Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/fsnotify.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/mount.h>
17#include <linux/namei.h>
18#include <linux/writeback.h>
19#include <linux/compat.h>
20#include <linux/security.h>
21#include <linux/xattr.h>
22#include <linux/mm.h>
23#include <linux/slab.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include <linux/btrfs.h>
27#include <linux/uaccess.h>
28#include <linux/iversion.h>
29#include <linux/fileattr.h>
30#include <linux/fsverity.h>
31#include <linux/sched/xacct.h>
32#include "ctree.h"
33#include "disk-io.h"
34#include "export.h"
35#include "transaction.h"
36#include "btrfs_inode.h"
37#include "print-tree.h"
38#include "volumes.h"
39#include "locking.h"
40#include "backref.h"
41#include "rcu-string.h"
42#include "send.h"
43#include "dev-replace.h"
44#include "props.h"
45#include "sysfs.h"
46#include "qgroup.h"
47#include "tree-log.h"
48#include "compression.h"
49#include "space-info.h"
50#include "delalloc-space.h"
51#include "block-group.h"
52#include "subpage.h"
53#include "fs.h"
54#include "accessors.h"
55#include "extent-tree.h"
56#include "root-tree.h"
57#include "defrag.h"
58#include "dir-item.h"
59#include "uuid-tree.h"
60#include "ioctl.h"
61#include "file.h"
62#include "scrub.h"
63#include "super.h"
64
65#ifdef CONFIG_64BIT
66/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
70 */
71struct btrfs_ioctl_timespec_32 {
72 __u64 sec;
73 __u32 nsec;
74} __attribute__ ((__packed__));
75
76struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 flags; /* in */
83 __u64 reserved[16]; /* in */
84} __attribute__ ((__packed__));
85
86#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
88#endif
89
90#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91struct btrfs_ioctl_send_args_32 {
92 __s64 send_fd; /* in */
93 __u64 clone_sources_count; /* in */
94 compat_uptr_t clone_sources; /* in */
95 __u64 parent_root; /* in */
96 __u64 flags; /* in */
97 __u32 version; /* in */
98 __u8 reserved[28]; /* in */
99} __attribute__ ((__packed__));
100
101#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
102 struct btrfs_ioctl_send_args_32)
103
104struct btrfs_ioctl_encoded_io_args_32 {
105 compat_uptr_t iov;
106 compat_ulong_t iovcnt;
107 __s64 offset;
108 __u64 flags;
109 __u64 len;
110 __u64 unencoded_len;
111 __u64 unencoded_offset;
112 __u32 compression;
113 __u32 encryption;
114 __u8 reserved[64];
115};
116
117#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
118 struct btrfs_ioctl_encoded_io_args_32)
119#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
120 struct btrfs_ioctl_encoded_io_args_32)
121#endif
122
123/* Mask out flags that are inappropriate for the given type of inode. */
124static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
125 unsigned int flags)
126{
127 if (S_ISDIR(inode->i_mode))
128 return flags;
129 else if (S_ISREG(inode->i_mode))
130 return flags & ~FS_DIRSYNC_FL;
131 else
132 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
133}
134
135/*
136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
137 * ioctl.
138 */
139static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
140{
141 unsigned int iflags = 0;
142 u32 flags = binode->flags;
143 u32 ro_flags = binode->ro_flags;
144
145 if (flags & BTRFS_INODE_SYNC)
146 iflags |= FS_SYNC_FL;
147 if (flags & BTRFS_INODE_IMMUTABLE)
148 iflags |= FS_IMMUTABLE_FL;
149 if (flags & BTRFS_INODE_APPEND)
150 iflags |= FS_APPEND_FL;
151 if (flags & BTRFS_INODE_NODUMP)
152 iflags |= FS_NODUMP_FL;
153 if (flags & BTRFS_INODE_NOATIME)
154 iflags |= FS_NOATIME_FL;
155 if (flags & BTRFS_INODE_DIRSYNC)
156 iflags |= FS_DIRSYNC_FL;
157 if (flags & BTRFS_INODE_NODATACOW)
158 iflags |= FS_NOCOW_FL;
159 if (ro_flags & BTRFS_INODE_RO_VERITY)
160 iflags |= FS_VERITY_FL;
161
162 if (flags & BTRFS_INODE_NOCOMPRESS)
163 iflags |= FS_NOCOMP_FL;
164 else if (flags & BTRFS_INODE_COMPRESS)
165 iflags |= FS_COMPR_FL;
166
167 return iflags;
168}
169
170/*
171 * Update inode->i_flags based on the btrfs internal flags.
172 */
173void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
174{
175 struct btrfs_inode *binode = BTRFS_I(inode);
176 unsigned int new_fl = 0;
177
178 if (binode->flags & BTRFS_INODE_SYNC)
179 new_fl |= S_SYNC;
180 if (binode->flags & BTRFS_INODE_IMMUTABLE)
181 new_fl |= S_IMMUTABLE;
182 if (binode->flags & BTRFS_INODE_APPEND)
183 new_fl |= S_APPEND;
184 if (binode->flags & BTRFS_INODE_NOATIME)
185 new_fl |= S_NOATIME;
186 if (binode->flags & BTRFS_INODE_DIRSYNC)
187 new_fl |= S_DIRSYNC;
188 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
189 new_fl |= S_VERITY;
190
191 set_mask_bits(&inode->i_flags,
192 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
193 S_VERITY, new_fl);
194}
195
196/*
197 * Check if @flags are a supported and valid set of FS_*_FL flags and that
198 * the old and new flags are not conflicting
199 */
200static int check_fsflags(unsigned int old_flags, unsigned int flags)
201{
202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 FS_NOATIME_FL | FS_NODUMP_FL | \
204 FS_SYNC_FL | FS_DIRSYNC_FL | \
205 FS_NOCOMP_FL | FS_COMPR_FL |
206 FS_NOCOW_FL))
207 return -EOPNOTSUPP;
208
209 /* COMPR and NOCOMP on new/old are valid */
210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 return -EINVAL;
212
213 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
214 return -EINVAL;
215
216 /* NOCOW and compression options are mutually exclusive */
217 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
218 return -EINVAL;
219 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
220 return -EINVAL;
221
222 return 0;
223}
224
225static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
226 unsigned int flags)
227{
228 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
229 return -EPERM;
230
231 return 0;
232}
233
234/*
235 * Set flags/xflags from the internal inode flags. The remaining items of
236 * fsxattr are zeroed.
237 */
238int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
239{
240 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
241
242 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
243 return 0;
244}
245
246int btrfs_fileattr_set(struct user_namespace *mnt_userns,
247 struct dentry *dentry, struct fileattr *fa)
248{
249 struct inode *inode = d_inode(dentry);
250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
251 struct btrfs_inode *binode = BTRFS_I(inode);
252 struct btrfs_root *root = binode->root;
253 struct btrfs_trans_handle *trans;
254 unsigned int fsflags, old_fsflags;
255 int ret;
256 const char *comp = NULL;
257 u32 binode_flags;
258
259 if (btrfs_root_readonly(root))
260 return -EROFS;
261
262 if (fileattr_has_fsx(fa))
263 return -EOPNOTSUPP;
264
265 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
266 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
267 ret = check_fsflags(old_fsflags, fsflags);
268 if (ret)
269 return ret;
270
271 ret = check_fsflags_compatible(fs_info, fsflags);
272 if (ret)
273 return ret;
274
275 binode_flags = binode->flags;
276 if (fsflags & FS_SYNC_FL)
277 binode_flags |= BTRFS_INODE_SYNC;
278 else
279 binode_flags &= ~BTRFS_INODE_SYNC;
280 if (fsflags & FS_IMMUTABLE_FL)
281 binode_flags |= BTRFS_INODE_IMMUTABLE;
282 else
283 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
284 if (fsflags & FS_APPEND_FL)
285 binode_flags |= BTRFS_INODE_APPEND;
286 else
287 binode_flags &= ~BTRFS_INODE_APPEND;
288 if (fsflags & FS_NODUMP_FL)
289 binode_flags |= BTRFS_INODE_NODUMP;
290 else
291 binode_flags &= ~BTRFS_INODE_NODUMP;
292 if (fsflags & FS_NOATIME_FL)
293 binode_flags |= BTRFS_INODE_NOATIME;
294 else
295 binode_flags &= ~BTRFS_INODE_NOATIME;
296
297 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
298 if (!fa->flags_valid) {
299 /* 1 item for the inode */
300 trans = btrfs_start_transaction(root, 1);
301 if (IS_ERR(trans))
302 return PTR_ERR(trans);
303 goto update_flags;
304 }
305
306 if (fsflags & FS_DIRSYNC_FL)
307 binode_flags |= BTRFS_INODE_DIRSYNC;
308 else
309 binode_flags &= ~BTRFS_INODE_DIRSYNC;
310 if (fsflags & FS_NOCOW_FL) {
311 if (S_ISREG(inode->i_mode)) {
312 /*
313 * It's safe to turn csums off here, no extents exist.
314 * Otherwise we want the flag to reflect the real COW
315 * status of the file and will not set it.
316 */
317 if (inode->i_size == 0)
318 binode_flags |= BTRFS_INODE_NODATACOW |
319 BTRFS_INODE_NODATASUM;
320 } else {
321 binode_flags |= BTRFS_INODE_NODATACOW;
322 }
323 } else {
324 /*
325 * Revert back under same assumptions as above
326 */
327 if (S_ISREG(inode->i_mode)) {
328 if (inode->i_size == 0)
329 binode_flags &= ~(BTRFS_INODE_NODATACOW |
330 BTRFS_INODE_NODATASUM);
331 } else {
332 binode_flags &= ~BTRFS_INODE_NODATACOW;
333 }
334 }
335
336 /*
337 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
338 * flag may be changed automatically if compression code won't make
339 * things smaller.
340 */
341 if (fsflags & FS_NOCOMP_FL) {
342 binode_flags &= ~BTRFS_INODE_COMPRESS;
343 binode_flags |= BTRFS_INODE_NOCOMPRESS;
344 } else if (fsflags & FS_COMPR_FL) {
345
346 if (IS_SWAPFILE(inode))
347 return -ETXTBSY;
348
349 binode_flags |= BTRFS_INODE_COMPRESS;
350 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
351
352 comp = btrfs_compress_type2str(fs_info->compress_type);
353 if (!comp || comp[0] == 0)
354 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
355 } else {
356 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
357 }
358
359 /*
360 * 1 for inode item
361 * 2 for properties
362 */
363 trans = btrfs_start_transaction(root, 3);
364 if (IS_ERR(trans))
365 return PTR_ERR(trans);
366
367 if (comp) {
368 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
369 strlen(comp), 0);
370 if (ret) {
371 btrfs_abort_transaction(trans, ret);
372 goto out_end_trans;
373 }
374 } else {
375 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
376 0, 0);
377 if (ret && ret != -ENODATA) {
378 btrfs_abort_transaction(trans, ret);
379 goto out_end_trans;
380 }
381 }
382
383update_flags:
384 binode->flags = binode_flags;
385 btrfs_sync_inode_flags_to_i_flags(inode);
386 inode_inc_iversion(inode);
387 inode->i_ctime = current_time(inode);
388 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
389
390 out_end_trans:
391 btrfs_end_transaction(trans);
392 return ret;
393}
394
395/*
396 * Start exclusive operation @type, return true on success
397 */
398bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
399 enum btrfs_exclusive_operation type)
400{
401 bool ret = false;
402
403 spin_lock(&fs_info->super_lock);
404 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
405 fs_info->exclusive_operation = type;
406 ret = true;
407 }
408 spin_unlock(&fs_info->super_lock);
409
410 return ret;
411}
412
413/*
414 * Conditionally allow to enter the exclusive operation in case it's compatible
415 * with the running one. This must be paired with btrfs_exclop_start_unlock and
416 * btrfs_exclop_finish.
417 *
418 * Compatibility:
419 * - the same type is already running
420 * - when trying to add a device and balance has been paused
421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
422 * must check the condition first that would allow none -> @type
423 */
424bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
425 enum btrfs_exclusive_operation type)
426{
427 spin_lock(&fs_info->super_lock);
428 if (fs_info->exclusive_operation == type ||
429 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
430 type == BTRFS_EXCLOP_DEV_ADD))
431 return true;
432
433 spin_unlock(&fs_info->super_lock);
434 return false;
435}
436
437void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
438{
439 spin_unlock(&fs_info->super_lock);
440}
441
442void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
443{
444 spin_lock(&fs_info->super_lock);
445 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
446 spin_unlock(&fs_info->super_lock);
447 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
448}
449
450void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
451 enum btrfs_exclusive_operation op)
452{
453 switch (op) {
454 case BTRFS_EXCLOP_BALANCE_PAUSED:
455 spin_lock(&fs_info->super_lock);
456 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
457 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD);
458 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
459 spin_unlock(&fs_info->super_lock);
460 break;
461 case BTRFS_EXCLOP_BALANCE:
462 spin_lock(&fs_info->super_lock);
463 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
464 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
465 spin_unlock(&fs_info->super_lock);
466 break;
467 default:
468 btrfs_warn(fs_info,
469 "invalid exclop balance operation %d requested", op);
470 }
471}
472
473static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
474{
475 return put_user(inode->i_generation, arg);
476}
477
478static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
479 void __user *arg)
480{
481 struct btrfs_device *device;
482 struct fstrim_range range;
483 u64 minlen = ULLONG_MAX;
484 u64 num_devices = 0;
485 int ret;
486
487 if (!capable(CAP_SYS_ADMIN))
488 return -EPERM;
489
490 /*
491 * btrfs_trim_block_group() depends on space cache, which is not
492 * available in zoned filesystem. So, disallow fitrim on a zoned
493 * filesystem for now.
494 */
495 if (btrfs_is_zoned(fs_info))
496 return -EOPNOTSUPP;
497
498 /*
499 * If the fs is mounted with nologreplay, which requires it to be
500 * mounted in RO mode as well, we can not allow discard on free space
501 * inside block groups, because log trees refer to extents that are not
502 * pinned in a block group's free space cache (pinning the extents is
503 * precisely the first phase of replaying a log tree).
504 */
505 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
506 return -EROFS;
507
508 rcu_read_lock();
509 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
510 dev_list) {
511 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
512 continue;
513 num_devices++;
514 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
515 minlen);
516 }
517 rcu_read_unlock();
518
519 if (!num_devices)
520 return -EOPNOTSUPP;
521 if (copy_from_user(&range, arg, sizeof(range)))
522 return -EFAULT;
523
524 /*
525 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
526 * block group is in the logical address space, which can be any
527 * sectorsize aligned bytenr in the range [0, U64_MAX].
528 */
529 if (range.len < fs_info->sb->s_blocksize)
530 return -EINVAL;
531
532 range.minlen = max(range.minlen, minlen);
533 ret = btrfs_trim_fs(fs_info, &range);
534 if (ret < 0)
535 return ret;
536
537 if (copy_to_user(arg, &range, sizeof(range)))
538 return -EFAULT;
539
540 return 0;
541}
542
543int __pure btrfs_is_empty_uuid(u8 *uuid)
544{
545 int i;
546
547 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
548 if (uuid[i])
549 return 0;
550 }
551 return 1;
552}
553
554/*
555 * Calculate the number of transaction items to reserve for creating a subvolume
556 * or snapshot, not including the inode, directory entries, or parent directory.
557 */
558static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
559{
560 /*
561 * 1 to add root block
562 * 1 to add root item
563 * 1 to add root ref
564 * 1 to add root backref
565 * 1 to add UUID item
566 * 1 to add qgroup info
567 * 1 to add qgroup limit
568 *
569 * Ideally the last two would only be accounted if qgroups are enabled,
570 * but that can change between now and the time we would insert them.
571 */
572 unsigned int num_items = 7;
573
574 if (inherit) {
575 /* 2 to add qgroup relations for each inherited qgroup */
576 num_items += 2 * inherit->num_qgroups;
577 }
578 return num_items;
579}
580
581static noinline int create_subvol(struct user_namespace *mnt_userns,
582 struct inode *dir, struct dentry *dentry,
583 struct btrfs_qgroup_inherit *inherit)
584{
585 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
586 struct btrfs_trans_handle *trans;
587 struct btrfs_key key;
588 struct btrfs_root_item *root_item;
589 struct btrfs_inode_item *inode_item;
590 struct extent_buffer *leaf;
591 struct btrfs_root *root = BTRFS_I(dir)->root;
592 struct btrfs_root *new_root;
593 struct btrfs_block_rsv block_rsv;
594 struct timespec64 cur_time = current_time(dir);
595 struct btrfs_new_inode_args new_inode_args = {
596 .dir = dir,
597 .dentry = dentry,
598 .subvol = true,
599 };
600 unsigned int trans_num_items;
601 int ret;
602 dev_t anon_dev;
603 u64 objectid;
604
605 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
606 if (!root_item)
607 return -ENOMEM;
608
609 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
610 if (ret)
611 goto out_root_item;
612
613 /*
614 * Don't create subvolume whose level is not zero. Or qgroup will be
615 * screwed up since it assumes subvolume qgroup's level to be 0.
616 */
617 if (btrfs_qgroup_level(objectid)) {
618 ret = -ENOSPC;
619 goto out_root_item;
620 }
621
622 ret = get_anon_bdev(&anon_dev);
623 if (ret < 0)
624 goto out_root_item;
625
626 new_inode_args.inode = btrfs_new_subvol_inode(mnt_userns, dir);
627 if (!new_inode_args.inode) {
628 ret = -ENOMEM;
629 goto out_anon_dev;
630 }
631 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
632 if (ret)
633 goto out_inode;
634 trans_num_items += create_subvol_num_items(inherit);
635
636 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
637 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
638 trans_num_items, false);
639 if (ret)
640 goto out_new_inode_args;
641
642 trans = btrfs_start_transaction(root, 0);
643 if (IS_ERR(trans)) {
644 ret = PTR_ERR(trans);
645 btrfs_subvolume_release_metadata(root, &block_rsv);
646 goto out_new_inode_args;
647 }
648 trans->block_rsv = &block_rsv;
649 trans->bytes_reserved = block_rsv.size;
650
651 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
652 if (ret)
653 goto out;
654
655 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
656 BTRFS_NESTING_NORMAL);
657 if (IS_ERR(leaf)) {
658 ret = PTR_ERR(leaf);
659 goto out;
660 }
661
662 btrfs_mark_buffer_dirty(leaf);
663
664 inode_item = &root_item->inode;
665 btrfs_set_stack_inode_generation(inode_item, 1);
666 btrfs_set_stack_inode_size(inode_item, 3);
667 btrfs_set_stack_inode_nlink(inode_item, 1);
668 btrfs_set_stack_inode_nbytes(inode_item,
669 fs_info->nodesize);
670 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
671
672 btrfs_set_root_flags(root_item, 0);
673 btrfs_set_root_limit(root_item, 0);
674 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
675
676 btrfs_set_root_bytenr(root_item, leaf->start);
677 btrfs_set_root_generation(root_item, trans->transid);
678 btrfs_set_root_level(root_item, 0);
679 btrfs_set_root_refs(root_item, 1);
680 btrfs_set_root_used(root_item, leaf->len);
681 btrfs_set_root_last_snapshot(root_item, 0);
682
683 btrfs_set_root_generation_v2(root_item,
684 btrfs_root_generation(root_item));
685 generate_random_guid(root_item->uuid);
686 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
687 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
688 root_item->ctime = root_item->otime;
689 btrfs_set_root_ctransid(root_item, trans->transid);
690 btrfs_set_root_otransid(root_item, trans->transid);
691
692 btrfs_tree_unlock(leaf);
693
694 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
695
696 key.objectid = objectid;
697 key.offset = 0;
698 key.type = BTRFS_ROOT_ITEM_KEY;
699 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
700 root_item);
701 if (ret) {
702 /*
703 * Since we don't abort the transaction in this case, free the
704 * tree block so that we don't leak space and leave the
705 * filesystem in an inconsistent state (an extent item in the
706 * extent tree with a backreference for a root that does not
707 * exists).
708 */
709 btrfs_tree_lock(leaf);
710 btrfs_clean_tree_block(leaf);
711 btrfs_tree_unlock(leaf);
712 btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
713 free_extent_buffer(leaf);
714 goto out;
715 }
716
717 free_extent_buffer(leaf);
718 leaf = NULL;
719
720 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
721 if (IS_ERR(new_root)) {
722 ret = PTR_ERR(new_root);
723 btrfs_abort_transaction(trans, ret);
724 goto out;
725 }
726 /* anon_dev is owned by new_root now. */
727 anon_dev = 0;
728 BTRFS_I(new_inode_args.inode)->root = new_root;
729 /* ... and new_root is owned by new_inode_args.inode now. */
730
731 ret = btrfs_record_root_in_trans(trans, new_root);
732 if (ret) {
733 btrfs_abort_transaction(trans, ret);
734 goto out;
735 }
736
737 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
738 BTRFS_UUID_KEY_SUBVOL, objectid);
739 if (ret) {
740 btrfs_abort_transaction(trans, ret);
741 goto out;
742 }
743
744 ret = btrfs_create_new_inode(trans, &new_inode_args);
745 if (ret) {
746 btrfs_abort_transaction(trans, ret);
747 goto out;
748 }
749
750 d_instantiate_new(dentry, new_inode_args.inode);
751 new_inode_args.inode = NULL;
752
753out:
754 trans->block_rsv = NULL;
755 trans->bytes_reserved = 0;
756 btrfs_subvolume_release_metadata(root, &block_rsv);
757
758 if (ret)
759 btrfs_end_transaction(trans);
760 else
761 ret = btrfs_commit_transaction(trans);
762out_new_inode_args:
763 btrfs_new_inode_args_destroy(&new_inode_args);
764out_inode:
765 iput(new_inode_args.inode);
766out_anon_dev:
767 if (anon_dev)
768 free_anon_bdev(anon_dev);
769out_root_item:
770 kfree(root_item);
771 return ret;
772}
773
774static int create_snapshot(struct btrfs_root *root, struct inode *dir,
775 struct dentry *dentry, bool readonly,
776 struct btrfs_qgroup_inherit *inherit)
777{
778 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
779 struct inode *inode;
780 struct btrfs_pending_snapshot *pending_snapshot;
781 unsigned int trans_num_items;
782 struct btrfs_trans_handle *trans;
783 int ret;
784
785 /* We do not support snapshotting right now. */
786 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
787 btrfs_warn(fs_info,
788 "extent tree v2 doesn't support snapshotting yet");
789 return -EOPNOTSUPP;
790 }
791
792 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
793 return -EINVAL;
794
795 if (atomic_read(&root->nr_swapfiles)) {
796 btrfs_warn(fs_info,
797 "cannot snapshot subvolume with active swapfile");
798 return -ETXTBSY;
799 }
800
801 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
802 if (!pending_snapshot)
803 return -ENOMEM;
804
805 ret = get_anon_bdev(&pending_snapshot->anon_dev);
806 if (ret < 0)
807 goto free_pending;
808 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
809 GFP_KERNEL);
810 pending_snapshot->path = btrfs_alloc_path();
811 if (!pending_snapshot->root_item || !pending_snapshot->path) {
812 ret = -ENOMEM;
813 goto free_pending;
814 }
815
816 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
817 BTRFS_BLOCK_RSV_TEMP);
818 /*
819 * 1 to add dir item
820 * 1 to add dir index
821 * 1 to update parent inode item
822 */
823 trans_num_items = create_subvol_num_items(inherit) + 3;
824 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
825 &pending_snapshot->block_rsv,
826 trans_num_items, false);
827 if (ret)
828 goto free_pending;
829
830 pending_snapshot->dentry = dentry;
831 pending_snapshot->root = root;
832 pending_snapshot->readonly = readonly;
833 pending_snapshot->dir = dir;
834 pending_snapshot->inherit = inherit;
835
836 trans = btrfs_start_transaction(root, 0);
837 if (IS_ERR(trans)) {
838 ret = PTR_ERR(trans);
839 goto fail;
840 }
841
842 trans->pending_snapshot = pending_snapshot;
843
844 ret = btrfs_commit_transaction(trans);
845 if (ret)
846 goto fail;
847
848 ret = pending_snapshot->error;
849 if (ret)
850 goto fail;
851
852 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
853 if (ret)
854 goto fail;
855
856 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
857 if (IS_ERR(inode)) {
858 ret = PTR_ERR(inode);
859 goto fail;
860 }
861
862 d_instantiate(dentry, inode);
863 ret = 0;
864 pending_snapshot->anon_dev = 0;
865fail:
866 /* Prevent double freeing of anon_dev */
867 if (ret && pending_snapshot->snap)
868 pending_snapshot->snap->anon_dev = 0;
869 btrfs_put_root(pending_snapshot->snap);
870 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
871free_pending:
872 if (pending_snapshot->anon_dev)
873 free_anon_bdev(pending_snapshot->anon_dev);
874 kfree(pending_snapshot->root_item);
875 btrfs_free_path(pending_snapshot->path);
876 kfree(pending_snapshot);
877
878 return ret;
879}
880
881/* copy of may_delete in fs/namei.c()
882 * Check whether we can remove a link victim from directory dir, check
883 * whether the type of victim is right.
884 * 1. We can't do it if dir is read-only (done in permission())
885 * 2. We should have write and exec permissions on dir
886 * 3. We can't remove anything from append-only dir
887 * 4. We can't do anything with immutable dir (done in permission())
888 * 5. If the sticky bit on dir is set we should either
889 * a. be owner of dir, or
890 * b. be owner of victim, or
891 * c. have CAP_FOWNER capability
892 * 6. If the victim is append-only or immutable we can't do anything with
893 * links pointing to it.
894 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
895 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
896 * 9. We can't remove a root or mountpoint.
897 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
898 * nfs_async_unlink().
899 */
900
901static int btrfs_may_delete(struct user_namespace *mnt_userns,
902 struct inode *dir, struct dentry *victim, int isdir)
903{
904 int error;
905
906 if (d_really_is_negative(victim))
907 return -ENOENT;
908
909 BUG_ON(d_inode(victim->d_parent) != dir);
910 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
911
912 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
913 if (error)
914 return error;
915 if (IS_APPEND(dir))
916 return -EPERM;
917 if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
918 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
919 IS_SWAPFILE(d_inode(victim)))
920 return -EPERM;
921 if (isdir) {
922 if (!d_is_dir(victim))
923 return -ENOTDIR;
924 if (IS_ROOT(victim))
925 return -EBUSY;
926 } else if (d_is_dir(victim))
927 return -EISDIR;
928 if (IS_DEADDIR(dir))
929 return -ENOENT;
930 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
931 return -EBUSY;
932 return 0;
933}
934
935/* copy of may_create in fs/namei.c() */
936static inline int btrfs_may_create(struct user_namespace *mnt_userns,
937 struct inode *dir, struct dentry *child)
938{
939 if (d_really_is_positive(child))
940 return -EEXIST;
941 if (IS_DEADDIR(dir))
942 return -ENOENT;
943 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
944 return -EOVERFLOW;
945 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
946}
947
948/*
949 * Create a new subvolume below @parent. This is largely modeled after
950 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
951 * inside this filesystem so it's quite a bit simpler.
952 */
953static noinline int btrfs_mksubvol(const struct path *parent,
954 struct user_namespace *mnt_userns,
955 const char *name, int namelen,
956 struct btrfs_root *snap_src,
957 bool readonly,
958 struct btrfs_qgroup_inherit *inherit)
959{
960 struct inode *dir = d_inode(parent->dentry);
961 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
962 struct dentry *dentry;
963 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
964 int error;
965
966 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
967 if (error == -EINTR)
968 return error;
969
970 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
971 error = PTR_ERR(dentry);
972 if (IS_ERR(dentry))
973 goto out_unlock;
974
975 error = btrfs_may_create(mnt_userns, dir, dentry);
976 if (error)
977 goto out_dput;
978
979 /*
980 * even if this name doesn't exist, we may get hash collisions.
981 * check for them now when we can safely fail
982 */
983 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
984 dir->i_ino, &name_str);
985 if (error)
986 goto out_dput;
987
988 down_read(&fs_info->subvol_sem);
989
990 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
991 goto out_up_read;
992
993 if (snap_src)
994 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
995 else
996 error = create_subvol(mnt_userns, dir, dentry, inherit);
997
998 if (!error)
999 fsnotify_mkdir(dir, dentry);
1000out_up_read:
1001 up_read(&fs_info->subvol_sem);
1002out_dput:
1003 dput(dentry);
1004out_unlock:
1005 btrfs_inode_unlock(BTRFS_I(dir), 0);
1006 return error;
1007}
1008
1009static noinline int btrfs_mksnapshot(const struct path *parent,
1010 struct user_namespace *mnt_userns,
1011 const char *name, int namelen,
1012 struct btrfs_root *root,
1013 bool readonly,
1014 struct btrfs_qgroup_inherit *inherit)
1015{
1016 int ret;
1017 bool snapshot_force_cow = false;
1018
1019 /*
1020 * Force new buffered writes to reserve space even when NOCOW is
1021 * possible. This is to avoid later writeback (running dealloc) to
1022 * fallback to COW mode and unexpectedly fail with ENOSPC.
1023 */
1024 btrfs_drew_read_lock(&root->snapshot_lock);
1025
1026 ret = btrfs_start_delalloc_snapshot(root, false);
1027 if (ret)
1028 goto out;
1029
1030 /*
1031 * All previous writes have started writeback in NOCOW mode, so now
1032 * we force future writes to fallback to COW mode during snapshot
1033 * creation.
1034 */
1035 atomic_inc(&root->snapshot_force_cow);
1036 snapshot_force_cow = true;
1037
1038 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1039
1040 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
1041 root, readonly, inherit);
1042out:
1043 if (snapshot_force_cow)
1044 atomic_dec(&root->snapshot_force_cow);
1045 btrfs_drew_read_unlock(&root->snapshot_lock);
1046 return ret;
1047}
1048
1049/*
1050 * Try to start exclusive operation @type or cancel it if it's running.
1051 *
1052 * Return:
1053 * 0 - normal mode, newly claimed op started
1054 * >0 - normal mode, something else is running,
1055 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1056 * ECANCELED - cancel mode, successful cancel
1057 * ENOTCONN - cancel mode, operation not running anymore
1058 */
1059static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1060 enum btrfs_exclusive_operation type, bool cancel)
1061{
1062 if (!cancel) {
1063 /* Start normal op */
1064 if (!btrfs_exclop_start(fs_info, type))
1065 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1066 /* Exclusive operation is now claimed */
1067 return 0;
1068 }
1069
1070 /* Cancel running op */
1071 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1072 /*
1073 * This blocks any exclop finish from setting it to NONE, so we
1074 * request cancellation. Either it runs and we will wait for it,
1075 * or it has finished and no waiting will happen.
1076 */
1077 atomic_inc(&fs_info->reloc_cancel_req);
1078 btrfs_exclop_start_unlock(fs_info);
1079
1080 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1081 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1082 TASK_INTERRUPTIBLE);
1083
1084 return -ECANCELED;
1085 }
1086
1087 /* Something else is running or none */
1088 return -ENOTCONN;
1089}
1090
1091static noinline int btrfs_ioctl_resize(struct file *file,
1092 void __user *arg)
1093{
1094 BTRFS_DEV_LOOKUP_ARGS(args);
1095 struct inode *inode = file_inode(file);
1096 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1097 u64 new_size;
1098 u64 old_size;
1099 u64 devid = 1;
1100 struct btrfs_root *root = BTRFS_I(inode)->root;
1101 struct btrfs_ioctl_vol_args *vol_args;
1102 struct btrfs_trans_handle *trans;
1103 struct btrfs_device *device = NULL;
1104 char *sizestr;
1105 char *retptr;
1106 char *devstr = NULL;
1107 int ret = 0;
1108 int mod = 0;
1109 bool cancel;
1110
1111 if (!capable(CAP_SYS_ADMIN))
1112 return -EPERM;
1113
1114 ret = mnt_want_write_file(file);
1115 if (ret)
1116 return ret;
1117
1118 /*
1119 * Read the arguments before checking exclusivity to be able to
1120 * distinguish regular resize and cancel
1121 */
1122 vol_args = memdup_user(arg, sizeof(*vol_args));
1123 if (IS_ERR(vol_args)) {
1124 ret = PTR_ERR(vol_args);
1125 goto out_drop;
1126 }
1127 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1128 sizestr = vol_args->name;
1129 cancel = (strcmp("cancel", sizestr) == 0);
1130 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1131 if (ret)
1132 goto out_free;
1133 /* Exclusive operation is now claimed */
1134
1135 devstr = strchr(sizestr, ':');
1136 if (devstr) {
1137 sizestr = devstr + 1;
1138 *devstr = '\0';
1139 devstr = vol_args->name;
1140 ret = kstrtoull(devstr, 10, &devid);
1141 if (ret)
1142 goto out_finish;
1143 if (!devid) {
1144 ret = -EINVAL;
1145 goto out_finish;
1146 }
1147 btrfs_info(fs_info, "resizing devid %llu", devid);
1148 }
1149
1150 args.devid = devid;
1151 device = btrfs_find_device(fs_info->fs_devices, &args);
1152 if (!device) {
1153 btrfs_info(fs_info, "resizer unable to find device %llu",
1154 devid);
1155 ret = -ENODEV;
1156 goto out_finish;
1157 }
1158
1159 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1160 btrfs_info(fs_info,
1161 "resizer unable to apply on readonly device %llu",
1162 devid);
1163 ret = -EPERM;
1164 goto out_finish;
1165 }
1166
1167 if (!strcmp(sizestr, "max"))
1168 new_size = bdev_nr_bytes(device->bdev);
1169 else {
1170 if (sizestr[0] == '-') {
1171 mod = -1;
1172 sizestr++;
1173 } else if (sizestr[0] == '+') {
1174 mod = 1;
1175 sizestr++;
1176 }
1177 new_size = memparse(sizestr, &retptr);
1178 if (*retptr != '\0' || new_size == 0) {
1179 ret = -EINVAL;
1180 goto out_finish;
1181 }
1182 }
1183
1184 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1185 ret = -EPERM;
1186 goto out_finish;
1187 }
1188
1189 old_size = btrfs_device_get_total_bytes(device);
1190
1191 if (mod < 0) {
1192 if (new_size > old_size) {
1193 ret = -EINVAL;
1194 goto out_finish;
1195 }
1196 new_size = old_size - new_size;
1197 } else if (mod > 0) {
1198 if (new_size > ULLONG_MAX - old_size) {
1199 ret = -ERANGE;
1200 goto out_finish;
1201 }
1202 new_size = old_size + new_size;
1203 }
1204
1205 if (new_size < SZ_256M) {
1206 ret = -EINVAL;
1207 goto out_finish;
1208 }
1209 if (new_size > bdev_nr_bytes(device->bdev)) {
1210 ret = -EFBIG;
1211 goto out_finish;
1212 }
1213
1214 new_size = round_down(new_size, fs_info->sectorsize);
1215
1216 if (new_size > old_size) {
1217 trans = btrfs_start_transaction(root, 0);
1218 if (IS_ERR(trans)) {
1219 ret = PTR_ERR(trans);
1220 goto out_finish;
1221 }
1222 ret = btrfs_grow_device(trans, device, new_size);
1223 btrfs_commit_transaction(trans);
1224 } else if (new_size < old_size) {
1225 ret = btrfs_shrink_device(device, new_size);
1226 } /* equal, nothing need to do */
1227
1228 if (ret == 0 && new_size != old_size)
1229 btrfs_info_in_rcu(fs_info,
1230 "resize device %s (devid %llu) from %llu to %llu",
1231 btrfs_dev_name(device), device->devid,
1232 old_size, new_size);
1233out_finish:
1234 btrfs_exclop_finish(fs_info);
1235out_free:
1236 kfree(vol_args);
1237out_drop:
1238 mnt_drop_write_file(file);
1239 return ret;
1240}
1241
1242static noinline int __btrfs_ioctl_snap_create(struct file *file,
1243 struct user_namespace *mnt_userns,
1244 const char *name, unsigned long fd, int subvol,
1245 bool readonly,
1246 struct btrfs_qgroup_inherit *inherit)
1247{
1248 int namelen;
1249 int ret = 0;
1250
1251 if (!S_ISDIR(file_inode(file)->i_mode))
1252 return -ENOTDIR;
1253
1254 ret = mnt_want_write_file(file);
1255 if (ret)
1256 goto out;
1257
1258 namelen = strlen(name);
1259 if (strchr(name, '/')) {
1260 ret = -EINVAL;
1261 goto out_drop_write;
1262 }
1263
1264 if (name[0] == '.' &&
1265 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1266 ret = -EEXIST;
1267 goto out_drop_write;
1268 }
1269
1270 if (subvol) {
1271 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
1272 namelen, NULL, readonly, inherit);
1273 } else {
1274 struct fd src = fdget(fd);
1275 struct inode *src_inode;
1276 if (!src.file) {
1277 ret = -EINVAL;
1278 goto out_drop_write;
1279 }
1280
1281 src_inode = file_inode(src.file);
1282 if (src_inode->i_sb != file_inode(file)->i_sb) {
1283 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1284 "Snapshot src from another FS");
1285 ret = -EXDEV;
1286 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
1287 /*
1288 * Subvolume creation is not restricted, but snapshots
1289 * are limited to own subvolumes only
1290 */
1291 ret = -EPERM;
1292 } else {
1293 ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
1294 name, namelen,
1295 BTRFS_I(src_inode)->root,
1296 readonly, inherit);
1297 }
1298 fdput(src);
1299 }
1300out_drop_write:
1301 mnt_drop_write_file(file);
1302out:
1303 return ret;
1304}
1305
1306static noinline int btrfs_ioctl_snap_create(struct file *file,
1307 void __user *arg, int subvol)
1308{
1309 struct btrfs_ioctl_vol_args *vol_args;
1310 int ret;
1311
1312 if (!S_ISDIR(file_inode(file)->i_mode))
1313 return -ENOTDIR;
1314
1315 vol_args = memdup_user(arg, sizeof(*vol_args));
1316 if (IS_ERR(vol_args))
1317 return PTR_ERR(vol_args);
1318 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1319
1320 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1321 vol_args->name, vol_args->fd, subvol,
1322 false, NULL);
1323
1324 kfree(vol_args);
1325 return ret;
1326}
1327
1328static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1329 void __user *arg, int subvol)
1330{
1331 struct btrfs_ioctl_vol_args_v2 *vol_args;
1332 int ret;
1333 bool readonly = false;
1334 struct btrfs_qgroup_inherit *inherit = NULL;
1335
1336 if (!S_ISDIR(file_inode(file)->i_mode))
1337 return -ENOTDIR;
1338
1339 vol_args = memdup_user(arg, sizeof(*vol_args));
1340 if (IS_ERR(vol_args))
1341 return PTR_ERR(vol_args);
1342 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1343
1344 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1345 ret = -EOPNOTSUPP;
1346 goto free_args;
1347 }
1348
1349 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1350 readonly = true;
1351 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1352 u64 nums;
1353
1354 if (vol_args->size < sizeof(*inherit) ||
1355 vol_args->size > PAGE_SIZE) {
1356 ret = -EINVAL;
1357 goto free_args;
1358 }
1359 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1360 if (IS_ERR(inherit)) {
1361 ret = PTR_ERR(inherit);
1362 goto free_args;
1363 }
1364
1365 if (inherit->num_qgroups > PAGE_SIZE ||
1366 inherit->num_ref_copies > PAGE_SIZE ||
1367 inherit->num_excl_copies > PAGE_SIZE) {
1368 ret = -EINVAL;
1369 goto free_inherit;
1370 }
1371
1372 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1373 2 * inherit->num_excl_copies;
1374 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1375 ret = -EINVAL;
1376 goto free_inherit;
1377 }
1378 }
1379
1380 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1381 vol_args->name, vol_args->fd, subvol,
1382 readonly, inherit);
1383 if (ret)
1384 goto free_inherit;
1385free_inherit:
1386 kfree(inherit);
1387free_args:
1388 kfree(vol_args);
1389 return ret;
1390}
1391
1392static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1393 void __user *arg)
1394{
1395 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1396 struct btrfs_root *root = BTRFS_I(inode)->root;
1397 int ret = 0;
1398 u64 flags = 0;
1399
1400 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1401 return -EINVAL;
1402
1403 down_read(&fs_info->subvol_sem);
1404 if (btrfs_root_readonly(root))
1405 flags |= BTRFS_SUBVOL_RDONLY;
1406 up_read(&fs_info->subvol_sem);
1407
1408 if (copy_to_user(arg, &flags, sizeof(flags)))
1409 ret = -EFAULT;
1410
1411 return ret;
1412}
1413
1414static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1415 void __user *arg)
1416{
1417 struct inode *inode = file_inode(file);
1418 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1419 struct btrfs_root *root = BTRFS_I(inode)->root;
1420 struct btrfs_trans_handle *trans;
1421 u64 root_flags;
1422 u64 flags;
1423 int ret = 0;
1424
1425 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
1426 return -EPERM;
1427
1428 ret = mnt_want_write_file(file);
1429 if (ret)
1430 goto out;
1431
1432 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1433 ret = -EINVAL;
1434 goto out_drop_write;
1435 }
1436
1437 if (copy_from_user(&flags, arg, sizeof(flags))) {
1438 ret = -EFAULT;
1439 goto out_drop_write;
1440 }
1441
1442 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1443 ret = -EOPNOTSUPP;
1444 goto out_drop_write;
1445 }
1446
1447 down_write(&fs_info->subvol_sem);
1448
1449 /* nothing to do */
1450 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1451 goto out_drop_sem;
1452
1453 root_flags = btrfs_root_flags(&root->root_item);
1454 if (flags & BTRFS_SUBVOL_RDONLY) {
1455 btrfs_set_root_flags(&root->root_item,
1456 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1457 } else {
1458 /*
1459 * Block RO -> RW transition if this subvolume is involved in
1460 * send
1461 */
1462 spin_lock(&root->root_item_lock);
1463 if (root->send_in_progress == 0) {
1464 btrfs_set_root_flags(&root->root_item,
1465 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1466 spin_unlock(&root->root_item_lock);
1467 } else {
1468 spin_unlock(&root->root_item_lock);
1469 btrfs_warn(fs_info,
1470 "Attempt to set subvolume %llu read-write during send",
1471 root->root_key.objectid);
1472 ret = -EPERM;
1473 goto out_drop_sem;
1474 }
1475 }
1476
1477 trans = btrfs_start_transaction(root, 1);
1478 if (IS_ERR(trans)) {
1479 ret = PTR_ERR(trans);
1480 goto out_reset;
1481 }
1482
1483 ret = btrfs_update_root(trans, fs_info->tree_root,
1484 &root->root_key, &root->root_item);
1485 if (ret < 0) {
1486 btrfs_end_transaction(trans);
1487 goto out_reset;
1488 }
1489
1490 ret = btrfs_commit_transaction(trans);
1491
1492out_reset:
1493 if (ret)
1494 btrfs_set_root_flags(&root->root_item, root_flags);
1495out_drop_sem:
1496 up_write(&fs_info->subvol_sem);
1497out_drop_write:
1498 mnt_drop_write_file(file);
1499out:
1500 return ret;
1501}
1502
1503static noinline int key_in_sk(struct btrfs_key *key,
1504 struct btrfs_ioctl_search_key *sk)
1505{
1506 struct btrfs_key test;
1507 int ret;
1508
1509 test.objectid = sk->min_objectid;
1510 test.type = sk->min_type;
1511 test.offset = sk->min_offset;
1512
1513 ret = btrfs_comp_cpu_keys(key, &test);
1514 if (ret < 0)
1515 return 0;
1516
1517 test.objectid = sk->max_objectid;
1518 test.type = sk->max_type;
1519 test.offset = sk->max_offset;
1520
1521 ret = btrfs_comp_cpu_keys(key, &test);
1522 if (ret > 0)
1523 return 0;
1524 return 1;
1525}
1526
1527static noinline int copy_to_sk(struct btrfs_path *path,
1528 struct btrfs_key *key,
1529 struct btrfs_ioctl_search_key *sk,
1530 size_t *buf_size,
1531 char __user *ubuf,
1532 unsigned long *sk_offset,
1533 int *num_found)
1534{
1535 u64 found_transid;
1536 struct extent_buffer *leaf;
1537 struct btrfs_ioctl_search_header sh;
1538 struct btrfs_key test;
1539 unsigned long item_off;
1540 unsigned long item_len;
1541 int nritems;
1542 int i;
1543 int slot;
1544 int ret = 0;
1545
1546 leaf = path->nodes[0];
1547 slot = path->slots[0];
1548 nritems = btrfs_header_nritems(leaf);
1549
1550 if (btrfs_header_generation(leaf) > sk->max_transid) {
1551 i = nritems;
1552 goto advance_key;
1553 }
1554 found_transid = btrfs_header_generation(leaf);
1555
1556 for (i = slot; i < nritems; i++) {
1557 item_off = btrfs_item_ptr_offset(leaf, i);
1558 item_len = btrfs_item_size(leaf, i);
1559
1560 btrfs_item_key_to_cpu(leaf, key, i);
1561 if (!key_in_sk(key, sk))
1562 continue;
1563
1564 if (sizeof(sh) + item_len > *buf_size) {
1565 if (*num_found) {
1566 ret = 1;
1567 goto out;
1568 }
1569
1570 /*
1571 * return one empty item back for v1, which does not
1572 * handle -EOVERFLOW
1573 */
1574
1575 *buf_size = sizeof(sh) + item_len;
1576 item_len = 0;
1577 ret = -EOVERFLOW;
1578 }
1579
1580 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1581 ret = 1;
1582 goto out;
1583 }
1584
1585 sh.objectid = key->objectid;
1586 sh.offset = key->offset;
1587 sh.type = key->type;
1588 sh.len = item_len;
1589 sh.transid = found_transid;
1590
1591 /*
1592 * Copy search result header. If we fault then loop again so we
1593 * can fault in the pages and -EFAULT there if there's a
1594 * problem. Otherwise we'll fault and then copy the buffer in
1595 * properly this next time through
1596 */
1597 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1598 ret = 0;
1599 goto out;
1600 }
1601
1602 *sk_offset += sizeof(sh);
1603
1604 if (item_len) {
1605 char __user *up = ubuf + *sk_offset;
1606 /*
1607 * Copy the item, same behavior as above, but reset the
1608 * * sk_offset so we copy the full thing again.
1609 */
1610 if (read_extent_buffer_to_user_nofault(leaf, up,
1611 item_off, item_len)) {
1612 ret = 0;
1613 *sk_offset -= sizeof(sh);
1614 goto out;
1615 }
1616
1617 *sk_offset += item_len;
1618 }
1619 (*num_found)++;
1620
1621 if (ret) /* -EOVERFLOW from above */
1622 goto out;
1623
1624 if (*num_found >= sk->nr_items) {
1625 ret = 1;
1626 goto out;
1627 }
1628 }
1629advance_key:
1630 ret = 0;
1631 test.objectid = sk->max_objectid;
1632 test.type = sk->max_type;
1633 test.offset = sk->max_offset;
1634 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1635 ret = 1;
1636 else if (key->offset < (u64)-1)
1637 key->offset++;
1638 else if (key->type < (u8)-1) {
1639 key->offset = 0;
1640 key->type++;
1641 } else if (key->objectid < (u64)-1) {
1642 key->offset = 0;
1643 key->type = 0;
1644 key->objectid++;
1645 } else
1646 ret = 1;
1647out:
1648 /*
1649 * 0: all items from this leaf copied, continue with next
1650 * 1: * more items can be copied, but unused buffer is too small
1651 * * all items were found
1652 * Either way, it will stops the loop which iterates to the next
1653 * leaf
1654 * -EOVERFLOW: item was to large for buffer
1655 * -EFAULT: could not copy extent buffer back to userspace
1656 */
1657 return ret;
1658}
1659
1660static noinline int search_ioctl(struct inode *inode,
1661 struct btrfs_ioctl_search_key *sk,
1662 size_t *buf_size,
1663 char __user *ubuf)
1664{
1665 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
1666 struct btrfs_root *root;
1667 struct btrfs_key key;
1668 struct btrfs_path *path;
1669 int ret;
1670 int num_found = 0;
1671 unsigned long sk_offset = 0;
1672
1673 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1674 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1675 return -EOVERFLOW;
1676 }
1677
1678 path = btrfs_alloc_path();
1679 if (!path)
1680 return -ENOMEM;
1681
1682 if (sk->tree_id == 0) {
1683 /* search the root of the inode that was passed */
1684 root = btrfs_grab_root(BTRFS_I(inode)->root);
1685 } else {
1686 root = btrfs_get_fs_root(info, sk->tree_id, true);
1687 if (IS_ERR(root)) {
1688 btrfs_free_path(path);
1689 return PTR_ERR(root);
1690 }
1691 }
1692
1693 key.objectid = sk->min_objectid;
1694 key.type = sk->min_type;
1695 key.offset = sk->min_offset;
1696
1697 while (1) {
1698 ret = -EFAULT;
1699 /*
1700 * Ensure that the whole user buffer is faulted in at sub-page
1701 * granularity, otherwise the loop may live-lock.
1702 */
1703 if (fault_in_subpage_writeable(ubuf + sk_offset,
1704 *buf_size - sk_offset))
1705 break;
1706
1707 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1708 if (ret != 0) {
1709 if (ret > 0)
1710 ret = 0;
1711 goto err;
1712 }
1713 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1714 &sk_offset, &num_found);
1715 btrfs_release_path(path);
1716 if (ret)
1717 break;
1718
1719 }
1720 if (ret > 0)
1721 ret = 0;
1722err:
1723 sk->nr_items = num_found;
1724 btrfs_put_root(root);
1725 btrfs_free_path(path);
1726 return ret;
1727}
1728
1729static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1730 void __user *argp)
1731{
1732 struct btrfs_ioctl_search_args __user *uargs = argp;
1733 struct btrfs_ioctl_search_key sk;
1734 int ret;
1735 size_t buf_size;
1736
1737 if (!capable(CAP_SYS_ADMIN))
1738 return -EPERM;
1739
1740 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1741 return -EFAULT;
1742
1743 buf_size = sizeof(uargs->buf);
1744
1745 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1746
1747 /*
1748 * In the origin implementation an overflow is handled by returning a
1749 * search header with a len of zero, so reset ret.
1750 */
1751 if (ret == -EOVERFLOW)
1752 ret = 0;
1753
1754 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1755 ret = -EFAULT;
1756 return ret;
1757}
1758
1759static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1760 void __user *argp)
1761{
1762 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1763 struct btrfs_ioctl_search_args_v2 args;
1764 int ret;
1765 size_t buf_size;
1766 const size_t buf_limit = SZ_16M;
1767
1768 if (!capable(CAP_SYS_ADMIN))
1769 return -EPERM;
1770
1771 /* copy search header and buffer size */
1772 if (copy_from_user(&args, uarg, sizeof(args)))
1773 return -EFAULT;
1774
1775 buf_size = args.buf_size;
1776
1777 /* limit result size to 16MB */
1778 if (buf_size > buf_limit)
1779 buf_size = buf_limit;
1780
1781 ret = search_ioctl(inode, &args.key, &buf_size,
1782 (char __user *)(&uarg->buf[0]));
1783 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1784 ret = -EFAULT;
1785 else if (ret == -EOVERFLOW &&
1786 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1787 ret = -EFAULT;
1788
1789 return ret;
1790}
1791
1792/*
1793 * Search INODE_REFs to identify path name of 'dirid' directory
1794 * in a 'tree_id' tree. and sets path name to 'name'.
1795 */
1796static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1797 u64 tree_id, u64 dirid, char *name)
1798{
1799 struct btrfs_root *root;
1800 struct btrfs_key key;
1801 char *ptr;
1802 int ret = -1;
1803 int slot;
1804 int len;
1805 int total_len = 0;
1806 struct btrfs_inode_ref *iref;
1807 struct extent_buffer *l;
1808 struct btrfs_path *path;
1809
1810 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1811 name[0]='\0';
1812 return 0;
1813 }
1814
1815 path = btrfs_alloc_path();
1816 if (!path)
1817 return -ENOMEM;
1818
1819 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1820
1821 root = btrfs_get_fs_root(info, tree_id, true);
1822 if (IS_ERR(root)) {
1823 ret = PTR_ERR(root);
1824 root = NULL;
1825 goto out;
1826 }
1827
1828 key.objectid = dirid;
1829 key.type = BTRFS_INODE_REF_KEY;
1830 key.offset = (u64)-1;
1831
1832 while (1) {
1833 ret = btrfs_search_backwards(root, &key, path);
1834 if (ret < 0)
1835 goto out;
1836 else if (ret > 0) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
1840
1841 l = path->nodes[0];
1842 slot = path->slots[0];
1843
1844 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1845 len = btrfs_inode_ref_name_len(l, iref);
1846 ptr -= len + 1;
1847 total_len += len + 1;
1848 if (ptr < name) {
1849 ret = -ENAMETOOLONG;
1850 goto out;
1851 }
1852
1853 *(ptr + len) = '/';
1854 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1855
1856 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1857 break;
1858
1859 btrfs_release_path(path);
1860 key.objectid = key.offset;
1861 key.offset = (u64)-1;
1862 dirid = key.objectid;
1863 }
1864 memmove(name, ptr, total_len);
1865 name[total_len] = '\0';
1866 ret = 0;
1867out:
1868 btrfs_put_root(root);
1869 btrfs_free_path(path);
1870 return ret;
1871}
1872
1873static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
1874 struct inode *inode,
1875 struct btrfs_ioctl_ino_lookup_user_args *args)
1876{
1877 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1878 struct super_block *sb = inode->i_sb;
1879 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1880 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1881 u64 dirid = args->dirid;
1882 unsigned long item_off;
1883 unsigned long item_len;
1884 struct btrfs_inode_ref *iref;
1885 struct btrfs_root_ref *rref;
1886 struct btrfs_root *root = NULL;
1887 struct btrfs_path *path;
1888 struct btrfs_key key, key2;
1889 struct extent_buffer *leaf;
1890 struct inode *temp_inode;
1891 char *ptr;
1892 int slot;
1893 int len;
1894 int total_len = 0;
1895 int ret;
1896
1897 path = btrfs_alloc_path();
1898 if (!path)
1899 return -ENOMEM;
1900
1901 /*
1902 * If the bottom subvolume does not exist directly under upper_limit,
1903 * construct the path in from the bottom up.
1904 */
1905 if (dirid != upper_limit.objectid) {
1906 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1907
1908 root = btrfs_get_fs_root(fs_info, treeid, true);
1909 if (IS_ERR(root)) {
1910 ret = PTR_ERR(root);
1911 goto out;
1912 }
1913
1914 key.objectid = dirid;
1915 key.type = BTRFS_INODE_REF_KEY;
1916 key.offset = (u64)-1;
1917 while (1) {
1918 ret = btrfs_search_backwards(root, &key, path);
1919 if (ret < 0)
1920 goto out_put;
1921 else if (ret > 0) {
1922 ret = -ENOENT;
1923 goto out_put;
1924 }
1925
1926 leaf = path->nodes[0];
1927 slot = path->slots[0];
1928
1929 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1930 len = btrfs_inode_ref_name_len(leaf, iref);
1931 ptr -= len + 1;
1932 total_len += len + 1;
1933 if (ptr < args->path) {
1934 ret = -ENAMETOOLONG;
1935 goto out_put;
1936 }
1937
1938 *(ptr + len) = '/';
1939 read_extent_buffer(leaf, ptr,
1940 (unsigned long)(iref + 1), len);
1941
1942 /* Check the read+exec permission of this directory */
1943 ret = btrfs_previous_item(root, path, dirid,
1944 BTRFS_INODE_ITEM_KEY);
1945 if (ret < 0) {
1946 goto out_put;
1947 } else if (ret > 0) {
1948 ret = -ENOENT;
1949 goto out_put;
1950 }
1951
1952 leaf = path->nodes[0];
1953 slot = path->slots[0];
1954 btrfs_item_key_to_cpu(leaf, &key2, slot);
1955 if (key2.objectid != dirid) {
1956 ret = -ENOENT;
1957 goto out_put;
1958 }
1959
1960 temp_inode = btrfs_iget(sb, key2.objectid, root);
1961 if (IS_ERR(temp_inode)) {
1962 ret = PTR_ERR(temp_inode);
1963 goto out_put;
1964 }
1965 ret = inode_permission(mnt_userns, temp_inode,
1966 MAY_READ | MAY_EXEC);
1967 iput(temp_inode);
1968 if (ret) {
1969 ret = -EACCES;
1970 goto out_put;
1971 }
1972
1973 if (key.offset == upper_limit.objectid)
1974 break;
1975 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1976 ret = -EACCES;
1977 goto out_put;
1978 }
1979
1980 btrfs_release_path(path);
1981 key.objectid = key.offset;
1982 key.offset = (u64)-1;
1983 dirid = key.objectid;
1984 }
1985
1986 memmove(args->path, ptr, total_len);
1987 args->path[total_len] = '\0';
1988 btrfs_put_root(root);
1989 root = NULL;
1990 btrfs_release_path(path);
1991 }
1992
1993 /* Get the bottom subvolume's name from ROOT_REF */
1994 key.objectid = treeid;
1995 key.type = BTRFS_ROOT_REF_KEY;
1996 key.offset = args->treeid;
1997 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1998 if (ret < 0) {
1999 goto out;
2000 } else if (ret > 0) {
2001 ret = -ENOENT;
2002 goto out;
2003 }
2004
2005 leaf = path->nodes[0];
2006 slot = path->slots[0];
2007 btrfs_item_key_to_cpu(leaf, &key, slot);
2008
2009 item_off = btrfs_item_ptr_offset(leaf, slot);
2010 item_len = btrfs_item_size(leaf, slot);
2011 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2012 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2013 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2014 ret = -EINVAL;
2015 goto out;
2016 }
2017
2018 /* Copy subvolume's name */
2019 item_off += sizeof(struct btrfs_root_ref);
2020 item_len -= sizeof(struct btrfs_root_ref);
2021 read_extent_buffer(leaf, args->name, item_off, item_len);
2022 args->name[item_len] = 0;
2023
2024out_put:
2025 btrfs_put_root(root);
2026out:
2027 btrfs_free_path(path);
2028 return ret;
2029}
2030
2031static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2032 void __user *argp)
2033{
2034 struct btrfs_ioctl_ino_lookup_args *args;
2035 int ret = 0;
2036
2037 args = memdup_user(argp, sizeof(*args));
2038 if (IS_ERR(args))
2039 return PTR_ERR(args);
2040
2041 /*
2042 * Unprivileged query to obtain the containing subvolume root id. The
2043 * path is reset so it's consistent with btrfs_search_path_in_tree.
2044 */
2045 if (args->treeid == 0)
2046 args->treeid = root->root_key.objectid;
2047
2048 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2049 args->name[0] = 0;
2050 goto out;
2051 }
2052
2053 if (!capable(CAP_SYS_ADMIN)) {
2054 ret = -EPERM;
2055 goto out;
2056 }
2057
2058 ret = btrfs_search_path_in_tree(root->fs_info,
2059 args->treeid, args->objectid,
2060 args->name);
2061
2062out:
2063 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2064 ret = -EFAULT;
2065
2066 kfree(args);
2067 return ret;
2068}
2069
2070/*
2071 * Version of ino_lookup ioctl (unprivileged)
2072 *
2073 * The main differences from ino_lookup ioctl are:
2074 *
2075 * 1. Read + Exec permission will be checked using inode_permission() during
2076 * path construction. -EACCES will be returned in case of failure.
2077 * 2. Path construction will be stopped at the inode number which corresponds
2078 * to the fd with which this ioctl is called. If constructed path does not
2079 * exist under fd's inode, -EACCES will be returned.
2080 * 3. The name of bottom subvolume is also searched and filled.
2081 */
2082static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2083{
2084 struct btrfs_ioctl_ino_lookup_user_args *args;
2085 struct inode *inode;
2086 int ret;
2087
2088 args = memdup_user(argp, sizeof(*args));
2089 if (IS_ERR(args))
2090 return PTR_ERR(args);
2091
2092 inode = file_inode(file);
2093
2094 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2095 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2096 /*
2097 * The subvolume does not exist under fd with which this is
2098 * called
2099 */
2100 kfree(args);
2101 return -EACCES;
2102 }
2103
2104 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2105
2106 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2107 ret = -EFAULT;
2108
2109 kfree(args);
2110 return ret;
2111}
2112
2113/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2114static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2115{
2116 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2117 struct btrfs_fs_info *fs_info;
2118 struct btrfs_root *root;
2119 struct btrfs_path *path;
2120 struct btrfs_key key;
2121 struct btrfs_root_item *root_item;
2122 struct btrfs_root_ref *rref;
2123 struct extent_buffer *leaf;
2124 unsigned long item_off;
2125 unsigned long item_len;
2126 int slot;
2127 int ret = 0;
2128
2129 path = btrfs_alloc_path();
2130 if (!path)
2131 return -ENOMEM;
2132
2133 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2134 if (!subvol_info) {
2135 btrfs_free_path(path);
2136 return -ENOMEM;
2137 }
2138
2139 fs_info = BTRFS_I(inode)->root->fs_info;
2140
2141 /* Get root_item of inode's subvolume */
2142 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2143 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2144 if (IS_ERR(root)) {
2145 ret = PTR_ERR(root);
2146 goto out_free;
2147 }
2148 root_item = &root->root_item;
2149
2150 subvol_info->treeid = key.objectid;
2151
2152 subvol_info->generation = btrfs_root_generation(root_item);
2153 subvol_info->flags = btrfs_root_flags(root_item);
2154
2155 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2156 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2157 BTRFS_UUID_SIZE);
2158 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2159 BTRFS_UUID_SIZE);
2160
2161 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2162 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2163 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2164
2165 subvol_info->otransid = btrfs_root_otransid(root_item);
2166 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2167 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2168
2169 subvol_info->stransid = btrfs_root_stransid(root_item);
2170 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2171 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2172
2173 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2174 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2175 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2176
2177 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2178 /* Search root tree for ROOT_BACKREF of this subvolume */
2179 key.type = BTRFS_ROOT_BACKREF_KEY;
2180 key.offset = 0;
2181 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2182 if (ret < 0) {
2183 goto out;
2184 } else if (path->slots[0] >=
2185 btrfs_header_nritems(path->nodes[0])) {
2186 ret = btrfs_next_leaf(fs_info->tree_root, path);
2187 if (ret < 0) {
2188 goto out;
2189 } else if (ret > 0) {
2190 ret = -EUCLEAN;
2191 goto out;
2192 }
2193 }
2194
2195 leaf = path->nodes[0];
2196 slot = path->slots[0];
2197 btrfs_item_key_to_cpu(leaf, &key, slot);
2198 if (key.objectid == subvol_info->treeid &&
2199 key.type == BTRFS_ROOT_BACKREF_KEY) {
2200 subvol_info->parent_id = key.offset;
2201
2202 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2203 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2204
2205 item_off = btrfs_item_ptr_offset(leaf, slot)
2206 + sizeof(struct btrfs_root_ref);
2207 item_len = btrfs_item_size(leaf, slot)
2208 - sizeof(struct btrfs_root_ref);
2209 read_extent_buffer(leaf, subvol_info->name,
2210 item_off, item_len);
2211 } else {
2212 ret = -ENOENT;
2213 goto out;
2214 }
2215 }
2216
2217 btrfs_free_path(path);
2218 path = NULL;
2219 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2220 ret = -EFAULT;
2221
2222out:
2223 btrfs_put_root(root);
2224out_free:
2225 btrfs_free_path(path);
2226 kfree(subvol_info);
2227 return ret;
2228}
2229
2230/*
2231 * Return ROOT_REF information of the subvolume containing this inode
2232 * except the subvolume name.
2233 */
2234static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2235 void __user *argp)
2236{
2237 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2238 struct btrfs_root_ref *rref;
2239 struct btrfs_path *path;
2240 struct btrfs_key key;
2241 struct extent_buffer *leaf;
2242 u64 objectid;
2243 int slot;
2244 int ret;
2245 u8 found;
2246
2247 path = btrfs_alloc_path();
2248 if (!path)
2249 return -ENOMEM;
2250
2251 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2252 if (IS_ERR(rootrefs)) {
2253 btrfs_free_path(path);
2254 return PTR_ERR(rootrefs);
2255 }
2256
2257 objectid = root->root_key.objectid;
2258 key.objectid = objectid;
2259 key.type = BTRFS_ROOT_REF_KEY;
2260 key.offset = rootrefs->min_treeid;
2261 found = 0;
2262
2263 root = root->fs_info->tree_root;
2264 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2265 if (ret < 0) {
2266 goto out;
2267 } else if (path->slots[0] >=
2268 btrfs_header_nritems(path->nodes[0])) {
2269 ret = btrfs_next_leaf(root, path);
2270 if (ret < 0) {
2271 goto out;
2272 } else if (ret > 0) {
2273 ret = -EUCLEAN;
2274 goto out;
2275 }
2276 }
2277 while (1) {
2278 leaf = path->nodes[0];
2279 slot = path->slots[0];
2280
2281 btrfs_item_key_to_cpu(leaf, &key, slot);
2282 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2283 ret = 0;
2284 goto out;
2285 }
2286
2287 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2288 ret = -EOVERFLOW;
2289 goto out;
2290 }
2291
2292 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2293 rootrefs->rootref[found].treeid = key.offset;
2294 rootrefs->rootref[found].dirid =
2295 btrfs_root_ref_dirid(leaf, rref);
2296 found++;
2297
2298 ret = btrfs_next_item(root, path);
2299 if (ret < 0) {
2300 goto out;
2301 } else if (ret > 0) {
2302 ret = -EUCLEAN;
2303 goto out;
2304 }
2305 }
2306
2307out:
2308 btrfs_free_path(path);
2309
2310 if (!ret || ret == -EOVERFLOW) {
2311 rootrefs->num_items = found;
2312 /* update min_treeid for next search */
2313 if (found)
2314 rootrefs->min_treeid =
2315 rootrefs->rootref[found - 1].treeid + 1;
2316 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2317 ret = -EFAULT;
2318 }
2319
2320 kfree(rootrefs);
2321
2322 return ret;
2323}
2324
2325static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2326 void __user *arg,
2327 bool destroy_v2)
2328{
2329 struct dentry *parent = file->f_path.dentry;
2330 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2331 struct dentry *dentry;
2332 struct inode *dir = d_inode(parent);
2333 struct inode *inode;
2334 struct btrfs_root *root = BTRFS_I(dir)->root;
2335 struct btrfs_root *dest = NULL;
2336 struct btrfs_ioctl_vol_args *vol_args = NULL;
2337 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2338 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
2339 char *subvol_name, *subvol_name_ptr = NULL;
2340 int subvol_namelen;
2341 int err = 0;
2342 bool destroy_parent = false;
2343
2344 /* We don't support snapshots with extent tree v2 yet. */
2345 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2346 btrfs_err(fs_info,
2347 "extent tree v2 doesn't support snapshot deletion yet");
2348 return -EOPNOTSUPP;
2349 }
2350
2351 if (destroy_v2) {
2352 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2353 if (IS_ERR(vol_args2))
2354 return PTR_ERR(vol_args2);
2355
2356 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2357 err = -EOPNOTSUPP;
2358 goto out;
2359 }
2360
2361 /*
2362 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2363 * name, same as v1 currently does.
2364 */
2365 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2366 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2367 subvol_name = vol_args2->name;
2368
2369 err = mnt_want_write_file(file);
2370 if (err)
2371 goto out;
2372 } else {
2373 struct inode *old_dir;
2374
2375 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2376 err = -EINVAL;
2377 goto out;
2378 }
2379
2380 err = mnt_want_write_file(file);
2381 if (err)
2382 goto out;
2383
2384 dentry = btrfs_get_dentry(fs_info->sb,
2385 BTRFS_FIRST_FREE_OBJECTID,
2386 vol_args2->subvolid, 0);
2387 if (IS_ERR(dentry)) {
2388 err = PTR_ERR(dentry);
2389 goto out_drop_write;
2390 }
2391
2392 /*
2393 * Change the default parent since the subvolume being
2394 * deleted can be outside of the current mount point.
2395 */
2396 parent = btrfs_get_parent(dentry);
2397
2398 /*
2399 * At this point dentry->d_name can point to '/' if the
2400 * subvolume we want to destroy is outsite of the
2401 * current mount point, so we need to release the
2402 * current dentry and execute the lookup to return a new
2403 * one with ->d_name pointing to the
2404 * <mount point>/subvol_name.
2405 */
2406 dput(dentry);
2407 if (IS_ERR(parent)) {
2408 err = PTR_ERR(parent);
2409 goto out_drop_write;
2410 }
2411 old_dir = dir;
2412 dir = d_inode(parent);
2413
2414 /*
2415 * If v2 was used with SPEC_BY_ID, a new parent was
2416 * allocated since the subvolume can be outside of the
2417 * current mount point. Later on we need to release this
2418 * new parent dentry.
2419 */
2420 destroy_parent = true;
2421
2422 /*
2423 * On idmapped mounts, deletion via subvolid is
2424 * restricted to subvolumes that are immediate
2425 * ancestors of the inode referenced by the file
2426 * descriptor in the ioctl. Otherwise the idmapping
2427 * could potentially be abused to delete subvolumes
2428 * anywhere in the filesystem the user wouldn't be able
2429 * to delete without an idmapped mount.
2430 */
2431 if (old_dir != dir && mnt_userns != &init_user_ns) {
2432 err = -EOPNOTSUPP;
2433 goto free_parent;
2434 }
2435
2436 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2437 fs_info, vol_args2->subvolid);
2438 if (IS_ERR(subvol_name_ptr)) {
2439 err = PTR_ERR(subvol_name_ptr);
2440 goto free_parent;
2441 }
2442 /* subvol_name_ptr is already nul terminated */
2443 subvol_name = (char *)kbasename(subvol_name_ptr);
2444 }
2445 } else {
2446 vol_args = memdup_user(arg, sizeof(*vol_args));
2447 if (IS_ERR(vol_args))
2448 return PTR_ERR(vol_args);
2449
2450 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2451 subvol_name = vol_args->name;
2452
2453 err = mnt_want_write_file(file);
2454 if (err)
2455 goto out;
2456 }
2457
2458 subvol_namelen = strlen(subvol_name);
2459
2460 if (strchr(subvol_name, '/') ||
2461 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2462 err = -EINVAL;
2463 goto free_subvol_name;
2464 }
2465
2466 if (!S_ISDIR(dir->i_mode)) {
2467 err = -ENOTDIR;
2468 goto free_subvol_name;
2469 }
2470
2471 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2472 if (err == -EINTR)
2473 goto free_subvol_name;
2474 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
2475 if (IS_ERR(dentry)) {
2476 err = PTR_ERR(dentry);
2477 goto out_unlock_dir;
2478 }
2479
2480 if (d_really_is_negative(dentry)) {
2481 err = -ENOENT;
2482 goto out_dput;
2483 }
2484
2485 inode = d_inode(dentry);
2486 dest = BTRFS_I(inode)->root;
2487 if (!capable(CAP_SYS_ADMIN)) {
2488 /*
2489 * Regular user. Only allow this with a special mount
2490 * option, when the user has write+exec access to the
2491 * subvol root, and when rmdir(2) would have been
2492 * allowed.
2493 *
2494 * Note that this is _not_ check that the subvol is
2495 * empty or doesn't contain data that we wouldn't
2496 * otherwise be able to delete.
2497 *
2498 * Users who want to delete empty subvols should try
2499 * rmdir(2).
2500 */
2501 err = -EPERM;
2502 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2503 goto out_dput;
2504
2505 /*
2506 * Do not allow deletion if the parent dir is the same
2507 * as the dir to be deleted. That means the ioctl
2508 * must be called on the dentry referencing the root
2509 * of the subvol, not a random directory contained
2510 * within it.
2511 */
2512 err = -EINVAL;
2513 if (root == dest)
2514 goto out_dput;
2515
2516 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
2517 if (err)
2518 goto out_dput;
2519 }
2520
2521 /* check if subvolume may be deleted by a user */
2522 err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
2523 if (err)
2524 goto out_dput;
2525
2526 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2527 err = -EINVAL;
2528 goto out_dput;
2529 }
2530
2531 btrfs_inode_lock(BTRFS_I(inode), 0);
2532 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2533 btrfs_inode_unlock(BTRFS_I(inode), 0);
2534 if (!err)
2535 d_delete_notify(dir, dentry);
2536
2537out_dput:
2538 dput(dentry);
2539out_unlock_dir:
2540 btrfs_inode_unlock(BTRFS_I(dir), 0);
2541free_subvol_name:
2542 kfree(subvol_name_ptr);
2543free_parent:
2544 if (destroy_parent)
2545 dput(parent);
2546out_drop_write:
2547 mnt_drop_write_file(file);
2548out:
2549 kfree(vol_args2);
2550 kfree(vol_args);
2551 return err;
2552}
2553
2554static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2555{
2556 struct inode *inode = file_inode(file);
2557 struct btrfs_root *root = BTRFS_I(inode)->root;
2558 struct btrfs_ioctl_defrag_range_args range = {0};
2559 int ret;
2560
2561 ret = mnt_want_write_file(file);
2562 if (ret)
2563 return ret;
2564
2565 if (btrfs_root_readonly(root)) {
2566 ret = -EROFS;
2567 goto out;
2568 }
2569
2570 switch (inode->i_mode & S_IFMT) {
2571 case S_IFDIR:
2572 if (!capable(CAP_SYS_ADMIN)) {
2573 ret = -EPERM;
2574 goto out;
2575 }
2576 ret = btrfs_defrag_root(root);
2577 break;
2578 case S_IFREG:
2579 /*
2580 * Note that this does not check the file descriptor for write
2581 * access. This prevents defragmenting executables that are
2582 * running and allows defrag on files open in read-only mode.
2583 */
2584 if (!capable(CAP_SYS_ADMIN) &&
2585 inode_permission(&init_user_ns, inode, MAY_WRITE)) {
2586 ret = -EPERM;
2587 goto out;
2588 }
2589
2590 if (argp) {
2591 if (copy_from_user(&range, argp, sizeof(range))) {
2592 ret = -EFAULT;
2593 goto out;
2594 }
2595 /* compression requires us to start the IO */
2596 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2597 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2598 range.extent_thresh = (u32)-1;
2599 }
2600 } else {
2601 /* the rest are all set to zero by kzalloc */
2602 range.len = (u64)-1;
2603 }
2604 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2605 &range, BTRFS_OLDEST_GENERATION, 0);
2606 if (ret > 0)
2607 ret = 0;
2608 break;
2609 default:
2610 ret = -EINVAL;
2611 }
2612out:
2613 mnt_drop_write_file(file);
2614 return ret;
2615}
2616
2617static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2618{
2619 struct btrfs_ioctl_vol_args *vol_args;
2620 bool restore_op = false;
2621 int ret;
2622
2623 if (!capable(CAP_SYS_ADMIN))
2624 return -EPERM;
2625
2626 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2627 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2628 return -EINVAL;
2629 }
2630
2631 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2632 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2633 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2634
2635 /*
2636 * We can do the device add because we have a paused balanced,
2637 * change the exclusive op type and remember we should bring
2638 * back the paused balance
2639 */
2640 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2641 btrfs_exclop_start_unlock(fs_info);
2642 restore_op = true;
2643 }
2644
2645 vol_args = memdup_user(arg, sizeof(*vol_args));
2646 if (IS_ERR(vol_args)) {
2647 ret = PTR_ERR(vol_args);
2648 goto out;
2649 }
2650
2651 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2652 ret = btrfs_init_new_device(fs_info, vol_args->name);
2653
2654 if (!ret)
2655 btrfs_info(fs_info, "disk added %s", vol_args->name);
2656
2657 kfree(vol_args);
2658out:
2659 if (restore_op)
2660 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2661 else
2662 btrfs_exclop_finish(fs_info);
2663 return ret;
2664}
2665
2666static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2667{
2668 BTRFS_DEV_LOOKUP_ARGS(args);
2669 struct inode *inode = file_inode(file);
2670 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2671 struct btrfs_ioctl_vol_args_v2 *vol_args;
2672 struct block_device *bdev = NULL;
2673 fmode_t mode;
2674 int ret;
2675 bool cancel = false;
2676
2677 if (!capable(CAP_SYS_ADMIN))
2678 return -EPERM;
2679
2680 vol_args = memdup_user(arg, sizeof(*vol_args));
2681 if (IS_ERR(vol_args))
2682 return PTR_ERR(vol_args);
2683
2684 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2685 ret = -EOPNOTSUPP;
2686 goto out;
2687 }
2688
2689 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2690 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2691 args.devid = vol_args->devid;
2692 } else if (!strcmp("cancel", vol_args->name)) {
2693 cancel = true;
2694 } else {
2695 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2696 if (ret)
2697 goto out;
2698 }
2699
2700 ret = mnt_want_write_file(file);
2701 if (ret)
2702 goto out;
2703
2704 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2705 cancel);
2706 if (ret)
2707 goto err_drop;
2708
2709 /* Exclusive operation is now claimed */
2710 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
2711
2712 btrfs_exclop_finish(fs_info);
2713
2714 if (!ret) {
2715 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2716 btrfs_info(fs_info, "device deleted: id %llu",
2717 vol_args->devid);
2718 else
2719 btrfs_info(fs_info, "device deleted: %s",
2720 vol_args->name);
2721 }
2722err_drop:
2723 mnt_drop_write_file(file);
2724 if (bdev)
2725 blkdev_put(bdev, mode);
2726out:
2727 btrfs_put_dev_args_from_path(&args);
2728 kfree(vol_args);
2729 return ret;
2730}
2731
2732static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2733{
2734 BTRFS_DEV_LOOKUP_ARGS(args);
2735 struct inode *inode = file_inode(file);
2736 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2737 struct btrfs_ioctl_vol_args *vol_args;
2738 struct block_device *bdev = NULL;
2739 fmode_t mode;
2740 int ret;
2741 bool cancel = false;
2742
2743 if (!capable(CAP_SYS_ADMIN))
2744 return -EPERM;
2745
2746 vol_args = memdup_user(arg, sizeof(*vol_args));
2747 if (IS_ERR(vol_args))
2748 return PTR_ERR(vol_args);
2749
2750 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2751 if (!strcmp("cancel", vol_args->name)) {
2752 cancel = true;
2753 } else {
2754 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2755 if (ret)
2756 goto out;
2757 }
2758
2759 ret = mnt_want_write_file(file);
2760 if (ret)
2761 goto out;
2762
2763 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2764 cancel);
2765 if (ret == 0) {
2766 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
2767 if (!ret)
2768 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2769 btrfs_exclop_finish(fs_info);
2770 }
2771
2772 mnt_drop_write_file(file);
2773 if (bdev)
2774 blkdev_put(bdev, mode);
2775out:
2776 btrfs_put_dev_args_from_path(&args);
2777 kfree(vol_args);
2778 return ret;
2779}
2780
2781static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2782 void __user *arg)
2783{
2784 struct btrfs_ioctl_fs_info_args *fi_args;
2785 struct btrfs_device *device;
2786 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2787 u64 flags_in;
2788 int ret = 0;
2789
2790 fi_args = memdup_user(arg, sizeof(*fi_args));
2791 if (IS_ERR(fi_args))
2792 return PTR_ERR(fi_args);
2793
2794 flags_in = fi_args->flags;
2795 memset(fi_args, 0, sizeof(*fi_args));
2796
2797 rcu_read_lock();
2798 fi_args->num_devices = fs_devices->num_devices;
2799
2800 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2801 if (device->devid > fi_args->max_id)
2802 fi_args->max_id = device->devid;
2803 }
2804 rcu_read_unlock();
2805
2806 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2807 fi_args->nodesize = fs_info->nodesize;
2808 fi_args->sectorsize = fs_info->sectorsize;
2809 fi_args->clone_alignment = fs_info->sectorsize;
2810
2811 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2812 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2813 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2814 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2815 }
2816
2817 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2818 fi_args->generation = fs_info->generation;
2819 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2820 }
2821
2822 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2823 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2824 sizeof(fi_args->metadata_uuid));
2825 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2826 }
2827
2828 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2829 ret = -EFAULT;
2830
2831 kfree(fi_args);
2832 return ret;
2833}
2834
2835static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2836 void __user *arg)
2837{
2838 BTRFS_DEV_LOOKUP_ARGS(args);
2839 struct btrfs_ioctl_dev_info_args *di_args;
2840 struct btrfs_device *dev;
2841 int ret = 0;
2842
2843 di_args = memdup_user(arg, sizeof(*di_args));
2844 if (IS_ERR(di_args))
2845 return PTR_ERR(di_args);
2846
2847 args.devid = di_args->devid;
2848 if (!btrfs_is_empty_uuid(di_args->uuid))
2849 args.uuid = di_args->uuid;
2850
2851 rcu_read_lock();
2852 dev = btrfs_find_device(fs_info->fs_devices, &args);
2853 if (!dev) {
2854 ret = -ENODEV;
2855 goto out;
2856 }
2857
2858 di_args->devid = dev->devid;
2859 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2860 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2861 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2862 if (dev->name)
2863 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2864 else
2865 di_args->path[0] = '\0';
2866
2867out:
2868 rcu_read_unlock();
2869 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2870 ret = -EFAULT;
2871
2872 kfree(di_args);
2873 return ret;
2874}
2875
2876static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2877{
2878 struct inode *inode = file_inode(file);
2879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2880 struct btrfs_root *root = BTRFS_I(inode)->root;
2881 struct btrfs_root *new_root;
2882 struct btrfs_dir_item *di;
2883 struct btrfs_trans_handle *trans;
2884 struct btrfs_path *path = NULL;
2885 struct btrfs_disk_key disk_key;
2886 struct fscrypt_str name = FSTR_INIT("default", 7);
2887 u64 objectid = 0;
2888 u64 dir_id;
2889 int ret;
2890
2891 if (!capable(CAP_SYS_ADMIN))
2892 return -EPERM;
2893
2894 ret = mnt_want_write_file(file);
2895 if (ret)
2896 return ret;
2897
2898 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2899 ret = -EFAULT;
2900 goto out;
2901 }
2902
2903 if (!objectid)
2904 objectid = BTRFS_FS_TREE_OBJECTID;
2905
2906 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2907 if (IS_ERR(new_root)) {
2908 ret = PTR_ERR(new_root);
2909 goto out;
2910 }
2911 if (!is_fstree(new_root->root_key.objectid)) {
2912 ret = -ENOENT;
2913 goto out_free;
2914 }
2915
2916 path = btrfs_alloc_path();
2917 if (!path) {
2918 ret = -ENOMEM;
2919 goto out_free;
2920 }
2921
2922 trans = btrfs_start_transaction(root, 1);
2923 if (IS_ERR(trans)) {
2924 ret = PTR_ERR(trans);
2925 goto out_free;
2926 }
2927
2928 dir_id = btrfs_super_root_dir(fs_info->super_copy);
2929 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2930 dir_id, &name, 1);
2931 if (IS_ERR_OR_NULL(di)) {
2932 btrfs_release_path(path);
2933 btrfs_end_transaction(trans);
2934 btrfs_err(fs_info,
2935 "Umm, you don't have the default diritem, this isn't going to work");
2936 ret = -ENOENT;
2937 goto out_free;
2938 }
2939
2940 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2941 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2942 btrfs_mark_buffer_dirty(path->nodes[0]);
2943 btrfs_release_path(path);
2944
2945 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2946 btrfs_end_transaction(trans);
2947out_free:
2948 btrfs_put_root(new_root);
2949 btrfs_free_path(path);
2950out:
2951 mnt_drop_write_file(file);
2952 return ret;
2953}
2954
2955static void get_block_group_info(struct list_head *groups_list,
2956 struct btrfs_ioctl_space_info *space)
2957{
2958 struct btrfs_block_group *block_group;
2959
2960 space->total_bytes = 0;
2961 space->used_bytes = 0;
2962 space->flags = 0;
2963 list_for_each_entry(block_group, groups_list, list) {
2964 space->flags = block_group->flags;
2965 space->total_bytes += block_group->length;
2966 space->used_bytes += block_group->used;
2967 }
2968}
2969
2970static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2971 void __user *arg)
2972{
2973 struct btrfs_ioctl_space_args space_args;
2974 struct btrfs_ioctl_space_info space;
2975 struct btrfs_ioctl_space_info *dest;
2976 struct btrfs_ioctl_space_info *dest_orig;
2977 struct btrfs_ioctl_space_info __user *user_dest;
2978 struct btrfs_space_info *info;
2979 static const u64 types[] = {
2980 BTRFS_BLOCK_GROUP_DATA,
2981 BTRFS_BLOCK_GROUP_SYSTEM,
2982 BTRFS_BLOCK_GROUP_METADATA,
2983 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2984 };
2985 int num_types = 4;
2986 int alloc_size;
2987 int ret = 0;
2988 u64 slot_count = 0;
2989 int i, c;
2990
2991 if (copy_from_user(&space_args,
2992 (struct btrfs_ioctl_space_args __user *)arg,
2993 sizeof(space_args)))
2994 return -EFAULT;
2995
2996 for (i = 0; i < num_types; i++) {
2997 struct btrfs_space_info *tmp;
2998
2999 info = NULL;
3000 list_for_each_entry(tmp, &fs_info->space_info, list) {
3001 if (tmp->flags == types[i]) {
3002 info = tmp;
3003 break;
3004 }
3005 }
3006
3007 if (!info)
3008 continue;
3009
3010 down_read(&info->groups_sem);
3011 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3012 if (!list_empty(&info->block_groups[c]))
3013 slot_count++;
3014 }
3015 up_read(&info->groups_sem);
3016 }
3017
3018 /*
3019 * Global block reserve, exported as a space_info
3020 */
3021 slot_count++;
3022
3023 /* space_slots == 0 means they are asking for a count */
3024 if (space_args.space_slots == 0) {
3025 space_args.total_spaces = slot_count;
3026 goto out;
3027 }
3028
3029 slot_count = min_t(u64, space_args.space_slots, slot_count);
3030
3031 alloc_size = sizeof(*dest) * slot_count;
3032
3033 /* we generally have at most 6 or so space infos, one for each raid
3034 * level. So, a whole page should be more than enough for everyone
3035 */
3036 if (alloc_size > PAGE_SIZE)
3037 return -ENOMEM;
3038
3039 space_args.total_spaces = 0;
3040 dest = kmalloc(alloc_size, GFP_KERNEL);
3041 if (!dest)
3042 return -ENOMEM;
3043 dest_orig = dest;
3044
3045 /* now we have a buffer to copy into */
3046 for (i = 0; i < num_types; i++) {
3047 struct btrfs_space_info *tmp;
3048
3049 if (!slot_count)
3050 break;
3051
3052 info = NULL;
3053 list_for_each_entry(tmp, &fs_info->space_info, list) {
3054 if (tmp->flags == types[i]) {
3055 info = tmp;
3056 break;
3057 }
3058 }
3059
3060 if (!info)
3061 continue;
3062 down_read(&info->groups_sem);
3063 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3064 if (!list_empty(&info->block_groups[c])) {
3065 get_block_group_info(&info->block_groups[c],
3066 &space);
3067 memcpy(dest, &space, sizeof(space));
3068 dest++;
3069 space_args.total_spaces++;
3070 slot_count--;
3071 }
3072 if (!slot_count)
3073 break;
3074 }
3075 up_read(&info->groups_sem);
3076 }
3077
3078 /*
3079 * Add global block reserve
3080 */
3081 if (slot_count) {
3082 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3083
3084 spin_lock(&block_rsv->lock);
3085 space.total_bytes = block_rsv->size;
3086 space.used_bytes = block_rsv->size - block_rsv->reserved;
3087 spin_unlock(&block_rsv->lock);
3088 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3089 memcpy(dest, &space, sizeof(space));
3090 space_args.total_spaces++;
3091 }
3092
3093 user_dest = (struct btrfs_ioctl_space_info __user *)
3094 (arg + sizeof(struct btrfs_ioctl_space_args));
3095
3096 if (copy_to_user(user_dest, dest_orig, alloc_size))
3097 ret = -EFAULT;
3098
3099 kfree(dest_orig);
3100out:
3101 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3102 ret = -EFAULT;
3103
3104 return ret;
3105}
3106
3107static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3108 void __user *argp)
3109{
3110 struct btrfs_trans_handle *trans;
3111 u64 transid;
3112
3113 trans = btrfs_attach_transaction_barrier(root);
3114 if (IS_ERR(trans)) {
3115 if (PTR_ERR(trans) != -ENOENT)
3116 return PTR_ERR(trans);
3117
3118 /* No running transaction, don't bother */
3119 transid = root->fs_info->last_trans_committed;
3120 goto out;
3121 }
3122 transid = trans->transid;
3123 btrfs_commit_transaction_async(trans);
3124out:
3125 if (argp)
3126 if (copy_to_user(argp, &transid, sizeof(transid)))
3127 return -EFAULT;
3128 return 0;
3129}
3130
3131static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3132 void __user *argp)
3133{
3134 u64 transid;
3135
3136 if (argp) {
3137 if (copy_from_user(&transid, argp, sizeof(transid)))
3138 return -EFAULT;
3139 } else {
3140 transid = 0; /* current trans */
3141 }
3142 return btrfs_wait_for_commit(fs_info, transid);
3143}
3144
3145static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3146{
3147 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3148 struct btrfs_ioctl_scrub_args *sa;
3149 int ret;
3150
3151 if (!capable(CAP_SYS_ADMIN))
3152 return -EPERM;
3153
3154 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3155 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3156 return -EINVAL;
3157 }
3158
3159 sa = memdup_user(arg, sizeof(*sa));
3160 if (IS_ERR(sa))
3161 return PTR_ERR(sa);
3162
3163 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3164 ret = mnt_want_write_file(file);
3165 if (ret)
3166 goto out;
3167 }
3168
3169 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3170 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3171 0);
3172
3173 /*
3174 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3175 * error. This is important as it allows user space to know how much
3176 * progress scrub has done. For example, if scrub is canceled we get
3177 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3178 * space. Later user space can inspect the progress from the structure
3179 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3180 * previously (btrfs-progs does this).
3181 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3182 * then return -EFAULT to signal the structure was not copied or it may
3183 * be corrupt and unreliable due to a partial copy.
3184 */
3185 if (copy_to_user(arg, sa, sizeof(*sa)))
3186 ret = -EFAULT;
3187
3188 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3189 mnt_drop_write_file(file);
3190out:
3191 kfree(sa);
3192 return ret;
3193}
3194
3195static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3196{
3197 if (!capable(CAP_SYS_ADMIN))
3198 return -EPERM;
3199
3200 return btrfs_scrub_cancel(fs_info);
3201}
3202
3203static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3204 void __user *arg)
3205{
3206 struct btrfs_ioctl_scrub_args *sa;
3207 int ret;
3208
3209 if (!capable(CAP_SYS_ADMIN))
3210 return -EPERM;
3211
3212 sa = memdup_user(arg, sizeof(*sa));
3213 if (IS_ERR(sa))
3214 return PTR_ERR(sa);
3215
3216 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3217
3218 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3219 ret = -EFAULT;
3220
3221 kfree(sa);
3222 return ret;
3223}
3224
3225static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3226 void __user *arg)
3227{
3228 struct btrfs_ioctl_get_dev_stats *sa;
3229 int ret;
3230
3231 sa = memdup_user(arg, sizeof(*sa));
3232 if (IS_ERR(sa))
3233 return PTR_ERR(sa);
3234
3235 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3236 kfree(sa);
3237 return -EPERM;
3238 }
3239
3240 ret = btrfs_get_dev_stats(fs_info, sa);
3241
3242 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3243 ret = -EFAULT;
3244
3245 kfree(sa);
3246 return ret;
3247}
3248
3249static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3250 void __user *arg)
3251{
3252 struct btrfs_ioctl_dev_replace_args *p;
3253 int ret;
3254
3255 if (!capable(CAP_SYS_ADMIN))
3256 return -EPERM;
3257
3258 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3259 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3260 return -EINVAL;
3261 }
3262
3263 p = memdup_user(arg, sizeof(*p));
3264 if (IS_ERR(p))
3265 return PTR_ERR(p);
3266
3267 switch (p->cmd) {
3268 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3269 if (sb_rdonly(fs_info->sb)) {
3270 ret = -EROFS;
3271 goto out;
3272 }
3273 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3274 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3275 } else {
3276 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3277 btrfs_exclop_finish(fs_info);
3278 }
3279 break;
3280 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3281 btrfs_dev_replace_status(fs_info, p);
3282 ret = 0;
3283 break;
3284 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3285 p->result = btrfs_dev_replace_cancel(fs_info);
3286 ret = 0;
3287 break;
3288 default:
3289 ret = -EINVAL;
3290 break;
3291 }
3292
3293 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3294 ret = -EFAULT;
3295out:
3296 kfree(p);
3297 return ret;
3298}
3299
3300static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3301{
3302 int ret = 0;
3303 int i;
3304 u64 rel_ptr;
3305 int size;
3306 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3307 struct inode_fs_paths *ipath = NULL;
3308 struct btrfs_path *path;
3309
3310 if (!capable(CAP_DAC_READ_SEARCH))
3311 return -EPERM;
3312
3313 path = btrfs_alloc_path();
3314 if (!path) {
3315 ret = -ENOMEM;
3316 goto out;
3317 }
3318
3319 ipa = memdup_user(arg, sizeof(*ipa));
3320 if (IS_ERR(ipa)) {
3321 ret = PTR_ERR(ipa);
3322 ipa = NULL;
3323 goto out;
3324 }
3325
3326 size = min_t(u32, ipa->size, 4096);
3327 ipath = init_ipath(size, root, path);
3328 if (IS_ERR(ipath)) {
3329 ret = PTR_ERR(ipath);
3330 ipath = NULL;
3331 goto out;
3332 }
3333
3334 ret = paths_from_inode(ipa->inum, ipath);
3335 if (ret < 0)
3336 goto out;
3337
3338 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3339 rel_ptr = ipath->fspath->val[i] -
3340 (u64)(unsigned long)ipath->fspath->val;
3341 ipath->fspath->val[i] = rel_ptr;
3342 }
3343
3344 btrfs_free_path(path);
3345 path = NULL;
3346 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3347 ipath->fspath, size);
3348 if (ret) {
3349 ret = -EFAULT;
3350 goto out;
3351 }
3352
3353out:
3354 btrfs_free_path(path);
3355 free_ipath(ipath);
3356 kfree(ipa);
3357
3358 return ret;
3359}
3360
3361static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3362 void __user *arg, int version)
3363{
3364 int ret = 0;
3365 int size;
3366 struct btrfs_ioctl_logical_ino_args *loi;
3367 struct btrfs_data_container *inodes = NULL;
3368 struct btrfs_path *path = NULL;
3369 bool ignore_offset;
3370
3371 if (!capable(CAP_SYS_ADMIN))
3372 return -EPERM;
3373
3374 loi = memdup_user(arg, sizeof(*loi));
3375 if (IS_ERR(loi))
3376 return PTR_ERR(loi);
3377
3378 if (version == 1) {
3379 ignore_offset = false;
3380 size = min_t(u32, loi->size, SZ_64K);
3381 } else {
3382 /* All reserved bits must be 0 for now */
3383 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3384 ret = -EINVAL;
3385 goto out_loi;
3386 }
3387 /* Only accept flags we have defined so far */
3388 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3389 ret = -EINVAL;
3390 goto out_loi;
3391 }
3392 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3393 size = min_t(u32, loi->size, SZ_16M);
3394 }
3395
3396 inodes = init_data_container(size);
3397 if (IS_ERR(inodes)) {
3398 ret = PTR_ERR(inodes);
3399 goto out_loi;
3400 }
3401
3402 path = btrfs_alloc_path();
3403 if (!path) {
3404 ret = -ENOMEM;
3405 goto out;
3406 }
3407 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3408 inodes, ignore_offset);
3409 btrfs_free_path(path);
3410 if (ret == -EINVAL)
3411 ret = -ENOENT;
3412 if (ret < 0)
3413 goto out;
3414
3415 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3416 size);
3417 if (ret)
3418 ret = -EFAULT;
3419
3420out:
3421 kvfree(inodes);
3422out_loi:
3423 kfree(loi);
3424
3425 return ret;
3426}
3427
3428void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3429 struct btrfs_ioctl_balance_args *bargs)
3430{
3431 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3432
3433 bargs->flags = bctl->flags;
3434
3435 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3436 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3437 if (atomic_read(&fs_info->balance_pause_req))
3438 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3439 if (atomic_read(&fs_info->balance_cancel_req))
3440 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3441
3442 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3443 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3444 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3445
3446 spin_lock(&fs_info->balance_lock);
3447 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3448 spin_unlock(&fs_info->balance_lock);
3449}
3450
3451/*
3452 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3453 * required.
3454 *
3455 * @fs_info: the filesystem
3456 * @excl_acquired: ptr to boolean value which is set to false in case balance
3457 * is being resumed
3458 *
3459 * Return 0 on success in which case both fs_info::balance is acquired as well
3460 * as exclusive ops are blocked. In case of failure return an error code.
3461 */
3462static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3463{
3464 int ret;
3465
3466 /*
3467 * Exclusive operation is locked. Three possibilities:
3468 * (1) some other op is running
3469 * (2) balance is running
3470 * (3) balance is paused -- special case (think resume)
3471 */
3472 while (1) {
3473 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3474 *excl_acquired = true;
3475 mutex_lock(&fs_info->balance_mutex);
3476 return 0;
3477 }
3478
3479 mutex_lock(&fs_info->balance_mutex);
3480 if (fs_info->balance_ctl) {
3481 /* This is either (2) or (3) */
3482 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3483 /* This is (2) */
3484 ret = -EINPROGRESS;
3485 goto out_failure;
3486
3487 } else {
3488 mutex_unlock(&fs_info->balance_mutex);
3489 /*
3490 * Lock released to allow other waiters to
3491 * continue, we'll reexamine the status again.
3492 */
3493 mutex_lock(&fs_info->balance_mutex);
3494
3495 if (fs_info->balance_ctl &&
3496 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3497 /* This is (3) */
3498 *excl_acquired = false;
3499 return 0;
3500 }
3501 }
3502 } else {
3503 /* This is (1) */
3504 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3505 goto out_failure;
3506 }
3507
3508 mutex_unlock(&fs_info->balance_mutex);
3509 }
3510
3511out_failure:
3512 mutex_unlock(&fs_info->balance_mutex);
3513 *excl_acquired = false;
3514 return ret;
3515}
3516
3517static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3518{
3519 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3520 struct btrfs_fs_info *fs_info = root->fs_info;
3521 struct btrfs_ioctl_balance_args *bargs;
3522 struct btrfs_balance_control *bctl;
3523 bool need_unlock = true;
3524 int ret;
3525
3526 if (!capable(CAP_SYS_ADMIN))
3527 return -EPERM;
3528
3529 ret = mnt_want_write_file(file);
3530 if (ret)
3531 return ret;
3532
3533 bargs = memdup_user(arg, sizeof(*bargs));
3534 if (IS_ERR(bargs)) {
3535 ret = PTR_ERR(bargs);
3536 bargs = NULL;
3537 goto out;
3538 }
3539
3540 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3541 if (ret)
3542 goto out;
3543
3544 lockdep_assert_held(&fs_info->balance_mutex);
3545
3546 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3547 if (!fs_info->balance_ctl) {
3548 ret = -ENOTCONN;
3549 goto out_unlock;
3550 }
3551
3552 bctl = fs_info->balance_ctl;
3553 spin_lock(&fs_info->balance_lock);
3554 bctl->flags |= BTRFS_BALANCE_RESUME;
3555 spin_unlock(&fs_info->balance_lock);
3556 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3557
3558 goto do_balance;
3559 }
3560
3561 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3562 ret = -EINVAL;
3563 goto out_unlock;
3564 }
3565
3566 if (fs_info->balance_ctl) {
3567 ret = -EINPROGRESS;
3568 goto out_unlock;
3569 }
3570
3571 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3572 if (!bctl) {
3573 ret = -ENOMEM;
3574 goto out_unlock;
3575 }
3576
3577 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3578 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3579 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3580
3581 bctl->flags = bargs->flags;
3582do_balance:
3583 /*
3584 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3585 * bctl is freed in reset_balance_state, or, if restriper was paused
3586 * all the way until unmount, in free_fs_info. The flag should be
3587 * cleared after reset_balance_state.
3588 */
3589 need_unlock = false;
3590
3591 ret = btrfs_balance(fs_info, bctl, bargs);
3592 bctl = NULL;
3593
3594 if (ret == 0 || ret == -ECANCELED) {
3595 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3596 ret = -EFAULT;
3597 }
3598
3599 kfree(bctl);
3600out_unlock:
3601 mutex_unlock(&fs_info->balance_mutex);
3602 if (need_unlock)
3603 btrfs_exclop_finish(fs_info);
3604out:
3605 mnt_drop_write_file(file);
3606 kfree(bargs);
3607 return ret;
3608}
3609
3610static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3611{
3612 if (!capable(CAP_SYS_ADMIN))
3613 return -EPERM;
3614
3615 switch (cmd) {
3616 case BTRFS_BALANCE_CTL_PAUSE:
3617 return btrfs_pause_balance(fs_info);
3618 case BTRFS_BALANCE_CTL_CANCEL:
3619 return btrfs_cancel_balance(fs_info);
3620 }
3621
3622 return -EINVAL;
3623}
3624
3625static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3626 void __user *arg)
3627{
3628 struct btrfs_ioctl_balance_args *bargs;
3629 int ret = 0;
3630
3631 if (!capable(CAP_SYS_ADMIN))
3632 return -EPERM;
3633
3634 mutex_lock(&fs_info->balance_mutex);
3635 if (!fs_info->balance_ctl) {
3636 ret = -ENOTCONN;
3637 goto out;
3638 }
3639
3640 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3641 if (!bargs) {
3642 ret = -ENOMEM;
3643 goto out;
3644 }
3645
3646 btrfs_update_ioctl_balance_args(fs_info, bargs);
3647
3648 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3649 ret = -EFAULT;
3650
3651 kfree(bargs);
3652out:
3653 mutex_unlock(&fs_info->balance_mutex);
3654 return ret;
3655}
3656
3657static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3658{
3659 struct inode *inode = file_inode(file);
3660 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3661 struct btrfs_ioctl_quota_ctl_args *sa;
3662 int ret;
3663
3664 if (!capable(CAP_SYS_ADMIN))
3665 return -EPERM;
3666
3667 ret = mnt_want_write_file(file);
3668 if (ret)
3669 return ret;
3670
3671 sa = memdup_user(arg, sizeof(*sa));
3672 if (IS_ERR(sa)) {
3673 ret = PTR_ERR(sa);
3674 goto drop_write;
3675 }
3676
3677 down_write(&fs_info->subvol_sem);
3678
3679 switch (sa->cmd) {
3680 case BTRFS_QUOTA_CTL_ENABLE:
3681 ret = btrfs_quota_enable(fs_info);
3682 break;
3683 case BTRFS_QUOTA_CTL_DISABLE:
3684 ret = btrfs_quota_disable(fs_info);
3685 break;
3686 default:
3687 ret = -EINVAL;
3688 break;
3689 }
3690
3691 kfree(sa);
3692 up_write(&fs_info->subvol_sem);
3693drop_write:
3694 mnt_drop_write_file(file);
3695 return ret;
3696}
3697
3698static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3699{
3700 struct inode *inode = file_inode(file);
3701 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3702 struct btrfs_root *root = BTRFS_I(inode)->root;
3703 struct btrfs_ioctl_qgroup_assign_args *sa;
3704 struct btrfs_trans_handle *trans;
3705 int ret;
3706 int err;
3707
3708 if (!capable(CAP_SYS_ADMIN))
3709 return -EPERM;
3710
3711 ret = mnt_want_write_file(file);
3712 if (ret)
3713 return ret;
3714
3715 sa = memdup_user(arg, sizeof(*sa));
3716 if (IS_ERR(sa)) {
3717 ret = PTR_ERR(sa);
3718 goto drop_write;
3719 }
3720
3721 trans = btrfs_join_transaction(root);
3722 if (IS_ERR(trans)) {
3723 ret = PTR_ERR(trans);
3724 goto out;
3725 }
3726
3727 if (sa->assign) {
3728 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3729 } else {
3730 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3731 }
3732
3733 /* update qgroup status and info */
3734 err = btrfs_run_qgroups(trans);
3735 if (err < 0)
3736 btrfs_handle_fs_error(fs_info, err,
3737 "failed to update qgroup status and info");
3738 err = btrfs_end_transaction(trans);
3739 if (err && !ret)
3740 ret = err;
3741
3742out:
3743 kfree(sa);
3744drop_write:
3745 mnt_drop_write_file(file);
3746 return ret;
3747}
3748
3749static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3750{
3751 struct inode *inode = file_inode(file);
3752 struct btrfs_root *root = BTRFS_I(inode)->root;
3753 struct btrfs_ioctl_qgroup_create_args *sa;
3754 struct btrfs_trans_handle *trans;
3755 int ret;
3756 int err;
3757
3758 if (!capable(CAP_SYS_ADMIN))
3759 return -EPERM;
3760
3761 ret = mnt_want_write_file(file);
3762 if (ret)
3763 return ret;
3764
3765 sa = memdup_user(arg, sizeof(*sa));
3766 if (IS_ERR(sa)) {
3767 ret = PTR_ERR(sa);
3768 goto drop_write;
3769 }
3770
3771 if (!sa->qgroupid) {
3772 ret = -EINVAL;
3773 goto out;
3774 }
3775
3776 trans = btrfs_join_transaction(root);
3777 if (IS_ERR(trans)) {
3778 ret = PTR_ERR(trans);
3779 goto out;
3780 }
3781
3782 if (sa->create) {
3783 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3784 } else {
3785 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3786 }
3787
3788 err = btrfs_end_transaction(trans);
3789 if (err && !ret)
3790 ret = err;
3791
3792out:
3793 kfree(sa);
3794drop_write:
3795 mnt_drop_write_file(file);
3796 return ret;
3797}
3798
3799static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3800{
3801 struct inode *inode = file_inode(file);
3802 struct btrfs_root *root = BTRFS_I(inode)->root;
3803 struct btrfs_ioctl_qgroup_limit_args *sa;
3804 struct btrfs_trans_handle *trans;
3805 int ret;
3806 int err;
3807 u64 qgroupid;
3808
3809 if (!capable(CAP_SYS_ADMIN))
3810 return -EPERM;
3811
3812 ret = mnt_want_write_file(file);
3813 if (ret)
3814 return ret;
3815
3816 sa = memdup_user(arg, sizeof(*sa));
3817 if (IS_ERR(sa)) {
3818 ret = PTR_ERR(sa);
3819 goto drop_write;
3820 }
3821
3822 trans = btrfs_join_transaction(root);
3823 if (IS_ERR(trans)) {
3824 ret = PTR_ERR(trans);
3825 goto out;
3826 }
3827
3828 qgroupid = sa->qgroupid;
3829 if (!qgroupid) {
3830 /* take the current subvol as qgroup */
3831 qgroupid = root->root_key.objectid;
3832 }
3833
3834 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3835
3836 err = btrfs_end_transaction(trans);
3837 if (err && !ret)
3838 ret = err;
3839
3840out:
3841 kfree(sa);
3842drop_write:
3843 mnt_drop_write_file(file);
3844 return ret;
3845}
3846
3847static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3848{
3849 struct inode *inode = file_inode(file);
3850 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3851 struct btrfs_ioctl_quota_rescan_args *qsa;
3852 int ret;
3853
3854 if (!capable(CAP_SYS_ADMIN))
3855 return -EPERM;
3856
3857 ret = mnt_want_write_file(file);
3858 if (ret)
3859 return ret;
3860
3861 qsa = memdup_user(arg, sizeof(*qsa));
3862 if (IS_ERR(qsa)) {
3863 ret = PTR_ERR(qsa);
3864 goto drop_write;
3865 }
3866
3867 if (qsa->flags) {
3868 ret = -EINVAL;
3869 goto out;
3870 }
3871
3872 ret = btrfs_qgroup_rescan(fs_info);
3873
3874out:
3875 kfree(qsa);
3876drop_write:
3877 mnt_drop_write_file(file);
3878 return ret;
3879}
3880
3881static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3882 void __user *arg)
3883{
3884 struct btrfs_ioctl_quota_rescan_args qsa = {0};
3885
3886 if (!capable(CAP_SYS_ADMIN))
3887 return -EPERM;
3888
3889 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3890 qsa.flags = 1;
3891 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3892 }
3893
3894 if (copy_to_user(arg, &qsa, sizeof(qsa)))
3895 return -EFAULT;
3896
3897 return 0;
3898}
3899
3900static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3901 void __user *arg)
3902{
3903 if (!capable(CAP_SYS_ADMIN))
3904 return -EPERM;
3905
3906 return btrfs_qgroup_wait_for_completion(fs_info, true);
3907}
3908
3909static long _btrfs_ioctl_set_received_subvol(struct file *file,
3910 struct user_namespace *mnt_userns,
3911 struct btrfs_ioctl_received_subvol_args *sa)
3912{
3913 struct inode *inode = file_inode(file);
3914 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3915 struct btrfs_root *root = BTRFS_I(inode)->root;
3916 struct btrfs_root_item *root_item = &root->root_item;
3917 struct btrfs_trans_handle *trans;
3918 struct timespec64 ct = current_time(inode);
3919 int ret = 0;
3920 int received_uuid_changed;
3921
3922 if (!inode_owner_or_capable(mnt_userns, inode))
3923 return -EPERM;
3924
3925 ret = mnt_want_write_file(file);
3926 if (ret < 0)
3927 return ret;
3928
3929 down_write(&fs_info->subvol_sem);
3930
3931 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3932 ret = -EINVAL;
3933 goto out;
3934 }
3935
3936 if (btrfs_root_readonly(root)) {
3937 ret = -EROFS;
3938 goto out;
3939 }
3940
3941 /*
3942 * 1 - root item
3943 * 2 - uuid items (received uuid + subvol uuid)
3944 */
3945 trans = btrfs_start_transaction(root, 3);
3946 if (IS_ERR(trans)) {
3947 ret = PTR_ERR(trans);
3948 trans = NULL;
3949 goto out;
3950 }
3951
3952 sa->rtransid = trans->transid;
3953 sa->rtime.sec = ct.tv_sec;
3954 sa->rtime.nsec = ct.tv_nsec;
3955
3956 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
3957 BTRFS_UUID_SIZE);
3958 if (received_uuid_changed &&
3959 !btrfs_is_empty_uuid(root_item->received_uuid)) {
3960 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
3961 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3962 root->root_key.objectid);
3963 if (ret && ret != -ENOENT) {
3964 btrfs_abort_transaction(trans, ret);
3965 btrfs_end_transaction(trans);
3966 goto out;
3967 }
3968 }
3969 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3970 btrfs_set_root_stransid(root_item, sa->stransid);
3971 btrfs_set_root_rtransid(root_item, sa->rtransid);
3972 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
3973 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
3974 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
3975 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
3976
3977 ret = btrfs_update_root(trans, fs_info->tree_root,
3978 &root->root_key, &root->root_item);
3979 if (ret < 0) {
3980 btrfs_end_transaction(trans);
3981 goto out;
3982 }
3983 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
3984 ret = btrfs_uuid_tree_add(trans, sa->uuid,
3985 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3986 root->root_key.objectid);
3987 if (ret < 0 && ret != -EEXIST) {
3988 btrfs_abort_transaction(trans, ret);
3989 btrfs_end_transaction(trans);
3990 goto out;
3991 }
3992 }
3993 ret = btrfs_commit_transaction(trans);
3994out:
3995 up_write(&fs_info->subvol_sem);
3996 mnt_drop_write_file(file);
3997 return ret;
3998}
3999
4000#ifdef CONFIG_64BIT
4001static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4002 void __user *arg)
4003{
4004 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4005 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4006 int ret = 0;
4007
4008 args32 = memdup_user(arg, sizeof(*args32));
4009 if (IS_ERR(args32))
4010 return PTR_ERR(args32);
4011
4012 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4013 if (!args64) {
4014 ret = -ENOMEM;
4015 goto out;
4016 }
4017
4018 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4019 args64->stransid = args32->stransid;
4020 args64->rtransid = args32->rtransid;
4021 args64->stime.sec = args32->stime.sec;
4022 args64->stime.nsec = args32->stime.nsec;
4023 args64->rtime.sec = args32->rtime.sec;
4024 args64->rtime.nsec = args32->rtime.nsec;
4025 args64->flags = args32->flags;
4026
4027 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4028 if (ret)
4029 goto out;
4030
4031 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4032 args32->stransid = args64->stransid;
4033 args32->rtransid = args64->rtransid;
4034 args32->stime.sec = args64->stime.sec;
4035 args32->stime.nsec = args64->stime.nsec;
4036 args32->rtime.sec = args64->rtime.sec;
4037 args32->rtime.nsec = args64->rtime.nsec;
4038 args32->flags = args64->flags;
4039
4040 ret = copy_to_user(arg, args32, sizeof(*args32));
4041 if (ret)
4042 ret = -EFAULT;
4043
4044out:
4045 kfree(args32);
4046 kfree(args64);
4047 return ret;
4048}
4049#endif
4050
4051static long btrfs_ioctl_set_received_subvol(struct file *file,
4052 void __user *arg)
4053{
4054 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4055 int ret = 0;
4056
4057 sa = memdup_user(arg, sizeof(*sa));
4058 if (IS_ERR(sa))
4059 return PTR_ERR(sa);
4060
4061 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4062
4063 if (ret)
4064 goto out;
4065
4066 ret = copy_to_user(arg, sa, sizeof(*sa));
4067 if (ret)
4068 ret = -EFAULT;
4069
4070out:
4071 kfree(sa);
4072 return ret;
4073}
4074
4075static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4076 void __user *arg)
4077{
4078 size_t len;
4079 int ret;
4080 char label[BTRFS_LABEL_SIZE];
4081
4082 spin_lock(&fs_info->super_lock);
4083 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4084 spin_unlock(&fs_info->super_lock);
4085
4086 len = strnlen(label, BTRFS_LABEL_SIZE);
4087
4088 if (len == BTRFS_LABEL_SIZE) {
4089 btrfs_warn(fs_info,
4090 "label is too long, return the first %zu bytes",
4091 --len);
4092 }
4093
4094 ret = copy_to_user(arg, label, len);
4095
4096 return ret ? -EFAULT : 0;
4097}
4098
4099static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4100{
4101 struct inode *inode = file_inode(file);
4102 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4103 struct btrfs_root *root = BTRFS_I(inode)->root;
4104 struct btrfs_super_block *super_block = fs_info->super_copy;
4105 struct btrfs_trans_handle *trans;
4106 char label[BTRFS_LABEL_SIZE];
4107 int ret;
4108
4109 if (!capable(CAP_SYS_ADMIN))
4110 return -EPERM;
4111
4112 if (copy_from_user(label, arg, sizeof(label)))
4113 return -EFAULT;
4114
4115 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4116 btrfs_err(fs_info,
4117 "unable to set label with more than %d bytes",
4118 BTRFS_LABEL_SIZE - 1);
4119 return -EINVAL;
4120 }
4121
4122 ret = mnt_want_write_file(file);
4123 if (ret)
4124 return ret;
4125
4126 trans = btrfs_start_transaction(root, 0);
4127 if (IS_ERR(trans)) {
4128 ret = PTR_ERR(trans);
4129 goto out_unlock;
4130 }
4131
4132 spin_lock(&fs_info->super_lock);
4133 strcpy(super_block->label, label);
4134 spin_unlock(&fs_info->super_lock);
4135 ret = btrfs_commit_transaction(trans);
4136
4137out_unlock:
4138 mnt_drop_write_file(file);
4139 return ret;
4140}
4141
4142#define INIT_FEATURE_FLAGS(suffix) \
4143 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4144 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4145 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4146
4147int btrfs_ioctl_get_supported_features(void __user *arg)
4148{
4149 static const struct btrfs_ioctl_feature_flags features[3] = {
4150 INIT_FEATURE_FLAGS(SUPP),
4151 INIT_FEATURE_FLAGS(SAFE_SET),
4152 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4153 };
4154
4155 if (copy_to_user(arg, &features, sizeof(features)))
4156 return -EFAULT;
4157
4158 return 0;
4159}
4160
4161static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4162 void __user *arg)
4163{
4164 struct btrfs_super_block *super_block = fs_info->super_copy;
4165 struct btrfs_ioctl_feature_flags features;
4166
4167 features.compat_flags = btrfs_super_compat_flags(super_block);
4168 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4169 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4170
4171 if (copy_to_user(arg, &features, sizeof(features)))
4172 return -EFAULT;
4173
4174 return 0;
4175}
4176
4177static int check_feature_bits(struct btrfs_fs_info *fs_info,
4178 enum btrfs_feature_set set,
4179 u64 change_mask, u64 flags, u64 supported_flags,
4180 u64 safe_set, u64 safe_clear)
4181{
4182 const char *type = btrfs_feature_set_name(set);
4183 char *names;
4184 u64 disallowed, unsupported;
4185 u64 set_mask = flags & change_mask;
4186 u64 clear_mask = ~flags & change_mask;
4187
4188 unsupported = set_mask & ~supported_flags;
4189 if (unsupported) {
4190 names = btrfs_printable_features(set, unsupported);
4191 if (names) {
4192 btrfs_warn(fs_info,
4193 "this kernel does not support the %s feature bit%s",
4194 names, strchr(names, ',') ? "s" : "");
4195 kfree(names);
4196 } else
4197 btrfs_warn(fs_info,
4198 "this kernel does not support %s bits 0x%llx",
4199 type, unsupported);
4200 return -EOPNOTSUPP;
4201 }
4202
4203 disallowed = set_mask & ~safe_set;
4204 if (disallowed) {
4205 names = btrfs_printable_features(set, disallowed);
4206 if (names) {
4207 btrfs_warn(fs_info,
4208 "can't set the %s feature bit%s while mounted",
4209 names, strchr(names, ',') ? "s" : "");
4210 kfree(names);
4211 } else
4212 btrfs_warn(fs_info,
4213 "can't set %s bits 0x%llx while mounted",
4214 type, disallowed);
4215 return -EPERM;
4216 }
4217
4218 disallowed = clear_mask & ~safe_clear;
4219 if (disallowed) {
4220 names = btrfs_printable_features(set, disallowed);
4221 if (names) {
4222 btrfs_warn(fs_info,
4223 "can't clear the %s feature bit%s while mounted",
4224 names, strchr(names, ',') ? "s" : "");
4225 kfree(names);
4226 } else
4227 btrfs_warn(fs_info,
4228 "can't clear %s bits 0x%llx while mounted",
4229 type, disallowed);
4230 return -EPERM;
4231 }
4232
4233 return 0;
4234}
4235
4236#define check_feature(fs_info, change_mask, flags, mask_base) \
4237check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4238 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4239 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4240 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4241
4242static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4243{
4244 struct inode *inode = file_inode(file);
4245 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4246 struct btrfs_root *root = BTRFS_I(inode)->root;
4247 struct btrfs_super_block *super_block = fs_info->super_copy;
4248 struct btrfs_ioctl_feature_flags flags[2];
4249 struct btrfs_trans_handle *trans;
4250 u64 newflags;
4251 int ret;
4252
4253 if (!capable(CAP_SYS_ADMIN))
4254 return -EPERM;
4255
4256 if (copy_from_user(flags, arg, sizeof(flags)))
4257 return -EFAULT;
4258
4259 /* Nothing to do */
4260 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4261 !flags[0].incompat_flags)
4262 return 0;
4263
4264 ret = check_feature(fs_info, flags[0].compat_flags,
4265 flags[1].compat_flags, COMPAT);
4266 if (ret)
4267 return ret;
4268
4269 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4270 flags[1].compat_ro_flags, COMPAT_RO);
4271 if (ret)
4272 return ret;
4273
4274 ret = check_feature(fs_info, flags[0].incompat_flags,
4275 flags[1].incompat_flags, INCOMPAT);
4276 if (ret)
4277 return ret;
4278
4279 ret = mnt_want_write_file(file);
4280 if (ret)
4281 return ret;
4282
4283 trans = btrfs_start_transaction(root, 0);
4284 if (IS_ERR(trans)) {
4285 ret = PTR_ERR(trans);
4286 goto out_drop_write;
4287 }
4288
4289 spin_lock(&fs_info->super_lock);
4290 newflags = btrfs_super_compat_flags(super_block);
4291 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4292 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4293 btrfs_set_super_compat_flags(super_block, newflags);
4294
4295 newflags = btrfs_super_compat_ro_flags(super_block);
4296 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4297 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4298 btrfs_set_super_compat_ro_flags(super_block, newflags);
4299
4300 newflags = btrfs_super_incompat_flags(super_block);
4301 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4302 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4303 btrfs_set_super_incompat_flags(super_block, newflags);
4304 spin_unlock(&fs_info->super_lock);
4305
4306 ret = btrfs_commit_transaction(trans);
4307out_drop_write:
4308 mnt_drop_write_file(file);
4309
4310 return ret;
4311}
4312
4313static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4314{
4315 struct btrfs_ioctl_send_args *arg;
4316 int ret;
4317
4318 if (compat) {
4319#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4320 struct btrfs_ioctl_send_args_32 args32;
4321
4322 ret = copy_from_user(&args32, argp, sizeof(args32));
4323 if (ret)
4324 return -EFAULT;
4325 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4326 if (!arg)
4327 return -ENOMEM;
4328 arg->send_fd = args32.send_fd;
4329 arg->clone_sources_count = args32.clone_sources_count;
4330 arg->clone_sources = compat_ptr(args32.clone_sources);
4331 arg->parent_root = args32.parent_root;
4332 arg->flags = args32.flags;
4333 memcpy(arg->reserved, args32.reserved,
4334 sizeof(args32.reserved));
4335#else
4336 return -ENOTTY;
4337#endif
4338 } else {
4339 arg = memdup_user(argp, sizeof(*arg));
4340 if (IS_ERR(arg))
4341 return PTR_ERR(arg);
4342 }
4343 ret = btrfs_ioctl_send(inode, arg);
4344 kfree(arg);
4345 return ret;
4346}
4347
4348static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4349 bool compat)
4350{
4351 struct btrfs_ioctl_encoded_io_args args = { 0 };
4352 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4353 flags);
4354 size_t copy_end;
4355 struct iovec iovstack[UIO_FASTIOV];
4356 struct iovec *iov = iovstack;
4357 struct iov_iter iter;
4358 loff_t pos;
4359 struct kiocb kiocb;
4360 ssize_t ret;
4361
4362 if (!capable(CAP_SYS_ADMIN)) {
4363 ret = -EPERM;
4364 goto out_acct;
4365 }
4366
4367 if (compat) {
4368#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4369 struct btrfs_ioctl_encoded_io_args_32 args32;
4370
4371 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4372 flags);
4373 if (copy_from_user(&args32, argp, copy_end)) {
4374 ret = -EFAULT;
4375 goto out_acct;
4376 }
4377 args.iov = compat_ptr(args32.iov);
4378 args.iovcnt = args32.iovcnt;
4379 args.offset = args32.offset;
4380 args.flags = args32.flags;
4381#else
4382 return -ENOTTY;
4383#endif
4384 } else {
4385 copy_end = copy_end_kernel;
4386 if (copy_from_user(&args, argp, copy_end)) {
4387 ret = -EFAULT;
4388 goto out_acct;
4389 }
4390 }
4391 if (args.flags != 0) {
4392 ret = -EINVAL;
4393 goto out_acct;
4394 }
4395
4396 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4397 &iov, &iter);
4398 if (ret < 0)
4399 goto out_acct;
4400
4401 if (iov_iter_count(&iter) == 0) {
4402 ret = 0;
4403 goto out_iov;
4404 }
4405 pos = args.offset;
4406 ret = rw_verify_area(READ, file, &pos, args.len);
4407 if (ret < 0)
4408 goto out_iov;
4409
4410 init_sync_kiocb(&kiocb, file);
4411 kiocb.ki_pos = pos;
4412
4413 ret = btrfs_encoded_read(&kiocb, &iter, &args);
4414 if (ret >= 0) {
4415 fsnotify_access(file);
4416 if (copy_to_user(argp + copy_end,
4417 (char *)&args + copy_end_kernel,
4418 sizeof(args) - copy_end_kernel))
4419 ret = -EFAULT;
4420 }
4421
4422out_iov:
4423 kfree(iov);
4424out_acct:
4425 if (ret > 0)
4426 add_rchar(current, ret);
4427 inc_syscr(current);
4428 return ret;
4429}
4430
4431static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4432{
4433 struct btrfs_ioctl_encoded_io_args args;
4434 struct iovec iovstack[UIO_FASTIOV];
4435 struct iovec *iov = iovstack;
4436 struct iov_iter iter;
4437 loff_t pos;
4438 struct kiocb kiocb;
4439 ssize_t ret;
4440
4441 if (!capable(CAP_SYS_ADMIN)) {
4442 ret = -EPERM;
4443 goto out_acct;
4444 }
4445
4446 if (!(file->f_mode & FMODE_WRITE)) {
4447 ret = -EBADF;
4448 goto out_acct;
4449 }
4450
4451 if (compat) {
4452#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4453 struct btrfs_ioctl_encoded_io_args_32 args32;
4454
4455 if (copy_from_user(&args32, argp, sizeof(args32))) {
4456 ret = -EFAULT;
4457 goto out_acct;
4458 }
4459 args.iov = compat_ptr(args32.iov);
4460 args.iovcnt = args32.iovcnt;
4461 args.offset = args32.offset;
4462 args.flags = args32.flags;
4463 args.len = args32.len;
4464 args.unencoded_len = args32.unencoded_len;
4465 args.unencoded_offset = args32.unencoded_offset;
4466 args.compression = args32.compression;
4467 args.encryption = args32.encryption;
4468 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4469#else
4470 return -ENOTTY;
4471#endif
4472 } else {
4473 if (copy_from_user(&args, argp, sizeof(args))) {
4474 ret = -EFAULT;
4475 goto out_acct;
4476 }
4477 }
4478
4479 ret = -EINVAL;
4480 if (args.flags != 0)
4481 goto out_acct;
4482 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4483 goto out_acct;
4484 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4485 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4486 goto out_acct;
4487 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4488 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4489 goto out_acct;
4490 if (args.unencoded_offset > args.unencoded_len)
4491 goto out_acct;
4492 if (args.len > args.unencoded_len - args.unencoded_offset)
4493 goto out_acct;
4494
4495 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4496 &iov, &iter);
4497 if (ret < 0)
4498 goto out_acct;
4499
4500 file_start_write(file);
4501
4502 if (iov_iter_count(&iter) == 0) {
4503 ret = 0;
4504 goto out_end_write;
4505 }
4506 pos = args.offset;
4507 ret = rw_verify_area(WRITE, file, &pos, args.len);
4508 if (ret < 0)
4509 goto out_end_write;
4510
4511 init_sync_kiocb(&kiocb, file);
4512 ret = kiocb_set_rw_flags(&kiocb, 0);
4513 if (ret)
4514 goto out_end_write;
4515 kiocb.ki_pos = pos;
4516
4517 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4518 if (ret > 0)
4519 fsnotify_modify(file);
4520
4521out_end_write:
4522 file_end_write(file);
4523 kfree(iov);
4524out_acct:
4525 if (ret > 0)
4526 add_wchar(current, ret);
4527 inc_syscw(current);
4528 return ret;
4529}
4530
4531long btrfs_ioctl(struct file *file, unsigned int
4532 cmd, unsigned long arg)
4533{
4534 struct inode *inode = file_inode(file);
4535 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4536 struct btrfs_root *root = BTRFS_I(inode)->root;
4537 void __user *argp = (void __user *)arg;
4538
4539 switch (cmd) {
4540 case FS_IOC_GETVERSION:
4541 return btrfs_ioctl_getversion(inode, argp);
4542 case FS_IOC_GETFSLABEL:
4543 return btrfs_ioctl_get_fslabel(fs_info, argp);
4544 case FS_IOC_SETFSLABEL:
4545 return btrfs_ioctl_set_fslabel(file, argp);
4546 case FITRIM:
4547 return btrfs_ioctl_fitrim(fs_info, argp);
4548 case BTRFS_IOC_SNAP_CREATE:
4549 return btrfs_ioctl_snap_create(file, argp, 0);
4550 case BTRFS_IOC_SNAP_CREATE_V2:
4551 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4552 case BTRFS_IOC_SUBVOL_CREATE:
4553 return btrfs_ioctl_snap_create(file, argp, 1);
4554 case BTRFS_IOC_SUBVOL_CREATE_V2:
4555 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4556 case BTRFS_IOC_SNAP_DESTROY:
4557 return btrfs_ioctl_snap_destroy(file, argp, false);
4558 case BTRFS_IOC_SNAP_DESTROY_V2:
4559 return btrfs_ioctl_snap_destroy(file, argp, true);
4560 case BTRFS_IOC_SUBVOL_GETFLAGS:
4561 return btrfs_ioctl_subvol_getflags(inode, argp);
4562 case BTRFS_IOC_SUBVOL_SETFLAGS:
4563 return btrfs_ioctl_subvol_setflags(file, argp);
4564 case BTRFS_IOC_DEFAULT_SUBVOL:
4565 return btrfs_ioctl_default_subvol(file, argp);
4566 case BTRFS_IOC_DEFRAG:
4567 return btrfs_ioctl_defrag(file, NULL);
4568 case BTRFS_IOC_DEFRAG_RANGE:
4569 return btrfs_ioctl_defrag(file, argp);
4570 case BTRFS_IOC_RESIZE:
4571 return btrfs_ioctl_resize(file, argp);
4572 case BTRFS_IOC_ADD_DEV:
4573 return btrfs_ioctl_add_dev(fs_info, argp);
4574 case BTRFS_IOC_RM_DEV:
4575 return btrfs_ioctl_rm_dev(file, argp);
4576 case BTRFS_IOC_RM_DEV_V2:
4577 return btrfs_ioctl_rm_dev_v2(file, argp);
4578 case BTRFS_IOC_FS_INFO:
4579 return btrfs_ioctl_fs_info(fs_info, argp);
4580 case BTRFS_IOC_DEV_INFO:
4581 return btrfs_ioctl_dev_info(fs_info, argp);
4582 case BTRFS_IOC_TREE_SEARCH:
4583 return btrfs_ioctl_tree_search(inode, argp);
4584 case BTRFS_IOC_TREE_SEARCH_V2:
4585 return btrfs_ioctl_tree_search_v2(inode, argp);
4586 case BTRFS_IOC_INO_LOOKUP:
4587 return btrfs_ioctl_ino_lookup(root, argp);
4588 case BTRFS_IOC_INO_PATHS:
4589 return btrfs_ioctl_ino_to_path(root, argp);
4590 case BTRFS_IOC_LOGICAL_INO:
4591 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4592 case BTRFS_IOC_LOGICAL_INO_V2:
4593 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4594 case BTRFS_IOC_SPACE_INFO:
4595 return btrfs_ioctl_space_info(fs_info, argp);
4596 case BTRFS_IOC_SYNC: {
4597 int ret;
4598
4599 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4600 if (ret)
4601 return ret;
4602 ret = btrfs_sync_fs(inode->i_sb, 1);
4603 /*
4604 * The transaction thread may want to do more work,
4605 * namely it pokes the cleaner kthread that will start
4606 * processing uncleaned subvols.
4607 */
4608 wake_up_process(fs_info->transaction_kthread);
4609 return ret;
4610 }
4611 case BTRFS_IOC_START_SYNC:
4612 return btrfs_ioctl_start_sync(root, argp);
4613 case BTRFS_IOC_WAIT_SYNC:
4614 return btrfs_ioctl_wait_sync(fs_info, argp);
4615 case BTRFS_IOC_SCRUB:
4616 return btrfs_ioctl_scrub(file, argp);
4617 case BTRFS_IOC_SCRUB_CANCEL:
4618 return btrfs_ioctl_scrub_cancel(fs_info);
4619 case BTRFS_IOC_SCRUB_PROGRESS:
4620 return btrfs_ioctl_scrub_progress(fs_info, argp);
4621 case BTRFS_IOC_BALANCE_V2:
4622 return btrfs_ioctl_balance(file, argp);
4623 case BTRFS_IOC_BALANCE_CTL:
4624 return btrfs_ioctl_balance_ctl(fs_info, arg);
4625 case BTRFS_IOC_BALANCE_PROGRESS:
4626 return btrfs_ioctl_balance_progress(fs_info, argp);
4627 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4628 return btrfs_ioctl_set_received_subvol(file, argp);
4629#ifdef CONFIG_64BIT
4630 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4631 return btrfs_ioctl_set_received_subvol_32(file, argp);
4632#endif
4633 case BTRFS_IOC_SEND:
4634 return _btrfs_ioctl_send(inode, argp, false);
4635#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4636 case BTRFS_IOC_SEND_32:
4637 return _btrfs_ioctl_send(inode, argp, true);
4638#endif
4639 case BTRFS_IOC_GET_DEV_STATS:
4640 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4641 case BTRFS_IOC_QUOTA_CTL:
4642 return btrfs_ioctl_quota_ctl(file, argp);
4643 case BTRFS_IOC_QGROUP_ASSIGN:
4644 return btrfs_ioctl_qgroup_assign(file, argp);
4645 case BTRFS_IOC_QGROUP_CREATE:
4646 return btrfs_ioctl_qgroup_create(file, argp);
4647 case BTRFS_IOC_QGROUP_LIMIT:
4648 return btrfs_ioctl_qgroup_limit(file, argp);
4649 case BTRFS_IOC_QUOTA_RESCAN:
4650 return btrfs_ioctl_quota_rescan(file, argp);
4651 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4652 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4653 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4654 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4655 case BTRFS_IOC_DEV_REPLACE:
4656 return btrfs_ioctl_dev_replace(fs_info, argp);
4657 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4658 return btrfs_ioctl_get_supported_features(argp);
4659 case BTRFS_IOC_GET_FEATURES:
4660 return btrfs_ioctl_get_features(fs_info, argp);
4661 case BTRFS_IOC_SET_FEATURES:
4662 return btrfs_ioctl_set_features(file, argp);
4663 case BTRFS_IOC_GET_SUBVOL_INFO:
4664 return btrfs_ioctl_get_subvol_info(inode, argp);
4665 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4666 return btrfs_ioctl_get_subvol_rootref(root, argp);
4667 case BTRFS_IOC_INO_LOOKUP_USER:
4668 return btrfs_ioctl_ino_lookup_user(file, argp);
4669 case FS_IOC_ENABLE_VERITY:
4670 return fsverity_ioctl_enable(file, (const void __user *)argp);
4671 case FS_IOC_MEASURE_VERITY:
4672 return fsverity_ioctl_measure(file, argp);
4673 case BTRFS_IOC_ENCODED_READ:
4674 return btrfs_ioctl_encoded_read(file, argp, false);
4675 case BTRFS_IOC_ENCODED_WRITE:
4676 return btrfs_ioctl_encoded_write(file, argp, false);
4677#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4678 case BTRFS_IOC_ENCODED_READ_32:
4679 return btrfs_ioctl_encoded_read(file, argp, true);
4680 case BTRFS_IOC_ENCODED_WRITE_32:
4681 return btrfs_ioctl_encoded_write(file, argp, true);
4682#endif
4683 }
4684
4685 return -ENOTTY;
4686}
4687
4688#ifdef CONFIG_COMPAT
4689long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4690{
4691 /*
4692 * These all access 32-bit values anyway so no further
4693 * handling is necessary.
4694 */
4695 switch (cmd) {
4696 case FS_IOC32_GETVERSION:
4697 cmd = FS_IOC_GETVERSION;
4698 break;
4699 }
4700
4701 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4702}
4703#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/fsnotify.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/mount.h>
17#include <linux/namei.h>
18#include <linux/writeback.h>
19#include <linux/compat.h>
20#include <linux/security.h>
21#include <linux/xattr.h>
22#include <linux/mm.h>
23#include <linux/slab.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include <linux/btrfs.h>
27#include <linux/uaccess.h>
28#include <linux/iversion.h>
29#include "ctree.h"
30#include "disk-io.h"
31#include "export.h"
32#include "transaction.h"
33#include "btrfs_inode.h"
34#include "print-tree.h"
35#include "volumes.h"
36#include "locking.h"
37#include "inode-map.h"
38#include "backref.h"
39#include "rcu-string.h"
40#include "send.h"
41#include "dev-replace.h"
42#include "props.h"
43#include "sysfs.h"
44#include "qgroup.h"
45#include "tree-log.h"
46#include "compression.h"
47#include "space-info.h"
48#include "delalloc-space.h"
49#include "block-group.h"
50
51#ifdef CONFIG_64BIT
52/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
53 * structures are incorrect, as the timespec structure from userspace
54 * is 4 bytes too small. We define these alternatives here to teach
55 * the kernel about the 32-bit struct packing.
56 */
57struct btrfs_ioctl_timespec_32 {
58 __u64 sec;
59 __u32 nsec;
60} __attribute__ ((__packed__));
61
62struct btrfs_ioctl_received_subvol_args_32 {
63 char uuid[BTRFS_UUID_SIZE]; /* in */
64 __u64 stransid; /* in */
65 __u64 rtransid; /* out */
66 struct btrfs_ioctl_timespec_32 stime; /* in */
67 struct btrfs_ioctl_timespec_32 rtime; /* out */
68 __u64 flags; /* in */
69 __u64 reserved[16]; /* in */
70} __attribute__ ((__packed__));
71
72#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
73 struct btrfs_ioctl_received_subvol_args_32)
74#endif
75
76#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
77struct btrfs_ioctl_send_args_32 {
78 __s64 send_fd; /* in */
79 __u64 clone_sources_count; /* in */
80 compat_uptr_t clone_sources; /* in */
81 __u64 parent_root; /* in */
82 __u64 flags; /* in */
83 __u64 reserved[4]; /* in */
84} __attribute__ ((__packed__));
85
86#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
87 struct btrfs_ioctl_send_args_32)
88#endif
89
90/* Mask out flags that are inappropriate for the given type of inode. */
91static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 unsigned int flags)
93{
94 if (S_ISDIR(inode->i_mode))
95 return flags;
96 else if (S_ISREG(inode->i_mode))
97 return flags & ~FS_DIRSYNC_FL;
98 else
99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100}
101
102/*
103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104 * ioctl.
105 */
106static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
107{
108 unsigned int iflags = 0;
109
110 if (flags & BTRFS_INODE_SYNC)
111 iflags |= FS_SYNC_FL;
112 if (flags & BTRFS_INODE_IMMUTABLE)
113 iflags |= FS_IMMUTABLE_FL;
114 if (flags & BTRFS_INODE_APPEND)
115 iflags |= FS_APPEND_FL;
116 if (flags & BTRFS_INODE_NODUMP)
117 iflags |= FS_NODUMP_FL;
118 if (flags & BTRFS_INODE_NOATIME)
119 iflags |= FS_NOATIME_FL;
120 if (flags & BTRFS_INODE_DIRSYNC)
121 iflags |= FS_DIRSYNC_FL;
122 if (flags & BTRFS_INODE_NODATACOW)
123 iflags |= FS_NOCOW_FL;
124
125 if (flags & BTRFS_INODE_NOCOMPRESS)
126 iflags |= FS_NOCOMP_FL;
127 else if (flags & BTRFS_INODE_COMPRESS)
128 iflags |= FS_COMPR_FL;
129
130 return iflags;
131}
132
133/*
134 * Update inode->i_flags based on the btrfs internal flags.
135 */
136void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
137{
138 struct btrfs_inode *binode = BTRFS_I(inode);
139 unsigned int new_fl = 0;
140
141 if (binode->flags & BTRFS_INODE_SYNC)
142 new_fl |= S_SYNC;
143 if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 new_fl |= S_IMMUTABLE;
145 if (binode->flags & BTRFS_INODE_APPEND)
146 new_fl |= S_APPEND;
147 if (binode->flags & BTRFS_INODE_NOATIME)
148 new_fl |= S_NOATIME;
149 if (binode->flags & BTRFS_INODE_DIRSYNC)
150 new_fl |= S_DIRSYNC;
151
152 set_mask_bits(&inode->i_flags,
153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 new_fl);
155}
156
157static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
158{
159 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
161
162 if (copy_to_user(arg, &flags, sizeof(flags)))
163 return -EFAULT;
164 return 0;
165}
166
167/*
168 * Check if @flags are a supported and valid set of FS_*_FL flags and that
169 * the old and new flags are not conflicting
170 */
171static int check_fsflags(unsigned int old_flags, unsigned int flags)
172{
173 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
174 FS_NOATIME_FL | FS_NODUMP_FL | \
175 FS_SYNC_FL | FS_DIRSYNC_FL | \
176 FS_NOCOMP_FL | FS_COMPR_FL |
177 FS_NOCOW_FL))
178 return -EOPNOTSUPP;
179
180 /* COMPR and NOCOMP on new/old are valid */
181 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
182 return -EINVAL;
183
184 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
185 return -EINVAL;
186
187 /* NOCOW and compression options are mutually exclusive */
188 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
189 return -EINVAL;
190 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
191 return -EINVAL;
192
193 return 0;
194}
195
196static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
197{
198 struct inode *inode = file_inode(file);
199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
200 struct btrfs_inode *binode = BTRFS_I(inode);
201 struct btrfs_root *root = binode->root;
202 struct btrfs_trans_handle *trans;
203 unsigned int fsflags, old_fsflags;
204 int ret;
205 const char *comp = NULL;
206 u32 binode_flags;
207
208 if (!inode_owner_or_capable(inode))
209 return -EPERM;
210
211 if (btrfs_root_readonly(root))
212 return -EROFS;
213
214 if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
215 return -EFAULT;
216
217 ret = mnt_want_write_file(file);
218 if (ret)
219 return ret;
220
221 inode_lock(inode);
222 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
223 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
224
225 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
226 if (ret)
227 goto out_unlock;
228
229 ret = check_fsflags(old_fsflags, fsflags);
230 if (ret)
231 goto out_unlock;
232
233 binode_flags = binode->flags;
234 if (fsflags & FS_SYNC_FL)
235 binode_flags |= BTRFS_INODE_SYNC;
236 else
237 binode_flags &= ~BTRFS_INODE_SYNC;
238 if (fsflags & FS_IMMUTABLE_FL)
239 binode_flags |= BTRFS_INODE_IMMUTABLE;
240 else
241 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
242 if (fsflags & FS_APPEND_FL)
243 binode_flags |= BTRFS_INODE_APPEND;
244 else
245 binode_flags &= ~BTRFS_INODE_APPEND;
246 if (fsflags & FS_NODUMP_FL)
247 binode_flags |= BTRFS_INODE_NODUMP;
248 else
249 binode_flags &= ~BTRFS_INODE_NODUMP;
250 if (fsflags & FS_NOATIME_FL)
251 binode_flags |= BTRFS_INODE_NOATIME;
252 else
253 binode_flags &= ~BTRFS_INODE_NOATIME;
254 if (fsflags & FS_DIRSYNC_FL)
255 binode_flags |= BTRFS_INODE_DIRSYNC;
256 else
257 binode_flags &= ~BTRFS_INODE_DIRSYNC;
258 if (fsflags & FS_NOCOW_FL) {
259 if (S_ISREG(inode->i_mode)) {
260 /*
261 * It's safe to turn csums off here, no extents exist.
262 * Otherwise we want the flag to reflect the real COW
263 * status of the file and will not set it.
264 */
265 if (inode->i_size == 0)
266 binode_flags |= BTRFS_INODE_NODATACOW |
267 BTRFS_INODE_NODATASUM;
268 } else {
269 binode_flags |= BTRFS_INODE_NODATACOW;
270 }
271 } else {
272 /*
273 * Revert back under same assumptions as above
274 */
275 if (S_ISREG(inode->i_mode)) {
276 if (inode->i_size == 0)
277 binode_flags &= ~(BTRFS_INODE_NODATACOW |
278 BTRFS_INODE_NODATASUM);
279 } else {
280 binode_flags &= ~BTRFS_INODE_NODATACOW;
281 }
282 }
283
284 /*
285 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
286 * flag may be changed automatically if compression code won't make
287 * things smaller.
288 */
289 if (fsflags & FS_NOCOMP_FL) {
290 binode_flags &= ~BTRFS_INODE_COMPRESS;
291 binode_flags |= BTRFS_INODE_NOCOMPRESS;
292 } else if (fsflags & FS_COMPR_FL) {
293
294 if (IS_SWAPFILE(inode)) {
295 ret = -ETXTBSY;
296 goto out_unlock;
297 }
298
299 binode_flags |= BTRFS_INODE_COMPRESS;
300 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
301
302 comp = btrfs_compress_type2str(fs_info->compress_type);
303 if (!comp || comp[0] == 0)
304 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
305 } else {
306 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
307 }
308
309 /*
310 * 1 for inode item
311 * 2 for properties
312 */
313 trans = btrfs_start_transaction(root, 3);
314 if (IS_ERR(trans)) {
315 ret = PTR_ERR(trans);
316 goto out_unlock;
317 }
318
319 if (comp) {
320 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
321 strlen(comp), 0);
322 if (ret) {
323 btrfs_abort_transaction(trans, ret);
324 goto out_end_trans;
325 }
326 } else {
327 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
328 0, 0);
329 if (ret && ret != -ENODATA) {
330 btrfs_abort_transaction(trans, ret);
331 goto out_end_trans;
332 }
333 }
334
335 binode->flags = binode_flags;
336 btrfs_sync_inode_flags_to_i_flags(inode);
337 inode_inc_iversion(inode);
338 inode->i_ctime = current_time(inode);
339 ret = btrfs_update_inode(trans, root, inode);
340
341 out_end_trans:
342 btrfs_end_transaction(trans);
343 out_unlock:
344 inode_unlock(inode);
345 mnt_drop_write_file(file);
346 return ret;
347}
348
349/*
350 * Translate btrfs internal inode flags to xflags as expected by the
351 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
352 * silently dropped.
353 */
354static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
355{
356 unsigned int xflags = 0;
357
358 if (flags & BTRFS_INODE_APPEND)
359 xflags |= FS_XFLAG_APPEND;
360 if (flags & BTRFS_INODE_IMMUTABLE)
361 xflags |= FS_XFLAG_IMMUTABLE;
362 if (flags & BTRFS_INODE_NOATIME)
363 xflags |= FS_XFLAG_NOATIME;
364 if (flags & BTRFS_INODE_NODUMP)
365 xflags |= FS_XFLAG_NODUMP;
366 if (flags & BTRFS_INODE_SYNC)
367 xflags |= FS_XFLAG_SYNC;
368
369 return xflags;
370}
371
372/* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
373static int check_xflags(unsigned int flags)
374{
375 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
376 FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
377 return -EOPNOTSUPP;
378 return 0;
379}
380
381/*
382 * Set the xflags from the internal inode flags. The remaining items of fsxattr
383 * are zeroed.
384 */
385static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
386{
387 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
388 struct fsxattr fa;
389
390 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
391 if (copy_to_user(arg, &fa, sizeof(fa)))
392 return -EFAULT;
393
394 return 0;
395}
396
397static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
398{
399 struct inode *inode = file_inode(file);
400 struct btrfs_inode *binode = BTRFS_I(inode);
401 struct btrfs_root *root = binode->root;
402 struct btrfs_trans_handle *trans;
403 struct fsxattr fa, old_fa;
404 unsigned old_flags;
405 unsigned old_i_flags;
406 int ret = 0;
407
408 if (!inode_owner_or_capable(inode))
409 return -EPERM;
410
411 if (btrfs_root_readonly(root))
412 return -EROFS;
413
414 if (copy_from_user(&fa, arg, sizeof(fa)))
415 return -EFAULT;
416
417 ret = check_xflags(fa.fsx_xflags);
418 if (ret)
419 return ret;
420
421 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
422 return -EOPNOTSUPP;
423
424 ret = mnt_want_write_file(file);
425 if (ret)
426 return ret;
427
428 inode_lock(inode);
429
430 old_flags = binode->flags;
431 old_i_flags = inode->i_flags;
432
433 simple_fill_fsxattr(&old_fa,
434 btrfs_inode_flags_to_xflags(binode->flags));
435 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
436 if (ret)
437 goto out_unlock;
438
439 if (fa.fsx_xflags & FS_XFLAG_SYNC)
440 binode->flags |= BTRFS_INODE_SYNC;
441 else
442 binode->flags &= ~BTRFS_INODE_SYNC;
443 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
444 binode->flags |= BTRFS_INODE_IMMUTABLE;
445 else
446 binode->flags &= ~BTRFS_INODE_IMMUTABLE;
447 if (fa.fsx_xflags & FS_XFLAG_APPEND)
448 binode->flags |= BTRFS_INODE_APPEND;
449 else
450 binode->flags &= ~BTRFS_INODE_APPEND;
451 if (fa.fsx_xflags & FS_XFLAG_NODUMP)
452 binode->flags |= BTRFS_INODE_NODUMP;
453 else
454 binode->flags &= ~BTRFS_INODE_NODUMP;
455 if (fa.fsx_xflags & FS_XFLAG_NOATIME)
456 binode->flags |= BTRFS_INODE_NOATIME;
457 else
458 binode->flags &= ~BTRFS_INODE_NOATIME;
459
460 /* 1 item for the inode */
461 trans = btrfs_start_transaction(root, 1);
462 if (IS_ERR(trans)) {
463 ret = PTR_ERR(trans);
464 goto out_unlock;
465 }
466
467 btrfs_sync_inode_flags_to_i_flags(inode);
468 inode_inc_iversion(inode);
469 inode->i_ctime = current_time(inode);
470 ret = btrfs_update_inode(trans, root, inode);
471
472 btrfs_end_transaction(trans);
473
474out_unlock:
475 if (ret) {
476 binode->flags = old_flags;
477 inode->i_flags = old_i_flags;
478 }
479
480 inode_unlock(inode);
481 mnt_drop_write_file(file);
482
483 return ret;
484}
485
486static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
487{
488 struct inode *inode = file_inode(file);
489
490 return put_user(inode->i_generation, arg);
491}
492
493static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
494 void __user *arg)
495{
496 struct btrfs_device *device;
497 struct request_queue *q;
498 struct fstrim_range range;
499 u64 minlen = ULLONG_MAX;
500 u64 num_devices = 0;
501 int ret;
502
503 if (!capable(CAP_SYS_ADMIN))
504 return -EPERM;
505
506 /*
507 * If the fs is mounted with nologreplay, which requires it to be
508 * mounted in RO mode as well, we can not allow discard on free space
509 * inside block groups, because log trees refer to extents that are not
510 * pinned in a block group's free space cache (pinning the extents is
511 * precisely the first phase of replaying a log tree).
512 */
513 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
514 return -EROFS;
515
516 rcu_read_lock();
517 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
518 dev_list) {
519 if (!device->bdev)
520 continue;
521 q = bdev_get_queue(device->bdev);
522 if (blk_queue_discard(q)) {
523 num_devices++;
524 minlen = min_t(u64, q->limits.discard_granularity,
525 minlen);
526 }
527 }
528 rcu_read_unlock();
529
530 if (!num_devices)
531 return -EOPNOTSUPP;
532 if (copy_from_user(&range, arg, sizeof(range)))
533 return -EFAULT;
534
535 /*
536 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
537 * block group is in the logical address space, which can be any
538 * sectorsize aligned bytenr in the range [0, U64_MAX].
539 */
540 if (range.len < fs_info->sb->s_blocksize)
541 return -EINVAL;
542
543 range.minlen = max(range.minlen, minlen);
544 ret = btrfs_trim_fs(fs_info, &range);
545 if (ret < 0)
546 return ret;
547
548 if (copy_to_user(arg, &range, sizeof(range)))
549 return -EFAULT;
550
551 return 0;
552}
553
554int __pure btrfs_is_empty_uuid(u8 *uuid)
555{
556 int i;
557
558 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
559 if (uuid[i])
560 return 0;
561 }
562 return 1;
563}
564
565static noinline int create_subvol(struct inode *dir,
566 struct dentry *dentry,
567 const char *name, int namelen,
568 struct btrfs_qgroup_inherit *inherit)
569{
570 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
571 struct btrfs_trans_handle *trans;
572 struct btrfs_key key;
573 struct btrfs_root_item *root_item;
574 struct btrfs_inode_item *inode_item;
575 struct extent_buffer *leaf;
576 struct btrfs_root *root = BTRFS_I(dir)->root;
577 struct btrfs_root *new_root;
578 struct btrfs_block_rsv block_rsv;
579 struct timespec64 cur_time = current_time(dir);
580 struct inode *inode;
581 int ret;
582 int err;
583 dev_t anon_dev = 0;
584 u64 objectid;
585 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
586 u64 index = 0;
587
588 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
589 if (!root_item)
590 return -ENOMEM;
591
592 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
593 if (ret)
594 goto fail_free;
595
596 ret = get_anon_bdev(&anon_dev);
597 if (ret < 0)
598 goto fail_free;
599
600 /*
601 * Don't create subvolume whose level is not zero. Or qgroup will be
602 * screwed up since it assumes subvolume qgroup's level to be 0.
603 */
604 if (btrfs_qgroup_level(objectid)) {
605 ret = -ENOSPC;
606 goto fail_free;
607 }
608
609 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
610 /*
611 * The same as the snapshot creation, please see the comment
612 * of create_snapshot().
613 */
614 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
615 if (ret)
616 goto fail_free;
617
618 trans = btrfs_start_transaction(root, 0);
619 if (IS_ERR(trans)) {
620 ret = PTR_ERR(trans);
621 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
622 goto fail_free;
623 }
624 trans->block_rsv = &block_rsv;
625 trans->bytes_reserved = block_rsv.size;
626
627 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
628 if (ret)
629 goto fail;
630
631 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
632 if (IS_ERR(leaf)) {
633 ret = PTR_ERR(leaf);
634 goto fail;
635 }
636
637 btrfs_mark_buffer_dirty(leaf);
638
639 inode_item = &root_item->inode;
640 btrfs_set_stack_inode_generation(inode_item, 1);
641 btrfs_set_stack_inode_size(inode_item, 3);
642 btrfs_set_stack_inode_nlink(inode_item, 1);
643 btrfs_set_stack_inode_nbytes(inode_item,
644 fs_info->nodesize);
645 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
646
647 btrfs_set_root_flags(root_item, 0);
648 btrfs_set_root_limit(root_item, 0);
649 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
650
651 btrfs_set_root_bytenr(root_item, leaf->start);
652 btrfs_set_root_generation(root_item, trans->transid);
653 btrfs_set_root_level(root_item, 0);
654 btrfs_set_root_refs(root_item, 1);
655 btrfs_set_root_used(root_item, leaf->len);
656 btrfs_set_root_last_snapshot(root_item, 0);
657
658 btrfs_set_root_generation_v2(root_item,
659 btrfs_root_generation(root_item));
660 generate_random_guid(root_item->uuid);
661 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
662 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
663 root_item->ctime = root_item->otime;
664 btrfs_set_root_ctransid(root_item, trans->transid);
665 btrfs_set_root_otransid(root_item, trans->transid);
666
667 btrfs_tree_unlock(leaf);
668 free_extent_buffer(leaf);
669 leaf = NULL;
670
671 btrfs_set_root_dirid(root_item, new_dirid);
672
673 key.objectid = objectid;
674 key.offset = 0;
675 key.type = BTRFS_ROOT_ITEM_KEY;
676 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
677 root_item);
678 if (ret)
679 goto fail;
680
681 key.offset = (u64)-1;
682 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
683 if (IS_ERR(new_root)) {
684 free_anon_bdev(anon_dev);
685 ret = PTR_ERR(new_root);
686 btrfs_abort_transaction(trans, ret);
687 goto fail;
688 }
689 /* Freeing will be done in btrfs_put_root() of new_root */
690 anon_dev = 0;
691
692 btrfs_record_root_in_trans(trans, new_root);
693
694 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
695 btrfs_put_root(new_root);
696 if (ret) {
697 /* We potentially lose an unused inode item here */
698 btrfs_abort_transaction(trans, ret);
699 goto fail;
700 }
701
702 mutex_lock(&new_root->objectid_mutex);
703 new_root->highest_objectid = new_dirid;
704 mutex_unlock(&new_root->objectid_mutex);
705
706 /*
707 * insert the directory item
708 */
709 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
710 if (ret) {
711 btrfs_abort_transaction(trans, ret);
712 goto fail;
713 }
714
715 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
716 BTRFS_FT_DIR, index);
717 if (ret) {
718 btrfs_abort_transaction(trans, ret);
719 goto fail;
720 }
721
722 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
723 ret = btrfs_update_inode(trans, root, dir);
724 if (ret) {
725 btrfs_abort_transaction(trans, ret);
726 goto fail;
727 }
728
729 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
730 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
731 if (ret) {
732 btrfs_abort_transaction(trans, ret);
733 goto fail;
734 }
735
736 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
737 BTRFS_UUID_KEY_SUBVOL, objectid);
738 if (ret)
739 btrfs_abort_transaction(trans, ret);
740
741fail:
742 kfree(root_item);
743 trans->block_rsv = NULL;
744 trans->bytes_reserved = 0;
745 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
746
747 err = btrfs_commit_transaction(trans);
748 if (err && !ret)
749 ret = err;
750
751 if (!ret) {
752 inode = btrfs_lookup_dentry(dir, dentry);
753 if (IS_ERR(inode))
754 return PTR_ERR(inode);
755 d_instantiate(dentry, inode);
756 }
757 return ret;
758
759fail_free:
760 if (anon_dev)
761 free_anon_bdev(anon_dev);
762 kfree(root_item);
763 return ret;
764}
765
766static int create_snapshot(struct btrfs_root *root, struct inode *dir,
767 struct dentry *dentry, bool readonly,
768 struct btrfs_qgroup_inherit *inherit)
769{
770 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
771 struct inode *inode;
772 struct btrfs_pending_snapshot *pending_snapshot;
773 struct btrfs_trans_handle *trans;
774 int ret;
775
776 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
777 return -EINVAL;
778
779 if (atomic_read(&root->nr_swapfiles)) {
780 btrfs_warn(fs_info,
781 "cannot snapshot subvolume with active swapfile");
782 return -ETXTBSY;
783 }
784
785 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
786 if (!pending_snapshot)
787 return -ENOMEM;
788
789 ret = get_anon_bdev(&pending_snapshot->anon_dev);
790 if (ret < 0)
791 goto free_pending;
792 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
793 GFP_KERNEL);
794 pending_snapshot->path = btrfs_alloc_path();
795 if (!pending_snapshot->root_item || !pending_snapshot->path) {
796 ret = -ENOMEM;
797 goto free_pending;
798 }
799
800 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
801 BTRFS_BLOCK_RSV_TEMP);
802 /*
803 * 1 - parent dir inode
804 * 2 - dir entries
805 * 1 - root item
806 * 2 - root ref/backref
807 * 1 - root of snapshot
808 * 1 - UUID item
809 */
810 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
811 &pending_snapshot->block_rsv, 8,
812 false);
813 if (ret)
814 goto free_pending;
815
816 pending_snapshot->dentry = dentry;
817 pending_snapshot->root = root;
818 pending_snapshot->readonly = readonly;
819 pending_snapshot->dir = dir;
820 pending_snapshot->inherit = inherit;
821
822 trans = btrfs_start_transaction(root, 0);
823 if (IS_ERR(trans)) {
824 ret = PTR_ERR(trans);
825 goto fail;
826 }
827
828 spin_lock(&fs_info->trans_lock);
829 list_add(&pending_snapshot->list,
830 &trans->transaction->pending_snapshots);
831 spin_unlock(&fs_info->trans_lock);
832
833 ret = btrfs_commit_transaction(trans);
834 if (ret)
835 goto fail;
836
837 ret = pending_snapshot->error;
838 if (ret)
839 goto fail;
840
841 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
842 if (ret)
843 goto fail;
844
845 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
846 if (IS_ERR(inode)) {
847 ret = PTR_ERR(inode);
848 goto fail;
849 }
850
851 d_instantiate(dentry, inode);
852 ret = 0;
853 pending_snapshot->anon_dev = 0;
854fail:
855 /* Prevent double freeing of anon_dev */
856 if (ret && pending_snapshot->snap)
857 pending_snapshot->snap->anon_dev = 0;
858 btrfs_put_root(pending_snapshot->snap);
859 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
860free_pending:
861 if (pending_snapshot->anon_dev)
862 free_anon_bdev(pending_snapshot->anon_dev);
863 kfree(pending_snapshot->root_item);
864 btrfs_free_path(pending_snapshot->path);
865 kfree(pending_snapshot);
866
867 return ret;
868}
869
870/* copy of may_delete in fs/namei.c()
871 * Check whether we can remove a link victim from directory dir, check
872 * whether the type of victim is right.
873 * 1. We can't do it if dir is read-only (done in permission())
874 * 2. We should have write and exec permissions on dir
875 * 3. We can't remove anything from append-only dir
876 * 4. We can't do anything with immutable dir (done in permission())
877 * 5. If the sticky bit on dir is set we should either
878 * a. be owner of dir, or
879 * b. be owner of victim, or
880 * c. have CAP_FOWNER capability
881 * 6. If the victim is append-only or immutable we can't do anything with
882 * links pointing to it.
883 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
884 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
885 * 9. We can't remove a root or mountpoint.
886 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
887 * nfs_async_unlink().
888 */
889
890static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
891{
892 int error;
893
894 if (d_really_is_negative(victim))
895 return -ENOENT;
896
897 BUG_ON(d_inode(victim->d_parent) != dir);
898 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
899
900 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
901 if (error)
902 return error;
903 if (IS_APPEND(dir))
904 return -EPERM;
905 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
906 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
907 return -EPERM;
908 if (isdir) {
909 if (!d_is_dir(victim))
910 return -ENOTDIR;
911 if (IS_ROOT(victim))
912 return -EBUSY;
913 } else if (d_is_dir(victim))
914 return -EISDIR;
915 if (IS_DEADDIR(dir))
916 return -ENOENT;
917 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
918 return -EBUSY;
919 return 0;
920}
921
922/* copy of may_create in fs/namei.c() */
923static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
924{
925 if (d_really_is_positive(child))
926 return -EEXIST;
927 if (IS_DEADDIR(dir))
928 return -ENOENT;
929 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
930}
931
932/*
933 * Create a new subvolume below @parent. This is largely modeled after
934 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
935 * inside this filesystem so it's quite a bit simpler.
936 */
937static noinline int btrfs_mksubvol(const struct path *parent,
938 const char *name, int namelen,
939 struct btrfs_root *snap_src,
940 bool readonly,
941 struct btrfs_qgroup_inherit *inherit)
942{
943 struct inode *dir = d_inode(parent->dentry);
944 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
945 struct dentry *dentry;
946 int error;
947
948 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
949 if (error == -EINTR)
950 return error;
951
952 dentry = lookup_one_len(name, parent->dentry, namelen);
953 error = PTR_ERR(dentry);
954 if (IS_ERR(dentry))
955 goto out_unlock;
956
957 error = btrfs_may_create(dir, dentry);
958 if (error)
959 goto out_dput;
960
961 /*
962 * even if this name doesn't exist, we may get hash collisions.
963 * check for them now when we can safely fail
964 */
965 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
966 dir->i_ino, name,
967 namelen);
968 if (error)
969 goto out_dput;
970
971 down_read(&fs_info->subvol_sem);
972
973 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
974 goto out_up_read;
975
976 if (snap_src)
977 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
978 else
979 error = create_subvol(dir, dentry, name, namelen, inherit);
980
981 if (!error)
982 fsnotify_mkdir(dir, dentry);
983out_up_read:
984 up_read(&fs_info->subvol_sem);
985out_dput:
986 dput(dentry);
987out_unlock:
988 inode_unlock(dir);
989 return error;
990}
991
992static noinline int btrfs_mksnapshot(const struct path *parent,
993 const char *name, int namelen,
994 struct btrfs_root *root,
995 bool readonly,
996 struct btrfs_qgroup_inherit *inherit)
997{
998 int ret;
999 bool snapshot_force_cow = false;
1000
1001 /*
1002 * Force new buffered writes to reserve space even when NOCOW is
1003 * possible. This is to avoid later writeback (running dealloc) to
1004 * fallback to COW mode and unexpectedly fail with ENOSPC.
1005 */
1006 btrfs_drew_read_lock(&root->snapshot_lock);
1007
1008 ret = btrfs_start_delalloc_snapshot(root);
1009 if (ret)
1010 goto out;
1011
1012 /*
1013 * All previous writes have started writeback in NOCOW mode, so now
1014 * we force future writes to fallback to COW mode during snapshot
1015 * creation.
1016 */
1017 atomic_inc(&root->snapshot_force_cow);
1018 snapshot_force_cow = true;
1019
1020 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1021
1022 ret = btrfs_mksubvol(parent, name, namelen,
1023 root, readonly, inherit);
1024out:
1025 if (snapshot_force_cow)
1026 atomic_dec(&root->snapshot_force_cow);
1027 btrfs_drew_read_unlock(&root->snapshot_lock);
1028 return ret;
1029}
1030
1031/*
1032 * When we're defragging a range, we don't want to kick it off again
1033 * if it is really just waiting for delalloc to send it down.
1034 * If we find a nice big extent or delalloc range for the bytes in the
1035 * file you want to defrag, we return 0 to let you know to skip this
1036 * part of the file
1037 */
1038static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1039{
1040 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1041 struct extent_map *em = NULL;
1042 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1043 u64 end;
1044
1045 read_lock(&em_tree->lock);
1046 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1047 read_unlock(&em_tree->lock);
1048
1049 if (em) {
1050 end = extent_map_end(em);
1051 free_extent_map(em);
1052 if (end - offset > thresh)
1053 return 0;
1054 }
1055 /* if we already have a nice delalloc here, just stop */
1056 thresh /= 2;
1057 end = count_range_bits(io_tree, &offset, offset + thresh,
1058 thresh, EXTENT_DELALLOC, 1);
1059 if (end >= thresh)
1060 return 0;
1061 return 1;
1062}
1063
1064/*
1065 * helper function to walk through a file and find extents
1066 * newer than a specific transid, and smaller than thresh.
1067 *
1068 * This is used by the defragging code to find new and small
1069 * extents
1070 */
1071static int find_new_extents(struct btrfs_root *root,
1072 struct inode *inode, u64 newer_than,
1073 u64 *off, u32 thresh)
1074{
1075 struct btrfs_path *path;
1076 struct btrfs_key min_key;
1077 struct extent_buffer *leaf;
1078 struct btrfs_file_extent_item *extent;
1079 int type;
1080 int ret;
1081 u64 ino = btrfs_ino(BTRFS_I(inode));
1082
1083 path = btrfs_alloc_path();
1084 if (!path)
1085 return -ENOMEM;
1086
1087 min_key.objectid = ino;
1088 min_key.type = BTRFS_EXTENT_DATA_KEY;
1089 min_key.offset = *off;
1090
1091 while (1) {
1092 ret = btrfs_search_forward(root, &min_key, path, newer_than);
1093 if (ret != 0)
1094 goto none;
1095process_slot:
1096 if (min_key.objectid != ino)
1097 goto none;
1098 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1099 goto none;
1100
1101 leaf = path->nodes[0];
1102 extent = btrfs_item_ptr(leaf, path->slots[0],
1103 struct btrfs_file_extent_item);
1104
1105 type = btrfs_file_extent_type(leaf, extent);
1106 if (type == BTRFS_FILE_EXTENT_REG &&
1107 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1108 check_defrag_in_cache(inode, min_key.offset, thresh)) {
1109 *off = min_key.offset;
1110 btrfs_free_path(path);
1111 return 0;
1112 }
1113
1114 path->slots[0]++;
1115 if (path->slots[0] < btrfs_header_nritems(leaf)) {
1116 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1117 goto process_slot;
1118 }
1119
1120 if (min_key.offset == (u64)-1)
1121 goto none;
1122
1123 min_key.offset++;
1124 btrfs_release_path(path);
1125 }
1126none:
1127 btrfs_free_path(path);
1128 return -ENOENT;
1129}
1130
1131static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1132{
1133 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1134 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1135 struct extent_map *em;
1136 u64 len = PAGE_SIZE;
1137
1138 /*
1139 * hopefully we have this extent in the tree already, try without
1140 * the full extent lock
1141 */
1142 read_lock(&em_tree->lock);
1143 em = lookup_extent_mapping(em_tree, start, len);
1144 read_unlock(&em_tree->lock);
1145
1146 if (!em) {
1147 struct extent_state *cached = NULL;
1148 u64 end = start + len - 1;
1149
1150 /* get the big lock and read metadata off disk */
1151 lock_extent_bits(io_tree, start, end, &cached);
1152 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1153 unlock_extent_cached(io_tree, start, end, &cached);
1154
1155 if (IS_ERR(em))
1156 return NULL;
1157 }
1158
1159 return em;
1160}
1161
1162static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1163{
1164 struct extent_map *next;
1165 bool ret = true;
1166
1167 /* this is the last extent */
1168 if (em->start + em->len >= i_size_read(inode))
1169 return false;
1170
1171 next = defrag_lookup_extent(inode, em->start + em->len);
1172 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1173 ret = false;
1174 else if ((em->block_start + em->block_len == next->block_start) &&
1175 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1176 ret = false;
1177
1178 free_extent_map(next);
1179 return ret;
1180}
1181
1182static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1183 u64 *last_len, u64 *skip, u64 *defrag_end,
1184 int compress)
1185{
1186 struct extent_map *em;
1187 int ret = 1;
1188 bool next_mergeable = true;
1189 bool prev_mergeable = true;
1190
1191 /*
1192 * make sure that once we start defragging an extent, we keep on
1193 * defragging it
1194 */
1195 if (start < *defrag_end)
1196 return 1;
1197
1198 *skip = 0;
1199
1200 em = defrag_lookup_extent(inode, start);
1201 if (!em)
1202 return 0;
1203
1204 /* this will cover holes, and inline extents */
1205 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1206 ret = 0;
1207 goto out;
1208 }
1209
1210 if (!*defrag_end)
1211 prev_mergeable = false;
1212
1213 next_mergeable = defrag_check_next_extent(inode, em);
1214 /*
1215 * we hit a real extent, if it is big or the next extent is not a
1216 * real extent, don't bother defragging it
1217 */
1218 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1219 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1220 ret = 0;
1221out:
1222 /*
1223 * last_len ends up being a counter of how many bytes we've defragged.
1224 * every time we choose not to defrag an extent, we reset *last_len
1225 * so that the next tiny extent will force a defrag.
1226 *
1227 * The end result of this is that tiny extents before a single big
1228 * extent will force at least part of that big extent to be defragged.
1229 */
1230 if (ret) {
1231 *defrag_end = extent_map_end(em);
1232 } else {
1233 *last_len = 0;
1234 *skip = extent_map_end(em);
1235 *defrag_end = 0;
1236 }
1237
1238 free_extent_map(em);
1239 return ret;
1240}
1241
1242/*
1243 * it doesn't do much good to defrag one or two pages
1244 * at a time. This pulls in a nice chunk of pages
1245 * to COW and defrag.
1246 *
1247 * It also makes sure the delalloc code has enough
1248 * dirty data to avoid making new small extents as part
1249 * of the defrag
1250 *
1251 * It's a good idea to start RA on this range
1252 * before calling this.
1253 */
1254static int cluster_pages_for_defrag(struct inode *inode,
1255 struct page **pages,
1256 unsigned long start_index,
1257 unsigned long num_pages)
1258{
1259 unsigned long file_end;
1260 u64 isize = i_size_read(inode);
1261 u64 page_start;
1262 u64 page_end;
1263 u64 page_cnt;
1264 int ret;
1265 int i;
1266 int i_done;
1267 struct btrfs_ordered_extent *ordered;
1268 struct extent_state *cached_state = NULL;
1269 struct extent_io_tree *tree;
1270 struct extent_changeset *data_reserved = NULL;
1271 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1272
1273 file_end = (isize - 1) >> PAGE_SHIFT;
1274 if (!isize || start_index > file_end)
1275 return 0;
1276
1277 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1278
1279 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1280 start_index << PAGE_SHIFT,
1281 page_cnt << PAGE_SHIFT);
1282 if (ret)
1283 return ret;
1284 i_done = 0;
1285 tree = &BTRFS_I(inode)->io_tree;
1286
1287 /* step one, lock all the pages */
1288 for (i = 0; i < page_cnt; i++) {
1289 struct page *page;
1290again:
1291 page = find_or_create_page(inode->i_mapping,
1292 start_index + i, mask);
1293 if (!page)
1294 break;
1295
1296 page_start = page_offset(page);
1297 page_end = page_start + PAGE_SIZE - 1;
1298 while (1) {
1299 lock_extent_bits(tree, page_start, page_end,
1300 &cached_state);
1301 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1302 page_start);
1303 unlock_extent_cached(tree, page_start, page_end,
1304 &cached_state);
1305 if (!ordered)
1306 break;
1307
1308 unlock_page(page);
1309 btrfs_start_ordered_extent(inode, ordered, 1);
1310 btrfs_put_ordered_extent(ordered);
1311 lock_page(page);
1312 /*
1313 * we unlocked the page above, so we need check if
1314 * it was released or not.
1315 */
1316 if (page->mapping != inode->i_mapping) {
1317 unlock_page(page);
1318 put_page(page);
1319 goto again;
1320 }
1321 }
1322
1323 if (!PageUptodate(page)) {
1324 btrfs_readpage(NULL, page);
1325 lock_page(page);
1326 if (!PageUptodate(page)) {
1327 unlock_page(page);
1328 put_page(page);
1329 ret = -EIO;
1330 break;
1331 }
1332 }
1333
1334 if (page->mapping != inode->i_mapping) {
1335 unlock_page(page);
1336 put_page(page);
1337 goto again;
1338 }
1339
1340 pages[i] = page;
1341 i_done++;
1342 }
1343 if (!i_done || ret)
1344 goto out;
1345
1346 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1347 goto out;
1348
1349 /*
1350 * so now we have a nice long stream of locked
1351 * and up to date pages, lets wait on them
1352 */
1353 for (i = 0; i < i_done; i++)
1354 wait_on_page_writeback(pages[i]);
1355
1356 page_start = page_offset(pages[0]);
1357 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1358
1359 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1360 page_start, page_end - 1, &cached_state);
1361 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1362 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1363 EXTENT_DEFRAG, 0, 0, &cached_state);
1364
1365 if (i_done != page_cnt) {
1366 spin_lock(&BTRFS_I(inode)->lock);
1367 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1368 spin_unlock(&BTRFS_I(inode)->lock);
1369 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1370 start_index << PAGE_SHIFT,
1371 (page_cnt - i_done) << PAGE_SHIFT, true);
1372 }
1373
1374
1375 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1376 &cached_state);
1377
1378 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1379 page_start, page_end - 1, &cached_state);
1380
1381 for (i = 0; i < i_done; i++) {
1382 clear_page_dirty_for_io(pages[i]);
1383 ClearPageChecked(pages[i]);
1384 set_page_extent_mapped(pages[i]);
1385 set_page_dirty(pages[i]);
1386 unlock_page(pages[i]);
1387 put_page(pages[i]);
1388 }
1389 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1390 extent_changeset_free(data_reserved);
1391 return i_done;
1392out:
1393 for (i = 0; i < i_done; i++) {
1394 unlock_page(pages[i]);
1395 put_page(pages[i]);
1396 }
1397 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1398 start_index << PAGE_SHIFT,
1399 page_cnt << PAGE_SHIFT, true);
1400 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1401 extent_changeset_free(data_reserved);
1402 return ret;
1403
1404}
1405
1406int btrfs_defrag_file(struct inode *inode, struct file *file,
1407 struct btrfs_ioctl_defrag_range_args *range,
1408 u64 newer_than, unsigned long max_to_defrag)
1409{
1410 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1411 struct btrfs_root *root = BTRFS_I(inode)->root;
1412 struct file_ra_state *ra = NULL;
1413 unsigned long last_index;
1414 u64 isize = i_size_read(inode);
1415 u64 last_len = 0;
1416 u64 skip = 0;
1417 u64 defrag_end = 0;
1418 u64 newer_off = range->start;
1419 unsigned long i;
1420 unsigned long ra_index = 0;
1421 int ret;
1422 int defrag_count = 0;
1423 int compress_type = BTRFS_COMPRESS_ZLIB;
1424 u32 extent_thresh = range->extent_thresh;
1425 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1426 unsigned long cluster = max_cluster;
1427 u64 new_align = ~((u64)SZ_128K - 1);
1428 struct page **pages = NULL;
1429 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1430
1431 if (isize == 0)
1432 return 0;
1433
1434 if (range->start >= isize)
1435 return -EINVAL;
1436
1437 if (do_compress) {
1438 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1439 return -EINVAL;
1440 if (range->compress_type)
1441 compress_type = range->compress_type;
1442 }
1443
1444 if (extent_thresh == 0)
1445 extent_thresh = SZ_256K;
1446
1447 /*
1448 * If we were not given a file, allocate a readahead context. As
1449 * readahead is just an optimization, defrag will work without it so
1450 * we don't error out.
1451 */
1452 if (!file) {
1453 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1454 if (ra)
1455 file_ra_state_init(ra, inode->i_mapping);
1456 } else {
1457 ra = &file->f_ra;
1458 }
1459
1460 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1461 if (!pages) {
1462 ret = -ENOMEM;
1463 goto out_ra;
1464 }
1465
1466 /* find the last page to defrag */
1467 if (range->start + range->len > range->start) {
1468 last_index = min_t(u64, isize - 1,
1469 range->start + range->len - 1) >> PAGE_SHIFT;
1470 } else {
1471 last_index = (isize - 1) >> PAGE_SHIFT;
1472 }
1473
1474 if (newer_than) {
1475 ret = find_new_extents(root, inode, newer_than,
1476 &newer_off, SZ_64K);
1477 if (!ret) {
1478 range->start = newer_off;
1479 /*
1480 * we always align our defrag to help keep
1481 * the extents in the file evenly spaced
1482 */
1483 i = (newer_off & new_align) >> PAGE_SHIFT;
1484 } else
1485 goto out_ra;
1486 } else {
1487 i = range->start >> PAGE_SHIFT;
1488 }
1489 if (!max_to_defrag)
1490 max_to_defrag = last_index - i + 1;
1491
1492 /*
1493 * make writeback starts from i, so the defrag range can be
1494 * written sequentially.
1495 */
1496 if (i < inode->i_mapping->writeback_index)
1497 inode->i_mapping->writeback_index = i;
1498
1499 while (i <= last_index && defrag_count < max_to_defrag &&
1500 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1501 /*
1502 * make sure we stop running if someone unmounts
1503 * the FS
1504 */
1505 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1506 break;
1507
1508 if (btrfs_defrag_cancelled(fs_info)) {
1509 btrfs_debug(fs_info, "defrag_file cancelled");
1510 ret = -EAGAIN;
1511 break;
1512 }
1513
1514 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1515 extent_thresh, &last_len, &skip,
1516 &defrag_end, do_compress)){
1517 unsigned long next;
1518 /*
1519 * the should_defrag function tells us how much to skip
1520 * bump our counter by the suggested amount
1521 */
1522 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1523 i = max(i + 1, next);
1524 continue;
1525 }
1526
1527 if (!newer_than) {
1528 cluster = (PAGE_ALIGN(defrag_end) >>
1529 PAGE_SHIFT) - i;
1530 cluster = min(cluster, max_cluster);
1531 } else {
1532 cluster = max_cluster;
1533 }
1534
1535 if (i + cluster > ra_index) {
1536 ra_index = max(i, ra_index);
1537 if (ra)
1538 page_cache_sync_readahead(inode->i_mapping, ra,
1539 file, ra_index, cluster);
1540 ra_index += cluster;
1541 }
1542
1543 inode_lock(inode);
1544 if (IS_SWAPFILE(inode)) {
1545 ret = -ETXTBSY;
1546 } else {
1547 if (do_compress)
1548 BTRFS_I(inode)->defrag_compress = compress_type;
1549 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1550 }
1551 if (ret < 0) {
1552 inode_unlock(inode);
1553 goto out_ra;
1554 }
1555
1556 defrag_count += ret;
1557 balance_dirty_pages_ratelimited(inode->i_mapping);
1558 inode_unlock(inode);
1559
1560 if (newer_than) {
1561 if (newer_off == (u64)-1)
1562 break;
1563
1564 if (ret > 0)
1565 i += ret;
1566
1567 newer_off = max(newer_off + 1,
1568 (u64)i << PAGE_SHIFT);
1569
1570 ret = find_new_extents(root, inode, newer_than,
1571 &newer_off, SZ_64K);
1572 if (!ret) {
1573 range->start = newer_off;
1574 i = (newer_off & new_align) >> PAGE_SHIFT;
1575 } else {
1576 break;
1577 }
1578 } else {
1579 if (ret > 0) {
1580 i += ret;
1581 last_len += ret << PAGE_SHIFT;
1582 } else {
1583 i++;
1584 last_len = 0;
1585 }
1586 }
1587 }
1588
1589 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1590 filemap_flush(inode->i_mapping);
1591 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1592 &BTRFS_I(inode)->runtime_flags))
1593 filemap_flush(inode->i_mapping);
1594 }
1595
1596 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1597 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1598 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1599 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1600 }
1601
1602 ret = defrag_count;
1603
1604out_ra:
1605 if (do_compress) {
1606 inode_lock(inode);
1607 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1608 inode_unlock(inode);
1609 }
1610 if (!file)
1611 kfree(ra);
1612 kfree(pages);
1613 return ret;
1614}
1615
1616static noinline int btrfs_ioctl_resize(struct file *file,
1617 void __user *arg)
1618{
1619 struct inode *inode = file_inode(file);
1620 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1621 u64 new_size;
1622 u64 old_size;
1623 u64 devid = 1;
1624 struct btrfs_root *root = BTRFS_I(inode)->root;
1625 struct btrfs_ioctl_vol_args *vol_args;
1626 struct btrfs_trans_handle *trans;
1627 struct btrfs_device *device = NULL;
1628 char *sizestr;
1629 char *retptr;
1630 char *devstr = NULL;
1631 int ret = 0;
1632 int mod = 0;
1633
1634 if (!capable(CAP_SYS_ADMIN))
1635 return -EPERM;
1636
1637 ret = mnt_want_write_file(file);
1638 if (ret)
1639 return ret;
1640
1641 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1642 mnt_drop_write_file(file);
1643 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1644 }
1645
1646 vol_args = memdup_user(arg, sizeof(*vol_args));
1647 if (IS_ERR(vol_args)) {
1648 ret = PTR_ERR(vol_args);
1649 goto out;
1650 }
1651
1652 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1653
1654 sizestr = vol_args->name;
1655 devstr = strchr(sizestr, ':');
1656 if (devstr) {
1657 sizestr = devstr + 1;
1658 *devstr = '\0';
1659 devstr = vol_args->name;
1660 ret = kstrtoull(devstr, 10, &devid);
1661 if (ret)
1662 goto out_free;
1663 if (!devid) {
1664 ret = -EINVAL;
1665 goto out_free;
1666 }
1667 btrfs_info(fs_info, "resizing devid %llu", devid);
1668 }
1669
1670 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1671 if (!device) {
1672 btrfs_info(fs_info, "resizer unable to find device %llu",
1673 devid);
1674 ret = -ENODEV;
1675 goto out_free;
1676 }
1677
1678 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1679 btrfs_info(fs_info,
1680 "resizer unable to apply on readonly device %llu",
1681 devid);
1682 ret = -EPERM;
1683 goto out_free;
1684 }
1685
1686 if (!strcmp(sizestr, "max"))
1687 new_size = device->bdev->bd_inode->i_size;
1688 else {
1689 if (sizestr[0] == '-') {
1690 mod = -1;
1691 sizestr++;
1692 } else if (sizestr[0] == '+') {
1693 mod = 1;
1694 sizestr++;
1695 }
1696 new_size = memparse(sizestr, &retptr);
1697 if (*retptr != '\0' || new_size == 0) {
1698 ret = -EINVAL;
1699 goto out_free;
1700 }
1701 }
1702
1703 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1704 ret = -EPERM;
1705 goto out_free;
1706 }
1707
1708 old_size = btrfs_device_get_total_bytes(device);
1709
1710 if (mod < 0) {
1711 if (new_size > old_size) {
1712 ret = -EINVAL;
1713 goto out_free;
1714 }
1715 new_size = old_size - new_size;
1716 } else if (mod > 0) {
1717 if (new_size > ULLONG_MAX - old_size) {
1718 ret = -ERANGE;
1719 goto out_free;
1720 }
1721 new_size = old_size + new_size;
1722 }
1723
1724 if (new_size < SZ_256M) {
1725 ret = -EINVAL;
1726 goto out_free;
1727 }
1728 if (new_size > device->bdev->bd_inode->i_size) {
1729 ret = -EFBIG;
1730 goto out_free;
1731 }
1732
1733 new_size = round_down(new_size, fs_info->sectorsize);
1734
1735 if (new_size > old_size) {
1736 trans = btrfs_start_transaction(root, 0);
1737 if (IS_ERR(trans)) {
1738 ret = PTR_ERR(trans);
1739 goto out_free;
1740 }
1741 ret = btrfs_grow_device(trans, device, new_size);
1742 btrfs_commit_transaction(trans);
1743 } else if (new_size < old_size) {
1744 ret = btrfs_shrink_device(device, new_size);
1745 } /* equal, nothing need to do */
1746
1747 if (ret == 0 && new_size != old_size)
1748 btrfs_info_in_rcu(fs_info,
1749 "resize device %s (devid %llu) from %llu to %llu",
1750 rcu_str_deref(device->name), device->devid,
1751 old_size, new_size);
1752out_free:
1753 kfree(vol_args);
1754out:
1755 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1756 mnt_drop_write_file(file);
1757 return ret;
1758}
1759
1760static noinline int __btrfs_ioctl_snap_create(struct file *file,
1761 const char *name, unsigned long fd, int subvol,
1762 bool readonly,
1763 struct btrfs_qgroup_inherit *inherit)
1764{
1765 int namelen;
1766 int ret = 0;
1767
1768 if (!S_ISDIR(file_inode(file)->i_mode))
1769 return -ENOTDIR;
1770
1771 ret = mnt_want_write_file(file);
1772 if (ret)
1773 goto out;
1774
1775 namelen = strlen(name);
1776 if (strchr(name, '/')) {
1777 ret = -EINVAL;
1778 goto out_drop_write;
1779 }
1780
1781 if (name[0] == '.' &&
1782 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1783 ret = -EEXIST;
1784 goto out_drop_write;
1785 }
1786
1787 if (subvol) {
1788 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1789 NULL, readonly, inherit);
1790 } else {
1791 struct fd src = fdget(fd);
1792 struct inode *src_inode;
1793 if (!src.file) {
1794 ret = -EINVAL;
1795 goto out_drop_write;
1796 }
1797
1798 src_inode = file_inode(src.file);
1799 if (src_inode->i_sb != file_inode(file)->i_sb) {
1800 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1801 "Snapshot src from another FS");
1802 ret = -EXDEV;
1803 } else if (!inode_owner_or_capable(src_inode)) {
1804 /*
1805 * Subvolume creation is not restricted, but snapshots
1806 * are limited to own subvolumes only
1807 */
1808 ret = -EPERM;
1809 } else {
1810 ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1811 BTRFS_I(src_inode)->root,
1812 readonly, inherit);
1813 }
1814 fdput(src);
1815 }
1816out_drop_write:
1817 mnt_drop_write_file(file);
1818out:
1819 return ret;
1820}
1821
1822static noinline int btrfs_ioctl_snap_create(struct file *file,
1823 void __user *arg, int subvol)
1824{
1825 struct btrfs_ioctl_vol_args *vol_args;
1826 int ret;
1827
1828 if (!S_ISDIR(file_inode(file)->i_mode))
1829 return -ENOTDIR;
1830
1831 vol_args = memdup_user(arg, sizeof(*vol_args));
1832 if (IS_ERR(vol_args))
1833 return PTR_ERR(vol_args);
1834 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1835
1836 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1837 subvol, false, NULL);
1838
1839 kfree(vol_args);
1840 return ret;
1841}
1842
1843static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1844 void __user *arg, int subvol)
1845{
1846 struct btrfs_ioctl_vol_args_v2 *vol_args;
1847 int ret;
1848 bool readonly = false;
1849 struct btrfs_qgroup_inherit *inherit = NULL;
1850
1851 if (!S_ISDIR(file_inode(file)->i_mode))
1852 return -ENOTDIR;
1853
1854 vol_args = memdup_user(arg, sizeof(*vol_args));
1855 if (IS_ERR(vol_args))
1856 return PTR_ERR(vol_args);
1857 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1858
1859 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1860 ret = -EOPNOTSUPP;
1861 goto free_args;
1862 }
1863
1864 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1865 readonly = true;
1866 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1867 if (vol_args->size > PAGE_SIZE) {
1868 ret = -EINVAL;
1869 goto free_args;
1870 }
1871 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1872 if (IS_ERR(inherit)) {
1873 ret = PTR_ERR(inherit);
1874 goto free_args;
1875 }
1876 }
1877
1878 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1879 subvol, readonly, inherit);
1880 if (ret)
1881 goto free_inherit;
1882free_inherit:
1883 kfree(inherit);
1884free_args:
1885 kfree(vol_args);
1886 return ret;
1887}
1888
1889static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1890 void __user *arg)
1891{
1892 struct inode *inode = file_inode(file);
1893 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1894 struct btrfs_root *root = BTRFS_I(inode)->root;
1895 int ret = 0;
1896 u64 flags = 0;
1897
1898 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1899 return -EINVAL;
1900
1901 down_read(&fs_info->subvol_sem);
1902 if (btrfs_root_readonly(root))
1903 flags |= BTRFS_SUBVOL_RDONLY;
1904 up_read(&fs_info->subvol_sem);
1905
1906 if (copy_to_user(arg, &flags, sizeof(flags)))
1907 ret = -EFAULT;
1908
1909 return ret;
1910}
1911
1912static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1913 void __user *arg)
1914{
1915 struct inode *inode = file_inode(file);
1916 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1917 struct btrfs_root *root = BTRFS_I(inode)->root;
1918 struct btrfs_trans_handle *trans;
1919 u64 root_flags;
1920 u64 flags;
1921 int ret = 0;
1922
1923 if (!inode_owner_or_capable(inode))
1924 return -EPERM;
1925
1926 ret = mnt_want_write_file(file);
1927 if (ret)
1928 goto out;
1929
1930 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1931 ret = -EINVAL;
1932 goto out_drop_write;
1933 }
1934
1935 if (copy_from_user(&flags, arg, sizeof(flags))) {
1936 ret = -EFAULT;
1937 goto out_drop_write;
1938 }
1939
1940 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1941 ret = -EOPNOTSUPP;
1942 goto out_drop_write;
1943 }
1944
1945 down_write(&fs_info->subvol_sem);
1946
1947 /* nothing to do */
1948 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1949 goto out_drop_sem;
1950
1951 root_flags = btrfs_root_flags(&root->root_item);
1952 if (flags & BTRFS_SUBVOL_RDONLY) {
1953 btrfs_set_root_flags(&root->root_item,
1954 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1955 } else {
1956 /*
1957 * Block RO -> RW transition if this subvolume is involved in
1958 * send
1959 */
1960 spin_lock(&root->root_item_lock);
1961 if (root->send_in_progress == 0) {
1962 btrfs_set_root_flags(&root->root_item,
1963 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1964 spin_unlock(&root->root_item_lock);
1965 } else {
1966 spin_unlock(&root->root_item_lock);
1967 btrfs_warn(fs_info,
1968 "Attempt to set subvolume %llu read-write during send",
1969 root->root_key.objectid);
1970 ret = -EPERM;
1971 goto out_drop_sem;
1972 }
1973 }
1974
1975 trans = btrfs_start_transaction(root, 1);
1976 if (IS_ERR(trans)) {
1977 ret = PTR_ERR(trans);
1978 goto out_reset;
1979 }
1980
1981 ret = btrfs_update_root(trans, fs_info->tree_root,
1982 &root->root_key, &root->root_item);
1983 if (ret < 0) {
1984 btrfs_end_transaction(trans);
1985 goto out_reset;
1986 }
1987
1988 ret = btrfs_commit_transaction(trans);
1989
1990out_reset:
1991 if (ret)
1992 btrfs_set_root_flags(&root->root_item, root_flags);
1993out_drop_sem:
1994 up_write(&fs_info->subvol_sem);
1995out_drop_write:
1996 mnt_drop_write_file(file);
1997out:
1998 return ret;
1999}
2000
2001static noinline int key_in_sk(struct btrfs_key *key,
2002 struct btrfs_ioctl_search_key *sk)
2003{
2004 struct btrfs_key test;
2005 int ret;
2006
2007 test.objectid = sk->min_objectid;
2008 test.type = sk->min_type;
2009 test.offset = sk->min_offset;
2010
2011 ret = btrfs_comp_cpu_keys(key, &test);
2012 if (ret < 0)
2013 return 0;
2014
2015 test.objectid = sk->max_objectid;
2016 test.type = sk->max_type;
2017 test.offset = sk->max_offset;
2018
2019 ret = btrfs_comp_cpu_keys(key, &test);
2020 if (ret > 0)
2021 return 0;
2022 return 1;
2023}
2024
2025static noinline int copy_to_sk(struct btrfs_path *path,
2026 struct btrfs_key *key,
2027 struct btrfs_ioctl_search_key *sk,
2028 size_t *buf_size,
2029 char __user *ubuf,
2030 unsigned long *sk_offset,
2031 int *num_found)
2032{
2033 u64 found_transid;
2034 struct extent_buffer *leaf;
2035 struct btrfs_ioctl_search_header sh;
2036 struct btrfs_key test;
2037 unsigned long item_off;
2038 unsigned long item_len;
2039 int nritems;
2040 int i;
2041 int slot;
2042 int ret = 0;
2043
2044 leaf = path->nodes[0];
2045 slot = path->slots[0];
2046 nritems = btrfs_header_nritems(leaf);
2047
2048 if (btrfs_header_generation(leaf) > sk->max_transid) {
2049 i = nritems;
2050 goto advance_key;
2051 }
2052 found_transid = btrfs_header_generation(leaf);
2053
2054 for (i = slot; i < nritems; i++) {
2055 item_off = btrfs_item_ptr_offset(leaf, i);
2056 item_len = btrfs_item_size_nr(leaf, i);
2057
2058 btrfs_item_key_to_cpu(leaf, key, i);
2059 if (!key_in_sk(key, sk))
2060 continue;
2061
2062 if (sizeof(sh) + item_len > *buf_size) {
2063 if (*num_found) {
2064 ret = 1;
2065 goto out;
2066 }
2067
2068 /*
2069 * return one empty item back for v1, which does not
2070 * handle -EOVERFLOW
2071 */
2072
2073 *buf_size = sizeof(sh) + item_len;
2074 item_len = 0;
2075 ret = -EOVERFLOW;
2076 }
2077
2078 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2079 ret = 1;
2080 goto out;
2081 }
2082
2083 sh.objectid = key->objectid;
2084 sh.offset = key->offset;
2085 sh.type = key->type;
2086 sh.len = item_len;
2087 sh.transid = found_transid;
2088
2089 /*
2090 * Copy search result header. If we fault then loop again so we
2091 * can fault in the pages and -EFAULT there if there's a
2092 * problem. Otherwise we'll fault and then copy the buffer in
2093 * properly this next time through
2094 */
2095 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2096 ret = 0;
2097 goto out;
2098 }
2099
2100 *sk_offset += sizeof(sh);
2101
2102 if (item_len) {
2103 char __user *up = ubuf + *sk_offset;
2104 /*
2105 * Copy the item, same behavior as above, but reset the
2106 * * sk_offset so we copy the full thing again.
2107 */
2108 if (read_extent_buffer_to_user_nofault(leaf, up,
2109 item_off, item_len)) {
2110 ret = 0;
2111 *sk_offset -= sizeof(sh);
2112 goto out;
2113 }
2114
2115 *sk_offset += item_len;
2116 }
2117 (*num_found)++;
2118
2119 if (ret) /* -EOVERFLOW from above */
2120 goto out;
2121
2122 if (*num_found >= sk->nr_items) {
2123 ret = 1;
2124 goto out;
2125 }
2126 }
2127advance_key:
2128 ret = 0;
2129 test.objectid = sk->max_objectid;
2130 test.type = sk->max_type;
2131 test.offset = sk->max_offset;
2132 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2133 ret = 1;
2134 else if (key->offset < (u64)-1)
2135 key->offset++;
2136 else if (key->type < (u8)-1) {
2137 key->offset = 0;
2138 key->type++;
2139 } else if (key->objectid < (u64)-1) {
2140 key->offset = 0;
2141 key->type = 0;
2142 key->objectid++;
2143 } else
2144 ret = 1;
2145out:
2146 /*
2147 * 0: all items from this leaf copied, continue with next
2148 * 1: * more items can be copied, but unused buffer is too small
2149 * * all items were found
2150 * Either way, it will stops the loop which iterates to the next
2151 * leaf
2152 * -EOVERFLOW: item was to large for buffer
2153 * -EFAULT: could not copy extent buffer back to userspace
2154 */
2155 return ret;
2156}
2157
2158static noinline int search_ioctl(struct inode *inode,
2159 struct btrfs_ioctl_search_key *sk,
2160 size_t *buf_size,
2161 char __user *ubuf)
2162{
2163 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2164 struct btrfs_root *root;
2165 struct btrfs_key key;
2166 struct btrfs_path *path;
2167 int ret;
2168 int num_found = 0;
2169 unsigned long sk_offset = 0;
2170
2171 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2172 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2173 return -EOVERFLOW;
2174 }
2175
2176 path = btrfs_alloc_path();
2177 if (!path)
2178 return -ENOMEM;
2179
2180 if (sk->tree_id == 0) {
2181 /* search the root of the inode that was passed */
2182 root = btrfs_grab_root(BTRFS_I(inode)->root);
2183 } else {
2184 root = btrfs_get_fs_root(info, sk->tree_id, true);
2185 if (IS_ERR(root)) {
2186 btrfs_free_path(path);
2187 return PTR_ERR(root);
2188 }
2189 }
2190
2191 key.objectid = sk->min_objectid;
2192 key.type = sk->min_type;
2193 key.offset = sk->min_offset;
2194
2195 while (1) {
2196 ret = fault_in_pages_writeable(ubuf + sk_offset,
2197 *buf_size - sk_offset);
2198 if (ret)
2199 break;
2200
2201 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2202 if (ret != 0) {
2203 if (ret > 0)
2204 ret = 0;
2205 goto err;
2206 }
2207 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2208 &sk_offset, &num_found);
2209 btrfs_release_path(path);
2210 if (ret)
2211 break;
2212
2213 }
2214 if (ret > 0)
2215 ret = 0;
2216err:
2217 sk->nr_items = num_found;
2218 btrfs_put_root(root);
2219 btrfs_free_path(path);
2220 return ret;
2221}
2222
2223static noinline int btrfs_ioctl_tree_search(struct file *file,
2224 void __user *argp)
2225{
2226 struct btrfs_ioctl_search_args __user *uargs;
2227 struct btrfs_ioctl_search_key sk;
2228 struct inode *inode;
2229 int ret;
2230 size_t buf_size;
2231
2232 if (!capable(CAP_SYS_ADMIN))
2233 return -EPERM;
2234
2235 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2236
2237 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2238 return -EFAULT;
2239
2240 buf_size = sizeof(uargs->buf);
2241
2242 inode = file_inode(file);
2243 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2244
2245 /*
2246 * In the origin implementation an overflow is handled by returning a
2247 * search header with a len of zero, so reset ret.
2248 */
2249 if (ret == -EOVERFLOW)
2250 ret = 0;
2251
2252 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2253 ret = -EFAULT;
2254 return ret;
2255}
2256
2257static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2258 void __user *argp)
2259{
2260 struct btrfs_ioctl_search_args_v2 __user *uarg;
2261 struct btrfs_ioctl_search_args_v2 args;
2262 struct inode *inode;
2263 int ret;
2264 size_t buf_size;
2265 const size_t buf_limit = SZ_16M;
2266
2267 if (!capable(CAP_SYS_ADMIN))
2268 return -EPERM;
2269
2270 /* copy search header and buffer size */
2271 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2272 if (copy_from_user(&args, uarg, sizeof(args)))
2273 return -EFAULT;
2274
2275 buf_size = args.buf_size;
2276
2277 /* limit result size to 16MB */
2278 if (buf_size > buf_limit)
2279 buf_size = buf_limit;
2280
2281 inode = file_inode(file);
2282 ret = search_ioctl(inode, &args.key, &buf_size,
2283 (char __user *)(&uarg->buf[0]));
2284 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2285 ret = -EFAULT;
2286 else if (ret == -EOVERFLOW &&
2287 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2288 ret = -EFAULT;
2289
2290 return ret;
2291}
2292
2293/*
2294 * Search INODE_REFs to identify path name of 'dirid' directory
2295 * in a 'tree_id' tree. and sets path name to 'name'.
2296 */
2297static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2298 u64 tree_id, u64 dirid, char *name)
2299{
2300 struct btrfs_root *root;
2301 struct btrfs_key key;
2302 char *ptr;
2303 int ret = -1;
2304 int slot;
2305 int len;
2306 int total_len = 0;
2307 struct btrfs_inode_ref *iref;
2308 struct extent_buffer *l;
2309 struct btrfs_path *path;
2310
2311 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2312 name[0]='\0';
2313 return 0;
2314 }
2315
2316 path = btrfs_alloc_path();
2317 if (!path)
2318 return -ENOMEM;
2319
2320 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2321
2322 root = btrfs_get_fs_root(info, tree_id, true);
2323 if (IS_ERR(root)) {
2324 ret = PTR_ERR(root);
2325 root = NULL;
2326 goto out;
2327 }
2328
2329 key.objectid = dirid;
2330 key.type = BTRFS_INODE_REF_KEY;
2331 key.offset = (u64)-1;
2332
2333 while (1) {
2334 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2335 if (ret < 0)
2336 goto out;
2337 else if (ret > 0) {
2338 ret = btrfs_previous_item(root, path, dirid,
2339 BTRFS_INODE_REF_KEY);
2340 if (ret < 0)
2341 goto out;
2342 else if (ret > 0) {
2343 ret = -ENOENT;
2344 goto out;
2345 }
2346 }
2347
2348 l = path->nodes[0];
2349 slot = path->slots[0];
2350 btrfs_item_key_to_cpu(l, &key, slot);
2351
2352 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2353 len = btrfs_inode_ref_name_len(l, iref);
2354 ptr -= len + 1;
2355 total_len += len + 1;
2356 if (ptr < name) {
2357 ret = -ENAMETOOLONG;
2358 goto out;
2359 }
2360
2361 *(ptr + len) = '/';
2362 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2363
2364 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2365 break;
2366
2367 btrfs_release_path(path);
2368 key.objectid = key.offset;
2369 key.offset = (u64)-1;
2370 dirid = key.objectid;
2371 }
2372 memmove(name, ptr, total_len);
2373 name[total_len] = '\0';
2374 ret = 0;
2375out:
2376 btrfs_put_root(root);
2377 btrfs_free_path(path);
2378 return ret;
2379}
2380
2381static int btrfs_search_path_in_tree_user(struct inode *inode,
2382 struct btrfs_ioctl_ino_lookup_user_args *args)
2383{
2384 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2385 struct super_block *sb = inode->i_sb;
2386 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2387 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2388 u64 dirid = args->dirid;
2389 unsigned long item_off;
2390 unsigned long item_len;
2391 struct btrfs_inode_ref *iref;
2392 struct btrfs_root_ref *rref;
2393 struct btrfs_root *root = NULL;
2394 struct btrfs_path *path;
2395 struct btrfs_key key, key2;
2396 struct extent_buffer *leaf;
2397 struct inode *temp_inode;
2398 char *ptr;
2399 int slot;
2400 int len;
2401 int total_len = 0;
2402 int ret;
2403
2404 path = btrfs_alloc_path();
2405 if (!path)
2406 return -ENOMEM;
2407
2408 /*
2409 * If the bottom subvolume does not exist directly under upper_limit,
2410 * construct the path in from the bottom up.
2411 */
2412 if (dirid != upper_limit.objectid) {
2413 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2414
2415 root = btrfs_get_fs_root(fs_info, treeid, true);
2416 if (IS_ERR(root)) {
2417 ret = PTR_ERR(root);
2418 goto out;
2419 }
2420
2421 key.objectid = dirid;
2422 key.type = BTRFS_INODE_REF_KEY;
2423 key.offset = (u64)-1;
2424 while (1) {
2425 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2426 if (ret < 0) {
2427 goto out_put;
2428 } else if (ret > 0) {
2429 ret = btrfs_previous_item(root, path, dirid,
2430 BTRFS_INODE_REF_KEY);
2431 if (ret < 0) {
2432 goto out_put;
2433 } else if (ret > 0) {
2434 ret = -ENOENT;
2435 goto out_put;
2436 }
2437 }
2438
2439 leaf = path->nodes[0];
2440 slot = path->slots[0];
2441 btrfs_item_key_to_cpu(leaf, &key, slot);
2442
2443 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2444 len = btrfs_inode_ref_name_len(leaf, iref);
2445 ptr -= len + 1;
2446 total_len += len + 1;
2447 if (ptr < args->path) {
2448 ret = -ENAMETOOLONG;
2449 goto out_put;
2450 }
2451
2452 *(ptr + len) = '/';
2453 read_extent_buffer(leaf, ptr,
2454 (unsigned long)(iref + 1), len);
2455
2456 /* Check the read+exec permission of this directory */
2457 ret = btrfs_previous_item(root, path, dirid,
2458 BTRFS_INODE_ITEM_KEY);
2459 if (ret < 0) {
2460 goto out_put;
2461 } else if (ret > 0) {
2462 ret = -ENOENT;
2463 goto out_put;
2464 }
2465
2466 leaf = path->nodes[0];
2467 slot = path->slots[0];
2468 btrfs_item_key_to_cpu(leaf, &key2, slot);
2469 if (key2.objectid != dirid) {
2470 ret = -ENOENT;
2471 goto out_put;
2472 }
2473
2474 temp_inode = btrfs_iget(sb, key2.objectid, root);
2475 if (IS_ERR(temp_inode)) {
2476 ret = PTR_ERR(temp_inode);
2477 goto out_put;
2478 }
2479 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2480 iput(temp_inode);
2481 if (ret) {
2482 ret = -EACCES;
2483 goto out_put;
2484 }
2485
2486 if (key.offset == upper_limit.objectid)
2487 break;
2488 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2489 ret = -EACCES;
2490 goto out_put;
2491 }
2492
2493 btrfs_release_path(path);
2494 key.objectid = key.offset;
2495 key.offset = (u64)-1;
2496 dirid = key.objectid;
2497 }
2498
2499 memmove(args->path, ptr, total_len);
2500 args->path[total_len] = '\0';
2501 btrfs_put_root(root);
2502 root = NULL;
2503 btrfs_release_path(path);
2504 }
2505
2506 /* Get the bottom subvolume's name from ROOT_REF */
2507 key.objectid = treeid;
2508 key.type = BTRFS_ROOT_REF_KEY;
2509 key.offset = args->treeid;
2510 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2511 if (ret < 0) {
2512 goto out;
2513 } else if (ret > 0) {
2514 ret = -ENOENT;
2515 goto out;
2516 }
2517
2518 leaf = path->nodes[0];
2519 slot = path->slots[0];
2520 btrfs_item_key_to_cpu(leaf, &key, slot);
2521
2522 item_off = btrfs_item_ptr_offset(leaf, slot);
2523 item_len = btrfs_item_size_nr(leaf, slot);
2524 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2525 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2526 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2527 ret = -EINVAL;
2528 goto out;
2529 }
2530
2531 /* Copy subvolume's name */
2532 item_off += sizeof(struct btrfs_root_ref);
2533 item_len -= sizeof(struct btrfs_root_ref);
2534 read_extent_buffer(leaf, args->name, item_off, item_len);
2535 args->name[item_len] = 0;
2536
2537out_put:
2538 btrfs_put_root(root);
2539out:
2540 btrfs_free_path(path);
2541 return ret;
2542}
2543
2544static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2545 void __user *argp)
2546{
2547 struct btrfs_ioctl_ino_lookup_args *args;
2548 struct inode *inode;
2549 int ret = 0;
2550
2551 args = memdup_user(argp, sizeof(*args));
2552 if (IS_ERR(args))
2553 return PTR_ERR(args);
2554
2555 inode = file_inode(file);
2556
2557 /*
2558 * Unprivileged query to obtain the containing subvolume root id. The
2559 * path is reset so it's consistent with btrfs_search_path_in_tree.
2560 */
2561 if (args->treeid == 0)
2562 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2563
2564 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2565 args->name[0] = 0;
2566 goto out;
2567 }
2568
2569 if (!capable(CAP_SYS_ADMIN)) {
2570 ret = -EPERM;
2571 goto out;
2572 }
2573
2574 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2575 args->treeid, args->objectid,
2576 args->name);
2577
2578out:
2579 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2580 ret = -EFAULT;
2581
2582 kfree(args);
2583 return ret;
2584}
2585
2586/*
2587 * Version of ino_lookup ioctl (unprivileged)
2588 *
2589 * The main differences from ino_lookup ioctl are:
2590 *
2591 * 1. Read + Exec permission will be checked using inode_permission() during
2592 * path construction. -EACCES will be returned in case of failure.
2593 * 2. Path construction will be stopped at the inode number which corresponds
2594 * to the fd with which this ioctl is called. If constructed path does not
2595 * exist under fd's inode, -EACCES will be returned.
2596 * 3. The name of bottom subvolume is also searched and filled.
2597 */
2598static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2599{
2600 struct btrfs_ioctl_ino_lookup_user_args *args;
2601 struct inode *inode;
2602 int ret;
2603
2604 args = memdup_user(argp, sizeof(*args));
2605 if (IS_ERR(args))
2606 return PTR_ERR(args);
2607
2608 inode = file_inode(file);
2609
2610 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2611 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2612 /*
2613 * The subvolume does not exist under fd with which this is
2614 * called
2615 */
2616 kfree(args);
2617 return -EACCES;
2618 }
2619
2620 ret = btrfs_search_path_in_tree_user(inode, args);
2621
2622 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2623 ret = -EFAULT;
2624
2625 kfree(args);
2626 return ret;
2627}
2628
2629/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2630static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2631{
2632 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2633 struct btrfs_fs_info *fs_info;
2634 struct btrfs_root *root;
2635 struct btrfs_path *path;
2636 struct btrfs_key key;
2637 struct btrfs_root_item *root_item;
2638 struct btrfs_root_ref *rref;
2639 struct extent_buffer *leaf;
2640 unsigned long item_off;
2641 unsigned long item_len;
2642 struct inode *inode;
2643 int slot;
2644 int ret = 0;
2645
2646 path = btrfs_alloc_path();
2647 if (!path)
2648 return -ENOMEM;
2649
2650 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2651 if (!subvol_info) {
2652 btrfs_free_path(path);
2653 return -ENOMEM;
2654 }
2655
2656 inode = file_inode(file);
2657 fs_info = BTRFS_I(inode)->root->fs_info;
2658
2659 /* Get root_item of inode's subvolume */
2660 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2661 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2662 if (IS_ERR(root)) {
2663 ret = PTR_ERR(root);
2664 goto out_free;
2665 }
2666 root_item = &root->root_item;
2667
2668 subvol_info->treeid = key.objectid;
2669
2670 subvol_info->generation = btrfs_root_generation(root_item);
2671 subvol_info->flags = btrfs_root_flags(root_item);
2672
2673 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2674 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2675 BTRFS_UUID_SIZE);
2676 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2677 BTRFS_UUID_SIZE);
2678
2679 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2680 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2681 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2682
2683 subvol_info->otransid = btrfs_root_otransid(root_item);
2684 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2685 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2686
2687 subvol_info->stransid = btrfs_root_stransid(root_item);
2688 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2689 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2690
2691 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2692 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2693 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2694
2695 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2696 /* Search root tree for ROOT_BACKREF of this subvolume */
2697 key.type = BTRFS_ROOT_BACKREF_KEY;
2698 key.offset = 0;
2699 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2700 if (ret < 0) {
2701 goto out;
2702 } else if (path->slots[0] >=
2703 btrfs_header_nritems(path->nodes[0])) {
2704 ret = btrfs_next_leaf(fs_info->tree_root, path);
2705 if (ret < 0) {
2706 goto out;
2707 } else if (ret > 0) {
2708 ret = -EUCLEAN;
2709 goto out;
2710 }
2711 }
2712
2713 leaf = path->nodes[0];
2714 slot = path->slots[0];
2715 btrfs_item_key_to_cpu(leaf, &key, slot);
2716 if (key.objectid == subvol_info->treeid &&
2717 key.type == BTRFS_ROOT_BACKREF_KEY) {
2718 subvol_info->parent_id = key.offset;
2719
2720 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2721 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2722
2723 item_off = btrfs_item_ptr_offset(leaf, slot)
2724 + sizeof(struct btrfs_root_ref);
2725 item_len = btrfs_item_size_nr(leaf, slot)
2726 - sizeof(struct btrfs_root_ref);
2727 read_extent_buffer(leaf, subvol_info->name,
2728 item_off, item_len);
2729 } else {
2730 ret = -ENOENT;
2731 goto out;
2732 }
2733 }
2734
2735 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2736 ret = -EFAULT;
2737
2738out:
2739 btrfs_put_root(root);
2740out_free:
2741 btrfs_free_path(path);
2742 kfree(subvol_info);
2743 return ret;
2744}
2745
2746/*
2747 * Return ROOT_REF information of the subvolume containing this inode
2748 * except the subvolume name.
2749 */
2750static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2751{
2752 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2753 struct btrfs_root_ref *rref;
2754 struct btrfs_root *root;
2755 struct btrfs_path *path;
2756 struct btrfs_key key;
2757 struct extent_buffer *leaf;
2758 struct inode *inode;
2759 u64 objectid;
2760 int slot;
2761 int ret;
2762 u8 found;
2763
2764 path = btrfs_alloc_path();
2765 if (!path)
2766 return -ENOMEM;
2767
2768 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2769 if (IS_ERR(rootrefs)) {
2770 btrfs_free_path(path);
2771 return PTR_ERR(rootrefs);
2772 }
2773
2774 inode = file_inode(file);
2775 root = BTRFS_I(inode)->root->fs_info->tree_root;
2776 objectid = BTRFS_I(inode)->root->root_key.objectid;
2777
2778 key.objectid = objectid;
2779 key.type = BTRFS_ROOT_REF_KEY;
2780 key.offset = rootrefs->min_treeid;
2781 found = 0;
2782
2783 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2784 if (ret < 0) {
2785 goto out;
2786 } else if (path->slots[0] >=
2787 btrfs_header_nritems(path->nodes[0])) {
2788 ret = btrfs_next_leaf(root, path);
2789 if (ret < 0) {
2790 goto out;
2791 } else if (ret > 0) {
2792 ret = -EUCLEAN;
2793 goto out;
2794 }
2795 }
2796 while (1) {
2797 leaf = path->nodes[0];
2798 slot = path->slots[0];
2799
2800 btrfs_item_key_to_cpu(leaf, &key, slot);
2801 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2802 ret = 0;
2803 goto out;
2804 }
2805
2806 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2807 ret = -EOVERFLOW;
2808 goto out;
2809 }
2810
2811 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2812 rootrefs->rootref[found].treeid = key.offset;
2813 rootrefs->rootref[found].dirid =
2814 btrfs_root_ref_dirid(leaf, rref);
2815 found++;
2816
2817 ret = btrfs_next_item(root, path);
2818 if (ret < 0) {
2819 goto out;
2820 } else if (ret > 0) {
2821 ret = -EUCLEAN;
2822 goto out;
2823 }
2824 }
2825
2826out:
2827 if (!ret || ret == -EOVERFLOW) {
2828 rootrefs->num_items = found;
2829 /* update min_treeid for next search */
2830 if (found)
2831 rootrefs->min_treeid =
2832 rootrefs->rootref[found - 1].treeid + 1;
2833 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2834 ret = -EFAULT;
2835 }
2836
2837 kfree(rootrefs);
2838 btrfs_free_path(path);
2839
2840 return ret;
2841}
2842
2843static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2844 void __user *arg,
2845 bool destroy_v2)
2846{
2847 struct dentry *parent = file->f_path.dentry;
2848 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2849 struct dentry *dentry;
2850 struct inode *dir = d_inode(parent);
2851 struct inode *inode;
2852 struct btrfs_root *root = BTRFS_I(dir)->root;
2853 struct btrfs_root *dest = NULL;
2854 struct btrfs_ioctl_vol_args *vol_args = NULL;
2855 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2856 char *subvol_name, *subvol_name_ptr = NULL;
2857 int subvol_namelen;
2858 int err = 0;
2859 bool destroy_parent = false;
2860
2861 if (destroy_v2) {
2862 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2863 if (IS_ERR(vol_args2))
2864 return PTR_ERR(vol_args2);
2865
2866 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2867 err = -EOPNOTSUPP;
2868 goto out;
2869 }
2870
2871 /*
2872 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2873 * name, same as v1 currently does.
2874 */
2875 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2876 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2877 subvol_name = vol_args2->name;
2878
2879 err = mnt_want_write_file(file);
2880 if (err)
2881 goto out;
2882 } else {
2883 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2884 err = -EINVAL;
2885 goto out;
2886 }
2887
2888 err = mnt_want_write_file(file);
2889 if (err)
2890 goto out;
2891
2892 dentry = btrfs_get_dentry(fs_info->sb,
2893 BTRFS_FIRST_FREE_OBJECTID,
2894 vol_args2->subvolid, 0, 0);
2895 if (IS_ERR(dentry)) {
2896 err = PTR_ERR(dentry);
2897 goto out_drop_write;
2898 }
2899
2900 /*
2901 * Change the default parent since the subvolume being
2902 * deleted can be outside of the current mount point.
2903 */
2904 parent = btrfs_get_parent(dentry);
2905
2906 /*
2907 * At this point dentry->d_name can point to '/' if the
2908 * subvolume we want to destroy is outsite of the
2909 * current mount point, so we need to release the
2910 * current dentry and execute the lookup to return a new
2911 * one with ->d_name pointing to the
2912 * <mount point>/subvol_name.
2913 */
2914 dput(dentry);
2915 if (IS_ERR(parent)) {
2916 err = PTR_ERR(parent);
2917 goto out_drop_write;
2918 }
2919 dir = d_inode(parent);
2920
2921 /*
2922 * If v2 was used with SPEC_BY_ID, a new parent was
2923 * allocated since the subvolume can be outside of the
2924 * current mount point. Later on we need to release this
2925 * new parent dentry.
2926 */
2927 destroy_parent = true;
2928
2929 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2930 fs_info, vol_args2->subvolid);
2931 if (IS_ERR(subvol_name_ptr)) {
2932 err = PTR_ERR(subvol_name_ptr);
2933 goto free_parent;
2934 }
2935 /* subvol_name_ptr is already NULL termined */
2936 subvol_name = (char *)kbasename(subvol_name_ptr);
2937 }
2938 } else {
2939 vol_args = memdup_user(arg, sizeof(*vol_args));
2940 if (IS_ERR(vol_args))
2941 return PTR_ERR(vol_args);
2942
2943 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2944 subvol_name = vol_args->name;
2945
2946 err = mnt_want_write_file(file);
2947 if (err)
2948 goto out;
2949 }
2950
2951 subvol_namelen = strlen(subvol_name);
2952
2953 if (strchr(subvol_name, '/') ||
2954 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2955 err = -EINVAL;
2956 goto free_subvol_name;
2957 }
2958
2959 if (!S_ISDIR(dir->i_mode)) {
2960 err = -ENOTDIR;
2961 goto free_subvol_name;
2962 }
2963
2964 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2965 if (err == -EINTR)
2966 goto free_subvol_name;
2967 dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
2968 if (IS_ERR(dentry)) {
2969 err = PTR_ERR(dentry);
2970 goto out_unlock_dir;
2971 }
2972
2973 if (d_really_is_negative(dentry)) {
2974 err = -ENOENT;
2975 goto out_dput;
2976 }
2977
2978 inode = d_inode(dentry);
2979 dest = BTRFS_I(inode)->root;
2980 if (!capable(CAP_SYS_ADMIN)) {
2981 /*
2982 * Regular user. Only allow this with a special mount
2983 * option, when the user has write+exec access to the
2984 * subvol root, and when rmdir(2) would have been
2985 * allowed.
2986 *
2987 * Note that this is _not_ check that the subvol is
2988 * empty or doesn't contain data that we wouldn't
2989 * otherwise be able to delete.
2990 *
2991 * Users who want to delete empty subvols should try
2992 * rmdir(2).
2993 */
2994 err = -EPERM;
2995 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2996 goto out_dput;
2997
2998 /*
2999 * Do not allow deletion if the parent dir is the same
3000 * as the dir to be deleted. That means the ioctl
3001 * must be called on the dentry referencing the root
3002 * of the subvol, not a random directory contained
3003 * within it.
3004 */
3005 err = -EINVAL;
3006 if (root == dest)
3007 goto out_dput;
3008
3009 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
3010 if (err)
3011 goto out_dput;
3012 }
3013
3014 /* check if subvolume may be deleted by a user */
3015 err = btrfs_may_delete(dir, dentry, 1);
3016 if (err)
3017 goto out_dput;
3018
3019 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3020 err = -EINVAL;
3021 goto out_dput;
3022 }
3023
3024 inode_lock(inode);
3025 err = btrfs_delete_subvolume(dir, dentry);
3026 inode_unlock(inode);
3027 if (!err) {
3028 fsnotify_rmdir(dir, dentry);
3029 d_delete(dentry);
3030 }
3031
3032out_dput:
3033 dput(dentry);
3034out_unlock_dir:
3035 inode_unlock(dir);
3036free_subvol_name:
3037 kfree(subvol_name_ptr);
3038free_parent:
3039 if (destroy_parent)
3040 dput(parent);
3041out_drop_write:
3042 mnt_drop_write_file(file);
3043out:
3044 kfree(vol_args2);
3045 kfree(vol_args);
3046 return err;
3047}
3048
3049static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3050{
3051 struct inode *inode = file_inode(file);
3052 struct btrfs_root *root = BTRFS_I(inode)->root;
3053 struct btrfs_ioctl_defrag_range_args *range;
3054 int ret;
3055
3056 ret = mnt_want_write_file(file);
3057 if (ret)
3058 return ret;
3059
3060 if (btrfs_root_readonly(root)) {
3061 ret = -EROFS;
3062 goto out;
3063 }
3064
3065 switch (inode->i_mode & S_IFMT) {
3066 case S_IFDIR:
3067 if (!capable(CAP_SYS_ADMIN)) {
3068 ret = -EPERM;
3069 goto out;
3070 }
3071 ret = btrfs_defrag_root(root);
3072 break;
3073 case S_IFREG:
3074 /*
3075 * Note that this does not check the file descriptor for write
3076 * access. This prevents defragmenting executables that are
3077 * running and allows defrag on files open in read-only mode.
3078 */
3079 if (!capable(CAP_SYS_ADMIN) &&
3080 inode_permission(inode, MAY_WRITE)) {
3081 ret = -EPERM;
3082 goto out;
3083 }
3084
3085 range = kzalloc(sizeof(*range), GFP_KERNEL);
3086 if (!range) {
3087 ret = -ENOMEM;
3088 goto out;
3089 }
3090
3091 if (argp) {
3092 if (copy_from_user(range, argp,
3093 sizeof(*range))) {
3094 ret = -EFAULT;
3095 kfree(range);
3096 goto out;
3097 }
3098 /* compression requires us to start the IO */
3099 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3100 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3101 range->extent_thresh = (u32)-1;
3102 }
3103 } else {
3104 /* the rest are all set to zero by kzalloc */
3105 range->len = (u64)-1;
3106 }
3107 ret = btrfs_defrag_file(file_inode(file), file,
3108 range, BTRFS_OLDEST_GENERATION, 0);
3109 if (ret > 0)
3110 ret = 0;
3111 kfree(range);
3112 break;
3113 default:
3114 ret = -EINVAL;
3115 }
3116out:
3117 mnt_drop_write_file(file);
3118 return ret;
3119}
3120
3121static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3122{
3123 struct btrfs_ioctl_vol_args *vol_args;
3124 int ret;
3125
3126 if (!capable(CAP_SYS_ADMIN))
3127 return -EPERM;
3128
3129 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3130 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3131
3132 vol_args = memdup_user(arg, sizeof(*vol_args));
3133 if (IS_ERR(vol_args)) {
3134 ret = PTR_ERR(vol_args);
3135 goto out;
3136 }
3137
3138 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3139 ret = btrfs_init_new_device(fs_info, vol_args->name);
3140
3141 if (!ret)
3142 btrfs_info(fs_info, "disk added %s", vol_args->name);
3143
3144 kfree(vol_args);
3145out:
3146 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3147 return ret;
3148}
3149
3150static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3151{
3152 struct inode *inode = file_inode(file);
3153 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3154 struct btrfs_ioctl_vol_args_v2 *vol_args;
3155 int ret;
3156
3157 if (!capable(CAP_SYS_ADMIN))
3158 return -EPERM;
3159
3160 ret = mnt_want_write_file(file);
3161 if (ret)
3162 return ret;
3163
3164 vol_args = memdup_user(arg, sizeof(*vol_args));
3165 if (IS_ERR(vol_args)) {
3166 ret = PTR_ERR(vol_args);
3167 goto err_drop;
3168 }
3169
3170 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3171 ret = -EOPNOTSUPP;
3172 goto out;
3173 }
3174
3175 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3176 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3177 goto out;
3178 }
3179
3180 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3181 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3182 } else {
3183 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3184 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3185 }
3186 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3187
3188 if (!ret) {
3189 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3190 btrfs_info(fs_info, "device deleted: id %llu",
3191 vol_args->devid);
3192 else
3193 btrfs_info(fs_info, "device deleted: %s",
3194 vol_args->name);
3195 }
3196out:
3197 kfree(vol_args);
3198err_drop:
3199 mnt_drop_write_file(file);
3200 return ret;
3201}
3202
3203static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3204{
3205 struct inode *inode = file_inode(file);
3206 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3207 struct btrfs_ioctl_vol_args *vol_args;
3208 int ret;
3209
3210 if (!capable(CAP_SYS_ADMIN))
3211 return -EPERM;
3212
3213 ret = mnt_want_write_file(file);
3214 if (ret)
3215 return ret;
3216
3217 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3218 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3219 goto out_drop_write;
3220 }
3221
3222 vol_args = memdup_user(arg, sizeof(*vol_args));
3223 if (IS_ERR(vol_args)) {
3224 ret = PTR_ERR(vol_args);
3225 goto out;
3226 }
3227
3228 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3229 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3230
3231 if (!ret)
3232 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3233 kfree(vol_args);
3234out:
3235 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3236out_drop_write:
3237 mnt_drop_write_file(file);
3238
3239 return ret;
3240}
3241
3242static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3243 void __user *arg)
3244{
3245 struct btrfs_ioctl_fs_info_args *fi_args;
3246 struct btrfs_device *device;
3247 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3248 u64 flags_in;
3249 int ret = 0;
3250
3251 fi_args = memdup_user(arg, sizeof(*fi_args));
3252 if (IS_ERR(fi_args))
3253 return PTR_ERR(fi_args);
3254
3255 flags_in = fi_args->flags;
3256 memset(fi_args, 0, sizeof(*fi_args));
3257
3258 rcu_read_lock();
3259 fi_args->num_devices = fs_devices->num_devices;
3260
3261 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3262 if (device->devid > fi_args->max_id)
3263 fi_args->max_id = device->devid;
3264 }
3265 rcu_read_unlock();
3266
3267 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3268 fi_args->nodesize = fs_info->nodesize;
3269 fi_args->sectorsize = fs_info->sectorsize;
3270 fi_args->clone_alignment = fs_info->sectorsize;
3271
3272 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3273 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3274 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3275 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3276 }
3277
3278 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3279 fi_args->generation = fs_info->generation;
3280 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3281 }
3282
3283 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3284 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3285 sizeof(fi_args->metadata_uuid));
3286 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3287 }
3288
3289 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3290 ret = -EFAULT;
3291
3292 kfree(fi_args);
3293 return ret;
3294}
3295
3296static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3297 void __user *arg)
3298{
3299 struct btrfs_ioctl_dev_info_args *di_args;
3300 struct btrfs_device *dev;
3301 int ret = 0;
3302 char *s_uuid = NULL;
3303
3304 di_args = memdup_user(arg, sizeof(*di_args));
3305 if (IS_ERR(di_args))
3306 return PTR_ERR(di_args);
3307
3308 if (!btrfs_is_empty_uuid(di_args->uuid))
3309 s_uuid = di_args->uuid;
3310
3311 rcu_read_lock();
3312 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3313 NULL, true);
3314
3315 if (!dev) {
3316 ret = -ENODEV;
3317 goto out;
3318 }
3319
3320 di_args->devid = dev->devid;
3321 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3322 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3323 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3324 if (dev->name) {
3325 strncpy(di_args->path, rcu_str_deref(dev->name),
3326 sizeof(di_args->path) - 1);
3327 di_args->path[sizeof(di_args->path) - 1] = 0;
3328 } else {
3329 di_args->path[0] = '\0';
3330 }
3331
3332out:
3333 rcu_read_unlock();
3334 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3335 ret = -EFAULT;
3336
3337 kfree(di_args);
3338 return ret;
3339}
3340
3341static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3342{
3343 struct inode *inode = file_inode(file);
3344 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3345 struct btrfs_root *root = BTRFS_I(inode)->root;
3346 struct btrfs_root *new_root;
3347 struct btrfs_dir_item *di;
3348 struct btrfs_trans_handle *trans;
3349 struct btrfs_path *path = NULL;
3350 struct btrfs_disk_key disk_key;
3351 u64 objectid = 0;
3352 u64 dir_id;
3353 int ret;
3354
3355 if (!capable(CAP_SYS_ADMIN))
3356 return -EPERM;
3357
3358 ret = mnt_want_write_file(file);
3359 if (ret)
3360 return ret;
3361
3362 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3363 ret = -EFAULT;
3364 goto out;
3365 }
3366
3367 if (!objectid)
3368 objectid = BTRFS_FS_TREE_OBJECTID;
3369
3370 new_root = btrfs_get_fs_root(fs_info, objectid, true);
3371 if (IS_ERR(new_root)) {
3372 ret = PTR_ERR(new_root);
3373 goto out;
3374 }
3375 if (!is_fstree(new_root->root_key.objectid)) {
3376 ret = -ENOENT;
3377 goto out_free;
3378 }
3379
3380 path = btrfs_alloc_path();
3381 if (!path) {
3382 ret = -ENOMEM;
3383 goto out_free;
3384 }
3385 path->leave_spinning = 1;
3386
3387 trans = btrfs_start_transaction(root, 1);
3388 if (IS_ERR(trans)) {
3389 ret = PTR_ERR(trans);
3390 goto out_free;
3391 }
3392
3393 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3394 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3395 dir_id, "default", 7, 1);
3396 if (IS_ERR_OR_NULL(di)) {
3397 btrfs_release_path(path);
3398 btrfs_end_transaction(trans);
3399 btrfs_err(fs_info,
3400 "Umm, you don't have the default diritem, this isn't going to work");
3401 ret = -ENOENT;
3402 goto out_free;
3403 }
3404
3405 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3406 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3407 btrfs_mark_buffer_dirty(path->nodes[0]);
3408 btrfs_release_path(path);
3409
3410 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3411 btrfs_end_transaction(trans);
3412out_free:
3413 btrfs_put_root(new_root);
3414 btrfs_free_path(path);
3415out:
3416 mnt_drop_write_file(file);
3417 return ret;
3418}
3419
3420static void get_block_group_info(struct list_head *groups_list,
3421 struct btrfs_ioctl_space_info *space)
3422{
3423 struct btrfs_block_group *block_group;
3424
3425 space->total_bytes = 0;
3426 space->used_bytes = 0;
3427 space->flags = 0;
3428 list_for_each_entry(block_group, groups_list, list) {
3429 space->flags = block_group->flags;
3430 space->total_bytes += block_group->length;
3431 space->used_bytes += block_group->used;
3432 }
3433}
3434
3435static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3436 void __user *arg)
3437{
3438 struct btrfs_ioctl_space_args space_args;
3439 struct btrfs_ioctl_space_info space;
3440 struct btrfs_ioctl_space_info *dest;
3441 struct btrfs_ioctl_space_info *dest_orig;
3442 struct btrfs_ioctl_space_info __user *user_dest;
3443 struct btrfs_space_info *info;
3444 static const u64 types[] = {
3445 BTRFS_BLOCK_GROUP_DATA,
3446 BTRFS_BLOCK_GROUP_SYSTEM,
3447 BTRFS_BLOCK_GROUP_METADATA,
3448 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3449 };
3450 int num_types = 4;
3451 int alloc_size;
3452 int ret = 0;
3453 u64 slot_count = 0;
3454 int i, c;
3455
3456 if (copy_from_user(&space_args,
3457 (struct btrfs_ioctl_space_args __user *)arg,
3458 sizeof(space_args)))
3459 return -EFAULT;
3460
3461 for (i = 0; i < num_types; i++) {
3462 struct btrfs_space_info *tmp;
3463
3464 info = NULL;
3465 rcu_read_lock();
3466 list_for_each_entry_rcu(tmp, &fs_info->space_info,
3467 list) {
3468 if (tmp->flags == types[i]) {
3469 info = tmp;
3470 break;
3471 }
3472 }
3473 rcu_read_unlock();
3474
3475 if (!info)
3476 continue;
3477
3478 down_read(&info->groups_sem);
3479 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3480 if (!list_empty(&info->block_groups[c]))
3481 slot_count++;
3482 }
3483 up_read(&info->groups_sem);
3484 }
3485
3486 /*
3487 * Global block reserve, exported as a space_info
3488 */
3489 slot_count++;
3490
3491 /* space_slots == 0 means they are asking for a count */
3492 if (space_args.space_slots == 0) {
3493 space_args.total_spaces = slot_count;
3494 goto out;
3495 }
3496
3497 slot_count = min_t(u64, space_args.space_slots, slot_count);
3498
3499 alloc_size = sizeof(*dest) * slot_count;
3500
3501 /* we generally have at most 6 or so space infos, one for each raid
3502 * level. So, a whole page should be more than enough for everyone
3503 */
3504 if (alloc_size > PAGE_SIZE)
3505 return -ENOMEM;
3506
3507 space_args.total_spaces = 0;
3508 dest = kmalloc(alloc_size, GFP_KERNEL);
3509 if (!dest)
3510 return -ENOMEM;
3511 dest_orig = dest;
3512
3513 /* now we have a buffer to copy into */
3514 for (i = 0; i < num_types; i++) {
3515 struct btrfs_space_info *tmp;
3516
3517 if (!slot_count)
3518 break;
3519
3520 info = NULL;
3521 rcu_read_lock();
3522 list_for_each_entry_rcu(tmp, &fs_info->space_info,
3523 list) {
3524 if (tmp->flags == types[i]) {
3525 info = tmp;
3526 break;
3527 }
3528 }
3529 rcu_read_unlock();
3530
3531 if (!info)
3532 continue;
3533 down_read(&info->groups_sem);
3534 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3535 if (!list_empty(&info->block_groups[c])) {
3536 get_block_group_info(&info->block_groups[c],
3537 &space);
3538 memcpy(dest, &space, sizeof(space));
3539 dest++;
3540 space_args.total_spaces++;
3541 slot_count--;
3542 }
3543 if (!slot_count)
3544 break;
3545 }
3546 up_read(&info->groups_sem);
3547 }
3548
3549 /*
3550 * Add global block reserve
3551 */
3552 if (slot_count) {
3553 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3554
3555 spin_lock(&block_rsv->lock);
3556 space.total_bytes = block_rsv->size;
3557 space.used_bytes = block_rsv->size - block_rsv->reserved;
3558 spin_unlock(&block_rsv->lock);
3559 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3560 memcpy(dest, &space, sizeof(space));
3561 space_args.total_spaces++;
3562 }
3563
3564 user_dest = (struct btrfs_ioctl_space_info __user *)
3565 (arg + sizeof(struct btrfs_ioctl_space_args));
3566
3567 if (copy_to_user(user_dest, dest_orig, alloc_size))
3568 ret = -EFAULT;
3569
3570 kfree(dest_orig);
3571out:
3572 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3573 ret = -EFAULT;
3574
3575 return ret;
3576}
3577
3578static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3579 void __user *argp)
3580{
3581 struct btrfs_trans_handle *trans;
3582 u64 transid;
3583 int ret;
3584
3585 trans = btrfs_attach_transaction_barrier(root);
3586 if (IS_ERR(trans)) {
3587 if (PTR_ERR(trans) != -ENOENT)
3588 return PTR_ERR(trans);
3589
3590 /* No running transaction, don't bother */
3591 transid = root->fs_info->last_trans_committed;
3592 goto out;
3593 }
3594 transid = trans->transid;
3595 ret = btrfs_commit_transaction_async(trans, 0);
3596 if (ret) {
3597 btrfs_end_transaction(trans);
3598 return ret;
3599 }
3600out:
3601 if (argp)
3602 if (copy_to_user(argp, &transid, sizeof(transid)))
3603 return -EFAULT;
3604 return 0;
3605}
3606
3607static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3608 void __user *argp)
3609{
3610 u64 transid;
3611
3612 if (argp) {
3613 if (copy_from_user(&transid, argp, sizeof(transid)))
3614 return -EFAULT;
3615 } else {
3616 transid = 0; /* current trans */
3617 }
3618 return btrfs_wait_for_commit(fs_info, transid);
3619}
3620
3621static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3622{
3623 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3624 struct btrfs_ioctl_scrub_args *sa;
3625 int ret;
3626
3627 if (!capable(CAP_SYS_ADMIN))
3628 return -EPERM;
3629
3630 sa = memdup_user(arg, sizeof(*sa));
3631 if (IS_ERR(sa))
3632 return PTR_ERR(sa);
3633
3634 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3635 ret = mnt_want_write_file(file);
3636 if (ret)
3637 goto out;
3638 }
3639
3640 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3641 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3642 0);
3643
3644 /*
3645 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3646 * error. This is important as it allows user space to know how much
3647 * progress scrub has done. For example, if scrub is canceled we get
3648 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3649 * space. Later user space can inspect the progress from the structure
3650 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3651 * previously (btrfs-progs does this).
3652 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3653 * then return -EFAULT to signal the structure was not copied or it may
3654 * be corrupt and unreliable due to a partial copy.
3655 */
3656 if (copy_to_user(arg, sa, sizeof(*sa)))
3657 ret = -EFAULT;
3658
3659 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3660 mnt_drop_write_file(file);
3661out:
3662 kfree(sa);
3663 return ret;
3664}
3665
3666static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3667{
3668 if (!capable(CAP_SYS_ADMIN))
3669 return -EPERM;
3670
3671 return btrfs_scrub_cancel(fs_info);
3672}
3673
3674static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3675 void __user *arg)
3676{
3677 struct btrfs_ioctl_scrub_args *sa;
3678 int ret;
3679
3680 if (!capable(CAP_SYS_ADMIN))
3681 return -EPERM;
3682
3683 sa = memdup_user(arg, sizeof(*sa));
3684 if (IS_ERR(sa))
3685 return PTR_ERR(sa);
3686
3687 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3688
3689 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3690 ret = -EFAULT;
3691
3692 kfree(sa);
3693 return ret;
3694}
3695
3696static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3697 void __user *arg)
3698{
3699 struct btrfs_ioctl_get_dev_stats *sa;
3700 int ret;
3701
3702 sa = memdup_user(arg, sizeof(*sa));
3703 if (IS_ERR(sa))
3704 return PTR_ERR(sa);
3705
3706 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3707 kfree(sa);
3708 return -EPERM;
3709 }
3710
3711 ret = btrfs_get_dev_stats(fs_info, sa);
3712
3713 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3714 ret = -EFAULT;
3715
3716 kfree(sa);
3717 return ret;
3718}
3719
3720static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3721 void __user *arg)
3722{
3723 struct btrfs_ioctl_dev_replace_args *p;
3724 int ret;
3725
3726 if (!capable(CAP_SYS_ADMIN))
3727 return -EPERM;
3728
3729 p = memdup_user(arg, sizeof(*p));
3730 if (IS_ERR(p))
3731 return PTR_ERR(p);
3732
3733 switch (p->cmd) {
3734 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3735 if (sb_rdonly(fs_info->sb)) {
3736 ret = -EROFS;
3737 goto out;
3738 }
3739 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3740 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3741 } else {
3742 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3743 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3744 }
3745 break;
3746 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3747 btrfs_dev_replace_status(fs_info, p);
3748 ret = 0;
3749 break;
3750 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3751 p->result = btrfs_dev_replace_cancel(fs_info);
3752 ret = 0;
3753 break;
3754 default:
3755 ret = -EINVAL;
3756 break;
3757 }
3758
3759 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3760 ret = -EFAULT;
3761out:
3762 kfree(p);
3763 return ret;
3764}
3765
3766static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3767{
3768 int ret = 0;
3769 int i;
3770 u64 rel_ptr;
3771 int size;
3772 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3773 struct inode_fs_paths *ipath = NULL;
3774 struct btrfs_path *path;
3775
3776 if (!capable(CAP_DAC_READ_SEARCH))
3777 return -EPERM;
3778
3779 path = btrfs_alloc_path();
3780 if (!path) {
3781 ret = -ENOMEM;
3782 goto out;
3783 }
3784
3785 ipa = memdup_user(arg, sizeof(*ipa));
3786 if (IS_ERR(ipa)) {
3787 ret = PTR_ERR(ipa);
3788 ipa = NULL;
3789 goto out;
3790 }
3791
3792 size = min_t(u32, ipa->size, 4096);
3793 ipath = init_ipath(size, root, path);
3794 if (IS_ERR(ipath)) {
3795 ret = PTR_ERR(ipath);
3796 ipath = NULL;
3797 goto out;
3798 }
3799
3800 ret = paths_from_inode(ipa->inum, ipath);
3801 if (ret < 0)
3802 goto out;
3803
3804 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3805 rel_ptr = ipath->fspath->val[i] -
3806 (u64)(unsigned long)ipath->fspath->val;
3807 ipath->fspath->val[i] = rel_ptr;
3808 }
3809
3810 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3811 ipath->fspath, size);
3812 if (ret) {
3813 ret = -EFAULT;
3814 goto out;
3815 }
3816
3817out:
3818 btrfs_free_path(path);
3819 free_ipath(ipath);
3820 kfree(ipa);
3821
3822 return ret;
3823}
3824
3825static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3826{
3827 struct btrfs_data_container *inodes = ctx;
3828 const size_t c = 3 * sizeof(u64);
3829
3830 if (inodes->bytes_left >= c) {
3831 inodes->bytes_left -= c;
3832 inodes->val[inodes->elem_cnt] = inum;
3833 inodes->val[inodes->elem_cnt + 1] = offset;
3834 inodes->val[inodes->elem_cnt + 2] = root;
3835 inodes->elem_cnt += 3;
3836 } else {
3837 inodes->bytes_missing += c - inodes->bytes_left;
3838 inodes->bytes_left = 0;
3839 inodes->elem_missed += 3;
3840 }
3841
3842 return 0;
3843}
3844
3845static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3846 void __user *arg, int version)
3847{
3848 int ret = 0;
3849 int size;
3850 struct btrfs_ioctl_logical_ino_args *loi;
3851 struct btrfs_data_container *inodes = NULL;
3852 struct btrfs_path *path = NULL;
3853 bool ignore_offset;
3854
3855 if (!capable(CAP_SYS_ADMIN))
3856 return -EPERM;
3857
3858 loi = memdup_user(arg, sizeof(*loi));
3859 if (IS_ERR(loi))
3860 return PTR_ERR(loi);
3861
3862 if (version == 1) {
3863 ignore_offset = false;
3864 size = min_t(u32, loi->size, SZ_64K);
3865 } else {
3866 /* All reserved bits must be 0 for now */
3867 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3868 ret = -EINVAL;
3869 goto out_loi;
3870 }
3871 /* Only accept flags we have defined so far */
3872 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3873 ret = -EINVAL;
3874 goto out_loi;
3875 }
3876 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3877 size = min_t(u32, loi->size, SZ_16M);
3878 }
3879
3880 path = btrfs_alloc_path();
3881 if (!path) {
3882 ret = -ENOMEM;
3883 goto out;
3884 }
3885
3886 inodes = init_data_container(size);
3887 if (IS_ERR(inodes)) {
3888 ret = PTR_ERR(inodes);
3889 inodes = NULL;
3890 goto out;
3891 }
3892
3893 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3894 build_ino_list, inodes, ignore_offset);
3895 if (ret == -EINVAL)
3896 ret = -ENOENT;
3897 if (ret < 0)
3898 goto out;
3899
3900 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3901 size);
3902 if (ret)
3903 ret = -EFAULT;
3904
3905out:
3906 btrfs_free_path(path);
3907 kvfree(inodes);
3908out_loi:
3909 kfree(loi);
3910
3911 return ret;
3912}
3913
3914void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3915 struct btrfs_ioctl_balance_args *bargs)
3916{
3917 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3918
3919 bargs->flags = bctl->flags;
3920
3921 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3922 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3923 if (atomic_read(&fs_info->balance_pause_req))
3924 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3925 if (atomic_read(&fs_info->balance_cancel_req))
3926 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3927
3928 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3929 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3930 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3931
3932 spin_lock(&fs_info->balance_lock);
3933 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3934 spin_unlock(&fs_info->balance_lock);
3935}
3936
3937static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3938{
3939 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3940 struct btrfs_fs_info *fs_info = root->fs_info;
3941 struct btrfs_ioctl_balance_args *bargs;
3942 struct btrfs_balance_control *bctl;
3943 bool need_unlock; /* for mut. excl. ops lock */
3944 int ret;
3945
3946 if (!capable(CAP_SYS_ADMIN))
3947 return -EPERM;
3948
3949 ret = mnt_want_write_file(file);
3950 if (ret)
3951 return ret;
3952
3953again:
3954 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3955 mutex_lock(&fs_info->balance_mutex);
3956 need_unlock = true;
3957 goto locked;
3958 }
3959
3960 /*
3961 * mut. excl. ops lock is locked. Three possibilities:
3962 * (1) some other op is running
3963 * (2) balance is running
3964 * (3) balance is paused -- special case (think resume)
3965 */
3966 mutex_lock(&fs_info->balance_mutex);
3967 if (fs_info->balance_ctl) {
3968 /* this is either (2) or (3) */
3969 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3970 mutex_unlock(&fs_info->balance_mutex);
3971 /*
3972 * Lock released to allow other waiters to continue,
3973 * we'll reexamine the status again.
3974 */
3975 mutex_lock(&fs_info->balance_mutex);
3976
3977 if (fs_info->balance_ctl &&
3978 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3979 /* this is (3) */
3980 need_unlock = false;
3981 goto locked;
3982 }
3983
3984 mutex_unlock(&fs_info->balance_mutex);
3985 goto again;
3986 } else {
3987 /* this is (2) */
3988 mutex_unlock(&fs_info->balance_mutex);
3989 ret = -EINPROGRESS;
3990 goto out;
3991 }
3992 } else {
3993 /* this is (1) */
3994 mutex_unlock(&fs_info->balance_mutex);
3995 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3996 goto out;
3997 }
3998
3999locked:
4000 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4001
4002 if (arg) {
4003 bargs = memdup_user(arg, sizeof(*bargs));
4004 if (IS_ERR(bargs)) {
4005 ret = PTR_ERR(bargs);
4006 goto out_unlock;
4007 }
4008
4009 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4010 if (!fs_info->balance_ctl) {
4011 ret = -ENOTCONN;
4012 goto out_bargs;
4013 }
4014
4015 bctl = fs_info->balance_ctl;
4016 spin_lock(&fs_info->balance_lock);
4017 bctl->flags |= BTRFS_BALANCE_RESUME;
4018 spin_unlock(&fs_info->balance_lock);
4019
4020 goto do_balance;
4021 }
4022 } else {
4023 bargs = NULL;
4024 }
4025
4026 if (fs_info->balance_ctl) {
4027 ret = -EINPROGRESS;
4028 goto out_bargs;
4029 }
4030
4031 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4032 if (!bctl) {
4033 ret = -ENOMEM;
4034 goto out_bargs;
4035 }
4036
4037 if (arg) {
4038 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4039 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4040 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4041
4042 bctl->flags = bargs->flags;
4043 } else {
4044 /* balance everything - no filters */
4045 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4046 }
4047
4048 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4049 ret = -EINVAL;
4050 goto out_bctl;
4051 }
4052
4053do_balance:
4054 /*
4055 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
4056 * btrfs_balance. bctl is freed in reset_balance_state, or, if
4057 * restriper was paused all the way until unmount, in free_fs_info.
4058 * The flag should be cleared after reset_balance_state.
4059 */
4060 need_unlock = false;
4061
4062 ret = btrfs_balance(fs_info, bctl, bargs);
4063 bctl = NULL;
4064
4065 if ((ret == 0 || ret == -ECANCELED) && arg) {
4066 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4067 ret = -EFAULT;
4068 }
4069
4070out_bctl:
4071 kfree(bctl);
4072out_bargs:
4073 kfree(bargs);
4074out_unlock:
4075 mutex_unlock(&fs_info->balance_mutex);
4076 if (need_unlock)
4077 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4078out:
4079 mnt_drop_write_file(file);
4080 return ret;
4081}
4082
4083static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4084{
4085 if (!capable(CAP_SYS_ADMIN))
4086 return -EPERM;
4087
4088 switch (cmd) {
4089 case BTRFS_BALANCE_CTL_PAUSE:
4090 return btrfs_pause_balance(fs_info);
4091 case BTRFS_BALANCE_CTL_CANCEL:
4092 return btrfs_cancel_balance(fs_info);
4093 }
4094
4095 return -EINVAL;
4096}
4097
4098static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4099 void __user *arg)
4100{
4101 struct btrfs_ioctl_balance_args *bargs;
4102 int ret = 0;
4103
4104 if (!capable(CAP_SYS_ADMIN))
4105 return -EPERM;
4106
4107 mutex_lock(&fs_info->balance_mutex);
4108 if (!fs_info->balance_ctl) {
4109 ret = -ENOTCONN;
4110 goto out;
4111 }
4112
4113 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4114 if (!bargs) {
4115 ret = -ENOMEM;
4116 goto out;
4117 }
4118
4119 btrfs_update_ioctl_balance_args(fs_info, bargs);
4120
4121 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4122 ret = -EFAULT;
4123
4124 kfree(bargs);
4125out:
4126 mutex_unlock(&fs_info->balance_mutex);
4127 return ret;
4128}
4129
4130static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4131{
4132 struct inode *inode = file_inode(file);
4133 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4134 struct btrfs_ioctl_quota_ctl_args *sa;
4135 int ret;
4136
4137 if (!capable(CAP_SYS_ADMIN))
4138 return -EPERM;
4139
4140 ret = mnt_want_write_file(file);
4141 if (ret)
4142 return ret;
4143
4144 sa = memdup_user(arg, sizeof(*sa));
4145 if (IS_ERR(sa)) {
4146 ret = PTR_ERR(sa);
4147 goto drop_write;
4148 }
4149
4150 down_write(&fs_info->subvol_sem);
4151
4152 switch (sa->cmd) {
4153 case BTRFS_QUOTA_CTL_ENABLE:
4154 ret = btrfs_quota_enable(fs_info);
4155 break;
4156 case BTRFS_QUOTA_CTL_DISABLE:
4157 ret = btrfs_quota_disable(fs_info);
4158 break;
4159 default:
4160 ret = -EINVAL;
4161 break;
4162 }
4163
4164 kfree(sa);
4165 up_write(&fs_info->subvol_sem);
4166drop_write:
4167 mnt_drop_write_file(file);
4168 return ret;
4169}
4170
4171static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4172{
4173 struct inode *inode = file_inode(file);
4174 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4175 struct btrfs_root *root = BTRFS_I(inode)->root;
4176 struct btrfs_ioctl_qgroup_assign_args *sa;
4177 struct btrfs_trans_handle *trans;
4178 int ret;
4179 int err;
4180
4181 if (!capable(CAP_SYS_ADMIN))
4182 return -EPERM;
4183
4184 ret = mnt_want_write_file(file);
4185 if (ret)
4186 return ret;
4187
4188 sa = memdup_user(arg, sizeof(*sa));
4189 if (IS_ERR(sa)) {
4190 ret = PTR_ERR(sa);
4191 goto drop_write;
4192 }
4193
4194 trans = btrfs_join_transaction(root);
4195 if (IS_ERR(trans)) {
4196 ret = PTR_ERR(trans);
4197 goto out;
4198 }
4199
4200 if (sa->assign) {
4201 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4202 } else {
4203 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4204 }
4205
4206 /* update qgroup status and info */
4207 err = btrfs_run_qgroups(trans);
4208 if (err < 0)
4209 btrfs_handle_fs_error(fs_info, err,
4210 "failed to update qgroup status and info");
4211 err = btrfs_end_transaction(trans);
4212 if (err && !ret)
4213 ret = err;
4214
4215out:
4216 kfree(sa);
4217drop_write:
4218 mnt_drop_write_file(file);
4219 return ret;
4220}
4221
4222static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4223{
4224 struct inode *inode = file_inode(file);
4225 struct btrfs_root *root = BTRFS_I(inode)->root;
4226 struct btrfs_ioctl_qgroup_create_args *sa;
4227 struct btrfs_trans_handle *trans;
4228 int ret;
4229 int err;
4230
4231 if (!capable(CAP_SYS_ADMIN))
4232 return -EPERM;
4233
4234 ret = mnt_want_write_file(file);
4235 if (ret)
4236 return ret;
4237
4238 sa = memdup_user(arg, sizeof(*sa));
4239 if (IS_ERR(sa)) {
4240 ret = PTR_ERR(sa);
4241 goto drop_write;
4242 }
4243
4244 if (!sa->qgroupid) {
4245 ret = -EINVAL;
4246 goto out;
4247 }
4248
4249 trans = btrfs_join_transaction(root);
4250 if (IS_ERR(trans)) {
4251 ret = PTR_ERR(trans);
4252 goto out;
4253 }
4254
4255 if (sa->create) {
4256 ret = btrfs_create_qgroup(trans, sa->qgroupid);
4257 } else {
4258 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4259 }
4260
4261 err = btrfs_end_transaction(trans);
4262 if (err && !ret)
4263 ret = err;
4264
4265out:
4266 kfree(sa);
4267drop_write:
4268 mnt_drop_write_file(file);
4269 return ret;
4270}
4271
4272static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4273{
4274 struct inode *inode = file_inode(file);
4275 struct btrfs_root *root = BTRFS_I(inode)->root;
4276 struct btrfs_ioctl_qgroup_limit_args *sa;
4277 struct btrfs_trans_handle *trans;
4278 int ret;
4279 int err;
4280 u64 qgroupid;
4281
4282 if (!capable(CAP_SYS_ADMIN))
4283 return -EPERM;
4284
4285 ret = mnt_want_write_file(file);
4286 if (ret)
4287 return ret;
4288
4289 sa = memdup_user(arg, sizeof(*sa));
4290 if (IS_ERR(sa)) {
4291 ret = PTR_ERR(sa);
4292 goto drop_write;
4293 }
4294
4295 trans = btrfs_join_transaction(root);
4296 if (IS_ERR(trans)) {
4297 ret = PTR_ERR(trans);
4298 goto out;
4299 }
4300
4301 qgroupid = sa->qgroupid;
4302 if (!qgroupid) {
4303 /* take the current subvol as qgroup */
4304 qgroupid = root->root_key.objectid;
4305 }
4306
4307 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4308
4309 err = btrfs_end_transaction(trans);
4310 if (err && !ret)
4311 ret = err;
4312
4313out:
4314 kfree(sa);
4315drop_write:
4316 mnt_drop_write_file(file);
4317 return ret;
4318}
4319
4320static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4321{
4322 struct inode *inode = file_inode(file);
4323 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4324 struct btrfs_ioctl_quota_rescan_args *qsa;
4325 int ret;
4326
4327 if (!capable(CAP_SYS_ADMIN))
4328 return -EPERM;
4329
4330 ret = mnt_want_write_file(file);
4331 if (ret)
4332 return ret;
4333
4334 qsa = memdup_user(arg, sizeof(*qsa));
4335 if (IS_ERR(qsa)) {
4336 ret = PTR_ERR(qsa);
4337 goto drop_write;
4338 }
4339
4340 if (qsa->flags) {
4341 ret = -EINVAL;
4342 goto out;
4343 }
4344
4345 ret = btrfs_qgroup_rescan(fs_info);
4346
4347out:
4348 kfree(qsa);
4349drop_write:
4350 mnt_drop_write_file(file);
4351 return ret;
4352}
4353
4354static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4355 void __user *arg)
4356{
4357 struct btrfs_ioctl_quota_rescan_args *qsa;
4358 int ret = 0;
4359
4360 if (!capable(CAP_SYS_ADMIN))
4361 return -EPERM;
4362
4363 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4364 if (!qsa)
4365 return -ENOMEM;
4366
4367 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4368 qsa->flags = 1;
4369 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4370 }
4371
4372 if (copy_to_user(arg, qsa, sizeof(*qsa)))
4373 ret = -EFAULT;
4374
4375 kfree(qsa);
4376 return ret;
4377}
4378
4379static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4380 void __user *arg)
4381{
4382 if (!capable(CAP_SYS_ADMIN))
4383 return -EPERM;
4384
4385 return btrfs_qgroup_wait_for_completion(fs_info, true);
4386}
4387
4388static long _btrfs_ioctl_set_received_subvol(struct file *file,
4389 struct btrfs_ioctl_received_subvol_args *sa)
4390{
4391 struct inode *inode = file_inode(file);
4392 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4393 struct btrfs_root *root = BTRFS_I(inode)->root;
4394 struct btrfs_root_item *root_item = &root->root_item;
4395 struct btrfs_trans_handle *trans;
4396 struct timespec64 ct = current_time(inode);
4397 int ret = 0;
4398 int received_uuid_changed;
4399
4400 if (!inode_owner_or_capable(inode))
4401 return -EPERM;
4402
4403 ret = mnt_want_write_file(file);
4404 if (ret < 0)
4405 return ret;
4406
4407 down_write(&fs_info->subvol_sem);
4408
4409 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4410 ret = -EINVAL;
4411 goto out;
4412 }
4413
4414 if (btrfs_root_readonly(root)) {
4415 ret = -EROFS;
4416 goto out;
4417 }
4418
4419 /*
4420 * 1 - root item
4421 * 2 - uuid items (received uuid + subvol uuid)
4422 */
4423 trans = btrfs_start_transaction(root, 3);
4424 if (IS_ERR(trans)) {
4425 ret = PTR_ERR(trans);
4426 trans = NULL;
4427 goto out;
4428 }
4429
4430 sa->rtransid = trans->transid;
4431 sa->rtime.sec = ct.tv_sec;
4432 sa->rtime.nsec = ct.tv_nsec;
4433
4434 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4435 BTRFS_UUID_SIZE);
4436 if (received_uuid_changed &&
4437 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4438 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4439 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4440 root->root_key.objectid);
4441 if (ret && ret != -ENOENT) {
4442 btrfs_abort_transaction(trans, ret);
4443 btrfs_end_transaction(trans);
4444 goto out;
4445 }
4446 }
4447 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4448 btrfs_set_root_stransid(root_item, sa->stransid);
4449 btrfs_set_root_rtransid(root_item, sa->rtransid);
4450 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4451 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4452 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4453 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4454
4455 ret = btrfs_update_root(trans, fs_info->tree_root,
4456 &root->root_key, &root->root_item);
4457 if (ret < 0) {
4458 btrfs_end_transaction(trans);
4459 goto out;
4460 }
4461 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4462 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4463 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4464 root->root_key.objectid);
4465 if (ret < 0 && ret != -EEXIST) {
4466 btrfs_abort_transaction(trans, ret);
4467 btrfs_end_transaction(trans);
4468 goto out;
4469 }
4470 }
4471 ret = btrfs_commit_transaction(trans);
4472out:
4473 up_write(&fs_info->subvol_sem);
4474 mnt_drop_write_file(file);
4475 return ret;
4476}
4477
4478#ifdef CONFIG_64BIT
4479static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4480 void __user *arg)
4481{
4482 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4483 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4484 int ret = 0;
4485
4486 args32 = memdup_user(arg, sizeof(*args32));
4487 if (IS_ERR(args32))
4488 return PTR_ERR(args32);
4489
4490 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4491 if (!args64) {
4492 ret = -ENOMEM;
4493 goto out;
4494 }
4495
4496 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4497 args64->stransid = args32->stransid;
4498 args64->rtransid = args32->rtransid;
4499 args64->stime.sec = args32->stime.sec;
4500 args64->stime.nsec = args32->stime.nsec;
4501 args64->rtime.sec = args32->rtime.sec;
4502 args64->rtime.nsec = args32->rtime.nsec;
4503 args64->flags = args32->flags;
4504
4505 ret = _btrfs_ioctl_set_received_subvol(file, args64);
4506 if (ret)
4507 goto out;
4508
4509 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4510 args32->stransid = args64->stransid;
4511 args32->rtransid = args64->rtransid;
4512 args32->stime.sec = args64->stime.sec;
4513 args32->stime.nsec = args64->stime.nsec;
4514 args32->rtime.sec = args64->rtime.sec;
4515 args32->rtime.nsec = args64->rtime.nsec;
4516 args32->flags = args64->flags;
4517
4518 ret = copy_to_user(arg, args32, sizeof(*args32));
4519 if (ret)
4520 ret = -EFAULT;
4521
4522out:
4523 kfree(args32);
4524 kfree(args64);
4525 return ret;
4526}
4527#endif
4528
4529static long btrfs_ioctl_set_received_subvol(struct file *file,
4530 void __user *arg)
4531{
4532 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4533 int ret = 0;
4534
4535 sa = memdup_user(arg, sizeof(*sa));
4536 if (IS_ERR(sa))
4537 return PTR_ERR(sa);
4538
4539 ret = _btrfs_ioctl_set_received_subvol(file, sa);
4540
4541 if (ret)
4542 goto out;
4543
4544 ret = copy_to_user(arg, sa, sizeof(*sa));
4545 if (ret)
4546 ret = -EFAULT;
4547
4548out:
4549 kfree(sa);
4550 return ret;
4551}
4552
4553static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4554 void __user *arg)
4555{
4556 size_t len;
4557 int ret;
4558 char label[BTRFS_LABEL_SIZE];
4559
4560 spin_lock(&fs_info->super_lock);
4561 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4562 spin_unlock(&fs_info->super_lock);
4563
4564 len = strnlen(label, BTRFS_LABEL_SIZE);
4565
4566 if (len == BTRFS_LABEL_SIZE) {
4567 btrfs_warn(fs_info,
4568 "label is too long, return the first %zu bytes",
4569 --len);
4570 }
4571
4572 ret = copy_to_user(arg, label, len);
4573
4574 return ret ? -EFAULT : 0;
4575}
4576
4577static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4578{
4579 struct inode *inode = file_inode(file);
4580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4581 struct btrfs_root *root = BTRFS_I(inode)->root;
4582 struct btrfs_super_block *super_block = fs_info->super_copy;
4583 struct btrfs_trans_handle *trans;
4584 char label[BTRFS_LABEL_SIZE];
4585 int ret;
4586
4587 if (!capable(CAP_SYS_ADMIN))
4588 return -EPERM;
4589
4590 if (copy_from_user(label, arg, sizeof(label)))
4591 return -EFAULT;
4592
4593 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4594 btrfs_err(fs_info,
4595 "unable to set label with more than %d bytes",
4596 BTRFS_LABEL_SIZE - 1);
4597 return -EINVAL;
4598 }
4599
4600 ret = mnt_want_write_file(file);
4601 if (ret)
4602 return ret;
4603
4604 trans = btrfs_start_transaction(root, 0);
4605 if (IS_ERR(trans)) {
4606 ret = PTR_ERR(trans);
4607 goto out_unlock;
4608 }
4609
4610 spin_lock(&fs_info->super_lock);
4611 strcpy(super_block->label, label);
4612 spin_unlock(&fs_info->super_lock);
4613 ret = btrfs_commit_transaction(trans);
4614
4615out_unlock:
4616 mnt_drop_write_file(file);
4617 return ret;
4618}
4619
4620#define INIT_FEATURE_FLAGS(suffix) \
4621 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4622 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4623 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4624
4625int btrfs_ioctl_get_supported_features(void __user *arg)
4626{
4627 static const struct btrfs_ioctl_feature_flags features[3] = {
4628 INIT_FEATURE_FLAGS(SUPP),
4629 INIT_FEATURE_FLAGS(SAFE_SET),
4630 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4631 };
4632
4633 if (copy_to_user(arg, &features, sizeof(features)))
4634 return -EFAULT;
4635
4636 return 0;
4637}
4638
4639static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4640 void __user *arg)
4641{
4642 struct btrfs_super_block *super_block = fs_info->super_copy;
4643 struct btrfs_ioctl_feature_flags features;
4644
4645 features.compat_flags = btrfs_super_compat_flags(super_block);
4646 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4647 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4648
4649 if (copy_to_user(arg, &features, sizeof(features)))
4650 return -EFAULT;
4651
4652 return 0;
4653}
4654
4655static int check_feature_bits(struct btrfs_fs_info *fs_info,
4656 enum btrfs_feature_set set,
4657 u64 change_mask, u64 flags, u64 supported_flags,
4658 u64 safe_set, u64 safe_clear)
4659{
4660 const char *type = btrfs_feature_set_name(set);
4661 char *names;
4662 u64 disallowed, unsupported;
4663 u64 set_mask = flags & change_mask;
4664 u64 clear_mask = ~flags & change_mask;
4665
4666 unsupported = set_mask & ~supported_flags;
4667 if (unsupported) {
4668 names = btrfs_printable_features(set, unsupported);
4669 if (names) {
4670 btrfs_warn(fs_info,
4671 "this kernel does not support the %s feature bit%s",
4672 names, strchr(names, ',') ? "s" : "");
4673 kfree(names);
4674 } else
4675 btrfs_warn(fs_info,
4676 "this kernel does not support %s bits 0x%llx",
4677 type, unsupported);
4678 return -EOPNOTSUPP;
4679 }
4680
4681 disallowed = set_mask & ~safe_set;
4682 if (disallowed) {
4683 names = btrfs_printable_features(set, disallowed);
4684 if (names) {
4685 btrfs_warn(fs_info,
4686 "can't set the %s feature bit%s while mounted",
4687 names, strchr(names, ',') ? "s" : "");
4688 kfree(names);
4689 } else
4690 btrfs_warn(fs_info,
4691 "can't set %s bits 0x%llx while mounted",
4692 type, disallowed);
4693 return -EPERM;
4694 }
4695
4696 disallowed = clear_mask & ~safe_clear;
4697 if (disallowed) {
4698 names = btrfs_printable_features(set, disallowed);
4699 if (names) {
4700 btrfs_warn(fs_info,
4701 "can't clear the %s feature bit%s while mounted",
4702 names, strchr(names, ',') ? "s" : "");
4703 kfree(names);
4704 } else
4705 btrfs_warn(fs_info,
4706 "can't clear %s bits 0x%llx while mounted",
4707 type, disallowed);
4708 return -EPERM;
4709 }
4710
4711 return 0;
4712}
4713
4714#define check_feature(fs_info, change_mask, flags, mask_base) \
4715check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4716 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4717 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4718 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4719
4720static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4721{
4722 struct inode *inode = file_inode(file);
4723 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4724 struct btrfs_root *root = BTRFS_I(inode)->root;
4725 struct btrfs_super_block *super_block = fs_info->super_copy;
4726 struct btrfs_ioctl_feature_flags flags[2];
4727 struct btrfs_trans_handle *trans;
4728 u64 newflags;
4729 int ret;
4730
4731 if (!capable(CAP_SYS_ADMIN))
4732 return -EPERM;
4733
4734 if (copy_from_user(flags, arg, sizeof(flags)))
4735 return -EFAULT;
4736
4737 /* Nothing to do */
4738 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4739 !flags[0].incompat_flags)
4740 return 0;
4741
4742 ret = check_feature(fs_info, flags[0].compat_flags,
4743 flags[1].compat_flags, COMPAT);
4744 if (ret)
4745 return ret;
4746
4747 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4748 flags[1].compat_ro_flags, COMPAT_RO);
4749 if (ret)
4750 return ret;
4751
4752 ret = check_feature(fs_info, flags[0].incompat_flags,
4753 flags[1].incompat_flags, INCOMPAT);
4754 if (ret)
4755 return ret;
4756
4757 ret = mnt_want_write_file(file);
4758 if (ret)
4759 return ret;
4760
4761 trans = btrfs_start_transaction(root, 0);
4762 if (IS_ERR(trans)) {
4763 ret = PTR_ERR(trans);
4764 goto out_drop_write;
4765 }
4766
4767 spin_lock(&fs_info->super_lock);
4768 newflags = btrfs_super_compat_flags(super_block);
4769 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4770 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4771 btrfs_set_super_compat_flags(super_block, newflags);
4772
4773 newflags = btrfs_super_compat_ro_flags(super_block);
4774 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4775 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4776 btrfs_set_super_compat_ro_flags(super_block, newflags);
4777
4778 newflags = btrfs_super_incompat_flags(super_block);
4779 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4780 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4781 btrfs_set_super_incompat_flags(super_block, newflags);
4782 spin_unlock(&fs_info->super_lock);
4783
4784 ret = btrfs_commit_transaction(trans);
4785out_drop_write:
4786 mnt_drop_write_file(file);
4787
4788 return ret;
4789}
4790
4791static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4792{
4793 struct btrfs_ioctl_send_args *arg;
4794 int ret;
4795
4796 if (compat) {
4797#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4798 struct btrfs_ioctl_send_args_32 args32;
4799
4800 ret = copy_from_user(&args32, argp, sizeof(args32));
4801 if (ret)
4802 return -EFAULT;
4803 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4804 if (!arg)
4805 return -ENOMEM;
4806 arg->send_fd = args32.send_fd;
4807 arg->clone_sources_count = args32.clone_sources_count;
4808 arg->clone_sources = compat_ptr(args32.clone_sources);
4809 arg->parent_root = args32.parent_root;
4810 arg->flags = args32.flags;
4811 memcpy(arg->reserved, args32.reserved,
4812 sizeof(args32.reserved));
4813#else
4814 return -ENOTTY;
4815#endif
4816 } else {
4817 arg = memdup_user(argp, sizeof(*arg));
4818 if (IS_ERR(arg))
4819 return PTR_ERR(arg);
4820 }
4821 ret = btrfs_ioctl_send(file, arg);
4822 kfree(arg);
4823 return ret;
4824}
4825
4826long btrfs_ioctl(struct file *file, unsigned int
4827 cmd, unsigned long arg)
4828{
4829 struct inode *inode = file_inode(file);
4830 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4831 struct btrfs_root *root = BTRFS_I(inode)->root;
4832 void __user *argp = (void __user *)arg;
4833
4834 switch (cmd) {
4835 case FS_IOC_GETFLAGS:
4836 return btrfs_ioctl_getflags(file, argp);
4837 case FS_IOC_SETFLAGS:
4838 return btrfs_ioctl_setflags(file, argp);
4839 case FS_IOC_GETVERSION:
4840 return btrfs_ioctl_getversion(file, argp);
4841 case FS_IOC_GETFSLABEL:
4842 return btrfs_ioctl_get_fslabel(fs_info, argp);
4843 case FS_IOC_SETFSLABEL:
4844 return btrfs_ioctl_set_fslabel(file, argp);
4845 case FITRIM:
4846 return btrfs_ioctl_fitrim(fs_info, argp);
4847 case BTRFS_IOC_SNAP_CREATE:
4848 return btrfs_ioctl_snap_create(file, argp, 0);
4849 case BTRFS_IOC_SNAP_CREATE_V2:
4850 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4851 case BTRFS_IOC_SUBVOL_CREATE:
4852 return btrfs_ioctl_snap_create(file, argp, 1);
4853 case BTRFS_IOC_SUBVOL_CREATE_V2:
4854 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4855 case BTRFS_IOC_SNAP_DESTROY:
4856 return btrfs_ioctl_snap_destroy(file, argp, false);
4857 case BTRFS_IOC_SNAP_DESTROY_V2:
4858 return btrfs_ioctl_snap_destroy(file, argp, true);
4859 case BTRFS_IOC_SUBVOL_GETFLAGS:
4860 return btrfs_ioctl_subvol_getflags(file, argp);
4861 case BTRFS_IOC_SUBVOL_SETFLAGS:
4862 return btrfs_ioctl_subvol_setflags(file, argp);
4863 case BTRFS_IOC_DEFAULT_SUBVOL:
4864 return btrfs_ioctl_default_subvol(file, argp);
4865 case BTRFS_IOC_DEFRAG:
4866 return btrfs_ioctl_defrag(file, NULL);
4867 case BTRFS_IOC_DEFRAG_RANGE:
4868 return btrfs_ioctl_defrag(file, argp);
4869 case BTRFS_IOC_RESIZE:
4870 return btrfs_ioctl_resize(file, argp);
4871 case BTRFS_IOC_ADD_DEV:
4872 return btrfs_ioctl_add_dev(fs_info, argp);
4873 case BTRFS_IOC_RM_DEV:
4874 return btrfs_ioctl_rm_dev(file, argp);
4875 case BTRFS_IOC_RM_DEV_V2:
4876 return btrfs_ioctl_rm_dev_v2(file, argp);
4877 case BTRFS_IOC_FS_INFO:
4878 return btrfs_ioctl_fs_info(fs_info, argp);
4879 case BTRFS_IOC_DEV_INFO:
4880 return btrfs_ioctl_dev_info(fs_info, argp);
4881 case BTRFS_IOC_BALANCE:
4882 return btrfs_ioctl_balance(file, NULL);
4883 case BTRFS_IOC_TREE_SEARCH:
4884 return btrfs_ioctl_tree_search(file, argp);
4885 case BTRFS_IOC_TREE_SEARCH_V2:
4886 return btrfs_ioctl_tree_search_v2(file, argp);
4887 case BTRFS_IOC_INO_LOOKUP:
4888 return btrfs_ioctl_ino_lookup(file, argp);
4889 case BTRFS_IOC_INO_PATHS:
4890 return btrfs_ioctl_ino_to_path(root, argp);
4891 case BTRFS_IOC_LOGICAL_INO:
4892 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4893 case BTRFS_IOC_LOGICAL_INO_V2:
4894 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4895 case BTRFS_IOC_SPACE_INFO:
4896 return btrfs_ioctl_space_info(fs_info, argp);
4897 case BTRFS_IOC_SYNC: {
4898 int ret;
4899
4900 ret = btrfs_start_delalloc_roots(fs_info, -1);
4901 if (ret)
4902 return ret;
4903 ret = btrfs_sync_fs(inode->i_sb, 1);
4904 /*
4905 * The transaction thread may want to do more work,
4906 * namely it pokes the cleaner kthread that will start
4907 * processing uncleaned subvols.
4908 */
4909 wake_up_process(fs_info->transaction_kthread);
4910 return ret;
4911 }
4912 case BTRFS_IOC_START_SYNC:
4913 return btrfs_ioctl_start_sync(root, argp);
4914 case BTRFS_IOC_WAIT_SYNC:
4915 return btrfs_ioctl_wait_sync(fs_info, argp);
4916 case BTRFS_IOC_SCRUB:
4917 return btrfs_ioctl_scrub(file, argp);
4918 case BTRFS_IOC_SCRUB_CANCEL:
4919 return btrfs_ioctl_scrub_cancel(fs_info);
4920 case BTRFS_IOC_SCRUB_PROGRESS:
4921 return btrfs_ioctl_scrub_progress(fs_info, argp);
4922 case BTRFS_IOC_BALANCE_V2:
4923 return btrfs_ioctl_balance(file, argp);
4924 case BTRFS_IOC_BALANCE_CTL:
4925 return btrfs_ioctl_balance_ctl(fs_info, arg);
4926 case BTRFS_IOC_BALANCE_PROGRESS:
4927 return btrfs_ioctl_balance_progress(fs_info, argp);
4928 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4929 return btrfs_ioctl_set_received_subvol(file, argp);
4930#ifdef CONFIG_64BIT
4931 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4932 return btrfs_ioctl_set_received_subvol_32(file, argp);
4933#endif
4934 case BTRFS_IOC_SEND:
4935 return _btrfs_ioctl_send(file, argp, false);
4936#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4937 case BTRFS_IOC_SEND_32:
4938 return _btrfs_ioctl_send(file, argp, true);
4939#endif
4940 case BTRFS_IOC_GET_DEV_STATS:
4941 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4942 case BTRFS_IOC_QUOTA_CTL:
4943 return btrfs_ioctl_quota_ctl(file, argp);
4944 case BTRFS_IOC_QGROUP_ASSIGN:
4945 return btrfs_ioctl_qgroup_assign(file, argp);
4946 case BTRFS_IOC_QGROUP_CREATE:
4947 return btrfs_ioctl_qgroup_create(file, argp);
4948 case BTRFS_IOC_QGROUP_LIMIT:
4949 return btrfs_ioctl_qgroup_limit(file, argp);
4950 case BTRFS_IOC_QUOTA_RESCAN:
4951 return btrfs_ioctl_quota_rescan(file, argp);
4952 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4953 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4954 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4955 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4956 case BTRFS_IOC_DEV_REPLACE:
4957 return btrfs_ioctl_dev_replace(fs_info, argp);
4958 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4959 return btrfs_ioctl_get_supported_features(argp);
4960 case BTRFS_IOC_GET_FEATURES:
4961 return btrfs_ioctl_get_features(fs_info, argp);
4962 case BTRFS_IOC_SET_FEATURES:
4963 return btrfs_ioctl_set_features(file, argp);
4964 case FS_IOC_FSGETXATTR:
4965 return btrfs_ioctl_fsgetxattr(file, argp);
4966 case FS_IOC_FSSETXATTR:
4967 return btrfs_ioctl_fssetxattr(file, argp);
4968 case BTRFS_IOC_GET_SUBVOL_INFO:
4969 return btrfs_ioctl_get_subvol_info(file, argp);
4970 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4971 return btrfs_ioctl_get_subvol_rootref(file, argp);
4972 case BTRFS_IOC_INO_LOOKUP_USER:
4973 return btrfs_ioctl_ino_lookup_user(file, argp);
4974 }
4975
4976 return -ENOTTY;
4977}
4978
4979#ifdef CONFIG_COMPAT
4980long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4981{
4982 /*
4983 * These all access 32-bit values anyway so no further
4984 * handling is necessary.
4985 */
4986 switch (cmd) {
4987 case FS_IOC32_GETFLAGS:
4988 cmd = FS_IOC_GETFLAGS;
4989 break;
4990 case FS_IOC32_SETFLAGS:
4991 cmd = FS_IOC_SETFLAGS;
4992 break;
4993 case FS_IOC32_GETVERSION:
4994 cmd = FS_IOC_GETVERSION;
4995 break;
4996 }
4997
4998 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4999}
5000#endif