Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/fsnotify.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/mount.h>
17#include <linux/namei.h>
18#include <linux/writeback.h>
19#include <linux/compat.h>
20#include <linux/security.h>
21#include <linux/xattr.h>
22#include <linux/mm.h>
23#include <linux/slab.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include <linux/btrfs.h>
27#include <linux/uaccess.h>
28#include <linux/iversion.h>
29#include <linux/fileattr.h>
30#include <linux/fsverity.h>
31#include <linux/sched/xacct.h>
32#include "ctree.h"
33#include "disk-io.h"
34#include "export.h"
35#include "transaction.h"
36#include "btrfs_inode.h"
37#include "print-tree.h"
38#include "volumes.h"
39#include "locking.h"
40#include "backref.h"
41#include "rcu-string.h"
42#include "send.h"
43#include "dev-replace.h"
44#include "props.h"
45#include "sysfs.h"
46#include "qgroup.h"
47#include "tree-log.h"
48#include "compression.h"
49#include "space-info.h"
50#include "delalloc-space.h"
51#include "block-group.h"
52#include "subpage.h"
53#include "fs.h"
54#include "accessors.h"
55#include "extent-tree.h"
56#include "root-tree.h"
57#include "defrag.h"
58#include "dir-item.h"
59#include "uuid-tree.h"
60#include "ioctl.h"
61#include "file.h"
62#include "scrub.h"
63#include "super.h"
64
65#ifdef CONFIG_64BIT
66/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
70 */
71struct btrfs_ioctl_timespec_32 {
72 __u64 sec;
73 __u32 nsec;
74} __attribute__ ((__packed__));
75
76struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 flags; /* in */
83 __u64 reserved[16]; /* in */
84} __attribute__ ((__packed__));
85
86#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
88#endif
89
90#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91struct btrfs_ioctl_send_args_32 {
92 __s64 send_fd; /* in */
93 __u64 clone_sources_count; /* in */
94 compat_uptr_t clone_sources; /* in */
95 __u64 parent_root; /* in */
96 __u64 flags; /* in */
97 __u32 version; /* in */
98 __u8 reserved[28]; /* in */
99} __attribute__ ((__packed__));
100
101#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
102 struct btrfs_ioctl_send_args_32)
103
104struct btrfs_ioctl_encoded_io_args_32 {
105 compat_uptr_t iov;
106 compat_ulong_t iovcnt;
107 __s64 offset;
108 __u64 flags;
109 __u64 len;
110 __u64 unencoded_len;
111 __u64 unencoded_offset;
112 __u32 compression;
113 __u32 encryption;
114 __u8 reserved[64];
115};
116
117#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
118 struct btrfs_ioctl_encoded_io_args_32)
119#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
120 struct btrfs_ioctl_encoded_io_args_32)
121#endif
122
123/* Mask out flags that are inappropriate for the given type of inode. */
124static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
125 unsigned int flags)
126{
127 if (S_ISDIR(inode->i_mode))
128 return flags;
129 else if (S_ISREG(inode->i_mode))
130 return flags & ~FS_DIRSYNC_FL;
131 else
132 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
133}
134
135/*
136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
137 * ioctl.
138 */
139static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
140{
141 unsigned int iflags = 0;
142 u32 flags = binode->flags;
143 u32 ro_flags = binode->ro_flags;
144
145 if (flags & BTRFS_INODE_SYNC)
146 iflags |= FS_SYNC_FL;
147 if (flags & BTRFS_INODE_IMMUTABLE)
148 iflags |= FS_IMMUTABLE_FL;
149 if (flags & BTRFS_INODE_APPEND)
150 iflags |= FS_APPEND_FL;
151 if (flags & BTRFS_INODE_NODUMP)
152 iflags |= FS_NODUMP_FL;
153 if (flags & BTRFS_INODE_NOATIME)
154 iflags |= FS_NOATIME_FL;
155 if (flags & BTRFS_INODE_DIRSYNC)
156 iflags |= FS_DIRSYNC_FL;
157 if (flags & BTRFS_INODE_NODATACOW)
158 iflags |= FS_NOCOW_FL;
159 if (ro_flags & BTRFS_INODE_RO_VERITY)
160 iflags |= FS_VERITY_FL;
161
162 if (flags & BTRFS_INODE_NOCOMPRESS)
163 iflags |= FS_NOCOMP_FL;
164 else if (flags & BTRFS_INODE_COMPRESS)
165 iflags |= FS_COMPR_FL;
166
167 return iflags;
168}
169
170/*
171 * Update inode->i_flags based on the btrfs internal flags.
172 */
173void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
174{
175 struct btrfs_inode *binode = BTRFS_I(inode);
176 unsigned int new_fl = 0;
177
178 if (binode->flags & BTRFS_INODE_SYNC)
179 new_fl |= S_SYNC;
180 if (binode->flags & BTRFS_INODE_IMMUTABLE)
181 new_fl |= S_IMMUTABLE;
182 if (binode->flags & BTRFS_INODE_APPEND)
183 new_fl |= S_APPEND;
184 if (binode->flags & BTRFS_INODE_NOATIME)
185 new_fl |= S_NOATIME;
186 if (binode->flags & BTRFS_INODE_DIRSYNC)
187 new_fl |= S_DIRSYNC;
188 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
189 new_fl |= S_VERITY;
190
191 set_mask_bits(&inode->i_flags,
192 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
193 S_VERITY, new_fl);
194}
195
196/*
197 * Check if @flags are a supported and valid set of FS_*_FL flags and that
198 * the old and new flags are not conflicting
199 */
200static int check_fsflags(unsigned int old_flags, unsigned int flags)
201{
202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 FS_NOATIME_FL | FS_NODUMP_FL | \
204 FS_SYNC_FL | FS_DIRSYNC_FL | \
205 FS_NOCOMP_FL | FS_COMPR_FL |
206 FS_NOCOW_FL))
207 return -EOPNOTSUPP;
208
209 /* COMPR and NOCOMP on new/old are valid */
210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 return -EINVAL;
212
213 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
214 return -EINVAL;
215
216 /* NOCOW and compression options are mutually exclusive */
217 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
218 return -EINVAL;
219 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
220 return -EINVAL;
221
222 return 0;
223}
224
225static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
226 unsigned int flags)
227{
228 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
229 return -EPERM;
230
231 return 0;
232}
233
234/*
235 * Set flags/xflags from the internal inode flags. The remaining items of
236 * fsxattr are zeroed.
237 */
238int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
239{
240 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
241
242 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
243 return 0;
244}
245
246int btrfs_fileattr_set(struct user_namespace *mnt_userns,
247 struct dentry *dentry, struct fileattr *fa)
248{
249 struct inode *inode = d_inode(dentry);
250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
251 struct btrfs_inode *binode = BTRFS_I(inode);
252 struct btrfs_root *root = binode->root;
253 struct btrfs_trans_handle *trans;
254 unsigned int fsflags, old_fsflags;
255 int ret;
256 const char *comp = NULL;
257 u32 binode_flags;
258
259 if (btrfs_root_readonly(root))
260 return -EROFS;
261
262 if (fileattr_has_fsx(fa))
263 return -EOPNOTSUPP;
264
265 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
266 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
267 ret = check_fsflags(old_fsflags, fsflags);
268 if (ret)
269 return ret;
270
271 ret = check_fsflags_compatible(fs_info, fsflags);
272 if (ret)
273 return ret;
274
275 binode_flags = binode->flags;
276 if (fsflags & FS_SYNC_FL)
277 binode_flags |= BTRFS_INODE_SYNC;
278 else
279 binode_flags &= ~BTRFS_INODE_SYNC;
280 if (fsflags & FS_IMMUTABLE_FL)
281 binode_flags |= BTRFS_INODE_IMMUTABLE;
282 else
283 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
284 if (fsflags & FS_APPEND_FL)
285 binode_flags |= BTRFS_INODE_APPEND;
286 else
287 binode_flags &= ~BTRFS_INODE_APPEND;
288 if (fsflags & FS_NODUMP_FL)
289 binode_flags |= BTRFS_INODE_NODUMP;
290 else
291 binode_flags &= ~BTRFS_INODE_NODUMP;
292 if (fsflags & FS_NOATIME_FL)
293 binode_flags |= BTRFS_INODE_NOATIME;
294 else
295 binode_flags &= ~BTRFS_INODE_NOATIME;
296
297 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
298 if (!fa->flags_valid) {
299 /* 1 item for the inode */
300 trans = btrfs_start_transaction(root, 1);
301 if (IS_ERR(trans))
302 return PTR_ERR(trans);
303 goto update_flags;
304 }
305
306 if (fsflags & FS_DIRSYNC_FL)
307 binode_flags |= BTRFS_INODE_DIRSYNC;
308 else
309 binode_flags &= ~BTRFS_INODE_DIRSYNC;
310 if (fsflags & FS_NOCOW_FL) {
311 if (S_ISREG(inode->i_mode)) {
312 /*
313 * It's safe to turn csums off here, no extents exist.
314 * Otherwise we want the flag to reflect the real COW
315 * status of the file and will not set it.
316 */
317 if (inode->i_size == 0)
318 binode_flags |= BTRFS_INODE_NODATACOW |
319 BTRFS_INODE_NODATASUM;
320 } else {
321 binode_flags |= BTRFS_INODE_NODATACOW;
322 }
323 } else {
324 /*
325 * Revert back under same assumptions as above
326 */
327 if (S_ISREG(inode->i_mode)) {
328 if (inode->i_size == 0)
329 binode_flags &= ~(BTRFS_INODE_NODATACOW |
330 BTRFS_INODE_NODATASUM);
331 } else {
332 binode_flags &= ~BTRFS_INODE_NODATACOW;
333 }
334 }
335
336 /*
337 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
338 * flag may be changed automatically if compression code won't make
339 * things smaller.
340 */
341 if (fsflags & FS_NOCOMP_FL) {
342 binode_flags &= ~BTRFS_INODE_COMPRESS;
343 binode_flags |= BTRFS_INODE_NOCOMPRESS;
344 } else if (fsflags & FS_COMPR_FL) {
345
346 if (IS_SWAPFILE(inode))
347 return -ETXTBSY;
348
349 binode_flags |= BTRFS_INODE_COMPRESS;
350 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
351
352 comp = btrfs_compress_type2str(fs_info->compress_type);
353 if (!comp || comp[0] == 0)
354 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
355 } else {
356 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
357 }
358
359 /*
360 * 1 for inode item
361 * 2 for properties
362 */
363 trans = btrfs_start_transaction(root, 3);
364 if (IS_ERR(trans))
365 return PTR_ERR(trans);
366
367 if (comp) {
368 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
369 strlen(comp), 0);
370 if (ret) {
371 btrfs_abort_transaction(trans, ret);
372 goto out_end_trans;
373 }
374 } else {
375 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
376 0, 0);
377 if (ret && ret != -ENODATA) {
378 btrfs_abort_transaction(trans, ret);
379 goto out_end_trans;
380 }
381 }
382
383update_flags:
384 binode->flags = binode_flags;
385 btrfs_sync_inode_flags_to_i_flags(inode);
386 inode_inc_iversion(inode);
387 inode->i_ctime = current_time(inode);
388 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
389
390 out_end_trans:
391 btrfs_end_transaction(trans);
392 return ret;
393}
394
395/*
396 * Start exclusive operation @type, return true on success
397 */
398bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
399 enum btrfs_exclusive_operation type)
400{
401 bool ret = false;
402
403 spin_lock(&fs_info->super_lock);
404 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
405 fs_info->exclusive_operation = type;
406 ret = true;
407 }
408 spin_unlock(&fs_info->super_lock);
409
410 return ret;
411}
412
413/*
414 * Conditionally allow to enter the exclusive operation in case it's compatible
415 * with the running one. This must be paired with btrfs_exclop_start_unlock and
416 * btrfs_exclop_finish.
417 *
418 * Compatibility:
419 * - the same type is already running
420 * - when trying to add a device and balance has been paused
421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
422 * must check the condition first that would allow none -> @type
423 */
424bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
425 enum btrfs_exclusive_operation type)
426{
427 spin_lock(&fs_info->super_lock);
428 if (fs_info->exclusive_operation == type ||
429 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
430 type == BTRFS_EXCLOP_DEV_ADD))
431 return true;
432
433 spin_unlock(&fs_info->super_lock);
434 return false;
435}
436
437void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
438{
439 spin_unlock(&fs_info->super_lock);
440}
441
442void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
443{
444 spin_lock(&fs_info->super_lock);
445 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
446 spin_unlock(&fs_info->super_lock);
447 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
448}
449
450void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
451 enum btrfs_exclusive_operation op)
452{
453 switch (op) {
454 case BTRFS_EXCLOP_BALANCE_PAUSED:
455 spin_lock(&fs_info->super_lock);
456 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
457 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD);
458 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
459 spin_unlock(&fs_info->super_lock);
460 break;
461 case BTRFS_EXCLOP_BALANCE:
462 spin_lock(&fs_info->super_lock);
463 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
464 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
465 spin_unlock(&fs_info->super_lock);
466 break;
467 default:
468 btrfs_warn(fs_info,
469 "invalid exclop balance operation %d requested", op);
470 }
471}
472
473static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
474{
475 return put_user(inode->i_generation, arg);
476}
477
478static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
479 void __user *arg)
480{
481 struct btrfs_device *device;
482 struct fstrim_range range;
483 u64 minlen = ULLONG_MAX;
484 u64 num_devices = 0;
485 int ret;
486
487 if (!capable(CAP_SYS_ADMIN))
488 return -EPERM;
489
490 /*
491 * btrfs_trim_block_group() depends on space cache, which is not
492 * available in zoned filesystem. So, disallow fitrim on a zoned
493 * filesystem for now.
494 */
495 if (btrfs_is_zoned(fs_info))
496 return -EOPNOTSUPP;
497
498 /*
499 * If the fs is mounted with nologreplay, which requires it to be
500 * mounted in RO mode as well, we can not allow discard on free space
501 * inside block groups, because log trees refer to extents that are not
502 * pinned in a block group's free space cache (pinning the extents is
503 * precisely the first phase of replaying a log tree).
504 */
505 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
506 return -EROFS;
507
508 rcu_read_lock();
509 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
510 dev_list) {
511 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
512 continue;
513 num_devices++;
514 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
515 minlen);
516 }
517 rcu_read_unlock();
518
519 if (!num_devices)
520 return -EOPNOTSUPP;
521 if (copy_from_user(&range, arg, sizeof(range)))
522 return -EFAULT;
523
524 /*
525 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
526 * block group is in the logical address space, which can be any
527 * sectorsize aligned bytenr in the range [0, U64_MAX].
528 */
529 if (range.len < fs_info->sb->s_blocksize)
530 return -EINVAL;
531
532 range.minlen = max(range.minlen, minlen);
533 ret = btrfs_trim_fs(fs_info, &range);
534 if (ret < 0)
535 return ret;
536
537 if (copy_to_user(arg, &range, sizeof(range)))
538 return -EFAULT;
539
540 return 0;
541}
542
543int __pure btrfs_is_empty_uuid(u8 *uuid)
544{
545 int i;
546
547 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
548 if (uuid[i])
549 return 0;
550 }
551 return 1;
552}
553
554/*
555 * Calculate the number of transaction items to reserve for creating a subvolume
556 * or snapshot, not including the inode, directory entries, or parent directory.
557 */
558static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
559{
560 /*
561 * 1 to add root block
562 * 1 to add root item
563 * 1 to add root ref
564 * 1 to add root backref
565 * 1 to add UUID item
566 * 1 to add qgroup info
567 * 1 to add qgroup limit
568 *
569 * Ideally the last two would only be accounted if qgroups are enabled,
570 * but that can change between now and the time we would insert them.
571 */
572 unsigned int num_items = 7;
573
574 if (inherit) {
575 /* 2 to add qgroup relations for each inherited qgroup */
576 num_items += 2 * inherit->num_qgroups;
577 }
578 return num_items;
579}
580
581static noinline int create_subvol(struct user_namespace *mnt_userns,
582 struct inode *dir, struct dentry *dentry,
583 struct btrfs_qgroup_inherit *inherit)
584{
585 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
586 struct btrfs_trans_handle *trans;
587 struct btrfs_key key;
588 struct btrfs_root_item *root_item;
589 struct btrfs_inode_item *inode_item;
590 struct extent_buffer *leaf;
591 struct btrfs_root *root = BTRFS_I(dir)->root;
592 struct btrfs_root *new_root;
593 struct btrfs_block_rsv block_rsv;
594 struct timespec64 cur_time = current_time(dir);
595 struct btrfs_new_inode_args new_inode_args = {
596 .dir = dir,
597 .dentry = dentry,
598 .subvol = true,
599 };
600 unsigned int trans_num_items;
601 int ret;
602 dev_t anon_dev;
603 u64 objectid;
604
605 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
606 if (!root_item)
607 return -ENOMEM;
608
609 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
610 if (ret)
611 goto out_root_item;
612
613 /*
614 * Don't create subvolume whose level is not zero. Or qgroup will be
615 * screwed up since it assumes subvolume qgroup's level to be 0.
616 */
617 if (btrfs_qgroup_level(objectid)) {
618 ret = -ENOSPC;
619 goto out_root_item;
620 }
621
622 ret = get_anon_bdev(&anon_dev);
623 if (ret < 0)
624 goto out_root_item;
625
626 new_inode_args.inode = btrfs_new_subvol_inode(mnt_userns, dir);
627 if (!new_inode_args.inode) {
628 ret = -ENOMEM;
629 goto out_anon_dev;
630 }
631 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
632 if (ret)
633 goto out_inode;
634 trans_num_items += create_subvol_num_items(inherit);
635
636 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
637 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
638 trans_num_items, false);
639 if (ret)
640 goto out_new_inode_args;
641
642 trans = btrfs_start_transaction(root, 0);
643 if (IS_ERR(trans)) {
644 ret = PTR_ERR(trans);
645 btrfs_subvolume_release_metadata(root, &block_rsv);
646 goto out_new_inode_args;
647 }
648 trans->block_rsv = &block_rsv;
649 trans->bytes_reserved = block_rsv.size;
650
651 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
652 if (ret)
653 goto out;
654
655 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
656 BTRFS_NESTING_NORMAL);
657 if (IS_ERR(leaf)) {
658 ret = PTR_ERR(leaf);
659 goto out;
660 }
661
662 btrfs_mark_buffer_dirty(leaf);
663
664 inode_item = &root_item->inode;
665 btrfs_set_stack_inode_generation(inode_item, 1);
666 btrfs_set_stack_inode_size(inode_item, 3);
667 btrfs_set_stack_inode_nlink(inode_item, 1);
668 btrfs_set_stack_inode_nbytes(inode_item,
669 fs_info->nodesize);
670 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
671
672 btrfs_set_root_flags(root_item, 0);
673 btrfs_set_root_limit(root_item, 0);
674 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
675
676 btrfs_set_root_bytenr(root_item, leaf->start);
677 btrfs_set_root_generation(root_item, trans->transid);
678 btrfs_set_root_level(root_item, 0);
679 btrfs_set_root_refs(root_item, 1);
680 btrfs_set_root_used(root_item, leaf->len);
681 btrfs_set_root_last_snapshot(root_item, 0);
682
683 btrfs_set_root_generation_v2(root_item,
684 btrfs_root_generation(root_item));
685 generate_random_guid(root_item->uuid);
686 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
687 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
688 root_item->ctime = root_item->otime;
689 btrfs_set_root_ctransid(root_item, trans->transid);
690 btrfs_set_root_otransid(root_item, trans->transid);
691
692 btrfs_tree_unlock(leaf);
693
694 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
695
696 key.objectid = objectid;
697 key.offset = 0;
698 key.type = BTRFS_ROOT_ITEM_KEY;
699 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
700 root_item);
701 if (ret) {
702 /*
703 * Since we don't abort the transaction in this case, free the
704 * tree block so that we don't leak space and leave the
705 * filesystem in an inconsistent state (an extent item in the
706 * extent tree with a backreference for a root that does not
707 * exists).
708 */
709 btrfs_tree_lock(leaf);
710 btrfs_clean_tree_block(leaf);
711 btrfs_tree_unlock(leaf);
712 btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
713 free_extent_buffer(leaf);
714 goto out;
715 }
716
717 free_extent_buffer(leaf);
718 leaf = NULL;
719
720 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
721 if (IS_ERR(new_root)) {
722 ret = PTR_ERR(new_root);
723 btrfs_abort_transaction(trans, ret);
724 goto out;
725 }
726 /* anon_dev is owned by new_root now. */
727 anon_dev = 0;
728 BTRFS_I(new_inode_args.inode)->root = new_root;
729 /* ... and new_root is owned by new_inode_args.inode now. */
730
731 ret = btrfs_record_root_in_trans(trans, new_root);
732 if (ret) {
733 btrfs_abort_transaction(trans, ret);
734 goto out;
735 }
736
737 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
738 BTRFS_UUID_KEY_SUBVOL, objectid);
739 if (ret) {
740 btrfs_abort_transaction(trans, ret);
741 goto out;
742 }
743
744 ret = btrfs_create_new_inode(trans, &new_inode_args);
745 if (ret) {
746 btrfs_abort_transaction(trans, ret);
747 goto out;
748 }
749
750 d_instantiate_new(dentry, new_inode_args.inode);
751 new_inode_args.inode = NULL;
752
753out:
754 trans->block_rsv = NULL;
755 trans->bytes_reserved = 0;
756 btrfs_subvolume_release_metadata(root, &block_rsv);
757
758 if (ret)
759 btrfs_end_transaction(trans);
760 else
761 ret = btrfs_commit_transaction(trans);
762out_new_inode_args:
763 btrfs_new_inode_args_destroy(&new_inode_args);
764out_inode:
765 iput(new_inode_args.inode);
766out_anon_dev:
767 if (anon_dev)
768 free_anon_bdev(anon_dev);
769out_root_item:
770 kfree(root_item);
771 return ret;
772}
773
774static int create_snapshot(struct btrfs_root *root, struct inode *dir,
775 struct dentry *dentry, bool readonly,
776 struct btrfs_qgroup_inherit *inherit)
777{
778 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
779 struct inode *inode;
780 struct btrfs_pending_snapshot *pending_snapshot;
781 unsigned int trans_num_items;
782 struct btrfs_trans_handle *trans;
783 int ret;
784
785 /* We do not support snapshotting right now. */
786 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
787 btrfs_warn(fs_info,
788 "extent tree v2 doesn't support snapshotting yet");
789 return -EOPNOTSUPP;
790 }
791
792 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
793 return -EINVAL;
794
795 if (atomic_read(&root->nr_swapfiles)) {
796 btrfs_warn(fs_info,
797 "cannot snapshot subvolume with active swapfile");
798 return -ETXTBSY;
799 }
800
801 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
802 if (!pending_snapshot)
803 return -ENOMEM;
804
805 ret = get_anon_bdev(&pending_snapshot->anon_dev);
806 if (ret < 0)
807 goto free_pending;
808 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
809 GFP_KERNEL);
810 pending_snapshot->path = btrfs_alloc_path();
811 if (!pending_snapshot->root_item || !pending_snapshot->path) {
812 ret = -ENOMEM;
813 goto free_pending;
814 }
815
816 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
817 BTRFS_BLOCK_RSV_TEMP);
818 /*
819 * 1 to add dir item
820 * 1 to add dir index
821 * 1 to update parent inode item
822 */
823 trans_num_items = create_subvol_num_items(inherit) + 3;
824 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
825 &pending_snapshot->block_rsv,
826 trans_num_items, false);
827 if (ret)
828 goto free_pending;
829
830 pending_snapshot->dentry = dentry;
831 pending_snapshot->root = root;
832 pending_snapshot->readonly = readonly;
833 pending_snapshot->dir = dir;
834 pending_snapshot->inherit = inherit;
835
836 trans = btrfs_start_transaction(root, 0);
837 if (IS_ERR(trans)) {
838 ret = PTR_ERR(trans);
839 goto fail;
840 }
841
842 trans->pending_snapshot = pending_snapshot;
843
844 ret = btrfs_commit_transaction(trans);
845 if (ret)
846 goto fail;
847
848 ret = pending_snapshot->error;
849 if (ret)
850 goto fail;
851
852 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
853 if (ret)
854 goto fail;
855
856 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
857 if (IS_ERR(inode)) {
858 ret = PTR_ERR(inode);
859 goto fail;
860 }
861
862 d_instantiate(dentry, inode);
863 ret = 0;
864 pending_snapshot->anon_dev = 0;
865fail:
866 /* Prevent double freeing of anon_dev */
867 if (ret && pending_snapshot->snap)
868 pending_snapshot->snap->anon_dev = 0;
869 btrfs_put_root(pending_snapshot->snap);
870 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
871free_pending:
872 if (pending_snapshot->anon_dev)
873 free_anon_bdev(pending_snapshot->anon_dev);
874 kfree(pending_snapshot->root_item);
875 btrfs_free_path(pending_snapshot->path);
876 kfree(pending_snapshot);
877
878 return ret;
879}
880
881/* copy of may_delete in fs/namei.c()
882 * Check whether we can remove a link victim from directory dir, check
883 * whether the type of victim is right.
884 * 1. We can't do it if dir is read-only (done in permission())
885 * 2. We should have write and exec permissions on dir
886 * 3. We can't remove anything from append-only dir
887 * 4. We can't do anything with immutable dir (done in permission())
888 * 5. If the sticky bit on dir is set we should either
889 * a. be owner of dir, or
890 * b. be owner of victim, or
891 * c. have CAP_FOWNER capability
892 * 6. If the victim is append-only or immutable we can't do anything with
893 * links pointing to it.
894 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
895 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
896 * 9. We can't remove a root or mountpoint.
897 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
898 * nfs_async_unlink().
899 */
900
901static int btrfs_may_delete(struct user_namespace *mnt_userns,
902 struct inode *dir, struct dentry *victim, int isdir)
903{
904 int error;
905
906 if (d_really_is_negative(victim))
907 return -ENOENT;
908
909 BUG_ON(d_inode(victim->d_parent) != dir);
910 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
911
912 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
913 if (error)
914 return error;
915 if (IS_APPEND(dir))
916 return -EPERM;
917 if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
918 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
919 IS_SWAPFILE(d_inode(victim)))
920 return -EPERM;
921 if (isdir) {
922 if (!d_is_dir(victim))
923 return -ENOTDIR;
924 if (IS_ROOT(victim))
925 return -EBUSY;
926 } else if (d_is_dir(victim))
927 return -EISDIR;
928 if (IS_DEADDIR(dir))
929 return -ENOENT;
930 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
931 return -EBUSY;
932 return 0;
933}
934
935/* copy of may_create in fs/namei.c() */
936static inline int btrfs_may_create(struct user_namespace *mnt_userns,
937 struct inode *dir, struct dentry *child)
938{
939 if (d_really_is_positive(child))
940 return -EEXIST;
941 if (IS_DEADDIR(dir))
942 return -ENOENT;
943 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
944 return -EOVERFLOW;
945 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
946}
947
948/*
949 * Create a new subvolume below @parent. This is largely modeled after
950 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
951 * inside this filesystem so it's quite a bit simpler.
952 */
953static noinline int btrfs_mksubvol(const struct path *parent,
954 struct user_namespace *mnt_userns,
955 const char *name, int namelen,
956 struct btrfs_root *snap_src,
957 bool readonly,
958 struct btrfs_qgroup_inherit *inherit)
959{
960 struct inode *dir = d_inode(parent->dentry);
961 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
962 struct dentry *dentry;
963 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
964 int error;
965
966 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
967 if (error == -EINTR)
968 return error;
969
970 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
971 error = PTR_ERR(dentry);
972 if (IS_ERR(dentry))
973 goto out_unlock;
974
975 error = btrfs_may_create(mnt_userns, dir, dentry);
976 if (error)
977 goto out_dput;
978
979 /*
980 * even if this name doesn't exist, we may get hash collisions.
981 * check for them now when we can safely fail
982 */
983 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
984 dir->i_ino, &name_str);
985 if (error)
986 goto out_dput;
987
988 down_read(&fs_info->subvol_sem);
989
990 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
991 goto out_up_read;
992
993 if (snap_src)
994 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
995 else
996 error = create_subvol(mnt_userns, dir, dentry, inherit);
997
998 if (!error)
999 fsnotify_mkdir(dir, dentry);
1000out_up_read:
1001 up_read(&fs_info->subvol_sem);
1002out_dput:
1003 dput(dentry);
1004out_unlock:
1005 btrfs_inode_unlock(BTRFS_I(dir), 0);
1006 return error;
1007}
1008
1009static noinline int btrfs_mksnapshot(const struct path *parent,
1010 struct user_namespace *mnt_userns,
1011 const char *name, int namelen,
1012 struct btrfs_root *root,
1013 bool readonly,
1014 struct btrfs_qgroup_inherit *inherit)
1015{
1016 int ret;
1017 bool snapshot_force_cow = false;
1018
1019 /*
1020 * Force new buffered writes to reserve space even when NOCOW is
1021 * possible. This is to avoid later writeback (running dealloc) to
1022 * fallback to COW mode and unexpectedly fail with ENOSPC.
1023 */
1024 btrfs_drew_read_lock(&root->snapshot_lock);
1025
1026 ret = btrfs_start_delalloc_snapshot(root, false);
1027 if (ret)
1028 goto out;
1029
1030 /*
1031 * All previous writes have started writeback in NOCOW mode, so now
1032 * we force future writes to fallback to COW mode during snapshot
1033 * creation.
1034 */
1035 atomic_inc(&root->snapshot_force_cow);
1036 snapshot_force_cow = true;
1037
1038 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1039
1040 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
1041 root, readonly, inherit);
1042out:
1043 if (snapshot_force_cow)
1044 atomic_dec(&root->snapshot_force_cow);
1045 btrfs_drew_read_unlock(&root->snapshot_lock);
1046 return ret;
1047}
1048
1049/*
1050 * Try to start exclusive operation @type or cancel it if it's running.
1051 *
1052 * Return:
1053 * 0 - normal mode, newly claimed op started
1054 * >0 - normal mode, something else is running,
1055 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1056 * ECANCELED - cancel mode, successful cancel
1057 * ENOTCONN - cancel mode, operation not running anymore
1058 */
1059static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1060 enum btrfs_exclusive_operation type, bool cancel)
1061{
1062 if (!cancel) {
1063 /* Start normal op */
1064 if (!btrfs_exclop_start(fs_info, type))
1065 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1066 /* Exclusive operation is now claimed */
1067 return 0;
1068 }
1069
1070 /* Cancel running op */
1071 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1072 /*
1073 * This blocks any exclop finish from setting it to NONE, so we
1074 * request cancellation. Either it runs and we will wait for it,
1075 * or it has finished and no waiting will happen.
1076 */
1077 atomic_inc(&fs_info->reloc_cancel_req);
1078 btrfs_exclop_start_unlock(fs_info);
1079
1080 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1081 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1082 TASK_INTERRUPTIBLE);
1083
1084 return -ECANCELED;
1085 }
1086
1087 /* Something else is running or none */
1088 return -ENOTCONN;
1089}
1090
1091static noinline int btrfs_ioctl_resize(struct file *file,
1092 void __user *arg)
1093{
1094 BTRFS_DEV_LOOKUP_ARGS(args);
1095 struct inode *inode = file_inode(file);
1096 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1097 u64 new_size;
1098 u64 old_size;
1099 u64 devid = 1;
1100 struct btrfs_root *root = BTRFS_I(inode)->root;
1101 struct btrfs_ioctl_vol_args *vol_args;
1102 struct btrfs_trans_handle *trans;
1103 struct btrfs_device *device = NULL;
1104 char *sizestr;
1105 char *retptr;
1106 char *devstr = NULL;
1107 int ret = 0;
1108 int mod = 0;
1109 bool cancel;
1110
1111 if (!capable(CAP_SYS_ADMIN))
1112 return -EPERM;
1113
1114 ret = mnt_want_write_file(file);
1115 if (ret)
1116 return ret;
1117
1118 /*
1119 * Read the arguments before checking exclusivity to be able to
1120 * distinguish regular resize and cancel
1121 */
1122 vol_args = memdup_user(arg, sizeof(*vol_args));
1123 if (IS_ERR(vol_args)) {
1124 ret = PTR_ERR(vol_args);
1125 goto out_drop;
1126 }
1127 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1128 sizestr = vol_args->name;
1129 cancel = (strcmp("cancel", sizestr) == 0);
1130 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1131 if (ret)
1132 goto out_free;
1133 /* Exclusive operation is now claimed */
1134
1135 devstr = strchr(sizestr, ':');
1136 if (devstr) {
1137 sizestr = devstr + 1;
1138 *devstr = '\0';
1139 devstr = vol_args->name;
1140 ret = kstrtoull(devstr, 10, &devid);
1141 if (ret)
1142 goto out_finish;
1143 if (!devid) {
1144 ret = -EINVAL;
1145 goto out_finish;
1146 }
1147 btrfs_info(fs_info, "resizing devid %llu", devid);
1148 }
1149
1150 args.devid = devid;
1151 device = btrfs_find_device(fs_info->fs_devices, &args);
1152 if (!device) {
1153 btrfs_info(fs_info, "resizer unable to find device %llu",
1154 devid);
1155 ret = -ENODEV;
1156 goto out_finish;
1157 }
1158
1159 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1160 btrfs_info(fs_info,
1161 "resizer unable to apply on readonly device %llu",
1162 devid);
1163 ret = -EPERM;
1164 goto out_finish;
1165 }
1166
1167 if (!strcmp(sizestr, "max"))
1168 new_size = bdev_nr_bytes(device->bdev);
1169 else {
1170 if (sizestr[0] == '-') {
1171 mod = -1;
1172 sizestr++;
1173 } else if (sizestr[0] == '+') {
1174 mod = 1;
1175 sizestr++;
1176 }
1177 new_size = memparse(sizestr, &retptr);
1178 if (*retptr != '\0' || new_size == 0) {
1179 ret = -EINVAL;
1180 goto out_finish;
1181 }
1182 }
1183
1184 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1185 ret = -EPERM;
1186 goto out_finish;
1187 }
1188
1189 old_size = btrfs_device_get_total_bytes(device);
1190
1191 if (mod < 0) {
1192 if (new_size > old_size) {
1193 ret = -EINVAL;
1194 goto out_finish;
1195 }
1196 new_size = old_size - new_size;
1197 } else if (mod > 0) {
1198 if (new_size > ULLONG_MAX - old_size) {
1199 ret = -ERANGE;
1200 goto out_finish;
1201 }
1202 new_size = old_size + new_size;
1203 }
1204
1205 if (new_size < SZ_256M) {
1206 ret = -EINVAL;
1207 goto out_finish;
1208 }
1209 if (new_size > bdev_nr_bytes(device->bdev)) {
1210 ret = -EFBIG;
1211 goto out_finish;
1212 }
1213
1214 new_size = round_down(new_size, fs_info->sectorsize);
1215
1216 if (new_size > old_size) {
1217 trans = btrfs_start_transaction(root, 0);
1218 if (IS_ERR(trans)) {
1219 ret = PTR_ERR(trans);
1220 goto out_finish;
1221 }
1222 ret = btrfs_grow_device(trans, device, new_size);
1223 btrfs_commit_transaction(trans);
1224 } else if (new_size < old_size) {
1225 ret = btrfs_shrink_device(device, new_size);
1226 } /* equal, nothing need to do */
1227
1228 if (ret == 0 && new_size != old_size)
1229 btrfs_info_in_rcu(fs_info,
1230 "resize device %s (devid %llu) from %llu to %llu",
1231 btrfs_dev_name(device), device->devid,
1232 old_size, new_size);
1233out_finish:
1234 btrfs_exclop_finish(fs_info);
1235out_free:
1236 kfree(vol_args);
1237out_drop:
1238 mnt_drop_write_file(file);
1239 return ret;
1240}
1241
1242static noinline int __btrfs_ioctl_snap_create(struct file *file,
1243 struct user_namespace *mnt_userns,
1244 const char *name, unsigned long fd, int subvol,
1245 bool readonly,
1246 struct btrfs_qgroup_inherit *inherit)
1247{
1248 int namelen;
1249 int ret = 0;
1250
1251 if (!S_ISDIR(file_inode(file)->i_mode))
1252 return -ENOTDIR;
1253
1254 ret = mnt_want_write_file(file);
1255 if (ret)
1256 goto out;
1257
1258 namelen = strlen(name);
1259 if (strchr(name, '/')) {
1260 ret = -EINVAL;
1261 goto out_drop_write;
1262 }
1263
1264 if (name[0] == '.' &&
1265 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1266 ret = -EEXIST;
1267 goto out_drop_write;
1268 }
1269
1270 if (subvol) {
1271 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
1272 namelen, NULL, readonly, inherit);
1273 } else {
1274 struct fd src = fdget(fd);
1275 struct inode *src_inode;
1276 if (!src.file) {
1277 ret = -EINVAL;
1278 goto out_drop_write;
1279 }
1280
1281 src_inode = file_inode(src.file);
1282 if (src_inode->i_sb != file_inode(file)->i_sb) {
1283 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1284 "Snapshot src from another FS");
1285 ret = -EXDEV;
1286 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
1287 /*
1288 * Subvolume creation is not restricted, but snapshots
1289 * are limited to own subvolumes only
1290 */
1291 ret = -EPERM;
1292 } else {
1293 ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
1294 name, namelen,
1295 BTRFS_I(src_inode)->root,
1296 readonly, inherit);
1297 }
1298 fdput(src);
1299 }
1300out_drop_write:
1301 mnt_drop_write_file(file);
1302out:
1303 return ret;
1304}
1305
1306static noinline int btrfs_ioctl_snap_create(struct file *file,
1307 void __user *arg, int subvol)
1308{
1309 struct btrfs_ioctl_vol_args *vol_args;
1310 int ret;
1311
1312 if (!S_ISDIR(file_inode(file)->i_mode))
1313 return -ENOTDIR;
1314
1315 vol_args = memdup_user(arg, sizeof(*vol_args));
1316 if (IS_ERR(vol_args))
1317 return PTR_ERR(vol_args);
1318 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1319
1320 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1321 vol_args->name, vol_args->fd, subvol,
1322 false, NULL);
1323
1324 kfree(vol_args);
1325 return ret;
1326}
1327
1328static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1329 void __user *arg, int subvol)
1330{
1331 struct btrfs_ioctl_vol_args_v2 *vol_args;
1332 int ret;
1333 bool readonly = false;
1334 struct btrfs_qgroup_inherit *inherit = NULL;
1335
1336 if (!S_ISDIR(file_inode(file)->i_mode))
1337 return -ENOTDIR;
1338
1339 vol_args = memdup_user(arg, sizeof(*vol_args));
1340 if (IS_ERR(vol_args))
1341 return PTR_ERR(vol_args);
1342 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1343
1344 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1345 ret = -EOPNOTSUPP;
1346 goto free_args;
1347 }
1348
1349 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1350 readonly = true;
1351 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1352 u64 nums;
1353
1354 if (vol_args->size < sizeof(*inherit) ||
1355 vol_args->size > PAGE_SIZE) {
1356 ret = -EINVAL;
1357 goto free_args;
1358 }
1359 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1360 if (IS_ERR(inherit)) {
1361 ret = PTR_ERR(inherit);
1362 goto free_args;
1363 }
1364
1365 if (inherit->num_qgroups > PAGE_SIZE ||
1366 inherit->num_ref_copies > PAGE_SIZE ||
1367 inherit->num_excl_copies > PAGE_SIZE) {
1368 ret = -EINVAL;
1369 goto free_inherit;
1370 }
1371
1372 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1373 2 * inherit->num_excl_copies;
1374 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1375 ret = -EINVAL;
1376 goto free_inherit;
1377 }
1378 }
1379
1380 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1381 vol_args->name, vol_args->fd, subvol,
1382 readonly, inherit);
1383 if (ret)
1384 goto free_inherit;
1385free_inherit:
1386 kfree(inherit);
1387free_args:
1388 kfree(vol_args);
1389 return ret;
1390}
1391
1392static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1393 void __user *arg)
1394{
1395 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1396 struct btrfs_root *root = BTRFS_I(inode)->root;
1397 int ret = 0;
1398 u64 flags = 0;
1399
1400 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1401 return -EINVAL;
1402
1403 down_read(&fs_info->subvol_sem);
1404 if (btrfs_root_readonly(root))
1405 flags |= BTRFS_SUBVOL_RDONLY;
1406 up_read(&fs_info->subvol_sem);
1407
1408 if (copy_to_user(arg, &flags, sizeof(flags)))
1409 ret = -EFAULT;
1410
1411 return ret;
1412}
1413
1414static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1415 void __user *arg)
1416{
1417 struct inode *inode = file_inode(file);
1418 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1419 struct btrfs_root *root = BTRFS_I(inode)->root;
1420 struct btrfs_trans_handle *trans;
1421 u64 root_flags;
1422 u64 flags;
1423 int ret = 0;
1424
1425 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
1426 return -EPERM;
1427
1428 ret = mnt_want_write_file(file);
1429 if (ret)
1430 goto out;
1431
1432 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1433 ret = -EINVAL;
1434 goto out_drop_write;
1435 }
1436
1437 if (copy_from_user(&flags, arg, sizeof(flags))) {
1438 ret = -EFAULT;
1439 goto out_drop_write;
1440 }
1441
1442 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1443 ret = -EOPNOTSUPP;
1444 goto out_drop_write;
1445 }
1446
1447 down_write(&fs_info->subvol_sem);
1448
1449 /* nothing to do */
1450 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1451 goto out_drop_sem;
1452
1453 root_flags = btrfs_root_flags(&root->root_item);
1454 if (flags & BTRFS_SUBVOL_RDONLY) {
1455 btrfs_set_root_flags(&root->root_item,
1456 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1457 } else {
1458 /*
1459 * Block RO -> RW transition if this subvolume is involved in
1460 * send
1461 */
1462 spin_lock(&root->root_item_lock);
1463 if (root->send_in_progress == 0) {
1464 btrfs_set_root_flags(&root->root_item,
1465 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1466 spin_unlock(&root->root_item_lock);
1467 } else {
1468 spin_unlock(&root->root_item_lock);
1469 btrfs_warn(fs_info,
1470 "Attempt to set subvolume %llu read-write during send",
1471 root->root_key.objectid);
1472 ret = -EPERM;
1473 goto out_drop_sem;
1474 }
1475 }
1476
1477 trans = btrfs_start_transaction(root, 1);
1478 if (IS_ERR(trans)) {
1479 ret = PTR_ERR(trans);
1480 goto out_reset;
1481 }
1482
1483 ret = btrfs_update_root(trans, fs_info->tree_root,
1484 &root->root_key, &root->root_item);
1485 if (ret < 0) {
1486 btrfs_end_transaction(trans);
1487 goto out_reset;
1488 }
1489
1490 ret = btrfs_commit_transaction(trans);
1491
1492out_reset:
1493 if (ret)
1494 btrfs_set_root_flags(&root->root_item, root_flags);
1495out_drop_sem:
1496 up_write(&fs_info->subvol_sem);
1497out_drop_write:
1498 mnt_drop_write_file(file);
1499out:
1500 return ret;
1501}
1502
1503static noinline int key_in_sk(struct btrfs_key *key,
1504 struct btrfs_ioctl_search_key *sk)
1505{
1506 struct btrfs_key test;
1507 int ret;
1508
1509 test.objectid = sk->min_objectid;
1510 test.type = sk->min_type;
1511 test.offset = sk->min_offset;
1512
1513 ret = btrfs_comp_cpu_keys(key, &test);
1514 if (ret < 0)
1515 return 0;
1516
1517 test.objectid = sk->max_objectid;
1518 test.type = sk->max_type;
1519 test.offset = sk->max_offset;
1520
1521 ret = btrfs_comp_cpu_keys(key, &test);
1522 if (ret > 0)
1523 return 0;
1524 return 1;
1525}
1526
1527static noinline int copy_to_sk(struct btrfs_path *path,
1528 struct btrfs_key *key,
1529 struct btrfs_ioctl_search_key *sk,
1530 size_t *buf_size,
1531 char __user *ubuf,
1532 unsigned long *sk_offset,
1533 int *num_found)
1534{
1535 u64 found_transid;
1536 struct extent_buffer *leaf;
1537 struct btrfs_ioctl_search_header sh;
1538 struct btrfs_key test;
1539 unsigned long item_off;
1540 unsigned long item_len;
1541 int nritems;
1542 int i;
1543 int slot;
1544 int ret = 0;
1545
1546 leaf = path->nodes[0];
1547 slot = path->slots[0];
1548 nritems = btrfs_header_nritems(leaf);
1549
1550 if (btrfs_header_generation(leaf) > sk->max_transid) {
1551 i = nritems;
1552 goto advance_key;
1553 }
1554 found_transid = btrfs_header_generation(leaf);
1555
1556 for (i = slot; i < nritems; i++) {
1557 item_off = btrfs_item_ptr_offset(leaf, i);
1558 item_len = btrfs_item_size(leaf, i);
1559
1560 btrfs_item_key_to_cpu(leaf, key, i);
1561 if (!key_in_sk(key, sk))
1562 continue;
1563
1564 if (sizeof(sh) + item_len > *buf_size) {
1565 if (*num_found) {
1566 ret = 1;
1567 goto out;
1568 }
1569
1570 /*
1571 * return one empty item back for v1, which does not
1572 * handle -EOVERFLOW
1573 */
1574
1575 *buf_size = sizeof(sh) + item_len;
1576 item_len = 0;
1577 ret = -EOVERFLOW;
1578 }
1579
1580 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1581 ret = 1;
1582 goto out;
1583 }
1584
1585 sh.objectid = key->objectid;
1586 sh.offset = key->offset;
1587 sh.type = key->type;
1588 sh.len = item_len;
1589 sh.transid = found_transid;
1590
1591 /*
1592 * Copy search result header. If we fault then loop again so we
1593 * can fault in the pages and -EFAULT there if there's a
1594 * problem. Otherwise we'll fault and then copy the buffer in
1595 * properly this next time through
1596 */
1597 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1598 ret = 0;
1599 goto out;
1600 }
1601
1602 *sk_offset += sizeof(sh);
1603
1604 if (item_len) {
1605 char __user *up = ubuf + *sk_offset;
1606 /*
1607 * Copy the item, same behavior as above, but reset the
1608 * * sk_offset so we copy the full thing again.
1609 */
1610 if (read_extent_buffer_to_user_nofault(leaf, up,
1611 item_off, item_len)) {
1612 ret = 0;
1613 *sk_offset -= sizeof(sh);
1614 goto out;
1615 }
1616
1617 *sk_offset += item_len;
1618 }
1619 (*num_found)++;
1620
1621 if (ret) /* -EOVERFLOW from above */
1622 goto out;
1623
1624 if (*num_found >= sk->nr_items) {
1625 ret = 1;
1626 goto out;
1627 }
1628 }
1629advance_key:
1630 ret = 0;
1631 test.objectid = sk->max_objectid;
1632 test.type = sk->max_type;
1633 test.offset = sk->max_offset;
1634 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1635 ret = 1;
1636 else if (key->offset < (u64)-1)
1637 key->offset++;
1638 else if (key->type < (u8)-1) {
1639 key->offset = 0;
1640 key->type++;
1641 } else if (key->objectid < (u64)-1) {
1642 key->offset = 0;
1643 key->type = 0;
1644 key->objectid++;
1645 } else
1646 ret = 1;
1647out:
1648 /*
1649 * 0: all items from this leaf copied, continue with next
1650 * 1: * more items can be copied, but unused buffer is too small
1651 * * all items were found
1652 * Either way, it will stops the loop which iterates to the next
1653 * leaf
1654 * -EOVERFLOW: item was to large for buffer
1655 * -EFAULT: could not copy extent buffer back to userspace
1656 */
1657 return ret;
1658}
1659
1660static noinline int search_ioctl(struct inode *inode,
1661 struct btrfs_ioctl_search_key *sk,
1662 size_t *buf_size,
1663 char __user *ubuf)
1664{
1665 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
1666 struct btrfs_root *root;
1667 struct btrfs_key key;
1668 struct btrfs_path *path;
1669 int ret;
1670 int num_found = 0;
1671 unsigned long sk_offset = 0;
1672
1673 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1674 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1675 return -EOVERFLOW;
1676 }
1677
1678 path = btrfs_alloc_path();
1679 if (!path)
1680 return -ENOMEM;
1681
1682 if (sk->tree_id == 0) {
1683 /* search the root of the inode that was passed */
1684 root = btrfs_grab_root(BTRFS_I(inode)->root);
1685 } else {
1686 root = btrfs_get_fs_root(info, sk->tree_id, true);
1687 if (IS_ERR(root)) {
1688 btrfs_free_path(path);
1689 return PTR_ERR(root);
1690 }
1691 }
1692
1693 key.objectid = sk->min_objectid;
1694 key.type = sk->min_type;
1695 key.offset = sk->min_offset;
1696
1697 while (1) {
1698 ret = -EFAULT;
1699 /*
1700 * Ensure that the whole user buffer is faulted in at sub-page
1701 * granularity, otherwise the loop may live-lock.
1702 */
1703 if (fault_in_subpage_writeable(ubuf + sk_offset,
1704 *buf_size - sk_offset))
1705 break;
1706
1707 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1708 if (ret != 0) {
1709 if (ret > 0)
1710 ret = 0;
1711 goto err;
1712 }
1713 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1714 &sk_offset, &num_found);
1715 btrfs_release_path(path);
1716 if (ret)
1717 break;
1718
1719 }
1720 if (ret > 0)
1721 ret = 0;
1722err:
1723 sk->nr_items = num_found;
1724 btrfs_put_root(root);
1725 btrfs_free_path(path);
1726 return ret;
1727}
1728
1729static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1730 void __user *argp)
1731{
1732 struct btrfs_ioctl_search_args __user *uargs = argp;
1733 struct btrfs_ioctl_search_key sk;
1734 int ret;
1735 size_t buf_size;
1736
1737 if (!capable(CAP_SYS_ADMIN))
1738 return -EPERM;
1739
1740 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1741 return -EFAULT;
1742
1743 buf_size = sizeof(uargs->buf);
1744
1745 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1746
1747 /*
1748 * In the origin implementation an overflow is handled by returning a
1749 * search header with a len of zero, so reset ret.
1750 */
1751 if (ret == -EOVERFLOW)
1752 ret = 0;
1753
1754 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1755 ret = -EFAULT;
1756 return ret;
1757}
1758
1759static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1760 void __user *argp)
1761{
1762 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1763 struct btrfs_ioctl_search_args_v2 args;
1764 int ret;
1765 size_t buf_size;
1766 const size_t buf_limit = SZ_16M;
1767
1768 if (!capable(CAP_SYS_ADMIN))
1769 return -EPERM;
1770
1771 /* copy search header and buffer size */
1772 if (copy_from_user(&args, uarg, sizeof(args)))
1773 return -EFAULT;
1774
1775 buf_size = args.buf_size;
1776
1777 /* limit result size to 16MB */
1778 if (buf_size > buf_limit)
1779 buf_size = buf_limit;
1780
1781 ret = search_ioctl(inode, &args.key, &buf_size,
1782 (char __user *)(&uarg->buf[0]));
1783 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1784 ret = -EFAULT;
1785 else if (ret == -EOVERFLOW &&
1786 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1787 ret = -EFAULT;
1788
1789 return ret;
1790}
1791
1792/*
1793 * Search INODE_REFs to identify path name of 'dirid' directory
1794 * in a 'tree_id' tree. and sets path name to 'name'.
1795 */
1796static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1797 u64 tree_id, u64 dirid, char *name)
1798{
1799 struct btrfs_root *root;
1800 struct btrfs_key key;
1801 char *ptr;
1802 int ret = -1;
1803 int slot;
1804 int len;
1805 int total_len = 0;
1806 struct btrfs_inode_ref *iref;
1807 struct extent_buffer *l;
1808 struct btrfs_path *path;
1809
1810 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1811 name[0]='\0';
1812 return 0;
1813 }
1814
1815 path = btrfs_alloc_path();
1816 if (!path)
1817 return -ENOMEM;
1818
1819 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1820
1821 root = btrfs_get_fs_root(info, tree_id, true);
1822 if (IS_ERR(root)) {
1823 ret = PTR_ERR(root);
1824 root = NULL;
1825 goto out;
1826 }
1827
1828 key.objectid = dirid;
1829 key.type = BTRFS_INODE_REF_KEY;
1830 key.offset = (u64)-1;
1831
1832 while (1) {
1833 ret = btrfs_search_backwards(root, &key, path);
1834 if (ret < 0)
1835 goto out;
1836 else if (ret > 0) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
1840
1841 l = path->nodes[0];
1842 slot = path->slots[0];
1843
1844 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1845 len = btrfs_inode_ref_name_len(l, iref);
1846 ptr -= len + 1;
1847 total_len += len + 1;
1848 if (ptr < name) {
1849 ret = -ENAMETOOLONG;
1850 goto out;
1851 }
1852
1853 *(ptr + len) = '/';
1854 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1855
1856 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1857 break;
1858
1859 btrfs_release_path(path);
1860 key.objectid = key.offset;
1861 key.offset = (u64)-1;
1862 dirid = key.objectid;
1863 }
1864 memmove(name, ptr, total_len);
1865 name[total_len] = '\0';
1866 ret = 0;
1867out:
1868 btrfs_put_root(root);
1869 btrfs_free_path(path);
1870 return ret;
1871}
1872
1873static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
1874 struct inode *inode,
1875 struct btrfs_ioctl_ino_lookup_user_args *args)
1876{
1877 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1878 struct super_block *sb = inode->i_sb;
1879 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1880 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1881 u64 dirid = args->dirid;
1882 unsigned long item_off;
1883 unsigned long item_len;
1884 struct btrfs_inode_ref *iref;
1885 struct btrfs_root_ref *rref;
1886 struct btrfs_root *root = NULL;
1887 struct btrfs_path *path;
1888 struct btrfs_key key, key2;
1889 struct extent_buffer *leaf;
1890 struct inode *temp_inode;
1891 char *ptr;
1892 int slot;
1893 int len;
1894 int total_len = 0;
1895 int ret;
1896
1897 path = btrfs_alloc_path();
1898 if (!path)
1899 return -ENOMEM;
1900
1901 /*
1902 * If the bottom subvolume does not exist directly under upper_limit,
1903 * construct the path in from the bottom up.
1904 */
1905 if (dirid != upper_limit.objectid) {
1906 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1907
1908 root = btrfs_get_fs_root(fs_info, treeid, true);
1909 if (IS_ERR(root)) {
1910 ret = PTR_ERR(root);
1911 goto out;
1912 }
1913
1914 key.objectid = dirid;
1915 key.type = BTRFS_INODE_REF_KEY;
1916 key.offset = (u64)-1;
1917 while (1) {
1918 ret = btrfs_search_backwards(root, &key, path);
1919 if (ret < 0)
1920 goto out_put;
1921 else if (ret > 0) {
1922 ret = -ENOENT;
1923 goto out_put;
1924 }
1925
1926 leaf = path->nodes[0];
1927 slot = path->slots[0];
1928
1929 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1930 len = btrfs_inode_ref_name_len(leaf, iref);
1931 ptr -= len + 1;
1932 total_len += len + 1;
1933 if (ptr < args->path) {
1934 ret = -ENAMETOOLONG;
1935 goto out_put;
1936 }
1937
1938 *(ptr + len) = '/';
1939 read_extent_buffer(leaf, ptr,
1940 (unsigned long)(iref + 1), len);
1941
1942 /* Check the read+exec permission of this directory */
1943 ret = btrfs_previous_item(root, path, dirid,
1944 BTRFS_INODE_ITEM_KEY);
1945 if (ret < 0) {
1946 goto out_put;
1947 } else if (ret > 0) {
1948 ret = -ENOENT;
1949 goto out_put;
1950 }
1951
1952 leaf = path->nodes[0];
1953 slot = path->slots[0];
1954 btrfs_item_key_to_cpu(leaf, &key2, slot);
1955 if (key2.objectid != dirid) {
1956 ret = -ENOENT;
1957 goto out_put;
1958 }
1959
1960 temp_inode = btrfs_iget(sb, key2.objectid, root);
1961 if (IS_ERR(temp_inode)) {
1962 ret = PTR_ERR(temp_inode);
1963 goto out_put;
1964 }
1965 ret = inode_permission(mnt_userns, temp_inode,
1966 MAY_READ | MAY_EXEC);
1967 iput(temp_inode);
1968 if (ret) {
1969 ret = -EACCES;
1970 goto out_put;
1971 }
1972
1973 if (key.offset == upper_limit.objectid)
1974 break;
1975 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1976 ret = -EACCES;
1977 goto out_put;
1978 }
1979
1980 btrfs_release_path(path);
1981 key.objectid = key.offset;
1982 key.offset = (u64)-1;
1983 dirid = key.objectid;
1984 }
1985
1986 memmove(args->path, ptr, total_len);
1987 args->path[total_len] = '\0';
1988 btrfs_put_root(root);
1989 root = NULL;
1990 btrfs_release_path(path);
1991 }
1992
1993 /* Get the bottom subvolume's name from ROOT_REF */
1994 key.objectid = treeid;
1995 key.type = BTRFS_ROOT_REF_KEY;
1996 key.offset = args->treeid;
1997 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1998 if (ret < 0) {
1999 goto out;
2000 } else if (ret > 0) {
2001 ret = -ENOENT;
2002 goto out;
2003 }
2004
2005 leaf = path->nodes[0];
2006 slot = path->slots[0];
2007 btrfs_item_key_to_cpu(leaf, &key, slot);
2008
2009 item_off = btrfs_item_ptr_offset(leaf, slot);
2010 item_len = btrfs_item_size(leaf, slot);
2011 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2012 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2013 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2014 ret = -EINVAL;
2015 goto out;
2016 }
2017
2018 /* Copy subvolume's name */
2019 item_off += sizeof(struct btrfs_root_ref);
2020 item_len -= sizeof(struct btrfs_root_ref);
2021 read_extent_buffer(leaf, args->name, item_off, item_len);
2022 args->name[item_len] = 0;
2023
2024out_put:
2025 btrfs_put_root(root);
2026out:
2027 btrfs_free_path(path);
2028 return ret;
2029}
2030
2031static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2032 void __user *argp)
2033{
2034 struct btrfs_ioctl_ino_lookup_args *args;
2035 int ret = 0;
2036
2037 args = memdup_user(argp, sizeof(*args));
2038 if (IS_ERR(args))
2039 return PTR_ERR(args);
2040
2041 /*
2042 * Unprivileged query to obtain the containing subvolume root id. The
2043 * path is reset so it's consistent with btrfs_search_path_in_tree.
2044 */
2045 if (args->treeid == 0)
2046 args->treeid = root->root_key.objectid;
2047
2048 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2049 args->name[0] = 0;
2050 goto out;
2051 }
2052
2053 if (!capable(CAP_SYS_ADMIN)) {
2054 ret = -EPERM;
2055 goto out;
2056 }
2057
2058 ret = btrfs_search_path_in_tree(root->fs_info,
2059 args->treeid, args->objectid,
2060 args->name);
2061
2062out:
2063 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2064 ret = -EFAULT;
2065
2066 kfree(args);
2067 return ret;
2068}
2069
2070/*
2071 * Version of ino_lookup ioctl (unprivileged)
2072 *
2073 * The main differences from ino_lookup ioctl are:
2074 *
2075 * 1. Read + Exec permission will be checked using inode_permission() during
2076 * path construction. -EACCES will be returned in case of failure.
2077 * 2. Path construction will be stopped at the inode number which corresponds
2078 * to the fd with which this ioctl is called. If constructed path does not
2079 * exist under fd's inode, -EACCES will be returned.
2080 * 3. The name of bottom subvolume is also searched and filled.
2081 */
2082static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2083{
2084 struct btrfs_ioctl_ino_lookup_user_args *args;
2085 struct inode *inode;
2086 int ret;
2087
2088 args = memdup_user(argp, sizeof(*args));
2089 if (IS_ERR(args))
2090 return PTR_ERR(args);
2091
2092 inode = file_inode(file);
2093
2094 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2095 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2096 /*
2097 * The subvolume does not exist under fd with which this is
2098 * called
2099 */
2100 kfree(args);
2101 return -EACCES;
2102 }
2103
2104 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2105
2106 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2107 ret = -EFAULT;
2108
2109 kfree(args);
2110 return ret;
2111}
2112
2113/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2114static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2115{
2116 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2117 struct btrfs_fs_info *fs_info;
2118 struct btrfs_root *root;
2119 struct btrfs_path *path;
2120 struct btrfs_key key;
2121 struct btrfs_root_item *root_item;
2122 struct btrfs_root_ref *rref;
2123 struct extent_buffer *leaf;
2124 unsigned long item_off;
2125 unsigned long item_len;
2126 int slot;
2127 int ret = 0;
2128
2129 path = btrfs_alloc_path();
2130 if (!path)
2131 return -ENOMEM;
2132
2133 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2134 if (!subvol_info) {
2135 btrfs_free_path(path);
2136 return -ENOMEM;
2137 }
2138
2139 fs_info = BTRFS_I(inode)->root->fs_info;
2140
2141 /* Get root_item of inode's subvolume */
2142 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2143 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2144 if (IS_ERR(root)) {
2145 ret = PTR_ERR(root);
2146 goto out_free;
2147 }
2148 root_item = &root->root_item;
2149
2150 subvol_info->treeid = key.objectid;
2151
2152 subvol_info->generation = btrfs_root_generation(root_item);
2153 subvol_info->flags = btrfs_root_flags(root_item);
2154
2155 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2156 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2157 BTRFS_UUID_SIZE);
2158 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2159 BTRFS_UUID_SIZE);
2160
2161 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2162 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2163 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2164
2165 subvol_info->otransid = btrfs_root_otransid(root_item);
2166 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2167 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2168
2169 subvol_info->stransid = btrfs_root_stransid(root_item);
2170 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2171 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2172
2173 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2174 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2175 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2176
2177 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2178 /* Search root tree for ROOT_BACKREF of this subvolume */
2179 key.type = BTRFS_ROOT_BACKREF_KEY;
2180 key.offset = 0;
2181 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2182 if (ret < 0) {
2183 goto out;
2184 } else if (path->slots[0] >=
2185 btrfs_header_nritems(path->nodes[0])) {
2186 ret = btrfs_next_leaf(fs_info->tree_root, path);
2187 if (ret < 0) {
2188 goto out;
2189 } else if (ret > 0) {
2190 ret = -EUCLEAN;
2191 goto out;
2192 }
2193 }
2194
2195 leaf = path->nodes[0];
2196 slot = path->slots[0];
2197 btrfs_item_key_to_cpu(leaf, &key, slot);
2198 if (key.objectid == subvol_info->treeid &&
2199 key.type == BTRFS_ROOT_BACKREF_KEY) {
2200 subvol_info->parent_id = key.offset;
2201
2202 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2203 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2204
2205 item_off = btrfs_item_ptr_offset(leaf, slot)
2206 + sizeof(struct btrfs_root_ref);
2207 item_len = btrfs_item_size(leaf, slot)
2208 - sizeof(struct btrfs_root_ref);
2209 read_extent_buffer(leaf, subvol_info->name,
2210 item_off, item_len);
2211 } else {
2212 ret = -ENOENT;
2213 goto out;
2214 }
2215 }
2216
2217 btrfs_free_path(path);
2218 path = NULL;
2219 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2220 ret = -EFAULT;
2221
2222out:
2223 btrfs_put_root(root);
2224out_free:
2225 btrfs_free_path(path);
2226 kfree(subvol_info);
2227 return ret;
2228}
2229
2230/*
2231 * Return ROOT_REF information of the subvolume containing this inode
2232 * except the subvolume name.
2233 */
2234static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2235 void __user *argp)
2236{
2237 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2238 struct btrfs_root_ref *rref;
2239 struct btrfs_path *path;
2240 struct btrfs_key key;
2241 struct extent_buffer *leaf;
2242 u64 objectid;
2243 int slot;
2244 int ret;
2245 u8 found;
2246
2247 path = btrfs_alloc_path();
2248 if (!path)
2249 return -ENOMEM;
2250
2251 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2252 if (IS_ERR(rootrefs)) {
2253 btrfs_free_path(path);
2254 return PTR_ERR(rootrefs);
2255 }
2256
2257 objectid = root->root_key.objectid;
2258 key.objectid = objectid;
2259 key.type = BTRFS_ROOT_REF_KEY;
2260 key.offset = rootrefs->min_treeid;
2261 found = 0;
2262
2263 root = root->fs_info->tree_root;
2264 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2265 if (ret < 0) {
2266 goto out;
2267 } else if (path->slots[0] >=
2268 btrfs_header_nritems(path->nodes[0])) {
2269 ret = btrfs_next_leaf(root, path);
2270 if (ret < 0) {
2271 goto out;
2272 } else if (ret > 0) {
2273 ret = -EUCLEAN;
2274 goto out;
2275 }
2276 }
2277 while (1) {
2278 leaf = path->nodes[0];
2279 slot = path->slots[0];
2280
2281 btrfs_item_key_to_cpu(leaf, &key, slot);
2282 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2283 ret = 0;
2284 goto out;
2285 }
2286
2287 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2288 ret = -EOVERFLOW;
2289 goto out;
2290 }
2291
2292 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2293 rootrefs->rootref[found].treeid = key.offset;
2294 rootrefs->rootref[found].dirid =
2295 btrfs_root_ref_dirid(leaf, rref);
2296 found++;
2297
2298 ret = btrfs_next_item(root, path);
2299 if (ret < 0) {
2300 goto out;
2301 } else if (ret > 0) {
2302 ret = -EUCLEAN;
2303 goto out;
2304 }
2305 }
2306
2307out:
2308 btrfs_free_path(path);
2309
2310 if (!ret || ret == -EOVERFLOW) {
2311 rootrefs->num_items = found;
2312 /* update min_treeid for next search */
2313 if (found)
2314 rootrefs->min_treeid =
2315 rootrefs->rootref[found - 1].treeid + 1;
2316 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2317 ret = -EFAULT;
2318 }
2319
2320 kfree(rootrefs);
2321
2322 return ret;
2323}
2324
2325static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2326 void __user *arg,
2327 bool destroy_v2)
2328{
2329 struct dentry *parent = file->f_path.dentry;
2330 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2331 struct dentry *dentry;
2332 struct inode *dir = d_inode(parent);
2333 struct inode *inode;
2334 struct btrfs_root *root = BTRFS_I(dir)->root;
2335 struct btrfs_root *dest = NULL;
2336 struct btrfs_ioctl_vol_args *vol_args = NULL;
2337 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2338 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
2339 char *subvol_name, *subvol_name_ptr = NULL;
2340 int subvol_namelen;
2341 int err = 0;
2342 bool destroy_parent = false;
2343
2344 /* We don't support snapshots with extent tree v2 yet. */
2345 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2346 btrfs_err(fs_info,
2347 "extent tree v2 doesn't support snapshot deletion yet");
2348 return -EOPNOTSUPP;
2349 }
2350
2351 if (destroy_v2) {
2352 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2353 if (IS_ERR(vol_args2))
2354 return PTR_ERR(vol_args2);
2355
2356 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2357 err = -EOPNOTSUPP;
2358 goto out;
2359 }
2360
2361 /*
2362 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2363 * name, same as v1 currently does.
2364 */
2365 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2366 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2367 subvol_name = vol_args2->name;
2368
2369 err = mnt_want_write_file(file);
2370 if (err)
2371 goto out;
2372 } else {
2373 struct inode *old_dir;
2374
2375 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2376 err = -EINVAL;
2377 goto out;
2378 }
2379
2380 err = mnt_want_write_file(file);
2381 if (err)
2382 goto out;
2383
2384 dentry = btrfs_get_dentry(fs_info->sb,
2385 BTRFS_FIRST_FREE_OBJECTID,
2386 vol_args2->subvolid, 0);
2387 if (IS_ERR(dentry)) {
2388 err = PTR_ERR(dentry);
2389 goto out_drop_write;
2390 }
2391
2392 /*
2393 * Change the default parent since the subvolume being
2394 * deleted can be outside of the current mount point.
2395 */
2396 parent = btrfs_get_parent(dentry);
2397
2398 /*
2399 * At this point dentry->d_name can point to '/' if the
2400 * subvolume we want to destroy is outsite of the
2401 * current mount point, so we need to release the
2402 * current dentry and execute the lookup to return a new
2403 * one with ->d_name pointing to the
2404 * <mount point>/subvol_name.
2405 */
2406 dput(dentry);
2407 if (IS_ERR(parent)) {
2408 err = PTR_ERR(parent);
2409 goto out_drop_write;
2410 }
2411 old_dir = dir;
2412 dir = d_inode(parent);
2413
2414 /*
2415 * If v2 was used with SPEC_BY_ID, a new parent was
2416 * allocated since the subvolume can be outside of the
2417 * current mount point. Later on we need to release this
2418 * new parent dentry.
2419 */
2420 destroy_parent = true;
2421
2422 /*
2423 * On idmapped mounts, deletion via subvolid is
2424 * restricted to subvolumes that are immediate
2425 * ancestors of the inode referenced by the file
2426 * descriptor in the ioctl. Otherwise the idmapping
2427 * could potentially be abused to delete subvolumes
2428 * anywhere in the filesystem the user wouldn't be able
2429 * to delete without an idmapped mount.
2430 */
2431 if (old_dir != dir && mnt_userns != &init_user_ns) {
2432 err = -EOPNOTSUPP;
2433 goto free_parent;
2434 }
2435
2436 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2437 fs_info, vol_args2->subvolid);
2438 if (IS_ERR(subvol_name_ptr)) {
2439 err = PTR_ERR(subvol_name_ptr);
2440 goto free_parent;
2441 }
2442 /* subvol_name_ptr is already nul terminated */
2443 subvol_name = (char *)kbasename(subvol_name_ptr);
2444 }
2445 } else {
2446 vol_args = memdup_user(arg, sizeof(*vol_args));
2447 if (IS_ERR(vol_args))
2448 return PTR_ERR(vol_args);
2449
2450 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2451 subvol_name = vol_args->name;
2452
2453 err = mnt_want_write_file(file);
2454 if (err)
2455 goto out;
2456 }
2457
2458 subvol_namelen = strlen(subvol_name);
2459
2460 if (strchr(subvol_name, '/') ||
2461 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2462 err = -EINVAL;
2463 goto free_subvol_name;
2464 }
2465
2466 if (!S_ISDIR(dir->i_mode)) {
2467 err = -ENOTDIR;
2468 goto free_subvol_name;
2469 }
2470
2471 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2472 if (err == -EINTR)
2473 goto free_subvol_name;
2474 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
2475 if (IS_ERR(dentry)) {
2476 err = PTR_ERR(dentry);
2477 goto out_unlock_dir;
2478 }
2479
2480 if (d_really_is_negative(dentry)) {
2481 err = -ENOENT;
2482 goto out_dput;
2483 }
2484
2485 inode = d_inode(dentry);
2486 dest = BTRFS_I(inode)->root;
2487 if (!capable(CAP_SYS_ADMIN)) {
2488 /*
2489 * Regular user. Only allow this with a special mount
2490 * option, when the user has write+exec access to the
2491 * subvol root, and when rmdir(2) would have been
2492 * allowed.
2493 *
2494 * Note that this is _not_ check that the subvol is
2495 * empty or doesn't contain data that we wouldn't
2496 * otherwise be able to delete.
2497 *
2498 * Users who want to delete empty subvols should try
2499 * rmdir(2).
2500 */
2501 err = -EPERM;
2502 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2503 goto out_dput;
2504
2505 /*
2506 * Do not allow deletion if the parent dir is the same
2507 * as the dir to be deleted. That means the ioctl
2508 * must be called on the dentry referencing the root
2509 * of the subvol, not a random directory contained
2510 * within it.
2511 */
2512 err = -EINVAL;
2513 if (root == dest)
2514 goto out_dput;
2515
2516 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
2517 if (err)
2518 goto out_dput;
2519 }
2520
2521 /* check if subvolume may be deleted by a user */
2522 err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
2523 if (err)
2524 goto out_dput;
2525
2526 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2527 err = -EINVAL;
2528 goto out_dput;
2529 }
2530
2531 btrfs_inode_lock(BTRFS_I(inode), 0);
2532 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2533 btrfs_inode_unlock(BTRFS_I(inode), 0);
2534 if (!err)
2535 d_delete_notify(dir, dentry);
2536
2537out_dput:
2538 dput(dentry);
2539out_unlock_dir:
2540 btrfs_inode_unlock(BTRFS_I(dir), 0);
2541free_subvol_name:
2542 kfree(subvol_name_ptr);
2543free_parent:
2544 if (destroy_parent)
2545 dput(parent);
2546out_drop_write:
2547 mnt_drop_write_file(file);
2548out:
2549 kfree(vol_args2);
2550 kfree(vol_args);
2551 return err;
2552}
2553
2554static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2555{
2556 struct inode *inode = file_inode(file);
2557 struct btrfs_root *root = BTRFS_I(inode)->root;
2558 struct btrfs_ioctl_defrag_range_args range = {0};
2559 int ret;
2560
2561 ret = mnt_want_write_file(file);
2562 if (ret)
2563 return ret;
2564
2565 if (btrfs_root_readonly(root)) {
2566 ret = -EROFS;
2567 goto out;
2568 }
2569
2570 switch (inode->i_mode & S_IFMT) {
2571 case S_IFDIR:
2572 if (!capable(CAP_SYS_ADMIN)) {
2573 ret = -EPERM;
2574 goto out;
2575 }
2576 ret = btrfs_defrag_root(root);
2577 break;
2578 case S_IFREG:
2579 /*
2580 * Note that this does not check the file descriptor for write
2581 * access. This prevents defragmenting executables that are
2582 * running and allows defrag on files open in read-only mode.
2583 */
2584 if (!capable(CAP_SYS_ADMIN) &&
2585 inode_permission(&init_user_ns, inode, MAY_WRITE)) {
2586 ret = -EPERM;
2587 goto out;
2588 }
2589
2590 if (argp) {
2591 if (copy_from_user(&range, argp, sizeof(range))) {
2592 ret = -EFAULT;
2593 goto out;
2594 }
2595 /* compression requires us to start the IO */
2596 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2597 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2598 range.extent_thresh = (u32)-1;
2599 }
2600 } else {
2601 /* the rest are all set to zero by kzalloc */
2602 range.len = (u64)-1;
2603 }
2604 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2605 &range, BTRFS_OLDEST_GENERATION, 0);
2606 if (ret > 0)
2607 ret = 0;
2608 break;
2609 default:
2610 ret = -EINVAL;
2611 }
2612out:
2613 mnt_drop_write_file(file);
2614 return ret;
2615}
2616
2617static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2618{
2619 struct btrfs_ioctl_vol_args *vol_args;
2620 bool restore_op = false;
2621 int ret;
2622
2623 if (!capable(CAP_SYS_ADMIN))
2624 return -EPERM;
2625
2626 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2627 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2628 return -EINVAL;
2629 }
2630
2631 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2632 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2633 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2634
2635 /*
2636 * We can do the device add because we have a paused balanced,
2637 * change the exclusive op type and remember we should bring
2638 * back the paused balance
2639 */
2640 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2641 btrfs_exclop_start_unlock(fs_info);
2642 restore_op = true;
2643 }
2644
2645 vol_args = memdup_user(arg, sizeof(*vol_args));
2646 if (IS_ERR(vol_args)) {
2647 ret = PTR_ERR(vol_args);
2648 goto out;
2649 }
2650
2651 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2652 ret = btrfs_init_new_device(fs_info, vol_args->name);
2653
2654 if (!ret)
2655 btrfs_info(fs_info, "disk added %s", vol_args->name);
2656
2657 kfree(vol_args);
2658out:
2659 if (restore_op)
2660 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2661 else
2662 btrfs_exclop_finish(fs_info);
2663 return ret;
2664}
2665
2666static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2667{
2668 BTRFS_DEV_LOOKUP_ARGS(args);
2669 struct inode *inode = file_inode(file);
2670 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2671 struct btrfs_ioctl_vol_args_v2 *vol_args;
2672 struct block_device *bdev = NULL;
2673 fmode_t mode;
2674 int ret;
2675 bool cancel = false;
2676
2677 if (!capable(CAP_SYS_ADMIN))
2678 return -EPERM;
2679
2680 vol_args = memdup_user(arg, sizeof(*vol_args));
2681 if (IS_ERR(vol_args))
2682 return PTR_ERR(vol_args);
2683
2684 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2685 ret = -EOPNOTSUPP;
2686 goto out;
2687 }
2688
2689 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2690 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2691 args.devid = vol_args->devid;
2692 } else if (!strcmp("cancel", vol_args->name)) {
2693 cancel = true;
2694 } else {
2695 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2696 if (ret)
2697 goto out;
2698 }
2699
2700 ret = mnt_want_write_file(file);
2701 if (ret)
2702 goto out;
2703
2704 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2705 cancel);
2706 if (ret)
2707 goto err_drop;
2708
2709 /* Exclusive operation is now claimed */
2710 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
2711
2712 btrfs_exclop_finish(fs_info);
2713
2714 if (!ret) {
2715 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2716 btrfs_info(fs_info, "device deleted: id %llu",
2717 vol_args->devid);
2718 else
2719 btrfs_info(fs_info, "device deleted: %s",
2720 vol_args->name);
2721 }
2722err_drop:
2723 mnt_drop_write_file(file);
2724 if (bdev)
2725 blkdev_put(bdev, mode);
2726out:
2727 btrfs_put_dev_args_from_path(&args);
2728 kfree(vol_args);
2729 return ret;
2730}
2731
2732static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2733{
2734 BTRFS_DEV_LOOKUP_ARGS(args);
2735 struct inode *inode = file_inode(file);
2736 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2737 struct btrfs_ioctl_vol_args *vol_args;
2738 struct block_device *bdev = NULL;
2739 fmode_t mode;
2740 int ret;
2741 bool cancel = false;
2742
2743 if (!capable(CAP_SYS_ADMIN))
2744 return -EPERM;
2745
2746 vol_args = memdup_user(arg, sizeof(*vol_args));
2747 if (IS_ERR(vol_args))
2748 return PTR_ERR(vol_args);
2749
2750 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2751 if (!strcmp("cancel", vol_args->name)) {
2752 cancel = true;
2753 } else {
2754 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2755 if (ret)
2756 goto out;
2757 }
2758
2759 ret = mnt_want_write_file(file);
2760 if (ret)
2761 goto out;
2762
2763 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2764 cancel);
2765 if (ret == 0) {
2766 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
2767 if (!ret)
2768 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2769 btrfs_exclop_finish(fs_info);
2770 }
2771
2772 mnt_drop_write_file(file);
2773 if (bdev)
2774 blkdev_put(bdev, mode);
2775out:
2776 btrfs_put_dev_args_from_path(&args);
2777 kfree(vol_args);
2778 return ret;
2779}
2780
2781static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2782 void __user *arg)
2783{
2784 struct btrfs_ioctl_fs_info_args *fi_args;
2785 struct btrfs_device *device;
2786 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2787 u64 flags_in;
2788 int ret = 0;
2789
2790 fi_args = memdup_user(arg, sizeof(*fi_args));
2791 if (IS_ERR(fi_args))
2792 return PTR_ERR(fi_args);
2793
2794 flags_in = fi_args->flags;
2795 memset(fi_args, 0, sizeof(*fi_args));
2796
2797 rcu_read_lock();
2798 fi_args->num_devices = fs_devices->num_devices;
2799
2800 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2801 if (device->devid > fi_args->max_id)
2802 fi_args->max_id = device->devid;
2803 }
2804 rcu_read_unlock();
2805
2806 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2807 fi_args->nodesize = fs_info->nodesize;
2808 fi_args->sectorsize = fs_info->sectorsize;
2809 fi_args->clone_alignment = fs_info->sectorsize;
2810
2811 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2812 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2813 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2814 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2815 }
2816
2817 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2818 fi_args->generation = fs_info->generation;
2819 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2820 }
2821
2822 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2823 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2824 sizeof(fi_args->metadata_uuid));
2825 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2826 }
2827
2828 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2829 ret = -EFAULT;
2830
2831 kfree(fi_args);
2832 return ret;
2833}
2834
2835static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2836 void __user *arg)
2837{
2838 BTRFS_DEV_LOOKUP_ARGS(args);
2839 struct btrfs_ioctl_dev_info_args *di_args;
2840 struct btrfs_device *dev;
2841 int ret = 0;
2842
2843 di_args = memdup_user(arg, sizeof(*di_args));
2844 if (IS_ERR(di_args))
2845 return PTR_ERR(di_args);
2846
2847 args.devid = di_args->devid;
2848 if (!btrfs_is_empty_uuid(di_args->uuid))
2849 args.uuid = di_args->uuid;
2850
2851 rcu_read_lock();
2852 dev = btrfs_find_device(fs_info->fs_devices, &args);
2853 if (!dev) {
2854 ret = -ENODEV;
2855 goto out;
2856 }
2857
2858 di_args->devid = dev->devid;
2859 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2860 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2861 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2862 if (dev->name)
2863 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2864 else
2865 di_args->path[0] = '\0';
2866
2867out:
2868 rcu_read_unlock();
2869 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2870 ret = -EFAULT;
2871
2872 kfree(di_args);
2873 return ret;
2874}
2875
2876static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2877{
2878 struct inode *inode = file_inode(file);
2879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2880 struct btrfs_root *root = BTRFS_I(inode)->root;
2881 struct btrfs_root *new_root;
2882 struct btrfs_dir_item *di;
2883 struct btrfs_trans_handle *trans;
2884 struct btrfs_path *path = NULL;
2885 struct btrfs_disk_key disk_key;
2886 struct fscrypt_str name = FSTR_INIT("default", 7);
2887 u64 objectid = 0;
2888 u64 dir_id;
2889 int ret;
2890
2891 if (!capable(CAP_SYS_ADMIN))
2892 return -EPERM;
2893
2894 ret = mnt_want_write_file(file);
2895 if (ret)
2896 return ret;
2897
2898 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2899 ret = -EFAULT;
2900 goto out;
2901 }
2902
2903 if (!objectid)
2904 objectid = BTRFS_FS_TREE_OBJECTID;
2905
2906 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2907 if (IS_ERR(new_root)) {
2908 ret = PTR_ERR(new_root);
2909 goto out;
2910 }
2911 if (!is_fstree(new_root->root_key.objectid)) {
2912 ret = -ENOENT;
2913 goto out_free;
2914 }
2915
2916 path = btrfs_alloc_path();
2917 if (!path) {
2918 ret = -ENOMEM;
2919 goto out_free;
2920 }
2921
2922 trans = btrfs_start_transaction(root, 1);
2923 if (IS_ERR(trans)) {
2924 ret = PTR_ERR(trans);
2925 goto out_free;
2926 }
2927
2928 dir_id = btrfs_super_root_dir(fs_info->super_copy);
2929 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2930 dir_id, &name, 1);
2931 if (IS_ERR_OR_NULL(di)) {
2932 btrfs_release_path(path);
2933 btrfs_end_transaction(trans);
2934 btrfs_err(fs_info,
2935 "Umm, you don't have the default diritem, this isn't going to work");
2936 ret = -ENOENT;
2937 goto out_free;
2938 }
2939
2940 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2941 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2942 btrfs_mark_buffer_dirty(path->nodes[0]);
2943 btrfs_release_path(path);
2944
2945 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2946 btrfs_end_transaction(trans);
2947out_free:
2948 btrfs_put_root(new_root);
2949 btrfs_free_path(path);
2950out:
2951 mnt_drop_write_file(file);
2952 return ret;
2953}
2954
2955static void get_block_group_info(struct list_head *groups_list,
2956 struct btrfs_ioctl_space_info *space)
2957{
2958 struct btrfs_block_group *block_group;
2959
2960 space->total_bytes = 0;
2961 space->used_bytes = 0;
2962 space->flags = 0;
2963 list_for_each_entry(block_group, groups_list, list) {
2964 space->flags = block_group->flags;
2965 space->total_bytes += block_group->length;
2966 space->used_bytes += block_group->used;
2967 }
2968}
2969
2970static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2971 void __user *arg)
2972{
2973 struct btrfs_ioctl_space_args space_args;
2974 struct btrfs_ioctl_space_info space;
2975 struct btrfs_ioctl_space_info *dest;
2976 struct btrfs_ioctl_space_info *dest_orig;
2977 struct btrfs_ioctl_space_info __user *user_dest;
2978 struct btrfs_space_info *info;
2979 static const u64 types[] = {
2980 BTRFS_BLOCK_GROUP_DATA,
2981 BTRFS_BLOCK_GROUP_SYSTEM,
2982 BTRFS_BLOCK_GROUP_METADATA,
2983 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2984 };
2985 int num_types = 4;
2986 int alloc_size;
2987 int ret = 0;
2988 u64 slot_count = 0;
2989 int i, c;
2990
2991 if (copy_from_user(&space_args,
2992 (struct btrfs_ioctl_space_args __user *)arg,
2993 sizeof(space_args)))
2994 return -EFAULT;
2995
2996 for (i = 0; i < num_types; i++) {
2997 struct btrfs_space_info *tmp;
2998
2999 info = NULL;
3000 list_for_each_entry(tmp, &fs_info->space_info, list) {
3001 if (tmp->flags == types[i]) {
3002 info = tmp;
3003 break;
3004 }
3005 }
3006
3007 if (!info)
3008 continue;
3009
3010 down_read(&info->groups_sem);
3011 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3012 if (!list_empty(&info->block_groups[c]))
3013 slot_count++;
3014 }
3015 up_read(&info->groups_sem);
3016 }
3017
3018 /*
3019 * Global block reserve, exported as a space_info
3020 */
3021 slot_count++;
3022
3023 /* space_slots == 0 means they are asking for a count */
3024 if (space_args.space_slots == 0) {
3025 space_args.total_spaces = slot_count;
3026 goto out;
3027 }
3028
3029 slot_count = min_t(u64, space_args.space_slots, slot_count);
3030
3031 alloc_size = sizeof(*dest) * slot_count;
3032
3033 /* we generally have at most 6 or so space infos, one for each raid
3034 * level. So, a whole page should be more than enough for everyone
3035 */
3036 if (alloc_size > PAGE_SIZE)
3037 return -ENOMEM;
3038
3039 space_args.total_spaces = 0;
3040 dest = kmalloc(alloc_size, GFP_KERNEL);
3041 if (!dest)
3042 return -ENOMEM;
3043 dest_orig = dest;
3044
3045 /* now we have a buffer to copy into */
3046 for (i = 0; i < num_types; i++) {
3047 struct btrfs_space_info *tmp;
3048
3049 if (!slot_count)
3050 break;
3051
3052 info = NULL;
3053 list_for_each_entry(tmp, &fs_info->space_info, list) {
3054 if (tmp->flags == types[i]) {
3055 info = tmp;
3056 break;
3057 }
3058 }
3059
3060 if (!info)
3061 continue;
3062 down_read(&info->groups_sem);
3063 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3064 if (!list_empty(&info->block_groups[c])) {
3065 get_block_group_info(&info->block_groups[c],
3066 &space);
3067 memcpy(dest, &space, sizeof(space));
3068 dest++;
3069 space_args.total_spaces++;
3070 slot_count--;
3071 }
3072 if (!slot_count)
3073 break;
3074 }
3075 up_read(&info->groups_sem);
3076 }
3077
3078 /*
3079 * Add global block reserve
3080 */
3081 if (slot_count) {
3082 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3083
3084 spin_lock(&block_rsv->lock);
3085 space.total_bytes = block_rsv->size;
3086 space.used_bytes = block_rsv->size - block_rsv->reserved;
3087 spin_unlock(&block_rsv->lock);
3088 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3089 memcpy(dest, &space, sizeof(space));
3090 space_args.total_spaces++;
3091 }
3092
3093 user_dest = (struct btrfs_ioctl_space_info __user *)
3094 (arg + sizeof(struct btrfs_ioctl_space_args));
3095
3096 if (copy_to_user(user_dest, dest_orig, alloc_size))
3097 ret = -EFAULT;
3098
3099 kfree(dest_orig);
3100out:
3101 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3102 ret = -EFAULT;
3103
3104 return ret;
3105}
3106
3107static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3108 void __user *argp)
3109{
3110 struct btrfs_trans_handle *trans;
3111 u64 transid;
3112
3113 trans = btrfs_attach_transaction_barrier(root);
3114 if (IS_ERR(trans)) {
3115 if (PTR_ERR(trans) != -ENOENT)
3116 return PTR_ERR(trans);
3117
3118 /* No running transaction, don't bother */
3119 transid = root->fs_info->last_trans_committed;
3120 goto out;
3121 }
3122 transid = trans->transid;
3123 btrfs_commit_transaction_async(trans);
3124out:
3125 if (argp)
3126 if (copy_to_user(argp, &transid, sizeof(transid)))
3127 return -EFAULT;
3128 return 0;
3129}
3130
3131static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3132 void __user *argp)
3133{
3134 u64 transid;
3135
3136 if (argp) {
3137 if (copy_from_user(&transid, argp, sizeof(transid)))
3138 return -EFAULT;
3139 } else {
3140 transid = 0; /* current trans */
3141 }
3142 return btrfs_wait_for_commit(fs_info, transid);
3143}
3144
3145static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3146{
3147 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3148 struct btrfs_ioctl_scrub_args *sa;
3149 int ret;
3150
3151 if (!capable(CAP_SYS_ADMIN))
3152 return -EPERM;
3153
3154 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3155 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3156 return -EINVAL;
3157 }
3158
3159 sa = memdup_user(arg, sizeof(*sa));
3160 if (IS_ERR(sa))
3161 return PTR_ERR(sa);
3162
3163 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3164 ret = mnt_want_write_file(file);
3165 if (ret)
3166 goto out;
3167 }
3168
3169 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3170 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3171 0);
3172
3173 /*
3174 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3175 * error. This is important as it allows user space to know how much
3176 * progress scrub has done. For example, if scrub is canceled we get
3177 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3178 * space. Later user space can inspect the progress from the structure
3179 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3180 * previously (btrfs-progs does this).
3181 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3182 * then return -EFAULT to signal the structure was not copied or it may
3183 * be corrupt and unreliable due to a partial copy.
3184 */
3185 if (copy_to_user(arg, sa, sizeof(*sa)))
3186 ret = -EFAULT;
3187
3188 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3189 mnt_drop_write_file(file);
3190out:
3191 kfree(sa);
3192 return ret;
3193}
3194
3195static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3196{
3197 if (!capable(CAP_SYS_ADMIN))
3198 return -EPERM;
3199
3200 return btrfs_scrub_cancel(fs_info);
3201}
3202
3203static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3204 void __user *arg)
3205{
3206 struct btrfs_ioctl_scrub_args *sa;
3207 int ret;
3208
3209 if (!capable(CAP_SYS_ADMIN))
3210 return -EPERM;
3211
3212 sa = memdup_user(arg, sizeof(*sa));
3213 if (IS_ERR(sa))
3214 return PTR_ERR(sa);
3215
3216 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3217
3218 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3219 ret = -EFAULT;
3220
3221 kfree(sa);
3222 return ret;
3223}
3224
3225static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3226 void __user *arg)
3227{
3228 struct btrfs_ioctl_get_dev_stats *sa;
3229 int ret;
3230
3231 sa = memdup_user(arg, sizeof(*sa));
3232 if (IS_ERR(sa))
3233 return PTR_ERR(sa);
3234
3235 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3236 kfree(sa);
3237 return -EPERM;
3238 }
3239
3240 ret = btrfs_get_dev_stats(fs_info, sa);
3241
3242 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3243 ret = -EFAULT;
3244
3245 kfree(sa);
3246 return ret;
3247}
3248
3249static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3250 void __user *arg)
3251{
3252 struct btrfs_ioctl_dev_replace_args *p;
3253 int ret;
3254
3255 if (!capable(CAP_SYS_ADMIN))
3256 return -EPERM;
3257
3258 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3259 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3260 return -EINVAL;
3261 }
3262
3263 p = memdup_user(arg, sizeof(*p));
3264 if (IS_ERR(p))
3265 return PTR_ERR(p);
3266
3267 switch (p->cmd) {
3268 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3269 if (sb_rdonly(fs_info->sb)) {
3270 ret = -EROFS;
3271 goto out;
3272 }
3273 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3274 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3275 } else {
3276 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3277 btrfs_exclop_finish(fs_info);
3278 }
3279 break;
3280 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3281 btrfs_dev_replace_status(fs_info, p);
3282 ret = 0;
3283 break;
3284 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3285 p->result = btrfs_dev_replace_cancel(fs_info);
3286 ret = 0;
3287 break;
3288 default:
3289 ret = -EINVAL;
3290 break;
3291 }
3292
3293 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3294 ret = -EFAULT;
3295out:
3296 kfree(p);
3297 return ret;
3298}
3299
3300static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3301{
3302 int ret = 0;
3303 int i;
3304 u64 rel_ptr;
3305 int size;
3306 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3307 struct inode_fs_paths *ipath = NULL;
3308 struct btrfs_path *path;
3309
3310 if (!capable(CAP_DAC_READ_SEARCH))
3311 return -EPERM;
3312
3313 path = btrfs_alloc_path();
3314 if (!path) {
3315 ret = -ENOMEM;
3316 goto out;
3317 }
3318
3319 ipa = memdup_user(arg, sizeof(*ipa));
3320 if (IS_ERR(ipa)) {
3321 ret = PTR_ERR(ipa);
3322 ipa = NULL;
3323 goto out;
3324 }
3325
3326 size = min_t(u32, ipa->size, 4096);
3327 ipath = init_ipath(size, root, path);
3328 if (IS_ERR(ipath)) {
3329 ret = PTR_ERR(ipath);
3330 ipath = NULL;
3331 goto out;
3332 }
3333
3334 ret = paths_from_inode(ipa->inum, ipath);
3335 if (ret < 0)
3336 goto out;
3337
3338 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3339 rel_ptr = ipath->fspath->val[i] -
3340 (u64)(unsigned long)ipath->fspath->val;
3341 ipath->fspath->val[i] = rel_ptr;
3342 }
3343
3344 btrfs_free_path(path);
3345 path = NULL;
3346 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3347 ipath->fspath, size);
3348 if (ret) {
3349 ret = -EFAULT;
3350 goto out;
3351 }
3352
3353out:
3354 btrfs_free_path(path);
3355 free_ipath(ipath);
3356 kfree(ipa);
3357
3358 return ret;
3359}
3360
3361static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3362 void __user *arg, int version)
3363{
3364 int ret = 0;
3365 int size;
3366 struct btrfs_ioctl_logical_ino_args *loi;
3367 struct btrfs_data_container *inodes = NULL;
3368 struct btrfs_path *path = NULL;
3369 bool ignore_offset;
3370
3371 if (!capable(CAP_SYS_ADMIN))
3372 return -EPERM;
3373
3374 loi = memdup_user(arg, sizeof(*loi));
3375 if (IS_ERR(loi))
3376 return PTR_ERR(loi);
3377
3378 if (version == 1) {
3379 ignore_offset = false;
3380 size = min_t(u32, loi->size, SZ_64K);
3381 } else {
3382 /* All reserved bits must be 0 for now */
3383 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3384 ret = -EINVAL;
3385 goto out_loi;
3386 }
3387 /* Only accept flags we have defined so far */
3388 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3389 ret = -EINVAL;
3390 goto out_loi;
3391 }
3392 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3393 size = min_t(u32, loi->size, SZ_16M);
3394 }
3395
3396 inodes = init_data_container(size);
3397 if (IS_ERR(inodes)) {
3398 ret = PTR_ERR(inodes);
3399 goto out_loi;
3400 }
3401
3402 path = btrfs_alloc_path();
3403 if (!path) {
3404 ret = -ENOMEM;
3405 goto out;
3406 }
3407 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3408 inodes, ignore_offset);
3409 btrfs_free_path(path);
3410 if (ret == -EINVAL)
3411 ret = -ENOENT;
3412 if (ret < 0)
3413 goto out;
3414
3415 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3416 size);
3417 if (ret)
3418 ret = -EFAULT;
3419
3420out:
3421 kvfree(inodes);
3422out_loi:
3423 kfree(loi);
3424
3425 return ret;
3426}
3427
3428void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3429 struct btrfs_ioctl_balance_args *bargs)
3430{
3431 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3432
3433 bargs->flags = bctl->flags;
3434
3435 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3436 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3437 if (atomic_read(&fs_info->balance_pause_req))
3438 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3439 if (atomic_read(&fs_info->balance_cancel_req))
3440 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3441
3442 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3443 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3444 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3445
3446 spin_lock(&fs_info->balance_lock);
3447 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3448 spin_unlock(&fs_info->balance_lock);
3449}
3450
3451/*
3452 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3453 * required.
3454 *
3455 * @fs_info: the filesystem
3456 * @excl_acquired: ptr to boolean value which is set to false in case balance
3457 * is being resumed
3458 *
3459 * Return 0 on success in which case both fs_info::balance is acquired as well
3460 * as exclusive ops are blocked. In case of failure return an error code.
3461 */
3462static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3463{
3464 int ret;
3465
3466 /*
3467 * Exclusive operation is locked. Three possibilities:
3468 * (1) some other op is running
3469 * (2) balance is running
3470 * (3) balance is paused -- special case (think resume)
3471 */
3472 while (1) {
3473 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3474 *excl_acquired = true;
3475 mutex_lock(&fs_info->balance_mutex);
3476 return 0;
3477 }
3478
3479 mutex_lock(&fs_info->balance_mutex);
3480 if (fs_info->balance_ctl) {
3481 /* This is either (2) or (3) */
3482 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3483 /* This is (2) */
3484 ret = -EINPROGRESS;
3485 goto out_failure;
3486
3487 } else {
3488 mutex_unlock(&fs_info->balance_mutex);
3489 /*
3490 * Lock released to allow other waiters to
3491 * continue, we'll reexamine the status again.
3492 */
3493 mutex_lock(&fs_info->balance_mutex);
3494
3495 if (fs_info->balance_ctl &&
3496 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3497 /* This is (3) */
3498 *excl_acquired = false;
3499 return 0;
3500 }
3501 }
3502 } else {
3503 /* This is (1) */
3504 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3505 goto out_failure;
3506 }
3507
3508 mutex_unlock(&fs_info->balance_mutex);
3509 }
3510
3511out_failure:
3512 mutex_unlock(&fs_info->balance_mutex);
3513 *excl_acquired = false;
3514 return ret;
3515}
3516
3517static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3518{
3519 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3520 struct btrfs_fs_info *fs_info = root->fs_info;
3521 struct btrfs_ioctl_balance_args *bargs;
3522 struct btrfs_balance_control *bctl;
3523 bool need_unlock = true;
3524 int ret;
3525
3526 if (!capable(CAP_SYS_ADMIN))
3527 return -EPERM;
3528
3529 ret = mnt_want_write_file(file);
3530 if (ret)
3531 return ret;
3532
3533 bargs = memdup_user(arg, sizeof(*bargs));
3534 if (IS_ERR(bargs)) {
3535 ret = PTR_ERR(bargs);
3536 bargs = NULL;
3537 goto out;
3538 }
3539
3540 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3541 if (ret)
3542 goto out;
3543
3544 lockdep_assert_held(&fs_info->balance_mutex);
3545
3546 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3547 if (!fs_info->balance_ctl) {
3548 ret = -ENOTCONN;
3549 goto out_unlock;
3550 }
3551
3552 bctl = fs_info->balance_ctl;
3553 spin_lock(&fs_info->balance_lock);
3554 bctl->flags |= BTRFS_BALANCE_RESUME;
3555 spin_unlock(&fs_info->balance_lock);
3556 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3557
3558 goto do_balance;
3559 }
3560
3561 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3562 ret = -EINVAL;
3563 goto out_unlock;
3564 }
3565
3566 if (fs_info->balance_ctl) {
3567 ret = -EINPROGRESS;
3568 goto out_unlock;
3569 }
3570
3571 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3572 if (!bctl) {
3573 ret = -ENOMEM;
3574 goto out_unlock;
3575 }
3576
3577 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3578 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3579 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3580
3581 bctl->flags = bargs->flags;
3582do_balance:
3583 /*
3584 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3585 * bctl is freed in reset_balance_state, or, if restriper was paused
3586 * all the way until unmount, in free_fs_info. The flag should be
3587 * cleared after reset_balance_state.
3588 */
3589 need_unlock = false;
3590
3591 ret = btrfs_balance(fs_info, bctl, bargs);
3592 bctl = NULL;
3593
3594 if (ret == 0 || ret == -ECANCELED) {
3595 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3596 ret = -EFAULT;
3597 }
3598
3599 kfree(bctl);
3600out_unlock:
3601 mutex_unlock(&fs_info->balance_mutex);
3602 if (need_unlock)
3603 btrfs_exclop_finish(fs_info);
3604out:
3605 mnt_drop_write_file(file);
3606 kfree(bargs);
3607 return ret;
3608}
3609
3610static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3611{
3612 if (!capable(CAP_SYS_ADMIN))
3613 return -EPERM;
3614
3615 switch (cmd) {
3616 case BTRFS_BALANCE_CTL_PAUSE:
3617 return btrfs_pause_balance(fs_info);
3618 case BTRFS_BALANCE_CTL_CANCEL:
3619 return btrfs_cancel_balance(fs_info);
3620 }
3621
3622 return -EINVAL;
3623}
3624
3625static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3626 void __user *arg)
3627{
3628 struct btrfs_ioctl_balance_args *bargs;
3629 int ret = 0;
3630
3631 if (!capable(CAP_SYS_ADMIN))
3632 return -EPERM;
3633
3634 mutex_lock(&fs_info->balance_mutex);
3635 if (!fs_info->balance_ctl) {
3636 ret = -ENOTCONN;
3637 goto out;
3638 }
3639
3640 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3641 if (!bargs) {
3642 ret = -ENOMEM;
3643 goto out;
3644 }
3645
3646 btrfs_update_ioctl_balance_args(fs_info, bargs);
3647
3648 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3649 ret = -EFAULT;
3650
3651 kfree(bargs);
3652out:
3653 mutex_unlock(&fs_info->balance_mutex);
3654 return ret;
3655}
3656
3657static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3658{
3659 struct inode *inode = file_inode(file);
3660 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3661 struct btrfs_ioctl_quota_ctl_args *sa;
3662 int ret;
3663
3664 if (!capable(CAP_SYS_ADMIN))
3665 return -EPERM;
3666
3667 ret = mnt_want_write_file(file);
3668 if (ret)
3669 return ret;
3670
3671 sa = memdup_user(arg, sizeof(*sa));
3672 if (IS_ERR(sa)) {
3673 ret = PTR_ERR(sa);
3674 goto drop_write;
3675 }
3676
3677 down_write(&fs_info->subvol_sem);
3678
3679 switch (sa->cmd) {
3680 case BTRFS_QUOTA_CTL_ENABLE:
3681 ret = btrfs_quota_enable(fs_info);
3682 break;
3683 case BTRFS_QUOTA_CTL_DISABLE:
3684 ret = btrfs_quota_disable(fs_info);
3685 break;
3686 default:
3687 ret = -EINVAL;
3688 break;
3689 }
3690
3691 kfree(sa);
3692 up_write(&fs_info->subvol_sem);
3693drop_write:
3694 mnt_drop_write_file(file);
3695 return ret;
3696}
3697
3698static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3699{
3700 struct inode *inode = file_inode(file);
3701 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3702 struct btrfs_root *root = BTRFS_I(inode)->root;
3703 struct btrfs_ioctl_qgroup_assign_args *sa;
3704 struct btrfs_trans_handle *trans;
3705 int ret;
3706 int err;
3707
3708 if (!capable(CAP_SYS_ADMIN))
3709 return -EPERM;
3710
3711 ret = mnt_want_write_file(file);
3712 if (ret)
3713 return ret;
3714
3715 sa = memdup_user(arg, sizeof(*sa));
3716 if (IS_ERR(sa)) {
3717 ret = PTR_ERR(sa);
3718 goto drop_write;
3719 }
3720
3721 trans = btrfs_join_transaction(root);
3722 if (IS_ERR(trans)) {
3723 ret = PTR_ERR(trans);
3724 goto out;
3725 }
3726
3727 if (sa->assign) {
3728 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3729 } else {
3730 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3731 }
3732
3733 /* update qgroup status and info */
3734 err = btrfs_run_qgroups(trans);
3735 if (err < 0)
3736 btrfs_handle_fs_error(fs_info, err,
3737 "failed to update qgroup status and info");
3738 err = btrfs_end_transaction(trans);
3739 if (err && !ret)
3740 ret = err;
3741
3742out:
3743 kfree(sa);
3744drop_write:
3745 mnt_drop_write_file(file);
3746 return ret;
3747}
3748
3749static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3750{
3751 struct inode *inode = file_inode(file);
3752 struct btrfs_root *root = BTRFS_I(inode)->root;
3753 struct btrfs_ioctl_qgroup_create_args *sa;
3754 struct btrfs_trans_handle *trans;
3755 int ret;
3756 int err;
3757
3758 if (!capable(CAP_SYS_ADMIN))
3759 return -EPERM;
3760
3761 ret = mnt_want_write_file(file);
3762 if (ret)
3763 return ret;
3764
3765 sa = memdup_user(arg, sizeof(*sa));
3766 if (IS_ERR(sa)) {
3767 ret = PTR_ERR(sa);
3768 goto drop_write;
3769 }
3770
3771 if (!sa->qgroupid) {
3772 ret = -EINVAL;
3773 goto out;
3774 }
3775
3776 trans = btrfs_join_transaction(root);
3777 if (IS_ERR(trans)) {
3778 ret = PTR_ERR(trans);
3779 goto out;
3780 }
3781
3782 if (sa->create) {
3783 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3784 } else {
3785 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3786 }
3787
3788 err = btrfs_end_transaction(trans);
3789 if (err && !ret)
3790 ret = err;
3791
3792out:
3793 kfree(sa);
3794drop_write:
3795 mnt_drop_write_file(file);
3796 return ret;
3797}
3798
3799static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3800{
3801 struct inode *inode = file_inode(file);
3802 struct btrfs_root *root = BTRFS_I(inode)->root;
3803 struct btrfs_ioctl_qgroup_limit_args *sa;
3804 struct btrfs_trans_handle *trans;
3805 int ret;
3806 int err;
3807 u64 qgroupid;
3808
3809 if (!capable(CAP_SYS_ADMIN))
3810 return -EPERM;
3811
3812 ret = mnt_want_write_file(file);
3813 if (ret)
3814 return ret;
3815
3816 sa = memdup_user(arg, sizeof(*sa));
3817 if (IS_ERR(sa)) {
3818 ret = PTR_ERR(sa);
3819 goto drop_write;
3820 }
3821
3822 trans = btrfs_join_transaction(root);
3823 if (IS_ERR(trans)) {
3824 ret = PTR_ERR(trans);
3825 goto out;
3826 }
3827
3828 qgroupid = sa->qgroupid;
3829 if (!qgroupid) {
3830 /* take the current subvol as qgroup */
3831 qgroupid = root->root_key.objectid;
3832 }
3833
3834 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3835
3836 err = btrfs_end_transaction(trans);
3837 if (err && !ret)
3838 ret = err;
3839
3840out:
3841 kfree(sa);
3842drop_write:
3843 mnt_drop_write_file(file);
3844 return ret;
3845}
3846
3847static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3848{
3849 struct inode *inode = file_inode(file);
3850 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3851 struct btrfs_ioctl_quota_rescan_args *qsa;
3852 int ret;
3853
3854 if (!capable(CAP_SYS_ADMIN))
3855 return -EPERM;
3856
3857 ret = mnt_want_write_file(file);
3858 if (ret)
3859 return ret;
3860
3861 qsa = memdup_user(arg, sizeof(*qsa));
3862 if (IS_ERR(qsa)) {
3863 ret = PTR_ERR(qsa);
3864 goto drop_write;
3865 }
3866
3867 if (qsa->flags) {
3868 ret = -EINVAL;
3869 goto out;
3870 }
3871
3872 ret = btrfs_qgroup_rescan(fs_info);
3873
3874out:
3875 kfree(qsa);
3876drop_write:
3877 mnt_drop_write_file(file);
3878 return ret;
3879}
3880
3881static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3882 void __user *arg)
3883{
3884 struct btrfs_ioctl_quota_rescan_args qsa = {0};
3885
3886 if (!capable(CAP_SYS_ADMIN))
3887 return -EPERM;
3888
3889 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3890 qsa.flags = 1;
3891 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3892 }
3893
3894 if (copy_to_user(arg, &qsa, sizeof(qsa)))
3895 return -EFAULT;
3896
3897 return 0;
3898}
3899
3900static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3901 void __user *arg)
3902{
3903 if (!capable(CAP_SYS_ADMIN))
3904 return -EPERM;
3905
3906 return btrfs_qgroup_wait_for_completion(fs_info, true);
3907}
3908
3909static long _btrfs_ioctl_set_received_subvol(struct file *file,
3910 struct user_namespace *mnt_userns,
3911 struct btrfs_ioctl_received_subvol_args *sa)
3912{
3913 struct inode *inode = file_inode(file);
3914 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3915 struct btrfs_root *root = BTRFS_I(inode)->root;
3916 struct btrfs_root_item *root_item = &root->root_item;
3917 struct btrfs_trans_handle *trans;
3918 struct timespec64 ct = current_time(inode);
3919 int ret = 0;
3920 int received_uuid_changed;
3921
3922 if (!inode_owner_or_capable(mnt_userns, inode))
3923 return -EPERM;
3924
3925 ret = mnt_want_write_file(file);
3926 if (ret < 0)
3927 return ret;
3928
3929 down_write(&fs_info->subvol_sem);
3930
3931 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3932 ret = -EINVAL;
3933 goto out;
3934 }
3935
3936 if (btrfs_root_readonly(root)) {
3937 ret = -EROFS;
3938 goto out;
3939 }
3940
3941 /*
3942 * 1 - root item
3943 * 2 - uuid items (received uuid + subvol uuid)
3944 */
3945 trans = btrfs_start_transaction(root, 3);
3946 if (IS_ERR(trans)) {
3947 ret = PTR_ERR(trans);
3948 trans = NULL;
3949 goto out;
3950 }
3951
3952 sa->rtransid = trans->transid;
3953 sa->rtime.sec = ct.tv_sec;
3954 sa->rtime.nsec = ct.tv_nsec;
3955
3956 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
3957 BTRFS_UUID_SIZE);
3958 if (received_uuid_changed &&
3959 !btrfs_is_empty_uuid(root_item->received_uuid)) {
3960 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
3961 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3962 root->root_key.objectid);
3963 if (ret && ret != -ENOENT) {
3964 btrfs_abort_transaction(trans, ret);
3965 btrfs_end_transaction(trans);
3966 goto out;
3967 }
3968 }
3969 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3970 btrfs_set_root_stransid(root_item, sa->stransid);
3971 btrfs_set_root_rtransid(root_item, sa->rtransid);
3972 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
3973 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
3974 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
3975 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
3976
3977 ret = btrfs_update_root(trans, fs_info->tree_root,
3978 &root->root_key, &root->root_item);
3979 if (ret < 0) {
3980 btrfs_end_transaction(trans);
3981 goto out;
3982 }
3983 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
3984 ret = btrfs_uuid_tree_add(trans, sa->uuid,
3985 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3986 root->root_key.objectid);
3987 if (ret < 0 && ret != -EEXIST) {
3988 btrfs_abort_transaction(trans, ret);
3989 btrfs_end_transaction(trans);
3990 goto out;
3991 }
3992 }
3993 ret = btrfs_commit_transaction(trans);
3994out:
3995 up_write(&fs_info->subvol_sem);
3996 mnt_drop_write_file(file);
3997 return ret;
3998}
3999
4000#ifdef CONFIG_64BIT
4001static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4002 void __user *arg)
4003{
4004 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4005 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4006 int ret = 0;
4007
4008 args32 = memdup_user(arg, sizeof(*args32));
4009 if (IS_ERR(args32))
4010 return PTR_ERR(args32);
4011
4012 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4013 if (!args64) {
4014 ret = -ENOMEM;
4015 goto out;
4016 }
4017
4018 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4019 args64->stransid = args32->stransid;
4020 args64->rtransid = args32->rtransid;
4021 args64->stime.sec = args32->stime.sec;
4022 args64->stime.nsec = args32->stime.nsec;
4023 args64->rtime.sec = args32->rtime.sec;
4024 args64->rtime.nsec = args32->rtime.nsec;
4025 args64->flags = args32->flags;
4026
4027 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4028 if (ret)
4029 goto out;
4030
4031 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4032 args32->stransid = args64->stransid;
4033 args32->rtransid = args64->rtransid;
4034 args32->stime.sec = args64->stime.sec;
4035 args32->stime.nsec = args64->stime.nsec;
4036 args32->rtime.sec = args64->rtime.sec;
4037 args32->rtime.nsec = args64->rtime.nsec;
4038 args32->flags = args64->flags;
4039
4040 ret = copy_to_user(arg, args32, sizeof(*args32));
4041 if (ret)
4042 ret = -EFAULT;
4043
4044out:
4045 kfree(args32);
4046 kfree(args64);
4047 return ret;
4048}
4049#endif
4050
4051static long btrfs_ioctl_set_received_subvol(struct file *file,
4052 void __user *arg)
4053{
4054 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4055 int ret = 0;
4056
4057 sa = memdup_user(arg, sizeof(*sa));
4058 if (IS_ERR(sa))
4059 return PTR_ERR(sa);
4060
4061 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4062
4063 if (ret)
4064 goto out;
4065
4066 ret = copy_to_user(arg, sa, sizeof(*sa));
4067 if (ret)
4068 ret = -EFAULT;
4069
4070out:
4071 kfree(sa);
4072 return ret;
4073}
4074
4075static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4076 void __user *arg)
4077{
4078 size_t len;
4079 int ret;
4080 char label[BTRFS_LABEL_SIZE];
4081
4082 spin_lock(&fs_info->super_lock);
4083 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4084 spin_unlock(&fs_info->super_lock);
4085
4086 len = strnlen(label, BTRFS_LABEL_SIZE);
4087
4088 if (len == BTRFS_LABEL_SIZE) {
4089 btrfs_warn(fs_info,
4090 "label is too long, return the first %zu bytes",
4091 --len);
4092 }
4093
4094 ret = copy_to_user(arg, label, len);
4095
4096 return ret ? -EFAULT : 0;
4097}
4098
4099static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4100{
4101 struct inode *inode = file_inode(file);
4102 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4103 struct btrfs_root *root = BTRFS_I(inode)->root;
4104 struct btrfs_super_block *super_block = fs_info->super_copy;
4105 struct btrfs_trans_handle *trans;
4106 char label[BTRFS_LABEL_SIZE];
4107 int ret;
4108
4109 if (!capable(CAP_SYS_ADMIN))
4110 return -EPERM;
4111
4112 if (copy_from_user(label, arg, sizeof(label)))
4113 return -EFAULT;
4114
4115 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4116 btrfs_err(fs_info,
4117 "unable to set label with more than %d bytes",
4118 BTRFS_LABEL_SIZE - 1);
4119 return -EINVAL;
4120 }
4121
4122 ret = mnt_want_write_file(file);
4123 if (ret)
4124 return ret;
4125
4126 trans = btrfs_start_transaction(root, 0);
4127 if (IS_ERR(trans)) {
4128 ret = PTR_ERR(trans);
4129 goto out_unlock;
4130 }
4131
4132 spin_lock(&fs_info->super_lock);
4133 strcpy(super_block->label, label);
4134 spin_unlock(&fs_info->super_lock);
4135 ret = btrfs_commit_transaction(trans);
4136
4137out_unlock:
4138 mnt_drop_write_file(file);
4139 return ret;
4140}
4141
4142#define INIT_FEATURE_FLAGS(suffix) \
4143 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4144 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4145 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4146
4147int btrfs_ioctl_get_supported_features(void __user *arg)
4148{
4149 static const struct btrfs_ioctl_feature_flags features[3] = {
4150 INIT_FEATURE_FLAGS(SUPP),
4151 INIT_FEATURE_FLAGS(SAFE_SET),
4152 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4153 };
4154
4155 if (copy_to_user(arg, &features, sizeof(features)))
4156 return -EFAULT;
4157
4158 return 0;
4159}
4160
4161static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4162 void __user *arg)
4163{
4164 struct btrfs_super_block *super_block = fs_info->super_copy;
4165 struct btrfs_ioctl_feature_flags features;
4166
4167 features.compat_flags = btrfs_super_compat_flags(super_block);
4168 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4169 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4170
4171 if (copy_to_user(arg, &features, sizeof(features)))
4172 return -EFAULT;
4173
4174 return 0;
4175}
4176
4177static int check_feature_bits(struct btrfs_fs_info *fs_info,
4178 enum btrfs_feature_set set,
4179 u64 change_mask, u64 flags, u64 supported_flags,
4180 u64 safe_set, u64 safe_clear)
4181{
4182 const char *type = btrfs_feature_set_name(set);
4183 char *names;
4184 u64 disallowed, unsupported;
4185 u64 set_mask = flags & change_mask;
4186 u64 clear_mask = ~flags & change_mask;
4187
4188 unsupported = set_mask & ~supported_flags;
4189 if (unsupported) {
4190 names = btrfs_printable_features(set, unsupported);
4191 if (names) {
4192 btrfs_warn(fs_info,
4193 "this kernel does not support the %s feature bit%s",
4194 names, strchr(names, ',') ? "s" : "");
4195 kfree(names);
4196 } else
4197 btrfs_warn(fs_info,
4198 "this kernel does not support %s bits 0x%llx",
4199 type, unsupported);
4200 return -EOPNOTSUPP;
4201 }
4202
4203 disallowed = set_mask & ~safe_set;
4204 if (disallowed) {
4205 names = btrfs_printable_features(set, disallowed);
4206 if (names) {
4207 btrfs_warn(fs_info,
4208 "can't set the %s feature bit%s while mounted",
4209 names, strchr(names, ',') ? "s" : "");
4210 kfree(names);
4211 } else
4212 btrfs_warn(fs_info,
4213 "can't set %s bits 0x%llx while mounted",
4214 type, disallowed);
4215 return -EPERM;
4216 }
4217
4218 disallowed = clear_mask & ~safe_clear;
4219 if (disallowed) {
4220 names = btrfs_printable_features(set, disallowed);
4221 if (names) {
4222 btrfs_warn(fs_info,
4223 "can't clear the %s feature bit%s while mounted",
4224 names, strchr(names, ',') ? "s" : "");
4225 kfree(names);
4226 } else
4227 btrfs_warn(fs_info,
4228 "can't clear %s bits 0x%llx while mounted",
4229 type, disallowed);
4230 return -EPERM;
4231 }
4232
4233 return 0;
4234}
4235
4236#define check_feature(fs_info, change_mask, flags, mask_base) \
4237check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4238 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4239 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4240 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4241
4242static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4243{
4244 struct inode *inode = file_inode(file);
4245 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4246 struct btrfs_root *root = BTRFS_I(inode)->root;
4247 struct btrfs_super_block *super_block = fs_info->super_copy;
4248 struct btrfs_ioctl_feature_flags flags[2];
4249 struct btrfs_trans_handle *trans;
4250 u64 newflags;
4251 int ret;
4252
4253 if (!capable(CAP_SYS_ADMIN))
4254 return -EPERM;
4255
4256 if (copy_from_user(flags, arg, sizeof(flags)))
4257 return -EFAULT;
4258
4259 /* Nothing to do */
4260 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4261 !flags[0].incompat_flags)
4262 return 0;
4263
4264 ret = check_feature(fs_info, flags[0].compat_flags,
4265 flags[1].compat_flags, COMPAT);
4266 if (ret)
4267 return ret;
4268
4269 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4270 flags[1].compat_ro_flags, COMPAT_RO);
4271 if (ret)
4272 return ret;
4273
4274 ret = check_feature(fs_info, flags[0].incompat_flags,
4275 flags[1].incompat_flags, INCOMPAT);
4276 if (ret)
4277 return ret;
4278
4279 ret = mnt_want_write_file(file);
4280 if (ret)
4281 return ret;
4282
4283 trans = btrfs_start_transaction(root, 0);
4284 if (IS_ERR(trans)) {
4285 ret = PTR_ERR(trans);
4286 goto out_drop_write;
4287 }
4288
4289 spin_lock(&fs_info->super_lock);
4290 newflags = btrfs_super_compat_flags(super_block);
4291 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4292 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4293 btrfs_set_super_compat_flags(super_block, newflags);
4294
4295 newflags = btrfs_super_compat_ro_flags(super_block);
4296 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4297 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4298 btrfs_set_super_compat_ro_flags(super_block, newflags);
4299
4300 newflags = btrfs_super_incompat_flags(super_block);
4301 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4302 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4303 btrfs_set_super_incompat_flags(super_block, newflags);
4304 spin_unlock(&fs_info->super_lock);
4305
4306 ret = btrfs_commit_transaction(trans);
4307out_drop_write:
4308 mnt_drop_write_file(file);
4309
4310 return ret;
4311}
4312
4313static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4314{
4315 struct btrfs_ioctl_send_args *arg;
4316 int ret;
4317
4318 if (compat) {
4319#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4320 struct btrfs_ioctl_send_args_32 args32;
4321
4322 ret = copy_from_user(&args32, argp, sizeof(args32));
4323 if (ret)
4324 return -EFAULT;
4325 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4326 if (!arg)
4327 return -ENOMEM;
4328 arg->send_fd = args32.send_fd;
4329 arg->clone_sources_count = args32.clone_sources_count;
4330 arg->clone_sources = compat_ptr(args32.clone_sources);
4331 arg->parent_root = args32.parent_root;
4332 arg->flags = args32.flags;
4333 memcpy(arg->reserved, args32.reserved,
4334 sizeof(args32.reserved));
4335#else
4336 return -ENOTTY;
4337#endif
4338 } else {
4339 arg = memdup_user(argp, sizeof(*arg));
4340 if (IS_ERR(arg))
4341 return PTR_ERR(arg);
4342 }
4343 ret = btrfs_ioctl_send(inode, arg);
4344 kfree(arg);
4345 return ret;
4346}
4347
4348static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4349 bool compat)
4350{
4351 struct btrfs_ioctl_encoded_io_args args = { 0 };
4352 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4353 flags);
4354 size_t copy_end;
4355 struct iovec iovstack[UIO_FASTIOV];
4356 struct iovec *iov = iovstack;
4357 struct iov_iter iter;
4358 loff_t pos;
4359 struct kiocb kiocb;
4360 ssize_t ret;
4361
4362 if (!capable(CAP_SYS_ADMIN)) {
4363 ret = -EPERM;
4364 goto out_acct;
4365 }
4366
4367 if (compat) {
4368#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4369 struct btrfs_ioctl_encoded_io_args_32 args32;
4370
4371 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4372 flags);
4373 if (copy_from_user(&args32, argp, copy_end)) {
4374 ret = -EFAULT;
4375 goto out_acct;
4376 }
4377 args.iov = compat_ptr(args32.iov);
4378 args.iovcnt = args32.iovcnt;
4379 args.offset = args32.offset;
4380 args.flags = args32.flags;
4381#else
4382 return -ENOTTY;
4383#endif
4384 } else {
4385 copy_end = copy_end_kernel;
4386 if (copy_from_user(&args, argp, copy_end)) {
4387 ret = -EFAULT;
4388 goto out_acct;
4389 }
4390 }
4391 if (args.flags != 0) {
4392 ret = -EINVAL;
4393 goto out_acct;
4394 }
4395
4396 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4397 &iov, &iter);
4398 if (ret < 0)
4399 goto out_acct;
4400
4401 if (iov_iter_count(&iter) == 0) {
4402 ret = 0;
4403 goto out_iov;
4404 }
4405 pos = args.offset;
4406 ret = rw_verify_area(READ, file, &pos, args.len);
4407 if (ret < 0)
4408 goto out_iov;
4409
4410 init_sync_kiocb(&kiocb, file);
4411 kiocb.ki_pos = pos;
4412
4413 ret = btrfs_encoded_read(&kiocb, &iter, &args);
4414 if (ret >= 0) {
4415 fsnotify_access(file);
4416 if (copy_to_user(argp + copy_end,
4417 (char *)&args + copy_end_kernel,
4418 sizeof(args) - copy_end_kernel))
4419 ret = -EFAULT;
4420 }
4421
4422out_iov:
4423 kfree(iov);
4424out_acct:
4425 if (ret > 0)
4426 add_rchar(current, ret);
4427 inc_syscr(current);
4428 return ret;
4429}
4430
4431static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4432{
4433 struct btrfs_ioctl_encoded_io_args args;
4434 struct iovec iovstack[UIO_FASTIOV];
4435 struct iovec *iov = iovstack;
4436 struct iov_iter iter;
4437 loff_t pos;
4438 struct kiocb kiocb;
4439 ssize_t ret;
4440
4441 if (!capable(CAP_SYS_ADMIN)) {
4442 ret = -EPERM;
4443 goto out_acct;
4444 }
4445
4446 if (!(file->f_mode & FMODE_WRITE)) {
4447 ret = -EBADF;
4448 goto out_acct;
4449 }
4450
4451 if (compat) {
4452#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4453 struct btrfs_ioctl_encoded_io_args_32 args32;
4454
4455 if (copy_from_user(&args32, argp, sizeof(args32))) {
4456 ret = -EFAULT;
4457 goto out_acct;
4458 }
4459 args.iov = compat_ptr(args32.iov);
4460 args.iovcnt = args32.iovcnt;
4461 args.offset = args32.offset;
4462 args.flags = args32.flags;
4463 args.len = args32.len;
4464 args.unencoded_len = args32.unencoded_len;
4465 args.unencoded_offset = args32.unencoded_offset;
4466 args.compression = args32.compression;
4467 args.encryption = args32.encryption;
4468 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4469#else
4470 return -ENOTTY;
4471#endif
4472 } else {
4473 if (copy_from_user(&args, argp, sizeof(args))) {
4474 ret = -EFAULT;
4475 goto out_acct;
4476 }
4477 }
4478
4479 ret = -EINVAL;
4480 if (args.flags != 0)
4481 goto out_acct;
4482 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4483 goto out_acct;
4484 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4485 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4486 goto out_acct;
4487 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4488 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4489 goto out_acct;
4490 if (args.unencoded_offset > args.unencoded_len)
4491 goto out_acct;
4492 if (args.len > args.unencoded_len - args.unencoded_offset)
4493 goto out_acct;
4494
4495 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4496 &iov, &iter);
4497 if (ret < 0)
4498 goto out_acct;
4499
4500 file_start_write(file);
4501
4502 if (iov_iter_count(&iter) == 0) {
4503 ret = 0;
4504 goto out_end_write;
4505 }
4506 pos = args.offset;
4507 ret = rw_verify_area(WRITE, file, &pos, args.len);
4508 if (ret < 0)
4509 goto out_end_write;
4510
4511 init_sync_kiocb(&kiocb, file);
4512 ret = kiocb_set_rw_flags(&kiocb, 0);
4513 if (ret)
4514 goto out_end_write;
4515 kiocb.ki_pos = pos;
4516
4517 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4518 if (ret > 0)
4519 fsnotify_modify(file);
4520
4521out_end_write:
4522 file_end_write(file);
4523 kfree(iov);
4524out_acct:
4525 if (ret > 0)
4526 add_wchar(current, ret);
4527 inc_syscw(current);
4528 return ret;
4529}
4530
4531long btrfs_ioctl(struct file *file, unsigned int
4532 cmd, unsigned long arg)
4533{
4534 struct inode *inode = file_inode(file);
4535 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4536 struct btrfs_root *root = BTRFS_I(inode)->root;
4537 void __user *argp = (void __user *)arg;
4538
4539 switch (cmd) {
4540 case FS_IOC_GETVERSION:
4541 return btrfs_ioctl_getversion(inode, argp);
4542 case FS_IOC_GETFSLABEL:
4543 return btrfs_ioctl_get_fslabel(fs_info, argp);
4544 case FS_IOC_SETFSLABEL:
4545 return btrfs_ioctl_set_fslabel(file, argp);
4546 case FITRIM:
4547 return btrfs_ioctl_fitrim(fs_info, argp);
4548 case BTRFS_IOC_SNAP_CREATE:
4549 return btrfs_ioctl_snap_create(file, argp, 0);
4550 case BTRFS_IOC_SNAP_CREATE_V2:
4551 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4552 case BTRFS_IOC_SUBVOL_CREATE:
4553 return btrfs_ioctl_snap_create(file, argp, 1);
4554 case BTRFS_IOC_SUBVOL_CREATE_V2:
4555 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4556 case BTRFS_IOC_SNAP_DESTROY:
4557 return btrfs_ioctl_snap_destroy(file, argp, false);
4558 case BTRFS_IOC_SNAP_DESTROY_V2:
4559 return btrfs_ioctl_snap_destroy(file, argp, true);
4560 case BTRFS_IOC_SUBVOL_GETFLAGS:
4561 return btrfs_ioctl_subvol_getflags(inode, argp);
4562 case BTRFS_IOC_SUBVOL_SETFLAGS:
4563 return btrfs_ioctl_subvol_setflags(file, argp);
4564 case BTRFS_IOC_DEFAULT_SUBVOL:
4565 return btrfs_ioctl_default_subvol(file, argp);
4566 case BTRFS_IOC_DEFRAG:
4567 return btrfs_ioctl_defrag(file, NULL);
4568 case BTRFS_IOC_DEFRAG_RANGE:
4569 return btrfs_ioctl_defrag(file, argp);
4570 case BTRFS_IOC_RESIZE:
4571 return btrfs_ioctl_resize(file, argp);
4572 case BTRFS_IOC_ADD_DEV:
4573 return btrfs_ioctl_add_dev(fs_info, argp);
4574 case BTRFS_IOC_RM_DEV:
4575 return btrfs_ioctl_rm_dev(file, argp);
4576 case BTRFS_IOC_RM_DEV_V2:
4577 return btrfs_ioctl_rm_dev_v2(file, argp);
4578 case BTRFS_IOC_FS_INFO:
4579 return btrfs_ioctl_fs_info(fs_info, argp);
4580 case BTRFS_IOC_DEV_INFO:
4581 return btrfs_ioctl_dev_info(fs_info, argp);
4582 case BTRFS_IOC_TREE_SEARCH:
4583 return btrfs_ioctl_tree_search(inode, argp);
4584 case BTRFS_IOC_TREE_SEARCH_V2:
4585 return btrfs_ioctl_tree_search_v2(inode, argp);
4586 case BTRFS_IOC_INO_LOOKUP:
4587 return btrfs_ioctl_ino_lookup(root, argp);
4588 case BTRFS_IOC_INO_PATHS:
4589 return btrfs_ioctl_ino_to_path(root, argp);
4590 case BTRFS_IOC_LOGICAL_INO:
4591 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4592 case BTRFS_IOC_LOGICAL_INO_V2:
4593 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4594 case BTRFS_IOC_SPACE_INFO:
4595 return btrfs_ioctl_space_info(fs_info, argp);
4596 case BTRFS_IOC_SYNC: {
4597 int ret;
4598
4599 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4600 if (ret)
4601 return ret;
4602 ret = btrfs_sync_fs(inode->i_sb, 1);
4603 /*
4604 * The transaction thread may want to do more work,
4605 * namely it pokes the cleaner kthread that will start
4606 * processing uncleaned subvols.
4607 */
4608 wake_up_process(fs_info->transaction_kthread);
4609 return ret;
4610 }
4611 case BTRFS_IOC_START_SYNC:
4612 return btrfs_ioctl_start_sync(root, argp);
4613 case BTRFS_IOC_WAIT_SYNC:
4614 return btrfs_ioctl_wait_sync(fs_info, argp);
4615 case BTRFS_IOC_SCRUB:
4616 return btrfs_ioctl_scrub(file, argp);
4617 case BTRFS_IOC_SCRUB_CANCEL:
4618 return btrfs_ioctl_scrub_cancel(fs_info);
4619 case BTRFS_IOC_SCRUB_PROGRESS:
4620 return btrfs_ioctl_scrub_progress(fs_info, argp);
4621 case BTRFS_IOC_BALANCE_V2:
4622 return btrfs_ioctl_balance(file, argp);
4623 case BTRFS_IOC_BALANCE_CTL:
4624 return btrfs_ioctl_balance_ctl(fs_info, arg);
4625 case BTRFS_IOC_BALANCE_PROGRESS:
4626 return btrfs_ioctl_balance_progress(fs_info, argp);
4627 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4628 return btrfs_ioctl_set_received_subvol(file, argp);
4629#ifdef CONFIG_64BIT
4630 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4631 return btrfs_ioctl_set_received_subvol_32(file, argp);
4632#endif
4633 case BTRFS_IOC_SEND:
4634 return _btrfs_ioctl_send(inode, argp, false);
4635#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4636 case BTRFS_IOC_SEND_32:
4637 return _btrfs_ioctl_send(inode, argp, true);
4638#endif
4639 case BTRFS_IOC_GET_DEV_STATS:
4640 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4641 case BTRFS_IOC_QUOTA_CTL:
4642 return btrfs_ioctl_quota_ctl(file, argp);
4643 case BTRFS_IOC_QGROUP_ASSIGN:
4644 return btrfs_ioctl_qgroup_assign(file, argp);
4645 case BTRFS_IOC_QGROUP_CREATE:
4646 return btrfs_ioctl_qgroup_create(file, argp);
4647 case BTRFS_IOC_QGROUP_LIMIT:
4648 return btrfs_ioctl_qgroup_limit(file, argp);
4649 case BTRFS_IOC_QUOTA_RESCAN:
4650 return btrfs_ioctl_quota_rescan(file, argp);
4651 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4652 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4653 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4654 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4655 case BTRFS_IOC_DEV_REPLACE:
4656 return btrfs_ioctl_dev_replace(fs_info, argp);
4657 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4658 return btrfs_ioctl_get_supported_features(argp);
4659 case BTRFS_IOC_GET_FEATURES:
4660 return btrfs_ioctl_get_features(fs_info, argp);
4661 case BTRFS_IOC_SET_FEATURES:
4662 return btrfs_ioctl_set_features(file, argp);
4663 case BTRFS_IOC_GET_SUBVOL_INFO:
4664 return btrfs_ioctl_get_subvol_info(inode, argp);
4665 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4666 return btrfs_ioctl_get_subvol_rootref(root, argp);
4667 case BTRFS_IOC_INO_LOOKUP_USER:
4668 return btrfs_ioctl_ino_lookup_user(file, argp);
4669 case FS_IOC_ENABLE_VERITY:
4670 return fsverity_ioctl_enable(file, (const void __user *)argp);
4671 case FS_IOC_MEASURE_VERITY:
4672 return fsverity_ioctl_measure(file, argp);
4673 case BTRFS_IOC_ENCODED_READ:
4674 return btrfs_ioctl_encoded_read(file, argp, false);
4675 case BTRFS_IOC_ENCODED_WRITE:
4676 return btrfs_ioctl_encoded_write(file, argp, false);
4677#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4678 case BTRFS_IOC_ENCODED_READ_32:
4679 return btrfs_ioctl_encoded_read(file, argp, true);
4680 case BTRFS_IOC_ENCODED_WRITE_32:
4681 return btrfs_ioctl_encoded_write(file, argp, true);
4682#endif
4683 }
4684
4685 return -ENOTTY;
4686}
4687
4688#ifdef CONFIG_COMPAT
4689long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4690{
4691 /*
4692 * These all access 32-bit values anyway so no further
4693 * handling is necessary.
4694 */
4695 switch (cmd) {
4696 case FS_IOC32_GETVERSION:
4697 cmd = FS_IOC_GETVERSION;
4698 break;
4699 }
4700
4701 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4702}
4703#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/fsnotify.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/mount.h>
17#include <linux/namei.h>
18#include <linux/writeback.h>
19#include <linux/compat.h>
20#include <linux/security.h>
21#include <linux/xattr.h>
22#include <linux/mm.h>
23#include <linux/slab.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include <linux/btrfs.h>
27#include <linux/uaccess.h>
28#include <linux/iversion.h>
29#include <linux/fileattr.h>
30#include <linux/fsverity.h>
31#include <linux/sched/xacct.h>
32#include "ctree.h"
33#include "disk-io.h"
34#include "export.h"
35#include "transaction.h"
36#include "btrfs_inode.h"
37#include "volumes.h"
38#include "locking.h"
39#include "backref.h"
40#include "send.h"
41#include "dev-replace.h"
42#include "props.h"
43#include "sysfs.h"
44#include "qgroup.h"
45#include "tree-log.h"
46#include "compression.h"
47#include "space-info.h"
48#include "block-group.h"
49#include "fs.h"
50#include "accessors.h"
51#include "extent-tree.h"
52#include "root-tree.h"
53#include "defrag.h"
54#include "dir-item.h"
55#include "uuid-tree.h"
56#include "ioctl.h"
57#include "file.h"
58#include "scrub.h"
59#include "super.h"
60
61#ifdef CONFIG_64BIT
62/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
63 * structures are incorrect, as the timespec structure from userspace
64 * is 4 bytes too small. We define these alternatives here to teach
65 * the kernel about the 32-bit struct packing.
66 */
67struct btrfs_ioctl_timespec_32 {
68 __u64 sec;
69 __u32 nsec;
70} __attribute__ ((__packed__));
71
72struct btrfs_ioctl_received_subvol_args_32 {
73 char uuid[BTRFS_UUID_SIZE]; /* in */
74 __u64 stransid; /* in */
75 __u64 rtransid; /* out */
76 struct btrfs_ioctl_timespec_32 stime; /* in */
77 struct btrfs_ioctl_timespec_32 rtime; /* out */
78 __u64 flags; /* in */
79 __u64 reserved[16]; /* in */
80} __attribute__ ((__packed__));
81
82#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
83 struct btrfs_ioctl_received_subvol_args_32)
84#endif
85
86#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
87struct btrfs_ioctl_send_args_32 {
88 __s64 send_fd; /* in */
89 __u64 clone_sources_count; /* in */
90 compat_uptr_t clone_sources; /* in */
91 __u64 parent_root; /* in */
92 __u64 flags; /* in */
93 __u32 version; /* in */
94 __u8 reserved[28]; /* in */
95} __attribute__ ((__packed__));
96
97#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
98 struct btrfs_ioctl_send_args_32)
99
100struct btrfs_ioctl_encoded_io_args_32 {
101 compat_uptr_t iov;
102 compat_ulong_t iovcnt;
103 __s64 offset;
104 __u64 flags;
105 __u64 len;
106 __u64 unencoded_len;
107 __u64 unencoded_offset;
108 __u32 compression;
109 __u32 encryption;
110 __u8 reserved[64];
111};
112
113#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
114 struct btrfs_ioctl_encoded_io_args_32)
115#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
116 struct btrfs_ioctl_encoded_io_args_32)
117#endif
118
119/* Mask out flags that are inappropriate for the given type of inode. */
120static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
121 unsigned int flags)
122{
123 if (S_ISDIR(inode->i_mode))
124 return flags;
125 else if (S_ISREG(inode->i_mode))
126 return flags & ~FS_DIRSYNC_FL;
127 else
128 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
129}
130
131/*
132 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
133 * ioctl.
134 */
135static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
136{
137 unsigned int iflags = 0;
138 u32 flags = binode->flags;
139 u32 ro_flags = binode->ro_flags;
140
141 if (flags & BTRFS_INODE_SYNC)
142 iflags |= FS_SYNC_FL;
143 if (flags & BTRFS_INODE_IMMUTABLE)
144 iflags |= FS_IMMUTABLE_FL;
145 if (flags & BTRFS_INODE_APPEND)
146 iflags |= FS_APPEND_FL;
147 if (flags & BTRFS_INODE_NODUMP)
148 iflags |= FS_NODUMP_FL;
149 if (flags & BTRFS_INODE_NOATIME)
150 iflags |= FS_NOATIME_FL;
151 if (flags & BTRFS_INODE_DIRSYNC)
152 iflags |= FS_DIRSYNC_FL;
153 if (flags & BTRFS_INODE_NODATACOW)
154 iflags |= FS_NOCOW_FL;
155 if (ro_flags & BTRFS_INODE_RO_VERITY)
156 iflags |= FS_VERITY_FL;
157
158 if (flags & BTRFS_INODE_NOCOMPRESS)
159 iflags |= FS_NOCOMP_FL;
160 else if (flags & BTRFS_INODE_COMPRESS)
161 iflags |= FS_COMPR_FL;
162
163 return iflags;
164}
165
166/*
167 * Update inode->i_flags based on the btrfs internal flags.
168 */
169void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
170{
171 struct btrfs_inode *binode = BTRFS_I(inode);
172 unsigned int new_fl = 0;
173
174 if (binode->flags & BTRFS_INODE_SYNC)
175 new_fl |= S_SYNC;
176 if (binode->flags & BTRFS_INODE_IMMUTABLE)
177 new_fl |= S_IMMUTABLE;
178 if (binode->flags & BTRFS_INODE_APPEND)
179 new_fl |= S_APPEND;
180 if (binode->flags & BTRFS_INODE_NOATIME)
181 new_fl |= S_NOATIME;
182 if (binode->flags & BTRFS_INODE_DIRSYNC)
183 new_fl |= S_DIRSYNC;
184 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
185 new_fl |= S_VERITY;
186
187 set_mask_bits(&inode->i_flags,
188 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
189 S_VERITY, new_fl);
190}
191
192/*
193 * Check if @flags are a supported and valid set of FS_*_FL flags and that
194 * the old and new flags are not conflicting
195 */
196static int check_fsflags(unsigned int old_flags, unsigned int flags)
197{
198 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199 FS_NOATIME_FL | FS_NODUMP_FL | \
200 FS_SYNC_FL | FS_DIRSYNC_FL | \
201 FS_NOCOMP_FL | FS_COMPR_FL |
202 FS_NOCOW_FL))
203 return -EOPNOTSUPP;
204
205 /* COMPR and NOCOMP on new/old are valid */
206 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
207 return -EINVAL;
208
209 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
210 return -EINVAL;
211
212 /* NOCOW and compression options are mutually exclusive */
213 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
214 return -EINVAL;
215 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
216 return -EINVAL;
217
218 return 0;
219}
220
221static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
222 unsigned int flags)
223{
224 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
225 return -EPERM;
226
227 return 0;
228}
229
230int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
231{
232 if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
233 return -ENAMETOOLONG;
234 return 0;
235}
236
237static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
238{
239 if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
240 return -ENAMETOOLONG;
241 return 0;
242}
243
244/*
245 * Set flags/xflags from the internal inode flags. The remaining items of
246 * fsxattr are zeroed.
247 */
248int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
249{
250 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
251
252 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
253 return 0;
254}
255
256int btrfs_fileattr_set(struct mnt_idmap *idmap,
257 struct dentry *dentry, struct fileattr *fa)
258{
259 struct inode *inode = d_inode(dentry);
260 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
261 struct btrfs_inode *binode = BTRFS_I(inode);
262 struct btrfs_root *root = binode->root;
263 struct btrfs_trans_handle *trans;
264 unsigned int fsflags, old_fsflags;
265 int ret;
266 const char *comp = NULL;
267 u32 binode_flags;
268
269 if (btrfs_root_readonly(root))
270 return -EROFS;
271
272 if (fileattr_has_fsx(fa))
273 return -EOPNOTSUPP;
274
275 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
276 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
277 ret = check_fsflags(old_fsflags, fsflags);
278 if (ret)
279 return ret;
280
281 ret = check_fsflags_compatible(fs_info, fsflags);
282 if (ret)
283 return ret;
284
285 binode_flags = binode->flags;
286 if (fsflags & FS_SYNC_FL)
287 binode_flags |= BTRFS_INODE_SYNC;
288 else
289 binode_flags &= ~BTRFS_INODE_SYNC;
290 if (fsflags & FS_IMMUTABLE_FL)
291 binode_flags |= BTRFS_INODE_IMMUTABLE;
292 else
293 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
294 if (fsflags & FS_APPEND_FL)
295 binode_flags |= BTRFS_INODE_APPEND;
296 else
297 binode_flags &= ~BTRFS_INODE_APPEND;
298 if (fsflags & FS_NODUMP_FL)
299 binode_flags |= BTRFS_INODE_NODUMP;
300 else
301 binode_flags &= ~BTRFS_INODE_NODUMP;
302 if (fsflags & FS_NOATIME_FL)
303 binode_flags |= BTRFS_INODE_NOATIME;
304 else
305 binode_flags &= ~BTRFS_INODE_NOATIME;
306
307 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
308 if (!fa->flags_valid) {
309 /* 1 item for the inode */
310 trans = btrfs_start_transaction(root, 1);
311 if (IS_ERR(trans))
312 return PTR_ERR(trans);
313 goto update_flags;
314 }
315
316 if (fsflags & FS_DIRSYNC_FL)
317 binode_flags |= BTRFS_INODE_DIRSYNC;
318 else
319 binode_flags &= ~BTRFS_INODE_DIRSYNC;
320 if (fsflags & FS_NOCOW_FL) {
321 if (S_ISREG(inode->i_mode)) {
322 /*
323 * It's safe to turn csums off here, no extents exist.
324 * Otherwise we want the flag to reflect the real COW
325 * status of the file and will not set it.
326 */
327 if (inode->i_size == 0)
328 binode_flags |= BTRFS_INODE_NODATACOW |
329 BTRFS_INODE_NODATASUM;
330 } else {
331 binode_flags |= BTRFS_INODE_NODATACOW;
332 }
333 } else {
334 /*
335 * Revert back under same assumptions as above
336 */
337 if (S_ISREG(inode->i_mode)) {
338 if (inode->i_size == 0)
339 binode_flags &= ~(BTRFS_INODE_NODATACOW |
340 BTRFS_INODE_NODATASUM);
341 } else {
342 binode_flags &= ~BTRFS_INODE_NODATACOW;
343 }
344 }
345
346 /*
347 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
348 * flag may be changed automatically if compression code won't make
349 * things smaller.
350 */
351 if (fsflags & FS_NOCOMP_FL) {
352 binode_flags &= ~BTRFS_INODE_COMPRESS;
353 binode_flags |= BTRFS_INODE_NOCOMPRESS;
354 } else if (fsflags & FS_COMPR_FL) {
355
356 if (IS_SWAPFILE(inode))
357 return -ETXTBSY;
358
359 binode_flags |= BTRFS_INODE_COMPRESS;
360 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
361
362 comp = btrfs_compress_type2str(fs_info->compress_type);
363 if (!comp || comp[0] == 0)
364 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
365 } else {
366 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
367 }
368
369 /*
370 * 1 for inode item
371 * 2 for properties
372 */
373 trans = btrfs_start_transaction(root, 3);
374 if (IS_ERR(trans))
375 return PTR_ERR(trans);
376
377 if (comp) {
378 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
379 strlen(comp), 0);
380 if (ret) {
381 btrfs_abort_transaction(trans, ret);
382 goto out_end_trans;
383 }
384 } else {
385 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
386 0, 0);
387 if (ret && ret != -ENODATA) {
388 btrfs_abort_transaction(trans, ret);
389 goto out_end_trans;
390 }
391 }
392
393update_flags:
394 binode->flags = binode_flags;
395 btrfs_sync_inode_flags_to_i_flags(inode);
396 inode_inc_iversion(inode);
397 inode_set_ctime_current(inode);
398 ret = btrfs_update_inode(trans, BTRFS_I(inode));
399
400 out_end_trans:
401 btrfs_end_transaction(trans);
402 return ret;
403}
404
405/*
406 * Start exclusive operation @type, return true on success
407 */
408bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
409 enum btrfs_exclusive_operation type)
410{
411 bool ret = false;
412
413 spin_lock(&fs_info->super_lock);
414 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
415 fs_info->exclusive_operation = type;
416 ret = true;
417 }
418 spin_unlock(&fs_info->super_lock);
419
420 return ret;
421}
422
423/*
424 * Conditionally allow to enter the exclusive operation in case it's compatible
425 * with the running one. This must be paired with btrfs_exclop_start_unlock and
426 * btrfs_exclop_finish.
427 *
428 * Compatibility:
429 * - the same type is already running
430 * - when trying to add a device and balance has been paused
431 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
432 * must check the condition first that would allow none -> @type
433 */
434bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
435 enum btrfs_exclusive_operation type)
436{
437 spin_lock(&fs_info->super_lock);
438 if (fs_info->exclusive_operation == type ||
439 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
440 type == BTRFS_EXCLOP_DEV_ADD))
441 return true;
442
443 spin_unlock(&fs_info->super_lock);
444 return false;
445}
446
447void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
448{
449 spin_unlock(&fs_info->super_lock);
450}
451
452void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
453{
454 spin_lock(&fs_info->super_lock);
455 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
456 spin_unlock(&fs_info->super_lock);
457 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
458}
459
460void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
461 enum btrfs_exclusive_operation op)
462{
463 switch (op) {
464 case BTRFS_EXCLOP_BALANCE_PAUSED:
465 spin_lock(&fs_info->super_lock);
466 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
467 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
468 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
469 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
470 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
471 spin_unlock(&fs_info->super_lock);
472 break;
473 case BTRFS_EXCLOP_BALANCE:
474 spin_lock(&fs_info->super_lock);
475 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
476 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
477 spin_unlock(&fs_info->super_lock);
478 break;
479 default:
480 btrfs_warn(fs_info,
481 "invalid exclop balance operation %d requested", op);
482 }
483}
484
485static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
486{
487 return put_user(inode->i_generation, arg);
488}
489
490static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
491 void __user *arg)
492{
493 struct btrfs_device *device;
494 struct fstrim_range range;
495 u64 minlen = ULLONG_MAX;
496 u64 num_devices = 0;
497 int ret;
498
499 if (!capable(CAP_SYS_ADMIN))
500 return -EPERM;
501
502 /*
503 * btrfs_trim_block_group() depends on space cache, which is not
504 * available in zoned filesystem. So, disallow fitrim on a zoned
505 * filesystem for now.
506 */
507 if (btrfs_is_zoned(fs_info))
508 return -EOPNOTSUPP;
509
510 /*
511 * If the fs is mounted with nologreplay, which requires it to be
512 * mounted in RO mode as well, we can not allow discard on free space
513 * inside block groups, because log trees refer to extents that are not
514 * pinned in a block group's free space cache (pinning the extents is
515 * precisely the first phase of replaying a log tree).
516 */
517 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
518 return -EROFS;
519
520 rcu_read_lock();
521 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
522 dev_list) {
523 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
524 continue;
525 num_devices++;
526 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
527 minlen);
528 }
529 rcu_read_unlock();
530
531 if (!num_devices)
532 return -EOPNOTSUPP;
533 if (copy_from_user(&range, arg, sizeof(range)))
534 return -EFAULT;
535
536 /*
537 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
538 * block group is in the logical address space, which can be any
539 * sectorsize aligned bytenr in the range [0, U64_MAX].
540 */
541 if (range.len < fs_info->sectorsize)
542 return -EINVAL;
543
544 range.minlen = max(range.minlen, minlen);
545 ret = btrfs_trim_fs(fs_info, &range);
546 if (ret < 0)
547 return ret;
548
549 if (copy_to_user(arg, &range, sizeof(range)))
550 return -EFAULT;
551
552 return 0;
553}
554
555int __pure btrfs_is_empty_uuid(u8 *uuid)
556{
557 int i;
558
559 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
560 if (uuid[i])
561 return 0;
562 }
563 return 1;
564}
565
566/*
567 * Calculate the number of transaction items to reserve for creating a subvolume
568 * or snapshot, not including the inode, directory entries, or parent directory.
569 */
570static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
571{
572 /*
573 * 1 to add root block
574 * 1 to add root item
575 * 1 to add root ref
576 * 1 to add root backref
577 * 1 to add UUID item
578 * 1 to add qgroup info
579 * 1 to add qgroup limit
580 *
581 * Ideally the last two would only be accounted if qgroups are enabled,
582 * but that can change between now and the time we would insert them.
583 */
584 unsigned int num_items = 7;
585
586 if (inherit) {
587 /* 2 to add qgroup relations for each inherited qgroup */
588 num_items += 2 * inherit->num_qgroups;
589 }
590 return num_items;
591}
592
593static noinline int create_subvol(struct mnt_idmap *idmap,
594 struct inode *dir, struct dentry *dentry,
595 struct btrfs_qgroup_inherit *inherit)
596{
597 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
598 struct btrfs_trans_handle *trans;
599 struct btrfs_key key;
600 struct btrfs_root_item *root_item;
601 struct btrfs_inode_item *inode_item;
602 struct extent_buffer *leaf;
603 struct btrfs_root *root = BTRFS_I(dir)->root;
604 struct btrfs_root *new_root;
605 struct btrfs_block_rsv block_rsv;
606 struct timespec64 cur_time = current_time(dir);
607 struct btrfs_new_inode_args new_inode_args = {
608 .dir = dir,
609 .dentry = dentry,
610 .subvol = true,
611 };
612 unsigned int trans_num_items;
613 int ret;
614 dev_t anon_dev;
615 u64 objectid;
616 u64 qgroup_reserved = 0;
617
618 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
619 if (!root_item)
620 return -ENOMEM;
621
622 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
623 if (ret)
624 goto out_root_item;
625
626 /*
627 * Don't create subvolume whose level is not zero. Or qgroup will be
628 * screwed up since it assumes subvolume qgroup's level to be 0.
629 */
630 if (btrfs_qgroup_level(objectid)) {
631 ret = -ENOSPC;
632 goto out_root_item;
633 }
634
635 ret = get_anon_bdev(&anon_dev);
636 if (ret < 0)
637 goto out_root_item;
638
639 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
640 if (!new_inode_args.inode) {
641 ret = -ENOMEM;
642 goto out_anon_dev;
643 }
644 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
645 if (ret)
646 goto out_inode;
647 trans_num_items += create_subvol_num_items(inherit);
648
649 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
650 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
651 trans_num_items, false);
652 if (ret)
653 goto out_new_inode_args;
654 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
655
656 trans = btrfs_start_transaction(root, 0);
657 if (IS_ERR(trans)) {
658 ret = PTR_ERR(trans);
659 goto out_release_rsv;
660 }
661 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
662 if (ret)
663 goto out;
664 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
665 qgroup_reserved = 0;
666 trans->block_rsv = &block_rsv;
667 trans->bytes_reserved = block_rsv.size;
668 /* Tree log can't currently deal with an inode which is a new root. */
669 btrfs_set_log_full_commit(trans);
670
671 ret = btrfs_qgroup_inherit(trans, 0, objectid, root->root_key.objectid, inherit);
672 if (ret)
673 goto out;
674
675 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
676 0, BTRFS_NESTING_NORMAL);
677 if (IS_ERR(leaf)) {
678 ret = PTR_ERR(leaf);
679 goto out;
680 }
681
682 btrfs_mark_buffer_dirty(trans, leaf);
683
684 inode_item = &root_item->inode;
685 btrfs_set_stack_inode_generation(inode_item, 1);
686 btrfs_set_stack_inode_size(inode_item, 3);
687 btrfs_set_stack_inode_nlink(inode_item, 1);
688 btrfs_set_stack_inode_nbytes(inode_item,
689 fs_info->nodesize);
690 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
691
692 btrfs_set_root_flags(root_item, 0);
693 btrfs_set_root_limit(root_item, 0);
694 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
695
696 btrfs_set_root_bytenr(root_item, leaf->start);
697 btrfs_set_root_generation(root_item, trans->transid);
698 btrfs_set_root_level(root_item, 0);
699 btrfs_set_root_refs(root_item, 1);
700 btrfs_set_root_used(root_item, leaf->len);
701 btrfs_set_root_last_snapshot(root_item, 0);
702
703 btrfs_set_root_generation_v2(root_item,
704 btrfs_root_generation(root_item));
705 generate_random_guid(root_item->uuid);
706 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
707 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
708 root_item->ctime = root_item->otime;
709 btrfs_set_root_ctransid(root_item, trans->transid);
710 btrfs_set_root_otransid(root_item, trans->transid);
711
712 btrfs_tree_unlock(leaf);
713
714 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
715
716 key.objectid = objectid;
717 key.offset = 0;
718 key.type = BTRFS_ROOT_ITEM_KEY;
719 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
720 root_item);
721 if (ret) {
722 /*
723 * Since we don't abort the transaction in this case, free the
724 * tree block so that we don't leak space and leave the
725 * filesystem in an inconsistent state (an extent item in the
726 * extent tree with a backreference for a root that does not
727 * exists).
728 */
729 btrfs_tree_lock(leaf);
730 btrfs_clear_buffer_dirty(trans, leaf);
731 btrfs_tree_unlock(leaf);
732 btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
733 free_extent_buffer(leaf);
734 goto out;
735 }
736
737 free_extent_buffer(leaf);
738 leaf = NULL;
739
740 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
741 if (IS_ERR(new_root)) {
742 ret = PTR_ERR(new_root);
743 btrfs_abort_transaction(trans, ret);
744 goto out;
745 }
746 /* anon_dev is owned by new_root now. */
747 anon_dev = 0;
748 BTRFS_I(new_inode_args.inode)->root = new_root;
749 /* ... and new_root is owned by new_inode_args.inode now. */
750
751 ret = btrfs_record_root_in_trans(trans, new_root);
752 if (ret) {
753 btrfs_abort_transaction(trans, ret);
754 goto out;
755 }
756
757 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
758 BTRFS_UUID_KEY_SUBVOL, objectid);
759 if (ret) {
760 btrfs_abort_transaction(trans, ret);
761 goto out;
762 }
763
764 ret = btrfs_create_new_inode(trans, &new_inode_args);
765 if (ret) {
766 btrfs_abort_transaction(trans, ret);
767 goto out;
768 }
769
770 d_instantiate_new(dentry, new_inode_args.inode);
771 new_inode_args.inode = NULL;
772
773out:
774 trans->block_rsv = NULL;
775 trans->bytes_reserved = 0;
776 btrfs_end_transaction(trans);
777out_release_rsv:
778 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
779 if (qgroup_reserved)
780 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
781out_new_inode_args:
782 btrfs_new_inode_args_destroy(&new_inode_args);
783out_inode:
784 iput(new_inode_args.inode);
785out_anon_dev:
786 if (anon_dev)
787 free_anon_bdev(anon_dev);
788out_root_item:
789 kfree(root_item);
790 return ret;
791}
792
793static int create_snapshot(struct btrfs_root *root, struct inode *dir,
794 struct dentry *dentry, bool readonly,
795 struct btrfs_qgroup_inherit *inherit)
796{
797 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
798 struct inode *inode;
799 struct btrfs_pending_snapshot *pending_snapshot;
800 unsigned int trans_num_items;
801 struct btrfs_trans_handle *trans;
802 struct btrfs_block_rsv *block_rsv;
803 u64 qgroup_reserved = 0;
804 int ret;
805
806 /* We do not support snapshotting right now. */
807 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
808 btrfs_warn(fs_info,
809 "extent tree v2 doesn't support snapshotting yet");
810 return -EOPNOTSUPP;
811 }
812
813 if (btrfs_root_refs(&root->root_item) == 0)
814 return -ENOENT;
815
816 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
817 return -EINVAL;
818
819 if (atomic_read(&root->nr_swapfiles)) {
820 btrfs_warn(fs_info,
821 "cannot snapshot subvolume with active swapfile");
822 return -ETXTBSY;
823 }
824
825 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
826 if (!pending_snapshot)
827 return -ENOMEM;
828
829 ret = get_anon_bdev(&pending_snapshot->anon_dev);
830 if (ret < 0)
831 goto free_pending;
832 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
833 GFP_KERNEL);
834 pending_snapshot->path = btrfs_alloc_path();
835 if (!pending_snapshot->root_item || !pending_snapshot->path) {
836 ret = -ENOMEM;
837 goto free_pending;
838 }
839
840 block_rsv = &pending_snapshot->block_rsv;
841 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
842 /*
843 * 1 to add dir item
844 * 1 to add dir index
845 * 1 to update parent inode item
846 */
847 trans_num_items = create_subvol_num_items(inherit) + 3;
848 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
849 trans_num_items, false);
850 if (ret)
851 goto free_pending;
852 qgroup_reserved = block_rsv->qgroup_rsv_reserved;
853
854 pending_snapshot->dentry = dentry;
855 pending_snapshot->root = root;
856 pending_snapshot->readonly = readonly;
857 pending_snapshot->dir = dir;
858 pending_snapshot->inherit = inherit;
859
860 trans = btrfs_start_transaction(root, 0);
861 if (IS_ERR(trans)) {
862 ret = PTR_ERR(trans);
863 goto fail;
864 }
865 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
866 if (ret) {
867 btrfs_end_transaction(trans);
868 goto fail;
869 }
870 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
871 qgroup_reserved = 0;
872
873 trans->pending_snapshot = pending_snapshot;
874
875 ret = btrfs_commit_transaction(trans);
876 if (ret)
877 goto fail;
878
879 ret = pending_snapshot->error;
880 if (ret)
881 goto fail;
882
883 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
884 if (ret)
885 goto fail;
886
887 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
888 if (IS_ERR(inode)) {
889 ret = PTR_ERR(inode);
890 goto fail;
891 }
892
893 d_instantiate(dentry, inode);
894 ret = 0;
895 pending_snapshot->anon_dev = 0;
896fail:
897 /* Prevent double freeing of anon_dev */
898 if (ret && pending_snapshot->snap)
899 pending_snapshot->snap->anon_dev = 0;
900 btrfs_put_root(pending_snapshot->snap);
901 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
902 if (qgroup_reserved)
903 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
904free_pending:
905 if (pending_snapshot->anon_dev)
906 free_anon_bdev(pending_snapshot->anon_dev);
907 kfree(pending_snapshot->root_item);
908 btrfs_free_path(pending_snapshot->path);
909 kfree(pending_snapshot);
910
911 return ret;
912}
913
914/* copy of may_delete in fs/namei.c()
915 * Check whether we can remove a link victim from directory dir, check
916 * whether the type of victim is right.
917 * 1. We can't do it if dir is read-only (done in permission())
918 * 2. We should have write and exec permissions on dir
919 * 3. We can't remove anything from append-only dir
920 * 4. We can't do anything with immutable dir (done in permission())
921 * 5. If the sticky bit on dir is set we should either
922 * a. be owner of dir, or
923 * b. be owner of victim, or
924 * c. have CAP_FOWNER capability
925 * 6. If the victim is append-only or immutable we can't do anything with
926 * links pointing to it.
927 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
928 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
929 * 9. We can't remove a root or mountpoint.
930 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
931 * nfs_async_unlink().
932 */
933
934static int btrfs_may_delete(struct mnt_idmap *idmap,
935 struct inode *dir, struct dentry *victim, int isdir)
936{
937 int error;
938
939 if (d_really_is_negative(victim))
940 return -ENOENT;
941
942 /* The @victim is not inside @dir. */
943 if (d_inode(victim->d_parent) != dir)
944 return -EINVAL;
945 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
946
947 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
948 if (error)
949 return error;
950 if (IS_APPEND(dir))
951 return -EPERM;
952 if (check_sticky(idmap, dir, d_inode(victim)) ||
953 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
954 IS_SWAPFILE(d_inode(victim)))
955 return -EPERM;
956 if (isdir) {
957 if (!d_is_dir(victim))
958 return -ENOTDIR;
959 if (IS_ROOT(victim))
960 return -EBUSY;
961 } else if (d_is_dir(victim))
962 return -EISDIR;
963 if (IS_DEADDIR(dir))
964 return -ENOENT;
965 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
966 return -EBUSY;
967 return 0;
968}
969
970/* copy of may_create in fs/namei.c() */
971static inline int btrfs_may_create(struct mnt_idmap *idmap,
972 struct inode *dir, struct dentry *child)
973{
974 if (d_really_is_positive(child))
975 return -EEXIST;
976 if (IS_DEADDIR(dir))
977 return -ENOENT;
978 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
979 return -EOVERFLOW;
980 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
981}
982
983/*
984 * Create a new subvolume below @parent. This is largely modeled after
985 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
986 * inside this filesystem so it's quite a bit simpler.
987 */
988static noinline int btrfs_mksubvol(const struct path *parent,
989 struct mnt_idmap *idmap,
990 const char *name, int namelen,
991 struct btrfs_root *snap_src,
992 bool readonly,
993 struct btrfs_qgroup_inherit *inherit)
994{
995 struct inode *dir = d_inode(parent->dentry);
996 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
997 struct dentry *dentry;
998 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
999 int error;
1000
1001 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
1002 if (error == -EINTR)
1003 return error;
1004
1005 dentry = lookup_one(idmap, name, parent->dentry, namelen);
1006 error = PTR_ERR(dentry);
1007 if (IS_ERR(dentry))
1008 goto out_unlock;
1009
1010 error = btrfs_may_create(idmap, dir, dentry);
1011 if (error)
1012 goto out_dput;
1013
1014 /*
1015 * even if this name doesn't exist, we may get hash collisions.
1016 * check for them now when we can safely fail
1017 */
1018 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1019 dir->i_ino, &name_str);
1020 if (error)
1021 goto out_dput;
1022
1023 down_read(&fs_info->subvol_sem);
1024
1025 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1026 goto out_up_read;
1027
1028 if (snap_src)
1029 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1030 else
1031 error = create_subvol(idmap, dir, dentry, inherit);
1032
1033 if (!error)
1034 fsnotify_mkdir(dir, dentry);
1035out_up_read:
1036 up_read(&fs_info->subvol_sem);
1037out_dput:
1038 dput(dentry);
1039out_unlock:
1040 btrfs_inode_unlock(BTRFS_I(dir), 0);
1041 return error;
1042}
1043
1044static noinline int btrfs_mksnapshot(const struct path *parent,
1045 struct mnt_idmap *idmap,
1046 const char *name, int namelen,
1047 struct btrfs_root *root,
1048 bool readonly,
1049 struct btrfs_qgroup_inherit *inherit)
1050{
1051 int ret;
1052 bool snapshot_force_cow = false;
1053
1054 /*
1055 * Force new buffered writes to reserve space even when NOCOW is
1056 * possible. This is to avoid later writeback (running dealloc) to
1057 * fallback to COW mode and unexpectedly fail with ENOSPC.
1058 */
1059 btrfs_drew_read_lock(&root->snapshot_lock);
1060
1061 ret = btrfs_start_delalloc_snapshot(root, false);
1062 if (ret)
1063 goto out;
1064
1065 /*
1066 * All previous writes have started writeback in NOCOW mode, so now
1067 * we force future writes to fallback to COW mode during snapshot
1068 * creation.
1069 */
1070 atomic_inc(&root->snapshot_force_cow);
1071 snapshot_force_cow = true;
1072
1073 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1074
1075 ret = btrfs_mksubvol(parent, idmap, name, namelen,
1076 root, readonly, inherit);
1077out:
1078 if (snapshot_force_cow)
1079 atomic_dec(&root->snapshot_force_cow);
1080 btrfs_drew_read_unlock(&root->snapshot_lock);
1081 return ret;
1082}
1083
1084/*
1085 * Try to start exclusive operation @type or cancel it if it's running.
1086 *
1087 * Return:
1088 * 0 - normal mode, newly claimed op started
1089 * >0 - normal mode, something else is running,
1090 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1091 * ECANCELED - cancel mode, successful cancel
1092 * ENOTCONN - cancel mode, operation not running anymore
1093 */
1094static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1095 enum btrfs_exclusive_operation type, bool cancel)
1096{
1097 if (!cancel) {
1098 /* Start normal op */
1099 if (!btrfs_exclop_start(fs_info, type))
1100 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1101 /* Exclusive operation is now claimed */
1102 return 0;
1103 }
1104
1105 /* Cancel running op */
1106 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1107 /*
1108 * This blocks any exclop finish from setting it to NONE, so we
1109 * request cancellation. Either it runs and we will wait for it,
1110 * or it has finished and no waiting will happen.
1111 */
1112 atomic_inc(&fs_info->reloc_cancel_req);
1113 btrfs_exclop_start_unlock(fs_info);
1114
1115 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1116 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1117 TASK_INTERRUPTIBLE);
1118
1119 return -ECANCELED;
1120 }
1121
1122 /* Something else is running or none */
1123 return -ENOTCONN;
1124}
1125
1126static noinline int btrfs_ioctl_resize(struct file *file,
1127 void __user *arg)
1128{
1129 BTRFS_DEV_LOOKUP_ARGS(args);
1130 struct inode *inode = file_inode(file);
1131 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1132 u64 new_size;
1133 u64 old_size;
1134 u64 devid = 1;
1135 struct btrfs_root *root = BTRFS_I(inode)->root;
1136 struct btrfs_ioctl_vol_args *vol_args;
1137 struct btrfs_trans_handle *trans;
1138 struct btrfs_device *device = NULL;
1139 char *sizestr;
1140 char *retptr;
1141 char *devstr = NULL;
1142 int ret = 0;
1143 int mod = 0;
1144 bool cancel;
1145
1146 if (!capable(CAP_SYS_ADMIN))
1147 return -EPERM;
1148
1149 ret = mnt_want_write_file(file);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * Read the arguments before checking exclusivity to be able to
1155 * distinguish regular resize and cancel
1156 */
1157 vol_args = memdup_user(arg, sizeof(*vol_args));
1158 if (IS_ERR(vol_args)) {
1159 ret = PTR_ERR(vol_args);
1160 goto out_drop;
1161 }
1162 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1163 if (ret < 0)
1164 goto out_free;
1165
1166 sizestr = vol_args->name;
1167 cancel = (strcmp("cancel", sizestr) == 0);
1168 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1169 if (ret)
1170 goto out_free;
1171 /* Exclusive operation is now claimed */
1172
1173 devstr = strchr(sizestr, ':');
1174 if (devstr) {
1175 sizestr = devstr + 1;
1176 *devstr = '\0';
1177 devstr = vol_args->name;
1178 ret = kstrtoull(devstr, 10, &devid);
1179 if (ret)
1180 goto out_finish;
1181 if (!devid) {
1182 ret = -EINVAL;
1183 goto out_finish;
1184 }
1185 btrfs_info(fs_info, "resizing devid %llu", devid);
1186 }
1187
1188 args.devid = devid;
1189 device = btrfs_find_device(fs_info->fs_devices, &args);
1190 if (!device) {
1191 btrfs_info(fs_info, "resizer unable to find device %llu",
1192 devid);
1193 ret = -ENODEV;
1194 goto out_finish;
1195 }
1196
1197 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1198 btrfs_info(fs_info,
1199 "resizer unable to apply on readonly device %llu",
1200 devid);
1201 ret = -EPERM;
1202 goto out_finish;
1203 }
1204
1205 if (!strcmp(sizestr, "max"))
1206 new_size = bdev_nr_bytes(device->bdev);
1207 else {
1208 if (sizestr[0] == '-') {
1209 mod = -1;
1210 sizestr++;
1211 } else if (sizestr[0] == '+') {
1212 mod = 1;
1213 sizestr++;
1214 }
1215 new_size = memparse(sizestr, &retptr);
1216 if (*retptr != '\0' || new_size == 0) {
1217 ret = -EINVAL;
1218 goto out_finish;
1219 }
1220 }
1221
1222 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1223 ret = -EPERM;
1224 goto out_finish;
1225 }
1226
1227 old_size = btrfs_device_get_total_bytes(device);
1228
1229 if (mod < 0) {
1230 if (new_size > old_size) {
1231 ret = -EINVAL;
1232 goto out_finish;
1233 }
1234 new_size = old_size - new_size;
1235 } else if (mod > 0) {
1236 if (new_size > ULLONG_MAX - old_size) {
1237 ret = -ERANGE;
1238 goto out_finish;
1239 }
1240 new_size = old_size + new_size;
1241 }
1242
1243 if (new_size < SZ_256M) {
1244 ret = -EINVAL;
1245 goto out_finish;
1246 }
1247 if (new_size > bdev_nr_bytes(device->bdev)) {
1248 ret = -EFBIG;
1249 goto out_finish;
1250 }
1251
1252 new_size = round_down(new_size, fs_info->sectorsize);
1253
1254 if (new_size > old_size) {
1255 trans = btrfs_start_transaction(root, 0);
1256 if (IS_ERR(trans)) {
1257 ret = PTR_ERR(trans);
1258 goto out_finish;
1259 }
1260 ret = btrfs_grow_device(trans, device, new_size);
1261 btrfs_commit_transaction(trans);
1262 } else if (new_size < old_size) {
1263 ret = btrfs_shrink_device(device, new_size);
1264 } /* equal, nothing need to do */
1265
1266 if (ret == 0 && new_size != old_size)
1267 btrfs_info_in_rcu(fs_info,
1268 "resize device %s (devid %llu) from %llu to %llu",
1269 btrfs_dev_name(device), device->devid,
1270 old_size, new_size);
1271out_finish:
1272 btrfs_exclop_finish(fs_info);
1273out_free:
1274 kfree(vol_args);
1275out_drop:
1276 mnt_drop_write_file(file);
1277 return ret;
1278}
1279
1280static noinline int __btrfs_ioctl_snap_create(struct file *file,
1281 struct mnt_idmap *idmap,
1282 const char *name, unsigned long fd, int subvol,
1283 bool readonly,
1284 struct btrfs_qgroup_inherit *inherit)
1285{
1286 int namelen;
1287 int ret = 0;
1288
1289 if (!S_ISDIR(file_inode(file)->i_mode))
1290 return -ENOTDIR;
1291
1292 ret = mnt_want_write_file(file);
1293 if (ret)
1294 goto out;
1295
1296 namelen = strlen(name);
1297 if (strchr(name, '/')) {
1298 ret = -EINVAL;
1299 goto out_drop_write;
1300 }
1301
1302 if (name[0] == '.' &&
1303 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1304 ret = -EEXIST;
1305 goto out_drop_write;
1306 }
1307
1308 if (subvol) {
1309 ret = btrfs_mksubvol(&file->f_path, idmap, name,
1310 namelen, NULL, readonly, inherit);
1311 } else {
1312 struct fd src = fdget(fd);
1313 struct inode *src_inode;
1314 if (!src.file) {
1315 ret = -EINVAL;
1316 goto out_drop_write;
1317 }
1318
1319 src_inode = file_inode(src.file);
1320 if (src_inode->i_sb != file_inode(file)->i_sb) {
1321 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1322 "Snapshot src from another FS");
1323 ret = -EXDEV;
1324 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1325 /*
1326 * Subvolume creation is not restricted, but snapshots
1327 * are limited to own subvolumes only
1328 */
1329 ret = -EPERM;
1330 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1331 /*
1332 * Snapshots must be made with the src_inode referring
1333 * to the subvolume inode, otherwise the permission
1334 * checking above is useless because we may have
1335 * permission on a lower directory but not the subvol
1336 * itself.
1337 */
1338 ret = -EINVAL;
1339 } else {
1340 ret = btrfs_mksnapshot(&file->f_path, idmap,
1341 name, namelen,
1342 BTRFS_I(src_inode)->root,
1343 readonly, inherit);
1344 }
1345 fdput(src);
1346 }
1347out_drop_write:
1348 mnt_drop_write_file(file);
1349out:
1350 return ret;
1351}
1352
1353static noinline int btrfs_ioctl_snap_create(struct file *file,
1354 void __user *arg, int subvol)
1355{
1356 struct btrfs_ioctl_vol_args *vol_args;
1357 int ret;
1358
1359 if (!S_ISDIR(file_inode(file)->i_mode))
1360 return -ENOTDIR;
1361
1362 vol_args = memdup_user(arg, sizeof(*vol_args));
1363 if (IS_ERR(vol_args))
1364 return PTR_ERR(vol_args);
1365 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1366 if (ret < 0)
1367 goto out;
1368
1369 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1370 vol_args->name, vol_args->fd, subvol,
1371 false, NULL);
1372
1373out:
1374 kfree(vol_args);
1375 return ret;
1376}
1377
1378static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1379 void __user *arg, int subvol)
1380{
1381 struct btrfs_ioctl_vol_args_v2 *vol_args;
1382 int ret;
1383 bool readonly = false;
1384 struct btrfs_qgroup_inherit *inherit = NULL;
1385
1386 if (!S_ISDIR(file_inode(file)->i_mode))
1387 return -ENOTDIR;
1388
1389 vol_args = memdup_user(arg, sizeof(*vol_args));
1390 if (IS_ERR(vol_args))
1391 return PTR_ERR(vol_args);
1392 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1393 if (ret < 0)
1394 goto free_args;
1395
1396 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1397 ret = -EOPNOTSUPP;
1398 goto free_args;
1399 }
1400
1401 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1402 readonly = true;
1403 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1404 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1405
1406 if (vol_args->size < sizeof(*inherit) ||
1407 vol_args->size > PAGE_SIZE) {
1408 ret = -EINVAL;
1409 goto free_args;
1410 }
1411 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1412 if (IS_ERR(inherit)) {
1413 ret = PTR_ERR(inherit);
1414 goto free_args;
1415 }
1416
1417 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1418 if (ret < 0)
1419 goto free_inherit;
1420 }
1421
1422 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1423 vol_args->name, vol_args->fd, subvol,
1424 readonly, inherit);
1425 if (ret)
1426 goto free_inherit;
1427free_inherit:
1428 kfree(inherit);
1429free_args:
1430 kfree(vol_args);
1431 return ret;
1432}
1433
1434static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1435 void __user *arg)
1436{
1437 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1438 struct btrfs_root *root = BTRFS_I(inode)->root;
1439 int ret = 0;
1440 u64 flags = 0;
1441
1442 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1443 return -EINVAL;
1444
1445 down_read(&fs_info->subvol_sem);
1446 if (btrfs_root_readonly(root))
1447 flags |= BTRFS_SUBVOL_RDONLY;
1448 up_read(&fs_info->subvol_sem);
1449
1450 if (copy_to_user(arg, &flags, sizeof(flags)))
1451 ret = -EFAULT;
1452
1453 return ret;
1454}
1455
1456static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1457 void __user *arg)
1458{
1459 struct inode *inode = file_inode(file);
1460 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1461 struct btrfs_root *root = BTRFS_I(inode)->root;
1462 struct btrfs_trans_handle *trans;
1463 u64 root_flags;
1464 u64 flags;
1465 int ret = 0;
1466
1467 if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1468 return -EPERM;
1469
1470 ret = mnt_want_write_file(file);
1471 if (ret)
1472 goto out;
1473
1474 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1475 ret = -EINVAL;
1476 goto out_drop_write;
1477 }
1478
1479 if (copy_from_user(&flags, arg, sizeof(flags))) {
1480 ret = -EFAULT;
1481 goto out_drop_write;
1482 }
1483
1484 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1485 ret = -EOPNOTSUPP;
1486 goto out_drop_write;
1487 }
1488
1489 down_write(&fs_info->subvol_sem);
1490
1491 /* nothing to do */
1492 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1493 goto out_drop_sem;
1494
1495 root_flags = btrfs_root_flags(&root->root_item);
1496 if (flags & BTRFS_SUBVOL_RDONLY) {
1497 btrfs_set_root_flags(&root->root_item,
1498 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1499 } else {
1500 /*
1501 * Block RO -> RW transition if this subvolume is involved in
1502 * send
1503 */
1504 spin_lock(&root->root_item_lock);
1505 if (root->send_in_progress == 0) {
1506 btrfs_set_root_flags(&root->root_item,
1507 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1508 spin_unlock(&root->root_item_lock);
1509 } else {
1510 spin_unlock(&root->root_item_lock);
1511 btrfs_warn(fs_info,
1512 "Attempt to set subvolume %llu read-write during send",
1513 root->root_key.objectid);
1514 ret = -EPERM;
1515 goto out_drop_sem;
1516 }
1517 }
1518
1519 trans = btrfs_start_transaction(root, 1);
1520 if (IS_ERR(trans)) {
1521 ret = PTR_ERR(trans);
1522 goto out_reset;
1523 }
1524
1525 ret = btrfs_update_root(trans, fs_info->tree_root,
1526 &root->root_key, &root->root_item);
1527 if (ret < 0) {
1528 btrfs_end_transaction(trans);
1529 goto out_reset;
1530 }
1531
1532 ret = btrfs_commit_transaction(trans);
1533
1534out_reset:
1535 if (ret)
1536 btrfs_set_root_flags(&root->root_item, root_flags);
1537out_drop_sem:
1538 up_write(&fs_info->subvol_sem);
1539out_drop_write:
1540 mnt_drop_write_file(file);
1541out:
1542 return ret;
1543}
1544
1545static noinline int key_in_sk(struct btrfs_key *key,
1546 struct btrfs_ioctl_search_key *sk)
1547{
1548 struct btrfs_key test;
1549 int ret;
1550
1551 test.objectid = sk->min_objectid;
1552 test.type = sk->min_type;
1553 test.offset = sk->min_offset;
1554
1555 ret = btrfs_comp_cpu_keys(key, &test);
1556 if (ret < 0)
1557 return 0;
1558
1559 test.objectid = sk->max_objectid;
1560 test.type = sk->max_type;
1561 test.offset = sk->max_offset;
1562
1563 ret = btrfs_comp_cpu_keys(key, &test);
1564 if (ret > 0)
1565 return 0;
1566 return 1;
1567}
1568
1569static noinline int copy_to_sk(struct btrfs_path *path,
1570 struct btrfs_key *key,
1571 struct btrfs_ioctl_search_key *sk,
1572 u64 *buf_size,
1573 char __user *ubuf,
1574 unsigned long *sk_offset,
1575 int *num_found)
1576{
1577 u64 found_transid;
1578 struct extent_buffer *leaf;
1579 struct btrfs_ioctl_search_header sh;
1580 struct btrfs_key test;
1581 unsigned long item_off;
1582 unsigned long item_len;
1583 int nritems;
1584 int i;
1585 int slot;
1586 int ret = 0;
1587
1588 leaf = path->nodes[0];
1589 slot = path->slots[0];
1590 nritems = btrfs_header_nritems(leaf);
1591
1592 if (btrfs_header_generation(leaf) > sk->max_transid) {
1593 i = nritems;
1594 goto advance_key;
1595 }
1596 found_transid = btrfs_header_generation(leaf);
1597
1598 for (i = slot; i < nritems; i++) {
1599 item_off = btrfs_item_ptr_offset(leaf, i);
1600 item_len = btrfs_item_size(leaf, i);
1601
1602 btrfs_item_key_to_cpu(leaf, key, i);
1603 if (!key_in_sk(key, sk))
1604 continue;
1605
1606 if (sizeof(sh) + item_len > *buf_size) {
1607 if (*num_found) {
1608 ret = 1;
1609 goto out;
1610 }
1611
1612 /*
1613 * return one empty item back for v1, which does not
1614 * handle -EOVERFLOW
1615 */
1616
1617 *buf_size = sizeof(sh) + item_len;
1618 item_len = 0;
1619 ret = -EOVERFLOW;
1620 }
1621
1622 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1623 ret = 1;
1624 goto out;
1625 }
1626
1627 sh.objectid = key->objectid;
1628 sh.offset = key->offset;
1629 sh.type = key->type;
1630 sh.len = item_len;
1631 sh.transid = found_transid;
1632
1633 /*
1634 * Copy search result header. If we fault then loop again so we
1635 * can fault in the pages and -EFAULT there if there's a
1636 * problem. Otherwise we'll fault and then copy the buffer in
1637 * properly this next time through
1638 */
1639 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1640 ret = 0;
1641 goto out;
1642 }
1643
1644 *sk_offset += sizeof(sh);
1645
1646 if (item_len) {
1647 char __user *up = ubuf + *sk_offset;
1648 /*
1649 * Copy the item, same behavior as above, but reset the
1650 * * sk_offset so we copy the full thing again.
1651 */
1652 if (read_extent_buffer_to_user_nofault(leaf, up,
1653 item_off, item_len)) {
1654 ret = 0;
1655 *sk_offset -= sizeof(sh);
1656 goto out;
1657 }
1658
1659 *sk_offset += item_len;
1660 }
1661 (*num_found)++;
1662
1663 if (ret) /* -EOVERFLOW from above */
1664 goto out;
1665
1666 if (*num_found >= sk->nr_items) {
1667 ret = 1;
1668 goto out;
1669 }
1670 }
1671advance_key:
1672 ret = 0;
1673 test.objectid = sk->max_objectid;
1674 test.type = sk->max_type;
1675 test.offset = sk->max_offset;
1676 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1677 ret = 1;
1678 else if (key->offset < (u64)-1)
1679 key->offset++;
1680 else if (key->type < (u8)-1) {
1681 key->offset = 0;
1682 key->type++;
1683 } else if (key->objectid < (u64)-1) {
1684 key->offset = 0;
1685 key->type = 0;
1686 key->objectid++;
1687 } else
1688 ret = 1;
1689out:
1690 /*
1691 * 0: all items from this leaf copied, continue with next
1692 * 1: * more items can be copied, but unused buffer is too small
1693 * * all items were found
1694 * Either way, it will stops the loop which iterates to the next
1695 * leaf
1696 * -EOVERFLOW: item was to large for buffer
1697 * -EFAULT: could not copy extent buffer back to userspace
1698 */
1699 return ret;
1700}
1701
1702static noinline int search_ioctl(struct inode *inode,
1703 struct btrfs_ioctl_search_key *sk,
1704 u64 *buf_size,
1705 char __user *ubuf)
1706{
1707 struct btrfs_fs_info *info = inode_to_fs_info(inode);
1708 struct btrfs_root *root;
1709 struct btrfs_key key;
1710 struct btrfs_path *path;
1711 int ret;
1712 int num_found = 0;
1713 unsigned long sk_offset = 0;
1714
1715 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1716 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1717 return -EOVERFLOW;
1718 }
1719
1720 path = btrfs_alloc_path();
1721 if (!path)
1722 return -ENOMEM;
1723
1724 if (sk->tree_id == 0) {
1725 /* search the root of the inode that was passed */
1726 root = btrfs_grab_root(BTRFS_I(inode)->root);
1727 } else {
1728 root = btrfs_get_fs_root(info, sk->tree_id, true);
1729 if (IS_ERR(root)) {
1730 btrfs_free_path(path);
1731 return PTR_ERR(root);
1732 }
1733 }
1734
1735 key.objectid = sk->min_objectid;
1736 key.type = sk->min_type;
1737 key.offset = sk->min_offset;
1738
1739 while (1) {
1740 ret = -EFAULT;
1741 /*
1742 * Ensure that the whole user buffer is faulted in at sub-page
1743 * granularity, otherwise the loop may live-lock.
1744 */
1745 if (fault_in_subpage_writeable(ubuf + sk_offset,
1746 *buf_size - sk_offset))
1747 break;
1748
1749 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1750 if (ret != 0) {
1751 if (ret > 0)
1752 ret = 0;
1753 goto err;
1754 }
1755 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1756 &sk_offset, &num_found);
1757 btrfs_release_path(path);
1758 if (ret)
1759 break;
1760
1761 }
1762 if (ret > 0)
1763 ret = 0;
1764err:
1765 sk->nr_items = num_found;
1766 btrfs_put_root(root);
1767 btrfs_free_path(path);
1768 return ret;
1769}
1770
1771static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1772 void __user *argp)
1773{
1774 struct btrfs_ioctl_search_args __user *uargs = argp;
1775 struct btrfs_ioctl_search_key sk;
1776 int ret;
1777 u64 buf_size;
1778
1779 if (!capable(CAP_SYS_ADMIN))
1780 return -EPERM;
1781
1782 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1783 return -EFAULT;
1784
1785 buf_size = sizeof(uargs->buf);
1786
1787 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1788
1789 /*
1790 * In the origin implementation an overflow is handled by returning a
1791 * search header with a len of zero, so reset ret.
1792 */
1793 if (ret == -EOVERFLOW)
1794 ret = 0;
1795
1796 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1797 ret = -EFAULT;
1798 return ret;
1799}
1800
1801static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1802 void __user *argp)
1803{
1804 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1805 struct btrfs_ioctl_search_args_v2 args;
1806 int ret;
1807 u64 buf_size;
1808 const u64 buf_limit = SZ_16M;
1809
1810 if (!capable(CAP_SYS_ADMIN))
1811 return -EPERM;
1812
1813 /* copy search header and buffer size */
1814 if (copy_from_user(&args, uarg, sizeof(args)))
1815 return -EFAULT;
1816
1817 buf_size = args.buf_size;
1818
1819 /* limit result size to 16MB */
1820 if (buf_size > buf_limit)
1821 buf_size = buf_limit;
1822
1823 ret = search_ioctl(inode, &args.key, &buf_size,
1824 (char __user *)(&uarg->buf[0]));
1825 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1826 ret = -EFAULT;
1827 else if (ret == -EOVERFLOW &&
1828 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1829 ret = -EFAULT;
1830
1831 return ret;
1832}
1833
1834/*
1835 * Search INODE_REFs to identify path name of 'dirid' directory
1836 * in a 'tree_id' tree. and sets path name to 'name'.
1837 */
1838static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1839 u64 tree_id, u64 dirid, char *name)
1840{
1841 struct btrfs_root *root;
1842 struct btrfs_key key;
1843 char *ptr;
1844 int ret = -1;
1845 int slot;
1846 int len;
1847 int total_len = 0;
1848 struct btrfs_inode_ref *iref;
1849 struct extent_buffer *l;
1850 struct btrfs_path *path;
1851
1852 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1853 name[0]='\0';
1854 return 0;
1855 }
1856
1857 path = btrfs_alloc_path();
1858 if (!path)
1859 return -ENOMEM;
1860
1861 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1862
1863 root = btrfs_get_fs_root(info, tree_id, true);
1864 if (IS_ERR(root)) {
1865 ret = PTR_ERR(root);
1866 root = NULL;
1867 goto out;
1868 }
1869
1870 key.objectid = dirid;
1871 key.type = BTRFS_INODE_REF_KEY;
1872 key.offset = (u64)-1;
1873
1874 while (1) {
1875 ret = btrfs_search_backwards(root, &key, path);
1876 if (ret < 0)
1877 goto out;
1878 else if (ret > 0) {
1879 ret = -ENOENT;
1880 goto out;
1881 }
1882
1883 l = path->nodes[0];
1884 slot = path->slots[0];
1885
1886 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1887 len = btrfs_inode_ref_name_len(l, iref);
1888 ptr -= len + 1;
1889 total_len += len + 1;
1890 if (ptr < name) {
1891 ret = -ENAMETOOLONG;
1892 goto out;
1893 }
1894
1895 *(ptr + len) = '/';
1896 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1897
1898 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1899 break;
1900
1901 btrfs_release_path(path);
1902 key.objectid = key.offset;
1903 key.offset = (u64)-1;
1904 dirid = key.objectid;
1905 }
1906 memmove(name, ptr, total_len);
1907 name[total_len] = '\0';
1908 ret = 0;
1909out:
1910 btrfs_put_root(root);
1911 btrfs_free_path(path);
1912 return ret;
1913}
1914
1915static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1916 struct inode *inode,
1917 struct btrfs_ioctl_ino_lookup_user_args *args)
1918{
1919 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1920 struct super_block *sb = inode->i_sb;
1921 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1922 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1923 u64 dirid = args->dirid;
1924 unsigned long item_off;
1925 unsigned long item_len;
1926 struct btrfs_inode_ref *iref;
1927 struct btrfs_root_ref *rref;
1928 struct btrfs_root *root = NULL;
1929 struct btrfs_path *path;
1930 struct btrfs_key key, key2;
1931 struct extent_buffer *leaf;
1932 struct inode *temp_inode;
1933 char *ptr;
1934 int slot;
1935 int len;
1936 int total_len = 0;
1937 int ret;
1938
1939 path = btrfs_alloc_path();
1940 if (!path)
1941 return -ENOMEM;
1942
1943 /*
1944 * If the bottom subvolume does not exist directly under upper_limit,
1945 * construct the path in from the bottom up.
1946 */
1947 if (dirid != upper_limit.objectid) {
1948 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1949
1950 root = btrfs_get_fs_root(fs_info, treeid, true);
1951 if (IS_ERR(root)) {
1952 ret = PTR_ERR(root);
1953 goto out;
1954 }
1955
1956 key.objectid = dirid;
1957 key.type = BTRFS_INODE_REF_KEY;
1958 key.offset = (u64)-1;
1959 while (1) {
1960 ret = btrfs_search_backwards(root, &key, path);
1961 if (ret < 0)
1962 goto out_put;
1963 else if (ret > 0) {
1964 ret = -ENOENT;
1965 goto out_put;
1966 }
1967
1968 leaf = path->nodes[0];
1969 slot = path->slots[0];
1970
1971 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1972 len = btrfs_inode_ref_name_len(leaf, iref);
1973 ptr -= len + 1;
1974 total_len += len + 1;
1975 if (ptr < args->path) {
1976 ret = -ENAMETOOLONG;
1977 goto out_put;
1978 }
1979
1980 *(ptr + len) = '/';
1981 read_extent_buffer(leaf, ptr,
1982 (unsigned long)(iref + 1), len);
1983
1984 /* Check the read+exec permission of this directory */
1985 ret = btrfs_previous_item(root, path, dirid,
1986 BTRFS_INODE_ITEM_KEY);
1987 if (ret < 0) {
1988 goto out_put;
1989 } else if (ret > 0) {
1990 ret = -ENOENT;
1991 goto out_put;
1992 }
1993
1994 leaf = path->nodes[0];
1995 slot = path->slots[0];
1996 btrfs_item_key_to_cpu(leaf, &key2, slot);
1997 if (key2.objectid != dirid) {
1998 ret = -ENOENT;
1999 goto out_put;
2000 }
2001
2002 /*
2003 * We don't need the path anymore, so release it and
2004 * avoid deadlocks and lockdep warnings in case
2005 * btrfs_iget() needs to lookup the inode from its root
2006 * btree and lock the same leaf.
2007 */
2008 btrfs_release_path(path);
2009 temp_inode = btrfs_iget(sb, key2.objectid, root);
2010 if (IS_ERR(temp_inode)) {
2011 ret = PTR_ERR(temp_inode);
2012 goto out_put;
2013 }
2014 ret = inode_permission(idmap, temp_inode,
2015 MAY_READ | MAY_EXEC);
2016 iput(temp_inode);
2017 if (ret) {
2018 ret = -EACCES;
2019 goto out_put;
2020 }
2021
2022 if (key.offset == upper_limit.objectid)
2023 break;
2024 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2025 ret = -EACCES;
2026 goto out_put;
2027 }
2028
2029 key.objectid = key.offset;
2030 key.offset = (u64)-1;
2031 dirid = key.objectid;
2032 }
2033
2034 memmove(args->path, ptr, total_len);
2035 args->path[total_len] = '\0';
2036 btrfs_put_root(root);
2037 root = NULL;
2038 btrfs_release_path(path);
2039 }
2040
2041 /* Get the bottom subvolume's name from ROOT_REF */
2042 key.objectid = treeid;
2043 key.type = BTRFS_ROOT_REF_KEY;
2044 key.offset = args->treeid;
2045 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2046 if (ret < 0) {
2047 goto out;
2048 } else if (ret > 0) {
2049 ret = -ENOENT;
2050 goto out;
2051 }
2052
2053 leaf = path->nodes[0];
2054 slot = path->slots[0];
2055 btrfs_item_key_to_cpu(leaf, &key, slot);
2056
2057 item_off = btrfs_item_ptr_offset(leaf, slot);
2058 item_len = btrfs_item_size(leaf, slot);
2059 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2060 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2061 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2062 ret = -EINVAL;
2063 goto out;
2064 }
2065
2066 /* Copy subvolume's name */
2067 item_off += sizeof(struct btrfs_root_ref);
2068 item_len -= sizeof(struct btrfs_root_ref);
2069 read_extent_buffer(leaf, args->name, item_off, item_len);
2070 args->name[item_len] = 0;
2071
2072out_put:
2073 btrfs_put_root(root);
2074out:
2075 btrfs_free_path(path);
2076 return ret;
2077}
2078
2079static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2080 void __user *argp)
2081{
2082 struct btrfs_ioctl_ino_lookup_args *args;
2083 int ret = 0;
2084
2085 args = memdup_user(argp, sizeof(*args));
2086 if (IS_ERR(args))
2087 return PTR_ERR(args);
2088
2089 /*
2090 * Unprivileged query to obtain the containing subvolume root id. The
2091 * path is reset so it's consistent with btrfs_search_path_in_tree.
2092 */
2093 if (args->treeid == 0)
2094 args->treeid = root->root_key.objectid;
2095
2096 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2097 args->name[0] = 0;
2098 goto out;
2099 }
2100
2101 if (!capable(CAP_SYS_ADMIN)) {
2102 ret = -EPERM;
2103 goto out;
2104 }
2105
2106 ret = btrfs_search_path_in_tree(root->fs_info,
2107 args->treeid, args->objectid,
2108 args->name);
2109
2110out:
2111 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2112 ret = -EFAULT;
2113
2114 kfree(args);
2115 return ret;
2116}
2117
2118/*
2119 * Version of ino_lookup ioctl (unprivileged)
2120 *
2121 * The main differences from ino_lookup ioctl are:
2122 *
2123 * 1. Read + Exec permission will be checked using inode_permission() during
2124 * path construction. -EACCES will be returned in case of failure.
2125 * 2. Path construction will be stopped at the inode number which corresponds
2126 * to the fd with which this ioctl is called. If constructed path does not
2127 * exist under fd's inode, -EACCES will be returned.
2128 * 3. The name of bottom subvolume is also searched and filled.
2129 */
2130static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2131{
2132 struct btrfs_ioctl_ino_lookup_user_args *args;
2133 struct inode *inode;
2134 int ret;
2135
2136 args = memdup_user(argp, sizeof(*args));
2137 if (IS_ERR(args))
2138 return PTR_ERR(args);
2139
2140 inode = file_inode(file);
2141
2142 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2143 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2144 /*
2145 * The subvolume does not exist under fd with which this is
2146 * called
2147 */
2148 kfree(args);
2149 return -EACCES;
2150 }
2151
2152 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2153
2154 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2155 ret = -EFAULT;
2156
2157 kfree(args);
2158 return ret;
2159}
2160
2161/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2162static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2163{
2164 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2165 struct btrfs_fs_info *fs_info;
2166 struct btrfs_root *root;
2167 struct btrfs_path *path;
2168 struct btrfs_key key;
2169 struct btrfs_root_item *root_item;
2170 struct btrfs_root_ref *rref;
2171 struct extent_buffer *leaf;
2172 unsigned long item_off;
2173 unsigned long item_len;
2174 int slot;
2175 int ret = 0;
2176
2177 path = btrfs_alloc_path();
2178 if (!path)
2179 return -ENOMEM;
2180
2181 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2182 if (!subvol_info) {
2183 btrfs_free_path(path);
2184 return -ENOMEM;
2185 }
2186
2187 fs_info = BTRFS_I(inode)->root->fs_info;
2188
2189 /* Get root_item of inode's subvolume */
2190 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2191 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2192 if (IS_ERR(root)) {
2193 ret = PTR_ERR(root);
2194 goto out_free;
2195 }
2196 root_item = &root->root_item;
2197
2198 subvol_info->treeid = key.objectid;
2199
2200 subvol_info->generation = btrfs_root_generation(root_item);
2201 subvol_info->flags = btrfs_root_flags(root_item);
2202
2203 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2204 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2205 BTRFS_UUID_SIZE);
2206 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2207 BTRFS_UUID_SIZE);
2208
2209 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2210 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2211 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2212
2213 subvol_info->otransid = btrfs_root_otransid(root_item);
2214 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2215 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2216
2217 subvol_info->stransid = btrfs_root_stransid(root_item);
2218 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2219 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2220
2221 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2222 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2223 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2224
2225 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2226 /* Search root tree for ROOT_BACKREF of this subvolume */
2227 key.type = BTRFS_ROOT_BACKREF_KEY;
2228 key.offset = 0;
2229 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2230 if (ret < 0) {
2231 goto out;
2232 } else if (path->slots[0] >=
2233 btrfs_header_nritems(path->nodes[0])) {
2234 ret = btrfs_next_leaf(fs_info->tree_root, path);
2235 if (ret < 0) {
2236 goto out;
2237 } else if (ret > 0) {
2238 ret = -EUCLEAN;
2239 goto out;
2240 }
2241 }
2242
2243 leaf = path->nodes[0];
2244 slot = path->slots[0];
2245 btrfs_item_key_to_cpu(leaf, &key, slot);
2246 if (key.objectid == subvol_info->treeid &&
2247 key.type == BTRFS_ROOT_BACKREF_KEY) {
2248 subvol_info->parent_id = key.offset;
2249
2250 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2251 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2252
2253 item_off = btrfs_item_ptr_offset(leaf, slot)
2254 + sizeof(struct btrfs_root_ref);
2255 item_len = btrfs_item_size(leaf, slot)
2256 - sizeof(struct btrfs_root_ref);
2257 read_extent_buffer(leaf, subvol_info->name,
2258 item_off, item_len);
2259 } else {
2260 ret = -ENOENT;
2261 goto out;
2262 }
2263 }
2264
2265 btrfs_free_path(path);
2266 path = NULL;
2267 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2268 ret = -EFAULT;
2269
2270out:
2271 btrfs_put_root(root);
2272out_free:
2273 btrfs_free_path(path);
2274 kfree(subvol_info);
2275 return ret;
2276}
2277
2278/*
2279 * Return ROOT_REF information of the subvolume containing this inode
2280 * except the subvolume name.
2281 */
2282static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2283 void __user *argp)
2284{
2285 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2286 struct btrfs_root_ref *rref;
2287 struct btrfs_path *path;
2288 struct btrfs_key key;
2289 struct extent_buffer *leaf;
2290 u64 objectid;
2291 int slot;
2292 int ret;
2293 u8 found;
2294
2295 path = btrfs_alloc_path();
2296 if (!path)
2297 return -ENOMEM;
2298
2299 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2300 if (IS_ERR(rootrefs)) {
2301 btrfs_free_path(path);
2302 return PTR_ERR(rootrefs);
2303 }
2304
2305 objectid = root->root_key.objectid;
2306 key.objectid = objectid;
2307 key.type = BTRFS_ROOT_REF_KEY;
2308 key.offset = rootrefs->min_treeid;
2309 found = 0;
2310
2311 root = root->fs_info->tree_root;
2312 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2313 if (ret < 0) {
2314 goto out;
2315 } else if (path->slots[0] >=
2316 btrfs_header_nritems(path->nodes[0])) {
2317 ret = btrfs_next_leaf(root, path);
2318 if (ret < 0) {
2319 goto out;
2320 } else if (ret > 0) {
2321 ret = -EUCLEAN;
2322 goto out;
2323 }
2324 }
2325 while (1) {
2326 leaf = path->nodes[0];
2327 slot = path->slots[0];
2328
2329 btrfs_item_key_to_cpu(leaf, &key, slot);
2330 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2331 ret = 0;
2332 goto out;
2333 }
2334
2335 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2336 ret = -EOVERFLOW;
2337 goto out;
2338 }
2339
2340 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2341 rootrefs->rootref[found].treeid = key.offset;
2342 rootrefs->rootref[found].dirid =
2343 btrfs_root_ref_dirid(leaf, rref);
2344 found++;
2345
2346 ret = btrfs_next_item(root, path);
2347 if (ret < 0) {
2348 goto out;
2349 } else if (ret > 0) {
2350 ret = -EUCLEAN;
2351 goto out;
2352 }
2353 }
2354
2355out:
2356 btrfs_free_path(path);
2357
2358 if (!ret || ret == -EOVERFLOW) {
2359 rootrefs->num_items = found;
2360 /* update min_treeid for next search */
2361 if (found)
2362 rootrefs->min_treeid =
2363 rootrefs->rootref[found - 1].treeid + 1;
2364 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2365 ret = -EFAULT;
2366 }
2367
2368 kfree(rootrefs);
2369
2370 return ret;
2371}
2372
2373static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2374 void __user *arg,
2375 bool destroy_v2)
2376{
2377 struct dentry *parent = file->f_path.dentry;
2378 struct dentry *dentry;
2379 struct inode *dir = d_inode(parent);
2380 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2381 struct inode *inode;
2382 struct btrfs_root *root = BTRFS_I(dir)->root;
2383 struct btrfs_root *dest = NULL;
2384 struct btrfs_ioctl_vol_args *vol_args = NULL;
2385 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2386 struct mnt_idmap *idmap = file_mnt_idmap(file);
2387 char *subvol_name, *subvol_name_ptr = NULL;
2388 int subvol_namelen;
2389 int err = 0;
2390 bool destroy_parent = false;
2391
2392 /* We don't support snapshots with extent tree v2 yet. */
2393 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2394 btrfs_err(fs_info,
2395 "extent tree v2 doesn't support snapshot deletion yet");
2396 return -EOPNOTSUPP;
2397 }
2398
2399 if (destroy_v2) {
2400 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2401 if (IS_ERR(vol_args2))
2402 return PTR_ERR(vol_args2);
2403
2404 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2405 err = -EOPNOTSUPP;
2406 goto out;
2407 }
2408
2409 /*
2410 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2411 * name, same as v1 currently does.
2412 */
2413 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2414 err = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2415 if (err < 0)
2416 goto out;
2417 subvol_name = vol_args2->name;
2418
2419 err = mnt_want_write_file(file);
2420 if (err)
2421 goto out;
2422 } else {
2423 struct inode *old_dir;
2424
2425 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2426 err = -EINVAL;
2427 goto out;
2428 }
2429
2430 err = mnt_want_write_file(file);
2431 if (err)
2432 goto out;
2433
2434 dentry = btrfs_get_dentry(fs_info->sb,
2435 BTRFS_FIRST_FREE_OBJECTID,
2436 vol_args2->subvolid, 0);
2437 if (IS_ERR(dentry)) {
2438 err = PTR_ERR(dentry);
2439 goto out_drop_write;
2440 }
2441
2442 /*
2443 * Change the default parent since the subvolume being
2444 * deleted can be outside of the current mount point.
2445 */
2446 parent = btrfs_get_parent(dentry);
2447
2448 /*
2449 * At this point dentry->d_name can point to '/' if the
2450 * subvolume we want to destroy is outsite of the
2451 * current mount point, so we need to release the
2452 * current dentry and execute the lookup to return a new
2453 * one with ->d_name pointing to the
2454 * <mount point>/subvol_name.
2455 */
2456 dput(dentry);
2457 if (IS_ERR(parent)) {
2458 err = PTR_ERR(parent);
2459 goto out_drop_write;
2460 }
2461 old_dir = dir;
2462 dir = d_inode(parent);
2463
2464 /*
2465 * If v2 was used with SPEC_BY_ID, a new parent was
2466 * allocated since the subvolume can be outside of the
2467 * current mount point. Later on we need to release this
2468 * new parent dentry.
2469 */
2470 destroy_parent = true;
2471
2472 /*
2473 * On idmapped mounts, deletion via subvolid is
2474 * restricted to subvolumes that are immediate
2475 * ancestors of the inode referenced by the file
2476 * descriptor in the ioctl. Otherwise the idmapping
2477 * could potentially be abused to delete subvolumes
2478 * anywhere in the filesystem the user wouldn't be able
2479 * to delete without an idmapped mount.
2480 */
2481 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2482 err = -EOPNOTSUPP;
2483 goto free_parent;
2484 }
2485
2486 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2487 fs_info, vol_args2->subvolid);
2488 if (IS_ERR(subvol_name_ptr)) {
2489 err = PTR_ERR(subvol_name_ptr);
2490 goto free_parent;
2491 }
2492 /* subvol_name_ptr is already nul terminated */
2493 subvol_name = (char *)kbasename(subvol_name_ptr);
2494 }
2495 } else {
2496 vol_args = memdup_user(arg, sizeof(*vol_args));
2497 if (IS_ERR(vol_args))
2498 return PTR_ERR(vol_args);
2499
2500 err = btrfs_check_ioctl_vol_args_path(vol_args);
2501 if (err < 0)
2502 goto out;
2503
2504 subvol_name = vol_args->name;
2505
2506 err = mnt_want_write_file(file);
2507 if (err)
2508 goto out;
2509 }
2510
2511 subvol_namelen = strlen(subvol_name);
2512
2513 if (strchr(subvol_name, '/') ||
2514 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2515 err = -EINVAL;
2516 goto free_subvol_name;
2517 }
2518
2519 if (!S_ISDIR(dir->i_mode)) {
2520 err = -ENOTDIR;
2521 goto free_subvol_name;
2522 }
2523
2524 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2525 if (err == -EINTR)
2526 goto free_subvol_name;
2527 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2528 if (IS_ERR(dentry)) {
2529 err = PTR_ERR(dentry);
2530 goto out_unlock_dir;
2531 }
2532
2533 if (d_really_is_negative(dentry)) {
2534 err = -ENOENT;
2535 goto out_dput;
2536 }
2537
2538 inode = d_inode(dentry);
2539 dest = BTRFS_I(inode)->root;
2540 if (!capable(CAP_SYS_ADMIN)) {
2541 /*
2542 * Regular user. Only allow this with a special mount
2543 * option, when the user has write+exec access to the
2544 * subvol root, and when rmdir(2) would have been
2545 * allowed.
2546 *
2547 * Note that this is _not_ check that the subvol is
2548 * empty or doesn't contain data that we wouldn't
2549 * otherwise be able to delete.
2550 *
2551 * Users who want to delete empty subvols should try
2552 * rmdir(2).
2553 */
2554 err = -EPERM;
2555 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2556 goto out_dput;
2557
2558 /*
2559 * Do not allow deletion if the parent dir is the same
2560 * as the dir to be deleted. That means the ioctl
2561 * must be called on the dentry referencing the root
2562 * of the subvol, not a random directory contained
2563 * within it.
2564 */
2565 err = -EINVAL;
2566 if (root == dest)
2567 goto out_dput;
2568
2569 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2570 if (err)
2571 goto out_dput;
2572 }
2573
2574 /* check if subvolume may be deleted by a user */
2575 err = btrfs_may_delete(idmap, dir, dentry, 1);
2576 if (err)
2577 goto out_dput;
2578
2579 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2580 err = -EINVAL;
2581 goto out_dput;
2582 }
2583
2584 btrfs_inode_lock(BTRFS_I(inode), 0);
2585 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2586 btrfs_inode_unlock(BTRFS_I(inode), 0);
2587 if (!err)
2588 d_delete_notify(dir, dentry);
2589
2590out_dput:
2591 dput(dentry);
2592out_unlock_dir:
2593 btrfs_inode_unlock(BTRFS_I(dir), 0);
2594free_subvol_name:
2595 kfree(subvol_name_ptr);
2596free_parent:
2597 if (destroy_parent)
2598 dput(parent);
2599out_drop_write:
2600 mnt_drop_write_file(file);
2601out:
2602 kfree(vol_args2);
2603 kfree(vol_args);
2604 return err;
2605}
2606
2607static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2608{
2609 struct inode *inode = file_inode(file);
2610 struct btrfs_root *root = BTRFS_I(inode)->root;
2611 struct btrfs_ioctl_defrag_range_args range = {0};
2612 int ret;
2613
2614 ret = mnt_want_write_file(file);
2615 if (ret)
2616 return ret;
2617
2618 if (btrfs_root_readonly(root)) {
2619 ret = -EROFS;
2620 goto out;
2621 }
2622
2623 switch (inode->i_mode & S_IFMT) {
2624 case S_IFDIR:
2625 if (!capable(CAP_SYS_ADMIN)) {
2626 ret = -EPERM;
2627 goto out;
2628 }
2629 ret = btrfs_defrag_root(root);
2630 break;
2631 case S_IFREG:
2632 /*
2633 * Note that this does not check the file descriptor for write
2634 * access. This prevents defragmenting executables that are
2635 * running and allows defrag on files open in read-only mode.
2636 */
2637 if (!capable(CAP_SYS_ADMIN) &&
2638 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2639 ret = -EPERM;
2640 goto out;
2641 }
2642
2643 if (argp) {
2644 if (copy_from_user(&range, argp, sizeof(range))) {
2645 ret = -EFAULT;
2646 goto out;
2647 }
2648 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2649 ret = -EOPNOTSUPP;
2650 goto out;
2651 }
2652 /* compression requires us to start the IO */
2653 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2654 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2655 range.extent_thresh = (u32)-1;
2656 }
2657 } else {
2658 /* the rest are all set to zero by kzalloc */
2659 range.len = (u64)-1;
2660 }
2661 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2662 &range, BTRFS_OLDEST_GENERATION, 0);
2663 if (ret > 0)
2664 ret = 0;
2665 break;
2666 default:
2667 ret = -EINVAL;
2668 }
2669out:
2670 mnt_drop_write_file(file);
2671 return ret;
2672}
2673
2674static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2675{
2676 struct btrfs_ioctl_vol_args *vol_args;
2677 bool restore_op = false;
2678 int ret;
2679
2680 if (!capable(CAP_SYS_ADMIN))
2681 return -EPERM;
2682
2683 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2684 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2685 return -EINVAL;
2686 }
2687
2688 if (fs_info->fs_devices->temp_fsid) {
2689 btrfs_err(fs_info,
2690 "device add not supported on cloned temp-fsid mount");
2691 return -EINVAL;
2692 }
2693
2694 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2695 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2696 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2697
2698 /*
2699 * We can do the device add because we have a paused balanced,
2700 * change the exclusive op type and remember we should bring
2701 * back the paused balance
2702 */
2703 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2704 btrfs_exclop_start_unlock(fs_info);
2705 restore_op = true;
2706 }
2707
2708 vol_args = memdup_user(arg, sizeof(*vol_args));
2709 if (IS_ERR(vol_args)) {
2710 ret = PTR_ERR(vol_args);
2711 goto out;
2712 }
2713
2714 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2715 if (ret < 0)
2716 goto out_free;
2717
2718 ret = btrfs_init_new_device(fs_info, vol_args->name);
2719
2720 if (!ret)
2721 btrfs_info(fs_info, "disk added %s", vol_args->name);
2722
2723out_free:
2724 kfree(vol_args);
2725out:
2726 if (restore_op)
2727 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2728 else
2729 btrfs_exclop_finish(fs_info);
2730 return ret;
2731}
2732
2733static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2734{
2735 BTRFS_DEV_LOOKUP_ARGS(args);
2736 struct inode *inode = file_inode(file);
2737 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2738 struct btrfs_ioctl_vol_args_v2 *vol_args;
2739 struct file *bdev_file = NULL;
2740 int ret;
2741 bool cancel = false;
2742
2743 if (!capable(CAP_SYS_ADMIN))
2744 return -EPERM;
2745
2746 vol_args = memdup_user(arg, sizeof(*vol_args));
2747 if (IS_ERR(vol_args))
2748 return PTR_ERR(vol_args);
2749
2750 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2751 ret = -EOPNOTSUPP;
2752 goto out;
2753 }
2754
2755 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2756 if (ret < 0)
2757 goto out;
2758
2759 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2760 args.devid = vol_args->devid;
2761 } else if (!strcmp("cancel", vol_args->name)) {
2762 cancel = true;
2763 } else {
2764 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2765 if (ret)
2766 goto out;
2767 }
2768
2769 ret = mnt_want_write_file(file);
2770 if (ret)
2771 goto out;
2772
2773 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2774 cancel);
2775 if (ret)
2776 goto err_drop;
2777
2778 /* Exclusive operation is now claimed */
2779 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2780
2781 btrfs_exclop_finish(fs_info);
2782
2783 if (!ret) {
2784 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2785 btrfs_info(fs_info, "device deleted: id %llu",
2786 vol_args->devid);
2787 else
2788 btrfs_info(fs_info, "device deleted: %s",
2789 vol_args->name);
2790 }
2791err_drop:
2792 mnt_drop_write_file(file);
2793 if (bdev_file)
2794 fput(bdev_file);
2795out:
2796 btrfs_put_dev_args_from_path(&args);
2797 kfree(vol_args);
2798 return ret;
2799}
2800
2801static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2802{
2803 BTRFS_DEV_LOOKUP_ARGS(args);
2804 struct inode *inode = file_inode(file);
2805 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2806 struct btrfs_ioctl_vol_args *vol_args;
2807 struct file *bdev_file = NULL;
2808 int ret;
2809 bool cancel = false;
2810
2811 if (!capable(CAP_SYS_ADMIN))
2812 return -EPERM;
2813
2814 vol_args = memdup_user(arg, sizeof(*vol_args));
2815 if (IS_ERR(vol_args))
2816 return PTR_ERR(vol_args);
2817
2818 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2819 if (ret < 0)
2820 goto out_free;
2821
2822 if (!strcmp("cancel", vol_args->name)) {
2823 cancel = true;
2824 } else {
2825 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2826 if (ret)
2827 goto out;
2828 }
2829
2830 ret = mnt_want_write_file(file);
2831 if (ret)
2832 goto out;
2833
2834 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2835 cancel);
2836 if (ret == 0) {
2837 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2838 if (!ret)
2839 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2840 btrfs_exclop_finish(fs_info);
2841 }
2842
2843 mnt_drop_write_file(file);
2844 if (bdev_file)
2845 fput(bdev_file);
2846out:
2847 btrfs_put_dev_args_from_path(&args);
2848out_free:
2849 kfree(vol_args);
2850 return ret;
2851}
2852
2853static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2854 void __user *arg)
2855{
2856 struct btrfs_ioctl_fs_info_args *fi_args;
2857 struct btrfs_device *device;
2858 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2859 u64 flags_in;
2860 int ret = 0;
2861
2862 fi_args = memdup_user(arg, sizeof(*fi_args));
2863 if (IS_ERR(fi_args))
2864 return PTR_ERR(fi_args);
2865
2866 flags_in = fi_args->flags;
2867 memset(fi_args, 0, sizeof(*fi_args));
2868
2869 rcu_read_lock();
2870 fi_args->num_devices = fs_devices->num_devices;
2871
2872 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2873 if (device->devid > fi_args->max_id)
2874 fi_args->max_id = device->devid;
2875 }
2876 rcu_read_unlock();
2877
2878 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2879 fi_args->nodesize = fs_info->nodesize;
2880 fi_args->sectorsize = fs_info->sectorsize;
2881 fi_args->clone_alignment = fs_info->sectorsize;
2882
2883 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2884 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2885 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2886 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2887 }
2888
2889 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2890 fi_args->generation = btrfs_get_fs_generation(fs_info);
2891 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2892 }
2893
2894 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2895 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2896 sizeof(fi_args->metadata_uuid));
2897 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2898 }
2899
2900 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2901 ret = -EFAULT;
2902
2903 kfree(fi_args);
2904 return ret;
2905}
2906
2907static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2908 void __user *arg)
2909{
2910 BTRFS_DEV_LOOKUP_ARGS(args);
2911 struct btrfs_ioctl_dev_info_args *di_args;
2912 struct btrfs_device *dev;
2913 int ret = 0;
2914
2915 di_args = memdup_user(arg, sizeof(*di_args));
2916 if (IS_ERR(di_args))
2917 return PTR_ERR(di_args);
2918
2919 args.devid = di_args->devid;
2920 if (!btrfs_is_empty_uuid(di_args->uuid))
2921 args.uuid = di_args->uuid;
2922
2923 rcu_read_lock();
2924 dev = btrfs_find_device(fs_info->fs_devices, &args);
2925 if (!dev) {
2926 ret = -ENODEV;
2927 goto out;
2928 }
2929
2930 di_args->devid = dev->devid;
2931 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2932 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2933 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2934 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2935 if (dev->name)
2936 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2937 else
2938 di_args->path[0] = '\0';
2939
2940out:
2941 rcu_read_unlock();
2942 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2943 ret = -EFAULT;
2944
2945 kfree(di_args);
2946 return ret;
2947}
2948
2949static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2950{
2951 struct inode *inode = file_inode(file);
2952 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2953 struct btrfs_root *root = BTRFS_I(inode)->root;
2954 struct btrfs_root *new_root;
2955 struct btrfs_dir_item *di;
2956 struct btrfs_trans_handle *trans;
2957 struct btrfs_path *path = NULL;
2958 struct btrfs_disk_key disk_key;
2959 struct fscrypt_str name = FSTR_INIT("default", 7);
2960 u64 objectid = 0;
2961 u64 dir_id;
2962 int ret;
2963
2964 if (!capable(CAP_SYS_ADMIN))
2965 return -EPERM;
2966
2967 ret = mnt_want_write_file(file);
2968 if (ret)
2969 return ret;
2970
2971 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2972 ret = -EFAULT;
2973 goto out;
2974 }
2975
2976 if (!objectid)
2977 objectid = BTRFS_FS_TREE_OBJECTID;
2978
2979 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2980 if (IS_ERR(new_root)) {
2981 ret = PTR_ERR(new_root);
2982 goto out;
2983 }
2984 if (!is_fstree(new_root->root_key.objectid)) {
2985 ret = -ENOENT;
2986 goto out_free;
2987 }
2988
2989 path = btrfs_alloc_path();
2990 if (!path) {
2991 ret = -ENOMEM;
2992 goto out_free;
2993 }
2994
2995 trans = btrfs_start_transaction(root, 1);
2996 if (IS_ERR(trans)) {
2997 ret = PTR_ERR(trans);
2998 goto out_free;
2999 }
3000
3001 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3002 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3003 dir_id, &name, 1);
3004 if (IS_ERR_OR_NULL(di)) {
3005 btrfs_release_path(path);
3006 btrfs_end_transaction(trans);
3007 btrfs_err(fs_info,
3008 "Umm, you don't have the default diritem, this isn't going to work");
3009 ret = -ENOENT;
3010 goto out_free;
3011 }
3012
3013 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3014 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3015 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3016 btrfs_release_path(path);
3017
3018 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3019 btrfs_end_transaction(trans);
3020out_free:
3021 btrfs_put_root(new_root);
3022 btrfs_free_path(path);
3023out:
3024 mnt_drop_write_file(file);
3025 return ret;
3026}
3027
3028static void get_block_group_info(struct list_head *groups_list,
3029 struct btrfs_ioctl_space_info *space)
3030{
3031 struct btrfs_block_group *block_group;
3032
3033 space->total_bytes = 0;
3034 space->used_bytes = 0;
3035 space->flags = 0;
3036 list_for_each_entry(block_group, groups_list, list) {
3037 space->flags = block_group->flags;
3038 space->total_bytes += block_group->length;
3039 space->used_bytes += block_group->used;
3040 }
3041}
3042
3043static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3044 void __user *arg)
3045{
3046 struct btrfs_ioctl_space_args space_args = { 0 };
3047 struct btrfs_ioctl_space_info space;
3048 struct btrfs_ioctl_space_info *dest;
3049 struct btrfs_ioctl_space_info *dest_orig;
3050 struct btrfs_ioctl_space_info __user *user_dest;
3051 struct btrfs_space_info *info;
3052 static const u64 types[] = {
3053 BTRFS_BLOCK_GROUP_DATA,
3054 BTRFS_BLOCK_GROUP_SYSTEM,
3055 BTRFS_BLOCK_GROUP_METADATA,
3056 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3057 };
3058 int num_types = 4;
3059 int alloc_size;
3060 int ret = 0;
3061 u64 slot_count = 0;
3062 int i, c;
3063
3064 if (copy_from_user(&space_args,
3065 (struct btrfs_ioctl_space_args __user *)arg,
3066 sizeof(space_args)))
3067 return -EFAULT;
3068
3069 for (i = 0; i < num_types; i++) {
3070 struct btrfs_space_info *tmp;
3071
3072 info = NULL;
3073 list_for_each_entry(tmp, &fs_info->space_info, list) {
3074 if (tmp->flags == types[i]) {
3075 info = tmp;
3076 break;
3077 }
3078 }
3079
3080 if (!info)
3081 continue;
3082
3083 down_read(&info->groups_sem);
3084 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3085 if (!list_empty(&info->block_groups[c]))
3086 slot_count++;
3087 }
3088 up_read(&info->groups_sem);
3089 }
3090
3091 /*
3092 * Global block reserve, exported as a space_info
3093 */
3094 slot_count++;
3095
3096 /* space_slots == 0 means they are asking for a count */
3097 if (space_args.space_slots == 0) {
3098 space_args.total_spaces = slot_count;
3099 goto out;
3100 }
3101
3102 slot_count = min_t(u64, space_args.space_slots, slot_count);
3103
3104 alloc_size = sizeof(*dest) * slot_count;
3105
3106 /* we generally have at most 6 or so space infos, one for each raid
3107 * level. So, a whole page should be more than enough for everyone
3108 */
3109 if (alloc_size > PAGE_SIZE)
3110 return -ENOMEM;
3111
3112 space_args.total_spaces = 0;
3113 dest = kmalloc(alloc_size, GFP_KERNEL);
3114 if (!dest)
3115 return -ENOMEM;
3116 dest_orig = dest;
3117
3118 /* now we have a buffer to copy into */
3119 for (i = 0; i < num_types; i++) {
3120 struct btrfs_space_info *tmp;
3121
3122 if (!slot_count)
3123 break;
3124
3125 info = NULL;
3126 list_for_each_entry(tmp, &fs_info->space_info, list) {
3127 if (tmp->flags == types[i]) {
3128 info = tmp;
3129 break;
3130 }
3131 }
3132
3133 if (!info)
3134 continue;
3135 down_read(&info->groups_sem);
3136 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3137 if (!list_empty(&info->block_groups[c])) {
3138 get_block_group_info(&info->block_groups[c],
3139 &space);
3140 memcpy(dest, &space, sizeof(space));
3141 dest++;
3142 space_args.total_spaces++;
3143 slot_count--;
3144 }
3145 if (!slot_count)
3146 break;
3147 }
3148 up_read(&info->groups_sem);
3149 }
3150
3151 /*
3152 * Add global block reserve
3153 */
3154 if (slot_count) {
3155 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3156
3157 spin_lock(&block_rsv->lock);
3158 space.total_bytes = block_rsv->size;
3159 space.used_bytes = block_rsv->size - block_rsv->reserved;
3160 spin_unlock(&block_rsv->lock);
3161 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3162 memcpy(dest, &space, sizeof(space));
3163 space_args.total_spaces++;
3164 }
3165
3166 user_dest = (struct btrfs_ioctl_space_info __user *)
3167 (arg + sizeof(struct btrfs_ioctl_space_args));
3168
3169 if (copy_to_user(user_dest, dest_orig, alloc_size))
3170 ret = -EFAULT;
3171
3172 kfree(dest_orig);
3173out:
3174 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3175 ret = -EFAULT;
3176
3177 return ret;
3178}
3179
3180static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3181 void __user *argp)
3182{
3183 struct btrfs_trans_handle *trans;
3184 u64 transid;
3185
3186 /*
3187 * Start orphan cleanup here for the given root in case it hasn't been
3188 * started already by other means. Errors are handled in the other
3189 * functions during transaction commit.
3190 */
3191 btrfs_orphan_cleanup(root);
3192
3193 trans = btrfs_attach_transaction_barrier(root);
3194 if (IS_ERR(trans)) {
3195 if (PTR_ERR(trans) != -ENOENT)
3196 return PTR_ERR(trans);
3197
3198 /* No running transaction, don't bother */
3199 transid = btrfs_get_last_trans_committed(root->fs_info);
3200 goto out;
3201 }
3202 transid = trans->transid;
3203 btrfs_commit_transaction_async(trans);
3204out:
3205 if (argp)
3206 if (copy_to_user(argp, &transid, sizeof(transid)))
3207 return -EFAULT;
3208 return 0;
3209}
3210
3211static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3212 void __user *argp)
3213{
3214 /* By default wait for the current transaction. */
3215 u64 transid = 0;
3216
3217 if (argp)
3218 if (copy_from_user(&transid, argp, sizeof(transid)))
3219 return -EFAULT;
3220
3221 return btrfs_wait_for_commit(fs_info, transid);
3222}
3223
3224static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3225{
3226 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3227 struct btrfs_ioctl_scrub_args *sa;
3228 int ret;
3229
3230 if (!capable(CAP_SYS_ADMIN))
3231 return -EPERM;
3232
3233 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3234 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3235 return -EINVAL;
3236 }
3237
3238 sa = memdup_user(arg, sizeof(*sa));
3239 if (IS_ERR(sa))
3240 return PTR_ERR(sa);
3241
3242 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3243 ret = -EOPNOTSUPP;
3244 goto out;
3245 }
3246
3247 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3248 ret = mnt_want_write_file(file);
3249 if (ret)
3250 goto out;
3251 }
3252
3253 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3254 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3255 0);
3256
3257 /*
3258 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3259 * error. This is important as it allows user space to know how much
3260 * progress scrub has done. For example, if scrub is canceled we get
3261 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3262 * space. Later user space can inspect the progress from the structure
3263 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3264 * previously (btrfs-progs does this).
3265 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3266 * then return -EFAULT to signal the structure was not copied or it may
3267 * be corrupt and unreliable due to a partial copy.
3268 */
3269 if (copy_to_user(arg, sa, sizeof(*sa)))
3270 ret = -EFAULT;
3271
3272 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3273 mnt_drop_write_file(file);
3274out:
3275 kfree(sa);
3276 return ret;
3277}
3278
3279static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3280{
3281 if (!capable(CAP_SYS_ADMIN))
3282 return -EPERM;
3283
3284 return btrfs_scrub_cancel(fs_info);
3285}
3286
3287static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3288 void __user *arg)
3289{
3290 struct btrfs_ioctl_scrub_args *sa;
3291 int ret;
3292
3293 if (!capable(CAP_SYS_ADMIN))
3294 return -EPERM;
3295
3296 sa = memdup_user(arg, sizeof(*sa));
3297 if (IS_ERR(sa))
3298 return PTR_ERR(sa);
3299
3300 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3301
3302 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3303 ret = -EFAULT;
3304
3305 kfree(sa);
3306 return ret;
3307}
3308
3309static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3310 void __user *arg)
3311{
3312 struct btrfs_ioctl_get_dev_stats *sa;
3313 int ret;
3314
3315 sa = memdup_user(arg, sizeof(*sa));
3316 if (IS_ERR(sa))
3317 return PTR_ERR(sa);
3318
3319 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3320 kfree(sa);
3321 return -EPERM;
3322 }
3323
3324 ret = btrfs_get_dev_stats(fs_info, sa);
3325
3326 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3327 ret = -EFAULT;
3328
3329 kfree(sa);
3330 return ret;
3331}
3332
3333static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3334 void __user *arg)
3335{
3336 struct btrfs_ioctl_dev_replace_args *p;
3337 int ret;
3338
3339 if (!capable(CAP_SYS_ADMIN))
3340 return -EPERM;
3341
3342 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3343 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3344 return -EINVAL;
3345 }
3346
3347 p = memdup_user(arg, sizeof(*p));
3348 if (IS_ERR(p))
3349 return PTR_ERR(p);
3350
3351 switch (p->cmd) {
3352 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3353 if (sb_rdonly(fs_info->sb)) {
3354 ret = -EROFS;
3355 goto out;
3356 }
3357 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3358 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3359 } else {
3360 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3361 btrfs_exclop_finish(fs_info);
3362 }
3363 break;
3364 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3365 btrfs_dev_replace_status(fs_info, p);
3366 ret = 0;
3367 break;
3368 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3369 p->result = btrfs_dev_replace_cancel(fs_info);
3370 ret = 0;
3371 break;
3372 default:
3373 ret = -EINVAL;
3374 break;
3375 }
3376
3377 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3378 ret = -EFAULT;
3379out:
3380 kfree(p);
3381 return ret;
3382}
3383
3384static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3385{
3386 int ret = 0;
3387 int i;
3388 u64 rel_ptr;
3389 int size;
3390 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3391 struct inode_fs_paths *ipath = NULL;
3392 struct btrfs_path *path;
3393
3394 if (!capable(CAP_DAC_READ_SEARCH))
3395 return -EPERM;
3396
3397 path = btrfs_alloc_path();
3398 if (!path) {
3399 ret = -ENOMEM;
3400 goto out;
3401 }
3402
3403 ipa = memdup_user(arg, sizeof(*ipa));
3404 if (IS_ERR(ipa)) {
3405 ret = PTR_ERR(ipa);
3406 ipa = NULL;
3407 goto out;
3408 }
3409
3410 size = min_t(u32, ipa->size, 4096);
3411 ipath = init_ipath(size, root, path);
3412 if (IS_ERR(ipath)) {
3413 ret = PTR_ERR(ipath);
3414 ipath = NULL;
3415 goto out;
3416 }
3417
3418 ret = paths_from_inode(ipa->inum, ipath);
3419 if (ret < 0)
3420 goto out;
3421
3422 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3423 rel_ptr = ipath->fspath->val[i] -
3424 (u64)(unsigned long)ipath->fspath->val;
3425 ipath->fspath->val[i] = rel_ptr;
3426 }
3427
3428 btrfs_free_path(path);
3429 path = NULL;
3430 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3431 ipath->fspath, size);
3432 if (ret) {
3433 ret = -EFAULT;
3434 goto out;
3435 }
3436
3437out:
3438 btrfs_free_path(path);
3439 free_ipath(ipath);
3440 kfree(ipa);
3441
3442 return ret;
3443}
3444
3445static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3446 void __user *arg, int version)
3447{
3448 int ret = 0;
3449 int size;
3450 struct btrfs_ioctl_logical_ino_args *loi;
3451 struct btrfs_data_container *inodes = NULL;
3452 struct btrfs_path *path = NULL;
3453 bool ignore_offset;
3454
3455 if (!capable(CAP_SYS_ADMIN))
3456 return -EPERM;
3457
3458 loi = memdup_user(arg, sizeof(*loi));
3459 if (IS_ERR(loi))
3460 return PTR_ERR(loi);
3461
3462 if (version == 1) {
3463 ignore_offset = false;
3464 size = min_t(u32, loi->size, SZ_64K);
3465 } else {
3466 /* All reserved bits must be 0 for now */
3467 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3468 ret = -EINVAL;
3469 goto out_loi;
3470 }
3471 /* Only accept flags we have defined so far */
3472 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3473 ret = -EINVAL;
3474 goto out_loi;
3475 }
3476 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3477 size = min_t(u32, loi->size, SZ_16M);
3478 }
3479
3480 inodes = init_data_container(size);
3481 if (IS_ERR(inodes)) {
3482 ret = PTR_ERR(inodes);
3483 goto out_loi;
3484 }
3485
3486 path = btrfs_alloc_path();
3487 if (!path) {
3488 ret = -ENOMEM;
3489 goto out;
3490 }
3491 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3492 inodes, ignore_offset);
3493 btrfs_free_path(path);
3494 if (ret == -EINVAL)
3495 ret = -ENOENT;
3496 if (ret < 0)
3497 goto out;
3498
3499 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3500 size);
3501 if (ret)
3502 ret = -EFAULT;
3503
3504out:
3505 kvfree(inodes);
3506out_loi:
3507 kfree(loi);
3508
3509 return ret;
3510}
3511
3512void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3513 struct btrfs_ioctl_balance_args *bargs)
3514{
3515 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3516
3517 bargs->flags = bctl->flags;
3518
3519 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3520 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3521 if (atomic_read(&fs_info->balance_pause_req))
3522 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3523 if (atomic_read(&fs_info->balance_cancel_req))
3524 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3525
3526 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3527 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3528 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3529
3530 spin_lock(&fs_info->balance_lock);
3531 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3532 spin_unlock(&fs_info->balance_lock);
3533}
3534
3535/*
3536 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3537 * required.
3538 *
3539 * @fs_info: the filesystem
3540 * @excl_acquired: ptr to boolean value which is set to false in case balance
3541 * is being resumed
3542 *
3543 * Return 0 on success in which case both fs_info::balance is acquired as well
3544 * as exclusive ops are blocked. In case of failure return an error code.
3545 */
3546static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3547{
3548 int ret;
3549
3550 /*
3551 * Exclusive operation is locked. Three possibilities:
3552 * (1) some other op is running
3553 * (2) balance is running
3554 * (3) balance is paused -- special case (think resume)
3555 */
3556 while (1) {
3557 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3558 *excl_acquired = true;
3559 mutex_lock(&fs_info->balance_mutex);
3560 return 0;
3561 }
3562
3563 mutex_lock(&fs_info->balance_mutex);
3564 if (fs_info->balance_ctl) {
3565 /* This is either (2) or (3) */
3566 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3567 /* This is (2) */
3568 ret = -EINPROGRESS;
3569 goto out_failure;
3570
3571 } else {
3572 mutex_unlock(&fs_info->balance_mutex);
3573 /*
3574 * Lock released to allow other waiters to
3575 * continue, we'll reexamine the status again.
3576 */
3577 mutex_lock(&fs_info->balance_mutex);
3578
3579 if (fs_info->balance_ctl &&
3580 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3581 /* This is (3) */
3582 *excl_acquired = false;
3583 return 0;
3584 }
3585 }
3586 } else {
3587 /* This is (1) */
3588 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3589 goto out_failure;
3590 }
3591
3592 mutex_unlock(&fs_info->balance_mutex);
3593 }
3594
3595out_failure:
3596 mutex_unlock(&fs_info->balance_mutex);
3597 *excl_acquired = false;
3598 return ret;
3599}
3600
3601static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3602{
3603 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3604 struct btrfs_fs_info *fs_info = root->fs_info;
3605 struct btrfs_ioctl_balance_args *bargs;
3606 struct btrfs_balance_control *bctl;
3607 bool need_unlock = true;
3608 int ret;
3609
3610 if (!capable(CAP_SYS_ADMIN))
3611 return -EPERM;
3612
3613 ret = mnt_want_write_file(file);
3614 if (ret)
3615 return ret;
3616
3617 bargs = memdup_user(arg, sizeof(*bargs));
3618 if (IS_ERR(bargs)) {
3619 ret = PTR_ERR(bargs);
3620 bargs = NULL;
3621 goto out;
3622 }
3623
3624 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3625 if (ret)
3626 goto out;
3627
3628 lockdep_assert_held(&fs_info->balance_mutex);
3629
3630 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3631 if (!fs_info->balance_ctl) {
3632 ret = -ENOTCONN;
3633 goto out_unlock;
3634 }
3635
3636 bctl = fs_info->balance_ctl;
3637 spin_lock(&fs_info->balance_lock);
3638 bctl->flags |= BTRFS_BALANCE_RESUME;
3639 spin_unlock(&fs_info->balance_lock);
3640 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3641
3642 goto do_balance;
3643 }
3644
3645 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3646 ret = -EINVAL;
3647 goto out_unlock;
3648 }
3649
3650 if (fs_info->balance_ctl) {
3651 ret = -EINPROGRESS;
3652 goto out_unlock;
3653 }
3654
3655 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3656 if (!bctl) {
3657 ret = -ENOMEM;
3658 goto out_unlock;
3659 }
3660
3661 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3662 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3663 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3664
3665 bctl->flags = bargs->flags;
3666do_balance:
3667 /*
3668 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3669 * bctl is freed in reset_balance_state, or, if restriper was paused
3670 * all the way until unmount, in free_fs_info. The flag should be
3671 * cleared after reset_balance_state.
3672 */
3673 need_unlock = false;
3674
3675 ret = btrfs_balance(fs_info, bctl, bargs);
3676 bctl = NULL;
3677
3678 if (ret == 0 || ret == -ECANCELED) {
3679 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3680 ret = -EFAULT;
3681 }
3682
3683 kfree(bctl);
3684out_unlock:
3685 mutex_unlock(&fs_info->balance_mutex);
3686 if (need_unlock)
3687 btrfs_exclop_finish(fs_info);
3688out:
3689 mnt_drop_write_file(file);
3690 kfree(bargs);
3691 return ret;
3692}
3693
3694static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3695{
3696 if (!capable(CAP_SYS_ADMIN))
3697 return -EPERM;
3698
3699 switch (cmd) {
3700 case BTRFS_BALANCE_CTL_PAUSE:
3701 return btrfs_pause_balance(fs_info);
3702 case BTRFS_BALANCE_CTL_CANCEL:
3703 return btrfs_cancel_balance(fs_info);
3704 }
3705
3706 return -EINVAL;
3707}
3708
3709static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3710 void __user *arg)
3711{
3712 struct btrfs_ioctl_balance_args *bargs;
3713 int ret = 0;
3714
3715 if (!capable(CAP_SYS_ADMIN))
3716 return -EPERM;
3717
3718 mutex_lock(&fs_info->balance_mutex);
3719 if (!fs_info->balance_ctl) {
3720 ret = -ENOTCONN;
3721 goto out;
3722 }
3723
3724 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3725 if (!bargs) {
3726 ret = -ENOMEM;
3727 goto out;
3728 }
3729
3730 btrfs_update_ioctl_balance_args(fs_info, bargs);
3731
3732 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3733 ret = -EFAULT;
3734
3735 kfree(bargs);
3736out:
3737 mutex_unlock(&fs_info->balance_mutex);
3738 return ret;
3739}
3740
3741static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3742{
3743 struct inode *inode = file_inode(file);
3744 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3745 struct btrfs_ioctl_quota_ctl_args *sa;
3746 int ret;
3747
3748 if (!capable(CAP_SYS_ADMIN))
3749 return -EPERM;
3750
3751 ret = mnt_want_write_file(file);
3752 if (ret)
3753 return ret;
3754
3755 sa = memdup_user(arg, sizeof(*sa));
3756 if (IS_ERR(sa)) {
3757 ret = PTR_ERR(sa);
3758 goto drop_write;
3759 }
3760
3761 switch (sa->cmd) {
3762 case BTRFS_QUOTA_CTL_ENABLE:
3763 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3764 down_write(&fs_info->subvol_sem);
3765 ret = btrfs_quota_enable(fs_info, sa);
3766 up_write(&fs_info->subvol_sem);
3767 break;
3768 case BTRFS_QUOTA_CTL_DISABLE:
3769 /*
3770 * Lock the cleaner mutex to prevent races with concurrent
3771 * relocation, because relocation may be building backrefs for
3772 * blocks of the quota root while we are deleting the root. This
3773 * is like dropping fs roots of deleted snapshots/subvolumes, we
3774 * need the same protection.
3775 *
3776 * This also prevents races between concurrent tasks trying to
3777 * disable quotas, because we will unlock and relock
3778 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3779 *
3780 * We take this here because we have the dependency of
3781 *
3782 * inode_lock -> subvol_sem
3783 *
3784 * because of rename. With relocation we can prealloc extents,
3785 * so that makes the dependency chain
3786 *
3787 * cleaner_mutex -> inode_lock -> subvol_sem
3788 *
3789 * so we must take the cleaner_mutex here before we take the
3790 * subvol_sem. The deadlock can't actually happen, but this
3791 * quiets lockdep.
3792 */
3793 mutex_lock(&fs_info->cleaner_mutex);
3794 down_write(&fs_info->subvol_sem);
3795 ret = btrfs_quota_disable(fs_info);
3796 up_write(&fs_info->subvol_sem);
3797 mutex_unlock(&fs_info->cleaner_mutex);
3798 break;
3799 default:
3800 ret = -EINVAL;
3801 break;
3802 }
3803
3804 kfree(sa);
3805drop_write:
3806 mnt_drop_write_file(file);
3807 return ret;
3808}
3809
3810static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3811{
3812 struct inode *inode = file_inode(file);
3813 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3814 struct btrfs_root *root = BTRFS_I(inode)->root;
3815 struct btrfs_ioctl_qgroup_assign_args *sa;
3816 struct btrfs_trans_handle *trans;
3817 int ret;
3818 int err;
3819
3820 if (!capable(CAP_SYS_ADMIN))
3821 return -EPERM;
3822
3823 ret = mnt_want_write_file(file);
3824 if (ret)
3825 return ret;
3826
3827 sa = memdup_user(arg, sizeof(*sa));
3828 if (IS_ERR(sa)) {
3829 ret = PTR_ERR(sa);
3830 goto drop_write;
3831 }
3832
3833 trans = btrfs_join_transaction(root);
3834 if (IS_ERR(trans)) {
3835 ret = PTR_ERR(trans);
3836 goto out;
3837 }
3838
3839 if (sa->assign) {
3840 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3841 } else {
3842 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3843 }
3844
3845 /* update qgroup status and info */
3846 mutex_lock(&fs_info->qgroup_ioctl_lock);
3847 err = btrfs_run_qgroups(trans);
3848 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3849 if (err < 0)
3850 btrfs_handle_fs_error(fs_info, err,
3851 "failed to update qgroup status and info");
3852 err = btrfs_end_transaction(trans);
3853 if (err && !ret)
3854 ret = err;
3855
3856out:
3857 kfree(sa);
3858drop_write:
3859 mnt_drop_write_file(file);
3860 return ret;
3861}
3862
3863static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3864{
3865 struct inode *inode = file_inode(file);
3866 struct btrfs_root *root = BTRFS_I(inode)->root;
3867 struct btrfs_ioctl_qgroup_create_args *sa;
3868 struct btrfs_trans_handle *trans;
3869 int ret;
3870 int err;
3871
3872 if (!capable(CAP_SYS_ADMIN))
3873 return -EPERM;
3874
3875 ret = mnt_want_write_file(file);
3876 if (ret)
3877 return ret;
3878
3879 sa = memdup_user(arg, sizeof(*sa));
3880 if (IS_ERR(sa)) {
3881 ret = PTR_ERR(sa);
3882 goto drop_write;
3883 }
3884
3885 if (!sa->qgroupid) {
3886 ret = -EINVAL;
3887 goto out;
3888 }
3889
3890 if (sa->create && is_fstree(sa->qgroupid)) {
3891 ret = -EINVAL;
3892 goto out;
3893 }
3894
3895 trans = btrfs_join_transaction(root);
3896 if (IS_ERR(trans)) {
3897 ret = PTR_ERR(trans);
3898 goto out;
3899 }
3900
3901 if (sa->create) {
3902 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3903 } else {
3904 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3905 }
3906
3907 err = btrfs_end_transaction(trans);
3908 if (err && !ret)
3909 ret = err;
3910
3911out:
3912 kfree(sa);
3913drop_write:
3914 mnt_drop_write_file(file);
3915 return ret;
3916}
3917
3918static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3919{
3920 struct inode *inode = file_inode(file);
3921 struct btrfs_root *root = BTRFS_I(inode)->root;
3922 struct btrfs_ioctl_qgroup_limit_args *sa;
3923 struct btrfs_trans_handle *trans;
3924 int ret;
3925 int err;
3926 u64 qgroupid;
3927
3928 if (!capable(CAP_SYS_ADMIN))
3929 return -EPERM;
3930
3931 ret = mnt_want_write_file(file);
3932 if (ret)
3933 return ret;
3934
3935 sa = memdup_user(arg, sizeof(*sa));
3936 if (IS_ERR(sa)) {
3937 ret = PTR_ERR(sa);
3938 goto drop_write;
3939 }
3940
3941 trans = btrfs_join_transaction(root);
3942 if (IS_ERR(trans)) {
3943 ret = PTR_ERR(trans);
3944 goto out;
3945 }
3946
3947 qgroupid = sa->qgroupid;
3948 if (!qgroupid) {
3949 /* take the current subvol as qgroup */
3950 qgroupid = root->root_key.objectid;
3951 }
3952
3953 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3954
3955 err = btrfs_end_transaction(trans);
3956 if (err && !ret)
3957 ret = err;
3958
3959out:
3960 kfree(sa);
3961drop_write:
3962 mnt_drop_write_file(file);
3963 return ret;
3964}
3965
3966static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3967{
3968 struct inode *inode = file_inode(file);
3969 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3970 struct btrfs_ioctl_quota_rescan_args *qsa;
3971 int ret;
3972
3973 if (!capable(CAP_SYS_ADMIN))
3974 return -EPERM;
3975
3976 ret = mnt_want_write_file(file);
3977 if (ret)
3978 return ret;
3979
3980 qsa = memdup_user(arg, sizeof(*qsa));
3981 if (IS_ERR(qsa)) {
3982 ret = PTR_ERR(qsa);
3983 goto drop_write;
3984 }
3985
3986 if (qsa->flags) {
3987 ret = -EINVAL;
3988 goto out;
3989 }
3990
3991 ret = btrfs_qgroup_rescan(fs_info);
3992
3993out:
3994 kfree(qsa);
3995drop_write:
3996 mnt_drop_write_file(file);
3997 return ret;
3998}
3999
4000static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4001 void __user *arg)
4002{
4003 struct btrfs_ioctl_quota_rescan_args qsa = {0};
4004
4005 if (!capable(CAP_SYS_ADMIN))
4006 return -EPERM;
4007
4008 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4009 qsa.flags = 1;
4010 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4011 }
4012
4013 if (copy_to_user(arg, &qsa, sizeof(qsa)))
4014 return -EFAULT;
4015
4016 return 0;
4017}
4018
4019static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4020 void __user *arg)
4021{
4022 if (!capable(CAP_SYS_ADMIN))
4023 return -EPERM;
4024
4025 return btrfs_qgroup_wait_for_completion(fs_info, true);
4026}
4027
4028static long _btrfs_ioctl_set_received_subvol(struct file *file,
4029 struct mnt_idmap *idmap,
4030 struct btrfs_ioctl_received_subvol_args *sa)
4031{
4032 struct inode *inode = file_inode(file);
4033 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4034 struct btrfs_root *root = BTRFS_I(inode)->root;
4035 struct btrfs_root_item *root_item = &root->root_item;
4036 struct btrfs_trans_handle *trans;
4037 struct timespec64 ct = current_time(inode);
4038 int ret = 0;
4039 int received_uuid_changed;
4040
4041 if (!inode_owner_or_capable(idmap, inode))
4042 return -EPERM;
4043
4044 ret = mnt_want_write_file(file);
4045 if (ret < 0)
4046 return ret;
4047
4048 down_write(&fs_info->subvol_sem);
4049
4050 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4051 ret = -EINVAL;
4052 goto out;
4053 }
4054
4055 if (btrfs_root_readonly(root)) {
4056 ret = -EROFS;
4057 goto out;
4058 }
4059
4060 /*
4061 * 1 - root item
4062 * 2 - uuid items (received uuid + subvol uuid)
4063 */
4064 trans = btrfs_start_transaction(root, 3);
4065 if (IS_ERR(trans)) {
4066 ret = PTR_ERR(trans);
4067 trans = NULL;
4068 goto out;
4069 }
4070
4071 sa->rtransid = trans->transid;
4072 sa->rtime.sec = ct.tv_sec;
4073 sa->rtime.nsec = ct.tv_nsec;
4074
4075 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4076 BTRFS_UUID_SIZE);
4077 if (received_uuid_changed &&
4078 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4079 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4080 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4081 root->root_key.objectid);
4082 if (ret && ret != -ENOENT) {
4083 btrfs_abort_transaction(trans, ret);
4084 btrfs_end_transaction(trans);
4085 goto out;
4086 }
4087 }
4088 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4089 btrfs_set_root_stransid(root_item, sa->stransid);
4090 btrfs_set_root_rtransid(root_item, sa->rtransid);
4091 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4092 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4093 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4094 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4095
4096 ret = btrfs_update_root(trans, fs_info->tree_root,
4097 &root->root_key, &root->root_item);
4098 if (ret < 0) {
4099 btrfs_end_transaction(trans);
4100 goto out;
4101 }
4102 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4103 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4104 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4105 root->root_key.objectid);
4106 if (ret < 0 && ret != -EEXIST) {
4107 btrfs_abort_transaction(trans, ret);
4108 btrfs_end_transaction(trans);
4109 goto out;
4110 }
4111 }
4112 ret = btrfs_commit_transaction(trans);
4113out:
4114 up_write(&fs_info->subvol_sem);
4115 mnt_drop_write_file(file);
4116 return ret;
4117}
4118
4119#ifdef CONFIG_64BIT
4120static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4121 void __user *arg)
4122{
4123 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4124 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4125 int ret = 0;
4126
4127 args32 = memdup_user(arg, sizeof(*args32));
4128 if (IS_ERR(args32))
4129 return PTR_ERR(args32);
4130
4131 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4132 if (!args64) {
4133 ret = -ENOMEM;
4134 goto out;
4135 }
4136
4137 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4138 args64->stransid = args32->stransid;
4139 args64->rtransid = args32->rtransid;
4140 args64->stime.sec = args32->stime.sec;
4141 args64->stime.nsec = args32->stime.nsec;
4142 args64->rtime.sec = args32->rtime.sec;
4143 args64->rtime.nsec = args32->rtime.nsec;
4144 args64->flags = args32->flags;
4145
4146 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4147 if (ret)
4148 goto out;
4149
4150 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4151 args32->stransid = args64->stransid;
4152 args32->rtransid = args64->rtransid;
4153 args32->stime.sec = args64->stime.sec;
4154 args32->stime.nsec = args64->stime.nsec;
4155 args32->rtime.sec = args64->rtime.sec;
4156 args32->rtime.nsec = args64->rtime.nsec;
4157 args32->flags = args64->flags;
4158
4159 ret = copy_to_user(arg, args32, sizeof(*args32));
4160 if (ret)
4161 ret = -EFAULT;
4162
4163out:
4164 kfree(args32);
4165 kfree(args64);
4166 return ret;
4167}
4168#endif
4169
4170static long btrfs_ioctl_set_received_subvol(struct file *file,
4171 void __user *arg)
4172{
4173 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4174 int ret = 0;
4175
4176 sa = memdup_user(arg, sizeof(*sa));
4177 if (IS_ERR(sa))
4178 return PTR_ERR(sa);
4179
4180 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4181
4182 if (ret)
4183 goto out;
4184
4185 ret = copy_to_user(arg, sa, sizeof(*sa));
4186 if (ret)
4187 ret = -EFAULT;
4188
4189out:
4190 kfree(sa);
4191 return ret;
4192}
4193
4194static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4195 void __user *arg)
4196{
4197 size_t len;
4198 int ret;
4199 char label[BTRFS_LABEL_SIZE];
4200
4201 spin_lock(&fs_info->super_lock);
4202 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4203 spin_unlock(&fs_info->super_lock);
4204
4205 len = strnlen(label, BTRFS_LABEL_SIZE);
4206
4207 if (len == BTRFS_LABEL_SIZE) {
4208 btrfs_warn(fs_info,
4209 "label is too long, return the first %zu bytes",
4210 --len);
4211 }
4212
4213 ret = copy_to_user(arg, label, len);
4214
4215 return ret ? -EFAULT : 0;
4216}
4217
4218static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4219{
4220 struct inode *inode = file_inode(file);
4221 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4222 struct btrfs_root *root = BTRFS_I(inode)->root;
4223 struct btrfs_super_block *super_block = fs_info->super_copy;
4224 struct btrfs_trans_handle *trans;
4225 char label[BTRFS_LABEL_SIZE];
4226 int ret;
4227
4228 if (!capable(CAP_SYS_ADMIN))
4229 return -EPERM;
4230
4231 if (copy_from_user(label, arg, sizeof(label)))
4232 return -EFAULT;
4233
4234 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4235 btrfs_err(fs_info,
4236 "unable to set label with more than %d bytes",
4237 BTRFS_LABEL_SIZE - 1);
4238 return -EINVAL;
4239 }
4240
4241 ret = mnt_want_write_file(file);
4242 if (ret)
4243 return ret;
4244
4245 trans = btrfs_start_transaction(root, 0);
4246 if (IS_ERR(trans)) {
4247 ret = PTR_ERR(trans);
4248 goto out_unlock;
4249 }
4250
4251 spin_lock(&fs_info->super_lock);
4252 strcpy(super_block->label, label);
4253 spin_unlock(&fs_info->super_lock);
4254 ret = btrfs_commit_transaction(trans);
4255
4256out_unlock:
4257 mnt_drop_write_file(file);
4258 return ret;
4259}
4260
4261#define INIT_FEATURE_FLAGS(suffix) \
4262 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4263 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4264 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4265
4266int btrfs_ioctl_get_supported_features(void __user *arg)
4267{
4268 static const struct btrfs_ioctl_feature_flags features[3] = {
4269 INIT_FEATURE_FLAGS(SUPP),
4270 INIT_FEATURE_FLAGS(SAFE_SET),
4271 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4272 };
4273
4274 if (copy_to_user(arg, &features, sizeof(features)))
4275 return -EFAULT;
4276
4277 return 0;
4278}
4279
4280static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4281 void __user *arg)
4282{
4283 struct btrfs_super_block *super_block = fs_info->super_copy;
4284 struct btrfs_ioctl_feature_flags features;
4285
4286 features.compat_flags = btrfs_super_compat_flags(super_block);
4287 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4288 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4289
4290 if (copy_to_user(arg, &features, sizeof(features)))
4291 return -EFAULT;
4292
4293 return 0;
4294}
4295
4296static int check_feature_bits(struct btrfs_fs_info *fs_info,
4297 enum btrfs_feature_set set,
4298 u64 change_mask, u64 flags, u64 supported_flags,
4299 u64 safe_set, u64 safe_clear)
4300{
4301 const char *type = btrfs_feature_set_name(set);
4302 char *names;
4303 u64 disallowed, unsupported;
4304 u64 set_mask = flags & change_mask;
4305 u64 clear_mask = ~flags & change_mask;
4306
4307 unsupported = set_mask & ~supported_flags;
4308 if (unsupported) {
4309 names = btrfs_printable_features(set, unsupported);
4310 if (names) {
4311 btrfs_warn(fs_info,
4312 "this kernel does not support the %s feature bit%s",
4313 names, strchr(names, ',') ? "s" : "");
4314 kfree(names);
4315 } else
4316 btrfs_warn(fs_info,
4317 "this kernel does not support %s bits 0x%llx",
4318 type, unsupported);
4319 return -EOPNOTSUPP;
4320 }
4321
4322 disallowed = set_mask & ~safe_set;
4323 if (disallowed) {
4324 names = btrfs_printable_features(set, disallowed);
4325 if (names) {
4326 btrfs_warn(fs_info,
4327 "can't set the %s feature bit%s while mounted",
4328 names, strchr(names, ',') ? "s" : "");
4329 kfree(names);
4330 } else
4331 btrfs_warn(fs_info,
4332 "can't set %s bits 0x%llx while mounted",
4333 type, disallowed);
4334 return -EPERM;
4335 }
4336
4337 disallowed = clear_mask & ~safe_clear;
4338 if (disallowed) {
4339 names = btrfs_printable_features(set, disallowed);
4340 if (names) {
4341 btrfs_warn(fs_info,
4342 "can't clear the %s feature bit%s while mounted",
4343 names, strchr(names, ',') ? "s" : "");
4344 kfree(names);
4345 } else
4346 btrfs_warn(fs_info,
4347 "can't clear %s bits 0x%llx while mounted",
4348 type, disallowed);
4349 return -EPERM;
4350 }
4351
4352 return 0;
4353}
4354
4355#define check_feature(fs_info, change_mask, flags, mask_base) \
4356check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4357 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4358 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4359 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4360
4361static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4362{
4363 struct inode *inode = file_inode(file);
4364 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4365 struct btrfs_root *root = BTRFS_I(inode)->root;
4366 struct btrfs_super_block *super_block = fs_info->super_copy;
4367 struct btrfs_ioctl_feature_flags flags[2];
4368 struct btrfs_trans_handle *trans;
4369 u64 newflags;
4370 int ret;
4371
4372 if (!capable(CAP_SYS_ADMIN))
4373 return -EPERM;
4374
4375 if (copy_from_user(flags, arg, sizeof(flags)))
4376 return -EFAULT;
4377
4378 /* Nothing to do */
4379 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4380 !flags[0].incompat_flags)
4381 return 0;
4382
4383 ret = check_feature(fs_info, flags[0].compat_flags,
4384 flags[1].compat_flags, COMPAT);
4385 if (ret)
4386 return ret;
4387
4388 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4389 flags[1].compat_ro_flags, COMPAT_RO);
4390 if (ret)
4391 return ret;
4392
4393 ret = check_feature(fs_info, flags[0].incompat_flags,
4394 flags[1].incompat_flags, INCOMPAT);
4395 if (ret)
4396 return ret;
4397
4398 ret = mnt_want_write_file(file);
4399 if (ret)
4400 return ret;
4401
4402 trans = btrfs_start_transaction(root, 0);
4403 if (IS_ERR(trans)) {
4404 ret = PTR_ERR(trans);
4405 goto out_drop_write;
4406 }
4407
4408 spin_lock(&fs_info->super_lock);
4409 newflags = btrfs_super_compat_flags(super_block);
4410 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4411 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4412 btrfs_set_super_compat_flags(super_block, newflags);
4413
4414 newflags = btrfs_super_compat_ro_flags(super_block);
4415 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4416 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4417 btrfs_set_super_compat_ro_flags(super_block, newflags);
4418
4419 newflags = btrfs_super_incompat_flags(super_block);
4420 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4421 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4422 btrfs_set_super_incompat_flags(super_block, newflags);
4423 spin_unlock(&fs_info->super_lock);
4424
4425 ret = btrfs_commit_transaction(trans);
4426out_drop_write:
4427 mnt_drop_write_file(file);
4428
4429 return ret;
4430}
4431
4432static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4433{
4434 struct btrfs_ioctl_send_args *arg;
4435 int ret;
4436
4437 if (compat) {
4438#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4439 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4440
4441 ret = copy_from_user(&args32, argp, sizeof(args32));
4442 if (ret)
4443 return -EFAULT;
4444 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4445 if (!arg)
4446 return -ENOMEM;
4447 arg->send_fd = args32.send_fd;
4448 arg->clone_sources_count = args32.clone_sources_count;
4449 arg->clone_sources = compat_ptr(args32.clone_sources);
4450 arg->parent_root = args32.parent_root;
4451 arg->flags = args32.flags;
4452 arg->version = args32.version;
4453 memcpy(arg->reserved, args32.reserved,
4454 sizeof(args32.reserved));
4455#else
4456 return -ENOTTY;
4457#endif
4458 } else {
4459 arg = memdup_user(argp, sizeof(*arg));
4460 if (IS_ERR(arg))
4461 return PTR_ERR(arg);
4462 }
4463 ret = btrfs_ioctl_send(inode, arg);
4464 kfree(arg);
4465 return ret;
4466}
4467
4468static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4469 bool compat)
4470{
4471 struct btrfs_ioctl_encoded_io_args args = { 0 };
4472 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4473 flags);
4474 size_t copy_end;
4475 struct iovec iovstack[UIO_FASTIOV];
4476 struct iovec *iov = iovstack;
4477 struct iov_iter iter;
4478 loff_t pos;
4479 struct kiocb kiocb;
4480 ssize_t ret;
4481
4482 if (!capable(CAP_SYS_ADMIN)) {
4483 ret = -EPERM;
4484 goto out_acct;
4485 }
4486
4487 if (compat) {
4488#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4489 struct btrfs_ioctl_encoded_io_args_32 args32;
4490
4491 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4492 flags);
4493 if (copy_from_user(&args32, argp, copy_end)) {
4494 ret = -EFAULT;
4495 goto out_acct;
4496 }
4497 args.iov = compat_ptr(args32.iov);
4498 args.iovcnt = args32.iovcnt;
4499 args.offset = args32.offset;
4500 args.flags = args32.flags;
4501#else
4502 return -ENOTTY;
4503#endif
4504 } else {
4505 copy_end = copy_end_kernel;
4506 if (copy_from_user(&args, argp, copy_end)) {
4507 ret = -EFAULT;
4508 goto out_acct;
4509 }
4510 }
4511 if (args.flags != 0) {
4512 ret = -EINVAL;
4513 goto out_acct;
4514 }
4515
4516 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4517 &iov, &iter);
4518 if (ret < 0)
4519 goto out_acct;
4520
4521 if (iov_iter_count(&iter) == 0) {
4522 ret = 0;
4523 goto out_iov;
4524 }
4525 pos = args.offset;
4526 ret = rw_verify_area(READ, file, &pos, args.len);
4527 if (ret < 0)
4528 goto out_iov;
4529
4530 init_sync_kiocb(&kiocb, file);
4531 kiocb.ki_pos = pos;
4532
4533 ret = btrfs_encoded_read(&kiocb, &iter, &args);
4534 if (ret >= 0) {
4535 fsnotify_access(file);
4536 if (copy_to_user(argp + copy_end,
4537 (char *)&args + copy_end_kernel,
4538 sizeof(args) - copy_end_kernel))
4539 ret = -EFAULT;
4540 }
4541
4542out_iov:
4543 kfree(iov);
4544out_acct:
4545 if (ret > 0)
4546 add_rchar(current, ret);
4547 inc_syscr(current);
4548 return ret;
4549}
4550
4551static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4552{
4553 struct btrfs_ioctl_encoded_io_args args;
4554 struct iovec iovstack[UIO_FASTIOV];
4555 struct iovec *iov = iovstack;
4556 struct iov_iter iter;
4557 loff_t pos;
4558 struct kiocb kiocb;
4559 ssize_t ret;
4560
4561 if (!capable(CAP_SYS_ADMIN)) {
4562 ret = -EPERM;
4563 goto out_acct;
4564 }
4565
4566 if (!(file->f_mode & FMODE_WRITE)) {
4567 ret = -EBADF;
4568 goto out_acct;
4569 }
4570
4571 if (compat) {
4572#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4573 struct btrfs_ioctl_encoded_io_args_32 args32;
4574
4575 if (copy_from_user(&args32, argp, sizeof(args32))) {
4576 ret = -EFAULT;
4577 goto out_acct;
4578 }
4579 args.iov = compat_ptr(args32.iov);
4580 args.iovcnt = args32.iovcnt;
4581 args.offset = args32.offset;
4582 args.flags = args32.flags;
4583 args.len = args32.len;
4584 args.unencoded_len = args32.unencoded_len;
4585 args.unencoded_offset = args32.unencoded_offset;
4586 args.compression = args32.compression;
4587 args.encryption = args32.encryption;
4588 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4589#else
4590 return -ENOTTY;
4591#endif
4592 } else {
4593 if (copy_from_user(&args, argp, sizeof(args))) {
4594 ret = -EFAULT;
4595 goto out_acct;
4596 }
4597 }
4598
4599 ret = -EINVAL;
4600 if (args.flags != 0)
4601 goto out_acct;
4602 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4603 goto out_acct;
4604 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4605 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4606 goto out_acct;
4607 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4608 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4609 goto out_acct;
4610 if (args.unencoded_offset > args.unencoded_len)
4611 goto out_acct;
4612 if (args.len > args.unencoded_len - args.unencoded_offset)
4613 goto out_acct;
4614
4615 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4616 &iov, &iter);
4617 if (ret < 0)
4618 goto out_acct;
4619
4620 if (iov_iter_count(&iter) == 0) {
4621 ret = 0;
4622 goto out_iov;
4623 }
4624 pos = args.offset;
4625 ret = rw_verify_area(WRITE, file, &pos, args.len);
4626 if (ret < 0)
4627 goto out_iov;
4628
4629 init_sync_kiocb(&kiocb, file);
4630 ret = kiocb_set_rw_flags(&kiocb, 0);
4631 if (ret)
4632 goto out_iov;
4633 kiocb.ki_pos = pos;
4634
4635 file_start_write(file);
4636
4637 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4638 if (ret > 0)
4639 fsnotify_modify(file);
4640
4641 file_end_write(file);
4642out_iov:
4643 kfree(iov);
4644out_acct:
4645 if (ret > 0)
4646 add_wchar(current, ret);
4647 inc_syscw(current);
4648 return ret;
4649}
4650
4651long btrfs_ioctl(struct file *file, unsigned int
4652 cmd, unsigned long arg)
4653{
4654 struct inode *inode = file_inode(file);
4655 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4656 struct btrfs_root *root = BTRFS_I(inode)->root;
4657 void __user *argp = (void __user *)arg;
4658
4659 switch (cmd) {
4660 case FS_IOC_GETVERSION:
4661 return btrfs_ioctl_getversion(inode, argp);
4662 case FS_IOC_GETFSLABEL:
4663 return btrfs_ioctl_get_fslabel(fs_info, argp);
4664 case FS_IOC_SETFSLABEL:
4665 return btrfs_ioctl_set_fslabel(file, argp);
4666 case FITRIM:
4667 return btrfs_ioctl_fitrim(fs_info, argp);
4668 case BTRFS_IOC_SNAP_CREATE:
4669 return btrfs_ioctl_snap_create(file, argp, 0);
4670 case BTRFS_IOC_SNAP_CREATE_V2:
4671 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4672 case BTRFS_IOC_SUBVOL_CREATE:
4673 return btrfs_ioctl_snap_create(file, argp, 1);
4674 case BTRFS_IOC_SUBVOL_CREATE_V2:
4675 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4676 case BTRFS_IOC_SNAP_DESTROY:
4677 return btrfs_ioctl_snap_destroy(file, argp, false);
4678 case BTRFS_IOC_SNAP_DESTROY_V2:
4679 return btrfs_ioctl_snap_destroy(file, argp, true);
4680 case BTRFS_IOC_SUBVOL_GETFLAGS:
4681 return btrfs_ioctl_subvol_getflags(inode, argp);
4682 case BTRFS_IOC_SUBVOL_SETFLAGS:
4683 return btrfs_ioctl_subvol_setflags(file, argp);
4684 case BTRFS_IOC_DEFAULT_SUBVOL:
4685 return btrfs_ioctl_default_subvol(file, argp);
4686 case BTRFS_IOC_DEFRAG:
4687 return btrfs_ioctl_defrag(file, NULL);
4688 case BTRFS_IOC_DEFRAG_RANGE:
4689 return btrfs_ioctl_defrag(file, argp);
4690 case BTRFS_IOC_RESIZE:
4691 return btrfs_ioctl_resize(file, argp);
4692 case BTRFS_IOC_ADD_DEV:
4693 return btrfs_ioctl_add_dev(fs_info, argp);
4694 case BTRFS_IOC_RM_DEV:
4695 return btrfs_ioctl_rm_dev(file, argp);
4696 case BTRFS_IOC_RM_DEV_V2:
4697 return btrfs_ioctl_rm_dev_v2(file, argp);
4698 case BTRFS_IOC_FS_INFO:
4699 return btrfs_ioctl_fs_info(fs_info, argp);
4700 case BTRFS_IOC_DEV_INFO:
4701 return btrfs_ioctl_dev_info(fs_info, argp);
4702 case BTRFS_IOC_TREE_SEARCH:
4703 return btrfs_ioctl_tree_search(inode, argp);
4704 case BTRFS_IOC_TREE_SEARCH_V2:
4705 return btrfs_ioctl_tree_search_v2(inode, argp);
4706 case BTRFS_IOC_INO_LOOKUP:
4707 return btrfs_ioctl_ino_lookup(root, argp);
4708 case BTRFS_IOC_INO_PATHS:
4709 return btrfs_ioctl_ino_to_path(root, argp);
4710 case BTRFS_IOC_LOGICAL_INO:
4711 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4712 case BTRFS_IOC_LOGICAL_INO_V2:
4713 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4714 case BTRFS_IOC_SPACE_INFO:
4715 return btrfs_ioctl_space_info(fs_info, argp);
4716 case BTRFS_IOC_SYNC: {
4717 int ret;
4718
4719 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4720 if (ret)
4721 return ret;
4722 ret = btrfs_sync_fs(inode->i_sb, 1);
4723 /*
4724 * The transaction thread may want to do more work,
4725 * namely it pokes the cleaner kthread that will start
4726 * processing uncleaned subvols.
4727 */
4728 wake_up_process(fs_info->transaction_kthread);
4729 return ret;
4730 }
4731 case BTRFS_IOC_START_SYNC:
4732 return btrfs_ioctl_start_sync(root, argp);
4733 case BTRFS_IOC_WAIT_SYNC:
4734 return btrfs_ioctl_wait_sync(fs_info, argp);
4735 case BTRFS_IOC_SCRUB:
4736 return btrfs_ioctl_scrub(file, argp);
4737 case BTRFS_IOC_SCRUB_CANCEL:
4738 return btrfs_ioctl_scrub_cancel(fs_info);
4739 case BTRFS_IOC_SCRUB_PROGRESS:
4740 return btrfs_ioctl_scrub_progress(fs_info, argp);
4741 case BTRFS_IOC_BALANCE_V2:
4742 return btrfs_ioctl_balance(file, argp);
4743 case BTRFS_IOC_BALANCE_CTL:
4744 return btrfs_ioctl_balance_ctl(fs_info, arg);
4745 case BTRFS_IOC_BALANCE_PROGRESS:
4746 return btrfs_ioctl_balance_progress(fs_info, argp);
4747 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4748 return btrfs_ioctl_set_received_subvol(file, argp);
4749#ifdef CONFIG_64BIT
4750 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4751 return btrfs_ioctl_set_received_subvol_32(file, argp);
4752#endif
4753 case BTRFS_IOC_SEND:
4754 return _btrfs_ioctl_send(inode, argp, false);
4755#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4756 case BTRFS_IOC_SEND_32:
4757 return _btrfs_ioctl_send(inode, argp, true);
4758#endif
4759 case BTRFS_IOC_GET_DEV_STATS:
4760 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4761 case BTRFS_IOC_QUOTA_CTL:
4762 return btrfs_ioctl_quota_ctl(file, argp);
4763 case BTRFS_IOC_QGROUP_ASSIGN:
4764 return btrfs_ioctl_qgroup_assign(file, argp);
4765 case BTRFS_IOC_QGROUP_CREATE:
4766 return btrfs_ioctl_qgroup_create(file, argp);
4767 case BTRFS_IOC_QGROUP_LIMIT:
4768 return btrfs_ioctl_qgroup_limit(file, argp);
4769 case BTRFS_IOC_QUOTA_RESCAN:
4770 return btrfs_ioctl_quota_rescan(file, argp);
4771 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4772 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4773 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4774 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4775 case BTRFS_IOC_DEV_REPLACE:
4776 return btrfs_ioctl_dev_replace(fs_info, argp);
4777 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4778 return btrfs_ioctl_get_supported_features(argp);
4779 case BTRFS_IOC_GET_FEATURES:
4780 return btrfs_ioctl_get_features(fs_info, argp);
4781 case BTRFS_IOC_SET_FEATURES:
4782 return btrfs_ioctl_set_features(file, argp);
4783 case BTRFS_IOC_GET_SUBVOL_INFO:
4784 return btrfs_ioctl_get_subvol_info(inode, argp);
4785 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4786 return btrfs_ioctl_get_subvol_rootref(root, argp);
4787 case BTRFS_IOC_INO_LOOKUP_USER:
4788 return btrfs_ioctl_ino_lookup_user(file, argp);
4789 case FS_IOC_ENABLE_VERITY:
4790 return fsverity_ioctl_enable(file, (const void __user *)argp);
4791 case FS_IOC_MEASURE_VERITY:
4792 return fsverity_ioctl_measure(file, argp);
4793 case BTRFS_IOC_ENCODED_READ:
4794 return btrfs_ioctl_encoded_read(file, argp, false);
4795 case BTRFS_IOC_ENCODED_WRITE:
4796 return btrfs_ioctl_encoded_write(file, argp, false);
4797#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4798 case BTRFS_IOC_ENCODED_READ_32:
4799 return btrfs_ioctl_encoded_read(file, argp, true);
4800 case BTRFS_IOC_ENCODED_WRITE_32:
4801 return btrfs_ioctl_encoded_write(file, argp, true);
4802#endif
4803 }
4804
4805 return -ENOTTY;
4806}
4807
4808#ifdef CONFIG_COMPAT
4809long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4810{
4811 /*
4812 * These all access 32-bit values anyway so no further
4813 * handling is necessary.
4814 */
4815 switch (cmd) {
4816 case FS_IOC32_GETVERSION:
4817 cmd = FS_IOC_GETVERSION;
4818 break;
4819 }
4820
4821 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4822}
4823#endif