Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/sched/mm.h>
10#include <linux/spinlock.h>
11#include <linux/blkdev.h>
12#include <linux/swap.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include <linux/prefetch.h>
16#include <linux/fsverity.h>
17#include "misc.h"
18#include "extent_io.h"
19#include "extent-io-tree.h"
20#include "extent_map.h"
21#include "ctree.h"
22#include "btrfs_inode.h"
23#include "bio.h"
24#include "check-integrity.h"
25#include "locking.h"
26#include "rcu-string.h"
27#include "backref.h"
28#include "disk-io.h"
29#include "subpage.h"
30#include "zoned.h"
31#include "block-group.h"
32#include "compression.h"
33#include "fs.h"
34#include "accessors.h"
35#include "file-item.h"
36#include "file.h"
37#include "dev-replace.h"
38#include "super.h"
39
40static struct kmem_cache *extent_buffer_cache;
41
42#ifdef CONFIG_BTRFS_DEBUG
43static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
44{
45 struct btrfs_fs_info *fs_info = eb->fs_info;
46 unsigned long flags;
47
48 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
49 list_add(&eb->leak_list, &fs_info->allocated_ebs);
50 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
51}
52
53static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
54{
55 struct btrfs_fs_info *fs_info = eb->fs_info;
56 unsigned long flags;
57
58 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
59 list_del(&eb->leak_list);
60 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
61}
62
63void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
64{
65 struct extent_buffer *eb;
66 unsigned long flags;
67
68 /*
69 * If we didn't get into open_ctree our allocated_ebs will not be
70 * initialized, so just skip this.
71 */
72 if (!fs_info->allocated_ebs.next)
73 return;
74
75 WARN_ON(!list_empty(&fs_info->allocated_ebs));
76 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
77 while (!list_empty(&fs_info->allocated_ebs)) {
78 eb = list_first_entry(&fs_info->allocated_ebs,
79 struct extent_buffer, leak_list);
80 pr_err(
81 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
82 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
83 btrfs_header_owner(eb));
84 list_del(&eb->leak_list);
85 kmem_cache_free(extent_buffer_cache, eb);
86 }
87 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
88}
89#else
90#define btrfs_leak_debug_add_eb(eb) do {} while (0)
91#define btrfs_leak_debug_del_eb(eb) do {} while (0)
92#endif
93
94/*
95 * Structure to record info about the bio being assembled, and other info like
96 * how many bytes are there before stripe/ordered extent boundary.
97 */
98struct btrfs_bio_ctrl {
99 struct bio *bio;
100 int mirror_num;
101 enum btrfs_compression_type compress_type;
102 u32 len_to_stripe_boundary;
103 u32 len_to_oe_boundary;
104 btrfs_bio_end_io_t end_io_func;
105
106 /*
107 * This is for metadata read, to provide the extra needed verification
108 * info. This has to be provided for submit_one_bio(), as
109 * submit_one_bio() can submit a bio if it ends at stripe boundary. If
110 * no such parent_check is provided, the metadata can hit false alert at
111 * endio time.
112 */
113 struct btrfs_tree_parent_check *parent_check;
114
115 /*
116 * Tell writepage not to lock the state bits for this range, it still
117 * does the unlocking.
118 */
119 bool extent_locked;
120
121 /* Tell the submit_bio code to use REQ_SYNC */
122 bool sync_io;
123};
124
125static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
126{
127 struct bio *bio;
128 struct bio_vec *bv;
129 struct btrfs_inode *inode;
130 int mirror_num;
131
132 if (!bio_ctrl->bio)
133 return;
134
135 bio = bio_ctrl->bio;
136 bv = bio_first_bvec_all(bio);
137 inode = BTRFS_I(bv->bv_page->mapping->host);
138 mirror_num = bio_ctrl->mirror_num;
139
140 /* Caller should ensure the bio has at least some range added */
141 ASSERT(bio->bi_iter.bi_size);
142
143 btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset;
144
145 if (!is_data_inode(&inode->vfs_inode)) {
146 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
147 /*
148 * For metadata read, we should have the parent_check,
149 * and copy it to bbio for metadata verification.
150 */
151 ASSERT(bio_ctrl->parent_check);
152 memcpy(&btrfs_bio(bio)->parent_check,
153 bio_ctrl->parent_check,
154 sizeof(struct btrfs_tree_parent_check));
155 }
156 btrfs_submit_metadata_bio(inode, bio, mirror_num);
157 } else if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
158 btrfs_submit_data_write_bio(inode, bio, mirror_num);
159 } else {
160 btrfs_submit_data_read_bio(inode, bio, mirror_num,
161 bio_ctrl->compress_type);
162 }
163
164 /* The bio is owned by the end_io handler now */
165 bio_ctrl->bio = NULL;
166}
167
168/*
169 * Submit or fail the current bio in the bio_ctrl structure.
170 */
171static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
172{
173 struct bio *bio = bio_ctrl->bio;
174
175 if (!bio)
176 return;
177
178 if (ret) {
179 ASSERT(ret < 0);
180 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
181 /* The bio is owned by the end_io handler now */
182 bio_ctrl->bio = NULL;
183 } else {
184 submit_one_bio(bio_ctrl);
185 }
186}
187
188int __init extent_buffer_init_cachep(void)
189{
190 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
191 sizeof(struct extent_buffer), 0,
192 SLAB_MEM_SPREAD, NULL);
193 if (!extent_buffer_cache)
194 return -ENOMEM;
195
196 return 0;
197}
198
199void __cold extent_buffer_free_cachep(void)
200{
201 /*
202 * Make sure all delayed rcu free are flushed before we
203 * destroy caches.
204 */
205 rcu_barrier();
206 kmem_cache_destroy(extent_buffer_cache);
207}
208
209void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
210{
211 unsigned long index = start >> PAGE_SHIFT;
212 unsigned long end_index = end >> PAGE_SHIFT;
213 struct page *page;
214
215 while (index <= end_index) {
216 page = find_get_page(inode->i_mapping, index);
217 BUG_ON(!page); /* Pages should be in the extent_io_tree */
218 clear_page_dirty_for_io(page);
219 put_page(page);
220 index++;
221 }
222}
223
224void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
225{
226 struct address_space *mapping = inode->i_mapping;
227 unsigned long index = start >> PAGE_SHIFT;
228 unsigned long end_index = end >> PAGE_SHIFT;
229 struct folio *folio;
230
231 while (index <= end_index) {
232 folio = filemap_get_folio(mapping, index);
233 filemap_dirty_folio(mapping, folio);
234 folio_account_redirty(folio);
235 index += folio_nr_pages(folio);
236 folio_put(folio);
237 }
238}
239
240/*
241 * Process one page for __process_pages_contig().
242 *
243 * Return >0 if we hit @page == @locked_page.
244 * Return 0 if we updated the page status.
245 * Return -EGAIN if the we need to try again.
246 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
247 */
248static int process_one_page(struct btrfs_fs_info *fs_info,
249 struct address_space *mapping,
250 struct page *page, struct page *locked_page,
251 unsigned long page_ops, u64 start, u64 end)
252{
253 u32 len;
254
255 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
256 len = end + 1 - start;
257
258 if (page_ops & PAGE_SET_ORDERED)
259 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
260 if (page_ops & PAGE_SET_ERROR)
261 btrfs_page_clamp_set_error(fs_info, page, start, len);
262 if (page_ops & PAGE_START_WRITEBACK) {
263 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
264 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
265 }
266 if (page_ops & PAGE_END_WRITEBACK)
267 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
268
269 if (page == locked_page)
270 return 1;
271
272 if (page_ops & PAGE_LOCK) {
273 int ret;
274
275 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
276 if (ret)
277 return ret;
278 if (!PageDirty(page) || page->mapping != mapping) {
279 btrfs_page_end_writer_lock(fs_info, page, start, len);
280 return -EAGAIN;
281 }
282 }
283 if (page_ops & PAGE_UNLOCK)
284 btrfs_page_end_writer_lock(fs_info, page, start, len);
285 return 0;
286}
287
288static int __process_pages_contig(struct address_space *mapping,
289 struct page *locked_page,
290 u64 start, u64 end, unsigned long page_ops,
291 u64 *processed_end)
292{
293 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
294 pgoff_t start_index = start >> PAGE_SHIFT;
295 pgoff_t end_index = end >> PAGE_SHIFT;
296 pgoff_t index = start_index;
297 unsigned long pages_processed = 0;
298 struct folio_batch fbatch;
299 int err = 0;
300 int i;
301
302 if (page_ops & PAGE_LOCK) {
303 ASSERT(page_ops == PAGE_LOCK);
304 ASSERT(processed_end && *processed_end == start);
305 }
306
307 if ((page_ops & PAGE_SET_ERROR) && start_index <= end_index)
308 mapping_set_error(mapping, -EIO);
309
310 folio_batch_init(&fbatch);
311 while (index <= end_index) {
312 int found_folios;
313
314 found_folios = filemap_get_folios_contig(mapping, &index,
315 end_index, &fbatch);
316
317 if (found_folios == 0) {
318 /*
319 * Only if we're going to lock these pages, we can find
320 * nothing at @index.
321 */
322 ASSERT(page_ops & PAGE_LOCK);
323 err = -EAGAIN;
324 goto out;
325 }
326
327 for (i = 0; i < found_folios; i++) {
328 int process_ret;
329 struct folio *folio = fbatch.folios[i];
330 process_ret = process_one_page(fs_info, mapping,
331 &folio->page, locked_page, page_ops,
332 start, end);
333 if (process_ret < 0) {
334 err = -EAGAIN;
335 folio_batch_release(&fbatch);
336 goto out;
337 }
338 pages_processed += folio_nr_pages(folio);
339 }
340 folio_batch_release(&fbatch);
341 cond_resched();
342 }
343out:
344 if (err && processed_end) {
345 /*
346 * Update @processed_end. I know this is awful since it has
347 * two different return value patterns (inclusive vs exclusive).
348 *
349 * But the exclusive pattern is necessary if @start is 0, or we
350 * underflow and check against processed_end won't work as
351 * expected.
352 */
353 if (pages_processed)
354 *processed_end = min(end,
355 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
356 else
357 *processed_end = start;
358 }
359 return err;
360}
361
362static noinline void __unlock_for_delalloc(struct inode *inode,
363 struct page *locked_page,
364 u64 start, u64 end)
365{
366 unsigned long index = start >> PAGE_SHIFT;
367 unsigned long end_index = end >> PAGE_SHIFT;
368
369 ASSERT(locked_page);
370 if (index == locked_page->index && end_index == index)
371 return;
372
373 __process_pages_contig(inode->i_mapping, locked_page, start, end,
374 PAGE_UNLOCK, NULL);
375}
376
377static noinline int lock_delalloc_pages(struct inode *inode,
378 struct page *locked_page,
379 u64 delalloc_start,
380 u64 delalloc_end)
381{
382 unsigned long index = delalloc_start >> PAGE_SHIFT;
383 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
384 u64 processed_end = delalloc_start;
385 int ret;
386
387 ASSERT(locked_page);
388 if (index == locked_page->index && index == end_index)
389 return 0;
390
391 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
392 delalloc_end, PAGE_LOCK, &processed_end);
393 if (ret == -EAGAIN && processed_end > delalloc_start)
394 __unlock_for_delalloc(inode, locked_page, delalloc_start,
395 processed_end);
396 return ret;
397}
398
399/*
400 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
401 * more than @max_bytes.
402 *
403 * @start: The original start bytenr to search.
404 * Will store the extent range start bytenr.
405 * @end: The original end bytenr of the search range
406 * Will store the extent range end bytenr.
407 *
408 * Return true if we find a delalloc range which starts inside the original
409 * range, and @start/@end will store the delalloc range start/end.
410 *
411 * Return false if we can't find any delalloc range which starts inside the
412 * original range, and @start/@end will be the non-delalloc range start/end.
413 */
414EXPORT_FOR_TESTS
415noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
416 struct page *locked_page, u64 *start,
417 u64 *end)
418{
419 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
420 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
421 const u64 orig_start = *start;
422 const u64 orig_end = *end;
423 /* The sanity tests may not set a valid fs_info. */
424 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
425 u64 delalloc_start;
426 u64 delalloc_end;
427 bool found;
428 struct extent_state *cached_state = NULL;
429 int ret;
430 int loops = 0;
431
432 /* Caller should pass a valid @end to indicate the search range end */
433 ASSERT(orig_end > orig_start);
434
435 /* The range should at least cover part of the page */
436 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
437 orig_end <= page_offset(locked_page)));
438again:
439 /* step one, find a bunch of delalloc bytes starting at start */
440 delalloc_start = *start;
441 delalloc_end = 0;
442 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
443 max_bytes, &cached_state);
444 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
445 *start = delalloc_start;
446
447 /* @delalloc_end can be -1, never go beyond @orig_end */
448 *end = min(delalloc_end, orig_end);
449 free_extent_state(cached_state);
450 return false;
451 }
452
453 /*
454 * start comes from the offset of locked_page. We have to lock
455 * pages in order, so we can't process delalloc bytes before
456 * locked_page
457 */
458 if (delalloc_start < *start)
459 delalloc_start = *start;
460
461 /*
462 * make sure to limit the number of pages we try to lock down
463 */
464 if (delalloc_end + 1 - delalloc_start > max_bytes)
465 delalloc_end = delalloc_start + max_bytes - 1;
466
467 /* step two, lock all the pages after the page that has start */
468 ret = lock_delalloc_pages(inode, locked_page,
469 delalloc_start, delalloc_end);
470 ASSERT(!ret || ret == -EAGAIN);
471 if (ret == -EAGAIN) {
472 /* some of the pages are gone, lets avoid looping by
473 * shortening the size of the delalloc range we're searching
474 */
475 free_extent_state(cached_state);
476 cached_state = NULL;
477 if (!loops) {
478 max_bytes = PAGE_SIZE;
479 loops = 1;
480 goto again;
481 } else {
482 found = false;
483 goto out_failed;
484 }
485 }
486
487 /* step three, lock the state bits for the whole range */
488 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
489
490 /* then test to make sure it is all still delalloc */
491 ret = test_range_bit(tree, delalloc_start, delalloc_end,
492 EXTENT_DELALLOC, 1, cached_state);
493 if (!ret) {
494 unlock_extent(tree, delalloc_start, delalloc_end,
495 &cached_state);
496 __unlock_for_delalloc(inode, locked_page,
497 delalloc_start, delalloc_end);
498 cond_resched();
499 goto again;
500 }
501 free_extent_state(cached_state);
502 *start = delalloc_start;
503 *end = delalloc_end;
504out_failed:
505 return found;
506}
507
508void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
509 struct page *locked_page,
510 u32 clear_bits, unsigned long page_ops)
511{
512 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
513
514 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
515 start, end, page_ops, NULL);
516}
517
518static int insert_failrec(struct btrfs_inode *inode,
519 struct io_failure_record *failrec)
520{
521 struct rb_node *exist;
522
523 spin_lock(&inode->io_failure_lock);
524 exist = rb_simple_insert(&inode->io_failure_tree, failrec->bytenr,
525 &failrec->rb_node);
526 spin_unlock(&inode->io_failure_lock);
527
528 return (exist == NULL) ? 0 : -EEXIST;
529}
530
531static struct io_failure_record *get_failrec(struct btrfs_inode *inode, u64 start)
532{
533 struct rb_node *node;
534 struct io_failure_record *failrec = ERR_PTR(-ENOENT);
535
536 spin_lock(&inode->io_failure_lock);
537 node = rb_simple_search(&inode->io_failure_tree, start);
538 if (node)
539 failrec = rb_entry(node, struct io_failure_record, rb_node);
540 spin_unlock(&inode->io_failure_lock);
541 return failrec;
542}
543
544static void free_io_failure(struct btrfs_inode *inode,
545 struct io_failure_record *rec)
546{
547 spin_lock(&inode->io_failure_lock);
548 rb_erase(&rec->rb_node, &inode->io_failure_tree);
549 spin_unlock(&inode->io_failure_lock);
550
551 kfree(rec);
552}
553
554static int next_mirror(const struct io_failure_record *failrec, int cur_mirror)
555{
556 if (cur_mirror == failrec->num_copies)
557 return cur_mirror + 1 - failrec->num_copies;
558 return cur_mirror + 1;
559}
560
561static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror)
562{
563 if (cur_mirror == 1)
564 return failrec->num_copies;
565 return cur_mirror - 1;
566}
567
568/*
569 * each time an IO finishes, we do a fast check in the IO failure tree
570 * to see if we need to process or clean up an io_failure_record
571 */
572int btrfs_clean_io_failure(struct btrfs_inode *inode, u64 start,
573 struct page *page, unsigned int pg_offset)
574{
575 struct btrfs_fs_info *fs_info = inode->root->fs_info;
576 struct extent_io_tree *io_tree = &inode->io_tree;
577 u64 ino = btrfs_ino(inode);
578 u64 locked_start, locked_end;
579 struct io_failure_record *failrec;
580 int mirror;
581 int ret;
582
583 failrec = get_failrec(inode, start);
584 if (IS_ERR(failrec))
585 return 0;
586
587 BUG_ON(!failrec->this_mirror);
588
589 if (sb_rdonly(fs_info->sb))
590 goto out;
591
592 ret = find_first_extent_bit(io_tree, failrec->bytenr, &locked_start,
593 &locked_end, EXTENT_LOCKED, NULL);
594 if (ret || locked_start > failrec->bytenr ||
595 locked_end < failrec->bytenr + failrec->len - 1)
596 goto out;
597
598 mirror = failrec->this_mirror;
599 do {
600 mirror = prev_mirror(failrec, mirror);
601 btrfs_repair_io_failure(fs_info, ino, start, failrec->len,
602 failrec->logical, page, pg_offset, mirror);
603 } while (mirror != failrec->failed_mirror);
604
605out:
606 free_io_failure(inode, failrec);
607 return 0;
608}
609
610/*
611 * Can be called when
612 * - hold extent lock
613 * - under ordered extent
614 * - the inode is freeing
615 */
616void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
617{
618 struct io_failure_record *failrec;
619 struct rb_node *node, *next;
620
621 if (RB_EMPTY_ROOT(&inode->io_failure_tree))
622 return;
623
624 spin_lock(&inode->io_failure_lock);
625 node = rb_simple_search_first(&inode->io_failure_tree, start);
626 while (node) {
627 failrec = rb_entry(node, struct io_failure_record, rb_node);
628 if (failrec->bytenr > end)
629 break;
630
631 next = rb_next(node);
632 rb_erase(&failrec->rb_node, &inode->io_failure_tree);
633 kfree(failrec);
634
635 node = next;
636 }
637 spin_unlock(&inode->io_failure_lock);
638}
639
640static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
641 struct btrfs_bio *bbio,
642 unsigned int bio_offset)
643{
644 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
645 u64 start = bbio->file_offset + bio_offset;
646 struct io_failure_record *failrec;
647 const u32 sectorsize = fs_info->sectorsize;
648 int ret;
649
650 failrec = get_failrec(BTRFS_I(inode), start);
651 if (!IS_ERR(failrec)) {
652 btrfs_debug(fs_info,
653 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
654 failrec->logical, failrec->bytenr, failrec->len);
655 /*
656 * when data can be on disk more than twice, add to failrec here
657 * (e.g. with a list for failed_mirror) to make
658 * clean_io_failure() clean all those errors at once.
659 */
660 ASSERT(failrec->this_mirror == bbio->mirror_num);
661 ASSERT(failrec->len == fs_info->sectorsize);
662 return failrec;
663 }
664
665 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
666 if (!failrec)
667 return ERR_PTR(-ENOMEM);
668
669 RB_CLEAR_NODE(&failrec->rb_node);
670 failrec->bytenr = start;
671 failrec->len = sectorsize;
672 failrec->failed_mirror = bbio->mirror_num;
673 failrec->this_mirror = bbio->mirror_num;
674 failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset;
675
676 btrfs_debug(fs_info,
677 "new io failure record logical %llu start %llu",
678 failrec->logical, start);
679
680 failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize);
681 if (failrec->num_copies == 1) {
682 /*
683 * We only have a single copy of the data, so don't bother with
684 * all the retry and error correction code that follows. No
685 * matter what the error is, it is very likely to persist.
686 */
687 btrfs_debug(fs_info,
688 "cannot repair logical %llu num_copies %d",
689 failrec->logical, failrec->num_copies);
690 kfree(failrec);
691 return ERR_PTR(-EIO);
692 }
693
694 /* Set the bits in the private failure tree */
695 ret = insert_failrec(BTRFS_I(inode), failrec);
696 if (ret) {
697 kfree(failrec);
698 return ERR_PTR(ret);
699 }
700
701 return failrec;
702}
703
704int btrfs_repair_one_sector(struct btrfs_inode *inode, struct btrfs_bio *failed_bbio,
705 u32 bio_offset, struct page *page, unsigned int pgoff,
706 bool submit_buffered)
707{
708 u64 start = failed_bbio->file_offset + bio_offset;
709 struct io_failure_record *failrec;
710 struct btrfs_fs_info *fs_info = inode->root->fs_info;
711 struct bio *failed_bio = &failed_bbio->bio;
712 const int icsum = bio_offset >> fs_info->sectorsize_bits;
713 struct bio *repair_bio;
714 struct btrfs_bio *repair_bbio;
715
716 btrfs_debug(fs_info,
717 "repair read error: read error at %llu", start);
718
719 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
720
721 failrec = btrfs_get_io_failure_record(&inode->vfs_inode, failed_bbio, bio_offset);
722 if (IS_ERR(failrec))
723 return PTR_ERR(failrec);
724
725 /*
726 * There are two premises:
727 * a) deliver good data to the caller
728 * b) correct the bad sectors on disk
729 *
730 * Since we're only doing repair for one sector, we only need to get
731 * a good copy of the failed sector and if we succeed, we have setup
732 * everything for btrfs_repair_io_failure to do the rest for us.
733 */
734 failrec->this_mirror = next_mirror(failrec, failrec->this_mirror);
735 if (failrec->this_mirror == failrec->failed_mirror) {
736 btrfs_debug(fs_info,
737 "failed to repair num_copies %d this_mirror %d failed_mirror %d",
738 failrec->num_copies, failrec->this_mirror, failrec->failed_mirror);
739 free_io_failure(inode, failrec);
740 return -EIO;
741 }
742
743 repair_bio = btrfs_bio_alloc(1, REQ_OP_READ, failed_bbio->end_io,
744 failed_bbio->private);
745 repair_bbio = btrfs_bio(repair_bio);
746 repair_bbio->file_offset = start;
747 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
748
749 if (failed_bbio->csum) {
750 const u32 csum_size = fs_info->csum_size;
751
752 repair_bbio->csum = repair_bbio->csum_inline;
753 memcpy(repair_bbio->csum,
754 failed_bbio->csum + csum_size * icsum, csum_size);
755 }
756
757 bio_add_page(repair_bio, page, failrec->len, pgoff);
758 repair_bbio->iter = repair_bio->bi_iter;
759
760 btrfs_debug(fs_info,
761 "repair read error: submitting new read to mirror %d",
762 failrec->this_mirror);
763
764 /*
765 * At this point we have a bio, so any errors from bio submission will
766 * be handled by the endio on the repair_bio, so we can't return an
767 * error here.
768 */
769 if (submit_buffered)
770 btrfs_submit_data_read_bio(inode, repair_bio,
771 failrec->this_mirror, 0);
772 else
773 btrfs_submit_dio_repair_bio(inode, repair_bio, failrec->this_mirror);
774
775 return BLK_STS_OK;
776}
777
778static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
779{
780 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
781
782 ASSERT(page_offset(page) <= start &&
783 start + len <= page_offset(page) + PAGE_SIZE);
784
785 if (uptodate) {
786 if (fsverity_active(page->mapping->host) &&
787 !PageError(page) &&
788 !PageUptodate(page) &&
789 start < i_size_read(page->mapping->host) &&
790 !fsverity_verify_page(page)) {
791 btrfs_page_set_error(fs_info, page, start, len);
792 } else {
793 btrfs_page_set_uptodate(fs_info, page, start, len);
794 }
795 } else {
796 btrfs_page_clear_uptodate(fs_info, page, start, len);
797 btrfs_page_set_error(fs_info, page, start, len);
798 }
799
800 if (!btrfs_is_subpage(fs_info, page))
801 unlock_page(page);
802 else
803 btrfs_subpage_end_reader(fs_info, page, start, len);
804}
805
806static void end_sector_io(struct page *page, u64 offset, bool uptodate)
807{
808 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
809 const u32 sectorsize = inode->root->fs_info->sectorsize;
810
811 end_page_read(page, uptodate, offset, sectorsize);
812 unlock_extent(&inode->io_tree, offset, offset + sectorsize - 1, NULL);
813}
814
815static void submit_data_read_repair(struct inode *inode,
816 struct btrfs_bio *failed_bbio,
817 u32 bio_offset, const struct bio_vec *bvec,
818 unsigned int error_bitmap)
819{
820 const unsigned int pgoff = bvec->bv_offset;
821 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
822 struct page *page = bvec->bv_page;
823 const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset;
824 const u64 end = start + bvec->bv_len - 1;
825 const u32 sectorsize = fs_info->sectorsize;
826 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
827 int i;
828
829 BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE);
830
831 /* This repair is only for data */
832 ASSERT(is_data_inode(inode));
833
834 /* We're here because we had some read errors or csum mismatch */
835 ASSERT(error_bitmap);
836
837 /*
838 * We only get called on buffered IO, thus page must be mapped and bio
839 * must not be cloned.
840 */
841 ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED));
842
843 /* Iterate through all the sectors in the range */
844 for (i = 0; i < nr_bits; i++) {
845 const unsigned int offset = i * sectorsize;
846 bool uptodate = false;
847 int ret;
848
849 if (!(error_bitmap & (1U << i))) {
850 /*
851 * This sector has no error, just end the page read
852 * and unlock the range.
853 */
854 uptodate = true;
855 goto next;
856 }
857
858 ret = btrfs_repair_one_sector(BTRFS_I(inode), failed_bbio,
859 bio_offset + offset, page, pgoff + offset,
860 true);
861 if (!ret) {
862 /*
863 * We have submitted the read repair, the page release
864 * will be handled by the endio function of the
865 * submitted repair bio.
866 * Thus we don't need to do any thing here.
867 */
868 continue;
869 }
870 /*
871 * Continue on failed repair, otherwise the remaining sectors
872 * will not be properly unlocked.
873 */
874next:
875 end_sector_io(page, start + offset, uptodate);
876 }
877}
878
879/* lots and lots of room for performance fixes in the end_bio funcs */
880
881void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
882{
883 struct btrfs_inode *inode;
884 const bool uptodate = (err == 0);
885 int ret = 0;
886
887 ASSERT(page && page->mapping);
888 inode = BTRFS_I(page->mapping->host);
889 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
890
891 if (!uptodate) {
892 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
893 u32 len;
894
895 ASSERT(end + 1 - start <= U32_MAX);
896 len = end + 1 - start;
897
898 btrfs_page_clear_uptodate(fs_info, page, start, len);
899 btrfs_page_set_error(fs_info, page, start, len);
900 ret = err < 0 ? err : -EIO;
901 mapping_set_error(page->mapping, ret);
902 }
903}
904
905/*
906 * after a writepage IO is done, we need to:
907 * clear the uptodate bits on error
908 * clear the writeback bits in the extent tree for this IO
909 * end_page_writeback if the page has no more pending IO
910 *
911 * Scheduling is not allowed, so the extent state tree is expected
912 * to have one and only one object corresponding to this IO.
913 */
914static void end_bio_extent_writepage(struct btrfs_bio *bbio)
915{
916 struct bio *bio = &bbio->bio;
917 int error = blk_status_to_errno(bio->bi_status);
918 struct bio_vec *bvec;
919 u64 start;
920 u64 end;
921 struct bvec_iter_all iter_all;
922 bool first_bvec = true;
923
924 ASSERT(!bio_flagged(bio, BIO_CLONED));
925 bio_for_each_segment_all(bvec, bio, iter_all) {
926 struct page *page = bvec->bv_page;
927 struct inode *inode = page->mapping->host;
928 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
929 const u32 sectorsize = fs_info->sectorsize;
930
931 /* Our read/write should always be sector aligned. */
932 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
933 btrfs_err(fs_info,
934 "partial page write in btrfs with offset %u and length %u",
935 bvec->bv_offset, bvec->bv_len);
936 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
937 btrfs_info(fs_info,
938 "incomplete page write with offset %u and length %u",
939 bvec->bv_offset, bvec->bv_len);
940
941 start = page_offset(page) + bvec->bv_offset;
942 end = start + bvec->bv_len - 1;
943
944 if (first_bvec) {
945 btrfs_record_physical_zoned(inode, start, bio);
946 first_bvec = false;
947 }
948
949 end_extent_writepage(page, error, start, end);
950
951 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
952 }
953
954 bio_put(bio);
955}
956
957/*
958 * Record previously processed extent range
959 *
960 * For endio_readpage_release_extent() to handle a full extent range, reducing
961 * the extent io operations.
962 */
963struct processed_extent {
964 struct btrfs_inode *inode;
965 /* Start of the range in @inode */
966 u64 start;
967 /* End of the range in @inode */
968 u64 end;
969 bool uptodate;
970};
971
972/*
973 * Try to release processed extent range
974 *
975 * May not release the extent range right now if the current range is
976 * contiguous to processed extent.
977 *
978 * Will release processed extent when any of @inode, @uptodate, the range is
979 * no longer contiguous to the processed range.
980 *
981 * Passing @inode == NULL will force processed extent to be released.
982 */
983static void endio_readpage_release_extent(struct processed_extent *processed,
984 struct btrfs_inode *inode, u64 start, u64 end,
985 bool uptodate)
986{
987 struct extent_state *cached = NULL;
988 struct extent_io_tree *tree;
989
990 /* The first extent, initialize @processed */
991 if (!processed->inode)
992 goto update;
993
994 /*
995 * Contiguous to processed extent, just uptodate the end.
996 *
997 * Several things to notice:
998 *
999 * - bio can be merged as long as on-disk bytenr is contiguous
1000 * This means we can have page belonging to other inodes, thus need to
1001 * check if the inode still matches.
1002 * - bvec can contain range beyond current page for multi-page bvec
1003 * Thus we need to do processed->end + 1 >= start check
1004 */
1005 if (processed->inode == inode && processed->uptodate == uptodate &&
1006 processed->end + 1 >= start && end >= processed->end) {
1007 processed->end = end;
1008 return;
1009 }
1010
1011 tree = &processed->inode->io_tree;
1012 /*
1013 * Now we don't have range contiguous to the processed range, release
1014 * the processed range now.
1015 */
1016 unlock_extent(tree, processed->start, processed->end, &cached);
1017
1018update:
1019 /* Update processed to current range */
1020 processed->inode = inode;
1021 processed->start = start;
1022 processed->end = end;
1023 processed->uptodate = uptodate;
1024}
1025
1026static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
1027{
1028 ASSERT(PageLocked(page));
1029 if (!btrfs_is_subpage(fs_info, page))
1030 return;
1031
1032 ASSERT(PagePrivate(page));
1033 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
1034}
1035
1036/*
1037 * Find extent buffer for a givne bytenr.
1038 *
1039 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
1040 * in endio context.
1041 */
1042static struct extent_buffer *find_extent_buffer_readpage(
1043 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
1044{
1045 struct extent_buffer *eb;
1046
1047 /*
1048 * For regular sectorsize, we can use page->private to grab extent
1049 * buffer
1050 */
1051 if (fs_info->nodesize >= PAGE_SIZE) {
1052 ASSERT(PagePrivate(page) && page->private);
1053 return (struct extent_buffer *)page->private;
1054 }
1055
1056 /* For subpage case, we need to lookup buffer radix tree */
1057 rcu_read_lock();
1058 eb = radix_tree_lookup(&fs_info->buffer_radix,
1059 bytenr >> fs_info->sectorsize_bits);
1060 rcu_read_unlock();
1061 ASSERT(eb);
1062 return eb;
1063}
1064
1065/*
1066 * after a readpage IO is done, we need to:
1067 * clear the uptodate bits on error
1068 * set the uptodate bits if things worked
1069 * set the page up to date if all extents in the tree are uptodate
1070 * clear the lock bit in the extent tree
1071 * unlock the page if there are no other extents locked for it
1072 *
1073 * Scheduling is not allowed, so the extent state tree is expected
1074 * to have one and only one object corresponding to this IO.
1075 */
1076static void end_bio_extent_readpage(struct btrfs_bio *bbio)
1077{
1078 struct bio *bio = &bbio->bio;
1079 struct bio_vec *bvec;
1080 struct processed_extent processed = { 0 };
1081 /*
1082 * The offset to the beginning of a bio, since one bio can never be
1083 * larger than UINT_MAX, u32 here is enough.
1084 */
1085 u32 bio_offset = 0;
1086 int mirror;
1087 struct bvec_iter_all iter_all;
1088
1089 ASSERT(!bio_flagged(bio, BIO_CLONED));
1090 bio_for_each_segment_all(bvec, bio, iter_all) {
1091 bool uptodate = !bio->bi_status;
1092 struct page *page = bvec->bv_page;
1093 struct inode *inode = page->mapping->host;
1094 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1095 const u32 sectorsize = fs_info->sectorsize;
1096 unsigned int error_bitmap = (unsigned int)-1;
1097 bool repair = false;
1098 u64 start;
1099 u64 end;
1100 u32 len;
1101
1102 btrfs_debug(fs_info,
1103 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
1104 bio->bi_iter.bi_sector, bio->bi_status,
1105 bbio->mirror_num);
1106
1107 /*
1108 * We always issue full-sector reads, but if some block in a
1109 * page fails to read, blk_update_request() will advance
1110 * bv_offset and adjust bv_len to compensate. Print a warning
1111 * for unaligned offsets, and an error if they don't add up to
1112 * a full sector.
1113 */
1114 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
1115 btrfs_err(fs_info,
1116 "partial page read in btrfs with offset %u and length %u",
1117 bvec->bv_offset, bvec->bv_len);
1118 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
1119 sectorsize))
1120 btrfs_info(fs_info,
1121 "incomplete page read with offset %u and length %u",
1122 bvec->bv_offset, bvec->bv_len);
1123
1124 start = page_offset(page) + bvec->bv_offset;
1125 end = start + bvec->bv_len - 1;
1126 len = bvec->bv_len;
1127
1128 mirror = bbio->mirror_num;
1129 if (likely(uptodate)) {
1130 if (is_data_inode(inode)) {
1131 error_bitmap = btrfs_verify_data_csum(bbio,
1132 bio_offset, page, start, end);
1133 if (error_bitmap)
1134 uptodate = false;
1135 } else {
1136 if (btrfs_validate_metadata_buffer(bbio,
1137 page, start, end, mirror))
1138 uptodate = false;
1139 }
1140 }
1141
1142 if (likely(uptodate)) {
1143 loff_t i_size = i_size_read(inode);
1144 pgoff_t end_index = i_size >> PAGE_SHIFT;
1145
1146 btrfs_clean_io_failure(BTRFS_I(inode), start, page, 0);
1147
1148 /*
1149 * Zero out the remaining part if this range straddles
1150 * i_size.
1151 *
1152 * Here we should only zero the range inside the bvec,
1153 * not touch anything else.
1154 *
1155 * NOTE: i_size is exclusive while end is inclusive.
1156 */
1157 if (page->index == end_index && i_size <= end) {
1158 u32 zero_start = max(offset_in_page(i_size),
1159 offset_in_page(start));
1160
1161 zero_user_segment(page, zero_start,
1162 offset_in_page(end) + 1);
1163 }
1164 } else if (is_data_inode(inode)) {
1165 /*
1166 * Only try to repair bios that actually made it to a
1167 * device. If the bio failed to be submitted mirror
1168 * is 0 and we need to fail it without retrying.
1169 *
1170 * This also includes the high level bios for compressed
1171 * extents - these never make it to a device and repair
1172 * is already handled on the lower compressed bio.
1173 */
1174 if (mirror > 0)
1175 repair = true;
1176 } else {
1177 struct extent_buffer *eb;
1178
1179 eb = find_extent_buffer_readpage(fs_info, page, start);
1180 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
1181 eb->read_mirror = mirror;
1182 atomic_dec(&eb->io_pages);
1183 }
1184
1185 if (repair) {
1186 /*
1187 * submit_data_read_repair() will handle all the good
1188 * and bad sectors, we just continue to the next bvec.
1189 */
1190 submit_data_read_repair(inode, bbio, bio_offset, bvec,
1191 error_bitmap);
1192 } else {
1193 /* Update page status and unlock */
1194 end_page_read(page, uptodate, start, len);
1195 endio_readpage_release_extent(&processed, BTRFS_I(inode),
1196 start, end, PageUptodate(page));
1197 }
1198
1199 ASSERT(bio_offset + len > bio_offset);
1200 bio_offset += len;
1201
1202 }
1203 /* Release the last extent */
1204 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
1205 btrfs_bio_free_csum(bbio);
1206 bio_put(bio);
1207}
1208
1209/*
1210 * Populate every free slot in a provided array with pages.
1211 *
1212 * @nr_pages: number of pages to allocate
1213 * @page_array: the array to fill with pages; any existing non-null entries in
1214 * the array will be skipped
1215 *
1216 * Return: 0 if all pages were able to be allocated;
1217 * -ENOMEM otherwise, and the caller is responsible for freeing all
1218 * non-null page pointers in the array.
1219 */
1220int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
1221{
1222 unsigned int allocated;
1223
1224 for (allocated = 0; allocated < nr_pages;) {
1225 unsigned int last = allocated;
1226
1227 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
1228
1229 if (allocated == nr_pages)
1230 return 0;
1231
1232 /*
1233 * During this iteration, no page could be allocated, even
1234 * though alloc_pages_bulk_array() falls back to alloc_page()
1235 * if it could not bulk-allocate. So we must be out of memory.
1236 */
1237 if (allocated == last)
1238 return -ENOMEM;
1239
1240 memalloc_retry_wait(GFP_NOFS);
1241 }
1242 return 0;
1243}
1244
1245/*
1246 * Attempt to add a page to bio.
1247 *
1248 * @bio_ctrl: record both the bio, and its bio_flags
1249 * @page: page to add to the bio
1250 * @disk_bytenr: offset of the new bio or to check whether we are adding
1251 * a contiguous page to the previous one
1252 * @size: portion of page that we want to write
1253 * @pg_offset: starting offset in the page
1254 * @compress_type: compression type of the current bio to see if we can merge them
1255 *
1256 * Attempt to add a page to bio considering stripe alignment etc.
1257 *
1258 * Return >= 0 for the number of bytes added to the bio.
1259 * Can return 0 if the current bio is already at stripe/zone boundary.
1260 * Return <0 for error.
1261 */
1262static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
1263 struct page *page,
1264 u64 disk_bytenr, unsigned int size,
1265 unsigned int pg_offset,
1266 enum btrfs_compression_type compress_type)
1267{
1268 struct bio *bio = bio_ctrl->bio;
1269 u32 bio_size = bio->bi_iter.bi_size;
1270 u32 real_size;
1271 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
1272 bool contig = false;
1273 int ret;
1274
1275 ASSERT(bio);
1276 /* The limit should be calculated when bio_ctrl->bio is allocated */
1277 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
1278 if (bio_ctrl->compress_type != compress_type)
1279 return 0;
1280
1281
1282 if (bio->bi_iter.bi_size == 0) {
1283 /* We can always add a page into an empty bio. */
1284 contig = true;
1285 } else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) {
1286 struct bio_vec *bvec = bio_last_bvec_all(bio);
1287
1288 /*
1289 * The contig check requires the following conditions to be met:
1290 * 1) The pages are belonging to the same inode
1291 * This is implied by the call chain.
1292 *
1293 * 2) The range has adjacent logical bytenr
1294 *
1295 * 3) The range has adjacent file offset
1296 * This is required for the usage of btrfs_bio->file_offset.
1297 */
1298 if (bio_end_sector(bio) == sector &&
1299 page_offset(bvec->bv_page) + bvec->bv_offset +
1300 bvec->bv_len == page_offset(page) + pg_offset)
1301 contig = true;
1302 } else {
1303 /*
1304 * For compression, all IO should have its logical bytenr
1305 * set to the starting bytenr of the compressed extent.
1306 */
1307 contig = bio->bi_iter.bi_sector == sector;
1308 }
1309
1310 if (!contig)
1311 return 0;
1312
1313 real_size = min(bio_ctrl->len_to_oe_boundary,
1314 bio_ctrl->len_to_stripe_boundary) - bio_size;
1315 real_size = min(real_size, size);
1316
1317 /*
1318 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
1319 * bio will still execute its endio function on the page!
1320 */
1321 if (real_size == 0)
1322 return 0;
1323
1324 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1325 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
1326 else
1327 ret = bio_add_page(bio, page, real_size, pg_offset);
1328
1329 return ret;
1330}
1331
1332static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
1333 struct btrfs_inode *inode, u64 file_offset)
1334{
1335 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1336 struct btrfs_io_geometry geom;
1337 struct btrfs_ordered_extent *ordered;
1338 struct extent_map *em;
1339 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
1340 int ret;
1341
1342 /*
1343 * Pages for compressed extent are never submitted to disk directly,
1344 * thus it has no real boundary, just set them to U32_MAX.
1345 *
1346 * The split happens for real compressed bio, which happens in
1347 * btrfs_submit_compressed_read/write().
1348 */
1349 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
1350 bio_ctrl->len_to_oe_boundary = U32_MAX;
1351 bio_ctrl->len_to_stripe_boundary = U32_MAX;
1352 return 0;
1353 }
1354 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
1355 if (IS_ERR(em))
1356 return PTR_ERR(em);
1357 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
1358 logical, &geom);
1359 free_extent_map(em);
1360 if (ret < 0) {
1361 return ret;
1362 }
1363 if (geom.len > U32_MAX)
1364 bio_ctrl->len_to_stripe_boundary = U32_MAX;
1365 else
1366 bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
1367
1368 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
1369 bio_ctrl->len_to_oe_boundary = U32_MAX;
1370 return 0;
1371 }
1372
1373 /* Ordered extent not yet created, so we're good */
1374 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
1375 if (!ordered) {
1376 bio_ctrl->len_to_oe_boundary = U32_MAX;
1377 return 0;
1378 }
1379
1380 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
1381 ordered->disk_bytenr + ordered->disk_num_bytes - logical);
1382 btrfs_put_ordered_extent(ordered);
1383 return 0;
1384}
1385
1386static int alloc_new_bio(struct btrfs_inode *inode,
1387 struct btrfs_bio_ctrl *bio_ctrl,
1388 struct writeback_control *wbc,
1389 blk_opf_t opf,
1390 u64 disk_bytenr, u32 offset, u64 file_offset,
1391 enum btrfs_compression_type compress_type)
1392{
1393 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1394 struct bio *bio;
1395 int ret;
1396
1397 ASSERT(bio_ctrl->end_io_func);
1398
1399 bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, bio_ctrl->end_io_func, NULL);
1400 /*
1401 * For compressed page range, its disk_bytenr is always @disk_bytenr
1402 * passed in, no matter if we have added any range into previous bio.
1403 */
1404 if (compress_type != BTRFS_COMPRESS_NONE)
1405 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
1406 else
1407 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
1408 bio_ctrl->bio = bio;
1409 bio_ctrl->compress_type = compress_type;
1410 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
1411 if (ret < 0)
1412 goto error;
1413
1414 if (wbc) {
1415 /*
1416 * For Zone append we need the correct block_device that we are
1417 * going to write to set in the bio to be able to respect the
1418 * hardware limitation. Look it up here:
1419 */
1420 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1421 struct btrfs_device *dev;
1422
1423 dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
1424 fs_info->sectorsize);
1425 if (IS_ERR(dev)) {
1426 ret = PTR_ERR(dev);
1427 goto error;
1428 }
1429
1430 bio_set_dev(bio, dev->bdev);
1431 } else {
1432 /*
1433 * Otherwise pick the last added device to support
1434 * cgroup writeback. For multi-device file systems this
1435 * means blk-cgroup policies have to always be set on the
1436 * last added/replaced device. This is a bit odd but has
1437 * been like that for a long time.
1438 */
1439 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
1440 }
1441 wbc_init_bio(wbc, bio);
1442 } else {
1443 ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
1444 }
1445 return 0;
1446error:
1447 bio_ctrl->bio = NULL;
1448 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
1449 return ret;
1450}
1451
1452/*
1453 * @opf: bio REQ_OP_* and REQ_* flags as one value
1454 * @wbc: optional writeback control for io accounting
1455 * @disk_bytenr: logical bytenr where the write will be
1456 * @page: page to add to the bio
1457 * @size: portion of page that we want to write to
1458 * @pg_offset: offset of the new bio or to check whether we are adding
1459 * a contiguous page to the previous one
1460 * @compress_type: compress type for current bio
1461 *
1462 * The will either add the page into the existing @bio_ctrl->bio, or allocate a
1463 * new one in @bio_ctrl->bio.
1464 * The mirror number for this IO should already be initizlied in
1465 * @bio_ctrl->mirror_num.
1466 */
1467static int submit_extent_page(blk_opf_t opf,
1468 struct writeback_control *wbc,
1469 struct btrfs_bio_ctrl *bio_ctrl,
1470 u64 disk_bytenr, struct page *page,
1471 size_t size, unsigned long pg_offset,
1472 enum btrfs_compression_type compress_type,
1473 bool force_bio_submit)
1474{
1475 int ret = 0;
1476 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1477 unsigned int cur = pg_offset;
1478
1479 ASSERT(bio_ctrl);
1480
1481 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
1482 pg_offset + size <= PAGE_SIZE);
1483
1484 ASSERT(bio_ctrl->end_io_func);
1485
1486 if (force_bio_submit)
1487 submit_one_bio(bio_ctrl);
1488
1489 while (cur < pg_offset + size) {
1490 u32 offset = cur - pg_offset;
1491 int added;
1492
1493 /* Allocate new bio if needed */
1494 if (!bio_ctrl->bio) {
1495 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
1496 disk_bytenr, offset,
1497 page_offset(page) + cur,
1498 compress_type);
1499 if (ret < 0)
1500 return ret;
1501 }
1502 /*
1503 * We must go through btrfs_bio_add_page() to ensure each
1504 * page range won't cross various boundaries.
1505 */
1506 if (compress_type != BTRFS_COMPRESS_NONE)
1507 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
1508 size - offset, pg_offset + offset,
1509 compress_type);
1510 else
1511 added = btrfs_bio_add_page(bio_ctrl, page,
1512 disk_bytenr + offset, size - offset,
1513 pg_offset + offset, compress_type);
1514
1515 /* Metadata page range should never be split */
1516 if (!is_data_inode(&inode->vfs_inode))
1517 ASSERT(added == 0 || added == size - offset);
1518
1519 /* At least we added some page, update the account */
1520 if (wbc && added)
1521 wbc_account_cgroup_owner(wbc, page, added);
1522
1523 /* We have reached boundary, submit right now */
1524 if (added < size - offset) {
1525 /* The bio should contain some page(s) */
1526 ASSERT(bio_ctrl->bio->bi_iter.bi_size);
1527 submit_one_bio(bio_ctrl);
1528 }
1529 cur += added;
1530 }
1531 return 0;
1532}
1533
1534static int attach_extent_buffer_page(struct extent_buffer *eb,
1535 struct page *page,
1536 struct btrfs_subpage *prealloc)
1537{
1538 struct btrfs_fs_info *fs_info = eb->fs_info;
1539 int ret = 0;
1540
1541 /*
1542 * If the page is mapped to btree inode, we should hold the private
1543 * lock to prevent race.
1544 * For cloned or dummy extent buffers, their pages are not mapped and
1545 * will not race with any other ebs.
1546 */
1547 if (page->mapping)
1548 lockdep_assert_held(&page->mapping->private_lock);
1549
1550 if (fs_info->nodesize >= PAGE_SIZE) {
1551 if (!PagePrivate(page))
1552 attach_page_private(page, eb);
1553 else
1554 WARN_ON(page->private != (unsigned long)eb);
1555 return 0;
1556 }
1557
1558 /* Already mapped, just free prealloc */
1559 if (PagePrivate(page)) {
1560 btrfs_free_subpage(prealloc);
1561 return 0;
1562 }
1563
1564 if (prealloc)
1565 /* Has preallocated memory for subpage */
1566 attach_page_private(page, prealloc);
1567 else
1568 /* Do new allocation to attach subpage */
1569 ret = btrfs_attach_subpage(fs_info, page,
1570 BTRFS_SUBPAGE_METADATA);
1571 return ret;
1572}
1573
1574int set_page_extent_mapped(struct page *page)
1575{
1576 struct btrfs_fs_info *fs_info;
1577
1578 ASSERT(page->mapping);
1579
1580 if (PagePrivate(page))
1581 return 0;
1582
1583 fs_info = btrfs_sb(page->mapping->host->i_sb);
1584
1585 if (btrfs_is_subpage(fs_info, page))
1586 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
1587
1588 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
1589 return 0;
1590}
1591
1592void clear_page_extent_mapped(struct page *page)
1593{
1594 struct btrfs_fs_info *fs_info;
1595
1596 ASSERT(page->mapping);
1597
1598 if (!PagePrivate(page))
1599 return;
1600
1601 fs_info = btrfs_sb(page->mapping->host->i_sb);
1602 if (btrfs_is_subpage(fs_info, page))
1603 return btrfs_detach_subpage(fs_info, page);
1604
1605 detach_page_private(page);
1606}
1607
1608static struct extent_map *
1609__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1610 u64 start, u64 len, struct extent_map **em_cached)
1611{
1612 struct extent_map *em;
1613
1614 if (em_cached && *em_cached) {
1615 em = *em_cached;
1616 if (extent_map_in_tree(em) && start >= em->start &&
1617 start < extent_map_end(em)) {
1618 refcount_inc(&em->refs);
1619 return em;
1620 }
1621
1622 free_extent_map(em);
1623 *em_cached = NULL;
1624 }
1625
1626 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
1627 if (em_cached && !IS_ERR(em)) {
1628 BUG_ON(*em_cached);
1629 refcount_inc(&em->refs);
1630 *em_cached = em;
1631 }
1632 return em;
1633}
1634/*
1635 * basic readpage implementation. Locked extent state structs are inserted
1636 * into the tree that are removed when the IO is done (by the end_io
1637 * handlers)
1638 * XXX JDM: This needs looking at to ensure proper page locking
1639 * return 0 on success, otherwise return error
1640 */
1641static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
1642 struct btrfs_bio_ctrl *bio_ctrl,
1643 blk_opf_t read_flags, u64 *prev_em_start)
1644{
1645 struct inode *inode = page->mapping->host;
1646 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1647 u64 start = page_offset(page);
1648 const u64 end = start + PAGE_SIZE - 1;
1649 u64 cur = start;
1650 u64 extent_offset;
1651 u64 last_byte = i_size_read(inode);
1652 u64 block_start;
1653 struct extent_map *em;
1654 int ret = 0;
1655 size_t pg_offset = 0;
1656 size_t iosize;
1657 size_t blocksize = inode->i_sb->s_blocksize;
1658 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1659
1660 ret = set_page_extent_mapped(page);
1661 if (ret < 0) {
1662 unlock_extent(tree, start, end, NULL);
1663 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
1664 unlock_page(page);
1665 goto out;
1666 }
1667
1668 if (page->index == last_byte >> PAGE_SHIFT) {
1669 size_t zero_offset = offset_in_page(last_byte);
1670
1671 if (zero_offset) {
1672 iosize = PAGE_SIZE - zero_offset;
1673 memzero_page(page, zero_offset, iosize);
1674 }
1675 }
1676 bio_ctrl->end_io_func = end_bio_extent_readpage;
1677 begin_page_read(fs_info, page);
1678 while (cur <= end) {
1679 unsigned long this_bio_flag = 0;
1680 bool force_bio_submit = false;
1681 u64 disk_bytenr;
1682
1683 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1684 if (cur >= last_byte) {
1685 iosize = PAGE_SIZE - pg_offset;
1686 memzero_page(page, pg_offset, iosize);
1687 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1688 end_page_read(page, true, cur, iosize);
1689 break;
1690 }
1691 em = __get_extent_map(inode, page, pg_offset, cur,
1692 end - cur + 1, em_cached);
1693 if (IS_ERR(em)) {
1694 unlock_extent(tree, cur, end, NULL);
1695 end_page_read(page, false, cur, end + 1 - cur);
1696 ret = PTR_ERR(em);
1697 break;
1698 }
1699 extent_offset = cur - em->start;
1700 BUG_ON(extent_map_end(em) <= cur);
1701 BUG_ON(end < cur);
1702
1703 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1704 this_bio_flag = em->compress_type;
1705
1706 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1707 iosize = ALIGN(iosize, blocksize);
1708 if (this_bio_flag != BTRFS_COMPRESS_NONE)
1709 disk_bytenr = em->block_start;
1710 else
1711 disk_bytenr = em->block_start + extent_offset;
1712 block_start = em->block_start;
1713 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1714 block_start = EXTENT_MAP_HOLE;
1715
1716 /*
1717 * If we have a file range that points to a compressed extent
1718 * and it's followed by a consecutive file range that points
1719 * to the same compressed extent (possibly with a different
1720 * offset and/or length, so it either points to the whole extent
1721 * or only part of it), we must make sure we do not submit a
1722 * single bio to populate the pages for the 2 ranges because
1723 * this makes the compressed extent read zero out the pages
1724 * belonging to the 2nd range. Imagine the following scenario:
1725 *
1726 * File layout
1727 * [0 - 8K] [8K - 24K]
1728 * | |
1729 * | |
1730 * points to extent X, points to extent X,
1731 * offset 4K, length of 8K offset 0, length 16K
1732 *
1733 * [extent X, compressed length = 4K uncompressed length = 16K]
1734 *
1735 * If the bio to read the compressed extent covers both ranges,
1736 * it will decompress extent X into the pages belonging to the
1737 * first range and then it will stop, zeroing out the remaining
1738 * pages that belong to the other range that points to extent X.
1739 * So here we make sure we submit 2 bios, one for the first
1740 * range and another one for the third range. Both will target
1741 * the same physical extent from disk, but we can't currently
1742 * make the compressed bio endio callback populate the pages
1743 * for both ranges because each compressed bio is tightly
1744 * coupled with a single extent map, and each range can have
1745 * an extent map with a different offset value relative to the
1746 * uncompressed data of our extent and different lengths. This
1747 * is a corner case so we prioritize correctness over
1748 * non-optimal behavior (submitting 2 bios for the same extent).
1749 */
1750 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1751 prev_em_start && *prev_em_start != (u64)-1 &&
1752 *prev_em_start != em->start)
1753 force_bio_submit = true;
1754
1755 if (prev_em_start)
1756 *prev_em_start = em->start;
1757
1758 free_extent_map(em);
1759 em = NULL;
1760
1761 /* we've found a hole, just zero and go on */
1762 if (block_start == EXTENT_MAP_HOLE) {
1763 memzero_page(page, pg_offset, iosize);
1764
1765 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1766 end_page_read(page, true, cur, iosize);
1767 cur = cur + iosize;
1768 pg_offset += iosize;
1769 continue;
1770 }
1771 /* the get_extent function already copied into the page */
1772 if (block_start == EXTENT_MAP_INLINE) {
1773 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1774 end_page_read(page, true, cur, iosize);
1775 cur = cur + iosize;
1776 pg_offset += iosize;
1777 continue;
1778 }
1779
1780 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
1781 bio_ctrl, disk_bytenr, page, iosize,
1782 pg_offset, this_bio_flag,
1783 force_bio_submit);
1784 if (ret) {
1785 /*
1786 * We have to unlock the remaining range, or the page
1787 * will never be unlocked.
1788 */
1789 unlock_extent(tree, cur, end, NULL);
1790 end_page_read(page, false, cur, end + 1 - cur);
1791 goto out;
1792 }
1793 cur = cur + iosize;
1794 pg_offset += iosize;
1795 }
1796out:
1797 return ret;
1798}
1799
1800int btrfs_read_folio(struct file *file, struct folio *folio)
1801{
1802 struct page *page = &folio->page;
1803 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1804 u64 start = page_offset(page);
1805 u64 end = start + PAGE_SIZE - 1;
1806 struct btrfs_bio_ctrl bio_ctrl = { 0 };
1807 int ret;
1808
1809 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1810
1811 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
1812 /*
1813 * If btrfs_do_readpage() failed we will want to submit the assembled
1814 * bio to do the cleanup.
1815 */
1816 submit_one_bio(&bio_ctrl);
1817 return ret;
1818}
1819
1820static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1821 u64 start, u64 end,
1822 struct extent_map **em_cached,
1823 struct btrfs_bio_ctrl *bio_ctrl,
1824 u64 *prev_em_start)
1825{
1826 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1827 int index;
1828
1829 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1830
1831 for (index = 0; index < nr_pages; index++) {
1832 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1833 REQ_RAHEAD, prev_em_start);
1834 put_page(pages[index]);
1835 }
1836}
1837
1838/*
1839 * helper for __extent_writepage, doing all of the delayed allocation setup.
1840 *
1841 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1842 * to write the page (copy into inline extent). In this case the IO has
1843 * been started and the page is already unlocked.
1844 *
1845 * This returns 0 if all went well (page still locked)
1846 * This returns < 0 if there were errors (page still locked)
1847 */
1848static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1849 struct page *page, struct writeback_control *wbc)
1850{
1851 const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
1852 u64 delalloc_start = page_offset(page);
1853 u64 delalloc_to_write = 0;
1854 /* How many pages are started by btrfs_run_delalloc_range() */
1855 unsigned long nr_written = 0;
1856 int ret;
1857 int page_started = 0;
1858
1859 while (delalloc_start < page_end) {
1860 u64 delalloc_end = page_end;
1861 bool found;
1862
1863 found = find_lock_delalloc_range(&inode->vfs_inode, page,
1864 &delalloc_start,
1865 &delalloc_end);
1866 if (!found) {
1867 delalloc_start = delalloc_end + 1;
1868 continue;
1869 }
1870 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1871 delalloc_end, &page_started, &nr_written, wbc);
1872 if (ret) {
1873 btrfs_page_set_error(inode->root->fs_info, page,
1874 page_offset(page), PAGE_SIZE);
1875 return ret;
1876 }
1877 /*
1878 * delalloc_end is already one less than the total length, so
1879 * we don't subtract one from PAGE_SIZE
1880 */
1881 delalloc_to_write += (delalloc_end - delalloc_start +
1882 PAGE_SIZE) >> PAGE_SHIFT;
1883 delalloc_start = delalloc_end + 1;
1884 }
1885 if (wbc->nr_to_write < delalloc_to_write) {
1886 int thresh = 8192;
1887
1888 if (delalloc_to_write < thresh * 2)
1889 thresh = delalloc_to_write;
1890 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1891 thresh);
1892 }
1893
1894 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */
1895 if (page_started) {
1896 /*
1897 * We've unlocked the page, so we can't update the mapping's
1898 * writeback index, just update nr_to_write.
1899 */
1900 wbc->nr_to_write -= nr_written;
1901 return 1;
1902 }
1903
1904 return 0;
1905}
1906
1907/*
1908 * Find the first byte we need to write.
1909 *
1910 * For subpage, one page can contain several sectors, and
1911 * __extent_writepage_io() will just grab all extent maps in the page
1912 * range and try to submit all non-inline/non-compressed extents.
1913 *
1914 * This is a big problem for subpage, we shouldn't re-submit already written
1915 * data at all.
1916 * This function will lookup subpage dirty bit to find which range we really
1917 * need to submit.
1918 *
1919 * Return the next dirty range in [@start, @end).
1920 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1921 */
1922static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1923 struct page *page, u64 *start, u64 *end)
1924{
1925 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1926 struct btrfs_subpage_info *spi = fs_info->subpage_info;
1927 u64 orig_start = *start;
1928 /* Declare as unsigned long so we can use bitmap ops */
1929 unsigned long flags;
1930 int range_start_bit;
1931 int range_end_bit;
1932
1933 /*
1934 * For regular sector size == page size case, since one page only
1935 * contains one sector, we return the page offset directly.
1936 */
1937 if (!btrfs_is_subpage(fs_info, page)) {
1938 *start = page_offset(page);
1939 *end = page_offset(page) + PAGE_SIZE;
1940 return;
1941 }
1942
1943 range_start_bit = spi->dirty_offset +
1944 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1945
1946 /* We should have the page locked, but just in case */
1947 spin_lock_irqsave(&subpage->lock, flags);
1948 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1949 spi->dirty_offset + spi->bitmap_nr_bits);
1950 spin_unlock_irqrestore(&subpage->lock, flags);
1951
1952 range_start_bit -= spi->dirty_offset;
1953 range_end_bit -= spi->dirty_offset;
1954
1955 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1956 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1957}
1958
1959/*
1960 * helper for __extent_writepage. This calls the writepage start hooks,
1961 * and does the loop to map the page into extents and bios.
1962 *
1963 * We return 1 if the IO is started and the page is unlocked,
1964 * 0 if all went well (page still locked)
1965 * < 0 if there were errors (page still locked)
1966 */
1967static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1968 struct page *page,
1969 struct writeback_control *wbc,
1970 struct btrfs_bio_ctrl *bio_ctrl,
1971 loff_t i_size,
1972 int *nr_ret)
1973{
1974 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1975 u64 cur = page_offset(page);
1976 u64 end = cur + PAGE_SIZE - 1;
1977 u64 extent_offset;
1978 u64 block_start;
1979 struct extent_map *em;
1980 int saved_ret = 0;
1981 int ret = 0;
1982 int nr = 0;
1983 enum req_op op = REQ_OP_WRITE;
1984 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1985 bool has_error = false;
1986 bool compressed;
1987
1988 ret = btrfs_writepage_cow_fixup(page);
1989 if (ret) {
1990 /* Fixup worker will requeue */
1991 redirty_page_for_writepage(wbc, page);
1992 unlock_page(page);
1993 return 1;
1994 }
1995
1996 /*
1997 * we don't want to touch the inode after unlocking the page,
1998 * so we update the mapping writeback index now
1999 */
2000 wbc->nr_to_write--;
2001
2002 bio_ctrl->end_io_func = end_bio_extent_writepage;
2003 while (cur <= end) {
2004 u64 disk_bytenr;
2005 u64 em_end;
2006 u64 dirty_range_start = cur;
2007 u64 dirty_range_end;
2008 u32 iosize;
2009
2010 if (cur >= i_size) {
2011 btrfs_writepage_endio_finish_ordered(inode, page, cur,
2012 end, true);
2013 /*
2014 * This range is beyond i_size, thus we don't need to
2015 * bother writing back.
2016 * But we still need to clear the dirty subpage bit, or
2017 * the next time the page gets dirtied, we will try to
2018 * writeback the sectors with subpage dirty bits,
2019 * causing writeback without ordered extent.
2020 */
2021 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
2022 break;
2023 }
2024
2025 find_next_dirty_byte(fs_info, page, &dirty_range_start,
2026 &dirty_range_end);
2027 if (cur < dirty_range_start) {
2028 cur = dirty_range_start;
2029 continue;
2030 }
2031
2032 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
2033 if (IS_ERR(em)) {
2034 btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
2035 ret = PTR_ERR_OR_ZERO(em);
2036 has_error = true;
2037 if (!saved_ret)
2038 saved_ret = ret;
2039 break;
2040 }
2041
2042 extent_offset = cur - em->start;
2043 em_end = extent_map_end(em);
2044 ASSERT(cur <= em_end);
2045 ASSERT(cur < end);
2046 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
2047 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
2048 block_start = em->block_start;
2049 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2050 disk_bytenr = em->block_start + extent_offset;
2051
2052 /*
2053 * Note that em_end from extent_map_end() and dirty_range_end from
2054 * find_next_dirty_byte() are all exclusive
2055 */
2056 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
2057
2058 if (btrfs_use_zone_append(inode, em->block_start))
2059 op = REQ_OP_ZONE_APPEND;
2060
2061 free_extent_map(em);
2062 em = NULL;
2063
2064 /*
2065 * compressed and inline extents are written through other
2066 * paths in the FS
2067 */
2068 if (compressed || block_start == EXTENT_MAP_HOLE ||
2069 block_start == EXTENT_MAP_INLINE) {
2070 if (compressed)
2071 nr++;
2072 else
2073 btrfs_writepage_endio_finish_ordered(inode,
2074 page, cur, cur + iosize - 1, true);
2075 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
2076 cur += iosize;
2077 continue;
2078 }
2079
2080 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
2081 if (!PageWriteback(page)) {
2082 btrfs_err(inode->root->fs_info,
2083 "page %lu not writeback, cur %llu end %llu",
2084 page->index, cur, end);
2085 }
2086
2087 /*
2088 * Although the PageDirty bit is cleared before entering this
2089 * function, subpage dirty bit is not cleared.
2090 * So clear subpage dirty bit here so next time we won't submit
2091 * page for range already written to disk.
2092 */
2093 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
2094
2095 ret = submit_extent_page(op | write_flags, wbc,
2096 bio_ctrl, disk_bytenr,
2097 page, iosize,
2098 cur - page_offset(page),
2099 0, false);
2100 if (ret) {
2101 has_error = true;
2102 if (!saved_ret)
2103 saved_ret = ret;
2104
2105 btrfs_page_set_error(fs_info, page, cur, iosize);
2106 if (PageWriteback(page))
2107 btrfs_page_clear_writeback(fs_info, page, cur,
2108 iosize);
2109 }
2110
2111 cur += iosize;
2112 nr++;
2113 }
2114 /*
2115 * If we finish without problem, we should not only clear page dirty,
2116 * but also empty subpage dirty bits
2117 */
2118 if (!has_error)
2119 btrfs_page_assert_not_dirty(fs_info, page);
2120 else
2121 ret = saved_ret;
2122 *nr_ret = nr;
2123 return ret;
2124}
2125
2126/*
2127 * the writepage semantics are similar to regular writepage. extent
2128 * records are inserted to lock ranges in the tree, and as dirty areas
2129 * are found, they are marked writeback. Then the lock bits are removed
2130 * and the end_io handler clears the writeback ranges
2131 *
2132 * Return 0 if everything goes well.
2133 * Return <0 for error.
2134 */
2135static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2136 struct btrfs_bio_ctrl *bio_ctrl)
2137{
2138 struct folio *folio = page_folio(page);
2139 struct inode *inode = page->mapping->host;
2140 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2141 const u64 page_start = page_offset(page);
2142 const u64 page_end = page_start + PAGE_SIZE - 1;
2143 int ret;
2144 int nr = 0;
2145 size_t pg_offset;
2146 loff_t i_size = i_size_read(inode);
2147 unsigned long end_index = i_size >> PAGE_SHIFT;
2148
2149 trace___extent_writepage(page, inode, wbc);
2150
2151 WARN_ON(!PageLocked(page));
2152
2153 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
2154 page_offset(page), PAGE_SIZE);
2155
2156 pg_offset = offset_in_page(i_size);
2157 if (page->index > end_index ||
2158 (page->index == end_index && !pg_offset)) {
2159 folio_invalidate(folio, 0, folio_size(folio));
2160 folio_unlock(folio);
2161 return 0;
2162 }
2163
2164 if (page->index == end_index)
2165 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
2166
2167 ret = set_page_extent_mapped(page);
2168 if (ret < 0) {
2169 SetPageError(page);
2170 goto done;
2171 }
2172
2173 if (!bio_ctrl->extent_locked) {
2174 ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
2175 if (ret == 1)
2176 return 0;
2177 if (ret)
2178 goto done;
2179 }
2180
2181 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, bio_ctrl, i_size,
2182 &nr);
2183 if (ret == 1)
2184 return 0;
2185
2186done:
2187 if (nr == 0) {
2188 /* make sure the mapping tag for page dirty gets cleared */
2189 set_page_writeback(page);
2190 end_page_writeback(page);
2191 }
2192 /*
2193 * Here we used to have a check for PageError() and then set @ret and
2194 * call end_extent_writepage().
2195 *
2196 * But in fact setting @ret here will cause different error paths
2197 * between subpage and regular sectorsize.
2198 *
2199 * For regular page size, we never submit current page, but only add
2200 * current page to current bio.
2201 * The bio submission can only happen in next page.
2202 * Thus if we hit the PageError() branch, @ret is already set to
2203 * non-zero value and will not get updated for regular sectorsize.
2204 *
2205 * But for subpage case, it's possible we submit part of current page,
2206 * thus can get PageError() set by submitted bio of the same page,
2207 * while our @ret is still 0.
2208 *
2209 * So here we unify the behavior and don't set @ret.
2210 * Error can still be properly passed to higher layer as page will
2211 * be set error, here we just don't handle the IO failure.
2212 *
2213 * NOTE: This is just a hotfix for subpage.
2214 * The root fix will be properly ending ordered extent when we hit
2215 * an error during writeback.
2216 *
2217 * But that needs a bigger refactoring, as we not only need to grab the
2218 * submitted OE, but also need to know exactly at which bytenr we hit
2219 * the error.
2220 * Currently the full page based __extent_writepage_io() is not
2221 * capable of that.
2222 */
2223 if (PageError(page))
2224 end_extent_writepage(page, ret, page_start, page_end);
2225 if (bio_ctrl->extent_locked) {
2226 /*
2227 * If bio_ctrl->extent_locked, it's from extent_write_locked_range(),
2228 * the page can either be locked by lock_page() or
2229 * process_one_page().
2230 * Let btrfs_page_unlock_writer() handle both cases.
2231 */
2232 ASSERT(wbc);
2233 btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
2234 wbc->range_end + 1 - wbc->range_start);
2235 } else {
2236 unlock_page(page);
2237 }
2238 ASSERT(ret <= 0);
2239 return ret;
2240}
2241
2242void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
2243{
2244 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
2245 TASK_UNINTERRUPTIBLE);
2246}
2247
2248static void end_extent_buffer_writeback(struct extent_buffer *eb)
2249{
2250 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2251 smp_mb__after_atomic();
2252 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
2253}
2254
2255/*
2256 * Lock extent buffer status and pages for writeback.
2257 *
2258 * May try to flush write bio if we can't get the lock.
2259 *
2260 * Return 0 if the extent buffer doesn't need to be submitted.
2261 * (E.g. the extent buffer is not dirty)
2262 * Return >0 is the extent buffer is submitted to bio.
2263 * Return <0 if something went wrong, no page is locked.
2264 */
2265static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
2266 struct btrfs_bio_ctrl *bio_ctrl)
2267{
2268 struct btrfs_fs_info *fs_info = eb->fs_info;
2269 int i, num_pages;
2270 int flush = 0;
2271 int ret = 0;
2272
2273 if (!btrfs_try_tree_write_lock(eb)) {
2274 submit_write_bio(bio_ctrl, 0);
2275 flush = 1;
2276 btrfs_tree_lock(eb);
2277 }
2278
2279 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
2280 btrfs_tree_unlock(eb);
2281 if (!bio_ctrl->sync_io)
2282 return 0;
2283 if (!flush) {
2284 submit_write_bio(bio_ctrl, 0);
2285 flush = 1;
2286 }
2287 while (1) {
2288 wait_on_extent_buffer_writeback(eb);
2289 btrfs_tree_lock(eb);
2290 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
2291 break;
2292 btrfs_tree_unlock(eb);
2293 }
2294 }
2295
2296 /*
2297 * We need to do this to prevent races in people who check if the eb is
2298 * under IO since we can end up having no IO bits set for a short period
2299 * of time.
2300 */
2301 spin_lock(&eb->refs_lock);
2302 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2303 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2304 spin_unlock(&eb->refs_lock);
2305 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2306 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2307 -eb->len,
2308 fs_info->dirty_metadata_batch);
2309 ret = 1;
2310 } else {
2311 spin_unlock(&eb->refs_lock);
2312 }
2313
2314 btrfs_tree_unlock(eb);
2315
2316 /*
2317 * Either we don't need to submit any tree block, or we're submitting
2318 * subpage eb.
2319 * Subpage metadata doesn't use page locking at all, so we can skip
2320 * the page locking.
2321 */
2322 if (!ret || fs_info->nodesize < PAGE_SIZE)
2323 return ret;
2324
2325 num_pages = num_extent_pages(eb);
2326 for (i = 0; i < num_pages; i++) {
2327 struct page *p = eb->pages[i];
2328
2329 if (!trylock_page(p)) {
2330 if (!flush) {
2331 submit_write_bio(bio_ctrl, 0);
2332 flush = 1;
2333 }
2334 lock_page(p);
2335 }
2336 }
2337
2338 return ret;
2339}
2340
2341static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
2342{
2343 struct btrfs_fs_info *fs_info = eb->fs_info;
2344
2345 btrfs_page_set_error(fs_info, page, eb->start, eb->len);
2346 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
2347 return;
2348
2349 /*
2350 * A read may stumble upon this buffer later, make sure that it gets an
2351 * error and knows there was an error.
2352 */
2353 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
2354
2355 /*
2356 * We need to set the mapping with the io error as well because a write
2357 * error will flip the file system readonly, and then syncfs() will
2358 * return a 0 because we are readonly if we don't modify the err seq for
2359 * the superblock.
2360 */
2361 mapping_set_error(page->mapping, -EIO);
2362
2363 /*
2364 * If we error out, we should add back the dirty_metadata_bytes
2365 * to make it consistent.
2366 */
2367 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2368 eb->len, fs_info->dirty_metadata_batch);
2369
2370 /*
2371 * If writeback for a btree extent that doesn't belong to a log tree
2372 * failed, increment the counter transaction->eb_write_errors.
2373 * We do this because while the transaction is running and before it's
2374 * committing (when we call filemap_fdata[write|wait]_range against
2375 * the btree inode), we might have
2376 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
2377 * returns an error or an error happens during writeback, when we're
2378 * committing the transaction we wouldn't know about it, since the pages
2379 * can be no longer dirty nor marked anymore for writeback (if a
2380 * subsequent modification to the extent buffer didn't happen before the
2381 * transaction commit), which makes filemap_fdata[write|wait]_range not
2382 * able to find the pages tagged with SetPageError at transaction
2383 * commit time. So if this happens we must abort the transaction,
2384 * otherwise we commit a super block with btree roots that point to
2385 * btree nodes/leafs whose content on disk is invalid - either garbage
2386 * or the content of some node/leaf from a past generation that got
2387 * cowed or deleted and is no longer valid.
2388 *
2389 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
2390 * not be enough - we need to distinguish between log tree extents vs
2391 * non-log tree extents, and the next filemap_fdatawait_range() call
2392 * will catch and clear such errors in the mapping - and that call might
2393 * be from a log sync and not from a transaction commit. Also, checking
2394 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
2395 * not done and would not be reliable - the eb might have been released
2396 * from memory and reading it back again means that flag would not be
2397 * set (since it's a runtime flag, not persisted on disk).
2398 *
2399 * Using the flags below in the btree inode also makes us achieve the
2400 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
2401 * writeback for all dirty pages and before filemap_fdatawait_range()
2402 * is called, the writeback for all dirty pages had already finished
2403 * with errors - because we were not using AS_EIO/AS_ENOSPC,
2404 * filemap_fdatawait_range() would return success, as it could not know
2405 * that writeback errors happened (the pages were no longer tagged for
2406 * writeback).
2407 */
2408 switch (eb->log_index) {
2409 case -1:
2410 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
2411 break;
2412 case 0:
2413 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2414 break;
2415 case 1:
2416 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2417 break;
2418 default:
2419 BUG(); /* unexpected, logic error */
2420 }
2421}
2422
2423/*
2424 * The endio specific version which won't touch any unsafe spinlock in endio
2425 * context.
2426 */
2427static struct extent_buffer *find_extent_buffer_nolock(
2428 struct btrfs_fs_info *fs_info, u64 start)
2429{
2430 struct extent_buffer *eb;
2431
2432 rcu_read_lock();
2433 eb = radix_tree_lookup(&fs_info->buffer_radix,
2434 start >> fs_info->sectorsize_bits);
2435 if (eb && atomic_inc_not_zero(&eb->refs)) {
2436 rcu_read_unlock();
2437 return eb;
2438 }
2439 rcu_read_unlock();
2440 return NULL;
2441}
2442
2443/*
2444 * The endio function for subpage extent buffer write.
2445 *
2446 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
2447 * after all extent buffers in the page has finished their writeback.
2448 */
2449static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio)
2450{
2451 struct bio *bio = &bbio->bio;
2452 struct btrfs_fs_info *fs_info;
2453 struct bio_vec *bvec;
2454 struct bvec_iter_all iter_all;
2455
2456 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
2457 ASSERT(fs_info->nodesize < PAGE_SIZE);
2458
2459 ASSERT(!bio_flagged(bio, BIO_CLONED));
2460 bio_for_each_segment_all(bvec, bio, iter_all) {
2461 struct page *page = bvec->bv_page;
2462 u64 bvec_start = page_offset(page) + bvec->bv_offset;
2463 u64 bvec_end = bvec_start + bvec->bv_len - 1;
2464 u64 cur_bytenr = bvec_start;
2465
2466 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
2467
2468 /* Iterate through all extent buffers in the range */
2469 while (cur_bytenr <= bvec_end) {
2470 struct extent_buffer *eb;
2471 int done;
2472
2473 /*
2474 * Here we can't use find_extent_buffer(), as it may
2475 * try to lock eb->refs_lock, which is not safe in endio
2476 * context.
2477 */
2478 eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
2479 ASSERT(eb);
2480
2481 cur_bytenr = eb->start + eb->len;
2482
2483 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
2484 done = atomic_dec_and_test(&eb->io_pages);
2485 ASSERT(done);
2486
2487 if (bio->bi_status ||
2488 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
2489 ClearPageUptodate(page);
2490 set_btree_ioerr(page, eb);
2491 }
2492
2493 btrfs_subpage_clear_writeback(fs_info, page, eb->start,
2494 eb->len);
2495 end_extent_buffer_writeback(eb);
2496 /*
2497 * free_extent_buffer() will grab spinlock which is not
2498 * safe in endio context. Thus here we manually dec
2499 * the ref.
2500 */
2501 atomic_dec(&eb->refs);
2502 }
2503 }
2504 bio_put(bio);
2505}
2506
2507static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio)
2508{
2509 struct bio *bio = &bbio->bio;
2510 struct bio_vec *bvec;
2511 struct extent_buffer *eb;
2512 int done;
2513 struct bvec_iter_all iter_all;
2514
2515 ASSERT(!bio_flagged(bio, BIO_CLONED));
2516 bio_for_each_segment_all(bvec, bio, iter_all) {
2517 struct page *page = bvec->bv_page;
2518
2519 eb = (struct extent_buffer *)page->private;
2520 BUG_ON(!eb);
2521 done = atomic_dec_and_test(&eb->io_pages);
2522
2523 if (bio->bi_status ||
2524 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
2525 ClearPageUptodate(page);
2526 set_btree_ioerr(page, eb);
2527 }
2528
2529 end_page_writeback(page);
2530
2531 if (!done)
2532 continue;
2533
2534 end_extent_buffer_writeback(eb);
2535 }
2536
2537 bio_put(bio);
2538}
2539
2540static void prepare_eb_write(struct extent_buffer *eb)
2541{
2542 u32 nritems;
2543 unsigned long start;
2544 unsigned long end;
2545
2546 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
2547 atomic_set(&eb->io_pages, num_extent_pages(eb));
2548
2549 /* Set btree blocks beyond nritems with 0 to avoid stale content */
2550 nritems = btrfs_header_nritems(eb);
2551 if (btrfs_header_level(eb) > 0) {
2552 end = btrfs_node_key_ptr_offset(eb, nritems);
2553 memzero_extent_buffer(eb, end, eb->len - end);
2554 } else {
2555 /*
2556 * Leaf:
2557 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
2558 */
2559 start = btrfs_item_nr_offset(eb, nritems);
2560 end = btrfs_item_nr_offset(eb, 0);
2561 if (nritems == 0)
2562 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
2563 else
2564 end += btrfs_item_offset(eb, nritems - 1);
2565 memzero_extent_buffer(eb, start, end - start);
2566 }
2567}
2568
2569/*
2570 * Unlike the work in write_one_eb(), we rely completely on extent locking.
2571 * Page locking is only utilized at minimum to keep the VMM code happy.
2572 */
2573static int write_one_subpage_eb(struct extent_buffer *eb,
2574 struct writeback_control *wbc,
2575 struct btrfs_bio_ctrl *bio_ctrl)
2576{
2577 struct btrfs_fs_info *fs_info = eb->fs_info;
2578 struct page *page = eb->pages[0];
2579 blk_opf_t write_flags = wbc_to_write_flags(wbc);
2580 bool no_dirty_ebs = false;
2581 int ret;
2582
2583 prepare_eb_write(eb);
2584
2585 /* clear_page_dirty_for_io() in subpage helper needs page locked */
2586 lock_page(page);
2587 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
2588
2589 /* Check if this is the last dirty bit to update nr_written */
2590 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
2591 eb->start, eb->len);
2592 if (no_dirty_ebs)
2593 clear_page_dirty_for_io(page);
2594
2595 bio_ctrl->end_io_func = end_bio_subpage_eb_writepage;
2596
2597 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
2598 bio_ctrl, eb->start, page, eb->len,
2599 eb->start - page_offset(page), 0, false);
2600 if (ret) {
2601 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
2602 set_btree_ioerr(page, eb);
2603 unlock_page(page);
2604
2605 if (atomic_dec_and_test(&eb->io_pages))
2606 end_extent_buffer_writeback(eb);
2607 return -EIO;
2608 }
2609 unlock_page(page);
2610 /*
2611 * Submission finished without problem, if no range of the page is
2612 * dirty anymore, we have submitted a page. Update nr_written in wbc.
2613 */
2614 if (no_dirty_ebs)
2615 wbc->nr_to_write--;
2616 return ret;
2617}
2618
2619static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
2620 struct writeback_control *wbc,
2621 struct btrfs_bio_ctrl *bio_ctrl)
2622{
2623 u64 disk_bytenr = eb->start;
2624 int i, num_pages;
2625 blk_opf_t write_flags = wbc_to_write_flags(wbc);
2626 int ret = 0;
2627
2628 prepare_eb_write(eb);
2629
2630 bio_ctrl->end_io_func = end_bio_extent_buffer_writepage;
2631
2632 num_pages = num_extent_pages(eb);
2633 for (i = 0; i < num_pages; i++) {
2634 struct page *p = eb->pages[i];
2635
2636 clear_page_dirty_for_io(p);
2637 set_page_writeback(p);
2638 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
2639 bio_ctrl, disk_bytenr, p,
2640 PAGE_SIZE, 0, 0, false);
2641 if (ret) {
2642 set_btree_ioerr(p, eb);
2643 if (PageWriteback(p))
2644 end_page_writeback(p);
2645 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
2646 end_extent_buffer_writeback(eb);
2647 ret = -EIO;
2648 break;
2649 }
2650 disk_bytenr += PAGE_SIZE;
2651 wbc->nr_to_write--;
2652 unlock_page(p);
2653 }
2654
2655 if (unlikely(ret)) {
2656 for (; i < num_pages; i++) {
2657 struct page *p = eb->pages[i];
2658 clear_page_dirty_for_io(p);
2659 unlock_page(p);
2660 }
2661 }
2662
2663 return ret;
2664}
2665
2666/*
2667 * Submit one subpage btree page.
2668 *
2669 * The main difference to submit_eb_page() is:
2670 * - Page locking
2671 * For subpage, we don't rely on page locking at all.
2672 *
2673 * - Flush write bio
2674 * We only flush bio if we may be unable to fit current extent buffers into
2675 * current bio.
2676 *
2677 * Return >=0 for the number of submitted extent buffers.
2678 * Return <0 for fatal error.
2679 */
2680static int submit_eb_subpage(struct page *page,
2681 struct writeback_control *wbc,
2682 struct btrfs_bio_ctrl *bio_ctrl)
2683{
2684 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2685 int submitted = 0;
2686 u64 page_start = page_offset(page);
2687 int bit_start = 0;
2688 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
2689 int ret;
2690
2691 /* Lock and write each dirty extent buffers in the range */
2692 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
2693 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
2694 struct extent_buffer *eb;
2695 unsigned long flags;
2696 u64 start;
2697
2698 /*
2699 * Take private lock to ensure the subpage won't be detached
2700 * in the meantime.
2701 */
2702 spin_lock(&page->mapping->private_lock);
2703 if (!PagePrivate(page)) {
2704 spin_unlock(&page->mapping->private_lock);
2705 break;
2706 }
2707 spin_lock_irqsave(&subpage->lock, flags);
2708 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
2709 subpage->bitmaps)) {
2710 spin_unlock_irqrestore(&subpage->lock, flags);
2711 spin_unlock(&page->mapping->private_lock);
2712 bit_start++;
2713 continue;
2714 }
2715
2716 start = page_start + bit_start * fs_info->sectorsize;
2717 bit_start += sectors_per_node;
2718
2719 /*
2720 * Here we just want to grab the eb without touching extra
2721 * spin locks, so call find_extent_buffer_nolock().
2722 */
2723 eb = find_extent_buffer_nolock(fs_info, start);
2724 spin_unlock_irqrestore(&subpage->lock, flags);
2725 spin_unlock(&page->mapping->private_lock);
2726
2727 /*
2728 * The eb has already reached 0 refs thus find_extent_buffer()
2729 * doesn't return it. We don't need to write back such eb
2730 * anyway.
2731 */
2732 if (!eb)
2733 continue;
2734
2735 ret = lock_extent_buffer_for_io(eb, bio_ctrl);
2736 if (ret == 0) {
2737 free_extent_buffer(eb);
2738 continue;
2739 }
2740 if (ret < 0) {
2741 free_extent_buffer(eb);
2742 goto cleanup;
2743 }
2744 ret = write_one_subpage_eb(eb, wbc, bio_ctrl);
2745 free_extent_buffer(eb);
2746 if (ret < 0)
2747 goto cleanup;
2748 submitted++;
2749 }
2750 return submitted;
2751
2752cleanup:
2753 /* We hit error, end bio for the submitted extent buffers */
2754 submit_write_bio(bio_ctrl, ret);
2755 return ret;
2756}
2757
2758/*
2759 * Submit all page(s) of one extent buffer.
2760 *
2761 * @page: the page of one extent buffer
2762 * @eb_context: to determine if we need to submit this page, if current page
2763 * belongs to this eb, we don't need to submit
2764 *
2765 * The caller should pass each page in their bytenr order, and here we use
2766 * @eb_context to determine if we have submitted pages of one extent buffer.
2767 *
2768 * If we have, we just skip until we hit a new page that doesn't belong to
2769 * current @eb_context.
2770 *
2771 * If not, we submit all the page(s) of the extent buffer.
2772 *
2773 * Return >0 if we have submitted the extent buffer successfully.
2774 * Return 0 if we don't need to submit the page, as it's already submitted by
2775 * previous call.
2776 * Return <0 for fatal error.
2777 */
2778static int submit_eb_page(struct page *page, struct writeback_control *wbc,
2779 struct btrfs_bio_ctrl *bio_ctrl,
2780 struct extent_buffer **eb_context)
2781{
2782 struct address_space *mapping = page->mapping;
2783 struct btrfs_block_group *cache = NULL;
2784 struct extent_buffer *eb;
2785 int ret;
2786
2787 if (!PagePrivate(page))
2788 return 0;
2789
2790 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
2791 return submit_eb_subpage(page, wbc, bio_ctrl);
2792
2793 spin_lock(&mapping->private_lock);
2794 if (!PagePrivate(page)) {
2795 spin_unlock(&mapping->private_lock);
2796 return 0;
2797 }
2798
2799 eb = (struct extent_buffer *)page->private;
2800
2801 /*
2802 * Shouldn't happen and normally this would be a BUG_ON but no point
2803 * crashing the machine for something we can survive anyway.
2804 */
2805 if (WARN_ON(!eb)) {
2806 spin_unlock(&mapping->private_lock);
2807 return 0;
2808 }
2809
2810 if (eb == *eb_context) {
2811 spin_unlock(&mapping->private_lock);
2812 return 0;
2813 }
2814 ret = atomic_inc_not_zero(&eb->refs);
2815 spin_unlock(&mapping->private_lock);
2816 if (!ret)
2817 return 0;
2818
2819 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
2820 /*
2821 * If for_sync, this hole will be filled with
2822 * trasnsaction commit.
2823 */
2824 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
2825 ret = -EAGAIN;
2826 else
2827 ret = 0;
2828 free_extent_buffer(eb);
2829 return ret;
2830 }
2831
2832 *eb_context = eb;
2833
2834 ret = lock_extent_buffer_for_io(eb, bio_ctrl);
2835 if (ret <= 0) {
2836 btrfs_revert_meta_write_pointer(cache, eb);
2837 if (cache)
2838 btrfs_put_block_group(cache);
2839 free_extent_buffer(eb);
2840 return ret;
2841 }
2842 if (cache) {
2843 /*
2844 * Implies write in zoned mode. Mark the last eb in a block group.
2845 */
2846 btrfs_schedule_zone_finish_bg(cache, eb);
2847 btrfs_put_block_group(cache);
2848 }
2849 ret = write_one_eb(eb, wbc, bio_ctrl);
2850 free_extent_buffer(eb);
2851 if (ret < 0)
2852 return ret;
2853 return 1;
2854}
2855
2856int btree_write_cache_pages(struct address_space *mapping,
2857 struct writeback_control *wbc)
2858{
2859 struct extent_buffer *eb_context = NULL;
2860 struct btrfs_bio_ctrl bio_ctrl = {
2861 .extent_locked = 0,
2862 .sync_io = (wbc->sync_mode == WB_SYNC_ALL),
2863 };
2864 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
2865 int ret = 0;
2866 int done = 0;
2867 int nr_to_write_done = 0;
2868 struct pagevec pvec;
2869 int nr_pages;
2870 pgoff_t index;
2871 pgoff_t end; /* Inclusive */
2872 int scanned = 0;
2873 xa_mark_t tag;
2874
2875 pagevec_init(&pvec);
2876 if (wbc->range_cyclic) {
2877 index = mapping->writeback_index; /* Start from prev offset */
2878 end = -1;
2879 /*
2880 * Start from the beginning does not need to cycle over the
2881 * range, mark it as scanned.
2882 */
2883 scanned = (index == 0);
2884 } else {
2885 index = wbc->range_start >> PAGE_SHIFT;
2886 end = wbc->range_end >> PAGE_SHIFT;
2887 scanned = 1;
2888 }
2889 if (wbc->sync_mode == WB_SYNC_ALL)
2890 tag = PAGECACHE_TAG_TOWRITE;
2891 else
2892 tag = PAGECACHE_TAG_DIRTY;
2893 btrfs_zoned_meta_io_lock(fs_info);
2894retry:
2895 if (wbc->sync_mode == WB_SYNC_ALL)
2896 tag_pages_for_writeback(mapping, index, end);
2897 while (!done && !nr_to_write_done && (index <= end) &&
2898 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2899 tag))) {
2900 unsigned i;
2901
2902 for (i = 0; i < nr_pages; i++) {
2903 struct page *page = pvec.pages[i];
2904
2905 ret = submit_eb_page(page, wbc, &bio_ctrl, &eb_context);
2906 if (ret == 0)
2907 continue;
2908 if (ret < 0) {
2909 done = 1;
2910 break;
2911 }
2912
2913 /*
2914 * the filesystem may choose to bump up nr_to_write.
2915 * We have to make sure to honor the new nr_to_write
2916 * at any time
2917 */
2918 nr_to_write_done = wbc->nr_to_write <= 0;
2919 }
2920 pagevec_release(&pvec);
2921 cond_resched();
2922 }
2923 if (!scanned && !done) {
2924 /*
2925 * We hit the last page and there is more work to be done: wrap
2926 * back to the start of the file
2927 */
2928 scanned = 1;
2929 index = 0;
2930 goto retry;
2931 }
2932 /*
2933 * If something went wrong, don't allow any metadata write bio to be
2934 * submitted.
2935 *
2936 * This would prevent use-after-free if we had dirty pages not
2937 * cleaned up, which can still happen by fuzzed images.
2938 *
2939 * - Bad extent tree
2940 * Allowing existing tree block to be allocated for other trees.
2941 *
2942 * - Log tree operations
2943 * Exiting tree blocks get allocated to log tree, bumps its
2944 * generation, then get cleaned in tree re-balance.
2945 * Such tree block will not be written back, since it's clean,
2946 * thus no WRITTEN flag set.
2947 * And after log writes back, this tree block is not traced by
2948 * any dirty extent_io_tree.
2949 *
2950 * - Offending tree block gets re-dirtied from its original owner
2951 * Since it has bumped generation, no WRITTEN flag, it can be
2952 * reused without COWing. This tree block will not be traced
2953 * by btrfs_transaction::dirty_pages.
2954 *
2955 * Now such dirty tree block will not be cleaned by any dirty
2956 * extent io tree. Thus we don't want to submit such wild eb
2957 * if the fs already has error.
2958 *
2959 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2960 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2961 */
2962 if (ret > 0)
2963 ret = 0;
2964 if (!ret && BTRFS_FS_ERROR(fs_info))
2965 ret = -EROFS;
2966 submit_write_bio(&bio_ctrl, ret);
2967
2968 btrfs_zoned_meta_io_unlock(fs_info);
2969 return ret;
2970}
2971
2972/*
2973 * Walk the list of dirty pages of the given address space and write all of them.
2974 *
2975 * @mapping: address space structure to write
2976 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2977 * @bio_ctrl: holds context for the write, namely the bio
2978 *
2979 * If a page is already under I/O, write_cache_pages() skips it, even
2980 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2981 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2982 * and msync() need to guarantee that all the data which was dirty at the time
2983 * the call was made get new I/O started against them. If wbc->sync_mode is
2984 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2985 * existing IO to complete.
2986 */
2987static int extent_write_cache_pages(struct address_space *mapping,
2988 struct writeback_control *wbc,
2989 struct btrfs_bio_ctrl *bio_ctrl)
2990{
2991 struct inode *inode = mapping->host;
2992 int ret = 0;
2993 int done = 0;
2994 int nr_to_write_done = 0;
2995 struct pagevec pvec;
2996 int nr_pages;
2997 pgoff_t index;
2998 pgoff_t end; /* Inclusive */
2999 pgoff_t done_index;
3000 int range_whole = 0;
3001 int scanned = 0;
3002 xa_mark_t tag;
3003
3004 /*
3005 * We have to hold onto the inode so that ordered extents can do their
3006 * work when the IO finishes. The alternative to this is failing to add
3007 * an ordered extent if the igrab() fails there and that is a huge pain
3008 * to deal with, so instead just hold onto the inode throughout the
3009 * writepages operation. If it fails here we are freeing up the inode
3010 * anyway and we'd rather not waste our time writing out stuff that is
3011 * going to be truncated anyway.
3012 */
3013 if (!igrab(inode))
3014 return 0;
3015
3016 pagevec_init(&pvec);
3017 if (wbc->range_cyclic) {
3018 index = mapping->writeback_index; /* Start from prev offset */
3019 end = -1;
3020 /*
3021 * Start from the beginning does not need to cycle over the
3022 * range, mark it as scanned.
3023 */
3024 scanned = (index == 0);
3025 } else {
3026 index = wbc->range_start >> PAGE_SHIFT;
3027 end = wbc->range_end >> PAGE_SHIFT;
3028 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3029 range_whole = 1;
3030 scanned = 1;
3031 }
3032
3033 /*
3034 * We do the tagged writepage as long as the snapshot flush bit is set
3035 * and we are the first one who do the filemap_flush() on this inode.
3036 *
3037 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3038 * not race in and drop the bit.
3039 */
3040 if (range_whole && wbc->nr_to_write == LONG_MAX &&
3041 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3042 &BTRFS_I(inode)->runtime_flags))
3043 wbc->tagged_writepages = 1;
3044
3045 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3046 tag = PAGECACHE_TAG_TOWRITE;
3047 else
3048 tag = PAGECACHE_TAG_DIRTY;
3049retry:
3050 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3051 tag_pages_for_writeback(mapping, index, end);
3052 done_index = index;
3053 while (!done && !nr_to_write_done && (index <= end) &&
3054 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3055 &index, end, tag))) {
3056 unsigned i;
3057
3058 for (i = 0; i < nr_pages; i++) {
3059 struct page *page = pvec.pages[i];
3060
3061 done_index = page->index + 1;
3062 /*
3063 * At this point we hold neither the i_pages lock nor
3064 * the page lock: the page may be truncated or
3065 * invalidated (changing page->mapping to NULL),
3066 * or even swizzled back from swapper_space to
3067 * tmpfs file mapping
3068 */
3069 if (!trylock_page(page)) {
3070 submit_write_bio(bio_ctrl, 0);
3071 lock_page(page);
3072 }
3073
3074 if (unlikely(page->mapping != mapping)) {
3075 unlock_page(page);
3076 continue;
3077 }
3078
3079 if (wbc->sync_mode != WB_SYNC_NONE) {
3080 if (PageWriteback(page))
3081 submit_write_bio(bio_ctrl, 0);
3082 wait_on_page_writeback(page);
3083 }
3084
3085 if (PageWriteback(page) ||
3086 !clear_page_dirty_for_io(page)) {
3087 unlock_page(page);
3088 continue;
3089 }
3090
3091 ret = __extent_writepage(page, wbc, bio_ctrl);
3092 if (ret < 0) {
3093 done = 1;
3094 break;
3095 }
3096
3097 /*
3098 * the filesystem may choose to bump up nr_to_write.
3099 * We have to make sure to honor the new nr_to_write
3100 * at any time
3101 */
3102 nr_to_write_done = wbc->nr_to_write <= 0;
3103 }
3104 pagevec_release(&pvec);
3105 cond_resched();
3106 }
3107 if (!scanned && !done) {
3108 /*
3109 * We hit the last page and there is more work to be done: wrap
3110 * back to the start of the file
3111 */
3112 scanned = 1;
3113 index = 0;
3114
3115 /*
3116 * If we're looping we could run into a page that is locked by a
3117 * writer and that writer could be waiting on writeback for a
3118 * page in our current bio, and thus deadlock, so flush the
3119 * write bio here.
3120 */
3121 submit_write_bio(bio_ctrl, 0);
3122 goto retry;
3123 }
3124
3125 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
3126 mapping->writeback_index = done_index;
3127
3128 btrfs_add_delayed_iput(BTRFS_I(inode));
3129 return ret;
3130}
3131
3132/*
3133 * Submit the pages in the range to bio for call sites which delalloc range has
3134 * already been ran (aka, ordered extent inserted) and all pages are still
3135 * locked.
3136 */
3137int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
3138{
3139 bool found_error = false;
3140 int first_error = 0;
3141 int ret = 0;
3142 struct address_space *mapping = inode->i_mapping;
3143 struct page *page;
3144 u64 cur = start;
3145 unsigned long nr_pages;
3146 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
3147 struct btrfs_bio_ctrl bio_ctrl = {
3148 .extent_locked = 1,
3149 .sync_io = 1,
3150 };
3151 struct writeback_control wbc_writepages = {
3152 .sync_mode = WB_SYNC_ALL,
3153 .range_start = start,
3154 .range_end = end + 1,
3155 /* We're called from an async helper function */
3156 .punt_to_cgroup = 1,
3157 .no_cgroup_owner = 1,
3158 };
3159
3160 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
3161 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
3162 PAGE_SHIFT;
3163 wbc_writepages.nr_to_write = nr_pages * 2;
3164
3165 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
3166 while (cur <= end) {
3167 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
3168
3169 page = find_get_page(mapping, cur >> PAGE_SHIFT);
3170 /*
3171 * All pages in the range are locked since
3172 * btrfs_run_delalloc_range(), thus there is no way to clear
3173 * the page dirty flag.
3174 */
3175 ASSERT(PageLocked(page));
3176 ASSERT(PageDirty(page));
3177 clear_page_dirty_for_io(page);
3178 ret = __extent_writepage(page, &wbc_writepages, &bio_ctrl);
3179 ASSERT(ret <= 0);
3180 if (ret < 0) {
3181 found_error = true;
3182 first_error = ret;
3183 }
3184 put_page(page);
3185 cur = cur_end + 1;
3186 }
3187
3188 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
3189
3190 wbc_detach_inode(&wbc_writepages);
3191 if (found_error)
3192 return first_error;
3193 return ret;
3194}
3195
3196int extent_writepages(struct address_space *mapping,
3197 struct writeback_control *wbc)
3198{
3199 struct inode *inode = mapping->host;
3200 int ret = 0;
3201 struct btrfs_bio_ctrl bio_ctrl = {
3202 .extent_locked = 0,
3203 .sync_io = (wbc->sync_mode == WB_SYNC_ALL),
3204 };
3205
3206 /*
3207 * Allow only a single thread to do the reloc work in zoned mode to
3208 * protect the write pointer updates.
3209 */
3210 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
3211 ret = extent_write_cache_pages(mapping, wbc, &bio_ctrl);
3212 submit_write_bio(&bio_ctrl, ret);
3213 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
3214 return ret;
3215}
3216
3217void extent_readahead(struct readahead_control *rac)
3218{
3219 struct btrfs_bio_ctrl bio_ctrl = { 0 };
3220 struct page *pagepool[16];
3221 struct extent_map *em_cached = NULL;
3222 u64 prev_em_start = (u64)-1;
3223 int nr;
3224
3225 while ((nr = readahead_page_batch(rac, pagepool))) {
3226 u64 contig_start = readahead_pos(rac);
3227 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
3228
3229 contiguous_readpages(pagepool, nr, contig_start, contig_end,
3230 &em_cached, &bio_ctrl, &prev_em_start);
3231 }
3232
3233 if (em_cached)
3234 free_extent_map(em_cached);
3235 submit_one_bio(&bio_ctrl);
3236}
3237
3238/*
3239 * basic invalidate_folio code, this waits on any locked or writeback
3240 * ranges corresponding to the folio, and then deletes any extent state
3241 * records from the tree
3242 */
3243int extent_invalidate_folio(struct extent_io_tree *tree,
3244 struct folio *folio, size_t offset)
3245{
3246 struct extent_state *cached_state = NULL;
3247 u64 start = folio_pos(folio);
3248 u64 end = start + folio_size(folio) - 1;
3249 size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
3250
3251 /* This function is only called for the btree inode */
3252 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
3253
3254 start += ALIGN(offset, blocksize);
3255 if (start > end)
3256 return 0;
3257
3258 lock_extent(tree, start, end, &cached_state);
3259 folio_wait_writeback(folio);
3260
3261 /*
3262 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
3263 * so here we only need to unlock the extent range to free any
3264 * existing extent state.
3265 */
3266 unlock_extent(tree, start, end, &cached_state);
3267 return 0;
3268}
3269
3270/*
3271 * a helper for release_folio, this tests for areas of the page that
3272 * are locked or under IO and drops the related state bits if it is safe
3273 * to drop the page.
3274 */
3275static int try_release_extent_state(struct extent_io_tree *tree,
3276 struct page *page, gfp_t mask)
3277{
3278 u64 start = page_offset(page);
3279 u64 end = start + PAGE_SIZE - 1;
3280 int ret = 1;
3281
3282 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
3283 ret = 0;
3284 } else {
3285 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
3286 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS);
3287
3288 /*
3289 * At this point we can safely clear everything except the
3290 * locked bit, the nodatasum bit and the delalloc new bit.
3291 * The delalloc new bit will be cleared by ordered extent
3292 * completion.
3293 */
3294 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL,
3295 mask, NULL);
3296
3297 /* if clear_extent_bit failed for enomem reasons,
3298 * we can't allow the release to continue.
3299 */
3300 if (ret < 0)
3301 ret = 0;
3302 else
3303 ret = 1;
3304 }
3305 return ret;
3306}
3307
3308/*
3309 * a helper for release_folio. As long as there are no locked extents
3310 * in the range corresponding to the page, both state records and extent
3311 * map records are removed
3312 */
3313int try_release_extent_mapping(struct page *page, gfp_t mask)
3314{
3315 struct extent_map *em;
3316 u64 start = page_offset(page);
3317 u64 end = start + PAGE_SIZE - 1;
3318 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
3319 struct extent_io_tree *tree = &btrfs_inode->io_tree;
3320 struct extent_map_tree *map = &btrfs_inode->extent_tree;
3321
3322 if (gfpflags_allow_blocking(mask) &&
3323 page->mapping->host->i_size > SZ_16M) {
3324 u64 len;
3325 while (start <= end) {
3326 struct btrfs_fs_info *fs_info;
3327 u64 cur_gen;
3328
3329 len = end - start + 1;
3330 write_lock(&map->lock);
3331 em = lookup_extent_mapping(map, start, len);
3332 if (!em) {
3333 write_unlock(&map->lock);
3334 break;
3335 }
3336 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3337 em->start != start) {
3338 write_unlock(&map->lock);
3339 free_extent_map(em);
3340 break;
3341 }
3342 if (test_range_bit(tree, em->start,
3343 extent_map_end(em) - 1,
3344 EXTENT_LOCKED, 0, NULL))
3345 goto next;
3346 /*
3347 * If it's not in the list of modified extents, used
3348 * by a fast fsync, we can remove it. If it's being
3349 * logged we can safely remove it since fsync took an
3350 * extra reference on the em.
3351 */
3352 if (list_empty(&em->list) ||
3353 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
3354 goto remove_em;
3355 /*
3356 * If it's in the list of modified extents, remove it
3357 * only if its generation is older then the current one,
3358 * in which case we don't need it for a fast fsync.
3359 * Otherwise don't remove it, we could be racing with an
3360 * ongoing fast fsync that could miss the new extent.
3361 */
3362 fs_info = btrfs_inode->root->fs_info;
3363 spin_lock(&fs_info->trans_lock);
3364 cur_gen = fs_info->generation;
3365 spin_unlock(&fs_info->trans_lock);
3366 if (em->generation >= cur_gen)
3367 goto next;
3368remove_em:
3369 /*
3370 * We only remove extent maps that are not in the list of
3371 * modified extents or that are in the list but with a
3372 * generation lower then the current generation, so there
3373 * is no need to set the full fsync flag on the inode (it
3374 * hurts the fsync performance for workloads with a data
3375 * size that exceeds or is close to the system's memory).
3376 */
3377 remove_extent_mapping(map, em);
3378 /* once for the rb tree */
3379 free_extent_map(em);
3380next:
3381 start = extent_map_end(em);
3382 write_unlock(&map->lock);
3383
3384 /* once for us */
3385 free_extent_map(em);
3386
3387 cond_resched(); /* Allow large-extent preemption. */
3388 }
3389 }
3390 return try_release_extent_state(tree, page, mask);
3391}
3392
3393/*
3394 * To cache previous fiemap extent
3395 *
3396 * Will be used for merging fiemap extent
3397 */
3398struct fiemap_cache {
3399 u64 offset;
3400 u64 phys;
3401 u64 len;
3402 u32 flags;
3403 bool cached;
3404};
3405
3406/*
3407 * Helper to submit fiemap extent.
3408 *
3409 * Will try to merge current fiemap extent specified by @offset, @phys,
3410 * @len and @flags with cached one.
3411 * And only when we fails to merge, cached one will be submitted as
3412 * fiemap extent.
3413 *
3414 * Return value is the same as fiemap_fill_next_extent().
3415 */
3416static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
3417 struct fiemap_cache *cache,
3418 u64 offset, u64 phys, u64 len, u32 flags)
3419{
3420 int ret = 0;
3421
3422 /* Set at the end of extent_fiemap(). */
3423 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
3424
3425 if (!cache->cached)
3426 goto assign;
3427
3428 /*
3429 * Sanity check, extent_fiemap() should have ensured that new
3430 * fiemap extent won't overlap with cached one.
3431 * Not recoverable.
3432 *
3433 * NOTE: Physical address can overlap, due to compression
3434 */
3435 if (cache->offset + cache->len > offset) {
3436 WARN_ON(1);
3437 return -EINVAL;
3438 }
3439
3440 /*
3441 * Only merges fiemap extents if
3442 * 1) Their logical addresses are continuous
3443 *
3444 * 2) Their physical addresses are continuous
3445 * So truly compressed (physical size smaller than logical size)
3446 * extents won't get merged with each other
3447 *
3448 * 3) Share same flags
3449 */
3450 if (cache->offset + cache->len == offset &&
3451 cache->phys + cache->len == phys &&
3452 cache->flags == flags) {
3453 cache->len += len;
3454 return 0;
3455 }
3456
3457 /* Not mergeable, need to submit cached one */
3458 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3459 cache->len, cache->flags);
3460 cache->cached = false;
3461 if (ret)
3462 return ret;
3463assign:
3464 cache->cached = true;
3465 cache->offset = offset;
3466 cache->phys = phys;
3467 cache->len = len;
3468 cache->flags = flags;
3469
3470 return 0;
3471}
3472
3473/*
3474 * Emit last fiemap cache
3475 *
3476 * The last fiemap cache may still be cached in the following case:
3477 * 0 4k 8k
3478 * |<- Fiemap range ->|
3479 * |<------------ First extent ----------->|
3480 *
3481 * In this case, the first extent range will be cached but not emitted.
3482 * So we must emit it before ending extent_fiemap().
3483 */
3484static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
3485 struct fiemap_cache *cache)
3486{
3487 int ret;
3488
3489 if (!cache->cached)
3490 return 0;
3491
3492 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3493 cache->len, cache->flags);
3494 cache->cached = false;
3495 if (ret > 0)
3496 ret = 0;
3497 return ret;
3498}
3499
3500static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
3501{
3502 struct extent_buffer *clone;
3503 struct btrfs_key key;
3504 int slot;
3505 int ret;
3506
3507 path->slots[0]++;
3508 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
3509 return 0;
3510
3511 ret = btrfs_next_leaf(inode->root, path);
3512 if (ret != 0)
3513 return ret;
3514
3515 /*
3516 * Don't bother with cloning if there are no more file extent items for
3517 * our inode.
3518 */
3519 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3520 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
3521 return 1;
3522
3523 /* See the comment at fiemap_search_slot() about why we clone. */
3524 clone = btrfs_clone_extent_buffer(path->nodes[0]);
3525 if (!clone)
3526 return -ENOMEM;
3527
3528 slot = path->slots[0];
3529 btrfs_release_path(path);
3530 path->nodes[0] = clone;
3531 path->slots[0] = slot;
3532
3533 return 0;
3534}
3535
3536/*
3537 * Search for the first file extent item that starts at a given file offset or
3538 * the one that starts immediately before that offset.
3539 * Returns: 0 on success, < 0 on error, 1 if not found.
3540 */
3541static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
3542 u64 file_offset)
3543{
3544 const u64 ino = btrfs_ino(inode);
3545 struct btrfs_root *root = inode->root;
3546 struct extent_buffer *clone;
3547 struct btrfs_key key;
3548 int slot;
3549 int ret;
3550
3551 key.objectid = ino;
3552 key.type = BTRFS_EXTENT_DATA_KEY;
3553 key.offset = file_offset;
3554
3555 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3556 if (ret < 0)
3557 return ret;
3558
3559 if (ret > 0 && path->slots[0] > 0) {
3560 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3561 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3562 path->slots[0]--;
3563 }
3564
3565 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3566 ret = btrfs_next_leaf(root, path);
3567 if (ret != 0)
3568 return ret;
3569
3570 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3571 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3572 return 1;
3573 }
3574
3575 /*
3576 * We clone the leaf and use it during fiemap. This is because while
3577 * using the leaf we do expensive things like checking if an extent is
3578 * shared, which can take a long time. In order to prevent blocking
3579 * other tasks for too long, we use a clone of the leaf. We have locked
3580 * the file range in the inode's io tree, so we know none of our file
3581 * extent items can change. This way we avoid blocking other tasks that
3582 * want to insert items for other inodes in the same leaf or b+tree
3583 * rebalance operations (triggered for example when someone is trying
3584 * to push items into this leaf when trying to insert an item in a
3585 * neighbour leaf).
3586 * We also need the private clone because holding a read lock on an
3587 * extent buffer of the subvolume's b+tree will make lockdep unhappy
3588 * when we call fiemap_fill_next_extent(), because that may cause a page
3589 * fault when filling the user space buffer with fiemap data.
3590 */
3591 clone = btrfs_clone_extent_buffer(path->nodes[0]);
3592 if (!clone)
3593 return -ENOMEM;
3594
3595 slot = path->slots[0];
3596 btrfs_release_path(path);
3597 path->nodes[0] = clone;
3598 path->slots[0] = slot;
3599
3600 return 0;
3601}
3602
3603/*
3604 * Process a range which is a hole or a prealloc extent in the inode's subvolume
3605 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
3606 * extent. The end offset (@end) is inclusive.
3607 */
3608static int fiemap_process_hole(struct btrfs_inode *inode,
3609 struct fiemap_extent_info *fieinfo,
3610 struct fiemap_cache *cache,
3611 struct extent_state **delalloc_cached_state,
3612 struct btrfs_backref_share_check_ctx *backref_ctx,
3613 u64 disk_bytenr, u64 extent_offset,
3614 u64 extent_gen,
3615 u64 start, u64 end)
3616{
3617 const u64 i_size = i_size_read(&inode->vfs_inode);
3618 u64 cur_offset = start;
3619 u64 last_delalloc_end = 0;
3620 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
3621 bool checked_extent_shared = false;
3622 int ret;
3623
3624 /*
3625 * There can be no delalloc past i_size, so don't waste time looking for
3626 * it beyond i_size.
3627 */
3628 while (cur_offset < end && cur_offset < i_size) {
3629 u64 delalloc_start;
3630 u64 delalloc_end;
3631 u64 prealloc_start;
3632 u64 prealloc_len = 0;
3633 bool delalloc;
3634
3635 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
3636 delalloc_cached_state,
3637 &delalloc_start,
3638 &delalloc_end);
3639 if (!delalloc)
3640 break;
3641
3642 /*
3643 * If this is a prealloc extent we have to report every section
3644 * of it that has no delalloc.
3645 */
3646 if (disk_bytenr != 0) {
3647 if (last_delalloc_end == 0) {
3648 prealloc_start = start;
3649 prealloc_len = delalloc_start - start;
3650 } else {
3651 prealloc_start = last_delalloc_end + 1;
3652 prealloc_len = delalloc_start - prealloc_start;
3653 }
3654 }
3655
3656 if (prealloc_len > 0) {
3657 if (!checked_extent_shared && fieinfo->fi_extents_max) {
3658 ret = btrfs_is_data_extent_shared(inode,
3659 disk_bytenr,
3660 extent_gen,
3661 backref_ctx);
3662 if (ret < 0)
3663 return ret;
3664 else if (ret > 0)
3665 prealloc_flags |= FIEMAP_EXTENT_SHARED;
3666
3667 checked_extent_shared = true;
3668 }
3669 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3670 disk_bytenr + extent_offset,
3671 prealloc_len, prealloc_flags);
3672 if (ret)
3673 return ret;
3674 extent_offset += prealloc_len;
3675 }
3676
3677 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
3678 delalloc_end + 1 - delalloc_start,
3679 FIEMAP_EXTENT_DELALLOC |
3680 FIEMAP_EXTENT_UNKNOWN);
3681 if (ret)
3682 return ret;
3683
3684 last_delalloc_end = delalloc_end;
3685 cur_offset = delalloc_end + 1;
3686 extent_offset += cur_offset - delalloc_start;
3687 cond_resched();
3688 }
3689
3690 /*
3691 * Either we found no delalloc for the whole prealloc extent or we have
3692 * a prealloc extent that spans i_size or starts at or after i_size.
3693 */
3694 if (disk_bytenr != 0 && last_delalloc_end < end) {
3695 u64 prealloc_start;
3696 u64 prealloc_len;
3697
3698 if (last_delalloc_end == 0) {
3699 prealloc_start = start;
3700 prealloc_len = end + 1 - start;
3701 } else {
3702 prealloc_start = last_delalloc_end + 1;
3703 prealloc_len = end + 1 - prealloc_start;
3704 }
3705
3706 if (!checked_extent_shared && fieinfo->fi_extents_max) {
3707 ret = btrfs_is_data_extent_shared(inode,
3708 disk_bytenr,
3709 extent_gen,
3710 backref_ctx);
3711 if (ret < 0)
3712 return ret;
3713 else if (ret > 0)
3714 prealloc_flags |= FIEMAP_EXTENT_SHARED;
3715 }
3716 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3717 disk_bytenr + extent_offset,
3718 prealloc_len, prealloc_flags);
3719 if (ret)
3720 return ret;
3721 }
3722
3723 return 0;
3724}
3725
3726static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
3727 struct btrfs_path *path,
3728 u64 *last_extent_end_ret)
3729{
3730 const u64 ino = btrfs_ino(inode);
3731 struct btrfs_root *root = inode->root;
3732 struct extent_buffer *leaf;
3733 struct btrfs_file_extent_item *ei;
3734 struct btrfs_key key;
3735 u64 disk_bytenr;
3736 int ret;
3737
3738 /*
3739 * Lookup the last file extent. We're not using i_size here because
3740 * there might be preallocation past i_size.
3741 */
3742 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
3743 /* There can't be a file extent item at offset (u64)-1 */
3744 ASSERT(ret != 0);
3745 if (ret < 0)
3746 return ret;
3747
3748 /*
3749 * For a non-existing key, btrfs_search_slot() always leaves us at a
3750 * slot > 0, except if the btree is empty, which is impossible because
3751 * at least it has the inode item for this inode and all the items for
3752 * the root inode 256.
3753 */
3754 ASSERT(path->slots[0] > 0);
3755 path->slots[0]--;
3756 leaf = path->nodes[0];
3757 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3758 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
3759 /* No file extent items in the subvolume tree. */
3760 *last_extent_end_ret = 0;
3761 return 0;
3762 }
3763
3764 /*
3765 * For an inline extent, the disk_bytenr is where inline data starts at,
3766 * so first check if we have an inline extent item before checking if we
3767 * have an implicit hole (disk_bytenr == 0).
3768 */
3769 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
3770 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
3771 *last_extent_end_ret = btrfs_file_extent_end(path);
3772 return 0;
3773 }
3774
3775 /*
3776 * Find the last file extent item that is not a hole (when NO_HOLES is
3777 * not enabled). This should take at most 2 iterations in the worst
3778 * case: we have one hole file extent item at slot 0 of a leaf and
3779 * another hole file extent item as the last item in the previous leaf.
3780 * This is because we merge file extent items that represent holes.
3781 */
3782 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3783 while (disk_bytenr == 0) {
3784 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
3785 if (ret < 0) {
3786 return ret;
3787 } else if (ret > 0) {
3788 /* No file extent items that are not holes. */
3789 *last_extent_end_ret = 0;
3790 return 0;
3791 }
3792 leaf = path->nodes[0];
3793 ei = btrfs_item_ptr(leaf, path->slots[0],
3794 struct btrfs_file_extent_item);
3795 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3796 }
3797
3798 *last_extent_end_ret = btrfs_file_extent_end(path);
3799 return 0;
3800}
3801
3802int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3803 u64 start, u64 len)
3804{
3805 const u64 ino = btrfs_ino(inode);
3806 struct extent_state *cached_state = NULL;
3807 struct extent_state *delalloc_cached_state = NULL;
3808 struct btrfs_path *path;
3809 struct fiemap_cache cache = { 0 };
3810 struct btrfs_backref_share_check_ctx *backref_ctx;
3811 u64 last_extent_end;
3812 u64 prev_extent_end;
3813 u64 lockstart;
3814 u64 lockend;
3815 bool stopped = false;
3816 int ret;
3817
3818 backref_ctx = btrfs_alloc_backref_share_check_ctx();
3819 path = btrfs_alloc_path();
3820 if (!backref_ctx || !path) {
3821 ret = -ENOMEM;
3822 goto out;
3823 }
3824
3825 lockstart = round_down(start, inode->root->fs_info->sectorsize);
3826 lockend = round_up(start + len, inode->root->fs_info->sectorsize);
3827 prev_extent_end = lockstart;
3828
3829 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3830 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3831
3832 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3833 if (ret < 0)
3834 goto out_unlock;
3835 btrfs_release_path(path);
3836
3837 path->reada = READA_FORWARD;
3838 ret = fiemap_search_slot(inode, path, lockstart);
3839 if (ret < 0) {
3840 goto out_unlock;
3841 } else if (ret > 0) {
3842 /*
3843 * No file extent item found, but we may have delalloc between
3844 * the current offset and i_size. So check for that.
3845 */
3846 ret = 0;
3847 goto check_eof_delalloc;
3848 }
3849
3850 while (prev_extent_end < lockend) {
3851 struct extent_buffer *leaf = path->nodes[0];
3852 struct btrfs_file_extent_item *ei;
3853 struct btrfs_key key;
3854 u64 extent_end;
3855 u64 extent_len;
3856 u64 extent_offset = 0;
3857 u64 extent_gen;
3858 u64 disk_bytenr = 0;
3859 u64 flags = 0;
3860 int extent_type;
3861 u8 compression;
3862
3863 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3864 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3865 break;
3866
3867 extent_end = btrfs_file_extent_end(path);
3868
3869 /*
3870 * The first iteration can leave us at an extent item that ends
3871 * before our range's start. Move to the next item.
3872 */
3873 if (extent_end <= lockstart)
3874 goto next_item;
3875
3876 backref_ctx->curr_leaf_bytenr = leaf->start;
3877
3878 /* We have in implicit hole (NO_HOLES feature enabled). */
3879 if (prev_extent_end < key.offset) {
3880 const u64 range_end = min(key.offset, lockend) - 1;
3881
3882 ret = fiemap_process_hole(inode, fieinfo, &cache,
3883 &delalloc_cached_state,
3884 backref_ctx, 0, 0, 0,
3885 prev_extent_end, range_end);
3886 if (ret < 0) {
3887 goto out_unlock;
3888 } else if (ret > 0) {
3889 /* fiemap_fill_next_extent() told us to stop. */
3890 stopped = true;
3891 break;
3892 }
3893
3894 /* We've reached the end of the fiemap range, stop. */
3895 if (key.offset >= lockend) {
3896 stopped = true;
3897 break;
3898 }
3899 }
3900
3901 extent_len = extent_end - key.offset;
3902 ei = btrfs_item_ptr(leaf, path->slots[0],
3903 struct btrfs_file_extent_item);
3904 compression = btrfs_file_extent_compression(leaf, ei);
3905 extent_type = btrfs_file_extent_type(leaf, ei);
3906 extent_gen = btrfs_file_extent_generation(leaf, ei);
3907
3908 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3909 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3910 if (compression == BTRFS_COMPRESS_NONE)
3911 extent_offset = btrfs_file_extent_offset(leaf, ei);
3912 }
3913
3914 if (compression != BTRFS_COMPRESS_NONE)
3915 flags |= FIEMAP_EXTENT_ENCODED;
3916
3917 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3918 flags |= FIEMAP_EXTENT_DATA_INLINE;
3919 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3920 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3921 extent_len, flags);
3922 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3923 ret = fiemap_process_hole(inode, fieinfo, &cache,
3924 &delalloc_cached_state,
3925 backref_ctx,
3926 disk_bytenr, extent_offset,
3927 extent_gen, key.offset,
3928 extent_end - 1);
3929 } else if (disk_bytenr == 0) {
3930 /* We have an explicit hole. */
3931 ret = fiemap_process_hole(inode, fieinfo, &cache,
3932 &delalloc_cached_state,
3933 backref_ctx, 0, 0, 0,
3934 key.offset, extent_end - 1);
3935 } else {
3936 /* We have a regular extent. */
3937 if (fieinfo->fi_extents_max) {
3938 ret = btrfs_is_data_extent_shared(inode,
3939 disk_bytenr,
3940 extent_gen,
3941 backref_ctx);
3942 if (ret < 0)
3943 goto out_unlock;
3944 else if (ret > 0)
3945 flags |= FIEMAP_EXTENT_SHARED;
3946 }
3947
3948 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3949 disk_bytenr + extent_offset,
3950 extent_len, flags);
3951 }
3952
3953 if (ret < 0) {
3954 goto out_unlock;
3955 } else if (ret > 0) {
3956 /* fiemap_fill_next_extent() told us to stop. */
3957 stopped = true;
3958 break;
3959 }
3960
3961 prev_extent_end = extent_end;
3962next_item:
3963 if (fatal_signal_pending(current)) {
3964 ret = -EINTR;
3965 goto out_unlock;
3966 }
3967
3968 ret = fiemap_next_leaf_item(inode, path);
3969 if (ret < 0) {
3970 goto out_unlock;
3971 } else if (ret > 0) {
3972 /* No more file extent items for this inode. */
3973 break;
3974 }
3975 cond_resched();
3976 }
3977
3978check_eof_delalloc:
3979 /*
3980 * Release (and free) the path before emitting any final entries to
3981 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3982 * once we find no more file extent items exist, we may have a
3983 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3984 * faults when copying data to the user space buffer.
3985 */
3986 btrfs_free_path(path);
3987 path = NULL;
3988
3989 if (!stopped && prev_extent_end < lockend) {
3990 ret = fiemap_process_hole(inode, fieinfo, &cache,
3991 &delalloc_cached_state, backref_ctx,
3992 0, 0, 0, prev_extent_end, lockend - 1);
3993 if (ret < 0)
3994 goto out_unlock;
3995 prev_extent_end = lockend;
3996 }
3997
3998 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3999 const u64 i_size = i_size_read(&inode->vfs_inode);
4000
4001 if (prev_extent_end < i_size) {
4002 u64 delalloc_start;
4003 u64 delalloc_end;
4004 bool delalloc;
4005
4006 delalloc = btrfs_find_delalloc_in_range(inode,
4007 prev_extent_end,
4008 i_size - 1,
4009 &delalloc_cached_state,
4010 &delalloc_start,
4011 &delalloc_end);
4012 if (!delalloc)
4013 cache.flags |= FIEMAP_EXTENT_LAST;
4014 } else {
4015 cache.flags |= FIEMAP_EXTENT_LAST;
4016 }
4017 }
4018
4019 ret = emit_last_fiemap_cache(fieinfo, &cache);
4020
4021out_unlock:
4022 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
4023 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4024out:
4025 free_extent_state(delalloc_cached_state);
4026 btrfs_free_backref_share_ctx(backref_ctx);
4027 btrfs_free_path(path);
4028 return ret;
4029}
4030
4031static void __free_extent_buffer(struct extent_buffer *eb)
4032{
4033 kmem_cache_free(extent_buffer_cache, eb);
4034}
4035
4036int extent_buffer_under_io(const struct extent_buffer *eb)
4037{
4038 return (atomic_read(&eb->io_pages) ||
4039 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4040 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4041}
4042
4043static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
4044{
4045 struct btrfs_subpage *subpage;
4046
4047 lockdep_assert_held(&page->mapping->private_lock);
4048
4049 if (PagePrivate(page)) {
4050 subpage = (struct btrfs_subpage *)page->private;
4051 if (atomic_read(&subpage->eb_refs))
4052 return true;
4053 /*
4054 * Even there is no eb refs here, we may still have
4055 * end_page_read() call relying on page::private.
4056 */
4057 if (atomic_read(&subpage->readers))
4058 return true;
4059 }
4060 return false;
4061}
4062
4063static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
4064{
4065 struct btrfs_fs_info *fs_info = eb->fs_info;
4066 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4067
4068 /*
4069 * For mapped eb, we're going to change the page private, which should
4070 * be done under the private_lock.
4071 */
4072 if (mapped)
4073 spin_lock(&page->mapping->private_lock);
4074
4075 if (!PagePrivate(page)) {
4076 if (mapped)
4077 spin_unlock(&page->mapping->private_lock);
4078 return;
4079 }
4080
4081 if (fs_info->nodesize >= PAGE_SIZE) {
4082 /*
4083 * We do this since we'll remove the pages after we've
4084 * removed the eb from the radix tree, so we could race
4085 * and have this page now attached to the new eb. So
4086 * only clear page_private if it's still connected to
4087 * this eb.
4088 */
4089 if (PagePrivate(page) &&
4090 page->private == (unsigned long)eb) {
4091 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4092 BUG_ON(PageDirty(page));
4093 BUG_ON(PageWriteback(page));
4094 /*
4095 * We need to make sure we haven't be attached
4096 * to a new eb.
4097 */
4098 detach_page_private(page);
4099 }
4100 if (mapped)
4101 spin_unlock(&page->mapping->private_lock);
4102 return;
4103 }
4104
4105 /*
4106 * For subpage, we can have dummy eb with page private. In this case,
4107 * we can directly detach the private as such page is only attached to
4108 * one dummy eb, no sharing.
4109 */
4110 if (!mapped) {
4111 btrfs_detach_subpage(fs_info, page);
4112 return;
4113 }
4114
4115 btrfs_page_dec_eb_refs(fs_info, page);
4116
4117 /*
4118 * We can only detach the page private if there are no other ebs in the
4119 * page range and no unfinished IO.
4120 */
4121 if (!page_range_has_eb(fs_info, page))
4122 btrfs_detach_subpage(fs_info, page);
4123
4124 spin_unlock(&page->mapping->private_lock);
4125}
4126
4127/* Release all pages attached to the extent buffer */
4128static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4129{
4130 int i;
4131 int num_pages;
4132
4133 ASSERT(!extent_buffer_under_io(eb));
4134
4135 num_pages = num_extent_pages(eb);
4136 for (i = 0; i < num_pages; i++) {
4137 struct page *page = eb->pages[i];
4138
4139 if (!page)
4140 continue;
4141
4142 detach_extent_buffer_page(eb, page);
4143
4144 /* One for when we allocated the page */
4145 put_page(page);
4146 }
4147}
4148
4149/*
4150 * Helper for releasing the extent buffer.
4151 */
4152static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4153{
4154 btrfs_release_extent_buffer_pages(eb);
4155 btrfs_leak_debug_del_eb(eb);
4156 __free_extent_buffer(eb);
4157}
4158
4159static struct extent_buffer *
4160__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4161 unsigned long len)
4162{
4163 struct extent_buffer *eb = NULL;
4164
4165 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4166 eb->start = start;
4167 eb->len = len;
4168 eb->fs_info = fs_info;
4169 init_rwsem(&eb->lock);
4170
4171 btrfs_leak_debug_add_eb(eb);
4172 INIT_LIST_HEAD(&eb->release_list);
4173
4174 spin_lock_init(&eb->refs_lock);
4175 atomic_set(&eb->refs, 1);
4176 atomic_set(&eb->io_pages, 0);
4177
4178 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
4179
4180 return eb;
4181}
4182
4183struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
4184{
4185 int i;
4186 struct extent_buffer *new;
4187 int num_pages = num_extent_pages(src);
4188 int ret;
4189
4190 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4191 if (new == NULL)
4192 return NULL;
4193
4194 /*
4195 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
4196 * btrfs_release_extent_buffer() have different behavior for
4197 * UNMAPPED subpage extent buffer.
4198 */
4199 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4200
4201 ret = btrfs_alloc_page_array(num_pages, new->pages);
4202 if (ret) {
4203 btrfs_release_extent_buffer(new);
4204 return NULL;
4205 }
4206
4207 for (i = 0; i < num_pages; i++) {
4208 int ret;
4209 struct page *p = new->pages[i];
4210
4211 ret = attach_extent_buffer_page(new, p, NULL);
4212 if (ret < 0) {
4213 btrfs_release_extent_buffer(new);
4214 return NULL;
4215 }
4216 WARN_ON(PageDirty(p));
4217 copy_page(page_address(p), page_address(src->pages[i]));
4218 }
4219 set_extent_buffer_uptodate(new);
4220
4221 return new;
4222}
4223
4224struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4225 u64 start, unsigned long len)
4226{
4227 struct extent_buffer *eb;
4228 int num_pages;
4229 int i;
4230 int ret;
4231
4232 eb = __alloc_extent_buffer(fs_info, start, len);
4233 if (!eb)
4234 return NULL;
4235
4236 num_pages = num_extent_pages(eb);
4237 ret = btrfs_alloc_page_array(num_pages, eb->pages);
4238 if (ret)
4239 goto err;
4240
4241 for (i = 0; i < num_pages; i++) {
4242 struct page *p = eb->pages[i];
4243
4244 ret = attach_extent_buffer_page(eb, p, NULL);
4245 if (ret < 0)
4246 goto err;
4247 }
4248
4249 set_extent_buffer_uptodate(eb);
4250 btrfs_set_header_nritems(eb, 0);
4251 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4252
4253 return eb;
4254err:
4255 for (i = 0; i < num_pages; i++) {
4256 if (eb->pages[i]) {
4257 detach_extent_buffer_page(eb, eb->pages[i]);
4258 __free_page(eb->pages[i]);
4259 }
4260 }
4261 __free_extent_buffer(eb);
4262 return NULL;
4263}
4264
4265struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4266 u64 start)
4267{
4268 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4269}
4270
4271static void check_buffer_tree_ref(struct extent_buffer *eb)
4272{
4273 int refs;
4274 /*
4275 * The TREE_REF bit is first set when the extent_buffer is added
4276 * to the radix tree. It is also reset, if unset, when a new reference
4277 * is created by find_extent_buffer.
4278 *
4279 * It is only cleared in two cases: freeing the last non-tree
4280 * reference to the extent_buffer when its STALE bit is set or
4281 * calling release_folio when the tree reference is the only reference.
4282 *
4283 * In both cases, care is taken to ensure that the extent_buffer's
4284 * pages are not under io. However, release_folio can be concurrently
4285 * called with creating new references, which is prone to race
4286 * conditions between the calls to check_buffer_tree_ref in those
4287 * codepaths and clearing TREE_REF in try_release_extent_buffer.
4288 *
4289 * The actual lifetime of the extent_buffer in the radix tree is
4290 * adequately protected by the refcount, but the TREE_REF bit and
4291 * its corresponding reference are not. To protect against this
4292 * class of races, we call check_buffer_tree_ref from the codepaths
4293 * which trigger io after they set eb->io_pages. Note that once io is
4294 * initiated, TREE_REF can no longer be cleared, so that is the
4295 * moment at which any such race is best fixed.
4296 */
4297 refs = atomic_read(&eb->refs);
4298 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4299 return;
4300
4301 spin_lock(&eb->refs_lock);
4302 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4303 atomic_inc(&eb->refs);
4304 spin_unlock(&eb->refs_lock);
4305}
4306
4307static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4308 struct page *accessed)
4309{
4310 int num_pages, i;
4311
4312 check_buffer_tree_ref(eb);
4313
4314 num_pages = num_extent_pages(eb);
4315 for (i = 0; i < num_pages; i++) {
4316 struct page *p = eb->pages[i];
4317
4318 if (p != accessed)
4319 mark_page_accessed(p);
4320 }
4321}
4322
4323struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4324 u64 start)
4325{
4326 struct extent_buffer *eb;
4327
4328 eb = find_extent_buffer_nolock(fs_info, start);
4329 if (!eb)
4330 return NULL;
4331 /*
4332 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
4333 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
4334 * another task running free_extent_buffer() might have seen that flag
4335 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
4336 * writeback flags not set) and it's still in the tree (flag
4337 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
4338 * decrementing the extent buffer's reference count twice. So here we
4339 * could race and increment the eb's reference count, clear its stale
4340 * flag, mark it as dirty and drop our reference before the other task
4341 * finishes executing free_extent_buffer, which would later result in
4342 * an attempt to free an extent buffer that is dirty.
4343 */
4344 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4345 spin_lock(&eb->refs_lock);
4346 spin_unlock(&eb->refs_lock);
4347 }
4348 mark_extent_buffer_accessed(eb, NULL);
4349 return eb;
4350}
4351
4352#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4353struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4354 u64 start)
4355{
4356 struct extent_buffer *eb, *exists = NULL;
4357 int ret;
4358
4359 eb = find_extent_buffer(fs_info, start);
4360 if (eb)
4361 return eb;
4362 eb = alloc_dummy_extent_buffer(fs_info, start);
4363 if (!eb)
4364 return ERR_PTR(-ENOMEM);
4365 eb->fs_info = fs_info;
4366again:
4367 ret = radix_tree_preload(GFP_NOFS);
4368 if (ret) {
4369 exists = ERR_PTR(ret);
4370 goto free_eb;
4371 }
4372 spin_lock(&fs_info->buffer_lock);
4373 ret = radix_tree_insert(&fs_info->buffer_radix,
4374 start >> fs_info->sectorsize_bits, eb);
4375 spin_unlock(&fs_info->buffer_lock);
4376 radix_tree_preload_end();
4377 if (ret == -EEXIST) {
4378 exists = find_extent_buffer(fs_info, start);
4379 if (exists)
4380 goto free_eb;
4381 else
4382 goto again;
4383 }
4384 check_buffer_tree_ref(eb);
4385 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4386
4387 return eb;
4388free_eb:
4389 btrfs_release_extent_buffer(eb);
4390 return exists;
4391}
4392#endif
4393
4394static struct extent_buffer *grab_extent_buffer(
4395 struct btrfs_fs_info *fs_info, struct page *page)
4396{
4397 struct extent_buffer *exists;
4398
4399 /*
4400 * For subpage case, we completely rely on radix tree to ensure we
4401 * don't try to insert two ebs for the same bytenr. So here we always
4402 * return NULL and just continue.
4403 */
4404 if (fs_info->nodesize < PAGE_SIZE)
4405 return NULL;
4406
4407 /* Page not yet attached to an extent buffer */
4408 if (!PagePrivate(page))
4409 return NULL;
4410
4411 /*
4412 * We could have already allocated an eb for this page and attached one
4413 * so lets see if we can get a ref on the existing eb, and if we can we
4414 * know it's good and we can just return that one, else we know we can
4415 * just overwrite page->private.
4416 */
4417 exists = (struct extent_buffer *)page->private;
4418 if (atomic_inc_not_zero(&exists->refs))
4419 return exists;
4420
4421 WARN_ON(PageDirty(page));
4422 detach_page_private(page);
4423 return NULL;
4424}
4425
4426static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
4427{
4428 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4429 btrfs_err(fs_info, "bad tree block start %llu", start);
4430 return -EINVAL;
4431 }
4432
4433 if (fs_info->nodesize < PAGE_SIZE &&
4434 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
4435 btrfs_err(fs_info,
4436 "tree block crosses page boundary, start %llu nodesize %u",
4437 start, fs_info->nodesize);
4438 return -EINVAL;
4439 }
4440 if (fs_info->nodesize >= PAGE_SIZE &&
4441 !PAGE_ALIGNED(start)) {
4442 btrfs_err(fs_info,
4443 "tree block is not page aligned, start %llu nodesize %u",
4444 start, fs_info->nodesize);
4445 return -EINVAL;
4446 }
4447 return 0;
4448}
4449
4450struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4451 u64 start, u64 owner_root, int level)
4452{
4453 unsigned long len = fs_info->nodesize;
4454 int num_pages;
4455 int i;
4456 unsigned long index = start >> PAGE_SHIFT;
4457 struct extent_buffer *eb;
4458 struct extent_buffer *exists = NULL;
4459 struct page *p;
4460 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4461 u64 lockdep_owner = owner_root;
4462 int uptodate = 1;
4463 int ret;
4464
4465 if (check_eb_alignment(fs_info, start))
4466 return ERR_PTR(-EINVAL);
4467
4468#if BITS_PER_LONG == 32
4469 if (start >= MAX_LFS_FILESIZE) {
4470 btrfs_err_rl(fs_info,
4471 "extent buffer %llu is beyond 32bit page cache limit", start);
4472 btrfs_err_32bit_limit(fs_info);
4473 return ERR_PTR(-EOVERFLOW);
4474 }
4475 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
4476 btrfs_warn_32bit_limit(fs_info);
4477#endif
4478
4479 eb = find_extent_buffer(fs_info, start);
4480 if (eb)
4481 return eb;
4482
4483 eb = __alloc_extent_buffer(fs_info, start, len);
4484 if (!eb)
4485 return ERR_PTR(-ENOMEM);
4486
4487 /*
4488 * The reloc trees are just snapshots, so we need them to appear to be
4489 * just like any other fs tree WRT lockdep.
4490 */
4491 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
4492 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4493
4494 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
4495
4496 num_pages = num_extent_pages(eb);
4497 for (i = 0; i < num_pages; i++, index++) {
4498 struct btrfs_subpage *prealloc = NULL;
4499
4500 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4501 if (!p) {
4502 exists = ERR_PTR(-ENOMEM);
4503 goto free_eb;
4504 }
4505
4506 /*
4507 * Preallocate page->private for subpage case, so that we won't
4508 * allocate memory with private_lock hold. The memory will be
4509 * freed by attach_extent_buffer_page() or freed manually if
4510 * we exit earlier.
4511 *
4512 * Although we have ensured one subpage eb can only have one
4513 * page, but it may change in the future for 16K page size
4514 * support, so we still preallocate the memory in the loop.
4515 */
4516 if (fs_info->nodesize < PAGE_SIZE) {
4517 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
4518 if (IS_ERR(prealloc)) {
4519 ret = PTR_ERR(prealloc);
4520 unlock_page(p);
4521 put_page(p);
4522 exists = ERR_PTR(ret);
4523 goto free_eb;
4524 }
4525 }
4526
4527 spin_lock(&mapping->private_lock);
4528 exists = grab_extent_buffer(fs_info, p);
4529 if (exists) {
4530 spin_unlock(&mapping->private_lock);
4531 unlock_page(p);
4532 put_page(p);
4533 mark_extent_buffer_accessed(exists, p);
4534 btrfs_free_subpage(prealloc);
4535 goto free_eb;
4536 }
4537 /* Should not fail, as we have preallocated the memory */
4538 ret = attach_extent_buffer_page(eb, p, prealloc);
4539 ASSERT(!ret);
4540 /*
4541 * To inform we have extra eb under allocation, so that
4542 * detach_extent_buffer_page() won't release the page private
4543 * when the eb hasn't yet been inserted into radix tree.
4544 *
4545 * The ref will be decreased when the eb released the page, in
4546 * detach_extent_buffer_page().
4547 * Thus needs no special handling in error path.
4548 */
4549 btrfs_page_inc_eb_refs(fs_info, p);
4550 spin_unlock(&mapping->private_lock);
4551
4552 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
4553 eb->pages[i] = p;
4554 if (!PageUptodate(p))
4555 uptodate = 0;
4556
4557 /*
4558 * We can't unlock the pages just yet since the extent buffer
4559 * hasn't been properly inserted in the radix tree, this
4560 * opens a race with btree_release_folio which can free a page
4561 * while we are still filling in all pages for the buffer and
4562 * we could crash.
4563 */
4564 }
4565 if (uptodate)
4566 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4567again:
4568 ret = radix_tree_preload(GFP_NOFS);
4569 if (ret) {
4570 exists = ERR_PTR(ret);
4571 goto free_eb;
4572 }
4573
4574 spin_lock(&fs_info->buffer_lock);
4575 ret = radix_tree_insert(&fs_info->buffer_radix,
4576 start >> fs_info->sectorsize_bits, eb);
4577 spin_unlock(&fs_info->buffer_lock);
4578 radix_tree_preload_end();
4579 if (ret == -EEXIST) {
4580 exists = find_extent_buffer(fs_info, start);
4581 if (exists)
4582 goto free_eb;
4583 else
4584 goto again;
4585 }
4586 /* add one reference for the tree */
4587 check_buffer_tree_ref(eb);
4588 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4589
4590 /*
4591 * Now it's safe to unlock the pages because any calls to
4592 * btree_release_folio will correctly detect that a page belongs to a
4593 * live buffer and won't free them prematurely.
4594 */
4595 for (i = 0; i < num_pages; i++)
4596 unlock_page(eb->pages[i]);
4597 return eb;
4598
4599free_eb:
4600 WARN_ON(!atomic_dec_and_test(&eb->refs));
4601 for (i = 0; i < num_pages; i++) {
4602 if (eb->pages[i])
4603 unlock_page(eb->pages[i]);
4604 }
4605
4606 btrfs_release_extent_buffer(eb);
4607 return exists;
4608}
4609
4610static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4611{
4612 struct extent_buffer *eb =
4613 container_of(head, struct extent_buffer, rcu_head);
4614
4615 __free_extent_buffer(eb);
4616}
4617
4618static int release_extent_buffer(struct extent_buffer *eb)
4619 __releases(&eb->refs_lock)
4620{
4621 lockdep_assert_held(&eb->refs_lock);
4622
4623 WARN_ON(atomic_read(&eb->refs) == 0);
4624 if (atomic_dec_and_test(&eb->refs)) {
4625 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4626 struct btrfs_fs_info *fs_info = eb->fs_info;
4627
4628 spin_unlock(&eb->refs_lock);
4629
4630 spin_lock(&fs_info->buffer_lock);
4631 radix_tree_delete(&fs_info->buffer_radix,
4632 eb->start >> fs_info->sectorsize_bits);
4633 spin_unlock(&fs_info->buffer_lock);
4634 } else {
4635 spin_unlock(&eb->refs_lock);
4636 }
4637
4638 btrfs_leak_debug_del_eb(eb);
4639 /* Should be safe to release our pages at this point */
4640 btrfs_release_extent_buffer_pages(eb);
4641#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4642 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
4643 __free_extent_buffer(eb);
4644 return 1;
4645 }
4646#endif
4647 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4648 return 1;
4649 }
4650 spin_unlock(&eb->refs_lock);
4651
4652 return 0;
4653}
4654
4655void free_extent_buffer(struct extent_buffer *eb)
4656{
4657 int refs;
4658 if (!eb)
4659 return;
4660
4661 refs = atomic_read(&eb->refs);
4662 while (1) {
4663 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
4664 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
4665 refs == 1))
4666 break;
4667 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
4668 return;
4669 }
4670
4671 spin_lock(&eb->refs_lock);
4672 if (atomic_read(&eb->refs) == 2 &&
4673 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4674 !extent_buffer_under_io(eb) &&
4675 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4676 atomic_dec(&eb->refs);
4677
4678 /*
4679 * I know this is terrible, but it's temporary until we stop tracking
4680 * the uptodate bits and such for the extent buffers.
4681 */
4682 release_extent_buffer(eb);
4683}
4684
4685void free_extent_buffer_stale(struct extent_buffer *eb)
4686{
4687 if (!eb)
4688 return;
4689
4690 spin_lock(&eb->refs_lock);
4691 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4692
4693 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4694 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4695 atomic_dec(&eb->refs);
4696 release_extent_buffer(eb);
4697}
4698
4699static void btree_clear_page_dirty(struct page *page)
4700{
4701 ASSERT(PageDirty(page));
4702 ASSERT(PageLocked(page));
4703 clear_page_dirty_for_io(page);
4704 xa_lock_irq(&page->mapping->i_pages);
4705 if (!PageDirty(page))
4706 __xa_clear_mark(&page->mapping->i_pages,
4707 page_index(page), PAGECACHE_TAG_DIRTY);
4708 xa_unlock_irq(&page->mapping->i_pages);
4709}
4710
4711static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4712{
4713 struct btrfs_fs_info *fs_info = eb->fs_info;
4714 struct page *page = eb->pages[0];
4715 bool last;
4716
4717 /* btree_clear_page_dirty() needs page locked */
4718 lock_page(page);
4719 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
4720 eb->len);
4721 if (last)
4722 btree_clear_page_dirty(page);
4723 unlock_page(page);
4724 WARN_ON(atomic_read(&eb->refs) == 0);
4725}
4726
4727void clear_extent_buffer_dirty(const struct extent_buffer *eb)
4728{
4729 int i;
4730 int num_pages;
4731 struct page *page;
4732
4733 if (eb->fs_info->nodesize < PAGE_SIZE)
4734 return clear_subpage_extent_buffer_dirty(eb);
4735
4736 num_pages = num_extent_pages(eb);
4737
4738 for (i = 0; i < num_pages; i++) {
4739 page = eb->pages[i];
4740 if (!PageDirty(page))
4741 continue;
4742 lock_page(page);
4743 btree_clear_page_dirty(page);
4744 ClearPageError(page);
4745 unlock_page(page);
4746 }
4747 WARN_ON(atomic_read(&eb->refs) == 0);
4748}
4749
4750bool set_extent_buffer_dirty(struct extent_buffer *eb)
4751{
4752 int i;
4753 int num_pages;
4754 bool was_dirty;
4755
4756 check_buffer_tree_ref(eb);
4757
4758 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4759
4760 num_pages = num_extent_pages(eb);
4761 WARN_ON(atomic_read(&eb->refs) == 0);
4762 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4763
4764 if (!was_dirty) {
4765 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
4766
4767 /*
4768 * For subpage case, we can have other extent buffers in the
4769 * same page, and in clear_subpage_extent_buffer_dirty() we
4770 * have to clear page dirty without subpage lock held.
4771 * This can cause race where our page gets dirty cleared after
4772 * we just set it.
4773 *
4774 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4775 * its page for other reasons, we can use page lock to prevent
4776 * the above race.
4777 */
4778 if (subpage)
4779 lock_page(eb->pages[0]);
4780 for (i = 0; i < num_pages; i++)
4781 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
4782 eb->start, eb->len);
4783 if (subpage)
4784 unlock_page(eb->pages[0]);
4785 }
4786#ifdef CONFIG_BTRFS_DEBUG
4787 for (i = 0; i < num_pages; i++)
4788 ASSERT(PageDirty(eb->pages[i]));
4789#endif
4790
4791 return was_dirty;
4792}
4793
4794void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4795{
4796 struct btrfs_fs_info *fs_info = eb->fs_info;
4797 struct page *page;
4798 int num_pages;
4799 int i;
4800
4801 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4802 num_pages = num_extent_pages(eb);
4803 for (i = 0; i < num_pages; i++) {
4804 page = eb->pages[i];
4805 if (!page)
4806 continue;
4807
4808 /*
4809 * This is special handling for metadata subpage, as regular
4810 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4811 */
4812 if (fs_info->nodesize >= PAGE_SIZE)
4813 ClearPageUptodate(page);
4814 else
4815 btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
4816 eb->len);
4817 }
4818}
4819
4820void set_extent_buffer_uptodate(struct extent_buffer *eb)
4821{
4822 struct btrfs_fs_info *fs_info = eb->fs_info;
4823 struct page *page;
4824 int num_pages;
4825 int i;
4826
4827 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4828 num_pages = num_extent_pages(eb);
4829 for (i = 0; i < num_pages; i++) {
4830 page = eb->pages[i];
4831
4832 /*
4833 * This is special handling for metadata subpage, as regular
4834 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4835 */
4836 if (fs_info->nodesize >= PAGE_SIZE)
4837 SetPageUptodate(page);
4838 else
4839 btrfs_subpage_set_uptodate(fs_info, page, eb->start,
4840 eb->len);
4841 }
4842}
4843
4844static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
4845 int mirror_num,
4846 struct btrfs_tree_parent_check *check)
4847{
4848 struct btrfs_fs_info *fs_info = eb->fs_info;
4849 struct extent_io_tree *io_tree;
4850 struct page *page = eb->pages[0];
4851 struct extent_state *cached_state = NULL;
4852 struct btrfs_bio_ctrl bio_ctrl = {
4853 .mirror_num = mirror_num,
4854 .parent_check = check,
4855 };
4856 int ret = 0;
4857
4858 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
4859 ASSERT(PagePrivate(page));
4860 ASSERT(check);
4861 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
4862
4863 if (wait == WAIT_NONE) {
4864 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1,
4865 &cached_state))
4866 return -EAGAIN;
4867 } else {
4868 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1,
4869 &cached_state);
4870 if (ret < 0)
4871 return ret;
4872 }
4873
4874 ret = 0;
4875 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
4876 PageUptodate(page) ||
4877 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
4878 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4879 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
4880 &cached_state);
4881 return ret;
4882 }
4883
4884 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4885 eb->read_mirror = 0;
4886 atomic_set(&eb->io_pages, 1);
4887 check_buffer_tree_ref(eb);
4888 bio_ctrl.end_io_func = end_bio_extent_readpage;
4889
4890 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
4891
4892 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
4893 ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl,
4894 eb->start, page, eb->len,
4895 eb->start - page_offset(page), 0, true);
4896 if (ret) {
4897 /*
4898 * In the endio function, if we hit something wrong we will
4899 * increase the io_pages, so here we need to decrease it for
4900 * error path.
4901 */
4902 atomic_dec(&eb->io_pages);
4903 }
4904 submit_one_bio(&bio_ctrl);
4905 if (ret || wait != WAIT_COMPLETE) {
4906 free_extent_state(cached_state);
4907 return ret;
4908 }
4909
4910 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1,
4911 EXTENT_LOCKED, &cached_state);
4912 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4913 ret = -EIO;
4914 return ret;
4915}
4916
4917int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4918 struct btrfs_tree_parent_check *check)
4919{
4920 int i;
4921 struct page *page;
4922 int err;
4923 int ret = 0;
4924 int locked_pages = 0;
4925 int all_uptodate = 1;
4926 int num_pages;
4927 unsigned long num_reads = 0;
4928 struct btrfs_bio_ctrl bio_ctrl = {
4929 .mirror_num = mirror_num,
4930 .parent_check = check,
4931 };
4932
4933 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4934 return 0;
4935
4936 /*
4937 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4938 * operation, which could potentially still be in flight. In this case
4939 * we simply want to return an error.
4940 */
4941 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4942 return -EIO;
4943
4944 if (eb->fs_info->nodesize < PAGE_SIZE)
4945 return read_extent_buffer_subpage(eb, wait, mirror_num, check);
4946
4947 num_pages = num_extent_pages(eb);
4948 for (i = 0; i < num_pages; i++) {
4949 page = eb->pages[i];
4950 if (wait == WAIT_NONE) {
4951 /*
4952 * WAIT_NONE is only utilized by readahead. If we can't
4953 * acquire the lock atomically it means either the eb
4954 * is being read out or under modification.
4955 * Either way the eb will be or has been cached,
4956 * readahead can exit safely.
4957 */
4958 if (!trylock_page(page))
4959 goto unlock_exit;
4960 } else {
4961 lock_page(page);
4962 }
4963 locked_pages++;
4964 }
4965 /*
4966 * We need to firstly lock all pages to make sure that
4967 * the uptodate bit of our pages won't be affected by
4968 * clear_extent_buffer_uptodate().
4969 */
4970 for (i = 0; i < num_pages; i++) {
4971 page = eb->pages[i];
4972 if (!PageUptodate(page)) {
4973 num_reads++;
4974 all_uptodate = 0;
4975 }
4976 }
4977
4978 if (all_uptodate) {
4979 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4980 goto unlock_exit;
4981 }
4982
4983 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4984 eb->read_mirror = 0;
4985 atomic_set(&eb->io_pages, num_reads);
4986 /*
4987 * It is possible for release_folio to clear the TREE_REF bit before we
4988 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
4989 */
4990 check_buffer_tree_ref(eb);
4991 bio_ctrl.end_io_func = end_bio_extent_readpage;
4992 for (i = 0; i < num_pages; i++) {
4993 page = eb->pages[i];
4994
4995 if (!PageUptodate(page)) {
4996 if (ret) {
4997 atomic_dec(&eb->io_pages);
4998 unlock_page(page);
4999 continue;
5000 }
5001
5002 ClearPageError(page);
5003 err = submit_extent_page(REQ_OP_READ, NULL,
5004 &bio_ctrl, page_offset(page), page,
5005 PAGE_SIZE, 0, 0, false);
5006 if (err) {
5007 /*
5008 * We failed to submit the bio so it's the
5009 * caller's responsibility to perform cleanup
5010 * i.e unlock page/set error bit.
5011 */
5012 ret = err;
5013 SetPageError(page);
5014 unlock_page(page);
5015 atomic_dec(&eb->io_pages);
5016 }
5017 } else {
5018 unlock_page(page);
5019 }
5020 }
5021
5022 submit_one_bio(&bio_ctrl);
5023
5024 if (ret || wait != WAIT_COMPLETE)
5025 return ret;
5026
5027 for (i = 0; i < num_pages; i++) {
5028 page = eb->pages[i];
5029 wait_on_page_locked(page);
5030 if (!PageUptodate(page))
5031 ret = -EIO;
5032 }
5033
5034 return ret;
5035
5036unlock_exit:
5037 while (locked_pages > 0) {
5038 locked_pages--;
5039 page = eb->pages[locked_pages];
5040 unlock_page(page);
5041 }
5042 return ret;
5043}
5044
5045static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5046 unsigned long len)
5047{
5048 btrfs_warn(eb->fs_info,
5049 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
5050 eb->start, eb->len, start, len);
5051 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5052
5053 return true;
5054}
5055
5056/*
5057 * Check if the [start, start + len) range is valid before reading/writing
5058 * the eb.
5059 * NOTE: @start and @len are offset inside the eb, not logical address.
5060 *
5061 * Caller should not touch the dst/src memory if this function returns error.
5062 */
5063static inline int check_eb_range(const struct extent_buffer *eb,
5064 unsigned long start, unsigned long len)
5065{
5066 unsigned long offset;
5067
5068 /* start, start + len should not go beyond eb->len nor overflow */
5069 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5070 return report_eb_range(eb, start, len);
5071
5072 return false;
5073}
5074
5075void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5076 unsigned long start, unsigned long len)
5077{
5078 size_t cur;
5079 size_t offset;
5080 struct page *page;
5081 char *kaddr;
5082 char *dst = (char *)dstv;
5083 unsigned long i = get_eb_page_index(start);
5084
5085 if (check_eb_range(eb, start, len))
5086 return;
5087
5088 offset = get_eb_offset_in_page(eb, start);
5089
5090 while (len > 0) {
5091 page = eb->pages[i];
5092
5093 cur = min(len, (PAGE_SIZE - offset));
5094 kaddr = page_address(page);
5095 memcpy(dst, kaddr + offset, cur);
5096
5097 dst += cur;
5098 len -= cur;
5099 offset = 0;
5100 i++;
5101 }
5102}
5103
5104int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5105 void __user *dstv,
5106 unsigned long start, unsigned long len)
5107{
5108 size_t cur;
5109 size_t offset;
5110 struct page *page;
5111 char *kaddr;
5112 char __user *dst = (char __user *)dstv;
5113 unsigned long i = get_eb_page_index(start);
5114 int ret = 0;
5115
5116 WARN_ON(start > eb->len);
5117 WARN_ON(start + len > eb->start + eb->len);
5118
5119 offset = get_eb_offset_in_page(eb, start);
5120
5121 while (len > 0) {
5122 page = eb->pages[i];
5123
5124 cur = min(len, (PAGE_SIZE - offset));
5125 kaddr = page_address(page);
5126 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5127 ret = -EFAULT;
5128 break;
5129 }
5130
5131 dst += cur;
5132 len -= cur;
5133 offset = 0;
5134 i++;
5135 }
5136
5137 return ret;
5138}
5139
5140int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5141 unsigned long start, unsigned long len)
5142{
5143 size_t cur;
5144 size_t offset;
5145 struct page *page;
5146 char *kaddr;
5147 char *ptr = (char *)ptrv;
5148 unsigned long i = get_eb_page_index(start);
5149 int ret = 0;
5150
5151 if (check_eb_range(eb, start, len))
5152 return -EINVAL;
5153
5154 offset = get_eb_offset_in_page(eb, start);
5155
5156 while (len > 0) {
5157 page = eb->pages[i];
5158
5159 cur = min(len, (PAGE_SIZE - offset));
5160
5161 kaddr = page_address(page);
5162 ret = memcmp(ptr, kaddr + offset, cur);
5163 if (ret)
5164 break;
5165
5166 ptr += cur;
5167 len -= cur;
5168 offset = 0;
5169 i++;
5170 }
5171 return ret;
5172}
5173
5174/*
5175 * Check that the extent buffer is uptodate.
5176 *
5177 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
5178 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
5179 */
5180static void assert_eb_page_uptodate(const struct extent_buffer *eb,
5181 struct page *page)
5182{
5183 struct btrfs_fs_info *fs_info = eb->fs_info;
5184
5185 /*
5186 * If we are using the commit root we could potentially clear a page
5187 * Uptodate while we're using the extent buffer that we've previously
5188 * looked up. We don't want to complain in this case, as the page was
5189 * valid before, we just didn't write it out. Instead we want to catch
5190 * the case where we didn't actually read the block properly, which
5191 * would have !PageUptodate && !PageError, as we clear PageError before
5192 * reading.
5193 */
5194 if (fs_info->nodesize < PAGE_SIZE) {
5195 bool uptodate, error;
5196
5197 uptodate = btrfs_subpage_test_uptodate(fs_info, page,
5198 eb->start, eb->len);
5199 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
5200 WARN_ON(!uptodate && !error);
5201 } else {
5202 WARN_ON(!PageUptodate(page) && !PageError(page));
5203 }
5204}
5205
5206void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5207 const void *srcv)
5208{
5209 char *kaddr;
5210
5211 assert_eb_page_uptodate(eb, eb->pages[0]);
5212 kaddr = page_address(eb->pages[0]) +
5213 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
5214 chunk_tree_uuid));
5215 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
5216}
5217
5218void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5219{
5220 char *kaddr;
5221
5222 assert_eb_page_uptodate(eb, eb->pages[0]);
5223 kaddr = page_address(eb->pages[0]) +
5224 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
5225 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
5226}
5227
5228void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5229 unsigned long start, unsigned long len)
5230{
5231 size_t cur;
5232 size_t offset;
5233 struct page *page;
5234 char *kaddr;
5235 char *src = (char *)srcv;
5236 unsigned long i = get_eb_page_index(start);
5237
5238 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
5239
5240 if (check_eb_range(eb, start, len))
5241 return;
5242
5243 offset = get_eb_offset_in_page(eb, start);
5244
5245 while (len > 0) {
5246 page = eb->pages[i];
5247 assert_eb_page_uptodate(eb, page);
5248
5249 cur = min(len, PAGE_SIZE - offset);
5250 kaddr = page_address(page);
5251 memcpy(kaddr + offset, src, cur);
5252
5253 src += cur;
5254 len -= cur;
5255 offset = 0;
5256 i++;
5257 }
5258}
5259
5260void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5261 unsigned long len)
5262{
5263 size_t cur;
5264 size_t offset;
5265 struct page *page;
5266 char *kaddr;
5267 unsigned long i = get_eb_page_index(start);
5268
5269 if (check_eb_range(eb, start, len))
5270 return;
5271
5272 offset = get_eb_offset_in_page(eb, start);
5273
5274 while (len > 0) {
5275 page = eb->pages[i];
5276 assert_eb_page_uptodate(eb, page);
5277
5278 cur = min(len, PAGE_SIZE - offset);
5279 kaddr = page_address(page);
5280 memset(kaddr + offset, 0, cur);
5281
5282 len -= cur;
5283 offset = 0;
5284 i++;
5285 }
5286}
5287
5288void copy_extent_buffer_full(const struct extent_buffer *dst,
5289 const struct extent_buffer *src)
5290{
5291 int i;
5292 int num_pages;
5293
5294 ASSERT(dst->len == src->len);
5295
5296 if (dst->fs_info->nodesize >= PAGE_SIZE) {
5297 num_pages = num_extent_pages(dst);
5298 for (i = 0; i < num_pages; i++)
5299 copy_page(page_address(dst->pages[i]),
5300 page_address(src->pages[i]));
5301 } else {
5302 size_t src_offset = get_eb_offset_in_page(src, 0);
5303 size_t dst_offset = get_eb_offset_in_page(dst, 0);
5304
5305 ASSERT(src->fs_info->nodesize < PAGE_SIZE);
5306 memcpy(page_address(dst->pages[0]) + dst_offset,
5307 page_address(src->pages[0]) + src_offset,
5308 src->len);
5309 }
5310}
5311
5312void copy_extent_buffer(const struct extent_buffer *dst,
5313 const struct extent_buffer *src,
5314 unsigned long dst_offset, unsigned long src_offset,
5315 unsigned long len)
5316{
5317 u64 dst_len = dst->len;
5318 size_t cur;
5319 size_t offset;
5320 struct page *page;
5321 char *kaddr;
5322 unsigned long i = get_eb_page_index(dst_offset);
5323
5324 if (check_eb_range(dst, dst_offset, len) ||
5325 check_eb_range(src, src_offset, len))
5326 return;
5327
5328 WARN_ON(src->len != dst_len);
5329
5330 offset = get_eb_offset_in_page(dst, dst_offset);
5331
5332 while (len > 0) {
5333 page = dst->pages[i];
5334 assert_eb_page_uptodate(dst, page);
5335
5336 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5337
5338 kaddr = page_address(page);
5339 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5340
5341 src_offset += cur;
5342 len -= cur;
5343 offset = 0;
5344 i++;
5345 }
5346}
5347
5348/*
5349 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5350 * given bit number
5351 * @eb: the extent buffer
5352 * @start: offset of the bitmap item in the extent buffer
5353 * @nr: bit number
5354 * @page_index: return index of the page in the extent buffer that contains the
5355 * given bit number
5356 * @page_offset: return offset into the page given by page_index
5357 *
5358 * This helper hides the ugliness of finding the byte in an extent buffer which
5359 * contains a given bit.
5360 */
5361static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5362 unsigned long start, unsigned long nr,
5363 unsigned long *page_index,
5364 size_t *page_offset)
5365{
5366 size_t byte_offset = BIT_BYTE(nr);
5367 size_t offset;
5368
5369 /*
5370 * The byte we want is the offset of the extent buffer + the offset of
5371 * the bitmap item in the extent buffer + the offset of the byte in the
5372 * bitmap item.
5373 */
5374 offset = start + offset_in_page(eb->start) + byte_offset;
5375
5376 *page_index = offset >> PAGE_SHIFT;
5377 *page_offset = offset_in_page(offset);
5378}
5379
5380/*
5381 * Determine whether a bit in a bitmap item is set.
5382 *
5383 * @eb: the extent buffer
5384 * @start: offset of the bitmap item in the extent buffer
5385 * @nr: bit number to test
5386 */
5387int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5388 unsigned long nr)
5389{
5390 u8 *kaddr;
5391 struct page *page;
5392 unsigned long i;
5393 size_t offset;
5394
5395 eb_bitmap_offset(eb, start, nr, &i, &offset);
5396 page = eb->pages[i];
5397 assert_eb_page_uptodate(eb, page);
5398 kaddr = page_address(page);
5399 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5400}
5401
5402/*
5403 * Set an area of a bitmap to 1.
5404 *
5405 * @eb: the extent buffer
5406 * @start: offset of the bitmap item in the extent buffer
5407 * @pos: bit number of the first bit
5408 * @len: number of bits to set
5409 */
5410void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5411 unsigned long pos, unsigned long len)
5412{
5413 u8 *kaddr;
5414 struct page *page;
5415 unsigned long i;
5416 size_t offset;
5417 const unsigned int size = pos + len;
5418 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5419 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5420
5421 eb_bitmap_offset(eb, start, pos, &i, &offset);
5422 page = eb->pages[i];
5423 assert_eb_page_uptodate(eb, page);
5424 kaddr = page_address(page);
5425
5426 while (len >= bits_to_set) {
5427 kaddr[offset] |= mask_to_set;
5428 len -= bits_to_set;
5429 bits_to_set = BITS_PER_BYTE;
5430 mask_to_set = ~0;
5431 if (++offset >= PAGE_SIZE && len > 0) {
5432 offset = 0;
5433 page = eb->pages[++i];
5434 assert_eb_page_uptodate(eb, page);
5435 kaddr = page_address(page);
5436 }
5437 }
5438 if (len) {
5439 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5440 kaddr[offset] |= mask_to_set;
5441 }
5442}
5443
5444
5445/*
5446 * Clear an area of a bitmap.
5447 *
5448 * @eb: the extent buffer
5449 * @start: offset of the bitmap item in the extent buffer
5450 * @pos: bit number of the first bit
5451 * @len: number of bits to clear
5452 */
5453void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5454 unsigned long start, unsigned long pos,
5455 unsigned long len)
5456{
5457 u8 *kaddr;
5458 struct page *page;
5459 unsigned long i;
5460 size_t offset;
5461 const unsigned int size = pos + len;
5462 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5463 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5464
5465 eb_bitmap_offset(eb, start, pos, &i, &offset);
5466 page = eb->pages[i];
5467 assert_eb_page_uptodate(eb, page);
5468 kaddr = page_address(page);
5469
5470 while (len >= bits_to_clear) {
5471 kaddr[offset] &= ~mask_to_clear;
5472 len -= bits_to_clear;
5473 bits_to_clear = BITS_PER_BYTE;
5474 mask_to_clear = ~0;
5475 if (++offset >= PAGE_SIZE && len > 0) {
5476 offset = 0;
5477 page = eb->pages[++i];
5478 assert_eb_page_uptodate(eb, page);
5479 kaddr = page_address(page);
5480 }
5481 }
5482 if (len) {
5483 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5484 kaddr[offset] &= ~mask_to_clear;
5485 }
5486}
5487
5488static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5489{
5490 unsigned long distance = (src > dst) ? src - dst : dst - src;
5491 return distance < len;
5492}
5493
5494static void copy_pages(struct page *dst_page, struct page *src_page,
5495 unsigned long dst_off, unsigned long src_off,
5496 unsigned long len)
5497{
5498 char *dst_kaddr = page_address(dst_page);
5499 char *src_kaddr;
5500 int must_memmove = 0;
5501
5502 if (dst_page != src_page) {
5503 src_kaddr = page_address(src_page);
5504 } else {
5505 src_kaddr = dst_kaddr;
5506 if (areas_overlap(src_off, dst_off, len))
5507 must_memmove = 1;
5508 }
5509
5510 if (must_memmove)
5511 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5512 else
5513 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5514}
5515
5516void memcpy_extent_buffer(const struct extent_buffer *dst,
5517 unsigned long dst_offset, unsigned long src_offset,
5518 unsigned long len)
5519{
5520 size_t cur;
5521 size_t dst_off_in_page;
5522 size_t src_off_in_page;
5523 unsigned long dst_i;
5524 unsigned long src_i;
5525
5526 if (check_eb_range(dst, dst_offset, len) ||
5527 check_eb_range(dst, src_offset, len))
5528 return;
5529
5530 while (len > 0) {
5531 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
5532 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
5533
5534 dst_i = get_eb_page_index(dst_offset);
5535 src_i = get_eb_page_index(src_offset);
5536
5537 cur = min(len, (unsigned long)(PAGE_SIZE -
5538 src_off_in_page));
5539 cur = min_t(unsigned long, cur,
5540 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5541
5542 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5543 dst_off_in_page, src_off_in_page, cur);
5544
5545 src_offset += cur;
5546 dst_offset += cur;
5547 len -= cur;
5548 }
5549}
5550
5551void memmove_extent_buffer(const struct extent_buffer *dst,
5552 unsigned long dst_offset, unsigned long src_offset,
5553 unsigned long len)
5554{
5555 size_t cur;
5556 size_t dst_off_in_page;
5557 size_t src_off_in_page;
5558 unsigned long dst_end = dst_offset + len - 1;
5559 unsigned long src_end = src_offset + len - 1;
5560 unsigned long dst_i;
5561 unsigned long src_i;
5562
5563 if (check_eb_range(dst, dst_offset, len) ||
5564 check_eb_range(dst, src_offset, len))
5565 return;
5566 if (dst_offset < src_offset) {
5567 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5568 return;
5569 }
5570 while (len > 0) {
5571 dst_i = get_eb_page_index(dst_end);
5572 src_i = get_eb_page_index(src_end);
5573
5574 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
5575 src_off_in_page = get_eb_offset_in_page(dst, src_end);
5576
5577 cur = min_t(unsigned long, len, src_off_in_page + 1);
5578 cur = min(cur, dst_off_in_page + 1);
5579 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5580 dst_off_in_page - cur + 1,
5581 src_off_in_page - cur + 1, cur);
5582
5583 dst_end -= cur;
5584 src_end -= cur;
5585 len -= cur;
5586 }
5587}
5588
5589#define GANG_LOOKUP_SIZE 16
5590static struct extent_buffer *get_next_extent_buffer(
5591 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
5592{
5593 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
5594 struct extent_buffer *found = NULL;
5595 u64 page_start = page_offset(page);
5596 u64 cur = page_start;
5597
5598 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
5599 lockdep_assert_held(&fs_info->buffer_lock);
5600
5601 while (cur < page_start + PAGE_SIZE) {
5602 int ret;
5603 int i;
5604
5605 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
5606 (void **)gang, cur >> fs_info->sectorsize_bits,
5607 min_t(unsigned int, GANG_LOOKUP_SIZE,
5608 PAGE_SIZE / fs_info->nodesize));
5609 if (ret == 0)
5610 goto out;
5611 for (i = 0; i < ret; i++) {
5612 /* Already beyond page end */
5613 if (gang[i]->start >= page_start + PAGE_SIZE)
5614 goto out;
5615 /* Found one */
5616 if (gang[i]->start >= bytenr) {
5617 found = gang[i];
5618 goto out;
5619 }
5620 }
5621 cur = gang[ret - 1]->start + gang[ret - 1]->len;
5622 }
5623out:
5624 return found;
5625}
5626
5627static int try_release_subpage_extent_buffer(struct page *page)
5628{
5629 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
5630 u64 cur = page_offset(page);
5631 const u64 end = page_offset(page) + PAGE_SIZE;
5632 int ret;
5633
5634 while (cur < end) {
5635 struct extent_buffer *eb = NULL;
5636
5637 /*
5638 * Unlike try_release_extent_buffer() which uses page->private
5639 * to grab buffer, for subpage case we rely on radix tree, thus
5640 * we need to ensure radix tree consistency.
5641 *
5642 * We also want an atomic snapshot of the radix tree, thus go
5643 * with spinlock rather than RCU.
5644 */
5645 spin_lock(&fs_info->buffer_lock);
5646 eb = get_next_extent_buffer(fs_info, page, cur);
5647 if (!eb) {
5648 /* No more eb in the page range after or at cur */
5649 spin_unlock(&fs_info->buffer_lock);
5650 break;
5651 }
5652 cur = eb->start + eb->len;
5653
5654 /*
5655 * The same as try_release_extent_buffer(), to ensure the eb
5656 * won't disappear out from under us.
5657 */
5658 spin_lock(&eb->refs_lock);
5659 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5660 spin_unlock(&eb->refs_lock);
5661 spin_unlock(&fs_info->buffer_lock);
5662 break;
5663 }
5664 spin_unlock(&fs_info->buffer_lock);
5665
5666 /*
5667 * If tree ref isn't set then we know the ref on this eb is a
5668 * real ref, so just return, this eb will likely be freed soon
5669 * anyway.
5670 */
5671 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5672 spin_unlock(&eb->refs_lock);
5673 break;
5674 }
5675
5676 /*
5677 * Here we don't care about the return value, we will always
5678 * check the page private at the end. And
5679 * release_extent_buffer() will release the refs_lock.
5680 */
5681 release_extent_buffer(eb);
5682 }
5683 /*
5684 * Finally to check if we have cleared page private, as if we have
5685 * released all ebs in the page, the page private should be cleared now.
5686 */
5687 spin_lock(&page->mapping->private_lock);
5688 if (!PagePrivate(page))
5689 ret = 1;
5690 else
5691 ret = 0;
5692 spin_unlock(&page->mapping->private_lock);
5693 return ret;
5694
5695}
5696
5697int try_release_extent_buffer(struct page *page)
5698{
5699 struct extent_buffer *eb;
5700
5701 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
5702 return try_release_subpage_extent_buffer(page);
5703
5704 /*
5705 * We need to make sure nobody is changing page->private, as we rely on
5706 * page->private as the pointer to extent buffer.
5707 */
5708 spin_lock(&page->mapping->private_lock);
5709 if (!PagePrivate(page)) {
5710 spin_unlock(&page->mapping->private_lock);
5711 return 1;
5712 }
5713
5714 eb = (struct extent_buffer *)page->private;
5715 BUG_ON(!eb);
5716
5717 /*
5718 * This is a little awful but should be ok, we need to make sure that
5719 * the eb doesn't disappear out from under us while we're looking at
5720 * this page.
5721 */
5722 spin_lock(&eb->refs_lock);
5723 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5724 spin_unlock(&eb->refs_lock);
5725 spin_unlock(&page->mapping->private_lock);
5726 return 0;
5727 }
5728 spin_unlock(&page->mapping->private_lock);
5729
5730 /*
5731 * If tree ref isn't set then we know the ref on this eb is a real ref,
5732 * so just return, this page will likely be freed soon anyway.
5733 */
5734 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5735 spin_unlock(&eb->refs_lock);
5736 return 0;
5737 }
5738
5739 return release_extent_buffer(eb);
5740}
5741
5742/*
5743 * btrfs_readahead_tree_block - attempt to readahead a child block
5744 * @fs_info: the fs_info
5745 * @bytenr: bytenr to read
5746 * @owner_root: objectid of the root that owns this eb
5747 * @gen: generation for the uptodate check, can be 0
5748 * @level: level for the eb
5749 *
5750 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
5751 * normal uptodate check of the eb, without checking the generation. If we have
5752 * to read the block we will not block on anything.
5753 */
5754void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
5755 u64 bytenr, u64 owner_root, u64 gen, int level)
5756{
5757 struct btrfs_tree_parent_check check = {
5758 .has_first_key = 0,
5759 .level = level,
5760 .transid = gen
5761 };
5762 struct extent_buffer *eb;
5763 int ret;
5764
5765 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
5766 if (IS_ERR(eb))
5767 return;
5768
5769 if (btrfs_buffer_uptodate(eb, gen, 1)) {
5770 free_extent_buffer(eb);
5771 return;
5772 }
5773
5774 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
5775 if (ret < 0)
5776 free_extent_buffer_stale(eb);
5777 else
5778 free_extent_buffer(eb);
5779}
5780
5781/*
5782 * btrfs_readahead_node_child - readahead a node's child block
5783 * @node: parent node we're reading from
5784 * @slot: slot in the parent node for the child we want to read
5785 *
5786 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5787 * the slot in the node provided.
5788 */
5789void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5790{
5791 btrfs_readahead_tree_block(node->fs_info,
5792 btrfs_node_blockptr(node, slot),
5793 btrfs_header_owner(node),
5794 btrfs_node_ptr_generation(node, slot),
5795 btrfs_header_level(node) - 1);
5796}
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/sched/mm.h>
10#include <linux/spinlock.h>
11#include <linux/blkdev.h>
12#include <linux/swap.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include <linux/prefetch.h>
16#include <linux/fsverity.h>
17#include "extent_io.h"
18#include "extent-io-tree.h"
19#include "extent_map.h"
20#include "ctree.h"
21#include "btrfs_inode.h"
22#include "bio.h"
23#include "locking.h"
24#include "backref.h"
25#include "disk-io.h"
26#include "subpage.h"
27#include "zoned.h"
28#include "block-group.h"
29#include "compression.h"
30#include "fs.h"
31#include "accessors.h"
32#include "file-item.h"
33#include "file.h"
34#include "dev-replace.h"
35#include "super.h"
36#include "transaction.h"
37
38static struct kmem_cache *extent_buffer_cache;
39
40#ifdef CONFIG_BTRFS_DEBUG
41static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42{
43 struct btrfs_fs_info *fs_info = eb->fs_info;
44 unsigned long flags;
45
46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49}
50
51static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52{
53 struct btrfs_fs_info *fs_info = eb->fs_info;
54 unsigned long flags;
55
56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 list_del(&eb->leak_list);
58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59}
60
61void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62{
63 struct extent_buffer *eb;
64 unsigned long flags;
65
66 /*
67 * If we didn't get into open_ctree our allocated_ebs will not be
68 * initialized, so just skip this.
69 */
70 if (!fs_info->allocated_ebs.next)
71 return;
72
73 WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
78 pr_err(
79 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
82 list_del(&eb->leak_list);
83 WARN_ON_ONCE(1);
84 kmem_cache_free(extent_buffer_cache, eb);
85 }
86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87}
88#else
89#define btrfs_leak_debug_add_eb(eb) do {} while (0)
90#define btrfs_leak_debug_del_eb(eb) do {} while (0)
91#endif
92
93/*
94 * Structure to record info about the bio being assembled, and other info like
95 * how many bytes are there before stripe/ordered extent boundary.
96 */
97struct btrfs_bio_ctrl {
98 struct btrfs_bio *bbio;
99 enum btrfs_compression_type compress_type;
100 u32 len_to_oe_boundary;
101 blk_opf_t opf;
102 btrfs_bio_end_io_t end_io_func;
103 struct writeback_control *wbc;
104};
105
106static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
107{
108 struct btrfs_bio *bbio = bio_ctrl->bbio;
109
110 if (!bbio)
111 return;
112
113 /* Caller should ensure the bio has at least some range added */
114 ASSERT(bbio->bio.bi_iter.bi_size);
115
116 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
117 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
118 btrfs_submit_compressed_read(bbio);
119 else
120 btrfs_submit_bio(bbio, 0);
121
122 /* The bbio is owned by the end_io handler now */
123 bio_ctrl->bbio = NULL;
124}
125
126/*
127 * Submit or fail the current bio in the bio_ctrl structure.
128 */
129static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
130{
131 struct btrfs_bio *bbio = bio_ctrl->bbio;
132
133 if (!bbio)
134 return;
135
136 if (ret) {
137 ASSERT(ret < 0);
138 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
139 /* The bio is owned by the end_io handler now */
140 bio_ctrl->bbio = NULL;
141 } else {
142 submit_one_bio(bio_ctrl);
143 }
144}
145
146int __init extent_buffer_init_cachep(void)
147{
148 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
149 sizeof(struct extent_buffer), 0, 0,
150 NULL);
151 if (!extent_buffer_cache)
152 return -ENOMEM;
153
154 return 0;
155}
156
157void __cold extent_buffer_free_cachep(void)
158{
159 /*
160 * Make sure all delayed rcu free are flushed before we
161 * destroy caches.
162 */
163 rcu_barrier();
164 kmem_cache_destroy(extent_buffer_cache);
165}
166
167void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
168{
169 unsigned long index = start >> PAGE_SHIFT;
170 unsigned long end_index = end >> PAGE_SHIFT;
171 struct page *page;
172
173 while (index <= end_index) {
174 page = find_get_page(inode->i_mapping, index);
175 BUG_ON(!page); /* Pages should be in the extent_io_tree */
176 clear_page_dirty_for_io(page);
177 put_page(page);
178 index++;
179 }
180}
181
182static void process_one_page(struct btrfs_fs_info *fs_info,
183 struct page *page, struct page *locked_page,
184 unsigned long page_ops, u64 start, u64 end)
185{
186 struct folio *folio = page_folio(page);
187 u32 len;
188
189 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
190 len = end + 1 - start;
191
192 if (page_ops & PAGE_SET_ORDERED)
193 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
194 if (page_ops & PAGE_START_WRITEBACK) {
195 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
196 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
197 }
198 if (page_ops & PAGE_END_WRITEBACK)
199 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
200
201 if (page != locked_page && (page_ops & PAGE_UNLOCK))
202 btrfs_folio_end_writer_lock(fs_info, folio, start, len);
203}
204
205static void __process_pages_contig(struct address_space *mapping,
206 struct page *locked_page, u64 start, u64 end,
207 unsigned long page_ops)
208{
209 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
210 pgoff_t start_index = start >> PAGE_SHIFT;
211 pgoff_t end_index = end >> PAGE_SHIFT;
212 pgoff_t index = start_index;
213 struct folio_batch fbatch;
214 int i;
215
216 folio_batch_init(&fbatch);
217 while (index <= end_index) {
218 int found_folios;
219
220 found_folios = filemap_get_folios_contig(mapping, &index,
221 end_index, &fbatch);
222 for (i = 0; i < found_folios; i++) {
223 struct folio *folio = fbatch.folios[i];
224
225 process_one_page(fs_info, &folio->page, locked_page,
226 page_ops, start, end);
227 }
228 folio_batch_release(&fbatch);
229 cond_resched();
230 }
231}
232
233static noinline void __unlock_for_delalloc(struct inode *inode,
234 struct page *locked_page,
235 u64 start, u64 end)
236{
237 unsigned long index = start >> PAGE_SHIFT;
238 unsigned long end_index = end >> PAGE_SHIFT;
239
240 ASSERT(locked_page);
241 if (index == locked_page->index && end_index == index)
242 return;
243
244 __process_pages_contig(inode->i_mapping, locked_page, start, end,
245 PAGE_UNLOCK);
246}
247
248static noinline int lock_delalloc_pages(struct inode *inode,
249 struct page *locked_page,
250 u64 start,
251 u64 end)
252{
253 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
254 struct address_space *mapping = inode->i_mapping;
255 pgoff_t start_index = start >> PAGE_SHIFT;
256 pgoff_t end_index = end >> PAGE_SHIFT;
257 pgoff_t index = start_index;
258 u64 processed_end = start;
259 struct folio_batch fbatch;
260
261 if (index == locked_page->index && index == end_index)
262 return 0;
263
264 folio_batch_init(&fbatch);
265 while (index <= end_index) {
266 unsigned int found_folios, i;
267
268 found_folios = filemap_get_folios_contig(mapping, &index,
269 end_index, &fbatch);
270 if (found_folios == 0)
271 goto out;
272
273 for (i = 0; i < found_folios; i++) {
274 struct folio *folio = fbatch.folios[i];
275 struct page *page = folio_page(folio, 0);
276 u32 len = end + 1 - start;
277
278 if (page == locked_page)
279 continue;
280
281 if (btrfs_folio_start_writer_lock(fs_info, folio, start,
282 len))
283 goto out;
284
285 if (!PageDirty(page) || page->mapping != mapping) {
286 btrfs_folio_end_writer_lock(fs_info, folio, start,
287 len);
288 goto out;
289 }
290
291 processed_end = page_offset(page) + PAGE_SIZE - 1;
292 }
293 folio_batch_release(&fbatch);
294 cond_resched();
295 }
296
297 return 0;
298out:
299 folio_batch_release(&fbatch);
300 if (processed_end > start)
301 __unlock_for_delalloc(inode, locked_page, start, processed_end);
302 return -EAGAIN;
303}
304
305/*
306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
307 * more than @max_bytes.
308 *
309 * @start: The original start bytenr to search.
310 * Will store the extent range start bytenr.
311 * @end: The original end bytenr of the search range
312 * Will store the extent range end bytenr.
313 *
314 * Return true if we find a delalloc range which starts inside the original
315 * range, and @start/@end will store the delalloc range start/end.
316 *
317 * Return false if we can't find any delalloc range which starts inside the
318 * original range, and @start/@end will be the non-delalloc range start/end.
319 */
320EXPORT_FOR_TESTS
321noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
322 struct page *locked_page, u64 *start,
323 u64 *end)
324{
325 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
327 const u64 orig_start = *start;
328 const u64 orig_end = *end;
329 /* The sanity tests may not set a valid fs_info. */
330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
331 u64 delalloc_start;
332 u64 delalloc_end;
333 bool found;
334 struct extent_state *cached_state = NULL;
335 int ret;
336 int loops = 0;
337
338 /* Caller should pass a valid @end to indicate the search range end */
339 ASSERT(orig_end > orig_start);
340
341 /* The range should at least cover part of the page */
342 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
343 orig_end <= page_offset(locked_page)));
344again:
345 /* step one, find a bunch of delalloc bytes starting at start */
346 delalloc_start = *start;
347 delalloc_end = 0;
348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
349 max_bytes, &cached_state);
350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
351 *start = delalloc_start;
352
353 /* @delalloc_end can be -1, never go beyond @orig_end */
354 *end = min(delalloc_end, orig_end);
355 free_extent_state(cached_state);
356 return false;
357 }
358
359 /*
360 * start comes from the offset of locked_page. We have to lock
361 * pages in order, so we can't process delalloc bytes before
362 * locked_page
363 */
364 if (delalloc_start < *start)
365 delalloc_start = *start;
366
367 /*
368 * make sure to limit the number of pages we try to lock down
369 */
370 if (delalloc_end + 1 - delalloc_start > max_bytes)
371 delalloc_end = delalloc_start + max_bytes - 1;
372
373 /* step two, lock all the pages after the page that has start */
374 ret = lock_delalloc_pages(inode, locked_page,
375 delalloc_start, delalloc_end);
376 ASSERT(!ret || ret == -EAGAIN);
377 if (ret == -EAGAIN) {
378 /* some of the pages are gone, lets avoid looping by
379 * shortening the size of the delalloc range we're searching
380 */
381 free_extent_state(cached_state);
382 cached_state = NULL;
383 if (!loops) {
384 max_bytes = PAGE_SIZE;
385 loops = 1;
386 goto again;
387 } else {
388 found = false;
389 goto out_failed;
390 }
391 }
392
393 /* step three, lock the state bits for the whole range */
394 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
395
396 /* then test to make sure it is all still delalloc */
397 ret = test_range_bit(tree, delalloc_start, delalloc_end,
398 EXTENT_DELALLOC, cached_state);
399 if (!ret) {
400 unlock_extent(tree, delalloc_start, delalloc_end,
401 &cached_state);
402 __unlock_for_delalloc(inode, locked_page,
403 delalloc_start, delalloc_end);
404 cond_resched();
405 goto again;
406 }
407 free_extent_state(cached_state);
408 *start = delalloc_start;
409 *end = delalloc_end;
410out_failed:
411 return found;
412}
413
414void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
415 struct page *locked_page,
416 u32 clear_bits, unsigned long page_ops)
417{
418 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
419
420 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
421 start, end, page_ops);
422}
423
424static bool btrfs_verify_page(struct page *page, u64 start)
425{
426 if (!fsverity_active(page->mapping->host) ||
427 PageUptodate(page) ||
428 start >= i_size_read(page->mapping->host))
429 return true;
430 return fsverity_verify_page(page);
431}
432
433static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
434{
435 struct btrfs_fs_info *fs_info = page_to_fs_info(page);
436 struct folio *folio = page_folio(page);
437
438 ASSERT(page_offset(page) <= start &&
439 start + len <= page_offset(page) + PAGE_SIZE);
440
441 if (uptodate && btrfs_verify_page(page, start))
442 btrfs_folio_set_uptodate(fs_info, folio, start, len);
443 else
444 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
445
446 if (!btrfs_is_subpage(fs_info, page->mapping))
447 unlock_page(page);
448 else
449 btrfs_subpage_end_reader(fs_info, folio, start, len);
450}
451
452/*
453 * After a write IO is done, we need to:
454 *
455 * - clear the uptodate bits on error
456 * - clear the writeback bits in the extent tree for the range
457 * - filio_end_writeback() if there is no more pending io for the folio
458 *
459 * Scheduling is not allowed, so the extent state tree is expected
460 * to have one and only one object corresponding to this IO.
461 */
462static void end_bbio_data_write(struct btrfs_bio *bbio)
463{
464 struct btrfs_fs_info *fs_info = bbio->fs_info;
465 struct bio *bio = &bbio->bio;
466 int error = blk_status_to_errno(bio->bi_status);
467 struct folio_iter fi;
468 const u32 sectorsize = fs_info->sectorsize;
469
470 ASSERT(!bio_flagged(bio, BIO_CLONED));
471 bio_for_each_folio_all(fi, bio) {
472 struct folio *folio = fi.folio;
473 u64 start = folio_pos(folio) + fi.offset;
474 u32 len = fi.length;
475
476 /* Only order 0 (single page) folios are allowed for data. */
477 ASSERT(folio_order(folio) == 0);
478
479 /* Our read/write should always be sector aligned. */
480 if (!IS_ALIGNED(fi.offset, sectorsize))
481 btrfs_err(fs_info,
482 "partial page write in btrfs with offset %zu and length %zu",
483 fi.offset, fi.length);
484 else if (!IS_ALIGNED(fi.length, sectorsize))
485 btrfs_info(fs_info,
486 "incomplete page write with offset %zu and length %zu",
487 fi.offset, fi.length);
488
489 btrfs_finish_ordered_extent(bbio->ordered,
490 folio_page(folio, 0), start, len, !error);
491 if (error)
492 mapping_set_error(folio->mapping, error);
493 btrfs_folio_clear_writeback(fs_info, folio, start, len);
494 }
495
496 bio_put(bio);
497}
498
499/*
500 * Record previously processed extent range
501 *
502 * For endio_readpage_release_extent() to handle a full extent range, reducing
503 * the extent io operations.
504 */
505struct processed_extent {
506 struct btrfs_inode *inode;
507 /* Start of the range in @inode */
508 u64 start;
509 /* End of the range in @inode */
510 u64 end;
511 bool uptodate;
512};
513
514/*
515 * Try to release processed extent range
516 *
517 * May not release the extent range right now if the current range is
518 * contiguous to processed extent.
519 *
520 * Will release processed extent when any of @inode, @uptodate, the range is
521 * no longer contiguous to the processed range.
522 *
523 * Passing @inode == NULL will force processed extent to be released.
524 */
525static void endio_readpage_release_extent(struct processed_extent *processed,
526 struct btrfs_inode *inode, u64 start, u64 end,
527 bool uptodate)
528{
529 struct extent_state *cached = NULL;
530 struct extent_io_tree *tree;
531
532 /* The first extent, initialize @processed */
533 if (!processed->inode)
534 goto update;
535
536 /*
537 * Contiguous to processed extent, just uptodate the end.
538 *
539 * Several things to notice:
540 *
541 * - bio can be merged as long as on-disk bytenr is contiguous
542 * This means we can have page belonging to other inodes, thus need to
543 * check if the inode still matches.
544 * - bvec can contain range beyond current page for multi-page bvec
545 * Thus we need to do processed->end + 1 >= start check
546 */
547 if (processed->inode == inode && processed->uptodate == uptodate &&
548 processed->end + 1 >= start && end >= processed->end) {
549 processed->end = end;
550 return;
551 }
552
553 tree = &processed->inode->io_tree;
554 /*
555 * Now we don't have range contiguous to the processed range, release
556 * the processed range now.
557 */
558 unlock_extent(tree, processed->start, processed->end, &cached);
559
560update:
561 /* Update processed to current range */
562 processed->inode = inode;
563 processed->start = start;
564 processed->end = end;
565 processed->uptodate = uptodate;
566}
567
568static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
569{
570 struct folio *folio = page_folio(page);
571
572 ASSERT(folio_test_locked(folio));
573 if (!btrfs_is_subpage(fs_info, folio->mapping))
574 return;
575
576 ASSERT(folio_test_private(folio));
577 btrfs_subpage_start_reader(fs_info, folio, page_offset(page), PAGE_SIZE);
578}
579
580/*
581 * After a data read IO is done, we need to:
582 *
583 * - clear the uptodate bits on error
584 * - set the uptodate bits if things worked
585 * - set the folio up to date if all extents in the tree are uptodate
586 * - clear the lock bit in the extent tree
587 * - unlock the folio if there are no other extents locked for it
588 *
589 * Scheduling is not allowed, so the extent state tree is expected
590 * to have one and only one object corresponding to this IO.
591 */
592static void end_bbio_data_read(struct btrfs_bio *bbio)
593{
594 struct btrfs_fs_info *fs_info = bbio->fs_info;
595 struct bio *bio = &bbio->bio;
596 struct processed_extent processed = { 0 };
597 struct folio_iter fi;
598 const u32 sectorsize = fs_info->sectorsize;
599
600 ASSERT(!bio_flagged(bio, BIO_CLONED));
601 bio_for_each_folio_all(fi, &bbio->bio) {
602 bool uptodate = !bio->bi_status;
603 struct folio *folio = fi.folio;
604 struct inode *inode = folio->mapping->host;
605 u64 start;
606 u64 end;
607 u32 len;
608
609 /* For now only order 0 folios are supported for data. */
610 ASSERT(folio_order(folio) == 0);
611 btrfs_debug(fs_info,
612 "%s: bi_sector=%llu, err=%d, mirror=%u",
613 __func__, bio->bi_iter.bi_sector, bio->bi_status,
614 bbio->mirror_num);
615
616 /*
617 * We always issue full-sector reads, but if some block in a
618 * folio fails to read, blk_update_request() will advance
619 * bv_offset and adjust bv_len to compensate. Print a warning
620 * for unaligned offsets, and an error if they don't add up to
621 * a full sector.
622 */
623 if (!IS_ALIGNED(fi.offset, sectorsize))
624 btrfs_err(fs_info,
625 "partial page read in btrfs with offset %zu and length %zu",
626 fi.offset, fi.length);
627 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
628 btrfs_info(fs_info,
629 "incomplete page read with offset %zu and length %zu",
630 fi.offset, fi.length);
631
632 start = folio_pos(folio) + fi.offset;
633 end = start + fi.length - 1;
634 len = fi.length;
635
636 if (likely(uptodate)) {
637 loff_t i_size = i_size_read(inode);
638 pgoff_t end_index = i_size >> folio_shift(folio);
639
640 /*
641 * Zero out the remaining part if this range straddles
642 * i_size.
643 *
644 * Here we should only zero the range inside the folio,
645 * not touch anything else.
646 *
647 * NOTE: i_size is exclusive while end is inclusive.
648 */
649 if (folio_index(folio) == end_index && i_size <= end) {
650 u32 zero_start = max(offset_in_folio(folio, i_size),
651 offset_in_folio(folio, start));
652 u32 zero_len = offset_in_folio(folio, end) + 1 -
653 zero_start;
654
655 folio_zero_range(folio, zero_start, zero_len);
656 }
657 }
658
659 /* Update page status and unlock. */
660 end_page_read(folio_page(folio, 0), uptodate, start, len);
661 endio_readpage_release_extent(&processed, BTRFS_I(inode),
662 start, end, uptodate);
663 }
664 /* Release the last extent */
665 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
666 bio_put(bio);
667}
668
669/*
670 * Populate every free slot in a provided array with pages.
671 *
672 * @nr_pages: number of pages to allocate
673 * @page_array: the array to fill with pages; any existing non-null entries in
674 * the array will be skipped
675 * @extra_gfp: the extra GFP flags for the allocation.
676 *
677 * Return: 0 if all pages were able to be allocated;
678 * -ENOMEM otherwise, the partially allocated pages would be freed and
679 * the array slots zeroed
680 */
681int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
682 gfp_t extra_gfp)
683{
684 const gfp_t gfp = GFP_NOFS | extra_gfp;
685 unsigned int allocated;
686
687 for (allocated = 0; allocated < nr_pages;) {
688 unsigned int last = allocated;
689
690 allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array);
691 if (unlikely(allocated == last)) {
692 /* No progress, fail and do cleanup. */
693 for (int i = 0; i < allocated; i++) {
694 __free_page(page_array[i]);
695 page_array[i] = NULL;
696 }
697 return -ENOMEM;
698 }
699 }
700 return 0;
701}
702
703/*
704 * Populate needed folios for the extent buffer.
705 *
706 * For now, the folios populated are always in order 0 (aka, single page).
707 */
708static int alloc_eb_folio_array(struct extent_buffer *eb, gfp_t extra_gfp)
709{
710 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
711 int num_pages = num_extent_pages(eb);
712 int ret;
713
714 ret = btrfs_alloc_page_array(num_pages, page_array, extra_gfp);
715 if (ret < 0)
716 return ret;
717
718 for (int i = 0; i < num_pages; i++)
719 eb->folios[i] = page_folio(page_array[i]);
720 eb->folio_size = PAGE_SIZE;
721 eb->folio_shift = PAGE_SHIFT;
722 return 0;
723}
724
725static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
726 struct page *page, u64 disk_bytenr,
727 unsigned int pg_offset)
728{
729 struct bio *bio = &bio_ctrl->bbio->bio;
730 struct bio_vec *bvec = bio_last_bvec_all(bio);
731 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
732
733 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
734 /*
735 * For compression, all IO should have its logical bytenr set
736 * to the starting bytenr of the compressed extent.
737 */
738 return bio->bi_iter.bi_sector == sector;
739 }
740
741 /*
742 * The contig check requires the following conditions to be met:
743 *
744 * 1) The pages are belonging to the same inode
745 * This is implied by the call chain.
746 *
747 * 2) The range has adjacent logical bytenr
748 *
749 * 3) The range has adjacent file offset
750 * This is required for the usage of btrfs_bio->file_offset.
751 */
752 return bio_end_sector(bio) == sector &&
753 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
754 page_offset(page) + pg_offset;
755}
756
757static void alloc_new_bio(struct btrfs_inode *inode,
758 struct btrfs_bio_ctrl *bio_ctrl,
759 u64 disk_bytenr, u64 file_offset)
760{
761 struct btrfs_fs_info *fs_info = inode->root->fs_info;
762 struct btrfs_bio *bbio;
763
764 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
765 bio_ctrl->end_io_func, NULL);
766 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
767 bbio->inode = inode;
768 bbio->file_offset = file_offset;
769 bio_ctrl->bbio = bbio;
770 bio_ctrl->len_to_oe_boundary = U32_MAX;
771
772 /* Limit data write bios to the ordered boundary. */
773 if (bio_ctrl->wbc) {
774 struct btrfs_ordered_extent *ordered;
775
776 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
777 if (ordered) {
778 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
779 ordered->file_offset +
780 ordered->disk_num_bytes - file_offset);
781 bbio->ordered = ordered;
782 }
783
784 /*
785 * Pick the last added device to support cgroup writeback. For
786 * multi-device file systems this means blk-cgroup policies have
787 * to always be set on the last added/replaced device.
788 * This is a bit odd but has been like that for a long time.
789 */
790 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
791 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
792 }
793}
794
795/*
796 * @disk_bytenr: logical bytenr where the write will be
797 * @page: page to add to the bio
798 * @size: portion of page that we want to write to
799 * @pg_offset: offset of the new bio or to check whether we are adding
800 * a contiguous page to the previous one
801 *
802 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
803 * new one in @bio_ctrl->bbio.
804 * The mirror number for this IO should already be initizlied in
805 * @bio_ctrl->mirror_num.
806 */
807static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
808 u64 disk_bytenr, struct page *page,
809 size_t size, unsigned long pg_offset)
810{
811 struct btrfs_inode *inode = page_to_inode(page);
812
813 ASSERT(pg_offset + size <= PAGE_SIZE);
814 ASSERT(bio_ctrl->end_io_func);
815
816 if (bio_ctrl->bbio &&
817 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
818 submit_one_bio(bio_ctrl);
819
820 do {
821 u32 len = size;
822
823 /* Allocate new bio if needed */
824 if (!bio_ctrl->bbio) {
825 alloc_new_bio(inode, bio_ctrl, disk_bytenr,
826 page_offset(page) + pg_offset);
827 }
828
829 /* Cap to the current ordered extent boundary if there is one. */
830 if (len > bio_ctrl->len_to_oe_boundary) {
831 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
832 ASSERT(is_data_inode(&inode->vfs_inode));
833 len = bio_ctrl->len_to_oe_boundary;
834 }
835
836 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
837 /* bio full: move on to a new one */
838 submit_one_bio(bio_ctrl);
839 continue;
840 }
841
842 if (bio_ctrl->wbc)
843 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
844
845 size -= len;
846 pg_offset += len;
847 disk_bytenr += len;
848
849 /*
850 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
851 * sector aligned. alloc_new_bio() then sets it to the end of
852 * our ordered extent for writes into zoned devices.
853 *
854 * When len_to_oe_boundary is tracking an ordered extent, we
855 * trust the ordered extent code to align things properly, and
856 * the check above to cap our write to the ordered extent
857 * boundary is correct.
858 *
859 * When len_to_oe_boundary is U32_MAX, the cap above would
860 * result in a 4095 byte IO for the last page right before
861 * we hit the bio limit of UINT_MAX. bio_add_page() has all
862 * the checks required to make sure we don't overflow the bio,
863 * and we should just ignore len_to_oe_boundary completely
864 * unless we're using it to track an ordered extent.
865 *
866 * It's pretty hard to make a bio sized U32_MAX, but it can
867 * happen when the page cache is able to feed us contiguous
868 * pages for large extents.
869 */
870 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
871 bio_ctrl->len_to_oe_boundary -= len;
872
873 /* Ordered extent boundary: move on to a new bio. */
874 if (bio_ctrl->len_to_oe_boundary == 0)
875 submit_one_bio(bio_ctrl);
876 } while (size);
877}
878
879static int attach_extent_buffer_folio(struct extent_buffer *eb,
880 struct folio *folio,
881 struct btrfs_subpage *prealloc)
882{
883 struct btrfs_fs_info *fs_info = eb->fs_info;
884 int ret = 0;
885
886 /*
887 * If the page is mapped to btree inode, we should hold the private
888 * lock to prevent race.
889 * For cloned or dummy extent buffers, their pages are not mapped and
890 * will not race with any other ebs.
891 */
892 if (folio->mapping)
893 lockdep_assert_held(&folio->mapping->i_private_lock);
894
895 if (fs_info->nodesize >= PAGE_SIZE) {
896 if (!folio_test_private(folio))
897 folio_attach_private(folio, eb);
898 else
899 WARN_ON(folio_get_private(folio) != eb);
900 return 0;
901 }
902
903 /* Already mapped, just free prealloc */
904 if (folio_test_private(folio)) {
905 btrfs_free_subpage(prealloc);
906 return 0;
907 }
908
909 if (prealloc)
910 /* Has preallocated memory for subpage */
911 folio_attach_private(folio, prealloc);
912 else
913 /* Do new allocation to attach subpage */
914 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
915 return ret;
916}
917
918int set_page_extent_mapped(struct page *page)
919{
920 return set_folio_extent_mapped(page_folio(page));
921}
922
923int set_folio_extent_mapped(struct folio *folio)
924{
925 struct btrfs_fs_info *fs_info;
926
927 ASSERT(folio->mapping);
928
929 if (folio_test_private(folio))
930 return 0;
931
932 fs_info = folio_to_fs_info(folio);
933
934 if (btrfs_is_subpage(fs_info, folio->mapping))
935 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
936
937 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
938 return 0;
939}
940
941void clear_page_extent_mapped(struct page *page)
942{
943 struct folio *folio = page_folio(page);
944 struct btrfs_fs_info *fs_info;
945
946 ASSERT(page->mapping);
947
948 if (!folio_test_private(folio))
949 return;
950
951 fs_info = page_to_fs_info(page);
952 if (btrfs_is_subpage(fs_info, page->mapping))
953 return btrfs_detach_subpage(fs_info, folio);
954
955 folio_detach_private(folio);
956}
957
958static struct extent_map *__get_extent_map(struct inode *inode, struct page *page,
959 u64 start, u64 len, struct extent_map **em_cached)
960{
961 struct extent_map *em;
962
963 ASSERT(em_cached);
964
965 if (*em_cached) {
966 em = *em_cached;
967 if (extent_map_in_tree(em) && start >= em->start &&
968 start < extent_map_end(em)) {
969 refcount_inc(&em->refs);
970 return em;
971 }
972
973 free_extent_map(em);
974 *em_cached = NULL;
975 }
976
977 em = btrfs_get_extent(BTRFS_I(inode), page, start, len);
978 if (!IS_ERR(em)) {
979 BUG_ON(*em_cached);
980 refcount_inc(&em->refs);
981 *em_cached = em;
982 }
983 return em;
984}
985/*
986 * basic readpage implementation. Locked extent state structs are inserted
987 * into the tree that are removed when the IO is done (by the end_io
988 * handlers)
989 * XXX JDM: This needs looking at to ensure proper page locking
990 * return 0 on success, otherwise return error
991 */
992static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
993 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
994{
995 struct inode *inode = page->mapping->host;
996 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
997 u64 start = page_offset(page);
998 const u64 end = start + PAGE_SIZE - 1;
999 u64 cur = start;
1000 u64 extent_offset;
1001 u64 last_byte = i_size_read(inode);
1002 u64 block_start;
1003 struct extent_map *em;
1004 int ret = 0;
1005 size_t pg_offset = 0;
1006 size_t iosize;
1007 size_t blocksize = fs_info->sectorsize;
1008 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1009
1010 ret = set_page_extent_mapped(page);
1011 if (ret < 0) {
1012 unlock_extent(tree, start, end, NULL);
1013 unlock_page(page);
1014 return ret;
1015 }
1016
1017 if (page->index == last_byte >> PAGE_SHIFT) {
1018 size_t zero_offset = offset_in_page(last_byte);
1019
1020 if (zero_offset) {
1021 iosize = PAGE_SIZE - zero_offset;
1022 memzero_page(page, zero_offset, iosize);
1023 }
1024 }
1025 bio_ctrl->end_io_func = end_bbio_data_read;
1026 begin_page_read(fs_info, page);
1027 while (cur <= end) {
1028 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1029 bool force_bio_submit = false;
1030 u64 disk_bytenr;
1031
1032 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1033 if (cur >= last_byte) {
1034 iosize = PAGE_SIZE - pg_offset;
1035 memzero_page(page, pg_offset, iosize);
1036 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1037 end_page_read(page, true, cur, iosize);
1038 break;
1039 }
1040 em = __get_extent_map(inode, page, cur, end - cur + 1, em_cached);
1041 if (IS_ERR(em)) {
1042 unlock_extent(tree, cur, end, NULL);
1043 end_page_read(page, false, cur, end + 1 - cur);
1044 return PTR_ERR(em);
1045 }
1046 extent_offset = cur - em->start;
1047 BUG_ON(extent_map_end(em) <= cur);
1048 BUG_ON(end < cur);
1049
1050 compress_type = extent_map_compression(em);
1051
1052 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1053 iosize = ALIGN(iosize, blocksize);
1054 if (compress_type != BTRFS_COMPRESS_NONE)
1055 disk_bytenr = em->block_start;
1056 else
1057 disk_bytenr = em->block_start + extent_offset;
1058 block_start = em->block_start;
1059 if (em->flags & EXTENT_FLAG_PREALLOC)
1060 block_start = EXTENT_MAP_HOLE;
1061
1062 /*
1063 * If we have a file range that points to a compressed extent
1064 * and it's followed by a consecutive file range that points
1065 * to the same compressed extent (possibly with a different
1066 * offset and/or length, so it either points to the whole extent
1067 * or only part of it), we must make sure we do not submit a
1068 * single bio to populate the pages for the 2 ranges because
1069 * this makes the compressed extent read zero out the pages
1070 * belonging to the 2nd range. Imagine the following scenario:
1071 *
1072 * File layout
1073 * [0 - 8K] [8K - 24K]
1074 * | |
1075 * | |
1076 * points to extent X, points to extent X,
1077 * offset 4K, length of 8K offset 0, length 16K
1078 *
1079 * [extent X, compressed length = 4K uncompressed length = 16K]
1080 *
1081 * If the bio to read the compressed extent covers both ranges,
1082 * it will decompress extent X into the pages belonging to the
1083 * first range and then it will stop, zeroing out the remaining
1084 * pages that belong to the other range that points to extent X.
1085 * So here we make sure we submit 2 bios, one for the first
1086 * range and another one for the third range. Both will target
1087 * the same physical extent from disk, but we can't currently
1088 * make the compressed bio endio callback populate the pages
1089 * for both ranges because each compressed bio is tightly
1090 * coupled with a single extent map, and each range can have
1091 * an extent map with a different offset value relative to the
1092 * uncompressed data of our extent and different lengths. This
1093 * is a corner case so we prioritize correctness over
1094 * non-optimal behavior (submitting 2 bios for the same extent).
1095 */
1096 if (compress_type != BTRFS_COMPRESS_NONE &&
1097 prev_em_start && *prev_em_start != (u64)-1 &&
1098 *prev_em_start != em->start)
1099 force_bio_submit = true;
1100
1101 if (prev_em_start)
1102 *prev_em_start = em->start;
1103
1104 free_extent_map(em);
1105 em = NULL;
1106
1107 /* we've found a hole, just zero and go on */
1108 if (block_start == EXTENT_MAP_HOLE) {
1109 memzero_page(page, pg_offset, iosize);
1110
1111 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1112 end_page_read(page, true, cur, iosize);
1113 cur = cur + iosize;
1114 pg_offset += iosize;
1115 continue;
1116 }
1117 /* the get_extent function already copied into the page */
1118 if (block_start == EXTENT_MAP_INLINE) {
1119 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1120 end_page_read(page, true, cur, iosize);
1121 cur = cur + iosize;
1122 pg_offset += iosize;
1123 continue;
1124 }
1125
1126 if (bio_ctrl->compress_type != compress_type) {
1127 submit_one_bio(bio_ctrl);
1128 bio_ctrl->compress_type = compress_type;
1129 }
1130
1131 if (force_bio_submit)
1132 submit_one_bio(bio_ctrl);
1133 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1134 pg_offset);
1135 cur = cur + iosize;
1136 pg_offset += iosize;
1137 }
1138
1139 return 0;
1140}
1141
1142int btrfs_read_folio(struct file *file, struct folio *folio)
1143{
1144 struct page *page = &folio->page;
1145 struct btrfs_inode *inode = page_to_inode(page);
1146 u64 start = page_offset(page);
1147 u64 end = start + PAGE_SIZE - 1;
1148 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1149 struct extent_map *em_cached = NULL;
1150 int ret;
1151
1152 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1153
1154 ret = btrfs_do_readpage(page, &em_cached, &bio_ctrl, NULL);
1155 free_extent_map(em_cached);
1156
1157 /*
1158 * If btrfs_do_readpage() failed we will want to submit the assembled
1159 * bio to do the cleanup.
1160 */
1161 submit_one_bio(&bio_ctrl);
1162 return ret;
1163}
1164
1165static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1166 u64 start, u64 end,
1167 struct extent_map **em_cached,
1168 struct btrfs_bio_ctrl *bio_ctrl,
1169 u64 *prev_em_start)
1170{
1171 struct btrfs_inode *inode = page_to_inode(pages[0]);
1172 int index;
1173
1174 ASSERT(em_cached);
1175
1176 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1177
1178 for (index = 0; index < nr_pages; index++) {
1179 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1180 prev_em_start);
1181 put_page(pages[index]);
1182 }
1183}
1184
1185/*
1186 * helper for __extent_writepage, doing all of the delayed allocation setup.
1187 *
1188 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1189 * to write the page (copy into inline extent). In this case the IO has
1190 * been started and the page is already unlocked.
1191 *
1192 * This returns 0 if all went well (page still locked)
1193 * This returns < 0 if there were errors (page still locked)
1194 */
1195static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1196 struct page *page, struct writeback_control *wbc)
1197{
1198 const u64 page_start = page_offset(page);
1199 const u64 page_end = page_start + PAGE_SIZE - 1;
1200 u64 delalloc_start = page_start;
1201 u64 delalloc_end = page_end;
1202 u64 delalloc_to_write = 0;
1203 int ret = 0;
1204
1205 while (delalloc_start < page_end) {
1206 delalloc_end = page_end;
1207 if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1208 &delalloc_start, &delalloc_end)) {
1209 delalloc_start = delalloc_end + 1;
1210 continue;
1211 }
1212
1213 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1214 delalloc_end, wbc);
1215 if (ret < 0)
1216 return ret;
1217
1218 delalloc_start = delalloc_end + 1;
1219 }
1220
1221 /*
1222 * delalloc_end is already one less than the total length, so
1223 * we don't subtract one from PAGE_SIZE
1224 */
1225 delalloc_to_write +=
1226 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1227
1228 /*
1229 * If btrfs_run_dealloc_range() already started I/O and unlocked
1230 * the pages, we just need to account for them here.
1231 */
1232 if (ret == 1) {
1233 wbc->nr_to_write -= delalloc_to_write;
1234 return 1;
1235 }
1236
1237 if (wbc->nr_to_write < delalloc_to_write) {
1238 int thresh = 8192;
1239
1240 if (delalloc_to_write < thresh * 2)
1241 thresh = delalloc_to_write;
1242 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1243 thresh);
1244 }
1245
1246 return 0;
1247}
1248
1249/*
1250 * Find the first byte we need to write.
1251 *
1252 * For subpage, one page can contain several sectors, and
1253 * __extent_writepage_io() will just grab all extent maps in the page
1254 * range and try to submit all non-inline/non-compressed extents.
1255 *
1256 * This is a big problem for subpage, we shouldn't re-submit already written
1257 * data at all.
1258 * This function will lookup subpage dirty bit to find which range we really
1259 * need to submit.
1260 *
1261 * Return the next dirty range in [@start, @end).
1262 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1263 */
1264static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1265 struct page *page, u64 *start, u64 *end)
1266{
1267 struct folio *folio = page_folio(page);
1268 struct btrfs_subpage *subpage = folio_get_private(folio);
1269 struct btrfs_subpage_info *spi = fs_info->subpage_info;
1270 u64 orig_start = *start;
1271 /* Declare as unsigned long so we can use bitmap ops */
1272 unsigned long flags;
1273 int range_start_bit;
1274 int range_end_bit;
1275
1276 /*
1277 * For regular sector size == page size case, since one page only
1278 * contains one sector, we return the page offset directly.
1279 */
1280 if (!btrfs_is_subpage(fs_info, page->mapping)) {
1281 *start = page_offset(page);
1282 *end = page_offset(page) + PAGE_SIZE;
1283 return;
1284 }
1285
1286 range_start_bit = spi->dirty_offset +
1287 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1288
1289 /* We should have the page locked, but just in case */
1290 spin_lock_irqsave(&subpage->lock, flags);
1291 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1292 spi->dirty_offset + spi->bitmap_nr_bits);
1293 spin_unlock_irqrestore(&subpage->lock, flags);
1294
1295 range_start_bit -= spi->dirty_offset;
1296 range_end_bit -= spi->dirty_offset;
1297
1298 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1299 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1300}
1301
1302/*
1303 * helper for __extent_writepage. This calls the writepage start hooks,
1304 * and does the loop to map the page into extents and bios.
1305 *
1306 * We return 1 if the IO is started and the page is unlocked,
1307 * 0 if all went well (page still locked)
1308 * < 0 if there were errors (page still locked)
1309 */
1310static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1311 struct page *page,
1312 struct btrfs_bio_ctrl *bio_ctrl,
1313 loff_t i_size,
1314 int *nr_ret)
1315{
1316 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1317 u64 cur = page_offset(page);
1318 u64 end = cur + PAGE_SIZE - 1;
1319 u64 extent_offset;
1320 u64 block_start;
1321 struct extent_map *em;
1322 int ret = 0;
1323 int nr = 0;
1324
1325 ret = btrfs_writepage_cow_fixup(page);
1326 if (ret) {
1327 /* Fixup worker will requeue */
1328 redirty_page_for_writepage(bio_ctrl->wbc, page);
1329 unlock_page(page);
1330 return 1;
1331 }
1332
1333 bio_ctrl->end_io_func = end_bbio_data_write;
1334 while (cur <= end) {
1335 u32 len = end - cur + 1;
1336 u64 disk_bytenr;
1337 u64 em_end;
1338 u64 dirty_range_start = cur;
1339 u64 dirty_range_end;
1340 u32 iosize;
1341
1342 if (cur >= i_size) {
1343 btrfs_mark_ordered_io_finished(inode, page, cur, len,
1344 true);
1345 /*
1346 * This range is beyond i_size, thus we don't need to
1347 * bother writing back.
1348 * But we still need to clear the dirty subpage bit, or
1349 * the next time the page gets dirtied, we will try to
1350 * writeback the sectors with subpage dirty bits,
1351 * causing writeback without ordered extent.
1352 */
1353 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, len);
1354 break;
1355 }
1356
1357 find_next_dirty_byte(fs_info, page, &dirty_range_start,
1358 &dirty_range_end);
1359 if (cur < dirty_range_start) {
1360 cur = dirty_range_start;
1361 continue;
1362 }
1363
1364 em = btrfs_get_extent(inode, NULL, cur, len);
1365 if (IS_ERR(em)) {
1366 ret = PTR_ERR_OR_ZERO(em);
1367 goto out_error;
1368 }
1369
1370 extent_offset = cur - em->start;
1371 em_end = extent_map_end(em);
1372 ASSERT(cur <= em_end);
1373 ASSERT(cur < end);
1374 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1375 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1376
1377 block_start = em->block_start;
1378 disk_bytenr = em->block_start + extent_offset;
1379
1380 ASSERT(!extent_map_is_compressed(em));
1381 ASSERT(block_start != EXTENT_MAP_HOLE);
1382 ASSERT(block_start != EXTENT_MAP_INLINE);
1383
1384 /*
1385 * Note that em_end from extent_map_end() and dirty_range_end from
1386 * find_next_dirty_byte() are all exclusive
1387 */
1388 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1389 free_extent_map(em);
1390 em = NULL;
1391
1392 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1393 if (!PageWriteback(page)) {
1394 btrfs_err(inode->root->fs_info,
1395 "page %lu not writeback, cur %llu end %llu",
1396 page->index, cur, end);
1397 }
1398
1399 /*
1400 * Although the PageDirty bit is cleared before entering this
1401 * function, subpage dirty bit is not cleared.
1402 * So clear subpage dirty bit here so next time we won't submit
1403 * page for range already written to disk.
1404 */
1405 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, iosize);
1406
1407 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1408 cur - page_offset(page));
1409 cur += iosize;
1410 nr++;
1411 }
1412
1413 btrfs_folio_assert_not_dirty(fs_info, page_folio(page));
1414 *nr_ret = nr;
1415 return 0;
1416
1417out_error:
1418 /*
1419 * If we finish without problem, we should not only clear page dirty,
1420 * but also empty subpage dirty bits
1421 */
1422 *nr_ret = nr;
1423 return ret;
1424}
1425
1426/*
1427 * the writepage semantics are similar to regular writepage. extent
1428 * records are inserted to lock ranges in the tree, and as dirty areas
1429 * are found, they are marked writeback. Then the lock bits are removed
1430 * and the end_io handler clears the writeback ranges
1431 *
1432 * Return 0 if everything goes well.
1433 * Return <0 for error.
1434 */
1435static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1436{
1437 struct folio *folio = page_folio(page);
1438 struct inode *inode = page->mapping->host;
1439 const u64 page_start = page_offset(page);
1440 int ret;
1441 int nr = 0;
1442 size_t pg_offset;
1443 loff_t i_size = i_size_read(inode);
1444 unsigned long end_index = i_size >> PAGE_SHIFT;
1445
1446 trace___extent_writepage(page, inode, bio_ctrl->wbc);
1447
1448 WARN_ON(!PageLocked(page));
1449
1450 pg_offset = offset_in_page(i_size);
1451 if (page->index > end_index ||
1452 (page->index == end_index && !pg_offset)) {
1453 folio_invalidate(folio, 0, folio_size(folio));
1454 folio_unlock(folio);
1455 return 0;
1456 }
1457
1458 if (page->index == end_index)
1459 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1460
1461 ret = set_page_extent_mapped(page);
1462 if (ret < 0)
1463 goto done;
1464
1465 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1466 if (ret == 1)
1467 return 0;
1468 if (ret)
1469 goto done;
1470
1471 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1472 if (ret == 1)
1473 return 0;
1474
1475 bio_ctrl->wbc->nr_to_write--;
1476
1477done:
1478 if (nr == 0) {
1479 /* make sure the mapping tag for page dirty gets cleared */
1480 set_page_writeback(page);
1481 end_page_writeback(page);
1482 }
1483 if (ret) {
1484 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1485 PAGE_SIZE, !ret);
1486 mapping_set_error(page->mapping, ret);
1487 }
1488 unlock_page(page);
1489 ASSERT(ret <= 0);
1490 return ret;
1491}
1492
1493void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1494{
1495 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1496 TASK_UNINTERRUPTIBLE);
1497}
1498
1499/*
1500 * Lock extent buffer status and pages for writeback.
1501 *
1502 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1503 * extent buffer is not dirty)
1504 * Return %true is the extent buffer is submitted to bio.
1505 */
1506static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1507 struct writeback_control *wbc)
1508{
1509 struct btrfs_fs_info *fs_info = eb->fs_info;
1510 bool ret = false;
1511
1512 btrfs_tree_lock(eb);
1513 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1514 btrfs_tree_unlock(eb);
1515 if (wbc->sync_mode != WB_SYNC_ALL)
1516 return false;
1517 wait_on_extent_buffer_writeback(eb);
1518 btrfs_tree_lock(eb);
1519 }
1520
1521 /*
1522 * We need to do this to prevent races in people who check if the eb is
1523 * under IO since we can end up having no IO bits set for a short period
1524 * of time.
1525 */
1526 spin_lock(&eb->refs_lock);
1527 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1528 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1529 spin_unlock(&eb->refs_lock);
1530 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1531 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1532 -eb->len,
1533 fs_info->dirty_metadata_batch);
1534 ret = true;
1535 } else {
1536 spin_unlock(&eb->refs_lock);
1537 }
1538 btrfs_tree_unlock(eb);
1539 return ret;
1540}
1541
1542static void set_btree_ioerr(struct extent_buffer *eb)
1543{
1544 struct btrfs_fs_info *fs_info = eb->fs_info;
1545
1546 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1547
1548 /*
1549 * A read may stumble upon this buffer later, make sure that it gets an
1550 * error and knows there was an error.
1551 */
1552 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1553
1554 /*
1555 * We need to set the mapping with the io error as well because a write
1556 * error will flip the file system readonly, and then syncfs() will
1557 * return a 0 because we are readonly if we don't modify the err seq for
1558 * the superblock.
1559 */
1560 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1561
1562 /*
1563 * If writeback for a btree extent that doesn't belong to a log tree
1564 * failed, increment the counter transaction->eb_write_errors.
1565 * We do this because while the transaction is running and before it's
1566 * committing (when we call filemap_fdata[write|wait]_range against
1567 * the btree inode), we might have
1568 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1569 * returns an error or an error happens during writeback, when we're
1570 * committing the transaction we wouldn't know about it, since the pages
1571 * can be no longer dirty nor marked anymore for writeback (if a
1572 * subsequent modification to the extent buffer didn't happen before the
1573 * transaction commit), which makes filemap_fdata[write|wait]_range not
1574 * able to find the pages tagged with SetPageError at transaction
1575 * commit time. So if this happens we must abort the transaction,
1576 * otherwise we commit a super block with btree roots that point to
1577 * btree nodes/leafs whose content on disk is invalid - either garbage
1578 * or the content of some node/leaf from a past generation that got
1579 * cowed or deleted and is no longer valid.
1580 *
1581 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1582 * not be enough - we need to distinguish between log tree extents vs
1583 * non-log tree extents, and the next filemap_fdatawait_range() call
1584 * will catch and clear such errors in the mapping - and that call might
1585 * be from a log sync and not from a transaction commit. Also, checking
1586 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1587 * not done and would not be reliable - the eb might have been released
1588 * from memory and reading it back again means that flag would not be
1589 * set (since it's a runtime flag, not persisted on disk).
1590 *
1591 * Using the flags below in the btree inode also makes us achieve the
1592 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1593 * writeback for all dirty pages and before filemap_fdatawait_range()
1594 * is called, the writeback for all dirty pages had already finished
1595 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1596 * filemap_fdatawait_range() would return success, as it could not know
1597 * that writeback errors happened (the pages were no longer tagged for
1598 * writeback).
1599 */
1600 switch (eb->log_index) {
1601 case -1:
1602 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1603 break;
1604 case 0:
1605 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1606 break;
1607 case 1:
1608 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1609 break;
1610 default:
1611 BUG(); /* unexpected, logic error */
1612 }
1613}
1614
1615/*
1616 * The endio specific version which won't touch any unsafe spinlock in endio
1617 * context.
1618 */
1619static struct extent_buffer *find_extent_buffer_nolock(
1620 struct btrfs_fs_info *fs_info, u64 start)
1621{
1622 struct extent_buffer *eb;
1623
1624 rcu_read_lock();
1625 eb = radix_tree_lookup(&fs_info->buffer_radix,
1626 start >> fs_info->sectorsize_bits);
1627 if (eb && atomic_inc_not_zero(&eb->refs)) {
1628 rcu_read_unlock();
1629 return eb;
1630 }
1631 rcu_read_unlock();
1632 return NULL;
1633}
1634
1635static void end_bbio_meta_write(struct btrfs_bio *bbio)
1636{
1637 struct extent_buffer *eb = bbio->private;
1638 struct btrfs_fs_info *fs_info = eb->fs_info;
1639 bool uptodate = !bbio->bio.bi_status;
1640 struct folio_iter fi;
1641 u32 bio_offset = 0;
1642
1643 if (!uptodate)
1644 set_btree_ioerr(eb);
1645
1646 bio_for_each_folio_all(fi, &bbio->bio) {
1647 u64 start = eb->start + bio_offset;
1648 struct folio *folio = fi.folio;
1649 u32 len = fi.length;
1650
1651 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1652 bio_offset += len;
1653 }
1654
1655 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1656 smp_mb__after_atomic();
1657 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1658
1659 bio_put(&bbio->bio);
1660}
1661
1662static void prepare_eb_write(struct extent_buffer *eb)
1663{
1664 u32 nritems;
1665 unsigned long start;
1666 unsigned long end;
1667
1668 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1669
1670 /* Set btree blocks beyond nritems with 0 to avoid stale content */
1671 nritems = btrfs_header_nritems(eb);
1672 if (btrfs_header_level(eb) > 0) {
1673 end = btrfs_node_key_ptr_offset(eb, nritems);
1674 memzero_extent_buffer(eb, end, eb->len - end);
1675 } else {
1676 /*
1677 * Leaf:
1678 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1679 */
1680 start = btrfs_item_nr_offset(eb, nritems);
1681 end = btrfs_item_nr_offset(eb, 0);
1682 if (nritems == 0)
1683 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1684 else
1685 end += btrfs_item_offset(eb, nritems - 1);
1686 memzero_extent_buffer(eb, start, end - start);
1687 }
1688}
1689
1690static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1691 struct writeback_control *wbc)
1692{
1693 struct btrfs_fs_info *fs_info = eb->fs_info;
1694 struct btrfs_bio *bbio;
1695
1696 prepare_eb_write(eb);
1697
1698 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1699 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1700 eb->fs_info, end_bbio_meta_write, eb);
1701 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1702 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1703 wbc_init_bio(wbc, &bbio->bio);
1704 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1705 bbio->file_offset = eb->start;
1706 if (fs_info->nodesize < PAGE_SIZE) {
1707 struct folio *folio = eb->folios[0];
1708 bool ret;
1709
1710 folio_lock(folio);
1711 btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1712 if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1713 eb->len)) {
1714 folio_clear_dirty_for_io(folio);
1715 wbc->nr_to_write--;
1716 }
1717 ret = bio_add_folio(&bbio->bio, folio, eb->len,
1718 eb->start - folio_pos(folio));
1719 ASSERT(ret);
1720 wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len);
1721 folio_unlock(folio);
1722 } else {
1723 int num_folios = num_extent_folios(eb);
1724
1725 for (int i = 0; i < num_folios; i++) {
1726 struct folio *folio = eb->folios[i];
1727 bool ret;
1728
1729 folio_lock(folio);
1730 folio_clear_dirty_for_io(folio);
1731 folio_start_writeback(folio);
1732 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
1733 ASSERT(ret);
1734 wbc_account_cgroup_owner(wbc, folio_page(folio, 0),
1735 eb->folio_size);
1736 wbc->nr_to_write -= folio_nr_pages(folio);
1737 folio_unlock(folio);
1738 }
1739 }
1740 btrfs_submit_bio(bbio, 0);
1741}
1742
1743/*
1744 * Submit one subpage btree page.
1745 *
1746 * The main difference to submit_eb_page() is:
1747 * - Page locking
1748 * For subpage, we don't rely on page locking at all.
1749 *
1750 * - Flush write bio
1751 * We only flush bio if we may be unable to fit current extent buffers into
1752 * current bio.
1753 *
1754 * Return >=0 for the number of submitted extent buffers.
1755 * Return <0 for fatal error.
1756 */
1757static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1758{
1759 struct btrfs_fs_info *fs_info = page_to_fs_info(page);
1760 struct folio *folio = page_folio(page);
1761 int submitted = 0;
1762 u64 page_start = page_offset(page);
1763 int bit_start = 0;
1764 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1765
1766 /* Lock and write each dirty extent buffers in the range */
1767 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1768 struct btrfs_subpage *subpage = folio_get_private(folio);
1769 struct extent_buffer *eb;
1770 unsigned long flags;
1771 u64 start;
1772
1773 /*
1774 * Take private lock to ensure the subpage won't be detached
1775 * in the meantime.
1776 */
1777 spin_lock(&page->mapping->i_private_lock);
1778 if (!folio_test_private(folio)) {
1779 spin_unlock(&page->mapping->i_private_lock);
1780 break;
1781 }
1782 spin_lock_irqsave(&subpage->lock, flags);
1783 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1784 subpage->bitmaps)) {
1785 spin_unlock_irqrestore(&subpage->lock, flags);
1786 spin_unlock(&page->mapping->i_private_lock);
1787 bit_start++;
1788 continue;
1789 }
1790
1791 start = page_start + bit_start * fs_info->sectorsize;
1792 bit_start += sectors_per_node;
1793
1794 /*
1795 * Here we just want to grab the eb without touching extra
1796 * spin locks, so call find_extent_buffer_nolock().
1797 */
1798 eb = find_extent_buffer_nolock(fs_info, start);
1799 spin_unlock_irqrestore(&subpage->lock, flags);
1800 spin_unlock(&page->mapping->i_private_lock);
1801
1802 /*
1803 * The eb has already reached 0 refs thus find_extent_buffer()
1804 * doesn't return it. We don't need to write back such eb
1805 * anyway.
1806 */
1807 if (!eb)
1808 continue;
1809
1810 if (lock_extent_buffer_for_io(eb, wbc)) {
1811 write_one_eb(eb, wbc);
1812 submitted++;
1813 }
1814 free_extent_buffer(eb);
1815 }
1816 return submitted;
1817}
1818
1819/*
1820 * Submit all page(s) of one extent buffer.
1821 *
1822 * @page: the page of one extent buffer
1823 * @eb_context: to determine if we need to submit this page, if current page
1824 * belongs to this eb, we don't need to submit
1825 *
1826 * The caller should pass each page in their bytenr order, and here we use
1827 * @eb_context to determine if we have submitted pages of one extent buffer.
1828 *
1829 * If we have, we just skip until we hit a new page that doesn't belong to
1830 * current @eb_context.
1831 *
1832 * If not, we submit all the page(s) of the extent buffer.
1833 *
1834 * Return >0 if we have submitted the extent buffer successfully.
1835 * Return 0 if we don't need to submit the page, as it's already submitted by
1836 * previous call.
1837 * Return <0 for fatal error.
1838 */
1839static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1840{
1841 struct writeback_control *wbc = ctx->wbc;
1842 struct address_space *mapping = page->mapping;
1843 struct folio *folio = page_folio(page);
1844 struct extent_buffer *eb;
1845 int ret;
1846
1847 if (!folio_test_private(folio))
1848 return 0;
1849
1850 if (page_to_fs_info(page)->nodesize < PAGE_SIZE)
1851 return submit_eb_subpage(page, wbc);
1852
1853 spin_lock(&mapping->i_private_lock);
1854 if (!folio_test_private(folio)) {
1855 spin_unlock(&mapping->i_private_lock);
1856 return 0;
1857 }
1858
1859 eb = folio_get_private(folio);
1860
1861 /*
1862 * Shouldn't happen and normally this would be a BUG_ON but no point
1863 * crashing the machine for something we can survive anyway.
1864 */
1865 if (WARN_ON(!eb)) {
1866 spin_unlock(&mapping->i_private_lock);
1867 return 0;
1868 }
1869
1870 if (eb == ctx->eb) {
1871 spin_unlock(&mapping->i_private_lock);
1872 return 0;
1873 }
1874 ret = atomic_inc_not_zero(&eb->refs);
1875 spin_unlock(&mapping->i_private_lock);
1876 if (!ret)
1877 return 0;
1878
1879 ctx->eb = eb;
1880
1881 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1882 if (ret) {
1883 if (ret == -EBUSY)
1884 ret = 0;
1885 free_extent_buffer(eb);
1886 return ret;
1887 }
1888
1889 if (!lock_extent_buffer_for_io(eb, wbc)) {
1890 free_extent_buffer(eb);
1891 return 0;
1892 }
1893 /* Implies write in zoned mode. */
1894 if (ctx->zoned_bg) {
1895 /* Mark the last eb in the block group. */
1896 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1897 ctx->zoned_bg->meta_write_pointer += eb->len;
1898 }
1899 write_one_eb(eb, wbc);
1900 free_extent_buffer(eb);
1901 return 1;
1902}
1903
1904int btree_write_cache_pages(struct address_space *mapping,
1905 struct writeback_control *wbc)
1906{
1907 struct btrfs_eb_write_context ctx = { .wbc = wbc };
1908 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
1909 int ret = 0;
1910 int done = 0;
1911 int nr_to_write_done = 0;
1912 struct folio_batch fbatch;
1913 unsigned int nr_folios;
1914 pgoff_t index;
1915 pgoff_t end; /* Inclusive */
1916 int scanned = 0;
1917 xa_mark_t tag;
1918
1919 folio_batch_init(&fbatch);
1920 if (wbc->range_cyclic) {
1921 index = mapping->writeback_index; /* Start from prev offset */
1922 end = -1;
1923 /*
1924 * Start from the beginning does not need to cycle over the
1925 * range, mark it as scanned.
1926 */
1927 scanned = (index == 0);
1928 } else {
1929 index = wbc->range_start >> PAGE_SHIFT;
1930 end = wbc->range_end >> PAGE_SHIFT;
1931 scanned = 1;
1932 }
1933 if (wbc->sync_mode == WB_SYNC_ALL)
1934 tag = PAGECACHE_TAG_TOWRITE;
1935 else
1936 tag = PAGECACHE_TAG_DIRTY;
1937 btrfs_zoned_meta_io_lock(fs_info);
1938retry:
1939 if (wbc->sync_mode == WB_SYNC_ALL)
1940 tag_pages_for_writeback(mapping, index, end);
1941 while (!done && !nr_to_write_done && (index <= end) &&
1942 (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1943 tag, &fbatch))) {
1944 unsigned i;
1945
1946 for (i = 0; i < nr_folios; i++) {
1947 struct folio *folio = fbatch.folios[i];
1948
1949 ret = submit_eb_page(&folio->page, &ctx);
1950 if (ret == 0)
1951 continue;
1952 if (ret < 0) {
1953 done = 1;
1954 break;
1955 }
1956
1957 /*
1958 * the filesystem may choose to bump up nr_to_write.
1959 * We have to make sure to honor the new nr_to_write
1960 * at any time
1961 */
1962 nr_to_write_done = wbc->nr_to_write <= 0;
1963 }
1964 folio_batch_release(&fbatch);
1965 cond_resched();
1966 }
1967 if (!scanned && !done) {
1968 /*
1969 * We hit the last page and there is more work to be done: wrap
1970 * back to the start of the file
1971 */
1972 scanned = 1;
1973 index = 0;
1974 goto retry;
1975 }
1976 /*
1977 * If something went wrong, don't allow any metadata write bio to be
1978 * submitted.
1979 *
1980 * This would prevent use-after-free if we had dirty pages not
1981 * cleaned up, which can still happen by fuzzed images.
1982 *
1983 * - Bad extent tree
1984 * Allowing existing tree block to be allocated for other trees.
1985 *
1986 * - Log tree operations
1987 * Exiting tree blocks get allocated to log tree, bumps its
1988 * generation, then get cleaned in tree re-balance.
1989 * Such tree block will not be written back, since it's clean,
1990 * thus no WRITTEN flag set.
1991 * And after log writes back, this tree block is not traced by
1992 * any dirty extent_io_tree.
1993 *
1994 * - Offending tree block gets re-dirtied from its original owner
1995 * Since it has bumped generation, no WRITTEN flag, it can be
1996 * reused without COWing. This tree block will not be traced
1997 * by btrfs_transaction::dirty_pages.
1998 *
1999 * Now such dirty tree block will not be cleaned by any dirty
2000 * extent io tree. Thus we don't want to submit such wild eb
2001 * if the fs already has error.
2002 *
2003 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2004 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2005 */
2006 if (ret > 0)
2007 ret = 0;
2008 if (!ret && BTRFS_FS_ERROR(fs_info))
2009 ret = -EROFS;
2010
2011 if (ctx.zoned_bg)
2012 btrfs_put_block_group(ctx.zoned_bg);
2013 btrfs_zoned_meta_io_unlock(fs_info);
2014 return ret;
2015}
2016
2017/*
2018 * Walk the list of dirty pages of the given address space and write all of them.
2019 *
2020 * @mapping: address space structure to write
2021 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2022 * @bio_ctrl: holds context for the write, namely the bio
2023 *
2024 * If a page is already under I/O, write_cache_pages() skips it, even
2025 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2026 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2027 * and msync() need to guarantee that all the data which was dirty at the time
2028 * the call was made get new I/O started against them. If wbc->sync_mode is
2029 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2030 * existing IO to complete.
2031 */
2032static int extent_write_cache_pages(struct address_space *mapping,
2033 struct btrfs_bio_ctrl *bio_ctrl)
2034{
2035 struct writeback_control *wbc = bio_ctrl->wbc;
2036 struct inode *inode = mapping->host;
2037 int ret = 0;
2038 int done = 0;
2039 int nr_to_write_done = 0;
2040 struct folio_batch fbatch;
2041 unsigned int nr_folios;
2042 pgoff_t index;
2043 pgoff_t end; /* Inclusive */
2044 pgoff_t done_index;
2045 int range_whole = 0;
2046 int scanned = 0;
2047 xa_mark_t tag;
2048
2049 /*
2050 * We have to hold onto the inode so that ordered extents can do their
2051 * work when the IO finishes. The alternative to this is failing to add
2052 * an ordered extent if the igrab() fails there and that is a huge pain
2053 * to deal with, so instead just hold onto the inode throughout the
2054 * writepages operation. If it fails here we are freeing up the inode
2055 * anyway and we'd rather not waste our time writing out stuff that is
2056 * going to be truncated anyway.
2057 */
2058 if (!igrab(inode))
2059 return 0;
2060
2061 folio_batch_init(&fbatch);
2062 if (wbc->range_cyclic) {
2063 index = mapping->writeback_index; /* Start from prev offset */
2064 end = -1;
2065 /*
2066 * Start from the beginning does not need to cycle over the
2067 * range, mark it as scanned.
2068 */
2069 scanned = (index == 0);
2070 } else {
2071 index = wbc->range_start >> PAGE_SHIFT;
2072 end = wbc->range_end >> PAGE_SHIFT;
2073 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2074 range_whole = 1;
2075 scanned = 1;
2076 }
2077
2078 /*
2079 * We do the tagged writepage as long as the snapshot flush bit is set
2080 * and we are the first one who do the filemap_flush() on this inode.
2081 *
2082 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2083 * not race in and drop the bit.
2084 */
2085 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2086 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2087 &BTRFS_I(inode)->runtime_flags))
2088 wbc->tagged_writepages = 1;
2089
2090 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2091 tag = PAGECACHE_TAG_TOWRITE;
2092 else
2093 tag = PAGECACHE_TAG_DIRTY;
2094retry:
2095 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2096 tag_pages_for_writeback(mapping, index, end);
2097 done_index = index;
2098 while (!done && !nr_to_write_done && (index <= end) &&
2099 (nr_folios = filemap_get_folios_tag(mapping, &index,
2100 end, tag, &fbatch))) {
2101 unsigned i;
2102
2103 for (i = 0; i < nr_folios; i++) {
2104 struct folio *folio = fbatch.folios[i];
2105
2106 done_index = folio_next_index(folio);
2107 /*
2108 * At this point we hold neither the i_pages lock nor
2109 * the page lock: the page may be truncated or
2110 * invalidated (changing page->mapping to NULL),
2111 * or even swizzled back from swapper_space to
2112 * tmpfs file mapping
2113 */
2114 if (!folio_trylock(folio)) {
2115 submit_write_bio(bio_ctrl, 0);
2116 folio_lock(folio);
2117 }
2118
2119 if (unlikely(folio->mapping != mapping)) {
2120 folio_unlock(folio);
2121 continue;
2122 }
2123
2124 if (!folio_test_dirty(folio)) {
2125 /* Someone wrote it for us. */
2126 folio_unlock(folio);
2127 continue;
2128 }
2129
2130 if (wbc->sync_mode != WB_SYNC_NONE) {
2131 if (folio_test_writeback(folio))
2132 submit_write_bio(bio_ctrl, 0);
2133 folio_wait_writeback(folio);
2134 }
2135
2136 if (folio_test_writeback(folio) ||
2137 !folio_clear_dirty_for_io(folio)) {
2138 folio_unlock(folio);
2139 continue;
2140 }
2141
2142 ret = __extent_writepage(&folio->page, bio_ctrl);
2143 if (ret < 0) {
2144 done = 1;
2145 break;
2146 }
2147
2148 /*
2149 * The filesystem may choose to bump up nr_to_write.
2150 * We have to make sure to honor the new nr_to_write
2151 * at any time.
2152 */
2153 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2154 wbc->nr_to_write <= 0);
2155 }
2156 folio_batch_release(&fbatch);
2157 cond_resched();
2158 }
2159 if (!scanned && !done) {
2160 /*
2161 * We hit the last page and there is more work to be done: wrap
2162 * back to the start of the file
2163 */
2164 scanned = 1;
2165 index = 0;
2166
2167 /*
2168 * If we're looping we could run into a page that is locked by a
2169 * writer and that writer could be waiting on writeback for a
2170 * page in our current bio, and thus deadlock, so flush the
2171 * write bio here.
2172 */
2173 submit_write_bio(bio_ctrl, 0);
2174 goto retry;
2175 }
2176
2177 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2178 mapping->writeback_index = done_index;
2179
2180 btrfs_add_delayed_iput(BTRFS_I(inode));
2181 return ret;
2182}
2183
2184/*
2185 * Submit the pages in the range to bio for call sites which delalloc range has
2186 * already been ran (aka, ordered extent inserted) and all pages are still
2187 * locked.
2188 */
2189void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2190 u64 start, u64 end, struct writeback_control *wbc,
2191 bool pages_dirty)
2192{
2193 bool found_error = false;
2194 int ret = 0;
2195 struct address_space *mapping = inode->i_mapping;
2196 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2197 const u32 sectorsize = fs_info->sectorsize;
2198 loff_t i_size = i_size_read(inode);
2199 u64 cur = start;
2200 struct btrfs_bio_ctrl bio_ctrl = {
2201 .wbc = wbc,
2202 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2203 };
2204
2205 if (wbc->no_cgroup_owner)
2206 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2207
2208 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2209
2210 while (cur <= end) {
2211 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2212 u32 cur_len = cur_end + 1 - cur;
2213 struct page *page;
2214 int nr = 0;
2215
2216 page = find_get_page(mapping, cur >> PAGE_SHIFT);
2217 ASSERT(PageLocked(page));
2218 if (pages_dirty && page != locked_page) {
2219 ASSERT(PageDirty(page));
2220 clear_page_dirty_for_io(page);
2221 }
2222
2223 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2224 i_size, &nr);
2225 if (ret == 1)
2226 goto next_page;
2227
2228 /* Make sure the mapping tag for page dirty gets cleared. */
2229 if (nr == 0) {
2230 set_page_writeback(page);
2231 end_page_writeback(page);
2232 }
2233 if (ret) {
2234 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2235 cur, cur_len, !ret);
2236 mapping_set_error(page->mapping, ret);
2237 }
2238 btrfs_folio_unlock_writer(fs_info, page_folio(page), cur, cur_len);
2239 if (ret < 0)
2240 found_error = true;
2241next_page:
2242 put_page(page);
2243 cur = cur_end + 1;
2244 }
2245
2246 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2247}
2248
2249int extent_writepages(struct address_space *mapping,
2250 struct writeback_control *wbc)
2251{
2252 struct inode *inode = mapping->host;
2253 int ret = 0;
2254 struct btrfs_bio_ctrl bio_ctrl = {
2255 .wbc = wbc,
2256 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2257 };
2258
2259 /*
2260 * Allow only a single thread to do the reloc work in zoned mode to
2261 * protect the write pointer updates.
2262 */
2263 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2264 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2265 submit_write_bio(&bio_ctrl, ret);
2266 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2267 return ret;
2268}
2269
2270void extent_readahead(struct readahead_control *rac)
2271{
2272 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2273 struct page *pagepool[16];
2274 struct extent_map *em_cached = NULL;
2275 u64 prev_em_start = (u64)-1;
2276 int nr;
2277
2278 while ((nr = readahead_page_batch(rac, pagepool))) {
2279 u64 contig_start = readahead_pos(rac);
2280 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2281
2282 contiguous_readpages(pagepool, nr, contig_start, contig_end,
2283 &em_cached, &bio_ctrl, &prev_em_start);
2284 }
2285
2286 if (em_cached)
2287 free_extent_map(em_cached);
2288 submit_one_bio(&bio_ctrl);
2289}
2290
2291/*
2292 * basic invalidate_folio code, this waits on any locked or writeback
2293 * ranges corresponding to the folio, and then deletes any extent state
2294 * records from the tree
2295 */
2296int extent_invalidate_folio(struct extent_io_tree *tree,
2297 struct folio *folio, size_t offset)
2298{
2299 struct extent_state *cached_state = NULL;
2300 u64 start = folio_pos(folio);
2301 u64 end = start + folio_size(folio) - 1;
2302 size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2303
2304 /* This function is only called for the btree inode */
2305 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2306
2307 start += ALIGN(offset, blocksize);
2308 if (start > end)
2309 return 0;
2310
2311 lock_extent(tree, start, end, &cached_state);
2312 folio_wait_writeback(folio);
2313
2314 /*
2315 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2316 * so here we only need to unlock the extent range to free any
2317 * existing extent state.
2318 */
2319 unlock_extent(tree, start, end, &cached_state);
2320 return 0;
2321}
2322
2323/*
2324 * a helper for release_folio, this tests for areas of the page that
2325 * are locked or under IO and drops the related state bits if it is safe
2326 * to drop the page.
2327 */
2328static int try_release_extent_state(struct extent_io_tree *tree,
2329 struct page *page, gfp_t mask)
2330{
2331 u64 start = page_offset(page);
2332 u64 end = start + PAGE_SIZE - 1;
2333 int ret = 1;
2334
2335 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2336 ret = 0;
2337 } else {
2338 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2339 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2340 EXTENT_QGROUP_RESERVED);
2341
2342 /*
2343 * At this point we can safely clear everything except the
2344 * locked bit, the nodatasum bit and the delalloc new bit.
2345 * The delalloc new bit will be cleared by ordered extent
2346 * completion.
2347 */
2348 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2349
2350 /* if clear_extent_bit failed for enomem reasons,
2351 * we can't allow the release to continue.
2352 */
2353 if (ret < 0)
2354 ret = 0;
2355 else
2356 ret = 1;
2357 }
2358 return ret;
2359}
2360
2361/*
2362 * a helper for release_folio. As long as there are no locked extents
2363 * in the range corresponding to the page, both state records and extent
2364 * map records are removed
2365 */
2366int try_release_extent_mapping(struct page *page, gfp_t mask)
2367{
2368 struct extent_map *em;
2369 u64 start = page_offset(page);
2370 u64 end = start + PAGE_SIZE - 1;
2371 struct btrfs_inode *btrfs_inode = page_to_inode(page);
2372 struct extent_io_tree *tree = &btrfs_inode->io_tree;
2373 struct extent_map_tree *map = &btrfs_inode->extent_tree;
2374
2375 if (gfpflags_allow_blocking(mask) &&
2376 page->mapping->host->i_size > SZ_16M) {
2377 u64 len;
2378 while (start <= end) {
2379 struct btrfs_fs_info *fs_info;
2380 u64 cur_gen;
2381
2382 len = end - start + 1;
2383 write_lock(&map->lock);
2384 em = lookup_extent_mapping(map, start, len);
2385 if (!em) {
2386 write_unlock(&map->lock);
2387 break;
2388 }
2389 if ((em->flags & EXTENT_FLAG_PINNED) ||
2390 em->start != start) {
2391 write_unlock(&map->lock);
2392 free_extent_map(em);
2393 break;
2394 }
2395 if (test_range_bit_exists(tree, em->start,
2396 extent_map_end(em) - 1,
2397 EXTENT_LOCKED))
2398 goto next;
2399 /*
2400 * If it's not in the list of modified extents, used
2401 * by a fast fsync, we can remove it. If it's being
2402 * logged we can safely remove it since fsync took an
2403 * extra reference on the em.
2404 */
2405 if (list_empty(&em->list) ||
2406 (em->flags & EXTENT_FLAG_LOGGING))
2407 goto remove_em;
2408 /*
2409 * If it's in the list of modified extents, remove it
2410 * only if its generation is older then the current one,
2411 * in which case we don't need it for a fast fsync.
2412 * Otherwise don't remove it, we could be racing with an
2413 * ongoing fast fsync that could miss the new extent.
2414 */
2415 fs_info = btrfs_inode->root->fs_info;
2416 spin_lock(&fs_info->trans_lock);
2417 cur_gen = fs_info->generation;
2418 spin_unlock(&fs_info->trans_lock);
2419 if (em->generation >= cur_gen)
2420 goto next;
2421remove_em:
2422 /*
2423 * We only remove extent maps that are not in the list of
2424 * modified extents or that are in the list but with a
2425 * generation lower then the current generation, so there
2426 * is no need to set the full fsync flag on the inode (it
2427 * hurts the fsync performance for workloads with a data
2428 * size that exceeds or is close to the system's memory).
2429 */
2430 remove_extent_mapping(map, em);
2431 /* once for the rb tree */
2432 free_extent_map(em);
2433next:
2434 start = extent_map_end(em);
2435 write_unlock(&map->lock);
2436
2437 /* once for us */
2438 free_extent_map(em);
2439
2440 cond_resched(); /* Allow large-extent preemption. */
2441 }
2442 }
2443 return try_release_extent_state(tree, page, mask);
2444}
2445
2446struct btrfs_fiemap_entry {
2447 u64 offset;
2448 u64 phys;
2449 u64 len;
2450 u32 flags;
2451};
2452
2453/*
2454 * Indicate the caller of emit_fiemap_extent() that it needs to unlock the file
2455 * range from the inode's io tree, unlock the subvolume tree search path, flush
2456 * the fiemap cache and relock the file range and research the subvolume tree.
2457 * The value here is something negative that can't be confused with a valid
2458 * errno value and different from 1 because that's also a return value from
2459 * fiemap_fill_next_extent() and also it's often used to mean some btree search
2460 * did not find a key, so make it some distinct negative value.
2461 */
2462#define BTRFS_FIEMAP_FLUSH_CACHE (-(MAX_ERRNO + 1))
2463
2464/*
2465 * Used to:
2466 *
2467 * - Cache the next entry to be emitted to the fiemap buffer, so that we can
2468 * merge extents that are contiguous and can be grouped as a single one;
2469 *
2470 * - Store extents ready to be written to the fiemap buffer in an intermediary
2471 * buffer. This intermediary buffer is to ensure that in case the fiemap
2472 * buffer is memory mapped to the fiemap target file, we don't deadlock
2473 * during btrfs_page_mkwrite(). This is because during fiemap we are locking
2474 * an extent range in order to prevent races with delalloc flushing and
2475 * ordered extent completion, which is needed in order to reliably detect
2476 * delalloc in holes and prealloc extents. And this can lead to a deadlock
2477 * if the fiemap buffer is memory mapped to the file we are running fiemap
2478 * against (a silly, useless in practice scenario, but possible) because
2479 * btrfs_page_mkwrite() will try to lock the same extent range.
2480 */
2481struct fiemap_cache {
2482 /* An array of ready fiemap entries. */
2483 struct btrfs_fiemap_entry *entries;
2484 /* Number of entries in the entries array. */
2485 int entries_size;
2486 /* Index of the next entry in the entries array to write to. */
2487 int entries_pos;
2488 /*
2489 * Once the entries array is full, this indicates what's the offset for
2490 * the next file extent item we must search for in the inode's subvolume
2491 * tree after unlocking the extent range in the inode's io tree and
2492 * releasing the search path.
2493 */
2494 u64 next_search_offset;
2495 /*
2496 * This matches struct fiemap_extent_info::fi_mapped_extents, we use it
2497 * to count ourselves emitted extents and stop instead of relying on
2498 * fiemap_fill_next_extent() because we buffer ready fiemap entries at
2499 * the @entries array, and we want to stop as soon as we hit the max
2500 * amount of extents to map, not just to save time but also to make the
2501 * logic at extent_fiemap() simpler.
2502 */
2503 unsigned int extents_mapped;
2504 /* Fields for the cached extent (unsubmitted, not ready, extent). */
2505 u64 offset;
2506 u64 phys;
2507 u64 len;
2508 u32 flags;
2509 bool cached;
2510};
2511
2512static int flush_fiemap_cache(struct fiemap_extent_info *fieinfo,
2513 struct fiemap_cache *cache)
2514{
2515 for (int i = 0; i < cache->entries_pos; i++) {
2516 struct btrfs_fiemap_entry *entry = &cache->entries[i];
2517 int ret;
2518
2519 ret = fiemap_fill_next_extent(fieinfo, entry->offset,
2520 entry->phys, entry->len,
2521 entry->flags);
2522 /*
2523 * Ignore 1 (reached max entries) because we keep track of that
2524 * ourselves in emit_fiemap_extent().
2525 */
2526 if (ret < 0)
2527 return ret;
2528 }
2529 cache->entries_pos = 0;
2530
2531 return 0;
2532}
2533
2534/*
2535 * Helper to submit fiemap extent.
2536 *
2537 * Will try to merge current fiemap extent specified by @offset, @phys,
2538 * @len and @flags with cached one.
2539 * And only when we fails to merge, cached one will be submitted as
2540 * fiemap extent.
2541 *
2542 * Return value is the same as fiemap_fill_next_extent().
2543 */
2544static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2545 struct fiemap_cache *cache,
2546 u64 offset, u64 phys, u64 len, u32 flags)
2547{
2548 struct btrfs_fiemap_entry *entry;
2549 u64 cache_end;
2550
2551 /* Set at the end of extent_fiemap(). */
2552 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2553
2554 if (!cache->cached)
2555 goto assign;
2556
2557 /*
2558 * When iterating the extents of the inode, at extent_fiemap(), we may
2559 * find an extent that starts at an offset behind the end offset of the
2560 * previous extent we processed. This happens if fiemap is called
2561 * without FIEMAP_FLAG_SYNC and there are ordered extents completing
2562 * after we had to unlock the file range, release the search path, emit
2563 * the fiemap extents stored in the buffer (cache->entries array) and
2564 * the lock the remainder of the range and re-search the btree.
2565 *
2566 * For example we are in leaf X processing its last item, which is the
2567 * file extent item for file range [512K, 1M[, and after
2568 * btrfs_next_leaf() releases the path, there's an ordered extent that
2569 * completes for the file range [768K, 2M[, and that results in trimming
2570 * the file extent item so that it now corresponds to the file range
2571 * [512K, 768K[ and a new file extent item is inserted for the file
2572 * range [768K, 2M[, which may end up as the last item of leaf X or as
2573 * the first item of the next leaf - in either case btrfs_next_leaf()
2574 * will leave us with a path pointing to the new extent item, for the
2575 * file range [768K, 2M[, since that's the first key that follows the
2576 * last one we processed. So in order not to report overlapping extents
2577 * to user space, we trim the length of the previously cached extent and
2578 * emit it.
2579 *
2580 * Upon calling btrfs_next_leaf() we may also find an extent with an
2581 * offset smaller than or equals to cache->offset, and this happens
2582 * when we had a hole or prealloc extent with several delalloc ranges in
2583 * it, but after btrfs_next_leaf() released the path, delalloc was
2584 * flushed and the resulting ordered extents were completed, so we can
2585 * now have found a file extent item for an offset that is smaller than
2586 * or equals to what we have in cache->offset. We deal with this as
2587 * described below.
2588 */
2589 cache_end = cache->offset + cache->len;
2590 if (cache_end > offset) {
2591 if (offset == cache->offset) {
2592 /*
2593 * We cached a dealloc range (found in the io tree) for
2594 * a hole or prealloc extent and we have now found a
2595 * file extent item for the same offset. What we have
2596 * now is more recent and up to date, so discard what
2597 * we had in the cache and use what we have just found.
2598 */
2599 goto assign;
2600 } else if (offset > cache->offset) {
2601 /*
2602 * The extent range we previously found ends after the
2603 * offset of the file extent item we found and that
2604 * offset falls somewhere in the middle of that previous
2605 * extent range. So adjust the range we previously found
2606 * to end at the offset of the file extent item we have
2607 * just found, since this extent is more up to date.
2608 * Emit that adjusted range and cache the file extent
2609 * item we have just found. This corresponds to the case
2610 * where a previously found file extent item was split
2611 * due to an ordered extent completing.
2612 */
2613 cache->len = offset - cache->offset;
2614 goto emit;
2615 } else {
2616 const u64 range_end = offset + len;
2617
2618 /*
2619 * The offset of the file extent item we have just found
2620 * is behind the cached offset. This means we were
2621 * processing a hole or prealloc extent for which we
2622 * have found delalloc ranges (in the io tree), so what
2623 * we have in the cache is the last delalloc range we
2624 * found while the file extent item we found can be
2625 * either for a whole delalloc range we previously
2626 * emmitted or only a part of that range.
2627 *
2628 * We have two cases here:
2629 *
2630 * 1) The file extent item's range ends at or behind the
2631 * cached extent's end. In this case just ignore the
2632 * current file extent item because we don't want to
2633 * overlap with previous ranges that may have been
2634 * emmitted already;
2635 *
2636 * 2) The file extent item starts behind the currently
2637 * cached extent but its end offset goes beyond the
2638 * end offset of the cached extent. We don't want to
2639 * overlap with a previous range that may have been
2640 * emmitted already, so we emit the currently cached
2641 * extent and then partially store the current file
2642 * extent item's range in the cache, for the subrange
2643 * going the cached extent's end to the end of the
2644 * file extent item.
2645 */
2646 if (range_end <= cache_end)
2647 return 0;
2648
2649 if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC)))
2650 phys += cache_end - offset;
2651
2652 offset = cache_end;
2653 len = range_end - cache_end;
2654 goto emit;
2655 }
2656 }
2657
2658 /*
2659 * Only merges fiemap extents if
2660 * 1) Their logical addresses are continuous
2661 *
2662 * 2) Their physical addresses are continuous
2663 * So truly compressed (physical size smaller than logical size)
2664 * extents won't get merged with each other
2665 *
2666 * 3) Share same flags
2667 */
2668 if (cache->offset + cache->len == offset &&
2669 cache->phys + cache->len == phys &&
2670 cache->flags == flags) {
2671 cache->len += len;
2672 return 0;
2673 }
2674
2675emit:
2676 /* Not mergeable, need to submit cached one */
2677
2678 if (cache->entries_pos == cache->entries_size) {
2679 /*
2680 * We will need to research for the end offset of the last
2681 * stored extent and not from the current offset, because after
2682 * unlocking the range and releasing the path, if there's a hole
2683 * between that end offset and this current offset, a new extent
2684 * may have been inserted due to a new write, so we don't want
2685 * to miss it.
2686 */
2687 entry = &cache->entries[cache->entries_size - 1];
2688 cache->next_search_offset = entry->offset + entry->len;
2689 cache->cached = false;
2690
2691 return BTRFS_FIEMAP_FLUSH_CACHE;
2692 }
2693
2694 entry = &cache->entries[cache->entries_pos];
2695 entry->offset = cache->offset;
2696 entry->phys = cache->phys;
2697 entry->len = cache->len;
2698 entry->flags = cache->flags;
2699 cache->entries_pos++;
2700 cache->extents_mapped++;
2701
2702 if (cache->extents_mapped == fieinfo->fi_extents_max) {
2703 cache->cached = false;
2704 return 1;
2705 }
2706assign:
2707 cache->cached = true;
2708 cache->offset = offset;
2709 cache->phys = phys;
2710 cache->len = len;
2711 cache->flags = flags;
2712
2713 return 0;
2714}
2715
2716/*
2717 * Emit last fiemap cache
2718 *
2719 * The last fiemap cache may still be cached in the following case:
2720 * 0 4k 8k
2721 * |<- Fiemap range ->|
2722 * |<------------ First extent ----------->|
2723 *
2724 * In this case, the first extent range will be cached but not emitted.
2725 * So we must emit it before ending extent_fiemap().
2726 */
2727static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2728 struct fiemap_cache *cache)
2729{
2730 int ret;
2731
2732 if (!cache->cached)
2733 return 0;
2734
2735 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2736 cache->len, cache->flags);
2737 cache->cached = false;
2738 if (ret > 0)
2739 ret = 0;
2740 return ret;
2741}
2742
2743static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2744{
2745 struct extent_buffer *clone = path->nodes[0];
2746 struct btrfs_key key;
2747 int slot;
2748 int ret;
2749
2750 path->slots[0]++;
2751 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2752 return 0;
2753
2754 /*
2755 * Add a temporary extra ref to an already cloned extent buffer to
2756 * prevent btrfs_next_leaf() freeing it, we want to reuse it to avoid
2757 * the cost of allocating a new one.
2758 */
2759 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, &clone->bflags));
2760 atomic_inc(&clone->refs);
2761
2762 ret = btrfs_next_leaf(inode->root, path);
2763 if (ret != 0)
2764 goto out;
2765
2766 /*
2767 * Don't bother with cloning if there are no more file extent items for
2768 * our inode.
2769 */
2770 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2771 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) {
2772 ret = 1;
2773 goto out;
2774 }
2775
2776 /*
2777 * Important to preserve the start field, for the optimizations when
2778 * checking if extents are shared (see extent_fiemap()).
2779 *
2780 * We must set ->start before calling copy_extent_buffer_full(). If we
2781 * are on sub-pagesize blocksize, we use ->start to determine the offset
2782 * into the folio where our eb exists, and if we update ->start after
2783 * the fact then any subsequent reads of the eb may read from a
2784 * different offset in the folio than where we originally copied into.
2785 */
2786 clone->start = path->nodes[0]->start;
2787 /* See the comment at fiemap_search_slot() about why we clone. */
2788 copy_extent_buffer_full(clone, path->nodes[0]);
2789
2790 slot = path->slots[0];
2791 btrfs_release_path(path);
2792 path->nodes[0] = clone;
2793 path->slots[0] = slot;
2794out:
2795 if (ret)
2796 free_extent_buffer(clone);
2797
2798 return ret;
2799}
2800
2801/*
2802 * Search for the first file extent item that starts at a given file offset or
2803 * the one that starts immediately before that offset.
2804 * Returns: 0 on success, < 0 on error, 1 if not found.
2805 */
2806static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2807 u64 file_offset)
2808{
2809 const u64 ino = btrfs_ino(inode);
2810 struct btrfs_root *root = inode->root;
2811 struct extent_buffer *clone;
2812 struct btrfs_key key;
2813 int slot;
2814 int ret;
2815
2816 key.objectid = ino;
2817 key.type = BTRFS_EXTENT_DATA_KEY;
2818 key.offset = file_offset;
2819
2820 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2821 if (ret < 0)
2822 return ret;
2823
2824 if (ret > 0 && path->slots[0] > 0) {
2825 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2826 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2827 path->slots[0]--;
2828 }
2829
2830 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2831 ret = btrfs_next_leaf(root, path);
2832 if (ret != 0)
2833 return ret;
2834
2835 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2836 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2837 return 1;
2838 }
2839
2840 /*
2841 * We clone the leaf and use it during fiemap. This is because while
2842 * using the leaf we do expensive things like checking if an extent is
2843 * shared, which can take a long time. In order to prevent blocking
2844 * other tasks for too long, we use a clone of the leaf. We have locked
2845 * the file range in the inode's io tree, so we know none of our file
2846 * extent items can change. This way we avoid blocking other tasks that
2847 * want to insert items for other inodes in the same leaf or b+tree
2848 * rebalance operations (triggered for example when someone is trying
2849 * to push items into this leaf when trying to insert an item in a
2850 * neighbour leaf).
2851 * We also need the private clone because holding a read lock on an
2852 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2853 * when we check if extents are shared, as backref walking may need to
2854 * lock the same leaf we are processing.
2855 */
2856 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2857 if (!clone)
2858 return -ENOMEM;
2859
2860 slot = path->slots[0];
2861 btrfs_release_path(path);
2862 path->nodes[0] = clone;
2863 path->slots[0] = slot;
2864
2865 return 0;
2866}
2867
2868/*
2869 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2870 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2871 * extent. The end offset (@end) is inclusive.
2872 */
2873static int fiemap_process_hole(struct btrfs_inode *inode,
2874 struct fiemap_extent_info *fieinfo,
2875 struct fiemap_cache *cache,
2876 struct extent_state **delalloc_cached_state,
2877 struct btrfs_backref_share_check_ctx *backref_ctx,
2878 u64 disk_bytenr, u64 extent_offset,
2879 u64 extent_gen,
2880 u64 start, u64 end)
2881{
2882 const u64 i_size = i_size_read(&inode->vfs_inode);
2883 u64 cur_offset = start;
2884 u64 last_delalloc_end = 0;
2885 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2886 bool checked_extent_shared = false;
2887 int ret;
2888
2889 /*
2890 * There can be no delalloc past i_size, so don't waste time looking for
2891 * it beyond i_size.
2892 */
2893 while (cur_offset < end && cur_offset < i_size) {
2894 u64 delalloc_start;
2895 u64 delalloc_end;
2896 u64 prealloc_start;
2897 u64 prealloc_len = 0;
2898 bool delalloc;
2899
2900 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2901 delalloc_cached_state,
2902 &delalloc_start,
2903 &delalloc_end);
2904 if (!delalloc)
2905 break;
2906
2907 /*
2908 * If this is a prealloc extent we have to report every section
2909 * of it that has no delalloc.
2910 */
2911 if (disk_bytenr != 0) {
2912 if (last_delalloc_end == 0) {
2913 prealloc_start = start;
2914 prealloc_len = delalloc_start - start;
2915 } else {
2916 prealloc_start = last_delalloc_end + 1;
2917 prealloc_len = delalloc_start - prealloc_start;
2918 }
2919 }
2920
2921 if (prealloc_len > 0) {
2922 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2923 ret = btrfs_is_data_extent_shared(inode,
2924 disk_bytenr,
2925 extent_gen,
2926 backref_ctx);
2927 if (ret < 0)
2928 return ret;
2929 else if (ret > 0)
2930 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2931
2932 checked_extent_shared = true;
2933 }
2934 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2935 disk_bytenr + extent_offset,
2936 prealloc_len, prealloc_flags);
2937 if (ret)
2938 return ret;
2939 extent_offset += prealloc_len;
2940 }
2941
2942 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2943 delalloc_end + 1 - delalloc_start,
2944 FIEMAP_EXTENT_DELALLOC |
2945 FIEMAP_EXTENT_UNKNOWN);
2946 if (ret)
2947 return ret;
2948
2949 last_delalloc_end = delalloc_end;
2950 cur_offset = delalloc_end + 1;
2951 extent_offset += cur_offset - delalloc_start;
2952 cond_resched();
2953 }
2954
2955 /*
2956 * Either we found no delalloc for the whole prealloc extent or we have
2957 * a prealloc extent that spans i_size or starts at or after i_size.
2958 */
2959 if (disk_bytenr != 0 && last_delalloc_end < end) {
2960 u64 prealloc_start;
2961 u64 prealloc_len;
2962
2963 if (last_delalloc_end == 0) {
2964 prealloc_start = start;
2965 prealloc_len = end + 1 - start;
2966 } else {
2967 prealloc_start = last_delalloc_end + 1;
2968 prealloc_len = end + 1 - prealloc_start;
2969 }
2970
2971 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2972 ret = btrfs_is_data_extent_shared(inode,
2973 disk_bytenr,
2974 extent_gen,
2975 backref_ctx);
2976 if (ret < 0)
2977 return ret;
2978 else if (ret > 0)
2979 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2980 }
2981 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2982 disk_bytenr + extent_offset,
2983 prealloc_len, prealloc_flags);
2984 if (ret)
2985 return ret;
2986 }
2987
2988 return 0;
2989}
2990
2991static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2992 struct btrfs_path *path,
2993 u64 *last_extent_end_ret)
2994{
2995 const u64 ino = btrfs_ino(inode);
2996 struct btrfs_root *root = inode->root;
2997 struct extent_buffer *leaf;
2998 struct btrfs_file_extent_item *ei;
2999 struct btrfs_key key;
3000 u64 disk_bytenr;
3001 int ret;
3002
3003 /*
3004 * Lookup the last file extent. We're not using i_size here because
3005 * there might be preallocation past i_size.
3006 */
3007 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
3008 /* There can't be a file extent item at offset (u64)-1 */
3009 ASSERT(ret != 0);
3010 if (ret < 0)
3011 return ret;
3012
3013 /*
3014 * For a non-existing key, btrfs_search_slot() always leaves us at a
3015 * slot > 0, except if the btree is empty, which is impossible because
3016 * at least it has the inode item for this inode and all the items for
3017 * the root inode 256.
3018 */
3019 ASSERT(path->slots[0] > 0);
3020 path->slots[0]--;
3021 leaf = path->nodes[0];
3022 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3023 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
3024 /* No file extent items in the subvolume tree. */
3025 *last_extent_end_ret = 0;
3026 return 0;
3027 }
3028
3029 /*
3030 * For an inline extent, the disk_bytenr is where inline data starts at,
3031 * so first check if we have an inline extent item before checking if we
3032 * have an implicit hole (disk_bytenr == 0).
3033 */
3034 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
3035 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
3036 *last_extent_end_ret = btrfs_file_extent_end(path);
3037 return 0;
3038 }
3039
3040 /*
3041 * Find the last file extent item that is not a hole (when NO_HOLES is
3042 * not enabled). This should take at most 2 iterations in the worst
3043 * case: we have one hole file extent item at slot 0 of a leaf and
3044 * another hole file extent item as the last item in the previous leaf.
3045 * This is because we merge file extent items that represent holes.
3046 */
3047 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3048 while (disk_bytenr == 0) {
3049 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
3050 if (ret < 0) {
3051 return ret;
3052 } else if (ret > 0) {
3053 /* No file extent items that are not holes. */
3054 *last_extent_end_ret = 0;
3055 return 0;
3056 }
3057 leaf = path->nodes[0];
3058 ei = btrfs_item_ptr(leaf, path->slots[0],
3059 struct btrfs_file_extent_item);
3060 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3061 }
3062
3063 *last_extent_end_ret = btrfs_file_extent_end(path);
3064 return 0;
3065}
3066
3067int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3068 u64 start, u64 len)
3069{
3070 const u64 ino = btrfs_ino(inode);
3071 struct extent_state *cached_state = NULL;
3072 struct extent_state *delalloc_cached_state = NULL;
3073 struct btrfs_path *path;
3074 struct fiemap_cache cache = { 0 };
3075 struct btrfs_backref_share_check_ctx *backref_ctx;
3076 u64 last_extent_end;
3077 u64 prev_extent_end;
3078 u64 range_start;
3079 u64 range_end;
3080 const u64 sectorsize = inode->root->fs_info->sectorsize;
3081 bool stopped = false;
3082 int ret;
3083
3084 cache.entries_size = PAGE_SIZE / sizeof(struct btrfs_fiemap_entry);
3085 cache.entries = kmalloc_array(cache.entries_size,
3086 sizeof(struct btrfs_fiemap_entry),
3087 GFP_KERNEL);
3088 backref_ctx = btrfs_alloc_backref_share_check_ctx();
3089 path = btrfs_alloc_path();
3090 if (!cache.entries || !backref_ctx || !path) {
3091 ret = -ENOMEM;
3092 goto out;
3093 }
3094
3095restart:
3096 range_start = round_down(start, sectorsize);
3097 range_end = round_up(start + len, sectorsize);
3098 prev_extent_end = range_start;
3099
3100 lock_extent(&inode->io_tree, range_start, range_end, &cached_state);
3101
3102 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3103 if (ret < 0)
3104 goto out_unlock;
3105 btrfs_release_path(path);
3106
3107 path->reada = READA_FORWARD;
3108 ret = fiemap_search_slot(inode, path, range_start);
3109 if (ret < 0) {
3110 goto out_unlock;
3111 } else if (ret > 0) {
3112 /*
3113 * No file extent item found, but we may have delalloc between
3114 * the current offset and i_size. So check for that.
3115 */
3116 ret = 0;
3117 goto check_eof_delalloc;
3118 }
3119
3120 while (prev_extent_end < range_end) {
3121 struct extent_buffer *leaf = path->nodes[0];
3122 struct btrfs_file_extent_item *ei;
3123 struct btrfs_key key;
3124 u64 extent_end;
3125 u64 extent_len;
3126 u64 extent_offset = 0;
3127 u64 extent_gen;
3128 u64 disk_bytenr = 0;
3129 u64 flags = 0;
3130 int extent_type;
3131 u8 compression;
3132
3133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3134 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3135 break;
3136
3137 extent_end = btrfs_file_extent_end(path);
3138
3139 /*
3140 * The first iteration can leave us at an extent item that ends
3141 * before our range's start. Move to the next item.
3142 */
3143 if (extent_end <= range_start)
3144 goto next_item;
3145
3146 backref_ctx->curr_leaf_bytenr = leaf->start;
3147
3148 /* We have in implicit hole (NO_HOLES feature enabled). */
3149 if (prev_extent_end < key.offset) {
3150 const u64 hole_end = min(key.offset, range_end) - 1;
3151
3152 ret = fiemap_process_hole(inode, fieinfo, &cache,
3153 &delalloc_cached_state,
3154 backref_ctx, 0, 0, 0,
3155 prev_extent_end, hole_end);
3156 if (ret < 0) {
3157 goto out_unlock;
3158 } else if (ret > 0) {
3159 /* fiemap_fill_next_extent() told us to stop. */
3160 stopped = true;
3161 break;
3162 }
3163
3164 /* We've reached the end of the fiemap range, stop. */
3165 if (key.offset >= range_end) {
3166 stopped = true;
3167 break;
3168 }
3169 }
3170
3171 extent_len = extent_end - key.offset;
3172 ei = btrfs_item_ptr(leaf, path->slots[0],
3173 struct btrfs_file_extent_item);
3174 compression = btrfs_file_extent_compression(leaf, ei);
3175 extent_type = btrfs_file_extent_type(leaf, ei);
3176 extent_gen = btrfs_file_extent_generation(leaf, ei);
3177
3178 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3179 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3180 if (compression == BTRFS_COMPRESS_NONE)
3181 extent_offset = btrfs_file_extent_offset(leaf, ei);
3182 }
3183
3184 if (compression != BTRFS_COMPRESS_NONE)
3185 flags |= FIEMAP_EXTENT_ENCODED;
3186
3187 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3188 flags |= FIEMAP_EXTENT_DATA_INLINE;
3189 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3190 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3191 extent_len, flags);
3192 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3193 ret = fiemap_process_hole(inode, fieinfo, &cache,
3194 &delalloc_cached_state,
3195 backref_ctx,
3196 disk_bytenr, extent_offset,
3197 extent_gen, key.offset,
3198 extent_end - 1);
3199 } else if (disk_bytenr == 0) {
3200 /* We have an explicit hole. */
3201 ret = fiemap_process_hole(inode, fieinfo, &cache,
3202 &delalloc_cached_state,
3203 backref_ctx, 0, 0, 0,
3204 key.offset, extent_end - 1);
3205 } else {
3206 /* We have a regular extent. */
3207 if (fieinfo->fi_extents_max) {
3208 ret = btrfs_is_data_extent_shared(inode,
3209 disk_bytenr,
3210 extent_gen,
3211 backref_ctx);
3212 if (ret < 0)
3213 goto out_unlock;
3214 else if (ret > 0)
3215 flags |= FIEMAP_EXTENT_SHARED;
3216 }
3217
3218 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3219 disk_bytenr + extent_offset,
3220 extent_len, flags);
3221 }
3222
3223 if (ret < 0) {
3224 goto out_unlock;
3225 } else if (ret > 0) {
3226 /* emit_fiemap_extent() told us to stop. */
3227 stopped = true;
3228 break;
3229 }
3230
3231 prev_extent_end = extent_end;
3232next_item:
3233 if (fatal_signal_pending(current)) {
3234 ret = -EINTR;
3235 goto out_unlock;
3236 }
3237
3238 ret = fiemap_next_leaf_item(inode, path);
3239 if (ret < 0) {
3240 goto out_unlock;
3241 } else if (ret > 0) {
3242 /* No more file extent items for this inode. */
3243 break;
3244 }
3245 cond_resched();
3246 }
3247
3248check_eof_delalloc:
3249 if (!stopped && prev_extent_end < range_end) {
3250 ret = fiemap_process_hole(inode, fieinfo, &cache,
3251 &delalloc_cached_state, backref_ctx,
3252 0, 0, 0, prev_extent_end, range_end - 1);
3253 if (ret < 0)
3254 goto out_unlock;
3255 prev_extent_end = range_end;
3256 }
3257
3258 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3259 const u64 i_size = i_size_read(&inode->vfs_inode);
3260
3261 if (prev_extent_end < i_size) {
3262 u64 delalloc_start;
3263 u64 delalloc_end;
3264 bool delalloc;
3265
3266 delalloc = btrfs_find_delalloc_in_range(inode,
3267 prev_extent_end,
3268 i_size - 1,
3269 &delalloc_cached_state,
3270 &delalloc_start,
3271 &delalloc_end);
3272 if (!delalloc)
3273 cache.flags |= FIEMAP_EXTENT_LAST;
3274 } else {
3275 cache.flags |= FIEMAP_EXTENT_LAST;
3276 }
3277 }
3278
3279out_unlock:
3280 unlock_extent(&inode->io_tree, range_start, range_end, &cached_state);
3281
3282 if (ret == BTRFS_FIEMAP_FLUSH_CACHE) {
3283 btrfs_release_path(path);
3284 ret = flush_fiemap_cache(fieinfo, &cache);
3285 if (ret)
3286 goto out;
3287 len -= cache.next_search_offset - start;
3288 start = cache.next_search_offset;
3289 goto restart;
3290 } else if (ret < 0) {
3291 goto out;
3292 }
3293
3294 /*
3295 * Must free the path before emitting to the fiemap buffer because we
3296 * may have a non-cloned leaf and if the fiemap buffer is memory mapped
3297 * to a file, a write into it (through btrfs_page_mkwrite()) may trigger
3298 * waiting for an ordered extent that in order to complete needs to
3299 * modify that leaf, therefore leading to a deadlock.
3300 */
3301 btrfs_free_path(path);
3302 path = NULL;
3303
3304 ret = flush_fiemap_cache(fieinfo, &cache);
3305 if (ret)
3306 goto out;
3307
3308 ret = emit_last_fiemap_cache(fieinfo, &cache);
3309out:
3310 free_extent_state(delalloc_cached_state);
3311 kfree(cache.entries);
3312 btrfs_free_backref_share_ctx(backref_ctx);
3313 btrfs_free_path(path);
3314 return ret;
3315}
3316
3317static void __free_extent_buffer(struct extent_buffer *eb)
3318{
3319 kmem_cache_free(extent_buffer_cache, eb);
3320}
3321
3322static int extent_buffer_under_io(const struct extent_buffer *eb)
3323{
3324 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3325 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3326}
3327
3328static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio)
3329{
3330 struct btrfs_subpage *subpage;
3331
3332 lockdep_assert_held(&folio->mapping->i_private_lock);
3333
3334 if (folio_test_private(folio)) {
3335 subpage = folio_get_private(folio);
3336 if (atomic_read(&subpage->eb_refs))
3337 return true;
3338 /*
3339 * Even there is no eb refs here, we may still have
3340 * end_page_read() call relying on page::private.
3341 */
3342 if (atomic_read(&subpage->readers))
3343 return true;
3344 }
3345 return false;
3346}
3347
3348static void detach_extent_buffer_folio(struct extent_buffer *eb, struct folio *folio)
3349{
3350 struct btrfs_fs_info *fs_info = eb->fs_info;
3351 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3352
3353 /*
3354 * For mapped eb, we're going to change the folio private, which should
3355 * be done under the i_private_lock.
3356 */
3357 if (mapped)
3358 spin_lock(&folio->mapping->i_private_lock);
3359
3360 if (!folio_test_private(folio)) {
3361 if (mapped)
3362 spin_unlock(&folio->mapping->i_private_lock);
3363 return;
3364 }
3365
3366 if (fs_info->nodesize >= PAGE_SIZE) {
3367 /*
3368 * We do this since we'll remove the pages after we've
3369 * removed the eb from the radix tree, so we could race
3370 * and have this page now attached to the new eb. So
3371 * only clear folio if it's still connected to
3372 * this eb.
3373 */
3374 if (folio_test_private(folio) && folio_get_private(folio) == eb) {
3375 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3376 BUG_ON(folio_test_dirty(folio));
3377 BUG_ON(folio_test_writeback(folio));
3378 /* We need to make sure we haven't be attached to a new eb. */
3379 folio_detach_private(folio);
3380 }
3381 if (mapped)
3382 spin_unlock(&folio->mapping->i_private_lock);
3383 return;
3384 }
3385
3386 /*
3387 * For subpage, we can have dummy eb with folio private attached. In
3388 * this case, we can directly detach the private as such folio is only
3389 * attached to one dummy eb, no sharing.
3390 */
3391 if (!mapped) {
3392 btrfs_detach_subpage(fs_info, folio);
3393 return;
3394 }
3395
3396 btrfs_folio_dec_eb_refs(fs_info, folio);
3397
3398 /*
3399 * We can only detach the folio private if there are no other ebs in the
3400 * page range and no unfinished IO.
3401 */
3402 if (!folio_range_has_eb(fs_info, folio))
3403 btrfs_detach_subpage(fs_info, folio);
3404
3405 spin_unlock(&folio->mapping->i_private_lock);
3406}
3407
3408/* Release all pages attached to the extent buffer */
3409static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3410{
3411 ASSERT(!extent_buffer_under_io(eb));
3412
3413 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
3414 struct folio *folio = eb->folios[i];
3415
3416 if (!folio)
3417 continue;
3418
3419 detach_extent_buffer_folio(eb, folio);
3420
3421 /* One for when we allocated the folio. */
3422 folio_put(folio);
3423 }
3424}
3425
3426/*
3427 * Helper for releasing the extent buffer.
3428 */
3429static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3430{
3431 btrfs_release_extent_buffer_pages(eb);
3432 btrfs_leak_debug_del_eb(eb);
3433 __free_extent_buffer(eb);
3434}
3435
3436static struct extent_buffer *
3437__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3438 unsigned long len)
3439{
3440 struct extent_buffer *eb = NULL;
3441
3442 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3443 eb->start = start;
3444 eb->len = len;
3445 eb->fs_info = fs_info;
3446 init_rwsem(&eb->lock);
3447
3448 btrfs_leak_debug_add_eb(eb);
3449
3450 spin_lock_init(&eb->refs_lock);
3451 atomic_set(&eb->refs, 1);
3452
3453 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3454
3455 return eb;
3456}
3457
3458struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3459{
3460 struct extent_buffer *new;
3461 int num_folios = num_extent_folios(src);
3462 int ret;
3463
3464 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3465 if (new == NULL)
3466 return NULL;
3467
3468 /*
3469 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3470 * btrfs_release_extent_buffer() have different behavior for
3471 * UNMAPPED subpage extent buffer.
3472 */
3473 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3474
3475 ret = alloc_eb_folio_array(new, 0);
3476 if (ret) {
3477 btrfs_release_extent_buffer(new);
3478 return NULL;
3479 }
3480
3481 for (int i = 0; i < num_folios; i++) {
3482 struct folio *folio = new->folios[i];
3483 int ret;
3484
3485 ret = attach_extent_buffer_folio(new, folio, NULL);
3486 if (ret < 0) {
3487 btrfs_release_extent_buffer(new);
3488 return NULL;
3489 }
3490 WARN_ON(folio_test_dirty(folio));
3491 }
3492 copy_extent_buffer_full(new, src);
3493 set_extent_buffer_uptodate(new);
3494
3495 return new;
3496}
3497
3498struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3499 u64 start, unsigned long len)
3500{
3501 struct extent_buffer *eb;
3502 int num_folios = 0;
3503 int ret;
3504
3505 eb = __alloc_extent_buffer(fs_info, start, len);
3506 if (!eb)
3507 return NULL;
3508
3509 ret = alloc_eb_folio_array(eb, 0);
3510 if (ret)
3511 goto err;
3512
3513 num_folios = num_extent_folios(eb);
3514 for (int i = 0; i < num_folios; i++) {
3515 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
3516 if (ret < 0)
3517 goto err;
3518 }
3519
3520 set_extent_buffer_uptodate(eb);
3521 btrfs_set_header_nritems(eb, 0);
3522 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3523
3524 return eb;
3525err:
3526 for (int i = 0; i < num_folios; i++) {
3527 if (eb->folios[i]) {
3528 detach_extent_buffer_folio(eb, eb->folios[i]);
3529 __folio_put(eb->folios[i]);
3530 }
3531 }
3532 __free_extent_buffer(eb);
3533 return NULL;
3534}
3535
3536struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3537 u64 start)
3538{
3539 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3540}
3541
3542static void check_buffer_tree_ref(struct extent_buffer *eb)
3543{
3544 int refs;
3545 /*
3546 * The TREE_REF bit is first set when the extent_buffer is added
3547 * to the radix tree. It is also reset, if unset, when a new reference
3548 * is created by find_extent_buffer.
3549 *
3550 * It is only cleared in two cases: freeing the last non-tree
3551 * reference to the extent_buffer when its STALE bit is set or
3552 * calling release_folio when the tree reference is the only reference.
3553 *
3554 * In both cases, care is taken to ensure that the extent_buffer's
3555 * pages are not under io. However, release_folio can be concurrently
3556 * called with creating new references, which is prone to race
3557 * conditions between the calls to check_buffer_tree_ref in those
3558 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3559 *
3560 * The actual lifetime of the extent_buffer in the radix tree is
3561 * adequately protected by the refcount, but the TREE_REF bit and
3562 * its corresponding reference are not. To protect against this
3563 * class of races, we call check_buffer_tree_ref from the codepaths
3564 * which trigger io. Note that once io is initiated, TREE_REF can no
3565 * longer be cleared, so that is the moment at which any such race is
3566 * best fixed.
3567 */
3568 refs = atomic_read(&eb->refs);
3569 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3570 return;
3571
3572 spin_lock(&eb->refs_lock);
3573 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3574 atomic_inc(&eb->refs);
3575 spin_unlock(&eb->refs_lock);
3576}
3577
3578static void mark_extent_buffer_accessed(struct extent_buffer *eb)
3579{
3580 int num_folios= num_extent_folios(eb);
3581
3582 check_buffer_tree_ref(eb);
3583
3584 for (int i = 0; i < num_folios; i++)
3585 folio_mark_accessed(eb->folios[i]);
3586}
3587
3588struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3589 u64 start)
3590{
3591 struct extent_buffer *eb;
3592
3593 eb = find_extent_buffer_nolock(fs_info, start);
3594 if (!eb)
3595 return NULL;
3596 /*
3597 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3598 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3599 * another task running free_extent_buffer() might have seen that flag
3600 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3601 * writeback flags not set) and it's still in the tree (flag
3602 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3603 * decrementing the extent buffer's reference count twice. So here we
3604 * could race and increment the eb's reference count, clear its stale
3605 * flag, mark it as dirty and drop our reference before the other task
3606 * finishes executing free_extent_buffer, which would later result in
3607 * an attempt to free an extent buffer that is dirty.
3608 */
3609 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3610 spin_lock(&eb->refs_lock);
3611 spin_unlock(&eb->refs_lock);
3612 }
3613 mark_extent_buffer_accessed(eb);
3614 return eb;
3615}
3616
3617#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3618struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3619 u64 start)
3620{
3621 struct extent_buffer *eb, *exists = NULL;
3622 int ret;
3623
3624 eb = find_extent_buffer(fs_info, start);
3625 if (eb)
3626 return eb;
3627 eb = alloc_dummy_extent_buffer(fs_info, start);
3628 if (!eb)
3629 return ERR_PTR(-ENOMEM);
3630 eb->fs_info = fs_info;
3631again:
3632 ret = radix_tree_preload(GFP_NOFS);
3633 if (ret) {
3634 exists = ERR_PTR(ret);
3635 goto free_eb;
3636 }
3637 spin_lock(&fs_info->buffer_lock);
3638 ret = radix_tree_insert(&fs_info->buffer_radix,
3639 start >> fs_info->sectorsize_bits, eb);
3640 spin_unlock(&fs_info->buffer_lock);
3641 radix_tree_preload_end();
3642 if (ret == -EEXIST) {
3643 exists = find_extent_buffer(fs_info, start);
3644 if (exists)
3645 goto free_eb;
3646 else
3647 goto again;
3648 }
3649 check_buffer_tree_ref(eb);
3650 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3651
3652 return eb;
3653free_eb:
3654 btrfs_release_extent_buffer(eb);
3655 return exists;
3656}
3657#endif
3658
3659static struct extent_buffer *grab_extent_buffer(
3660 struct btrfs_fs_info *fs_info, struct page *page)
3661{
3662 struct folio *folio = page_folio(page);
3663 struct extent_buffer *exists;
3664
3665 /*
3666 * For subpage case, we completely rely on radix tree to ensure we
3667 * don't try to insert two ebs for the same bytenr. So here we always
3668 * return NULL and just continue.
3669 */
3670 if (fs_info->nodesize < PAGE_SIZE)
3671 return NULL;
3672
3673 /* Page not yet attached to an extent buffer */
3674 if (!folio_test_private(folio))
3675 return NULL;
3676
3677 /*
3678 * We could have already allocated an eb for this page and attached one
3679 * so lets see if we can get a ref on the existing eb, and if we can we
3680 * know it's good and we can just return that one, else we know we can
3681 * just overwrite folio private.
3682 */
3683 exists = folio_get_private(folio);
3684 if (atomic_inc_not_zero(&exists->refs))
3685 return exists;
3686
3687 WARN_ON(PageDirty(page));
3688 folio_detach_private(folio);
3689 return NULL;
3690}
3691
3692static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3693{
3694 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3695 btrfs_err(fs_info, "bad tree block start %llu", start);
3696 return -EINVAL;
3697 }
3698
3699 if (fs_info->nodesize < PAGE_SIZE &&
3700 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3701 btrfs_err(fs_info,
3702 "tree block crosses page boundary, start %llu nodesize %u",
3703 start, fs_info->nodesize);
3704 return -EINVAL;
3705 }
3706 if (fs_info->nodesize >= PAGE_SIZE &&
3707 !PAGE_ALIGNED(start)) {
3708 btrfs_err(fs_info,
3709 "tree block is not page aligned, start %llu nodesize %u",
3710 start, fs_info->nodesize);
3711 return -EINVAL;
3712 }
3713 if (!IS_ALIGNED(start, fs_info->nodesize) &&
3714 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3715 btrfs_warn(fs_info,
3716"tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3717 start, fs_info->nodesize);
3718 }
3719 return 0;
3720}
3721
3722
3723/*
3724 * Return 0 if eb->folios[i] is attached to btree inode successfully.
3725 * Return >0 if there is already another extent buffer for the range,
3726 * and @found_eb_ret would be updated.
3727 * Return -EAGAIN if the filemap has an existing folio but with different size
3728 * than @eb.
3729 * The caller needs to free the existing folios and retry using the same order.
3730 */
3731static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3732 struct extent_buffer **found_eb_ret)
3733{
3734
3735 struct btrfs_fs_info *fs_info = eb->fs_info;
3736 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3737 const unsigned long index = eb->start >> PAGE_SHIFT;
3738 struct folio *existing_folio;
3739 int ret;
3740
3741 ASSERT(found_eb_ret);
3742
3743 /* Caller should ensure the folio exists. */
3744 ASSERT(eb->folios[i]);
3745
3746retry:
3747 ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3748 GFP_NOFS | __GFP_NOFAIL);
3749 if (!ret)
3750 return 0;
3751
3752 existing_folio = filemap_lock_folio(mapping, index + i);
3753 /* The page cache only exists for a very short time, just retry. */
3754 if (IS_ERR(existing_folio))
3755 goto retry;
3756
3757 /* For now, we should only have single-page folios for btree inode. */
3758 ASSERT(folio_nr_pages(existing_folio) == 1);
3759
3760 if (folio_size(existing_folio) != eb->folio_size) {
3761 folio_unlock(existing_folio);
3762 folio_put(existing_folio);
3763 return -EAGAIN;
3764 }
3765
3766 if (fs_info->nodesize < PAGE_SIZE) {
3767 /*
3768 * We're going to reuse the existing page, can drop our page
3769 * and subpage structure now.
3770 */
3771 __free_page(folio_page(eb->folios[i], 0));
3772 eb->folios[i] = existing_folio;
3773 } else {
3774 struct extent_buffer *existing_eb;
3775
3776 existing_eb = grab_extent_buffer(fs_info,
3777 folio_page(existing_folio, 0));
3778 if (existing_eb) {
3779 /* The extent buffer still exists, we can use it directly. */
3780 *found_eb_ret = existing_eb;
3781 folio_unlock(existing_folio);
3782 folio_put(existing_folio);
3783 return 1;
3784 }
3785 /* The extent buffer no longer exists, we can reuse the folio. */
3786 __free_page(folio_page(eb->folios[i], 0));
3787 eb->folios[i] = existing_folio;
3788 }
3789 return 0;
3790}
3791
3792struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3793 u64 start, u64 owner_root, int level)
3794{
3795 unsigned long len = fs_info->nodesize;
3796 int num_folios;
3797 int attached = 0;
3798 struct extent_buffer *eb;
3799 struct extent_buffer *existing_eb = NULL;
3800 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3801 struct btrfs_subpage *prealloc = NULL;
3802 u64 lockdep_owner = owner_root;
3803 bool page_contig = true;
3804 int uptodate = 1;
3805 int ret;
3806
3807 if (check_eb_alignment(fs_info, start))
3808 return ERR_PTR(-EINVAL);
3809
3810#if BITS_PER_LONG == 32
3811 if (start >= MAX_LFS_FILESIZE) {
3812 btrfs_err_rl(fs_info,
3813 "extent buffer %llu is beyond 32bit page cache limit", start);
3814 btrfs_err_32bit_limit(fs_info);
3815 return ERR_PTR(-EOVERFLOW);
3816 }
3817 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3818 btrfs_warn_32bit_limit(fs_info);
3819#endif
3820
3821 eb = find_extent_buffer(fs_info, start);
3822 if (eb)
3823 return eb;
3824
3825 eb = __alloc_extent_buffer(fs_info, start, len);
3826 if (!eb)
3827 return ERR_PTR(-ENOMEM);
3828
3829 /*
3830 * The reloc trees are just snapshots, so we need them to appear to be
3831 * just like any other fs tree WRT lockdep.
3832 */
3833 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3834 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3835
3836 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3837
3838 /*
3839 * Preallocate folio private for subpage case, so that we won't
3840 * allocate memory with i_private_lock nor page lock hold.
3841 *
3842 * The memory will be freed by attach_extent_buffer_page() or freed
3843 * manually if we exit earlier.
3844 */
3845 if (fs_info->nodesize < PAGE_SIZE) {
3846 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3847 if (IS_ERR(prealloc)) {
3848 ret = PTR_ERR(prealloc);
3849 goto out;
3850 }
3851 }
3852
3853reallocate:
3854 /* Allocate all pages first. */
3855 ret = alloc_eb_folio_array(eb, __GFP_NOFAIL);
3856 if (ret < 0) {
3857 btrfs_free_subpage(prealloc);
3858 goto out;
3859 }
3860
3861 num_folios = num_extent_folios(eb);
3862 /* Attach all pages to the filemap. */
3863 for (int i = 0; i < num_folios; i++) {
3864 struct folio *folio;
3865
3866 ret = attach_eb_folio_to_filemap(eb, i, &existing_eb);
3867 if (ret > 0) {
3868 ASSERT(existing_eb);
3869 goto out;
3870 }
3871
3872 /*
3873 * TODO: Special handling for a corner case where the order of
3874 * folios mismatch between the new eb and filemap.
3875 *
3876 * This happens when:
3877 *
3878 * - the new eb is using higher order folio
3879 *
3880 * - the filemap is still using 0-order folios for the range
3881 * This can happen at the previous eb allocation, and we don't
3882 * have higher order folio for the call.
3883 *
3884 * - the existing eb has already been freed
3885 *
3886 * In this case, we have to free the existing folios first, and
3887 * re-allocate using the same order.
3888 * Thankfully this is not going to happen yet, as we're still
3889 * using 0-order folios.
3890 */
3891 if (unlikely(ret == -EAGAIN)) {
3892 ASSERT(0);
3893 goto reallocate;
3894 }
3895 attached++;
3896
3897 /*
3898 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3899 * reliable, as we may choose to reuse the existing page cache
3900 * and free the allocated page.
3901 */
3902 folio = eb->folios[i];
3903 eb->folio_size = folio_size(folio);
3904 eb->folio_shift = folio_shift(folio);
3905 spin_lock(&mapping->i_private_lock);
3906 /* Should not fail, as we have preallocated the memory */
3907 ret = attach_extent_buffer_folio(eb, folio, prealloc);
3908 ASSERT(!ret);
3909 /*
3910 * To inform we have extra eb under allocation, so that
3911 * detach_extent_buffer_page() won't release the folio private
3912 * when the eb hasn't yet been inserted into radix tree.
3913 *
3914 * The ref will be decreased when the eb released the page, in
3915 * detach_extent_buffer_page().
3916 * Thus needs no special handling in error path.
3917 */
3918 btrfs_folio_inc_eb_refs(fs_info, folio);
3919 spin_unlock(&mapping->i_private_lock);
3920
3921 WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3922
3923 /*
3924 * Check if the current page is physically contiguous with previous eb
3925 * page.
3926 * At this stage, either we allocated a large folio, thus @i
3927 * would only be 0, or we fall back to per-page allocation.
3928 */
3929 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3930 page_contig = false;
3931
3932 if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
3933 uptodate = 0;
3934
3935 /*
3936 * We can't unlock the pages just yet since the extent buffer
3937 * hasn't been properly inserted in the radix tree, this
3938 * opens a race with btree_release_folio which can free a page
3939 * while we are still filling in all pages for the buffer and
3940 * we could crash.
3941 */
3942 }
3943 if (uptodate)
3944 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3945 /* All pages are physically contiguous, can skip cross page handling. */
3946 if (page_contig)
3947 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3948again:
3949 ret = radix_tree_preload(GFP_NOFS);
3950 if (ret)
3951 goto out;
3952
3953 spin_lock(&fs_info->buffer_lock);
3954 ret = radix_tree_insert(&fs_info->buffer_radix,
3955 start >> fs_info->sectorsize_bits, eb);
3956 spin_unlock(&fs_info->buffer_lock);
3957 radix_tree_preload_end();
3958 if (ret == -EEXIST) {
3959 ret = 0;
3960 existing_eb = find_extent_buffer(fs_info, start);
3961 if (existing_eb)
3962 goto out;
3963 else
3964 goto again;
3965 }
3966 /* add one reference for the tree */
3967 check_buffer_tree_ref(eb);
3968 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3969
3970 /*
3971 * Now it's safe to unlock the pages because any calls to
3972 * btree_release_folio will correctly detect that a page belongs to a
3973 * live buffer and won't free them prematurely.
3974 */
3975 for (int i = 0; i < num_folios; i++)
3976 unlock_page(folio_page(eb->folios[i], 0));
3977 return eb;
3978
3979out:
3980 WARN_ON(!atomic_dec_and_test(&eb->refs));
3981
3982 /*
3983 * Any attached folios need to be detached before we unlock them. This
3984 * is because when we're inserting our new folios into the mapping, and
3985 * then attaching our eb to that folio. If we fail to insert our folio
3986 * we'll lookup the folio for that index, and grab that EB. We do not
3987 * want that to grab this eb, as we're getting ready to free it. So we
3988 * have to detach it first and then unlock it.
3989 *
3990 * We have to drop our reference and NULL it out here because in the
3991 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3992 * Below when we call btrfs_release_extent_buffer() we will call
3993 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3994 * case. If we left eb->folios[i] populated in the subpage case we'd
3995 * double put our reference and be super sad.
3996 */
3997 for (int i = 0; i < attached; i++) {
3998 ASSERT(eb->folios[i]);
3999 detach_extent_buffer_folio(eb, eb->folios[i]);
4000 unlock_page(folio_page(eb->folios[i], 0));
4001 folio_put(eb->folios[i]);
4002 eb->folios[i] = NULL;
4003 }
4004 /*
4005 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
4006 * so it can be cleaned up without utlizing page->mapping.
4007 */
4008 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4009
4010 btrfs_release_extent_buffer(eb);
4011 if (ret < 0)
4012 return ERR_PTR(ret);
4013 ASSERT(existing_eb);
4014 return existing_eb;
4015}
4016
4017static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4018{
4019 struct extent_buffer *eb =
4020 container_of(head, struct extent_buffer, rcu_head);
4021
4022 __free_extent_buffer(eb);
4023}
4024
4025static int release_extent_buffer(struct extent_buffer *eb)
4026 __releases(&eb->refs_lock)
4027{
4028 lockdep_assert_held(&eb->refs_lock);
4029
4030 WARN_ON(atomic_read(&eb->refs) == 0);
4031 if (atomic_dec_and_test(&eb->refs)) {
4032 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4033 struct btrfs_fs_info *fs_info = eb->fs_info;
4034
4035 spin_unlock(&eb->refs_lock);
4036
4037 spin_lock(&fs_info->buffer_lock);
4038 radix_tree_delete(&fs_info->buffer_radix,
4039 eb->start >> fs_info->sectorsize_bits);
4040 spin_unlock(&fs_info->buffer_lock);
4041 } else {
4042 spin_unlock(&eb->refs_lock);
4043 }
4044
4045 btrfs_leak_debug_del_eb(eb);
4046 /* Should be safe to release our pages at this point */
4047 btrfs_release_extent_buffer_pages(eb);
4048#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4049 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
4050 __free_extent_buffer(eb);
4051 return 1;
4052 }
4053#endif
4054 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4055 return 1;
4056 }
4057 spin_unlock(&eb->refs_lock);
4058
4059 return 0;
4060}
4061
4062void free_extent_buffer(struct extent_buffer *eb)
4063{
4064 int refs;
4065 if (!eb)
4066 return;
4067
4068 refs = atomic_read(&eb->refs);
4069 while (1) {
4070 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
4071 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
4072 refs == 1))
4073 break;
4074 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
4075 return;
4076 }
4077
4078 spin_lock(&eb->refs_lock);
4079 if (atomic_read(&eb->refs) == 2 &&
4080 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4081 !extent_buffer_under_io(eb) &&
4082 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4083 atomic_dec(&eb->refs);
4084
4085 /*
4086 * I know this is terrible, but it's temporary until we stop tracking
4087 * the uptodate bits and such for the extent buffers.
4088 */
4089 release_extent_buffer(eb);
4090}
4091
4092void free_extent_buffer_stale(struct extent_buffer *eb)
4093{
4094 if (!eb)
4095 return;
4096
4097 spin_lock(&eb->refs_lock);
4098 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4099
4100 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4101 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4102 atomic_dec(&eb->refs);
4103 release_extent_buffer(eb);
4104}
4105
4106static void btree_clear_folio_dirty(struct folio *folio)
4107{
4108 ASSERT(folio_test_dirty(folio));
4109 ASSERT(folio_test_locked(folio));
4110 folio_clear_dirty_for_io(folio);
4111 xa_lock_irq(&folio->mapping->i_pages);
4112 if (!folio_test_dirty(folio))
4113 __xa_clear_mark(&folio->mapping->i_pages,
4114 folio_index(folio), PAGECACHE_TAG_DIRTY);
4115 xa_unlock_irq(&folio->mapping->i_pages);
4116}
4117
4118static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4119{
4120 struct btrfs_fs_info *fs_info = eb->fs_info;
4121 struct folio *folio = eb->folios[0];
4122 bool last;
4123
4124 /* btree_clear_folio_dirty() needs page locked. */
4125 folio_lock(folio);
4126 last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
4127 if (last)
4128 btree_clear_folio_dirty(folio);
4129 folio_unlock(folio);
4130 WARN_ON(atomic_read(&eb->refs) == 0);
4131}
4132
4133void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
4134 struct extent_buffer *eb)
4135{
4136 struct btrfs_fs_info *fs_info = eb->fs_info;
4137 int num_folios;
4138
4139 btrfs_assert_tree_write_locked(eb);
4140
4141 if (trans && btrfs_header_generation(eb) != trans->transid)
4142 return;
4143
4144 /*
4145 * Instead of clearing the dirty flag off of the buffer, mark it as
4146 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
4147 * write-ordering in zoned mode, without the need to later re-dirty
4148 * the extent_buffer.
4149 *
4150 * The actual zeroout of the buffer will happen later in
4151 * btree_csum_one_bio.
4152 */
4153 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4154 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
4155 return;
4156 }
4157
4158 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
4159 return;
4160
4161 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
4162 fs_info->dirty_metadata_batch);
4163
4164 if (eb->fs_info->nodesize < PAGE_SIZE)
4165 return clear_subpage_extent_buffer_dirty(eb);
4166
4167 num_folios = num_extent_folios(eb);
4168 for (int i = 0; i < num_folios; i++) {
4169 struct folio *folio = eb->folios[i];
4170
4171 if (!folio_test_dirty(folio))
4172 continue;
4173 folio_lock(folio);
4174 btree_clear_folio_dirty(folio);
4175 folio_unlock(folio);
4176 }
4177 WARN_ON(atomic_read(&eb->refs) == 0);
4178}
4179
4180void set_extent_buffer_dirty(struct extent_buffer *eb)
4181{
4182 int num_folios;
4183 bool was_dirty;
4184
4185 check_buffer_tree_ref(eb);
4186
4187 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4188
4189 num_folios = num_extent_folios(eb);
4190 WARN_ON(atomic_read(&eb->refs) == 0);
4191 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4192 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
4193
4194 if (!was_dirty) {
4195 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
4196
4197 /*
4198 * For subpage case, we can have other extent buffers in the
4199 * same page, and in clear_subpage_extent_buffer_dirty() we
4200 * have to clear page dirty without subpage lock held.
4201 * This can cause race where our page gets dirty cleared after
4202 * we just set it.
4203 *
4204 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4205 * its page for other reasons, we can use page lock to prevent
4206 * the above race.
4207 */
4208 if (subpage)
4209 lock_page(folio_page(eb->folios[0], 0));
4210 for (int i = 0; i < num_folios; i++)
4211 btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
4212 eb->start, eb->len);
4213 if (subpage)
4214 unlock_page(folio_page(eb->folios[0], 0));
4215 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
4216 eb->len,
4217 eb->fs_info->dirty_metadata_batch);
4218 }
4219#ifdef CONFIG_BTRFS_DEBUG
4220 for (int i = 0; i < num_folios; i++)
4221 ASSERT(folio_test_dirty(eb->folios[i]));
4222#endif
4223}
4224
4225void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4226{
4227 struct btrfs_fs_info *fs_info = eb->fs_info;
4228 int num_folios = num_extent_folios(eb);
4229
4230 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4231 for (int i = 0; i < num_folios; i++) {
4232 struct folio *folio = eb->folios[i];
4233
4234 if (!folio)
4235 continue;
4236
4237 /*
4238 * This is special handling for metadata subpage, as regular
4239 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4240 */
4241 if (fs_info->nodesize >= PAGE_SIZE)
4242 folio_clear_uptodate(folio);
4243 else
4244 btrfs_subpage_clear_uptodate(fs_info, folio,
4245 eb->start, eb->len);
4246 }
4247}
4248
4249void set_extent_buffer_uptodate(struct extent_buffer *eb)
4250{
4251 struct btrfs_fs_info *fs_info = eb->fs_info;
4252 int num_folios = num_extent_folios(eb);
4253
4254 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4255 for (int i = 0; i < num_folios; i++) {
4256 struct folio *folio = eb->folios[i];
4257
4258 /*
4259 * This is special handling for metadata subpage, as regular
4260 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4261 */
4262 if (fs_info->nodesize >= PAGE_SIZE)
4263 folio_mark_uptodate(folio);
4264 else
4265 btrfs_subpage_set_uptodate(fs_info, folio,
4266 eb->start, eb->len);
4267 }
4268}
4269
4270static void end_bbio_meta_read(struct btrfs_bio *bbio)
4271{
4272 struct extent_buffer *eb = bbio->private;
4273 struct btrfs_fs_info *fs_info = eb->fs_info;
4274 bool uptodate = !bbio->bio.bi_status;
4275 struct folio_iter fi;
4276 u32 bio_offset = 0;
4277
4278 eb->read_mirror = bbio->mirror_num;
4279
4280 if (uptodate &&
4281 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
4282 uptodate = false;
4283
4284 if (uptodate) {
4285 set_extent_buffer_uptodate(eb);
4286 } else {
4287 clear_extent_buffer_uptodate(eb);
4288 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4289 }
4290
4291 bio_for_each_folio_all(fi, &bbio->bio) {
4292 struct folio *folio = fi.folio;
4293 u64 start = eb->start + bio_offset;
4294 u32 len = fi.length;
4295
4296 if (uptodate)
4297 btrfs_folio_set_uptodate(fs_info, folio, start, len);
4298 else
4299 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
4300
4301 bio_offset += len;
4302 }
4303
4304 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4305 smp_mb__after_atomic();
4306 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4307 free_extent_buffer(eb);
4308
4309 bio_put(&bbio->bio);
4310}
4311
4312int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4313 struct btrfs_tree_parent_check *check)
4314{
4315 struct btrfs_bio *bbio;
4316 bool ret;
4317
4318 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4319 return 0;
4320
4321 /*
4322 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4323 * operation, which could potentially still be in flight. In this case
4324 * we simply want to return an error.
4325 */
4326 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4327 return -EIO;
4328
4329 /* Someone else is already reading the buffer, just wait for it. */
4330 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
4331 goto done;
4332
4333 /*
4334 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
4335 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
4336 * started and finished reading the same eb. In this case, UPTODATE
4337 * will now be set, and we shouldn't read it in again.
4338 */
4339 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
4340 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4341 smp_mb__after_atomic();
4342 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4343 return 0;
4344 }
4345
4346 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4347 eb->read_mirror = 0;
4348 check_buffer_tree_ref(eb);
4349 atomic_inc(&eb->refs);
4350
4351 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
4352 REQ_OP_READ | REQ_META, eb->fs_info,
4353 end_bbio_meta_read, eb);
4354 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
4355 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
4356 bbio->file_offset = eb->start;
4357 memcpy(&bbio->parent_check, check, sizeof(*check));
4358 if (eb->fs_info->nodesize < PAGE_SIZE) {
4359 ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
4360 eb->start - folio_pos(eb->folios[0]));
4361 ASSERT(ret);
4362 } else {
4363 int num_folios = num_extent_folios(eb);
4364
4365 for (int i = 0; i < num_folios; i++) {
4366 struct folio *folio = eb->folios[i];
4367
4368 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
4369 ASSERT(ret);
4370 }
4371 }
4372 btrfs_submit_bio(bbio, mirror_num);
4373
4374done:
4375 if (wait == WAIT_COMPLETE) {
4376 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
4377 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4378 return -EIO;
4379 }
4380
4381 return 0;
4382}
4383
4384static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4385 unsigned long len)
4386{
4387 btrfs_warn(eb->fs_info,
4388 "access to eb bytenr %llu len %u out of range start %lu len %lu",
4389 eb->start, eb->len, start, len);
4390 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4391
4392 return true;
4393}
4394
4395/*
4396 * Check if the [start, start + len) range is valid before reading/writing
4397 * the eb.
4398 * NOTE: @start and @len are offset inside the eb, not logical address.
4399 *
4400 * Caller should not touch the dst/src memory if this function returns error.
4401 */
4402static inline int check_eb_range(const struct extent_buffer *eb,
4403 unsigned long start, unsigned long len)
4404{
4405 unsigned long offset;
4406
4407 /* start, start + len should not go beyond eb->len nor overflow */
4408 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4409 return report_eb_range(eb, start, len);
4410
4411 return false;
4412}
4413
4414void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4415 unsigned long start, unsigned long len)
4416{
4417 const int unit_size = eb->folio_size;
4418 size_t cur;
4419 size_t offset;
4420 char *dst = (char *)dstv;
4421 unsigned long i = get_eb_folio_index(eb, start);
4422
4423 if (check_eb_range(eb, start, len)) {
4424 /*
4425 * Invalid range hit, reset the memory, so callers won't get
4426 * some random garbage for their uninitialized memory.
4427 */
4428 memset(dstv, 0, len);
4429 return;
4430 }
4431
4432 if (eb->addr) {
4433 memcpy(dstv, eb->addr + start, len);
4434 return;
4435 }
4436
4437 offset = get_eb_offset_in_folio(eb, start);
4438
4439 while (len > 0) {
4440 char *kaddr;
4441
4442 cur = min(len, unit_size - offset);
4443 kaddr = folio_address(eb->folios[i]);
4444 memcpy(dst, kaddr + offset, cur);
4445
4446 dst += cur;
4447 len -= cur;
4448 offset = 0;
4449 i++;
4450 }
4451}
4452
4453int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4454 void __user *dstv,
4455 unsigned long start, unsigned long len)
4456{
4457 const int unit_size = eb->folio_size;
4458 size_t cur;
4459 size_t offset;
4460 char __user *dst = (char __user *)dstv;
4461 unsigned long i = get_eb_folio_index(eb, start);
4462 int ret = 0;
4463
4464 WARN_ON(start > eb->len);
4465 WARN_ON(start + len > eb->start + eb->len);
4466
4467 if (eb->addr) {
4468 if (copy_to_user_nofault(dstv, eb->addr + start, len))
4469 ret = -EFAULT;
4470 return ret;
4471 }
4472
4473 offset = get_eb_offset_in_folio(eb, start);
4474
4475 while (len > 0) {
4476 char *kaddr;
4477
4478 cur = min(len, unit_size - offset);
4479 kaddr = folio_address(eb->folios[i]);
4480 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4481 ret = -EFAULT;
4482 break;
4483 }
4484
4485 dst += cur;
4486 len -= cur;
4487 offset = 0;
4488 i++;
4489 }
4490
4491 return ret;
4492}
4493
4494int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4495 unsigned long start, unsigned long len)
4496{
4497 const int unit_size = eb->folio_size;
4498 size_t cur;
4499 size_t offset;
4500 char *kaddr;
4501 char *ptr = (char *)ptrv;
4502 unsigned long i = get_eb_folio_index(eb, start);
4503 int ret = 0;
4504
4505 if (check_eb_range(eb, start, len))
4506 return -EINVAL;
4507
4508 if (eb->addr)
4509 return memcmp(ptrv, eb->addr + start, len);
4510
4511 offset = get_eb_offset_in_folio(eb, start);
4512
4513 while (len > 0) {
4514 cur = min(len, unit_size - offset);
4515 kaddr = folio_address(eb->folios[i]);
4516 ret = memcmp(ptr, kaddr + offset, cur);
4517 if (ret)
4518 break;
4519
4520 ptr += cur;
4521 len -= cur;
4522 offset = 0;
4523 i++;
4524 }
4525 return ret;
4526}
4527
4528/*
4529 * Check that the extent buffer is uptodate.
4530 *
4531 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4532 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4533 */
4534static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
4535{
4536 struct btrfs_fs_info *fs_info = eb->fs_info;
4537 struct folio *folio = eb->folios[i];
4538
4539 ASSERT(folio);
4540
4541 /*
4542 * If we are using the commit root we could potentially clear a page
4543 * Uptodate while we're using the extent buffer that we've previously
4544 * looked up. We don't want to complain in this case, as the page was
4545 * valid before, we just didn't write it out. Instead we want to catch
4546 * the case where we didn't actually read the block properly, which
4547 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4548 */
4549 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4550 return;
4551
4552 if (fs_info->nodesize < PAGE_SIZE) {
4553 struct folio *folio = eb->folios[0];
4554
4555 ASSERT(i == 0);
4556 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
4557 eb->start, eb->len)))
4558 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
4559 } else {
4560 WARN_ON(!folio_test_uptodate(folio));
4561 }
4562}
4563
4564static void __write_extent_buffer(const struct extent_buffer *eb,
4565 const void *srcv, unsigned long start,
4566 unsigned long len, bool use_memmove)
4567{
4568 const int unit_size = eb->folio_size;
4569 size_t cur;
4570 size_t offset;
4571 char *kaddr;
4572 char *src = (char *)srcv;
4573 unsigned long i = get_eb_folio_index(eb, start);
4574 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
4575 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4576
4577 if (check_eb_range(eb, start, len))
4578 return;
4579
4580 if (eb->addr) {
4581 if (use_memmove)
4582 memmove(eb->addr + start, srcv, len);
4583 else
4584 memcpy(eb->addr + start, srcv, len);
4585 return;
4586 }
4587
4588 offset = get_eb_offset_in_folio(eb, start);
4589
4590 while (len > 0) {
4591 if (check_uptodate)
4592 assert_eb_folio_uptodate(eb, i);
4593
4594 cur = min(len, unit_size - offset);
4595 kaddr = folio_address(eb->folios[i]);
4596 if (use_memmove)
4597 memmove(kaddr + offset, src, cur);
4598 else
4599 memcpy(kaddr + offset, src, cur);
4600
4601 src += cur;
4602 len -= cur;
4603 offset = 0;
4604 i++;
4605 }
4606}
4607
4608void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4609 unsigned long start, unsigned long len)
4610{
4611 return __write_extent_buffer(eb, srcv, start, len, false);
4612}
4613
4614static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4615 unsigned long start, unsigned long len)
4616{
4617 const int unit_size = eb->folio_size;
4618 unsigned long cur = start;
4619
4620 if (eb->addr) {
4621 memset(eb->addr + start, c, len);
4622 return;
4623 }
4624
4625 while (cur < start + len) {
4626 unsigned long index = get_eb_folio_index(eb, cur);
4627 unsigned int offset = get_eb_offset_in_folio(eb, cur);
4628 unsigned int cur_len = min(start + len - cur, unit_size - offset);
4629
4630 assert_eb_folio_uptodate(eb, index);
4631 memset(folio_address(eb->folios[index]) + offset, c, cur_len);
4632
4633 cur += cur_len;
4634 }
4635}
4636
4637void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4638 unsigned long len)
4639{
4640 if (check_eb_range(eb, start, len))
4641 return;
4642 return memset_extent_buffer(eb, 0, start, len);
4643}
4644
4645void copy_extent_buffer_full(const struct extent_buffer *dst,
4646 const struct extent_buffer *src)
4647{
4648 const int unit_size = src->folio_size;
4649 unsigned long cur = 0;
4650
4651 ASSERT(dst->len == src->len);
4652
4653 while (cur < src->len) {
4654 unsigned long index = get_eb_folio_index(src, cur);
4655 unsigned long offset = get_eb_offset_in_folio(src, cur);
4656 unsigned long cur_len = min(src->len, unit_size - offset);
4657 void *addr = folio_address(src->folios[index]) + offset;
4658
4659 write_extent_buffer(dst, addr, cur, cur_len);
4660
4661 cur += cur_len;
4662 }
4663}
4664
4665void copy_extent_buffer(const struct extent_buffer *dst,
4666 const struct extent_buffer *src,
4667 unsigned long dst_offset, unsigned long src_offset,
4668 unsigned long len)
4669{
4670 const int unit_size = dst->folio_size;
4671 u64 dst_len = dst->len;
4672 size_t cur;
4673 size_t offset;
4674 char *kaddr;
4675 unsigned long i = get_eb_folio_index(dst, dst_offset);
4676
4677 if (check_eb_range(dst, dst_offset, len) ||
4678 check_eb_range(src, src_offset, len))
4679 return;
4680
4681 WARN_ON(src->len != dst_len);
4682
4683 offset = get_eb_offset_in_folio(dst, dst_offset);
4684
4685 while (len > 0) {
4686 assert_eb_folio_uptodate(dst, i);
4687
4688 cur = min(len, (unsigned long)(unit_size - offset));
4689
4690 kaddr = folio_address(dst->folios[i]);
4691 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4692
4693 src_offset += cur;
4694 len -= cur;
4695 offset = 0;
4696 i++;
4697 }
4698}
4699
4700/*
4701 * Calculate the folio and offset of the byte containing the given bit number.
4702 *
4703 * @eb: the extent buffer
4704 * @start: offset of the bitmap item in the extent buffer
4705 * @nr: bit number
4706 * @folio_index: return index of the folio in the extent buffer that contains
4707 * the given bit number
4708 * @folio_offset: return offset into the folio given by folio_index
4709 *
4710 * This helper hides the ugliness of finding the byte in an extent buffer which
4711 * contains a given bit.
4712 */
4713static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4714 unsigned long start, unsigned long nr,
4715 unsigned long *folio_index,
4716 size_t *folio_offset)
4717{
4718 size_t byte_offset = BIT_BYTE(nr);
4719 size_t offset;
4720
4721 /*
4722 * The byte we want is the offset of the extent buffer + the offset of
4723 * the bitmap item in the extent buffer + the offset of the byte in the
4724 * bitmap item.
4725 */
4726 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
4727
4728 *folio_index = offset >> eb->folio_shift;
4729 *folio_offset = offset_in_eb_folio(eb, offset);
4730}
4731
4732/*
4733 * Determine whether a bit in a bitmap item is set.
4734 *
4735 * @eb: the extent buffer
4736 * @start: offset of the bitmap item in the extent buffer
4737 * @nr: bit number to test
4738 */
4739int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4740 unsigned long nr)
4741{
4742 unsigned long i;
4743 size_t offset;
4744 u8 *kaddr;
4745
4746 eb_bitmap_offset(eb, start, nr, &i, &offset);
4747 assert_eb_folio_uptodate(eb, i);
4748 kaddr = folio_address(eb->folios[i]);
4749 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4750}
4751
4752static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4753{
4754 unsigned long index = get_eb_folio_index(eb, bytenr);
4755
4756 if (check_eb_range(eb, bytenr, 1))
4757 return NULL;
4758 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4759}
4760
4761/*
4762 * Set an area of a bitmap to 1.
4763 *
4764 * @eb: the extent buffer
4765 * @start: offset of the bitmap item in the extent buffer
4766 * @pos: bit number of the first bit
4767 * @len: number of bits to set
4768 */
4769void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4770 unsigned long pos, unsigned long len)
4771{
4772 unsigned int first_byte = start + BIT_BYTE(pos);
4773 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4774 const bool same_byte = (first_byte == last_byte);
4775 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4776 u8 *kaddr;
4777
4778 if (same_byte)
4779 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4780
4781 /* Handle the first byte. */
4782 kaddr = extent_buffer_get_byte(eb, first_byte);
4783 *kaddr |= mask;
4784 if (same_byte)
4785 return;
4786
4787 /* Handle the byte aligned part. */
4788 ASSERT(first_byte + 1 <= last_byte);
4789 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4790
4791 /* Handle the last byte. */
4792 kaddr = extent_buffer_get_byte(eb, last_byte);
4793 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4794}
4795
4796
4797/*
4798 * Clear an area of a bitmap.
4799 *
4800 * @eb: the extent buffer
4801 * @start: offset of the bitmap item in the extent buffer
4802 * @pos: bit number of the first bit
4803 * @len: number of bits to clear
4804 */
4805void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4806 unsigned long start, unsigned long pos,
4807 unsigned long len)
4808{
4809 unsigned int first_byte = start + BIT_BYTE(pos);
4810 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4811 const bool same_byte = (first_byte == last_byte);
4812 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4813 u8 *kaddr;
4814
4815 if (same_byte)
4816 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4817
4818 /* Handle the first byte. */
4819 kaddr = extent_buffer_get_byte(eb, first_byte);
4820 *kaddr &= ~mask;
4821 if (same_byte)
4822 return;
4823
4824 /* Handle the byte aligned part. */
4825 ASSERT(first_byte + 1 <= last_byte);
4826 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4827
4828 /* Handle the last byte. */
4829 kaddr = extent_buffer_get_byte(eb, last_byte);
4830 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4831}
4832
4833static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4834{
4835 unsigned long distance = (src > dst) ? src - dst : dst - src;
4836 return distance < len;
4837}
4838
4839void memcpy_extent_buffer(const struct extent_buffer *dst,
4840 unsigned long dst_offset, unsigned long src_offset,
4841 unsigned long len)
4842{
4843 const int unit_size = dst->folio_size;
4844 unsigned long cur_off = 0;
4845
4846 if (check_eb_range(dst, dst_offset, len) ||
4847 check_eb_range(dst, src_offset, len))
4848 return;
4849
4850 if (dst->addr) {
4851 const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4852
4853 if (use_memmove)
4854 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4855 else
4856 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4857 return;
4858 }
4859
4860 while (cur_off < len) {
4861 unsigned long cur_src = cur_off + src_offset;
4862 unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4863 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4864 unsigned long cur_len = min(src_offset + len - cur_src,
4865 unit_size - folio_off);
4866 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4867 const bool use_memmove = areas_overlap(src_offset + cur_off,
4868 dst_offset + cur_off, cur_len);
4869
4870 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4871 use_memmove);
4872 cur_off += cur_len;
4873 }
4874}
4875
4876void memmove_extent_buffer(const struct extent_buffer *dst,
4877 unsigned long dst_offset, unsigned long src_offset,
4878 unsigned long len)
4879{
4880 unsigned long dst_end = dst_offset + len - 1;
4881 unsigned long src_end = src_offset + len - 1;
4882
4883 if (check_eb_range(dst, dst_offset, len) ||
4884 check_eb_range(dst, src_offset, len))
4885 return;
4886
4887 if (dst_offset < src_offset) {
4888 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4889 return;
4890 }
4891
4892 if (dst->addr) {
4893 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4894 return;
4895 }
4896
4897 while (len > 0) {
4898 unsigned long src_i;
4899 size_t cur;
4900 size_t dst_off_in_folio;
4901 size_t src_off_in_folio;
4902 void *src_addr;
4903 bool use_memmove;
4904
4905 src_i = get_eb_folio_index(dst, src_end);
4906
4907 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4908 src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4909
4910 cur = min_t(unsigned long, len, src_off_in_folio + 1);
4911 cur = min(cur, dst_off_in_folio + 1);
4912
4913 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4914 cur + 1;
4915 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4916 cur);
4917
4918 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4919 use_memmove);
4920
4921 dst_end -= cur;
4922 src_end -= cur;
4923 len -= cur;
4924 }
4925}
4926
4927#define GANG_LOOKUP_SIZE 16
4928static struct extent_buffer *get_next_extent_buffer(
4929 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4930{
4931 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4932 struct extent_buffer *found = NULL;
4933 u64 page_start = page_offset(page);
4934 u64 cur = page_start;
4935
4936 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4937 lockdep_assert_held(&fs_info->buffer_lock);
4938
4939 while (cur < page_start + PAGE_SIZE) {
4940 int ret;
4941 int i;
4942
4943 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4944 (void **)gang, cur >> fs_info->sectorsize_bits,
4945 min_t(unsigned int, GANG_LOOKUP_SIZE,
4946 PAGE_SIZE / fs_info->nodesize));
4947 if (ret == 0)
4948 goto out;
4949 for (i = 0; i < ret; i++) {
4950 /* Already beyond page end */
4951 if (gang[i]->start >= page_start + PAGE_SIZE)
4952 goto out;
4953 /* Found one */
4954 if (gang[i]->start >= bytenr) {
4955 found = gang[i];
4956 goto out;
4957 }
4958 }
4959 cur = gang[ret - 1]->start + gang[ret - 1]->len;
4960 }
4961out:
4962 return found;
4963}
4964
4965static int try_release_subpage_extent_buffer(struct page *page)
4966{
4967 struct btrfs_fs_info *fs_info = page_to_fs_info(page);
4968 u64 cur = page_offset(page);
4969 const u64 end = page_offset(page) + PAGE_SIZE;
4970 int ret;
4971
4972 while (cur < end) {
4973 struct extent_buffer *eb = NULL;
4974
4975 /*
4976 * Unlike try_release_extent_buffer() which uses folio private
4977 * to grab buffer, for subpage case we rely on radix tree, thus
4978 * we need to ensure radix tree consistency.
4979 *
4980 * We also want an atomic snapshot of the radix tree, thus go
4981 * with spinlock rather than RCU.
4982 */
4983 spin_lock(&fs_info->buffer_lock);
4984 eb = get_next_extent_buffer(fs_info, page, cur);
4985 if (!eb) {
4986 /* No more eb in the page range after or at cur */
4987 spin_unlock(&fs_info->buffer_lock);
4988 break;
4989 }
4990 cur = eb->start + eb->len;
4991
4992 /*
4993 * The same as try_release_extent_buffer(), to ensure the eb
4994 * won't disappear out from under us.
4995 */
4996 spin_lock(&eb->refs_lock);
4997 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4998 spin_unlock(&eb->refs_lock);
4999 spin_unlock(&fs_info->buffer_lock);
5000 break;
5001 }
5002 spin_unlock(&fs_info->buffer_lock);
5003
5004 /*
5005 * If tree ref isn't set then we know the ref on this eb is a
5006 * real ref, so just return, this eb will likely be freed soon
5007 * anyway.
5008 */
5009 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5010 spin_unlock(&eb->refs_lock);
5011 break;
5012 }
5013
5014 /*
5015 * Here we don't care about the return value, we will always
5016 * check the folio private at the end. And
5017 * release_extent_buffer() will release the refs_lock.
5018 */
5019 release_extent_buffer(eb);
5020 }
5021 /*
5022 * Finally to check if we have cleared folio private, as if we have
5023 * released all ebs in the page, the folio private should be cleared now.
5024 */
5025 spin_lock(&page->mapping->i_private_lock);
5026 if (!folio_test_private(page_folio(page)))
5027 ret = 1;
5028 else
5029 ret = 0;
5030 spin_unlock(&page->mapping->i_private_lock);
5031 return ret;
5032
5033}
5034
5035int try_release_extent_buffer(struct page *page)
5036{
5037 struct folio *folio = page_folio(page);
5038 struct extent_buffer *eb;
5039
5040 if (page_to_fs_info(page)->nodesize < PAGE_SIZE)
5041 return try_release_subpage_extent_buffer(page);
5042
5043 /*
5044 * We need to make sure nobody is changing folio private, as we rely on
5045 * folio private as the pointer to extent buffer.
5046 */
5047 spin_lock(&page->mapping->i_private_lock);
5048 if (!folio_test_private(folio)) {
5049 spin_unlock(&page->mapping->i_private_lock);
5050 return 1;
5051 }
5052
5053 eb = folio_get_private(folio);
5054 BUG_ON(!eb);
5055
5056 /*
5057 * This is a little awful but should be ok, we need to make sure that
5058 * the eb doesn't disappear out from under us while we're looking at
5059 * this page.
5060 */
5061 spin_lock(&eb->refs_lock);
5062 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5063 spin_unlock(&eb->refs_lock);
5064 spin_unlock(&page->mapping->i_private_lock);
5065 return 0;
5066 }
5067 spin_unlock(&page->mapping->i_private_lock);
5068
5069 /*
5070 * If tree ref isn't set then we know the ref on this eb is a real ref,
5071 * so just return, this page will likely be freed soon anyway.
5072 */
5073 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5074 spin_unlock(&eb->refs_lock);
5075 return 0;
5076 }
5077
5078 return release_extent_buffer(eb);
5079}
5080
5081/*
5082 * Attempt to readahead a child block.
5083 *
5084 * @fs_info: the fs_info
5085 * @bytenr: bytenr to read
5086 * @owner_root: objectid of the root that owns this eb
5087 * @gen: generation for the uptodate check, can be 0
5088 * @level: level for the eb
5089 *
5090 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
5091 * normal uptodate check of the eb, without checking the generation. If we have
5092 * to read the block we will not block on anything.
5093 */
5094void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
5095 u64 bytenr, u64 owner_root, u64 gen, int level)
5096{
5097 struct btrfs_tree_parent_check check = {
5098 .has_first_key = 0,
5099 .level = level,
5100 .transid = gen
5101 };
5102 struct extent_buffer *eb;
5103 int ret;
5104
5105 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
5106 if (IS_ERR(eb))
5107 return;
5108
5109 if (btrfs_buffer_uptodate(eb, gen, 1)) {
5110 free_extent_buffer(eb);
5111 return;
5112 }
5113
5114 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
5115 if (ret < 0)
5116 free_extent_buffer_stale(eb);
5117 else
5118 free_extent_buffer(eb);
5119}
5120
5121/*
5122 * Readahead a node's child block.
5123 *
5124 * @node: parent node we're reading from
5125 * @slot: slot in the parent node for the child we want to read
5126 *
5127 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5128 * the slot in the node provided.
5129 */
5130void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5131{
5132 btrfs_readahead_tree_block(node->fs_info,
5133 btrfs_node_blockptr(node, slot),
5134 btrfs_header_owner(node),
5135 btrfs_node_ptr_generation(node, slot),
5136 btrfs_header_level(node) - 1);
5137}