Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/blkdev.h>
   6#include <linux/sched/mm.h>
   7#include <linux/atomic.h>
   8#include <linux/vmalloc.h>
   9#include "ctree.h"
  10#include "volumes.h"
  11#include "zoned.h"
  12#include "rcu-string.h"
  13#include "disk-io.h"
  14#include "block-group.h"
  15#include "transaction.h"
  16#include "dev-replace.h"
  17#include "space-info.h"
  18#include "fs.h"
  19#include "accessors.h"
  20
  21/* Maximum number of zones to report per blkdev_report_zones() call */
  22#define BTRFS_REPORT_NR_ZONES   4096
  23/* Invalid allocation pointer value for missing devices */
  24#define WP_MISSING_DEV ((u64)-1)
  25/* Pseudo write pointer value for conventional zone */
  26#define WP_CONVENTIONAL ((u64)-2)
  27
  28/*
  29 * Location of the first zone of superblock logging zone pairs.
  30 *
  31 * - primary superblock:    0B (zone 0)
  32 * - first copy:          512G (zone starting at that offset)
  33 * - second copy:           4T (zone starting at that offset)
  34 */
  35#define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
  36#define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
  37#define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
  38
  39#define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
  40#define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
  41
  42/* Number of superblock log zones */
  43#define BTRFS_NR_SB_LOG_ZONES 2
  44
  45/*
  46 * Minimum of active zones we need:
  47 *
  48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
  49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
  50 * - 1 zone for tree-log dedicated block group
  51 * - 1 zone for relocation
  52 */
  53#define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
  54
  55/*
  56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
  57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
  58 * We do not expect the zone size to become larger than 8GiB or smaller than
  59 * 4MiB in the near future.
  60 */
  61#define BTRFS_MAX_ZONE_SIZE		SZ_8G
  62#define BTRFS_MIN_ZONE_SIZE		SZ_4M
  63
  64#define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
  65
  66static inline bool sb_zone_is_full(const struct blk_zone *zone)
  67{
  68	return (zone->cond == BLK_ZONE_COND_FULL) ||
  69		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
  70}
  71
  72static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
  73{
  74	struct blk_zone *zones = data;
  75
  76	memcpy(&zones[idx], zone, sizeof(*zone));
  77
  78	return 0;
  79}
  80
  81static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
  82			    u64 *wp_ret)
  83{
  84	bool empty[BTRFS_NR_SB_LOG_ZONES];
  85	bool full[BTRFS_NR_SB_LOG_ZONES];
  86	sector_t sector;
  87	int i;
  88
  89	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
  90		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
  91		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
  92		full[i] = sb_zone_is_full(&zones[i]);
  93	}
  94
  95	/*
  96	 * Possible states of log buffer zones
  97	 *
  98	 *           Empty[0]  In use[0]  Full[0]
  99	 * Empty[1]         *          0        1
 100	 * In use[1]        x          x        1
 101	 * Full[1]          0          0        C
 102	 *
 103	 * Log position:
 104	 *   *: Special case, no superblock is written
 105	 *   0: Use write pointer of zones[0]
 106	 *   1: Use write pointer of zones[1]
 107	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
 108	 *      one determined by generation
 109	 *   x: Invalid state
 110	 */
 111
 112	if (empty[0] && empty[1]) {
 113		/* Special case to distinguish no superblock to read */
 114		*wp_ret = zones[0].start << SECTOR_SHIFT;
 115		return -ENOENT;
 116	} else if (full[0] && full[1]) {
 117		/* Compare two super blocks */
 118		struct address_space *mapping = bdev->bd_inode->i_mapping;
 119		struct page *page[BTRFS_NR_SB_LOG_ZONES];
 120		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
 121		int i;
 122
 123		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
 124			u64 bytenr;
 125
 126			bytenr = ((zones[i].start + zones[i].len)
 127				   << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
 128
 129			page[i] = read_cache_page_gfp(mapping,
 130					bytenr >> PAGE_SHIFT, GFP_NOFS);
 131			if (IS_ERR(page[i])) {
 132				if (i == 1)
 133					btrfs_release_disk_super(super[0]);
 134				return PTR_ERR(page[i]);
 135			}
 136			super[i] = page_address(page[i]);
 137		}
 138
 139		if (btrfs_super_generation(super[0]) >
 140		    btrfs_super_generation(super[1]))
 141			sector = zones[1].start;
 142		else
 143			sector = zones[0].start;
 144
 145		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
 146			btrfs_release_disk_super(super[i]);
 147	} else if (!full[0] && (empty[1] || full[1])) {
 148		sector = zones[0].wp;
 149	} else if (full[0]) {
 150		sector = zones[1].wp;
 151	} else {
 152		return -EUCLEAN;
 153	}
 154	*wp_ret = sector << SECTOR_SHIFT;
 155	return 0;
 156}
 157
 158/*
 159 * Get the first zone number of the superblock mirror
 160 */
 161static inline u32 sb_zone_number(int shift, int mirror)
 162{
 163	u64 zone;
 164
 165	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
 166	switch (mirror) {
 167	case 0: zone = 0; break;
 168	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
 169	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
 170	}
 171
 172	ASSERT(zone <= U32_MAX);
 173
 174	return (u32)zone;
 175}
 176
 177static inline sector_t zone_start_sector(u32 zone_number,
 178					 struct block_device *bdev)
 179{
 180	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
 181}
 182
 183static inline u64 zone_start_physical(u32 zone_number,
 184				      struct btrfs_zoned_device_info *zone_info)
 185{
 186	return (u64)zone_number << zone_info->zone_size_shift;
 187}
 188
 189/*
 190 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
 191 * device into static sized chunks and fake a conventional zone on each of
 192 * them.
 193 */
 194static int emulate_report_zones(struct btrfs_device *device, u64 pos,
 195				struct blk_zone *zones, unsigned int nr_zones)
 196{
 197	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
 198	sector_t bdev_size = bdev_nr_sectors(device->bdev);
 199	unsigned int i;
 200
 201	pos >>= SECTOR_SHIFT;
 202	for (i = 0; i < nr_zones; i++) {
 203		zones[i].start = i * zone_sectors + pos;
 204		zones[i].len = zone_sectors;
 205		zones[i].capacity = zone_sectors;
 206		zones[i].wp = zones[i].start + zone_sectors;
 207		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
 208		zones[i].cond = BLK_ZONE_COND_NOT_WP;
 209
 210		if (zones[i].wp >= bdev_size) {
 211			i++;
 212			break;
 213		}
 214	}
 215
 216	return i;
 217}
 218
 219static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
 220			       struct blk_zone *zones, unsigned int *nr_zones)
 221{
 222	struct btrfs_zoned_device_info *zinfo = device->zone_info;
 223	u32 zno;
 224	int ret;
 225
 226	if (!*nr_zones)
 227		return 0;
 228
 229	if (!bdev_is_zoned(device->bdev)) {
 230		ret = emulate_report_zones(device, pos, zones, *nr_zones);
 231		*nr_zones = ret;
 232		return 0;
 233	}
 234
 235	/* Check cache */
 236	if (zinfo->zone_cache) {
 237		unsigned int i;
 238
 239		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
 240		zno = pos >> zinfo->zone_size_shift;
 241		/*
 242		 * We cannot report zones beyond the zone end. So, it is OK to
 243		 * cap *nr_zones to at the end.
 244		 */
 245		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
 246
 247		for (i = 0; i < *nr_zones; i++) {
 248			struct blk_zone *zone_info;
 249
 250			zone_info = &zinfo->zone_cache[zno + i];
 251			if (!zone_info->len)
 252				break;
 253		}
 254
 255		if (i == *nr_zones) {
 256			/* Cache hit on all the zones */
 257			memcpy(zones, zinfo->zone_cache + zno,
 258			       sizeof(*zinfo->zone_cache) * *nr_zones);
 259			return 0;
 260		}
 261	}
 262
 263	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
 264				  copy_zone_info_cb, zones);
 265	if (ret < 0) {
 266		btrfs_err_in_rcu(device->fs_info,
 267				 "zoned: failed to read zone %llu on %s (devid %llu)",
 268				 pos, rcu_str_deref(device->name),
 269				 device->devid);
 270		return ret;
 271	}
 272	*nr_zones = ret;
 273	if (!ret)
 274		return -EIO;
 275
 276	/* Populate cache */
 277	if (zinfo->zone_cache)
 278		memcpy(zinfo->zone_cache + zno, zones,
 279		       sizeof(*zinfo->zone_cache) * *nr_zones);
 280
 281	return 0;
 282}
 283
 284/* The emulated zone size is determined from the size of device extent */
 285static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
 286{
 287	struct btrfs_path *path;
 288	struct btrfs_root *root = fs_info->dev_root;
 289	struct btrfs_key key;
 290	struct extent_buffer *leaf;
 291	struct btrfs_dev_extent *dext;
 292	int ret = 0;
 293
 294	key.objectid = 1;
 295	key.type = BTRFS_DEV_EXTENT_KEY;
 296	key.offset = 0;
 297
 298	path = btrfs_alloc_path();
 299	if (!path)
 300		return -ENOMEM;
 301
 302	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 303	if (ret < 0)
 304		goto out;
 305
 306	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
 307		ret = btrfs_next_leaf(root, path);
 308		if (ret < 0)
 309			goto out;
 310		/* No dev extents at all? Not good */
 311		if (ret > 0) {
 312			ret = -EUCLEAN;
 313			goto out;
 314		}
 315	}
 316
 317	leaf = path->nodes[0];
 318	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
 319	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
 320	ret = 0;
 321
 322out:
 323	btrfs_free_path(path);
 324
 325	return ret;
 326}
 327
 328int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
 329{
 330	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 331	struct btrfs_device *device;
 332	int ret = 0;
 333
 334	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
 335	if (!btrfs_fs_incompat(fs_info, ZONED))
 336		return 0;
 337
 338	mutex_lock(&fs_devices->device_list_mutex);
 339	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 340		/* We can skip reading of zone info for missing devices */
 341		if (!device->bdev)
 342			continue;
 343
 344		ret = btrfs_get_dev_zone_info(device, true);
 345		if (ret)
 346			break;
 347	}
 348	mutex_unlock(&fs_devices->device_list_mutex);
 349
 350	return ret;
 351}
 352
 353int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
 354{
 355	struct btrfs_fs_info *fs_info = device->fs_info;
 356	struct btrfs_zoned_device_info *zone_info = NULL;
 357	struct block_device *bdev = device->bdev;
 358	unsigned int max_active_zones;
 359	unsigned int nactive;
 360	sector_t nr_sectors;
 361	sector_t sector = 0;
 362	struct blk_zone *zones = NULL;
 363	unsigned int i, nreported = 0, nr_zones;
 364	sector_t zone_sectors;
 365	char *model, *emulated;
 366	int ret;
 367
 368	/*
 369	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
 370	 * yet be set.
 371	 */
 372	if (!btrfs_fs_incompat(fs_info, ZONED))
 373		return 0;
 374
 375	if (device->zone_info)
 376		return 0;
 377
 378	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
 379	if (!zone_info)
 380		return -ENOMEM;
 381
 382	device->zone_info = zone_info;
 383
 384	if (!bdev_is_zoned(bdev)) {
 385		if (!fs_info->zone_size) {
 386			ret = calculate_emulated_zone_size(fs_info);
 387			if (ret)
 388				goto out;
 389		}
 390
 391		ASSERT(fs_info->zone_size);
 392		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
 393	} else {
 394		zone_sectors = bdev_zone_sectors(bdev);
 395	}
 396
 397	ASSERT(is_power_of_two_u64(zone_sectors));
 398	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
 399
 400	/* We reject devices with a zone size larger than 8GB */
 401	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
 402		btrfs_err_in_rcu(fs_info,
 403		"zoned: %s: zone size %llu larger than supported maximum %llu",
 404				 rcu_str_deref(device->name),
 405				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
 406		ret = -EINVAL;
 407		goto out;
 408	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
 409		btrfs_err_in_rcu(fs_info,
 410		"zoned: %s: zone size %llu smaller than supported minimum %u",
 411				 rcu_str_deref(device->name),
 412				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
 413		ret = -EINVAL;
 414		goto out;
 415	}
 416
 417	nr_sectors = bdev_nr_sectors(bdev);
 418	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
 419	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
 420	/*
 421	 * We limit max_zone_append_size also by max_segments *
 422	 * PAGE_SIZE. Technically, we can have multiple pages per segment. But,
 423	 * since btrfs adds the pages one by one to a bio, and btrfs cannot
 424	 * increase the metadata reservation even if it increases the number of
 425	 * extents, it is safe to stick with the limit.
 426	 *
 427	 * With the zoned emulation, we can have non-zoned device on the zoned
 428	 * mode. In this case, we don't have a valid max zone append size. So,
 429	 * use max_segments * PAGE_SIZE as the pseudo max_zone_append_size.
 430	 */
 431	if (bdev_is_zoned(bdev)) {
 432		zone_info->max_zone_append_size = min_t(u64,
 433			(u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT,
 434			(u64)bdev_max_segments(bdev) << PAGE_SHIFT);
 435	} else {
 436		zone_info->max_zone_append_size =
 437			(u64)bdev_max_segments(bdev) << PAGE_SHIFT;
 438	}
 439	if (!IS_ALIGNED(nr_sectors, zone_sectors))
 440		zone_info->nr_zones++;
 441
 442	max_active_zones = bdev_max_active_zones(bdev);
 443	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
 444		btrfs_err_in_rcu(fs_info,
 445"zoned: %s: max active zones %u is too small, need at least %u active zones",
 446				 rcu_str_deref(device->name), max_active_zones,
 447				 BTRFS_MIN_ACTIVE_ZONES);
 448		ret = -EINVAL;
 449		goto out;
 450	}
 451	zone_info->max_active_zones = max_active_zones;
 452
 453	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 454	if (!zone_info->seq_zones) {
 455		ret = -ENOMEM;
 456		goto out;
 457	}
 458
 459	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 460	if (!zone_info->empty_zones) {
 461		ret = -ENOMEM;
 462		goto out;
 463	}
 464
 465	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 466	if (!zone_info->active_zones) {
 467		ret = -ENOMEM;
 468		goto out;
 469	}
 470
 471	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
 472	if (!zones) {
 473		ret = -ENOMEM;
 474		goto out;
 475	}
 476
 477	/*
 478	 * Enable zone cache only for a zoned device. On a non-zoned device, we
 479	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
 480	 * use the cache.
 481	 */
 482	if (populate_cache && bdev_is_zoned(device->bdev)) {
 483		zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
 484						zone_info->nr_zones);
 485		if (!zone_info->zone_cache) {
 486			btrfs_err_in_rcu(device->fs_info,
 487				"zoned: failed to allocate zone cache for %s",
 488				rcu_str_deref(device->name));
 489			ret = -ENOMEM;
 490			goto out;
 491		}
 492	}
 493
 494	/* Get zones type */
 495	nactive = 0;
 496	while (sector < nr_sectors) {
 497		nr_zones = BTRFS_REPORT_NR_ZONES;
 498		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
 499					  &nr_zones);
 500		if (ret)
 501			goto out;
 502
 503		for (i = 0; i < nr_zones; i++) {
 504			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
 505				__set_bit(nreported, zone_info->seq_zones);
 506			switch (zones[i].cond) {
 507			case BLK_ZONE_COND_EMPTY:
 508				__set_bit(nreported, zone_info->empty_zones);
 509				break;
 510			case BLK_ZONE_COND_IMP_OPEN:
 511			case BLK_ZONE_COND_EXP_OPEN:
 512			case BLK_ZONE_COND_CLOSED:
 513				__set_bit(nreported, zone_info->active_zones);
 514				nactive++;
 515				break;
 516			}
 517			nreported++;
 518		}
 519		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
 520	}
 521
 522	if (nreported != zone_info->nr_zones) {
 523		btrfs_err_in_rcu(device->fs_info,
 524				 "inconsistent number of zones on %s (%u/%u)",
 525				 rcu_str_deref(device->name), nreported,
 526				 zone_info->nr_zones);
 527		ret = -EIO;
 528		goto out;
 529	}
 530
 531	if (max_active_zones) {
 532		if (nactive > max_active_zones) {
 533			btrfs_err_in_rcu(device->fs_info,
 534			"zoned: %u active zones on %s exceeds max_active_zones %u",
 535					 nactive, rcu_str_deref(device->name),
 536					 max_active_zones);
 537			ret = -EIO;
 538			goto out;
 539		}
 540		atomic_set(&zone_info->active_zones_left,
 541			   max_active_zones - nactive);
 542		/* Overcommit does not work well with active zone tacking. */
 543		set_bit(BTRFS_FS_NO_OVERCOMMIT, &fs_info->flags);
 544	}
 545
 546	/* Validate superblock log */
 547	nr_zones = BTRFS_NR_SB_LOG_ZONES;
 548	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 549		u32 sb_zone;
 550		u64 sb_wp;
 551		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
 552
 553		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
 554		if (sb_zone + 1 >= zone_info->nr_zones)
 555			continue;
 556
 557		ret = btrfs_get_dev_zones(device,
 558					  zone_start_physical(sb_zone, zone_info),
 559					  &zone_info->sb_zones[sb_pos],
 560					  &nr_zones);
 561		if (ret)
 562			goto out;
 563
 564		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
 565			btrfs_err_in_rcu(device->fs_info,
 566	"zoned: failed to read super block log zone info at devid %llu zone %u",
 567					 device->devid, sb_zone);
 568			ret = -EUCLEAN;
 569			goto out;
 570		}
 571
 572		/*
 573		 * If zones[0] is conventional, always use the beginning of the
 574		 * zone to record superblock. No need to validate in that case.
 575		 */
 576		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
 577		    BLK_ZONE_TYPE_CONVENTIONAL)
 578			continue;
 579
 580		ret = sb_write_pointer(device->bdev,
 581				       &zone_info->sb_zones[sb_pos], &sb_wp);
 582		if (ret != -ENOENT && ret) {
 583			btrfs_err_in_rcu(device->fs_info,
 584			"zoned: super block log zone corrupted devid %llu zone %u",
 585					 device->devid, sb_zone);
 586			ret = -EUCLEAN;
 587			goto out;
 588		}
 589	}
 590
 591
 592	kvfree(zones);
 593
 594	switch (bdev_zoned_model(bdev)) {
 595	case BLK_ZONED_HM:
 596		model = "host-managed zoned";
 597		emulated = "";
 598		break;
 599	case BLK_ZONED_HA:
 600		model = "host-aware zoned";
 601		emulated = "";
 602		break;
 603	case BLK_ZONED_NONE:
 604		model = "regular";
 605		emulated = "emulated ";
 606		break;
 607	default:
 608		/* Just in case */
 609		btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
 610				 bdev_zoned_model(bdev),
 611				 rcu_str_deref(device->name));
 612		ret = -EOPNOTSUPP;
 613		goto out_free_zone_info;
 614	}
 615
 616	btrfs_info_in_rcu(fs_info,
 617		"%s block device %s, %u %szones of %llu bytes",
 618		model, rcu_str_deref(device->name), zone_info->nr_zones,
 619		emulated, zone_info->zone_size);
 620
 621	return 0;
 622
 623out:
 624	kvfree(zones);
 625out_free_zone_info:
 626	btrfs_destroy_dev_zone_info(device);
 627
 628	return ret;
 629}
 630
 631void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
 632{
 633	struct btrfs_zoned_device_info *zone_info = device->zone_info;
 634
 635	if (!zone_info)
 636		return;
 637
 638	bitmap_free(zone_info->active_zones);
 639	bitmap_free(zone_info->seq_zones);
 640	bitmap_free(zone_info->empty_zones);
 641	vfree(zone_info->zone_cache);
 642	kfree(zone_info);
 643	device->zone_info = NULL;
 644}
 645
 646struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
 647{
 648	struct btrfs_zoned_device_info *zone_info;
 649
 650	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
 651	if (!zone_info)
 652		return NULL;
 653
 654	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 655	if (!zone_info->seq_zones)
 656		goto out;
 657
 658	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
 659		    zone_info->nr_zones);
 660
 661	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 662	if (!zone_info->empty_zones)
 663		goto out;
 664
 665	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
 666		    zone_info->nr_zones);
 667
 668	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 669	if (!zone_info->active_zones)
 670		goto out;
 671
 672	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
 673		    zone_info->nr_zones);
 674	zone_info->zone_cache = NULL;
 675
 676	return zone_info;
 677
 678out:
 679	bitmap_free(zone_info->seq_zones);
 680	bitmap_free(zone_info->empty_zones);
 681	bitmap_free(zone_info->active_zones);
 682	kfree(zone_info);
 683	return NULL;
 684}
 685
 686int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
 687		       struct blk_zone *zone)
 688{
 689	unsigned int nr_zones = 1;
 690	int ret;
 691
 692	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
 693	if (ret != 0 || !nr_zones)
 694		return ret ? ret : -EIO;
 695
 696	return 0;
 697}
 698
 699static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
 700{
 701	struct btrfs_device *device;
 702
 703	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
 704		if (device->bdev &&
 705		    bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
 706			btrfs_err(fs_info,
 707				"zoned: mode not enabled but zoned device found: %pg",
 708				device->bdev);
 709			return -EINVAL;
 710		}
 711	}
 712
 713	return 0;
 714}
 715
 716int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
 717{
 718	struct btrfs_device *device;
 719	u64 zone_size = 0;
 720	u64 max_zone_append_size = 0;
 721	int ret;
 722
 723	/*
 724	 * Host-Managed devices can't be used without the ZONED flag.  With the
 725	 * ZONED all devices can be used, using zone emulation if required.
 726	 */
 727	if (!btrfs_fs_incompat(fs_info, ZONED))
 728		return btrfs_check_for_zoned_device(fs_info);
 729
 730	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
 731		struct btrfs_zoned_device_info *zone_info = device->zone_info;
 732
 733		if (!device->bdev)
 734			continue;
 735
 736		if (!zone_size) {
 737			zone_size = zone_info->zone_size;
 738		} else if (zone_info->zone_size != zone_size) {
 739			btrfs_err(fs_info,
 740		"zoned: unequal block device zone sizes: have %llu found %llu",
 741				  zone_info->zone_size, zone_size);
 742			return -EINVAL;
 743		}
 744		if (!max_zone_append_size ||
 745		    (zone_info->max_zone_append_size &&
 746		     zone_info->max_zone_append_size < max_zone_append_size))
 747			max_zone_append_size = zone_info->max_zone_append_size;
 748	}
 749
 750	/*
 751	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
 752	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
 753	 * check the alignment here.
 754	 */
 755	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
 756		btrfs_err(fs_info,
 757			  "zoned: zone size %llu not aligned to stripe %u",
 758			  zone_size, BTRFS_STRIPE_LEN);
 759		return -EINVAL;
 760	}
 761
 762	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 763		btrfs_err(fs_info, "zoned: mixed block groups not supported");
 764		return -EINVAL;
 765	}
 766
 767	fs_info->zone_size = zone_size;
 768	fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size,
 769						   fs_info->sectorsize);
 770	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
 771	if (fs_info->max_zone_append_size < fs_info->max_extent_size)
 772		fs_info->max_extent_size = fs_info->max_zone_append_size;
 773
 774	/*
 775	 * Check mount options here, because we might change fs_info->zoned
 776	 * from fs_info->zone_size.
 777	 */
 778	ret = btrfs_check_mountopts_zoned(fs_info);
 779	if (ret)
 780		return ret;
 781
 782	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
 783	return 0;
 784}
 785
 786int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
 787{
 788	if (!btrfs_is_zoned(info))
 789		return 0;
 790
 791	/*
 792	 * Space cache writing is not COWed. Disable that to avoid write errors
 793	 * in sequential zones.
 794	 */
 795	if (btrfs_test_opt(info, SPACE_CACHE)) {
 796		btrfs_err(info, "zoned: space cache v1 is not supported");
 797		return -EINVAL;
 798	}
 799
 800	if (btrfs_test_opt(info, NODATACOW)) {
 801		btrfs_err(info, "zoned: NODATACOW not supported");
 802		return -EINVAL;
 803	}
 804
 805	return 0;
 806}
 807
 808static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
 809			   int rw, u64 *bytenr_ret)
 810{
 811	u64 wp;
 812	int ret;
 813
 814	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
 815		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
 816		return 0;
 817	}
 818
 819	ret = sb_write_pointer(bdev, zones, &wp);
 820	if (ret != -ENOENT && ret < 0)
 821		return ret;
 822
 823	if (rw == WRITE) {
 824		struct blk_zone *reset = NULL;
 825
 826		if (wp == zones[0].start << SECTOR_SHIFT)
 827			reset = &zones[0];
 828		else if (wp == zones[1].start << SECTOR_SHIFT)
 829			reset = &zones[1];
 830
 831		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
 832			ASSERT(sb_zone_is_full(reset));
 833
 834			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
 835					       reset->start, reset->len,
 836					       GFP_NOFS);
 837			if (ret)
 838				return ret;
 839
 840			reset->cond = BLK_ZONE_COND_EMPTY;
 841			reset->wp = reset->start;
 842		}
 843	} else if (ret != -ENOENT) {
 844		/*
 845		 * For READ, we want the previous one. Move write pointer to
 846		 * the end of a zone, if it is at the head of a zone.
 847		 */
 848		u64 zone_end = 0;
 849
 850		if (wp == zones[0].start << SECTOR_SHIFT)
 851			zone_end = zones[1].start + zones[1].capacity;
 852		else if (wp == zones[1].start << SECTOR_SHIFT)
 853			zone_end = zones[0].start + zones[0].capacity;
 854		if (zone_end)
 855			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
 856					BTRFS_SUPER_INFO_SIZE);
 857
 858		wp -= BTRFS_SUPER_INFO_SIZE;
 859	}
 860
 861	*bytenr_ret = wp;
 862	return 0;
 863
 864}
 865
 866int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
 867			       u64 *bytenr_ret)
 868{
 869	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
 870	sector_t zone_sectors;
 871	u32 sb_zone;
 872	int ret;
 873	u8 zone_sectors_shift;
 874	sector_t nr_sectors;
 875	u32 nr_zones;
 876
 877	if (!bdev_is_zoned(bdev)) {
 878		*bytenr_ret = btrfs_sb_offset(mirror);
 879		return 0;
 880	}
 881
 882	ASSERT(rw == READ || rw == WRITE);
 883
 884	zone_sectors = bdev_zone_sectors(bdev);
 885	if (!is_power_of_2(zone_sectors))
 886		return -EINVAL;
 887	zone_sectors_shift = ilog2(zone_sectors);
 888	nr_sectors = bdev_nr_sectors(bdev);
 889	nr_zones = nr_sectors >> zone_sectors_shift;
 890
 891	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
 892	if (sb_zone + 1 >= nr_zones)
 893		return -ENOENT;
 894
 895	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
 896				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
 897				  zones);
 898	if (ret < 0)
 899		return ret;
 900	if (ret != BTRFS_NR_SB_LOG_ZONES)
 901		return -EIO;
 902
 903	return sb_log_location(bdev, zones, rw, bytenr_ret);
 904}
 905
 906int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
 907			  u64 *bytenr_ret)
 908{
 909	struct btrfs_zoned_device_info *zinfo = device->zone_info;
 910	u32 zone_num;
 911
 912	/*
 913	 * For a zoned filesystem on a non-zoned block device, use the same
 914	 * super block locations as regular filesystem. Doing so, the super
 915	 * block can always be retrieved and the zoned flag of the volume
 916	 * detected from the super block information.
 917	 */
 918	if (!bdev_is_zoned(device->bdev)) {
 919		*bytenr_ret = btrfs_sb_offset(mirror);
 920		return 0;
 921	}
 922
 923	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
 924	if (zone_num + 1 >= zinfo->nr_zones)
 925		return -ENOENT;
 926
 927	return sb_log_location(device->bdev,
 928			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
 929			       rw, bytenr_ret);
 930}
 931
 932static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
 933				  int mirror)
 934{
 935	u32 zone_num;
 936
 937	if (!zinfo)
 938		return false;
 939
 940	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
 941	if (zone_num + 1 >= zinfo->nr_zones)
 942		return false;
 943
 944	if (!test_bit(zone_num, zinfo->seq_zones))
 945		return false;
 946
 947	return true;
 948}
 949
 950int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
 951{
 952	struct btrfs_zoned_device_info *zinfo = device->zone_info;
 953	struct blk_zone *zone;
 954	int i;
 955
 956	if (!is_sb_log_zone(zinfo, mirror))
 957		return 0;
 958
 959	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
 960	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
 961		/* Advance the next zone */
 962		if (zone->cond == BLK_ZONE_COND_FULL) {
 963			zone++;
 964			continue;
 965		}
 966
 967		if (zone->cond == BLK_ZONE_COND_EMPTY)
 968			zone->cond = BLK_ZONE_COND_IMP_OPEN;
 969
 970		zone->wp += SUPER_INFO_SECTORS;
 971
 972		if (sb_zone_is_full(zone)) {
 973			/*
 974			 * No room left to write new superblock. Since
 975			 * superblock is written with REQ_SYNC, it is safe to
 976			 * finish the zone now.
 977			 *
 978			 * If the write pointer is exactly at the capacity,
 979			 * explicit ZONE_FINISH is not necessary.
 980			 */
 981			if (zone->wp != zone->start + zone->capacity) {
 982				int ret;
 983
 984				ret = blkdev_zone_mgmt(device->bdev,
 985						REQ_OP_ZONE_FINISH, zone->start,
 986						zone->len, GFP_NOFS);
 987				if (ret)
 988					return ret;
 989			}
 990
 991			zone->wp = zone->start + zone->len;
 992			zone->cond = BLK_ZONE_COND_FULL;
 993		}
 994		return 0;
 995	}
 996
 997	/* All the zones are FULL. Should not reach here. */
 998	ASSERT(0);
 999	return -EIO;
1000}
1001
1002int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1003{
1004	sector_t zone_sectors;
1005	sector_t nr_sectors;
1006	u8 zone_sectors_shift;
1007	u32 sb_zone;
1008	u32 nr_zones;
1009
1010	zone_sectors = bdev_zone_sectors(bdev);
1011	zone_sectors_shift = ilog2(zone_sectors);
1012	nr_sectors = bdev_nr_sectors(bdev);
1013	nr_zones = nr_sectors >> zone_sectors_shift;
1014
1015	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1016	if (sb_zone + 1 >= nr_zones)
1017		return -ENOENT;
1018
1019	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1020				zone_start_sector(sb_zone, bdev),
1021				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1022}
1023
1024/*
1025 * Find allocatable zones within a given region.
1026 *
1027 * @device:	the device to allocate a region on
1028 * @hole_start: the position of the hole to allocate the region
1029 * @num_bytes:	size of wanted region
1030 * @hole_end:	the end of the hole
1031 * @return:	position of allocatable zones
1032 *
1033 * Allocatable region should not contain any superblock locations.
1034 */
1035u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1036				 u64 hole_end, u64 num_bytes)
1037{
1038	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1039	const u8 shift = zinfo->zone_size_shift;
1040	u64 nzones = num_bytes >> shift;
1041	u64 pos = hole_start;
1042	u64 begin, end;
1043	bool have_sb;
1044	int i;
1045
1046	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1047	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1048
1049	while (pos < hole_end) {
1050		begin = pos >> shift;
1051		end = begin + nzones;
1052
1053		if (end > zinfo->nr_zones)
1054			return hole_end;
1055
1056		/* Check if zones in the region are all empty */
1057		if (btrfs_dev_is_sequential(device, pos) &&
1058		    find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1059			pos += zinfo->zone_size;
1060			continue;
1061		}
1062
1063		have_sb = false;
1064		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1065			u32 sb_zone;
1066			u64 sb_pos;
1067
1068			sb_zone = sb_zone_number(shift, i);
1069			if (!(end <= sb_zone ||
1070			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1071				have_sb = true;
1072				pos = zone_start_physical(
1073					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1074				break;
1075			}
1076
1077			/* We also need to exclude regular superblock positions */
1078			sb_pos = btrfs_sb_offset(i);
1079			if (!(pos + num_bytes <= sb_pos ||
1080			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1081				have_sb = true;
1082				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1083					    zinfo->zone_size);
1084				break;
1085			}
1086		}
1087		if (!have_sb)
1088			break;
1089	}
1090
1091	return pos;
1092}
1093
1094static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1095{
1096	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1097	unsigned int zno = (pos >> zone_info->zone_size_shift);
1098
1099	/* We can use any number of zones */
1100	if (zone_info->max_active_zones == 0)
1101		return true;
1102
1103	if (!test_bit(zno, zone_info->active_zones)) {
1104		/* Active zone left? */
1105		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1106			return false;
1107		if (test_and_set_bit(zno, zone_info->active_zones)) {
1108			/* Someone already set the bit */
1109			atomic_inc(&zone_info->active_zones_left);
1110		}
1111	}
1112
1113	return true;
1114}
1115
1116static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1117{
1118	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1119	unsigned int zno = (pos >> zone_info->zone_size_shift);
1120
1121	/* We can use any number of zones */
1122	if (zone_info->max_active_zones == 0)
1123		return;
1124
1125	if (test_and_clear_bit(zno, zone_info->active_zones))
1126		atomic_inc(&zone_info->active_zones_left);
1127}
1128
1129int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1130			    u64 length, u64 *bytes)
1131{
1132	int ret;
1133
1134	*bytes = 0;
1135	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1136			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1137			       GFP_NOFS);
1138	if (ret)
1139		return ret;
1140
1141	*bytes = length;
1142	while (length) {
1143		btrfs_dev_set_zone_empty(device, physical);
1144		btrfs_dev_clear_active_zone(device, physical);
1145		physical += device->zone_info->zone_size;
1146		length -= device->zone_info->zone_size;
1147	}
1148
1149	return 0;
1150}
1151
1152int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1153{
1154	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1155	const u8 shift = zinfo->zone_size_shift;
1156	unsigned long begin = start >> shift;
1157	unsigned long end = (start + size) >> shift;
1158	u64 pos;
1159	int ret;
1160
1161	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1162	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1163
1164	if (end > zinfo->nr_zones)
1165		return -ERANGE;
1166
1167	/* All the zones are conventional */
1168	if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1169		return 0;
1170
1171	/* All the zones are sequential and empty */
1172	if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1173	    find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1174		return 0;
1175
1176	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1177		u64 reset_bytes;
1178
1179		if (!btrfs_dev_is_sequential(device, pos) ||
1180		    btrfs_dev_is_empty_zone(device, pos))
1181			continue;
1182
1183		/* Free regions should be empty */
1184		btrfs_warn_in_rcu(
1185			device->fs_info,
1186		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1187			rcu_str_deref(device->name), device->devid, pos >> shift);
1188		WARN_ON_ONCE(1);
1189
1190		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1191					      &reset_bytes);
1192		if (ret)
1193			return ret;
1194	}
1195
1196	return 0;
1197}
1198
1199/*
1200 * Calculate an allocation pointer from the extent allocation information
1201 * for a block group consist of conventional zones. It is pointed to the
1202 * end of the highest addressed extent in the block group as an allocation
1203 * offset.
1204 */
1205static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1206				   u64 *offset_ret, bool new)
1207{
1208	struct btrfs_fs_info *fs_info = cache->fs_info;
1209	struct btrfs_root *root;
1210	struct btrfs_path *path;
1211	struct btrfs_key key;
1212	struct btrfs_key found_key;
1213	int ret;
1214	u64 length;
1215
1216	/*
1217	 * Avoid  tree lookups for a new block group, there's no use for it.
1218	 * It must always be 0.
1219	 *
1220	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1221	 * For new a block group, this function is called from
1222	 * btrfs_make_block_group() which is already taking the chunk mutex.
1223	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1224	 * buffer locks to avoid deadlock.
1225	 */
1226	if (new) {
1227		*offset_ret = 0;
1228		return 0;
1229	}
1230
1231	path = btrfs_alloc_path();
1232	if (!path)
1233		return -ENOMEM;
1234
1235	key.objectid = cache->start + cache->length;
1236	key.type = 0;
1237	key.offset = 0;
1238
1239	root = btrfs_extent_root(fs_info, key.objectid);
1240	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1241	/* We should not find the exact match */
1242	if (!ret)
1243		ret = -EUCLEAN;
1244	if (ret < 0)
1245		goto out;
1246
1247	ret = btrfs_previous_extent_item(root, path, cache->start);
1248	if (ret) {
1249		if (ret == 1) {
1250			ret = 0;
1251			*offset_ret = 0;
1252		}
1253		goto out;
1254	}
1255
1256	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1257
1258	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1259		length = found_key.offset;
1260	else
1261		length = fs_info->nodesize;
1262
1263	if (!(found_key.objectid >= cache->start &&
1264	       found_key.objectid + length <= cache->start + cache->length)) {
1265		ret = -EUCLEAN;
1266		goto out;
1267	}
1268	*offset_ret = found_key.objectid + length - cache->start;
1269	ret = 0;
1270
1271out:
1272	btrfs_free_path(path);
1273	return ret;
1274}
1275
1276int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1277{
1278	struct btrfs_fs_info *fs_info = cache->fs_info;
1279	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1280	struct extent_map *em;
1281	struct map_lookup *map;
1282	struct btrfs_device *device;
1283	u64 logical = cache->start;
1284	u64 length = cache->length;
1285	int ret;
1286	int i;
1287	unsigned int nofs_flag;
1288	u64 *alloc_offsets = NULL;
1289	u64 *caps = NULL;
1290	u64 *physical = NULL;
1291	unsigned long *active = NULL;
1292	u64 last_alloc = 0;
1293	u32 num_sequential = 0, num_conventional = 0;
1294
1295	if (!btrfs_is_zoned(fs_info))
1296		return 0;
1297
1298	/* Sanity check */
1299	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1300		btrfs_err(fs_info,
1301		"zoned: block group %llu len %llu unaligned to zone size %llu",
1302			  logical, length, fs_info->zone_size);
1303		return -EIO;
1304	}
1305
1306	/* Get the chunk mapping */
1307	read_lock(&em_tree->lock);
1308	em = lookup_extent_mapping(em_tree, logical, length);
1309	read_unlock(&em_tree->lock);
1310
1311	if (!em)
1312		return -EINVAL;
1313
1314	map = em->map_lookup;
1315
1316	cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1317	if (!cache->physical_map) {
1318		ret = -ENOMEM;
1319		goto out;
1320	}
1321
1322	alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1323	if (!alloc_offsets) {
1324		ret = -ENOMEM;
1325		goto out;
1326	}
1327
1328	caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1329	if (!caps) {
1330		ret = -ENOMEM;
1331		goto out;
1332	}
1333
1334	physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1335	if (!physical) {
1336		ret = -ENOMEM;
1337		goto out;
1338	}
1339
1340	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1341	if (!active) {
1342		ret = -ENOMEM;
1343		goto out;
1344	}
1345
1346	for (i = 0; i < map->num_stripes; i++) {
1347		bool is_sequential;
1348		struct blk_zone zone;
1349		struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1350		int dev_replace_is_ongoing = 0;
1351
1352		device = map->stripes[i].dev;
1353		physical[i] = map->stripes[i].physical;
1354
1355		if (device->bdev == NULL) {
1356			alloc_offsets[i] = WP_MISSING_DEV;
1357			continue;
1358		}
1359
1360		is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1361		if (is_sequential)
1362			num_sequential++;
1363		else
1364			num_conventional++;
1365
1366		/*
1367		 * Consider a zone as active if we can allow any number of
1368		 * active zones.
1369		 */
1370		if (!device->zone_info->max_active_zones)
1371			__set_bit(i, active);
1372
1373		if (!is_sequential) {
1374			alloc_offsets[i] = WP_CONVENTIONAL;
1375			continue;
1376		}
1377
1378		/*
1379		 * This zone will be used for allocation, so mark this zone
1380		 * non-empty.
1381		 */
1382		btrfs_dev_clear_zone_empty(device, physical[i]);
1383
1384		down_read(&dev_replace->rwsem);
1385		dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1386		if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1387			btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1388		up_read(&dev_replace->rwsem);
1389
1390		/*
1391		 * The group is mapped to a sequential zone. Get the zone write
1392		 * pointer to determine the allocation offset within the zone.
1393		 */
1394		WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1395		nofs_flag = memalloc_nofs_save();
1396		ret = btrfs_get_dev_zone(device, physical[i], &zone);
1397		memalloc_nofs_restore(nofs_flag);
1398		if (ret == -EIO || ret == -EOPNOTSUPP) {
1399			ret = 0;
1400			alloc_offsets[i] = WP_MISSING_DEV;
1401			continue;
1402		} else if (ret) {
1403			goto out;
1404		}
1405
1406		if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1407			btrfs_err_in_rcu(fs_info,
1408	"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1409				zone.start << SECTOR_SHIFT,
1410				rcu_str_deref(device->name), device->devid);
1411			ret = -EIO;
1412			goto out;
1413		}
1414
1415		caps[i] = (zone.capacity << SECTOR_SHIFT);
1416
1417		switch (zone.cond) {
1418		case BLK_ZONE_COND_OFFLINE:
1419		case BLK_ZONE_COND_READONLY:
1420			btrfs_err(fs_info,
1421		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1422				  physical[i] >> device->zone_info->zone_size_shift,
1423				  rcu_str_deref(device->name), device->devid);
1424			alloc_offsets[i] = WP_MISSING_DEV;
1425			break;
1426		case BLK_ZONE_COND_EMPTY:
1427			alloc_offsets[i] = 0;
1428			break;
1429		case BLK_ZONE_COND_FULL:
1430			alloc_offsets[i] = caps[i];
1431			break;
1432		default:
1433			/* Partially used zone */
1434			alloc_offsets[i] =
1435					((zone.wp - zone.start) << SECTOR_SHIFT);
1436			__set_bit(i, active);
1437			break;
1438		}
1439	}
1440
1441	if (num_sequential > 0)
1442		set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1443
1444	if (num_conventional > 0) {
1445		/* Zone capacity is always zone size in emulation */
1446		cache->zone_capacity = cache->length;
1447		ret = calculate_alloc_pointer(cache, &last_alloc, new);
1448		if (ret) {
1449			btrfs_err(fs_info,
1450			"zoned: failed to determine allocation offset of bg %llu",
1451				  cache->start);
1452			goto out;
1453		} else if (map->num_stripes == num_conventional) {
1454			cache->alloc_offset = last_alloc;
1455			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1456			goto out;
1457		}
1458	}
1459
1460	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1461	case 0: /* single */
1462		if (alloc_offsets[0] == WP_MISSING_DEV) {
1463			btrfs_err(fs_info,
1464			"zoned: cannot recover write pointer for zone %llu",
1465				physical[0]);
1466			ret = -EIO;
1467			goto out;
1468		}
1469		cache->alloc_offset = alloc_offsets[0];
1470		cache->zone_capacity = caps[0];
1471		if (test_bit(0, active))
1472			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1473		break;
1474	case BTRFS_BLOCK_GROUP_DUP:
1475		if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1476			btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1477			ret = -EINVAL;
1478			goto out;
1479		}
1480		if (alloc_offsets[0] == WP_MISSING_DEV) {
1481			btrfs_err(fs_info,
1482			"zoned: cannot recover write pointer for zone %llu",
1483				physical[0]);
1484			ret = -EIO;
1485			goto out;
1486		}
1487		if (alloc_offsets[1] == WP_MISSING_DEV) {
1488			btrfs_err(fs_info,
1489			"zoned: cannot recover write pointer for zone %llu",
1490				physical[1]);
1491			ret = -EIO;
1492			goto out;
1493		}
1494		if (alloc_offsets[0] != alloc_offsets[1]) {
1495			btrfs_err(fs_info,
1496			"zoned: write pointer offset mismatch of zones in DUP profile");
1497			ret = -EIO;
1498			goto out;
1499		}
1500		if (test_bit(0, active) != test_bit(1, active)) {
1501			if (!btrfs_zone_activate(cache)) {
1502				ret = -EIO;
1503				goto out;
1504			}
1505		} else {
1506			if (test_bit(0, active))
1507				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1508					&cache->runtime_flags);
1509		}
1510		cache->alloc_offset = alloc_offsets[0];
1511		cache->zone_capacity = min(caps[0], caps[1]);
1512		break;
1513	case BTRFS_BLOCK_GROUP_RAID1:
1514	case BTRFS_BLOCK_GROUP_RAID0:
1515	case BTRFS_BLOCK_GROUP_RAID10:
1516	case BTRFS_BLOCK_GROUP_RAID5:
1517	case BTRFS_BLOCK_GROUP_RAID6:
1518		/* non-single profiles are not supported yet */
1519	default:
1520		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1521			  btrfs_bg_type_to_raid_name(map->type));
1522		ret = -EINVAL;
1523		goto out;
1524	}
1525
1526out:
1527	if (cache->alloc_offset > fs_info->zone_size) {
1528		btrfs_err(fs_info,
1529			"zoned: invalid write pointer %llu in block group %llu",
1530			cache->alloc_offset, cache->start);
1531		ret = -EIO;
1532	}
1533
1534	if (cache->alloc_offset > cache->zone_capacity) {
1535		btrfs_err(fs_info,
1536"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1537			  cache->alloc_offset, cache->zone_capacity,
1538			  cache->start);
1539		ret = -EIO;
1540	}
1541
1542	/* An extent is allocated after the write pointer */
1543	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1544		btrfs_err(fs_info,
1545			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1546			  logical, last_alloc, cache->alloc_offset);
1547		ret = -EIO;
1548	}
1549
1550	if (!ret) {
1551		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1552		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1553			btrfs_get_block_group(cache);
1554			spin_lock(&fs_info->zone_active_bgs_lock);
1555			list_add_tail(&cache->active_bg_list,
1556				      &fs_info->zone_active_bgs);
1557			spin_unlock(&fs_info->zone_active_bgs_lock);
1558		}
1559	} else {
1560		kfree(cache->physical_map);
1561		cache->physical_map = NULL;
1562	}
1563	bitmap_free(active);
1564	kfree(physical);
1565	kfree(caps);
1566	kfree(alloc_offsets);
1567	free_extent_map(em);
1568
1569	return ret;
1570}
1571
1572void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1573{
1574	u64 unusable, free;
1575
1576	if (!btrfs_is_zoned(cache->fs_info))
1577		return;
1578
1579	WARN_ON(cache->bytes_super != 0);
1580	unusable = (cache->alloc_offset - cache->used) +
1581		   (cache->length - cache->zone_capacity);
1582	free = cache->zone_capacity - cache->alloc_offset;
1583
1584	/* We only need ->free_space in ALLOC_SEQ block groups */
1585	cache->cached = BTRFS_CACHE_FINISHED;
1586	cache->free_space_ctl->free_space = free;
1587	cache->zone_unusable = unusable;
1588}
1589
1590void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1591			    struct extent_buffer *eb)
1592{
1593	struct btrfs_fs_info *fs_info = eb->fs_info;
1594
1595	if (!btrfs_is_zoned(fs_info) ||
1596	    btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1597	    !list_empty(&eb->release_list))
1598		return;
1599
1600	set_extent_buffer_dirty(eb);
1601	set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1602			       eb->start + eb->len - 1, EXTENT_DIRTY);
1603	memzero_extent_buffer(eb, 0, eb->len);
1604	set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1605
1606	spin_lock(&trans->releasing_ebs_lock);
1607	list_add_tail(&eb->release_list, &trans->releasing_ebs);
1608	spin_unlock(&trans->releasing_ebs_lock);
1609	atomic_inc(&eb->refs);
1610}
1611
1612void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1613{
1614	spin_lock(&trans->releasing_ebs_lock);
1615	while (!list_empty(&trans->releasing_ebs)) {
1616		struct extent_buffer *eb;
1617
1618		eb = list_first_entry(&trans->releasing_ebs,
1619				      struct extent_buffer, release_list);
1620		list_del_init(&eb->release_list);
1621		free_extent_buffer(eb);
1622	}
1623	spin_unlock(&trans->releasing_ebs_lock);
1624}
1625
1626bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
1627{
1628	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1629	struct btrfs_block_group *cache;
1630	bool ret = false;
1631
1632	if (!btrfs_is_zoned(fs_info))
1633		return false;
1634
1635	if (!is_data_inode(&inode->vfs_inode))
1636		return false;
1637
1638	/*
1639	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1640	 * extent layout the relocation code has.
1641	 * Furthermore we have set aside own block-group from which only the
1642	 * relocation "process" can allocate and make sure only one process at a
1643	 * time can add pages to an extent that gets relocated, so it's safe to
1644	 * use regular REQ_OP_WRITE for this special case.
1645	 */
1646	if (btrfs_is_data_reloc_root(inode->root))
1647		return false;
1648
1649	cache = btrfs_lookup_block_group(fs_info, start);
1650	ASSERT(cache);
1651	if (!cache)
1652		return false;
1653
1654	ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1655	btrfs_put_block_group(cache);
1656
1657	return ret;
1658}
1659
1660void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1661				 struct bio *bio)
1662{
1663	struct btrfs_ordered_extent *ordered;
1664	const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1665
1666	if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1667		return;
1668
1669	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1670	if (WARN_ON(!ordered))
1671		return;
1672
1673	ordered->physical = physical;
1674	ordered->bdev = bio->bi_bdev;
1675
1676	btrfs_put_ordered_extent(ordered);
1677}
1678
1679void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1680{
1681	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1682	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1683	struct extent_map_tree *em_tree;
1684	struct extent_map *em;
1685	struct btrfs_ordered_sum *sum;
1686	u64 orig_logical = ordered->disk_bytenr;
1687	u64 *logical = NULL;
1688	int nr, stripe_len;
1689
1690	/* Zoned devices should not have partitions. So, we can assume it is 0 */
1691	ASSERT(!bdev_is_partition(ordered->bdev));
1692	if (WARN_ON(!ordered->bdev))
1693		return;
1694
1695	if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
1696				     ordered->physical, &logical, &nr,
1697				     &stripe_len)))
1698		goto out;
1699
1700	WARN_ON(nr != 1);
1701
1702	if (orig_logical == *logical)
1703		goto out;
1704
1705	ordered->disk_bytenr = *logical;
1706
1707	em_tree = &inode->extent_tree;
1708	write_lock(&em_tree->lock);
1709	em = search_extent_mapping(em_tree, ordered->file_offset,
1710				   ordered->num_bytes);
1711	em->block_start = *logical;
1712	free_extent_map(em);
1713	write_unlock(&em_tree->lock);
1714
1715	list_for_each_entry(sum, &ordered->list, list) {
1716		if (*logical < orig_logical)
1717			sum->bytenr -= orig_logical - *logical;
1718		else
1719			sum->bytenr += *logical - orig_logical;
1720	}
1721
1722out:
1723	kfree(logical);
1724}
1725
1726bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1727				    struct extent_buffer *eb,
1728				    struct btrfs_block_group **cache_ret)
1729{
1730	struct btrfs_block_group *cache;
1731	bool ret = true;
1732
1733	if (!btrfs_is_zoned(fs_info))
1734		return true;
1735
1736	cache = btrfs_lookup_block_group(fs_info, eb->start);
1737	if (!cache)
1738		return true;
1739
1740	if (cache->meta_write_pointer != eb->start) {
1741		btrfs_put_block_group(cache);
1742		cache = NULL;
1743		ret = false;
1744	} else {
1745		cache->meta_write_pointer = eb->start + eb->len;
1746	}
1747
1748	*cache_ret = cache;
1749
1750	return ret;
1751}
1752
1753void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1754				     struct extent_buffer *eb)
1755{
1756	if (!btrfs_is_zoned(eb->fs_info) || !cache)
1757		return;
1758
1759	ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1760	cache->meta_write_pointer = eb->start;
1761}
1762
1763int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1764{
1765	if (!btrfs_dev_is_sequential(device, physical))
1766		return -EOPNOTSUPP;
1767
1768	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1769				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1770}
1771
1772static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1773			  struct blk_zone *zone)
1774{
1775	struct btrfs_io_context *bioc = NULL;
1776	u64 mapped_length = PAGE_SIZE;
1777	unsigned int nofs_flag;
1778	int nmirrors;
1779	int i, ret;
1780
1781	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1782			       &mapped_length, &bioc);
1783	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1784		ret = -EIO;
1785		goto out_put_bioc;
1786	}
1787
1788	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1789		ret = -EINVAL;
1790		goto out_put_bioc;
1791	}
1792
1793	nofs_flag = memalloc_nofs_save();
1794	nmirrors = (int)bioc->num_stripes;
1795	for (i = 0; i < nmirrors; i++) {
1796		u64 physical = bioc->stripes[i].physical;
1797		struct btrfs_device *dev = bioc->stripes[i].dev;
1798
1799		/* Missing device */
1800		if (!dev->bdev)
1801			continue;
1802
1803		ret = btrfs_get_dev_zone(dev, physical, zone);
1804		/* Failing device */
1805		if (ret == -EIO || ret == -EOPNOTSUPP)
1806			continue;
1807		break;
1808	}
1809	memalloc_nofs_restore(nofs_flag);
1810out_put_bioc:
1811	btrfs_put_bioc(bioc);
1812	return ret;
1813}
1814
1815/*
1816 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1817 * filling zeros between @physical_pos to a write pointer of dev-replace
1818 * source device.
1819 */
1820int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1821				    u64 physical_start, u64 physical_pos)
1822{
1823	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1824	struct blk_zone zone;
1825	u64 length;
1826	u64 wp;
1827	int ret;
1828
1829	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1830		return 0;
1831
1832	ret = read_zone_info(fs_info, logical, &zone);
1833	if (ret)
1834		return ret;
1835
1836	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1837
1838	if (physical_pos == wp)
1839		return 0;
1840
1841	if (physical_pos > wp)
1842		return -EUCLEAN;
1843
1844	length = wp - physical_pos;
1845	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1846}
1847
1848struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1849					    u64 logical, u64 length)
1850{
1851	struct btrfs_device *device;
1852	struct extent_map *em;
1853	struct map_lookup *map;
1854
1855	em = btrfs_get_chunk_map(fs_info, logical, length);
1856	if (IS_ERR(em))
1857		return ERR_CAST(em);
1858
1859	map = em->map_lookup;
1860	/* We only support single profile for now */
1861	device = map->stripes[0].dev;
1862
1863	free_extent_map(em);
1864
1865	return device;
1866}
1867
1868/*
1869 * Activate block group and underlying device zones
1870 *
1871 * @block_group: the block group to activate
1872 *
1873 * Return: true on success, false otherwise
1874 */
1875bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1876{
1877	struct btrfs_fs_info *fs_info = block_group->fs_info;
1878	struct btrfs_space_info *space_info = block_group->space_info;
1879	struct map_lookup *map;
1880	struct btrfs_device *device;
1881	u64 physical;
1882	bool ret;
1883	int i;
1884
1885	if (!btrfs_is_zoned(block_group->fs_info))
1886		return true;
1887
1888	map = block_group->physical_map;
1889
1890	spin_lock(&space_info->lock);
1891	spin_lock(&block_group->lock);
1892	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1893		ret = true;
1894		goto out_unlock;
1895	}
1896
1897	/* No space left */
1898	if (btrfs_zoned_bg_is_full(block_group)) {
1899		ret = false;
1900		goto out_unlock;
1901	}
1902
1903	for (i = 0; i < map->num_stripes; i++) {
1904		device = map->stripes[i].dev;
1905		physical = map->stripes[i].physical;
1906
1907		if (device->zone_info->max_active_zones == 0)
1908			continue;
1909
1910		if (!btrfs_dev_set_active_zone(device, physical)) {
1911			/* Cannot activate the zone */
1912			ret = false;
1913			goto out_unlock;
1914		}
1915	}
1916
1917	/* Successfully activated all the zones */
1918	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
1919	space_info->active_total_bytes += block_group->length;
1920	spin_unlock(&block_group->lock);
1921	btrfs_try_granting_tickets(fs_info, space_info);
1922	spin_unlock(&space_info->lock);
1923
1924	/* For the active block group list */
1925	btrfs_get_block_group(block_group);
1926
1927	spin_lock(&fs_info->zone_active_bgs_lock);
1928	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1929	spin_unlock(&fs_info->zone_active_bgs_lock);
1930
1931	return true;
1932
1933out_unlock:
1934	spin_unlock(&block_group->lock);
1935	spin_unlock(&space_info->lock);
1936	return ret;
1937}
1938
1939static void wait_eb_writebacks(struct btrfs_block_group *block_group)
1940{
1941	struct btrfs_fs_info *fs_info = block_group->fs_info;
1942	const u64 end = block_group->start + block_group->length;
1943	struct radix_tree_iter iter;
1944	struct extent_buffer *eb;
1945	void __rcu **slot;
1946
1947	rcu_read_lock();
1948	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
1949				 block_group->start >> fs_info->sectorsize_bits) {
1950		eb = radix_tree_deref_slot(slot);
1951		if (!eb)
1952			continue;
1953		if (radix_tree_deref_retry(eb)) {
1954			slot = radix_tree_iter_retry(&iter);
1955			continue;
1956		}
1957
1958		if (eb->start < block_group->start)
1959			continue;
1960		if (eb->start >= end)
1961			break;
1962
1963		slot = radix_tree_iter_resume(slot, &iter);
1964		rcu_read_unlock();
1965		wait_on_extent_buffer_writeback(eb);
1966		rcu_read_lock();
1967	}
1968	rcu_read_unlock();
1969}
1970
1971static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
1972{
1973	struct btrfs_fs_info *fs_info = block_group->fs_info;
1974	struct map_lookup *map;
1975	const bool is_metadata = (block_group->flags &
1976			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
1977	int ret = 0;
1978	int i;
1979
1980	spin_lock(&block_group->lock);
1981	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1982		spin_unlock(&block_group->lock);
1983		return 0;
1984	}
1985
1986	/* Check if we have unwritten allocated space */
1987	if (is_metadata &&
1988	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
1989		spin_unlock(&block_group->lock);
1990		return -EAGAIN;
1991	}
1992
1993	/*
1994	 * If we are sure that the block group is full (= no more room left for
1995	 * new allocation) and the IO for the last usable block is completed, we
1996	 * don't need to wait for the other IOs. This holds because we ensure
1997	 * the sequential IO submissions using the ZONE_APPEND command for data
1998	 * and block_group->meta_write_pointer for metadata.
1999	 */
2000	if (!fully_written) {
2001		spin_unlock(&block_group->lock);
2002
2003		ret = btrfs_inc_block_group_ro(block_group, false);
2004		if (ret)
2005			return ret;
2006
2007		/* Ensure all writes in this block group finish */
2008		btrfs_wait_block_group_reservations(block_group);
2009		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
2010		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2011					 block_group->length);
2012		/* Wait for extent buffers to be written. */
2013		if (is_metadata)
2014			wait_eb_writebacks(block_group);
2015
2016		spin_lock(&block_group->lock);
2017
2018		/*
2019		 * Bail out if someone already deactivated the block group, or
2020		 * allocated space is left in the block group.
2021		 */
2022		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2023			      &block_group->runtime_flags)) {
2024			spin_unlock(&block_group->lock);
2025			btrfs_dec_block_group_ro(block_group);
2026			return 0;
2027		}
2028
2029		if (block_group->reserved) {
2030			spin_unlock(&block_group->lock);
2031			btrfs_dec_block_group_ro(block_group);
2032			return -EAGAIN;
2033		}
2034	}
2035
2036	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2037	block_group->alloc_offset = block_group->zone_capacity;
2038	block_group->free_space_ctl->free_space = 0;
2039	btrfs_clear_treelog_bg(block_group);
2040	btrfs_clear_data_reloc_bg(block_group);
2041	spin_unlock(&block_group->lock);
2042
2043	map = block_group->physical_map;
2044	for (i = 0; i < map->num_stripes; i++) {
2045		struct btrfs_device *device = map->stripes[i].dev;
2046		const u64 physical = map->stripes[i].physical;
2047
2048		if (device->zone_info->max_active_zones == 0)
2049			continue;
2050
2051		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2052				       physical >> SECTOR_SHIFT,
2053				       device->zone_info->zone_size >> SECTOR_SHIFT,
2054				       GFP_NOFS);
2055
2056		if (ret)
2057			return ret;
2058
2059		btrfs_dev_clear_active_zone(device, physical);
2060	}
2061
2062	if (!fully_written)
2063		btrfs_dec_block_group_ro(block_group);
2064
2065	spin_lock(&fs_info->zone_active_bgs_lock);
2066	ASSERT(!list_empty(&block_group->active_bg_list));
2067	list_del_init(&block_group->active_bg_list);
2068	spin_unlock(&fs_info->zone_active_bgs_lock);
2069
2070	/* For active_bg_list */
2071	btrfs_put_block_group(block_group);
2072
2073	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2074
2075	return 0;
2076}
2077
2078int btrfs_zone_finish(struct btrfs_block_group *block_group)
2079{
2080	if (!btrfs_is_zoned(block_group->fs_info))
2081		return 0;
2082
2083	return do_zone_finish(block_group, false);
2084}
2085
2086bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2087{
2088	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2089	struct btrfs_device *device;
2090	bool ret = false;
2091
2092	if (!btrfs_is_zoned(fs_info))
2093		return true;
2094
2095	/* Check if there is a device with active zones left */
2096	mutex_lock(&fs_info->chunk_mutex);
2097	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2098		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2099
2100		if (!device->bdev)
2101			continue;
2102
2103		if (!zinfo->max_active_zones ||
2104		    atomic_read(&zinfo->active_zones_left)) {
2105			ret = true;
2106			break;
2107		}
2108	}
2109	mutex_unlock(&fs_info->chunk_mutex);
2110
2111	if (!ret)
2112		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2113
2114	return ret;
2115}
2116
2117void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2118{
2119	struct btrfs_block_group *block_group;
2120	u64 min_alloc_bytes;
2121
2122	if (!btrfs_is_zoned(fs_info))
2123		return;
2124
2125	block_group = btrfs_lookup_block_group(fs_info, logical);
2126	ASSERT(block_group);
2127
2128	/* No MIXED_BG on zoned btrfs. */
2129	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2130		min_alloc_bytes = fs_info->sectorsize;
2131	else
2132		min_alloc_bytes = fs_info->nodesize;
2133
2134	/* Bail out if we can allocate more data from this block group. */
2135	if (logical + length + min_alloc_bytes <=
2136	    block_group->start + block_group->zone_capacity)
2137		goto out;
2138
2139	do_zone_finish(block_group, true);
2140
2141out:
2142	btrfs_put_block_group(block_group);
2143}
2144
2145static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2146{
2147	struct btrfs_block_group *bg =
2148		container_of(work, struct btrfs_block_group, zone_finish_work);
2149
2150	wait_on_extent_buffer_writeback(bg->last_eb);
2151	free_extent_buffer(bg->last_eb);
2152	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2153	btrfs_put_block_group(bg);
2154}
2155
2156void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2157				   struct extent_buffer *eb)
2158{
2159	if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2160	    eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2161		return;
2162
2163	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2164		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2165			  bg->start);
2166		return;
2167	}
2168
2169	/* For the work */
2170	btrfs_get_block_group(bg);
2171	atomic_inc(&eb->refs);
2172	bg->last_eb = eb;
2173	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2174	queue_work(system_unbound_wq, &bg->zone_finish_work);
2175}
2176
2177void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2178{
2179	struct btrfs_fs_info *fs_info = bg->fs_info;
2180
2181	spin_lock(&fs_info->relocation_bg_lock);
2182	if (fs_info->data_reloc_bg == bg->start)
2183		fs_info->data_reloc_bg = 0;
2184	spin_unlock(&fs_info->relocation_bg_lock);
2185}
2186
2187void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2188{
2189	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2190	struct btrfs_device *device;
2191
2192	if (!btrfs_is_zoned(fs_info))
2193		return;
2194
2195	mutex_lock(&fs_devices->device_list_mutex);
2196	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2197		if (device->zone_info) {
2198			vfree(device->zone_info->zone_cache);
2199			device->zone_info->zone_cache = NULL;
2200		}
2201	}
2202	mutex_unlock(&fs_devices->device_list_mutex);
2203}
2204
2205bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2206{
2207	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2208	struct btrfs_device *device;
2209	u64 used = 0;
2210	u64 total = 0;
2211	u64 factor;
2212
2213	ASSERT(btrfs_is_zoned(fs_info));
2214
2215	if (fs_info->bg_reclaim_threshold == 0)
2216		return false;
2217
2218	mutex_lock(&fs_devices->device_list_mutex);
2219	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2220		if (!device->bdev)
2221			continue;
2222
2223		total += device->disk_total_bytes;
2224		used += device->bytes_used;
2225	}
2226	mutex_unlock(&fs_devices->device_list_mutex);
2227
2228	factor = div64_u64(used * 100, total);
2229	return factor >= fs_info->bg_reclaim_threshold;
2230}
2231
2232void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2233				       u64 length)
2234{
2235	struct btrfs_block_group *block_group;
2236
2237	if (!btrfs_is_zoned(fs_info))
2238		return;
2239
2240	block_group = btrfs_lookup_block_group(fs_info, logical);
2241	/* It should be called on a previous data relocation block group. */
2242	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2243
2244	spin_lock(&block_group->lock);
2245	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2246		goto out;
2247
2248	/* All relocation extents are written. */
2249	if (block_group->start + block_group->alloc_offset == logical + length) {
2250		/* Now, release this block group for further allocations. */
2251		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2252			  &block_group->runtime_flags);
2253	}
2254
2255out:
2256	spin_unlock(&block_group->lock);
2257	btrfs_put_block_group(block_group);
2258}
2259
2260int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2261{
2262	struct btrfs_block_group *block_group;
2263	struct btrfs_block_group *min_bg = NULL;
2264	u64 min_avail = U64_MAX;
2265	int ret;
2266
2267	spin_lock(&fs_info->zone_active_bgs_lock);
2268	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2269			    active_bg_list) {
2270		u64 avail;
2271
2272		spin_lock(&block_group->lock);
2273		if (block_group->reserved ||
2274		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
2275			spin_unlock(&block_group->lock);
2276			continue;
2277		}
2278
2279		avail = block_group->zone_capacity - block_group->alloc_offset;
2280		if (min_avail > avail) {
2281			if (min_bg)
2282				btrfs_put_block_group(min_bg);
2283			min_bg = block_group;
2284			min_avail = avail;
2285			btrfs_get_block_group(min_bg);
2286		}
2287		spin_unlock(&block_group->lock);
2288	}
2289	spin_unlock(&fs_info->zone_active_bgs_lock);
2290
2291	if (!min_bg)
2292		return 0;
2293
2294	ret = btrfs_zone_finish(min_bg);
2295	btrfs_put_block_group(min_bg);
2296
2297	return ret < 0 ? ret : 1;
2298}
2299
2300int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2301				struct btrfs_space_info *space_info,
2302				bool do_finish)
2303{
2304	struct btrfs_block_group *bg;
2305	int index;
2306
2307	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2308		return 0;
2309
2310	/* No more block groups to activate */
2311	if (space_info->active_total_bytes == space_info->total_bytes)
2312		return 0;
2313
2314	for (;;) {
2315		int ret;
2316		bool need_finish = false;
2317
2318		down_read(&space_info->groups_sem);
2319		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2320			list_for_each_entry(bg, &space_info->block_groups[index],
2321					    list) {
2322				if (!spin_trylock(&bg->lock))
2323					continue;
2324				if (btrfs_zoned_bg_is_full(bg) ||
2325				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2326					     &bg->runtime_flags)) {
2327					spin_unlock(&bg->lock);
2328					continue;
2329				}
2330				spin_unlock(&bg->lock);
2331
2332				if (btrfs_zone_activate(bg)) {
2333					up_read(&space_info->groups_sem);
2334					return 1;
2335				}
2336
2337				need_finish = true;
2338			}
2339		}
2340		up_read(&space_info->groups_sem);
2341
2342		if (!do_finish || !need_finish)
2343			break;
2344
2345		ret = btrfs_zone_finish_one_bg(fs_info);
2346		if (ret == 0)
2347			break;
2348		if (ret < 0)
2349			return ret;
2350	}
2351
2352	return 0;
2353}