Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/blkdev.h>
6#include <linux/sched/mm.h>
7#include <linux/atomic.h>
8#include <linux/vmalloc.h>
9#include "ctree.h"
10#include "volumes.h"
11#include "zoned.h"
12#include "rcu-string.h"
13#include "disk-io.h"
14#include "block-group.h"
15#include "transaction.h"
16#include "dev-replace.h"
17#include "space-info.h"
18#include "fs.h"
19#include "accessors.h"
20
21/* Maximum number of zones to report per blkdev_report_zones() call */
22#define BTRFS_REPORT_NR_ZONES 4096
23/* Invalid allocation pointer value for missing devices */
24#define WP_MISSING_DEV ((u64)-1)
25/* Pseudo write pointer value for conventional zone */
26#define WP_CONVENTIONAL ((u64)-2)
27
28/*
29 * Location of the first zone of superblock logging zone pairs.
30 *
31 * - primary superblock: 0B (zone 0)
32 * - first copy: 512G (zone starting at that offset)
33 * - second copy: 4T (zone starting at that offset)
34 */
35#define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
36#define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
37#define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
38
39#define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
40#define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
41
42/* Number of superblock log zones */
43#define BTRFS_NR_SB_LOG_ZONES 2
44
45/*
46 * Minimum of active zones we need:
47 *
48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
50 * - 1 zone for tree-log dedicated block group
51 * - 1 zone for relocation
52 */
53#define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
54
55/*
56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
58 * We do not expect the zone size to become larger than 8GiB or smaller than
59 * 4MiB in the near future.
60 */
61#define BTRFS_MAX_ZONE_SIZE SZ_8G
62#define BTRFS_MIN_ZONE_SIZE SZ_4M
63
64#define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
65
66static inline bool sb_zone_is_full(const struct blk_zone *zone)
67{
68 return (zone->cond == BLK_ZONE_COND_FULL) ||
69 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
70}
71
72static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
73{
74 struct blk_zone *zones = data;
75
76 memcpy(&zones[idx], zone, sizeof(*zone));
77
78 return 0;
79}
80
81static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
82 u64 *wp_ret)
83{
84 bool empty[BTRFS_NR_SB_LOG_ZONES];
85 bool full[BTRFS_NR_SB_LOG_ZONES];
86 sector_t sector;
87 int i;
88
89 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
90 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
91 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
92 full[i] = sb_zone_is_full(&zones[i]);
93 }
94
95 /*
96 * Possible states of log buffer zones
97 *
98 * Empty[0] In use[0] Full[0]
99 * Empty[1] * 0 1
100 * In use[1] x x 1
101 * Full[1] 0 0 C
102 *
103 * Log position:
104 * *: Special case, no superblock is written
105 * 0: Use write pointer of zones[0]
106 * 1: Use write pointer of zones[1]
107 * C: Compare super blocks from zones[0] and zones[1], use the latest
108 * one determined by generation
109 * x: Invalid state
110 */
111
112 if (empty[0] && empty[1]) {
113 /* Special case to distinguish no superblock to read */
114 *wp_ret = zones[0].start << SECTOR_SHIFT;
115 return -ENOENT;
116 } else if (full[0] && full[1]) {
117 /* Compare two super blocks */
118 struct address_space *mapping = bdev->bd_inode->i_mapping;
119 struct page *page[BTRFS_NR_SB_LOG_ZONES];
120 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
121 int i;
122
123 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
124 u64 bytenr;
125
126 bytenr = ((zones[i].start + zones[i].len)
127 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
128
129 page[i] = read_cache_page_gfp(mapping,
130 bytenr >> PAGE_SHIFT, GFP_NOFS);
131 if (IS_ERR(page[i])) {
132 if (i == 1)
133 btrfs_release_disk_super(super[0]);
134 return PTR_ERR(page[i]);
135 }
136 super[i] = page_address(page[i]);
137 }
138
139 if (btrfs_super_generation(super[0]) >
140 btrfs_super_generation(super[1]))
141 sector = zones[1].start;
142 else
143 sector = zones[0].start;
144
145 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
146 btrfs_release_disk_super(super[i]);
147 } else if (!full[0] && (empty[1] || full[1])) {
148 sector = zones[0].wp;
149 } else if (full[0]) {
150 sector = zones[1].wp;
151 } else {
152 return -EUCLEAN;
153 }
154 *wp_ret = sector << SECTOR_SHIFT;
155 return 0;
156}
157
158/*
159 * Get the first zone number of the superblock mirror
160 */
161static inline u32 sb_zone_number(int shift, int mirror)
162{
163 u64 zone;
164
165 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
166 switch (mirror) {
167 case 0: zone = 0; break;
168 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
169 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
170 }
171
172 ASSERT(zone <= U32_MAX);
173
174 return (u32)zone;
175}
176
177static inline sector_t zone_start_sector(u32 zone_number,
178 struct block_device *bdev)
179{
180 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
181}
182
183static inline u64 zone_start_physical(u32 zone_number,
184 struct btrfs_zoned_device_info *zone_info)
185{
186 return (u64)zone_number << zone_info->zone_size_shift;
187}
188
189/*
190 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
191 * device into static sized chunks and fake a conventional zone on each of
192 * them.
193 */
194static int emulate_report_zones(struct btrfs_device *device, u64 pos,
195 struct blk_zone *zones, unsigned int nr_zones)
196{
197 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
198 sector_t bdev_size = bdev_nr_sectors(device->bdev);
199 unsigned int i;
200
201 pos >>= SECTOR_SHIFT;
202 for (i = 0; i < nr_zones; i++) {
203 zones[i].start = i * zone_sectors + pos;
204 zones[i].len = zone_sectors;
205 zones[i].capacity = zone_sectors;
206 zones[i].wp = zones[i].start + zone_sectors;
207 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
208 zones[i].cond = BLK_ZONE_COND_NOT_WP;
209
210 if (zones[i].wp >= bdev_size) {
211 i++;
212 break;
213 }
214 }
215
216 return i;
217}
218
219static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
220 struct blk_zone *zones, unsigned int *nr_zones)
221{
222 struct btrfs_zoned_device_info *zinfo = device->zone_info;
223 u32 zno;
224 int ret;
225
226 if (!*nr_zones)
227 return 0;
228
229 if (!bdev_is_zoned(device->bdev)) {
230 ret = emulate_report_zones(device, pos, zones, *nr_zones);
231 *nr_zones = ret;
232 return 0;
233 }
234
235 /* Check cache */
236 if (zinfo->zone_cache) {
237 unsigned int i;
238
239 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
240 zno = pos >> zinfo->zone_size_shift;
241 /*
242 * We cannot report zones beyond the zone end. So, it is OK to
243 * cap *nr_zones to at the end.
244 */
245 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
246
247 for (i = 0; i < *nr_zones; i++) {
248 struct blk_zone *zone_info;
249
250 zone_info = &zinfo->zone_cache[zno + i];
251 if (!zone_info->len)
252 break;
253 }
254
255 if (i == *nr_zones) {
256 /* Cache hit on all the zones */
257 memcpy(zones, zinfo->zone_cache + zno,
258 sizeof(*zinfo->zone_cache) * *nr_zones);
259 return 0;
260 }
261 }
262
263 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
264 copy_zone_info_cb, zones);
265 if (ret < 0) {
266 btrfs_err_in_rcu(device->fs_info,
267 "zoned: failed to read zone %llu on %s (devid %llu)",
268 pos, rcu_str_deref(device->name),
269 device->devid);
270 return ret;
271 }
272 *nr_zones = ret;
273 if (!ret)
274 return -EIO;
275
276 /* Populate cache */
277 if (zinfo->zone_cache)
278 memcpy(zinfo->zone_cache + zno, zones,
279 sizeof(*zinfo->zone_cache) * *nr_zones);
280
281 return 0;
282}
283
284/* The emulated zone size is determined from the size of device extent */
285static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
286{
287 struct btrfs_path *path;
288 struct btrfs_root *root = fs_info->dev_root;
289 struct btrfs_key key;
290 struct extent_buffer *leaf;
291 struct btrfs_dev_extent *dext;
292 int ret = 0;
293
294 key.objectid = 1;
295 key.type = BTRFS_DEV_EXTENT_KEY;
296 key.offset = 0;
297
298 path = btrfs_alloc_path();
299 if (!path)
300 return -ENOMEM;
301
302 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
303 if (ret < 0)
304 goto out;
305
306 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
307 ret = btrfs_next_leaf(root, path);
308 if (ret < 0)
309 goto out;
310 /* No dev extents at all? Not good */
311 if (ret > 0) {
312 ret = -EUCLEAN;
313 goto out;
314 }
315 }
316
317 leaf = path->nodes[0];
318 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
319 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
320 ret = 0;
321
322out:
323 btrfs_free_path(path);
324
325 return ret;
326}
327
328int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
329{
330 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
331 struct btrfs_device *device;
332 int ret = 0;
333
334 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
335 if (!btrfs_fs_incompat(fs_info, ZONED))
336 return 0;
337
338 mutex_lock(&fs_devices->device_list_mutex);
339 list_for_each_entry(device, &fs_devices->devices, dev_list) {
340 /* We can skip reading of zone info for missing devices */
341 if (!device->bdev)
342 continue;
343
344 ret = btrfs_get_dev_zone_info(device, true);
345 if (ret)
346 break;
347 }
348 mutex_unlock(&fs_devices->device_list_mutex);
349
350 return ret;
351}
352
353int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
354{
355 struct btrfs_fs_info *fs_info = device->fs_info;
356 struct btrfs_zoned_device_info *zone_info = NULL;
357 struct block_device *bdev = device->bdev;
358 unsigned int max_active_zones;
359 unsigned int nactive;
360 sector_t nr_sectors;
361 sector_t sector = 0;
362 struct blk_zone *zones = NULL;
363 unsigned int i, nreported = 0, nr_zones;
364 sector_t zone_sectors;
365 char *model, *emulated;
366 int ret;
367
368 /*
369 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
370 * yet be set.
371 */
372 if (!btrfs_fs_incompat(fs_info, ZONED))
373 return 0;
374
375 if (device->zone_info)
376 return 0;
377
378 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
379 if (!zone_info)
380 return -ENOMEM;
381
382 device->zone_info = zone_info;
383
384 if (!bdev_is_zoned(bdev)) {
385 if (!fs_info->zone_size) {
386 ret = calculate_emulated_zone_size(fs_info);
387 if (ret)
388 goto out;
389 }
390
391 ASSERT(fs_info->zone_size);
392 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
393 } else {
394 zone_sectors = bdev_zone_sectors(bdev);
395 }
396
397 ASSERT(is_power_of_two_u64(zone_sectors));
398 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
399
400 /* We reject devices with a zone size larger than 8GB */
401 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
402 btrfs_err_in_rcu(fs_info,
403 "zoned: %s: zone size %llu larger than supported maximum %llu",
404 rcu_str_deref(device->name),
405 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
406 ret = -EINVAL;
407 goto out;
408 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
409 btrfs_err_in_rcu(fs_info,
410 "zoned: %s: zone size %llu smaller than supported minimum %u",
411 rcu_str_deref(device->name),
412 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
413 ret = -EINVAL;
414 goto out;
415 }
416
417 nr_sectors = bdev_nr_sectors(bdev);
418 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
419 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
420 /*
421 * We limit max_zone_append_size also by max_segments *
422 * PAGE_SIZE. Technically, we can have multiple pages per segment. But,
423 * since btrfs adds the pages one by one to a bio, and btrfs cannot
424 * increase the metadata reservation even if it increases the number of
425 * extents, it is safe to stick with the limit.
426 *
427 * With the zoned emulation, we can have non-zoned device on the zoned
428 * mode. In this case, we don't have a valid max zone append size. So,
429 * use max_segments * PAGE_SIZE as the pseudo max_zone_append_size.
430 */
431 if (bdev_is_zoned(bdev)) {
432 zone_info->max_zone_append_size = min_t(u64,
433 (u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT,
434 (u64)bdev_max_segments(bdev) << PAGE_SHIFT);
435 } else {
436 zone_info->max_zone_append_size =
437 (u64)bdev_max_segments(bdev) << PAGE_SHIFT;
438 }
439 if (!IS_ALIGNED(nr_sectors, zone_sectors))
440 zone_info->nr_zones++;
441
442 max_active_zones = bdev_max_active_zones(bdev);
443 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
444 btrfs_err_in_rcu(fs_info,
445"zoned: %s: max active zones %u is too small, need at least %u active zones",
446 rcu_str_deref(device->name), max_active_zones,
447 BTRFS_MIN_ACTIVE_ZONES);
448 ret = -EINVAL;
449 goto out;
450 }
451 zone_info->max_active_zones = max_active_zones;
452
453 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
454 if (!zone_info->seq_zones) {
455 ret = -ENOMEM;
456 goto out;
457 }
458
459 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
460 if (!zone_info->empty_zones) {
461 ret = -ENOMEM;
462 goto out;
463 }
464
465 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
466 if (!zone_info->active_zones) {
467 ret = -ENOMEM;
468 goto out;
469 }
470
471 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
472 if (!zones) {
473 ret = -ENOMEM;
474 goto out;
475 }
476
477 /*
478 * Enable zone cache only for a zoned device. On a non-zoned device, we
479 * fill the zone info with emulated CONVENTIONAL zones, so no need to
480 * use the cache.
481 */
482 if (populate_cache && bdev_is_zoned(device->bdev)) {
483 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
484 zone_info->nr_zones);
485 if (!zone_info->zone_cache) {
486 btrfs_err_in_rcu(device->fs_info,
487 "zoned: failed to allocate zone cache for %s",
488 rcu_str_deref(device->name));
489 ret = -ENOMEM;
490 goto out;
491 }
492 }
493
494 /* Get zones type */
495 nactive = 0;
496 while (sector < nr_sectors) {
497 nr_zones = BTRFS_REPORT_NR_ZONES;
498 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
499 &nr_zones);
500 if (ret)
501 goto out;
502
503 for (i = 0; i < nr_zones; i++) {
504 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
505 __set_bit(nreported, zone_info->seq_zones);
506 switch (zones[i].cond) {
507 case BLK_ZONE_COND_EMPTY:
508 __set_bit(nreported, zone_info->empty_zones);
509 break;
510 case BLK_ZONE_COND_IMP_OPEN:
511 case BLK_ZONE_COND_EXP_OPEN:
512 case BLK_ZONE_COND_CLOSED:
513 __set_bit(nreported, zone_info->active_zones);
514 nactive++;
515 break;
516 }
517 nreported++;
518 }
519 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
520 }
521
522 if (nreported != zone_info->nr_zones) {
523 btrfs_err_in_rcu(device->fs_info,
524 "inconsistent number of zones on %s (%u/%u)",
525 rcu_str_deref(device->name), nreported,
526 zone_info->nr_zones);
527 ret = -EIO;
528 goto out;
529 }
530
531 if (max_active_zones) {
532 if (nactive > max_active_zones) {
533 btrfs_err_in_rcu(device->fs_info,
534 "zoned: %u active zones on %s exceeds max_active_zones %u",
535 nactive, rcu_str_deref(device->name),
536 max_active_zones);
537 ret = -EIO;
538 goto out;
539 }
540 atomic_set(&zone_info->active_zones_left,
541 max_active_zones - nactive);
542 /* Overcommit does not work well with active zone tacking. */
543 set_bit(BTRFS_FS_NO_OVERCOMMIT, &fs_info->flags);
544 }
545
546 /* Validate superblock log */
547 nr_zones = BTRFS_NR_SB_LOG_ZONES;
548 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
549 u32 sb_zone;
550 u64 sb_wp;
551 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
552
553 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
554 if (sb_zone + 1 >= zone_info->nr_zones)
555 continue;
556
557 ret = btrfs_get_dev_zones(device,
558 zone_start_physical(sb_zone, zone_info),
559 &zone_info->sb_zones[sb_pos],
560 &nr_zones);
561 if (ret)
562 goto out;
563
564 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
565 btrfs_err_in_rcu(device->fs_info,
566 "zoned: failed to read super block log zone info at devid %llu zone %u",
567 device->devid, sb_zone);
568 ret = -EUCLEAN;
569 goto out;
570 }
571
572 /*
573 * If zones[0] is conventional, always use the beginning of the
574 * zone to record superblock. No need to validate in that case.
575 */
576 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
577 BLK_ZONE_TYPE_CONVENTIONAL)
578 continue;
579
580 ret = sb_write_pointer(device->bdev,
581 &zone_info->sb_zones[sb_pos], &sb_wp);
582 if (ret != -ENOENT && ret) {
583 btrfs_err_in_rcu(device->fs_info,
584 "zoned: super block log zone corrupted devid %llu zone %u",
585 device->devid, sb_zone);
586 ret = -EUCLEAN;
587 goto out;
588 }
589 }
590
591
592 kvfree(zones);
593
594 switch (bdev_zoned_model(bdev)) {
595 case BLK_ZONED_HM:
596 model = "host-managed zoned";
597 emulated = "";
598 break;
599 case BLK_ZONED_HA:
600 model = "host-aware zoned";
601 emulated = "";
602 break;
603 case BLK_ZONED_NONE:
604 model = "regular";
605 emulated = "emulated ";
606 break;
607 default:
608 /* Just in case */
609 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
610 bdev_zoned_model(bdev),
611 rcu_str_deref(device->name));
612 ret = -EOPNOTSUPP;
613 goto out_free_zone_info;
614 }
615
616 btrfs_info_in_rcu(fs_info,
617 "%s block device %s, %u %szones of %llu bytes",
618 model, rcu_str_deref(device->name), zone_info->nr_zones,
619 emulated, zone_info->zone_size);
620
621 return 0;
622
623out:
624 kvfree(zones);
625out_free_zone_info:
626 btrfs_destroy_dev_zone_info(device);
627
628 return ret;
629}
630
631void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
632{
633 struct btrfs_zoned_device_info *zone_info = device->zone_info;
634
635 if (!zone_info)
636 return;
637
638 bitmap_free(zone_info->active_zones);
639 bitmap_free(zone_info->seq_zones);
640 bitmap_free(zone_info->empty_zones);
641 vfree(zone_info->zone_cache);
642 kfree(zone_info);
643 device->zone_info = NULL;
644}
645
646struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
647{
648 struct btrfs_zoned_device_info *zone_info;
649
650 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
651 if (!zone_info)
652 return NULL;
653
654 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
655 if (!zone_info->seq_zones)
656 goto out;
657
658 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
659 zone_info->nr_zones);
660
661 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
662 if (!zone_info->empty_zones)
663 goto out;
664
665 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
666 zone_info->nr_zones);
667
668 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
669 if (!zone_info->active_zones)
670 goto out;
671
672 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
673 zone_info->nr_zones);
674 zone_info->zone_cache = NULL;
675
676 return zone_info;
677
678out:
679 bitmap_free(zone_info->seq_zones);
680 bitmap_free(zone_info->empty_zones);
681 bitmap_free(zone_info->active_zones);
682 kfree(zone_info);
683 return NULL;
684}
685
686int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
687 struct blk_zone *zone)
688{
689 unsigned int nr_zones = 1;
690 int ret;
691
692 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
693 if (ret != 0 || !nr_zones)
694 return ret ? ret : -EIO;
695
696 return 0;
697}
698
699static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
700{
701 struct btrfs_device *device;
702
703 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
704 if (device->bdev &&
705 bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
706 btrfs_err(fs_info,
707 "zoned: mode not enabled but zoned device found: %pg",
708 device->bdev);
709 return -EINVAL;
710 }
711 }
712
713 return 0;
714}
715
716int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
717{
718 struct btrfs_device *device;
719 u64 zone_size = 0;
720 u64 max_zone_append_size = 0;
721 int ret;
722
723 /*
724 * Host-Managed devices can't be used without the ZONED flag. With the
725 * ZONED all devices can be used, using zone emulation if required.
726 */
727 if (!btrfs_fs_incompat(fs_info, ZONED))
728 return btrfs_check_for_zoned_device(fs_info);
729
730 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
731 struct btrfs_zoned_device_info *zone_info = device->zone_info;
732
733 if (!device->bdev)
734 continue;
735
736 if (!zone_size) {
737 zone_size = zone_info->zone_size;
738 } else if (zone_info->zone_size != zone_size) {
739 btrfs_err(fs_info,
740 "zoned: unequal block device zone sizes: have %llu found %llu",
741 zone_info->zone_size, zone_size);
742 return -EINVAL;
743 }
744 if (!max_zone_append_size ||
745 (zone_info->max_zone_append_size &&
746 zone_info->max_zone_append_size < max_zone_append_size))
747 max_zone_append_size = zone_info->max_zone_append_size;
748 }
749
750 /*
751 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
752 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
753 * check the alignment here.
754 */
755 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
756 btrfs_err(fs_info,
757 "zoned: zone size %llu not aligned to stripe %u",
758 zone_size, BTRFS_STRIPE_LEN);
759 return -EINVAL;
760 }
761
762 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
763 btrfs_err(fs_info, "zoned: mixed block groups not supported");
764 return -EINVAL;
765 }
766
767 fs_info->zone_size = zone_size;
768 fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size,
769 fs_info->sectorsize);
770 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
771 if (fs_info->max_zone_append_size < fs_info->max_extent_size)
772 fs_info->max_extent_size = fs_info->max_zone_append_size;
773
774 /*
775 * Check mount options here, because we might change fs_info->zoned
776 * from fs_info->zone_size.
777 */
778 ret = btrfs_check_mountopts_zoned(fs_info);
779 if (ret)
780 return ret;
781
782 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
783 return 0;
784}
785
786int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
787{
788 if (!btrfs_is_zoned(info))
789 return 0;
790
791 /*
792 * Space cache writing is not COWed. Disable that to avoid write errors
793 * in sequential zones.
794 */
795 if (btrfs_test_opt(info, SPACE_CACHE)) {
796 btrfs_err(info, "zoned: space cache v1 is not supported");
797 return -EINVAL;
798 }
799
800 if (btrfs_test_opt(info, NODATACOW)) {
801 btrfs_err(info, "zoned: NODATACOW not supported");
802 return -EINVAL;
803 }
804
805 return 0;
806}
807
808static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
809 int rw, u64 *bytenr_ret)
810{
811 u64 wp;
812 int ret;
813
814 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
815 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
816 return 0;
817 }
818
819 ret = sb_write_pointer(bdev, zones, &wp);
820 if (ret != -ENOENT && ret < 0)
821 return ret;
822
823 if (rw == WRITE) {
824 struct blk_zone *reset = NULL;
825
826 if (wp == zones[0].start << SECTOR_SHIFT)
827 reset = &zones[0];
828 else if (wp == zones[1].start << SECTOR_SHIFT)
829 reset = &zones[1];
830
831 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
832 ASSERT(sb_zone_is_full(reset));
833
834 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
835 reset->start, reset->len,
836 GFP_NOFS);
837 if (ret)
838 return ret;
839
840 reset->cond = BLK_ZONE_COND_EMPTY;
841 reset->wp = reset->start;
842 }
843 } else if (ret != -ENOENT) {
844 /*
845 * For READ, we want the previous one. Move write pointer to
846 * the end of a zone, if it is at the head of a zone.
847 */
848 u64 zone_end = 0;
849
850 if (wp == zones[0].start << SECTOR_SHIFT)
851 zone_end = zones[1].start + zones[1].capacity;
852 else if (wp == zones[1].start << SECTOR_SHIFT)
853 zone_end = zones[0].start + zones[0].capacity;
854 if (zone_end)
855 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
856 BTRFS_SUPER_INFO_SIZE);
857
858 wp -= BTRFS_SUPER_INFO_SIZE;
859 }
860
861 *bytenr_ret = wp;
862 return 0;
863
864}
865
866int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
867 u64 *bytenr_ret)
868{
869 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
870 sector_t zone_sectors;
871 u32 sb_zone;
872 int ret;
873 u8 zone_sectors_shift;
874 sector_t nr_sectors;
875 u32 nr_zones;
876
877 if (!bdev_is_zoned(bdev)) {
878 *bytenr_ret = btrfs_sb_offset(mirror);
879 return 0;
880 }
881
882 ASSERT(rw == READ || rw == WRITE);
883
884 zone_sectors = bdev_zone_sectors(bdev);
885 if (!is_power_of_2(zone_sectors))
886 return -EINVAL;
887 zone_sectors_shift = ilog2(zone_sectors);
888 nr_sectors = bdev_nr_sectors(bdev);
889 nr_zones = nr_sectors >> zone_sectors_shift;
890
891 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
892 if (sb_zone + 1 >= nr_zones)
893 return -ENOENT;
894
895 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
896 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
897 zones);
898 if (ret < 0)
899 return ret;
900 if (ret != BTRFS_NR_SB_LOG_ZONES)
901 return -EIO;
902
903 return sb_log_location(bdev, zones, rw, bytenr_ret);
904}
905
906int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
907 u64 *bytenr_ret)
908{
909 struct btrfs_zoned_device_info *zinfo = device->zone_info;
910 u32 zone_num;
911
912 /*
913 * For a zoned filesystem on a non-zoned block device, use the same
914 * super block locations as regular filesystem. Doing so, the super
915 * block can always be retrieved and the zoned flag of the volume
916 * detected from the super block information.
917 */
918 if (!bdev_is_zoned(device->bdev)) {
919 *bytenr_ret = btrfs_sb_offset(mirror);
920 return 0;
921 }
922
923 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
924 if (zone_num + 1 >= zinfo->nr_zones)
925 return -ENOENT;
926
927 return sb_log_location(device->bdev,
928 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
929 rw, bytenr_ret);
930}
931
932static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
933 int mirror)
934{
935 u32 zone_num;
936
937 if (!zinfo)
938 return false;
939
940 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
941 if (zone_num + 1 >= zinfo->nr_zones)
942 return false;
943
944 if (!test_bit(zone_num, zinfo->seq_zones))
945 return false;
946
947 return true;
948}
949
950int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
951{
952 struct btrfs_zoned_device_info *zinfo = device->zone_info;
953 struct blk_zone *zone;
954 int i;
955
956 if (!is_sb_log_zone(zinfo, mirror))
957 return 0;
958
959 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
960 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
961 /* Advance the next zone */
962 if (zone->cond == BLK_ZONE_COND_FULL) {
963 zone++;
964 continue;
965 }
966
967 if (zone->cond == BLK_ZONE_COND_EMPTY)
968 zone->cond = BLK_ZONE_COND_IMP_OPEN;
969
970 zone->wp += SUPER_INFO_SECTORS;
971
972 if (sb_zone_is_full(zone)) {
973 /*
974 * No room left to write new superblock. Since
975 * superblock is written with REQ_SYNC, it is safe to
976 * finish the zone now.
977 *
978 * If the write pointer is exactly at the capacity,
979 * explicit ZONE_FINISH is not necessary.
980 */
981 if (zone->wp != zone->start + zone->capacity) {
982 int ret;
983
984 ret = blkdev_zone_mgmt(device->bdev,
985 REQ_OP_ZONE_FINISH, zone->start,
986 zone->len, GFP_NOFS);
987 if (ret)
988 return ret;
989 }
990
991 zone->wp = zone->start + zone->len;
992 zone->cond = BLK_ZONE_COND_FULL;
993 }
994 return 0;
995 }
996
997 /* All the zones are FULL. Should not reach here. */
998 ASSERT(0);
999 return -EIO;
1000}
1001
1002int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1003{
1004 sector_t zone_sectors;
1005 sector_t nr_sectors;
1006 u8 zone_sectors_shift;
1007 u32 sb_zone;
1008 u32 nr_zones;
1009
1010 zone_sectors = bdev_zone_sectors(bdev);
1011 zone_sectors_shift = ilog2(zone_sectors);
1012 nr_sectors = bdev_nr_sectors(bdev);
1013 nr_zones = nr_sectors >> zone_sectors_shift;
1014
1015 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1016 if (sb_zone + 1 >= nr_zones)
1017 return -ENOENT;
1018
1019 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1020 zone_start_sector(sb_zone, bdev),
1021 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1022}
1023
1024/*
1025 * Find allocatable zones within a given region.
1026 *
1027 * @device: the device to allocate a region on
1028 * @hole_start: the position of the hole to allocate the region
1029 * @num_bytes: size of wanted region
1030 * @hole_end: the end of the hole
1031 * @return: position of allocatable zones
1032 *
1033 * Allocatable region should not contain any superblock locations.
1034 */
1035u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1036 u64 hole_end, u64 num_bytes)
1037{
1038 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1039 const u8 shift = zinfo->zone_size_shift;
1040 u64 nzones = num_bytes >> shift;
1041 u64 pos = hole_start;
1042 u64 begin, end;
1043 bool have_sb;
1044 int i;
1045
1046 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1047 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1048
1049 while (pos < hole_end) {
1050 begin = pos >> shift;
1051 end = begin + nzones;
1052
1053 if (end > zinfo->nr_zones)
1054 return hole_end;
1055
1056 /* Check if zones in the region are all empty */
1057 if (btrfs_dev_is_sequential(device, pos) &&
1058 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1059 pos += zinfo->zone_size;
1060 continue;
1061 }
1062
1063 have_sb = false;
1064 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1065 u32 sb_zone;
1066 u64 sb_pos;
1067
1068 sb_zone = sb_zone_number(shift, i);
1069 if (!(end <= sb_zone ||
1070 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1071 have_sb = true;
1072 pos = zone_start_physical(
1073 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1074 break;
1075 }
1076
1077 /* We also need to exclude regular superblock positions */
1078 sb_pos = btrfs_sb_offset(i);
1079 if (!(pos + num_bytes <= sb_pos ||
1080 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1081 have_sb = true;
1082 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1083 zinfo->zone_size);
1084 break;
1085 }
1086 }
1087 if (!have_sb)
1088 break;
1089 }
1090
1091 return pos;
1092}
1093
1094static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1095{
1096 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1097 unsigned int zno = (pos >> zone_info->zone_size_shift);
1098
1099 /* We can use any number of zones */
1100 if (zone_info->max_active_zones == 0)
1101 return true;
1102
1103 if (!test_bit(zno, zone_info->active_zones)) {
1104 /* Active zone left? */
1105 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1106 return false;
1107 if (test_and_set_bit(zno, zone_info->active_zones)) {
1108 /* Someone already set the bit */
1109 atomic_inc(&zone_info->active_zones_left);
1110 }
1111 }
1112
1113 return true;
1114}
1115
1116static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1117{
1118 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1119 unsigned int zno = (pos >> zone_info->zone_size_shift);
1120
1121 /* We can use any number of zones */
1122 if (zone_info->max_active_zones == 0)
1123 return;
1124
1125 if (test_and_clear_bit(zno, zone_info->active_zones))
1126 atomic_inc(&zone_info->active_zones_left);
1127}
1128
1129int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1130 u64 length, u64 *bytes)
1131{
1132 int ret;
1133
1134 *bytes = 0;
1135 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1136 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1137 GFP_NOFS);
1138 if (ret)
1139 return ret;
1140
1141 *bytes = length;
1142 while (length) {
1143 btrfs_dev_set_zone_empty(device, physical);
1144 btrfs_dev_clear_active_zone(device, physical);
1145 physical += device->zone_info->zone_size;
1146 length -= device->zone_info->zone_size;
1147 }
1148
1149 return 0;
1150}
1151
1152int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1153{
1154 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1155 const u8 shift = zinfo->zone_size_shift;
1156 unsigned long begin = start >> shift;
1157 unsigned long end = (start + size) >> shift;
1158 u64 pos;
1159 int ret;
1160
1161 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1162 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1163
1164 if (end > zinfo->nr_zones)
1165 return -ERANGE;
1166
1167 /* All the zones are conventional */
1168 if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1169 return 0;
1170
1171 /* All the zones are sequential and empty */
1172 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1173 find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1174 return 0;
1175
1176 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1177 u64 reset_bytes;
1178
1179 if (!btrfs_dev_is_sequential(device, pos) ||
1180 btrfs_dev_is_empty_zone(device, pos))
1181 continue;
1182
1183 /* Free regions should be empty */
1184 btrfs_warn_in_rcu(
1185 device->fs_info,
1186 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1187 rcu_str_deref(device->name), device->devid, pos >> shift);
1188 WARN_ON_ONCE(1);
1189
1190 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1191 &reset_bytes);
1192 if (ret)
1193 return ret;
1194 }
1195
1196 return 0;
1197}
1198
1199/*
1200 * Calculate an allocation pointer from the extent allocation information
1201 * for a block group consist of conventional zones. It is pointed to the
1202 * end of the highest addressed extent in the block group as an allocation
1203 * offset.
1204 */
1205static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1206 u64 *offset_ret, bool new)
1207{
1208 struct btrfs_fs_info *fs_info = cache->fs_info;
1209 struct btrfs_root *root;
1210 struct btrfs_path *path;
1211 struct btrfs_key key;
1212 struct btrfs_key found_key;
1213 int ret;
1214 u64 length;
1215
1216 /*
1217 * Avoid tree lookups for a new block group, there's no use for it.
1218 * It must always be 0.
1219 *
1220 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1221 * For new a block group, this function is called from
1222 * btrfs_make_block_group() which is already taking the chunk mutex.
1223 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1224 * buffer locks to avoid deadlock.
1225 */
1226 if (new) {
1227 *offset_ret = 0;
1228 return 0;
1229 }
1230
1231 path = btrfs_alloc_path();
1232 if (!path)
1233 return -ENOMEM;
1234
1235 key.objectid = cache->start + cache->length;
1236 key.type = 0;
1237 key.offset = 0;
1238
1239 root = btrfs_extent_root(fs_info, key.objectid);
1240 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1241 /* We should not find the exact match */
1242 if (!ret)
1243 ret = -EUCLEAN;
1244 if (ret < 0)
1245 goto out;
1246
1247 ret = btrfs_previous_extent_item(root, path, cache->start);
1248 if (ret) {
1249 if (ret == 1) {
1250 ret = 0;
1251 *offset_ret = 0;
1252 }
1253 goto out;
1254 }
1255
1256 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1257
1258 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1259 length = found_key.offset;
1260 else
1261 length = fs_info->nodesize;
1262
1263 if (!(found_key.objectid >= cache->start &&
1264 found_key.objectid + length <= cache->start + cache->length)) {
1265 ret = -EUCLEAN;
1266 goto out;
1267 }
1268 *offset_ret = found_key.objectid + length - cache->start;
1269 ret = 0;
1270
1271out:
1272 btrfs_free_path(path);
1273 return ret;
1274}
1275
1276int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1277{
1278 struct btrfs_fs_info *fs_info = cache->fs_info;
1279 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1280 struct extent_map *em;
1281 struct map_lookup *map;
1282 struct btrfs_device *device;
1283 u64 logical = cache->start;
1284 u64 length = cache->length;
1285 int ret;
1286 int i;
1287 unsigned int nofs_flag;
1288 u64 *alloc_offsets = NULL;
1289 u64 *caps = NULL;
1290 u64 *physical = NULL;
1291 unsigned long *active = NULL;
1292 u64 last_alloc = 0;
1293 u32 num_sequential = 0, num_conventional = 0;
1294
1295 if (!btrfs_is_zoned(fs_info))
1296 return 0;
1297
1298 /* Sanity check */
1299 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1300 btrfs_err(fs_info,
1301 "zoned: block group %llu len %llu unaligned to zone size %llu",
1302 logical, length, fs_info->zone_size);
1303 return -EIO;
1304 }
1305
1306 /* Get the chunk mapping */
1307 read_lock(&em_tree->lock);
1308 em = lookup_extent_mapping(em_tree, logical, length);
1309 read_unlock(&em_tree->lock);
1310
1311 if (!em)
1312 return -EINVAL;
1313
1314 map = em->map_lookup;
1315
1316 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1317 if (!cache->physical_map) {
1318 ret = -ENOMEM;
1319 goto out;
1320 }
1321
1322 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1323 if (!alloc_offsets) {
1324 ret = -ENOMEM;
1325 goto out;
1326 }
1327
1328 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1329 if (!caps) {
1330 ret = -ENOMEM;
1331 goto out;
1332 }
1333
1334 physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1335 if (!physical) {
1336 ret = -ENOMEM;
1337 goto out;
1338 }
1339
1340 active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1341 if (!active) {
1342 ret = -ENOMEM;
1343 goto out;
1344 }
1345
1346 for (i = 0; i < map->num_stripes; i++) {
1347 bool is_sequential;
1348 struct blk_zone zone;
1349 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1350 int dev_replace_is_ongoing = 0;
1351
1352 device = map->stripes[i].dev;
1353 physical[i] = map->stripes[i].physical;
1354
1355 if (device->bdev == NULL) {
1356 alloc_offsets[i] = WP_MISSING_DEV;
1357 continue;
1358 }
1359
1360 is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1361 if (is_sequential)
1362 num_sequential++;
1363 else
1364 num_conventional++;
1365
1366 /*
1367 * Consider a zone as active if we can allow any number of
1368 * active zones.
1369 */
1370 if (!device->zone_info->max_active_zones)
1371 __set_bit(i, active);
1372
1373 if (!is_sequential) {
1374 alloc_offsets[i] = WP_CONVENTIONAL;
1375 continue;
1376 }
1377
1378 /*
1379 * This zone will be used for allocation, so mark this zone
1380 * non-empty.
1381 */
1382 btrfs_dev_clear_zone_empty(device, physical[i]);
1383
1384 down_read(&dev_replace->rwsem);
1385 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1386 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1387 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1388 up_read(&dev_replace->rwsem);
1389
1390 /*
1391 * The group is mapped to a sequential zone. Get the zone write
1392 * pointer to determine the allocation offset within the zone.
1393 */
1394 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1395 nofs_flag = memalloc_nofs_save();
1396 ret = btrfs_get_dev_zone(device, physical[i], &zone);
1397 memalloc_nofs_restore(nofs_flag);
1398 if (ret == -EIO || ret == -EOPNOTSUPP) {
1399 ret = 0;
1400 alloc_offsets[i] = WP_MISSING_DEV;
1401 continue;
1402 } else if (ret) {
1403 goto out;
1404 }
1405
1406 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1407 btrfs_err_in_rcu(fs_info,
1408 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1409 zone.start << SECTOR_SHIFT,
1410 rcu_str_deref(device->name), device->devid);
1411 ret = -EIO;
1412 goto out;
1413 }
1414
1415 caps[i] = (zone.capacity << SECTOR_SHIFT);
1416
1417 switch (zone.cond) {
1418 case BLK_ZONE_COND_OFFLINE:
1419 case BLK_ZONE_COND_READONLY:
1420 btrfs_err(fs_info,
1421 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1422 physical[i] >> device->zone_info->zone_size_shift,
1423 rcu_str_deref(device->name), device->devid);
1424 alloc_offsets[i] = WP_MISSING_DEV;
1425 break;
1426 case BLK_ZONE_COND_EMPTY:
1427 alloc_offsets[i] = 0;
1428 break;
1429 case BLK_ZONE_COND_FULL:
1430 alloc_offsets[i] = caps[i];
1431 break;
1432 default:
1433 /* Partially used zone */
1434 alloc_offsets[i] =
1435 ((zone.wp - zone.start) << SECTOR_SHIFT);
1436 __set_bit(i, active);
1437 break;
1438 }
1439 }
1440
1441 if (num_sequential > 0)
1442 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1443
1444 if (num_conventional > 0) {
1445 /* Zone capacity is always zone size in emulation */
1446 cache->zone_capacity = cache->length;
1447 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1448 if (ret) {
1449 btrfs_err(fs_info,
1450 "zoned: failed to determine allocation offset of bg %llu",
1451 cache->start);
1452 goto out;
1453 } else if (map->num_stripes == num_conventional) {
1454 cache->alloc_offset = last_alloc;
1455 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1456 goto out;
1457 }
1458 }
1459
1460 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1461 case 0: /* single */
1462 if (alloc_offsets[0] == WP_MISSING_DEV) {
1463 btrfs_err(fs_info,
1464 "zoned: cannot recover write pointer for zone %llu",
1465 physical[0]);
1466 ret = -EIO;
1467 goto out;
1468 }
1469 cache->alloc_offset = alloc_offsets[0];
1470 cache->zone_capacity = caps[0];
1471 if (test_bit(0, active))
1472 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1473 break;
1474 case BTRFS_BLOCK_GROUP_DUP:
1475 if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1476 btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1477 ret = -EINVAL;
1478 goto out;
1479 }
1480 if (alloc_offsets[0] == WP_MISSING_DEV) {
1481 btrfs_err(fs_info,
1482 "zoned: cannot recover write pointer for zone %llu",
1483 physical[0]);
1484 ret = -EIO;
1485 goto out;
1486 }
1487 if (alloc_offsets[1] == WP_MISSING_DEV) {
1488 btrfs_err(fs_info,
1489 "zoned: cannot recover write pointer for zone %llu",
1490 physical[1]);
1491 ret = -EIO;
1492 goto out;
1493 }
1494 if (alloc_offsets[0] != alloc_offsets[1]) {
1495 btrfs_err(fs_info,
1496 "zoned: write pointer offset mismatch of zones in DUP profile");
1497 ret = -EIO;
1498 goto out;
1499 }
1500 if (test_bit(0, active) != test_bit(1, active)) {
1501 if (!btrfs_zone_activate(cache)) {
1502 ret = -EIO;
1503 goto out;
1504 }
1505 } else {
1506 if (test_bit(0, active))
1507 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1508 &cache->runtime_flags);
1509 }
1510 cache->alloc_offset = alloc_offsets[0];
1511 cache->zone_capacity = min(caps[0], caps[1]);
1512 break;
1513 case BTRFS_BLOCK_GROUP_RAID1:
1514 case BTRFS_BLOCK_GROUP_RAID0:
1515 case BTRFS_BLOCK_GROUP_RAID10:
1516 case BTRFS_BLOCK_GROUP_RAID5:
1517 case BTRFS_BLOCK_GROUP_RAID6:
1518 /* non-single profiles are not supported yet */
1519 default:
1520 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1521 btrfs_bg_type_to_raid_name(map->type));
1522 ret = -EINVAL;
1523 goto out;
1524 }
1525
1526out:
1527 if (cache->alloc_offset > fs_info->zone_size) {
1528 btrfs_err(fs_info,
1529 "zoned: invalid write pointer %llu in block group %llu",
1530 cache->alloc_offset, cache->start);
1531 ret = -EIO;
1532 }
1533
1534 if (cache->alloc_offset > cache->zone_capacity) {
1535 btrfs_err(fs_info,
1536"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1537 cache->alloc_offset, cache->zone_capacity,
1538 cache->start);
1539 ret = -EIO;
1540 }
1541
1542 /* An extent is allocated after the write pointer */
1543 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1544 btrfs_err(fs_info,
1545 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1546 logical, last_alloc, cache->alloc_offset);
1547 ret = -EIO;
1548 }
1549
1550 if (!ret) {
1551 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1552 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1553 btrfs_get_block_group(cache);
1554 spin_lock(&fs_info->zone_active_bgs_lock);
1555 list_add_tail(&cache->active_bg_list,
1556 &fs_info->zone_active_bgs);
1557 spin_unlock(&fs_info->zone_active_bgs_lock);
1558 }
1559 } else {
1560 kfree(cache->physical_map);
1561 cache->physical_map = NULL;
1562 }
1563 bitmap_free(active);
1564 kfree(physical);
1565 kfree(caps);
1566 kfree(alloc_offsets);
1567 free_extent_map(em);
1568
1569 return ret;
1570}
1571
1572void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1573{
1574 u64 unusable, free;
1575
1576 if (!btrfs_is_zoned(cache->fs_info))
1577 return;
1578
1579 WARN_ON(cache->bytes_super != 0);
1580 unusable = (cache->alloc_offset - cache->used) +
1581 (cache->length - cache->zone_capacity);
1582 free = cache->zone_capacity - cache->alloc_offset;
1583
1584 /* We only need ->free_space in ALLOC_SEQ block groups */
1585 cache->cached = BTRFS_CACHE_FINISHED;
1586 cache->free_space_ctl->free_space = free;
1587 cache->zone_unusable = unusable;
1588}
1589
1590void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1591 struct extent_buffer *eb)
1592{
1593 struct btrfs_fs_info *fs_info = eb->fs_info;
1594
1595 if (!btrfs_is_zoned(fs_info) ||
1596 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1597 !list_empty(&eb->release_list))
1598 return;
1599
1600 set_extent_buffer_dirty(eb);
1601 set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1602 eb->start + eb->len - 1, EXTENT_DIRTY);
1603 memzero_extent_buffer(eb, 0, eb->len);
1604 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1605
1606 spin_lock(&trans->releasing_ebs_lock);
1607 list_add_tail(&eb->release_list, &trans->releasing_ebs);
1608 spin_unlock(&trans->releasing_ebs_lock);
1609 atomic_inc(&eb->refs);
1610}
1611
1612void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1613{
1614 spin_lock(&trans->releasing_ebs_lock);
1615 while (!list_empty(&trans->releasing_ebs)) {
1616 struct extent_buffer *eb;
1617
1618 eb = list_first_entry(&trans->releasing_ebs,
1619 struct extent_buffer, release_list);
1620 list_del_init(&eb->release_list);
1621 free_extent_buffer(eb);
1622 }
1623 spin_unlock(&trans->releasing_ebs_lock);
1624}
1625
1626bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
1627{
1628 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1629 struct btrfs_block_group *cache;
1630 bool ret = false;
1631
1632 if (!btrfs_is_zoned(fs_info))
1633 return false;
1634
1635 if (!is_data_inode(&inode->vfs_inode))
1636 return false;
1637
1638 /*
1639 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1640 * extent layout the relocation code has.
1641 * Furthermore we have set aside own block-group from which only the
1642 * relocation "process" can allocate and make sure only one process at a
1643 * time can add pages to an extent that gets relocated, so it's safe to
1644 * use regular REQ_OP_WRITE for this special case.
1645 */
1646 if (btrfs_is_data_reloc_root(inode->root))
1647 return false;
1648
1649 cache = btrfs_lookup_block_group(fs_info, start);
1650 ASSERT(cache);
1651 if (!cache)
1652 return false;
1653
1654 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1655 btrfs_put_block_group(cache);
1656
1657 return ret;
1658}
1659
1660void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1661 struct bio *bio)
1662{
1663 struct btrfs_ordered_extent *ordered;
1664 const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1665
1666 if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1667 return;
1668
1669 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1670 if (WARN_ON(!ordered))
1671 return;
1672
1673 ordered->physical = physical;
1674 ordered->bdev = bio->bi_bdev;
1675
1676 btrfs_put_ordered_extent(ordered);
1677}
1678
1679void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1680{
1681 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1682 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1683 struct extent_map_tree *em_tree;
1684 struct extent_map *em;
1685 struct btrfs_ordered_sum *sum;
1686 u64 orig_logical = ordered->disk_bytenr;
1687 u64 *logical = NULL;
1688 int nr, stripe_len;
1689
1690 /* Zoned devices should not have partitions. So, we can assume it is 0 */
1691 ASSERT(!bdev_is_partition(ordered->bdev));
1692 if (WARN_ON(!ordered->bdev))
1693 return;
1694
1695 if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
1696 ordered->physical, &logical, &nr,
1697 &stripe_len)))
1698 goto out;
1699
1700 WARN_ON(nr != 1);
1701
1702 if (orig_logical == *logical)
1703 goto out;
1704
1705 ordered->disk_bytenr = *logical;
1706
1707 em_tree = &inode->extent_tree;
1708 write_lock(&em_tree->lock);
1709 em = search_extent_mapping(em_tree, ordered->file_offset,
1710 ordered->num_bytes);
1711 em->block_start = *logical;
1712 free_extent_map(em);
1713 write_unlock(&em_tree->lock);
1714
1715 list_for_each_entry(sum, &ordered->list, list) {
1716 if (*logical < orig_logical)
1717 sum->bytenr -= orig_logical - *logical;
1718 else
1719 sum->bytenr += *logical - orig_logical;
1720 }
1721
1722out:
1723 kfree(logical);
1724}
1725
1726bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1727 struct extent_buffer *eb,
1728 struct btrfs_block_group **cache_ret)
1729{
1730 struct btrfs_block_group *cache;
1731 bool ret = true;
1732
1733 if (!btrfs_is_zoned(fs_info))
1734 return true;
1735
1736 cache = btrfs_lookup_block_group(fs_info, eb->start);
1737 if (!cache)
1738 return true;
1739
1740 if (cache->meta_write_pointer != eb->start) {
1741 btrfs_put_block_group(cache);
1742 cache = NULL;
1743 ret = false;
1744 } else {
1745 cache->meta_write_pointer = eb->start + eb->len;
1746 }
1747
1748 *cache_ret = cache;
1749
1750 return ret;
1751}
1752
1753void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1754 struct extent_buffer *eb)
1755{
1756 if (!btrfs_is_zoned(eb->fs_info) || !cache)
1757 return;
1758
1759 ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1760 cache->meta_write_pointer = eb->start;
1761}
1762
1763int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1764{
1765 if (!btrfs_dev_is_sequential(device, physical))
1766 return -EOPNOTSUPP;
1767
1768 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1769 length >> SECTOR_SHIFT, GFP_NOFS, 0);
1770}
1771
1772static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1773 struct blk_zone *zone)
1774{
1775 struct btrfs_io_context *bioc = NULL;
1776 u64 mapped_length = PAGE_SIZE;
1777 unsigned int nofs_flag;
1778 int nmirrors;
1779 int i, ret;
1780
1781 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1782 &mapped_length, &bioc);
1783 if (ret || !bioc || mapped_length < PAGE_SIZE) {
1784 ret = -EIO;
1785 goto out_put_bioc;
1786 }
1787
1788 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1789 ret = -EINVAL;
1790 goto out_put_bioc;
1791 }
1792
1793 nofs_flag = memalloc_nofs_save();
1794 nmirrors = (int)bioc->num_stripes;
1795 for (i = 0; i < nmirrors; i++) {
1796 u64 physical = bioc->stripes[i].physical;
1797 struct btrfs_device *dev = bioc->stripes[i].dev;
1798
1799 /* Missing device */
1800 if (!dev->bdev)
1801 continue;
1802
1803 ret = btrfs_get_dev_zone(dev, physical, zone);
1804 /* Failing device */
1805 if (ret == -EIO || ret == -EOPNOTSUPP)
1806 continue;
1807 break;
1808 }
1809 memalloc_nofs_restore(nofs_flag);
1810out_put_bioc:
1811 btrfs_put_bioc(bioc);
1812 return ret;
1813}
1814
1815/*
1816 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1817 * filling zeros between @physical_pos to a write pointer of dev-replace
1818 * source device.
1819 */
1820int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1821 u64 physical_start, u64 physical_pos)
1822{
1823 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1824 struct blk_zone zone;
1825 u64 length;
1826 u64 wp;
1827 int ret;
1828
1829 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1830 return 0;
1831
1832 ret = read_zone_info(fs_info, logical, &zone);
1833 if (ret)
1834 return ret;
1835
1836 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1837
1838 if (physical_pos == wp)
1839 return 0;
1840
1841 if (physical_pos > wp)
1842 return -EUCLEAN;
1843
1844 length = wp - physical_pos;
1845 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1846}
1847
1848struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1849 u64 logical, u64 length)
1850{
1851 struct btrfs_device *device;
1852 struct extent_map *em;
1853 struct map_lookup *map;
1854
1855 em = btrfs_get_chunk_map(fs_info, logical, length);
1856 if (IS_ERR(em))
1857 return ERR_CAST(em);
1858
1859 map = em->map_lookup;
1860 /* We only support single profile for now */
1861 device = map->stripes[0].dev;
1862
1863 free_extent_map(em);
1864
1865 return device;
1866}
1867
1868/*
1869 * Activate block group and underlying device zones
1870 *
1871 * @block_group: the block group to activate
1872 *
1873 * Return: true on success, false otherwise
1874 */
1875bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1876{
1877 struct btrfs_fs_info *fs_info = block_group->fs_info;
1878 struct btrfs_space_info *space_info = block_group->space_info;
1879 struct map_lookup *map;
1880 struct btrfs_device *device;
1881 u64 physical;
1882 bool ret;
1883 int i;
1884
1885 if (!btrfs_is_zoned(block_group->fs_info))
1886 return true;
1887
1888 map = block_group->physical_map;
1889
1890 spin_lock(&space_info->lock);
1891 spin_lock(&block_group->lock);
1892 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1893 ret = true;
1894 goto out_unlock;
1895 }
1896
1897 /* No space left */
1898 if (btrfs_zoned_bg_is_full(block_group)) {
1899 ret = false;
1900 goto out_unlock;
1901 }
1902
1903 for (i = 0; i < map->num_stripes; i++) {
1904 device = map->stripes[i].dev;
1905 physical = map->stripes[i].physical;
1906
1907 if (device->zone_info->max_active_zones == 0)
1908 continue;
1909
1910 if (!btrfs_dev_set_active_zone(device, physical)) {
1911 /* Cannot activate the zone */
1912 ret = false;
1913 goto out_unlock;
1914 }
1915 }
1916
1917 /* Successfully activated all the zones */
1918 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
1919 space_info->active_total_bytes += block_group->length;
1920 spin_unlock(&block_group->lock);
1921 btrfs_try_granting_tickets(fs_info, space_info);
1922 spin_unlock(&space_info->lock);
1923
1924 /* For the active block group list */
1925 btrfs_get_block_group(block_group);
1926
1927 spin_lock(&fs_info->zone_active_bgs_lock);
1928 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1929 spin_unlock(&fs_info->zone_active_bgs_lock);
1930
1931 return true;
1932
1933out_unlock:
1934 spin_unlock(&block_group->lock);
1935 spin_unlock(&space_info->lock);
1936 return ret;
1937}
1938
1939static void wait_eb_writebacks(struct btrfs_block_group *block_group)
1940{
1941 struct btrfs_fs_info *fs_info = block_group->fs_info;
1942 const u64 end = block_group->start + block_group->length;
1943 struct radix_tree_iter iter;
1944 struct extent_buffer *eb;
1945 void __rcu **slot;
1946
1947 rcu_read_lock();
1948 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
1949 block_group->start >> fs_info->sectorsize_bits) {
1950 eb = radix_tree_deref_slot(slot);
1951 if (!eb)
1952 continue;
1953 if (radix_tree_deref_retry(eb)) {
1954 slot = radix_tree_iter_retry(&iter);
1955 continue;
1956 }
1957
1958 if (eb->start < block_group->start)
1959 continue;
1960 if (eb->start >= end)
1961 break;
1962
1963 slot = radix_tree_iter_resume(slot, &iter);
1964 rcu_read_unlock();
1965 wait_on_extent_buffer_writeback(eb);
1966 rcu_read_lock();
1967 }
1968 rcu_read_unlock();
1969}
1970
1971static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
1972{
1973 struct btrfs_fs_info *fs_info = block_group->fs_info;
1974 struct map_lookup *map;
1975 const bool is_metadata = (block_group->flags &
1976 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
1977 int ret = 0;
1978 int i;
1979
1980 spin_lock(&block_group->lock);
1981 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1982 spin_unlock(&block_group->lock);
1983 return 0;
1984 }
1985
1986 /* Check if we have unwritten allocated space */
1987 if (is_metadata &&
1988 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
1989 spin_unlock(&block_group->lock);
1990 return -EAGAIN;
1991 }
1992
1993 /*
1994 * If we are sure that the block group is full (= no more room left for
1995 * new allocation) and the IO for the last usable block is completed, we
1996 * don't need to wait for the other IOs. This holds because we ensure
1997 * the sequential IO submissions using the ZONE_APPEND command for data
1998 * and block_group->meta_write_pointer for metadata.
1999 */
2000 if (!fully_written) {
2001 spin_unlock(&block_group->lock);
2002
2003 ret = btrfs_inc_block_group_ro(block_group, false);
2004 if (ret)
2005 return ret;
2006
2007 /* Ensure all writes in this block group finish */
2008 btrfs_wait_block_group_reservations(block_group);
2009 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2010 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2011 block_group->length);
2012 /* Wait for extent buffers to be written. */
2013 if (is_metadata)
2014 wait_eb_writebacks(block_group);
2015
2016 spin_lock(&block_group->lock);
2017
2018 /*
2019 * Bail out if someone already deactivated the block group, or
2020 * allocated space is left in the block group.
2021 */
2022 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2023 &block_group->runtime_flags)) {
2024 spin_unlock(&block_group->lock);
2025 btrfs_dec_block_group_ro(block_group);
2026 return 0;
2027 }
2028
2029 if (block_group->reserved) {
2030 spin_unlock(&block_group->lock);
2031 btrfs_dec_block_group_ro(block_group);
2032 return -EAGAIN;
2033 }
2034 }
2035
2036 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2037 block_group->alloc_offset = block_group->zone_capacity;
2038 block_group->free_space_ctl->free_space = 0;
2039 btrfs_clear_treelog_bg(block_group);
2040 btrfs_clear_data_reloc_bg(block_group);
2041 spin_unlock(&block_group->lock);
2042
2043 map = block_group->physical_map;
2044 for (i = 0; i < map->num_stripes; i++) {
2045 struct btrfs_device *device = map->stripes[i].dev;
2046 const u64 physical = map->stripes[i].physical;
2047
2048 if (device->zone_info->max_active_zones == 0)
2049 continue;
2050
2051 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2052 physical >> SECTOR_SHIFT,
2053 device->zone_info->zone_size >> SECTOR_SHIFT,
2054 GFP_NOFS);
2055
2056 if (ret)
2057 return ret;
2058
2059 btrfs_dev_clear_active_zone(device, physical);
2060 }
2061
2062 if (!fully_written)
2063 btrfs_dec_block_group_ro(block_group);
2064
2065 spin_lock(&fs_info->zone_active_bgs_lock);
2066 ASSERT(!list_empty(&block_group->active_bg_list));
2067 list_del_init(&block_group->active_bg_list);
2068 spin_unlock(&fs_info->zone_active_bgs_lock);
2069
2070 /* For active_bg_list */
2071 btrfs_put_block_group(block_group);
2072
2073 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2074
2075 return 0;
2076}
2077
2078int btrfs_zone_finish(struct btrfs_block_group *block_group)
2079{
2080 if (!btrfs_is_zoned(block_group->fs_info))
2081 return 0;
2082
2083 return do_zone_finish(block_group, false);
2084}
2085
2086bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2087{
2088 struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2089 struct btrfs_device *device;
2090 bool ret = false;
2091
2092 if (!btrfs_is_zoned(fs_info))
2093 return true;
2094
2095 /* Check if there is a device with active zones left */
2096 mutex_lock(&fs_info->chunk_mutex);
2097 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2098 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2099
2100 if (!device->bdev)
2101 continue;
2102
2103 if (!zinfo->max_active_zones ||
2104 atomic_read(&zinfo->active_zones_left)) {
2105 ret = true;
2106 break;
2107 }
2108 }
2109 mutex_unlock(&fs_info->chunk_mutex);
2110
2111 if (!ret)
2112 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2113
2114 return ret;
2115}
2116
2117void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2118{
2119 struct btrfs_block_group *block_group;
2120 u64 min_alloc_bytes;
2121
2122 if (!btrfs_is_zoned(fs_info))
2123 return;
2124
2125 block_group = btrfs_lookup_block_group(fs_info, logical);
2126 ASSERT(block_group);
2127
2128 /* No MIXED_BG on zoned btrfs. */
2129 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2130 min_alloc_bytes = fs_info->sectorsize;
2131 else
2132 min_alloc_bytes = fs_info->nodesize;
2133
2134 /* Bail out if we can allocate more data from this block group. */
2135 if (logical + length + min_alloc_bytes <=
2136 block_group->start + block_group->zone_capacity)
2137 goto out;
2138
2139 do_zone_finish(block_group, true);
2140
2141out:
2142 btrfs_put_block_group(block_group);
2143}
2144
2145static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2146{
2147 struct btrfs_block_group *bg =
2148 container_of(work, struct btrfs_block_group, zone_finish_work);
2149
2150 wait_on_extent_buffer_writeback(bg->last_eb);
2151 free_extent_buffer(bg->last_eb);
2152 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2153 btrfs_put_block_group(bg);
2154}
2155
2156void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2157 struct extent_buffer *eb)
2158{
2159 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2160 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2161 return;
2162
2163 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2164 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2165 bg->start);
2166 return;
2167 }
2168
2169 /* For the work */
2170 btrfs_get_block_group(bg);
2171 atomic_inc(&eb->refs);
2172 bg->last_eb = eb;
2173 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2174 queue_work(system_unbound_wq, &bg->zone_finish_work);
2175}
2176
2177void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2178{
2179 struct btrfs_fs_info *fs_info = bg->fs_info;
2180
2181 spin_lock(&fs_info->relocation_bg_lock);
2182 if (fs_info->data_reloc_bg == bg->start)
2183 fs_info->data_reloc_bg = 0;
2184 spin_unlock(&fs_info->relocation_bg_lock);
2185}
2186
2187void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2188{
2189 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2190 struct btrfs_device *device;
2191
2192 if (!btrfs_is_zoned(fs_info))
2193 return;
2194
2195 mutex_lock(&fs_devices->device_list_mutex);
2196 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2197 if (device->zone_info) {
2198 vfree(device->zone_info->zone_cache);
2199 device->zone_info->zone_cache = NULL;
2200 }
2201 }
2202 mutex_unlock(&fs_devices->device_list_mutex);
2203}
2204
2205bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2206{
2207 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2208 struct btrfs_device *device;
2209 u64 used = 0;
2210 u64 total = 0;
2211 u64 factor;
2212
2213 ASSERT(btrfs_is_zoned(fs_info));
2214
2215 if (fs_info->bg_reclaim_threshold == 0)
2216 return false;
2217
2218 mutex_lock(&fs_devices->device_list_mutex);
2219 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2220 if (!device->bdev)
2221 continue;
2222
2223 total += device->disk_total_bytes;
2224 used += device->bytes_used;
2225 }
2226 mutex_unlock(&fs_devices->device_list_mutex);
2227
2228 factor = div64_u64(used * 100, total);
2229 return factor >= fs_info->bg_reclaim_threshold;
2230}
2231
2232void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2233 u64 length)
2234{
2235 struct btrfs_block_group *block_group;
2236
2237 if (!btrfs_is_zoned(fs_info))
2238 return;
2239
2240 block_group = btrfs_lookup_block_group(fs_info, logical);
2241 /* It should be called on a previous data relocation block group. */
2242 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2243
2244 spin_lock(&block_group->lock);
2245 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2246 goto out;
2247
2248 /* All relocation extents are written. */
2249 if (block_group->start + block_group->alloc_offset == logical + length) {
2250 /* Now, release this block group for further allocations. */
2251 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2252 &block_group->runtime_flags);
2253 }
2254
2255out:
2256 spin_unlock(&block_group->lock);
2257 btrfs_put_block_group(block_group);
2258}
2259
2260int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2261{
2262 struct btrfs_block_group *block_group;
2263 struct btrfs_block_group *min_bg = NULL;
2264 u64 min_avail = U64_MAX;
2265 int ret;
2266
2267 spin_lock(&fs_info->zone_active_bgs_lock);
2268 list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2269 active_bg_list) {
2270 u64 avail;
2271
2272 spin_lock(&block_group->lock);
2273 if (block_group->reserved ||
2274 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
2275 spin_unlock(&block_group->lock);
2276 continue;
2277 }
2278
2279 avail = block_group->zone_capacity - block_group->alloc_offset;
2280 if (min_avail > avail) {
2281 if (min_bg)
2282 btrfs_put_block_group(min_bg);
2283 min_bg = block_group;
2284 min_avail = avail;
2285 btrfs_get_block_group(min_bg);
2286 }
2287 spin_unlock(&block_group->lock);
2288 }
2289 spin_unlock(&fs_info->zone_active_bgs_lock);
2290
2291 if (!min_bg)
2292 return 0;
2293
2294 ret = btrfs_zone_finish(min_bg);
2295 btrfs_put_block_group(min_bg);
2296
2297 return ret < 0 ? ret : 1;
2298}
2299
2300int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2301 struct btrfs_space_info *space_info,
2302 bool do_finish)
2303{
2304 struct btrfs_block_group *bg;
2305 int index;
2306
2307 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2308 return 0;
2309
2310 /* No more block groups to activate */
2311 if (space_info->active_total_bytes == space_info->total_bytes)
2312 return 0;
2313
2314 for (;;) {
2315 int ret;
2316 bool need_finish = false;
2317
2318 down_read(&space_info->groups_sem);
2319 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2320 list_for_each_entry(bg, &space_info->block_groups[index],
2321 list) {
2322 if (!spin_trylock(&bg->lock))
2323 continue;
2324 if (btrfs_zoned_bg_is_full(bg) ||
2325 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2326 &bg->runtime_flags)) {
2327 spin_unlock(&bg->lock);
2328 continue;
2329 }
2330 spin_unlock(&bg->lock);
2331
2332 if (btrfs_zone_activate(bg)) {
2333 up_read(&space_info->groups_sem);
2334 return 1;
2335 }
2336
2337 need_finish = true;
2338 }
2339 }
2340 up_read(&space_info->groups_sem);
2341
2342 if (!do_finish || !need_finish)
2343 break;
2344
2345 ret = btrfs_zone_finish_one_bg(fs_info);
2346 if (ret == 0)
2347 break;
2348 if (ret < 0)
2349 return ret;
2350 }
2351
2352 return 0;
2353}
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/blkdev.h>
6#include <linux/sched/mm.h>
7#include <linux/atomic.h>
8#include <linux/vmalloc.h>
9#include "ctree.h"
10#include "volumes.h"
11#include "zoned.h"
12#include "rcu-string.h"
13#include "disk-io.h"
14#include "block-group.h"
15#include "transaction.h"
16#include "dev-replace.h"
17#include "space-info.h"
18#include "super.h"
19#include "fs.h"
20#include "accessors.h"
21#include "bio.h"
22
23/* Maximum number of zones to report per blkdev_report_zones() call */
24#define BTRFS_REPORT_NR_ZONES 4096
25/* Invalid allocation pointer value for missing devices */
26#define WP_MISSING_DEV ((u64)-1)
27/* Pseudo write pointer value for conventional zone */
28#define WP_CONVENTIONAL ((u64)-2)
29
30/*
31 * Location of the first zone of superblock logging zone pairs.
32 *
33 * - primary superblock: 0B (zone 0)
34 * - first copy: 512G (zone starting at that offset)
35 * - second copy: 4T (zone starting at that offset)
36 */
37#define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
38#define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
39#define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
40
41#define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
42#define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
43
44/* Number of superblock log zones */
45#define BTRFS_NR_SB_LOG_ZONES 2
46
47/*
48 * Minimum of active zones we need:
49 *
50 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
51 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
52 * - 1 zone for tree-log dedicated block group
53 * - 1 zone for relocation
54 */
55#define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
56
57/*
58 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
59 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
60 * We do not expect the zone size to become larger than 8GiB or smaller than
61 * 4MiB in the near future.
62 */
63#define BTRFS_MAX_ZONE_SIZE SZ_8G
64#define BTRFS_MIN_ZONE_SIZE SZ_4M
65
66#define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
67
68static void wait_eb_writebacks(struct btrfs_block_group *block_group);
69static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
70
71static inline bool sb_zone_is_full(const struct blk_zone *zone)
72{
73 return (zone->cond == BLK_ZONE_COND_FULL) ||
74 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
75}
76
77static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
78{
79 struct blk_zone *zones = data;
80
81 memcpy(&zones[idx], zone, sizeof(*zone));
82
83 return 0;
84}
85
86static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
87 u64 *wp_ret)
88{
89 bool empty[BTRFS_NR_SB_LOG_ZONES];
90 bool full[BTRFS_NR_SB_LOG_ZONES];
91 sector_t sector;
92 int i;
93
94 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
95 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
96 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
97 full[i] = sb_zone_is_full(&zones[i]);
98 }
99
100 /*
101 * Possible states of log buffer zones
102 *
103 * Empty[0] In use[0] Full[0]
104 * Empty[1] * 0 1
105 * In use[1] x x 1
106 * Full[1] 0 0 C
107 *
108 * Log position:
109 * *: Special case, no superblock is written
110 * 0: Use write pointer of zones[0]
111 * 1: Use write pointer of zones[1]
112 * C: Compare super blocks from zones[0] and zones[1], use the latest
113 * one determined by generation
114 * x: Invalid state
115 */
116
117 if (empty[0] && empty[1]) {
118 /* Special case to distinguish no superblock to read */
119 *wp_ret = zones[0].start << SECTOR_SHIFT;
120 return -ENOENT;
121 } else if (full[0] && full[1]) {
122 /* Compare two super blocks */
123 struct address_space *mapping = bdev->bd_inode->i_mapping;
124 struct page *page[BTRFS_NR_SB_LOG_ZONES];
125 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
126 int i;
127
128 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
129 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
130 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
131 BTRFS_SUPER_INFO_SIZE;
132
133 page[i] = read_cache_page_gfp(mapping,
134 bytenr >> PAGE_SHIFT, GFP_NOFS);
135 if (IS_ERR(page[i])) {
136 if (i == 1)
137 btrfs_release_disk_super(super[0]);
138 return PTR_ERR(page[i]);
139 }
140 super[i] = page_address(page[i]);
141 }
142
143 if (btrfs_super_generation(super[0]) >
144 btrfs_super_generation(super[1]))
145 sector = zones[1].start;
146 else
147 sector = zones[0].start;
148
149 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
150 btrfs_release_disk_super(super[i]);
151 } else if (!full[0] && (empty[1] || full[1])) {
152 sector = zones[0].wp;
153 } else if (full[0]) {
154 sector = zones[1].wp;
155 } else {
156 return -EUCLEAN;
157 }
158 *wp_ret = sector << SECTOR_SHIFT;
159 return 0;
160}
161
162/*
163 * Get the first zone number of the superblock mirror
164 */
165static inline u32 sb_zone_number(int shift, int mirror)
166{
167 u64 zone = U64_MAX;
168
169 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
170 switch (mirror) {
171 case 0: zone = 0; break;
172 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
173 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
174 }
175
176 ASSERT(zone <= U32_MAX);
177
178 return (u32)zone;
179}
180
181static inline sector_t zone_start_sector(u32 zone_number,
182 struct block_device *bdev)
183{
184 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
185}
186
187static inline u64 zone_start_physical(u32 zone_number,
188 struct btrfs_zoned_device_info *zone_info)
189{
190 return (u64)zone_number << zone_info->zone_size_shift;
191}
192
193/*
194 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
195 * device into static sized chunks and fake a conventional zone on each of
196 * them.
197 */
198static int emulate_report_zones(struct btrfs_device *device, u64 pos,
199 struct blk_zone *zones, unsigned int nr_zones)
200{
201 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
202 sector_t bdev_size = bdev_nr_sectors(device->bdev);
203 unsigned int i;
204
205 pos >>= SECTOR_SHIFT;
206 for (i = 0; i < nr_zones; i++) {
207 zones[i].start = i * zone_sectors + pos;
208 zones[i].len = zone_sectors;
209 zones[i].capacity = zone_sectors;
210 zones[i].wp = zones[i].start + zone_sectors;
211 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
212 zones[i].cond = BLK_ZONE_COND_NOT_WP;
213
214 if (zones[i].wp >= bdev_size) {
215 i++;
216 break;
217 }
218 }
219
220 return i;
221}
222
223static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
224 struct blk_zone *zones, unsigned int *nr_zones)
225{
226 struct btrfs_zoned_device_info *zinfo = device->zone_info;
227 int ret;
228
229 if (!*nr_zones)
230 return 0;
231
232 if (!bdev_is_zoned(device->bdev)) {
233 ret = emulate_report_zones(device, pos, zones, *nr_zones);
234 *nr_zones = ret;
235 return 0;
236 }
237
238 /* Check cache */
239 if (zinfo->zone_cache) {
240 unsigned int i;
241 u32 zno;
242
243 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
244 zno = pos >> zinfo->zone_size_shift;
245 /*
246 * We cannot report zones beyond the zone end. So, it is OK to
247 * cap *nr_zones to at the end.
248 */
249 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
250
251 for (i = 0; i < *nr_zones; i++) {
252 struct blk_zone *zone_info;
253
254 zone_info = &zinfo->zone_cache[zno + i];
255 if (!zone_info->len)
256 break;
257 }
258
259 if (i == *nr_zones) {
260 /* Cache hit on all the zones */
261 memcpy(zones, zinfo->zone_cache + zno,
262 sizeof(*zinfo->zone_cache) * *nr_zones);
263 return 0;
264 }
265 }
266
267 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
268 copy_zone_info_cb, zones);
269 if (ret < 0) {
270 btrfs_err_in_rcu(device->fs_info,
271 "zoned: failed to read zone %llu on %s (devid %llu)",
272 pos, rcu_str_deref(device->name),
273 device->devid);
274 return ret;
275 }
276 *nr_zones = ret;
277 if (!ret)
278 return -EIO;
279
280 /* Populate cache */
281 if (zinfo->zone_cache) {
282 u32 zno = pos >> zinfo->zone_size_shift;
283
284 memcpy(zinfo->zone_cache + zno, zones,
285 sizeof(*zinfo->zone_cache) * *nr_zones);
286 }
287
288 return 0;
289}
290
291/* The emulated zone size is determined from the size of device extent */
292static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
293{
294 struct btrfs_path *path;
295 struct btrfs_root *root = fs_info->dev_root;
296 struct btrfs_key key;
297 struct extent_buffer *leaf;
298 struct btrfs_dev_extent *dext;
299 int ret = 0;
300
301 key.objectid = 1;
302 key.type = BTRFS_DEV_EXTENT_KEY;
303 key.offset = 0;
304
305 path = btrfs_alloc_path();
306 if (!path)
307 return -ENOMEM;
308
309 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
310 if (ret < 0)
311 goto out;
312
313 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
314 ret = btrfs_next_leaf(root, path);
315 if (ret < 0)
316 goto out;
317 /* No dev extents at all? Not good */
318 if (ret > 0) {
319 ret = -EUCLEAN;
320 goto out;
321 }
322 }
323
324 leaf = path->nodes[0];
325 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
326 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
327 ret = 0;
328
329out:
330 btrfs_free_path(path);
331
332 return ret;
333}
334
335int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
336{
337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
338 struct btrfs_device *device;
339 int ret = 0;
340
341 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
342 if (!btrfs_fs_incompat(fs_info, ZONED))
343 return 0;
344
345 mutex_lock(&fs_devices->device_list_mutex);
346 list_for_each_entry(device, &fs_devices->devices, dev_list) {
347 /* We can skip reading of zone info for missing devices */
348 if (!device->bdev)
349 continue;
350
351 ret = btrfs_get_dev_zone_info(device, true);
352 if (ret)
353 break;
354 }
355 mutex_unlock(&fs_devices->device_list_mutex);
356
357 return ret;
358}
359
360int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
361{
362 struct btrfs_fs_info *fs_info = device->fs_info;
363 struct btrfs_zoned_device_info *zone_info = NULL;
364 struct block_device *bdev = device->bdev;
365 unsigned int max_active_zones;
366 unsigned int nactive;
367 sector_t nr_sectors;
368 sector_t sector = 0;
369 struct blk_zone *zones = NULL;
370 unsigned int i, nreported = 0, nr_zones;
371 sector_t zone_sectors;
372 char *model, *emulated;
373 int ret;
374
375 /*
376 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
377 * yet be set.
378 */
379 if (!btrfs_fs_incompat(fs_info, ZONED))
380 return 0;
381
382 if (device->zone_info)
383 return 0;
384
385 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
386 if (!zone_info)
387 return -ENOMEM;
388
389 device->zone_info = zone_info;
390
391 if (!bdev_is_zoned(bdev)) {
392 if (!fs_info->zone_size) {
393 ret = calculate_emulated_zone_size(fs_info);
394 if (ret)
395 goto out;
396 }
397
398 ASSERT(fs_info->zone_size);
399 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
400 } else {
401 zone_sectors = bdev_zone_sectors(bdev);
402 }
403
404 ASSERT(is_power_of_two_u64(zone_sectors));
405 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
406
407 /* We reject devices with a zone size larger than 8GB */
408 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
409 btrfs_err_in_rcu(fs_info,
410 "zoned: %s: zone size %llu larger than supported maximum %llu",
411 rcu_str_deref(device->name),
412 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
413 ret = -EINVAL;
414 goto out;
415 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
416 btrfs_err_in_rcu(fs_info,
417 "zoned: %s: zone size %llu smaller than supported minimum %u",
418 rcu_str_deref(device->name),
419 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
420 ret = -EINVAL;
421 goto out;
422 }
423
424 nr_sectors = bdev_nr_sectors(bdev);
425 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
426 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
427 if (!IS_ALIGNED(nr_sectors, zone_sectors))
428 zone_info->nr_zones++;
429
430 max_active_zones = bdev_max_active_zones(bdev);
431 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
432 btrfs_err_in_rcu(fs_info,
433"zoned: %s: max active zones %u is too small, need at least %u active zones",
434 rcu_str_deref(device->name), max_active_zones,
435 BTRFS_MIN_ACTIVE_ZONES);
436 ret = -EINVAL;
437 goto out;
438 }
439 zone_info->max_active_zones = max_active_zones;
440
441 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
442 if (!zone_info->seq_zones) {
443 ret = -ENOMEM;
444 goto out;
445 }
446
447 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
448 if (!zone_info->empty_zones) {
449 ret = -ENOMEM;
450 goto out;
451 }
452
453 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
454 if (!zone_info->active_zones) {
455 ret = -ENOMEM;
456 goto out;
457 }
458
459 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
460 if (!zones) {
461 ret = -ENOMEM;
462 goto out;
463 }
464
465 /*
466 * Enable zone cache only for a zoned device. On a non-zoned device, we
467 * fill the zone info with emulated CONVENTIONAL zones, so no need to
468 * use the cache.
469 */
470 if (populate_cache && bdev_is_zoned(device->bdev)) {
471 zone_info->zone_cache = vcalloc(zone_info->nr_zones,
472 sizeof(struct blk_zone));
473 if (!zone_info->zone_cache) {
474 btrfs_err_in_rcu(device->fs_info,
475 "zoned: failed to allocate zone cache for %s",
476 rcu_str_deref(device->name));
477 ret = -ENOMEM;
478 goto out;
479 }
480 }
481
482 /* Get zones type */
483 nactive = 0;
484 while (sector < nr_sectors) {
485 nr_zones = BTRFS_REPORT_NR_ZONES;
486 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
487 &nr_zones);
488 if (ret)
489 goto out;
490
491 for (i = 0; i < nr_zones; i++) {
492 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
493 __set_bit(nreported, zone_info->seq_zones);
494 switch (zones[i].cond) {
495 case BLK_ZONE_COND_EMPTY:
496 __set_bit(nreported, zone_info->empty_zones);
497 break;
498 case BLK_ZONE_COND_IMP_OPEN:
499 case BLK_ZONE_COND_EXP_OPEN:
500 case BLK_ZONE_COND_CLOSED:
501 __set_bit(nreported, zone_info->active_zones);
502 nactive++;
503 break;
504 }
505 nreported++;
506 }
507 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
508 }
509
510 if (nreported != zone_info->nr_zones) {
511 btrfs_err_in_rcu(device->fs_info,
512 "inconsistent number of zones on %s (%u/%u)",
513 rcu_str_deref(device->name), nreported,
514 zone_info->nr_zones);
515 ret = -EIO;
516 goto out;
517 }
518
519 if (max_active_zones) {
520 if (nactive > max_active_zones) {
521 btrfs_err_in_rcu(device->fs_info,
522 "zoned: %u active zones on %s exceeds max_active_zones %u",
523 nactive, rcu_str_deref(device->name),
524 max_active_zones);
525 ret = -EIO;
526 goto out;
527 }
528 atomic_set(&zone_info->active_zones_left,
529 max_active_zones - nactive);
530 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
531 }
532
533 /* Validate superblock log */
534 nr_zones = BTRFS_NR_SB_LOG_ZONES;
535 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
536 u32 sb_zone;
537 u64 sb_wp;
538 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
539
540 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
541 if (sb_zone + 1 >= zone_info->nr_zones)
542 continue;
543
544 ret = btrfs_get_dev_zones(device,
545 zone_start_physical(sb_zone, zone_info),
546 &zone_info->sb_zones[sb_pos],
547 &nr_zones);
548 if (ret)
549 goto out;
550
551 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
552 btrfs_err_in_rcu(device->fs_info,
553 "zoned: failed to read super block log zone info at devid %llu zone %u",
554 device->devid, sb_zone);
555 ret = -EUCLEAN;
556 goto out;
557 }
558
559 /*
560 * If zones[0] is conventional, always use the beginning of the
561 * zone to record superblock. No need to validate in that case.
562 */
563 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
564 BLK_ZONE_TYPE_CONVENTIONAL)
565 continue;
566
567 ret = sb_write_pointer(device->bdev,
568 &zone_info->sb_zones[sb_pos], &sb_wp);
569 if (ret != -ENOENT && ret) {
570 btrfs_err_in_rcu(device->fs_info,
571 "zoned: super block log zone corrupted devid %llu zone %u",
572 device->devid, sb_zone);
573 ret = -EUCLEAN;
574 goto out;
575 }
576 }
577
578
579 kvfree(zones);
580
581 if (bdev_is_zoned(bdev)) {
582 model = "host-managed zoned";
583 emulated = "";
584 } else {
585 model = "regular";
586 emulated = "emulated ";
587 }
588
589 btrfs_info_in_rcu(fs_info,
590 "%s block device %s, %u %szones of %llu bytes",
591 model, rcu_str_deref(device->name), zone_info->nr_zones,
592 emulated, zone_info->zone_size);
593
594 return 0;
595
596out:
597 kvfree(zones);
598 btrfs_destroy_dev_zone_info(device);
599 return ret;
600}
601
602void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
603{
604 struct btrfs_zoned_device_info *zone_info = device->zone_info;
605
606 if (!zone_info)
607 return;
608
609 bitmap_free(zone_info->active_zones);
610 bitmap_free(zone_info->seq_zones);
611 bitmap_free(zone_info->empty_zones);
612 vfree(zone_info->zone_cache);
613 kfree(zone_info);
614 device->zone_info = NULL;
615}
616
617struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
618{
619 struct btrfs_zoned_device_info *zone_info;
620
621 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
622 if (!zone_info)
623 return NULL;
624
625 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
626 if (!zone_info->seq_zones)
627 goto out;
628
629 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
630 zone_info->nr_zones);
631
632 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
633 if (!zone_info->empty_zones)
634 goto out;
635
636 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
637 zone_info->nr_zones);
638
639 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
640 if (!zone_info->active_zones)
641 goto out;
642
643 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
644 zone_info->nr_zones);
645 zone_info->zone_cache = NULL;
646
647 return zone_info;
648
649out:
650 bitmap_free(zone_info->seq_zones);
651 bitmap_free(zone_info->empty_zones);
652 bitmap_free(zone_info->active_zones);
653 kfree(zone_info);
654 return NULL;
655}
656
657int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
658 struct blk_zone *zone)
659{
660 unsigned int nr_zones = 1;
661 int ret;
662
663 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
664 if (ret != 0 || !nr_zones)
665 return ret ? ret : -EIO;
666
667 return 0;
668}
669
670static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
671{
672 struct btrfs_device *device;
673
674 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
675 if (device->bdev && bdev_is_zoned(device->bdev)) {
676 btrfs_err(fs_info,
677 "zoned: mode not enabled but zoned device found: %pg",
678 device->bdev);
679 return -EINVAL;
680 }
681 }
682
683 return 0;
684}
685
686int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
687{
688 struct queue_limits *lim = &fs_info->limits;
689 struct btrfs_device *device;
690 u64 zone_size = 0;
691 int ret;
692
693 /*
694 * Host-Managed devices can't be used without the ZONED flag. With the
695 * ZONED all devices can be used, using zone emulation if required.
696 */
697 if (!btrfs_fs_incompat(fs_info, ZONED))
698 return btrfs_check_for_zoned_device(fs_info);
699
700 blk_set_stacking_limits(lim);
701
702 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
703 struct btrfs_zoned_device_info *zone_info = device->zone_info;
704
705 if (!device->bdev)
706 continue;
707
708 if (!zone_size) {
709 zone_size = zone_info->zone_size;
710 } else if (zone_info->zone_size != zone_size) {
711 btrfs_err(fs_info,
712 "zoned: unequal block device zone sizes: have %llu found %llu",
713 zone_info->zone_size, zone_size);
714 return -EINVAL;
715 }
716
717 /*
718 * With the zoned emulation, we can have non-zoned device on the
719 * zoned mode. In this case, we don't have a valid max zone
720 * append size.
721 */
722 if (bdev_is_zoned(device->bdev)) {
723 blk_stack_limits(lim,
724 &bdev_get_queue(device->bdev)->limits,
725 0);
726 }
727 }
728
729 /*
730 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
731 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
732 * check the alignment here.
733 */
734 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
735 btrfs_err(fs_info,
736 "zoned: zone size %llu not aligned to stripe %u",
737 zone_size, BTRFS_STRIPE_LEN);
738 return -EINVAL;
739 }
740
741 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
742 btrfs_err(fs_info, "zoned: mixed block groups not supported");
743 return -EINVAL;
744 }
745
746 fs_info->zone_size = zone_size;
747 /*
748 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
749 * Technically, we can have multiple pages per segment. But, since
750 * we add the pages one by one to a bio, and cannot increase the
751 * metadata reservation even if it increases the number of extents, it
752 * is safe to stick with the limit.
753 */
754 fs_info->max_zone_append_size = ALIGN_DOWN(
755 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
756 (u64)lim->max_sectors << SECTOR_SHIFT,
757 (u64)lim->max_segments << PAGE_SHIFT),
758 fs_info->sectorsize);
759 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
760 if (fs_info->max_zone_append_size < fs_info->max_extent_size)
761 fs_info->max_extent_size = fs_info->max_zone_append_size;
762
763 /*
764 * Check mount options here, because we might change fs_info->zoned
765 * from fs_info->zone_size.
766 */
767 ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
768 if (ret)
769 return ret;
770
771 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
772 return 0;
773}
774
775int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info, unsigned long *mount_opt)
776{
777 if (!btrfs_is_zoned(info))
778 return 0;
779
780 /*
781 * Space cache writing is not COWed. Disable that to avoid write errors
782 * in sequential zones.
783 */
784 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
785 btrfs_err(info, "zoned: space cache v1 is not supported");
786 return -EINVAL;
787 }
788
789 if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
790 btrfs_err(info, "zoned: NODATACOW not supported");
791 return -EINVAL;
792 }
793
794 if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
795 btrfs_info(info,
796 "zoned: async discard ignored and disabled for zoned mode");
797 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
798 }
799
800 return 0;
801}
802
803static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
804 int rw, u64 *bytenr_ret)
805{
806 u64 wp;
807 int ret;
808
809 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
810 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
811 return 0;
812 }
813
814 ret = sb_write_pointer(bdev, zones, &wp);
815 if (ret != -ENOENT && ret < 0)
816 return ret;
817
818 if (rw == WRITE) {
819 struct blk_zone *reset = NULL;
820
821 if (wp == zones[0].start << SECTOR_SHIFT)
822 reset = &zones[0];
823 else if (wp == zones[1].start << SECTOR_SHIFT)
824 reset = &zones[1];
825
826 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
827 ASSERT(sb_zone_is_full(reset));
828
829 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
830 reset->start, reset->len,
831 GFP_NOFS);
832 if (ret)
833 return ret;
834
835 reset->cond = BLK_ZONE_COND_EMPTY;
836 reset->wp = reset->start;
837 }
838 } else if (ret != -ENOENT) {
839 /*
840 * For READ, we want the previous one. Move write pointer to
841 * the end of a zone, if it is at the head of a zone.
842 */
843 u64 zone_end = 0;
844
845 if (wp == zones[0].start << SECTOR_SHIFT)
846 zone_end = zones[1].start + zones[1].capacity;
847 else if (wp == zones[1].start << SECTOR_SHIFT)
848 zone_end = zones[0].start + zones[0].capacity;
849 if (zone_end)
850 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
851 BTRFS_SUPER_INFO_SIZE);
852
853 wp -= BTRFS_SUPER_INFO_SIZE;
854 }
855
856 *bytenr_ret = wp;
857 return 0;
858
859}
860
861int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
862 u64 *bytenr_ret)
863{
864 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
865 sector_t zone_sectors;
866 u32 sb_zone;
867 int ret;
868 u8 zone_sectors_shift;
869 sector_t nr_sectors;
870 u32 nr_zones;
871
872 if (!bdev_is_zoned(bdev)) {
873 *bytenr_ret = btrfs_sb_offset(mirror);
874 return 0;
875 }
876
877 ASSERT(rw == READ || rw == WRITE);
878
879 zone_sectors = bdev_zone_sectors(bdev);
880 if (!is_power_of_2(zone_sectors))
881 return -EINVAL;
882 zone_sectors_shift = ilog2(zone_sectors);
883 nr_sectors = bdev_nr_sectors(bdev);
884 nr_zones = nr_sectors >> zone_sectors_shift;
885
886 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
887 if (sb_zone + 1 >= nr_zones)
888 return -ENOENT;
889
890 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
891 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
892 zones);
893 if (ret < 0)
894 return ret;
895 if (ret != BTRFS_NR_SB_LOG_ZONES)
896 return -EIO;
897
898 return sb_log_location(bdev, zones, rw, bytenr_ret);
899}
900
901int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
902 u64 *bytenr_ret)
903{
904 struct btrfs_zoned_device_info *zinfo = device->zone_info;
905 u32 zone_num;
906
907 /*
908 * For a zoned filesystem on a non-zoned block device, use the same
909 * super block locations as regular filesystem. Doing so, the super
910 * block can always be retrieved and the zoned flag of the volume
911 * detected from the super block information.
912 */
913 if (!bdev_is_zoned(device->bdev)) {
914 *bytenr_ret = btrfs_sb_offset(mirror);
915 return 0;
916 }
917
918 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
919 if (zone_num + 1 >= zinfo->nr_zones)
920 return -ENOENT;
921
922 return sb_log_location(device->bdev,
923 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
924 rw, bytenr_ret);
925}
926
927static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
928 int mirror)
929{
930 u32 zone_num;
931
932 if (!zinfo)
933 return false;
934
935 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
936 if (zone_num + 1 >= zinfo->nr_zones)
937 return false;
938
939 if (!test_bit(zone_num, zinfo->seq_zones))
940 return false;
941
942 return true;
943}
944
945int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
946{
947 struct btrfs_zoned_device_info *zinfo = device->zone_info;
948 struct blk_zone *zone;
949 int i;
950
951 if (!is_sb_log_zone(zinfo, mirror))
952 return 0;
953
954 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
955 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
956 /* Advance the next zone */
957 if (zone->cond == BLK_ZONE_COND_FULL) {
958 zone++;
959 continue;
960 }
961
962 if (zone->cond == BLK_ZONE_COND_EMPTY)
963 zone->cond = BLK_ZONE_COND_IMP_OPEN;
964
965 zone->wp += SUPER_INFO_SECTORS;
966
967 if (sb_zone_is_full(zone)) {
968 /*
969 * No room left to write new superblock. Since
970 * superblock is written with REQ_SYNC, it is safe to
971 * finish the zone now.
972 *
973 * If the write pointer is exactly at the capacity,
974 * explicit ZONE_FINISH is not necessary.
975 */
976 if (zone->wp != zone->start + zone->capacity) {
977 int ret;
978
979 ret = blkdev_zone_mgmt(device->bdev,
980 REQ_OP_ZONE_FINISH, zone->start,
981 zone->len, GFP_NOFS);
982 if (ret)
983 return ret;
984 }
985
986 zone->wp = zone->start + zone->len;
987 zone->cond = BLK_ZONE_COND_FULL;
988 }
989 return 0;
990 }
991
992 /* All the zones are FULL. Should not reach here. */
993 ASSERT(0);
994 return -EIO;
995}
996
997int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
998{
999 sector_t zone_sectors;
1000 sector_t nr_sectors;
1001 u8 zone_sectors_shift;
1002 u32 sb_zone;
1003 u32 nr_zones;
1004
1005 zone_sectors = bdev_zone_sectors(bdev);
1006 zone_sectors_shift = ilog2(zone_sectors);
1007 nr_sectors = bdev_nr_sectors(bdev);
1008 nr_zones = nr_sectors >> zone_sectors_shift;
1009
1010 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1011 if (sb_zone + 1 >= nr_zones)
1012 return -ENOENT;
1013
1014 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1015 zone_start_sector(sb_zone, bdev),
1016 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1017}
1018
1019/*
1020 * Find allocatable zones within a given region.
1021 *
1022 * @device: the device to allocate a region on
1023 * @hole_start: the position of the hole to allocate the region
1024 * @num_bytes: size of wanted region
1025 * @hole_end: the end of the hole
1026 * @return: position of allocatable zones
1027 *
1028 * Allocatable region should not contain any superblock locations.
1029 */
1030u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1031 u64 hole_end, u64 num_bytes)
1032{
1033 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1034 const u8 shift = zinfo->zone_size_shift;
1035 u64 nzones = num_bytes >> shift;
1036 u64 pos = hole_start;
1037 u64 begin, end;
1038 bool have_sb;
1039 int i;
1040
1041 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1042 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1043
1044 while (pos < hole_end) {
1045 begin = pos >> shift;
1046 end = begin + nzones;
1047
1048 if (end > zinfo->nr_zones)
1049 return hole_end;
1050
1051 /* Check if zones in the region are all empty */
1052 if (btrfs_dev_is_sequential(device, pos) &&
1053 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1054 pos += zinfo->zone_size;
1055 continue;
1056 }
1057
1058 have_sb = false;
1059 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1060 u32 sb_zone;
1061 u64 sb_pos;
1062
1063 sb_zone = sb_zone_number(shift, i);
1064 if (!(end <= sb_zone ||
1065 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1066 have_sb = true;
1067 pos = zone_start_physical(
1068 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1069 break;
1070 }
1071
1072 /* We also need to exclude regular superblock positions */
1073 sb_pos = btrfs_sb_offset(i);
1074 if (!(pos + num_bytes <= sb_pos ||
1075 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1076 have_sb = true;
1077 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1078 zinfo->zone_size);
1079 break;
1080 }
1081 }
1082 if (!have_sb)
1083 break;
1084 }
1085
1086 return pos;
1087}
1088
1089static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1090{
1091 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1092 unsigned int zno = (pos >> zone_info->zone_size_shift);
1093
1094 /* We can use any number of zones */
1095 if (zone_info->max_active_zones == 0)
1096 return true;
1097
1098 if (!test_bit(zno, zone_info->active_zones)) {
1099 /* Active zone left? */
1100 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1101 return false;
1102 if (test_and_set_bit(zno, zone_info->active_zones)) {
1103 /* Someone already set the bit */
1104 atomic_inc(&zone_info->active_zones_left);
1105 }
1106 }
1107
1108 return true;
1109}
1110
1111static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1112{
1113 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1114 unsigned int zno = (pos >> zone_info->zone_size_shift);
1115
1116 /* We can use any number of zones */
1117 if (zone_info->max_active_zones == 0)
1118 return;
1119
1120 if (test_and_clear_bit(zno, zone_info->active_zones))
1121 atomic_inc(&zone_info->active_zones_left);
1122}
1123
1124int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1125 u64 length, u64 *bytes)
1126{
1127 int ret;
1128
1129 *bytes = 0;
1130 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1131 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1132 GFP_NOFS);
1133 if (ret)
1134 return ret;
1135
1136 *bytes = length;
1137 while (length) {
1138 btrfs_dev_set_zone_empty(device, physical);
1139 btrfs_dev_clear_active_zone(device, physical);
1140 physical += device->zone_info->zone_size;
1141 length -= device->zone_info->zone_size;
1142 }
1143
1144 return 0;
1145}
1146
1147int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1148{
1149 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1150 const u8 shift = zinfo->zone_size_shift;
1151 unsigned long begin = start >> shift;
1152 unsigned long nbits = size >> shift;
1153 u64 pos;
1154 int ret;
1155
1156 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1157 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1158
1159 if (begin + nbits > zinfo->nr_zones)
1160 return -ERANGE;
1161
1162 /* All the zones are conventional */
1163 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1164 return 0;
1165
1166 /* All the zones are sequential and empty */
1167 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1168 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1169 return 0;
1170
1171 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1172 u64 reset_bytes;
1173
1174 if (!btrfs_dev_is_sequential(device, pos) ||
1175 btrfs_dev_is_empty_zone(device, pos))
1176 continue;
1177
1178 /* Free regions should be empty */
1179 btrfs_warn_in_rcu(
1180 device->fs_info,
1181 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1182 rcu_str_deref(device->name), device->devid, pos >> shift);
1183 WARN_ON_ONCE(1);
1184
1185 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1186 &reset_bytes);
1187 if (ret)
1188 return ret;
1189 }
1190
1191 return 0;
1192}
1193
1194/*
1195 * Calculate an allocation pointer from the extent allocation information
1196 * for a block group consist of conventional zones. It is pointed to the
1197 * end of the highest addressed extent in the block group as an allocation
1198 * offset.
1199 */
1200static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1201 u64 *offset_ret, bool new)
1202{
1203 struct btrfs_fs_info *fs_info = cache->fs_info;
1204 struct btrfs_root *root;
1205 struct btrfs_path *path;
1206 struct btrfs_key key;
1207 struct btrfs_key found_key;
1208 int ret;
1209 u64 length;
1210
1211 /*
1212 * Avoid tree lookups for a new block group, there's no use for it.
1213 * It must always be 0.
1214 *
1215 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1216 * For new a block group, this function is called from
1217 * btrfs_make_block_group() which is already taking the chunk mutex.
1218 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1219 * buffer locks to avoid deadlock.
1220 */
1221 if (new) {
1222 *offset_ret = 0;
1223 return 0;
1224 }
1225
1226 path = btrfs_alloc_path();
1227 if (!path)
1228 return -ENOMEM;
1229
1230 key.objectid = cache->start + cache->length;
1231 key.type = 0;
1232 key.offset = 0;
1233
1234 root = btrfs_extent_root(fs_info, key.objectid);
1235 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1236 /* We should not find the exact match */
1237 if (!ret)
1238 ret = -EUCLEAN;
1239 if (ret < 0)
1240 goto out;
1241
1242 ret = btrfs_previous_extent_item(root, path, cache->start);
1243 if (ret) {
1244 if (ret == 1) {
1245 ret = 0;
1246 *offset_ret = 0;
1247 }
1248 goto out;
1249 }
1250
1251 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1252
1253 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1254 length = found_key.offset;
1255 else
1256 length = fs_info->nodesize;
1257
1258 if (!(found_key.objectid >= cache->start &&
1259 found_key.objectid + length <= cache->start + cache->length)) {
1260 ret = -EUCLEAN;
1261 goto out;
1262 }
1263 *offset_ret = found_key.objectid + length - cache->start;
1264 ret = 0;
1265
1266out:
1267 btrfs_free_path(path);
1268 return ret;
1269}
1270
1271struct zone_info {
1272 u64 physical;
1273 u64 capacity;
1274 u64 alloc_offset;
1275};
1276
1277static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1278 struct zone_info *info, unsigned long *active,
1279 struct btrfs_chunk_map *map)
1280{
1281 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1282 struct btrfs_device *device = map->stripes[zone_idx].dev;
1283 int dev_replace_is_ongoing = 0;
1284 unsigned int nofs_flag;
1285 struct blk_zone zone;
1286 int ret;
1287
1288 info->physical = map->stripes[zone_idx].physical;
1289
1290 if (!device->bdev) {
1291 info->alloc_offset = WP_MISSING_DEV;
1292 return 0;
1293 }
1294
1295 /* Consider a zone as active if we can allow any number of active zones. */
1296 if (!device->zone_info->max_active_zones)
1297 __set_bit(zone_idx, active);
1298
1299 if (!btrfs_dev_is_sequential(device, info->physical)) {
1300 info->alloc_offset = WP_CONVENTIONAL;
1301 return 0;
1302 }
1303
1304 /* This zone will be used for allocation, so mark this zone non-empty. */
1305 btrfs_dev_clear_zone_empty(device, info->physical);
1306
1307 down_read(&dev_replace->rwsem);
1308 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1309 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1310 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1311 up_read(&dev_replace->rwsem);
1312
1313 /*
1314 * The group is mapped to a sequential zone. Get the zone write pointer
1315 * to determine the allocation offset within the zone.
1316 */
1317 WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1318 nofs_flag = memalloc_nofs_save();
1319 ret = btrfs_get_dev_zone(device, info->physical, &zone);
1320 memalloc_nofs_restore(nofs_flag);
1321 if (ret) {
1322 if (ret != -EIO && ret != -EOPNOTSUPP)
1323 return ret;
1324 info->alloc_offset = WP_MISSING_DEV;
1325 return 0;
1326 }
1327
1328 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1329 btrfs_err_in_rcu(fs_info,
1330 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1331 zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1332 device->devid);
1333 return -EIO;
1334 }
1335
1336 info->capacity = (zone.capacity << SECTOR_SHIFT);
1337
1338 switch (zone.cond) {
1339 case BLK_ZONE_COND_OFFLINE:
1340 case BLK_ZONE_COND_READONLY:
1341 btrfs_err(fs_info,
1342 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1343 (info->physical >> device->zone_info->zone_size_shift),
1344 rcu_str_deref(device->name), device->devid);
1345 info->alloc_offset = WP_MISSING_DEV;
1346 break;
1347 case BLK_ZONE_COND_EMPTY:
1348 info->alloc_offset = 0;
1349 break;
1350 case BLK_ZONE_COND_FULL:
1351 info->alloc_offset = info->capacity;
1352 break;
1353 default:
1354 /* Partially used zone. */
1355 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1356 __set_bit(zone_idx, active);
1357 break;
1358 }
1359
1360 return 0;
1361}
1362
1363static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1364 struct zone_info *info,
1365 unsigned long *active)
1366{
1367 if (info->alloc_offset == WP_MISSING_DEV) {
1368 btrfs_err(bg->fs_info,
1369 "zoned: cannot recover write pointer for zone %llu",
1370 info->physical);
1371 return -EIO;
1372 }
1373
1374 bg->alloc_offset = info->alloc_offset;
1375 bg->zone_capacity = info->capacity;
1376 if (test_bit(0, active))
1377 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1378 return 0;
1379}
1380
1381static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1382 struct btrfs_chunk_map *map,
1383 struct zone_info *zone_info,
1384 unsigned long *active)
1385{
1386 struct btrfs_fs_info *fs_info = bg->fs_info;
1387
1388 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1389 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1390 return -EINVAL;
1391 }
1392
1393 if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1394 btrfs_err(bg->fs_info,
1395 "zoned: cannot recover write pointer for zone %llu",
1396 zone_info[0].physical);
1397 return -EIO;
1398 }
1399 if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1400 btrfs_err(bg->fs_info,
1401 "zoned: cannot recover write pointer for zone %llu",
1402 zone_info[1].physical);
1403 return -EIO;
1404 }
1405 if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1406 btrfs_err(bg->fs_info,
1407 "zoned: write pointer offset mismatch of zones in DUP profile");
1408 return -EIO;
1409 }
1410
1411 if (test_bit(0, active) != test_bit(1, active)) {
1412 if (!btrfs_zone_activate(bg))
1413 return -EIO;
1414 } else if (test_bit(0, active)) {
1415 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1416 }
1417
1418 bg->alloc_offset = zone_info[0].alloc_offset;
1419 bg->zone_capacity = min(zone_info[0].capacity, zone_info[1].capacity);
1420 return 0;
1421}
1422
1423static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1424 struct btrfs_chunk_map *map,
1425 struct zone_info *zone_info,
1426 unsigned long *active)
1427{
1428 struct btrfs_fs_info *fs_info = bg->fs_info;
1429 int i;
1430
1431 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1432 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1433 btrfs_bg_type_to_raid_name(map->type));
1434 return -EINVAL;
1435 }
1436
1437 for (i = 0; i < map->num_stripes; i++) {
1438 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1439 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1440 continue;
1441
1442 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1443 !btrfs_test_opt(fs_info, DEGRADED)) {
1444 btrfs_err(fs_info,
1445 "zoned: write pointer offset mismatch of zones in %s profile",
1446 btrfs_bg_type_to_raid_name(map->type));
1447 return -EIO;
1448 }
1449 if (test_bit(0, active) != test_bit(i, active)) {
1450 if (!btrfs_test_opt(fs_info, DEGRADED) &&
1451 !btrfs_zone_activate(bg)) {
1452 return -EIO;
1453 }
1454 } else {
1455 if (test_bit(0, active))
1456 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1457 }
1458 /* In case a device is missing we have a cap of 0, so don't use it. */
1459 bg->zone_capacity = min_not_zero(zone_info[0].capacity,
1460 zone_info[1].capacity);
1461 }
1462
1463 if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1464 bg->alloc_offset = zone_info[0].alloc_offset;
1465 else
1466 bg->alloc_offset = zone_info[i - 1].alloc_offset;
1467
1468 return 0;
1469}
1470
1471static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1472 struct btrfs_chunk_map *map,
1473 struct zone_info *zone_info,
1474 unsigned long *active)
1475{
1476 struct btrfs_fs_info *fs_info = bg->fs_info;
1477
1478 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1479 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1480 btrfs_bg_type_to_raid_name(map->type));
1481 return -EINVAL;
1482 }
1483
1484 for (int i = 0; i < map->num_stripes; i++) {
1485 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1486 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1487 continue;
1488
1489 if (test_bit(0, active) != test_bit(i, active)) {
1490 if (!btrfs_zone_activate(bg))
1491 return -EIO;
1492 } else {
1493 if (test_bit(0, active))
1494 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1495 }
1496 bg->zone_capacity += zone_info[i].capacity;
1497 bg->alloc_offset += zone_info[i].alloc_offset;
1498 }
1499
1500 return 0;
1501}
1502
1503static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1504 struct btrfs_chunk_map *map,
1505 struct zone_info *zone_info,
1506 unsigned long *active)
1507{
1508 struct btrfs_fs_info *fs_info = bg->fs_info;
1509
1510 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1511 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1512 btrfs_bg_type_to_raid_name(map->type));
1513 return -EINVAL;
1514 }
1515
1516 for (int i = 0; i < map->num_stripes; i++) {
1517 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1518 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1519 continue;
1520
1521 if (test_bit(0, active) != test_bit(i, active)) {
1522 if (!btrfs_zone_activate(bg))
1523 return -EIO;
1524 } else {
1525 if (test_bit(0, active))
1526 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1527 }
1528
1529 if ((i % map->sub_stripes) == 0) {
1530 bg->zone_capacity += zone_info[i].capacity;
1531 bg->alloc_offset += zone_info[i].alloc_offset;
1532 }
1533 }
1534
1535 return 0;
1536}
1537
1538int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1539{
1540 struct btrfs_fs_info *fs_info = cache->fs_info;
1541 struct btrfs_chunk_map *map;
1542 u64 logical = cache->start;
1543 u64 length = cache->length;
1544 struct zone_info *zone_info = NULL;
1545 int ret;
1546 int i;
1547 unsigned long *active = NULL;
1548 u64 last_alloc = 0;
1549 u32 num_sequential = 0, num_conventional = 0;
1550
1551 if (!btrfs_is_zoned(fs_info))
1552 return 0;
1553
1554 /* Sanity check */
1555 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1556 btrfs_err(fs_info,
1557 "zoned: block group %llu len %llu unaligned to zone size %llu",
1558 logical, length, fs_info->zone_size);
1559 return -EIO;
1560 }
1561
1562 map = btrfs_find_chunk_map(fs_info, logical, length);
1563 if (!map)
1564 return -EINVAL;
1565
1566 cache->physical_map = btrfs_clone_chunk_map(map, GFP_NOFS);
1567 if (!cache->physical_map) {
1568 ret = -ENOMEM;
1569 goto out;
1570 }
1571
1572 zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1573 if (!zone_info) {
1574 ret = -ENOMEM;
1575 goto out;
1576 }
1577
1578 active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1579 if (!active) {
1580 ret = -ENOMEM;
1581 goto out;
1582 }
1583
1584 for (i = 0; i < map->num_stripes; i++) {
1585 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map);
1586 if (ret)
1587 goto out;
1588
1589 if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1590 num_conventional++;
1591 else
1592 num_sequential++;
1593 }
1594
1595 if (num_sequential > 0)
1596 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1597
1598 if (num_conventional > 0) {
1599 /* Zone capacity is always zone size in emulation */
1600 cache->zone_capacity = cache->length;
1601 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1602 if (ret) {
1603 btrfs_err(fs_info,
1604 "zoned: failed to determine allocation offset of bg %llu",
1605 cache->start);
1606 goto out;
1607 } else if (map->num_stripes == num_conventional) {
1608 cache->alloc_offset = last_alloc;
1609 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1610 goto out;
1611 }
1612 }
1613
1614 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1615 case 0: /* single */
1616 ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1617 break;
1618 case BTRFS_BLOCK_GROUP_DUP:
1619 ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
1620 break;
1621 case BTRFS_BLOCK_GROUP_RAID1:
1622 case BTRFS_BLOCK_GROUP_RAID1C3:
1623 case BTRFS_BLOCK_GROUP_RAID1C4:
1624 ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
1625 break;
1626 case BTRFS_BLOCK_GROUP_RAID0:
1627 ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
1628 break;
1629 case BTRFS_BLOCK_GROUP_RAID10:
1630 ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
1631 break;
1632 case BTRFS_BLOCK_GROUP_RAID5:
1633 case BTRFS_BLOCK_GROUP_RAID6:
1634 default:
1635 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1636 btrfs_bg_type_to_raid_name(map->type));
1637 ret = -EINVAL;
1638 goto out;
1639 }
1640
1641out:
1642 /* Reject non SINGLE data profiles without RST */
1643 if ((map->type & BTRFS_BLOCK_GROUP_DATA) &&
1644 (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
1645 !fs_info->stripe_root) {
1646 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1647 btrfs_bg_type_to_raid_name(map->type));
1648 return -EINVAL;
1649 }
1650
1651 if (cache->alloc_offset > cache->zone_capacity) {
1652 btrfs_err(fs_info,
1653"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1654 cache->alloc_offset, cache->zone_capacity,
1655 cache->start);
1656 ret = -EIO;
1657 }
1658
1659 /* An extent is allocated after the write pointer */
1660 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1661 btrfs_err(fs_info,
1662 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1663 logical, last_alloc, cache->alloc_offset);
1664 ret = -EIO;
1665 }
1666
1667 if (!ret) {
1668 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1669 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1670 btrfs_get_block_group(cache);
1671 spin_lock(&fs_info->zone_active_bgs_lock);
1672 list_add_tail(&cache->active_bg_list,
1673 &fs_info->zone_active_bgs);
1674 spin_unlock(&fs_info->zone_active_bgs_lock);
1675 }
1676 } else {
1677 btrfs_free_chunk_map(cache->physical_map);
1678 cache->physical_map = NULL;
1679 }
1680 bitmap_free(active);
1681 kfree(zone_info);
1682 btrfs_free_chunk_map(map);
1683
1684 return ret;
1685}
1686
1687void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1688{
1689 u64 unusable, free;
1690
1691 if (!btrfs_is_zoned(cache->fs_info))
1692 return;
1693
1694 WARN_ON(cache->bytes_super != 0);
1695 unusable = (cache->alloc_offset - cache->used) +
1696 (cache->length - cache->zone_capacity);
1697 free = cache->zone_capacity - cache->alloc_offset;
1698
1699 /* We only need ->free_space in ALLOC_SEQ block groups */
1700 cache->cached = BTRFS_CACHE_FINISHED;
1701 cache->free_space_ctl->free_space = free;
1702 cache->zone_unusable = unusable;
1703}
1704
1705bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1706{
1707 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1708 struct btrfs_inode *inode = bbio->inode;
1709 struct btrfs_fs_info *fs_info = bbio->fs_info;
1710 struct btrfs_block_group *cache;
1711 bool ret = false;
1712
1713 if (!btrfs_is_zoned(fs_info))
1714 return false;
1715
1716 if (!inode || !is_data_inode(&inode->vfs_inode))
1717 return false;
1718
1719 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1720 return false;
1721
1722 /*
1723 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1724 * extent layout the relocation code has.
1725 * Furthermore we have set aside own block-group from which only the
1726 * relocation "process" can allocate and make sure only one process at a
1727 * time can add pages to an extent that gets relocated, so it's safe to
1728 * use regular REQ_OP_WRITE for this special case.
1729 */
1730 if (btrfs_is_data_reloc_root(inode->root))
1731 return false;
1732
1733 cache = btrfs_lookup_block_group(fs_info, start);
1734 ASSERT(cache);
1735 if (!cache)
1736 return false;
1737
1738 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1739 btrfs_put_block_group(cache);
1740
1741 return ret;
1742}
1743
1744void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1745{
1746 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1747 struct btrfs_ordered_sum *sum = bbio->sums;
1748
1749 if (physical < bbio->orig_physical)
1750 sum->logical -= bbio->orig_physical - physical;
1751 else
1752 sum->logical += physical - bbio->orig_physical;
1753}
1754
1755static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1756 u64 logical)
1757{
1758 struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree;
1759 struct extent_map *em;
1760
1761 ordered->disk_bytenr = logical;
1762
1763 write_lock(&em_tree->lock);
1764 em = search_extent_mapping(em_tree, ordered->file_offset,
1765 ordered->num_bytes);
1766 em->block_start = logical;
1767 free_extent_map(em);
1768 write_unlock(&em_tree->lock);
1769}
1770
1771static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1772 u64 logical, u64 len)
1773{
1774 struct btrfs_ordered_extent *new;
1775
1776 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1777 split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset,
1778 ordered->num_bytes, len, logical))
1779 return false;
1780
1781 new = btrfs_split_ordered_extent(ordered, len);
1782 if (IS_ERR(new))
1783 return false;
1784 new->disk_bytenr = logical;
1785 btrfs_finish_one_ordered(new);
1786 return true;
1787}
1788
1789void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1790{
1791 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1792 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1793 struct btrfs_ordered_sum *sum;
1794 u64 logical, len;
1795
1796 /*
1797 * Write to pre-allocated region is for the data relocation, and so
1798 * it should use WRITE operation. No split/rewrite are necessary.
1799 */
1800 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1801 return;
1802
1803 ASSERT(!list_empty(&ordered->list));
1804 /* The ordered->list can be empty in the above pre-alloc case. */
1805 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1806 logical = sum->logical;
1807 len = sum->len;
1808
1809 while (len < ordered->disk_num_bytes) {
1810 sum = list_next_entry(sum, list);
1811 if (sum->logical == logical + len) {
1812 len += sum->len;
1813 continue;
1814 }
1815 if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1816 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1817 btrfs_err(fs_info, "failed to split ordered extent");
1818 goto out;
1819 }
1820 logical = sum->logical;
1821 len = sum->len;
1822 }
1823
1824 if (ordered->disk_bytenr != logical)
1825 btrfs_rewrite_logical_zoned(ordered, logical);
1826
1827out:
1828 /*
1829 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1830 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1831 * addresses and don't contain actual checksums. We thus must free them
1832 * here so that we don't attempt to log the csums later.
1833 */
1834 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1835 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) {
1836 while ((sum = list_first_entry_or_null(&ordered->list,
1837 typeof(*sum), list))) {
1838 list_del(&sum->list);
1839 kfree(sum);
1840 }
1841 }
1842}
1843
1844static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1845 struct btrfs_block_group **active_bg)
1846{
1847 const struct writeback_control *wbc = ctx->wbc;
1848 struct btrfs_block_group *block_group = ctx->zoned_bg;
1849 struct btrfs_fs_info *fs_info = block_group->fs_info;
1850
1851 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1852 return true;
1853
1854 if (fs_info->treelog_bg == block_group->start) {
1855 if (!btrfs_zone_activate(block_group)) {
1856 int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1857
1858 if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1859 return false;
1860 }
1861 } else if (*active_bg != block_group) {
1862 struct btrfs_block_group *tgt = *active_bg;
1863
1864 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1865 lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1866
1867 if (tgt) {
1868 /*
1869 * If there is an unsent IO left in the allocated area,
1870 * we cannot wait for them as it may cause a deadlock.
1871 */
1872 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1873 if (wbc->sync_mode == WB_SYNC_NONE ||
1874 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1875 return false;
1876 }
1877
1878 /* Pivot active metadata/system block group. */
1879 btrfs_zoned_meta_io_unlock(fs_info);
1880 wait_eb_writebacks(tgt);
1881 do_zone_finish(tgt, true);
1882 btrfs_zoned_meta_io_lock(fs_info);
1883 if (*active_bg == tgt) {
1884 btrfs_put_block_group(tgt);
1885 *active_bg = NULL;
1886 }
1887 }
1888 if (!btrfs_zone_activate(block_group))
1889 return false;
1890 if (*active_bg != block_group) {
1891 ASSERT(*active_bg == NULL);
1892 *active_bg = block_group;
1893 btrfs_get_block_group(block_group);
1894 }
1895 }
1896
1897 return true;
1898}
1899
1900/*
1901 * Check if @ctx->eb is aligned to the write pointer.
1902 *
1903 * Return:
1904 * 0: @ctx->eb is at the write pointer. You can write it.
1905 * -EAGAIN: There is a hole. The caller should handle the case.
1906 * -EBUSY: There is a hole, but the caller can just bail out.
1907 */
1908int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1909 struct btrfs_eb_write_context *ctx)
1910{
1911 const struct writeback_control *wbc = ctx->wbc;
1912 const struct extent_buffer *eb = ctx->eb;
1913 struct btrfs_block_group *block_group = ctx->zoned_bg;
1914
1915 if (!btrfs_is_zoned(fs_info))
1916 return 0;
1917
1918 if (block_group) {
1919 if (block_group->start > eb->start ||
1920 block_group->start + block_group->length <= eb->start) {
1921 btrfs_put_block_group(block_group);
1922 block_group = NULL;
1923 ctx->zoned_bg = NULL;
1924 }
1925 }
1926
1927 if (!block_group) {
1928 block_group = btrfs_lookup_block_group(fs_info, eb->start);
1929 if (!block_group)
1930 return 0;
1931 ctx->zoned_bg = block_group;
1932 }
1933
1934 if (block_group->meta_write_pointer == eb->start) {
1935 struct btrfs_block_group **tgt;
1936
1937 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1938 return 0;
1939
1940 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1941 tgt = &fs_info->active_system_bg;
1942 else
1943 tgt = &fs_info->active_meta_bg;
1944 if (check_bg_is_active(ctx, tgt))
1945 return 0;
1946 }
1947
1948 /*
1949 * Since we may release fs_info->zoned_meta_io_lock, someone can already
1950 * start writing this eb. In that case, we can just bail out.
1951 */
1952 if (block_group->meta_write_pointer > eb->start)
1953 return -EBUSY;
1954
1955 /* If for_sync, this hole will be filled with trasnsaction commit. */
1956 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1957 return -EAGAIN;
1958 return -EBUSY;
1959}
1960
1961int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1962{
1963 if (!btrfs_dev_is_sequential(device, physical))
1964 return -EOPNOTSUPP;
1965
1966 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1967 length >> SECTOR_SHIFT, GFP_NOFS, 0);
1968}
1969
1970static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1971 struct blk_zone *zone)
1972{
1973 struct btrfs_io_context *bioc = NULL;
1974 u64 mapped_length = PAGE_SIZE;
1975 unsigned int nofs_flag;
1976 int nmirrors;
1977 int i, ret;
1978
1979 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1980 &mapped_length, &bioc, NULL, NULL);
1981 if (ret || !bioc || mapped_length < PAGE_SIZE) {
1982 ret = -EIO;
1983 goto out_put_bioc;
1984 }
1985
1986 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1987 ret = -EINVAL;
1988 goto out_put_bioc;
1989 }
1990
1991 nofs_flag = memalloc_nofs_save();
1992 nmirrors = (int)bioc->num_stripes;
1993 for (i = 0; i < nmirrors; i++) {
1994 u64 physical = bioc->stripes[i].physical;
1995 struct btrfs_device *dev = bioc->stripes[i].dev;
1996
1997 /* Missing device */
1998 if (!dev->bdev)
1999 continue;
2000
2001 ret = btrfs_get_dev_zone(dev, physical, zone);
2002 /* Failing device */
2003 if (ret == -EIO || ret == -EOPNOTSUPP)
2004 continue;
2005 break;
2006 }
2007 memalloc_nofs_restore(nofs_flag);
2008out_put_bioc:
2009 btrfs_put_bioc(bioc);
2010 return ret;
2011}
2012
2013/*
2014 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2015 * filling zeros between @physical_pos to a write pointer of dev-replace
2016 * source device.
2017 */
2018int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2019 u64 physical_start, u64 physical_pos)
2020{
2021 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2022 struct blk_zone zone;
2023 u64 length;
2024 u64 wp;
2025 int ret;
2026
2027 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2028 return 0;
2029
2030 ret = read_zone_info(fs_info, logical, &zone);
2031 if (ret)
2032 return ret;
2033
2034 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2035
2036 if (physical_pos == wp)
2037 return 0;
2038
2039 if (physical_pos > wp)
2040 return -EUCLEAN;
2041
2042 length = wp - physical_pos;
2043 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2044}
2045
2046/*
2047 * Activate block group and underlying device zones
2048 *
2049 * @block_group: the block group to activate
2050 *
2051 * Return: true on success, false otherwise
2052 */
2053bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2054{
2055 struct btrfs_fs_info *fs_info = block_group->fs_info;
2056 struct btrfs_chunk_map *map;
2057 struct btrfs_device *device;
2058 u64 physical;
2059 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2060 bool ret;
2061 int i;
2062
2063 if (!btrfs_is_zoned(block_group->fs_info))
2064 return true;
2065
2066 map = block_group->physical_map;
2067
2068 spin_lock(&fs_info->zone_active_bgs_lock);
2069 spin_lock(&block_group->lock);
2070 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2071 ret = true;
2072 goto out_unlock;
2073 }
2074
2075 /* No space left */
2076 if (btrfs_zoned_bg_is_full(block_group)) {
2077 ret = false;
2078 goto out_unlock;
2079 }
2080
2081 for (i = 0; i < map->num_stripes; i++) {
2082 struct btrfs_zoned_device_info *zinfo;
2083 int reserved = 0;
2084
2085 device = map->stripes[i].dev;
2086 physical = map->stripes[i].physical;
2087 zinfo = device->zone_info;
2088
2089 if (zinfo->max_active_zones == 0)
2090 continue;
2091
2092 if (is_data)
2093 reserved = zinfo->reserved_active_zones;
2094 /*
2095 * For the data block group, leave active zones for one
2096 * metadata block group and one system block group.
2097 */
2098 if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2099 ret = false;
2100 goto out_unlock;
2101 }
2102
2103 if (!btrfs_dev_set_active_zone(device, physical)) {
2104 /* Cannot activate the zone */
2105 ret = false;
2106 goto out_unlock;
2107 }
2108 if (!is_data)
2109 zinfo->reserved_active_zones--;
2110 }
2111
2112 /* Successfully activated all the zones */
2113 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2114 spin_unlock(&block_group->lock);
2115
2116 /* For the active block group list */
2117 btrfs_get_block_group(block_group);
2118 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2119 spin_unlock(&fs_info->zone_active_bgs_lock);
2120
2121 return true;
2122
2123out_unlock:
2124 spin_unlock(&block_group->lock);
2125 spin_unlock(&fs_info->zone_active_bgs_lock);
2126 return ret;
2127}
2128
2129static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2130{
2131 struct btrfs_fs_info *fs_info = block_group->fs_info;
2132 const u64 end = block_group->start + block_group->length;
2133 struct radix_tree_iter iter;
2134 struct extent_buffer *eb;
2135 void __rcu **slot;
2136
2137 rcu_read_lock();
2138 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2139 block_group->start >> fs_info->sectorsize_bits) {
2140 eb = radix_tree_deref_slot(slot);
2141 if (!eb)
2142 continue;
2143 if (radix_tree_deref_retry(eb)) {
2144 slot = radix_tree_iter_retry(&iter);
2145 continue;
2146 }
2147
2148 if (eb->start < block_group->start)
2149 continue;
2150 if (eb->start >= end)
2151 break;
2152
2153 slot = radix_tree_iter_resume(slot, &iter);
2154 rcu_read_unlock();
2155 wait_on_extent_buffer_writeback(eb);
2156 rcu_read_lock();
2157 }
2158 rcu_read_unlock();
2159}
2160
2161static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2162{
2163 struct btrfs_fs_info *fs_info = block_group->fs_info;
2164 struct btrfs_chunk_map *map;
2165 const bool is_metadata = (block_group->flags &
2166 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2167 int ret = 0;
2168 int i;
2169
2170 spin_lock(&block_group->lock);
2171 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2172 spin_unlock(&block_group->lock);
2173 return 0;
2174 }
2175
2176 /* Check if we have unwritten allocated space */
2177 if (is_metadata &&
2178 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2179 spin_unlock(&block_group->lock);
2180 return -EAGAIN;
2181 }
2182
2183 /*
2184 * If we are sure that the block group is full (= no more room left for
2185 * new allocation) and the IO for the last usable block is completed, we
2186 * don't need to wait for the other IOs. This holds because we ensure
2187 * the sequential IO submissions using the ZONE_APPEND command for data
2188 * and block_group->meta_write_pointer for metadata.
2189 */
2190 if (!fully_written) {
2191 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2192 spin_unlock(&block_group->lock);
2193 return -EAGAIN;
2194 }
2195 spin_unlock(&block_group->lock);
2196
2197 ret = btrfs_inc_block_group_ro(block_group, false);
2198 if (ret)
2199 return ret;
2200
2201 /* Ensure all writes in this block group finish */
2202 btrfs_wait_block_group_reservations(block_group);
2203 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2204 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2205 block_group->length);
2206 /* Wait for extent buffers to be written. */
2207 if (is_metadata)
2208 wait_eb_writebacks(block_group);
2209
2210 spin_lock(&block_group->lock);
2211
2212 /*
2213 * Bail out if someone already deactivated the block group, or
2214 * allocated space is left in the block group.
2215 */
2216 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2217 &block_group->runtime_flags)) {
2218 spin_unlock(&block_group->lock);
2219 btrfs_dec_block_group_ro(block_group);
2220 return 0;
2221 }
2222
2223 if (block_group->reserved ||
2224 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2225 &block_group->runtime_flags)) {
2226 spin_unlock(&block_group->lock);
2227 btrfs_dec_block_group_ro(block_group);
2228 return -EAGAIN;
2229 }
2230 }
2231
2232 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2233 block_group->alloc_offset = block_group->zone_capacity;
2234 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2235 block_group->meta_write_pointer = block_group->start +
2236 block_group->zone_capacity;
2237 block_group->free_space_ctl->free_space = 0;
2238 btrfs_clear_treelog_bg(block_group);
2239 btrfs_clear_data_reloc_bg(block_group);
2240 spin_unlock(&block_group->lock);
2241
2242 map = block_group->physical_map;
2243 for (i = 0; i < map->num_stripes; i++) {
2244 struct btrfs_device *device = map->stripes[i].dev;
2245 const u64 physical = map->stripes[i].physical;
2246 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2247
2248 if (zinfo->max_active_zones == 0)
2249 continue;
2250
2251 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2252 physical >> SECTOR_SHIFT,
2253 zinfo->zone_size >> SECTOR_SHIFT,
2254 GFP_NOFS);
2255
2256 if (ret)
2257 return ret;
2258
2259 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2260 zinfo->reserved_active_zones++;
2261 btrfs_dev_clear_active_zone(device, physical);
2262 }
2263
2264 if (!fully_written)
2265 btrfs_dec_block_group_ro(block_group);
2266
2267 spin_lock(&fs_info->zone_active_bgs_lock);
2268 ASSERT(!list_empty(&block_group->active_bg_list));
2269 list_del_init(&block_group->active_bg_list);
2270 spin_unlock(&fs_info->zone_active_bgs_lock);
2271
2272 /* For active_bg_list */
2273 btrfs_put_block_group(block_group);
2274
2275 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2276
2277 return 0;
2278}
2279
2280int btrfs_zone_finish(struct btrfs_block_group *block_group)
2281{
2282 if (!btrfs_is_zoned(block_group->fs_info))
2283 return 0;
2284
2285 return do_zone_finish(block_group, false);
2286}
2287
2288bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2289{
2290 struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2291 struct btrfs_device *device;
2292 bool ret = false;
2293
2294 if (!btrfs_is_zoned(fs_info))
2295 return true;
2296
2297 /* Check if there is a device with active zones left */
2298 mutex_lock(&fs_info->chunk_mutex);
2299 spin_lock(&fs_info->zone_active_bgs_lock);
2300 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2301 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2302 int reserved = 0;
2303
2304 if (!device->bdev)
2305 continue;
2306
2307 if (!zinfo->max_active_zones) {
2308 ret = true;
2309 break;
2310 }
2311
2312 if (flags & BTRFS_BLOCK_GROUP_DATA)
2313 reserved = zinfo->reserved_active_zones;
2314
2315 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2316 case 0: /* single */
2317 ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2318 break;
2319 case BTRFS_BLOCK_GROUP_DUP:
2320 ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2321 break;
2322 }
2323 if (ret)
2324 break;
2325 }
2326 spin_unlock(&fs_info->zone_active_bgs_lock);
2327 mutex_unlock(&fs_info->chunk_mutex);
2328
2329 if (!ret)
2330 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2331
2332 return ret;
2333}
2334
2335void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2336{
2337 struct btrfs_block_group *block_group;
2338 u64 min_alloc_bytes;
2339
2340 if (!btrfs_is_zoned(fs_info))
2341 return;
2342
2343 block_group = btrfs_lookup_block_group(fs_info, logical);
2344 ASSERT(block_group);
2345
2346 /* No MIXED_BG on zoned btrfs. */
2347 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2348 min_alloc_bytes = fs_info->sectorsize;
2349 else
2350 min_alloc_bytes = fs_info->nodesize;
2351
2352 /* Bail out if we can allocate more data from this block group. */
2353 if (logical + length + min_alloc_bytes <=
2354 block_group->start + block_group->zone_capacity)
2355 goto out;
2356
2357 do_zone_finish(block_group, true);
2358
2359out:
2360 btrfs_put_block_group(block_group);
2361}
2362
2363static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2364{
2365 struct btrfs_block_group *bg =
2366 container_of(work, struct btrfs_block_group, zone_finish_work);
2367
2368 wait_on_extent_buffer_writeback(bg->last_eb);
2369 free_extent_buffer(bg->last_eb);
2370 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2371 btrfs_put_block_group(bg);
2372}
2373
2374void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2375 struct extent_buffer *eb)
2376{
2377 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2378 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2379 return;
2380
2381 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2382 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2383 bg->start);
2384 return;
2385 }
2386
2387 /* For the work */
2388 btrfs_get_block_group(bg);
2389 atomic_inc(&eb->refs);
2390 bg->last_eb = eb;
2391 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2392 queue_work(system_unbound_wq, &bg->zone_finish_work);
2393}
2394
2395void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2396{
2397 struct btrfs_fs_info *fs_info = bg->fs_info;
2398
2399 spin_lock(&fs_info->relocation_bg_lock);
2400 if (fs_info->data_reloc_bg == bg->start)
2401 fs_info->data_reloc_bg = 0;
2402 spin_unlock(&fs_info->relocation_bg_lock);
2403}
2404
2405void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2406{
2407 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2408 struct btrfs_device *device;
2409
2410 if (!btrfs_is_zoned(fs_info))
2411 return;
2412
2413 mutex_lock(&fs_devices->device_list_mutex);
2414 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2415 if (device->zone_info) {
2416 vfree(device->zone_info->zone_cache);
2417 device->zone_info->zone_cache = NULL;
2418 }
2419 }
2420 mutex_unlock(&fs_devices->device_list_mutex);
2421}
2422
2423bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2424{
2425 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2426 struct btrfs_device *device;
2427 u64 used = 0;
2428 u64 total = 0;
2429 u64 factor;
2430
2431 ASSERT(btrfs_is_zoned(fs_info));
2432
2433 if (fs_info->bg_reclaim_threshold == 0)
2434 return false;
2435
2436 mutex_lock(&fs_devices->device_list_mutex);
2437 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2438 if (!device->bdev)
2439 continue;
2440
2441 total += device->disk_total_bytes;
2442 used += device->bytes_used;
2443 }
2444 mutex_unlock(&fs_devices->device_list_mutex);
2445
2446 factor = div64_u64(used * 100, total);
2447 return factor >= fs_info->bg_reclaim_threshold;
2448}
2449
2450void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2451 u64 length)
2452{
2453 struct btrfs_block_group *block_group;
2454
2455 if (!btrfs_is_zoned(fs_info))
2456 return;
2457
2458 block_group = btrfs_lookup_block_group(fs_info, logical);
2459 /* It should be called on a previous data relocation block group. */
2460 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2461
2462 spin_lock(&block_group->lock);
2463 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2464 goto out;
2465
2466 /* All relocation extents are written. */
2467 if (block_group->start + block_group->alloc_offset == logical + length) {
2468 /*
2469 * Now, release this block group for further allocations and
2470 * zone finish.
2471 */
2472 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2473 &block_group->runtime_flags);
2474 }
2475
2476out:
2477 spin_unlock(&block_group->lock);
2478 btrfs_put_block_group(block_group);
2479}
2480
2481int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2482{
2483 struct btrfs_block_group *block_group;
2484 struct btrfs_block_group *min_bg = NULL;
2485 u64 min_avail = U64_MAX;
2486 int ret;
2487
2488 spin_lock(&fs_info->zone_active_bgs_lock);
2489 list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2490 active_bg_list) {
2491 u64 avail;
2492
2493 spin_lock(&block_group->lock);
2494 if (block_group->reserved || block_group->alloc_offset == 0 ||
2495 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2496 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2497 spin_unlock(&block_group->lock);
2498 continue;
2499 }
2500
2501 avail = block_group->zone_capacity - block_group->alloc_offset;
2502 if (min_avail > avail) {
2503 if (min_bg)
2504 btrfs_put_block_group(min_bg);
2505 min_bg = block_group;
2506 min_avail = avail;
2507 btrfs_get_block_group(min_bg);
2508 }
2509 spin_unlock(&block_group->lock);
2510 }
2511 spin_unlock(&fs_info->zone_active_bgs_lock);
2512
2513 if (!min_bg)
2514 return 0;
2515
2516 ret = btrfs_zone_finish(min_bg);
2517 btrfs_put_block_group(min_bg);
2518
2519 return ret < 0 ? ret : 1;
2520}
2521
2522int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2523 struct btrfs_space_info *space_info,
2524 bool do_finish)
2525{
2526 struct btrfs_block_group *bg;
2527 int index;
2528
2529 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2530 return 0;
2531
2532 for (;;) {
2533 int ret;
2534 bool need_finish = false;
2535
2536 down_read(&space_info->groups_sem);
2537 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2538 list_for_each_entry(bg, &space_info->block_groups[index],
2539 list) {
2540 if (!spin_trylock(&bg->lock))
2541 continue;
2542 if (btrfs_zoned_bg_is_full(bg) ||
2543 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2544 &bg->runtime_flags)) {
2545 spin_unlock(&bg->lock);
2546 continue;
2547 }
2548 spin_unlock(&bg->lock);
2549
2550 if (btrfs_zone_activate(bg)) {
2551 up_read(&space_info->groups_sem);
2552 return 1;
2553 }
2554
2555 need_finish = true;
2556 }
2557 }
2558 up_read(&space_info->groups_sem);
2559
2560 if (!do_finish || !need_finish)
2561 break;
2562
2563 ret = btrfs_zone_finish_one_bg(fs_info);
2564 if (ret == 0)
2565 break;
2566 if (ret < 0)
2567 return ret;
2568 }
2569
2570 return 0;
2571}
2572
2573/*
2574 * Reserve zones for one metadata block group, one tree-log block group, and one
2575 * system block group.
2576 */
2577void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2578{
2579 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2580 struct btrfs_block_group *block_group;
2581 struct btrfs_device *device;
2582 /* Reserve zones for normal SINGLE metadata and tree-log block group. */
2583 unsigned int metadata_reserve = 2;
2584 /* Reserve a zone for SINGLE system block group. */
2585 unsigned int system_reserve = 1;
2586
2587 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2588 return;
2589
2590 /*
2591 * This function is called from the mount context. So, there is no
2592 * parallel process touching the bits. No need for read_seqretry().
2593 */
2594 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2595 metadata_reserve = 4;
2596 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2597 system_reserve = 2;
2598
2599 /* Apply the reservation on all the devices. */
2600 mutex_lock(&fs_devices->device_list_mutex);
2601 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2602 if (!device->bdev)
2603 continue;
2604
2605 device->zone_info->reserved_active_zones =
2606 metadata_reserve + system_reserve;
2607 }
2608 mutex_unlock(&fs_devices->device_list_mutex);
2609
2610 /* Release reservation for currently active block groups. */
2611 spin_lock(&fs_info->zone_active_bgs_lock);
2612 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2613 struct btrfs_chunk_map *map = block_group->physical_map;
2614
2615 if (!(block_group->flags &
2616 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2617 continue;
2618
2619 for (int i = 0; i < map->num_stripes; i++)
2620 map->stripes[i].dev->zone_info->reserved_active_zones--;
2621 }
2622 spin_unlock(&fs_info->zone_active_bgs_lock);
2623}