_ret = sector << SECTOR_SHIFT;
 155	return 0;
 156}
 157
 158/*
 159 * Get the first zone number of the superblock mirror
 160 */
 161static inline u32 sb_zone_number(int shift, int mirror)
 162{
 163	u64 zone;
 164
 165	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
 166	switch (mirror) {
 167	case 0: zone = 0; break;
 168	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
 169	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
 170	}
 171
 172	ASSERT(zone <= U32_MAX);
 173
 174	return (u32)zone;
 175}
 176
 177static inline sector_t zone_start_sector(u32 zone_number,
 178					 struct block_device *bdev)
 179{
 180	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
 181}
 182
 183static inline u64 zone_start_physical(u32 zone_number,
 184				      struct btrfs_zoned_device_info *zone_info)
 185{
 186	return (u64)zone_number << zone_info->zone_size_shift;
 187}
 188
 189/*
 190 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
 191 * device into static sized chunks and fake a conventional zone on each of
 192 * them.
 193 */
 194static int emulate_report_zones(struct btrfs_device *device, u64 pos,
 195				struct blk_zone *zones, unsigned int nr_zones)
 196{
 197	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
 198	sector_t bdev_size = bdev_nr_sectors(device->bdev);
 199	unsigned int i;
 200
 201	pos >>= SECTOR_SHIFT;
 202	for (i = 0; i < nr_zones; i++) {
 203		zones[i].start = i * zone_sectors + pos;
 204		zones[i].len = zone_sectors;
 205		zones[i].capacity = zone_sectors;
 206		zones[i].wp = zones[i].start + zone_sectors;
 207		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
 208		zones[i].cond = BLK_ZONE_COND_NOT_WP;
 209
 210		if (zones[i].wp >= bdev_size) {
 211			i++;
 212			break;
 213		}
 214	}
 215
 216	return i;
 217}
 218
 219static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
 220			       struct blk_zone *zones, unsigned int *nr_zones)
 221{
 222	struct btrfs_zoned_device_info *zinfo = device->zone_info;
 223	u32 zno;
 224	int ret;
 225
 226	if (!*nr_zones)
 227		return 0;
 228
 229	if (!bdev_is_zoned(device->bdev)) {
 230		ret = emulate_report_zones(device, pos, zones, *nr_zones);
 231		*nr_zones = ret;
 232		return 0;
 233	}
 234
 235	/* Check cache */
 236	if (zinfo->zone_cache) {
 237		unsigned int i;
 
 238
 239		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
 240		zno = pos >> zinfo->zone_size_shift;
 241		/*
 242		 * We cannot report zones beyond the zone end. So, it is OK to
 243		 * cap *nr_zones to at the end.
 244		 */
 245		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
 246
 247		for (i = 0; i < *nr_zones; i++) {
 248			struct blk_zone *zone_info;
 249
 250			zone_info = &zinfo->zone_cache[zno + i];
 251			if (!zone_info->len)
 252				break;
 253		}
 254
 255		if (i == *nr_zones) {
 256			/* Cache hit on all the zones */
 257			memcpy(zones, zinfo->zone_cache + zno,
 258			       sizeof(*zinfo->zone_cache) * *nr_zones);
 259			return 0;
 260		}
 261	}
 262
 263	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
 264				  copy_zone_info_cb, zones);
 265	if (ret < 0) {
 266		btrfs_err_in_rcu(device->fs_info,
 267				 "zoned: failed to read zone %llu on %s (devid %llu)",
 268				 pos, rcu_str_deref(device->name),
 269				 device->devid);
 270		return ret;
 271	}
 272	*nr_zones = ret;
 273	if (!ret)
 274		return -EIO;
 275
 276	/* Populate cache */
 277	if (zinfo->zone_cache)
 
 
 278		memcpy(zinfo->zone_cache + zno, zones,
 279		       sizeof(*zinfo->zone_cache) * *nr_zones);
 
 280
 281	return 0;
 282}
 283
 284/* The emulated zone size is determined from the size of device extent */
 285static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
 286{
 287	struct btrfs_path *path;
 288	struct btrfs_root *root = fs_info->dev_root;
 289	struct btrfs_key key;
 290	struct extent_buffer *leaf;
 291	struct btrfs_dev_extent *dext;
 292	int ret = 0;
 293
 294	key.objectid = 1;
 295	key.type = BTRFS_DEV_EXTENT_KEY;
 296	key.offset = 0;
 297
 298	path = btrfs_alloc_path();
 299	if (!path)
 300		return -ENOMEM;
 301
 302	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 303	if (ret < 0)
 304		goto out;
 305
 306	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
 307		ret = btrfs_next_leaf(root, path);
 308		if (ret < 0)
 309			goto out;
 310		/* No dev extents at all? Not good */
 311		if (ret > 0) {
 312			ret = -EUCLEAN;
 313			goto out;
 314		}
 315	}
 316
 317	leaf = path->nodes[0];
 318	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
 319	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
 320	ret = 0;
 321
 322out:
 323	btrfs_free_path(path);
 324
 325	return ret;
 326}
 327
 328int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
 329{
 330	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 331	struct btrfs_device *device;
 332	int ret = 0;
 333
 334	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
 335	if (!btrfs_fs_incompat(fs_info, ZONED))
 336		return 0;
 337
 338	mutex_lock(&fs_devices->device_list_mutex);
 339	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 340		/* We can skip reading of zone info for missing devices */
 341		if (!device->bdev)
 342			continue;
 343
 344		ret = btrfs_get_dev_zone_info(device, true);
 345		if (ret)
 346			break;
 347	}
 348	mutex_unlock(&fs_devices->device_list_mutex);
 349
 350	return ret;
 351}
 352
 353int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
 354{
 355	struct btrfs_fs_info *fs_info = device->fs_info;
 356	struct btrfs_zoned_device_info *zone_info = NULL;
 357	struct block_device *bdev = device->bdev;
 358	unsigned int max_active_zones;
 359	unsigned int nactive;
 360	sector_t nr_sectors;
 361	sector_t sector = 0;
 362	struct blk_zone *zones = NULL;
 363	unsigned int i, nreported = 0, nr_zones;
 364	sector_t zone_sectors;
 365	char *model, *emulated;
 366	int ret;
 367
 368	/*
 369	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
 370	 * yet be set.
 371	 */
 372	if (!btrfs_fs_incompat(fs_info, ZONED))
 373		return 0;
 374
 375	if (device->zone_info)
 376		return 0;
 377
 378	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
 379	if (!zone_info)
 380		return -ENOMEM;
 381
 382	device->zone_info = zone_info;
 383
 384	if (!bdev_is_zoned(bdev)) {
 385		if (!fs_info->zone_size) {
 386			ret = calculate_emulated_zone_size(fs_info);
 387			if (ret)
 388				goto out;
 389		}
 390
 391		ASSERT(fs_info->zone_size);
 392		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
 393	} else {
 394		zone_sectors = bdev_zone_sectors(bdev);
 395	}
 396
 397	ASSERT(is_power_of_two_u64(zone_sectors));
 398	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
 399
 400	/* We reject devices with a zone size larger than 8GB */
 401	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
 402		btrfs_err_in_rcu(fs_info,
 403		"zoned: %s: zone size %llu larger than supported maximum %llu",
 404				 rcu_str_deref(device->name),
 405				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
 406		ret = -EINVAL;
 407		goto out;
 408	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
 409		btrfs_err_in_rcu(fs_info,
 410		"zoned: %s: zone size %llu smaller than supported minimum %u",
 411				 rcu_str_deref(device->name),
 412				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
 413		ret = -EINVAL;
 414		goto out;
 415	}
 416
 417	nr_sectors = bdev_nr_sectors(bdev);
 418	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
 419	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
 420	/*
 421	 * We limit max_zone_append_size also by max_segments *
 422	 * PAGE_SIZE. Technically, we can have multiple pages per segment. But,
 423	 * since btrfs adds the pages one by one to a bio, and btrfs cannot
 424	 * increase the metadata reservation even if it increases the number of
 425	 * extents, it is safe to stick with the limit.
 426	 *
 427	 * With the zoned emulation, we can have non-zoned device on the zoned
 428	 * mode. In this case, we don't have a valid max zone append size. So,
 429	 * use max_segments * PAGE_SIZE as the pseudo max_zone_append_size.
 430	 */
 431	if (bdev_is_zoned(bdev)) {
 432		zone_info->max_zone_append_size = min_t(u64,
 433			(u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT,
 434			(u64)bdev_max_segments(bdev) << PAGE_SHIFT);
 435	} else {
 436		zone_info->max_zone_append_size =
 437			(u64)bdev_max_segments(bdev) << PAGE_SHIFT;
 438	}
 439	if (!IS_ALIGNED(nr_sectors, zone_sectors))
 440		zone_info->nr_zones++;
 441
 442	max_active_zones = bdev_max_active_zones(bdev);
 443	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
 444		btrfs_err_in_rcu(fs_info,
 445"zoned: %s: max active zones %u is too small, need at least %u active zones",
 446				 rcu_str_deref(device->name), max_active_zones,
 447				 BTRFS_MIN_ACTIVE_ZONES);
 448		ret = -EINVAL;
 449		goto out;
 450	}
 451	zone_info->max_active_zones = max_active_zones;
 452
 453	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 454	if (!zone_info->seq_zones) {
 455		ret = -ENOMEM;
 456		goto out;
 457	}
 458
 459	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 460	if (!zone_info->empty_zones) {
 461		ret = -ENOMEM;
 462		goto out;
 463	}
 464
 465	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 466	if (!zone_info->active_zones) {
 467		ret = -ENOMEM;
 468		goto out;
 469	}
 470
 471	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
 472	if (!zones) {
 473		ret = -ENOMEM;
 474		goto out;
 475	}
 476
 477	/*
 478	 * Enable zone cache only for a zoned device. On a non-zoned device, we
 479	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
 480	 * use the cache.
 481	 */
 482	if (populate_cache && bdev_is_zoned(device->bdev)) {
 483		zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
 484						zone_info->nr_zones);
 485		if (!zone_info->zone_cache) {
 486			btrfs_err_in_rcu(device->fs_info,
 487				"zoned: failed to allocate zone cache for %s",
 488				rcu_str_deref(device->name));
 489			ret = -ENOMEM;
 490			goto out;
 491		}
 492	}
 493
 494	/* Get zones type */
 495	nactive = 0;
 496	while (sector < nr_sectors) {
 497		nr_zones = BTRFS_REPORT_NR_ZONES;
 498		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
 499					  &nr_zones);
 500		if (ret)
 501			goto out;
 502
 503		for (i = 0; i < nr_zones; i++) {
 504			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
 505				__set_bit(nreported, zone_info->seq_zones);
 506			switch (zones[i].cond) {
 507			case BLK_ZONE_COND_EMPTY:
 508				__set_bit(nreported, zone_info->empty_zones);
 509				break;
 510			case BLK_ZONE_COND_IMP_OPEN:
 511			case BLK_ZONE_COND_EXP_OPEN:
 512			case BLK_ZONE_COND_CLOSED:
 513				__set_bit(nreported, zone_info->active_zones);
 514				nactive++;
 515				break;
 516			}
 517			nreported++;
 518		}
 519		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
 520	}
 521
 522	if (nreported != zone_info->nr_zones) {
 523		btrfs_err_in_rcu(device->fs_info,
 524				 "inconsistent number of zones on %s (%u/%u)",
 525				 rcu_str_deref(device->name), nreported,
 526				 zone_info->nr_zones);
 527		ret = -EIO;
 528		goto out;
 529	}
 530
 531	if (max_active_zones) {
 532		if (nactive > max_active_zones) {
 533			btrfs_err_in_rcu(device->fs_info,
 534			"zoned: %u active zones on %s exceeds max_active_zones %u",
 535					 nactive, rcu_str_deref(device->name),
 536					 max_active_zones);
 537			ret = -EIO;
 538			goto out;
 539		}
 540		atomic_set(&zone_info->active_zones_left,
 541			   max_active_zones - nactive);
 542		/* Overcommit does not work well with active zone tacking. */
 543		set_bit(BTRFS_FS_NO_OVERCOMMIT, &fs_info->flags);
 544	}
 545
 546	/* Validate superblock log */
 547	nr_zones = BTRFS_NR_SB_LOG_ZONES;
 548	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 549		u32 sb_zone;
 550		u64 sb_wp;
 551		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
 552
 553		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
 554		if (sb_zone + 1 >= zone_info->nr_zones)
 555			continue;
 556
 557		ret = btrfs_get_dev_zones(device,
 558					  zone_start_physical(sb_zone, zone_info),
 559					  &zone_info->sb_zones[sb_pos],
 560					  &nr_zones);
 561		if (ret)
 562			goto out;
 563
 564		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
 565			btrfs_err_in_rcu(device->fs_info,
 566	"zoned: failed to read super block log zone info at devid %llu zone %u",
 567					 device->devid, sb_zone);
 568			ret = -EUCLEAN;
 569			goto out;
 570		}
 571
 572		/*
 573		 * If zones[0] is conventional, always use the beginning of the
 574		 * zone to record superblock. No need to validate in that case.
 575		 */
 576		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
 577		    BLK_ZONE_TYPE_CONVENTIONAL)
 578			continue;
 579
 580		ret = sb_write_pointer(device->bdev,
 581				       &zone_info->sb_zones[sb_pos], &sb_wp);
 582		if (ret != -ENOENT && ret) {
 583			btrfs_err_in_rcu(device->fs_info,
 584			"zoned: super block log zone corrupted devid %llu zone %u",
 585					 device->devid, sb_zone);
 586			ret = -EUCLEAN;
 587			goto out;
 588		}
 589	}
 590
 591
 592	kvfree(zones);
 593
 594	switch (bdev_zoned_model(bdev)) {
 595	case BLK_ZONED_HM:
 596		model = "host-managed zoned";
 597		emulated = "";
 598		break;
 599	case BLK_ZONED_HA:
 600		model = "host-aware zoned";
 601		emulated = "";
 602		break;
 603	case BLK_ZONED_NONE:
 604		model = "regular";
 605		emulated = "emulated ";
 606		break;
 607	default:
 608		/* Just in case */
 609		btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
 610				 bdev_zoned_model(bdev),
 611				 rcu_str_deref(device->name));
 612		ret = -EOPNOTSUPP;
 613		goto out_free_zone_info;
 614	}
 615
 616	btrfs_info_in_rcu(fs_info,
 617		"%s block device %s, %u %szones of %llu bytes",
 618		model, rcu_str_deref(device->name), zone_info->nr_zones,
 619		emulated, zone_info->zone_size);
 620
 621	return 0;
 622
 623out:
 624	kvfree(zones);
 625out_free_zone_info:
 626	btrfs_destroy_dev_zone_info(device);
 627
 628	return ret;
 629}
 630
 631void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
 632{
 633	struct btrfs_zoned_device_info *zone_info = device->zone_info;
 634
 635	if (!zone_info)
 636		return;
 637
 638	bitmap_free(zone_info->active_zones);
 639	bitmap_free(zone_info->seq_zones);
 640	bitmap_free(zone_info->empty_zones);
 641	vfree(zone_info->zone_cache);
 642	kfree(zone_info);
 643	device->zone_info = NULL;
 644}
 645
 646struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
 647{
 648	struct btrfs_zoned_device_info *zone_info;
 649
 650	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
 651	if (!zone_info)
 652		return NULL;
 653
 654	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 655	if (!zone_info->seq_zones)
 656		goto out;
 657
 658	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
 659		    zone_info->nr_zones);
 660
 661	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 662	if (!zone_info->empty_zones)
 663		goto out;
 664
 665	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
 666		    zone_info->nr_zones);
 667
 668	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 669	if (!zone_info->active_zones)
 670		goto out;
 671
 672	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
 673		    zone_info->nr_zones);
 674	zone_info->zone_cache = NULL;
 675
 676	return zone_info;
 677
 678out:
 679	bitmap_free(zone_info->seq_zones);
 680	bitmap_free(zone_info->empty_zones);
 681	bitmap_free(zone_info->active_zones);
 682	kfree(zone_info);
 683	return NULL;
 684}
 685
 686int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
 687		       struct blk_zone *zone)
 688{
 689	unsigned int nr_zones = 1;
 690	int ret;
 691
 692	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
 693	if (ret != 0 || !nr_zones)
 694		return ret ? ret : -EIO;
 695
 696	return 0;
 697}
 698
 699static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
 700{
 701	struct btrfs_device *device;
 702
 703	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
 704		if (device->bdev &&
 705		    bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
 706			btrfs_err(fs_info,
 707				"zoned: mode not enabled but zoned device found: %pg",
 708				device->bdev);
 709			return -EINVAL;
 710		}
 711	}
 712
 713	return 0;
 714}
 715
 716int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
 717{
 
 718	struct btrfs_device *device;
 719	u64 zone_size = 0;
 720	u64 max_zone_append_size = 0;
 721	int ret;
 722
 723	/*
 724	 * Host-Managed devices can't be used without the ZONED flag.  With the
 725	 * ZONED all devices can be used, using zone emulation if required.
 726	 */
 727	if (!btrfs_fs_incompat(fs_info, ZONED))
 728		return btrfs_check_for_zoned_device(fs_info);
 729
 
 
 730	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
 731		struct btrfs_zoned_device_info *zone_info = device->zone_info;
 732
 733		if (!device->bdev)
 734			continue;
 735
 736		if (!zone_size) {
 737			zone_size = zone_info->zone_size;
 738		} else if (zone_info->zone_size != zone_size) {
 739			btrfs_err(fs_info,
 740		"zoned: unequal block device zone sizes: have %llu found %llu",
 741				  zone_info->zone_size, zone_size);
 742			return -EINVAL;
 743		}
 744		if (!max_zone_append_size ||
 745		    (zone_info->max_zone_append_size &&
 746		     zone_info->max_zone_append_size < max_zone_append_size))
 747			max_zone_append_size = zone_info->max_zone_append_size;
 
 
 
 
 
 
 
 748	}
 749
 750	/*
 751	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
 752	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
 753	 * check the alignment here.
 754	 */
 755	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
 756		btrfs_err(fs_info,
 757			  "zoned: zone size %llu not aligned to stripe %u",
 758			  zone_size, BTRFS_STRIPE_LEN);
 759		return -EINVAL;
 760	}
 761
 762	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 763		btrfs_err(fs_info, "zoned: mixed block groups not supported");
 764		return -EINVAL;
 765	}
 766
 767	fs_info->zone_size = zone_size;
 768	fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size,
 769						   fs_info->sectorsize);
 
 
 
 
 
 
 
 
 
 
 770	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
 771	if (fs_info->max_zone_append_size < fs_info->max_extent_size)
 772		fs_info->max_extent_size = fs_info->max_zone_append_size;
 773
 774	/*
 775	 * Check mount options here, because we might change fs_info->zoned
 776	 * from fs_info->zone_size.
 777	 */
 778	ret = btrfs_check_mountopts_zoned(fs_info);
 779	if (ret)
 780		return ret;
 781
 782	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
 783	return 0;
 784}
 785
 786int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
 787{
 788	if (!btrfs_is_zoned(info))
 789		return 0;
 790
 791	/*
 792	 * Space cache writing is not COWed. Disable that to avoid write errors
 793	 * in sequential zones.
 794	 */
 795	if (btrfs_test_opt(info, SPACE_CACHE)) {
 796		btrfs_err(info, "zoned: space cache v1 is not supported");
 797		return -EINVAL;
 798	}
 799
 800	if (btrfs_test_opt(info, NODATACOW)) {
 801		btrfs_err(info, "zoned: NODATACOW not supported");
 802		return -EINVAL;
 803	}
 804
 
 
 
 
 
 
 805	return 0;
 806}
 807
 808static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
 809			   int rw, u64 *bytenr_ret)
 810{
 811	u64 wp;
 812	int ret;
 813
 814	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
 815		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
 816		return 0;
 817	}
 818
 819	ret = sb_write_pointer(bdev, zones, &wp);
 820	if (ret != -ENOENT && ret < 0)
 821		return ret;
 822
 823	if (rw == WRITE) {
 824		struct blk_zone *reset = NULL;
 825
 826		if (wp == zones[0].start << SECTOR_SHIFT)
 827			reset = &zones[0];
 828		else if (wp == zones[1].start << SECTOR_SHIFT)
 829			reset = &zones[1];
 830
 831		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
 
 
 832			ASSERT(sb_zone_is_full(reset));
 833
 
 834			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
 835					       reset->start, reset->len,
 836					       GFP_NOFS);
 837			if (ret)
 838				return ret;
 839
 840			reset->cond = BLK_ZONE_COND_EMPTY;
 841			reset->wp = reset->start;
 842		}
 843	} else if (ret != -ENOENT) {
 844		/*
 845		 * For READ, we want the previous one. Move write pointer to
 846		 * the end of a zone, if it is at the head of a zone.
 847		 */
 848		u64 zone_end = 0;
 849
 850		if (wp == zones[0].start << SECTOR_SHIFT)
 851			zone_end = zones[1].start + zones[1].capacity;
 852		else if (wp == zones[1].start << SECTOR_SHIFT)
 853			zone_end = zones[0].start + zones[0].capacity;
 854		if (zone_end)
 855			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
 856					BTRFS_SUPER_INFO_SIZE);
 857
 858		wp -= BTRFS_SUPER_INFO_SIZE;
 859	}
 860
 861	*bytenr_ret = wp;
 862	return 0;
 863
 864}
 865
 866int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
 867			       u64 *bytenr_ret)
 868{
 869	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
 870	sector_t zone_sectors;
 871	u32 sb_zone;
 872	int ret;
 873	u8 zone_sectors_shift;
 874	sector_t nr_sectors;
 875	u32 nr_zones;
 876
 877	if (!bdev_is_zoned(bdev)) {
 878		*bytenr_ret = btrfs_sb_offset(mirror);
 879		return 0;
 880	}
 881
 882	ASSERT(rw == READ || rw == WRITE);
 883
 884	zone_sectors = bdev_zone_sectors(bdev);
 885	if (!is_power_of_2(zone_sectors))
 886		return -EINVAL;
 887	zone_sectors_shift = ilog2(zone_sectors);
 888	nr_sectors = bdev_nr_sectors(bdev);
 889	nr_zones = nr_sectors >> zone_sectors_shift;
 890
 891	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
 892	if (sb_zone + 1 >= nr_zones)
 893		return -ENOENT;
 894
 895	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
 896				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
 897				  zones);
 898	if (ret < 0)
 899		return ret;
 900	if (ret != BTRFS_NR_SB_LOG_ZONES)
 901		return -EIO;
 902
 903	return sb_log_location(bdev, zones, rw, bytenr_ret);
 904}
 905
 906int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
 907			  u64 *bytenr_ret)
 908{
 909	struct btrfs_zoned_device_info *zinfo = device->zone_info;
 910	u32 zone_num;
 911
 912	/*
 913	 * For a zoned filesystem on a non-zoned block device, use the same
 914	 * super block locations as regular filesystem. Doing so, the super
 915	 * block can always be retrieved and the zoned flag of the volume
 916	 * detected from the super block information.
 917	 */
 918	if (!bdev_is_zoned(device->bdev)) {
 919		*bytenr_ret = btrfs_sb_offset(mirror);
 920		return 0;
 921	}
 922
 923	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
 924	if (zone_num + 1 >= zinfo->nr_zones)
 925		return -ENOENT;
 926
 927	return sb_log_location(device->bdev,
 928			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
 929			       rw, bytenr_ret);
 930}
 931
 932static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
 933				  int mirror)
 934{
 935	u32 zone_num;
 936
 937	if (!zinfo)
 938		return false;
 939
 940	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
 941	if (zone_num + 1 >= zinfo->nr_zones)
 942		return false;
 943
 944	if (!test_bit(zone_num, zinfo->seq_zones))
 945		return false;
 946
 947	return true;
 948}
 949
 950int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
 951{
 952	struct btrfs_zoned_device_info *zinfo = device->zone_info;
 953	struct blk_zone *zone;
 954	int i;
 955
 956	if (!is_sb_log_zone(zinfo, mirror))
 957		return 0;
 958
 959	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
 960	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
 961		/* Advance the next zone */
 962		if (zone->cond == BLK_ZONE_COND_FULL) {
 963			zone++;
 964			continue;
 965		}
 966
 967		if (zone->cond == BLK_ZONE_COND_EMPTY)
 968			zone->cond = BLK_ZONE_COND_IMP_OPEN;
 969
 970		zone->wp += SUPER_INFO_SECTORS;
 971
 972		if (sb_zone_is_full(zone)) {
 973			/*
 974			 * No room left to write new superblock. Since
 975			 * superblock is written with REQ_SYNC, it is safe to
 976			 * finish the zone now.
 977			 *
 978			 * If the write pointer is exactly at the capacity,
 979			 * explicit ZONE_FINISH is not necessary.
 980			 */
 981			if (zone->wp != zone->start + zone->capacity) {
 
 982				int ret;
 983
 
 984				ret = blkdev_zone_mgmt(device->bdev,
 985						REQ_OP_ZONE_FINISH, zone->start,
 986						zone->len, GFP_NOFS);
 
 987				if (ret)
 988					return ret;
 989			}
 990
 991			zone->wp = zone->start + zone->len;
 992			zone->cond = BLK_ZONE_COND_FULL;
 993		}
 994		return 0;
 995	}
 996
 997	/* All the zones are FULL. Should not reach here. */
 998	ASSERT(0);
 999	return -EIO;
1000}
1001
1002int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1003{
 
1004	sector_t zone_sectors;
1005	sector_t nr_sectors;
1006	u8 zone_sectors_shift;
1007	u32 sb_zone;
1008	u32 nr_zones;
 
1009
1010	zone_sectors = bdev_zone_sectors(bdev);
1011	zone_sectors_shift = ilog2(zone_sectors);
1012	nr_sectors = bdev_nr_sectors(bdev);
1013	nr_zones = nr_sectors >> zone_sectors_shift;
1014
1015	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1016	if (sb_zone + 1 >= nr_zones)
1017		return -ENOENT;
1018
1019	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1020				zone_start_sector(sb_zone, bdev),
1021				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
 
 
 
1022}
1023
1024/*
1025 * Find allocatable zones within a given region.
1026 *
1027 * @device:	the device to allocate a region on
1028 * @hole_start: the position of the hole to allocate the region
1029 * @num_bytes:	size of wanted region
1030 * @hole_end:	the end of the hole
1031 * @return:	position of allocatable zones
1032 *
1033 * Allocatable region should not contain any superblock locations.
1034 */
1035u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1036				 u64 hole_end, u64 num_bytes)
1037{
1038	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1039	const u8 shift = zinfo->zone_size_shift;
1040	u64 nzones = num_bytes >> shift;
1041	u64 pos = hole_start;
1042	u64 begin, end;
1043	bool have_sb;
1044	int i;
1045
1046	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1047	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1048
1049	while (pos < hole_end) {
1050		begin = pos >> shift;
1051		end = begin + nzones;
1052
1053		if (end > zinfo->nr_zones)
1054			return hole_end;
1055
1056		/* Check if zones in the region are all empty */
1057		if (btrfs_dev_is_sequential(device, pos) &&
1058		    find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1059			pos += zinfo->zone_size;
1060			continue;
1061		}
1062
1063		have_sb = false;
1064		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1065			u32 sb_zone;
1066			u64 sb_pos;
1067
1068			sb_zone = sb_zone_number(shift, i);
1069			if (!(end <= sb_zone ||
1070			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1071				have_sb = true;
1072				pos = zone_start_physical(
1073					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1074				break;
1075			}
1076
1077			/* We also need to exclude regular superblock positions */
1078			sb_pos = btrfs_sb_offset(i);
1079			if (!(pos + num_bytes <= sb_pos ||
1080			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1081				have_sb = true;
1082				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1083					    zinfo->zone_size);
1084				break;
1085			}
1086		}
1087		if (!have_sb)
1088			break;
1089	}
1090
1091	return pos;
1092}
1093
1094static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1095{
1096	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1097	unsigned int zno = (pos >> zone_info->zone_size_shift);
1098
1099	/* We can use any number of zones */
1100	if (zone_info->max_active_zones == 0)
1101		return true;
1102
1103	if (!test_bit(zno, zone_info->active_zones)) {
1104		/* Active zone left? */
1105		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1106			return false;
1107		if (test_and_set_bit(zno, zone_info->active_zones)) {
1108			/* Someone already set the bit */
1109			atomic_inc(&zone_info->active_zones_left);
1110		}
1111	}
1112
1113	return true;
1114}
1115
1116static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1117{
1118	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1119	unsigned int zno = (pos >> zone_info->zone_size_shift);
1120
1121	/* We can use any number of zones */
1122	if (zone_info->max_active_zones == 0)
1123		return;
1124
1125	if (test_and_clear_bit(zno, zone_info->active_zones))
1126		atomic_inc(&zone_info->active_zones_left);
1127}
1128
1129int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1130			    u64 length, u64 *bytes)
1131{
 
1132	int ret;
1133
1134	*bytes = 0;
 
1135	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1136			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1137			       GFP_NOFS);
1138	if (ret)
1139		return ret;
1140
1141	*bytes = length;
1142	while (length) {
1143		btrfs_dev_set_zone_empty(device, physical);
1144		btrfs_dev_clear_active_zone(device, physical);
1145		physical += device->zone_info->zone_size;
1146		length -= device->zone_info->zone_size;
1147	}
1148
1149	return 0;
1150}
1151
1152int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1153{
1154	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1155	const u8 shift = zinfo->zone_size_shift;
1156	unsigned long begin = start >> shift;
1157	unsigned long end = (start + size) >> shift;
1158	u64 pos;
1159	int ret;
1160
1161	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1162	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1163
1164	if (end > zinfo->nr_zones)
1165		return -ERANGE;
1166
1167	/* All the zones are conventional */
1168	if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1169		return 0;
1170
1171	/* All the zones are sequential and empty */
1172	if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1173	    find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1174		return 0;
1175
1176	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1177		u64 reset_bytes;
1178
1179		if (!btrfs_dev_is_sequential(device, pos) ||
1180		    btrfs_dev_is_empty_zone(device, pos))
1181			continue;
1182
1183		/* Free regions should be empty */
1184		btrfs_warn_in_rcu(
1185			device->fs_info,
1186		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1187			rcu_str_deref(device->name), device->devid, pos >> shift);
1188		WARN_ON_ONCE(1);
1189
1190		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1191					      &reset_bytes);
1192		if (ret)
1193			return ret;
1194	}
1195
1196	return 0;
1197}
1198
1199/*
1200 * Calculate an allocation pointer from the extent allocation information
1201 * for a block group consist of conventional zones. It is pointed to the
1202 * end of the highest addressed extent in the block group as an allocation
1203 * offset.
1204 */
1205static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1206				   u64 *offset_ret, bool new)
1207{
1208	struct btrfs_fs_info *fs_info = cache->fs_info;
1209	struct btrfs_root *root;
1210	struct btrfs_path *path;
1211	struct btrfs_key key;
1212	struct btrfs_key found_key;
1213	int ret;
1214	u64 length;
1215
1216	/*
1217	 * Avoid  tree lookups for a new block group, there's no use for it.
1218	 * It must always be 0.
1219	 *
1220	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1221	 * For new a block group, this function is called from
1222	 * btrfs_make_block_group() which is already taking the chunk mutex.
1223	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1224	 * buffer locks to avoid deadlock.
1225	 */
1226	if (new) {
1227		*offset_ret = 0;
1228		return 0;
1229	}
1230
1231	path = btrfs_alloc_path();
1232	if (!path)
1233		return -ENOMEM;
1234
1235	key.objectid = cache->start + cache->length;
1236	key.type = 0;
1237	key.offset = 0;
1238
1239	root = btrfs_extent_root(fs_info, key.objectid);
1240	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1241	/* We should not find the exact match */
1242	if (!ret)
1243		ret = -EUCLEAN;
1244	if (ret < 0)
1245		goto out;
1246
1247	ret = btrfs_previous_extent_item(root, path, cache->start);
1248	if (ret) {
1249		if (ret == 1) {
1250			ret = 0;
1251			*offset_ret = 0;
1252		}
1253		goto out;
1254	}
1255
1256	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1257
1258	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1259		length = found_key.offset;
1260	else
1261		length = fs_info->nodesize;
1262
1263	if (!(found_key.objectid >= cache->start &&
1264	       found_key.objectid + length <= cache->start + cache->length)) {
1265		ret = -EUCLEAN;
1266		goto out;
1267	}
1268	*offset_ret = found_key.objectid + length - cache->start;
1269	ret = 0;
1270
1271out:
1272	btrfs_free_path(path);
1273	return ret;
1274}
1275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1276int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1277{
1278	struct btrfs_fs_info *fs_info = cache->fs_info;
1279	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1280	struct extent_map *em;
1281	struct map_lookup *map;
1282	struct btrfs_device *device;
1283	u64 logical = cache->start;
1284	u64 length = cache->length;
 
1285	int ret;
1286	int i;
1287	unsigned int nofs_flag;
1288	u64 *alloc_offsets = NULL;
1289	u64 *caps = NULL;
1290	u64 *physical = NULL;
1291	unsigned long *active = NULL;
1292	u64 last_alloc = 0;
1293	u32 num_sequential = 0, num_conventional = 0;
1294
1295	if (!btrfs_is_zoned(fs_info))
1296		return 0;
1297
1298	/* Sanity check */
1299	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1300		btrfs_err(fs_info,
1301		"zoned: block group %llu len %llu unaligned to zone size %llu",
1302			  logical, length, fs_info->zone_size);
1303		return -EIO;
1304	}
1305
1306	/* Get the chunk mapping */
1307	read_lock(&em_tree->lock);
1308	em = lookup_extent_mapping(em_tree, logical, length);
1309	read_unlock(&em_tree->lock);
1310
1311	if (!em)
1312		return -EINVAL;
1313
1314	map = em->map_lookup;
1315
1316	cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1317	if (!cache->physical_map) {
1318		ret = -ENOMEM;
1319		goto out;
1320	}
1321
1322	alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1323	if (!alloc_offsets) {
1324		ret = -ENOMEM;
1325		goto out;
1326	}
1327
1328	caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1329	if (!caps) {
1330		ret = -ENOMEM;
1331		goto out;
1332	}
1333
1334	physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1335	if (!physical) {
1336		ret = -ENOMEM;
1337		goto out;
1338	}
1339
1340	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1341	if (!active) {
1342		ret = -ENOMEM;
1343		goto out;
1344	}
1345
1346	for (i = 0; i < map->num_stripes; i++) {
1347		bool is_sequential;
1348		struct blk_zone zone;
1349		struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1350		int dev_replace_is_ongoing = 0;
1351
1352		device = map->stripes[i].dev;
1353		physical[i] = map->stripes[i].physical;
1354
1355		if (device->bdev == NULL) {
1356			alloc_offsets[i] = WP_MISSING_DEV;
1357			continue;
1358		}
1359
1360		is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1361		if (is_sequential)
1362			num_sequential++;
1363		else
1364			num_conventional++;
1365
1366		/*
1367		 * Consider a zone as active if we can allow any number of
1368		 * active zones.
1369		 */
1370		if (!device->zone_info->max_active_zones)
1371			__set_bit(i, active);
1372
1373		if (!is_sequential) {
1374			alloc_offsets[i] = WP_CONVENTIONAL;
1375			continue;
1376		}
1377
1378		/*
1379		 * This zone will be used for allocation, so mark this zone
1380		 * non-empty.
1381		 */
1382		btrfs_dev_clear_zone_empty(device, physical[i]);
1383
1384		down_read(&dev_replace->rwsem);
1385		dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1386		if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1387			btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1388		up_read(&dev_replace->rwsem);
1389
1390		/*
1391		 * The group is mapped to a sequential zone. Get the zone write
1392		 * pointer to determine the allocation offset within the zone.
1393		 */
1394		WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1395		nofs_flag = memalloc_nofs_save();
1396		ret = btrfs_get_dev_zone(device, physical[i], &zone);
1397		memalloc_nofs_restore(nofs_flag);
1398		if (ret == -EIO || ret == -EOPNOTSUPP) {
1399			ret = 0;
1400			alloc_offsets[i] = WP_MISSING_DEV;
1401			continue;
1402		} else if (ret) {
1403			goto out;
1404		}
1405
1406		if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1407			btrfs_err_in_rcu(fs_info,
1408	"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1409				zone.start << SECTOR_SHIFT,
1410				rcu_str_deref(device->name), device->devid);
1411			ret = -EIO;
1412			goto out;
1413		}
1414
1415		caps[i] = (zone.capacity << SECTOR_SHIFT);
1416
1417		switch (zone.cond) {
1418		case BLK_ZONE_COND_OFFLINE:
1419		case BLK_ZONE_COND_READONLY:
1420			btrfs_err(fs_info,
1421		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1422				  physical[i] >> device->zone_info->zone_size_shift,
1423				  rcu_str_deref(device->name), device->devid);
1424			alloc_offsets[i] = WP_MISSING_DEV;
1425			break;
1426		case BLK_ZONE_COND_EMPTY:
1427			alloc_offsets[i] = 0;
1428			break;
1429		case BLK_ZONE_COND_FULL:
1430			alloc_offsets[i] = caps[i];
1431			break;
1432		default:
1433			/* Partially used zone */
1434			alloc_offsets[i] =
1435					((zone.wp - zone.start) << SECTOR_SHIFT);
1436			__set_bit(i, active);
1437			break;
1438		}
1439	}
1440
1441	if (num_sequential > 0)
1442		set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1443
1444	if (num_conventional > 0) {
1445		/* Zone capacity is always zone size in emulation */
1446		cache->zone_capacity = cache->length;
1447		ret = calculate_alloc_pointer(cache, &last_alloc, new);
1448		if (ret) {
1449			btrfs_err(fs_info,
1450			"zoned: failed to determine allocation offset of bg %llu",
1451				  cache->start);
1452			goto out;
1453		} else if (map->num_stripes == num_conventional) {
1454			cache->alloc_offset = last_alloc;
1455			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1456			goto out;
1457		}
1458	}
1459
1460	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1461	case 0: /* single */
1462		if (alloc_offsets[0] == WP_MISSING_DEV) {
1463			btrfs_err(fs_info,
1464			"zoned: cannot recover write pointer for zone %llu",
1465				physical[0]);
1466			ret = -EIO;
1467			goto out;
1468		}
1469		cache->alloc_offset = alloc_offsets[0];
1470		cache->zone_capacity = caps[0];
1471		if (test_bit(0, active))
1472			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1473		break;
1474	case BTRFS_BLOCK_GROUP_DUP:
1475		if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1476			btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1477			ret = -EINVAL;
1478			goto out;
1479		}
1480		if (alloc_offsets[0] == WP_MISSING_DEV) {
1481			btrfs_err(fs_info,
1482			"zoned: cannot recover write pointer for zone %llu",
1483				physical[0]);
1484			ret = -EIO;
1485			goto out;
1486		}
1487		if (alloc_offsets[1] == WP_MISSING_DEV) {
1488			btrfs_err(fs_info,
1489			"zoned: cannot recover write pointer for zone %llu",
1490				physical[1]);
1491			ret = -EIO;
1492			goto out;
1493		}
1494		if (alloc_offsets[0] != alloc_offsets[1]) {
1495			btrfs_err(fs_info,
1496			"zoned: write pointer offset mismatch of zones in DUP profile");
1497			ret = -EIO;
1498			goto out;
1499		}
1500		if (test_bit(0, active) != test_bit(1, active)) {
1501			if (!btrfs_zone_activate(cache)) {
1502				ret = -EIO;
1503				goto out;
1504			}
1505		} else {
1506			if (test_bit(0, active))
1507				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1508					&cache->runtime_flags);
1509		}
1510		cache->alloc_offset = alloc_offsets[0];
1511		cache->zone_capacity = min(caps[0], caps[1]);
1512		break;
1513	case BTRFS_BLOCK_GROUP_RAID1:
 
 
 
 
1514	case BTRFS_BLOCK_GROUP_RAID0:
 
 
1515	case BTRFS_BLOCK_GROUP_RAID10:
 
 
1516	case BTRFS_BLOCK_GROUP_RAID5:
1517	case BTRFS_BLOCK_GROUP_RAID6:
1518		/* non-single profiles are not supported yet */
1519	default:
1520		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1521			  btrfs_bg_type_to_raid_name(map->type));
1522		ret = -EINVAL;
1523		goto out;
1524	}
1525
1526out:
1527	if (cache->alloc_offset > fs_info->zone_size) {
1528		btrfs_err(fs_info,
1529			"zoned: invalid write pointer %llu in block group %llu",
1530			cache->alloc_offset, cache->start);
1531		ret = -EIO;
 
 
1532	}
1533
1534	if (cache->alloc_offset > cache->zone_capacity) {
1535		btrfs_err(fs_info,
1536"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1537			  cache->alloc_offset, cache->zone_capacity,
1538			  cache->start);
1539		ret = -EIO;
1540	}
1541
1542	/* An extent is allocated after the write pointer */
1543	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1544		btrfs_err(fs_info,
1545			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1546			  logical, last_alloc, cache->alloc_offset);
1547		ret = -EIO;
1548	}
1549
1550	if (!ret) {
1551		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1552		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1553			btrfs_get_block_group(cache);
1554			spin_lock(&fs_info->zone_active_bgs_lock);
1555			list_add_tail(&cache->active_bg_list,
1556				      &fs_info->zone_active_bgs);
1557			spin_unlock(&fs_info->zone_active_bgs_lock);
1558		}
1559	} else {
1560		kfree(cache->physical_map);
1561		cache->physical_map = NULL;
1562	}
1563	bitmap_free(active);
1564	kfree(physical);
1565	kfree(caps);
1566	kfree(alloc_offsets);
1567	free_extent_map(em);
1568
1569	return ret;
1570}
1571
1572void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1573{
1574	u64 unusable, free;
1575
1576	if (!btrfs_is_zoned(cache->fs_info))
1577		return;
1578
1579	WARN_ON(cache->bytes_super != 0);
1580	unusable = (cache->alloc_offset - cache->used) +
1581		   (cache->length - cache->zone_capacity);
1582	free = cache->zone_capacity - cache->alloc_offset;
1583
1584	/* We only need ->free_space in ALLOC_SEQ block groups */
1585	cache->cached = BTRFS_CACHE_FINISHED;
1586	cache->free_space_ctl->free_space = free;
1587	cache->zone_unusable = unusable;
1588}
1589
1590void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1591			    struct extent_buffer *eb)
1592{
1593	struct btrfs_fs_info *fs_info = eb->fs_info;
1594
1595	if (!btrfs_is_zoned(fs_info) ||
1596	    btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1597	    !list_empty(&eb->release_list))
1598		return;
1599
1600	set_extent_buffer_dirty(eb);
1601	set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1602			       eb->start + eb->len - 1, EXTENT_DIRTY);
1603	memzero_extent_buffer(eb, 0, eb->len);
1604	set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1605
1606	spin_lock(&trans->releasing_ebs_lock);
1607	list_add_tail(&eb->release_list, &trans->releasing_ebs);
1608	spin_unlock(&trans->releasing_ebs_lock);
1609	atomic_inc(&eb->refs);
1610}
1611
1612void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1613{
1614	spin_lock(&trans->releasing_ebs_lock);
1615	while (!list_empty(&trans->releasing_ebs)) {
1616		struct extent_buffer *eb;
1617
1618		eb = list_first_entry(&trans->releasing_ebs,
1619				      struct extent_buffer, release_list);
1620		list_del_init(&eb->release_list);
1621		free_extent_buffer(eb);
1622	}
1623	spin_unlock(&trans->releasing_ebs_lock);
1624}
1625
1626bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
1627{
1628	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1629	struct btrfs_block_group *cache;
1630	bool ret = false;
1631
1632	if (!btrfs_is_zoned(fs_info))
1633		return false;
1634
1635	if (!is_data_inode(&inode->vfs_inode))
 
 
 
1636		return false;
1637
1638	/*
1639	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1640	 * extent layout the relocation code has.
1641	 * Furthermore we have set aside own block-group from which only the
1642	 * relocation "process" can allocate and make sure only one process at a
1643	 * time can add pages to an extent that gets relocated, so it's safe to
1644	 * use regular REQ_OP_WRITE for this special case.
1645	 */
1646	if (btrfs_is_data_reloc_root(inode->root))
1647		return false;
1648
1649	cache = btrfs_lookup_block_group(fs_info, start);
1650	ASSERT(cache);
1651	if (!cache)
1652		return false;
1653
1654	ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1655	btrfs_put_block_group(cache);
1656
1657	return ret;
1658}
1659
1660void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1661				 struct bio *bio)
1662{
1663	struct btrfs_ordered_extent *ordered;
1664	const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1665
1666	if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1667		return;
 
 
 
1668
1669	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1670	if (WARN_ON(!ordered))
1671		return;
 
 
 
 
 
 
 
 
 
 
 
 
1672
1673	ordered->physical = physical;
1674	ordered->bdev = bio->bi_bdev;
 
 
1675
1676	btrfs_put_ordered_extent(ordered);
 
 
 
 
 
 
 
 
 
 
1677}
1678
1679void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1680{
1681	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1682	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1683	struct extent_map_tree *em_tree;
1684	struct extent_map *em;
1685	struct btrfs_ordered_sum *sum;
1686	u64 orig_logical = ordered->disk_bytenr;
1687	u64 *logical = NULL;
1688	int nr, stripe_len;
1689
1690	/* Zoned devices should not have partitions. So, we can assume it is 0 */
1691	ASSERT(!bdev_is_partition(ordered->bdev));
1692	if (WARN_ON(!ordered->bdev))
1693		return;
1694
1695	if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
1696				     ordered->physical, &logical, &nr,
1697				     &stripe_len)))
1698		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699
1700	WARN_ON(nr != 1);
 
1701
1702	if (orig_logical == *logical)
1703		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704
1705	ordered->disk_bytenr = *logical;
 
1706
1707	em_tree = &inode->extent_tree;
1708	write_lock(&em_tree->lock);
1709	em = search_extent_mapping(em_tree, ordered->file_offset,
1710				   ordered->num_bytes);
1711	em->block_start = *logical;
1712	free_extent_map(em);
1713	write_unlock(&em_tree->lock);
1714
1715	list_for_each_entry(sum, &ordered->list, list) {
1716		if (*logical < orig_logical)
1717			sum->bytenr -= orig_logical - *logical;
1718		else
1719			sum->bytenr += *logical - orig_logical;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1720	}
1721
1722out:
1723	kfree(logical);
1724}
1725
1726bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1727				    struct extent_buffer *eb,
1728				    struct btrfs_block_group **cache_ret)
 
 
 
 
 
 
 
1729{
1730	struct btrfs_block_group *cache;
1731	bool ret = true;
 
1732
1733	if (!btrfs_is_zoned(fs_info))
1734		return true;
1735
1736	cache = btrfs_lookup_block_group(fs_info, eb->start);
1737	if (!cache)
1738		return true;
 
 
 
 
 
1739
1740	if (cache->meta_write_pointer != eb->start) {
1741		btrfs_put_block_group(cache);
1742		cache = NULL;
1743		ret = false;
1744	} else {
1745		cache->meta_write_pointer = eb->start + eb->len;
1746	}
1747
1748	*cache_ret = cache;
 
1749
1750	return ret;
1751}
1752
1753void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1754				     struct extent_buffer *eb)
1755{
1756	if (!btrfs_is_zoned(eb->fs_info) || !cache)
1757		return;
 
 
 
 
 
 
 
 
 
1758
1759	ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1760	cache->meta_write_pointer = eb->start;
 
 
1761}
1762
1763int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1764{
1765	if (!btrfs_dev_is_sequential(device, physical))
1766		return -EOPNOTSUPP;
1767
1768	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1769				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1770}
1771
1772static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1773			  struct blk_zone *zone)
1774{
1775	struct btrfs_io_context *bioc = NULL;
1776	u64 mapped_length = PAGE_SIZE;
1777	unsigned int nofs_flag;
1778	int nmirrors;
1779	int i, ret;
1780
1781	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1782			       &mapped_length, &bioc);
1783	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1784		ret = -EIO;
1785		goto out_put_bioc;
1786	}
1787
1788	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1789		ret = -EINVAL;
1790		goto out_put_bioc;
1791	}
1792
1793	nofs_flag = memalloc_nofs_save();
1794	nmirrors = (int)bioc->num_stripes;
1795	for (i = 0; i < nmirrors; i++) {
1796		u64 physical = bioc->stripes[i].physical;
1797		struct btrfs_device *dev = bioc->stripes[i].dev;
1798
1799		/* Missing device */
1800		if (!dev->bdev)
1801			continue;
1802
1803		ret = btrfs_get_dev_zone(dev, physical, zone);
1804		/* Failing device */
1805		if (ret == -EIO || ret == -EOPNOTSUPP)
1806			continue;
1807		break;
1808	}
1809	memalloc_nofs_restore(nofs_flag);
1810out_put_bioc:
1811	btrfs_put_bioc(bioc);
1812	return ret;
1813}
1814
1815/*
1816 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1817 * filling zeros between @physical_pos to a write pointer of dev-replace
1818 * source device.
1819 */
1820int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1821				    u64 physical_start, u64 physical_pos)
1822{
1823	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1824	struct blk_zone zone;
1825	u64 length;
1826	u64 wp;
1827	int ret;
1828
1829	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1830		return 0;
1831
1832	ret = read_zone_info(fs_info, logical, &zone);
1833	if (ret)
1834		return ret;
1835
1836	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1837
1838	if (physical_pos == wp)
1839		return 0;
1840
1841	if (physical_pos > wp)
1842		return -EUCLEAN;
1843
1844	length = wp - physical_pos;
1845	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1846}
1847
1848struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1849					    u64 logical, u64 length)
1850{
1851	struct btrfs_device *device;
1852	struct extent_map *em;
1853	struct map_lookup *map;
1854
1855	em = btrfs_get_chunk_map(fs_info, logical, length);
1856	if (IS_ERR(em))
1857		return ERR_CAST(em);
1858
1859	map = em->map_lookup;
1860	/* We only support single profile for now */
1861	device = map->stripes[0].dev;
1862
1863	free_extent_map(em);
1864
1865	return device;
1866}
1867
1868/*
1869 * Activate block group and underlying device zones
1870 *
1871 * @block_group: the block group to activate
1872 *
1873 * Return: true on success, false otherwise
1874 */
1875bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1876{
1877	struct btrfs_fs_info *fs_info = block_group->fs_info;
1878	struct btrfs_space_info *space_info = block_group->space_info;
1879	struct map_lookup *map;
1880	struct btrfs_device *device;
1881	u64 physical;
 
1882	bool ret;
1883	int i;
1884
1885	if (!btrfs_is_zoned(block_group->fs_info))
1886		return true;
1887
1888	map = block_group->physical_map;
1889
1890	spin_lock(&space_info->lock);
1891	spin_lock(&block_group->lock);
1892	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1893		ret = true;
1894		goto out_unlock;
1895	}
1896
1897	/* No space left */
1898	if (btrfs_zoned_bg_is_full(block_group)) {
1899		ret = false;
1900		goto out_unlock;
1901	}
1902
1903	for (i = 0; i < map->num_stripes; i++) {
 
 
 
1904		device = map->stripes[i].dev;
1905		physical = map->stripes[i].physical;
 
1906
1907		if (device->zone_info->max_active_zones == 0)
1908			continue;
1909
 
 
 
 
 
 
 
 
 
 
 
1910		if (!btrfs_dev_set_active_zone(device, physical)) {
1911			/* Cannot activate the zone */
1912			ret = false;
1913			goto out_unlock;
1914		}
 
 
1915	}
1916
1917	/* Successfully activated all the zones */
1918	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
1919	space_info->active_total_bytes += block_group->length;
1920	spin_unlock(&block_group->lock);
1921	btrfs_try_granting_tickets(fs_info, space_info);
1922	spin_unlock(&space_info->lock);
1923
1924	/* For the active block group list */
1925	btrfs_get_block_group(block_group);
1926
1927	spin_lock(&fs_info->zone_active_bgs_lock);
1928	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1929	spin_unlock(&fs_info->zone_active_bgs_lock);
1930
1931	return true;
1932
1933out_unlock:
1934	spin_unlock(&block_group->lock);
1935	spin_unlock(&space_info->lock);
1936	return ret;
1937}
1938
1939static void wait_eb_writebacks(struct btrfs_block_group *block_group)
1940{
1941	struct btrfs_fs_info *fs_info = block_group->fs_info;
1942	const u64 end = block_group->start + block_group->length;
1943	struct radix_tree_iter iter;
1944	struct extent_buffer *eb;
1945	void __rcu **slot;
1946
1947	rcu_read_lock();
1948	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
1949				 block_group->start >> fs_info->sectorsize_bits) {
1950		eb = radix_tree_deref_slot(slot);
1951		if (!eb)
1952			continue;
1953		if (radix_tree_deref_retry(eb)) {
1954			slot = radix_tree_iter_retry(&iter);
1955			continue;
1956		}
1957
1958		if (eb->start < block_group->start)
1959			continue;
1960		if (eb->start >= end)
1961			break;
1962
1963		slot = radix_tree_iter_resume(slot, &iter);
1964		rcu_read_unlock();
1965		wait_on_extent_buffer_writeback(eb);
1966		rcu_read_lock();
1967	}
1968	rcu_read_unlock();
1969}
1970
1971static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
1972{
1973	struct btrfs_fs_info *fs_info = block_group->fs_info;
1974	struct map_lookup *map;
1975	const bool is_metadata = (block_group->flags &
1976			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
 
1977	int ret = 0;
1978	int i;
1979
1980	spin_lock(&block_group->lock);
1981	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1982		spin_unlock(&block_group->lock);
1983		return 0;
1984	}
1985
1986	/* Check if we have unwritten allocated space */
1987	if (is_metadata &&
1988	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
1989		spin_unlock(&block_group->lock);
1990		return -EAGAIN;
1991	}
1992
1993	/*
1994	 * If we are sure that the block group is full (= no more room left for
1995	 * new allocation) and the IO for the last usable block is completed, we
1996	 * don't need to wait for the other IOs. This holds because we ensure
1997	 * the sequential IO submissions using the ZONE_APPEND command for data
1998	 * and block_group->meta_write_pointer for metadata.
1999	 */
2000	if (!fully_written) {
 
 
 
 
2001		spin_unlock(&block_group->lock);
2002
2003		ret = btrfs_inc_block_group_ro(block_group, false);
2004		if (ret)
2005			return ret;
2006
2007		/* Ensure all writes in this block group finish */
2008		btrfs_wait_block_group_reservations(block_group);
2009		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
2010		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2011					 block_group->length);
2012		/* Wait for extent buffers to be written. */
2013		if (is_metadata)
2014			wait_eb_writebacks(block_group);
2015
2016		spin_lock(&block_group->lock);
2017
2018		/*
2019		 * Bail out if someone already deactivated the block group, or
2020		 * allocated space is left in the block group.
2021		 */
2022		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2023			      &block_group->runtime_flags)) {
2024			spin_unlock(&block_group->lock);
2025			btrfs_dec_block_group_ro(block_group);
2026			return 0;
2027		}
2028
2029		if (block_group->reserved) {
 
 
2030			spin_unlock(&block_group->lock);
2031			btrfs_dec_block_group_ro(block_group);
2032			return -EAGAIN;
2033		}
2034	}
2035
2036	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2037	block_group->alloc_offset = block_group->zone_capacity;
 
 
 
2038	block_group->free_space_ctl->free_space = 0;
2039	btrfs_clear_treelog_bg(block_group);
2040	btrfs_clear_data_reloc_bg(block_group);
2041	spin_unlock(&block_group->lock);
2042
 
2043	map = block_group->physical_map;
2044	for (i = 0; i < map->num_stripes; i++) {
2045		struct btrfs_device *device = map->stripes[i].dev;
2046		const u64 physical = map->stripes[i].physical;
 
 
2047
2048		if (device->zone_info->max_active_zones == 0)
2049			continue;
2050
 
2051		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2052				       physical >> SECTOR_SHIFT,
2053				       device->zone_info->zone_size >> SECTOR_SHIFT,
2054				       GFP_NOFS);
2055
2056		if (ret)
 
2057			return ret;
 
2058
 
 
2059		btrfs_dev_clear_active_zone(device, physical);
2060	}
 
2061
2062	if (!fully_written)
2063		btrfs_dec_block_group_ro(block_group);
2064
2065	spin_lock(&fs_info->zone_active_bgs_lock);
2066	ASSERT(!list_empty(&block_group->active_bg_list));
2067	list_del_init(&block_group->active_bg_list);
2068	spin_unlock(&fs_info->zone_active_bgs_lock);
2069
2070	/* For active_bg_list */
2071	btrfs_put_block_group(block_group);
2072
2073	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2074
2075	return 0;
2076}
2077
2078int btrfs_zone_finish(struct btrfs_block_group *block_group)
2079{
2080	if (!btrfs_is_zoned(block_group->fs_info))
2081		return 0;
2082
2083	return do_zone_finish(block_group, false);
2084}
2085
2086bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2087{
2088	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2089	struct btrfs_device *device;
2090	bool ret = false;
2091
2092	if (!btrfs_is_zoned(fs_info))
2093		return true;
2094
2095	/* Check if there is a device with active zones left */
2096	mutex_lock(&fs_info->chunk_mutex);
 
2097	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2098		struct btrfs_zoned_device_info *zinfo = device->zone_info;
 
2099
2100		if (!device->bdev)
2101			continue;
2102
2103		if (!zinfo->max_active_zones ||
2104		    atomic_read(&zinfo->active_zones_left)) {
2105			ret = true;
2106			break;
2107		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2108	}
 
2109	mutex_unlock(&fs_info->chunk_mutex);
2110
2111	if (!ret)
2112		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2113
2114	return ret;
2115}
2116
2117void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2118{
2119	struct btrfs_block_group *block_group;
2120	u64 min_alloc_bytes;
2121
2122	if (!btrfs_is_zoned(fs_info))
2123		return;
2124
2125	block_group = btrfs_lookup_block_group(fs_info, logical);
2126	ASSERT(block_group);
2127
2128	/* No MIXED_BG on zoned btrfs. */
2129	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2130		min_alloc_bytes = fs_info->sectorsize;
2131	else
2132		min_alloc_bytes = fs_info->nodesize;
2133
2134	/* Bail out if we can allocate more data from this block group. */
2135	if (logical + length + min_alloc_bytes <=
2136	    block_group->start + block_group->zone_capacity)
2137		goto out;
2138
2139	do_zone_finish(block_group, true);
2140
2141out:
2142	btrfs_put_block_group(block_group);
2143}
2144
2145static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2146{
2147	struct btrfs_block_group *bg =
2148		container_of(work, struct btrfs_block_group, zone_finish_work);
2149
2150	wait_on_extent_buffer_writeback(bg->last_eb);
2151	free_extent_buffer(bg->last_eb);
2152	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2153	btrfs_put_block_group(bg);
2154}
2155
2156void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2157				   struct extent_buffer *eb)
2158{
2159	if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2160	    eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2161		return;
2162
2163	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2164		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2165			  bg->start);
2166		return;
2167	}
2168
2169	/* For the work */
2170	btrfs_get_block_group(bg);
2171	atomic_inc(&eb->refs);
2172	bg->last_eb = eb;
2173	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2174	queue_work(system_unbound_wq, &bg->zone_finish_work);
2175}
2176
2177void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2178{
2179	struct btrfs_fs_info *fs_info = bg->fs_info;
2180
2181	spin_lock(&fs_info->relocation_bg_lock);
2182	if (fs_info->data_reloc_bg == bg->start)
2183		fs_info->data_reloc_bg = 0;
2184	spin_unlock(&fs_info->relocation_bg_lock);
2185}
2186
2187void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2188{
2189	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2190	struct btrfs_device *device;
2191
2192	if (!btrfs_is_zoned(fs_info))
2193		return;
2194
2195	mutex_lock(&fs_devices->device_list_mutex);
2196	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2197		if (device->zone_info) {
2198			vfree(device->zone_info->zone_cache);
2199			device->zone_info->zone_cache = NULL;
2200		}
2201	}
2202	mutex_unlock(&fs_devices->device_list_mutex);
2203}
2204
2205bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2206{
2207	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2208	struct btrfs_device *device;
2209	u64 used = 0;
2210	u64 total = 0;
2211	u64 factor;
2212
2213	ASSERT(btrfs_is_zoned(fs_info));
2214
2215	if (fs_info->bg_reclaim_threshold == 0)
2216		return false;
2217
2218	mutex_lock(&fs_devices->device_list_mutex);
2219	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2220		if (!device->bdev)
2221			continue;
2222
2223		total += device->disk_total_bytes;
2224		used += device->bytes_used;
2225	}
2226	mutex_unlock(&fs_devices->device_list_mutex);
2227
2228	factor = div64_u64(used * 100, total);
2229	return factor >= fs_info->bg_reclaim_threshold;
2230}
2231
2232void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2233				       u64 length)
2234{
2235	struct btrfs_block_group *block_group;
2236
2237	if (!btrfs_is_zoned(fs_info))
2238		return;
2239
2240	block_group = btrfs_lookup_block_group(fs_info, logical);
2241	/* It should be called on a previous data relocation block group. */
2242	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2243
2244	spin_lock(&block_group->lock);
2245	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2246		goto out;
2247
2248	/* All relocation extents are written. */
2249	if (block_group->start + block_group->alloc_offset == logical + length) {
2250		/* Now, release this block group for further allocations. */
 
 
 
2251		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2252			  &block_group->runtime_flags);
2253	}
2254
2255out:
2256	spin_unlock(&block_group->lock);
2257	btrfs_put_block_group(block_group);
2258}
2259
2260int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2261{
2262	struct btrfs_block_group *block_group;
2263	struct btrfs_block_group *min_bg = NULL;
2264	u64 min_avail = U64_MAX;
2265	int ret;
2266
2267	spin_lock(&fs_info->zone_active_bgs_lock);
2268	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2269			    active_bg_list) {
2270		u64 avail;
2271
2272		spin_lock(&block_group->lock);
2273		if (block_group->reserved ||
2274		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
 
2275			spin_unlock(&block_group->lock);
2276			continue;
2277		}
2278
2279		avail = block_group->zone_capacity - block_group->alloc_offset;
2280		if (min_avail > avail) {
2281			if (min_bg)
2282				btrfs_put_block_group(min_bg);
2283			min_bg = block_group;
2284			min_avail = avail;
2285			btrfs_get_block_group(min_bg);
2286		}
2287		spin_unlock(&block_group->lock);
2288	}
2289	spin_unlock(&fs_info->zone_active_bgs_lock);
2290
2291	if (!min_bg)
2292		return 0;
2293
2294	ret = btrfs_zone_finish(min_bg);
2295	btrfs_put_block_group(min_bg);
2296
2297	return ret < 0 ? ret : 1;
2298}
2299
2300int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2301				struct btrfs_space_info *space_info,
2302				bool do_finish)
2303{
2304	struct btrfs_block_group *bg;
2305	int index;
2306
2307	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2308		return 0;
2309
2310	/* No more block groups to activate */
2311	if (space_info->active_total_bytes == space_info->total_bytes)
2312		return 0;
2313
2314	for (;;) {
2315		int ret;
2316		bool need_finish = false;
2317
2318		down_read(&space_info->groups_sem);
2319		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2320			list_for_each_entry(bg, &space_info->block_groups[index],
2321					    list) {
2322				if (!spin_trylock(&bg->lock))
2323					continue;
2324				if (btrfs_zoned_bg_is_full(bg) ||
2325				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2326					     &bg->runtime_flags)) {
2327					spin_unlock(&bg->lock);
2328					continue;
2329				}
2330				spin_unlock(&bg->lock);
2331
2332				if (btrfs_zone_activate(bg)) {
2333					up_read(&space_info->groups_sem);
2334					return 1;
2335				}
2336
2337				need_finish = true;
2338			}
2339		}
2340		up_read(&space_info->groups_sem);
2341
2342		if (!do_finish || !need_finish)
2343			break;
2344
2345		ret = btrfs_zone_finish_one_bg(fs_info);
2346		if (ret == 0)
2347			break;
2348		if (ret < 0)
2349			return ret;
2350	}
2351
2352	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2353}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/blkdev.h>
   6#include <linux/sched/mm.h>
   7#include <linux/atomic.h>
   8#include <linux/vmalloc.h>
   9#include "ctree.h"
  10#include "volumes.h"
  11#include "zoned.h"
  12#include "rcu-string.h"
  13#include "disk-io.h"
  14#include "block-group.h"
 
  15#include "dev-replace.h"
  16#include "space-info.h"
  17#include "fs.h"
  18#include "accessors.h"
  19#include "bio.h"
  20
  21/* Maximum number of zones to report per blkdev_report_zones() call */
  22#define BTRFS_REPORT_NR_ZONES   4096
  23/* Invalid allocation pointer value for missing devices */
  24#define WP_MISSING_DEV ((u64)-1)
  25/* Pseudo write pointer value for conventional zone */
  26#define WP_CONVENTIONAL ((u64)-2)
  27
  28/*
  29 * Location of the first zone of superblock logging zone pairs.
  30 *
  31 * - primary superblock:    0B (zone 0)
  32 * - first copy:          512G (zone starting at that offset)
  33 * - second copy:           4T (zone starting at that offset)
  34 */
  35#define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
  36#define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
  37#define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
  38
  39#define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
  40#define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
  41
  42/* Number of superblock log zones */
  43#define BTRFS_NR_SB_LOG_ZONES 2
  44
  45/*
  46 * Minimum of active zones we need:
  47 *
  48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
  49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
  50 * - 1 zone for tree-log dedicated block group
  51 * - 1 zone for relocation
  52 */
  53#define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
  54
  55/*
  56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
  57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
  58 * We do not expect the zone size to become larger than 8GiB or smaller than
  59 * 4MiB in the near future.
  60 */
  61#define BTRFS_MAX_ZONE_SIZE		SZ_8G
  62#define BTRFS_MIN_ZONE_SIZE		SZ_4M
  63
  64#define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
  65
  66static void wait_eb_writebacks(struct btrfs_block_group *block_group);
  67static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
  68
  69static inline bool sb_zone_is_full(const struct blk_zone *zone)
  70{
  71	return (zone->cond == BLK_ZONE_COND_FULL) ||
  72		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
  73}
  74
  75static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
  76{
  77	struct blk_zone *zones = data;
  78
  79	memcpy(&zones[idx], zone, sizeof(*zone));
  80
  81	return 0;
  82}
  83
  84static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
  85			    u64 *wp_ret)
  86{
  87	bool empty[BTRFS_NR_SB_LOG_ZONES];
  88	bool full[BTRFS_NR_SB_LOG_ZONES];
  89	sector_t sector;
  90	int i;
  91
  92	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
  93		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
  94		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
  95		full[i] = sb_zone_is_full(&zones[i]);
  96	}
  97
  98	/*
  99	 * Possible states of log buffer zones
 100	 *
 101	 *           Empty[0]  In use[0]  Full[0]
 102	 * Empty[1]         *          0        1
 103	 * In use[1]        x          x        1
 104	 * Full[1]          0          0        C
 105	 *
 106	 * Log position:
 107	 *   *: Special case, no superblock is written
 108	 *   0: Use write pointer of zones[0]
 109	 *   1: Use write pointer of zones[1]
 110	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
 111	 *      one determined by generation
 112	 *   x: Invalid state
 113	 */
 114
 115	if (empty[0] && empty[1]) {
 116		/* Special case to distinguish no superblock to read */
 117		*wp_ret = zones[0].start << SECTOR_SHIFT;
 118		return -ENOENT;
 119	} else if (full[0] && full[1]) {
 120		/* Compare two super blocks */
 121		struct address_space *mapping = bdev->bd_inode->i_mapping;
 122		struct page *page[BTRFS_NR_SB_LOG_ZONES];
 123		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
 124		int i;
 125
 126		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
 127			u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
 128			u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
 129						BTRFS_SUPER_INFO_SIZE;
 
 130
 131			page[i] = read_cache_page_gfp(mapping,
 132					bytenr >> PAGE_SHIFT, GFP_NOFS);
 133			if (IS_ERR(page[i])) {
 134				if (i == 1)
 135					btrfs_release_disk_super(super[0]);
 136				return PTR_ERR(page[i]);
 137			}
 138			super[i] = page_address(page[i]);
 139		}
 140
 141		if (btrfs_super_generation(super[0]) >
 142		    btrfs_super_generation(super[1]))
 143			sector = zones[1].start;
 144		else
 145			sector = zones[0].start;
 146
 147		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
 148			btrfs_release_disk_super(super[i]);
 149	} else if (!full[0] && (empty[1] || full[1])) {
 150		sector = zones[0].wp;
 151	} else if (full[0]) {
 152		sector = zones[1].wp;
 153	} else {
 154		return -EUCLEAN;
 155	}
 156	*wp_ret = sector << SECTOR_SHIFT;
 157	return 0;
 158}
 159
 160/*
 161 * Get the first zone number of the superblock mirror
 162 */
 163static inline u32 sb_zone_number(int shift, int mirror)
 164{
 165	u64 zone = U64_MAX;
 166
 167	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
 168	switch (mirror) {
 169	case 0: zone = 0; break;
 170	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
 171	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
 172	}
 173
 174	ASSERT(zone <= U32_MAX);
 175
 176	return (u32)zone;
 177}
 178
 179static inline sector_t zone_start_sector(u32 zone_number,
 180					 struct block_device *bdev)
 181{
 182	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
 183}
 184
 185static inline u64 zone_start_physical(u32 zone_number,
 186				      struct btrfs_zoned_device_info *zone_info)
 187{
 188	return (u64)zone_number << zone_info->zone_size_shift;
 189}
 190
 191/*
 192 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
 193 * device into static sized chunks and fake a conventional zone on each of
 194 * them.
 195 */
 196static int emulate_report_zones(struct btrfs_device *device, u64 pos,
 197				struct blk_zone *zones, unsigned int nr_zones)
 198{
 199	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
 200	sector_t bdev_size = bdev_nr_sectors(device->bdev);
 201	unsigned int i;
 202
 203	pos >>= SECTOR_SHIFT;
 204	for (i = 0; i < nr_zones; i++) {
 205		zones[i].start = i * zone_sectors + pos;
 206		zones[i].len = zone_sectors;
 207		zones[i].capacity = zone_sectors;
 208		zones[i].wp = zones[i].start + zone_sectors;
 209		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
 210		zones[i].cond = BLK_ZONE_COND_NOT_WP;
 211
 212		if (zones[i].wp >= bdev_size) {
 213			i++;
 214			break;
 215		}
 216	}
 217
 218	return i;
 219}
 220
 221static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
 222			       struct blk_zone *zones, unsigned int *nr_zones)
 223{
 224	struct btrfs_zoned_device_info *zinfo = device->zone_info;
 
 225	int ret;
 226
 227	if (!*nr_zones)
 228		return 0;
 229
 230	if (!bdev_is_zoned(device->bdev)) {
 231		ret = emulate_report_zones(device, pos, zones, *nr_zones);
 232		*nr_zones = ret;
 233		return 0;
 234	}
 235
 236	/* Check cache */
 237	if (zinfo->zone_cache) {
 238		unsigned int i;
 239		u32 zno;
 240
 241		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
 242		zno = pos >> zinfo->zone_size_shift;
 243		/*
 244		 * We cannot report zones beyond the zone end. So, it is OK to
 245		 * cap *nr_zones to at the end.
 246		 */
 247		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
 248
 249		for (i = 0; i < *nr_zones; i++) {
 250			struct blk_zone *zone_info;
 251
 252			zone_info = &zinfo->zone_cache[zno + i];
 253			if (!zone_info->len)
 254				break;
 255		}
 256
 257		if (i == *nr_zones) {
 258			/* Cache hit on all the zones */
 259			memcpy(zones, zinfo->zone_cache + zno,
 260			       sizeof(*zinfo->zone_cache) * *nr_zones);
 261			return 0;
 262		}
 263	}
 264
 265	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
 266				  copy_zone_info_cb, zones);
 267	if (ret < 0) {
 268		btrfs_err_in_rcu(device->fs_info,
 269				 "zoned: failed to read zone %llu on %s (devid %llu)",
 270				 pos, rcu_str_deref(device->name),
 271				 device->devid);
 272		return ret;
 273	}
 274	*nr_zones = ret;
 275	if (!ret)
 276		return -EIO;
 277
 278	/* Populate cache */
 279	if (zinfo->zone_cache) {
 280		u32 zno = pos >> zinfo->zone_size_shift;
 281
 282		memcpy(zinfo->zone_cache + zno, zones,
 283		       sizeof(*zinfo->zone_cache) * *nr_zones);
 284	}
 285
 286	return 0;
 287}
 288
 289/* The emulated zone size is determined from the size of device extent */
 290static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
 291{
 292	struct btrfs_path *path;
 293	struct btrfs_root *root = fs_info->dev_root;
 294	struct btrfs_key key;
 295	struct extent_buffer *leaf;
 296	struct btrfs_dev_extent *dext;
 297	int ret = 0;
 298
 299	key.objectid = 1;
 300	key.type = BTRFS_DEV_EXTENT_KEY;
 301	key.offset = 0;
 302
 303	path = btrfs_alloc_path();
 304	if (!path)
 305		return -ENOMEM;
 306
 307	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 308	if (ret < 0)
 309		goto out;
 310
 311	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
 312		ret = btrfs_next_leaf(root, path);
 313		if (ret < 0)
 314			goto out;
 315		/* No dev extents at all? Not good */
 316		if (ret > 0) {
 317			ret = -EUCLEAN;
 318			goto out;
 319		}
 320	}
 321
 322	leaf = path->nodes[0];
 323	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
 324	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
 325	ret = 0;
 326
 327out:
 328	btrfs_free_path(path);
 329
 330	return ret;
 331}
 332
 333int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
 334{
 335	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 336	struct btrfs_device *device;
 337	int ret = 0;
 338
 339	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
 340	if (!btrfs_fs_incompat(fs_info, ZONED))
 341		return 0;
 342
 343	mutex_lock(&fs_devices->device_list_mutex);
 344	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 345		/* We can skip reading of zone info for missing devices */
 346		if (!device->bdev)
 347			continue;
 348
 349		ret = btrfs_get_dev_zone_info(device, true);
 350		if (ret)
 351			break;
 352	}
 353	mutex_unlock(&fs_devices->device_list_mutex);
 354
 355	return ret;
 356}
 357
 358int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
 359{
 360	struct btrfs_fs_info *fs_info = device->fs_info;
 361	struct btrfs_zoned_device_info *zone_info = NULL;
 362	struct block_device *bdev = device->bdev;
 363	unsigned int max_active_zones;
 364	unsigned int nactive;
 365	sector_t nr_sectors;
 366	sector_t sector = 0;
 367	struct blk_zone *zones = NULL;
 368	unsigned int i, nreported = 0, nr_zones;
 369	sector_t zone_sectors;
 370	char *model, *emulated;
 371	int ret;
 372
 373	/*
 374	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
 375	 * yet be set.
 376	 */
 377	if (!btrfs_fs_incompat(fs_info, ZONED))
 378		return 0;
 379
 380	if (device->zone_info)
 381		return 0;
 382
 383	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
 384	if (!zone_info)
 385		return -ENOMEM;
 386
 387	device->zone_info = zone_info;
 388
 389	if (!bdev_is_zoned(bdev)) {
 390		if (!fs_info->zone_size) {
 391			ret = calculate_emulated_zone_size(fs_info);
 392			if (ret)
 393				goto out;
 394		}
 395
 396		ASSERT(fs_info->zone_size);
 397		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
 398	} else {
 399		zone_sectors = bdev_zone_sectors(bdev);
 400	}
 401
 402	ASSERT(is_power_of_two_u64(zone_sectors));
 403	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
 404
 405	/* We reject devices with a zone size larger than 8GB */
 406	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
 407		btrfs_err_in_rcu(fs_info,
 408		"zoned: %s: zone size %llu larger than supported maximum %llu",
 409				 rcu_str_deref(device->name),
 410				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
 411		ret = -EINVAL;
 412		goto out;
 413	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
 414		btrfs_err_in_rcu(fs_info,
 415		"zoned: %s: zone size %llu smaller than supported minimum %u",
 416				 rcu_str_deref(device->name),
 417				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
 418		ret = -EINVAL;
 419		goto out;
 420	}
 421
 422	nr_sectors = bdev_nr_sectors(bdev);
 423	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
 424	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 425	if (!IS_ALIGNED(nr_sectors, zone_sectors))
 426		zone_info->nr_zones++;
 427
 428	max_active_zones = bdev_max_active_zones(bdev);
 429	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
 430		btrfs_err_in_rcu(fs_info,
 431"zoned: %s: max active zones %u is too small, need at least %u active zones",
 432				 rcu_str_deref(device->name), max_active_zones,
 433				 BTRFS_MIN_ACTIVE_ZONES);
 434		ret = -EINVAL;
 435		goto out;
 436	}
 437	zone_info->max_active_zones = max_active_zones;
 438
 439	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 440	if (!zone_info->seq_zones) {
 441		ret = -ENOMEM;
 442		goto out;
 443	}
 444
 445	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 446	if (!zone_info->empty_zones) {
 447		ret = -ENOMEM;
 448		goto out;
 449	}
 450
 451	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 452	if (!zone_info->active_zones) {
 453		ret = -ENOMEM;
 454		goto out;
 455	}
 456
 457	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
 458	if (!zones) {
 459		ret = -ENOMEM;
 460		goto out;
 461	}
 462
 463	/*
 464	 * Enable zone cache only for a zoned device. On a non-zoned device, we
 465	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
 466	 * use the cache.
 467	 */
 468	if (populate_cache && bdev_is_zoned(device->bdev)) {
 469		zone_info->zone_cache = vcalloc(zone_info->nr_zones,
 470						sizeof(struct blk_zone));
 471		if (!zone_info->zone_cache) {
 472			btrfs_err_in_rcu(device->fs_info,
 473				"zoned: failed to allocate zone cache for %s",
 474				rcu_str_deref(device->name));
 475			ret = -ENOMEM;
 476			goto out;
 477		}
 478	}
 479
 480	/* Get zones type */
 481	nactive = 0;
 482	while (sector < nr_sectors) {
 483		nr_zones = BTRFS_REPORT_NR_ZONES;
 484		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
 485					  &nr_zones);
 486		if (ret)
 487			goto out;
 488
 489		for (i = 0; i < nr_zones; i++) {
 490			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
 491				__set_bit(nreported, zone_info->seq_zones);
 492			switch (zones[i].cond) {
 493			case BLK_ZONE_COND_EMPTY:
 494				__set_bit(nreported, zone_info->empty_zones);
 495				break;
 496			case BLK_ZONE_COND_IMP_OPEN:
 497			case BLK_ZONE_COND_EXP_OPEN:
 498			case BLK_ZONE_COND_CLOSED:
 499				__set_bit(nreported, zone_info->active_zones);
 500				nactive++;
 501				break;
 502			}
 503			nreported++;
 504		}
 505		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
 506	}
 507
 508	if (nreported != zone_info->nr_zones) {
 509		btrfs_err_in_rcu(device->fs_info,
 510				 "inconsistent number of zones on %s (%u/%u)",
 511				 rcu_str_deref(device->name), nreported,
 512				 zone_info->nr_zones);
 513		ret = -EIO;
 514		goto out;
 515	}
 516
 517	if (max_active_zones) {
 518		if (nactive > max_active_zones) {
 519			btrfs_err_in_rcu(device->fs_info,
 520			"zoned: %u active zones on %s exceeds max_active_zones %u",
 521					 nactive, rcu_str_deref(device->name),
 522					 max_active_zones);
 523			ret = -EIO;
 524			goto out;
 525		}
 526		atomic_set(&zone_info->active_zones_left,
 527			   max_active_zones - nactive);
 528		set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
 
 529	}
 530
 531	/* Validate superblock log */
 532	nr_zones = BTRFS_NR_SB_LOG_ZONES;
 533	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 534		u32 sb_zone;
 535		u64 sb_wp;
 536		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
 537
 538		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
 539		if (sb_zone + 1 >= zone_info->nr_zones)
 540			continue;
 541
 542		ret = btrfs_get_dev_zones(device,
 543					  zone_start_physical(sb_zone, zone_info),
 544					  &zone_info->sb_zones[sb_pos],
 545					  &nr_zones);
 546		if (ret)
 547			goto out;
 548
 549		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
 550			btrfs_err_in_rcu(device->fs_info,
 551	"zoned: failed to read super block log zone info at devid %llu zone %u",
 552					 device->devid, sb_zone);
 553			ret = -EUCLEAN;
 554			goto out;
 555		}
 556
 557		/*
 558		 * If zones[0] is conventional, always use the beginning of the
 559		 * zone to record superblock. No need to validate in that case.
 560		 */
 561		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
 562		    BLK_ZONE_TYPE_CONVENTIONAL)
 563			continue;
 564
 565		ret = sb_write_pointer(device->bdev,
 566				       &zone_info->sb_zones[sb_pos], &sb_wp);
 567		if (ret != -ENOENT && ret) {
 568			btrfs_err_in_rcu(device->fs_info,
 569			"zoned: super block log zone corrupted devid %llu zone %u",
 570					 device->devid, sb_zone);
 571			ret = -EUCLEAN;
 572			goto out;
 573		}
 574	}
 575
 576
 577	kvfree(zones);
 578
 579	if (bdev_is_zoned(bdev)) {
 
 580		model = "host-managed zoned";
 581		emulated = "";
 582	} else {
 
 
 
 
 
 583		model = "regular";
 584		emulated = "emulated ";
 
 
 
 
 
 
 
 
 585	}
 586
 587	btrfs_info_in_rcu(fs_info,
 588		"%s block device %s, %u %szones of %llu bytes",
 589		model, rcu_str_deref(device->name), zone_info->nr_zones,
 590		emulated, zone_info->zone_size);
 591
 592	return 0;
 593
 594out:
 595	kvfree(zones);
 
 596	btrfs_destroy_dev_zone_info(device);
 
 597	return ret;
 598}
 599
 600void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
 601{
 602	struct btrfs_zoned_device_info *zone_info = device->zone_info;
 603
 604	if (!zone_info)
 605		return;
 606
 607	bitmap_free(zone_info->active_zones);
 608	bitmap_free(zone_info->seq_zones);
 609	bitmap_free(zone_info->empty_zones);
 610	vfree(zone_info->zone_cache);
 611	kfree(zone_info);
 612	device->zone_info = NULL;
 613}
 614
 615struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
 616{
 617	struct btrfs_zoned_device_info *zone_info;
 618
 619	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
 620	if (!zone_info)
 621		return NULL;
 622
 623	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 624	if (!zone_info->seq_zones)
 625		goto out;
 626
 627	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
 628		    zone_info->nr_zones);
 629
 630	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 631	if (!zone_info->empty_zones)
 632		goto out;
 633
 634	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
 635		    zone_info->nr_zones);
 636
 637	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 638	if (!zone_info->active_zones)
 639		goto out;
 640
 641	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
 642		    zone_info->nr_zones);
 643	zone_info->zone_cache = NULL;
 644
 645	return zone_info;
 646
 647out:
 648	bitmap_free(zone_info->seq_zones);
 649	bitmap_free(zone_info->empty_zones);
 650	bitmap_free(zone_info->active_zones);
 651	kfree(zone_info);
 652	return NULL;
 653}
 654
 655int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
 656		       struct blk_zone *zone)
 657{
 658	unsigned int nr_zones = 1;
 659	int ret;
 660
 661	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
 662	if (ret != 0 || !nr_zones)
 663		return ret ? ret : -EIO;
 664
 665	return 0;
 666}
 667
 668static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
 669{
 670	struct btrfs_device *device;
 671
 672	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
 673		if (device->bdev && bdev_is_zoned(device->bdev)) {
 
 674			btrfs_err(fs_info,
 675				"zoned: mode not enabled but zoned device found: %pg",
 676				device->bdev);
 677			return -EINVAL;
 678		}
 679	}
 680
 681	return 0;
 682}
 683
 684int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
 685{
 686	struct queue_limits *lim = &fs_info->limits;
 687	struct btrfs_device *device;
 688	u64 zone_size = 0;
 
 689	int ret;
 690
 691	/*
 692	 * Host-Managed devices can't be used without the ZONED flag.  With the
 693	 * ZONED all devices can be used, using zone emulation if required.
 694	 */
 695	if (!btrfs_fs_incompat(fs_info, ZONED))
 696		return btrfs_check_for_zoned_device(fs_info);
 697
 698	blk_set_stacking_limits(lim);
 699
 700	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
 701		struct btrfs_zoned_device_info *zone_info = device->zone_info;
 702
 703		if (!device->bdev)
 704			continue;
 705
 706		if (!zone_size) {
 707			zone_size = zone_info->zone_size;
 708		} else if (zone_info->zone_size != zone_size) {
 709			btrfs_err(fs_info,
 710		"zoned: unequal block device zone sizes: have %llu found %llu",
 711				  zone_info->zone_size, zone_size);
 712			return -EINVAL;
 713		}
 714
 715		/*
 716		 * With the zoned emulation, we can have non-zoned device on the
 717		 * zoned mode. In this case, we don't have a valid max zone
 718		 * append size.
 719		 */
 720		if (bdev_is_zoned(device->bdev)) {
 721			blk_stack_limits(lim,
 722					 &bdev_get_queue(device->bdev)->limits,
 723					 0);
 724		}
 725	}
 726
 727	/*
 728	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
 729	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
 730	 * check the alignment here.
 731	 */
 732	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
 733		btrfs_err(fs_info,
 734			  "zoned: zone size %llu not aligned to stripe %u",
 735			  zone_size, BTRFS_STRIPE_LEN);
 736		return -EINVAL;
 737	}
 738
 739	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 740		btrfs_err(fs_info, "zoned: mixed block groups not supported");
 741		return -EINVAL;
 742	}
 743
 744	fs_info->zone_size = zone_size;
 745	/*
 746	 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
 747	 * Technically, we can have multiple pages per segment. But, since
 748	 * we add the pages one by one to a bio, and cannot increase the
 749	 * metadata reservation even if it increases the number of extents, it
 750	 * is safe to stick with the limit.
 751	 */
 752	fs_info->max_zone_append_size = ALIGN_DOWN(
 753		min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
 754		     (u64)lim->max_sectors << SECTOR_SHIFT,
 755		     (u64)lim->max_segments << PAGE_SHIFT),
 756		fs_info->sectorsize);
 757	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
 758	if (fs_info->max_zone_append_size < fs_info->max_extent_size)
 759		fs_info->max_extent_size = fs_info->max_zone_append_size;
 760
 761	/*
 762	 * Check mount options here, because we might change fs_info->zoned
 763	 * from fs_info->zone_size.
 764	 */
 765	ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
 766	if (ret)
 767		return ret;
 768
 769	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
 770	return 0;
 771}
 772
 773int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info, unsigned long *mount_opt)
 774{
 775	if (!btrfs_is_zoned(info))
 776		return 0;
 777
 778	/*
 779	 * Space cache writing is not COWed. Disable that to avoid write errors
 780	 * in sequential zones.
 781	 */
 782	if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
 783		btrfs_err(info, "zoned: space cache v1 is not supported");
 784		return -EINVAL;
 785	}
 786
 787	if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
 788		btrfs_err(info, "zoned: NODATACOW not supported");
 789		return -EINVAL;
 790	}
 791
 792	if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
 793		btrfs_info(info,
 794			   "zoned: async discard ignored and disabled for zoned mode");
 795		btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
 796	}
 797
 798	return 0;
 799}
 800
 801static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
 802			   int rw, u64 *bytenr_ret)
 803{
 804	u64 wp;
 805	int ret;
 806
 807	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
 808		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
 809		return 0;
 810	}
 811
 812	ret = sb_write_pointer(bdev, zones, &wp);
 813	if (ret != -ENOENT && ret < 0)
 814		return ret;
 815
 816	if (rw == WRITE) {
 817		struct blk_zone *reset = NULL;
 818
 819		if (wp == zones[0].start << SECTOR_SHIFT)
 820			reset = &zones[0];
 821		else if (wp == zones[1].start << SECTOR_SHIFT)
 822			reset = &zones[1];
 823
 824		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
 825			unsigned int nofs_flags;
 826
 827			ASSERT(sb_zone_is_full(reset));
 828
 829			nofs_flags = memalloc_nofs_save();
 830			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
 831					       reset->start, reset->len);
 832			memalloc_nofs_restore(nofs_flags);
 833			if (ret)
 834				return ret;
 835
 836			reset->cond = BLK_ZONE_COND_EMPTY;
 837			reset->wp = reset->start;
 838		}
 839	} else if (ret != -ENOENT) {
 840		/*
 841		 * For READ, we want the previous one. Move write pointer to
 842		 * the end of a zone, if it is at the head of a zone.
 843		 */
 844		u64 zone_end = 0;
 845
 846		if (wp == zones[0].start << SECTOR_SHIFT)
 847			zone_end = zones[1].start + zones[1].capacity;
 848		else if (wp == zones[1].start << SECTOR_SHIFT)
 849			zone_end = zones[0].start + zones[0].capacity;
 850		if (zone_end)
 851			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
 852					BTRFS_SUPER_INFO_SIZE);
 853
 854		wp -= BTRFS_SUPER_INFO_SIZE;
 855	}
 856
 857	*bytenr_ret = wp;
 858	return 0;
 859
 860}
 861
 862int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
 863			       u64 *bytenr_ret)
 864{
 865	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
 866	sector_t zone_sectors;
 867	u32 sb_zone;
 868	int ret;
 869	u8 zone_sectors_shift;
 870	sector_t nr_sectors;
 871	u32 nr_zones;
 872
 873	if (!bdev_is_zoned(bdev)) {
 874		*bytenr_ret = btrfs_sb_offset(mirror);
 875		return 0;
 876	}
 877
 878	ASSERT(rw == READ || rw == WRITE);
 879
 880	zone_sectors = bdev_zone_sectors(bdev);
 881	if (!is_power_of_2(zone_sectors))
 882		return -EINVAL;
 883	zone_sectors_shift = ilog2(zone_sectors);
 884	nr_sectors = bdev_nr_sectors(bdev);
 885	nr_zones = nr_sectors >> zone_sectors_shift;
 886
 887	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
 888	if (sb_zone + 1 >= nr_zones)
 889		return -ENOENT;
 890
 891	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
 892				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
 893				  zones);
 894	if (ret < 0)
 895		return ret;
 896	if (ret != BTRFS_NR_SB_LOG_ZONES)
 897		return -EIO;
 898
 899	return sb_log_location(bdev, zones, rw, bytenr_ret);
 900}
 901
 902int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
 903			  u64 *bytenr_ret)
 904{
 905	struct btrfs_zoned_device_info *zinfo = device->zone_info;
 906	u32 zone_num;
 907
 908	/*
 909	 * For a zoned filesystem on a non-zoned block device, use the same
 910	 * super block locations as regular filesystem. Doing so, the super
 911	 * block can always be retrieved and the zoned flag of the volume
 912	 * detected from the super block information.
 913	 */
 914	if (!bdev_is_zoned(device->bdev)) {
 915		*bytenr_ret = btrfs_sb_offset(mirror);
 916		return 0;
 917	}
 918
 919	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
 920	if (zone_num + 1 >= zinfo->nr_zones)
 921		return -ENOENT;
 922
 923	return sb_log_location(device->bdev,
 924			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
 925			       rw, bytenr_ret);
 926}
 927
 928static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
 929				  int mirror)
 930{
 931	u32 zone_num;
 932
 933	if (!zinfo)
 934		return false;
 935
 936	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
 937	if (zone_num + 1 >= zinfo->nr_zones)
 938		return false;
 939
 940	if (!test_bit(zone_num, zinfo->seq_zones))
 941		return false;
 942
 943	return true;
 944}
 945
 946int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
 947{
 948	struct btrfs_zoned_device_info *zinfo = device->zone_info;
 949	struct blk_zone *zone;
 950	int i;
 951
 952	if (!is_sb_log_zone(zinfo, mirror))
 953		return 0;
 954
 955	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
 956	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
 957		/* Advance the next zone */
 958		if (zone->cond == BLK_ZONE_COND_FULL) {
 959			zone++;
 960			continue;
 961		}
 962
 963		if (zone->cond == BLK_ZONE_COND_EMPTY)
 964			zone->cond = BLK_ZONE_COND_IMP_OPEN;
 965
 966		zone->wp += SUPER_INFO_SECTORS;
 967
 968		if (sb_zone_is_full(zone)) {
 969			/*
 970			 * No room left to write new superblock. Since
 971			 * superblock is written with REQ_SYNC, it is safe to
 972			 * finish the zone now.
 973			 *
 974			 * If the write pointer is exactly at the capacity,
 975			 * explicit ZONE_FINISH is not necessary.
 976			 */
 977			if (zone->wp != zone->start + zone->capacity) {
 978				unsigned int nofs_flags;
 979				int ret;
 980
 981				nofs_flags = memalloc_nofs_save();
 982				ret = blkdev_zone_mgmt(device->bdev,
 983						REQ_OP_ZONE_FINISH, zone->start,
 984						zone->len);
 985				memalloc_nofs_restore(nofs_flags);
 986				if (ret)
 987					return ret;
 988			}
 989
 990			zone->wp = zone->start + zone->len;
 991			zone->cond = BLK_ZONE_COND_FULL;
 992		}
 993		return 0;
 994	}
 995
 996	/* All the zones are FULL. Should not reach here. */
 997	ASSERT(0);
 998	return -EIO;
 999}
1000
1001int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1002{
1003	unsigned int nofs_flags;
1004	sector_t zone_sectors;
1005	sector_t nr_sectors;
1006	u8 zone_sectors_shift;
1007	u32 sb_zone;
1008	u32 nr_zones;
1009	int ret;
1010
1011	zone_sectors = bdev_zone_sectors(bdev);
1012	zone_sectors_shift = ilog2(zone_sectors);
1013	nr_sectors = bdev_nr_sectors(bdev);
1014	nr_zones = nr_sectors >> zone_sectors_shift;
1015
1016	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1017	if (sb_zone + 1 >= nr_zones)
1018		return -ENOENT;
1019
1020	nofs_flags = memalloc_nofs_save();
1021	ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1022			       zone_start_sector(sb_zone, bdev),
1023			       zone_sectors * BTRFS_NR_SB_LOG_ZONES);
1024	memalloc_nofs_restore(nofs_flags);
1025	return ret;
1026}
1027
1028/*
1029 * Find allocatable zones within a given region.
1030 *
1031 * @device:	the device to allocate a region on
1032 * @hole_start: the position of the hole to allocate the region
1033 * @num_bytes:	size of wanted region
1034 * @hole_end:	the end of the hole
1035 * @return:	position of allocatable zones
1036 *
1037 * Allocatable region should not contain any superblock locations.
1038 */
1039u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1040				 u64 hole_end, u64 num_bytes)
1041{
1042	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1043	const u8 shift = zinfo->zone_size_shift;
1044	u64 nzones = num_bytes >> shift;
1045	u64 pos = hole_start;
1046	u64 begin, end;
1047	bool have_sb;
1048	int i;
1049
1050	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1051	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1052
1053	while (pos < hole_end) {
1054		begin = pos >> shift;
1055		end = begin + nzones;
1056
1057		if (end > zinfo->nr_zones)
1058			return hole_end;
1059
1060		/* Check if zones in the region are all empty */
1061		if (btrfs_dev_is_sequential(device, pos) &&
1062		    !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1063			pos += zinfo->zone_size;
1064			continue;
1065		}
1066
1067		have_sb = false;
1068		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1069			u32 sb_zone;
1070			u64 sb_pos;
1071
1072			sb_zone = sb_zone_number(shift, i);
1073			if (!(end <= sb_zone ||
1074			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1075				have_sb = true;
1076				pos = zone_start_physical(
1077					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1078				break;
1079			}
1080
1081			/* We also need to exclude regular superblock positions */
1082			sb_pos = btrfs_sb_offset(i);
1083			if (!(pos + num_bytes <= sb_pos ||
1084			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1085				have_sb = true;
1086				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1087					    zinfo->zone_size);
1088				break;
1089			}
1090		}
1091		if (!have_sb)
1092			break;
1093	}
1094
1095	return pos;
1096}
1097
1098static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1099{
1100	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1101	unsigned int zno = (pos >> zone_info->zone_size_shift);
1102
1103	/* We can use any number of zones */
1104	if (zone_info->max_active_zones == 0)
1105		return true;
1106
1107	if (!test_bit(zno, zone_info->active_zones)) {
1108		/* Active zone left? */
1109		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1110			return false;
1111		if (test_and_set_bit(zno, zone_info->active_zones)) {
1112			/* Someone already set the bit */
1113			atomic_inc(&zone_info->active_zones_left);
1114		}
1115	}
1116
1117	return true;
1118}
1119
1120static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1121{
1122	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1123	unsigned int zno = (pos >> zone_info->zone_size_shift);
1124
1125	/* We can use any number of zones */
1126	if (zone_info->max_active_zones == 0)
1127		return;
1128
1129	if (test_and_clear_bit(zno, zone_info->active_zones))
1130		atomic_inc(&zone_info->active_zones_left);
1131}
1132
1133int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1134			    u64 length, u64 *bytes)
1135{
1136	unsigned int nofs_flags;
1137	int ret;
1138
1139	*bytes = 0;
1140	nofs_flags = memalloc_nofs_save();
1141	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1142			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT);
1143	memalloc_nofs_restore(nofs_flags);
1144	if (ret)
1145		return ret;
1146
1147	*bytes = length;
1148	while (length) {
1149		btrfs_dev_set_zone_empty(device, physical);
1150		btrfs_dev_clear_active_zone(device, physical);
1151		physical += device->zone_info->zone_size;
1152		length -= device->zone_info->zone_size;
1153	}
1154
1155	return 0;
1156}
1157
1158int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1159{
1160	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1161	const u8 shift = zinfo->zone_size_shift;
1162	unsigned long begin = start >> shift;
1163	unsigned long nbits = size >> shift;
1164	u64 pos;
1165	int ret;
1166
1167	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1168	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1169
1170	if (begin + nbits > zinfo->nr_zones)
1171		return -ERANGE;
1172
1173	/* All the zones are conventional */
1174	if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1175		return 0;
1176
1177	/* All the zones are sequential and empty */
1178	if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1179	    bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1180		return 0;
1181
1182	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1183		u64 reset_bytes;
1184
1185		if (!btrfs_dev_is_sequential(device, pos) ||
1186		    btrfs_dev_is_empty_zone(device, pos))
1187			continue;
1188
1189		/* Free regions should be empty */
1190		btrfs_warn_in_rcu(
1191			device->fs_info,
1192		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1193			rcu_str_deref(device->name), device->devid, pos >> shift);
1194		WARN_ON_ONCE(1);
1195
1196		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1197					      &reset_bytes);
1198		if (ret)
1199			return ret;
1200	}
1201
1202	return 0;
1203}
1204
1205/*
1206 * Calculate an allocation pointer from the extent allocation information
1207 * for a block group consist of conventional zones. It is pointed to the
1208 * end of the highest addressed extent in the block group as an allocation
1209 * offset.
1210 */
1211static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1212				   u64 *offset_ret, bool new)
1213{
1214	struct btrfs_fs_info *fs_info = cache->fs_info;
1215	struct btrfs_root *root;
1216	struct btrfs_path *path;
1217	struct btrfs_key key;
1218	struct btrfs_key found_key;
1219	int ret;
1220	u64 length;
1221
1222	/*
1223	 * Avoid  tree lookups for a new block group, there's no use for it.
1224	 * It must always be 0.
1225	 *
1226	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1227	 * For new a block group, this function is called from
1228	 * btrfs_make_block_group() which is already taking the chunk mutex.
1229	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1230	 * buffer locks to avoid deadlock.
1231	 */
1232	if (new) {
1233		*offset_ret = 0;
1234		return 0;
1235	}
1236
1237	path = btrfs_alloc_path();
1238	if (!path)
1239		return -ENOMEM;
1240
1241	key.objectid = cache->start + cache->length;
1242	key.type = 0;
1243	key.offset = 0;
1244
1245	root = btrfs_extent_root(fs_info, key.objectid);
1246	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1247	/* We should not find the exact match */
1248	if (!ret)
1249		ret = -EUCLEAN;
1250	if (ret < 0)
1251		goto out;
1252
1253	ret = btrfs_previous_extent_item(root, path, cache->start);
1254	if (ret) {
1255		if (ret == 1) {
1256			ret = 0;
1257			*offset_ret = 0;
1258		}
1259		goto out;
1260	}
1261
1262	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1263
1264	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1265		length = found_key.offset;
1266	else
1267		length = fs_info->nodesize;
1268
1269	if (!(found_key.objectid >= cache->start &&
1270	       found_key.objectid + length <= cache->start + cache->length)) {
1271		ret = -EUCLEAN;
1272		goto out;
1273	}
1274	*offset_ret = found_key.objectid + length - cache->start;
1275	ret = 0;
1276
1277out:
1278	btrfs_free_path(path);
1279	return ret;
1280}
1281
1282struct zone_info {
1283	u64 physical;
1284	u64 capacity;
1285	u64 alloc_offset;
1286};
1287
1288static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1289				struct zone_info *info, unsigned long *active,
1290				struct btrfs_chunk_map *map)
1291{
1292	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1293	struct btrfs_device *device = map->stripes[zone_idx].dev;
1294	int dev_replace_is_ongoing = 0;
1295	unsigned int nofs_flag;
1296	struct blk_zone zone;
1297	int ret;
1298
1299	info->physical = map->stripes[zone_idx].physical;
1300
1301	if (!device->bdev) {
1302		info->alloc_offset = WP_MISSING_DEV;
1303		return 0;
1304	}
1305
1306	/* Consider a zone as active if we can allow any number of active zones. */
1307	if (!device->zone_info->max_active_zones)
1308		__set_bit(zone_idx, active);
1309
1310	if (!btrfs_dev_is_sequential(device, info->physical)) {
1311		info->alloc_offset = WP_CONVENTIONAL;
1312		return 0;
1313	}
1314
1315	/* This zone will be used for allocation, so mark this zone non-empty. */
1316	btrfs_dev_clear_zone_empty(device, info->physical);
1317
1318	down_read(&dev_replace->rwsem);
1319	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1320	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1321		btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1322	up_read(&dev_replace->rwsem);
1323
1324	/*
1325	 * The group is mapped to a sequential zone. Get the zone write pointer
1326	 * to determine the allocation offset within the zone.
1327	 */
1328	WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1329	nofs_flag = memalloc_nofs_save();
1330	ret = btrfs_get_dev_zone(device, info->physical, &zone);
1331	memalloc_nofs_restore(nofs_flag);
1332	if (ret) {
1333		if (ret != -EIO && ret != -EOPNOTSUPP)
1334			return ret;
1335		info->alloc_offset = WP_MISSING_DEV;
1336		return 0;
1337	}
1338
1339	if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1340		btrfs_err_in_rcu(fs_info,
1341		"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1342			zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1343			device->devid);
1344		return -EIO;
1345	}
1346
1347	info->capacity = (zone.capacity << SECTOR_SHIFT);
1348
1349	switch (zone.cond) {
1350	case BLK_ZONE_COND_OFFLINE:
1351	case BLK_ZONE_COND_READONLY:
1352		btrfs_err(fs_info,
1353		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1354			  (info->physical >> device->zone_info->zone_size_shift),
1355			  rcu_str_deref(device->name), device->devid);
1356		info->alloc_offset = WP_MISSING_DEV;
1357		break;
1358	case BLK_ZONE_COND_EMPTY:
1359		info->alloc_offset = 0;
1360		break;
1361	case BLK_ZONE_COND_FULL:
1362		info->alloc_offset = info->capacity;
1363		break;
1364	default:
1365		/* Partially used zone. */
1366		info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1367		__set_bit(zone_idx, active);
1368		break;
1369	}
1370
1371	return 0;
1372}
1373
1374static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1375					 struct zone_info *info,
1376					 unsigned long *active)
1377{
1378	if (info->alloc_offset == WP_MISSING_DEV) {
1379		btrfs_err(bg->fs_info,
1380			"zoned: cannot recover write pointer for zone %llu",
1381			info->physical);
1382		return -EIO;
1383	}
1384
1385	bg->alloc_offset = info->alloc_offset;
1386	bg->zone_capacity = info->capacity;
1387	if (test_bit(0, active))
1388		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1389	return 0;
1390}
1391
1392static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1393				      struct btrfs_chunk_map *map,
1394				      struct zone_info *zone_info,
1395				      unsigned long *active)
1396{
1397	struct btrfs_fs_info *fs_info = bg->fs_info;
1398
1399	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1400		btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1401		return -EINVAL;
1402	}
1403
1404	if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1405		btrfs_err(bg->fs_info,
1406			  "zoned: cannot recover write pointer for zone %llu",
1407			  zone_info[0].physical);
1408		return -EIO;
1409	}
1410	if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1411		btrfs_err(bg->fs_info,
1412			  "zoned: cannot recover write pointer for zone %llu",
1413			  zone_info[1].physical);
1414		return -EIO;
1415	}
1416	if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1417		btrfs_err(bg->fs_info,
1418			  "zoned: write pointer offset mismatch of zones in DUP profile");
1419		return -EIO;
1420	}
1421
1422	if (test_bit(0, active) != test_bit(1, active)) {
1423		if (!btrfs_zone_activate(bg))
1424			return -EIO;
1425	} else if (test_bit(0, active)) {
1426		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1427	}
1428
1429	bg->alloc_offset = zone_info[0].alloc_offset;
1430	bg->zone_capacity = min(zone_info[0].capacity, zone_info[1].capacity);
1431	return 0;
1432}
1433
1434static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1435					struct btrfs_chunk_map *map,
1436					struct zone_info *zone_info,
1437					unsigned long *active)
1438{
1439	struct btrfs_fs_info *fs_info = bg->fs_info;
1440	int i;
1441
1442	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1443		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1444			  btrfs_bg_type_to_raid_name(map->type));
1445		return -EINVAL;
1446	}
1447
1448	for (i = 0; i < map->num_stripes; i++) {
1449		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1450		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1451			continue;
1452
1453		if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1454		    !btrfs_test_opt(fs_info, DEGRADED)) {
1455			btrfs_err(fs_info,
1456			"zoned: write pointer offset mismatch of zones in %s profile",
1457				  btrfs_bg_type_to_raid_name(map->type));
1458			return -EIO;
1459		}
1460		if (test_bit(0, active) != test_bit(i, active)) {
1461			if (!btrfs_test_opt(fs_info, DEGRADED) &&
1462			    !btrfs_zone_activate(bg)) {
1463				return -EIO;
1464			}
1465		} else {
1466			if (test_bit(0, active))
1467				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1468		}
1469		/* In case a device is missing we have a cap of 0, so don't use it. */
1470		bg->zone_capacity = min_not_zero(zone_info[0].capacity,
1471						 zone_info[1].capacity);
1472	}
1473
1474	if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1475		bg->alloc_offset = zone_info[0].alloc_offset;
1476	else
1477		bg->alloc_offset = zone_info[i - 1].alloc_offset;
1478
1479	return 0;
1480}
1481
1482static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1483					struct btrfs_chunk_map *map,
1484					struct zone_info *zone_info,
1485					unsigned long *active)
1486{
1487	struct btrfs_fs_info *fs_info = bg->fs_info;
1488
1489	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1490		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1491			  btrfs_bg_type_to_raid_name(map->type));
1492		return -EINVAL;
1493	}
1494
1495	for (int i = 0; i < map->num_stripes; i++) {
1496		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1497		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1498			continue;
1499
1500		if (test_bit(0, active) != test_bit(i, active)) {
1501			if (!btrfs_zone_activate(bg))
1502				return -EIO;
1503		} else {
1504			if (test_bit(0, active))
1505				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1506		}
1507		bg->zone_capacity += zone_info[i].capacity;
1508		bg->alloc_offset += zone_info[i].alloc_offset;
1509	}
1510
1511	return 0;
1512}
1513
1514static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1515					 struct btrfs_chunk_map *map,
1516					 struct zone_info *zone_info,
1517					 unsigned long *active)
1518{
1519	struct btrfs_fs_info *fs_info = bg->fs_info;
1520
1521	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1522		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1523			  btrfs_bg_type_to_raid_name(map->type));
1524		return -EINVAL;
1525	}
1526
1527	for (int i = 0; i < map->num_stripes; i++) {
1528		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1529		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1530			continue;
1531
1532		if (test_bit(0, active) != test_bit(i, active)) {
1533			if (!btrfs_zone_activate(bg))
1534				return -EIO;
1535		} else {
1536			if (test_bit(0, active))
1537				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1538		}
1539
1540		if ((i % map->sub_stripes) == 0) {
1541			bg->zone_capacity += zone_info[i].capacity;
1542			bg->alloc_offset += zone_info[i].alloc_offset;
1543		}
1544	}
1545
1546	return 0;
1547}
1548
1549int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1550{
1551	struct btrfs_fs_info *fs_info = cache->fs_info;
1552	struct btrfs_chunk_map *map;
 
 
 
1553	u64 logical = cache->start;
1554	u64 length = cache->length;
1555	struct zone_info *zone_info = NULL;
1556	int ret;
1557	int i;
 
 
 
 
1558	unsigned long *active = NULL;
1559	u64 last_alloc = 0;
1560	u32 num_sequential = 0, num_conventional = 0;
1561
1562	if (!btrfs_is_zoned(fs_info))
1563		return 0;
1564
1565	/* Sanity check */
1566	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1567		btrfs_err(fs_info,
1568		"zoned: block group %llu len %llu unaligned to zone size %llu",
1569			  logical, length, fs_info->zone_size);
1570		return -EIO;
1571	}
1572
1573	map = btrfs_find_chunk_map(fs_info, logical, length);
1574	if (!map)
 
 
 
 
1575		return -EINVAL;
1576
1577	cache->physical_map = map;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1578
1579	zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1580	if (!zone_info) {
1581		ret = -ENOMEM;
1582		goto out;
1583	}
1584
1585	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1586	if (!active) {
1587		ret = -ENOMEM;
1588		goto out;
1589	}
1590
1591	for (i = 0; i < map->num_stripes; i++) {
1592		ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map);
1593		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1594			goto out;
 
 
 
1595
1596		if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1597			num_conventional++;
1598		else
1599			num_sequential++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1600	}
1601
1602	if (num_sequential > 0)
1603		set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1604
1605	if (num_conventional > 0) {
1606		/* Zone capacity is always zone size in emulation */
1607		cache->zone_capacity = cache->length;
1608		ret = calculate_alloc_pointer(cache, &last_alloc, new);
1609		if (ret) {
1610			btrfs_err(fs_info,
1611			"zoned: failed to determine allocation offset of bg %llu",
1612				  cache->start);
1613			goto out;
1614		} else if (map->num_stripes == num_conventional) {
1615			cache->alloc_offset = last_alloc;
1616			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1617			goto out;
1618		}
1619	}
1620
1621	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1622	case 0: /* single */
1623		ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
 
 
 
 
 
 
 
 
 
 
1624		break;
1625	case BTRFS_BLOCK_GROUP_DUP:
1626		ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1627		break;
1628	case BTRFS_BLOCK_GROUP_RAID1:
1629	case BTRFS_BLOCK_GROUP_RAID1C3:
1630	case BTRFS_BLOCK_GROUP_RAID1C4:
1631		ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
1632		break;
1633	case BTRFS_BLOCK_GROUP_RAID0:
1634		ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
1635		break;
1636	case BTRFS_BLOCK_GROUP_RAID10:
1637		ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
1638		break;
1639	case BTRFS_BLOCK_GROUP_RAID5:
1640	case BTRFS_BLOCK_GROUP_RAID6:
 
1641	default:
1642		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1643			  btrfs_bg_type_to_raid_name(map->type));
1644		ret = -EINVAL;
1645		goto out;
1646	}
1647
1648out:
1649	/* Reject non SINGLE data profiles without RST */
1650	if ((map->type & BTRFS_BLOCK_GROUP_DATA) &&
1651	    (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
1652	    !fs_info->stripe_root) {
1653		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1654			  btrfs_bg_type_to_raid_name(map->type));
1655		return -EINVAL;
1656	}
1657
1658	if (cache->alloc_offset > cache->zone_capacity) {
1659		btrfs_err(fs_info,
1660"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1661			  cache->alloc_offset, cache->zone_capacity,
1662			  cache->start);
1663		ret = -EIO;
1664	}
1665
1666	/* An extent is allocated after the write pointer */
1667	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1668		btrfs_err(fs_info,
1669			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1670			  logical, last_alloc, cache->alloc_offset);
1671		ret = -EIO;
1672	}
1673
1674	if (!ret) {
1675		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1676		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1677			btrfs_get_block_group(cache);
1678			spin_lock(&fs_info->zone_active_bgs_lock);
1679			list_add_tail(&cache->active_bg_list,
1680				      &fs_info->zone_active_bgs);
1681			spin_unlock(&fs_info->zone_active_bgs_lock);
1682		}
1683	} else {
1684		btrfs_free_chunk_map(cache->physical_map);
1685		cache->physical_map = NULL;
1686	}
1687	bitmap_free(active);
1688	kfree(zone_info);
 
 
 
1689
1690	return ret;
1691}
1692
1693void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1694{
1695	u64 unusable, free;
1696
1697	if (!btrfs_is_zoned(cache->fs_info))
1698		return;
1699
1700	WARN_ON(cache->bytes_super != 0);
1701	unusable = (cache->alloc_offset - cache->used) +
1702		   (cache->length - cache->zone_capacity);
1703	free = cache->zone_capacity - cache->alloc_offset;
1704
1705	/* We only need ->free_space in ALLOC_SEQ block groups */
1706	cache->cached = BTRFS_CACHE_FINISHED;
1707	cache->free_space_ctl->free_space = free;
1708	cache->zone_unusable = unusable;
1709}
1710
1711bool btrfs_use_zone_append(struct btrfs_bio *bbio)
 
1712{
1713	u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1714	struct btrfs_inode *inode = bbio->inode;
1715	struct btrfs_fs_info *fs_info = bbio->fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716	struct btrfs_block_group *cache;
1717	bool ret = false;
1718
1719	if (!btrfs_is_zoned(fs_info))
1720		return false;
1721
1722	if (!inode || !is_data_inode(&inode->vfs_inode))
1723		return false;
1724
1725	if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1726		return false;
1727
1728	/*
1729	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1730	 * extent layout the relocation code has.
1731	 * Furthermore we have set aside own block-group from which only the
1732	 * relocation "process" can allocate and make sure only one process at a
1733	 * time can add pages to an extent that gets relocated, so it's safe to
1734	 * use regular REQ_OP_WRITE for this special case.
1735	 */
1736	if (btrfs_is_data_reloc_root(inode->root))
1737		return false;
1738
1739	cache = btrfs_lookup_block_group(fs_info, start);
1740	ASSERT(cache);
1741	if (!cache)
1742		return false;
1743
1744	ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1745	btrfs_put_block_group(cache);
1746
1747	return ret;
1748}
1749
1750void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
 
1751{
1752	const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1753	struct btrfs_ordered_sum *sum = bbio->sums;
1754
1755	if (physical < bbio->orig_physical)
1756		sum->logical -= bbio->orig_physical - physical;
1757	else
1758		sum->logical += physical - bbio->orig_physical;
1759}
1760
1761static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1762					u64 logical)
1763{
1764	struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree;
1765	struct extent_map *em;
1766
1767	ordered->disk_bytenr = logical;
1768
1769	write_lock(&em_tree->lock);
1770	em = search_extent_mapping(em_tree, ordered->file_offset,
1771				   ordered->num_bytes);
1772	em->block_start = logical;
1773	free_extent_map(em);
1774	write_unlock(&em_tree->lock);
1775}
1776
1777static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1778				      u64 logical, u64 len)
1779{
1780	struct btrfs_ordered_extent *new;
1781
1782	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1783	    split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset,
1784			     ordered->num_bytes, len, logical))
1785		return false;
1786
1787	new = btrfs_split_ordered_extent(ordered, len);
1788	if (IS_ERR(new))
1789		return false;
1790	new->disk_bytenr = logical;
1791	btrfs_finish_one_ordered(new);
1792	return true;
1793}
1794
1795void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1796{
1797	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1798	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 
 
1799	struct btrfs_ordered_sum *sum;
1800	u64 logical, len;
1801
1802	/*
1803	 * Write to pre-allocated region is for the data relocation, and so
1804	 * it should use WRITE operation. No split/rewrite are necessary.
1805	 */
1806	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1807		return;
1808
1809	ASSERT(!list_empty(&ordered->list));
1810	/* The ordered->list can be empty in the above pre-alloc case. */
1811	sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1812	logical = sum->logical;
1813	len = sum->len;
1814
1815	while (len < ordered->disk_num_bytes) {
1816		sum = list_next_entry(sum, list);
1817		if (sum->logical == logical + len) {
1818			len += sum->len;
1819			continue;
1820		}
1821		if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1822			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1823			btrfs_err(fs_info, "failed to split ordered extent");
1824			goto out;
1825		}
1826		logical = sum->logical;
1827		len = sum->len;
1828	}
1829
1830	if (ordered->disk_bytenr != logical)
1831		btrfs_rewrite_logical_zoned(ordered, logical);
1832
1833out:
1834	/*
1835	 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1836	 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1837	 * addresses and don't contain actual checksums.  We thus must free them
1838	 * here so that we don't attempt to log the csums later.
1839	 */
1840	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1841	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) {
1842		while ((sum = list_first_entry_or_null(&ordered->list,
1843						       typeof(*sum), list))) {
1844			list_del(&sum->list);
1845			kfree(sum);
1846		}
1847	}
1848}
1849
1850static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1851			       struct btrfs_block_group **active_bg)
1852{
1853	const struct writeback_control *wbc = ctx->wbc;
1854	struct btrfs_block_group *block_group = ctx->zoned_bg;
1855	struct btrfs_fs_info *fs_info = block_group->fs_info;
1856
1857	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1858		return true;
1859
1860	if (fs_info->treelog_bg == block_group->start) {
1861		if (!btrfs_zone_activate(block_group)) {
1862			int ret_fin = btrfs_zone_finish_one_bg(fs_info);
 
 
 
 
1863
1864			if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1865				return false;
1866		}
1867	} else if (*active_bg != block_group) {
1868		struct btrfs_block_group *tgt = *active_bg;
1869
1870		/* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1871		lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1872
1873		if (tgt) {
1874			/*
1875			 * If there is an unsent IO left in the allocated area,
1876			 * we cannot wait for them as it may cause a deadlock.
1877			 */
1878			if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1879				if (wbc->sync_mode == WB_SYNC_NONE ||
1880				    (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1881					return false;
1882			}
1883
1884			/* Pivot active metadata/system block group. */
1885			btrfs_zoned_meta_io_unlock(fs_info);
1886			wait_eb_writebacks(tgt);
1887			do_zone_finish(tgt, true);
1888			btrfs_zoned_meta_io_lock(fs_info);
1889			if (*active_bg == tgt) {
1890				btrfs_put_block_group(tgt);
1891				*active_bg = NULL;
1892			}
1893		}
1894		if (!btrfs_zone_activate(block_group))
1895			return false;
1896		if (*active_bg != block_group) {
1897			ASSERT(*active_bg == NULL);
1898			*active_bg = block_group;
1899			btrfs_get_block_group(block_group);
1900		}
1901	}
1902
1903	return true;
 
1904}
1905
1906/*
1907 * Check if @ctx->eb is aligned to the write pointer.
1908 *
1909 * Return:
1910 *   0:        @ctx->eb is at the write pointer. You can write it.
1911 *   -EAGAIN:  There is a hole. The caller should handle the case.
1912 *   -EBUSY:   There is a hole, but the caller can just bail out.
1913 */
1914int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1915				   struct btrfs_eb_write_context *ctx)
1916{
1917	const struct writeback_control *wbc = ctx->wbc;
1918	const struct extent_buffer *eb = ctx->eb;
1919	struct btrfs_block_group *block_group = ctx->zoned_bg;
1920
1921	if (!btrfs_is_zoned(fs_info))
1922		return 0;
1923
1924	if (block_group) {
1925		if (block_group->start > eb->start ||
1926		    block_group->start + block_group->length <= eb->start) {
1927			btrfs_put_block_group(block_group);
1928			block_group = NULL;
1929			ctx->zoned_bg = NULL;
1930		}
1931	}
1932
1933	if (!block_group) {
1934		block_group = btrfs_lookup_block_group(fs_info, eb->start);
1935		if (!block_group)
1936			return 0;
1937		ctx->zoned_bg = block_group;
 
1938	}
1939
1940	if (block_group->meta_write_pointer == eb->start) {
1941		struct btrfs_block_group **tgt;
1942
1943		if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1944			return 0;
1945
1946		if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1947			tgt = &fs_info->active_system_bg;
1948		else
1949			tgt = &fs_info->active_meta_bg;
1950		if (check_bg_is_active(ctx, tgt))
1951			return 0;
1952	}
1953
1954	/*
1955	 * Since we may release fs_info->zoned_meta_io_lock, someone can already
1956	 * start writing this eb. In that case, we can just bail out.
1957	 */
1958	if (block_group->meta_write_pointer > eb->start)
1959		return -EBUSY;
1960
1961	/* If for_sync, this hole will be filled with trasnsaction commit. */
1962	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1963		return -EAGAIN;
1964	return -EBUSY;
1965}
1966
1967int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1968{
1969	if (!btrfs_dev_is_sequential(device, physical))
1970		return -EOPNOTSUPP;
1971
1972	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1973				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1974}
1975
1976static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1977			  struct blk_zone *zone)
1978{
1979	struct btrfs_io_context *bioc = NULL;
1980	u64 mapped_length = PAGE_SIZE;
1981	unsigned int nofs_flag;
1982	int nmirrors;
1983	int i, ret;
1984
1985	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1986			      &mapped_length, &bioc, NULL, NULL);
1987	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1988		ret = -EIO;
1989		goto out_put_bioc;
1990	}
1991
1992	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1993		ret = -EINVAL;
1994		goto out_put_bioc;
1995	}
1996
1997	nofs_flag = memalloc_nofs_save();
1998	nmirrors = (int)bioc->num_stripes;
1999	for (i = 0; i < nmirrors; i++) {
2000		u64 physical = bioc->stripes[i].physical;
2001		struct btrfs_device *dev = bioc->stripes[i].dev;
2002
2003		/* Missing device */
2004		if (!dev->bdev)
2005			continue;
2006
2007		ret = btrfs_get_dev_zone(dev, physical, zone);
2008		/* Failing device */
2009		if (ret == -EIO || ret == -EOPNOTSUPP)
2010			continue;
2011		break;
2012	}
2013	memalloc_nofs_restore(nofs_flag);
2014out_put_bioc:
2015	btrfs_put_bioc(bioc);
2016	return ret;
2017}
2018
2019/*
2020 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2021 * filling zeros between @physical_pos to a write pointer of dev-replace
2022 * source device.
2023 */
2024int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2025				    u64 physical_start, u64 physical_pos)
2026{
2027	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2028	struct blk_zone zone;
2029	u64 length;
2030	u64 wp;
2031	int ret;
2032
2033	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2034		return 0;
2035
2036	ret = read_zone_info(fs_info, logical, &zone);
2037	if (ret)
2038		return ret;
2039
2040	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2041
2042	if (physical_pos == wp)
2043		return 0;
2044
2045	if (physical_pos > wp)
2046		return -EUCLEAN;
2047
2048	length = wp - physical_pos;
2049	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2050}
2051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2052/*
2053 * Activate block group and underlying device zones
2054 *
2055 * @block_group: the block group to activate
2056 *
2057 * Return: true on success, false otherwise
2058 */
2059bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2060{
2061	struct btrfs_fs_info *fs_info = block_group->fs_info;
2062	struct btrfs_chunk_map *map;
 
2063	struct btrfs_device *device;
2064	u64 physical;
2065	const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2066	bool ret;
2067	int i;
2068
2069	if (!btrfs_is_zoned(block_group->fs_info))
2070		return true;
2071
2072	map = block_group->physical_map;
2073
2074	spin_lock(&fs_info->zone_active_bgs_lock);
2075	spin_lock(&block_group->lock);
2076	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2077		ret = true;
2078		goto out_unlock;
2079	}
2080
2081	/* No space left */
2082	if (btrfs_zoned_bg_is_full(block_group)) {
2083		ret = false;
2084		goto out_unlock;
2085	}
2086
2087	for (i = 0; i < map->num_stripes; i++) {
2088		struct btrfs_zoned_device_info *zinfo;
2089		int reserved = 0;
2090
2091		device = map->stripes[i].dev;
2092		physical = map->stripes[i].physical;
2093		zinfo = device->zone_info;
2094
2095		if (zinfo->max_active_zones == 0)
2096			continue;
2097
2098		if (is_data)
2099			reserved = zinfo->reserved_active_zones;
2100		/*
2101		 * For the data block group, leave active zones for one
2102		 * metadata block group and one system block group.
2103		 */
2104		if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2105			ret = false;
2106			goto out_unlock;
2107		}
2108
2109		if (!btrfs_dev_set_active_zone(device, physical)) {
2110			/* Cannot activate the zone */
2111			ret = false;
2112			goto out_unlock;
2113		}
2114		if (!is_data)
2115			zinfo->reserved_active_zones--;
2116	}
2117
2118	/* Successfully activated all the zones */
2119	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
 
2120	spin_unlock(&block_group->lock);
 
 
2121
2122	/* For the active block group list */
2123	btrfs_get_block_group(block_group);
 
 
2124	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2125	spin_unlock(&fs_info->zone_active_bgs_lock);
2126
2127	return true;
2128
2129out_unlock:
2130	spin_unlock(&block_group->lock);
2131	spin_unlock(&fs_info->zone_active_bgs_lock);
2132	return ret;
2133}
2134
2135static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2136{
2137	struct btrfs_fs_info *fs_info = block_group->fs_info;
2138	const u64 end = block_group->start + block_group->length;
2139	struct radix_tree_iter iter;
2140	struct extent_buffer *eb;
2141	void __rcu **slot;
2142
2143	rcu_read_lock();
2144	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2145				 block_group->start >> fs_info->sectorsize_bits) {
2146		eb = radix_tree_deref_slot(slot);
2147		if (!eb)
2148			continue;
2149		if (radix_tree_deref_retry(eb)) {
2150			slot = radix_tree_iter_retry(&iter);
2151			continue;
2152		}
2153
2154		if (eb->start < block_group->start)
2155			continue;
2156		if (eb->start >= end)
2157			break;
2158
2159		slot = radix_tree_iter_resume(slot, &iter);
2160		rcu_read_unlock();
2161		wait_on_extent_buffer_writeback(eb);
2162		rcu_read_lock();
2163	}
2164	rcu_read_unlock();
2165}
2166
2167static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2168{
2169	struct btrfs_fs_info *fs_info = block_group->fs_info;
2170	struct btrfs_chunk_map *map;
2171	const bool is_metadata = (block_group->flags &
2172			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2173	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2174	int ret = 0;
2175	int i;
2176
2177	spin_lock(&block_group->lock);
2178	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2179		spin_unlock(&block_group->lock);
2180		return 0;
2181	}
2182
2183	/* Check if we have unwritten allocated space */
2184	if (is_metadata &&
2185	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2186		spin_unlock(&block_group->lock);
2187		return -EAGAIN;
2188	}
2189
2190	/*
2191	 * If we are sure that the block group is full (= no more room left for
2192	 * new allocation) and the IO for the last usable block is completed, we
2193	 * don't need to wait for the other IOs. This holds because we ensure
2194	 * the sequential IO submissions using the ZONE_APPEND command for data
2195	 * and block_group->meta_write_pointer for metadata.
2196	 */
2197	if (!fully_written) {
2198		if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2199			spin_unlock(&block_group->lock);
2200			return -EAGAIN;
2201		}
2202		spin_unlock(&block_group->lock);
2203
2204		ret = btrfs_inc_block_group_ro(block_group, false);
2205		if (ret)
2206			return ret;
2207
2208		/* Ensure all writes in this block group finish */
2209		btrfs_wait_block_group_reservations(block_group);
2210		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
2211		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2212					 block_group->length);
2213		/* Wait for extent buffers to be written. */
2214		if (is_metadata)
2215			wait_eb_writebacks(block_group);
2216
2217		spin_lock(&block_group->lock);
2218
2219		/*
2220		 * Bail out if someone already deactivated the block group, or
2221		 * allocated space is left in the block group.
2222		 */
2223		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2224			      &block_group->runtime_flags)) {
2225			spin_unlock(&block_group->lock);
2226			btrfs_dec_block_group_ro(block_group);
2227			return 0;
2228		}
2229
2230		if (block_group->reserved ||
2231		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2232			     &block_group->runtime_flags)) {
2233			spin_unlock(&block_group->lock);
2234			btrfs_dec_block_group_ro(block_group);
2235			return -EAGAIN;
2236		}
2237	}
2238
2239	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2240	block_group->alloc_offset = block_group->zone_capacity;
2241	if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2242		block_group->meta_write_pointer = block_group->start +
2243						  block_group->zone_capacity;
2244	block_group->free_space_ctl->free_space = 0;
2245	btrfs_clear_treelog_bg(block_group);
2246	btrfs_clear_data_reloc_bg(block_group);
2247	spin_unlock(&block_group->lock);
2248
2249	down_read(&dev_replace->rwsem);
2250	map = block_group->physical_map;
2251	for (i = 0; i < map->num_stripes; i++) {
2252		struct btrfs_device *device = map->stripes[i].dev;
2253		const u64 physical = map->stripes[i].physical;
2254		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2255		unsigned int nofs_flags;
2256
2257		if (zinfo->max_active_zones == 0)
2258			continue;
2259
2260		nofs_flags = memalloc_nofs_save();
2261		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2262				       physical >> SECTOR_SHIFT,
2263				       zinfo->zone_size >> SECTOR_SHIFT);
2264		memalloc_nofs_restore(nofs_flags);
2265
2266		if (ret) {
2267			up_read(&dev_replace->rwsem);
2268			return ret;
2269		}
2270
2271		if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2272			zinfo->reserved_active_zones++;
2273		btrfs_dev_clear_active_zone(device, physical);
2274	}
2275	up_read(&dev_replace->rwsem);
2276
2277	if (!fully_written)
2278		btrfs_dec_block_group_ro(block_group);
2279
2280	spin_lock(&fs_info->zone_active_bgs_lock);
2281	ASSERT(!list_empty(&block_group->active_bg_list));
2282	list_del_init(&block_group->active_bg_list);
2283	spin_unlock(&fs_info->zone_active_bgs_lock);
2284
2285	/* For active_bg_list */
2286	btrfs_put_block_group(block_group);
2287
2288	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2289
2290	return 0;
2291}
2292
2293int btrfs_zone_finish(struct btrfs_block_group *block_group)
2294{
2295	if (!btrfs_is_zoned(block_group->fs_info))
2296		return 0;
2297
2298	return do_zone_finish(block_group, false);
2299}
2300
2301bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2302{
2303	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2304	struct btrfs_device *device;
2305	bool ret = false;
2306
2307	if (!btrfs_is_zoned(fs_info))
2308		return true;
2309
2310	/* Check if there is a device with active zones left */
2311	mutex_lock(&fs_info->chunk_mutex);
2312	spin_lock(&fs_info->zone_active_bgs_lock);
2313	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2314		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2315		int reserved = 0;
2316
2317		if (!device->bdev)
2318			continue;
2319
2320		if (!zinfo->max_active_zones) {
 
2321			ret = true;
2322			break;
2323		}
2324
2325		if (flags & BTRFS_BLOCK_GROUP_DATA)
2326			reserved = zinfo->reserved_active_zones;
2327
2328		switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2329		case 0: /* single */
2330			ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2331			break;
2332		case BTRFS_BLOCK_GROUP_DUP:
2333			ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2334			break;
2335		}
2336		if (ret)
2337			break;
2338	}
2339	spin_unlock(&fs_info->zone_active_bgs_lock);
2340	mutex_unlock(&fs_info->chunk_mutex);
2341
2342	if (!ret)
2343		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2344
2345	return ret;
2346}
2347
2348void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2349{
2350	struct btrfs_block_group *block_group;
2351	u64 min_alloc_bytes;
2352
2353	if (!btrfs_is_zoned(fs_info))
2354		return;
2355
2356	block_group = btrfs_lookup_block_group(fs_info, logical);
2357	ASSERT(block_group);
2358
2359	/* No MIXED_BG on zoned btrfs. */
2360	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2361		min_alloc_bytes = fs_info->sectorsize;
2362	else
2363		min_alloc_bytes = fs_info->nodesize;
2364
2365	/* Bail out if we can allocate more data from this block group. */
2366	if (logical + length + min_alloc_bytes <=
2367	    block_group->start + block_group->zone_capacity)
2368		goto out;
2369
2370	do_zone_finish(block_group, true);
2371
2372out:
2373	btrfs_put_block_group(block_group);
2374}
2375
2376static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2377{
2378	struct btrfs_block_group *bg =
2379		container_of(work, struct btrfs_block_group, zone_finish_work);
2380
2381	wait_on_extent_buffer_writeback(bg->last_eb);
2382	free_extent_buffer(bg->last_eb);
2383	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2384	btrfs_put_block_group(bg);
2385}
2386
2387void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2388				   struct extent_buffer *eb)
2389{
2390	if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2391	    eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2392		return;
2393
2394	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2395		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2396			  bg->start);
2397		return;
2398	}
2399
2400	/* For the work */
2401	btrfs_get_block_group(bg);
2402	atomic_inc(&eb->refs);
2403	bg->last_eb = eb;
2404	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2405	queue_work(system_unbound_wq, &bg->zone_finish_work);
2406}
2407
2408void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2409{
2410	struct btrfs_fs_info *fs_info = bg->fs_info;
2411
2412	spin_lock(&fs_info->relocation_bg_lock);
2413	if (fs_info->data_reloc_bg == bg->start)
2414		fs_info->data_reloc_bg = 0;
2415	spin_unlock(&fs_info->relocation_bg_lock);
2416}
2417
2418void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2419{
2420	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2421	struct btrfs_device *device;
2422
2423	if (!btrfs_is_zoned(fs_info))
2424		return;
2425
2426	mutex_lock(&fs_devices->device_list_mutex);
2427	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2428		if (device->zone_info) {
2429			vfree(device->zone_info->zone_cache);
2430			device->zone_info->zone_cache = NULL;
2431		}
2432	}
2433	mutex_unlock(&fs_devices->device_list_mutex);
2434}
2435
2436bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2437{
2438	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2439	struct btrfs_device *device;
2440	u64 used = 0;
2441	u64 total = 0;
2442	u64 factor;
2443
2444	ASSERT(btrfs_is_zoned(fs_info));
2445
2446	if (fs_info->bg_reclaim_threshold == 0)
2447		return false;
2448
2449	mutex_lock(&fs_devices->device_list_mutex);
2450	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2451		if (!device->bdev)
2452			continue;
2453
2454		total += device->disk_total_bytes;
2455		used += device->bytes_used;
2456	}
2457	mutex_unlock(&fs_devices->device_list_mutex);
2458
2459	factor = div64_u64(used * 100, total);
2460	return factor >= fs_info->bg_reclaim_threshold;
2461}
2462
2463void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2464				       u64 length)
2465{
2466	struct btrfs_block_group *block_group;
2467
2468	if (!btrfs_is_zoned(fs_info))
2469		return;
2470
2471	block_group = btrfs_lookup_block_group(fs_info, logical);
2472	/* It should be called on a previous data relocation block group. */
2473	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2474
2475	spin_lock(&block_group->lock);
2476	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2477		goto out;
2478
2479	/* All relocation extents are written. */
2480	if (block_group->start + block_group->alloc_offset == logical + length) {
2481		/*
2482		 * Now, release this block group for further allocations and
2483		 * zone finish.
2484		 */
2485		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2486			  &block_group->runtime_flags);
2487	}
2488
2489out:
2490	spin_unlock(&block_group->lock);
2491	btrfs_put_block_group(block_group);
2492}
2493
2494int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2495{
2496	struct btrfs_block_group *block_group;
2497	struct btrfs_block_group *min_bg = NULL;
2498	u64 min_avail = U64_MAX;
2499	int ret;
2500
2501	spin_lock(&fs_info->zone_active_bgs_lock);
2502	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2503			    active_bg_list) {
2504		u64 avail;
2505
2506		spin_lock(&block_group->lock);
2507		if (block_group->reserved || block_group->alloc_offset == 0 ||
2508		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2509		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2510			spin_unlock(&block_group->lock);
2511			continue;
2512		}
2513
2514		avail = block_group->zone_capacity - block_group->alloc_offset;
2515		if (min_avail > avail) {
2516			if (min_bg)
2517				btrfs_put_block_group(min_bg);
2518			min_bg = block_group;
2519			min_avail = avail;
2520			btrfs_get_block_group(min_bg);
2521		}
2522		spin_unlock(&block_group->lock);
2523	}
2524	spin_unlock(&fs_info->zone_active_bgs_lock);
2525
2526	if (!min_bg)
2527		return 0;
2528
2529	ret = btrfs_zone_finish(min_bg);
2530	btrfs_put_block_group(min_bg);
2531
2532	return ret < 0 ? ret : 1;
2533}
2534
2535int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2536				struct btrfs_space_info *space_info,
2537				bool do_finish)
2538{
2539	struct btrfs_block_group *bg;
2540	int index;
2541
2542	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2543		return 0;
2544
 
 
 
 
2545	for (;;) {
2546		int ret;
2547		bool need_finish = false;
2548
2549		down_read(&space_info->groups_sem);
2550		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2551			list_for_each_entry(bg, &space_info->block_groups[index],
2552					    list) {
2553				if (!spin_trylock(&bg->lock))
2554					continue;
2555				if (btrfs_zoned_bg_is_full(bg) ||
2556				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2557					     &bg->runtime_flags)) {
2558					spin_unlock(&bg->lock);
2559					continue;
2560				}
2561				spin_unlock(&bg->lock);
2562
2563				if (btrfs_zone_activate(bg)) {
2564					up_read(&space_info->groups_sem);
2565					return 1;
2566				}
2567
2568				need_finish = true;
2569			}
2570		}
2571		up_read(&space_info->groups_sem);
2572
2573		if (!do_finish || !need_finish)
2574			break;
2575
2576		ret = btrfs_zone_finish_one_bg(fs_info);
2577		if (ret == 0)
2578			break;
2579		if (ret < 0)
2580			return ret;
2581	}
2582
2583	return 0;
2584}
2585
2586/*
2587 * Reserve zones for one metadata block group, one tree-log block group, and one
2588 * system block group.
2589 */
2590void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2591{
2592	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2593	struct btrfs_block_group *block_group;
2594	struct btrfs_device *device;
2595	/* Reserve zones for normal SINGLE metadata and tree-log block group. */
2596	unsigned int metadata_reserve = 2;
2597	/* Reserve a zone for SINGLE system block group. */
2598	unsigned int system_reserve = 1;
2599
2600	if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2601		return;
2602
2603	/*
2604	 * This function is called from the mount context. So, there is no
2605	 * parallel process touching the bits. No need for read_seqretry().
2606	 */
2607	if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2608		metadata_reserve = 4;
2609	if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2610		system_reserve = 2;
2611
2612	/* Apply the reservation on all the devices. */
2613	mutex_lock(&fs_devices->device_list_mutex);
2614	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2615		if (!device->bdev)
2616			continue;
2617
2618		device->zone_info->reserved_active_zones =
2619			metadata_reserve + system_reserve;
2620	}
2621	mutex_unlock(&fs_devices->device_list_mutex);
2622
2623	/* Release reservation for currently active block groups. */
2624	spin_lock(&fs_info->zone_active_bgs_lock);
2625	list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2626		struct btrfs_chunk_map *map = block_group->physical_map;
2627
2628		if (!(block_group->flags &
2629		      (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2630			continue;
2631
2632		for (int i = 0; i < map->num_stripes; i++)
2633			map->stripes[i].dev->zone_info->reserved_active_zones--;
2634	}
2635	spin_unlock(&fs_info->zone_active_bgs_lock);
2636}