Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/fsnotify.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/mount.h>
17#include <linux/namei.h>
18#include <linux/writeback.h>
19#include <linux/compat.h>
20#include <linux/security.h>
21#include <linux/xattr.h>
22#include <linux/mm.h>
23#include <linux/slab.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include <linux/btrfs.h>
27#include <linux/uaccess.h>
28#include <linux/iversion.h>
29#include <linux/fileattr.h>
30#include <linux/fsverity.h>
31#include <linux/sched/xacct.h>
32#include "ctree.h"
33#include "disk-io.h"
34#include "export.h"
35#include "transaction.h"
36#include "btrfs_inode.h"
37#include "print-tree.h"
38#include "volumes.h"
39#include "locking.h"
40#include "backref.h"
41#include "rcu-string.h"
42#include "send.h"
43#include "dev-replace.h"
44#include "props.h"
45#include "sysfs.h"
46#include "qgroup.h"
47#include "tree-log.h"
48#include "compression.h"
49#include "space-info.h"
50#include "delalloc-space.h"
51#include "block-group.h"
52#include "subpage.h"
53#include "fs.h"
54#include "accessors.h"
55#include "extent-tree.h"
56#include "root-tree.h"
57#include "defrag.h"
58#include "dir-item.h"
59#include "uuid-tree.h"
60#include "ioctl.h"
61#include "file.h"
62#include "scrub.h"
63#include "super.h"
64
65#ifdef CONFIG_64BIT
66/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
70 */
71struct btrfs_ioctl_timespec_32 {
72 __u64 sec;
73 __u32 nsec;
74} __attribute__ ((__packed__));
75
76struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 flags; /* in */
83 __u64 reserved[16]; /* in */
84} __attribute__ ((__packed__));
85
86#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
88#endif
89
90#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91struct btrfs_ioctl_send_args_32 {
92 __s64 send_fd; /* in */
93 __u64 clone_sources_count; /* in */
94 compat_uptr_t clone_sources; /* in */
95 __u64 parent_root; /* in */
96 __u64 flags; /* in */
97 __u32 version; /* in */
98 __u8 reserved[28]; /* in */
99} __attribute__ ((__packed__));
100
101#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
102 struct btrfs_ioctl_send_args_32)
103
104struct btrfs_ioctl_encoded_io_args_32 {
105 compat_uptr_t iov;
106 compat_ulong_t iovcnt;
107 __s64 offset;
108 __u64 flags;
109 __u64 len;
110 __u64 unencoded_len;
111 __u64 unencoded_offset;
112 __u32 compression;
113 __u32 encryption;
114 __u8 reserved[64];
115};
116
117#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
118 struct btrfs_ioctl_encoded_io_args_32)
119#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
120 struct btrfs_ioctl_encoded_io_args_32)
121#endif
122
123/* Mask out flags that are inappropriate for the given type of inode. */
124static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
125 unsigned int flags)
126{
127 if (S_ISDIR(inode->i_mode))
128 return flags;
129 else if (S_ISREG(inode->i_mode))
130 return flags & ~FS_DIRSYNC_FL;
131 else
132 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
133}
134
135/*
136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
137 * ioctl.
138 */
139static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
140{
141 unsigned int iflags = 0;
142 u32 flags = binode->flags;
143 u32 ro_flags = binode->ro_flags;
144
145 if (flags & BTRFS_INODE_SYNC)
146 iflags |= FS_SYNC_FL;
147 if (flags & BTRFS_INODE_IMMUTABLE)
148 iflags |= FS_IMMUTABLE_FL;
149 if (flags & BTRFS_INODE_APPEND)
150 iflags |= FS_APPEND_FL;
151 if (flags & BTRFS_INODE_NODUMP)
152 iflags |= FS_NODUMP_FL;
153 if (flags & BTRFS_INODE_NOATIME)
154 iflags |= FS_NOATIME_FL;
155 if (flags & BTRFS_INODE_DIRSYNC)
156 iflags |= FS_DIRSYNC_FL;
157 if (flags & BTRFS_INODE_NODATACOW)
158 iflags |= FS_NOCOW_FL;
159 if (ro_flags & BTRFS_INODE_RO_VERITY)
160 iflags |= FS_VERITY_FL;
161
162 if (flags & BTRFS_INODE_NOCOMPRESS)
163 iflags |= FS_NOCOMP_FL;
164 else if (flags & BTRFS_INODE_COMPRESS)
165 iflags |= FS_COMPR_FL;
166
167 return iflags;
168}
169
170/*
171 * Update inode->i_flags based on the btrfs internal flags.
172 */
173void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
174{
175 struct btrfs_inode *binode = BTRFS_I(inode);
176 unsigned int new_fl = 0;
177
178 if (binode->flags & BTRFS_INODE_SYNC)
179 new_fl |= S_SYNC;
180 if (binode->flags & BTRFS_INODE_IMMUTABLE)
181 new_fl |= S_IMMUTABLE;
182 if (binode->flags & BTRFS_INODE_APPEND)
183 new_fl |= S_APPEND;
184 if (binode->flags & BTRFS_INODE_NOATIME)
185 new_fl |= S_NOATIME;
186 if (binode->flags & BTRFS_INODE_DIRSYNC)
187 new_fl |= S_DIRSYNC;
188 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
189 new_fl |= S_VERITY;
190
191 set_mask_bits(&inode->i_flags,
192 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
193 S_VERITY, new_fl);
194}
195
196/*
197 * Check if @flags are a supported and valid set of FS_*_FL flags and that
198 * the old and new flags are not conflicting
199 */
200static int check_fsflags(unsigned int old_flags, unsigned int flags)
201{
202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 FS_NOATIME_FL | FS_NODUMP_FL | \
204 FS_SYNC_FL | FS_DIRSYNC_FL | \
205 FS_NOCOMP_FL | FS_COMPR_FL |
206 FS_NOCOW_FL))
207 return -EOPNOTSUPP;
208
209 /* COMPR and NOCOMP on new/old are valid */
210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 return -EINVAL;
212
213 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
214 return -EINVAL;
215
216 /* NOCOW and compression options are mutually exclusive */
217 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
218 return -EINVAL;
219 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
220 return -EINVAL;
221
222 return 0;
223}
224
225static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
226 unsigned int flags)
227{
228 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
229 return -EPERM;
230
231 return 0;
232}
233
234/*
235 * Set flags/xflags from the internal inode flags. The remaining items of
236 * fsxattr are zeroed.
237 */
238int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
239{
240 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
241
242 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
243 return 0;
244}
245
246int btrfs_fileattr_set(struct user_namespace *mnt_userns,
247 struct dentry *dentry, struct fileattr *fa)
248{
249 struct inode *inode = d_inode(dentry);
250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
251 struct btrfs_inode *binode = BTRFS_I(inode);
252 struct btrfs_root *root = binode->root;
253 struct btrfs_trans_handle *trans;
254 unsigned int fsflags, old_fsflags;
255 int ret;
256 const char *comp = NULL;
257 u32 binode_flags;
258
259 if (btrfs_root_readonly(root))
260 return -EROFS;
261
262 if (fileattr_has_fsx(fa))
263 return -EOPNOTSUPP;
264
265 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
266 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
267 ret = check_fsflags(old_fsflags, fsflags);
268 if (ret)
269 return ret;
270
271 ret = check_fsflags_compatible(fs_info, fsflags);
272 if (ret)
273 return ret;
274
275 binode_flags = binode->flags;
276 if (fsflags & FS_SYNC_FL)
277 binode_flags |= BTRFS_INODE_SYNC;
278 else
279 binode_flags &= ~BTRFS_INODE_SYNC;
280 if (fsflags & FS_IMMUTABLE_FL)
281 binode_flags |= BTRFS_INODE_IMMUTABLE;
282 else
283 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
284 if (fsflags & FS_APPEND_FL)
285 binode_flags |= BTRFS_INODE_APPEND;
286 else
287 binode_flags &= ~BTRFS_INODE_APPEND;
288 if (fsflags & FS_NODUMP_FL)
289 binode_flags |= BTRFS_INODE_NODUMP;
290 else
291 binode_flags &= ~BTRFS_INODE_NODUMP;
292 if (fsflags & FS_NOATIME_FL)
293 binode_flags |= BTRFS_INODE_NOATIME;
294 else
295 binode_flags &= ~BTRFS_INODE_NOATIME;
296
297 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
298 if (!fa->flags_valid) {
299 /* 1 item for the inode */
300 trans = btrfs_start_transaction(root, 1);
301 if (IS_ERR(trans))
302 return PTR_ERR(trans);
303 goto update_flags;
304 }
305
306 if (fsflags & FS_DIRSYNC_FL)
307 binode_flags |= BTRFS_INODE_DIRSYNC;
308 else
309 binode_flags &= ~BTRFS_INODE_DIRSYNC;
310 if (fsflags & FS_NOCOW_FL) {
311 if (S_ISREG(inode->i_mode)) {
312 /*
313 * It's safe to turn csums off here, no extents exist.
314 * Otherwise we want the flag to reflect the real COW
315 * status of the file and will not set it.
316 */
317 if (inode->i_size == 0)
318 binode_flags |= BTRFS_INODE_NODATACOW |
319 BTRFS_INODE_NODATASUM;
320 } else {
321 binode_flags |= BTRFS_INODE_NODATACOW;
322 }
323 } else {
324 /*
325 * Revert back under same assumptions as above
326 */
327 if (S_ISREG(inode->i_mode)) {
328 if (inode->i_size == 0)
329 binode_flags &= ~(BTRFS_INODE_NODATACOW |
330 BTRFS_INODE_NODATASUM);
331 } else {
332 binode_flags &= ~BTRFS_INODE_NODATACOW;
333 }
334 }
335
336 /*
337 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
338 * flag may be changed automatically if compression code won't make
339 * things smaller.
340 */
341 if (fsflags & FS_NOCOMP_FL) {
342 binode_flags &= ~BTRFS_INODE_COMPRESS;
343 binode_flags |= BTRFS_INODE_NOCOMPRESS;
344 } else if (fsflags & FS_COMPR_FL) {
345
346 if (IS_SWAPFILE(inode))
347 return -ETXTBSY;
348
349 binode_flags |= BTRFS_INODE_COMPRESS;
350 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
351
352 comp = btrfs_compress_type2str(fs_info->compress_type);
353 if (!comp || comp[0] == 0)
354 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
355 } else {
356 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
357 }
358
359 /*
360 * 1 for inode item
361 * 2 for properties
362 */
363 trans = btrfs_start_transaction(root, 3);
364 if (IS_ERR(trans))
365 return PTR_ERR(trans);
366
367 if (comp) {
368 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
369 strlen(comp), 0);
370 if (ret) {
371 btrfs_abort_transaction(trans, ret);
372 goto out_end_trans;
373 }
374 } else {
375 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
376 0, 0);
377 if (ret && ret != -ENODATA) {
378 btrfs_abort_transaction(trans, ret);
379 goto out_end_trans;
380 }
381 }
382
383update_flags:
384 binode->flags = binode_flags;
385 btrfs_sync_inode_flags_to_i_flags(inode);
386 inode_inc_iversion(inode);
387 inode->i_ctime = current_time(inode);
388 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
389
390 out_end_trans:
391 btrfs_end_transaction(trans);
392 return ret;
393}
394
395/*
396 * Start exclusive operation @type, return true on success
397 */
398bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
399 enum btrfs_exclusive_operation type)
400{
401 bool ret = false;
402
403 spin_lock(&fs_info->super_lock);
404 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
405 fs_info->exclusive_operation = type;
406 ret = true;
407 }
408 spin_unlock(&fs_info->super_lock);
409
410 return ret;
411}
412
413/*
414 * Conditionally allow to enter the exclusive operation in case it's compatible
415 * with the running one. This must be paired with btrfs_exclop_start_unlock and
416 * btrfs_exclop_finish.
417 *
418 * Compatibility:
419 * - the same type is already running
420 * - when trying to add a device and balance has been paused
421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
422 * must check the condition first that would allow none -> @type
423 */
424bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
425 enum btrfs_exclusive_operation type)
426{
427 spin_lock(&fs_info->super_lock);
428 if (fs_info->exclusive_operation == type ||
429 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
430 type == BTRFS_EXCLOP_DEV_ADD))
431 return true;
432
433 spin_unlock(&fs_info->super_lock);
434 return false;
435}
436
437void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
438{
439 spin_unlock(&fs_info->super_lock);
440}
441
442void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
443{
444 spin_lock(&fs_info->super_lock);
445 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
446 spin_unlock(&fs_info->super_lock);
447 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
448}
449
450void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
451 enum btrfs_exclusive_operation op)
452{
453 switch (op) {
454 case BTRFS_EXCLOP_BALANCE_PAUSED:
455 spin_lock(&fs_info->super_lock);
456 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
457 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD);
458 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
459 spin_unlock(&fs_info->super_lock);
460 break;
461 case BTRFS_EXCLOP_BALANCE:
462 spin_lock(&fs_info->super_lock);
463 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
464 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
465 spin_unlock(&fs_info->super_lock);
466 break;
467 default:
468 btrfs_warn(fs_info,
469 "invalid exclop balance operation %d requested", op);
470 }
471}
472
473static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
474{
475 return put_user(inode->i_generation, arg);
476}
477
478static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
479 void __user *arg)
480{
481 struct btrfs_device *device;
482 struct fstrim_range range;
483 u64 minlen = ULLONG_MAX;
484 u64 num_devices = 0;
485 int ret;
486
487 if (!capable(CAP_SYS_ADMIN))
488 return -EPERM;
489
490 /*
491 * btrfs_trim_block_group() depends on space cache, which is not
492 * available in zoned filesystem. So, disallow fitrim on a zoned
493 * filesystem for now.
494 */
495 if (btrfs_is_zoned(fs_info))
496 return -EOPNOTSUPP;
497
498 /*
499 * If the fs is mounted with nologreplay, which requires it to be
500 * mounted in RO mode as well, we can not allow discard on free space
501 * inside block groups, because log trees refer to extents that are not
502 * pinned in a block group's free space cache (pinning the extents is
503 * precisely the first phase of replaying a log tree).
504 */
505 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
506 return -EROFS;
507
508 rcu_read_lock();
509 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
510 dev_list) {
511 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
512 continue;
513 num_devices++;
514 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
515 minlen);
516 }
517 rcu_read_unlock();
518
519 if (!num_devices)
520 return -EOPNOTSUPP;
521 if (copy_from_user(&range, arg, sizeof(range)))
522 return -EFAULT;
523
524 /*
525 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
526 * block group is in the logical address space, which can be any
527 * sectorsize aligned bytenr in the range [0, U64_MAX].
528 */
529 if (range.len < fs_info->sb->s_blocksize)
530 return -EINVAL;
531
532 range.minlen = max(range.minlen, minlen);
533 ret = btrfs_trim_fs(fs_info, &range);
534 if (ret < 0)
535 return ret;
536
537 if (copy_to_user(arg, &range, sizeof(range)))
538 return -EFAULT;
539
540 return 0;
541}
542
543int __pure btrfs_is_empty_uuid(u8 *uuid)
544{
545 int i;
546
547 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
548 if (uuid[i])
549 return 0;
550 }
551 return 1;
552}
553
554/*
555 * Calculate the number of transaction items to reserve for creating a subvolume
556 * or snapshot, not including the inode, directory entries, or parent directory.
557 */
558static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
559{
560 /*
561 * 1 to add root block
562 * 1 to add root item
563 * 1 to add root ref
564 * 1 to add root backref
565 * 1 to add UUID item
566 * 1 to add qgroup info
567 * 1 to add qgroup limit
568 *
569 * Ideally the last two would only be accounted if qgroups are enabled,
570 * but that can change between now and the time we would insert them.
571 */
572 unsigned int num_items = 7;
573
574 if (inherit) {
575 /* 2 to add qgroup relations for each inherited qgroup */
576 num_items += 2 * inherit->num_qgroups;
577 }
578 return num_items;
579}
580
581static noinline int create_subvol(struct user_namespace *mnt_userns,
582 struct inode *dir, struct dentry *dentry,
583 struct btrfs_qgroup_inherit *inherit)
584{
585 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
586 struct btrfs_trans_handle *trans;
587 struct btrfs_key key;
588 struct btrfs_root_item *root_item;
589 struct btrfs_inode_item *inode_item;
590 struct extent_buffer *leaf;
591 struct btrfs_root *root = BTRFS_I(dir)->root;
592 struct btrfs_root *new_root;
593 struct btrfs_block_rsv block_rsv;
594 struct timespec64 cur_time = current_time(dir);
595 struct btrfs_new_inode_args new_inode_args = {
596 .dir = dir,
597 .dentry = dentry,
598 .subvol = true,
599 };
600 unsigned int trans_num_items;
601 int ret;
602 dev_t anon_dev;
603 u64 objectid;
604
605 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
606 if (!root_item)
607 return -ENOMEM;
608
609 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
610 if (ret)
611 goto out_root_item;
612
613 /*
614 * Don't create subvolume whose level is not zero. Or qgroup will be
615 * screwed up since it assumes subvolume qgroup's level to be 0.
616 */
617 if (btrfs_qgroup_level(objectid)) {
618 ret = -ENOSPC;
619 goto out_root_item;
620 }
621
622 ret = get_anon_bdev(&anon_dev);
623 if (ret < 0)
624 goto out_root_item;
625
626 new_inode_args.inode = btrfs_new_subvol_inode(mnt_userns, dir);
627 if (!new_inode_args.inode) {
628 ret = -ENOMEM;
629 goto out_anon_dev;
630 }
631 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
632 if (ret)
633 goto out_inode;
634 trans_num_items += create_subvol_num_items(inherit);
635
636 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
637 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
638 trans_num_items, false);
639 if (ret)
640 goto out_new_inode_args;
641
642 trans = btrfs_start_transaction(root, 0);
643 if (IS_ERR(trans)) {
644 ret = PTR_ERR(trans);
645 btrfs_subvolume_release_metadata(root, &block_rsv);
646 goto out_new_inode_args;
647 }
648 trans->block_rsv = &block_rsv;
649 trans->bytes_reserved = block_rsv.size;
650
651 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
652 if (ret)
653 goto out;
654
655 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
656 BTRFS_NESTING_NORMAL);
657 if (IS_ERR(leaf)) {
658 ret = PTR_ERR(leaf);
659 goto out;
660 }
661
662 btrfs_mark_buffer_dirty(leaf);
663
664 inode_item = &root_item->inode;
665 btrfs_set_stack_inode_generation(inode_item, 1);
666 btrfs_set_stack_inode_size(inode_item, 3);
667 btrfs_set_stack_inode_nlink(inode_item, 1);
668 btrfs_set_stack_inode_nbytes(inode_item,
669 fs_info->nodesize);
670 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
671
672 btrfs_set_root_flags(root_item, 0);
673 btrfs_set_root_limit(root_item, 0);
674 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
675
676 btrfs_set_root_bytenr(root_item, leaf->start);
677 btrfs_set_root_generation(root_item, trans->transid);
678 btrfs_set_root_level(root_item, 0);
679 btrfs_set_root_refs(root_item, 1);
680 btrfs_set_root_used(root_item, leaf->len);
681 btrfs_set_root_last_snapshot(root_item, 0);
682
683 btrfs_set_root_generation_v2(root_item,
684 btrfs_root_generation(root_item));
685 generate_random_guid(root_item->uuid);
686 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
687 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
688 root_item->ctime = root_item->otime;
689 btrfs_set_root_ctransid(root_item, trans->transid);
690 btrfs_set_root_otransid(root_item, trans->transid);
691
692 btrfs_tree_unlock(leaf);
693
694 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
695
696 key.objectid = objectid;
697 key.offset = 0;
698 key.type = BTRFS_ROOT_ITEM_KEY;
699 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
700 root_item);
701 if (ret) {
702 /*
703 * Since we don't abort the transaction in this case, free the
704 * tree block so that we don't leak space and leave the
705 * filesystem in an inconsistent state (an extent item in the
706 * extent tree with a backreference for a root that does not
707 * exists).
708 */
709 btrfs_tree_lock(leaf);
710 btrfs_clean_tree_block(leaf);
711 btrfs_tree_unlock(leaf);
712 btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
713 free_extent_buffer(leaf);
714 goto out;
715 }
716
717 free_extent_buffer(leaf);
718 leaf = NULL;
719
720 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
721 if (IS_ERR(new_root)) {
722 ret = PTR_ERR(new_root);
723 btrfs_abort_transaction(trans, ret);
724 goto out;
725 }
726 /* anon_dev is owned by new_root now. */
727 anon_dev = 0;
728 BTRFS_I(new_inode_args.inode)->root = new_root;
729 /* ... and new_root is owned by new_inode_args.inode now. */
730
731 ret = btrfs_record_root_in_trans(trans, new_root);
732 if (ret) {
733 btrfs_abort_transaction(trans, ret);
734 goto out;
735 }
736
737 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
738 BTRFS_UUID_KEY_SUBVOL, objectid);
739 if (ret) {
740 btrfs_abort_transaction(trans, ret);
741 goto out;
742 }
743
744 ret = btrfs_create_new_inode(trans, &new_inode_args);
745 if (ret) {
746 btrfs_abort_transaction(trans, ret);
747 goto out;
748 }
749
750 d_instantiate_new(dentry, new_inode_args.inode);
751 new_inode_args.inode = NULL;
752
753out:
754 trans->block_rsv = NULL;
755 trans->bytes_reserved = 0;
756 btrfs_subvolume_release_metadata(root, &block_rsv);
757
758 if (ret)
759 btrfs_end_transaction(trans);
760 else
761 ret = btrfs_commit_transaction(trans);
762out_new_inode_args:
763 btrfs_new_inode_args_destroy(&new_inode_args);
764out_inode:
765 iput(new_inode_args.inode);
766out_anon_dev:
767 if (anon_dev)
768 free_anon_bdev(anon_dev);
769out_root_item:
770 kfree(root_item);
771 return ret;
772}
773
774static int create_snapshot(struct btrfs_root *root, struct inode *dir,
775 struct dentry *dentry, bool readonly,
776 struct btrfs_qgroup_inherit *inherit)
777{
778 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
779 struct inode *inode;
780 struct btrfs_pending_snapshot *pending_snapshot;
781 unsigned int trans_num_items;
782 struct btrfs_trans_handle *trans;
783 int ret;
784
785 /* We do not support snapshotting right now. */
786 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
787 btrfs_warn(fs_info,
788 "extent tree v2 doesn't support snapshotting yet");
789 return -EOPNOTSUPP;
790 }
791
792 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
793 return -EINVAL;
794
795 if (atomic_read(&root->nr_swapfiles)) {
796 btrfs_warn(fs_info,
797 "cannot snapshot subvolume with active swapfile");
798 return -ETXTBSY;
799 }
800
801 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
802 if (!pending_snapshot)
803 return -ENOMEM;
804
805 ret = get_anon_bdev(&pending_snapshot->anon_dev);
806 if (ret < 0)
807 goto free_pending;
808 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
809 GFP_KERNEL);
810 pending_snapshot->path = btrfs_alloc_path();
811 if (!pending_snapshot->root_item || !pending_snapshot->path) {
812 ret = -ENOMEM;
813 goto free_pending;
814 }
815
816 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
817 BTRFS_BLOCK_RSV_TEMP);
818 /*
819 * 1 to add dir item
820 * 1 to add dir index
821 * 1 to update parent inode item
822 */
823 trans_num_items = create_subvol_num_items(inherit) + 3;
824 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
825 &pending_snapshot->block_rsv,
826 trans_num_items, false);
827 if (ret)
828 goto free_pending;
829
830 pending_snapshot->dentry = dentry;
831 pending_snapshot->root = root;
832 pending_snapshot->readonly = readonly;
833 pending_snapshot->dir = dir;
834 pending_snapshot->inherit = inherit;
835
836 trans = btrfs_start_transaction(root, 0);
837 if (IS_ERR(trans)) {
838 ret = PTR_ERR(trans);
839 goto fail;
840 }
841
842 trans->pending_snapshot = pending_snapshot;
843
844 ret = btrfs_commit_transaction(trans);
845 if (ret)
846 goto fail;
847
848 ret = pending_snapshot->error;
849 if (ret)
850 goto fail;
851
852 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
853 if (ret)
854 goto fail;
855
856 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
857 if (IS_ERR(inode)) {
858 ret = PTR_ERR(inode);
859 goto fail;
860 }
861
862 d_instantiate(dentry, inode);
863 ret = 0;
864 pending_snapshot->anon_dev = 0;
865fail:
866 /* Prevent double freeing of anon_dev */
867 if (ret && pending_snapshot->snap)
868 pending_snapshot->snap->anon_dev = 0;
869 btrfs_put_root(pending_snapshot->snap);
870 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
871free_pending:
872 if (pending_snapshot->anon_dev)
873 free_anon_bdev(pending_snapshot->anon_dev);
874 kfree(pending_snapshot->root_item);
875 btrfs_free_path(pending_snapshot->path);
876 kfree(pending_snapshot);
877
878 return ret;
879}
880
881/* copy of may_delete in fs/namei.c()
882 * Check whether we can remove a link victim from directory dir, check
883 * whether the type of victim is right.
884 * 1. We can't do it if dir is read-only (done in permission())
885 * 2. We should have write and exec permissions on dir
886 * 3. We can't remove anything from append-only dir
887 * 4. We can't do anything with immutable dir (done in permission())
888 * 5. If the sticky bit on dir is set we should either
889 * a. be owner of dir, or
890 * b. be owner of victim, or
891 * c. have CAP_FOWNER capability
892 * 6. If the victim is append-only or immutable we can't do anything with
893 * links pointing to it.
894 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
895 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
896 * 9. We can't remove a root or mountpoint.
897 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
898 * nfs_async_unlink().
899 */
900
901static int btrfs_may_delete(struct user_namespace *mnt_userns,
902 struct inode *dir, struct dentry *victim, int isdir)
903{
904 int error;
905
906 if (d_really_is_negative(victim))
907 return -ENOENT;
908
909 BUG_ON(d_inode(victim->d_parent) != dir);
910 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
911
912 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
913 if (error)
914 return error;
915 if (IS_APPEND(dir))
916 return -EPERM;
917 if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
918 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
919 IS_SWAPFILE(d_inode(victim)))
920 return -EPERM;
921 if (isdir) {
922 if (!d_is_dir(victim))
923 return -ENOTDIR;
924 if (IS_ROOT(victim))
925 return -EBUSY;
926 } else if (d_is_dir(victim))
927 return -EISDIR;
928 if (IS_DEADDIR(dir))
929 return -ENOENT;
930 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
931 return -EBUSY;
932 return 0;
933}
934
935/* copy of may_create in fs/namei.c() */
936static inline int btrfs_may_create(struct user_namespace *mnt_userns,
937 struct inode *dir, struct dentry *child)
938{
939 if (d_really_is_positive(child))
940 return -EEXIST;
941 if (IS_DEADDIR(dir))
942 return -ENOENT;
943 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
944 return -EOVERFLOW;
945 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
946}
947
948/*
949 * Create a new subvolume below @parent. This is largely modeled after
950 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
951 * inside this filesystem so it's quite a bit simpler.
952 */
953static noinline int btrfs_mksubvol(const struct path *parent,
954 struct user_namespace *mnt_userns,
955 const char *name, int namelen,
956 struct btrfs_root *snap_src,
957 bool readonly,
958 struct btrfs_qgroup_inherit *inherit)
959{
960 struct inode *dir = d_inode(parent->dentry);
961 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
962 struct dentry *dentry;
963 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
964 int error;
965
966 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
967 if (error == -EINTR)
968 return error;
969
970 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
971 error = PTR_ERR(dentry);
972 if (IS_ERR(dentry))
973 goto out_unlock;
974
975 error = btrfs_may_create(mnt_userns, dir, dentry);
976 if (error)
977 goto out_dput;
978
979 /*
980 * even if this name doesn't exist, we may get hash collisions.
981 * check for them now when we can safely fail
982 */
983 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
984 dir->i_ino, &name_str);
985 if (error)
986 goto out_dput;
987
988 down_read(&fs_info->subvol_sem);
989
990 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
991 goto out_up_read;
992
993 if (snap_src)
994 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
995 else
996 error = create_subvol(mnt_userns, dir, dentry, inherit);
997
998 if (!error)
999 fsnotify_mkdir(dir, dentry);
1000out_up_read:
1001 up_read(&fs_info->subvol_sem);
1002out_dput:
1003 dput(dentry);
1004out_unlock:
1005 btrfs_inode_unlock(BTRFS_I(dir), 0);
1006 return error;
1007}
1008
1009static noinline int btrfs_mksnapshot(const struct path *parent,
1010 struct user_namespace *mnt_userns,
1011 const char *name, int namelen,
1012 struct btrfs_root *root,
1013 bool readonly,
1014 struct btrfs_qgroup_inherit *inherit)
1015{
1016 int ret;
1017 bool snapshot_force_cow = false;
1018
1019 /*
1020 * Force new buffered writes to reserve space even when NOCOW is
1021 * possible. This is to avoid later writeback (running dealloc) to
1022 * fallback to COW mode and unexpectedly fail with ENOSPC.
1023 */
1024 btrfs_drew_read_lock(&root->snapshot_lock);
1025
1026 ret = btrfs_start_delalloc_snapshot(root, false);
1027 if (ret)
1028 goto out;
1029
1030 /*
1031 * All previous writes have started writeback in NOCOW mode, so now
1032 * we force future writes to fallback to COW mode during snapshot
1033 * creation.
1034 */
1035 atomic_inc(&root->snapshot_force_cow);
1036 snapshot_force_cow = true;
1037
1038 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1039
1040 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
1041 root, readonly, inherit);
1042out:
1043 if (snapshot_force_cow)
1044 atomic_dec(&root->snapshot_force_cow);
1045 btrfs_drew_read_unlock(&root->snapshot_lock);
1046 return ret;
1047}
1048
1049/*
1050 * Try to start exclusive operation @type or cancel it if it's running.
1051 *
1052 * Return:
1053 * 0 - normal mode, newly claimed op started
1054 * >0 - normal mode, something else is running,
1055 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1056 * ECANCELED - cancel mode, successful cancel
1057 * ENOTCONN - cancel mode, operation not running anymore
1058 */
1059static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1060 enum btrfs_exclusive_operation type, bool cancel)
1061{
1062 if (!cancel) {
1063 /* Start normal op */
1064 if (!btrfs_exclop_start(fs_info, type))
1065 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1066 /* Exclusive operation is now claimed */
1067 return 0;
1068 }
1069
1070 /* Cancel running op */
1071 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1072 /*
1073 * This blocks any exclop finish from setting it to NONE, so we
1074 * request cancellation. Either it runs and we will wait for it,
1075 * or it has finished and no waiting will happen.
1076 */
1077 atomic_inc(&fs_info->reloc_cancel_req);
1078 btrfs_exclop_start_unlock(fs_info);
1079
1080 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1081 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1082 TASK_INTERRUPTIBLE);
1083
1084 return -ECANCELED;
1085 }
1086
1087 /* Something else is running or none */
1088 return -ENOTCONN;
1089}
1090
1091static noinline int btrfs_ioctl_resize(struct file *file,
1092 void __user *arg)
1093{
1094 BTRFS_DEV_LOOKUP_ARGS(args);
1095 struct inode *inode = file_inode(file);
1096 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1097 u64 new_size;
1098 u64 old_size;
1099 u64 devid = 1;
1100 struct btrfs_root *root = BTRFS_I(inode)->root;
1101 struct btrfs_ioctl_vol_args *vol_args;
1102 struct btrfs_trans_handle *trans;
1103 struct btrfs_device *device = NULL;
1104 char *sizestr;
1105 char *retptr;
1106 char *devstr = NULL;
1107 int ret = 0;
1108 int mod = 0;
1109 bool cancel;
1110
1111 if (!capable(CAP_SYS_ADMIN))
1112 return -EPERM;
1113
1114 ret = mnt_want_write_file(file);
1115 if (ret)
1116 return ret;
1117
1118 /*
1119 * Read the arguments before checking exclusivity to be able to
1120 * distinguish regular resize and cancel
1121 */
1122 vol_args = memdup_user(arg, sizeof(*vol_args));
1123 if (IS_ERR(vol_args)) {
1124 ret = PTR_ERR(vol_args);
1125 goto out_drop;
1126 }
1127 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1128 sizestr = vol_args->name;
1129 cancel = (strcmp("cancel", sizestr) == 0);
1130 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1131 if (ret)
1132 goto out_free;
1133 /* Exclusive operation is now claimed */
1134
1135 devstr = strchr(sizestr, ':');
1136 if (devstr) {
1137 sizestr = devstr + 1;
1138 *devstr = '\0';
1139 devstr = vol_args->name;
1140 ret = kstrtoull(devstr, 10, &devid);
1141 if (ret)
1142 goto out_finish;
1143 if (!devid) {
1144 ret = -EINVAL;
1145 goto out_finish;
1146 }
1147 btrfs_info(fs_info, "resizing devid %llu", devid);
1148 }
1149
1150 args.devid = devid;
1151 device = btrfs_find_device(fs_info->fs_devices, &args);
1152 if (!device) {
1153 btrfs_info(fs_info, "resizer unable to find device %llu",
1154 devid);
1155 ret = -ENODEV;
1156 goto out_finish;
1157 }
1158
1159 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1160 btrfs_info(fs_info,
1161 "resizer unable to apply on readonly device %llu",
1162 devid);
1163 ret = -EPERM;
1164 goto out_finish;
1165 }
1166
1167 if (!strcmp(sizestr, "max"))
1168 new_size = bdev_nr_bytes(device->bdev);
1169 else {
1170 if (sizestr[0] == '-') {
1171 mod = -1;
1172 sizestr++;
1173 } else if (sizestr[0] == '+') {
1174 mod = 1;
1175 sizestr++;
1176 }
1177 new_size = memparse(sizestr, &retptr);
1178 if (*retptr != '\0' || new_size == 0) {
1179 ret = -EINVAL;
1180 goto out_finish;
1181 }
1182 }
1183
1184 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1185 ret = -EPERM;
1186 goto out_finish;
1187 }
1188
1189 old_size = btrfs_device_get_total_bytes(device);
1190
1191 if (mod < 0) {
1192 if (new_size > old_size) {
1193 ret = -EINVAL;
1194 goto out_finish;
1195 }
1196 new_size = old_size - new_size;
1197 } else if (mod > 0) {
1198 if (new_size > ULLONG_MAX - old_size) {
1199 ret = -ERANGE;
1200 goto out_finish;
1201 }
1202 new_size = old_size + new_size;
1203 }
1204
1205 if (new_size < SZ_256M) {
1206 ret = -EINVAL;
1207 goto out_finish;
1208 }
1209 if (new_size > bdev_nr_bytes(device->bdev)) {
1210 ret = -EFBIG;
1211 goto out_finish;
1212 }
1213
1214 new_size = round_down(new_size, fs_info->sectorsize);
1215
1216 if (new_size > old_size) {
1217 trans = btrfs_start_transaction(root, 0);
1218 if (IS_ERR(trans)) {
1219 ret = PTR_ERR(trans);
1220 goto out_finish;
1221 }
1222 ret = btrfs_grow_device(trans, device, new_size);
1223 btrfs_commit_transaction(trans);
1224 } else if (new_size < old_size) {
1225 ret = btrfs_shrink_device(device, new_size);
1226 } /* equal, nothing need to do */
1227
1228 if (ret == 0 && new_size != old_size)
1229 btrfs_info_in_rcu(fs_info,
1230 "resize device %s (devid %llu) from %llu to %llu",
1231 btrfs_dev_name(device), device->devid,
1232 old_size, new_size);
1233out_finish:
1234 btrfs_exclop_finish(fs_info);
1235out_free:
1236 kfree(vol_args);
1237out_drop:
1238 mnt_drop_write_file(file);
1239 return ret;
1240}
1241
1242static noinline int __btrfs_ioctl_snap_create(struct file *file,
1243 struct user_namespace *mnt_userns,
1244 const char *name, unsigned long fd, int subvol,
1245 bool readonly,
1246 struct btrfs_qgroup_inherit *inherit)
1247{
1248 int namelen;
1249 int ret = 0;
1250
1251 if (!S_ISDIR(file_inode(file)->i_mode))
1252 return -ENOTDIR;
1253
1254 ret = mnt_want_write_file(file);
1255 if (ret)
1256 goto out;
1257
1258 namelen = strlen(name);
1259 if (strchr(name, '/')) {
1260 ret = -EINVAL;
1261 goto out_drop_write;
1262 }
1263
1264 if (name[0] == '.' &&
1265 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1266 ret = -EEXIST;
1267 goto out_drop_write;
1268 }
1269
1270 if (subvol) {
1271 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
1272 namelen, NULL, readonly, inherit);
1273 } else {
1274 struct fd src = fdget(fd);
1275 struct inode *src_inode;
1276 if (!src.file) {
1277 ret = -EINVAL;
1278 goto out_drop_write;
1279 }
1280
1281 src_inode = file_inode(src.file);
1282 if (src_inode->i_sb != file_inode(file)->i_sb) {
1283 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1284 "Snapshot src from another FS");
1285 ret = -EXDEV;
1286 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
1287 /*
1288 * Subvolume creation is not restricted, but snapshots
1289 * are limited to own subvolumes only
1290 */
1291 ret = -EPERM;
1292 } else {
1293 ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
1294 name, namelen,
1295 BTRFS_I(src_inode)->root,
1296 readonly, inherit);
1297 }
1298 fdput(src);
1299 }
1300out_drop_write:
1301 mnt_drop_write_file(file);
1302out:
1303 return ret;
1304}
1305
1306static noinline int btrfs_ioctl_snap_create(struct file *file,
1307 void __user *arg, int subvol)
1308{
1309 struct btrfs_ioctl_vol_args *vol_args;
1310 int ret;
1311
1312 if (!S_ISDIR(file_inode(file)->i_mode))
1313 return -ENOTDIR;
1314
1315 vol_args = memdup_user(arg, sizeof(*vol_args));
1316 if (IS_ERR(vol_args))
1317 return PTR_ERR(vol_args);
1318 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1319
1320 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1321 vol_args->name, vol_args->fd, subvol,
1322 false, NULL);
1323
1324 kfree(vol_args);
1325 return ret;
1326}
1327
1328static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1329 void __user *arg, int subvol)
1330{
1331 struct btrfs_ioctl_vol_args_v2 *vol_args;
1332 int ret;
1333 bool readonly = false;
1334 struct btrfs_qgroup_inherit *inherit = NULL;
1335
1336 if (!S_ISDIR(file_inode(file)->i_mode))
1337 return -ENOTDIR;
1338
1339 vol_args = memdup_user(arg, sizeof(*vol_args));
1340 if (IS_ERR(vol_args))
1341 return PTR_ERR(vol_args);
1342 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1343
1344 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1345 ret = -EOPNOTSUPP;
1346 goto free_args;
1347 }
1348
1349 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1350 readonly = true;
1351 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1352 u64 nums;
1353
1354 if (vol_args->size < sizeof(*inherit) ||
1355 vol_args->size > PAGE_SIZE) {
1356 ret = -EINVAL;
1357 goto free_args;
1358 }
1359 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1360 if (IS_ERR(inherit)) {
1361 ret = PTR_ERR(inherit);
1362 goto free_args;
1363 }
1364
1365 if (inherit->num_qgroups > PAGE_SIZE ||
1366 inherit->num_ref_copies > PAGE_SIZE ||
1367 inherit->num_excl_copies > PAGE_SIZE) {
1368 ret = -EINVAL;
1369 goto free_inherit;
1370 }
1371
1372 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1373 2 * inherit->num_excl_copies;
1374 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1375 ret = -EINVAL;
1376 goto free_inherit;
1377 }
1378 }
1379
1380 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1381 vol_args->name, vol_args->fd, subvol,
1382 readonly, inherit);
1383 if (ret)
1384 goto free_inherit;
1385free_inherit:
1386 kfree(inherit);
1387free_args:
1388 kfree(vol_args);
1389 return ret;
1390}
1391
1392static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1393 void __user *arg)
1394{
1395 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1396 struct btrfs_root *root = BTRFS_I(inode)->root;
1397 int ret = 0;
1398 u64 flags = 0;
1399
1400 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1401 return -EINVAL;
1402
1403 down_read(&fs_info->subvol_sem);
1404 if (btrfs_root_readonly(root))
1405 flags |= BTRFS_SUBVOL_RDONLY;
1406 up_read(&fs_info->subvol_sem);
1407
1408 if (copy_to_user(arg, &flags, sizeof(flags)))
1409 ret = -EFAULT;
1410
1411 return ret;
1412}
1413
1414static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1415 void __user *arg)
1416{
1417 struct inode *inode = file_inode(file);
1418 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1419 struct btrfs_root *root = BTRFS_I(inode)->root;
1420 struct btrfs_trans_handle *trans;
1421 u64 root_flags;
1422 u64 flags;
1423 int ret = 0;
1424
1425 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
1426 return -EPERM;
1427
1428 ret = mnt_want_write_file(file);
1429 if (ret)
1430 goto out;
1431
1432 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1433 ret = -EINVAL;
1434 goto out_drop_write;
1435 }
1436
1437 if (copy_from_user(&flags, arg, sizeof(flags))) {
1438 ret = -EFAULT;
1439 goto out_drop_write;
1440 }
1441
1442 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1443 ret = -EOPNOTSUPP;
1444 goto out_drop_write;
1445 }
1446
1447 down_write(&fs_info->subvol_sem);
1448
1449 /* nothing to do */
1450 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1451 goto out_drop_sem;
1452
1453 root_flags = btrfs_root_flags(&root->root_item);
1454 if (flags & BTRFS_SUBVOL_RDONLY) {
1455 btrfs_set_root_flags(&root->root_item,
1456 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1457 } else {
1458 /*
1459 * Block RO -> RW transition if this subvolume is involved in
1460 * send
1461 */
1462 spin_lock(&root->root_item_lock);
1463 if (root->send_in_progress == 0) {
1464 btrfs_set_root_flags(&root->root_item,
1465 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1466 spin_unlock(&root->root_item_lock);
1467 } else {
1468 spin_unlock(&root->root_item_lock);
1469 btrfs_warn(fs_info,
1470 "Attempt to set subvolume %llu read-write during send",
1471 root->root_key.objectid);
1472 ret = -EPERM;
1473 goto out_drop_sem;
1474 }
1475 }
1476
1477 trans = btrfs_start_transaction(root, 1);
1478 if (IS_ERR(trans)) {
1479 ret = PTR_ERR(trans);
1480 goto out_reset;
1481 }
1482
1483 ret = btrfs_update_root(trans, fs_info->tree_root,
1484 &root->root_key, &root->root_item);
1485 if (ret < 0) {
1486 btrfs_end_transaction(trans);
1487 goto out_reset;
1488 }
1489
1490 ret = btrfs_commit_transaction(trans);
1491
1492out_reset:
1493 if (ret)
1494 btrfs_set_root_flags(&root->root_item, root_flags);
1495out_drop_sem:
1496 up_write(&fs_info->subvol_sem);
1497out_drop_write:
1498 mnt_drop_write_file(file);
1499out:
1500 return ret;
1501}
1502
1503static noinline int key_in_sk(struct btrfs_key *key,
1504 struct btrfs_ioctl_search_key *sk)
1505{
1506 struct btrfs_key test;
1507 int ret;
1508
1509 test.objectid = sk->min_objectid;
1510 test.type = sk->min_type;
1511 test.offset = sk->min_offset;
1512
1513 ret = btrfs_comp_cpu_keys(key, &test);
1514 if (ret < 0)
1515 return 0;
1516
1517 test.objectid = sk->max_objectid;
1518 test.type = sk->max_type;
1519 test.offset = sk->max_offset;
1520
1521 ret = btrfs_comp_cpu_keys(key, &test);
1522 if (ret > 0)
1523 return 0;
1524 return 1;
1525}
1526
1527static noinline int copy_to_sk(struct btrfs_path *path,
1528 struct btrfs_key *key,
1529 struct btrfs_ioctl_search_key *sk,
1530 size_t *buf_size,
1531 char __user *ubuf,
1532 unsigned long *sk_offset,
1533 int *num_found)
1534{
1535 u64 found_transid;
1536 struct extent_buffer *leaf;
1537 struct btrfs_ioctl_search_header sh;
1538 struct btrfs_key test;
1539 unsigned long item_off;
1540 unsigned long item_len;
1541 int nritems;
1542 int i;
1543 int slot;
1544 int ret = 0;
1545
1546 leaf = path->nodes[0];
1547 slot = path->slots[0];
1548 nritems = btrfs_header_nritems(leaf);
1549
1550 if (btrfs_header_generation(leaf) > sk->max_transid) {
1551 i = nritems;
1552 goto advance_key;
1553 }
1554 found_transid = btrfs_header_generation(leaf);
1555
1556 for (i = slot; i < nritems; i++) {
1557 item_off = btrfs_item_ptr_offset(leaf, i);
1558 item_len = btrfs_item_size(leaf, i);
1559
1560 btrfs_item_key_to_cpu(leaf, key, i);
1561 if (!key_in_sk(key, sk))
1562 continue;
1563
1564 if (sizeof(sh) + item_len > *buf_size) {
1565 if (*num_found) {
1566 ret = 1;
1567 goto out;
1568 }
1569
1570 /*
1571 * return one empty item back for v1, which does not
1572 * handle -EOVERFLOW
1573 */
1574
1575 *buf_size = sizeof(sh) + item_len;
1576 item_len = 0;
1577 ret = -EOVERFLOW;
1578 }
1579
1580 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1581 ret = 1;
1582 goto out;
1583 }
1584
1585 sh.objectid = key->objectid;
1586 sh.offset = key->offset;
1587 sh.type = key->type;
1588 sh.len = item_len;
1589 sh.transid = found_transid;
1590
1591 /*
1592 * Copy search result header. If we fault then loop again so we
1593 * can fault in the pages and -EFAULT there if there's a
1594 * problem. Otherwise we'll fault and then copy the buffer in
1595 * properly this next time through
1596 */
1597 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1598 ret = 0;
1599 goto out;
1600 }
1601
1602 *sk_offset += sizeof(sh);
1603
1604 if (item_len) {
1605 char __user *up = ubuf + *sk_offset;
1606 /*
1607 * Copy the item, same behavior as above, but reset the
1608 * * sk_offset so we copy the full thing again.
1609 */
1610 if (read_extent_buffer_to_user_nofault(leaf, up,
1611 item_off, item_len)) {
1612 ret = 0;
1613 *sk_offset -= sizeof(sh);
1614 goto out;
1615 }
1616
1617 *sk_offset += item_len;
1618 }
1619 (*num_found)++;
1620
1621 if (ret) /* -EOVERFLOW from above */
1622 goto out;
1623
1624 if (*num_found >= sk->nr_items) {
1625 ret = 1;
1626 goto out;
1627 }
1628 }
1629advance_key:
1630 ret = 0;
1631 test.objectid = sk->max_objectid;
1632 test.type = sk->max_type;
1633 test.offset = sk->max_offset;
1634 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1635 ret = 1;
1636 else if (key->offset < (u64)-1)
1637 key->offset++;
1638 else if (key->type < (u8)-1) {
1639 key->offset = 0;
1640 key->type++;
1641 } else if (key->objectid < (u64)-1) {
1642 key->offset = 0;
1643 key->type = 0;
1644 key->objectid++;
1645 } else
1646 ret = 1;
1647out:
1648 /*
1649 * 0: all items from this leaf copied, continue with next
1650 * 1: * more items can be copied, but unused buffer is too small
1651 * * all items were found
1652 * Either way, it will stops the loop which iterates to the next
1653 * leaf
1654 * -EOVERFLOW: item was to large for buffer
1655 * -EFAULT: could not copy extent buffer back to userspace
1656 */
1657 return ret;
1658}
1659
1660static noinline int search_ioctl(struct inode *inode,
1661 struct btrfs_ioctl_search_key *sk,
1662 size_t *buf_size,
1663 char __user *ubuf)
1664{
1665 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
1666 struct btrfs_root *root;
1667 struct btrfs_key key;
1668 struct btrfs_path *path;
1669 int ret;
1670 int num_found = 0;
1671 unsigned long sk_offset = 0;
1672
1673 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1674 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1675 return -EOVERFLOW;
1676 }
1677
1678 path = btrfs_alloc_path();
1679 if (!path)
1680 return -ENOMEM;
1681
1682 if (sk->tree_id == 0) {
1683 /* search the root of the inode that was passed */
1684 root = btrfs_grab_root(BTRFS_I(inode)->root);
1685 } else {
1686 root = btrfs_get_fs_root(info, sk->tree_id, true);
1687 if (IS_ERR(root)) {
1688 btrfs_free_path(path);
1689 return PTR_ERR(root);
1690 }
1691 }
1692
1693 key.objectid = sk->min_objectid;
1694 key.type = sk->min_type;
1695 key.offset = sk->min_offset;
1696
1697 while (1) {
1698 ret = -EFAULT;
1699 /*
1700 * Ensure that the whole user buffer is faulted in at sub-page
1701 * granularity, otherwise the loop may live-lock.
1702 */
1703 if (fault_in_subpage_writeable(ubuf + sk_offset,
1704 *buf_size - sk_offset))
1705 break;
1706
1707 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1708 if (ret != 0) {
1709 if (ret > 0)
1710 ret = 0;
1711 goto err;
1712 }
1713 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1714 &sk_offset, &num_found);
1715 btrfs_release_path(path);
1716 if (ret)
1717 break;
1718
1719 }
1720 if (ret > 0)
1721 ret = 0;
1722err:
1723 sk->nr_items = num_found;
1724 btrfs_put_root(root);
1725 btrfs_free_path(path);
1726 return ret;
1727}
1728
1729static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1730 void __user *argp)
1731{
1732 struct btrfs_ioctl_search_args __user *uargs = argp;
1733 struct btrfs_ioctl_search_key sk;
1734 int ret;
1735 size_t buf_size;
1736
1737 if (!capable(CAP_SYS_ADMIN))
1738 return -EPERM;
1739
1740 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1741 return -EFAULT;
1742
1743 buf_size = sizeof(uargs->buf);
1744
1745 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1746
1747 /*
1748 * In the origin implementation an overflow is handled by returning a
1749 * search header with a len of zero, so reset ret.
1750 */
1751 if (ret == -EOVERFLOW)
1752 ret = 0;
1753
1754 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1755 ret = -EFAULT;
1756 return ret;
1757}
1758
1759static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1760 void __user *argp)
1761{
1762 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1763 struct btrfs_ioctl_search_args_v2 args;
1764 int ret;
1765 size_t buf_size;
1766 const size_t buf_limit = SZ_16M;
1767
1768 if (!capable(CAP_SYS_ADMIN))
1769 return -EPERM;
1770
1771 /* copy search header and buffer size */
1772 if (copy_from_user(&args, uarg, sizeof(args)))
1773 return -EFAULT;
1774
1775 buf_size = args.buf_size;
1776
1777 /* limit result size to 16MB */
1778 if (buf_size > buf_limit)
1779 buf_size = buf_limit;
1780
1781 ret = search_ioctl(inode, &args.key, &buf_size,
1782 (char __user *)(&uarg->buf[0]));
1783 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1784 ret = -EFAULT;
1785 else if (ret == -EOVERFLOW &&
1786 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1787 ret = -EFAULT;
1788
1789 return ret;
1790}
1791
1792/*
1793 * Search INODE_REFs to identify path name of 'dirid' directory
1794 * in a 'tree_id' tree. and sets path name to 'name'.
1795 */
1796static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1797 u64 tree_id, u64 dirid, char *name)
1798{
1799 struct btrfs_root *root;
1800 struct btrfs_key key;
1801 char *ptr;
1802 int ret = -1;
1803 int slot;
1804 int len;
1805 int total_len = 0;
1806 struct btrfs_inode_ref *iref;
1807 struct extent_buffer *l;
1808 struct btrfs_path *path;
1809
1810 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1811 name[0]='\0';
1812 return 0;
1813 }
1814
1815 path = btrfs_alloc_path();
1816 if (!path)
1817 return -ENOMEM;
1818
1819 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1820
1821 root = btrfs_get_fs_root(info, tree_id, true);
1822 if (IS_ERR(root)) {
1823 ret = PTR_ERR(root);
1824 root = NULL;
1825 goto out;
1826 }
1827
1828 key.objectid = dirid;
1829 key.type = BTRFS_INODE_REF_KEY;
1830 key.offset = (u64)-1;
1831
1832 while (1) {
1833 ret = btrfs_search_backwards(root, &key, path);
1834 if (ret < 0)
1835 goto out;
1836 else if (ret > 0) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
1840
1841 l = path->nodes[0];
1842 slot = path->slots[0];
1843
1844 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1845 len = btrfs_inode_ref_name_len(l, iref);
1846 ptr -= len + 1;
1847 total_len += len + 1;
1848 if (ptr < name) {
1849 ret = -ENAMETOOLONG;
1850 goto out;
1851 }
1852
1853 *(ptr + len) = '/';
1854 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1855
1856 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1857 break;
1858
1859 btrfs_release_path(path);
1860 key.objectid = key.offset;
1861 key.offset = (u64)-1;
1862 dirid = key.objectid;
1863 }
1864 memmove(name, ptr, total_len);
1865 name[total_len] = '\0';
1866 ret = 0;
1867out:
1868 btrfs_put_root(root);
1869 btrfs_free_path(path);
1870 return ret;
1871}
1872
1873static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
1874 struct inode *inode,
1875 struct btrfs_ioctl_ino_lookup_user_args *args)
1876{
1877 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1878 struct super_block *sb = inode->i_sb;
1879 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1880 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1881 u64 dirid = args->dirid;
1882 unsigned long item_off;
1883 unsigned long item_len;
1884 struct btrfs_inode_ref *iref;
1885 struct btrfs_root_ref *rref;
1886 struct btrfs_root *root = NULL;
1887 struct btrfs_path *path;
1888 struct btrfs_key key, key2;
1889 struct extent_buffer *leaf;
1890 struct inode *temp_inode;
1891 char *ptr;
1892 int slot;
1893 int len;
1894 int total_len = 0;
1895 int ret;
1896
1897 path = btrfs_alloc_path();
1898 if (!path)
1899 return -ENOMEM;
1900
1901 /*
1902 * If the bottom subvolume does not exist directly under upper_limit,
1903 * construct the path in from the bottom up.
1904 */
1905 if (dirid != upper_limit.objectid) {
1906 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1907
1908 root = btrfs_get_fs_root(fs_info, treeid, true);
1909 if (IS_ERR(root)) {
1910 ret = PTR_ERR(root);
1911 goto out;
1912 }
1913
1914 key.objectid = dirid;
1915 key.type = BTRFS_INODE_REF_KEY;
1916 key.offset = (u64)-1;
1917 while (1) {
1918 ret = btrfs_search_backwards(root, &key, path);
1919 if (ret < 0)
1920 goto out_put;
1921 else if (ret > 0) {
1922 ret = -ENOENT;
1923 goto out_put;
1924 }
1925
1926 leaf = path->nodes[0];
1927 slot = path->slots[0];
1928
1929 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1930 len = btrfs_inode_ref_name_len(leaf, iref);
1931 ptr -= len + 1;
1932 total_len += len + 1;
1933 if (ptr < args->path) {
1934 ret = -ENAMETOOLONG;
1935 goto out_put;
1936 }
1937
1938 *(ptr + len) = '/';
1939 read_extent_buffer(leaf, ptr,
1940 (unsigned long)(iref + 1), len);
1941
1942 /* Check the read+exec permission of this directory */
1943 ret = btrfs_previous_item(root, path, dirid,
1944 BTRFS_INODE_ITEM_KEY);
1945 if (ret < 0) {
1946 goto out_put;
1947 } else if (ret > 0) {
1948 ret = -ENOENT;
1949 goto out_put;
1950 }
1951
1952 leaf = path->nodes[0];
1953 slot = path->slots[0];
1954 btrfs_item_key_to_cpu(leaf, &key2, slot);
1955 if (key2.objectid != dirid) {
1956 ret = -ENOENT;
1957 goto out_put;
1958 }
1959
1960 temp_inode = btrfs_iget(sb, key2.objectid, root);
1961 if (IS_ERR(temp_inode)) {
1962 ret = PTR_ERR(temp_inode);
1963 goto out_put;
1964 }
1965 ret = inode_permission(mnt_userns, temp_inode,
1966 MAY_READ | MAY_EXEC);
1967 iput(temp_inode);
1968 if (ret) {
1969 ret = -EACCES;
1970 goto out_put;
1971 }
1972
1973 if (key.offset == upper_limit.objectid)
1974 break;
1975 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1976 ret = -EACCES;
1977 goto out_put;
1978 }
1979
1980 btrfs_release_path(path);
1981 key.objectid = key.offset;
1982 key.offset = (u64)-1;
1983 dirid = key.objectid;
1984 }
1985
1986 memmove(args->path, ptr, total_len);
1987 args->path[total_len] = '\0';
1988 btrfs_put_root(root);
1989 root = NULL;
1990 btrfs_release_path(path);
1991 }
1992
1993 /* Get the bottom subvolume's name from ROOT_REF */
1994 key.objectid = treeid;
1995 key.type = BTRFS_ROOT_REF_KEY;
1996 key.offset = args->treeid;
1997 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1998 if (ret < 0) {
1999 goto out;
2000 } else if (ret > 0) {
2001 ret = -ENOENT;
2002 goto out;
2003 }
2004
2005 leaf = path->nodes[0];
2006 slot = path->slots[0];
2007 btrfs_item_key_to_cpu(leaf, &key, slot);
2008
2009 item_off = btrfs_item_ptr_offset(leaf, slot);
2010 item_len = btrfs_item_size(leaf, slot);
2011 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2012 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2013 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2014 ret = -EINVAL;
2015 goto out;
2016 }
2017
2018 /* Copy subvolume's name */
2019 item_off += sizeof(struct btrfs_root_ref);
2020 item_len -= sizeof(struct btrfs_root_ref);
2021 read_extent_buffer(leaf, args->name, item_off, item_len);
2022 args->name[item_len] = 0;
2023
2024out_put:
2025 btrfs_put_root(root);
2026out:
2027 btrfs_free_path(path);
2028 return ret;
2029}
2030
2031static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2032 void __user *argp)
2033{
2034 struct btrfs_ioctl_ino_lookup_args *args;
2035 int ret = 0;
2036
2037 args = memdup_user(argp, sizeof(*args));
2038 if (IS_ERR(args))
2039 return PTR_ERR(args);
2040
2041 /*
2042 * Unprivileged query to obtain the containing subvolume root id. The
2043 * path is reset so it's consistent with btrfs_search_path_in_tree.
2044 */
2045 if (args->treeid == 0)
2046 args->treeid = root->root_key.objectid;
2047
2048 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2049 args->name[0] = 0;
2050 goto out;
2051 }
2052
2053 if (!capable(CAP_SYS_ADMIN)) {
2054 ret = -EPERM;
2055 goto out;
2056 }
2057
2058 ret = btrfs_search_path_in_tree(root->fs_info,
2059 args->treeid, args->objectid,
2060 args->name);
2061
2062out:
2063 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2064 ret = -EFAULT;
2065
2066 kfree(args);
2067 return ret;
2068}
2069
2070/*
2071 * Version of ino_lookup ioctl (unprivileged)
2072 *
2073 * The main differences from ino_lookup ioctl are:
2074 *
2075 * 1. Read + Exec permission will be checked using inode_permission() during
2076 * path construction. -EACCES will be returned in case of failure.
2077 * 2. Path construction will be stopped at the inode number which corresponds
2078 * to the fd with which this ioctl is called. If constructed path does not
2079 * exist under fd's inode, -EACCES will be returned.
2080 * 3. The name of bottom subvolume is also searched and filled.
2081 */
2082static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2083{
2084 struct btrfs_ioctl_ino_lookup_user_args *args;
2085 struct inode *inode;
2086 int ret;
2087
2088 args = memdup_user(argp, sizeof(*args));
2089 if (IS_ERR(args))
2090 return PTR_ERR(args);
2091
2092 inode = file_inode(file);
2093
2094 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2095 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2096 /*
2097 * The subvolume does not exist under fd with which this is
2098 * called
2099 */
2100 kfree(args);
2101 return -EACCES;
2102 }
2103
2104 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2105
2106 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2107 ret = -EFAULT;
2108
2109 kfree(args);
2110 return ret;
2111}
2112
2113/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2114static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2115{
2116 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2117 struct btrfs_fs_info *fs_info;
2118 struct btrfs_root *root;
2119 struct btrfs_path *path;
2120 struct btrfs_key key;
2121 struct btrfs_root_item *root_item;
2122 struct btrfs_root_ref *rref;
2123 struct extent_buffer *leaf;
2124 unsigned long item_off;
2125 unsigned long item_len;
2126 int slot;
2127 int ret = 0;
2128
2129 path = btrfs_alloc_path();
2130 if (!path)
2131 return -ENOMEM;
2132
2133 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2134 if (!subvol_info) {
2135 btrfs_free_path(path);
2136 return -ENOMEM;
2137 }
2138
2139 fs_info = BTRFS_I(inode)->root->fs_info;
2140
2141 /* Get root_item of inode's subvolume */
2142 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2143 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2144 if (IS_ERR(root)) {
2145 ret = PTR_ERR(root);
2146 goto out_free;
2147 }
2148 root_item = &root->root_item;
2149
2150 subvol_info->treeid = key.objectid;
2151
2152 subvol_info->generation = btrfs_root_generation(root_item);
2153 subvol_info->flags = btrfs_root_flags(root_item);
2154
2155 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2156 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2157 BTRFS_UUID_SIZE);
2158 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2159 BTRFS_UUID_SIZE);
2160
2161 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2162 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2163 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2164
2165 subvol_info->otransid = btrfs_root_otransid(root_item);
2166 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2167 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2168
2169 subvol_info->stransid = btrfs_root_stransid(root_item);
2170 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2171 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2172
2173 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2174 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2175 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2176
2177 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2178 /* Search root tree for ROOT_BACKREF of this subvolume */
2179 key.type = BTRFS_ROOT_BACKREF_KEY;
2180 key.offset = 0;
2181 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2182 if (ret < 0) {
2183 goto out;
2184 } else if (path->slots[0] >=
2185 btrfs_header_nritems(path->nodes[0])) {
2186 ret = btrfs_next_leaf(fs_info->tree_root, path);
2187 if (ret < 0) {
2188 goto out;
2189 } else if (ret > 0) {
2190 ret = -EUCLEAN;
2191 goto out;
2192 }
2193 }
2194
2195 leaf = path->nodes[0];
2196 slot = path->slots[0];
2197 btrfs_item_key_to_cpu(leaf, &key, slot);
2198 if (key.objectid == subvol_info->treeid &&
2199 key.type == BTRFS_ROOT_BACKREF_KEY) {
2200 subvol_info->parent_id = key.offset;
2201
2202 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2203 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2204
2205 item_off = btrfs_item_ptr_offset(leaf, slot)
2206 + sizeof(struct btrfs_root_ref);
2207 item_len = btrfs_item_size(leaf, slot)
2208 - sizeof(struct btrfs_root_ref);
2209 read_extent_buffer(leaf, subvol_info->name,
2210 item_off, item_len);
2211 } else {
2212 ret = -ENOENT;
2213 goto out;
2214 }
2215 }
2216
2217 btrfs_free_path(path);
2218 path = NULL;
2219 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2220 ret = -EFAULT;
2221
2222out:
2223 btrfs_put_root(root);
2224out_free:
2225 btrfs_free_path(path);
2226 kfree(subvol_info);
2227 return ret;
2228}
2229
2230/*
2231 * Return ROOT_REF information of the subvolume containing this inode
2232 * except the subvolume name.
2233 */
2234static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2235 void __user *argp)
2236{
2237 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2238 struct btrfs_root_ref *rref;
2239 struct btrfs_path *path;
2240 struct btrfs_key key;
2241 struct extent_buffer *leaf;
2242 u64 objectid;
2243 int slot;
2244 int ret;
2245 u8 found;
2246
2247 path = btrfs_alloc_path();
2248 if (!path)
2249 return -ENOMEM;
2250
2251 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2252 if (IS_ERR(rootrefs)) {
2253 btrfs_free_path(path);
2254 return PTR_ERR(rootrefs);
2255 }
2256
2257 objectid = root->root_key.objectid;
2258 key.objectid = objectid;
2259 key.type = BTRFS_ROOT_REF_KEY;
2260 key.offset = rootrefs->min_treeid;
2261 found = 0;
2262
2263 root = root->fs_info->tree_root;
2264 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2265 if (ret < 0) {
2266 goto out;
2267 } else if (path->slots[0] >=
2268 btrfs_header_nritems(path->nodes[0])) {
2269 ret = btrfs_next_leaf(root, path);
2270 if (ret < 0) {
2271 goto out;
2272 } else if (ret > 0) {
2273 ret = -EUCLEAN;
2274 goto out;
2275 }
2276 }
2277 while (1) {
2278 leaf = path->nodes[0];
2279 slot = path->slots[0];
2280
2281 btrfs_item_key_to_cpu(leaf, &key, slot);
2282 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2283 ret = 0;
2284 goto out;
2285 }
2286
2287 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2288 ret = -EOVERFLOW;
2289 goto out;
2290 }
2291
2292 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2293 rootrefs->rootref[found].treeid = key.offset;
2294 rootrefs->rootref[found].dirid =
2295 btrfs_root_ref_dirid(leaf, rref);
2296 found++;
2297
2298 ret = btrfs_next_item(root, path);
2299 if (ret < 0) {
2300 goto out;
2301 } else if (ret > 0) {
2302 ret = -EUCLEAN;
2303 goto out;
2304 }
2305 }
2306
2307out:
2308 btrfs_free_path(path);
2309
2310 if (!ret || ret == -EOVERFLOW) {
2311 rootrefs->num_items = found;
2312 /* update min_treeid for next search */
2313 if (found)
2314 rootrefs->min_treeid =
2315 rootrefs->rootref[found - 1].treeid + 1;
2316 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2317 ret = -EFAULT;
2318 }
2319
2320 kfree(rootrefs);
2321
2322 return ret;
2323}
2324
2325static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2326 void __user *arg,
2327 bool destroy_v2)
2328{
2329 struct dentry *parent = file->f_path.dentry;
2330 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2331 struct dentry *dentry;
2332 struct inode *dir = d_inode(parent);
2333 struct inode *inode;
2334 struct btrfs_root *root = BTRFS_I(dir)->root;
2335 struct btrfs_root *dest = NULL;
2336 struct btrfs_ioctl_vol_args *vol_args = NULL;
2337 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2338 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
2339 char *subvol_name, *subvol_name_ptr = NULL;
2340 int subvol_namelen;
2341 int err = 0;
2342 bool destroy_parent = false;
2343
2344 /* We don't support snapshots with extent tree v2 yet. */
2345 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2346 btrfs_err(fs_info,
2347 "extent tree v2 doesn't support snapshot deletion yet");
2348 return -EOPNOTSUPP;
2349 }
2350
2351 if (destroy_v2) {
2352 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2353 if (IS_ERR(vol_args2))
2354 return PTR_ERR(vol_args2);
2355
2356 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2357 err = -EOPNOTSUPP;
2358 goto out;
2359 }
2360
2361 /*
2362 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2363 * name, same as v1 currently does.
2364 */
2365 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2366 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2367 subvol_name = vol_args2->name;
2368
2369 err = mnt_want_write_file(file);
2370 if (err)
2371 goto out;
2372 } else {
2373 struct inode *old_dir;
2374
2375 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2376 err = -EINVAL;
2377 goto out;
2378 }
2379
2380 err = mnt_want_write_file(file);
2381 if (err)
2382 goto out;
2383
2384 dentry = btrfs_get_dentry(fs_info->sb,
2385 BTRFS_FIRST_FREE_OBJECTID,
2386 vol_args2->subvolid, 0);
2387 if (IS_ERR(dentry)) {
2388 err = PTR_ERR(dentry);
2389 goto out_drop_write;
2390 }
2391
2392 /*
2393 * Change the default parent since the subvolume being
2394 * deleted can be outside of the current mount point.
2395 */
2396 parent = btrfs_get_parent(dentry);
2397
2398 /*
2399 * At this point dentry->d_name can point to '/' if the
2400 * subvolume we want to destroy is outsite of the
2401 * current mount point, so we need to release the
2402 * current dentry and execute the lookup to return a new
2403 * one with ->d_name pointing to the
2404 * <mount point>/subvol_name.
2405 */
2406 dput(dentry);
2407 if (IS_ERR(parent)) {
2408 err = PTR_ERR(parent);
2409 goto out_drop_write;
2410 }
2411 old_dir = dir;
2412 dir = d_inode(parent);
2413
2414 /*
2415 * If v2 was used with SPEC_BY_ID, a new parent was
2416 * allocated since the subvolume can be outside of the
2417 * current mount point. Later on we need to release this
2418 * new parent dentry.
2419 */
2420 destroy_parent = true;
2421
2422 /*
2423 * On idmapped mounts, deletion via subvolid is
2424 * restricted to subvolumes that are immediate
2425 * ancestors of the inode referenced by the file
2426 * descriptor in the ioctl. Otherwise the idmapping
2427 * could potentially be abused to delete subvolumes
2428 * anywhere in the filesystem the user wouldn't be able
2429 * to delete without an idmapped mount.
2430 */
2431 if (old_dir != dir && mnt_userns != &init_user_ns) {
2432 err = -EOPNOTSUPP;
2433 goto free_parent;
2434 }
2435
2436 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2437 fs_info, vol_args2->subvolid);
2438 if (IS_ERR(subvol_name_ptr)) {
2439 err = PTR_ERR(subvol_name_ptr);
2440 goto free_parent;
2441 }
2442 /* subvol_name_ptr is already nul terminated */
2443 subvol_name = (char *)kbasename(subvol_name_ptr);
2444 }
2445 } else {
2446 vol_args = memdup_user(arg, sizeof(*vol_args));
2447 if (IS_ERR(vol_args))
2448 return PTR_ERR(vol_args);
2449
2450 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2451 subvol_name = vol_args->name;
2452
2453 err = mnt_want_write_file(file);
2454 if (err)
2455 goto out;
2456 }
2457
2458 subvol_namelen = strlen(subvol_name);
2459
2460 if (strchr(subvol_name, '/') ||
2461 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2462 err = -EINVAL;
2463 goto free_subvol_name;
2464 }
2465
2466 if (!S_ISDIR(dir->i_mode)) {
2467 err = -ENOTDIR;
2468 goto free_subvol_name;
2469 }
2470
2471 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2472 if (err == -EINTR)
2473 goto free_subvol_name;
2474 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
2475 if (IS_ERR(dentry)) {
2476 err = PTR_ERR(dentry);
2477 goto out_unlock_dir;
2478 }
2479
2480 if (d_really_is_negative(dentry)) {
2481 err = -ENOENT;
2482 goto out_dput;
2483 }
2484
2485 inode = d_inode(dentry);
2486 dest = BTRFS_I(inode)->root;
2487 if (!capable(CAP_SYS_ADMIN)) {
2488 /*
2489 * Regular user. Only allow this with a special mount
2490 * option, when the user has write+exec access to the
2491 * subvol root, and when rmdir(2) would have been
2492 * allowed.
2493 *
2494 * Note that this is _not_ check that the subvol is
2495 * empty or doesn't contain data that we wouldn't
2496 * otherwise be able to delete.
2497 *
2498 * Users who want to delete empty subvols should try
2499 * rmdir(2).
2500 */
2501 err = -EPERM;
2502 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2503 goto out_dput;
2504
2505 /*
2506 * Do not allow deletion if the parent dir is the same
2507 * as the dir to be deleted. That means the ioctl
2508 * must be called on the dentry referencing the root
2509 * of the subvol, not a random directory contained
2510 * within it.
2511 */
2512 err = -EINVAL;
2513 if (root == dest)
2514 goto out_dput;
2515
2516 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
2517 if (err)
2518 goto out_dput;
2519 }
2520
2521 /* check if subvolume may be deleted by a user */
2522 err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
2523 if (err)
2524 goto out_dput;
2525
2526 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2527 err = -EINVAL;
2528 goto out_dput;
2529 }
2530
2531 btrfs_inode_lock(BTRFS_I(inode), 0);
2532 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2533 btrfs_inode_unlock(BTRFS_I(inode), 0);
2534 if (!err)
2535 d_delete_notify(dir, dentry);
2536
2537out_dput:
2538 dput(dentry);
2539out_unlock_dir:
2540 btrfs_inode_unlock(BTRFS_I(dir), 0);
2541free_subvol_name:
2542 kfree(subvol_name_ptr);
2543free_parent:
2544 if (destroy_parent)
2545 dput(parent);
2546out_drop_write:
2547 mnt_drop_write_file(file);
2548out:
2549 kfree(vol_args2);
2550 kfree(vol_args);
2551 return err;
2552}
2553
2554static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2555{
2556 struct inode *inode = file_inode(file);
2557 struct btrfs_root *root = BTRFS_I(inode)->root;
2558 struct btrfs_ioctl_defrag_range_args range = {0};
2559 int ret;
2560
2561 ret = mnt_want_write_file(file);
2562 if (ret)
2563 return ret;
2564
2565 if (btrfs_root_readonly(root)) {
2566 ret = -EROFS;
2567 goto out;
2568 }
2569
2570 switch (inode->i_mode & S_IFMT) {
2571 case S_IFDIR:
2572 if (!capable(CAP_SYS_ADMIN)) {
2573 ret = -EPERM;
2574 goto out;
2575 }
2576 ret = btrfs_defrag_root(root);
2577 break;
2578 case S_IFREG:
2579 /*
2580 * Note that this does not check the file descriptor for write
2581 * access. This prevents defragmenting executables that are
2582 * running and allows defrag on files open in read-only mode.
2583 */
2584 if (!capable(CAP_SYS_ADMIN) &&
2585 inode_permission(&init_user_ns, inode, MAY_WRITE)) {
2586 ret = -EPERM;
2587 goto out;
2588 }
2589
2590 if (argp) {
2591 if (copy_from_user(&range, argp, sizeof(range))) {
2592 ret = -EFAULT;
2593 goto out;
2594 }
2595 /* compression requires us to start the IO */
2596 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2597 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2598 range.extent_thresh = (u32)-1;
2599 }
2600 } else {
2601 /* the rest are all set to zero by kzalloc */
2602 range.len = (u64)-1;
2603 }
2604 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2605 &range, BTRFS_OLDEST_GENERATION, 0);
2606 if (ret > 0)
2607 ret = 0;
2608 break;
2609 default:
2610 ret = -EINVAL;
2611 }
2612out:
2613 mnt_drop_write_file(file);
2614 return ret;
2615}
2616
2617static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2618{
2619 struct btrfs_ioctl_vol_args *vol_args;
2620 bool restore_op = false;
2621 int ret;
2622
2623 if (!capable(CAP_SYS_ADMIN))
2624 return -EPERM;
2625
2626 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2627 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2628 return -EINVAL;
2629 }
2630
2631 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2632 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2633 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2634
2635 /*
2636 * We can do the device add because we have a paused balanced,
2637 * change the exclusive op type and remember we should bring
2638 * back the paused balance
2639 */
2640 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2641 btrfs_exclop_start_unlock(fs_info);
2642 restore_op = true;
2643 }
2644
2645 vol_args = memdup_user(arg, sizeof(*vol_args));
2646 if (IS_ERR(vol_args)) {
2647 ret = PTR_ERR(vol_args);
2648 goto out;
2649 }
2650
2651 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2652 ret = btrfs_init_new_device(fs_info, vol_args->name);
2653
2654 if (!ret)
2655 btrfs_info(fs_info, "disk added %s", vol_args->name);
2656
2657 kfree(vol_args);
2658out:
2659 if (restore_op)
2660 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2661 else
2662 btrfs_exclop_finish(fs_info);
2663 return ret;
2664}
2665
2666static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2667{
2668 BTRFS_DEV_LOOKUP_ARGS(args);
2669 struct inode *inode = file_inode(file);
2670 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2671 struct btrfs_ioctl_vol_args_v2 *vol_args;
2672 struct block_device *bdev = NULL;
2673 fmode_t mode;
2674 int ret;
2675 bool cancel = false;
2676
2677 if (!capable(CAP_SYS_ADMIN))
2678 return -EPERM;
2679
2680 vol_args = memdup_user(arg, sizeof(*vol_args));
2681 if (IS_ERR(vol_args))
2682 return PTR_ERR(vol_args);
2683
2684 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2685 ret = -EOPNOTSUPP;
2686 goto out;
2687 }
2688
2689 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2690 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2691 args.devid = vol_args->devid;
2692 } else if (!strcmp("cancel", vol_args->name)) {
2693 cancel = true;
2694 } else {
2695 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2696 if (ret)
2697 goto out;
2698 }
2699
2700 ret = mnt_want_write_file(file);
2701 if (ret)
2702 goto out;
2703
2704 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2705 cancel);
2706 if (ret)
2707 goto err_drop;
2708
2709 /* Exclusive operation is now claimed */
2710 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
2711
2712 btrfs_exclop_finish(fs_info);
2713
2714 if (!ret) {
2715 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2716 btrfs_info(fs_info, "device deleted: id %llu",
2717 vol_args->devid);
2718 else
2719 btrfs_info(fs_info, "device deleted: %s",
2720 vol_args->name);
2721 }
2722err_drop:
2723 mnt_drop_write_file(file);
2724 if (bdev)
2725 blkdev_put(bdev, mode);
2726out:
2727 btrfs_put_dev_args_from_path(&args);
2728 kfree(vol_args);
2729 return ret;
2730}
2731
2732static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2733{
2734 BTRFS_DEV_LOOKUP_ARGS(args);
2735 struct inode *inode = file_inode(file);
2736 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2737 struct btrfs_ioctl_vol_args *vol_args;
2738 struct block_device *bdev = NULL;
2739 fmode_t mode;
2740 int ret;
2741 bool cancel = false;
2742
2743 if (!capable(CAP_SYS_ADMIN))
2744 return -EPERM;
2745
2746 vol_args = memdup_user(arg, sizeof(*vol_args));
2747 if (IS_ERR(vol_args))
2748 return PTR_ERR(vol_args);
2749
2750 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2751 if (!strcmp("cancel", vol_args->name)) {
2752 cancel = true;
2753 } else {
2754 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2755 if (ret)
2756 goto out;
2757 }
2758
2759 ret = mnt_want_write_file(file);
2760 if (ret)
2761 goto out;
2762
2763 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2764 cancel);
2765 if (ret == 0) {
2766 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
2767 if (!ret)
2768 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2769 btrfs_exclop_finish(fs_info);
2770 }
2771
2772 mnt_drop_write_file(file);
2773 if (bdev)
2774 blkdev_put(bdev, mode);
2775out:
2776 btrfs_put_dev_args_from_path(&args);
2777 kfree(vol_args);
2778 return ret;
2779}
2780
2781static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2782 void __user *arg)
2783{
2784 struct btrfs_ioctl_fs_info_args *fi_args;
2785 struct btrfs_device *device;
2786 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2787 u64 flags_in;
2788 int ret = 0;
2789
2790 fi_args = memdup_user(arg, sizeof(*fi_args));
2791 if (IS_ERR(fi_args))
2792 return PTR_ERR(fi_args);
2793
2794 flags_in = fi_args->flags;
2795 memset(fi_args, 0, sizeof(*fi_args));
2796
2797 rcu_read_lock();
2798 fi_args->num_devices = fs_devices->num_devices;
2799
2800 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2801 if (device->devid > fi_args->max_id)
2802 fi_args->max_id = device->devid;
2803 }
2804 rcu_read_unlock();
2805
2806 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2807 fi_args->nodesize = fs_info->nodesize;
2808 fi_args->sectorsize = fs_info->sectorsize;
2809 fi_args->clone_alignment = fs_info->sectorsize;
2810
2811 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2812 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2813 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2814 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2815 }
2816
2817 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2818 fi_args->generation = fs_info->generation;
2819 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2820 }
2821
2822 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2823 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2824 sizeof(fi_args->metadata_uuid));
2825 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2826 }
2827
2828 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2829 ret = -EFAULT;
2830
2831 kfree(fi_args);
2832 return ret;
2833}
2834
2835static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2836 void __user *arg)
2837{
2838 BTRFS_DEV_LOOKUP_ARGS(args);
2839 struct btrfs_ioctl_dev_info_args *di_args;
2840 struct btrfs_device *dev;
2841 int ret = 0;
2842
2843 di_args = memdup_user(arg, sizeof(*di_args));
2844 if (IS_ERR(di_args))
2845 return PTR_ERR(di_args);
2846
2847 args.devid = di_args->devid;
2848 if (!btrfs_is_empty_uuid(di_args->uuid))
2849 args.uuid = di_args->uuid;
2850
2851 rcu_read_lock();
2852 dev = btrfs_find_device(fs_info->fs_devices, &args);
2853 if (!dev) {
2854 ret = -ENODEV;
2855 goto out;
2856 }
2857
2858 di_args->devid = dev->devid;
2859 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2860 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2861 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2862 if (dev->name)
2863 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2864 else
2865 di_args->path[0] = '\0';
2866
2867out:
2868 rcu_read_unlock();
2869 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2870 ret = -EFAULT;
2871
2872 kfree(di_args);
2873 return ret;
2874}
2875
2876static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2877{
2878 struct inode *inode = file_inode(file);
2879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2880 struct btrfs_root *root = BTRFS_I(inode)->root;
2881 struct btrfs_root *new_root;
2882 struct btrfs_dir_item *di;
2883 struct btrfs_trans_handle *trans;
2884 struct btrfs_path *path = NULL;
2885 struct btrfs_disk_key disk_key;
2886 struct fscrypt_str name = FSTR_INIT("default", 7);
2887 u64 objectid = 0;
2888 u64 dir_id;
2889 int ret;
2890
2891 if (!capable(CAP_SYS_ADMIN))
2892 return -EPERM;
2893
2894 ret = mnt_want_write_file(file);
2895 if (ret)
2896 return ret;
2897
2898 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2899 ret = -EFAULT;
2900 goto out;
2901 }
2902
2903 if (!objectid)
2904 objectid = BTRFS_FS_TREE_OBJECTID;
2905
2906 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2907 if (IS_ERR(new_root)) {
2908 ret = PTR_ERR(new_root);
2909 goto out;
2910 }
2911 if (!is_fstree(new_root->root_key.objectid)) {
2912 ret = -ENOENT;
2913 goto out_free;
2914 }
2915
2916 path = btrfs_alloc_path();
2917 if (!path) {
2918 ret = -ENOMEM;
2919 goto out_free;
2920 }
2921
2922 trans = btrfs_start_transaction(root, 1);
2923 if (IS_ERR(trans)) {
2924 ret = PTR_ERR(trans);
2925 goto out_free;
2926 }
2927
2928 dir_id = btrfs_super_root_dir(fs_info->super_copy);
2929 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2930 dir_id, &name, 1);
2931 if (IS_ERR_OR_NULL(di)) {
2932 btrfs_release_path(path);
2933 btrfs_end_transaction(trans);
2934 btrfs_err(fs_info,
2935 "Umm, you don't have the default diritem, this isn't going to work");
2936 ret = -ENOENT;
2937 goto out_free;
2938 }
2939
2940 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2941 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2942 btrfs_mark_buffer_dirty(path->nodes[0]);
2943 btrfs_release_path(path);
2944
2945 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2946 btrfs_end_transaction(trans);
2947out_free:
2948 btrfs_put_root(new_root);
2949 btrfs_free_path(path);
2950out:
2951 mnt_drop_write_file(file);
2952 return ret;
2953}
2954
2955static void get_block_group_info(struct list_head *groups_list,
2956 struct btrfs_ioctl_space_info *space)
2957{
2958 struct btrfs_block_group *block_group;
2959
2960 space->total_bytes = 0;
2961 space->used_bytes = 0;
2962 space->flags = 0;
2963 list_for_each_entry(block_group, groups_list, list) {
2964 space->flags = block_group->flags;
2965 space->total_bytes += block_group->length;
2966 space->used_bytes += block_group->used;
2967 }
2968}
2969
2970static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2971 void __user *arg)
2972{
2973 struct btrfs_ioctl_space_args space_args;
2974 struct btrfs_ioctl_space_info space;
2975 struct btrfs_ioctl_space_info *dest;
2976 struct btrfs_ioctl_space_info *dest_orig;
2977 struct btrfs_ioctl_space_info __user *user_dest;
2978 struct btrfs_space_info *info;
2979 static const u64 types[] = {
2980 BTRFS_BLOCK_GROUP_DATA,
2981 BTRFS_BLOCK_GROUP_SYSTEM,
2982 BTRFS_BLOCK_GROUP_METADATA,
2983 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2984 };
2985 int num_types = 4;
2986 int alloc_size;
2987 int ret = 0;
2988 u64 slot_count = 0;
2989 int i, c;
2990
2991 if (copy_from_user(&space_args,
2992 (struct btrfs_ioctl_space_args __user *)arg,
2993 sizeof(space_args)))
2994 return -EFAULT;
2995
2996 for (i = 0; i < num_types; i++) {
2997 struct btrfs_space_info *tmp;
2998
2999 info = NULL;
3000 list_for_each_entry(tmp, &fs_info->space_info, list) {
3001 if (tmp->flags == types[i]) {
3002 info = tmp;
3003 break;
3004 }
3005 }
3006
3007 if (!info)
3008 continue;
3009
3010 down_read(&info->groups_sem);
3011 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3012 if (!list_empty(&info->block_groups[c]))
3013 slot_count++;
3014 }
3015 up_read(&info->groups_sem);
3016 }
3017
3018 /*
3019 * Global block reserve, exported as a space_info
3020 */
3021 slot_count++;
3022
3023 /* space_slots == 0 means they are asking for a count */
3024 if (space_args.space_slots == 0) {
3025 space_args.total_spaces = slot_count;
3026 goto out;
3027 }
3028
3029 slot_count = min_t(u64, space_args.space_slots, slot_count);
3030
3031 alloc_size = sizeof(*dest) * slot_count;
3032
3033 /* we generally have at most 6 or so space infos, one for each raid
3034 * level. So, a whole page should be more than enough for everyone
3035 */
3036 if (alloc_size > PAGE_SIZE)
3037 return -ENOMEM;
3038
3039 space_args.total_spaces = 0;
3040 dest = kmalloc(alloc_size, GFP_KERNEL);
3041 if (!dest)
3042 return -ENOMEM;
3043 dest_orig = dest;
3044
3045 /* now we have a buffer to copy into */
3046 for (i = 0; i < num_types; i++) {
3047 struct btrfs_space_info *tmp;
3048
3049 if (!slot_count)
3050 break;
3051
3052 info = NULL;
3053 list_for_each_entry(tmp, &fs_info->space_info, list) {
3054 if (tmp->flags == types[i]) {
3055 info = tmp;
3056 break;
3057 }
3058 }
3059
3060 if (!info)
3061 continue;
3062 down_read(&info->groups_sem);
3063 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3064 if (!list_empty(&info->block_groups[c])) {
3065 get_block_group_info(&info->block_groups[c],
3066 &space);
3067 memcpy(dest, &space, sizeof(space));
3068 dest++;
3069 space_args.total_spaces++;
3070 slot_count--;
3071 }
3072 if (!slot_count)
3073 break;
3074 }
3075 up_read(&info->groups_sem);
3076 }
3077
3078 /*
3079 * Add global block reserve
3080 */
3081 if (slot_count) {
3082 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3083
3084 spin_lock(&block_rsv->lock);
3085 space.total_bytes = block_rsv->size;
3086 space.used_bytes = block_rsv->size - block_rsv->reserved;
3087 spin_unlock(&block_rsv->lock);
3088 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3089 memcpy(dest, &space, sizeof(space));
3090 space_args.total_spaces++;
3091 }
3092
3093 user_dest = (struct btrfs_ioctl_space_info __user *)
3094 (arg + sizeof(struct btrfs_ioctl_space_args));
3095
3096 if (copy_to_user(user_dest, dest_orig, alloc_size))
3097 ret = -EFAULT;
3098
3099 kfree(dest_orig);
3100out:
3101 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3102 ret = -EFAULT;
3103
3104 return ret;
3105}
3106
3107static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3108 void __user *argp)
3109{
3110 struct btrfs_trans_handle *trans;
3111 u64 transid;
3112
3113 trans = btrfs_attach_transaction_barrier(root);
3114 if (IS_ERR(trans)) {
3115 if (PTR_ERR(trans) != -ENOENT)
3116 return PTR_ERR(trans);
3117
3118 /* No running transaction, don't bother */
3119 transid = root->fs_info->last_trans_committed;
3120 goto out;
3121 }
3122 transid = trans->transid;
3123 btrfs_commit_transaction_async(trans);
3124out:
3125 if (argp)
3126 if (copy_to_user(argp, &transid, sizeof(transid)))
3127 return -EFAULT;
3128 return 0;
3129}
3130
3131static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3132 void __user *argp)
3133{
3134 u64 transid;
3135
3136 if (argp) {
3137 if (copy_from_user(&transid, argp, sizeof(transid)))
3138 return -EFAULT;
3139 } else {
3140 transid = 0; /* current trans */
3141 }
3142 return btrfs_wait_for_commit(fs_info, transid);
3143}
3144
3145static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3146{
3147 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3148 struct btrfs_ioctl_scrub_args *sa;
3149 int ret;
3150
3151 if (!capable(CAP_SYS_ADMIN))
3152 return -EPERM;
3153
3154 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3155 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3156 return -EINVAL;
3157 }
3158
3159 sa = memdup_user(arg, sizeof(*sa));
3160 if (IS_ERR(sa))
3161 return PTR_ERR(sa);
3162
3163 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3164 ret = mnt_want_write_file(file);
3165 if (ret)
3166 goto out;
3167 }
3168
3169 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3170 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3171 0);
3172
3173 /*
3174 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3175 * error. This is important as it allows user space to know how much
3176 * progress scrub has done. For example, if scrub is canceled we get
3177 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3178 * space. Later user space can inspect the progress from the structure
3179 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3180 * previously (btrfs-progs does this).
3181 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3182 * then return -EFAULT to signal the structure was not copied or it may
3183 * be corrupt and unreliable due to a partial copy.
3184 */
3185 if (copy_to_user(arg, sa, sizeof(*sa)))
3186 ret = -EFAULT;
3187
3188 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3189 mnt_drop_write_file(file);
3190out:
3191 kfree(sa);
3192 return ret;
3193}
3194
3195static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3196{
3197 if (!capable(CAP_SYS_ADMIN))
3198 return -EPERM;
3199
3200 return btrfs_scrub_cancel(fs_info);
3201}
3202
3203static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3204 void __user *arg)
3205{
3206 struct btrfs_ioctl_scrub_args *sa;
3207 int ret;
3208
3209 if (!capable(CAP_SYS_ADMIN))
3210 return -EPERM;
3211
3212 sa = memdup_user(arg, sizeof(*sa));
3213 if (IS_ERR(sa))
3214 return PTR_ERR(sa);
3215
3216 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3217
3218 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3219 ret = -EFAULT;
3220
3221 kfree(sa);
3222 return ret;
3223}
3224
3225static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3226 void __user *arg)
3227{
3228 struct btrfs_ioctl_get_dev_stats *sa;
3229 int ret;
3230
3231 sa = memdup_user(arg, sizeof(*sa));
3232 if (IS_ERR(sa))
3233 return PTR_ERR(sa);
3234
3235 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3236 kfree(sa);
3237 return -EPERM;
3238 }
3239
3240 ret = btrfs_get_dev_stats(fs_info, sa);
3241
3242 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3243 ret = -EFAULT;
3244
3245 kfree(sa);
3246 return ret;
3247}
3248
3249static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3250 void __user *arg)
3251{
3252 struct btrfs_ioctl_dev_replace_args *p;
3253 int ret;
3254
3255 if (!capable(CAP_SYS_ADMIN))
3256 return -EPERM;
3257
3258 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3259 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3260 return -EINVAL;
3261 }
3262
3263 p = memdup_user(arg, sizeof(*p));
3264 if (IS_ERR(p))
3265 return PTR_ERR(p);
3266
3267 switch (p->cmd) {
3268 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3269 if (sb_rdonly(fs_info->sb)) {
3270 ret = -EROFS;
3271 goto out;
3272 }
3273 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3274 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3275 } else {
3276 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3277 btrfs_exclop_finish(fs_info);
3278 }
3279 break;
3280 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3281 btrfs_dev_replace_status(fs_info, p);
3282 ret = 0;
3283 break;
3284 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3285 p->result = btrfs_dev_replace_cancel(fs_info);
3286 ret = 0;
3287 break;
3288 default:
3289 ret = -EINVAL;
3290 break;
3291 }
3292
3293 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3294 ret = -EFAULT;
3295out:
3296 kfree(p);
3297 return ret;
3298}
3299
3300static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3301{
3302 int ret = 0;
3303 int i;
3304 u64 rel_ptr;
3305 int size;
3306 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3307 struct inode_fs_paths *ipath = NULL;
3308 struct btrfs_path *path;
3309
3310 if (!capable(CAP_DAC_READ_SEARCH))
3311 return -EPERM;
3312
3313 path = btrfs_alloc_path();
3314 if (!path) {
3315 ret = -ENOMEM;
3316 goto out;
3317 }
3318
3319 ipa = memdup_user(arg, sizeof(*ipa));
3320 if (IS_ERR(ipa)) {
3321 ret = PTR_ERR(ipa);
3322 ipa = NULL;
3323 goto out;
3324 }
3325
3326 size = min_t(u32, ipa->size, 4096);
3327 ipath = init_ipath(size, root, path);
3328 if (IS_ERR(ipath)) {
3329 ret = PTR_ERR(ipath);
3330 ipath = NULL;
3331 goto out;
3332 }
3333
3334 ret = paths_from_inode(ipa->inum, ipath);
3335 if (ret < 0)
3336 goto out;
3337
3338 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3339 rel_ptr = ipath->fspath->val[i] -
3340 (u64)(unsigned long)ipath->fspath->val;
3341 ipath->fspath->val[i] = rel_ptr;
3342 }
3343
3344 btrfs_free_path(path);
3345 path = NULL;
3346 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3347 ipath->fspath, size);
3348 if (ret) {
3349 ret = -EFAULT;
3350 goto out;
3351 }
3352
3353out:
3354 btrfs_free_path(path);
3355 free_ipath(ipath);
3356 kfree(ipa);
3357
3358 return ret;
3359}
3360
3361static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3362 void __user *arg, int version)
3363{
3364 int ret = 0;
3365 int size;
3366 struct btrfs_ioctl_logical_ino_args *loi;
3367 struct btrfs_data_container *inodes = NULL;
3368 struct btrfs_path *path = NULL;
3369 bool ignore_offset;
3370
3371 if (!capable(CAP_SYS_ADMIN))
3372 return -EPERM;
3373
3374 loi = memdup_user(arg, sizeof(*loi));
3375 if (IS_ERR(loi))
3376 return PTR_ERR(loi);
3377
3378 if (version == 1) {
3379 ignore_offset = false;
3380 size = min_t(u32, loi->size, SZ_64K);
3381 } else {
3382 /* All reserved bits must be 0 for now */
3383 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3384 ret = -EINVAL;
3385 goto out_loi;
3386 }
3387 /* Only accept flags we have defined so far */
3388 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3389 ret = -EINVAL;
3390 goto out_loi;
3391 }
3392 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3393 size = min_t(u32, loi->size, SZ_16M);
3394 }
3395
3396 inodes = init_data_container(size);
3397 if (IS_ERR(inodes)) {
3398 ret = PTR_ERR(inodes);
3399 goto out_loi;
3400 }
3401
3402 path = btrfs_alloc_path();
3403 if (!path) {
3404 ret = -ENOMEM;
3405 goto out;
3406 }
3407 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3408 inodes, ignore_offset);
3409 btrfs_free_path(path);
3410 if (ret == -EINVAL)
3411 ret = -ENOENT;
3412 if (ret < 0)
3413 goto out;
3414
3415 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3416 size);
3417 if (ret)
3418 ret = -EFAULT;
3419
3420out:
3421 kvfree(inodes);
3422out_loi:
3423 kfree(loi);
3424
3425 return ret;
3426}
3427
3428void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3429 struct btrfs_ioctl_balance_args *bargs)
3430{
3431 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3432
3433 bargs->flags = bctl->flags;
3434
3435 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3436 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3437 if (atomic_read(&fs_info->balance_pause_req))
3438 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3439 if (atomic_read(&fs_info->balance_cancel_req))
3440 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3441
3442 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3443 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3444 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3445
3446 spin_lock(&fs_info->balance_lock);
3447 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3448 spin_unlock(&fs_info->balance_lock);
3449}
3450
3451/*
3452 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3453 * required.
3454 *
3455 * @fs_info: the filesystem
3456 * @excl_acquired: ptr to boolean value which is set to false in case balance
3457 * is being resumed
3458 *
3459 * Return 0 on success in which case both fs_info::balance is acquired as well
3460 * as exclusive ops are blocked. In case of failure return an error code.
3461 */
3462static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3463{
3464 int ret;
3465
3466 /*
3467 * Exclusive operation is locked. Three possibilities:
3468 * (1) some other op is running
3469 * (2) balance is running
3470 * (3) balance is paused -- special case (think resume)
3471 */
3472 while (1) {
3473 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3474 *excl_acquired = true;
3475 mutex_lock(&fs_info->balance_mutex);
3476 return 0;
3477 }
3478
3479 mutex_lock(&fs_info->balance_mutex);
3480 if (fs_info->balance_ctl) {
3481 /* This is either (2) or (3) */
3482 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3483 /* This is (2) */
3484 ret = -EINPROGRESS;
3485 goto out_failure;
3486
3487 } else {
3488 mutex_unlock(&fs_info->balance_mutex);
3489 /*
3490 * Lock released to allow other waiters to
3491 * continue, we'll reexamine the status again.
3492 */
3493 mutex_lock(&fs_info->balance_mutex);
3494
3495 if (fs_info->balance_ctl &&
3496 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3497 /* This is (3) */
3498 *excl_acquired = false;
3499 return 0;
3500 }
3501 }
3502 } else {
3503 /* This is (1) */
3504 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3505 goto out_failure;
3506 }
3507
3508 mutex_unlock(&fs_info->balance_mutex);
3509 }
3510
3511out_failure:
3512 mutex_unlock(&fs_info->balance_mutex);
3513 *excl_acquired = false;
3514 return ret;
3515}
3516
3517static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3518{
3519 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3520 struct btrfs_fs_info *fs_info = root->fs_info;
3521 struct btrfs_ioctl_balance_args *bargs;
3522 struct btrfs_balance_control *bctl;
3523 bool need_unlock = true;
3524 int ret;
3525
3526 if (!capable(CAP_SYS_ADMIN))
3527 return -EPERM;
3528
3529 ret = mnt_want_write_file(file);
3530 if (ret)
3531 return ret;
3532
3533 bargs = memdup_user(arg, sizeof(*bargs));
3534 if (IS_ERR(bargs)) {
3535 ret = PTR_ERR(bargs);
3536 bargs = NULL;
3537 goto out;
3538 }
3539
3540 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3541 if (ret)
3542 goto out;
3543
3544 lockdep_assert_held(&fs_info->balance_mutex);
3545
3546 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3547 if (!fs_info->balance_ctl) {
3548 ret = -ENOTCONN;
3549 goto out_unlock;
3550 }
3551
3552 bctl = fs_info->balance_ctl;
3553 spin_lock(&fs_info->balance_lock);
3554 bctl->flags |= BTRFS_BALANCE_RESUME;
3555 spin_unlock(&fs_info->balance_lock);
3556 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3557
3558 goto do_balance;
3559 }
3560
3561 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3562 ret = -EINVAL;
3563 goto out_unlock;
3564 }
3565
3566 if (fs_info->balance_ctl) {
3567 ret = -EINPROGRESS;
3568 goto out_unlock;
3569 }
3570
3571 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3572 if (!bctl) {
3573 ret = -ENOMEM;
3574 goto out_unlock;
3575 }
3576
3577 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3578 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3579 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3580
3581 bctl->flags = bargs->flags;
3582do_balance:
3583 /*
3584 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3585 * bctl is freed in reset_balance_state, or, if restriper was paused
3586 * all the way until unmount, in free_fs_info. The flag should be
3587 * cleared after reset_balance_state.
3588 */
3589 need_unlock = false;
3590
3591 ret = btrfs_balance(fs_info, bctl, bargs);
3592 bctl = NULL;
3593
3594 if (ret == 0 || ret == -ECANCELED) {
3595 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3596 ret = -EFAULT;
3597 }
3598
3599 kfree(bctl);
3600out_unlock:
3601 mutex_unlock(&fs_info->balance_mutex);
3602 if (need_unlock)
3603 btrfs_exclop_finish(fs_info);
3604out:
3605 mnt_drop_write_file(file);
3606 kfree(bargs);
3607 return ret;
3608}
3609
3610static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3611{
3612 if (!capable(CAP_SYS_ADMIN))
3613 return -EPERM;
3614
3615 switch (cmd) {
3616 case BTRFS_BALANCE_CTL_PAUSE:
3617 return btrfs_pause_balance(fs_info);
3618 case BTRFS_BALANCE_CTL_CANCEL:
3619 return btrfs_cancel_balance(fs_info);
3620 }
3621
3622 return -EINVAL;
3623}
3624
3625static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3626 void __user *arg)
3627{
3628 struct btrfs_ioctl_balance_args *bargs;
3629 int ret = 0;
3630
3631 if (!capable(CAP_SYS_ADMIN))
3632 return -EPERM;
3633
3634 mutex_lock(&fs_info->balance_mutex);
3635 if (!fs_info->balance_ctl) {
3636 ret = -ENOTCONN;
3637 goto out;
3638 }
3639
3640 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3641 if (!bargs) {
3642 ret = -ENOMEM;
3643 goto out;
3644 }
3645
3646 btrfs_update_ioctl_balance_args(fs_info, bargs);
3647
3648 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3649 ret = -EFAULT;
3650
3651 kfree(bargs);
3652out:
3653 mutex_unlock(&fs_info->balance_mutex);
3654 return ret;
3655}
3656
3657static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3658{
3659 struct inode *inode = file_inode(file);
3660 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3661 struct btrfs_ioctl_quota_ctl_args *sa;
3662 int ret;
3663
3664 if (!capable(CAP_SYS_ADMIN))
3665 return -EPERM;
3666
3667 ret = mnt_want_write_file(file);
3668 if (ret)
3669 return ret;
3670
3671 sa = memdup_user(arg, sizeof(*sa));
3672 if (IS_ERR(sa)) {
3673 ret = PTR_ERR(sa);
3674 goto drop_write;
3675 }
3676
3677 down_write(&fs_info->subvol_sem);
3678
3679 switch (sa->cmd) {
3680 case BTRFS_QUOTA_CTL_ENABLE:
3681 ret = btrfs_quota_enable(fs_info);
3682 break;
3683 case BTRFS_QUOTA_CTL_DISABLE:
3684 ret = btrfs_quota_disable(fs_info);
3685 break;
3686 default:
3687 ret = -EINVAL;
3688 break;
3689 }
3690
3691 kfree(sa);
3692 up_write(&fs_info->subvol_sem);
3693drop_write:
3694 mnt_drop_write_file(file);
3695 return ret;
3696}
3697
3698static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3699{
3700 struct inode *inode = file_inode(file);
3701 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3702 struct btrfs_root *root = BTRFS_I(inode)->root;
3703 struct btrfs_ioctl_qgroup_assign_args *sa;
3704 struct btrfs_trans_handle *trans;
3705 int ret;
3706 int err;
3707
3708 if (!capable(CAP_SYS_ADMIN))
3709 return -EPERM;
3710
3711 ret = mnt_want_write_file(file);
3712 if (ret)
3713 return ret;
3714
3715 sa = memdup_user(arg, sizeof(*sa));
3716 if (IS_ERR(sa)) {
3717 ret = PTR_ERR(sa);
3718 goto drop_write;
3719 }
3720
3721 trans = btrfs_join_transaction(root);
3722 if (IS_ERR(trans)) {
3723 ret = PTR_ERR(trans);
3724 goto out;
3725 }
3726
3727 if (sa->assign) {
3728 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3729 } else {
3730 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3731 }
3732
3733 /* update qgroup status and info */
3734 err = btrfs_run_qgroups(trans);
3735 if (err < 0)
3736 btrfs_handle_fs_error(fs_info, err,
3737 "failed to update qgroup status and info");
3738 err = btrfs_end_transaction(trans);
3739 if (err && !ret)
3740 ret = err;
3741
3742out:
3743 kfree(sa);
3744drop_write:
3745 mnt_drop_write_file(file);
3746 return ret;
3747}
3748
3749static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3750{
3751 struct inode *inode = file_inode(file);
3752 struct btrfs_root *root = BTRFS_I(inode)->root;
3753 struct btrfs_ioctl_qgroup_create_args *sa;
3754 struct btrfs_trans_handle *trans;
3755 int ret;
3756 int err;
3757
3758 if (!capable(CAP_SYS_ADMIN))
3759 return -EPERM;
3760
3761 ret = mnt_want_write_file(file);
3762 if (ret)
3763 return ret;
3764
3765 sa = memdup_user(arg, sizeof(*sa));
3766 if (IS_ERR(sa)) {
3767 ret = PTR_ERR(sa);
3768 goto drop_write;
3769 }
3770
3771 if (!sa->qgroupid) {
3772 ret = -EINVAL;
3773 goto out;
3774 }
3775
3776 trans = btrfs_join_transaction(root);
3777 if (IS_ERR(trans)) {
3778 ret = PTR_ERR(trans);
3779 goto out;
3780 }
3781
3782 if (sa->create) {
3783 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3784 } else {
3785 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3786 }
3787
3788 err = btrfs_end_transaction(trans);
3789 if (err && !ret)
3790 ret = err;
3791
3792out:
3793 kfree(sa);
3794drop_write:
3795 mnt_drop_write_file(file);
3796 return ret;
3797}
3798
3799static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3800{
3801 struct inode *inode = file_inode(file);
3802 struct btrfs_root *root = BTRFS_I(inode)->root;
3803 struct btrfs_ioctl_qgroup_limit_args *sa;
3804 struct btrfs_trans_handle *trans;
3805 int ret;
3806 int err;
3807 u64 qgroupid;
3808
3809 if (!capable(CAP_SYS_ADMIN))
3810 return -EPERM;
3811
3812 ret = mnt_want_write_file(file);
3813 if (ret)
3814 return ret;
3815
3816 sa = memdup_user(arg, sizeof(*sa));
3817 if (IS_ERR(sa)) {
3818 ret = PTR_ERR(sa);
3819 goto drop_write;
3820 }
3821
3822 trans = btrfs_join_transaction(root);
3823 if (IS_ERR(trans)) {
3824 ret = PTR_ERR(trans);
3825 goto out;
3826 }
3827
3828 qgroupid = sa->qgroupid;
3829 if (!qgroupid) {
3830 /* take the current subvol as qgroup */
3831 qgroupid = root->root_key.objectid;
3832 }
3833
3834 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3835
3836 err = btrfs_end_transaction(trans);
3837 if (err && !ret)
3838 ret = err;
3839
3840out:
3841 kfree(sa);
3842drop_write:
3843 mnt_drop_write_file(file);
3844 return ret;
3845}
3846
3847static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3848{
3849 struct inode *inode = file_inode(file);
3850 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3851 struct btrfs_ioctl_quota_rescan_args *qsa;
3852 int ret;
3853
3854 if (!capable(CAP_SYS_ADMIN))
3855 return -EPERM;
3856
3857 ret = mnt_want_write_file(file);
3858 if (ret)
3859 return ret;
3860
3861 qsa = memdup_user(arg, sizeof(*qsa));
3862 if (IS_ERR(qsa)) {
3863 ret = PTR_ERR(qsa);
3864 goto drop_write;
3865 }
3866
3867 if (qsa->flags) {
3868 ret = -EINVAL;
3869 goto out;
3870 }
3871
3872 ret = btrfs_qgroup_rescan(fs_info);
3873
3874out:
3875 kfree(qsa);
3876drop_write:
3877 mnt_drop_write_file(file);
3878 return ret;
3879}
3880
3881static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3882 void __user *arg)
3883{
3884 struct btrfs_ioctl_quota_rescan_args qsa = {0};
3885
3886 if (!capable(CAP_SYS_ADMIN))
3887 return -EPERM;
3888
3889 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3890 qsa.flags = 1;
3891 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3892 }
3893
3894 if (copy_to_user(arg, &qsa, sizeof(qsa)))
3895 return -EFAULT;
3896
3897 return 0;
3898}
3899
3900static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3901 void __user *arg)
3902{
3903 if (!capable(CAP_SYS_ADMIN))
3904 return -EPERM;
3905
3906 return btrfs_qgroup_wait_for_completion(fs_info, true);
3907}
3908
3909static long _btrfs_ioctl_set_received_subvol(struct file *file,
3910 struct user_namespace *mnt_userns,
3911 struct btrfs_ioctl_received_subvol_args *sa)
3912{
3913 struct inode *inode = file_inode(file);
3914 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3915 struct btrfs_root *root = BTRFS_I(inode)->root;
3916 struct btrfs_root_item *root_item = &root->root_item;
3917 struct btrfs_trans_handle *trans;
3918 struct timespec64 ct = current_time(inode);
3919 int ret = 0;
3920 int received_uuid_changed;
3921
3922 if (!inode_owner_or_capable(mnt_userns, inode))
3923 return -EPERM;
3924
3925 ret = mnt_want_write_file(file);
3926 if (ret < 0)
3927 return ret;
3928
3929 down_write(&fs_info->subvol_sem);
3930
3931 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3932 ret = -EINVAL;
3933 goto out;
3934 }
3935
3936 if (btrfs_root_readonly(root)) {
3937 ret = -EROFS;
3938 goto out;
3939 }
3940
3941 /*
3942 * 1 - root item
3943 * 2 - uuid items (received uuid + subvol uuid)
3944 */
3945 trans = btrfs_start_transaction(root, 3);
3946 if (IS_ERR(trans)) {
3947 ret = PTR_ERR(trans);
3948 trans = NULL;
3949 goto out;
3950 }
3951
3952 sa->rtransid = trans->transid;
3953 sa->rtime.sec = ct.tv_sec;
3954 sa->rtime.nsec = ct.tv_nsec;
3955
3956 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
3957 BTRFS_UUID_SIZE);
3958 if (received_uuid_changed &&
3959 !btrfs_is_empty_uuid(root_item->received_uuid)) {
3960 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
3961 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3962 root->root_key.objectid);
3963 if (ret && ret != -ENOENT) {
3964 btrfs_abort_transaction(trans, ret);
3965 btrfs_end_transaction(trans);
3966 goto out;
3967 }
3968 }
3969 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3970 btrfs_set_root_stransid(root_item, sa->stransid);
3971 btrfs_set_root_rtransid(root_item, sa->rtransid);
3972 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
3973 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
3974 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
3975 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
3976
3977 ret = btrfs_update_root(trans, fs_info->tree_root,
3978 &root->root_key, &root->root_item);
3979 if (ret < 0) {
3980 btrfs_end_transaction(trans);
3981 goto out;
3982 }
3983 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
3984 ret = btrfs_uuid_tree_add(trans, sa->uuid,
3985 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3986 root->root_key.objectid);
3987 if (ret < 0 && ret != -EEXIST) {
3988 btrfs_abort_transaction(trans, ret);
3989 btrfs_end_transaction(trans);
3990 goto out;
3991 }
3992 }
3993 ret = btrfs_commit_transaction(trans);
3994out:
3995 up_write(&fs_info->subvol_sem);
3996 mnt_drop_write_file(file);
3997 return ret;
3998}
3999
4000#ifdef CONFIG_64BIT
4001static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4002 void __user *arg)
4003{
4004 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4005 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4006 int ret = 0;
4007
4008 args32 = memdup_user(arg, sizeof(*args32));
4009 if (IS_ERR(args32))
4010 return PTR_ERR(args32);
4011
4012 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4013 if (!args64) {
4014 ret = -ENOMEM;
4015 goto out;
4016 }
4017
4018 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4019 args64->stransid = args32->stransid;
4020 args64->rtransid = args32->rtransid;
4021 args64->stime.sec = args32->stime.sec;
4022 args64->stime.nsec = args32->stime.nsec;
4023 args64->rtime.sec = args32->rtime.sec;
4024 args64->rtime.nsec = args32->rtime.nsec;
4025 args64->flags = args32->flags;
4026
4027 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4028 if (ret)
4029 goto out;
4030
4031 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4032 args32->stransid = args64->stransid;
4033 args32->rtransid = args64->rtransid;
4034 args32->stime.sec = args64->stime.sec;
4035 args32->stime.nsec = args64->stime.nsec;
4036 args32->rtime.sec = args64->rtime.sec;
4037 args32->rtime.nsec = args64->rtime.nsec;
4038 args32->flags = args64->flags;
4039
4040 ret = copy_to_user(arg, args32, sizeof(*args32));
4041 if (ret)
4042 ret = -EFAULT;
4043
4044out:
4045 kfree(args32);
4046 kfree(args64);
4047 return ret;
4048}
4049#endif
4050
4051static long btrfs_ioctl_set_received_subvol(struct file *file,
4052 void __user *arg)
4053{
4054 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4055 int ret = 0;
4056
4057 sa = memdup_user(arg, sizeof(*sa));
4058 if (IS_ERR(sa))
4059 return PTR_ERR(sa);
4060
4061 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4062
4063 if (ret)
4064 goto out;
4065
4066 ret = copy_to_user(arg, sa, sizeof(*sa));
4067 if (ret)
4068 ret = -EFAULT;
4069
4070out:
4071 kfree(sa);
4072 return ret;
4073}
4074
4075static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4076 void __user *arg)
4077{
4078 size_t len;
4079 int ret;
4080 char label[BTRFS_LABEL_SIZE];
4081
4082 spin_lock(&fs_info->super_lock);
4083 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4084 spin_unlock(&fs_info->super_lock);
4085
4086 len = strnlen(label, BTRFS_LABEL_SIZE);
4087
4088 if (len == BTRFS_LABEL_SIZE) {
4089 btrfs_warn(fs_info,
4090 "label is too long, return the first %zu bytes",
4091 --len);
4092 }
4093
4094 ret = copy_to_user(arg, label, len);
4095
4096 return ret ? -EFAULT : 0;
4097}
4098
4099static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4100{
4101 struct inode *inode = file_inode(file);
4102 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4103 struct btrfs_root *root = BTRFS_I(inode)->root;
4104 struct btrfs_super_block *super_block = fs_info->super_copy;
4105 struct btrfs_trans_handle *trans;
4106 char label[BTRFS_LABEL_SIZE];
4107 int ret;
4108
4109 if (!capable(CAP_SYS_ADMIN))
4110 return -EPERM;
4111
4112 if (copy_from_user(label, arg, sizeof(label)))
4113 return -EFAULT;
4114
4115 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4116 btrfs_err(fs_info,
4117 "unable to set label with more than %d bytes",
4118 BTRFS_LABEL_SIZE - 1);
4119 return -EINVAL;
4120 }
4121
4122 ret = mnt_want_write_file(file);
4123 if (ret)
4124 return ret;
4125
4126 trans = btrfs_start_transaction(root, 0);
4127 if (IS_ERR(trans)) {
4128 ret = PTR_ERR(trans);
4129 goto out_unlock;
4130 }
4131
4132 spin_lock(&fs_info->super_lock);
4133 strcpy(super_block->label, label);
4134 spin_unlock(&fs_info->super_lock);
4135 ret = btrfs_commit_transaction(trans);
4136
4137out_unlock:
4138 mnt_drop_write_file(file);
4139 return ret;
4140}
4141
4142#define INIT_FEATURE_FLAGS(suffix) \
4143 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4144 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4145 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4146
4147int btrfs_ioctl_get_supported_features(void __user *arg)
4148{
4149 static const struct btrfs_ioctl_feature_flags features[3] = {
4150 INIT_FEATURE_FLAGS(SUPP),
4151 INIT_FEATURE_FLAGS(SAFE_SET),
4152 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4153 };
4154
4155 if (copy_to_user(arg, &features, sizeof(features)))
4156 return -EFAULT;
4157
4158 return 0;
4159}
4160
4161static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4162 void __user *arg)
4163{
4164 struct btrfs_super_block *super_block = fs_info->super_copy;
4165 struct btrfs_ioctl_feature_flags features;
4166
4167 features.compat_flags = btrfs_super_compat_flags(super_block);
4168 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4169 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4170
4171 if (copy_to_user(arg, &features, sizeof(features)))
4172 return -EFAULT;
4173
4174 return 0;
4175}
4176
4177static int check_feature_bits(struct btrfs_fs_info *fs_info,
4178 enum btrfs_feature_set set,
4179 u64 change_mask, u64 flags, u64 supported_flags,
4180 u64 safe_set, u64 safe_clear)
4181{
4182 const char *type = btrfs_feature_set_name(set);
4183 char *names;
4184 u64 disallowed, unsupported;
4185 u64 set_mask = flags & change_mask;
4186 u64 clear_mask = ~flags & change_mask;
4187
4188 unsupported = set_mask & ~supported_flags;
4189 if (unsupported) {
4190 names = btrfs_printable_features(set, unsupported);
4191 if (names) {
4192 btrfs_warn(fs_info,
4193 "this kernel does not support the %s feature bit%s",
4194 names, strchr(names, ',') ? "s" : "");
4195 kfree(names);
4196 } else
4197 btrfs_warn(fs_info,
4198 "this kernel does not support %s bits 0x%llx",
4199 type, unsupported);
4200 return -EOPNOTSUPP;
4201 }
4202
4203 disallowed = set_mask & ~safe_set;
4204 if (disallowed) {
4205 names = btrfs_printable_features(set, disallowed);
4206 if (names) {
4207 btrfs_warn(fs_info,
4208 "can't set the %s feature bit%s while mounted",
4209 names, strchr(names, ',') ? "s" : "");
4210 kfree(names);
4211 } else
4212 btrfs_warn(fs_info,
4213 "can't set %s bits 0x%llx while mounted",
4214 type, disallowed);
4215 return -EPERM;
4216 }
4217
4218 disallowed = clear_mask & ~safe_clear;
4219 if (disallowed) {
4220 names = btrfs_printable_features(set, disallowed);
4221 if (names) {
4222 btrfs_warn(fs_info,
4223 "can't clear the %s feature bit%s while mounted",
4224 names, strchr(names, ',') ? "s" : "");
4225 kfree(names);
4226 } else
4227 btrfs_warn(fs_info,
4228 "can't clear %s bits 0x%llx while mounted",
4229 type, disallowed);
4230 return -EPERM;
4231 }
4232
4233 return 0;
4234}
4235
4236#define check_feature(fs_info, change_mask, flags, mask_base) \
4237check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4238 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4239 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4240 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4241
4242static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4243{
4244 struct inode *inode = file_inode(file);
4245 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4246 struct btrfs_root *root = BTRFS_I(inode)->root;
4247 struct btrfs_super_block *super_block = fs_info->super_copy;
4248 struct btrfs_ioctl_feature_flags flags[2];
4249 struct btrfs_trans_handle *trans;
4250 u64 newflags;
4251 int ret;
4252
4253 if (!capable(CAP_SYS_ADMIN))
4254 return -EPERM;
4255
4256 if (copy_from_user(flags, arg, sizeof(flags)))
4257 return -EFAULT;
4258
4259 /* Nothing to do */
4260 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4261 !flags[0].incompat_flags)
4262 return 0;
4263
4264 ret = check_feature(fs_info, flags[0].compat_flags,
4265 flags[1].compat_flags, COMPAT);
4266 if (ret)
4267 return ret;
4268
4269 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4270 flags[1].compat_ro_flags, COMPAT_RO);
4271 if (ret)
4272 return ret;
4273
4274 ret = check_feature(fs_info, flags[0].incompat_flags,
4275 flags[1].incompat_flags, INCOMPAT);
4276 if (ret)
4277 return ret;
4278
4279 ret = mnt_want_write_file(file);
4280 if (ret)
4281 return ret;
4282
4283 trans = btrfs_start_transaction(root, 0);
4284 if (IS_ERR(trans)) {
4285 ret = PTR_ERR(trans);
4286 goto out_drop_write;
4287 }
4288
4289 spin_lock(&fs_info->super_lock);
4290 newflags = btrfs_super_compat_flags(super_block);
4291 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4292 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4293 btrfs_set_super_compat_flags(super_block, newflags);
4294
4295 newflags = btrfs_super_compat_ro_flags(super_block);
4296 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4297 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4298 btrfs_set_super_compat_ro_flags(super_block, newflags);
4299
4300 newflags = btrfs_super_incompat_flags(super_block);
4301 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4302 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4303 btrfs_set_super_incompat_flags(super_block, newflags);
4304 spin_unlock(&fs_info->super_lock);
4305
4306 ret = btrfs_commit_transaction(trans);
4307out_drop_write:
4308 mnt_drop_write_file(file);
4309
4310 return ret;
4311}
4312
4313static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4314{
4315 struct btrfs_ioctl_send_args *arg;
4316 int ret;
4317
4318 if (compat) {
4319#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4320 struct btrfs_ioctl_send_args_32 args32;
4321
4322 ret = copy_from_user(&args32, argp, sizeof(args32));
4323 if (ret)
4324 return -EFAULT;
4325 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4326 if (!arg)
4327 return -ENOMEM;
4328 arg->send_fd = args32.send_fd;
4329 arg->clone_sources_count = args32.clone_sources_count;
4330 arg->clone_sources = compat_ptr(args32.clone_sources);
4331 arg->parent_root = args32.parent_root;
4332 arg->flags = args32.flags;
4333 memcpy(arg->reserved, args32.reserved,
4334 sizeof(args32.reserved));
4335#else
4336 return -ENOTTY;
4337#endif
4338 } else {
4339 arg = memdup_user(argp, sizeof(*arg));
4340 if (IS_ERR(arg))
4341 return PTR_ERR(arg);
4342 }
4343 ret = btrfs_ioctl_send(inode, arg);
4344 kfree(arg);
4345 return ret;
4346}
4347
4348static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4349 bool compat)
4350{
4351 struct btrfs_ioctl_encoded_io_args args = { 0 };
4352 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4353 flags);
4354 size_t copy_end;
4355 struct iovec iovstack[UIO_FASTIOV];
4356 struct iovec *iov = iovstack;
4357 struct iov_iter iter;
4358 loff_t pos;
4359 struct kiocb kiocb;
4360 ssize_t ret;
4361
4362 if (!capable(CAP_SYS_ADMIN)) {
4363 ret = -EPERM;
4364 goto out_acct;
4365 }
4366
4367 if (compat) {
4368#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4369 struct btrfs_ioctl_encoded_io_args_32 args32;
4370
4371 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4372 flags);
4373 if (copy_from_user(&args32, argp, copy_end)) {
4374 ret = -EFAULT;
4375 goto out_acct;
4376 }
4377 args.iov = compat_ptr(args32.iov);
4378 args.iovcnt = args32.iovcnt;
4379 args.offset = args32.offset;
4380 args.flags = args32.flags;
4381#else
4382 return -ENOTTY;
4383#endif
4384 } else {
4385 copy_end = copy_end_kernel;
4386 if (copy_from_user(&args, argp, copy_end)) {
4387 ret = -EFAULT;
4388 goto out_acct;
4389 }
4390 }
4391 if (args.flags != 0) {
4392 ret = -EINVAL;
4393 goto out_acct;
4394 }
4395
4396 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4397 &iov, &iter);
4398 if (ret < 0)
4399 goto out_acct;
4400
4401 if (iov_iter_count(&iter) == 0) {
4402 ret = 0;
4403 goto out_iov;
4404 }
4405 pos = args.offset;
4406 ret = rw_verify_area(READ, file, &pos, args.len);
4407 if (ret < 0)
4408 goto out_iov;
4409
4410 init_sync_kiocb(&kiocb, file);
4411 kiocb.ki_pos = pos;
4412
4413 ret = btrfs_encoded_read(&kiocb, &iter, &args);
4414 if (ret >= 0) {
4415 fsnotify_access(file);
4416 if (copy_to_user(argp + copy_end,
4417 (char *)&args + copy_end_kernel,
4418 sizeof(args) - copy_end_kernel))
4419 ret = -EFAULT;
4420 }
4421
4422out_iov:
4423 kfree(iov);
4424out_acct:
4425 if (ret > 0)
4426 add_rchar(current, ret);
4427 inc_syscr(current);
4428 return ret;
4429}
4430
4431static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4432{
4433 struct btrfs_ioctl_encoded_io_args args;
4434 struct iovec iovstack[UIO_FASTIOV];
4435 struct iovec *iov = iovstack;
4436 struct iov_iter iter;
4437 loff_t pos;
4438 struct kiocb kiocb;
4439 ssize_t ret;
4440
4441 if (!capable(CAP_SYS_ADMIN)) {
4442 ret = -EPERM;
4443 goto out_acct;
4444 }
4445
4446 if (!(file->f_mode & FMODE_WRITE)) {
4447 ret = -EBADF;
4448 goto out_acct;
4449 }
4450
4451 if (compat) {
4452#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4453 struct btrfs_ioctl_encoded_io_args_32 args32;
4454
4455 if (copy_from_user(&args32, argp, sizeof(args32))) {
4456 ret = -EFAULT;
4457 goto out_acct;
4458 }
4459 args.iov = compat_ptr(args32.iov);
4460 args.iovcnt = args32.iovcnt;
4461 args.offset = args32.offset;
4462 args.flags = args32.flags;
4463 args.len = args32.len;
4464 args.unencoded_len = args32.unencoded_len;
4465 args.unencoded_offset = args32.unencoded_offset;
4466 args.compression = args32.compression;
4467 args.encryption = args32.encryption;
4468 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4469#else
4470 return -ENOTTY;
4471#endif
4472 } else {
4473 if (copy_from_user(&args, argp, sizeof(args))) {
4474 ret = -EFAULT;
4475 goto out_acct;
4476 }
4477 }
4478
4479 ret = -EINVAL;
4480 if (args.flags != 0)
4481 goto out_acct;
4482 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4483 goto out_acct;
4484 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4485 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4486 goto out_acct;
4487 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4488 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4489 goto out_acct;
4490 if (args.unencoded_offset > args.unencoded_len)
4491 goto out_acct;
4492 if (args.len > args.unencoded_len - args.unencoded_offset)
4493 goto out_acct;
4494
4495 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4496 &iov, &iter);
4497 if (ret < 0)
4498 goto out_acct;
4499
4500 file_start_write(file);
4501
4502 if (iov_iter_count(&iter) == 0) {
4503 ret = 0;
4504 goto out_end_write;
4505 }
4506 pos = args.offset;
4507 ret = rw_verify_area(WRITE, file, &pos, args.len);
4508 if (ret < 0)
4509 goto out_end_write;
4510
4511 init_sync_kiocb(&kiocb, file);
4512 ret = kiocb_set_rw_flags(&kiocb, 0);
4513 if (ret)
4514 goto out_end_write;
4515 kiocb.ki_pos = pos;
4516
4517 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4518 if (ret > 0)
4519 fsnotify_modify(file);
4520
4521out_end_write:
4522 file_end_write(file);
4523 kfree(iov);
4524out_acct:
4525 if (ret > 0)
4526 add_wchar(current, ret);
4527 inc_syscw(current);
4528 return ret;
4529}
4530
4531long btrfs_ioctl(struct file *file, unsigned int
4532 cmd, unsigned long arg)
4533{
4534 struct inode *inode = file_inode(file);
4535 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4536 struct btrfs_root *root = BTRFS_I(inode)->root;
4537 void __user *argp = (void __user *)arg;
4538
4539 switch (cmd) {
4540 case FS_IOC_GETVERSION:
4541 return btrfs_ioctl_getversion(inode, argp);
4542 case FS_IOC_GETFSLABEL:
4543 return btrfs_ioctl_get_fslabel(fs_info, argp);
4544 case FS_IOC_SETFSLABEL:
4545 return btrfs_ioctl_set_fslabel(file, argp);
4546 case FITRIM:
4547 return btrfs_ioctl_fitrim(fs_info, argp);
4548 case BTRFS_IOC_SNAP_CREATE:
4549 return btrfs_ioctl_snap_create(file, argp, 0);
4550 case BTRFS_IOC_SNAP_CREATE_V2:
4551 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4552 case BTRFS_IOC_SUBVOL_CREATE:
4553 return btrfs_ioctl_snap_create(file, argp, 1);
4554 case BTRFS_IOC_SUBVOL_CREATE_V2:
4555 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4556 case BTRFS_IOC_SNAP_DESTROY:
4557 return btrfs_ioctl_snap_destroy(file, argp, false);
4558 case BTRFS_IOC_SNAP_DESTROY_V2:
4559 return btrfs_ioctl_snap_destroy(file, argp, true);
4560 case BTRFS_IOC_SUBVOL_GETFLAGS:
4561 return btrfs_ioctl_subvol_getflags(inode, argp);
4562 case BTRFS_IOC_SUBVOL_SETFLAGS:
4563 return btrfs_ioctl_subvol_setflags(file, argp);
4564 case BTRFS_IOC_DEFAULT_SUBVOL:
4565 return btrfs_ioctl_default_subvol(file, argp);
4566 case BTRFS_IOC_DEFRAG:
4567 return btrfs_ioctl_defrag(file, NULL);
4568 case BTRFS_IOC_DEFRAG_RANGE:
4569 return btrfs_ioctl_defrag(file, argp);
4570 case BTRFS_IOC_RESIZE:
4571 return btrfs_ioctl_resize(file, argp);
4572 case BTRFS_IOC_ADD_DEV:
4573 return btrfs_ioctl_add_dev(fs_info, argp);
4574 case BTRFS_IOC_RM_DEV:
4575 return btrfs_ioctl_rm_dev(file, argp);
4576 case BTRFS_IOC_RM_DEV_V2:
4577 return btrfs_ioctl_rm_dev_v2(file, argp);
4578 case BTRFS_IOC_FS_INFO:
4579 return btrfs_ioctl_fs_info(fs_info, argp);
4580 case BTRFS_IOC_DEV_INFO:
4581 return btrfs_ioctl_dev_info(fs_info, argp);
4582 case BTRFS_IOC_TREE_SEARCH:
4583 return btrfs_ioctl_tree_search(inode, argp);
4584 case BTRFS_IOC_TREE_SEARCH_V2:
4585 return btrfs_ioctl_tree_search_v2(inode, argp);
4586 case BTRFS_IOC_INO_LOOKUP:
4587 return btrfs_ioctl_ino_lookup(root, argp);
4588 case BTRFS_IOC_INO_PATHS:
4589 return btrfs_ioctl_ino_to_path(root, argp);
4590 case BTRFS_IOC_LOGICAL_INO:
4591 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4592 case BTRFS_IOC_LOGICAL_INO_V2:
4593 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4594 case BTRFS_IOC_SPACE_INFO:
4595 return btrfs_ioctl_space_info(fs_info, argp);
4596 case BTRFS_IOC_SYNC: {
4597 int ret;
4598
4599 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4600 if (ret)
4601 return ret;
4602 ret = btrfs_sync_fs(inode->i_sb, 1);
4603 /*
4604 * The transaction thread may want to do more work,
4605 * namely it pokes the cleaner kthread that will start
4606 * processing uncleaned subvols.
4607 */
4608 wake_up_process(fs_info->transaction_kthread);
4609 return ret;
4610 }
4611 case BTRFS_IOC_START_SYNC:
4612 return btrfs_ioctl_start_sync(root, argp);
4613 case BTRFS_IOC_WAIT_SYNC:
4614 return btrfs_ioctl_wait_sync(fs_info, argp);
4615 case BTRFS_IOC_SCRUB:
4616 return btrfs_ioctl_scrub(file, argp);
4617 case BTRFS_IOC_SCRUB_CANCEL:
4618 return btrfs_ioctl_scrub_cancel(fs_info);
4619 case BTRFS_IOC_SCRUB_PROGRESS:
4620 return btrfs_ioctl_scrub_progress(fs_info, argp);
4621 case BTRFS_IOC_BALANCE_V2:
4622 return btrfs_ioctl_balance(file, argp);
4623 case BTRFS_IOC_BALANCE_CTL:
4624 return btrfs_ioctl_balance_ctl(fs_info, arg);
4625 case BTRFS_IOC_BALANCE_PROGRESS:
4626 return btrfs_ioctl_balance_progress(fs_info, argp);
4627 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4628 return btrfs_ioctl_set_received_subvol(file, argp);
4629#ifdef CONFIG_64BIT
4630 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4631 return btrfs_ioctl_set_received_subvol_32(file, argp);
4632#endif
4633 case BTRFS_IOC_SEND:
4634 return _btrfs_ioctl_send(inode, argp, false);
4635#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4636 case BTRFS_IOC_SEND_32:
4637 return _btrfs_ioctl_send(inode, argp, true);
4638#endif
4639 case BTRFS_IOC_GET_DEV_STATS:
4640 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4641 case BTRFS_IOC_QUOTA_CTL:
4642 return btrfs_ioctl_quota_ctl(file, argp);
4643 case BTRFS_IOC_QGROUP_ASSIGN:
4644 return btrfs_ioctl_qgroup_assign(file, argp);
4645 case BTRFS_IOC_QGROUP_CREATE:
4646 return btrfs_ioctl_qgroup_create(file, argp);
4647 case BTRFS_IOC_QGROUP_LIMIT:
4648 return btrfs_ioctl_qgroup_limit(file, argp);
4649 case BTRFS_IOC_QUOTA_RESCAN:
4650 return btrfs_ioctl_quota_rescan(file, argp);
4651 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4652 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4653 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4654 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4655 case BTRFS_IOC_DEV_REPLACE:
4656 return btrfs_ioctl_dev_replace(fs_info, argp);
4657 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4658 return btrfs_ioctl_get_supported_features(argp);
4659 case BTRFS_IOC_GET_FEATURES:
4660 return btrfs_ioctl_get_features(fs_info, argp);
4661 case BTRFS_IOC_SET_FEATURES:
4662 return btrfs_ioctl_set_features(file, argp);
4663 case BTRFS_IOC_GET_SUBVOL_INFO:
4664 return btrfs_ioctl_get_subvol_info(inode, argp);
4665 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4666 return btrfs_ioctl_get_subvol_rootref(root, argp);
4667 case BTRFS_IOC_INO_LOOKUP_USER:
4668 return btrfs_ioctl_ino_lookup_user(file, argp);
4669 case FS_IOC_ENABLE_VERITY:
4670 return fsverity_ioctl_enable(file, (const void __user *)argp);
4671 case FS_IOC_MEASURE_VERITY:
4672 return fsverity_ioctl_measure(file, argp);
4673 case BTRFS_IOC_ENCODED_READ:
4674 return btrfs_ioctl_encoded_read(file, argp, false);
4675 case BTRFS_IOC_ENCODED_WRITE:
4676 return btrfs_ioctl_encoded_write(file, argp, false);
4677#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4678 case BTRFS_IOC_ENCODED_READ_32:
4679 return btrfs_ioctl_encoded_read(file, argp, true);
4680 case BTRFS_IOC_ENCODED_WRITE_32:
4681 return btrfs_ioctl_encoded_write(file, argp, true);
4682#endif
4683 }
4684
4685 return -ENOTTY;
4686}
4687
4688#ifdef CONFIG_COMPAT
4689long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4690{
4691 /*
4692 * These all access 32-bit values anyway so no further
4693 * handling is necessary.
4694 */
4695 switch (cmd) {
4696 case FS_IOC32_GETVERSION:
4697 cmd = FS_IOC_GETVERSION;
4698 break;
4699 }
4700
4701 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4702}
4703#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/buffer_head.h>
9#include <linux/file.h>
10#include <linux/fs.h>
11#include <linux/fsnotify.h>
12#include <linux/pagemap.h>
13#include <linux/highmem.h>
14#include <linux/time.h>
15#include <linux/init.h>
16#include <linux/string.h>
17#include <linux/backing-dev.h>
18#include <linux/mount.h>
19#include <linux/mpage.h>
20#include <linux/namei.h>
21#include <linux/swap.h>
22#include <linux/writeback.h>
23#include <linux/compat.h>
24#include <linux/bit_spinlock.h>
25#include <linux/security.h>
26#include <linux/xattr.h>
27#include <linux/mm.h>
28#include <linux/slab.h>
29#include <linux/blkdev.h>
30#include <linux/uuid.h>
31#include <linux/btrfs.h>
32#include <linux/uaccess.h>
33#include <linux/iversion.h>
34#include "ctree.h"
35#include "disk-io.h"
36#include "transaction.h"
37#include "btrfs_inode.h"
38#include "print-tree.h"
39#include "volumes.h"
40#include "locking.h"
41#include "inode-map.h"
42#include "backref.h"
43#include "rcu-string.h"
44#include "send.h"
45#include "dev-replace.h"
46#include "props.h"
47#include "sysfs.h"
48#include "qgroup.h"
49#include "tree-log.h"
50#include "compression.h"
51
52#ifdef CONFIG_64BIT
53/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
54 * structures are incorrect, as the timespec structure from userspace
55 * is 4 bytes too small. We define these alternatives here to teach
56 * the kernel about the 32-bit struct packing.
57 */
58struct btrfs_ioctl_timespec_32 {
59 __u64 sec;
60 __u32 nsec;
61} __attribute__ ((__packed__));
62
63struct btrfs_ioctl_received_subvol_args_32 {
64 char uuid[BTRFS_UUID_SIZE]; /* in */
65 __u64 stransid; /* in */
66 __u64 rtransid; /* out */
67 struct btrfs_ioctl_timespec_32 stime; /* in */
68 struct btrfs_ioctl_timespec_32 rtime; /* out */
69 __u64 flags; /* in */
70 __u64 reserved[16]; /* in */
71} __attribute__ ((__packed__));
72
73#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
74 struct btrfs_ioctl_received_subvol_args_32)
75#endif
76
77#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
78struct btrfs_ioctl_send_args_32 {
79 __s64 send_fd; /* in */
80 __u64 clone_sources_count; /* in */
81 compat_uptr_t clone_sources; /* in */
82 __u64 parent_root; /* in */
83 __u64 flags; /* in */
84 __u64 reserved[4]; /* in */
85} __attribute__ ((__packed__));
86
87#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
88 struct btrfs_ioctl_send_args_32)
89#endif
90
91static int btrfs_clone(struct inode *src, struct inode *inode,
92 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
93 int no_time_update);
94
95/* Mask out flags that are inappropriate for the given type of inode. */
96static unsigned int btrfs_mask_flags(umode_t mode, unsigned int flags)
97{
98 if (S_ISDIR(mode))
99 return flags;
100 else if (S_ISREG(mode))
101 return flags & ~FS_DIRSYNC_FL;
102 else
103 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
104}
105
106/*
107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108 */
109static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
110{
111 unsigned int iflags = 0;
112
113 if (flags & BTRFS_INODE_SYNC)
114 iflags |= FS_SYNC_FL;
115 if (flags & BTRFS_INODE_IMMUTABLE)
116 iflags |= FS_IMMUTABLE_FL;
117 if (flags & BTRFS_INODE_APPEND)
118 iflags |= FS_APPEND_FL;
119 if (flags & BTRFS_INODE_NODUMP)
120 iflags |= FS_NODUMP_FL;
121 if (flags & BTRFS_INODE_NOATIME)
122 iflags |= FS_NOATIME_FL;
123 if (flags & BTRFS_INODE_DIRSYNC)
124 iflags |= FS_DIRSYNC_FL;
125 if (flags & BTRFS_INODE_NODATACOW)
126 iflags |= FS_NOCOW_FL;
127
128 if (flags & BTRFS_INODE_NOCOMPRESS)
129 iflags |= FS_NOCOMP_FL;
130 else if (flags & BTRFS_INODE_COMPRESS)
131 iflags |= FS_COMPR_FL;
132
133 return iflags;
134}
135
136/*
137 * Update inode->i_flags based on the btrfs internal flags.
138 */
139void btrfs_update_iflags(struct inode *inode)
140{
141 struct btrfs_inode *ip = BTRFS_I(inode);
142 unsigned int new_fl = 0;
143
144 if (ip->flags & BTRFS_INODE_SYNC)
145 new_fl |= S_SYNC;
146 if (ip->flags & BTRFS_INODE_IMMUTABLE)
147 new_fl |= S_IMMUTABLE;
148 if (ip->flags & BTRFS_INODE_APPEND)
149 new_fl |= S_APPEND;
150 if (ip->flags & BTRFS_INODE_NOATIME)
151 new_fl |= S_NOATIME;
152 if (ip->flags & BTRFS_INODE_DIRSYNC)
153 new_fl |= S_DIRSYNC;
154
155 set_mask_bits(&inode->i_flags,
156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 new_fl);
158}
159
160static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
161{
162 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
163 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
164
165 if (copy_to_user(arg, &flags, sizeof(flags)))
166 return -EFAULT;
167 return 0;
168}
169
170static int check_flags(unsigned int flags)
171{
172 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
173 FS_NOATIME_FL | FS_NODUMP_FL | \
174 FS_SYNC_FL | FS_DIRSYNC_FL | \
175 FS_NOCOMP_FL | FS_COMPR_FL |
176 FS_NOCOW_FL))
177 return -EOPNOTSUPP;
178
179 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
180 return -EINVAL;
181
182 return 0;
183}
184
185static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
186{
187 struct inode *inode = file_inode(file);
188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
189 struct btrfs_inode *ip = BTRFS_I(inode);
190 struct btrfs_root *root = ip->root;
191 struct btrfs_trans_handle *trans;
192 unsigned int flags, oldflags;
193 int ret;
194 u64 ip_oldflags;
195 unsigned int i_oldflags;
196 umode_t mode;
197
198 if (!inode_owner_or_capable(inode))
199 return -EPERM;
200
201 if (btrfs_root_readonly(root))
202 return -EROFS;
203
204 if (copy_from_user(&flags, arg, sizeof(flags)))
205 return -EFAULT;
206
207 ret = check_flags(flags);
208 if (ret)
209 return ret;
210
211 ret = mnt_want_write_file(file);
212 if (ret)
213 return ret;
214
215 inode_lock(inode);
216
217 ip_oldflags = ip->flags;
218 i_oldflags = inode->i_flags;
219 mode = inode->i_mode;
220
221 flags = btrfs_mask_flags(inode->i_mode, flags);
222 oldflags = btrfs_flags_to_ioctl(ip->flags);
223 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
224 if (!capable(CAP_LINUX_IMMUTABLE)) {
225 ret = -EPERM;
226 goto out_unlock;
227 }
228 }
229
230 if (flags & FS_SYNC_FL)
231 ip->flags |= BTRFS_INODE_SYNC;
232 else
233 ip->flags &= ~BTRFS_INODE_SYNC;
234 if (flags & FS_IMMUTABLE_FL)
235 ip->flags |= BTRFS_INODE_IMMUTABLE;
236 else
237 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
238 if (flags & FS_APPEND_FL)
239 ip->flags |= BTRFS_INODE_APPEND;
240 else
241 ip->flags &= ~BTRFS_INODE_APPEND;
242 if (flags & FS_NODUMP_FL)
243 ip->flags |= BTRFS_INODE_NODUMP;
244 else
245 ip->flags &= ~BTRFS_INODE_NODUMP;
246 if (flags & FS_NOATIME_FL)
247 ip->flags |= BTRFS_INODE_NOATIME;
248 else
249 ip->flags &= ~BTRFS_INODE_NOATIME;
250 if (flags & FS_DIRSYNC_FL)
251 ip->flags |= BTRFS_INODE_DIRSYNC;
252 else
253 ip->flags &= ~BTRFS_INODE_DIRSYNC;
254 if (flags & FS_NOCOW_FL) {
255 if (S_ISREG(mode)) {
256 /*
257 * It's safe to turn csums off here, no extents exist.
258 * Otherwise we want the flag to reflect the real COW
259 * status of the file and will not set it.
260 */
261 if (inode->i_size == 0)
262 ip->flags |= BTRFS_INODE_NODATACOW
263 | BTRFS_INODE_NODATASUM;
264 } else {
265 ip->flags |= BTRFS_INODE_NODATACOW;
266 }
267 } else {
268 /*
269 * Revert back under same assumptions as above
270 */
271 if (S_ISREG(mode)) {
272 if (inode->i_size == 0)
273 ip->flags &= ~(BTRFS_INODE_NODATACOW
274 | BTRFS_INODE_NODATASUM);
275 } else {
276 ip->flags &= ~BTRFS_INODE_NODATACOW;
277 }
278 }
279
280 /*
281 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
282 * flag may be changed automatically if compression code won't make
283 * things smaller.
284 */
285 if (flags & FS_NOCOMP_FL) {
286 ip->flags &= ~BTRFS_INODE_COMPRESS;
287 ip->flags |= BTRFS_INODE_NOCOMPRESS;
288
289 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
290 if (ret && ret != -ENODATA)
291 goto out_drop;
292 } else if (flags & FS_COMPR_FL) {
293 const char *comp;
294
295 ip->flags |= BTRFS_INODE_COMPRESS;
296 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
297
298 comp = btrfs_compress_type2str(fs_info->compress_type);
299 if (!comp || comp[0] == 0)
300 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
301
302 ret = btrfs_set_prop(inode, "btrfs.compression",
303 comp, strlen(comp), 0);
304 if (ret)
305 goto out_drop;
306
307 } else {
308 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
309 if (ret && ret != -ENODATA)
310 goto out_drop;
311 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
312 }
313
314 trans = btrfs_start_transaction(root, 1);
315 if (IS_ERR(trans)) {
316 ret = PTR_ERR(trans);
317 goto out_drop;
318 }
319
320 btrfs_update_iflags(inode);
321 inode_inc_iversion(inode);
322 inode->i_ctime = current_time(inode);
323 ret = btrfs_update_inode(trans, root, inode);
324
325 btrfs_end_transaction(trans);
326 out_drop:
327 if (ret) {
328 ip->flags = ip_oldflags;
329 inode->i_flags = i_oldflags;
330 }
331
332 out_unlock:
333 inode_unlock(inode);
334 mnt_drop_write_file(file);
335 return ret;
336}
337
338static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
339{
340 struct inode *inode = file_inode(file);
341
342 return put_user(inode->i_generation, arg);
343}
344
345static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
346{
347 struct inode *inode = file_inode(file);
348 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
349 struct btrfs_device *device;
350 struct request_queue *q;
351 struct fstrim_range range;
352 u64 minlen = ULLONG_MAX;
353 u64 num_devices = 0;
354 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
355 int ret;
356
357 if (!capable(CAP_SYS_ADMIN))
358 return -EPERM;
359
360 rcu_read_lock();
361 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
362 dev_list) {
363 if (!device->bdev)
364 continue;
365 q = bdev_get_queue(device->bdev);
366 if (blk_queue_discard(q)) {
367 num_devices++;
368 minlen = min_t(u64, q->limits.discard_granularity,
369 minlen);
370 }
371 }
372 rcu_read_unlock();
373
374 if (!num_devices)
375 return -EOPNOTSUPP;
376 if (copy_from_user(&range, arg, sizeof(range)))
377 return -EFAULT;
378 if (range.start > total_bytes ||
379 range.len < fs_info->sb->s_blocksize)
380 return -EINVAL;
381
382 range.len = min(range.len, total_bytes - range.start);
383 range.minlen = max(range.minlen, minlen);
384 ret = btrfs_trim_fs(fs_info, &range);
385 if (ret < 0)
386 return ret;
387
388 if (copy_to_user(arg, &range, sizeof(range)))
389 return -EFAULT;
390
391 return 0;
392}
393
394int btrfs_is_empty_uuid(u8 *uuid)
395{
396 int i;
397
398 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
399 if (uuid[i])
400 return 0;
401 }
402 return 1;
403}
404
405static noinline int create_subvol(struct inode *dir,
406 struct dentry *dentry,
407 const char *name, int namelen,
408 u64 *async_transid,
409 struct btrfs_qgroup_inherit *inherit)
410{
411 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
412 struct btrfs_trans_handle *trans;
413 struct btrfs_key key;
414 struct btrfs_root_item *root_item;
415 struct btrfs_inode_item *inode_item;
416 struct extent_buffer *leaf;
417 struct btrfs_root *root = BTRFS_I(dir)->root;
418 struct btrfs_root *new_root;
419 struct btrfs_block_rsv block_rsv;
420 struct timespec cur_time = current_time(dir);
421 struct inode *inode;
422 int ret;
423 int err;
424 u64 objectid;
425 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
426 u64 index = 0;
427 u64 qgroup_reserved;
428 uuid_le new_uuid;
429
430 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
431 if (!root_item)
432 return -ENOMEM;
433
434 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
435 if (ret)
436 goto fail_free;
437
438 /*
439 * Don't create subvolume whose level is not zero. Or qgroup will be
440 * screwed up since it assumes subvolume qgroup's level to be 0.
441 */
442 if (btrfs_qgroup_level(objectid)) {
443 ret = -ENOSPC;
444 goto fail_free;
445 }
446
447 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
448 /*
449 * The same as the snapshot creation, please see the comment
450 * of create_snapshot().
451 */
452 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
453 8, &qgroup_reserved, false);
454 if (ret)
455 goto fail_free;
456
457 trans = btrfs_start_transaction(root, 0);
458 if (IS_ERR(trans)) {
459 ret = PTR_ERR(trans);
460 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
461 goto fail_free;
462 }
463 trans->block_rsv = &block_rsv;
464 trans->bytes_reserved = block_rsv.size;
465
466 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
467 if (ret)
468 goto fail;
469
470 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
471 if (IS_ERR(leaf)) {
472 ret = PTR_ERR(leaf);
473 goto fail;
474 }
475
476 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
477 btrfs_set_header_bytenr(leaf, leaf->start);
478 btrfs_set_header_generation(leaf, trans->transid);
479 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
480 btrfs_set_header_owner(leaf, objectid);
481
482 write_extent_buffer_fsid(leaf, fs_info->fsid);
483 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
484 btrfs_mark_buffer_dirty(leaf);
485
486 inode_item = &root_item->inode;
487 btrfs_set_stack_inode_generation(inode_item, 1);
488 btrfs_set_stack_inode_size(inode_item, 3);
489 btrfs_set_stack_inode_nlink(inode_item, 1);
490 btrfs_set_stack_inode_nbytes(inode_item,
491 fs_info->nodesize);
492 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
493
494 btrfs_set_root_flags(root_item, 0);
495 btrfs_set_root_limit(root_item, 0);
496 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
497
498 btrfs_set_root_bytenr(root_item, leaf->start);
499 btrfs_set_root_generation(root_item, trans->transid);
500 btrfs_set_root_level(root_item, 0);
501 btrfs_set_root_refs(root_item, 1);
502 btrfs_set_root_used(root_item, leaf->len);
503 btrfs_set_root_last_snapshot(root_item, 0);
504
505 btrfs_set_root_generation_v2(root_item,
506 btrfs_root_generation(root_item));
507 uuid_le_gen(&new_uuid);
508 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
509 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
510 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
511 root_item->ctime = root_item->otime;
512 btrfs_set_root_ctransid(root_item, trans->transid);
513 btrfs_set_root_otransid(root_item, trans->transid);
514
515 btrfs_tree_unlock(leaf);
516 free_extent_buffer(leaf);
517 leaf = NULL;
518
519 btrfs_set_root_dirid(root_item, new_dirid);
520
521 key.objectid = objectid;
522 key.offset = 0;
523 key.type = BTRFS_ROOT_ITEM_KEY;
524 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
525 root_item);
526 if (ret)
527 goto fail;
528
529 key.offset = (u64)-1;
530 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
531 if (IS_ERR(new_root)) {
532 ret = PTR_ERR(new_root);
533 btrfs_abort_transaction(trans, ret);
534 goto fail;
535 }
536
537 btrfs_record_root_in_trans(trans, new_root);
538
539 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
540 if (ret) {
541 /* We potentially lose an unused inode item here */
542 btrfs_abort_transaction(trans, ret);
543 goto fail;
544 }
545
546 mutex_lock(&new_root->objectid_mutex);
547 new_root->highest_objectid = new_dirid;
548 mutex_unlock(&new_root->objectid_mutex);
549
550 /*
551 * insert the directory item
552 */
553 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
554 if (ret) {
555 btrfs_abort_transaction(trans, ret);
556 goto fail;
557 }
558
559 ret = btrfs_insert_dir_item(trans, root,
560 name, namelen, BTRFS_I(dir), &key,
561 BTRFS_FT_DIR, index);
562 if (ret) {
563 btrfs_abort_transaction(trans, ret);
564 goto fail;
565 }
566
567 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
568 ret = btrfs_update_inode(trans, root, dir);
569 BUG_ON(ret);
570
571 ret = btrfs_add_root_ref(trans, fs_info,
572 objectid, root->root_key.objectid,
573 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
574 BUG_ON(ret);
575
576 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
577 BTRFS_UUID_KEY_SUBVOL, objectid);
578 if (ret)
579 btrfs_abort_transaction(trans, ret);
580
581fail:
582 kfree(root_item);
583 trans->block_rsv = NULL;
584 trans->bytes_reserved = 0;
585 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
586
587 if (async_transid) {
588 *async_transid = trans->transid;
589 err = btrfs_commit_transaction_async(trans, 1);
590 if (err)
591 err = btrfs_commit_transaction(trans);
592 } else {
593 err = btrfs_commit_transaction(trans);
594 }
595 if (err && !ret)
596 ret = err;
597
598 if (!ret) {
599 inode = btrfs_lookup_dentry(dir, dentry);
600 if (IS_ERR(inode))
601 return PTR_ERR(inode);
602 d_instantiate(dentry, inode);
603 }
604 return ret;
605
606fail_free:
607 kfree(root_item);
608 return ret;
609}
610
611static int create_snapshot(struct btrfs_root *root, struct inode *dir,
612 struct dentry *dentry,
613 u64 *async_transid, bool readonly,
614 struct btrfs_qgroup_inherit *inherit)
615{
616 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
617 struct inode *inode;
618 struct btrfs_pending_snapshot *pending_snapshot;
619 struct btrfs_trans_handle *trans;
620 int ret;
621
622 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
623 return -EINVAL;
624
625 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
626 if (!pending_snapshot)
627 return -ENOMEM;
628
629 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
630 GFP_KERNEL);
631 pending_snapshot->path = btrfs_alloc_path();
632 if (!pending_snapshot->root_item || !pending_snapshot->path) {
633 ret = -ENOMEM;
634 goto free_pending;
635 }
636
637 atomic_inc(&root->will_be_snapshotted);
638 smp_mb__after_atomic();
639 /* wait for no snapshot writes */
640 wait_event(root->subv_writers->wait,
641 percpu_counter_sum(&root->subv_writers->counter) == 0);
642
643 ret = btrfs_start_delalloc_inodes(root, 0);
644 if (ret)
645 goto dec_and_free;
646
647 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
648
649 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
650 BTRFS_BLOCK_RSV_TEMP);
651 /*
652 * 1 - parent dir inode
653 * 2 - dir entries
654 * 1 - root item
655 * 2 - root ref/backref
656 * 1 - root of snapshot
657 * 1 - UUID item
658 */
659 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
660 &pending_snapshot->block_rsv, 8,
661 &pending_snapshot->qgroup_reserved,
662 false);
663 if (ret)
664 goto dec_and_free;
665
666 pending_snapshot->dentry = dentry;
667 pending_snapshot->root = root;
668 pending_snapshot->readonly = readonly;
669 pending_snapshot->dir = dir;
670 pending_snapshot->inherit = inherit;
671
672 trans = btrfs_start_transaction(root, 0);
673 if (IS_ERR(trans)) {
674 ret = PTR_ERR(trans);
675 goto fail;
676 }
677
678 spin_lock(&fs_info->trans_lock);
679 list_add(&pending_snapshot->list,
680 &trans->transaction->pending_snapshots);
681 spin_unlock(&fs_info->trans_lock);
682 if (async_transid) {
683 *async_transid = trans->transid;
684 ret = btrfs_commit_transaction_async(trans, 1);
685 if (ret)
686 ret = btrfs_commit_transaction(trans);
687 } else {
688 ret = btrfs_commit_transaction(trans);
689 }
690 if (ret)
691 goto fail;
692
693 ret = pending_snapshot->error;
694 if (ret)
695 goto fail;
696
697 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
698 if (ret)
699 goto fail;
700
701 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
702 if (IS_ERR(inode)) {
703 ret = PTR_ERR(inode);
704 goto fail;
705 }
706
707 d_instantiate(dentry, inode);
708 ret = 0;
709fail:
710 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
711dec_and_free:
712 if (atomic_dec_and_test(&root->will_be_snapshotted))
713 wake_up_var(&root->will_be_snapshotted);
714free_pending:
715 kfree(pending_snapshot->root_item);
716 btrfs_free_path(pending_snapshot->path);
717 kfree(pending_snapshot);
718
719 return ret;
720}
721
722/* copy of may_delete in fs/namei.c()
723 * Check whether we can remove a link victim from directory dir, check
724 * whether the type of victim is right.
725 * 1. We can't do it if dir is read-only (done in permission())
726 * 2. We should have write and exec permissions on dir
727 * 3. We can't remove anything from append-only dir
728 * 4. We can't do anything with immutable dir (done in permission())
729 * 5. If the sticky bit on dir is set we should either
730 * a. be owner of dir, or
731 * b. be owner of victim, or
732 * c. have CAP_FOWNER capability
733 * 6. If the victim is append-only or immutable we can't do anything with
734 * links pointing to it.
735 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
736 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
737 * 9. We can't remove a root or mountpoint.
738 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
739 * nfs_async_unlink().
740 */
741
742static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
743{
744 int error;
745
746 if (d_really_is_negative(victim))
747 return -ENOENT;
748
749 BUG_ON(d_inode(victim->d_parent) != dir);
750 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
751
752 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
753 if (error)
754 return error;
755 if (IS_APPEND(dir))
756 return -EPERM;
757 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
758 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
759 return -EPERM;
760 if (isdir) {
761 if (!d_is_dir(victim))
762 return -ENOTDIR;
763 if (IS_ROOT(victim))
764 return -EBUSY;
765 } else if (d_is_dir(victim))
766 return -EISDIR;
767 if (IS_DEADDIR(dir))
768 return -ENOENT;
769 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
770 return -EBUSY;
771 return 0;
772}
773
774/* copy of may_create in fs/namei.c() */
775static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
776{
777 if (d_really_is_positive(child))
778 return -EEXIST;
779 if (IS_DEADDIR(dir))
780 return -ENOENT;
781 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
782}
783
784/*
785 * Create a new subvolume below @parent. This is largely modeled after
786 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
787 * inside this filesystem so it's quite a bit simpler.
788 */
789static noinline int btrfs_mksubvol(const struct path *parent,
790 const char *name, int namelen,
791 struct btrfs_root *snap_src,
792 u64 *async_transid, bool readonly,
793 struct btrfs_qgroup_inherit *inherit)
794{
795 struct inode *dir = d_inode(parent->dentry);
796 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
797 struct dentry *dentry;
798 int error;
799
800 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
801 if (error == -EINTR)
802 return error;
803
804 dentry = lookup_one_len(name, parent->dentry, namelen);
805 error = PTR_ERR(dentry);
806 if (IS_ERR(dentry))
807 goto out_unlock;
808
809 error = btrfs_may_create(dir, dentry);
810 if (error)
811 goto out_dput;
812
813 /*
814 * even if this name doesn't exist, we may get hash collisions.
815 * check for them now when we can safely fail
816 */
817 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
818 dir->i_ino, name,
819 namelen);
820 if (error)
821 goto out_dput;
822
823 down_read(&fs_info->subvol_sem);
824
825 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
826 goto out_up_read;
827
828 if (snap_src) {
829 error = create_snapshot(snap_src, dir, dentry,
830 async_transid, readonly, inherit);
831 } else {
832 error = create_subvol(dir, dentry, name, namelen,
833 async_transid, inherit);
834 }
835 if (!error)
836 fsnotify_mkdir(dir, dentry);
837out_up_read:
838 up_read(&fs_info->subvol_sem);
839out_dput:
840 dput(dentry);
841out_unlock:
842 inode_unlock(dir);
843 return error;
844}
845
846/*
847 * When we're defragging a range, we don't want to kick it off again
848 * if it is really just waiting for delalloc to send it down.
849 * If we find a nice big extent or delalloc range for the bytes in the
850 * file you want to defrag, we return 0 to let you know to skip this
851 * part of the file
852 */
853static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
854{
855 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
856 struct extent_map *em = NULL;
857 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
858 u64 end;
859
860 read_lock(&em_tree->lock);
861 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
862 read_unlock(&em_tree->lock);
863
864 if (em) {
865 end = extent_map_end(em);
866 free_extent_map(em);
867 if (end - offset > thresh)
868 return 0;
869 }
870 /* if we already have a nice delalloc here, just stop */
871 thresh /= 2;
872 end = count_range_bits(io_tree, &offset, offset + thresh,
873 thresh, EXTENT_DELALLOC, 1);
874 if (end >= thresh)
875 return 0;
876 return 1;
877}
878
879/*
880 * helper function to walk through a file and find extents
881 * newer than a specific transid, and smaller than thresh.
882 *
883 * This is used by the defragging code to find new and small
884 * extents
885 */
886static int find_new_extents(struct btrfs_root *root,
887 struct inode *inode, u64 newer_than,
888 u64 *off, u32 thresh)
889{
890 struct btrfs_path *path;
891 struct btrfs_key min_key;
892 struct extent_buffer *leaf;
893 struct btrfs_file_extent_item *extent;
894 int type;
895 int ret;
896 u64 ino = btrfs_ino(BTRFS_I(inode));
897
898 path = btrfs_alloc_path();
899 if (!path)
900 return -ENOMEM;
901
902 min_key.objectid = ino;
903 min_key.type = BTRFS_EXTENT_DATA_KEY;
904 min_key.offset = *off;
905
906 while (1) {
907 ret = btrfs_search_forward(root, &min_key, path, newer_than);
908 if (ret != 0)
909 goto none;
910process_slot:
911 if (min_key.objectid != ino)
912 goto none;
913 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
914 goto none;
915
916 leaf = path->nodes[0];
917 extent = btrfs_item_ptr(leaf, path->slots[0],
918 struct btrfs_file_extent_item);
919
920 type = btrfs_file_extent_type(leaf, extent);
921 if (type == BTRFS_FILE_EXTENT_REG &&
922 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
923 check_defrag_in_cache(inode, min_key.offset, thresh)) {
924 *off = min_key.offset;
925 btrfs_free_path(path);
926 return 0;
927 }
928
929 path->slots[0]++;
930 if (path->slots[0] < btrfs_header_nritems(leaf)) {
931 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
932 goto process_slot;
933 }
934
935 if (min_key.offset == (u64)-1)
936 goto none;
937
938 min_key.offset++;
939 btrfs_release_path(path);
940 }
941none:
942 btrfs_free_path(path);
943 return -ENOENT;
944}
945
946static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
947{
948 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
949 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
950 struct extent_map *em;
951 u64 len = PAGE_SIZE;
952
953 /*
954 * hopefully we have this extent in the tree already, try without
955 * the full extent lock
956 */
957 read_lock(&em_tree->lock);
958 em = lookup_extent_mapping(em_tree, start, len);
959 read_unlock(&em_tree->lock);
960
961 if (!em) {
962 struct extent_state *cached = NULL;
963 u64 end = start + len - 1;
964
965 /* get the big lock and read metadata off disk */
966 lock_extent_bits(io_tree, start, end, &cached);
967 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
968 unlock_extent_cached(io_tree, start, end, &cached);
969
970 if (IS_ERR(em))
971 return NULL;
972 }
973
974 return em;
975}
976
977static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
978{
979 struct extent_map *next;
980 bool ret = true;
981
982 /* this is the last extent */
983 if (em->start + em->len >= i_size_read(inode))
984 return false;
985
986 next = defrag_lookup_extent(inode, em->start + em->len);
987 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
988 ret = false;
989 else if ((em->block_start + em->block_len == next->block_start) &&
990 (em->block_len > SZ_128K && next->block_len > SZ_128K))
991 ret = false;
992
993 free_extent_map(next);
994 return ret;
995}
996
997static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
998 u64 *last_len, u64 *skip, u64 *defrag_end,
999 int compress)
1000{
1001 struct extent_map *em;
1002 int ret = 1;
1003 bool next_mergeable = true;
1004 bool prev_mergeable = true;
1005
1006 /*
1007 * make sure that once we start defragging an extent, we keep on
1008 * defragging it
1009 */
1010 if (start < *defrag_end)
1011 return 1;
1012
1013 *skip = 0;
1014
1015 em = defrag_lookup_extent(inode, start);
1016 if (!em)
1017 return 0;
1018
1019 /* this will cover holes, and inline extents */
1020 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1021 ret = 0;
1022 goto out;
1023 }
1024
1025 if (!*defrag_end)
1026 prev_mergeable = false;
1027
1028 next_mergeable = defrag_check_next_extent(inode, em);
1029 /*
1030 * we hit a real extent, if it is big or the next extent is not a
1031 * real extent, don't bother defragging it
1032 */
1033 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1034 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1035 ret = 0;
1036out:
1037 /*
1038 * last_len ends up being a counter of how many bytes we've defragged.
1039 * every time we choose not to defrag an extent, we reset *last_len
1040 * so that the next tiny extent will force a defrag.
1041 *
1042 * The end result of this is that tiny extents before a single big
1043 * extent will force at least part of that big extent to be defragged.
1044 */
1045 if (ret) {
1046 *defrag_end = extent_map_end(em);
1047 } else {
1048 *last_len = 0;
1049 *skip = extent_map_end(em);
1050 *defrag_end = 0;
1051 }
1052
1053 free_extent_map(em);
1054 return ret;
1055}
1056
1057/*
1058 * it doesn't do much good to defrag one or two pages
1059 * at a time. This pulls in a nice chunk of pages
1060 * to COW and defrag.
1061 *
1062 * It also makes sure the delalloc code has enough
1063 * dirty data to avoid making new small extents as part
1064 * of the defrag
1065 *
1066 * It's a good idea to start RA on this range
1067 * before calling this.
1068 */
1069static int cluster_pages_for_defrag(struct inode *inode,
1070 struct page **pages,
1071 unsigned long start_index,
1072 unsigned long num_pages)
1073{
1074 unsigned long file_end;
1075 u64 isize = i_size_read(inode);
1076 u64 page_start;
1077 u64 page_end;
1078 u64 page_cnt;
1079 int ret;
1080 int i;
1081 int i_done;
1082 struct btrfs_ordered_extent *ordered;
1083 struct extent_state *cached_state = NULL;
1084 struct extent_io_tree *tree;
1085 struct extent_changeset *data_reserved = NULL;
1086 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1087
1088 file_end = (isize - 1) >> PAGE_SHIFT;
1089 if (!isize || start_index > file_end)
1090 return 0;
1091
1092 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1093
1094 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1095 start_index << PAGE_SHIFT,
1096 page_cnt << PAGE_SHIFT);
1097 if (ret)
1098 return ret;
1099 i_done = 0;
1100 tree = &BTRFS_I(inode)->io_tree;
1101
1102 /* step one, lock all the pages */
1103 for (i = 0; i < page_cnt; i++) {
1104 struct page *page;
1105again:
1106 page = find_or_create_page(inode->i_mapping,
1107 start_index + i, mask);
1108 if (!page)
1109 break;
1110
1111 page_start = page_offset(page);
1112 page_end = page_start + PAGE_SIZE - 1;
1113 while (1) {
1114 lock_extent_bits(tree, page_start, page_end,
1115 &cached_state);
1116 ordered = btrfs_lookup_ordered_extent(inode,
1117 page_start);
1118 unlock_extent_cached(tree, page_start, page_end,
1119 &cached_state);
1120 if (!ordered)
1121 break;
1122
1123 unlock_page(page);
1124 btrfs_start_ordered_extent(inode, ordered, 1);
1125 btrfs_put_ordered_extent(ordered);
1126 lock_page(page);
1127 /*
1128 * we unlocked the page above, so we need check if
1129 * it was released or not.
1130 */
1131 if (page->mapping != inode->i_mapping) {
1132 unlock_page(page);
1133 put_page(page);
1134 goto again;
1135 }
1136 }
1137
1138 if (!PageUptodate(page)) {
1139 btrfs_readpage(NULL, page);
1140 lock_page(page);
1141 if (!PageUptodate(page)) {
1142 unlock_page(page);
1143 put_page(page);
1144 ret = -EIO;
1145 break;
1146 }
1147 }
1148
1149 if (page->mapping != inode->i_mapping) {
1150 unlock_page(page);
1151 put_page(page);
1152 goto again;
1153 }
1154
1155 pages[i] = page;
1156 i_done++;
1157 }
1158 if (!i_done || ret)
1159 goto out;
1160
1161 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1162 goto out;
1163
1164 /*
1165 * so now we have a nice long stream of locked
1166 * and up to date pages, lets wait on them
1167 */
1168 for (i = 0; i < i_done; i++)
1169 wait_on_page_writeback(pages[i]);
1170
1171 page_start = page_offset(pages[0]);
1172 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1173
1174 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1175 page_start, page_end - 1, &cached_state);
1176 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1177 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1178 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1179 &cached_state);
1180
1181 if (i_done != page_cnt) {
1182 spin_lock(&BTRFS_I(inode)->lock);
1183 BTRFS_I(inode)->outstanding_extents++;
1184 spin_unlock(&BTRFS_I(inode)->lock);
1185 btrfs_delalloc_release_space(inode, data_reserved,
1186 start_index << PAGE_SHIFT,
1187 (page_cnt - i_done) << PAGE_SHIFT, true);
1188 }
1189
1190
1191 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1192 &cached_state);
1193
1194 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1195 page_start, page_end - 1, &cached_state);
1196
1197 for (i = 0; i < i_done; i++) {
1198 clear_page_dirty_for_io(pages[i]);
1199 ClearPageChecked(pages[i]);
1200 set_page_extent_mapped(pages[i]);
1201 set_page_dirty(pages[i]);
1202 unlock_page(pages[i]);
1203 put_page(pages[i]);
1204 }
1205 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1206 false);
1207 extent_changeset_free(data_reserved);
1208 return i_done;
1209out:
1210 for (i = 0; i < i_done; i++) {
1211 unlock_page(pages[i]);
1212 put_page(pages[i]);
1213 }
1214 btrfs_delalloc_release_space(inode, data_reserved,
1215 start_index << PAGE_SHIFT,
1216 page_cnt << PAGE_SHIFT, true);
1217 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1218 true);
1219 extent_changeset_free(data_reserved);
1220 return ret;
1221
1222}
1223
1224int btrfs_defrag_file(struct inode *inode, struct file *file,
1225 struct btrfs_ioctl_defrag_range_args *range,
1226 u64 newer_than, unsigned long max_to_defrag)
1227{
1228 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1229 struct btrfs_root *root = BTRFS_I(inode)->root;
1230 struct file_ra_state *ra = NULL;
1231 unsigned long last_index;
1232 u64 isize = i_size_read(inode);
1233 u64 last_len = 0;
1234 u64 skip = 0;
1235 u64 defrag_end = 0;
1236 u64 newer_off = range->start;
1237 unsigned long i;
1238 unsigned long ra_index = 0;
1239 int ret;
1240 int defrag_count = 0;
1241 int compress_type = BTRFS_COMPRESS_ZLIB;
1242 u32 extent_thresh = range->extent_thresh;
1243 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1244 unsigned long cluster = max_cluster;
1245 u64 new_align = ~((u64)SZ_128K - 1);
1246 struct page **pages = NULL;
1247 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1248
1249 if (isize == 0)
1250 return 0;
1251
1252 if (range->start >= isize)
1253 return -EINVAL;
1254
1255 if (do_compress) {
1256 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1257 return -EINVAL;
1258 if (range->compress_type)
1259 compress_type = range->compress_type;
1260 }
1261
1262 if (extent_thresh == 0)
1263 extent_thresh = SZ_256K;
1264
1265 /*
1266 * If we were not given a file, allocate a readahead context. As
1267 * readahead is just an optimization, defrag will work without it so
1268 * we don't error out.
1269 */
1270 if (!file) {
1271 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1272 if (ra)
1273 file_ra_state_init(ra, inode->i_mapping);
1274 } else {
1275 ra = &file->f_ra;
1276 }
1277
1278 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1279 if (!pages) {
1280 ret = -ENOMEM;
1281 goto out_ra;
1282 }
1283
1284 /* find the last page to defrag */
1285 if (range->start + range->len > range->start) {
1286 last_index = min_t(u64, isize - 1,
1287 range->start + range->len - 1) >> PAGE_SHIFT;
1288 } else {
1289 last_index = (isize - 1) >> PAGE_SHIFT;
1290 }
1291
1292 if (newer_than) {
1293 ret = find_new_extents(root, inode, newer_than,
1294 &newer_off, SZ_64K);
1295 if (!ret) {
1296 range->start = newer_off;
1297 /*
1298 * we always align our defrag to help keep
1299 * the extents in the file evenly spaced
1300 */
1301 i = (newer_off & new_align) >> PAGE_SHIFT;
1302 } else
1303 goto out_ra;
1304 } else {
1305 i = range->start >> PAGE_SHIFT;
1306 }
1307 if (!max_to_defrag)
1308 max_to_defrag = last_index - i + 1;
1309
1310 /*
1311 * make writeback starts from i, so the defrag range can be
1312 * written sequentially.
1313 */
1314 if (i < inode->i_mapping->writeback_index)
1315 inode->i_mapping->writeback_index = i;
1316
1317 while (i <= last_index && defrag_count < max_to_defrag &&
1318 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1319 /*
1320 * make sure we stop running if someone unmounts
1321 * the FS
1322 */
1323 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1324 break;
1325
1326 if (btrfs_defrag_cancelled(fs_info)) {
1327 btrfs_debug(fs_info, "defrag_file cancelled");
1328 ret = -EAGAIN;
1329 break;
1330 }
1331
1332 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1333 extent_thresh, &last_len, &skip,
1334 &defrag_end, do_compress)){
1335 unsigned long next;
1336 /*
1337 * the should_defrag function tells us how much to skip
1338 * bump our counter by the suggested amount
1339 */
1340 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1341 i = max(i + 1, next);
1342 continue;
1343 }
1344
1345 if (!newer_than) {
1346 cluster = (PAGE_ALIGN(defrag_end) >>
1347 PAGE_SHIFT) - i;
1348 cluster = min(cluster, max_cluster);
1349 } else {
1350 cluster = max_cluster;
1351 }
1352
1353 if (i + cluster > ra_index) {
1354 ra_index = max(i, ra_index);
1355 if (ra)
1356 page_cache_sync_readahead(inode->i_mapping, ra,
1357 file, ra_index, cluster);
1358 ra_index += cluster;
1359 }
1360
1361 inode_lock(inode);
1362 if (do_compress)
1363 BTRFS_I(inode)->defrag_compress = compress_type;
1364 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1365 if (ret < 0) {
1366 inode_unlock(inode);
1367 goto out_ra;
1368 }
1369
1370 defrag_count += ret;
1371 balance_dirty_pages_ratelimited(inode->i_mapping);
1372 inode_unlock(inode);
1373
1374 if (newer_than) {
1375 if (newer_off == (u64)-1)
1376 break;
1377
1378 if (ret > 0)
1379 i += ret;
1380
1381 newer_off = max(newer_off + 1,
1382 (u64)i << PAGE_SHIFT);
1383
1384 ret = find_new_extents(root, inode, newer_than,
1385 &newer_off, SZ_64K);
1386 if (!ret) {
1387 range->start = newer_off;
1388 i = (newer_off & new_align) >> PAGE_SHIFT;
1389 } else {
1390 break;
1391 }
1392 } else {
1393 if (ret > 0) {
1394 i += ret;
1395 last_len += ret << PAGE_SHIFT;
1396 } else {
1397 i++;
1398 last_len = 0;
1399 }
1400 }
1401 }
1402
1403 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1404 filemap_flush(inode->i_mapping);
1405 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1406 &BTRFS_I(inode)->runtime_flags))
1407 filemap_flush(inode->i_mapping);
1408 }
1409
1410 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1411 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1412 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1413 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1414 }
1415
1416 ret = defrag_count;
1417
1418out_ra:
1419 if (do_compress) {
1420 inode_lock(inode);
1421 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1422 inode_unlock(inode);
1423 }
1424 if (!file)
1425 kfree(ra);
1426 kfree(pages);
1427 return ret;
1428}
1429
1430static noinline int btrfs_ioctl_resize(struct file *file,
1431 void __user *arg)
1432{
1433 struct inode *inode = file_inode(file);
1434 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1435 u64 new_size;
1436 u64 old_size;
1437 u64 devid = 1;
1438 struct btrfs_root *root = BTRFS_I(inode)->root;
1439 struct btrfs_ioctl_vol_args *vol_args;
1440 struct btrfs_trans_handle *trans;
1441 struct btrfs_device *device = NULL;
1442 char *sizestr;
1443 char *retptr;
1444 char *devstr = NULL;
1445 int ret = 0;
1446 int mod = 0;
1447
1448 if (!capable(CAP_SYS_ADMIN))
1449 return -EPERM;
1450
1451 ret = mnt_want_write_file(file);
1452 if (ret)
1453 return ret;
1454
1455 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1456 mnt_drop_write_file(file);
1457 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1458 }
1459
1460 mutex_lock(&fs_info->volume_mutex);
1461 vol_args = memdup_user(arg, sizeof(*vol_args));
1462 if (IS_ERR(vol_args)) {
1463 ret = PTR_ERR(vol_args);
1464 goto out;
1465 }
1466
1467 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1468
1469 sizestr = vol_args->name;
1470 devstr = strchr(sizestr, ':');
1471 if (devstr) {
1472 sizestr = devstr + 1;
1473 *devstr = '\0';
1474 devstr = vol_args->name;
1475 ret = kstrtoull(devstr, 10, &devid);
1476 if (ret)
1477 goto out_free;
1478 if (!devid) {
1479 ret = -EINVAL;
1480 goto out_free;
1481 }
1482 btrfs_info(fs_info, "resizing devid %llu", devid);
1483 }
1484
1485 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1486 if (!device) {
1487 btrfs_info(fs_info, "resizer unable to find device %llu",
1488 devid);
1489 ret = -ENODEV;
1490 goto out_free;
1491 }
1492
1493 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1494 btrfs_info(fs_info,
1495 "resizer unable to apply on readonly device %llu",
1496 devid);
1497 ret = -EPERM;
1498 goto out_free;
1499 }
1500
1501 if (!strcmp(sizestr, "max"))
1502 new_size = device->bdev->bd_inode->i_size;
1503 else {
1504 if (sizestr[0] == '-') {
1505 mod = -1;
1506 sizestr++;
1507 } else if (sizestr[0] == '+') {
1508 mod = 1;
1509 sizestr++;
1510 }
1511 new_size = memparse(sizestr, &retptr);
1512 if (*retptr != '\0' || new_size == 0) {
1513 ret = -EINVAL;
1514 goto out_free;
1515 }
1516 }
1517
1518 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1519 ret = -EPERM;
1520 goto out_free;
1521 }
1522
1523 old_size = btrfs_device_get_total_bytes(device);
1524
1525 if (mod < 0) {
1526 if (new_size > old_size) {
1527 ret = -EINVAL;
1528 goto out_free;
1529 }
1530 new_size = old_size - new_size;
1531 } else if (mod > 0) {
1532 if (new_size > ULLONG_MAX - old_size) {
1533 ret = -ERANGE;
1534 goto out_free;
1535 }
1536 new_size = old_size + new_size;
1537 }
1538
1539 if (new_size < SZ_256M) {
1540 ret = -EINVAL;
1541 goto out_free;
1542 }
1543 if (new_size > device->bdev->bd_inode->i_size) {
1544 ret = -EFBIG;
1545 goto out_free;
1546 }
1547
1548 new_size = round_down(new_size, fs_info->sectorsize);
1549
1550 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1551 rcu_str_deref(device->name), new_size);
1552
1553 if (new_size > old_size) {
1554 trans = btrfs_start_transaction(root, 0);
1555 if (IS_ERR(trans)) {
1556 ret = PTR_ERR(trans);
1557 goto out_free;
1558 }
1559 ret = btrfs_grow_device(trans, device, new_size);
1560 btrfs_commit_transaction(trans);
1561 } else if (new_size < old_size) {
1562 ret = btrfs_shrink_device(device, new_size);
1563 } /* equal, nothing need to do */
1564
1565out_free:
1566 kfree(vol_args);
1567out:
1568 mutex_unlock(&fs_info->volume_mutex);
1569 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1570 mnt_drop_write_file(file);
1571 return ret;
1572}
1573
1574static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1575 const char *name, unsigned long fd, int subvol,
1576 u64 *transid, bool readonly,
1577 struct btrfs_qgroup_inherit *inherit)
1578{
1579 int namelen;
1580 int ret = 0;
1581
1582 if (!S_ISDIR(file_inode(file)->i_mode))
1583 return -ENOTDIR;
1584
1585 ret = mnt_want_write_file(file);
1586 if (ret)
1587 goto out;
1588
1589 namelen = strlen(name);
1590 if (strchr(name, '/')) {
1591 ret = -EINVAL;
1592 goto out_drop_write;
1593 }
1594
1595 if (name[0] == '.' &&
1596 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1597 ret = -EEXIST;
1598 goto out_drop_write;
1599 }
1600
1601 if (subvol) {
1602 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1603 NULL, transid, readonly, inherit);
1604 } else {
1605 struct fd src = fdget(fd);
1606 struct inode *src_inode;
1607 if (!src.file) {
1608 ret = -EINVAL;
1609 goto out_drop_write;
1610 }
1611
1612 src_inode = file_inode(src.file);
1613 if (src_inode->i_sb != file_inode(file)->i_sb) {
1614 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1615 "Snapshot src from another FS");
1616 ret = -EXDEV;
1617 } else if (!inode_owner_or_capable(src_inode)) {
1618 /*
1619 * Subvolume creation is not restricted, but snapshots
1620 * are limited to own subvolumes only
1621 */
1622 ret = -EPERM;
1623 } else {
1624 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1625 BTRFS_I(src_inode)->root,
1626 transid, readonly, inherit);
1627 }
1628 fdput(src);
1629 }
1630out_drop_write:
1631 mnt_drop_write_file(file);
1632out:
1633 return ret;
1634}
1635
1636static noinline int btrfs_ioctl_snap_create(struct file *file,
1637 void __user *arg, int subvol)
1638{
1639 struct btrfs_ioctl_vol_args *vol_args;
1640 int ret;
1641
1642 if (!S_ISDIR(file_inode(file)->i_mode))
1643 return -ENOTDIR;
1644
1645 vol_args = memdup_user(arg, sizeof(*vol_args));
1646 if (IS_ERR(vol_args))
1647 return PTR_ERR(vol_args);
1648 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1649
1650 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1651 vol_args->fd, subvol,
1652 NULL, false, NULL);
1653
1654 kfree(vol_args);
1655 return ret;
1656}
1657
1658static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1659 void __user *arg, int subvol)
1660{
1661 struct btrfs_ioctl_vol_args_v2 *vol_args;
1662 int ret;
1663 u64 transid = 0;
1664 u64 *ptr = NULL;
1665 bool readonly = false;
1666 struct btrfs_qgroup_inherit *inherit = NULL;
1667
1668 if (!S_ISDIR(file_inode(file)->i_mode))
1669 return -ENOTDIR;
1670
1671 vol_args = memdup_user(arg, sizeof(*vol_args));
1672 if (IS_ERR(vol_args))
1673 return PTR_ERR(vol_args);
1674 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1675
1676 if (vol_args->flags &
1677 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1678 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1679 ret = -EOPNOTSUPP;
1680 goto free_args;
1681 }
1682
1683 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1684 ptr = &transid;
1685 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1686 readonly = true;
1687 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1688 if (vol_args->size > PAGE_SIZE) {
1689 ret = -EINVAL;
1690 goto free_args;
1691 }
1692 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1693 if (IS_ERR(inherit)) {
1694 ret = PTR_ERR(inherit);
1695 goto free_args;
1696 }
1697 }
1698
1699 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1700 vol_args->fd, subvol, ptr,
1701 readonly, inherit);
1702 if (ret)
1703 goto free_inherit;
1704
1705 if (ptr && copy_to_user(arg +
1706 offsetof(struct btrfs_ioctl_vol_args_v2,
1707 transid),
1708 ptr, sizeof(*ptr)))
1709 ret = -EFAULT;
1710
1711free_inherit:
1712 kfree(inherit);
1713free_args:
1714 kfree(vol_args);
1715 return ret;
1716}
1717
1718static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1719 void __user *arg)
1720{
1721 struct inode *inode = file_inode(file);
1722 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1723 struct btrfs_root *root = BTRFS_I(inode)->root;
1724 int ret = 0;
1725 u64 flags = 0;
1726
1727 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1728 return -EINVAL;
1729
1730 down_read(&fs_info->subvol_sem);
1731 if (btrfs_root_readonly(root))
1732 flags |= BTRFS_SUBVOL_RDONLY;
1733 up_read(&fs_info->subvol_sem);
1734
1735 if (copy_to_user(arg, &flags, sizeof(flags)))
1736 ret = -EFAULT;
1737
1738 return ret;
1739}
1740
1741static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1742 void __user *arg)
1743{
1744 struct inode *inode = file_inode(file);
1745 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1746 struct btrfs_root *root = BTRFS_I(inode)->root;
1747 struct btrfs_trans_handle *trans;
1748 u64 root_flags;
1749 u64 flags;
1750 int ret = 0;
1751
1752 if (!inode_owner_or_capable(inode))
1753 return -EPERM;
1754
1755 ret = mnt_want_write_file(file);
1756 if (ret)
1757 goto out;
1758
1759 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1760 ret = -EINVAL;
1761 goto out_drop_write;
1762 }
1763
1764 if (copy_from_user(&flags, arg, sizeof(flags))) {
1765 ret = -EFAULT;
1766 goto out_drop_write;
1767 }
1768
1769 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1770 ret = -EINVAL;
1771 goto out_drop_write;
1772 }
1773
1774 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1775 ret = -EOPNOTSUPP;
1776 goto out_drop_write;
1777 }
1778
1779 down_write(&fs_info->subvol_sem);
1780
1781 /* nothing to do */
1782 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1783 goto out_drop_sem;
1784
1785 root_flags = btrfs_root_flags(&root->root_item);
1786 if (flags & BTRFS_SUBVOL_RDONLY) {
1787 btrfs_set_root_flags(&root->root_item,
1788 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1789 } else {
1790 /*
1791 * Block RO -> RW transition if this subvolume is involved in
1792 * send
1793 */
1794 spin_lock(&root->root_item_lock);
1795 if (root->send_in_progress == 0) {
1796 btrfs_set_root_flags(&root->root_item,
1797 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1798 spin_unlock(&root->root_item_lock);
1799 } else {
1800 spin_unlock(&root->root_item_lock);
1801 btrfs_warn(fs_info,
1802 "Attempt to set subvolume %llu read-write during send",
1803 root->root_key.objectid);
1804 ret = -EPERM;
1805 goto out_drop_sem;
1806 }
1807 }
1808
1809 trans = btrfs_start_transaction(root, 1);
1810 if (IS_ERR(trans)) {
1811 ret = PTR_ERR(trans);
1812 goto out_reset;
1813 }
1814
1815 ret = btrfs_update_root(trans, fs_info->tree_root,
1816 &root->root_key, &root->root_item);
1817 if (ret < 0) {
1818 btrfs_end_transaction(trans);
1819 goto out_reset;
1820 }
1821
1822 ret = btrfs_commit_transaction(trans);
1823
1824out_reset:
1825 if (ret)
1826 btrfs_set_root_flags(&root->root_item, root_flags);
1827out_drop_sem:
1828 up_write(&fs_info->subvol_sem);
1829out_drop_write:
1830 mnt_drop_write_file(file);
1831out:
1832 return ret;
1833}
1834
1835/*
1836 * helper to check if the subvolume references other subvolumes
1837 */
1838static noinline int may_destroy_subvol(struct btrfs_root *root)
1839{
1840 struct btrfs_fs_info *fs_info = root->fs_info;
1841 struct btrfs_path *path;
1842 struct btrfs_dir_item *di;
1843 struct btrfs_key key;
1844 u64 dir_id;
1845 int ret;
1846
1847 path = btrfs_alloc_path();
1848 if (!path)
1849 return -ENOMEM;
1850
1851 /* Make sure this root isn't set as the default subvol */
1852 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1853 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1854 dir_id, "default", 7, 0);
1855 if (di && !IS_ERR(di)) {
1856 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1857 if (key.objectid == root->root_key.objectid) {
1858 ret = -EPERM;
1859 btrfs_err(fs_info,
1860 "deleting default subvolume %llu is not allowed",
1861 key.objectid);
1862 goto out;
1863 }
1864 btrfs_release_path(path);
1865 }
1866
1867 key.objectid = root->root_key.objectid;
1868 key.type = BTRFS_ROOT_REF_KEY;
1869 key.offset = (u64)-1;
1870
1871 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1872 if (ret < 0)
1873 goto out;
1874 BUG_ON(ret == 0);
1875
1876 ret = 0;
1877 if (path->slots[0] > 0) {
1878 path->slots[0]--;
1879 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1880 if (key.objectid == root->root_key.objectid &&
1881 key.type == BTRFS_ROOT_REF_KEY)
1882 ret = -ENOTEMPTY;
1883 }
1884out:
1885 btrfs_free_path(path);
1886 return ret;
1887}
1888
1889static noinline int key_in_sk(struct btrfs_key *key,
1890 struct btrfs_ioctl_search_key *sk)
1891{
1892 struct btrfs_key test;
1893 int ret;
1894
1895 test.objectid = sk->min_objectid;
1896 test.type = sk->min_type;
1897 test.offset = sk->min_offset;
1898
1899 ret = btrfs_comp_cpu_keys(key, &test);
1900 if (ret < 0)
1901 return 0;
1902
1903 test.objectid = sk->max_objectid;
1904 test.type = sk->max_type;
1905 test.offset = sk->max_offset;
1906
1907 ret = btrfs_comp_cpu_keys(key, &test);
1908 if (ret > 0)
1909 return 0;
1910 return 1;
1911}
1912
1913static noinline int copy_to_sk(struct btrfs_path *path,
1914 struct btrfs_key *key,
1915 struct btrfs_ioctl_search_key *sk,
1916 size_t *buf_size,
1917 char __user *ubuf,
1918 unsigned long *sk_offset,
1919 int *num_found)
1920{
1921 u64 found_transid;
1922 struct extent_buffer *leaf;
1923 struct btrfs_ioctl_search_header sh;
1924 struct btrfs_key test;
1925 unsigned long item_off;
1926 unsigned long item_len;
1927 int nritems;
1928 int i;
1929 int slot;
1930 int ret = 0;
1931
1932 leaf = path->nodes[0];
1933 slot = path->slots[0];
1934 nritems = btrfs_header_nritems(leaf);
1935
1936 if (btrfs_header_generation(leaf) > sk->max_transid) {
1937 i = nritems;
1938 goto advance_key;
1939 }
1940 found_transid = btrfs_header_generation(leaf);
1941
1942 for (i = slot; i < nritems; i++) {
1943 item_off = btrfs_item_ptr_offset(leaf, i);
1944 item_len = btrfs_item_size_nr(leaf, i);
1945
1946 btrfs_item_key_to_cpu(leaf, key, i);
1947 if (!key_in_sk(key, sk))
1948 continue;
1949
1950 if (sizeof(sh) + item_len > *buf_size) {
1951 if (*num_found) {
1952 ret = 1;
1953 goto out;
1954 }
1955
1956 /*
1957 * return one empty item back for v1, which does not
1958 * handle -EOVERFLOW
1959 */
1960
1961 *buf_size = sizeof(sh) + item_len;
1962 item_len = 0;
1963 ret = -EOVERFLOW;
1964 }
1965
1966 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1967 ret = 1;
1968 goto out;
1969 }
1970
1971 sh.objectid = key->objectid;
1972 sh.offset = key->offset;
1973 sh.type = key->type;
1974 sh.len = item_len;
1975 sh.transid = found_transid;
1976
1977 /* copy search result header */
1978 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1979 ret = -EFAULT;
1980 goto out;
1981 }
1982
1983 *sk_offset += sizeof(sh);
1984
1985 if (item_len) {
1986 char __user *up = ubuf + *sk_offset;
1987 /* copy the item */
1988 if (read_extent_buffer_to_user(leaf, up,
1989 item_off, item_len)) {
1990 ret = -EFAULT;
1991 goto out;
1992 }
1993
1994 *sk_offset += item_len;
1995 }
1996 (*num_found)++;
1997
1998 if (ret) /* -EOVERFLOW from above */
1999 goto out;
2000
2001 if (*num_found >= sk->nr_items) {
2002 ret = 1;
2003 goto out;
2004 }
2005 }
2006advance_key:
2007 ret = 0;
2008 test.objectid = sk->max_objectid;
2009 test.type = sk->max_type;
2010 test.offset = sk->max_offset;
2011 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2012 ret = 1;
2013 else if (key->offset < (u64)-1)
2014 key->offset++;
2015 else if (key->type < (u8)-1) {
2016 key->offset = 0;
2017 key->type++;
2018 } else if (key->objectid < (u64)-1) {
2019 key->offset = 0;
2020 key->type = 0;
2021 key->objectid++;
2022 } else
2023 ret = 1;
2024out:
2025 /*
2026 * 0: all items from this leaf copied, continue with next
2027 * 1: * more items can be copied, but unused buffer is too small
2028 * * all items were found
2029 * Either way, it will stops the loop which iterates to the next
2030 * leaf
2031 * -EOVERFLOW: item was to large for buffer
2032 * -EFAULT: could not copy extent buffer back to userspace
2033 */
2034 return ret;
2035}
2036
2037static noinline int search_ioctl(struct inode *inode,
2038 struct btrfs_ioctl_search_key *sk,
2039 size_t *buf_size,
2040 char __user *ubuf)
2041{
2042 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2043 struct btrfs_root *root;
2044 struct btrfs_key key;
2045 struct btrfs_path *path;
2046 int ret;
2047 int num_found = 0;
2048 unsigned long sk_offset = 0;
2049
2050 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2051 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2052 return -EOVERFLOW;
2053 }
2054
2055 path = btrfs_alloc_path();
2056 if (!path)
2057 return -ENOMEM;
2058
2059 if (sk->tree_id == 0) {
2060 /* search the root of the inode that was passed */
2061 root = BTRFS_I(inode)->root;
2062 } else {
2063 key.objectid = sk->tree_id;
2064 key.type = BTRFS_ROOT_ITEM_KEY;
2065 key.offset = (u64)-1;
2066 root = btrfs_read_fs_root_no_name(info, &key);
2067 if (IS_ERR(root)) {
2068 btrfs_free_path(path);
2069 return -ENOENT;
2070 }
2071 }
2072
2073 key.objectid = sk->min_objectid;
2074 key.type = sk->min_type;
2075 key.offset = sk->min_offset;
2076
2077 while (1) {
2078 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2079 if (ret != 0) {
2080 if (ret > 0)
2081 ret = 0;
2082 goto err;
2083 }
2084 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2085 &sk_offset, &num_found);
2086 btrfs_release_path(path);
2087 if (ret)
2088 break;
2089
2090 }
2091 if (ret > 0)
2092 ret = 0;
2093err:
2094 sk->nr_items = num_found;
2095 btrfs_free_path(path);
2096 return ret;
2097}
2098
2099static noinline int btrfs_ioctl_tree_search(struct file *file,
2100 void __user *argp)
2101{
2102 struct btrfs_ioctl_search_args __user *uargs;
2103 struct btrfs_ioctl_search_key sk;
2104 struct inode *inode;
2105 int ret;
2106 size_t buf_size;
2107
2108 if (!capable(CAP_SYS_ADMIN))
2109 return -EPERM;
2110
2111 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2112
2113 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2114 return -EFAULT;
2115
2116 buf_size = sizeof(uargs->buf);
2117
2118 inode = file_inode(file);
2119 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2120
2121 /*
2122 * In the origin implementation an overflow is handled by returning a
2123 * search header with a len of zero, so reset ret.
2124 */
2125 if (ret == -EOVERFLOW)
2126 ret = 0;
2127
2128 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2129 ret = -EFAULT;
2130 return ret;
2131}
2132
2133static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2134 void __user *argp)
2135{
2136 struct btrfs_ioctl_search_args_v2 __user *uarg;
2137 struct btrfs_ioctl_search_args_v2 args;
2138 struct inode *inode;
2139 int ret;
2140 size_t buf_size;
2141 const size_t buf_limit = SZ_16M;
2142
2143 if (!capable(CAP_SYS_ADMIN))
2144 return -EPERM;
2145
2146 /* copy search header and buffer size */
2147 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2148 if (copy_from_user(&args, uarg, sizeof(args)))
2149 return -EFAULT;
2150
2151 buf_size = args.buf_size;
2152
2153 /* limit result size to 16MB */
2154 if (buf_size > buf_limit)
2155 buf_size = buf_limit;
2156
2157 inode = file_inode(file);
2158 ret = search_ioctl(inode, &args.key, &buf_size,
2159 (char __user *)(&uarg->buf[0]));
2160 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2161 ret = -EFAULT;
2162 else if (ret == -EOVERFLOW &&
2163 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2164 ret = -EFAULT;
2165
2166 return ret;
2167}
2168
2169/*
2170 * Search INODE_REFs to identify path name of 'dirid' directory
2171 * in a 'tree_id' tree. and sets path name to 'name'.
2172 */
2173static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2174 u64 tree_id, u64 dirid, char *name)
2175{
2176 struct btrfs_root *root;
2177 struct btrfs_key key;
2178 char *ptr;
2179 int ret = -1;
2180 int slot;
2181 int len;
2182 int total_len = 0;
2183 struct btrfs_inode_ref *iref;
2184 struct extent_buffer *l;
2185 struct btrfs_path *path;
2186
2187 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2188 name[0]='\0';
2189 return 0;
2190 }
2191
2192 path = btrfs_alloc_path();
2193 if (!path)
2194 return -ENOMEM;
2195
2196 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2197
2198 key.objectid = tree_id;
2199 key.type = BTRFS_ROOT_ITEM_KEY;
2200 key.offset = (u64)-1;
2201 root = btrfs_read_fs_root_no_name(info, &key);
2202 if (IS_ERR(root)) {
2203 btrfs_err(info, "could not find root %llu", tree_id);
2204 ret = -ENOENT;
2205 goto out;
2206 }
2207
2208 key.objectid = dirid;
2209 key.type = BTRFS_INODE_REF_KEY;
2210 key.offset = (u64)-1;
2211
2212 while (1) {
2213 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2214 if (ret < 0)
2215 goto out;
2216 else if (ret > 0) {
2217 ret = btrfs_previous_item(root, path, dirid,
2218 BTRFS_INODE_REF_KEY);
2219 if (ret < 0)
2220 goto out;
2221 else if (ret > 0) {
2222 ret = -ENOENT;
2223 goto out;
2224 }
2225 }
2226
2227 l = path->nodes[0];
2228 slot = path->slots[0];
2229 btrfs_item_key_to_cpu(l, &key, slot);
2230
2231 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2232 len = btrfs_inode_ref_name_len(l, iref);
2233 ptr -= len + 1;
2234 total_len += len + 1;
2235 if (ptr < name) {
2236 ret = -ENAMETOOLONG;
2237 goto out;
2238 }
2239
2240 *(ptr + len) = '/';
2241 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2242
2243 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2244 break;
2245
2246 btrfs_release_path(path);
2247 key.objectid = key.offset;
2248 key.offset = (u64)-1;
2249 dirid = key.objectid;
2250 }
2251 memmove(name, ptr, total_len);
2252 name[total_len] = '\0';
2253 ret = 0;
2254out:
2255 btrfs_free_path(path);
2256 return ret;
2257}
2258
2259static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2260 void __user *argp)
2261{
2262 struct btrfs_ioctl_ino_lookup_args *args;
2263 struct inode *inode;
2264 int ret = 0;
2265
2266 args = memdup_user(argp, sizeof(*args));
2267 if (IS_ERR(args))
2268 return PTR_ERR(args);
2269
2270 inode = file_inode(file);
2271
2272 /*
2273 * Unprivileged query to obtain the containing subvolume root id. The
2274 * path is reset so it's consistent with btrfs_search_path_in_tree.
2275 */
2276 if (args->treeid == 0)
2277 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2278
2279 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2280 args->name[0] = 0;
2281 goto out;
2282 }
2283
2284 if (!capable(CAP_SYS_ADMIN)) {
2285 ret = -EPERM;
2286 goto out;
2287 }
2288
2289 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2290 args->treeid, args->objectid,
2291 args->name);
2292
2293out:
2294 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2295 ret = -EFAULT;
2296
2297 kfree(args);
2298 return ret;
2299}
2300
2301static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2302 void __user *arg)
2303{
2304 struct dentry *parent = file->f_path.dentry;
2305 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2306 struct dentry *dentry;
2307 struct inode *dir = d_inode(parent);
2308 struct inode *inode;
2309 struct btrfs_root *root = BTRFS_I(dir)->root;
2310 struct btrfs_root *dest = NULL;
2311 struct btrfs_ioctl_vol_args *vol_args;
2312 struct btrfs_trans_handle *trans;
2313 struct btrfs_block_rsv block_rsv;
2314 u64 root_flags;
2315 u64 qgroup_reserved;
2316 int namelen;
2317 int ret;
2318 int err = 0;
2319
2320 if (!S_ISDIR(dir->i_mode))
2321 return -ENOTDIR;
2322
2323 vol_args = memdup_user(arg, sizeof(*vol_args));
2324 if (IS_ERR(vol_args))
2325 return PTR_ERR(vol_args);
2326
2327 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2328 namelen = strlen(vol_args->name);
2329 if (strchr(vol_args->name, '/') ||
2330 strncmp(vol_args->name, "..", namelen) == 0) {
2331 err = -EINVAL;
2332 goto out;
2333 }
2334
2335 err = mnt_want_write_file(file);
2336 if (err)
2337 goto out;
2338
2339
2340 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2341 if (err == -EINTR)
2342 goto out_drop_write;
2343 dentry = lookup_one_len(vol_args->name, parent, namelen);
2344 if (IS_ERR(dentry)) {
2345 err = PTR_ERR(dentry);
2346 goto out_unlock_dir;
2347 }
2348
2349 if (d_really_is_negative(dentry)) {
2350 err = -ENOENT;
2351 goto out_dput;
2352 }
2353
2354 inode = d_inode(dentry);
2355 dest = BTRFS_I(inode)->root;
2356 if (!capable(CAP_SYS_ADMIN)) {
2357 /*
2358 * Regular user. Only allow this with a special mount
2359 * option, when the user has write+exec access to the
2360 * subvol root, and when rmdir(2) would have been
2361 * allowed.
2362 *
2363 * Note that this is _not_ check that the subvol is
2364 * empty or doesn't contain data that we wouldn't
2365 * otherwise be able to delete.
2366 *
2367 * Users who want to delete empty subvols should try
2368 * rmdir(2).
2369 */
2370 err = -EPERM;
2371 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2372 goto out_dput;
2373
2374 /*
2375 * Do not allow deletion if the parent dir is the same
2376 * as the dir to be deleted. That means the ioctl
2377 * must be called on the dentry referencing the root
2378 * of the subvol, not a random directory contained
2379 * within it.
2380 */
2381 err = -EINVAL;
2382 if (root == dest)
2383 goto out_dput;
2384
2385 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2386 if (err)
2387 goto out_dput;
2388 }
2389
2390 /* check if subvolume may be deleted by a user */
2391 err = btrfs_may_delete(dir, dentry, 1);
2392 if (err)
2393 goto out_dput;
2394
2395 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2396 err = -EINVAL;
2397 goto out_dput;
2398 }
2399
2400 inode_lock(inode);
2401
2402 /*
2403 * Don't allow to delete a subvolume with send in progress. This is
2404 * inside the i_mutex so the error handling that has to drop the bit
2405 * again is not run concurrently.
2406 */
2407 spin_lock(&dest->root_item_lock);
2408 root_flags = btrfs_root_flags(&dest->root_item);
2409 if (dest->send_in_progress == 0) {
2410 btrfs_set_root_flags(&dest->root_item,
2411 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2412 spin_unlock(&dest->root_item_lock);
2413 } else {
2414 spin_unlock(&dest->root_item_lock);
2415 btrfs_warn(fs_info,
2416 "Attempt to delete subvolume %llu during send",
2417 dest->root_key.objectid);
2418 err = -EPERM;
2419 goto out_unlock_inode;
2420 }
2421
2422 down_write(&fs_info->subvol_sem);
2423
2424 err = may_destroy_subvol(dest);
2425 if (err)
2426 goto out_up_write;
2427
2428 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2429 /*
2430 * One for dir inode, two for dir entries, two for root
2431 * ref/backref.
2432 */
2433 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2434 5, &qgroup_reserved, true);
2435 if (err)
2436 goto out_up_write;
2437
2438 trans = btrfs_start_transaction(root, 0);
2439 if (IS_ERR(trans)) {
2440 err = PTR_ERR(trans);
2441 goto out_release;
2442 }
2443 trans->block_rsv = &block_rsv;
2444 trans->bytes_reserved = block_rsv.size;
2445
2446 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2447
2448 ret = btrfs_unlink_subvol(trans, root, dir,
2449 dest->root_key.objectid,
2450 dentry->d_name.name,
2451 dentry->d_name.len);
2452 if (ret) {
2453 err = ret;
2454 btrfs_abort_transaction(trans, ret);
2455 goto out_end_trans;
2456 }
2457
2458 btrfs_record_root_in_trans(trans, dest);
2459
2460 memset(&dest->root_item.drop_progress, 0,
2461 sizeof(dest->root_item.drop_progress));
2462 dest->root_item.drop_level = 0;
2463 btrfs_set_root_refs(&dest->root_item, 0);
2464
2465 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2466 ret = btrfs_insert_orphan_item(trans,
2467 fs_info->tree_root,
2468 dest->root_key.objectid);
2469 if (ret) {
2470 btrfs_abort_transaction(trans, ret);
2471 err = ret;
2472 goto out_end_trans;
2473 }
2474 }
2475
2476 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2477 BTRFS_UUID_KEY_SUBVOL,
2478 dest->root_key.objectid);
2479 if (ret && ret != -ENOENT) {
2480 btrfs_abort_transaction(trans, ret);
2481 err = ret;
2482 goto out_end_trans;
2483 }
2484 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2485 ret = btrfs_uuid_tree_rem(trans, fs_info,
2486 dest->root_item.received_uuid,
2487 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2488 dest->root_key.objectid);
2489 if (ret && ret != -ENOENT) {
2490 btrfs_abort_transaction(trans, ret);
2491 err = ret;
2492 goto out_end_trans;
2493 }
2494 }
2495
2496out_end_trans:
2497 trans->block_rsv = NULL;
2498 trans->bytes_reserved = 0;
2499 ret = btrfs_end_transaction(trans);
2500 if (ret && !err)
2501 err = ret;
2502 inode->i_flags |= S_DEAD;
2503out_release:
2504 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2505out_up_write:
2506 up_write(&fs_info->subvol_sem);
2507 if (err) {
2508 spin_lock(&dest->root_item_lock);
2509 root_flags = btrfs_root_flags(&dest->root_item);
2510 btrfs_set_root_flags(&dest->root_item,
2511 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2512 spin_unlock(&dest->root_item_lock);
2513 }
2514out_unlock_inode:
2515 inode_unlock(inode);
2516 if (!err) {
2517 d_invalidate(dentry);
2518 btrfs_invalidate_inodes(dest);
2519 d_delete(dentry);
2520 ASSERT(dest->send_in_progress == 0);
2521
2522 /* the last ref */
2523 if (dest->ino_cache_inode) {
2524 iput(dest->ino_cache_inode);
2525 dest->ino_cache_inode = NULL;
2526 }
2527 }
2528out_dput:
2529 dput(dentry);
2530out_unlock_dir:
2531 inode_unlock(dir);
2532out_drop_write:
2533 mnt_drop_write_file(file);
2534out:
2535 kfree(vol_args);
2536 return err;
2537}
2538
2539static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2540{
2541 struct inode *inode = file_inode(file);
2542 struct btrfs_root *root = BTRFS_I(inode)->root;
2543 struct btrfs_ioctl_defrag_range_args *range;
2544 int ret;
2545
2546 ret = mnt_want_write_file(file);
2547 if (ret)
2548 return ret;
2549
2550 if (btrfs_root_readonly(root)) {
2551 ret = -EROFS;
2552 goto out;
2553 }
2554
2555 switch (inode->i_mode & S_IFMT) {
2556 case S_IFDIR:
2557 if (!capable(CAP_SYS_ADMIN)) {
2558 ret = -EPERM;
2559 goto out;
2560 }
2561 ret = btrfs_defrag_root(root);
2562 break;
2563 case S_IFREG:
2564 if (!(file->f_mode & FMODE_WRITE)) {
2565 ret = -EINVAL;
2566 goto out;
2567 }
2568
2569 range = kzalloc(sizeof(*range), GFP_KERNEL);
2570 if (!range) {
2571 ret = -ENOMEM;
2572 goto out;
2573 }
2574
2575 if (argp) {
2576 if (copy_from_user(range, argp,
2577 sizeof(*range))) {
2578 ret = -EFAULT;
2579 kfree(range);
2580 goto out;
2581 }
2582 /* compression requires us to start the IO */
2583 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2584 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2585 range->extent_thresh = (u32)-1;
2586 }
2587 } else {
2588 /* the rest are all set to zero by kzalloc */
2589 range->len = (u64)-1;
2590 }
2591 ret = btrfs_defrag_file(file_inode(file), file,
2592 range, BTRFS_OLDEST_GENERATION, 0);
2593 if (ret > 0)
2594 ret = 0;
2595 kfree(range);
2596 break;
2597 default:
2598 ret = -EINVAL;
2599 }
2600out:
2601 mnt_drop_write_file(file);
2602 return ret;
2603}
2604
2605static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2606{
2607 struct btrfs_ioctl_vol_args *vol_args;
2608 int ret;
2609
2610 if (!capable(CAP_SYS_ADMIN))
2611 return -EPERM;
2612
2613 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2614 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2615
2616 mutex_lock(&fs_info->volume_mutex);
2617 vol_args = memdup_user(arg, sizeof(*vol_args));
2618 if (IS_ERR(vol_args)) {
2619 ret = PTR_ERR(vol_args);
2620 goto out;
2621 }
2622
2623 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2624 ret = btrfs_init_new_device(fs_info, vol_args->name);
2625
2626 if (!ret)
2627 btrfs_info(fs_info, "disk added %s", vol_args->name);
2628
2629 kfree(vol_args);
2630out:
2631 mutex_unlock(&fs_info->volume_mutex);
2632 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2633 return ret;
2634}
2635
2636static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2637{
2638 struct inode *inode = file_inode(file);
2639 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2640 struct btrfs_ioctl_vol_args_v2 *vol_args;
2641 int ret;
2642
2643 if (!capable(CAP_SYS_ADMIN))
2644 return -EPERM;
2645
2646 ret = mnt_want_write_file(file);
2647 if (ret)
2648 return ret;
2649
2650 vol_args = memdup_user(arg, sizeof(*vol_args));
2651 if (IS_ERR(vol_args)) {
2652 ret = PTR_ERR(vol_args);
2653 goto err_drop;
2654 }
2655
2656 /* Check for compatibility reject unknown flags */
2657 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2658 return -EOPNOTSUPP;
2659
2660 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2661 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2662 goto out;
2663 }
2664
2665 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2666 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2667 } else {
2668 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2669 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2670 }
2671 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2672
2673 if (!ret) {
2674 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2675 btrfs_info(fs_info, "device deleted: id %llu",
2676 vol_args->devid);
2677 else
2678 btrfs_info(fs_info, "device deleted: %s",
2679 vol_args->name);
2680 }
2681out:
2682 kfree(vol_args);
2683err_drop:
2684 mnt_drop_write_file(file);
2685 return ret;
2686}
2687
2688static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2689{
2690 struct inode *inode = file_inode(file);
2691 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2692 struct btrfs_ioctl_vol_args *vol_args;
2693 int ret;
2694
2695 if (!capable(CAP_SYS_ADMIN))
2696 return -EPERM;
2697
2698 ret = mnt_want_write_file(file);
2699 if (ret)
2700 return ret;
2701
2702 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2703 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2704 goto out_drop_write;
2705 }
2706
2707 vol_args = memdup_user(arg, sizeof(*vol_args));
2708 if (IS_ERR(vol_args)) {
2709 ret = PTR_ERR(vol_args);
2710 goto out;
2711 }
2712
2713 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2714 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2715
2716 if (!ret)
2717 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2718 kfree(vol_args);
2719out:
2720 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2721out_drop_write:
2722 mnt_drop_write_file(file);
2723
2724 return ret;
2725}
2726
2727static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2728 void __user *arg)
2729{
2730 struct btrfs_ioctl_fs_info_args *fi_args;
2731 struct btrfs_device *device;
2732 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2733 int ret = 0;
2734
2735 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2736 if (!fi_args)
2737 return -ENOMEM;
2738
2739 rcu_read_lock();
2740 fi_args->num_devices = fs_devices->num_devices;
2741
2742 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2743 if (device->devid > fi_args->max_id)
2744 fi_args->max_id = device->devid;
2745 }
2746 rcu_read_unlock();
2747
2748 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2749 fi_args->nodesize = fs_info->nodesize;
2750 fi_args->sectorsize = fs_info->sectorsize;
2751 fi_args->clone_alignment = fs_info->sectorsize;
2752
2753 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2754 ret = -EFAULT;
2755
2756 kfree(fi_args);
2757 return ret;
2758}
2759
2760static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2761 void __user *arg)
2762{
2763 struct btrfs_ioctl_dev_info_args *di_args;
2764 struct btrfs_device *dev;
2765 int ret = 0;
2766 char *s_uuid = NULL;
2767
2768 di_args = memdup_user(arg, sizeof(*di_args));
2769 if (IS_ERR(di_args))
2770 return PTR_ERR(di_args);
2771
2772 if (!btrfs_is_empty_uuid(di_args->uuid))
2773 s_uuid = di_args->uuid;
2774
2775 rcu_read_lock();
2776 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2777
2778 if (!dev) {
2779 ret = -ENODEV;
2780 goto out;
2781 }
2782
2783 di_args->devid = dev->devid;
2784 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2785 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2786 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2787 if (dev->name) {
2788 struct rcu_string *name;
2789
2790 name = rcu_dereference(dev->name);
2791 strncpy(di_args->path, name->str, sizeof(di_args->path) - 1);
2792 di_args->path[sizeof(di_args->path) - 1] = 0;
2793 } else {
2794 di_args->path[0] = '\0';
2795 }
2796
2797out:
2798 rcu_read_unlock();
2799 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2800 ret = -EFAULT;
2801
2802 kfree(di_args);
2803 return ret;
2804}
2805
2806static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2807{
2808 struct page *page;
2809
2810 page = grab_cache_page(inode->i_mapping, index);
2811 if (!page)
2812 return ERR_PTR(-ENOMEM);
2813
2814 if (!PageUptodate(page)) {
2815 int ret;
2816
2817 ret = btrfs_readpage(NULL, page);
2818 if (ret)
2819 return ERR_PTR(ret);
2820 lock_page(page);
2821 if (!PageUptodate(page)) {
2822 unlock_page(page);
2823 put_page(page);
2824 return ERR_PTR(-EIO);
2825 }
2826 if (page->mapping != inode->i_mapping) {
2827 unlock_page(page);
2828 put_page(page);
2829 return ERR_PTR(-EAGAIN);
2830 }
2831 }
2832
2833 return page;
2834}
2835
2836static int gather_extent_pages(struct inode *inode, struct page **pages,
2837 int num_pages, u64 off)
2838{
2839 int i;
2840 pgoff_t index = off >> PAGE_SHIFT;
2841
2842 for (i = 0; i < num_pages; i++) {
2843again:
2844 pages[i] = extent_same_get_page(inode, index + i);
2845 if (IS_ERR(pages[i])) {
2846 int err = PTR_ERR(pages[i]);
2847
2848 if (err == -EAGAIN)
2849 goto again;
2850 pages[i] = NULL;
2851 return err;
2852 }
2853 }
2854 return 0;
2855}
2856
2857static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2858 bool retry_range_locking)
2859{
2860 /*
2861 * Do any pending delalloc/csum calculations on inode, one way or
2862 * another, and lock file content.
2863 * The locking order is:
2864 *
2865 * 1) pages
2866 * 2) range in the inode's io tree
2867 */
2868 while (1) {
2869 struct btrfs_ordered_extent *ordered;
2870 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2871 ordered = btrfs_lookup_first_ordered_extent(inode,
2872 off + len - 1);
2873 if ((!ordered ||
2874 ordered->file_offset + ordered->len <= off ||
2875 ordered->file_offset >= off + len) &&
2876 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2877 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2878 if (ordered)
2879 btrfs_put_ordered_extent(ordered);
2880 break;
2881 }
2882 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2883 if (ordered)
2884 btrfs_put_ordered_extent(ordered);
2885 if (!retry_range_locking)
2886 return -EAGAIN;
2887 btrfs_wait_ordered_range(inode, off, len);
2888 }
2889 return 0;
2890}
2891
2892static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2893{
2894 inode_unlock(inode1);
2895 inode_unlock(inode2);
2896}
2897
2898static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2899{
2900 if (inode1 < inode2)
2901 swap(inode1, inode2);
2902
2903 inode_lock_nested(inode1, I_MUTEX_PARENT);
2904 inode_lock_nested(inode2, I_MUTEX_CHILD);
2905}
2906
2907static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2908 struct inode *inode2, u64 loff2, u64 len)
2909{
2910 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2911 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2912}
2913
2914static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2915 struct inode *inode2, u64 loff2, u64 len,
2916 bool retry_range_locking)
2917{
2918 int ret;
2919
2920 if (inode1 < inode2) {
2921 swap(inode1, inode2);
2922 swap(loff1, loff2);
2923 }
2924 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2925 if (ret)
2926 return ret;
2927 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2928 if (ret)
2929 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2930 loff1 + len - 1);
2931 return ret;
2932}
2933
2934struct cmp_pages {
2935 int num_pages;
2936 struct page **src_pages;
2937 struct page **dst_pages;
2938};
2939
2940static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2941{
2942 int i;
2943 struct page *pg;
2944
2945 for (i = 0; i < cmp->num_pages; i++) {
2946 pg = cmp->src_pages[i];
2947 if (pg) {
2948 unlock_page(pg);
2949 put_page(pg);
2950 }
2951 pg = cmp->dst_pages[i];
2952 if (pg) {
2953 unlock_page(pg);
2954 put_page(pg);
2955 }
2956 }
2957 kfree(cmp->src_pages);
2958 kfree(cmp->dst_pages);
2959}
2960
2961static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2962 struct inode *dst, u64 dst_loff,
2963 u64 len, struct cmp_pages *cmp)
2964{
2965 int ret;
2966 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2967 struct page **src_pgarr, **dst_pgarr;
2968
2969 /*
2970 * We must gather up all the pages before we initiate our
2971 * extent locking. We use an array for the page pointers. Size
2972 * of the array is bounded by len, which is in turn bounded by
2973 * BTRFS_MAX_DEDUPE_LEN.
2974 */
2975 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2976 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2977 if (!src_pgarr || !dst_pgarr) {
2978 kfree(src_pgarr);
2979 kfree(dst_pgarr);
2980 return -ENOMEM;
2981 }
2982 cmp->num_pages = num_pages;
2983 cmp->src_pages = src_pgarr;
2984 cmp->dst_pages = dst_pgarr;
2985
2986 /*
2987 * If deduping ranges in the same inode, locking rules make it mandatory
2988 * to always lock pages in ascending order to avoid deadlocks with
2989 * concurrent tasks (such as starting writeback/delalloc).
2990 */
2991 if (src == dst && dst_loff < loff) {
2992 swap(src_pgarr, dst_pgarr);
2993 swap(loff, dst_loff);
2994 }
2995
2996 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
2997 if (ret)
2998 goto out;
2999
3000 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3001
3002out:
3003 if (ret)
3004 btrfs_cmp_data_free(cmp);
3005 return ret;
3006}
3007
3008static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3009{
3010 int ret = 0;
3011 int i;
3012 struct page *src_page, *dst_page;
3013 unsigned int cmp_len = PAGE_SIZE;
3014 void *addr, *dst_addr;
3015
3016 i = 0;
3017 while (len) {
3018 if (len < PAGE_SIZE)
3019 cmp_len = len;
3020
3021 BUG_ON(i >= cmp->num_pages);
3022
3023 src_page = cmp->src_pages[i];
3024 dst_page = cmp->dst_pages[i];
3025 ASSERT(PageLocked(src_page));
3026 ASSERT(PageLocked(dst_page));
3027
3028 addr = kmap_atomic(src_page);
3029 dst_addr = kmap_atomic(dst_page);
3030
3031 flush_dcache_page(src_page);
3032 flush_dcache_page(dst_page);
3033
3034 if (memcmp(addr, dst_addr, cmp_len))
3035 ret = -EBADE;
3036
3037 kunmap_atomic(addr);
3038 kunmap_atomic(dst_addr);
3039
3040 if (ret)
3041 break;
3042
3043 len -= cmp_len;
3044 i++;
3045 }
3046
3047 return ret;
3048}
3049
3050static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3051 u64 olen)
3052{
3053 u64 len = *plen;
3054 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3055
3056 if (off + olen > inode->i_size || off + olen < off)
3057 return -EINVAL;
3058
3059 /* if we extend to eof, continue to block boundary */
3060 if (off + len == inode->i_size)
3061 *plen = len = ALIGN(inode->i_size, bs) - off;
3062
3063 /* Check that we are block aligned - btrfs_clone() requires this */
3064 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3065 return -EINVAL;
3066
3067 return 0;
3068}
3069
3070static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3071 struct inode *dst, u64 dst_loff)
3072{
3073 int ret;
3074 u64 len = olen;
3075 struct cmp_pages cmp;
3076 bool same_inode = (src == dst);
3077 u64 same_lock_start = 0;
3078 u64 same_lock_len = 0;
3079
3080 if (len == 0)
3081 return 0;
3082
3083 if (same_inode)
3084 inode_lock(src);
3085 else
3086 btrfs_double_inode_lock(src, dst);
3087
3088 ret = extent_same_check_offsets(src, loff, &len, olen);
3089 if (ret)
3090 goto out_unlock;
3091
3092 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3093 if (ret)
3094 goto out_unlock;
3095
3096 if (same_inode) {
3097 /*
3098 * Single inode case wants the same checks, except we
3099 * don't want our length pushed out past i_size as
3100 * comparing that data range makes no sense.
3101 *
3102 * extent_same_check_offsets() will do this for an
3103 * unaligned length at i_size, so catch it here and
3104 * reject the request.
3105 *
3106 * This effectively means we require aligned extents
3107 * for the single-inode case, whereas the other cases
3108 * allow an unaligned length so long as it ends at
3109 * i_size.
3110 */
3111 if (len != olen) {
3112 ret = -EINVAL;
3113 goto out_unlock;
3114 }
3115
3116 /* Check for overlapping ranges */
3117 if (dst_loff + len > loff && dst_loff < loff + len) {
3118 ret = -EINVAL;
3119 goto out_unlock;
3120 }
3121
3122 same_lock_start = min_t(u64, loff, dst_loff);
3123 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3124 }
3125
3126 /* don't make the dst file partly checksummed */
3127 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3128 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3129 ret = -EINVAL;
3130 goto out_unlock;
3131 }
3132
3133again:
3134 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3135 if (ret)
3136 goto out_unlock;
3137
3138 if (same_inode)
3139 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3140 false);
3141 else
3142 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3143 false);
3144 /*
3145 * If one of the inodes has dirty pages in the respective range or
3146 * ordered extents, we need to flush dellaloc and wait for all ordered
3147 * extents in the range. We must unlock the pages and the ranges in the
3148 * io trees to avoid deadlocks when flushing delalloc (requires locking
3149 * pages) and when waiting for ordered extents to complete (they require
3150 * range locking).
3151 */
3152 if (ret == -EAGAIN) {
3153 /*
3154 * Ranges in the io trees already unlocked. Now unlock all
3155 * pages before waiting for all IO to complete.
3156 */
3157 btrfs_cmp_data_free(&cmp);
3158 if (same_inode) {
3159 btrfs_wait_ordered_range(src, same_lock_start,
3160 same_lock_len);
3161 } else {
3162 btrfs_wait_ordered_range(src, loff, len);
3163 btrfs_wait_ordered_range(dst, dst_loff, len);
3164 }
3165 goto again;
3166 }
3167 ASSERT(ret == 0);
3168 if (WARN_ON(ret)) {
3169 /* ranges in the io trees already unlocked */
3170 btrfs_cmp_data_free(&cmp);
3171 return ret;
3172 }
3173
3174 /* pass original length for comparison so we stay within i_size */
3175 ret = btrfs_cmp_data(olen, &cmp);
3176 if (ret == 0)
3177 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3178
3179 if (same_inode)
3180 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3181 same_lock_start + same_lock_len - 1);
3182 else
3183 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3184
3185 btrfs_cmp_data_free(&cmp);
3186out_unlock:
3187 if (same_inode)
3188 inode_unlock(src);
3189 else
3190 btrfs_double_inode_unlock(src, dst);
3191
3192 return ret;
3193}
3194
3195#define BTRFS_MAX_DEDUPE_LEN SZ_16M
3196
3197ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3198 struct file *dst_file, u64 dst_loff)
3199{
3200 struct inode *src = file_inode(src_file);
3201 struct inode *dst = file_inode(dst_file);
3202 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3203 ssize_t res;
3204
3205 if (olen > BTRFS_MAX_DEDUPE_LEN)
3206 olen = BTRFS_MAX_DEDUPE_LEN;
3207
3208 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3209 /*
3210 * Btrfs does not support blocksize < page_size. As a
3211 * result, btrfs_cmp_data() won't correctly handle
3212 * this situation without an update.
3213 */
3214 return -EINVAL;
3215 }
3216
3217 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3218 if (res)
3219 return res;
3220 return olen;
3221}
3222
3223static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3224 struct inode *inode,
3225 u64 endoff,
3226 const u64 destoff,
3227 const u64 olen,
3228 int no_time_update)
3229{
3230 struct btrfs_root *root = BTRFS_I(inode)->root;
3231 int ret;
3232
3233 inode_inc_iversion(inode);
3234 if (!no_time_update)
3235 inode->i_mtime = inode->i_ctime = current_time(inode);
3236 /*
3237 * We round up to the block size at eof when determining which
3238 * extents to clone above, but shouldn't round up the file size.
3239 */
3240 if (endoff > destoff + olen)
3241 endoff = destoff + olen;
3242 if (endoff > inode->i_size)
3243 btrfs_i_size_write(BTRFS_I(inode), endoff);
3244
3245 ret = btrfs_update_inode(trans, root, inode);
3246 if (ret) {
3247 btrfs_abort_transaction(trans, ret);
3248 btrfs_end_transaction(trans);
3249 goto out;
3250 }
3251 ret = btrfs_end_transaction(trans);
3252out:
3253 return ret;
3254}
3255
3256static void clone_update_extent_map(struct btrfs_inode *inode,
3257 const struct btrfs_trans_handle *trans,
3258 const struct btrfs_path *path,
3259 const u64 hole_offset,
3260 const u64 hole_len)
3261{
3262 struct extent_map_tree *em_tree = &inode->extent_tree;
3263 struct extent_map *em;
3264 int ret;
3265
3266 em = alloc_extent_map();
3267 if (!em) {
3268 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3269 return;
3270 }
3271
3272 if (path) {
3273 struct btrfs_file_extent_item *fi;
3274
3275 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3276 struct btrfs_file_extent_item);
3277 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3278 em->generation = -1;
3279 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3280 BTRFS_FILE_EXTENT_INLINE)
3281 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3282 &inode->runtime_flags);
3283 } else {
3284 em->start = hole_offset;
3285 em->len = hole_len;
3286 em->ram_bytes = em->len;
3287 em->orig_start = hole_offset;
3288 em->block_start = EXTENT_MAP_HOLE;
3289 em->block_len = 0;
3290 em->orig_block_len = 0;
3291 em->compress_type = BTRFS_COMPRESS_NONE;
3292 em->generation = trans->transid;
3293 }
3294
3295 while (1) {
3296 write_lock(&em_tree->lock);
3297 ret = add_extent_mapping(em_tree, em, 1);
3298 write_unlock(&em_tree->lock);
3299 if (ret != -EEXIST) {
3300 free_extent_map(em);
3301 break;
3302 }
3303 btrfs_drop_extent_cache(inode, em->start,
3304 em->start + em->len - 1, 0);
3305 }
3306
3307 if (ret)
3308 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3309}
3310
3311/*
3312 * Make sure we do not end up inserting an inline extent into a file that has
3313 * already other (non-inline) extents. If a file has an inline extent it can
3314 * not have any other extents and the (single) inline extent must start at the
3315 * file offset 0. Failing to respect these rules will lead to file corruption,
3316 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3317 *
3318 * We can have extents that have been already written to disk or we can have
3319 * dirty ranges still in delalloc, in which case the extent maps and items are
3320 * created only when we run delalloc, and the delalloc ranges might fall outside
3321 * the range we are currently locking in the inode's io tree. So we check the
3322 * inode's i_size because of that (i_size updates are done while holding the
3323 * i_mutex, which we are holding here).
3324 * We also check to see if the inode has a size not greater than "datal" but has
3325 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3326 * protected against such concurrent fallocate calls by the i_mutex).
3327 *
3328 * If the file has no extents but a size greater than datal, do not allow the
3329 * copy because we would need turn the inline extent into a non-inline one (even
3330 * with NO_HOLES enabled). If we find our destination inode only has one inline
3331 * extent, just overwrite it with the source inline extent if its size is less
3332 * than the source extent's size, or we could copy the source inline extent's
3333 * data into the destination inode's inline extent if the later is greater then
3334 * the former.
3335 */
3336static int clone_copy_inline_extent(struct inode *dst,
3337 struct btrfs_trans_handle *trans,
3338 struct btrfs_path *path,
3339 struct btrfs_key *new_key,
3340 const u64 drop_start,
3341 const u64 datal,
3342 const u64 skip,
3343 const u64 size,
3344 char *inline_data)
3345{
3346 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3347 struct btrfs_root *root = BTRFS_I(dst)->root;
3348 const u64 aligned_end = ALIGN(new_key->offset + datal,
3349 fs_info->sectorsize);
3350 int ret;
3351 struct btrfs_key key;
3352
3353 if (new_key->offset > 0)
3354 return -EOPNOTSUPP;
3355
3356 key.objectid = btrfs_ino(BTRFS_I(dst));
3357 key.type = BTRFS_EXTENT_DATA_KEY;
3358 key.offset = 0;
3359 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3360 if (ret < 0) {
3361 return ret;
3362 } else if (ret > 0) {
3363 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3364 ret = btrfs_next_leaf(root, path);
3365 if (ret < 0)
3366 return ret;
3367 else if (ret > 0)
3368 goto copy_inline_extent;
3369 }
3370 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3371 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3372 key.type == BTRFS_EXTENT_DATA_KEY) {
3373 ASSERT(key.offset > 0);
3374 return -EOPNOTSUPP;
3375 }
3376 } else if (i_size_read(dst) <= datal) {
3377 struct btrfs_file_extent_item *ei;
3378 u64 ext_len;
3379
3380 /*
3381 * If the file size is <= datal, make sure there are no other
3382 * extents following (can happen do to an fallocate call with
3383 * the flag FALLOC_FL_KEEP_SIZE).
3384 */
3385 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3386 struct btrfs_file_extent_item);
3387 /*
3388 * If it's an inline extent, it can not have other extents
3389 * following it.
3390 */
3391 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3392 BTRFS_FILE_EXTENT_INLINE)
3393 goto copy_inline_extent;
3394
3395 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3396 if (ext_len > aligned_end)
3397 return -EOPNOTSUPP;
3398
3399 ret = btrfs_next_item(root, path);
3400 if (ret < 0) {
3401 return ret;
3402 } else if (ret == 0) {
3403 btrfs_item_key_to_cpu(path->nodes[0], &key,
3404 path->slots[0]);
3405 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3406 key.type == BTRFS_EXTENT_DATA_KEY)
3407 return -EOPNOTSUPP;
3408 }
3409 }
3410
3411copy_inline_extent:
3412 /*
3413 * We have no extent items, or we have an extent at offset 0 which may
3414 * or may not be inlined. All these cases are dealt the same way.
3415 */
3416 if (i_size_read(dst) > datal) {
3417 /*
3418 * If the destination inode has an inline extent...
3419 * This would require copying the data from the source inline
3420 * extent into the beginning of the destination's inline extent.
3421 * But this is really complex, both extents can be compressed
3422 * or just one of them, which would require decompressing and
3423 * re-compressing data (which could increase the new compressed
3424 * size, not allowing the compressed data to fit anymore in an
3425 * inline extent).
3426 * So just don't support this case for now (it should be rare,
3427 * we are not really saving space when cloning inline extents).
3428 */
3429 return -EOPNOTSUPP;
3430 }
3431
3432 btrfs_release_path(path);
3433 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3434 if (ret)
3435 return ret;
3436 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3437 if (ret)
3438 return ret;
3439
3440 if (skip) {
3441 const u32 start = btrfs_file_extent_calc_inline_size(0);
3442
3443 memmove(inline_data + start, inline_data + start + skip, datal);
3444 }
3445
3446 write_extent_buffer(path->nodes[0], inline_data,
3447 btrfs_item_ptr_offset(path->nodes[0],
3448 path->slots[0]),
3449 size);
3450 inode_add_bytes(dst, datal);
3451
3452 return 0;
3453}
3454
3455/**
3456 * btrfs_clone() - clone a range from inode file to another
3457 *
3458 * @src: Inode to clone from
3459 * @inode: Inode to clone to
3460 * @off: Offset within source to start clone from
3461 * @olen: Original length, passed by user, of range to clone
3462 * @olen_aligned: Block-aligned value of olen
3463 * @destoff: Offset within @inode to start clone
3464 * @no_time_update: Whether to update mtime/ctime on the target inode
3465 */
3466static int btrfs_clone(struct inode *src, struct inode *inode,
3467 const u64 off, const u64 olen, const u64 olen_aligned,
3468 const u64 destoff, int no_time_update)
3469{
3470 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3471 struct btrfs_root *root = BTRFS_I(inode)->root;
3472 struct btrfs_path *path = NULL;
3473 struct extent_buffer *leaf;
3474 struct btrfs_trans_handle *trans;
3475 char *buf = NULL;
3476 struct btrfs_key key;
3477 u32 nritems;
3478 int slot;
3479 int ret;
3480 const u64 len = olen_aligned;
3481 u64 last_dest_end = destoff;
3482
3483 ret = -ENOMEM;
3484 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3485 if (!buf)
3486 return ret;
3487
3488 path = btrfs_alloc_path();
3489 if (!path) {
3490 kvfree(buf);
3491 return ret;
3492 }
3493
3494 path->reada = READA_FORWARD;
3495 /* clone data */
3496 key.objectid = btrfs_ino(BTRFS_I(src));
3497 key.type = BTRFS_EXTENT_DATA_KEY;
3498 key.offset = off;
3499
3500 while (1) {
3501 u64 next_key_min_offset = key.offset + 1;
3502
3503 /*
3504 * note the key will change type as we walk through the
3505 * tree.
3506 */
3507 path->leave_spinning = 1;
3508 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3509 0, 0);
3510 if (ret < 0)
3511 goto out;
3512 /*
3513 * First search, if no extent item that starts at offset off was
3514 * found but the previous item is an extent item, it's possible
3515 * it might overlap our target range, therefore process it.
3516 */
3517 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3518 btrfs_item_key_to_cpu(path->nodes[0], &key,
3519 path->slots[0] - 1);
3520 if (key.type == BTRFS_EXTENT_DATA_KEY)
3521 path->slots[0]--;
3522 }
3523
3524 nritems = btrfs_header_nritems(path->nodes[0]);
3525process_slot:
3526 if (path->slots[0] >= nritems) {
3527 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3528 if (ret < 0)
3529 goto out;
3530 if (ret > 0)
3531 break;
3532 nritems = btrfs_header_nritems(path->nodes[0]);
3533 }
3534 leaf = path->nodes[0];
3535 slot = path->slots[0];
3536
3537 btrfs_item_key_to_cpu(leaf, &key, slot);
3538 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3539 key.objectid != btrfs_ino(BTRFS_I(src)))
3540 break;
3541
3542 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3543 struct btrfs_file_extent_item *extent;
3544 int type;
3545 u32 size;
3546 struct btrfs_key new_key;
3547 u64 disko = 0, diskl = 0;
3548 u64 datao = 0, datal = 0;
3549 u8 comp;
3550 u64 drop_start;
3551
3552 extent = btrfs_item_ptr(leaf, slot,
3553 struct btrfs_file_extent_item);
3554 comp = btrfs_file_extent_compression(leaf, extent);
3555 type = btrfs_file_extent_type(leaf, extent);
3556 if (type == BTRFS_FILE_EXTENT_REG ||
3557 type == BTRFS_FILE_EXTENT_PREALLOC) {
3558 disko = btrfs_file_extent_disk_bytenr(leaf,
3559 extent);
3560 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3561 extent);
3562 datao = btrfs_file_extent_offset(leaf, extent);
3563 datal = btrfs_file_extent_num_bytes(leaf,
3564 extent);
3565 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3566 /* take upper bound, may be compressed */
3567 datal = btrfs_file_extent_ram_bytes(leaf,
3568 extent);
3569 }
3570
3571 /*
3572 * The first search might have left us at an extent
3573 * item that ends before our target range's start, can
3574 * happen if we have holes and NO_HOLES feature enabled.
3575 */
3576 if (key.offset + datal <= off) {
3577 path->slots[0]++;
3578 goto process_slot;
3579 } else if (key.offset >= off + len) {
3580 break;
3581 }
3582 next_key_min_offset = key.offset + datal;
3583 size = btrfs_item_size_nr(leaf, slot);
3584 read_extent_buffer(leaf, buf,
3585 btrfs_item_ptr_offset(leaf, slot),
3586 size);
3587
3588 btrfs_release_path(path);
3589 path->leave_spinning = 0;
3590
3591 memcpy(&new_key, &key, sizeof(new_key));
3592 new_key.objectid = btrfs_ino(BTRFS_I(inode));
3593 if (off <= key.offset)
3594 new_key.offset = key.offset + destoff - off;
3595 else
3596 new_key.offset = destoff;
3597
3598 /*
3599 * Deal with a hole that doesn't have an extent item
3600 * that represents it (NO_HOLES feature enabled).
3601 * This hole is either in the middle of the cloning
3602 * range or at the beginning (fully overlaps it or
3603 * partially overlaps it).
3604 */
3605 if (new_key.offset != last_dest_end)
3606 drop_start = last_dest_end;
3607 else
3608 drop_start = new_key.offset;
3609
3610 /*
3611 * 1 - adjusting old extent (we may have to split it)
3612 * 1 - add new extent
3613 * 1 - inode update
3614 */
3615 trans = btrfs_start_transaction(root, 3);
3616 if (IS_ERR(trans)) {
3617 ret = PTR_ERR(trans);
3618 goto out;
3619 }
3620
3621 if (type == BTRFS_FILE_EXTENT_REG ||
3622 type == BTRFS_FILE_EXTENT_PREALLOC) {
3623 /*
3624 * a | --- range to clone ---| b
3625 * | ------------- extent ------------- |
3626 */
3627
3628 /* subtract range b */
3629 if (key.offset + datal > off + len)
3630 datal = off + len - key.offset;
3631
3632 /* subtract range a */
3633 if (off > key.offset) {
3634 datao += off - key.offset;
3635 datal -= off - key.offset;
3636 }
3637
3638 ret = btrfs_drop_extents(trans, root, inode,
3639 drop_start,
3640 new_key.offset + datal,
3641 1);
3642 if (ret) {
3643 if (ret != -EOPNOTSUPP)
3644 btrfs_abort_transaction(trans,
3645 ret);
3646 btrfs_end_transaction(trans);
3647 goto out;
3648 }
3649
3650 ret = btrfs_insert_empty_item(trans, root, path,
3651 &new_key, size);
3652 if (ret) {
3653 btrfs_abort_transaction(trans, ret);
3654 btrfs_end_transaction(trans);
3655 goto out;
3656 }
3657
3658 leaf = path->nodes[0];
3659 slot = path->slots[0];
3660 write_extent_buffer(leaf, buf,
3661 btrfs_item_ptr_offset(leaf, slot),
3662 size);
3663
3664 extent = btrfs_item_ptr(leaf, slot,
3665 struct btrfs_file_extent_item);
3666
3667 /* disko == 0 means it's a hole */
3668 if (!disko)
3669 datao = 0;
3670
3671 btrfs_set_file_extent_offset(leaf, extent,
3672 datao);
3673 btrfs_set_file_extent_num_bytes(leaf, extent,
3674 datal);
3675
3676 if (disko) {
3677 inode_add_bytes(inode, datal);
3678 ret = btrfs_inc_extent_ref(trans,
3679 root,
3680 disko, diskl, 0,
3681 root->root_key.objectid,
3682 btrfs_ino(BTRFS_I(inode)),
3683 new_key.offset - datao);
3684 if (ret) {
3685 btrfs_abort_transaction(trans,
3686 ret);
3687 btrfs_end_transaction(trans);
3688 goto out;
3689
3690 }
3691 }
3692 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3693 u64 skip = 0;
3694 u64 trim = 0;
3695
3696 if (off > key.offset) {
3697 skip = off - key.offset;
3698 new_key.offset += skip;
3699 }
3700
3701 if (key.offset + datal > off + len)
3702 trim = key.offset + datal - (off + len);
3703
3704 if (comp && (skip || trim)) {
3705 ret = -EINVAL;
3706 btrfs_end_transaction(trans);
3707 goto out;
3708 }
3709 size -= skip + trim;
3710 datal -= skip + trim;
3711
3712 ret = clone_copy_inline_extent(inode,
3713 trans, path,
3714 &new_key,
3715 drop_start,
3716 datal,
3717 skip, size, buf);
3718 if (ret) {
3719 if (ret != -EOPNOTSUPP)
3720 btrfs_abort_transaction(trans,
3721 ret);
3722 btrfs_end_transaction(trans);
3723 goto out;
3724 }
3725 leaf = path->nodes[0];
3726 slot = path->slots[0];
3727 }
3728
3729 /* If we have an implicit hole (NO_HOLES feature). */
3730 if (drop_start < new_key.offset)
3731 clone_update_extent_map(BTRFS_I(inode), trans,
3732 NULL, drop_start,
3733 new_key.offset - drop_start);
3734
3735 clone_update_extent_map(BTRFS_I(inode), trans,
3736 path, 0, 0);
3737
3738 btrfs_mark_buffer_dirty(leaf);
3739 btrfs_release_path(path);
3740
3741 last_dest_end = ALIGN(new_key.offset + datal,
3742 fs_info->sectorsize);
3743 ret = clone_finish_inode_update(trans, inode,
3744 last_dest_end,
3745 destoff, olen,
3746 no_time_update);
3747 if (ret)
3748 goto out;
3749 if (new_key.offset + datal >= destoff + len)
3750 break;
3751 }
3752 btrfs_release_path(path);
3753 key.offset = next_key_min_offset;
3754
3755 if (fatal_signal_pending(current)) {
3756 ret = -EINTR;
3757 goto out;
3758 }
3759 }
3760 ret = 0;
3761
3762 if (last_dest_end < destoff + len) {
3763 /*
3764 * We have an implicit hole (NO_HOLES feature is enabled) that
3765 * fully or partially overlaps our cloning range at its end.
3766 */
3767 btrfs_release_path(path);
3768
3769 /*
3770 * 1 - remove extent(s)
3771 * 1 - inode update
3772 */
3773 trans = btrfs_start_transaction(root, 2);
3774 if (IS_ERR(trans)) {
3775 ret = PTR_ERR(trans);
3776 goto out;
3777 }
3778 ret = btrfs_drop_extents(trans, root, inode,
3779 last_dest_end, destoff + len, 1);
3780 if (ret) {
3781 if (ret != -EOPNOTSUPP)
3782 btrfs_abort_transaction(trans, ret);
3783 btrfs_end_transaction(trans);
3784 goto out;
3785 }
3786 clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3787 last_dest_end,
3788 destoff + len - last_dest_end);
3789 ret = clone_finish_inode_update(trans, inode, destoff + len,
3790 destoff, olen, no_time_update);
3791 }
3792
3793out:
3794 btrfs_free_path(path);
3795 kvfree(buf);
3796 return ret;
3797}
3798
3799static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3800 u64 off, u64 olen, u64 destoff)
3801{
3802 struct inode *inode = file_inode(file);
3803 struct inode *src = file_inode(file_src);
3804 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3805 struct btrfs_root *root = BTRFS_I(inode)->root;
3806 int ret;
3807 u64 len = olen;
3808 u64 bs = fs_info->sb->s_blocksize;
3809 int same_inode = src == inode;
3810
3811 /*
3812 * TODO:
3813 * - split compressed inline extents. annoying: we need to
3814 * decompress into destination's address_space (the file offset
3815 * may change, so source mapping won't do), then recompress (or
3816 * otherwise reinsert) a subrange.
3817 *
3818 * - split destination inode's inline extents. The inline extents can
3819 * be either compressed or non-compressed.
3820 */
3821
3822 if (btrfs_root_readonly(root))
3823 return -EROFS;
3824
3825 if (file_src->f_path.mnt != file->f_path.mnt ||
3826 src->i_sb != inode->i_sb)
3827 return -EXDEV;
3828
3829 /* don't make the dst file partly checksummed */
3830 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3831 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3832 return -EINVAL;
3833
3834 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3835 return -EISDIR;
3836
3837 if (!same_inode) {
3838 btrfs_double_inode_lock(src, inode);
3839 } else {
3840 inode_lock(src);
3841 }
3842
3843 /* determine range to clone */
3844 ret = -EINVAL;
3845 if (off + len > src->i_size || off + len < off)
3846 goto out_unlock;
3847 if (len == 0)
3848 olen = len = src->i_size - off;
3849 /* if we extend to eof, continue to block boundary */
3850 if (off + len == src->i_size)
3851 len = ALIGN(src->i_size, bs) - off;
3852
3853 if (len == 0) {
3854 ret = 0;
3855 goto out_unlock;
3856 }
3857
3858 /* verify the end result is block aligned */
3859 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3860 !IS_ALIGNED(destoff, bs))
3861 goto out_unlock;
3862
3863 /* verify if ranges are overlapped within the same file */
3864 if (same_inode) {
3865 if (destoff + len > off && destoff < off + len)
3866 goto out_unlock;
3867 }
3868
3869 if (destoff > inode->i_size) {
3870 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3871 if (ret)
3872 goto out_unlock;
3873 }
3874
3875 /*
3876 * Lock the target range too. Right after we replace the file extent
3877 * items in the fs tree (which now point to the cloned data), we might
3878 * have a worker replace them with extent items relative to a write
3879 * operation that was issued before this clone operation (i.e. confront
3880 * with inode.c:btrfs_finish_ordered_io).
3881 */
3882 if (same_inode) {
3883 u64 lock_start = min_t(u64, off, destoff);
3884 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3885
3886 ret = lock_extent_range(src, lock_start, lock_len, true);
3887 } else {
3888 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3889 true);
3890 }
3891 ASSERT(ret == 0);
3892 if (WARN_ON(ret)) {
3893 /* ranges in the io trees already unlocked */
3894 goto out_unlock;
3895 }
3896
3897 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3898
3899 if (same_inode) {
3900 u64 lock_start = min_t(u64, off, destoff);
3901 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3902
3903 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3904 } else {
3905 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3906 }
3907 /*
3908 * Truncate page cache pages so that future reads will see the cloned
3909 * data immediately and not the previous data.
3910 */
3911 truncate_inode_pages_range(&inode->i_data,
3912 round_down(destoff, PAGE_SIZE),
3913 round_up(destoff + len, PAGE_SIZE) - 1);
3914out_unlock:
3915 if (!same_inode)
3916 btrfs_double_inode_unlock(src, inode);
3917 else
3918 inode_unlock(src);
3919 return ret;
3920}
3921
3922int btrfs_clone_file_range(struct file *src_file, loff_t off,
3923 struct file *dst_file, loff_t destoff, u64 len)
3924{
3925 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3926}
3927
3928static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3929{
3930 struct inode *inode = file_inode(file);
3931 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3932 struct btrfs_root *root = BTRFS_I(inode)->root;
3933 struct btrfs_root *new_root;
3934 struct btrfs_dir_item *di;
3935 struct btrfs_trans_handle *trans;
3936 struct btrfs_path *path;
3937 struct btrfs_key location;
3938 struct btrfs_disk_key disk_key;
3939 u64 objectid = 0;
3940 u64 dir_id;
3941 int ret;
3942
3943 if (!capable(CAP_SYS_ADMIN))
3944 return -EPERM;
3945
3946 ret = mnt_want_write_file(file);
3947 if (ret)
3948 return ret;
3949
3950 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3951 ret = -EFAULT;
3952 goto out;
3953 }
3954
3955 if (!objectid)
3956 objectid = BTRFS_FS_TREE_OBJECTID;
3957
3958 location.objectid = objectid;
3959 location.type = BTRFS_ROOT_ITEM_KEY;
3960 location.offset = (u64)-1;
3961
3962 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
3963 if (IS_ERR(new_root)) {
3964 ret = PTR_ERR(new_root);
3965 goto out;
3966 }
3967 if (!is_fstree(new_root->objectid)) {
3968 ret = -ENOENT;
3969 goto out;
3970 }
3971
3972 path = btrfs_alloc_path();
3973 if (!path) {
3974 ret = -ENOMEM;
3975 goto out;
3976 }
3977 path->leave_spinning = 1;
3978
3979 trans = btrfs_start_transaction(root, 1);
3980 if (IS_ERR(trans)) {
3981 btrfs_free_path(path);
3982 ret = PTR_ERR(trans);
3983 goto out;
3984 }
3985
3986 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3987 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3988 dir_id, "default", 7, 1);
3989 if (IS_ERR_OR_NULL(di)) {
3990 btrfs_free_path(path);
3991 btrfs_end_transaction(trans);
3992 btrfs_err(fs_info,
3993 "Umm, you don't have the default diritem, this isn't going to work");
3994 ret = -ENOENT;
3995 goto out;
3996 }
3997
3998 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3999 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4000 btrfs_mark_buffer_dirty(path->nodes[0]);
4001 btrfs_free_path(path);
4002
4003 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4004 btrfs_end_transaction(trans);
4005out:
4006 mnt_drop_write_file(file);
4007 return ret;
4008}
4009
4010void btrfs_get_block_group_info(struct list_head *groups_list,
4011 struct btrfs_ioctl_space_info *space)
4012{
4013 struct btrfs_block_group_cache *block_group;
4014
4015 space->total_bytes = 0;
4016 space->used_bytes = 0;
4017 space->flags = 0;
4018 list_for_each_entry(block_group, groups_list, list) {
4019 space->flags = block_group->flags;
4020 space->total_bytes += block_group->key.offset;
4021 space->used_bytes +=
4022 btrfs_block_group_used(&block_group->item);
4023 }
4024}
4025
4026static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4027 void __user *arg)
4028{
4029 struct btrfs_ioctl_space_args space_args;
4030 struct btrfs_ioctl_space_info space;
4031 struct btrfs_ioctl_space_info *dest;
4032 struct btrfs_ioctl_space_info *dest_orig;
4033 struct btrfs_ioctl_space_info __user *user_dest;
4034 struct btrfs_space_info *info;
4035 static const u64 types[] = {
4036 BTRFS_BLOCK_GROUP_DATA,
4037 BTRFS_BLOCK_GROUP_SYSTEM,
4038 BTRFS_BLOCK_GROUP_METADATA,
4039 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4040 };
4041 int num_types = 4;
4042 int alloc_size;
4043 int ret = 0;
4044 u64 slot_count = 0;
4045 int i, c;
4046
4047 if (copy_from_user(&space_args,
4048 (struct btrfs_ioctl_space_args __user *)arg,
4049 sizeof(space_args)))
4050 return -EFAULT;
4051
4052 for (i = 0; i < num_types; i++) {
4053 struct btrfs_space_info *tmp;
4054
4055 info = NULL;
4056 rcu_read_lock();
4057 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4058 list) {
4059 if (tmp->flags == types[i]) {
4060 info = tmp;
4061 break;
4062 }
4063 }
4064 rcu_read_unlock();
4065
4066 if (!info)
4067 continue;
4068
4069 down_read(&info->groups_sem);
4070 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4071 if (!list_empty(&info->block_groups[c]))
4072 slot_count++;
4073 }
4074 up_read(&info->groups_sem);
4075 }
4076
4077 /*
4078 * Global block reserve, exported as a space_info
4079 */
4080 slot_count++;
4081
4082 /* space_slots == 0 means they are asking for a count */
4083 if (space_args.space_slots == 0) {
4084 space_args.total_spaces = slot_count;
4085 goto out;
4086 }
4087
4088 slot_count = min_t(u64, space_args.space_slots, slot_count);
4089
4090 alloc_size = sizeof(*dest) * slot_count;
4091
4092 /* we generally have at most 6 or so space infos, one for each raid
4093 * level. So, a whole page should be more than enough for everyone
4094 */
4095 if (alloc_size > PAGE_SIZE)
4096 return -ENOMEM;
4097
4098 space_args.total_spaces = 0;
4099 dest = kmalloc(alloc_size, GFP_KERNEL);
4100 if (!dest)
4101 return -ENOMEM;
4102 dest_orig = dest;
4103
4104 /* now we have a buffer to copy into */
4105 for (i = 0; i < num_types; i++) {
4106 struct btrfs_space_info *tmp;
4107
4108 if (!slot_count)
4109 break;
4110
4111 info = NULL;
4112 rcu_read_lock();
4113 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4114 list) {
4115 if (tmp->flags == types[i]) {
4116 info = tmp;
4117 break;
4118 }
4119 }
4120 rcu_read_unlock();
4121
4122 if (!info)
4123 continue;
4124 down_read(&info->groups_sem);
4125 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4126 if (!list_empty(&info->block_groups[c])) {
4127 btrfs_get_block_group_info(
4128 &info->block_groups[c], &space);
4129 memcpy(dest, &space, sizeof(space));
4130 dest++;
4131 space_args.total_spaces++;
4132 slot_count--;
4133 }
4134 if (!slot_count)
4135 break;
4136 }
4137 up_read(&info->groups_sem);
4138 }
4139
4140 /*
4141 * Add global block reserve
4142 */
4143 if (slot_count) {
4144 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4145
4146 spin_lock(&block_rsv->lock);
4147 space.total_bytes = block_rsv->size;
4148 space.used_bytes = block_rsv->size - block_rsv->reserved;
4149 spin_unlock(&block_rsv->lock);
4150 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4151 memcpy(dest, &space, sizeof(space));
4152 space_args.total_spaces++;
4153 }
4154
4155 user_dest = (struct btrfs_ioctl_space_info __user *)
4156 (arg + sizeof(struct btrfs_ioctl_space_args));
4157
4158 if (copy_to_user(user_dest, dest_orig, alloc_size))
4159 ret = -EFAULT;
4160
4161 kfree(dest_orig);
4162out:
4163 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4164 ret = -EFAULT;
4165
4166 return ret;
4167}
4168
4169static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4170 void __user *argp)
4171{
4172 struct btrfs_trans_handle *trans;
4173 u64 transid;
4174 int ret;
4175
4176 trans = btrfs_attach_transaction_barrier(root);
4177 if (IS_ERR(trans)) {
4178 if (PTR_ERR(trans) != -ENOENT)
4179 return PTR_ERR(trans);
4180
4181 /* No running transaction, don't bother */
4182 transid = root->fs_info->last_trans_committed;
4183 goto out;
4184 }
4185 transid = trans->transid;
4186 ret = btrfs_commit_transaction_async(trans, 0);
4187 if (ret) {
4188 btrfs_end_transaction(trans);
4189 return ret;
4190 }
4191out:
4192 if (argp)
4193 if (copy_to_user(argp, &transid, sizeof(transid)))
4194 return -EFAULT;
4195 return 0;
4196}
4197
4198static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4199 void __user *argp)
4200{
4201 u64 transid;
4202
4203 if (argp) {
4204 if (copy_from_user(&transid, argp, sizeof(transid)))
4205 return -EFAULT;
4206 } else {
4207 transid = 0; /* current trans */
4208 }
4209 return btrfs_wait_for_commit(fs_info, transid);
4210}
4211
4212static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4213{
4214 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4215 struct btrfs_ioctl_scrub_args *sa;
4216 int ret;
4217
4218 if (!capable(CAP_SYS_ADMIN))
4219 return -EPERM;
4220
4221 sa = memdup_user(arg, sizeof(*sa));
4222 if (IS_ERR(sa))
4223 return PTR_ERR(sa);
4224
4225 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4226 ret = mnt_want_write_file(file);
4227 if (ret)
4228 goto out;
4229 }
4230
4231 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4232 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4233 0);
4234
4235 if (copy_to_user(arg, sa, sizeof(*sa)))
4236 ret = -EFAULT;
4237
4238 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4239 mnt_drop_write_file(file);
4240out:
4241 kfree(sa);
4242 return ret;
4243}
4244
4245static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4246{
4247 if (!capable(CAP_SYS_ADMIN))
4248 return -EPERM;
4249
4250 return btrfs_scrub_cancel(fs_info);
4251}
4252
4253static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4254 void __user *arg)
4255{
4256 struct btrfs_ioctl_scrub_args *sa;
4257 int ret;
4258
4259 if (!capable(CAP_SYS_ADMIN))
4260 return -EPERM;
4261
4262 sa = memdup_user(arg, sizeof(*sa));
4263 if (IS_ERR(sa))
4264 return PTR_ERR(sa);
4265
4266 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4267
4268 if (copy_to_user(arg, sa, sizeof(*sa)))
4269 ret = -EFAULT;
4270
4271 kfree(sa);
4272 return ret;
4273}
4274
4275static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4276 void __user *arg)
4277{
4278 struct btrfs_ioctl_get_dev_stats *sa;
4279 int ret;
4280
4281 sa = memdup_user(arg, sizeof(*sa));
4282 if (IS_ERR(sa))
4283 return PTR_ERR(sa);
4284
4285 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4286 kfree(sa);
4287 return -EPERM;
4288 }
4289
4290 ret = btrfs_get_dev_stats(fs_info, sa);
4291
4292 if (copy_to_user(arg, sa, sizeof(*sa)))
4293 ret = -EFAULT;
4294
4295 kfree(sa);
4296 return ret;
4297}
4298
4299static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4300 void __user *arg)
4301{
4302 struct btrfs_ioctl_dev_replace_args *p;
4303 int ret;
4304
4305 if (!capable(CAP_SYS_ADMIN))
4306 return -EPERM;
4307
4308 p = memdup_user(arg, sizeof(*p));
4309 if (IS_ERR(p))
4310 return PTR_ERR(p);
4311
4312 switch (p->cmd) {
4313 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4314 if (sb_rdonly(fs_info->sb)) {
4315 ret = -EROFS;
4316 goto out;
4317 }
4318 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4319 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4320 } else {
4321 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4322 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4323 }
4324 break;
4325 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4326 btrfs_dev_replace_status(fs_info, p);
4327 ret = 0;
4328 break;
4329 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4330 p->result = btrfs_dev_replace_cancel(fs_info);
4331 ret = 0;
4332 break;
4333 default:
4334 ret = -EINVAL;
4335 break;
4336 }
4337
4338 if (copy_to_user(arg, p, sizeof(*p)))
4339 ret = -EFAULT;
4340out:
4341 kfree(p);
4342 return ret;
4343}
4344
4345static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4346{
4347 int ret = 0;
4348 int i;
4349 u64 rel_ptr;
4350 int size;
4351 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4352 struct inode_fs_paths *ipath = NULL;
4353 struct btrfs_path *path;
4354
4355 if (!capable(CAP_DAC_READ_SEARCH))
4356 return -EPERM;
4357
4358 path = btrfs_alloc_path();
4359 if (!path) {
4360 ret = -ENOMEM;
4361 goto out;
4362 }
4363
4364 ipa = memdup_user(arg, sizeof(*ipa));
4365 if (IS_ERR(ipa)) {
4366 ret = PTR_ERR(ipa);
4367 ipa = NULL;
4368 goto out;
4369 }
4370
4371 size = min_t(u32, ipa->size, 4096);
4372 ipath = init_ipath(size, root, path);
4373 if (IS_ERR(ipath)) {
4374 ret = PTR_ERR(ipath);
4375 ipath = NULL;
4376 goto out;
4377 }
4378
4379 ret = paths_from_inode(ipa->inum, ipath);
4380 if (ret < 0)
4381 goto out;
4382
4383 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4384 rel_ptr = ipath->fspath->val[i] -
4385 (u64)(unsigned long)ipath->fspath->val;
4386 ipath->fspath->val[i] = rel_ptr;
4387 }
4388
4389 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4390 ipath->fspath, size);
4391 if (ret) {
4392 ret = -EFAULT;
4393 goto out;
4394 }
4395
4396out:
4397 btrfs_free_path(path);
4398 free_ipath(ipath);
4399 kfree(ipa);
4400
4401 return ret;
4402}
4403
4404static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4405{
4406 struct btrfs_data_container *inodes = ctx;
4407 const size_t c = 3 * sizeof(u64);
4408
4409 if (inodes->bytes_left >= c) {
4410 inodes->bytes_left -= c;
4411 inodes->val[inodes->elem_cnt] = inum;
4412 inodes->val[inodes->elem_cnt + 1] = offset;
4413 inodes->val[inodes->elem_cnt + 2] = root;
4414 inodes->elem_cnt += 3;
4415 } else {
4416 inodes->bytes_missing += c - inodes->bytes_left;
4417 inodes->bytes_left = 0;
4418 inodes->elem_missed += 3;
4419 }
4420
4421 return 0;
4422}
4423
4424static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4425 void __user *arg, int version)
4426{
4427 int ret = 0;
4428 int size;
4429 struct btrfs_ioctl_logical_ino_args *loi;
4430 struct btrfs_data_container *inodes = NULL;
4431 struct btrfs_path *path = NULL;
4432 bool ignore_offset;
4433
4434 if (!capable(CAP_SYS_ADMIN))
4435 return -EPERM;
4436
4437 loi = memdup_user(arg, sizeof(*loi));
4438 if (IS_ERR(loi))
4439 return PTR_ERR(loi);
4440
4441 if (version == 1) {
4442 ignore_offset = false;
4443 size = min_t(u32, loi->size, SZ_64K);
4444 } else {
4445 /* All reserved bits must be 0 for now */
4446 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4447 ret = -EINVAL;
4448 goto out_loi;
4449 }
4450 /* Only accept flags we have defined so far */
4451 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4452 ret = -EINVAL;
4453 goto out_loi;
4454 }
4455 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4456 size = min_t(u32, loi->size, SZ_16M);
4457 }
4458
4459 path = btrfs_alloc_path();
4460 if (!path) {
4461 ret = -ENOMEM;
4462 goto out;
4463 }
4464
4465 inodes = init_data_container(size);
4466 if (IS_ERR(inodes)) {
4467 ret = PTR_ERR(inodes);
4468 inodes = NULL;
4469 goto out;
4470 }
4471
4472 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4473 build_ino_list, inodes, ignore_offset);
4474 if (ret == -EINVAL)
4475 ret = -ENOENT;
4476 if (ret < 0)
4477 goto out;
4478
4479 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4480 size);
4481 if (ret)
4482 ret = -EFAULT;
4483
4484out:
4485 btrfs_free_path(path);
4486 kvfree(inodes);
4487out_loi:
4488 kfree(loi);
4489
4490 return ret;
4491}
4492
4493void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4494 struct btrfs_ioctl_balance_args *bargs)
4495{
4496 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4497
4498 bargs->flags = bctl->flags;
4499
4500 if (atomic_read(&fs_info->balance_running))
4501 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4502 if (atomic_read(&fs_info->balance_pause_req))
4503 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4504 if (atomic_read(&fs_info->balance_cancel_req))
4505 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4506
4507 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4508 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4509 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4510
4511 if (lock) {
4512 spin_lock(&fs_info->balance_lock);
4513 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4514 spin_unlock(&fs_info->balance_lock);
4515 } else {
4516 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4517 }
4518}
4519
4520static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4521{
4522 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4523 struct btrfs_fs_info *fs_info = root->fs_info;
4524 struct btrfs_ioctl_balance_args *bargs;
4525 struct btrfs_balance_control *bctl;
4526 bool need_unlock; /* for mut. excl. ops lock */
4527 int ret;
4528
4529 if (!capable(CAP_SYS_ADMIN))
4530 return -EPERM;
4531
4532 ret = mnt_want_write_file(file);
4533 if (ret)
4534 return ret;
4535
4536again:
4537 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4538 mutex_lock(&fs_info->volume_mutex);
4539 mutex_lock(&fs_info->balance_mutex);
4540 need_unlock = true;
4541 goto locked;
4542 }
4543
4544 /*
4545 * mut. excl. ops lock is locked. Three possibilities:
4546 * (1) some other op is running
4547 * (2) balance is running
4548 * (3) balance is paused -- special case (think resume)
4549 */
4550 mutex_lock(&fs_info->balance_mutex);
4551 if (fs_info->balance_ctl) {
4552 /* this is either (2) or (3) */
4553 if (!atomic_read(&fs_info->balance_running)) {
4554 mutex_unlock(&fs_info->balance_mutex);
4555 if (!mutex_trylock(&fs_info->volume_mutex))
4556 goto again;
4557 mutex_lock(&fs_info->balance_mutex);
4558
4559 if (fs_info->balance_ctl &&
4560 !atomic_read(&fs_info->balance_running)) {
4561 /* this is (3) */
4562 need_unlock = false;
4563 goto locked;
4564 }
4565
4566 mutex_unlock(&fs_info->balance_mutex);
4567 mutex_unlock(&fs_info->volume_mutex);
4568 goto again;
4569 } else {
4570 /* this is (2) */
4571 mutex_unlock(&fs_info->balance_mutex);
4572 ret = -EINPROGRESS;
4573 goto out;
4574 }
4575 } else {
4576 /* this is (1) */
4577 mutex_unlock(&fs_info->balance_mutex);
4578 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4579 goto out;
4580 }
4581
4582locked:
4583 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4584
4585 if (arg) {
4586 bargs = memdup_user(arg, sizeof(*bargs));
4587 if (IS_ERR(bargs)) {
4588 ret = PTR_ERR(bargs);
4589 goto out_unlock;
4590 }
4591
4592 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4593 if (!fs_info->balance_ctl) {
4594 ret = -ENOTCONN;
4595 goto out_bargs;
4596 }
4597
4598 bctl = fs_info->balance_ctl;
4599 spin_lock(&fs_info->balance_lock);
4600 bctl->flags |= BTRFS_BALANCE_RESUME;
4601 spin_unlock(&fs_info->balance_lock);
4602
4603 goto do_balance;
4604 }
4605 } else {
4606 bargs = NULL;
4607 }
4608
4609 if (fs_info->balance_ctl) {
4610 ret = -EINPROGRESS;
4611 goto out_bargs;
4612 }
4613
4614 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4615 if (!bctl) {
4616 ret = -ENOMEM;
4617 goto out_bargs;
4618 }
4619
4620 bctl->fs_info = fs_info;
4621 if (arg) {
4622 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4623 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4624 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4625
4626 bctl->flags = bargs->flags;
4627 } else {
4628 /* balance everything - no filters */
4629 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4630 }
4631
4632 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4633 ret = -EINVAL;
4634 goto out_bctl;
4635 }
4636
4637do_balance:
4638 /*
4639 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4640 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4641 * or, if restriper was paused all the way until unmount, in
4642 * free_fs_info. The flag is cleared in __cancel_balance.
4643 */
4644 need_unlock = false;
4645
4646 ret = btrfs_balance(bctl, bargs);
4647 bctl = NULL;
4648
4649 if (arg) {
4650 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4651 ret = -EFAULT;
4652 }
4653
4654out_bctl:
4655 kfree(bctl);
4656out_bargs:
4657 kfree(bargs);
4658out_unlock:
4659 mutex_unlock(&fs_info->balance_mutex);
4660 mutex_unlock(&fs_info->volume_mutex);
4661 if (need_unlock)
4662 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4663out:
4664 mnt_drop_write_file(file);
4665 return ret;
4666}
4667
4668static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4669{
4670 if (!capable(CAP_SYS_ADMIN))
4671 return -EPERM;
4672
4673 switch (cmd) {
4674 case BTRFS_BALANCE_CTL_PAUSE:
4675 return btrfs_pause_balance(fs_info);
4676 case BTRFS_BALANCE_CTL_CANCEL:
4677 return btrfs_cancel_balance(fs_info);
4678 }
4679
4680 return -EINVAL;
4681}
4682
4683static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4684 void __user *arg)
4685{
4686 struct btrfs_ioctl_balance_args *bargs;
4687 int ret = 0;
4688
4689 if (!capable(CAP_SYS_ADMIN))
4690 return -EPERM;
4691
4692 mutex_lock(&fs_info->balance_mutex);
4693 if (!fs_info->balance_ctl) {
4694 ret = -ENOTCONN;
4695 goto out;
4696 }
4697
4698 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4699 if (!bargs) {
4700 ret = -ENOMEM;
4701 goto out;
4702 }
4703
4704 update_ioctl_balance_args(fs_info, 1, bargs);
4705
4706 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4707 ret = -EFAULT;
4708
4709 kfree(bargs);
4710out:
4711 mutex_unlock(&fs_info->balance_mutex);
4712 return ret;
4713}
4714
4715static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4716{
4717 struct inode *inode = file_inode(file);
4718 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4719 struct btrfs_ioctl_quota_ctl_args *sa;
4720 struct btrfs_trans_handle *trans = NULL;
4721 int ret;
4722 int err;
4723
4724 if (!capable(CAP_SYS_ADMIN))
4725 return -EPERM;
4726
4727 ret = mnt_want_write_file(file);
4728 if (ret)
4729 return ret;
4730
4731 sa = memdup_user(arg, sizeof(*sa));
4732 if (IS_ERR(sa)) {
4733 ret = PTR_ERR(sa);
4734 goto drop_write;
4735 }
4736
4737 down_write(&fs_info->subvol_sem);
4738 trans = btrfs_start_transaction(fs_info->tree_root, 2);
4739 if (IS_ERR(trans)) {
4740 ret = PTR_ERR(trans);
4741 goto out;
4742 }
4743
4744 switch (sa->cmd) {
4745 case BTRFS_QUOTA_CTL_ENABLE:
4746 ret = btrfs_quota_enable(trans, fs_info);
4747 break;
4748 case BTRFS_QUOTA_CTL_DISABLE:
4749 ret = btrfs_quota_disable(trans, fs_info);
4750 break;
4751 default:
4752 ret = -EINVAL;
4753 break;
4754 }
4755
4756 err = btrfs_commit_transaction(trans);
4757 if (err && !ret)
4758 ret = err;
4759out:
4760 kfree(sa);
4761 up_write(&fs_info->subvol_sem);
4762drop_write:
4763 mnt_drop_write_file(file);
4764 return ret;
4765}
4766
4767static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4768{
4769 struct inode *inode = file_inode(file);
4770 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4771 struct btrfs_root *root = BTRFS_I(inode)->root;
4772 struct btrfs_ioctl_qgroup_assign_args *sa;
4773 struct btrfs_trans_handle *trans;
4774 int ret;
4775 int err;
4776
4777 if (!capable(CAP_SYS_ADMIN))
4778 return -EPERM;
4779
4780 ret = mnt_want_write_file(file);
4781 if (ret)
4782 return ret;
4783
4784 sa = memdup_user(arg, sizeof(*sa));
4785 if (IS_ERR(sa)) {
4786 ret = PTR_ERR(sa);
4787 goto drop_write;
4788 }
4789
4790 trans = btrfs_join_transaction(root);
4791 if (IS_ERR(trans)) {
4792 ret = PTR_ERR(trans);
4793 goto out;
4794 }
4795
4796 if (sa->assign) {
4797 ret = btrfs_add_qgroup_relation(trans, fs_info,
4798 sa->src, sa->dst);
4799 } else {
4800 ret = btrfs_del_qgroup_relation(trans, fs_info,
4801 sa->src, sa->dst);
4802 }
4803
4804 /* update qgroup status and info */
4805 err = btrfs_run_qgroups(trans, fs_info);
4806 if (err < 0)
4807 btrfs_handle_fs_error(fs_info, err,
4808 "failed to update qgroup status and info");
4809 err = btrfs_end_transaction(trans);
4810 if (err && !ret)
4811 ret = err;
4812
4813out:
4814 kfree(sa);
4815drop_write:
4816 mnt_drop_write_file(file);
4817 return ret;
4818}
4819
4820static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4821{
4822 struct inode *inode = file_inode(file);
4823 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4824 struct btrfs_root *root = BTRFS_I(inode)->root;
4825 struct btrfs_ioctl_qgroup_create_args *sa;
4826 struct btrfs_trans_handle *trans;
4827 int ret;
4828 int err;
4829
4830 if (!capable(CAP_SYS_ADMIN))
4831 return -EPERM;
4832
4833 ret = mnt_want_write_file(file);
4834 if (ret)
4835 return ret;
4836
4837 sa = memdup_user(arg, sizeof(*sa));
4838 if (IS_ERR(sa)) {
4839 ret = PTR_ERR(sa);
4840 goto drop_write;
4841 }
4842
4843 if (!sa->qgroupid) {
4844 ret = -EINVAL;
4845 goto out;
4846 }
4847
4848 trans = btrfs_join_transaction(root);
4849 if (IS_ERR(trans)) {
4850 ret = PTR_ERR(trans);
4851 goto out;
4852 }
4853
4854 if (sa->create) {
4855 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4856 } else {
4857 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4858 }
4859
4860 err = btrfs_end_transaction(trans);
4861 if (err && !ret)
4862 ret = err;
4863
4864out:
4865 kfree(sa);
4866drop_write:
4867 mnt_drop_write_file(file);
4868 return ret;
4869}
4870
4871static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4872{
4873 struct inode *inode = file_inode(file);
4874 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4875 struct btrfs_root *root = BTRFS_I(inode)->root;
4876 struct btrfs_ioctl_qgroup_limit_args *sa;
4877 struct btrfs_trans_handle *trans;
4878 int ret;
4879 int err;
4880 u64 qgroupid;
4881
4882 if (!capable(CAP_SYS_ADMIN))
4883 return -EPERM;
4884
4885 ret = mnt_want_write_file(file);
4886 if (ret)
4887 return ret;
4888
4889 sa = memdup_user(arg, sizeof(*sa));
4890 if (IS_ERR(sa)) {
4891 ret = PTR_ERR(sa);
4892 goto drop_write;
4893 }
4894
4895 trans = btrfs_join_transaction(root);
4896 if (IS_ERR(trans)) {
4897 ret = PTR_ERR(trans);
4898 goto out;
4899 }
4900
4901 qgroupid = sa->qgroupid;
4902 if (!qgroupid) {
4903 /* take the current subvol as qgroup */
4904 qgroupid = root->root_key.objectid;
4905 }
4906
4907 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
4908
4909 err = btrfs_end_transaction(trans);
4910 if (err && !ret)
4911 ret = err;
4912
4913out:
4914 kfree(sa);
4915drop_write:
4916 mnt_drop_write_file(file);
4917 return ret;
4918}
4919
4920static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4921{
4922 struct inode *inode = file_inode(file);
4923 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4924 struct btrfs_ioctl_quota_rescan_args *qsa;
4925 int ret;
4926
4927 if (!capable(CAP_SYS_ADMIN))
4928 return -EPERM;
4929
4930 ret = mnt_want_write_file(file);
4931 if (ret)
4932 return ret;
4933
4934 qsa = memdup_user(arg, sizeof(*qsa));
4935 if (IS_ERR(qsa)) {
4936 ret = PTR_ERR(qsa);
4937 goto drop_write;
4938 }
4939
4940 if (qsa->flags) {
4941 ret = -EINVAL;
4942 goto out;
4943 }
4944
4945 ret = btrfs_qgroup_rescan(fs_info);
4946
4947out:
4948 kfree(qsa);
4949drop_write:
4950 mnt_drop_write_file(file);
4951 return ret;
4952}
4953
4954static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4955{
4956 struct inode *inode = file_inode(file);
4957 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4958 struct btrfs_ioctl_quota_rescan_args *qsa;
4959 int ret = 0;
4960
4961 if (!capable(CAP_SYS_ADMIN))
4962 return -EPERM;
4963
4964 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4965 if (!qsa)
4966 return -ENOMEM;
4967
4968 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4969 qsa->flags = 1;
4970 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4971 }
4972
4973 if (copy_to_user(arg, qsa, sizeof(*qsa)))
4974 ret = -EFAULT;
4975
4976 kfree(qsa);
4977 return ret;
4978}
4979
4980static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4981{
4982 struct inode *inode = file_inode(file);
4983 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4984
4985 if (!capable(CAP_SYS_ADMIN))
4986 return -EPERM;
4987
4988 return btrfs_qgroup_wait_for_completion(fs_info, true);
4989}
4990
4991static long _btrfs_ioctl_set_received_subvol(struct file *file,
4992 struct btrfs_ioctl_received_subvol_args *sa)
4993{
4994 struct inode *inode = file_inode(file);
4995 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4996 struct btrfs_root *root = BTRFS_I(inode)->root;
4997 struct btrfs_root_item *root_item = &root->root_item;
4998 struct btrfs_trans_handle *trans;
4999 struct timespec ct = current_time(inode);
5000 int ret = 0;
5001 int received_uuid_changed;
5002
5003 if (!inode_owner_or_capable(inode))
5004 return -EPERM;
5005
5006 ret = mnt_want_write_file(file);
5007 if (ret < 0)
5008 return ret;
5009
5010 down_write(&fs_info->subvol_sem);
5011
5012 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5013 ret = -EINVAL;
5014 goto out;
5015 }
5016
5017 if (btrfs_root_readonly(root)) {
5018 ret = -EROFS;
5019 goto out;
5020 }
5021
5022 /*
5023 * 1 - root item
5024 * 2 - uuid items (received uuid + subvol uuid)
5025 */
5026 trans = btrfs_start_transaction(root, 3);
5027 if (IS_ERR(trans)) {
5028 ret = PTR_ERR(trans);
5029 trans = NULL;
5030 goto out;
5031 }
5032
5033 sa->rtransid = trans->transid;
5034 sa->rtime.sec = ct.tv_sec;
5035 sa->rtime.nsec = ct.tv_nsec;
5036
5037 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5038 BTRFS_UUID_SIZE);
5039 if (received_uuid_changed &&
5040 !btrfs_is_empty_uuid(root_item->received_uuid)) {
5041 ret = btrfs_uuid_tree_rem(trans, fs_info,
5042 root_item->received_uuid,
5043 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5044 root->root_key.objectid);
5045 if (ret && ret != -ENOENT) {
5046 btrfs_abort_transaction(trans, ret);
5047 btrfs_end_transaction(trans);
5048 goto out;
5049 }
5050 }
5051 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5052 btrfs_set_root_stransid(root_item, sa->stransid);
5053 btrfs_set_root_rtransid(root_item, sa->rtransid);
5054 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5055 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5056 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5057 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5058
5059 ret = btrfs_update_root(trans, fs_info->tree_root,
5060 &root->root_key, &root->root_item);
5061 if (ret < 0) {
5062 btrfs_end_transaction(trans);
5063 goto out;
5064 }
5065 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5066 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5067 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5068 root->root_key.objectid);
5069 if (ret < 0 && ret != -EEXIST) {
5070 btrfs_abort_transaction(trans, ret);
5071 btrfs_end_transaction(trans);
5072 goto out;
5073 }
5074 }
5075 ret = btrfs_commit_transaction(trans);
5076out:
5077 up_write(&fs_info->subvol_sem);
5078 mnt_drop_write_file(file);
5079 return ret;
5080}
5081
5082#ifdef CONFIG_64BIT
5083static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5084 void __user *arg)
5085{
5086 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5087 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5088 int ret = 0;
5089
5090 args32 = memdup_user(arg, sizeof(*args32));
5091 if (IS_ERR(args32))
5092 return PTR_ERR(args32);
5093
5094 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5095 if (!args64) {
5096 ret = -ENOMEM;
5097 goto out;
5098 }
5099
5100 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5101 args64->stransid = args32->stransid;
5102 args64->rtransid = args32->rtransid;
5103 args64->stime.sec = args32->stime.sec;
5104 args64->stime.nsec = args32->stime.nsec;
5105 args64->rtime.sec = args32->rtime.sec;
5106 args64->rtime.nsec = args32->rtime.nsec;
5107 args64->flags = args32->flags;
5108
5109 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5110 if (ret)
5111 goto out;
5112
5113 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5114 args32->stransid = args64->stransid;
5115 args32->rtransid = args64->rtransid;
5116 args32->stime.sec = args64->stime.sec;
5117 args32->stime.nsec = args64->stime.nsec;
5118 args32->rtime.sec = args64->rtime.sec;
5119 args32->rtime.nsec = args64->rtime.nsec;
5120 args32->flags = args64->flags;
5121
5122 ret = copy_to_user(arg, args32, sizeof(*args32));
5123 if (ret)
5124 ret = -EFAULT;
5125
5126out:
5127 kfree(args32);
5128 kfree(args64);
5129 return ret;
5130}
5131#endif
5132
5133static long btrfs_ioctl_set_received_subvol(struct file *file,
5134 void __user *arg)
5135{
5136 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5137 int ret = 0;
5138
5139 sa = memdup_user(arg, sizeof(*sa));
5140 if (IS_ERR(sa))
5141 return PTR_ERR(sa);
5142
5143 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5144
5145 if (ret)
5146 goto out;
5147
5148 ret = copy_to_user(arg, sa, sizeof(*sa));
5149 if (ret)
5150 ret = -EFAULT;
5151
5152out:
5153 kfree(sa);
5154 return ret;
5155}
5156
5157static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5158{
5159 struct inode *inode = file_inode(file);
5160 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5161 size_t len;
5162 int ret;
5163 char label[BTRFS_LABEL_SIZE];
5164
5165 spin_lock(&fs_info->super_lock);
5166 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5167 spin_unlock(&fs_info->super_lock);
5168
5169 len = strnlen(label, BTRFS_LABEL_SIZE);
5170
5171 if (len == BTRFS_LABEL_SIZE) {
5172 btrfs_warn(fs_info,
5173 "label is too long, return the first %zu bytes",
5174 --len);
5175 }
5176
5177 ret = copy_to_user(arg, label, len);
5178
5179 return ret ? -EFAULT : 0;
5180}
5181
5182static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5183{
5184 struct inode *inode = file_inode(file);
5185 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5186 struct btrfs_root *root = BTRFS_I(inode)->root;
5187 struct btrfs_super_block *super_block = fs_info->super_copy;
5188 struct btrfs_trans_handle *trans;
5189 char label[BTRFS_LABEL_SIZE];
5190 int ret;
5191
5192 if (!capable(CAP_SYS_ADMIN))
5193 return -EPERM;
5194
5195 if (copy_from_user(label, arg, sizeof(label)))
5196 return -EFAULT;
5197
5198 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5199 btrfs_err(fs_info,
5200 "unable to set label with more than %d bytes",
5201 BTRFS_LABEL_SIZE - 1);
5202 return -EINVAL;
5203 }
5204
5205 ret = mnt_want_write_file(file);
5206 if (ret)
5207 return ret;
5208
5209 trans = btrfs_start_transaction(root, 0);
5210 if (IS_ERR(trans)) {
5211 ret = PTR_ERR(trans);
5212 goto out_unlock;
5213 }
5214
5215 spin_lock(&fs_info->super_lock);
5216 strcpy(super_block->label, label);
5217 spin_unlock(&fs_info->super_lock);
5218 ret = btrfs_commit_transaction(trans);
5219
5220out_unlock:
5221 mnt_drop_write_file(file);
5222 return ret;
5223}
5224
5225#define INIT_FEATURE_FLAGS(suffix) \
5226 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5227 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5228 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5229
5230int btrfs_ioctl_get_supported_features(void __user *arg)
5231{
5232 static const struct btrfs_ioctl_feature_flags features[3] = {
5233 INIT_FEATURE_FLAGS(SUPP),
5234 INIT_FEATURE_FLAGS(SAFE_SET),
5235 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5236 };
5237
5238 if (copy_to_user(arg, &features, sizeof(features)))
5239 return -EFAULT;
5240
5241 return 0;
5242}
5243
5244static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5245{
5246 struct inode *inode = file_inode(file);
5247 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5248 struct btrfs_super_block *super_block = fs_info->super_copy;
5249 struct btrfs_ioctl_feature_flags features;
5250
5251 features.compat_flags = btrfs_super_compat_flags(super_block);
5252 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5253 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5254
5255 if (copy_to_user(arg, &features, sizeof(features)))
5256 return -EFAULT;
5257
5258 return 0;
5259}
5260
5261static int check_feature_bits(struct btrfs_fs_info *fs_info,
5262 enum btrfs_feature_set set,
5263 u64 change_mask, u64 flags, u64 supported_flags,
5264 u64 safe_set, u64 safe_clear)
5265{
5266 const char *type = btrfs_feature_set_names[set];
5267 char *names;
5268 u64 disallowed, unsupported;
5269 u64 set_mask = flags & change_mask;
5270 u64 clear_mask = ~flags & change_mask;
5271
5272 unsupported = set_mask & ~supported_flags;
5273 if (unsupported) {
5274 names = btrfs_printable_features(set, unsupported);
5275 if (names) {
5276 btrfs_warn(fs_info,
5277 "this kernel does not support the %s feature bit%s",
5278 names, strchr(names, ',') ? "s" : "");
5279 kfree(names);
5280 } else
5281 btrfs_warn(fs_info,
5282 "this kernel does not support %s bits 0x%llx",
5283 type, unsupported);
5284 return -EOPNOTSUPP;
5285 }
5286
5287 disallowed = set_mask & ~safe_set;
5288 if (disallowed) {
5289 names = btrfs_printable_features(set, disallowed);
5290 if (names) {
5291 btrfs_warn(fs_info,
5292 "can't set the %s feature bit%s while mounted",
5293 names, strchr(names, ',') ? "s" : "");
5294 kfree(names);
5295 } else
5296 btrfs_warn(fs_info,
5297 "can't set %s bits 0x%llx while mounted",
5298 type, disallowed);
5299 return -EPERM;
5300 }
5301
5302 disallowed = clear_mask & ~safe_clear;
5303 if (disallowed) {
5304 names = btrfs_printable_features(set, disallowed);
5305 if (names) {
5306 btrfs_warn(fs_info,
5307 "can't clear the %s feature bit%s while mounted",
5308 names, strchr(names, ',') ? "s" : "");
5309 kfree(names);
5310 } else
5311 btrfs_warn(fs_info,
5312 "can't clear %s bits 0x%llx while mounted",
5313 type, disallowed);
5314 return -EPERM;
5315 }
5316
5317 return 0;
5318}
5319
5320#define check_feature(fs_info, change_mask, flags, mask_base) \
5321check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5322 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5323 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5324 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5325
5326static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5327{
5328 struct inode *inode = file_inode(file);
5329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5330 struct btrfs_root *root = BTRFS_I(inode)->root;
5331 struct btrfs_super_block *super_block = fs_info->super_copy;
5332 struct btrfs_ioctl_feature_flags flags[2];
5333 struct btrfs_trans_handle *trans;
5334 u64 newflags;
5335 int ret;
5336
5337 if (!capable(CAP_SYS_ADMIN))
5338 return -EPERM;
5339
5340 if (copy_from_user(flags, arg, sizeof(flags)))
5341 return -EFAULT;
5342
5343 /* Nothing to do */
5344 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5345 !flags[0].incompat_flags)
5346 return 0;
5347
5348 ret = check_feature(fs_info, flags[0].compat_flags,
5349 flags[1].compat_flags, COMPAT);
5350 if (ret)
5351 return ret;
5352
5353 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5354 flags[1].compat_ro_flags, COMPAT_RO);
5355 if (ret)
5356 return ret;
5357
5358 ret = check_feature(fs_info, flags[0].incompat_flags,
5359 flags[1].incompat_flags, INCOMPAT);
5360 if (ret)
5361 return ret;
5362
5363 ret = mnt_want_write_file(file);
5364 if (ret)
5365 return ret;
5366
5367 trans = btrfs_start_transaction(root, 0);
5368 if (IS_ERR(trans)) {
5369 ret = PTR_ERR(trans);
5370 goto out_drop_write;
5371 }
5372
5373 spin_lock(&fs_info->super_lock);
5374 newflags = btrfs_super_compat_flags(super_block);
5375 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5376 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5377 btrfs_set_super_compat_flags(super_block, newflags);
5378
5379 newflags = btrfs_super_compat_ro_flags(super_block);
5380 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5381 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5382 btrfs_set_super_compat_ro_flags(super_block, newflags);
5383
5384 newflags = btrfs_super_incompat_flags(super_block);
5385 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5386 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5387 btrfs_set_super_incompat_flags(super_block, newflags);
5388 spin_unlock(&fs_info->super_lock);
5389
5390 ret = btrfs_commit_transaction(trans);
5391out_drop_write:
5392 mnt_drop_write_file(file);
5393
5394 return ret;
5395}
5396
5397static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5398{
5399 struct btrfs_ioctl_send_args *arg;
5400 int ret;
5401
5402 if (compat) {
5403#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5404 struct btrfs_ioctl_send_args_32 args32;
5405
5406 ret = copy_from_user(&args32, argp, sizeof(args32));
5407 if (ret)
5408 return -EFAULT;
5409 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5410 if (!arg)
5411 return -ENOMEM;
5412 arg->send_fd = args32.send_fd;
5413 arg->clone_sources_count = args32.clone_sources_count;
5414 arg->clone_sources = compat_ptr(args32.clone_sources);
5415 arg->parent_root = args32.parent_root;
5416 arg->flags = args32.flags;
5417 memcpy(arg->reserved, args32.reserved,
5418 sizeof(args32.reserved));
5419#else
5420 return -ENOTTY;
5421#endif
5422 } else {
5423 arg = memdup_user(argp, sizeof(*arg));
5424 if (IS_ERR(arg))
5425 return PTR_ERR(arg);
5426 }
5427 ret = btrfs_ioctl_send(file, arg);
5428 kfree(arg);
5429 return ret;
5430}
5431
5432long btrfs_ioctl(struct file *file, unsigned int
5433 cmd, unsigned long arg)
5434{
5435 struct inode *inode = file_inode(file);
5436 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5437 struct btrfs_root *root = BTRFS_I(inode)->root;
5438 void __user *argp = (void __user *)arg;
5439
5440 switch (cmd) {
5441 case FS_IOC_GETFLAGS:
5442 return btrfs_ioctl_getflags(file, argp);
5443 case FS_IOC_SETFLAGS:
5444 return btrfs_ioctl_setflags(file, argp);
5445 case FS_IOC_GETVERSION:
5446 return btrfs_ioctl_getversion(file, argp);
5447 case FITRIM:
5448 return btrfs_ioctl_fitrim(file, argp);
5449 case BTRFS_IOC_SNAP_CREATE:
5450 return btrfs_ioctl_snap_create(file, argp, 0);
5451 case BTRFS_IOC_SNAP_CREATE_V2:
5452 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5453 case BTRFS_IOC_SUBVOL_CREATE:
5454 return btrfs_ioctl_snap_create(file, argp, 1);
5455 case BTRFS_IOC_SUBVOL_CREATE_V2:
5456 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5457 case BTRFS_IOC_SNAP_DESTROY:
5458 return btrfs_ioctl_snap_destroy(file, argp);
5459 case BTRFS_IOC_SUBVOL_GETFLAGS:
5460 return btrfs_ioctl_subvol_getflags(file, argp);
5461 case BTRFS_IOC_SUBVOL_SETFLAGS:
5462 return btrfs_ioctl_subvol_setflags(file, argp);
5463 case BTRFS_IOC_DEFAULT_SUBVOL:
5464 return btrfs_ioctl_default_subvol(file, argp);
5465 case BTRFS_IOC_DEFRAG:
5466 return btrfs_ioctl_defrag(file, NULL);
5467 case BTRFS_IOC_DEFRAG_RANGE:
5468 return btrfs_ioctl_defrag(file, argp);
5469 case BTRFS_IOC_RESIZE:
5470 return btrfs_ioctl_resize(file, argp);
5471 case BTRFS_IOC_ADD_DEV:
5472 return btrfs_ioctl_add_dev(fs_info, argp);
5473 case BTRFS_IOC_RM_DEV:
5474 return btrfs_ioctl_rm_dev(file, argp);
5475 case BTRFS_IOC_RM_DEV_V2:
5476 return btrfs_ioctl_rm_dev_v2(file, argp);
5477 case BTRFS_IOC_FS_INFO:
5478 return btrfs_ioctl_fs_info(fs_info, argp);
5479 case BTRFS_IOC_DEV_INFO:
5480 return btrfs_ioctl_dev_info(fs_info, argp);
5481 case BTRFS_IOC_BALANCE:
5482 return btrfs_ioctl_balance(file, NULL);
5483 case BTRFS_IOC_TREE_SEARCH:
5484 return btrfs_ioctl_tree_search(file, argp);
5485 case BTRFS_IOC_TREE_SEARCH_V2:
5486 return btrfs_ioctl_tree_search_v2(file, argp);
5487 case BTRFS_IOC_INO_LOOKUP:
5488 return btrfs_ioctl_ino_lookup(file, argp);
5489 case BTRFS_IOC_INO_PATHS:
5490 return btrfs_ioctl_ino_to_path(root, argp);
5491 case BTRFS_IOC_LOGICAL_INO:
5492 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5493 case BTRFS_IOC_LOGICAL_INO_V2:
5494 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5495 case BTRFS_IOC_SPACE_INFO:
5496 return btrfs_ioctl_space_info(fs_info, argp);
5497 case BTRFS_IOC_SYNC: {
5498 int ret;
5499
5500 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5501 if (ret)
5502 return ret;
5503 ret = btrfs_sync_fs(inode->i_sb, 1);
5504 /*
5505 * The transaction thread may want to do more work,
5506 * namely it pokes the cleaner kthread that will start
5507 * processing uncleaned subvols.
5508 */
5509 wake_up_process(fs_info->transaction_kthread);
5510 return ret;
5511 }
5512 case BTRFS_IOC_START_SYNC:
5513 return btrfs_ioctl_start_sync(root, argp);
5514 case BTRFS_IOC_WAIT_SYNC:
5515 return btrfs_ioctl_wait_sync(fs_info, argp);
5516 case BTRFS_IOC_SCRUB:
5517 return btrfs_ioctl_scrub(file, argp);
5518 case BTRFS_IOC_SCRUB_CANCEL:
5519 return btrfs_ioctl_scrub_cancel(fs_info);
5520 case BTRFS_IOC_SCRUB_PROGRESS:
5521 return btrfs_ioctl_scrub_progress(fs_info, argp);
5522 case BTRFS_IOC_BALANCE_V2:
5523 return btrfs_ioctl_balance(file, argp);
5524 case BTRFS_IOC_BALANCE_CTL:
5525 return btrfs_ioctl_balance_ctl(fs_info, arg);
5526 case BTRFS_IOC_BALANCE_PROGRESS:
5527 return btrfs_ioctl_balance_progress(fs_info, argp);
5528 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5529 return btrfs_ioctl_set_received_subvol(file, argp);
5530#ifdef CONFIG_64BIT
5531 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5532 return btrfs_ioctl_set_received_subvol_32(file, argp);
5533#endif
5534 case BTRFS_IOC_SEND:
5535 return _btrfs_ioctl_send(file, argp, false);
5536#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5537 case BTRFS_IOC_SEND_32:
5538 return _btrfs_ioctl_send(file, argp, true);
5539#endif
5540 case BTRFS_IOC_GET_DEV_STATS:
5541 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5542 case BTRFS_IOC_QUOTA_CTL:
5543 return btrfs_ioctl_quota_ctl(file, argp);
5544 case BTRFS_IOC_QGROUP_ASSIGN:
5545 return btrfs_ioctl_qgroup_assign(file, argp);
5546 case BTRFS_IOC_QGROUP_CREATE:
5547 return btrfs_ioctl_qgroup_create(file, argp);
5548 case BTRFS_IOC_QGROUP_LIMIT:
5549 return btrfs_ioctl_qgroup_limit(file, argp);
5550 case BTRFS_IOC_QUOTA_RESCAN:
5551 return btrfs_ioctl_quota_rescan(file, argp);
5552 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5553 return btrfs_ioctl_quota_rescan_status(file, argp);
5554 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5555 return btrfs_ioctl_quota_rescan_wait(file, argp);
5556 case BTRFS_IOC_DEV_REPLACE:
5557 return btrfs_ioctl_dev_replace(fs_info, argp);
5558 case BTRFS_IOC_GET_FSLABEL:
5559 return btrfs_ioctl_get_fslabel(file, argp);
5560 case BTRFS_IOC_SET_FSLABEL:
5561 return btrfs_ioctl_set_fslabel(file, argp);
5562 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5563 return btrfs_ioctl_get_supported_features(argp);
5564 case BTRFS_IOC_GET_FEATURES:
5565 return btrfs_ioctl_get_features(file, argp);
5566 case BTRFS_IOC_SET_FEATURES:
5567 return btrfs_ioctl_set_features(file, argp);
5568 }
5569
5570 return -ENOTTY;
5571}
5572
5573#ifdef CONFIG_COMPAT
5574long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5575{
5576 /*
5577 * These all access 32-bit values anyway so no further
5578 * handling is necessary.
5579 */
5580 switch (cmd) {
5581 case FS_IOC32_GETFLAGS:
5582 cmd = FS_IOC_GETFLAGS;
5583 break;
5584 case FS_IOC32_SETFLAGS:
5585 cmd = FS_IOC_SETFLAGS;
5586 break;
5587 case FS_IOC32_GETVERSION:
5588 cmd = FS_IOC_GETVERSION;
5589 break;
5590 }
5591
5592 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5593}
5594#endif