Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
   9#include <linux/sched/mm.h>
  10#include <linux/spinlock.h>
  11#include <linux/blkdev.h>
  12#include <linux/swap.h>
  13#include <linux/writeback.h>
  14#include <linux/pagevec.h>
  15#include <linux/prefetch.h>
  16#include <linux/fsverity.h>
  17#include "misc.h"
  18#include "extent_io.h"
  19#include "extent-io-tree.h"
  20#include "extent_map.h"
 
  21#include "ctree.h"
  22#include "btrfs_inode.h"
  23#include "bio.h"
  24#include "check-integrity.h"
  25#include "locking.h"
  26#include "rcu-string.h"
  27#include "backref.h"
  28#include "disk-io.h"
  29#include "subpage.h"
  30#include "zoned.h"
  31#include "block-group.h"
  32#include "compression.h"
  33#include "fs.h"
  34#include "accessors.h"
  35#include "file-item.h"
  36#include "file.h"
  37#include "dev-replace.h"
  38#include "super.h"
  39
 
  40static struct kmem_cache *extent_buffer_cache;
  41
  42#ifdef CONFIG_BTRFS_DEBUG
  43static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
  44{
  45	struct btrfs_fs_info *fs_info = eb->fs_info;
  46	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
  47
  48	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  49	list_add(&eb->leak_list, &fs_info->allocated_ebs);
  50	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51}
  52
  53static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
  54{
  55	struct btrfs_fs_info *fs_info = eb->fs_info;
  56	unsigned long flags;
 
 
 
  57
  58	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  59	list_del(&eb->leak_list);
  60	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
 
 
 
 
 
 
 
  61}
  62
  63void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
  64{
 
  65	struct extent_buffer *eb;
  66	unsigned long flags;
  67
  68	/*
  69	 * If we didn't get into open_ctree our allocated_ebs will not be
  70	 * initialized, so just skip this.
  71	 */
  72	if (!fs_info->allocated_ebs.next)
  73		return;
 
 
 
  74
  75	WARN_ON(!list_empty(&fs_info->allocated_ebs));
  76	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  77	while (!list_empty(&fs_info->allocated_ebs)) {
  78		eb = list_first_entry(&fs_info->allocated_ebs,
  79				      struct extent_buffer, leak_list);
  80		pr_err(
  81	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
  82		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
  83		       btrfs_header_owner(eb));
  84		list_del(&eb->leak_list);
  85		kmem_cache_free(extent_buffer_cache, eb);
  86	}
  87	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
 
 
 
  88}
  89#else
  90#define btrfs_leak_debug_add_eb(eb)			do {} while (0)
  91#define btrfs_leak_debug_del_eb(eb)			do {} while (0)
  92#endif
  93
  94/*
  95 * Structure to record info about the bio being assembled, and other info like
  96 * how many bytes are there before stripe/ordered extent boundary.
  97 */
  98struct btrfs_bio_ctrl {
  99	struct bio *bio;
 100	int mirror_num;
 101	enum btrfs_compression_type compress_type;
 102	u32 len_to_stripe_boundary;
 103	u32 len_to_oe_boundary;
 104	btrfs_bio_end_io_t end_io_func;
 105
 106	/*
 107	 * This is for metadata read, to provide the extra needed verification
 108	 * info.  This has to be provided for submit_one_bio(), as
 109	 * submit_one_bio() can submit a bio if it ends at stripe boundary.  If
 110	 * no such parent_check is provided, the metadata can hit false alert at
 111	 * endio time.
 112	 */
 113	struct btrfs_tree_parent_check *parent_check;
 114
 115	/*
 116	 * Tell writepage not to lock the state bits for this range, it still
 117	 * does the unlocking.
 118	 */
 119	bool extent_locked;
 
 
 
 
 
 
 
 
 
 
 
 120
 121	/* Tell the submit_bio code to use REQ_SYNC */
 122	bool sync_io;
 123};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124
 125static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
 
 126{
 127	struct bio *bio;
 128	struct bio_vec *bv;
 129	struct btrfs_inode *inode;
 130	int mirror_num;
 131
 132	if (!bio_ctrl->bio)
 133		return;
 
 134
 135	bio = bio_ctrl->bio;
 136	bv = bio_first_bvec_all(bio);
 137	inode = BTRFS_I(bv->bv_page->mapping->host);
 138	mirror_num = bio_ctrl->mirror_num;
 
 
 
 139
 140	/* Caller should ensure the bio has at least some range added */
 141	ASSERT(bio->bi_iter.bi_size);
 
 
 142
 143	btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144
 145	if (!is_data_inode(&inode->vfs_inode)) {
 146		if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
 147			/*
 148			 * For metadata read, we should have the parent_check,
 149			 * and copy it to bbio for metadata verification.
 150			 */
 151			ASSERT(bio_ctrl->parent_check);
 152			memcpy(&btrfs_bio(bio)->parent_check,
 153			       bio_ctrl->parent_check,
 154			       sizeof(struct btrfs_tree_parent_check));
 155		}
 156		btrfs_submit_metadata_bio(inode, bio, mirror_num);
 157	} else if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
 158		btrfs_submit_data_write_bio(inode, bio, mirror_num);
 159	} else {
 160		btrfs_submit_data_read_bio(inode, bio, mirror_num,
 161					   bio_ctrl->compress_type);
 162	}
 163
 164	/* The bio is owned by the end_io handler now */
 165	bio_ctrl->bio = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166}
 167
 168/*
 169 * Submit or fail the current bio in the bio_ctrl structure.
 
 
 
 
 
 
 170 */
 171static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
 
 172{
 173	struct bio *bio = bio_ctrl->bio;
 
 174
 175	if (!bio)
 176		return;
 177
 178	if (ret) {
 179		ASSERT(ret < 0);
 180		btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
 181		/* The bio is owned by the end_io handler now */
 182		bio_ctrl->bio = NULL;
 183	} else {
 184		submit_one_bio(bio_ctrl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185	}
 186}
 187
 188int __init extent_buffer_init_cachep(void)
 
 189{
 190	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 191			sizeof(struct extent_buffer), 0,
 192			SLAB_MEM_SPREAD, NULL);
 193	if (!extent_buffer_cache)
 194		return -ENOMEM;
 195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196	return 0;
 197}
 198
 199void __cold extent_buffer_free_cachep(void)
 
 200{
 201	/*
 202	 * Make sure all delayed rcu free are flushed before we
 203	 * destroy caches.
 204	 */
 205	rcu_barrier();
 206	kmem_cache_destroy(extent_buffer_cache);
 207}
 208
 209void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210{
 211	unsigned long index = start >> PAGE_SHIFT;
 212	unsigned long end_index = end >> PAGE_SHIFT;
 213	struct page *page;
 214
 215	while (index <= end_index) {
 216		page = find_get_page(inode->i_mapping, index);
 217		BUG_ON(!page); /* Pages should be in the extent_io_tree */
 218		clear_page_dirty_for_io(page);
 219		put_page(page);
 220		index++;
 
 
 
 
 
 221	}
 
 
 222}
 223
 224void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
 225{
 226	struct address_space *mapping = inode->i_mapping;
 227	unsigned long index = start >> PAGE_SHIFT;
 228	unsigned long end_index = end >> PAGE_SHIFT;
 229	struct folio *folio;
 
 
 230
 231	while (index <= end_index) {
 232		folio = filemap_get_folio(mapping, index);
 233		filemap_dirty_folio(mapping, folio);
 234		folio_account_redirty(folio);
 235		index += folio_nr_pages(folio);
 236		folio_put(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 237	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238}
 239
 240/*
 241 * Process one page for __process_pages_contig().
 
 
 
 
 
 242 *
 243 * Return >0 if we hit @page == @locked_page.
 244 * Return 0 if we updated the page status.
 245 * Return -EGAIN if the we need to try again.
 246 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
 247 */
 248static int process_one_page(struct btrfs_fs_info *fs_info,
 249			    struct address_space *mapping,
 250			    struct page *page, struct page *locked_page,
 251			    unsigned long page_ops, u64 start, u64 end)
 252{
 253	u32 len;
 254
 255	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
 256	len = end + 1 - start;
 257
 258	if (page_ops & PAGE_SET_ORDERED)
 259		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
 260	if (page_ops & PAGE_SET_ERROR)
 261		btrfs_page_clamp_set_error(fs_info, page, start, len);
 262	if (page_ops & PAGE_START_WRITEBACK) {
 263		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
 264		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
 
 
 
 
 
 
 
 265	}
 266	if (page_ops & PAGE_END_WRITEBACK)
 267		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
 268
 269	if (page == locked_page)
 270		return 1;
 
 271
 272	if (page_ops & PAGE_LOCK) {
 273		int ret;
 
 
 274
 275		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
 276		if (ret)
 277			return ret;
 278		if (!PageDirty(page) || page->mapping != mapping) {
 279			btrfs_page_end_writer_lock(fs_info, page, start, len);
 280			return -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282	}
 283	if (page_ops & PAGE_UNLOCK)
 284		btrfs_page_end_writer_lock(fs_info, page, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 285	return 0;
 
 
 
 
 
 
 
 
 286}
 287
 288static int __process_pages_contig(struct address_space *mapping,
 289				  struct page *locked_page,
 290				  u64 start, u64 end, unsigned long page_ops,
 291				  u64 *processed_end)
 292{
 293	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
 294	pgoff_t start_index = start >> PAGE_SHIFT;
 295	pgoff_t end_index = end >> PAGE_SHIFT;
 296	pgoff_t index = start_index;
 297	unsigned long pages_processed = 0;
 298	struct folio_batch fbatch;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 299	int err = 0;
 300	int i;
 
 301
 302	if (page_ops & PAGE_LOCK) {
 303		ASSERT(page_ops == PAGE_LOCK);
 304		ASSERT(processed_end && *processed_end == start);
 
 
 305	}
 306
 307	if ((page_ops & PAGE_SET_ERROR) && start_index <= end_index)
 308		mapping_set_error(mapping, -EIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309
 310	folio_batch_init(&fbatch);
 311	while (index <= end_index) {
 312		int found_folios;
 
 
 
 
 313
 314		found_folios = filemap_get_folios_contig(mapping, &index,
 315				end_index, &fbatch);
 
 
 
 
 
 
 
 
 
 
 316
 317		if (found_folios == 0) {
 318			/*
 319			 * Only if we're going to lock these pages, we can find
 320			 * nothing at @index.
 321			 */
 322			ASSERT(page_ops & PAGE_LOCK);
 323			err = -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324			goto out;
 325		}
 326
 327		for (i = 0; i < found_folios; i++) {
 328			int process_ret;
 329			struct folio *folio = fbatch.folios[i];
 330			process_ret = process_one_page(fs_info, mapping,
 331					&folio->page, locked_page, page_ops,
 332					start, end);
 333			if (process_ret < 0) {
 334				err = -EAGAIN;
 335				folio_batch_release(&fbatch);
 
 
 
 
 
 336				goto out;
 337			}
 338			pages_processed += folio_nr_pages(folio);
 
 
 
 339		}
 340		folio_batch_release(&fbatch);
 341		cond_resched();
 342	}
 343out:
 344	if (err && processed_end) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345		/*
 346		 * Update @processed_end. I know this is awful since it has
 347		 * two different return value patterns (inclusive vs exclusive).
 348		 *
 349		 * But the exclusive pattern is necessary if @start is 0, or we
 350		 * underflow and check against processed_end won't work as
 351		 * expected.
 352		 */
 353		if (pages_processed)
 354			*processed_end = min(end,
 355			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356		else
 357			*processed_end = start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 358	}
 
 
 
 
 
 
 
 
 359	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360}
 361
 362static noinline void __unlock_for_delalloc(struct inode *inode,
 363					   struct page *locked_page,
 364					   u64 start, u64 end)
 365{
 366	unsigned long index = start >> PAGE_SHIFT;
 367	unsigned long end_index = end >> PAGE_SHIFT;
 
 
 
 
 368
 369	ASSERT(locked_page);
 370	if (index == locked_page->index && end_index == index)
 371		return;
 372
 373	__process_pages_contig(inode->i_mapping, locked_page, start, end,
 374			       PAGE_UNLOCK, NULL);
 
 
 
 
 
 
 
 
 
 
 
 375}
 376
 377static noinline int lock_delalloc_pages(struct inode *inode,
 378					struct page *locked_page,
 379					u64 delalloc_start,
 380					u64 delalloc_end)
 381{
 382	unsigned long index = delalloc_start >> PAGE_SHIFT;
 383	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
 384	u64 processed_end = delalloc_start;
 
 
 
 385	int ret;
 
 386
 387	ASSERT(locked_page);
 388	if (index == locked_page->index && index == end_index)
 389		return 0;
 390
 391	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
 392				     delalloc_end, PAGE_LOCK, &processed_end);
 393	if (ret == -EAGAIN && processed_end > delalloc_start)
 394		__unlock_for_delalloc(inode, locked_page, delalloc_start,
 395				      processed_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 396	return ret;
 397}
 398
 399/*
 400 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 401 * more than @max_bytes.
 402 *
 403 * @start:	The original start bytenr to search.
 404 *		Will store the extent range start bytenr.
 405 * @end:	The original end bytenr of the search range
 406 *		Will store the extent range end bytenr.
 407 *
 408 * Return true if we find a delalloc range which starts inside the original
 409 * range, and @start/@end will store the delalloc range start/end.
 410 *
 411 * Return false if we can't find any delalloc range which starts inside the
 412 * original range, and @start/@end will be the non-delalloc range start/end.
 413 */
 414EXPORT_FOR_TESTS
 415noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
 416				    struct page *locked_page, u64 *start,
 417				    u64 *end)
 
 418{
 419	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 420	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
 421	const u64 orig_start = *start;
 422	const u64 orig_end = *end;
 423	/* The sanity tests may not set a valid fs_info. */
 424	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
 425	u64 delalloc_start;
 426	u64 delalloc_end;
 427	bool found;
 428	struct extent_state *cached_state = NULL;
 429	int ret;
 430	int loops = 0;
 431
 432	/* Caller should pass a valid @end to indicate the search range end */
 433	ASSERT(orig_end > orig_start);
 434
 435	/* The range should at least cover part of the page */
 436	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
 437		 orig_end <= page_offset(locked_page)));
 438again:
 439	/* step one, find a bunch of delalloc bytes starting at start */
 440	delalloc_start = *start;
 441	delalloc_end = 0;
 442	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
 443					  max_bytes, &cached_state);
 444	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
 445		*start = delalloc_start;
 446
 447		/* @delalloc_end can be -1, never go beyond @orig_end */
 448		*end = min(delalloc_end, orig_end);
 449		free_extent_state(cached_state);
 450		return false;
 451	}
 452
 453	/*
 454	 * start comes from the offset of locked_page.  We have to lock
 455	 * pages in order, so we can't process delalloc bytes before
 456	 * locked_page
 457	 */
 458	if (delalloc_start < *start)
 459		delalloc_start = *start;
 460
 461	/*
 462	 * make sure to limit the number of pages we try to lock down
 
 463	 */
 464	if (delalloc_end + 1 - delalloc_start > max_bytes)
 465		delalloc_end = delalloc_start + max_bytes - 1;
 466
 467	/* step two, lock all the pages after the page that has start */
 468	ret = lock_delalloc_pages(inode, locked_page,
 469				  delalloc_start, delalloc_end);
 470	ASSERT(!ret || ret == -EAGAIN);
 471	if (ret == -EAGAIN) {
 472		/* some of the pages are gone, lets avoid looping by
 473		 * shortening the size of the delalloc range we're searching
 474		 */
 475		free_extent_state(cached_state);
 476		cached_state = NULL;
 477		if (!loops) {
 478			max_bytes = PAGE_SIZE;
 
 479			loops = 1;
 480			goto again;
 481		} else {
 482			found = false;
 483			goto out_failed;
 484		}
 485	}
 
 486
 487	/* step three, lock the state bits for the whole range */
 488	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
 489
 490	/* then test to make sure it is all still delalloc */
 491	ret = test_range_bit(tree, delalloc_start, delalloc_end,
 492			     EXTENT_DELALLOC, 1, cached_state);
 493	if (!ret) {
 494		unlock_extent(tree, delalloc_start, delalloc_end,
 495			      &cached_state);
 496		__unlock_for_delalloc(inode, locked_page,
 497			      delalloc_start, delalloc_end);
 498		cond_resched();
 499		goto again;
 500	}
 501	free_extent_state(cached_state);
 502	*start = delalloc_start;
 503	*end = delalloc_end;
 504out_failed:
 505	return found;
 506}
 507
 508void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
 509				  struct page *locked_page,
 510				  u32 clear_bits, unsigned long page_ops)
 
 511{
 512	clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
 
 
 
 
 
 
 513
 514	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
 515			       start, end, page_ops, NULL);
 516}
 
 
 
 
 
 
 
 
 
 
 517
 518static int insert_failrec(struct btrfs_inode *inode,
 519			  struct io_failure_record *failrec)
 520{
 521	struct rb_node *exist;
 
 522
 523	spin_lock(&inode->io_failure_lock);
 524	exist = rb_simple_insert(&inode->io_failure_tree, failrec->bytenr,
 525				 &failrec->rb_node);
 526	spin_unlock(&inode->io_failure_lock);
 527
 528	return (exist == NULL) ? 0 : -EEXIST;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529}
 530
 531static struct io_failure_record *get_failrec(struct btrfs_inode *inode, u64 start)
 
 
 
 
 
 
 
 532{
 533	struct rb_node *node;
 534	struct io_failure_record *failrec = ERR_PTR(-ENOENT);
 
 
 
 
 535
 536	spin_lock(&inode->io_failure_lock);
 537	node = rb_simple_search(&inode->io_failure_tree, start);
 538	if (node)
 539		failrec = rb_entry(node, struct io_failure_record, rb_node);
 540	spin_unlock(&inode->io_failure_lock);
 541	return failrec;
 542}
 543
 544static void free_io_failure(struct btrfs_inode *inode,
 545			    struct io_failure_record *rec)
 546{
 547	spin_lock(&inode->io_failure_lock);
 548	rb_erase(&rec->rb_node, &inode->io_failure_tree);
 549	spin_unlock(&inode->io_failure_lock);
 550
 551	kfree(rec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552}
 553
 554static int next_mirror(const struct io_failure_record *failrec, int cur_mirror)
 
 
 
 
 555{
 556	if (cur_mirror == failrec->num_copies)
 557		return cur_mirror + 1 - failrec->num_copies;
 558	return cur_mirror + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559}
 560
 561static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror)
 562{
 563	if (cur_mirror == 1)
 564		return failrec->num_copies;
 565	return cur_mirror - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566}
 567
 568/*
 569 * each time an IO finishes, we do a fast check in the IO failure tree
 570 * to see if we need to process or clean up an io_failure_record
 
 
 571 */
 572int btrfs_clean_io_failure(struct btrfs_inode *inode, u64 start,
 573			   struct page *page, unsigned int pg_offset)
 574{
 575	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 576	struct extent_io_tree *io_tree = &inode->io_tree;
 577	u64 ino = btrfs_ino(inode);
 578	u64 locked_start, locked_end;
 579	struct io_failure_record *failrec;
 580	int mirror;
 581	int ret;
 582
 583	failrec = get_failrec(inode, start);
 584	if (IS_ERR(failrec))
 585		return 0;
 
 
 
 
 
 586
 587	BUG_ON(!failrec->this_mirror);
 
 
 
 588
 589	if (sb_rdonly(fs_info->sb))
 590		goto out;
 591
 592	ret = find_first_extent_bit(io_tree, failrec->bytenr, &locked_start,
 593				    &locked_end, EXTENT_LOCKED, NULL);
 594	if (ret || locked_start > failrec->bytenr ||
 595	    locked_end < failrec->bytenr + failrec->len - 1)
 596		goto out;
 
 
 
 597
 598	mirror = failrec->this_mirror;
 599	do {
 600		mirror = prev_mirror(failrec, mirror);
 601		btrfs_repair_io_failure(fs_info, ino, start, failrec->len,
 602				  failrec->logical, page, pg_offset, mirror);
 603	} while (mirror != failrec->failed_mirror);
 604
 605out:
 606	free_io_failure(inode, failrec);
 607	return 0;
 
 
 
 
 
 
 
 
 
 608}
 609
 610/*
 611 * Can be called when
 612 * - hold extent lock
 613 * - under ordered extent
 614 * - the inode is freeing
 615 */
 616void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
 617{
 618	struct io_failure_record *failrec;
 619	struct rb_node *node, *next;
 
 
 
 620
 621	if (RB_EMPTY_ROOT(&inode->io_failure_tree))
 622		return;
 
 
 
 
 
 
 
 
 
 623
 624	spin_lock(&inode->io_failure_lock);
 625	node = rb_simple_search_first(&inode->io_failure_tree, start);
 626	while (node) {
 627		failrec = rb_entry(node, struct io_failure_record, rb_node);
 628		if (failrec->bytenr > end)
 629			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630
 631		next = rb_next(node);
 632		rb_erase(&failrec->rb_node, &inode->io_failure_tree);
 633		kfree(failrec);
 
 
 
 
 
 
 
 
 
 
 634
 635		node = next;
 
 
 
 
 
 636	}
 637	spin_unlock(&inode->io_failure_lock);
 
 
 638}
 639
 640static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
 641							     struct btrfs_bio *bbio,
 642							     unsigned int bio_offset)
 643{
 644	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 645	u64 start = bbio->file_offset + bio_offset;
 646	struct io_failure_record *failrec;
 647	const u32 sectorsize = fs_info->sectorsize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648	int ret;
 649
 650	failrec = get_failrec(BTRFS_I(inode), start);
 651	if (!IS_ERR(failrec)) {
 652		btrfs_debug(fs_info,
 653	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
 654			failrec->logical, failrec->bytenr, failrec->len);
 655		/*
 656		 * when data can be on disk more than twice, add to failrec here
 657		 * (e.g. with a list for failed_mirror) to make
 658		 * clean_io_failure() clean all those errors at once.
 659		 */
 660		ASSERT(failrec->this_mirror == bbio->mirror_num);
 661		ASSERT(failrec->len == fs_info->sectorsize);
 662		return failrec;
 663	}
 664
 665	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
 666	if (!failrec)
 667		return ERR_PTR(-ENOMEM);
 668
 669	RB_CLEAR_NODE(&failrec->rb_node);
 670	failrec->bytenr = start;
 671	failrec->len = sectorsize;
 672	failrec->failed_mirror = bbio->mirror_num;
 673	failrec->this_mirror = bbio->mirror_num;
 674	failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset;
 675
 676	btrfs_debug(fs_info,
 677		    "new io failure record logical %llu start %llu",
 678		    failrec->logical, start);
 679
 680	failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize);
 681	if (failrec->num_copies == 1) {
 682		/*
 683		 * We only have a single copy of the data, so don't bother with
 684		 * all the retry and error correction code that follows. No
 685		 * matter what the error is, it is very likely to persist.
 686		 */
 687		btrfs_debug(fs_info,
 688			"cannot repair logical %llu num_copies %d",
 689			failrec->logical, failrec->num_copies);
 690		kfree(failrec);
 691		return ERR_PTR(-EIO);
 692	}
 693
 694	/* Set the bits in the private failure tree */
 695	ret = insert_failrec(BTRFS_I(inode), failrec);
 696	if (ret) {
 697		kfree(failrec);
 698		return ERR_PTR(ret);
 
 
 
 
 
 
 
 
 
 699	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 700
 701	return failrec;
 
 702}
 703
 704int btrfs_repair_one_sector(struct btrfs_inode *inode, struct btrfs_bio *failed_bbio,
 705			    u32 bio_offset, struct page *page, unsigned int pgoff,
 706			    bool submit_buffered)
 707{
 708	u64 start = failed_bbio->file_offset + bio_offset;
 709	struct io_failure_record *failrec;
 710	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 711	struct bio *failed_bio = &failed_bbio->bio;
 712	const int icsum = bio_offset >> fs_info->sectorsize_bits;
 713	struct bio *repair_bio;
 714	struct btrfs_bio *repair_bbio;
 715
 716	btrfs_debug(fs_info,
 717		   "repair read error: read error at %llu", start);
 718
 719	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
 720
 721	failrec = btrfs_get_io_failure_record(&inode->vfs_inode, failed_bbio, bio_offset);
 722	if (IS_ERR(failrec))
 723		return PTR_ERR(failrec);
 724
 725	/*
 726	 * There are two premises:
 727	 * a) deliver good data to the caller
 728	 * b) correct the bad sectors on disk
 729	 *
 730	 * Since we're only doing repair for one sector, we only need to get
 731	 * a good copy of the failed sector and if we succeed, we have setup
 732	 * everything for btrfs_repair_io_failure to do the rest for us.
 733	 */
 734	failrec->this_mirror = next_mirror(failrec, failrec->this_mirror);
 735	if (failrec->this_mirror == failrec->failed_mirror) {
 736		btrfs_debug(fs_info,
 737			"failed to repair num_copies %d this_mirror %d failed_mirror %d",
 738			failrec->num_copies, failrec->this_mirror, failrec->failed_mirror);
 739		free_io_failure(inode, failrec);
 740		return -EIO;
 741	}
 742
 743	repair_bio = btrfs_bio_alloc(1, REQ_OP_READ, failed_bbio->end_io,
 744				     failed_bbio->private);
 745	repair_bbio = btrfs_bio(repair_bio);
 746	repair_bbio->file_offset = start;
 747	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
 748
 749	if (failed_bbio->csum) {
 750		const u32 csum_size = fs_info->csum_size;
 751
 752		repair_bbio->csum = repair_bbio->csum_inline;
 753		memcpy(repair_bbio->csum,
 754		       failed_bbio->csum + csum_size * icsum, csum_size);
 755	}
 756
 757	bio_add_page(repair_bio, page, failrec->len, pgoff);
 758	repair_bbio->iter = repair_bio->bi_iter;
 759
 760	btrfs_debug(fs_info,
 761		    "repair read error: submitting new read to mirror %d",
 762		    failrec->this_mirror);
 763
 764	/*
 765	 * At this point we have a bio, so any errors from bio submission will
 766	 * be handled by the endio on the repair_bio, so we can't return an
 767	 * error here.
 768	 */
 769	if (submit_buffered)
 770		btrfs_submit_data_read_bio(inode, repair_bio,
 771					   failrec->this_mirror, 0);
 772	else
 773		btrfs_submit_dio_repair_bio(inode, repair_bio, failrec->this_mirror);
 774
 775	return BLK_STS_OK;
 776}
 777
 778static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
 
 
 
 
 779{
 780	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
 
 
 
 
 
 
 
 
 781
 782	ASSERT(page_offset(page) <= start &&
 783	       start + len <= page_offset(page) + PAGE_SIZE);
 
 
 
 784
 785	if (uptodate) {
 786		if (fsverity_active(page->mapping->host) &&
 787		    !PageError(page) &&
 788		    !PageUptodate(page) &&
 789		    start < i_size_read(page->mapping->host) &&
 790		    !fsverity_verify_page(page)) {
 791			btrfs_page_set_error(fs_info, page, start, len);
 792		} else {
 793			btrfs_page_set_uptodate(fs_info, page, start, len);
 794		}
 795	} else {
 796		btrfs_page_clear_uptodate(fs_info, page, start, len);
 797		btrfs_page_set_error(fs_info, page, start, len);
 
 798	}
 799
 800	if (!btrfs_is_subpage(fs_info, page))
 801		unlock_page(page);
 802	else
 803		btrfs_subpage_end_reader(fs_info, page, start, len);
 804}
 
 
 
 
 
 
 
 
 
 
 
 
 805
 806static void end_sector_io(struct page *page, u64 offset, bool uptodate)
 807{
 808	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
 809	const u32 sectorsize = inode->root->fs_info->sectorsize;
 810
 811	end_page_read(page, uptodate, offset, sectorsize);
 812	unlock_extent(&inode->io_tree, offset, offset + sectorsize - 1, NULL);
 813}
 814
 815static void submit_data_read_repair(struct inode *inode,
 816				    struct btrfs_bio *failed_bbio,
 817				    u32 bio_offset, const struct bio_vec *bvec,
 818				    unsigned int error_bitmap)
 819{
 820	const unsigned int pgoff = bvec->bv_offset;
 821	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 822	struct page *page = bvec->bv_page;
 823	const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset;
 824	const u64 end = start + bvec->bv_len - 1;
 825	const u32 sectorsize = fs_info->sectorsize;
 826	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
 827	int i;
 828
 829	BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 830
 831	/* This repair is only for data */
 832	ASSERT(is_data_inode(inode));
 833
 834	/* We're here because we had some read errors or csum mismatch */
 835	ASSERT(error_bitmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 836
 837	/*
 838	 * We only get called on buffered IO, thus page must be mapped and bio
 839	 * must not be cloned.
 840	 */
 841	ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED));
 842
 843	/* Iterate through all the sectors in the range */
 844	for (i = 0; i < nr_bits; i++) {
 845		const unsigned int offset = i * sectorsize;
 846		bool uptodate = false;
 847		int ret;
 
 
 
 
 
 
 
 
 
 
 
 848
 849		if (!(error_bitmap & (1U << i))) {
 850			/*
 851			 * This sector has no error, just end the page read
 852			 * and unlock the range.
 853			 */
 854			uptodate = true;
 855			goto next;
 
 
 
 
 
 
 856		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857
 858		ret = btrfs_repair_one_sector(BTRFS_I(inode), failed_bbio,
 859				bio_offset + offset, page, pgoff + offset,
 860				true);
 861		if (!ret) {
 862			/*
 863			 * We have submitted the read repair, the page release
 864			 * will be handled by the endio function of the
 865			 * submitted repair bio.
 866			 * Thus we don't need to do any thing here.
 867			 */
 868			continue;
 869		}
 
 
 
 870		/*
 871		 * Continue on failed repair, otherwise the remaining sectors
 872		 * will not be properly unlocked.
 
 
 
 
 873		 */
 874next:
 875		end_sector_io(page, start + offset, uptodate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877}
 878
 879/* lots and lots of room for performance fixes in the end_bio funcs */
 880
 881void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
 882{
 883	struct btrfs_inode *inode;
 884	const bool uptodate = (err == 0);
 885	int ret = 0;
 886
 887	ASSERT(page && page->mapping);
 888	inode = BTRFS_I(page->mapping->host);
 889	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
 890
 891	if (!uptodate) {
 892		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
 893		u32 len;
 894
 895		ASSERT(end + 1 - start <= U32_MAX);
 896		len = end + 1 - start;
 
 
 
 
 897
 898		btrfs_page_clear_uptodate(fs_info, page, start, len);
 899		btrfs_page_set_error(fs_info, page, start, len);
 900		ret = err < 0 ? err : -EIO;
 901		mapping_set_error(page->mapping, ret);
 902	}
 
 903}
 904
 905/*
 906 * after a writepage IO is done, we need to:
 907 * clear the uptodate bits on error
 908 * clear the writeback bits in the extent tree for this IO
 909 * end_page_writeback if the page has no more pending IO
 910 *
 911 * Scheduling is not allowed, so the extent state tree is expected
 912 * to have one and only one object corresponding to this IO.
 913 */
 914static void end_bio_extent_writepage(struct btrfs_bio *bbio)
 915{
 916	struct bio *bio = &bbio->bio;
 917	int error = blk_status_to_errno(bio->bi_status);
 918	struct bio_vec *bvec;
 919	u64 start;
 920	u64 end;
 921	struct bvec_iter_all iter_all;
 922	bool first_bvec = true;
 923
 924	ASSERT(!bio_flagged(bio, BIO_CLONED));
 925	bio_for_each_segment_all(bvec, bio, iter_all) {
 926		struct page *page = bvec->bv_page;
 927		struct inode *inode = page->mapping->host;
 928		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 929		const u32 sectorsize = fs_info->sectorsize;
 930
 931		/* Our read/write should always be sector aligned. */
 932		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
 933			btrfs_err(fs_info,
 934		"partial page write in btrfs with offset %u and length %u",
 935				  bvec->bv_offset, bvec->bv_len);
 936		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
 937			btrfs_info(fs_info,
 938		"incomplete page write with offset %u and length %u",
 939				   bvec->bv_offset, bvec->bv_len);
 940
 941		start = page_offset(page) + bvec->bv_offset;
 
 942		end = start + bvec->bv_len - 1;
 943
 944		if (first_bvec) {
 945			btrfs_record_physical_zoned(inode, start, bio);
 946			first_bvec = false;
 947		}
 948
 949		end_extent_writepage(page, error, start, end);
 950
 951		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
 952	}
 953
 954	bio_put(bio);
 955}
 956
 957/*
 958 * Record previously processed extent range
 959 *
 960 * For endio_readpage_release_extent() to handle a full extent range, reducing
 961 * the extent io operations.
 962 */
 963struct processed_extent {
 964	struct btrfs_inode *inode;
 965	/* Start of the range in @inode */
 966	u64 start;
 967	/* End of the range in @inode */
 968	u64 end;
 969	bool uptodate;
 970};
 971
 972/*
 973 * Try to release processed extent range
 974 *
 975 * May not release the extent range right now if the current range is
 976 * contiguous to processed extent.
 977 *
 978 * Will release processed extent when any of @inode, @uptodate, the range is
 979 * no longer contiguous to the processed range.
 980 *
 981 * Passing @inode == NULL will force processed extent to be released.
 982 */
 983static void endio_readpage_release_extent(struct processed_extent *processed,
 984			      struct btrfs_inode *inode, u64 start, u64 end,
 985			      bool uptodate)
 986{
 987	struct extent_state *cached = NULL;
 988	struct extent_io_tree *tree;
 989
 990	/* The first extent, initialize @processed */
 991	if (!processed->inode)
 992		goto update;
 993
 994	/*
 995	 * Contiguous to processed extent, just uptodate the end.
 996	 *
 997	 * Several things to notice:
 998	 *
 999	 * - bio can be merged as long as on-disk bytenr is contiguous
1000	 *   This means we can have page belonging to other inodes, thus need to
1001	 *   check if the inode still matches.
1002	 * - bvec can contain range beyond current page for multi-page bvec
1003	 *   Thus we need to do processed->end + 1 >= start check
1004	 */
1005	if (processed->inode == inode && processed->uptodate == uptodate &&
1006	    processed->end + 1 >= start && end >= processed->end) {
1007		processed->end = end;
1008		return;
1009	}
1010
1011	tree = &processed->inode->io_tree;
1012	/*
1013	 * Now we don't have range contiguous to the processed range, release
1014	 * the processed range now.
1015	 */
1016	unlock_extent(tree, processed->start, processed->end, &cached);
1017
1018update:
1019	/* Update processed to current range */
1020	processed->inode = inode;
1021	processed->start = start;
1022	processed->end = end;
1023	processed->uptodate = uptodate;
1024}
1025
1026static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
1027{
1028	ASSERT(PageLocked(page));
1029	if (!btrfs_is_subpage(fs_info, page))
1030		return;
1031
1032	ASSERT(PagePrivate(page));
1033	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
1034}
1035
1036/*
1037 * Find extent buffer for a givne bytenr.
1038 *
1039 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
1040 * in endio context.
1041 */
1042static struct extent_buffer *find_extent_buffer_readpage(
1043		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
1044{
1045	struct extent_buffer *eb;
1046
1047	/*
1048	 * For regular sectorsize, we can use page->private to grab extent
1049	 * buffer
1050	 */
1051	if (fs_info->nodesize >= PAGE_SIZE) {
1052		ASSERT(PagePrivate(page) && page->private);
1053		return (struct extent_buffer *)page->private;
1054	}
1055
1056	/* For subpage case, we need to lookup buffer radix tree */
1057	rcu_read_lock();
1058	eb = radix_tree_lookup(&fs_info->buffer_radix,
1059			       bytenr >> fs_info->sectorsize_bits);
1060	rcu_read_unlock();
1061	ASSERT(eb);
1062	return eb;
1063}
1064
1065/*
1066 * after a readpage IO is done, we need to:
1067 * clear the uptodate bits on error
1068 * set the uptodate bits if things worked
1069 * set the page up to date if all extents in the tree are uptodate
1070 * clear the lock bit in the extent tree
1071 * unlock the page if there are no other extents locked for it
1072 *
1073 * Scheduling is not allowed, so the extent state tree is expected
1074 * to have one and only one object corresponding to this IO.
1075 */
1076static void end_bio_extent_readpage(struct btrfs_bio *bbio)
1077{
1078	struct bio *bio = &bbio->bio;
1079	struct bio_vec *bvec;
1080	struct processed_extent processed = { 0 };
1081	/*
1082	 * The offset to the beginning of a bio, since one bio can never be
1083	 * larger than UINT_MAX, u32 here is enough.
1084	 */
1085	u32 bio_offset = 0;
1086	int mirror;
1087	struct bvec_iter_all iter_all;
1088
1089	ASSERT(!bio_flagged(bio, BIO_CLONED));
1090	bio_for_each_segment_all(bvec, bio, iter_all) {
1091		bool uptodate = !bio->bi_status;
 
1092		struct page *page = bvec->bv_page;
1093		struct inode *inode = page->mapping->host;
1094		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1095		const u32 sectorsize = fs_info->sectorsize;
1096		unsigned int error_bitmap = (unsigned int)-1;
1097		bool repair = false;
1098		u64 start;
1099		u64 end;
1100		u32 len;
1101
1102		btrfs_debug(fs_info,
1103			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
1104			bio->bi_iter.bi_sector, bio->bi_status,
1105			bbio->mirror_num);
1106
1107		/*
1108		 * We always issue full-sector reads, but if some block in a
1109		 * page fails to read, blk_update_request() will advance
1110		 * bv_offset and adjust bv_len to compensate.  Print a warning
1111		 * for unaligned offsets, and an error if they don't add up to
1112		 * a full sector.
1113		 */
1114		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
1115			btrfs_err(fs_info,
1116		"partial page read in btrfs with offset %u and length %u",
1117				  bvec->bv_offset, bvec->bv_len);
1118		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
1119				     sectorsize))
1120			btrfs_info(fs_info,
1121		"incomplete page read with offset %u and length %u",
1122				   bvec->bv_offset, bvec->bv_len);
1123
1124		start = page_offset(page) + bvec->bv_offset;
 
1125		end = start + bvec->bv_len - 1;
1126		len = bvec->bv_len;
1127
1128		mirror = bbio->mirror_num;
1129		if (likely(uptodate)) {
1130			if (is_data_inode(inode)) {
1131				error_bitmap = btrfs_verify_data_csum(bbio,
1132						bio_offset, page, start, end);
1133				if (error_bitmap)
1134					uptodate = false;
1135			} else {
1136				if (btrfs_validate_metadata_buffer(bbio,
1137						page, start, end, mirror))
1138					uptodate = false;
1139			}
1140		}
1141
1142		if (likely(uptodate)) {
1143			loff_t i_size = i_size_read(inode);
1144			pgoff_t end_index = i_size >> PAGE_SHIFT;
1145
1146			btrfs_clean_io_failure(BTRFS_I(inode), start, page, 0);
1147
1148			/*
1149			 * Zero out the remaining part if this range straddles
1150			 * i_size.
1151			 *
1152			 * Here we should only zero the range inside the bvec,
1153			 * not touch anything else.
1154			 *
1155			 * NOTE: i_size is exclusive while end is inclusive.
1156			 */
1157			if (page->index == end_index && i_size <= end) {
1158				u32 zero_start = max(offset_in_page(i_size),
1159						     offset_in_page(start));
1160
1161				zero_user_segment(page, zero_start,
1162						  offset_in_page(end) + 1);
1163			}
1164		} else if (is_data_inode(inode)) {
1165			/*
1166			 * Only try to repair bios that actually made it to a
1167			 * device.  If the bio failed to be submitted mirror
1168			 * is 0 and we need to fail it without retrying.
1169			 *
1170			 * This also includes the high level bios for compressed
1171			 * extents - these never make it to a device and repair
1172			 * is already handled on the lower compressed bio.
1173			 */
1174			if (mirror > 0)
1175				repair = true;
1176		} else {
1177			struct extent_buffer *eb;
1178
1179			eb = find_extent_buffer_readpage(fs_info, page, start);
1180			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
1181			eb->read_mirror = mirror;
1182			atomic_dec(&eb->io_pages);
 
 
 
 
1183		}
1184
1185		if (repair) {
 
 
 
 
 
1186			/*
1187			 * submit_data_read_repair() will handle all the good
1188			 * and bad sectors, we just continue to the next bvec.
 
 
 
 
 
 
1189			 */
1190			submit_data_read_repair(inode, bbio, bio_offset, bvec,
1191						error_bitmap);
1192		} else {
1193			/* Update page status and unlock */
1194			end_page_read(page, uptodate, start, len);
1195			endio_readpage_release_extent(&processed, BTRFS_I(inode),
1196					start, end, PageUptodate(page));
 
 
1197		}
1198
1199		ASSERT(bio_offset + len > bio_offset);
1200		bio_offset += len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1201
1202	}
1203	/* Release the last extent */
1204	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
1205	btrfs_bio_free_csum(bbio);
1206	bio_put(bio);
1207}
1208
1209/*
1210 * Populate every free slot in a provided array with pages.
1211 *
1212 * @nr_pages:   number of pages to allocate
1213 * @page_array: the array to fill with pages; any existing non-null entries in
1214 * 		the array will be skipped
1215 *
1216 * Return: 0        if all pages were able to be allocated;
1217 *         -ENOMEM  otherwise, and the caller is responsible for freeing all
1218 *                  non-null page pointers in the array.
1219 */
1220int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
1221{
1222	unsigned int allocated;
1223
1224	for (allocated = 0; allocated < nr_pages;) {
1225		unsigned int last = allocated;
1226
1227		allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
1228
1229		if (allocated == nr_pages)
1230			return 0;
1231
1232		/*
1233		 * During this iteration, no page could be allocated, even
1234		 * though alloc_pages_bulk_array() falls back to alloc_page()
1235		 * if  it could not bulk-allocate. So we must be out of memory.
1236		 */
1237		if (allocated == last)
1238			return -ENOMEM;
1239
1240		memalloc_retry_wait(GFP_NOFS);
 
 
 
1241	}
1242	return 0;
1243}
1244
1245/*
1246 * Attempt to add a page to bio.
1247 *
1248 * @bio_ctrl:       record both the bio, and its bio_flags
1249 * @page:	    page to add to the bio
1250 * @disk_bytenr:    offset of the new bio or to check whether we are adding
1251 *                  a contiguous page to the previous one
1252 * @size:	    portion of page that we want to write
1253 * @pg_offset:	    starting offset in the page
1254 * @compress_type:  compression type of the current bio to see if we can merge them
1255 *
1256 * Attempt to add a page to bio considering stripe alignment etc.
1257 *
1258 * Return >= 0 for the number of bytes added to the bio.
1259 * Can return 0 if the current bio is already at stripe/zone boundary.
1260 * Return <0 for error.
1261 */
1262static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
1263			      struct page *page,
1264			      u64 disk_bytenr, unsigned int size,
1265			      unsigned int pg_offset,
1266			      enum btrfs_compression_type compress_type)
1267{
1268	struct bio *bio = bio_ctrl->bio;
1269	u32 bio_size = bio->bi_iter.bi_size;
1270	u32 real_size;
1271	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
1272	bool contig = false;
1273	int ret;
1274
1275	ASSERT(bio);
1276	/* The limit should be calculated when bio_ctrl->bio is allocated */
1277	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
1278	if (bio_ctrl->compress_type != compress_type)
1279		return 0;
1280
1281
1282	if (bio->bi_iter.bi_size == 0) {
1283		/* We can always add a page into an empty bio. */
1284		contig = true;
1285	} else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) {
1286		struct bio_vec *bvec = bio_last_bvec_all(bio);
1287
1288		/*
1289		 * The contig check requires the following conditions to be met:
1290		 * 1) The pages are belonging to the same inode
1291		 *    This is implied by the call chain.
1292		 *
1293		 * 2) The range has adjacent logical bytenr
1294		 *
1295		 * 3) The range has adjacent file offset
1296		 *    This is required for the usage of btrfs_bio->file_offset.
1297		 */
1298		if (bio_end_sector(bio) == sector &&
1299		    page_offset(bvec->bv_page) + bvec->bv_offset +
1300		    bvec->bv_len == page_offset(page) + pg_offset)
1301			contig = true;
1302	} else {
1303		/*
1304		 * For compression, all IO should have its logical bytenr
1305		 * set to the starting bytenr of the compressed extent.
1306		 */
1307		contig = bio->bi_iter.bi_sector == sector;
1308	}
1309
1310	if (!contig)
1311		return 0;
1312
1313	real_size = min(bio_ctrl->len_to_oe_boundary,
1314			bio_ctrl->len_to_stripe_boundary) - bio_size;
1315	real_size = min(real_size, size);
1316
1317	/*
1318	 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
1319	 * bio will still execute its endio function on the page!
1320	 */
1321	if (real_size == 0)
1322		return 0;
1323
1324	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1325		ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
1326	else
1327		ret = bio_add_page(bio, page, real_size, pg_offset);
1328
1329	return ret;
1330}
1331
1332static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
1333			       struct btrfs_inode *inode, u64 file_offset)
1334{
1335	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1336	struct btrfs_io_geometry geom;
1337	struct btrfs_ordered_extent *ordered;
1338	struct extent_map *em;
1339	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
1340	int ret;
1341
1342	/*
1343	 * Pages for compressed extent are never submitted to disk directly,
1344	 * thus it has no real boundary, just set them to U32_MAX.
1345	 *
1346	 * The split happens for real compressed bio, which happens in
1347	 * btrfs_submit_compressed_read/write().
1348	 */
1349	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
1350		bio_ctrl->len_to_oe_boundary = U32_MAX;
1351		bio_ctrl->len_to_stripe_boundary = U32_MAX;
1352		return 0;
1353	}
1354	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
1355	if (IS_ERR(em))
1356		return PTR_ERR(em);
1357	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
1358				    logical, &geom);
1359	free_extent_map(em);
1360	if (ret < 0) {
1361		return ret;
1362	}
1363	if (geom.len > U32_MAX)
1364		bio_ctrl->len_to_stripe_boundary = U32_MAX;
1365	else
1366		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
1367
1368	if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
1369		bio_ctrl->len_to_oe_boundary = U32_MAX;
1370		return 0;
1371	}
1372
1373	/* Ordered extent not yet created, so we're good */
1374	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
1375	if (!ordered) {
1376		bio_ctrl->len_to_oe_boundary = U32_MAX;
1377		return 0;
1378	}
1379
1380	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
1381		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
1382	btrfs_put_ordered_extent(ordered);
1383	return 0;
1384}
1385
1386static int alloc_new_bio(struct btrfs_inode *inode,
1387			 struct btrfs_bio_ctrl *bio_ctrl,
1388			 struct writeback_control *wbc,
1389			 blk_opf_t opf,
1390			 u64 disk_bytenr, u32 offset, u64 file_offset,
1391			 enum btrfs_compression_type compress_type)
1392{
1393	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1394	struct bio *bio;
1395	int ret;
1396
1397	ASSERT(bio_ctrl->end_io_func);
1398
1399	bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, bio_ctrl->end_io_func, NULL);
1400	/*
1401	 * For compressed page range, its disk_bytenr is always @disk_bytenr
1402	 * passed in, no matter if we have added any range into previous bio.
1403	 */
1404	if (compress_type != BTRFS_COMPRESS_NONE)
1405		bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
1406	else
1407		bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
1408	bio_ctrl->bio = bio;
1409	bio_ctrl->compress_type = compress_type;
1410	ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
1411	if (ret < 0)
1412		goto error;
1413
1414	if (wbc) {
1415		/*
1416		 * For Zone append we need the correct block_device that we are
1417		 * going to write to set in the bio to be able to respect the
1418		 * hardware limitation.  Look it up here:
1419		 */
1420		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1421			struct btrfs_device *dev;
1422
1423			dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
1424						     fs_info->sectorsize);
1425			if (IS_ERR(dev)) {
1426				ret = PTR_ERR(dev);
1427				goto error;
1428			}
1429
1430			bio_set_dev(bio, dev->bdev);
1431		} else {
1432			/*
1433			 * Otherwise pick the last added device to support
1434			 * cgroup writeback.  For multi-device file systems this
1435			 * means blk-cgroup policies have to always be set on the
1436			 * last added/replaced device.  This is a bit odd but has
1437			 * been like that for a long time.
1438			 */
1439			bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
1440		}
1441		wbc_init_bio(wbc, bio);
1442	} else {
1443		ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
1444	}
1445	return 0;
1446error:
1447	bio_ctrl->bio = NULL;
1448	btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
1449	return ret;
1450}
1451
1452/*
1453 * @opf:	bio REQ_OP_* and REQ_* flags as one value
1454 * @wbc:	optional writeback control for io accounting
1455 * @disk_bytenr: logical bytenr where the write will be
1456 * @page:	page to add to the bio
1457 * @size:	portion of page that we want to write to
1458 * @pg_offset:	offset of the new bio or to check whether we are adding
1459 *              a contiguous page to the previous one
1460 * @compress_type:   compress type for current bio
1461 *
1462 * The will either add the page into the existing @bio_ctrl->bio, or allocate a
1463 * new one in @bio_ctrl->bio.
1464 * The mirror number for this IO should already be initizlied in
1465 * @bio_ctrl->mirror_num.
1466 */
1467static int submit_extent_page(blk_opf_t opf,
1468			      struct writeback_control *wbc,
1469			      struct btrfs_bio_ctrl *bio_ctrl,
1470			      u64 disk_bytenr, struct page *page,
1471			      size_t size, unsigned long pg_offset,
1472			      enum btrfs_compression_type compress_type,
1473			      bool force_bio_submit)
1474{
1475	int ret = 0;
1476	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1477	unsigned int cur = pg_offset;
1478
1479	ASSERT(bio_ctrl);
1480
1481	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
1482	       pg_offset + size <= PAGE_SIZE);
1483
1484	ASSERT(bio_ctrl->end_io_func);
1485
1486	if (force_bio_submit)
1487		submit_one_bio(bio_ctrl);
1488
1489	while (cur < pg_offset + size) {
1490		u32 offset = cur - pg_offset;
1491		int added;
1492
1493		/* Allocate new bio if needed */
1494		if (!bio_ctrl->bio) {
1495			ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
1496					    disk_bytenr, offset,
1497					    page_offset(page) + cur,
1498					    compress_type);
1499			if (ret < 0)
1500				return ret;
1501		}
1502		/*
1503		 * We must go through btrfs_bio_add_page() to ensure each
1504		 * page range won't cross various boundaries.
1505		 */
1506		if (compress_type != BTRFS_COMPRESS_NONE)
1507			added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
1508					size - offset, pg_offset + offset,
1509					compress_type);
1510		else
1511			added = btrfs_bio_add_page(bio_ctrl, page,
1512					disk_bytenr + offset, size - offset,
1513					pg_offset + offset, compress_type);
1514
1515		/* Metadata page range should never be split */
1516		if (!is_data_inode(&inode->vfs_inode))
1517			ASSERT(added == 0 || added == size - offset);
1518
1519		/* At least we added some page, update the account */
1520		if (wbc && added)
1521			wbc_account_cgroup_owner(wbc, page, added);
1522
1523		/* We have reached boundary, submit right now */
1524		if (added < size - offset) {
1525			/* The bio should contain some page(s) */
1526			ASSERT(bio_ctrl->bio->bi_iter.bi_size);
1527			submit_one_bio(bio_ctrl);
1528		}
1529		cur += added;
1530	}
1531	return 0;
1532}
1533
1534static int attach_extent_buffer_page(struct extent_buffer *eb,
1535				     struct page *page,
1536				     struct btrfs_subpage *prealloc)
 
 
 
 
 
 
 
1537{
1538	struct btrfs_fs_info *fs_info = eb->fs_info;
1539	int ret = 0;
1540
1541	/*
1542	 * If the page is mapped to btree inode, we should hold the private
1543	 * lock to prevent race.
1544	 * For cloned or dummy extent buffers, their pages are not mapped and
1545	 * will not race with any other ebs.
1546	 */
1547	if (page->mapping)
1548		lockdep_assert_held(&page->mapping->private_lock);
1549
1550	if (fs_info->nodesize >= PAGE_SIZE) {
1551		if (!PagePrivate(page))
1552			attach_page_private(page, eb);
1553		else
1554			WARN_ON(page->private != (unsigned long)eb);
1555		return 0;
1556	}
1557
1558	/* Already mapped, just free prealloc */
1559	if (PagePrivate(page)) {
1560		btrfs_free_subpage(prealloc);
1561		return 0;
 
 
 
 
 
 
 
1562	}
1563
1564	if (prealloc)
1565		/* Has preallocated memory for subpage */
1566		attach_page_private(page, prealloc);
1567	else
1568		/* Do new allocation to attach subpage */
1569		ret = btrfs_attach_subpage(fs_info, page,
1570					   BTRFS_SUBPAGE_METADATA);
1571	return ret;
1572}
1573
1574int set_page_extent_mapped(struct page *page)
1575{
1576	struct btrfs_fs_info *fs_info;
1577
1578	ASSERT(page->mapping);
1579
1580	if (PagePrivate(page))
1581		return 0;
1582
1583	fs_info = btrfs_sb(page->mapping->host->i_sb);
 
 
1584
1585	if (btrfs_is_subpage(fs_info, page))
1586		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
 
 
1587
1588	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
1589	return 0;
1590}
1591
1592void clear_page_extent_mapped(struct page *page)
1593{
1594	struct btrfs_fs_info *fs_info;
1595
1596	ASSERT(page->mapping);
1597
1598	if (!PagePrivate(page))
1599		return;
1600
1601	fs_info = btrfs_sb(page->mapping->host->i_sb);
1602	if (btrfs_is_subpage(fs_info, page))
1603		return btrfs_detach_subpage(fs_info, page);
1604
1605	detach_page_private(page);
1606}
1607
1608static struct extent_map *
1609__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1610		 u64 start, u64 len, struct extent_map **em_cached)
1611{
1612	struct extent_map *em;
1613
1614	if (em_cached && *em_cached) {
1615		em = *em_cached;
1616		if (extent_map_in_tree(em) && start >= em->start &&
1617		    start < extent_map_end(em)) {
1618			refcount_inc(&em->refs);
1619			return em;
1620		}
1621
1622		free_extent_map(em);
1623		*em_cached = NULL;
1624	}
1625
1626	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
1627	if (em_cached && !IS_ERR(em)) {
1628		BUG_ON(*em_cached);
1629		refcount_inc(&em->refs);
1630		*em_cached = em;
1631	}
1632	return em;
1633}
 
1634/*
1635 * basic readpage implementation.  Locked extent state structs are inserted
1636 * into the tree that are removed when the IO is done (by the end_io
1637 * handlers)
1638 * XXX JDM: This needs looking at to ensure proper page locking
1639 * return 0 on success, otherwise return error
1640 */
1641static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
1642		      struct btrfs_bio_ctrl *bio_ctrl,
1643		      blk_opf_t read_flags, u64 *prev_em_start)
 
 
1644{
1645	struct inode *inode = page->mapping->host;
1646	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1647	u64 start = page_offset(page);
1648	const u64 end = start + PAGE_SIZE - 1;
1649	u64 cur = start;
1650	u64 extent_offset;
1651	u64 last_byte = i_size_read(inode);
1652	u64 block_start;
 
 
1653	struct extent_map *em;
1654	int ret = 0;
 
 
 
1655	size_t pg_offset = 0;
1656	size_t iosize;
 
1657	size_t blocksize = inode->i_sb->s_blocksize;
1658	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1659
1660	ret = set_page_extent_mapped(page);
1661	if (ret < 0) {
1662		unlock_extent(tree, start, end, NULL);
1663		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
1664		unlock_page(page);
1665		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
1666	}
1667
1668	if (page->index == last_byte >> PAGE_SHIFT) {
1669		size_t zero_offset = offset_in_page(last_byte);
 
1670
1671		if (zero_offset) {
1672			iosize = PAGE_SIZE - zero_offset;
1673			memzero_page(page, zero_offset, iosize);
 
 
 
1674		}
1675	}
1676	bio_ctrl->end_io_func = end_bio_extent_readpage;
1677	begin_page_read(fs_info, page);
1678	while (cur <= end) {
1679		unsigned long this_bio_flag = 0;
1680		bool force_bio_submit = false;
1681		u64 disk_bytenr;
1682
1683		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1684		if (cur >= last_byte) {
1685			iosize = PAGE_SIZE - pg_offset;
1686			memzero_page(page, pg_offset, iosize);
1687			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1688			end_page_read(page, true, cur, iosize);
 
 
 
 
 
 
 
 
1689			break;
1690		}
1691		em = __get_extent_map(inode, page, pg_offset, cur,
1692				      end - cur + 1, em_cached);
1693		if (IS_ERR(em)) {
1694			unlock_extent(tree, cur, end, NULL);
1695			end_page_read(page, false, cur, end + 1 - cur);
1696			ret = PTR_ERR(em);
1697			break;
1698		}
1699		extent_offset = cur - em->start;
1700		BUG_ON(extent_map_end(em) <= cur);
1701		BUG_ON(end < cur);
1702
1703		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1704			this_bio_flag = em->compress_type;
 
 
 
1705
1706		iosize = min(extent_map_end(em) - cur, end - cur + 1);
1707		iosize = ALIGN(iosize, blocksize);
1708		if (this_bio_flag != BTRFS_COMPRESS_NONE)
1709			disk_bytenr = em->block_start;
1710		else
1711			disk_bytenr = em->block_start + extent_offset;
 
 
 
 
 
1712		block_start = em->block_start;
1713		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1714			block_start = EXTENT_MAP_HOLE;
1715
1716		/*
1717		 * If we have a file range that points to a compressed extent
1718		 * and it's followed by a consecutive file range that points
1719		 * to the same compressed extent (possibly with a different
1720		 * offset and/or length, so it either points to the whole extent
1721		 * or only part of it), we must make sure we do not submit a
1722		 * single bio to populate the pages for the 2 ranges because
1723		 * this makes the compressed extent read zero out the pages
1724		 * belonging to the 2nd range. Imagine the following scenario:
1725		 *
1726		 *  File layout
1727		 *  [0 - 8K]                     [8K - 24K]
1728		 *    |                               |
1729		 *    |                               |
1730		 * points to extent X,         points to extent X,
1731		 * offset 4K, length of 8K     offset 0, length 16K
1732		 *
1733		 * [extent X, compressed length = 4K uncompressed length = 16K]
1734		 *
1735		 * If the bio to read the compressed extent covers both ranges,
1736		 * it will decompress extent X into the pages belonging to the
1737		 * first range and then it will stop, zeroing out the remaining
1738		 * pages that belong to the other range that points to extent X.
1739		 * So here we make sure we submit 2 bios, one for the first
1740		 * range and another one for the third range. Both will target
1741		 * the same physical extent from disk, but we can't currently
1742		 * make the compressed bio endio callback populate the pages
1743		 * for both ranges because each compressed bio is tightly
1744		 * coupled with a single extent map, and each range can have
1745		 * an extent map with a different offset value relative to the
1746		 * uncompressed data of our extent and different lengths. This
1747		 * is a corner case so we prioritize correctness over
1748		 * non-optimal behavior (submitting 2 bios for the same extent).
1749		 */
1750		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1751		    prev_em_start && *prev_em_start != (u64)-1 &&
1752		    *prev_em_start != em->start)
1753			force_bio_submit = true;
1754
1755		if (prev_em_start)
1756			*prev_em_start = em->start;
1757
1758		free_extent_map(em);
1759		em = NULL;
1760
1761		/* we've found a hole, just zero and go on */
1762		if (block_start == EXTENT_MAP_HOLE) {
1763			memzero_page(page, pg_offset, iosize);
 
1764
1765			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1766			end_page_read(page, true, cur, iosize);
 
 
 
 
 
 
 
1767			cur = cur + iosize;
1768			pg_offset += iosize;
1769			continue;
1770		}
1771		/* the get_extent function already copied into the page */
 
 
 
 
 
 
 
 
 
 
 
1772		if (block_start == EXTENT_MAP_INLINE) {
1773			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1774			end_page_read(page, true, cur, iosize);
1775			cur = cur + iosize;
1776			pg_offset += iosize;
1777			continue;
1778		}
1779
1780		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
1781					 bio_ctrl, disk_bytenr, page, iosize,
1782					 pg_offset, this_bio_flag,
1783					 force_bio_submit);
1784		if (ret) {
1785			/*
1786			 * We have to unlock the remaining range, or the page
1787			 * will never be unlocked.
1788			 */
1789			unlock_extent(tree, cur, end, NULL);
1790			end_page_read(page, false, cur, end + 1 - cur);
1791			goto out;
1792		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1793		cur = cur + iosize;
1794		pg_offset += iosize;
1795	}
1796out:
1797	return ret;
 
 
 
 
 
1798}
1799
1800int btrfs_read_folio(struct file *file, struct folio *folio)
 
1801{
1802	struct page *page = &folio->page;
1803	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1804	u64 start = page_offset(page);
1805	u64 end = start + PAGE_SIZE - 1;
1806	struct btrfs_bio_ctrl bio_ctrl = { 0 };
1807	int ret;
1808
1809	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1810
1811	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
1812	/*
1813	 * If btrfs_do_readpage() failed we will want to submit the assembled
1814	 * bio to do the cleanup.
1815	 */
1816	submit_one_bio(&bio_ctrl);
1817	return ret;
1818}
1819
1820static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1821					u64 start, u64 end,
1822					struct extent_map **em_cached,
1823					struct btrfs_bio_ctrl *bio_ctrl,
1824					u64 *prev_em_start)
1825{
1826	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1827	int index;
1828
1829	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1830
1831	for (index = 0; index < nr_pages; index++) {
1832		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1833				  REQ_RAHEAD, prev_em_start);
1834		put_page(pages[index]);
1835	}
1836}
1837
1838/*
1839 * helper for __extent_writepage, doing all of the delayed allocation setup.
1840 *
1841 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1842 * to write the page (copy into inline extent).  In this case the IO has
1843 * been started and the page is already unlocked.
1844 *
1845 * This returns 0 if all went well (page still locked)
1846 * This returns < 0 if there were errors (page still locked)
1847 */
1848static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1849		struct page *page, struct writeback_control *wbc)
1850{
1851	const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
1852	u64 delalloc_start = page_offset(page);
1853	u64 delalloc_to_write = 0;
1854	/* How many pages are started by btrfs_run_delalloc_range() */
1855	unsigned long nr_written = 0;
 
 
 
 
 
 
 
 
 
 
 
1856	int ret;
1857	int page_started = 0;
 
 
 
 
 
 
 
 
 
 
 
1858
1859	while (delalloc_start < page_end) {
1860		u64 delalloc_end = page_end;
1861		bool found;
1862
1863		found = find_lock_delalloc_range(&inode->vfs_inode, page,
1864					       &delalloc_start,
1865					       &delalloc_end);
1866		if (!found) {
1867			delalloc_start = delalloc_end + 1;
1868			continue;
1869		}
1870		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1871				delalloc_end, &page_started, &nr_written, wbc);
1872		if (ret) {
1873			btrfs_page_set_error(inode->root->fs_info, page,
1874					     page_offset(page), PAGE_SIZE);
1875			return ret;
1876		}
1877		/*
1878		 * delalloc_end is already one less than the total length, so
1879		 * we don't subtract one from PAGE_SIZE
1880		 */
1881		delalloc_to_write += (delalloc_end - delalloc_start +
1882				      PAGE_SIZE) >> PAGE_SHIFT;
1883		delalloc_start = delalloc_end + 1;
1884	}
1885	if (wbc->nr_to_write < delalloc_to_write) {
1886		int thresh = 8192;
1887
1888		if (delalloc_to_write < thresh * 2)
1889			thresh = delalloc_to_write;
1890		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1891					 thresh);
1892	}
1893
1894	/* Did btrfs_run_dealloc_range() already unlock and start the IO? */
1895	if (page_started) {
1896		/*
1897		 * We've unlocked the page, so we can't update the mapping's
1898		 * writeback index, just update nr_to_write.
1899		 */
1900		wbc->nr_to_write -= nr_written;
1901		return 1;
1902	}
1903
1904	return 0;
1905}
1906
1907/*
1908 * Find the first byte we need to write.
1909 *
1910 * For subpage, one page can contain several sectors, and
1911 * __extent_writepage_io() will just grab all extent maps in the page
1912 * range and try to submit all non-inline/non-compressed extents.
1913 *
1914 * This is a big problem for subpage, we shouldn't re-submit already written
1915 * data at all.
1916 * This function will lookup subpage dirty bit to find which range we really
1917 * need to submit.
1918 *
1919 * Return the next dirty range in [@start, @end).
1920 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1921 */
1922static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1923				 struct page *page, u64 *start, u64 *end)
1924{
1925	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1926	struct btrfs_subpage_info *spi = fs_info->subpage_info;
1927	u64 orig_start = *start;
1928	/* Declare as unsigned long so we can use bitmap ops */
1929	unsigned long flags;
1930	int range_start_bit;
1931	int range_end_bit;
1932
1933	/*
1934	 * For regular sector size == page size case, since one page only
1935	 * contains one sector, we return the page offset directly.
1936	 */
1937	if (!btrfs_is_subpage(fs_info, page)) {
1938		*start = page_offset(page);
1939		*end = page_offset(page) + PAGE_SIZE;
1940		return;
1941	}
1942
1943	range_start_bit = spi->dirty_offset +
1944			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1945
1946	/* We should have the page locked, but just in case */
1947	spin_lock_irqsave(&subpage->lock, flags);
1948	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1949			       spi->dirty_offset + spi->bitmap_nr_bits);
1950	spin_unlock_irqrestore(&subpage->lock, flags);
 
 
1951
1952	range_start_bit -= spi->dirty_offset;
1953	range_end_bit -= spi->dirty_offset;
1954
1955	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1956	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1957}
1958
1959/*
1960 * helper for __extent_writepage.  This calls the writepage start hooks,
1961 * and does the loop to map the page into extents and bios.
1962 *
1963 * We return 1 if the IO is started and the page is unlocked,
1964 * 0 if all went well (page still locked)
1965 * < 0 if there were errors (page still locked)
1966 */
1967static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1968				 struct page *page,
1969				 struct writeback_control *wbc,
1970				 struct btrfs_bio_ctrl *bio_ctrl,
1971				 loff_t i_size,
1972				 int *nr_ret)
1973{
1974	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1975	u64 cur = page_offset(page);
1976	u64 end = cur + PAGE_SIZE - 1;
1977	u64 extent_offset;
1978	u64 block_start;
1979	struct extent_map *em;
1980	int saved_ret = 0;
1981	int ret = 0;
1982	int nr = 0;
1983	enum req_op op = REQ_OP_WRITE;
1984	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1985	bool has_error = false;
1986	bool compressed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987
1988	ret = btrfs_writepage_cow_fixup(page);
1989	if (ret) {
1990		/* Fixup worker will requeue */
1991		redirty_page_for_writepage(wbc, page);
1992		unlock_page(page);
1993		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1994	}
1995
1996	/*
1997	 * we don't want to touch the inode after unlocking the page,
1998	 * so we update the mapping writeback index now
1999	 */
2000	wbc->nr_to_write--;
 
 
 
 
 
 
 
 
 
 
2001
2002	bio_ctrl->end_io_func = end_bio_extent_writepage;
2003	while (cur <= end) {
2004		u64 disk_bytenr;
2005		u64 em_end;
2006		u64 dirty_range_start = cur;
2007		u64 dirty_range_end;
2008		u32 iosize;
2009
2010		if (cur >= i_size) {
2011			btrfs_writepage_endio_finish_ordered(inode, page, cur,
2012							     end, true);
2013			/*
2014			 * This range is beyond i_size, thus we don't need to
2015			 * bother writing back.
2016			 * But we still need to clear the dirty subpage bit, or
2017			 * the next time the page gets dirtied, we will try to
2018			 * writeback the sectors with subpage dirty bits,
2019			 * causing writeback without ordered extent.
2020			 */
2021			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
2022			break;
2023		}
2024
2025		find_next_dirty_byte(fs_info, page, &dirty_range_start,
2026				     &dirty_range_end);
2027		if (cur < dirty_range_start) {
2028			cur = dirty_range_start;
2029			continue;
2030		}
2031
2032		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
2033		if (IS_ERR(em)) {
2034			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
2035			ret = PTR_ERR_OR_ZERO(em);
2036			has_error = true;
2037			if (!saved_ret)
2038				saved_ret = ret;
2039			break;
2040		}
2041
2042		extent_offset = cur - em->start;
2043		em_end = extent_map_end(em);
2044		ASSERT(cur <= em_end);
2045		ASSERT(cur < end);
2046		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
2047		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
 
2048		block_start = em->block_start;
2049		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2050		disk_bytenr = em->block_start + extent_offset;
2051
2052		/*
2053		 * Note that em_end from extent_map_end() and dirty_range_end from
2054		 * find_next_dirty_byte() are all exclusive
2055		 */
2056		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
2057
2058		if (btrfs_use_zone_append(inode, em->block_start))
2059			op = REQ_OP_ZONE_APPEND;
2060
2061		free_extent_map(em);
2062		em = NULL;
2063
2064		/*
2065		 * compressed and inline extents are written through other
2066		 * paths in the FS
2067		 */
2068		if (compressed || block_start == EXTENT_MAP_HOLE ||
2069		    block_start == EXTENT_MAP_INLINE) {
2070			if (compressed)
 
 
 
 
 
 
 
 
 
 
 
 
 
2071				nr++;
2072			else
2073				btrfs_writepage_endio_finish_ordered(inode,
2074						page, cur, cur + iosize - 1, true);
2075			btrfs_page_clear_dirty(fs_info, page, cur, iosize);
2076			cur += iosize;
 
2077			continue;
2078		}
2079
2080		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
2081		if (!PageWriteback(page)) {
2082			btrfs_err(inode->root->fs_info,
2083				   "page %lu not writeback, cur %llu end %llu",
2084			       page->index, cur, end);
2085		}
2086
2087		/*
2088		 * Although the PageDirty bit is cleared before entering this
2089		 * function, subpage dirty bit is not cleared.
2090		 * So clear subpage dirty bit here so next time we won't submit
2091		 * page for range already written to disk.
2092		 */
2093		btrfs_page_clear_dirty(fs_info, page, cur, iosize);
2094
2095		ret = submit_extent_page(op | write_flags, wbc,
2096					 bio_ctrl, disk_bytenr,
2097					 page, iosize,
2098					 cur - page_offset(page),
2099					 0, false);
2100		if (ret) {
2101			has_error = true;
2102			if (!saved_ret)
2103				saved_ret = ret;
2104
2105			btrfs_page_set_error(fs_info, page, cur, iosize);
2106			if (PageWriteback(page))
2107				btrfs_page_clear_writeback(fs_info, page, cur,
2108							   iosize);
2109		}
 
 
2110
2111		cur += iosize;
 
 
 
 
 
 
 
 
 
2112		nr++;
2113	}
2114	/*
2115	 * If we finish without problem, we should not only clear page dirty,
2116	 * but also empty subpage dirty bits
2117	 */
2118	if (!has_error)
2119		btrfs_page_assert_not_dirty(fs_info, page);
2120	else
2121		ret = saved_ret;
2122	*nr_ret = nr;
2123	return ret;
2124}
2125
2126/*
2127 * the writepage semantics are similar to regular writepage.  extent
2128 * records are inserted to lock ranges in the tree, and as dirty areas
2129 * are found, they are marked writeback.  Then the lock bits are removed
2130 * and the end_io handler clears the writeback ranges
2131 *
2132 * Return 0 if everything goes well.
2133 * Return <0 for error.
2134 */
2135static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2136			      struct btrfs_bio_ctrl *bio_ctrl)
2137{
2138	struct folio *folio = page_folio(page);
2139	struct inode *inode = page->mapping->host;
2140	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2141	const u64 page_start = page_offset(page);
2142	const u64 page_end = page_start + PAGE_SIZE - 1;
2143	int ret;
2144	int nr = 0;
2145	size_t pg_offset;
2146	loff_t i_size = i_size_read(inode);
2147	unsigned long end_index = i_size >> PAGE_SHIFT;
2148
2149	trace___extent_writepage(page, inode, wbc);
2150
2151	WARN_ON(!PageLocked(page));
2152
2153	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
2154			       page_offset(page), PAGE_SIZE);
2155
2156	pg_offset = offset_in_page(i_size);
2157	if (page->index > end_index ||
2158	   (page->index == end_index && !pg_offset)) {
2159		folio_invalidate(folio, 0, folio_size(folio));
2160		folio_unlock(folio);
2161		return 0;
2162	}
2163
2164	if (page->index == end_index)
2165		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
2166
2167	ret = set_page_extent_mapped(page);
2168	if (ret < 0) {
2169		SetPageError(page);
2170		goto done;
2171	}
2172
2173	if (!bio_ctrl->extent_locked) {
2174		ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
2175		if (ret == 1)
2176			return 0;
2177		if (ret)
2178			goto done;
2179	}
2180
2181	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, bio_ctrl, i_size,
2182				    &nr);
2183	if (ret == 1)
2184		return 0;
2185
2186done:
2187	if (nr == 0) {
2188		/* make sure the mapping tag for page dirty gets cleared */
2189		set_page_writeback(page);
2190		end_page_writeback(page);
2191	}
2192	/*
2193	 * Here we used to have a check for PageError() and then set @ret and
2194	 * call end_extent_writepage().
2195	 *
2196	 * But in fact setting @ret here will cause different error paths
2197	 * between subpage and regular sectorsize.
2198	 *
2199	 * For regular page size, we never submit current page, but only add
2200	 * current page to current bio.
2201	 * The bio submission can only happen in next page.
2202	 * Thus if we hit the PageError() branch, @ret is already set to
2203	 * non-zero value and will not get updated for regular sectorsize.
2204	 *
2205	 * But for subpage case, it's possible we submit part of current page,
2206	 * thus can get PageError() set by submitted bio of the same page,
2207	 * while our @ret is still 0.
2208	 *
2209	 * So here we unify the behavior and don't set @ret.
2210	 * Error can still be properly passed to higher layer as page will
2211	 * be set error, here we just don't handle the IO failure.
2212	 *
2213	 * NOTE: This is just a hotfix for subpage.
2214	 * The root fix will be properly ending ordered extent when we hit
2215	 * an error during writeback.
2216	 *
2217	 * But that needs a bigger refactoring, as we not only need to grab the
2218	 * submitted OE, but also need to know exactly at which bytenr we hit
2219	 * the error.
2220	 * Currently the full page based __extent_writepage_io() is not
2221	 * capable of that.
2222	 */
2223	if (PageError(page))
2224		end_extent_writepage(page, ret, page_start, page_end);
2225	if (bio_ctrl->extent_locked) {
2226		/*
2227		 * If bio_ctrl->extent_locked, it's from extent_write_locked_range(),
2228		 * the page can either be locked by lock_page() or
2229		 * process_one_page().
2230		 * Let btrfs_page_unlock_writer() handle both cases.
2231		 */
2232		ASSERT(wbc);
2233		btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
2234					 wbc->range_end + 1 - wbc->range_start);
2235	} else {
2236		unlock_page(page);
2237	}
2238	ASSERT(ret <= 0);
2239	return ret;
2240}
2241
2242void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
2243{
2244	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
2245		       TASK_UNINTERRUPTIBLE);
2246}
2247
2248static void end_extent_buffer_writeback(struct extent_buffer *eb)
2249{
2250	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2251	smp_mb__after_atomic();
2252	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
2253}
2254
2255/*
2256 * Lock extent buffer status and pages for writeback.
2257 *
2258 * May try to flush write bio if we can't get the lock.
2259 *
2260 * Return  0 if the extent buffer doesn't need to be submitted.
2261 *           (E.g. the extent buffer is not dirty)
2262 * Return >0 is the extent buffer is submitted to bio.
2263 * Return <0 if something went wrong, no page is locked.
2264 */
2265static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
2266			  struct btrfs_bio_ctrl *bio_ctrl)
2267{
2268	struct btrfs_fs_info *fs_info = eb->fs_info;
2269	int i, num_pages;
2270	int flush = 0;
2271	int ret = 0;
2272
2273	if (!btrfs_try_tree_write_lock(eb)) {
2274		submit_write_bio(bio_ctrl, 0);
2275		flush = 1;
 
2276		btrfs_tree_lock(eb);
2277	}
2278
2279	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
2280		btrfs_tree_unlock(eb);
2281		if (!bio_ctrl->sync_io)
2282			return 0;
2283		if (!flush) {
2284			submit_write_bio(bio_ctrl, 0);
2285			flush = 1;
2286		}
2287		while (1) {
2288			wait_on_extent_buffer_writeback(eb);
2289			btrfs_tree_lock(eb);
2290			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
2291				break;
2292			btrfs_tree_unlock(eb);
2293		}
2294	}
2295
2296	/*
2297	 * We need to do this to prevent races in people who check if the eb is
2298	 * under IO since we can end up having no IO bits set for a short period
2299	 * of time.
2300	 */
2301	spin_lock(&eb->refs_lock);
2302	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2303		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2304		spin_unlock(&eb->refs_lock);
2305		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2306		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2307					 -eb->len,
2308					 fs_info->dirty_metadata_batch);
 
 
 
2309		ret = 1;
2310	} else {
2311		spin_unlock(&eb->refs_lock);
2312	}
2313
2314	btrfs_tree_unlock(eb);
2315
2316	/*
2317	 * Either we don't need to submit any tree block, or we're submitting
2318	 * subpage eb.
2319	 * Subpage metadata doesn't use page locking at all, so we can skip
2320	 * the page locking.
2321	 */
2322	if (!ret || fs_info->nodesize < PAGE_SIZE)
2323		return ret;
2324
2325	num_pages = num_extent_pages(eb);
2326	for (i = 0; i < num_pages; i++) {
2327		struct page *p = eb->pages[i];
2328
2329		if (!trylock_page(p)) {
2330			if (!flush) {
2331				submit_write_bio(bio_ctrl, 0);
2332				flush = 1;
2333			}
2334			lock_page(p);
2335		}
2336	}
2337
2338	return ret;
2339}
2340
2341static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
2342{
2343	struct btrfs_fs_info *fs_info = eb->fs_info;
2344
2345	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
2346	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
2347		return;
2348
2349	/*
2350	 * A read may stumble upon this buffer later, make sure that it gets an
2351	 * error and knows there was an error.
2352	 */
2353	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
2354
2355	/*
2356	 * We need to set the mapping with the io error as well because a write
2357	 * error will flip the file system readonly, and then syncfs() will
2358	 * return a 0 because we are readonly if we don't modify the err seq for
2359	 * the superblock.
2360	 */
2361	mapping_set_error(page->mapping, -EIO);
2362
2363	/*
2364	 * If we error out, we should add back the dirty_metadata_bytes
2365	 * to make it consistent.
2366	 */
2367	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2368				 eb->len, fs_info->dirty_metadata_batch);
2369
2370	/*
2371	 * If writeback for a btree extent that doesn't belong to a log tree
2372	 * failed, increment the counter transaction->eb_write_errors.
2373	 * We do this because while the transaction is running and before it's
2374	 * committing (when we call filemap_fdata[write|wait]_range against
2375	 * the btree inode), we might have
2376	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
2377	 * returns an error or an error happens during writeback, when we're
2378	 * committing the transaction we wouldn't know about it, since the pages
2379	 * can be no longer dirty nor marked anymore for writeback (if a
2380	 * subsequent modification to the extent buffer didn't happen before the
2381	 * transaction commit), which makes filemap_fdata[write|wait]_range not
2382	 * able to find the pages tagged with SetPageError at transaction
2383	 * commit time. So if this happens we must abort the transaction,
2384	 * otherwise we commit a super block with btree roots that point to
2385	 * btree nodes/leafs whose content on disk is invalid - either garbage
2386	 * or the content of some node/leaf from a past generation that got
2387	 * cowed or deleted and is no longer valid.
2388	 *
2389	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
2390	 * not be enough - we need to distinguish between log tree extents vs
2391	 * non-log tree extents, and the next filemap_fdatawait_range() call
2392	 * will catch and clear such errors in the mapping - and that call might
2393	 * be from a log sync and not from a transaction commit. Also, checking
2394	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
2395	 * not done and would not be reliable - the eb might have been released
2396	 * from memory and reading it back again means that flag would not be
2397	 * set (since it's a runtime flag, not persisted on disk).
2398	 *
2399	 * Using the flags below in the btree inode also makes us achieve the
2400	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
2401	 * writeback for all dirty pages and before filemap_fdatawait_range()
2402	 * is called, the writeback for all dirty pages had already finished
2403	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
2404	 * filemap_fdatawait_range() would return success, as it could not know
2405	 * that writeback errors happened (the pages were no longer tagged for
2406	 * writeback).
2407	 */
2408	switch (eb->log_index) {
2409	case -1:
2410		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
2411		break;
2412	case 0:
2413		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2414		break;
2415	case 1:
2416		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2417		break;
2418	default:
2419		BUG(); /* unexpected, logic error */
2420	}
2421}
2422
2423/*
2424 * The endio specific version which won't touch any unsafe spinlock in endio
2425 * context.
2426 */
2427static struct extent_buffer *find_extent_buffer_nolock(
2428		struct btrfs_fs_info *fs_info, u64 start)
2429{
2430	struct extent_buffer *eb;
2431
2432	rcu_read_lock();
2433	eb = radix_tree_lookup(&fs_info->buffer_radix,
2434			       start >> fs_info->sectorsize_bits);
2435	if (eb && atomic_inc_not_zero(&eb->refs)) {
2436		rcu_read_unlock();
2437		return eb;
2438	}
2439	rcu_read_unlock();
2440	return NULL;
2441}
2442
2443/*
2444 * The endio function for subpage extent buffer write.
2445 *
2446 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
2447 * after all extent buffers in the page has finished their writeback.
2448 */
2449static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio)
2450{
2451	struct bio *bio = &bbio->bio;
2452	struct btrfs_fs_info *fs_info;
2453	struct bio_vec *bvec;
2454	struct bvec_iter_all iter_all;
2455
2456	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
2457	ASSERT(fs_info->nodesize < PAGE_SIZE);
2458
2459	ASSERT(!bio_flagged(bio, BIO_CLONED));
2460	bio_for_each_segment_all(bvec, bio, iter_all) {
2461		struct page *page = bvec->bv_page;
2462		u64 bvec_start = page_offset(page) + bvec->bv_offset;
2463		u64 bvec_end = bvec_start + bvec->bv_len - 1;
2464		u64 cur_bytenr = bvec_start;
2465
2466		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
2467
2468		/* Iterate through all extent buffers in the range */
2469		while (cur_bytenr <= bvec_end) {
2470			struct extent_buffer *eb;
2471			int done;
2472
2473			/*
2474			 * Here we can't use find_extent_buffer(), as it may
2475			 * try to lock eb->refs_lock, which is not safe in endio
2476			 * context.
2477			 */
2478			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
2479			ASSERT(eb);
2480
2481			cur_bytenr = eb->start + eb->len;
2482
2483			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
2484			done = atomic_dec_and_test(&eb->io_pages);
2485			ASSERT(done);
2486
2487			if (bio->bi_status ||
2488			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
2489				ClearPageUptodate(page);
2490				set_btree_ioerr(page, eb);
2491			}
2492
2493			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
2494						      eb->len);
2495			end_extent_buffer_writeback(eb);
2496			/*
2497			 * free_extent_buffer() will grab spinlock which is not
2498			 * safe in endio context. Thus here we manually dec
2499			 * the ref.
2500			 */
2501			atomic_dec(&eb->refs);
2502		}
2503	}
2504	bio_put(bio);
2505}
2506
2507static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio)
2508{
2509	struct bio *bio = &bbio->bio;
2510	struct bio_vec *bvec;
2511	struct extent_buffer *eb;
2512	int done;
2513	struct bvec_iter_all iter_all;
2514
2515	ASSERT(!bio_flagged(bio, BIO_CLONED));
2516	bio_for_each_segment_all(bvec, bio, iter_all) {
2517		struct page *page = bvec->bv_page;
2518
 
2519		eb = (struct extent_buffer *)page->private;
2520		BUG_ON(!eb);
2521		done = atomic_dec_and_test(&eb->io_pages);
2522
2523		if (bio->bi_status ||
2524		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
2525			ClearPageUptodate(page);
2526			set_btree_ioerr(page, eb);
2527		}
2528
2529		end_page_writeback(page);
2530
2531		if (!done)
2532			continue;
2533
2534		end_extent_buffer_writeback(eb);
2535	}
2536
2537	bio_put(bio);
2538}
2539
2540static void prepare_eb_write(struct extent_buffer *eb)
2541{
2542	u32 nritems;
2543	unsigned long start;
2544	unsigned long end;
2545
2546	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
2547	atomic_set(&eb->io_pages, num_extent_pages(eb));
2548
2549	/* Set btree blocks beyond nritems with 0 to avoid stale content */
2550	nritems = btrfs_header_nritems(eb);
2551	if (btrfs_header_level(eb) > 0) {
2552		end = btrfs_node_key_ptr_offset(eb, nritems);
2553		memzero_extent_buffer(eb, end, eb->len - end);
2554	} else {
2555		/*
2556		 * Leaf:
2557		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
2558		 */
2559		start = btrfs_item_nr_offset(eb, nritems);
2560		end = btrfs_item_nr_offset(eb, 0);
2561		if (nritems == 0)
2562			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
2563		else
2564			end += btrfs_item_offset(eb, nritems - 1);
2565		memzero_extent_buffer(eb, start, end - start);
2566	}
2567}
2568
2569/*
2570 * Unlike the work in write_one_eb(), we rely completely on extent locking.
2571 * Page locking is only utilized at minimum to keep the VMM code happy.
2572 */
2573static int write_one_subpage_eb(struct extent_buffer *eb,
2574				struct writeback_control *wbc,
2575				struct btrfs_bio_ctrl *bio_ctrl)
2576{
2577	struct btrfs_fs_info *fs_info = eb->fs_info;
2578	struct page *page = eb->pages[0];
2579	blk_opf_t write_flags = wbc_to_write_flags(wbc);
2580	bool no_dirty_ebs = false;
2581	int ret;
2582
2583	prepare_eb_write(eb);
2584
2585	/* clear_page_dirty_for_io() in subpage helper needs page locked */
2586	lock_page(page);
2587	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
2588
2589	/* Check if this is the last dirty bit to update nr_written */
2590	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
2591							  eb->start, eb->len);
2592	if (no_dirty_ebs)
2593		clear_page_dirty_for_io(page);
2594
2595	bio_ctrl->end_io_func = end_bio_subpage_eb_writepage;
2596
2597	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
2598			bio_ctrl, eb->start, page, eb->len,
2599			eb->start - page_offset(page), 0, false);
2600	if (ret) {
2601		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
2602		set_btree_ioerr(page, eb);
2603		unlock_page(page);
2604
2605		if (atomic_dec_and_test(&eb->io_pages))
2606			end_extent_buffer_writeback(eb);
2607		return -EIO;
2608	}
2609	unlock_page(page);
2610	/*
2611	 * Submission finished without problem, if no range of the page is
2612	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
2613	 */
2614	if (no_dirty_ebs)
2615		wbc->nr_to_write--;
2616	return ret;
2617}
2618
2619static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
 
2620			struct writeback_control *wbc,
2621			struct btrfs_bio_ctrl *bio_ctrl)
2622{
2623	u64 disk_bytenr = eb->start;
2624	int i, num_pages;
2625	blk_opf_t write_flags = wbc_to_write_flags(wbc);
 
2626	int ret = 0;
2627
2628	prepare_eb_write(eb);
2629
2630	bio_ctrl->end_io_func = end_bio_extent_buffer_writepage;
2631
2632	num_pages = num_extent_pages(eb);
2633	for (i = 0; i < num_pages; i++) {
2634		struct page *p = eb->pages[i];
2635
2636		clear_page_dirty_for_io(p);
2637		set_page_writeback(p);
2638		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
2639					 bio_ctrl, disk_bytenr, p,
2640					 PAGE_SIZE, 0, 0, false);
 
2641		if (ret) {
2642			set_btree_ioerr(p, eb);
2643			if (PageWriteback(p))
2644				end_page_writeback(p);
2645			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
2646				end_extent_buffer_writeback(eb);
2647			ret = -EIO;
2648			break;
2649		}
2650		disk_bytenr += PAGE_SIZE;
2651		wbc->nr_to_write--;
2652		unlock_page(p);
2653	}
2654
2655	if (unlikely(ret)) {
2656		for (; i < num_pages; i++) {
2657			struct page *p = eb->pages[i];
2658			clear_page_dirty_for_io(p);
2659			unlock_page(p);
2660		}
2661	}
2662
2663	return ret;
2664}
2665
2666/*
2667 * Submit one subpage btree page.
2668 *
2669 * The main difference to submit_eb_page() is:
2670 * - Page locking
2671 *   For subpage, we don't rely on page locking at all.
2672 *
2673 * - Flush write bio
2674 *   We only flush bio if we may be unable to fit current extent buffers into
2675 *   current bio.
2676 *
2677 * Return >=0 for the number of submitted extent buffers.
2678 * Return <0 for fatal error.
2679 */
2680static int submit_eb_subpage(struct page *page,
2681			     struct writeback_control *wbc,
2682			     struct btrfs_bio_ctrl *bio_ctrl)
2683{
2684	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2685	int submitted = 0;
2686	u64 page_start = page_offset(page);
2687	int bit_start = 0;
2688	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
2689	int ret;
2690
2691	/* Lock and write each dirty extent buffers in the range */
2692	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
2693		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
2694		struct extent_buffer *eb;
2695		unsigned long flags;
2696		u64 start;
2697
2698		/*
2699		 * Take private lock to ensure the subpage won't be detached
2700		 * in the meantime.
2701		 */
2702		spin_lock(&page->mapping->private_lock);
2703		if (!PagePrivate(page)) {
2704			spin_unlock(&page->mapping->private_lock);
2705			break;
2706		}
2707		spin_lock_irqsave(&subpage->lock, flags);
2708		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
2709			      subpage->bitmaps)) {
2710			spin_unlock_irqrestore(&subpage->lock, flags);
2711			spin_unlock(&page->mapping->private_lock);
2712			bit_start++;
2713			continue;
2714		}
2715
2716		start = page_start + bit_start * fs_info->sectorsize;
2717		bit_start += sectors_per_node;
2718
2719		/*
2720		 * Here we just want to grab the eb without touching extra
2721		 * spin locks, so call find_extent_buffer_nolock().
2722		 */
2723		eb = find_extent_buffer_nolock(fs_info, start);
2724		spin_unlock_irqrestore(&subpage->lock, flags);
2725		spin_unlock(&page->mapping->private_lock);
2726
2727		/*
2728		 * The eb has already reached 0 refs thus find_extent_buffer()
2729		 * doesn't return it. We don't need to write back such eb
2730		 * anyway.
2731		 */
2732		if (!eb)
2733			continue;
2734
2735		ret = lock_extent_buffer_for_io(eb, bio_ctrl);
2736		if (ret == 0) {
2737			free_extent_buffer(eb);
2738			continue;
2739		}
2740		if (ret < 0) {
2741			free_extent_buffer(eb);
2742			goto cleanup;
2743		}
2744		ret = write_one_subpage_eb(eb, wbc, bio_ctrl);
2745		free_extent_buffer(eb);
2746		if (ret < 0)
2747			goto cleanup;
2748		submitted++;
2749	}
2750	return submitted;
2751
2752cleanup:
2753	/* We hit error, end bio for the submitted extent buffers */
2754	submit_write_bio(bio_ctrl, ret);
2755	return ret;
2756}
2757
2758/*
2759 * Submit all page(s) of one extent buffer.
2760 *
2761 * @page:	the page of one extent buffer
2762 * @eb_context:	to determine if we need to submit this page, if current page
2763 *		belongs to this eb, we don't need to submit
2764 *
2765 * The caller should pass each page in their bytenr order, and here we use
2766 * @eb_context to determine if we have submitted pages of one extent buffer.
2767 *
2768 * If we have, we just skip until we hit a new page that doesn't belong to
2769 * current @eb_context.
2770 *
2771 * If not, we submit all the page(s) of the extent buffer.
2772 *
2773 * Return >0 if we have submitted the extent buffer successfully.
2774 * Return 0 if we don't need to submit the page, as it's already submitted by
2775 * previous call.
2776 * Return <0 for fatal error.
2777 */
2778static int submit_eb_page(struct page *page, struct writeback_control *wbc,
2779			  struct btrfs_bio_ctrl *bio_ctrl,
2780			  struct extent_buffer **eb_context)
2781{
2782	struct address_space *mapping = page->mapping;
2783	struct btrfs_block_group *cache = NULL;
2784	struct extent_buffer *eb;
2785	int ret;
2786
2787	if (!PagePrivate(page))
2788		return 0;
2789
2790	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
2791		return submit_eb_subpage(page, wbc, bio_ctrl);
2792
2793	spin_lock(&mapping->private_lock);
2794	if (!PagePrivate(page)) {
2795		spin_unlock(&mapping->private_lock);
2796		return 0;
2797	}
2798
2799	eb = (struct extent_buffer *)page->private;
2800
2801	/*
2802	 * Shouldn't happen and normally this would be a BUG_ON but no point
2803	 * crashing the machine for something we can survive anyway.
2804	 */
2805	if (WARN_ON(!eb)) {
2806		spin_unlock(&mapping->private_lock);
2807		return 0;
2808	}
2809
2810	if (eb == *eb_context) {
2811		spin_unlock(&mapping->private_lock);
2812		return 0;
2813	}
2814	ret = atomic_inc_not_zero(&eb->refs);
2815	spin_unlock(&mapping->private_lock);
2816	if (!ret)
2817		return 0;
2818
2819	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
2820		/*
2821		 * If for_sync, this hole will be filled with
2822		 * trasnsaction commit.
2823		 */
2824		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
2825			ret = -EAGAIN;
2826		else
2827			ret = 0;
2828		free_extent_buffer(eb);
2829		return ret;
2830	}
2831
2832	*eb_context = eb;
2833
2834	ret = lock_extent_buffer_for_io(eb, bio_ctrl);
2835	if (ret <= 0) {
2836		btrfs_revert_meta_write_pointer(cache, eb);
2837		if (cache)
2838			btrfs_put_block_group(cache);
2839		free_extent_buffer(eb);
2840		return ret;
2841	}
2842	if (cache) {
2843		/*
2844		 * Implies write in zoned mode. Mark the last eb in a block group.
2845		 */
2846		btrfs_schedule_zone_finish_bg(cache, eb);
2847		btrfs_put_block_group(cache);
2848	}
2849	ret = write_one_eb(eb, wbc, bio_ctrl);
2850	free_extent_buffer(eb);
2851	if (ret < 0)
2852		return ret;
2853	return 1;
2854}
2855
2856int btree_write_cache_pages(struct address_space *mapping,
2857				   struct writeback_control *wbc)
2858{
2859	struct extent_buffer *eb_context = NULL;
2860	struct btrfs_bio_ctrl bio_ctrl = {
 
 
 
 
2861		.extent_locked = 0,
2862		.sync_io = (wbc->sync_mode == WB_SYNC_ALL),
2863	};
2864	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
2865	int ret = 0;
2866	int done = 0;
2867	int nr_to_write_done = 0;
2868	struct pagevec pvec;
2869	int nr_pages;
2870	pgoff_t index;
2871	pgoff_t end;		/* Inclusive */
2872	int scanned = 0;
2873	xa_mark_t tag;
2874
2875	pagevec_init(&pvec);
2876	if (wbc->range_cyclic) {
2877		index = mapping->writeback_index; /* Start from prev offset */
2878		end = -1;
2879		/*
2880		 * Start from the beginning does not need to cycle over the
2881		 * range, mark it as scanned.
2882		 */
2883		scanned = (index == 0);
2884	} else {
2885		index = wbc->range_start >> PAGE_SHIFT;
2886		end = wbc->range_end >> PAGE_SHIFT;
2887		scanned = 1;
2888	}
2889	if (wbc->sync_mode == WB_SYNC_ALL)
2890		tag = PAGECACHE_TAG_TOWRITE;
2891	else
2892		tag = PAGECACHE_TAG_DIRTY;
2893	btrfs_zoned_meta_io_lock(fs_info);
2894retry:
2895	if (wbc->sync_mode == WB_SYNC_ALL)
2896		tag_pages_for_writeback(mapping, index, end);
2897	while (!done && !nr_to_write_done && (index <= end) &&
2898	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2899			tag))) {
2900		unsigned i;
2901
 
2902		for (i = 0; i < nr_pages; i++) {
2903			struct page *page = pvec.pages[i];
2904
2905			ret = submit_eb_page(page, wbc, &bio_ctrl, &eb_context);
2906			if (ret == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2907				continue;
2908			if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
2909				done = 1;
 
2910				break;
2911			}
 
2912
2913			/*
2914			 * the filesystem may choose to bump up nr_to_write.
2915			 * We have to make sure to honor the new nr_to_write
2916			 * at any time
2917			 */
2918			nr_to_write_done = wbc->nr_to_write <= 0;
2919		}
2920		pagevec_release(&pvec);
2921		cond_resched();
2922	}
2923	if (!scanned && !done) {
2924		/*
2925		 * We hit the last page and there is more work to be done: wrap
2926		 * back to the start of the file
2927		 */
2928		scanned = 1;
2929		index = 0;
2930		goto retry;
2931	}
2932	/*
2933	 * If something went wrong, don't allow any metadata write bio to be
2934	 * submitted.
2935	 *
2936	 * This would prevent use-after-free if we had dirty pages not
2937	 * cleaned up, which can still happen by fuzzed images.
2938	 *
2939	 * - Bad extent tree
2940	 *   Allowing existing tree block to be allocated for other trees.
2941	 *
2942	 * - Log tree operations
2943	 *   Exiting tree blocks get allocated to log tree, bumps its
2944	 *   generation, then get cleaned in tree re-balance.
2945	 *   Such tree block will not be written back, since it's clean,
2946	 *   thus no WRITTEN flag set.
2947	 *   And after log writes back, this tree block is not traced by
2948	 *   any dirty extent_io_tree.
2949	 *
2950	 * - Offending tree block gets re-dirtied from its original owner
2951	 *   Since it has bumped generation, no WRITTEN flag, it can be
2952	 *   reused without COWing. This tree block will not be traced
2953	 *   by btrfs_transaction::dirty_pages.
2954	 *
2955	 *   Now such dirty tree block will not be cleaned by any dirty
2956	 *   extent io tree. Thus we don't want to submit such wild eb
2957	 *   if the fs already has error.
2958	 *
2959	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2960	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2961	 */
2962	if (ret > 0)
2963		ret = 0;
2964	if (!ret && BTRFS_FS_ERROR(fs_info))
2965		ret = -EROFS;
2966	submit_write_bio(&bio_ctrl, ret);
2967
2968	btrfs_zoned_meta_io_unlock(fs_info);
2969	return ret;
2970}
2971
2972/*
2973 * Walk the list of dirty pages of the given address space and write all of them.
2974 *
2975 * @mapping:   address space structure to write
2976 * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2977 * @bio_ctrl:  holds context for the write, namely the bio
2978 *
2979 * If a page is already under I/O, write_cache_pages() skips it, even
2980 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2981 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2982 * and msync() need to guarantee that all the data which was dirty at the time
2983 * the call was made get new I/O started against them.  If wbc->sync_mode is
2984 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2985 * existing IO to complete.
2986 */
2987static int extent_write_cache_pages(struct address_space *mapping,
 
2988			     struct writeback_control *wbc,
2989			     struct btrfs_bio_ctrl *bio_ctrl)
 
2990{
2991	struct inode *inode = mapping->host;
2992	int ret = 0;
2993	int done = 0;
2994	int nr_to_write_done = 0;
2995	struct pagevec pvec;
2996	int nr_pages;
2997	pgoff_t index;
2998	pgoff_t end;		/* Inclusive */
2999	pgoff_t done_index;
3000	int range_whole = 0;
3001	int scanned = 0;
3002	xa_mark_t tag;
3003
3004	/*
3005	 * We have to hold onto the inode so that ordered extents can do their
3006	 * work when the IO finishes.  The alternative to this is failing to add
3007	 * an ordered extent if the igrab() fails there and that is a huge pain
3008	 * to deal with, so instead just hold onto the inode throughout the
3009	 * writepages operation.  If it fails here we are freeing up the inode
3010	 * anyway and we'd rather not waste our time writing out stuff that is
3011	 * going to be truncated anyway.
3012	 */
3013	if (!igrab(inode))
3014		return 0;
3015
3016	pagevec_init(&pvec);
3017	if (wbc->range_cyclic) {
3018		index = mapping->writeback_index; /* Start from prev offset */
3019		end = -1;
3020		/*
3021		 * Start from the beginning does not need to cycle over the
3022		 * range, mark it as scanned.
3023		 */
3024		scanned = (index == 0);
3025	} else {
3026		index = wbc->range_start >> PAGE_SHIFT;
3027		end = wbc->range_end >> PAGE_SHIFT;
3028		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3029			range_whole = 1;
3030		scanned = 1;
3031	}
3032
3033	/*
3034	 * We do the tagged writepage as long as the snapshot flush bit is set
3035	 * and we are the first one who do the filemap_flush() on this inode.
3036	 *
3037	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3038	 * not race in and drop the bit.
3039	 */
3040	if (range_whole && wbc->nr_to_write == LONG_MAX &&
3041	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3042			       &BTRFS_I(inode)->runtime_flags))
3043		wbc->tagged_writepages = 1;
3044
3045	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3046		tag = PAGECACHE_TAG_TOWRITE;
3047	else
3048		tag = PAGECACHE_TAG_DIRTY;
3049retry:
3050	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3051		tag_pages_for_writeback(mapping, index, end);
3052	done_index = index;
3053	while (!done && !nr_to_write_done && (index <= end) &&
3054			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3055						&index, end, tag))) {
3056		unsigned i;
3057
 
3058		for (i = 0; i < nr_pages; i++) {
3059			struct page *page = pvec.pages[i];
3060
3061			done_index = page->index + 1;
3062			/*
3063			 * At this point we hold neither the i_pages lock nor
3064			 * the page lock: the page may be truncated or
3065			 * invalidated (changing page->mapping to NULL),
3066			 * or even swizzled back from swapper_space to
3067			 * tmpfs file mapping
3068			 */
3069			if (!trylock_page(page)) {
3070				submit_write_bio(bio_ctrl, 0);
3071				lock_page(page);
 
 
 
 
 
 
3072			}
3073
3074			if (unlikely(page->mapping != mapping)) {
3075				unlock_page(page);
3076				continue;
3077			}
3078
 
 
 
 
 
 
3079			if (wbc->sync_mode != WB_SYNC_NONE) {
3080				if (PageWriteback(page))
3081					submit_write_bio(bio_ctrl, 0);
3082				wait_on_page_writeback(page);
3083			}
3084
3085			if (PageWriteback(page) ||
3086			    !clear_page_dirty_for_io(page)) {
3087				unlock_page(page);
3088				continue;
3089			}
3090
3091			ret = __extent_writepage(page, wbc, bio_ctrl);
3092			if (ret < 0) {
3093				done = 1;
3094				break;
 
3095			}
 
 
3096
3097			/*
3098			 * the filesystem may choose to bump up nr_to_write.
3099			 * We have to make sure to honor the new nr_to_write
3100			 * at any time
3101			 */
3102			nr_to_write_done = wbc->nr_to_write <= 0;
3103		}
3104		pagevec_release(&pvec);
3105		cond_resched();
3106	}
3107	if (!scanned && !done) {
3108		/*
3109		 * We hit the last page and there is more work to be done: wrap
3110		 * back to the start of the file
3111		 */
3112		scanned = 1;
3113		index = 0;
3114
3115		/*
3116		 * If we're looping we could run into a page that is locked by a
3117		 * writer and that writer could be waiting on writeback for a
3118		 * page in our current bio, and thus deadlock, so flush the
3119		 * write bio here.
3120		 */
3121		submit_write_bio(bio_ctrl, 0);
3122		goto retry;
3123	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3124
3125	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
3126		mapping->writeback_index = done_index;
3127
3128	btrfs_add_delayed_iput(BTRFS_I(inode));
3129	return ret;
3130}
3131
3132/*
3133 * Submit the pages in the range to bio for call sites which delalloc range has
3134 * already been ran (aka, ordered extent inserted) and all pages are still
3135 * locked.
3136 */
3137int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
3138{
3139	bool found_error = false;
3140	int first_error = 0;
3141	int ret = 0;
3142	struct address_space *mapping = inode->i_mapping;
3143	struct page *page;
3144	u64 cur = start;
3145	unsigned long nr_pages;
3146	const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
3147	struct btrfs_bio_ctrl bio_ctrl = {
 
 
 
3148		.extent_locked = 1,
3149		.sync_io = 1,
3150	};
3151	struct writeback_control wbc_writepages = {
3152		.sync_mode	= WB_SYNC_ALL,
 
3153		.range_start	= start,
3154		.range_end	= end + 1,
3155		/* We're called from an async helper function */
3156		.punt_to_cgroup	= 1,
3157		.no_cgroup_owner = 1,
3158	};
3159
3160	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
3161	nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
3162		   PAGE_SHIFT;
3163	wbc_writepages.nr_to_write = nr_pages * 2;
3164
3165	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
3166	while (cur <= end) {
3167		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
3168
3169		page = find_get_page(mapping, cur >> PAGE_SHIFT);
3170		/*
3171		 * All pages in the range are locked since
3172		 * btrfs_run_delalloc_range(), thus there is no way to clear
3173		 * the page dirty flag.
3174		 */
3175		ASSERT(PageLocked(page));
3176		ASSERT(PageDirty(page));
3177		clear_page_dirty_for_io(page);
3178		ret = __extent_writepage(page, &wbc_writepages, &bio_ctrl);
3179		ASSERT(ret <= 0);
3180		if (ret < 0) {
3181			found_error = true;
3182			first_error = ret;
3183		}
3184		put_page(page);
3185		cur = cur_end + 1;
3186	}
3187
3188	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
3189
3190	wbc_detach_inode(&wbc_writepages);
3191	if (found_error)
3192		return first_error;
3193	return ret;
3194}
3195
3196int extent_writepages(struct address_space *mapping,
 
 
3197		      struct writeback_control *wbc)
3198{
3199	struct inode *inode = mapping->host;
3200	int ret = 0;
3201	struct btrfs_bio_ctrl bio_ctrl = {
 
 
 
3202		.extent_locked = 0,
3203		.sync_io = (wbc->sync_mode == WB_SYNC_ALL),
3204	};
3205
3206	/*
3207	 * Allow only a single thread to do the reloc work in zoned mode to
3208	 * protect the write pointer updates.
3209	 */
3210	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
3211	ret = extent_write_cache_pages(mapping, wbc, &bio_ctrl);
3212	submit_write_bio(&bio_ctrl, ret);
3213	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
3214	return ret;
3215}
3216
3217void extent_readahead(struct readahead_control *rac)
3218{
3219	struct btrfs_bio_ctrl bio_ctrl = { 0 };
3220	struct page *pagepool[16];
3221	struct extent_map *em_cached = NULL;
3222	u64 prev_em_start = (u64)-1;
3223	int nr;
3224
3225	while ((nr = readahead_page_batch(rac, pagepool))) {
3226		u64 contig_start = readahead_pos(rac);
3227		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
3228
3229		contiguous_readpages(pagepool, nr, contig_start, contig_end,
3230				&em_cached, &bio_ctrl, &prev_em_start);
3231	}
3232
3233	if (em_cached)
3234		free_extent_map(em_cached);
3235	submit_one_bio(&bio_ctrl);
 
 
 
 
 
 
3236}
3237
3238/*
3239 * basic invalidate_folio code, this waits on any locked or writeback
3240 * ranges corresponding to the folio, and then deletes any extent state
3241 * records from the tree
3242 */
3243int extent_invalidate_folio(struct extent_io_tree *tree,
3244			  struct folio *folio, size_t offset)
3245{
3246	struct extent_state *cached_state = NULL;
3247	u64 start = folio_pos(folio);
3248	u64 end = start + folio_size(folio) - 1;
3249	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
3250
3251	/* This function is only called for the btree inode */
3252	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
3253
3254	start += ALIGN(offset, blocksize);
3255	if (start > end)
3256		return 0;
3257
3258	lock_extent(tree, start, end, &cached_state);
3259	folio_wait_writeback(folio);
3260
3261	/*
3262	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
3263	 * so here we only need to unlock the extent range to free any
3264	 * existing extent state.
3265	 */
3266	unlock_extent(tree, start, end, &cached_state);
3267	return 0;
3268}
3269
3270/*
3271 * a helper for release_folio, this tests for areas of the page that
3272 * are locked or under IO and drops the related state bits if it is safe
3273 * to drop the page.
3274 */
3275static int try_release_extent_state(struct extent_io_tree *tree,
3276				    struct page *page, gfp_t mask)
 
3277{
3278	u64 start = page_offset(page);
3279	u64 end = start + PAGE_SIZE - 1;
3280	int ret = 1;
3281
3282	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
 
3283		ret = 0;
3284	} else {
3285		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
3286				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS);
3287
3288		/*
3289		 * At this point we can safely clear everything except the
3290		 * locked bit, the nodatasum bit and the delalloc new bit.
3291		 * The delalloc new bit will be cleared by ordered extent
3292		 * completion.
3293		 */
3294		ret = __clear_extent_bit(tree, start, end, clear_bits, NULL,
3295					 mask, NULL);
3296
3297		/* if clear_extent_bit failed for enomem reasons,
3298		 * we can't allow the release to continue.
3299		 */
3300		if (ret < 0)
3301			ret = 0;
3302		else
3303			ret = 1;
3304	}
3305	return ret;
3306}
3307
3308/*
3309 * a helper for release_folio.  As long as there are no locked extents
3310 * in the range corresponding to the page, both state records and extent
3311 * map records are removed
3312 */
3313int try_release_extent_mapping(struct page *page, gfp_t mask)
 
 
3314{
3315	struct extent_map *em;
3316	u64 start = page_offset(page);
3317	u64 end = start + PAGE_SIZE - 1;
3318	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
3319	struct extent_io_tree *tree = &btrfs_inode->io_tree;
3320	struct extent_map_tree *map = &btrfs_inode->extent_tree;
3321
3322	if (gfpflags_allow_blocking(mask) &&
3323	    page->mapping->host->i_size > SZ_16M) {
3324		u64 len;
3325		while (start <= end) {
3326			struct btrfs_fs_info *fs_info;
3327			u64 cur_gen;
3328
3329			len = end - start + 1;
3330			write_lock(&map->lock);
3331			em = lookup_extent_mapping(map, start, len);
3332			if (!em) {
3333				write_unlock(&map->lock);
3334				break;
3335			}
3336			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3337			    em->start != start) {
3338				write_unlock(&map->lock);
3339				free_extent_map(em);
3340				break;
3341			}
3342			if (test_range_bit(tree, em->start,
3343					   extent_map_end(em) - 1,
3344					   EXTENT_LOCKED, 0, NULL))
3345				goto next;
3346			/*
3347			 * If it's not in the list of modified extents, used
3348			 * by a fast fsync, we can remove it. If it's being
3349			 * logged we can safely remove it since fsync took an
3350			 * extra reference on the em.
3351			 */
3352			if (list_empty(&em->list) ||
3353			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
3354				goto remove_em;
3355			/*
3356			 * If it's in the list of modified extents, remove it
3357			 * only if its generation is older then the current one,
3358			 * in which case we don't need it for a fast fsync.
3359			 * Otherwise don't remove it, we could be racing with an
3360			 * ongoing fast fsync that could miss the new extent.
3361			 */
3362			fs_info = btrfs_inode->root->fs_info;
3363			spin_lock(&fs_info->trans_lock);
3364			cur_gen = fs_info->generation;
3365			spin_unlock(&fs_info->trans_lock);
3366			if (em->generation >= cur_gen)
3367				goto next;
3368remove_em:
3369			/*
3370			 * We only remove extent maps that are not in the list of
3371			 * modified extents or that are in the list but with a
3372			 * generation lower then the current generation, so there
3373			 * is no need to set the full fsync flag on the inode (it
3374			 * hurts the fsync performance for workloads with a data
3375			 * size that exceeds or is close to the system's memory).
3376			 */
3377			remove_extent_mapping(map, em);
3378			/* once for the rb tree */
3379			free_extent_map(em);
3380next:
3381			start = extent_map_end(em);
3382			write_unlock(&map->lock);
3383
3384			/* once for us */
3385			free_extent_map(em);
3386
3387			cond_resched(); /* Allow large-extent preemption. */
3388		}
3389	}
3390	return try_release_extent_state(tree, page, mask);
3391}
3392
3393/*
3394 * To cache previous fiemap extent
3395 *
3396 * Will be used for merging fiemap extent
3397 */
3398struct fiemap_cache {
3399	u64 offset;
3400	u64 phys;
3401	u64 len;
3402	u32 flags;
3403	bool cached;
3404};
3405
3406/*
3407 * Helper to submit fiemap extent.
3408 *
3409 * Will try to merge current fiemap extent specified by @offset, @phys,
3410 * @len and @flags with cached one.
3411 * And only when we fails to merge, cached one will be submitted as
3412 * fiemap extent.
3413 *
3414 * Return value is the same as fiemap_fill_next_extent().
3415 */
3416static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
3417				struct fiemap_cache *cache,
3418				u64 offset, u64 phys, u64 len, u32 flags)
3419{
3420	int ret = 0;
 
 
3421
3422	/* Set at the end of extent_fiemap(). */
3423	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
3424
3425	if (!cache->cached)
3426		goto assign;
 
 
 
 
 
 
3427
3428	/*
3429	 * Sanity check, extent_fiemap() should have ensured that new
3430	 * fiemap extent won't overlap with cached one.
3431	 * Not recoverable.
3432	 *
3433	 * NOTE: Physical address can overlap, due to compression
3434	 */
3435	if (cache->offset + cache->len > offset) {
3436		WARN_ON(1);
3437		return -EINVAL;
3438	}
3439
3440	/*
3441	 * Only merges fiemap extents if
3442	 * 1) Their logical addresses are continuous
3443	 *
3444	 * 2) Their physical addresses are continuous
3445	 *    So truly compressed (physical size smaller than logical size)
3446	 *    extents won't get merged with each other
3447	 *
3448	 * 3) Share same flags
3449	 */
3450	if (cache->offset + cache->len  == offset &&
3451	    cache->phys + cache->len == phys  &&
3452	    cache->flags == flags) {
3453		cache->len += len;
3454		return 0;
3455	}
3456
3457	/* Not mergeable, need to submit cached one */
3458	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3459				      cache->len, cache->flags);
3460	cache->cached = false;
3461	if (ret)
3462		return ret;
3463assign:
3464	cache->cached = true;
3465	cache->offset = offset;
3466	cache->phys = phys;
3467	cache->len = len;
3468	cache->flags = flags;
3469
3470	return 0;
3471}
3472
3473/*
3474 * Emit last fiemap cache
3475 *
3476 * The last fiemap cache may still be cached in the following case:
3477 * 0		      4k		    8k
3478 * |<- Fiemap range ->|
3479 * |<------------  First extent ----------->|
3480 *
3481 * In this case, the first extent range will be cached but not emitted.
3482 * So we must emit it before ending extent_fiemap().
3483 */
3484static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
3485				  struct fiemap_cache *cache)
3486{
3487	int ret;
3488
3489	if (!cache->cached)
3490		return 0;
3491
3492	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3493				      cache->len, cache->flags);
3494	cache->cached = false;
3495	if (ret > 0)
3496		ret = 0;
3497	return ret;
3498}
 
 
 
 
 
 
 
3499
3500static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
3501{
3502	struct extent_buffer *clone;
3503	struct btrfs_key key;
3504	int slot;
3505	int ret;
3506
3507	path->slots[0]++;
3508	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
3509		return 0;
 
3510
3511	ret = btrfs_next_leaf(inode->root, path);
3512	if (ret != 0)
3513		return ret;
3514
3515	/*
3516	 * Don't bother with cloning if there are no more file extent items for
3517	 * our inode.
3518	 */
3519	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3520	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
3521		return 1;
3522
3523	/* See the comment at fiemap_search_slot() about why we clone. */
3524	clone = btrfs_clone_extent_buffer(path->nodes[0]);
3525	if (!clone)
3526		return -ENOMEM;
3527
3528	slot = path->slots[0];
3529	btrfs_release_path(path);
3530	path->nodes[0] = clone;
3531	path->slots[0] = slot;
3532
3533	return 0;
3534}
3535
3536/*
3537 * Search for the first file extent item that starts at a given file offset or
3538 * the one that starts immediately before that offset.
3539 * Returns: 0 on success, < 0 on error, 1 if not found.
3540 */
3541static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
3542			      u64 file_offset)
3543{
3544	const u64 ino = btrfs_ino(inode);
3545	struct btrfs_root *root = inode->root;
3546	struct extent_buffer *clone;
3547	struct btrfs_key key;
3548	int slot;
3549	int ret;
3550
3551	key.objectid = ino;
3552	key.type = BTRFS_EXTENT_DATA_KEY;
3553	key.offset = file_offset;
3554
3555	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3556	if (ret < 0)
3557		return ret;
3558
3559	if (ret > 0 && path->slots[0] > 0) {
3560		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3561		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3562			path->slots[0]--;
3563	}
3564
3565	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3566		ret = btrfs_next_leaf(root, path);
3567		if (ret != 0)
3568			return ret;
3569
3570		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3571		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3572			return 1;
3573	}
3574
3575	/*
3576	 * We clone the leaf and use it during fiemap. This is because while
3577	 * using the leaf we do expensive things like checking if an extent is
3578	 * shared, which can take a long time. In order to prevent blocking
3579	 * other tasks for too long, we use a clone of the leaf. We have locked
3580	 * the file range in the inode's io tree, so we know none of our file
3581	 * extent items can change. This way we avoid blocking other tasks that
3582	 * want to insert items for other inodes in the same leaf or b+tree
3583	 * rebalance operations (triggered for example when someone is trying
3584	 * to push items into this leaf when trying to insert an item in a
3585	 * neighbour leaf).
3586	 * We also need the private clone because holding a read lock on an
3587	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
3588	 * when we call fiemap_fill_next_extent(), because that may cause a page
3589	 * fault when filling the user space buffer with fiemap data.
3590	 */
3591	clone = btrfs_clone_extent_buffer(path->nodes[0]);
3592	if (!clone)
3593		return -ENOMEM;
3594
3595	slot = path->slots[0];
3596	btrfs_release_path(path);
3597	path->nodes[0] = clone;
3598	path->slots[0] = slot;
3599
3600	return 0;
3601}
3602
3603/*
3604 * Process a range which is a hole or a prealloc extent in the inode's subvolume
3605 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
3606 * extent. The end offset (@end) is inclusive.
3607 */
3608static int fiemap_process_hole(struct btrfs_inode *inode,
3609			       struct fiemap_extent_info *fieinfo,
3610			       struct fiemap_cache *cache,
3611			       struct extent_state **delalloc_cached_state,
3612			       struct btrfs_backref_share_check_ctx *backref_ctx,
3613			       u64 disk_bytenr, u64 extent_offset,
3614			       u64 extent_gen,
3615			       u64 start, u64 end)
3616{
3617	const u64 i_size = i_size_read(&inode->vfs_inode);
3618	u64 cur_offset = start;
3619	u64 last_delalloc_end = 0;
3620	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
3621	bool checked_extent_shared = false;
3622	int ret;
3623
3624	/*
3625	 * There can be no delalloc past i_size, so don't waste time looking for
3626	 * it beyond i_size.
3627	 */
3628	while (cur_offset < end && cur_offset < i_size) {
3629		u64 delalloc_start;
3630		u64 delalloc_end;
3631		u64 prealloc_start;
3632		u64 prealloc_len = 0;
3633		bool delalloc;
3634
3635		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
3636							delalloc_cached_state,
3637							&delalloc_start,
3638							&delalloc_end);
3639		if (!delalloc)
3640			break;
3641
3642		/*
3643		 * If this is a prealloc extent we have to report every section
3644		 * of it that has no delalloc.
 
3645		 */
3646		if (disk_bytenr != 0) {
3647			if (last_delalloc_end == 0) {
3648				prealloc_start = start;
3649				prealloc_len = delalloc_start - start;
3650			} else {
3651				prealloc_start = last_delalloc_end + 1;
3652				prealloc_len = delalloc_start - prealloc_start;
3653			}
3654		}
3655
3656		if (prealloc_len > 0) {
3657			if (!checked_extent_shared && fieinfo->fi_extents_max) {
3658				ret = btrfs_is_data_extent_shared(inode,
3659								  disk_bytenr,
3660								  extent_gen,
3661								  backref_ctx);
3662				if (ret < 0)
3663					return ret;
3664				else if (ret > 0)
3665					prealloc_flags |= FIEMAP_EXTENT_SHARED;
3666
3667				checked_extent_shared = true;
3668			}
3669			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3670						 disk_bytenr + extent_offset,
3671						 prealloc_len, prealloc_flags);
3672			if (ret)
3673				return ret;
3674			extent_offset += prealloc_len;
3675		}
3676
3677		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
3678					 delalloc_end + 1 - delalloc_start,
3679					 FIEMAP_EXTENT_DELALLOC |
3680					 FIEMAP_EXTENT_UNKNOWN);
3681		if (ret)
3682			return ret;
3683
3684		last_delalloc_end = delalloc_end;
3685		cur_offset = delalloc_end + 1;
3686		extent_offset += cur_offset - delalloc_start;
3687		cond_resched();
3688	}
3689
3690	/*
3691	 * Either we found no delalloc for the whole prealloc extent or we have
3692	 * a prealloc extent that spans i_size or starts at or after i_size.
3693	 */
3694	if (disk_bytenr != 0 && last_delalloc_end < end) {
3695		u64 prealloc_start;
3696		u64 prealloc_len;
3697
3698		if (last_delalloc_end == 0) {
3699			prealloc_start = start;
3700			prealloc_len = end + 1 - start;
3701		} else {
3702			prealloc_start = last_delalloc_end + 1;
3703			prealloc_len = end + 1 - prealloc_start;
3704		}
3705
3706		if (!checked_extent_shared && fieinfo->fi_extents_max) {
3707			ret = btrfs_is_data_extent_shared(inode,
3708							  disk_bytenr,
3709							  extent_gen,
3710							  backref_ctx);
3711			if (ret < 0)
3712				return ret;
3713			else if (ret > 0)
3714				prealloc_flags |= FIEMAP_EXTENT_SHARED;
3715		}
3716		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3717					 disk_bytenr + extent_offset,
3718					 prealloc_len, prealloc_flags);
3719		if (ret)
3720			return ret;
3721	}
3722
3723	return 0;
3724}
3725
3726static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
3727					  struct btrfs_path *path,
3728					  u64 *last_extent_end_ret)
3729{
3730	const u64 ino = btrfs_ino(inode);
3731	struct btrfs_root *root = inode->root;
3732	struct extent_buffer *leaf;
3733	struct btrfs_file_extent_item *ei;
3734	struct btrfs_key key;
3735	u64 disk_bytenr;
3736	int ret;
3737
3738	/*
3739	 * Lookup the last file extent. We're not using i_size here because
3740	 * there might be preallocation past i_size.
3741	 */
3742	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
3743	/* There can't be a file extent item at offset (u64)-1 */
3744	ASSERT(ret != 0);
3745	if (ret < 0)
3746		return ret;
3747
3748	/*
3749	 * For a non-existing key, btrfs_search_slot() always leaves us at a
3750	 * slot > 0, except if the btree is empty, which is impossible because
3751	 * at least it has the inode item for this inode and all the items for
3752	 * the root inode 256.
3753	 */
3754	ASSERT(path->slots[0] > 0);
3755	path->slots[0]--;
3756	leaf = path->nodes[0];
3757	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3758	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
3759		/* No file extent items in the subvolume tree. */
3760		*last_extent_end_ret = 0;
3761		return 0;
3762	}
3763
3764	/*
3765	 * For an inline extent, the disk_bytenr is where inline data starts at,
3766	 * so first check if we have an inline extent item before checking if we
3767	 * have an implicit hole (disk_bytenr == 0).
3768	 */
3769	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
3770	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
3771		*last_extent_end_ret = btrfs_file_extent_end(path);
3772		return 0;
3773	}
 
3774
3775	/*
3776	 * Find the last file extent item that is not a hole (when NO_HOLES is
3777	 * not enabled). This should take at most 2 iterations in the worst
3778	 * case: we have one hole file extent item at slot 0 of a leaf and
3779	 * another hole file extent item as the last item in the previous leaf.
3780	 * This is because we merge file extent items that represent holes.
3781	 */
3782	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3783	while (disk_bytenr == 0) {
3784		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
3785		if (ret < 0) {
3786			return ret;
3787		} else if (ret > 0) {
3788			/* No file extent items that are not holes. */
3789			*last_extent_end_ret = 0;
3790			return 0;
3791		}
3792		leaf = path->nodes[0];
3793		ei = btrfs_item_ptr(leaf, path->slots[0],
3794				    struct btrfs_file_extent_item);
3795		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3796	}
3797
3798	*last_extent_end_ret = btrfs_file_extent_end(path);
3799	return 0;
3800}
3801
3802int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3803		  u64 start, u64 len)
3804{
3805	const u64 ino = btrfs_ino(inode);
3806	struct extent_state *cached_state = NULL;
3807	struct extent_state *delalloc_cached_state = NULL;
3808	struct btrfs_path *path;
3809	struct fiemap_cache cache = { 0 };
3810	struct btrfs_backref_share_check_ctx *backref_ctx;
3811	u64 last_extent_end;
3812	u64 prev_extent_end;
3813	u64 lockstart;
3814	u64 lockend;
3815	bool stopped = false;
3816	int ret;
3817
3818	backref_ctx = btrfs_alloc_backref_share_check_ctx();
3819	path = btrfs_alloc_path();
3820	if (!backref_ctx || !path) {
3821		ret = -ENOMEM;
3822		goto out;
3823	}
3824
3825	lockstart = round_down(start, inode->root->fs_info->sectorsize);
3826	lockend = round_up(start + len, inode->root->fs_info->sectorsize);
3827	prev_extent_end = lockstart;
3828
3829	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3830	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3831
3832	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3833	if (ret < 0)
3834		goto out_unlock;
3835	btrfs_release_path(path);
3836
3837	path->reada = READA_FORWARD;
3838	ret = fiemap_search_slot(inode, path, lockstart);
3839	if (ret < 0) {
3840		goto out_unlock;
3841	} else if (ret > 0) {
3842		/*
3843		 * No file extent item found, but we may have delalloc between
3844		 * the current offset and i_size. So check for that.
3845		 */
3846		ret = 0;
3847		goto check_eof_delalloc;
3848	}
3849
3850	while (prev_extent_end < lockend) {
3851		struct extent_buffer *leaf = path->nodes[0];
3852		struct btrfs_file_extent_item *ei;
3853		struct btrfs_key key;
3854		u64 extent_end;
3855		u64 extent_len;
3856		u64 extent_offset = 0;
3857		u64 extent_gen;
3858		u64 disk_bytenr = 0;
3859		u64 flags = 0;
3860		int extent_type;
3861		u8 compression;
3862
3863		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3864		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3865			break;
3866
3867		extent_end = btrfs_file_extent_end(path);
3868
3869		/*
3870		 * The first iteration can leave us at an extent item that ends
3871		 * before our range's start. Move to the next item.
 
 
3872		 */
3873		if (extent_end <= lockstart)
3874			goto next_item;
3875
3876		backref_ctx->curr_leaf_bytenr = leaf->start;
3877
3878		/* We have in implicit hole (NO_HOLES feature enabled). */
3879		if (prev_extent_end < key.offset) {
3880			const u64 range_end = min(key.offset, lockend) - 1;
3881
3882			ret = fiemap_process_hole(inode, fieinfo, &cache,
3883						  &delalloc_cached_state,
3884						  backref_ctx, 0, 0, 0,
3885						  prev_extent_end, range_end);
3886			if (ret < 0) {
3887				goto out_unlock;
3888			} else if (ret > 0) {
3889				/* fiemap_fill_next_extent() told us to stop. */
3890				stopped = true;
3891				break;
3892			}
3893
3894			/* We've reached the end of the fiemap range, stop. */
3895			if (key.offset >= lockend) {
3896				stopped = true;
3897				break;
3898			}
3899		}
3900
3901		extent_len = extent_end - key.offset;
3902		ei = btrfs_item_ptr(leaf, path->slots[0],
3903				    struct btrfs_file_extent_item);
3904		compression = btrfs_file_extent_compression(leaf, ei);
3905		extent_type = btrfs_file_extent_type(leaf, ei);
3906		extent_gen = btrfs_file_extent_generation(leaf, ei);
3907
3908		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3909			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3910			if (compression == BTRFS_COMPRESS_NONE)
3911				extent_offset = btrfs_file_extent_offset(leaf, ei);
3912		}
3913
3914		if (compression != BTRFS_COMPRESS_NONE)
3915			flags |= FIEMAP_EXTENT_ENCODED;
3916
3917		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3918			flags |= FIEMAP_EXTENT_DATA_INLINE;
3919			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3920			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3921						 extent_len, flags);
3922		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3923			ret = fiemap_process_hole(inode, fieinfo, &cache,
3924						  &delalloc_cached_state,
3925						  backref_ctx,
3926						  disk_bytenr, extent_offset,
3927						  extent_gen, key.offset,
3928						  extent_end - 1);
3929		} else if (disk_bytenr == 0) {
3930			/* We have an explicit hole. */
3931			ret = fiemap_process_hole(inode, fieinfo, &cache,
3932						  &delalloc_cached_state,
3933						  backref_ctx, 0, 0, 0,
3934						  key.offset, extent_end - 1);
3935		} else {
3936			/* We have a regular extent. */
3937			if (fieinfo->fi_extents_max) {
3938				ret = btrfs_is_data_extent_shared(inode,
3939								  disk_bytenr,
3940								  extent_gen,
3941								  backref_ctx);
3942				if (ret < 0)
3943					goto out_unlock;
3944				else if (ret > 0)
3945					flags |= FIEMAP_EXTENT_SHARED;
3946			}
3947
3948			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3949						 disk_bytenr + extent_offset,
3950						 extent_len, flags);
3951		}
3952
3953		if (ret < 0) {
3954			goto out_unlock;
3955		} else if (ret > 0) {
3956			/* fiemap_fill_next_extent() told us to stop. */
3957			stopped = true;
3958			break;
3959		}
 
 
3960
3961		prev_extent_end = extent_end;
3962next_item:
3963		if (fatal_signal_pending(current)) {
3964			ret = -EINTR;
3965			goto out_unlock;
 
3966		}
3967
3968		ret = fiemap_next_leaf_item(inode, path);
3969		if (ret < 0) {
3970			goto out_unlock;
3971		} else if (ret > 0) {
3972			/* No more file extent items for this inode. */
3973			break;
3974		}
3975		cond_resched();
3976	}
3977
3978check_eof_delalloc:
3979	/*
3980	 * Release (and free) the path before emitting any final entries to
3981	 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3982	 * once we find no more file extent items exist, we may have a
3983	 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3984	 * faults when copying data to the user space buffer.
3985	 */
3986	btrfs_free_path(path);
3987	path = NULL;
3988
3989	if (!stopped && prev_extent_end < lockend) {
3990		ret = fiemap_process_hole(inode, fieinfo, &cache,
3991					  &delalloc_cached_state, backref_ctx,
3992					  0, 0, 0, prev_extent_end, lockend - 1);
3993		if (ret < 0)
3994			goto out_unlock;
3995		prev_extent_end = lockend;
3996	}
3997
3998	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3999		const u64 i_size = i_size_read(&inode->vfs_inode);
4000
4001		if (prev_extent_end < i_size) {
4002			u64 delalloc_start;
4003			u64 delalloc_end;
4004			bool delalloc;
4005
4006			delalloc = btrfs_find_delalloc_in_range(inode,
4007								prev_extent_end,
4008								i_size - 1,
4009								&delalloc_cached_state,
4010								&delalloc_start,
4011								&delalloc_end);
4012			if (!delalloc)
4013				cache.flags |= FIEMAP_EXTENT_LAST;
4014		} else {
4015			cache.flags |= FIEMAP_EXTENT_LAST;
4016		}
 
 
 
 
4017	}
4018
4019	ret = emit_last_fiemap_cache(fieinfo, &cache);
4020
4021out_unlock:
4022	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
4023	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4024out:
4025	free_extent_state(delalloc_cached_state);
4026	btrfs_free_backref_share_ctx(backref_ctx);
4027	btrfs_free_path(path);
4028	return ret;
4029}
4030
4031static void __free_extent_buffer(struct extent_buffer *eb)
 
4032{
4033	kmem_cache_free(extent_buffer_cache, eb);
4034}
4035
4036int extent_buffer_under_io(const struct extent_buffer *eb)
4037{
4038	return (atomic_read(&eb->io_pages) ||
4039		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4040		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4041}
4042
4043static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
4044{
4045	struct btrfs_subpage *subpage;
4046
4047	lockdep_assert_held(&page->mapping->private_lock);
4048
4049	if (PagePrivate(page)) {
4050		subpage = (struct btrfs_subpage *)page->private;
4051		if (atomic_read(&subpage->eb_refs))
4052			return true;
4053		/*
4054		 * Even there is no eb refs here, we may still have
4055		 * end_page_read() call relying on page::private.
4056		 */
4057		if (atomic_read(&subpage->readers))
4058			return true;
4059	}
4060	return false;
4061}
4062
4063static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
4064{
4065	struct btrfs_fs_info *fs_info = eb->fs_info;
4066	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4067
4068	/*
4069	 * For mapped eb, we're going to change the page private, which should
4070	 * be done under the private_lock.
4071	 */
4072	if (mapped)
4073		spin_lock(&page->mapping->private_lock);
4074
4075	if (!PagePrivate(page)) {
4076		if (mapped)
4077			spin_unlock(&page->mapping->private_lock);
4078		return;
4079	}
4080
4081	if (fs_info->nodesize >= PAGE_SIZE) {
4082		/*
4083		 * We do this since we'll remove the pages after we've
4084		 * removed the eb from the radix tree, so we could race
4085		 * and have this page now attached to the new eb.  So
4086		 * only clear page_private if it's still connected to
4087		 * this eb.
4088		 */
4089		if (PagePrivate(page) &&
4090		    page->private == (unsigned long)eb) {
4091			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4092			BUG_ON(PageDirty(page));
4093			BUG_ON(PageWriteback(page));
4094			/*
4095			 * We need to make sure we haven't be attached
4096			 * to a new eb.
4097			 */
4098			detach_page_private(page);
4099		}
4100		if (mapped)
4101			spin_unlock(&page->mapping->private_lock);
4102		return;
4103	}
4104
4105	/*
4106	 * For subpage, we can have dummy eb with page private.  In this case,
4107	 * we can directly detach the private as such page is only attached to
4108	 * one dummy eb, no sharing.
4109	 */
4110	if (!mapped) {
4111		btrfs_detach_subpage(fs_info, page);
4112		return;
4113	}
4114
4115	btrfs_page_dec_eb_refs(fs_info, page);
4116
4117	/*
4118	 * We can only detach the page private if there are no other ebs in the
4119	 * page range and no unfinished IO.
4120	 */
4121	if (!page_range_has_eb(fs_info, page))
4122		btrfs_detach_subpage(fs_info, page);
4123
4124	spin_unlock(&page->mapping->private_lock);
4125}
4126
4127/* Release all pages attached to the extent buffer */
4128static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4129{
4130	int i;
4131	int num_pages;
4132
4133	ASSERT(!extent_buffer_under_io(eb));
4134
4135	num_pages = num_extent_pages(eb);
4136	for (i = 0; i < num_pages; i++) {
4137		struct page *page = eb->pages[i];
4138
4139		if (!page)
4140			continue;
4141
4142		detach_extent_buffer_page(eb, page);
4143
4144		/* One for when we allocated the page */
4145		put_page(page);
4146	}
4147}
4148
4149/*
4150 * Helper for releasing the extent buffer.
4151 */
4152static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4153{
4154	btrfs_release_extent_buffer_pages(eb);
4155	btrfs_leak_debug_del_eb(eb);
4156	__free_extent_buffer(eb);
 
 
 
 
 
 
4157}
4158
4159static struct extent_buffer *
4160__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4161		      unsigned long len)
 
4162{
4163	struct extent_buffer *eb = NULL;
 
 
 
4164
4165	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
 
 
4166	eb->start = start;
4167	eb->len = len;
4168	eb->fs_info = fs_info;
4169	init_rwsem(&eb->lock);
4170
4171	btrfs_leak_debug_add_eb(eb);
4172	INIT_LIST_HEAD(&eb->release_list);
4173
 
 
 
 
 
 
 
 
 
 
 
 
4174	spin_lock_init(&eb->refs_lock);
4175	atomic_set(&eb->refs, 1);
4176	atomic_set(&eb->io_pages, 0);
4177
4178	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
 
 
 
 
 
 
 
 
 
 
 
 
4179
4180	return eb;
4181}
4182
4183struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
4184{
4185	int i;
 
4186	struct extent_buffer *new;
4187	int num_pages = num_extent_pages(src);
4188	int ret;
4189
4190	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4191	if (new == NULL)
4192		return NULL;
4193
4194	/*
4195	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
4196	 * btrfs_release_extent_buffer() have different behavior for
4197	 * UNMAPPED subpage extent buffer.
4198	 */
4199	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4200
4201	ret = btrfs_alloc_page_array(num_pages, new->pages);
4202	if (ret) {
4203		btrfs_release_extent_buffer(new);
4204		return NULL;
4205	}
4206
4207	for (i = 0; i < num_pages; i++) {
4208		int ret;
4209		struct page *p = new->pages[i];
4210
4211		ret = attach_extent_buffer_page(new, p, NULL);
4212		if (ret < 0) {
4213			btrfs_release_extent_buffer(new);
4214			return NULL;
4215		}
4216		WARN_ON(PageDirty(p));
4217		copy_page(page_address(p), page_address(src->pages[i]));
 
4218	}
4219	set_extent_buffer_uptodate(new);
 
 
 
4220
4221	return new;
4222}
4223
4224struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4225						  u64 start, unsigned long len)
4226{
4227	struct extent_buffer *eb;
4228	int num_pages;
4229	int i;
4230	int ret;
4231
4232	eb = __alloc_extent_buffer(fs_info, start, len);
4233	if (!eb)
4234		return NULL;
4235
4236	num_pages = num_extent_pages(eb);
4237	ret = btrfs_alloc_page_array(num_pages, eb->pages);
4238	if (ret)
4239		goto err;
4240
4241	for (i = 0; i < num_pages; i++) {
4242		struct page *p = eb->pages[i];
4243
4244		ret = attach_extent_buffer_page(eb, p, NULL);
4245		if (ret < 0)
4246			goto err;
4247	}
4248
4249	set_extent_buffer_uptodate(eb);
4250	btrfs_set_header_nritems(eb, 0);
4251	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4252
4253	return eb;
4254err:
4255	for (i = 0; i < num_pages; i++) {
4256		if (eb->pages[i]) {
4257			detach_extent_buffer_page(eb, eb->pages[i]);
4258			__free_page(eb->pages[i]);
4259		}
4260	}
4261	__free_extent_buffer(eb);
4262	return NULL;
4263}
4264
4265struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4266						u64 start)
4267{
4268	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
 
 
4269}
4270
4271static void check_buffer_tree_ref(struct extent_buffer *eb)
 
 
 
 
4272{
4273	int refs;
4274	/*
4275	 * The TREE_REF bit is first set when the extent_buffer is added
4276	 * to the radix tree. It is also reset, if unset, when a new reference
4277	 * is created by find_extent_buffer.
4278	 *
4279	 * It is only cleared in two cases: freeing the last non-tree
4280	 * reference to the extent_buffer when its STALE bit is set or
4281	 * calling release_folio when the tree reference is the only reference.
4282	 *
4283	 * In both cases, care is taken to ensure that the extent_buffer's
4284	 * pages are not under io. However, release_folio can be concurrently
4285	 * called with creating new references, which is prone to race
4286	 * conditions between the calls to check_buffer_tree_ref in those
4287	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
4288	 *
4289	 * The actual lifetime of the extent_buffer in the radix tree is
4290	 * adequately protected by the refcount, but the TREE_REF bit and
4291	 * its corresponding reference are not. To protect against this
4292	 * class of races, we call check_buffer_tree_ref from the codepaths
4293	 * which trigger io after they set eb->io_pages. Note that once io is
4294	 * initiated, TREE_REF can no longer be cleared, so that is the
4295	 * moment at which any such race is best fixed.
4296	 */
4297	refs = atomic_read(&eb->refs);
4298	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4299		return;
4300
4301	spin_lock(&eb->refs_lock);
4302	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4303		atomic_inc(&eb->refs);
4304	spin_unlock(&eb->refs_lock);
4305}
4306
4307static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4308		struct page *accessed)
4309{
4310	int num_pages, i;
4311
4312	check_buffer_tree_ref(eb);
 
 
 
4313
4314	num_pages = num_extent_pages(eb);
4315	for (i = 0; i < num_pages; i++) {
4316		struct page *p = eb->pages[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4317
4318		if (p != accessed)
4319			mark_page_accessed(p);
4320	}
 
 
 
4321}
4322
4323struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4324					 u64 start)
 
 
4325{
4326	struct extent_buffer *eb;
4327
4328	eb = find_extent_buffer_nolock(fs_info, start);
4329	if (!eb)
4330		return NULL;
4331	/*
4332	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
4333	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
4334	 * another task running free_extent_buffer() might have seen that flag
4335	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
4336	 * writeback flags not set) and it's still in the tree (flag
4337	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
4338	 * decrementing the extent buffer's reference count twice.  So here we
4339	 * could race and increment the eb's reference count, clear its stale
4340	 * flag, mark it as dirty and drop our reference before the other task
4341	 * finishes executing free_extent_buffer, which would later result in
4342	 * an attempt to free an extent buffer that is dirty.
4343	 */
4344	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4345		spin_lock(&eb->refs_lock);
4346		spin_unlock(&eb->refs_lock);
4347	}
4348	mark_extent_buffer_accessed(eb, NULL);
4349	return eb;
4350}
4351
4352#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4353struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4354					u64 start)
4355{
4356	struct extent_buffer *eb, *exists = NULL;
4357	int ret;
4358
4359	eb = find_extent_buffer(fs_info, start);
4360	if (eb)
4361		return eb;
4362	eb = alloc_dummy_extent_buffer(fs_info, start);
4363	if (!eb)
4364		return ERR_PTR(-ENOMEM);
4365	eb->fs_info = fs_info;
4366again:
4367	ret = radix_tree_preload(GFP_NOFS);
4368	if (ret) {
4369		exists = ERR_PTR(ret);
4370		goto free_eb;
4371	}
4372	spin_lock(&fs_info->buffer_lock);
4373	ret = radix_tree_insert(&fs_info->buffer_radix,
4374				start >> fs_info->sectorsize_bits, eb);
4375	spin_unlock(&fs_info->buffer_lock);
4376	radix_tree_preload_end();
4377	if (ret == -EEXIST) {
4378		exists = find_extent_buffer(fs_info, start);
4379		if (exists)
4380			goto free_eb;
4381		else
4382			goto again;
4383	}
4384	check_buffer_tree_ref(eb);
4385	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4386
4387	return eb;
4388free_eb:
4389	btrfs_release_extent_buffer(eb);
4390	return exists;
4391}
4392#endif
4393
4394static struct extent_buffer *grab_extent_buffer(
4395		struct btrfs_fs_info *fs_info, struct page *page)
4396{
4397	struct extent_buffer *exists;
4398
4399	/*
4400	 * For subpage case, we completely rely on radix tree to ensure we
4401	 * don't try to insert two ebs for the same bytenr.  So here we always
4402	 * return NULL and just continue.
4403	 */
4404	if (fs_info->nodesize < PAGE_SIZE)
4405		return NULL;
4406
4407	/* Page not yet attached to an extent buffer */
4408	if (!PagePrivate(page))
4409		return NULL;
4410
4411	/*
4412	 * We could have already allocated an eb for this page and attached one
4413	 * so lets see if we can get a ref on the existing eb, and if we can we
4414	 * know it's good and we can just return that one, else we know we can
4415	 * just overwrite page->private.
4416	 */
4417	exists = (struct extent_buffer *)page->private;
4418	if (atomic_inc_not_zero(&exists->refs))
4419		return exists;
4420
4421	WARN_ON(PageDirty(page));
4422	detach_page_private(page);
4423	return NULL;
4424}
4425
4426static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
4427{
4428	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4429		btrfs_err(fs_info, "bad tree block start %llu", start);
4430		return -EINVAL;
4431	}
4432
4433	if (fs_info->nodesize < PAGE_SIZE &&
4434	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
4435		btrfs_err(fs_info,
4436		"tree block crosses page boundary, start %llu nodesize %u",
4437			  start, fs_info->nodesize);
4438		return -EINVAL;
4439	}
4440	if (fs_info->nodesize >= PAGE_SIZE &&
4441	    !PAGE_ALIGNED(start)) {
4442		btrfs_err(fs_info,
4443		"tree block is not page aligned, start %llu nodesize %u",
4444			  start, fs_info->nodesize);
4445		return -EINVAL;
4446	}
4447	return 0;
4448}
4449
4450struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4451					  u64 start, u64 owner_root, int level)
4452{
4453	unsigned long len = fs_info->nodesize;
4454	int num_pages;
4455	int i;
4456	unsigned long index = start >> PAGE_SHIFT;
4457	struct extent_buffer *eb;
4458	struct extent_buffer *exists = NULL;
4459	struct page *p;
4460	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4461	u64 lockdep_owner = owner_root;
4462	int uptodate = 1;
4463	int ret;
4464
4465	if (check_eb_alignment(fs_info, start))
4466		return ERR_PTR(-EINVAL);
4467
4468#if BITS_PER_LONG == 32
4469	if (start >= MAX_LFS_FILESIZE) {
4470		btrfs_err_rl(fs_info,
4471		"extent buffer %llu is beyond 32bit page cache limit", start);
4472		btrfs_err_32bit_limit(fs_info);
4473		return ERR_PTR(-EOVERFLOW);
4474	}
4475	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
4476		btrfs_warn_32bit_limit(fs_info);
4477#endif
4478
4479	eb = find_extent_buffer(fs_info, start);
4480	if (eb)
4481		return eb;
 
 
4482
4483	eb = __alloc_extent_buffer(fs_info, start, len);
4484	if (!eb)
4485		return ERR_PTR(-ENOMEM);
4486
4487	/*
4488	 * The reloc trees are just snapshots, so we need them to appear to be
4489	 * just like any other fs tree WRT lockdep.
4490	 */
4491	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
4492		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4493
4494	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
4495
4496	num_pages = num_extent_pages(eb);
4497	for (i = 0; i < num_pages; i++, index++) {
4498		struct btrfs_subpage *prealloc = NULL;
4499
4500		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4501		if (!p) {
4502			exists = ERR_PTR(-ENOMEM);
4503			goto free_eb;
4504		}
4505
4506		/*
4507		 * Preallocate page->private for subpage case, so that we won't
4508		 * allocate memory with private_lock hold.  The memory will be
4509		 * freed by attach_extent_buffer_page() or freed manually if
4510		 * we exit earlier.
4511		 *
4512		 * Although we have ensured one subpage eb can only have one
4513		 * page, but it may change in the future for 16K page size
4514		 * support, so we still preallocate the memory in the loop.
4515		 */
4516		if (fs_info->nodesize < PAGE_SIZE) {
4517			prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
4518			if (IS_ERR(prealloc)) {
4519				ret = PTR_ERR(prealloc);
4520				unlock_page(p);
4521				put_page(p);
4522				exists = ERR_PTR(ret);
4523				goto free_eb;
4524			}
4525		}
4526
4527		spin_lock(&mapping->private_lock);
4528		exists = grab_extent_buffer(fs_info, p);
4529		if (exists) {
4530			spin_unlock(&mapping->private_lock);
4531			unlock_page(p);
4532			put_page(p);
4533			mark_extent_buffer_accessed(exists, p);
4534			btrfs_free_subpage(prealloc);
4535			goto free_eb;
4536		}
4537		/* Should not fail, as we have preallocated the memory */
4538		ret = attach_extent_buffer_page(eb, p, prealloc);
4539		ASSERT(!ret);
4540		/*
4541		 * To inform we have extra eb under allocation, so that
4542		 * detach_extent_buffer_page() won't release the page private
4543		 * when the eb hasn't yet been inserted into radix tree.
4544		 *
4545		 * The ref will be decreased when the eb released the page, in
4546		 * detach_extent_buffer_page().
4547		 * Thus needs no special handling in error path.
4548		 */
4549		btrfs_page_inc_eb_refs(fs_info, p);
4550		spin_unlock(&mapping->private_lock);
4551
4552		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
4553		eb->pages[i] = p;
4554		if (!PageUptodate(p))
4555			uptodate = 0;
4556
4557		/*
4558		 * We can't unlock the pages just yet since the extent buffer
4559		 * hasn't been properly inserted in the radix tree, this
4560		 * opens a race with btree_release_folio which can free a page
4561		 * while we are still filling in all pages for the buffer and
4562		 * we could crash.
4563		 */
4564	}
4565	if (uptodate)
4566		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4567again:
4568	ret = radix_tree_preload(GFP_NOFS);
4569	if (ret) {
4570		exists = ERR_PTR(ret);
4571		goto free_eb;
4572	}
4573
4574	spin_lock(&fs_info->buffer_lock);
4575	ret = radix_tree_insert(&fs_info->buffer_radix,
4576				start >> fs_info->sectorsize_bits, eb);
4577	spin_unlock(&fs_info->buffer_lock);
4578	radix_tree_preload_end();
4579	if (ret == -EEXIST) {
4580		exists = find_extent_buffer(fs_info, start);
4581		if (exists)
4582			goto free_eb;
4583		else
 
 
4584			goto again;
 
 
 
 
 
4585	}
4586	/* add one reference for the tree */
 
4587	check_buffer_tree_ref(eb);
4588	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
 
 
4589
4590	/*
4591	 * Now it's safe to unlock the pages because any calls to
4592	 * btree_release_folio will correctly detect that a page belongs to a
4593	 * live buffer and won't free them prematurely.
4594	 */
4595	for (i = 0; i < num_pages; i++)
4596		unlock_page(eb->pages[i]);
 
 
 
 
 
 
 
 
 
4597	return eb;
4598
4599free_eb:
4600	WARN_ON(!atomic_dec_and_test(&eb->refs));
4601	for (i = 0; i < num_pages; i++) {
4602		if (eb->pages[i])
4603			unlock_page(eb->pages[i]);
4604	}
4605
 
4606	btrfs_release_extent_buffer(eb);
4607	return exists;
4608}
4609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4610static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4611{
4612	struct extent_buffer *eb =
4613			container_of(head, struct extent_buffer, rcu_head);
4614
4615	__free_extent_buffer(eb);
4616}
4617
4618static int release_extent_buffer(struct extent_buffer *eb)
4619	__releases(&eb->refs_lock)
4620{
4621	lockdep_assert_held(&eb->refs_lock);
4622
4623	WARN_ON(atomic_read(&eb->refs) == 0);
4624	if (atomic_dec_and_test(&eb->refs)) {
4625		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4626			struct btrfs_fs_info *fs_info = eb->fs_info;
4627
4628			spin_unlock(&eb->refs_lock);
4629
4630			spin_lock(&fs_info->buffer_lock);
4631			radix_tree_delete(&fs_info->buffer_radix,
4632					  eb->start >> fs_info->sectorsize_bits);
4633			spin_unlock(&fs_info->buffer_lock);
4634		} else {
 
 
4635			spin_unlock(&eb->refs_lock);
 
 
 
 
 
4636		}
4637
4638		btrfs_leak_debug_del_eb(eb);
4639		/* Should be safe to release our pages at this point */
4640		btrfs_release_extent_buffer_pages(eb);
4641#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4642		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
4643			__free_extent_buffer(eb);
4644			return 1;
4645		}
4646#endif
4647		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4648		return 1;
4649	}
4650	spin_unlock(&eb->refs_lock);
4651
4652	return 0;
4653}
4654
4655void free_extent_buffer(struct extent_buffer *eb)
4656{
4657	int refs;
4658	if (!eb)
4659		return;
4660
4661	refs = atomic_read(&eb->refs);
4662	while (1) {
4663		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
4664		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
4665			refs == 1))
4666			break;
4667		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
4668			return;
4669	}
4670
4671	spin_lock(&eb->refs_lock);
4672	if (atomic_read(&eb->refs) == 2 &&
 
 
 
 
4673	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4674	    !extent_buffer_under_io(eb) &&
4675	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4676		atomic_dec(&eb->refs);
4677
4678	/*
4679	 * I know this is terrible, but it's temporary until we stop tracking
4680	 * the uptodate bits and such for the extent buffers.
4681	 */
4682	release_extent_buffer(eb);
4683}
4684
4685void free_extent_buffer_stale(struct extent_buffer *eb)
4686{
4687	if (!eb)
4688		return;
4689
4690	spin_lock(&eb->refs_lock);
4691	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4692
4693	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4694	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4695		atomic_dec(&eb->refs);
4696	release_extent_buffer(eb);
4697}
4698
4699static void btree_clear_page_dirty(struct page *page)
4700{
4701	ASSERT(PageDirty(page));
4702	ASSERT(PageLocked(page));
4703	clear_page_dirty_for_io(page);
4704	xa_lock_irq(&page->mapping->i_pages);
4705	if (!PageDirty(page))
4706		__xa_clear_mark(&page->mapping->i_pages,
4707				page_index(page), PAGECACHE_TAG_DIRTY);
4708	xa_unlock_irq(&page->mapping->i_pages);
4709}
4710
4711static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4712{
4713	struct btrfs_fs_info *fs_info = eb->fs_info;
4714	struct page *page = eb->pages[0];
4715	bool last;
4716
4717	/* btree_clear_page_dirty() needs page locked */
4718	lock_page(page);
4719	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
4720						  eb->len);
4721	if (last)
4722		btree_clear_page_dirty(page);
4723	unlock_page(page);
4724	WARN_ON(atomic_read(&eb->refs) == 0);
4725}
4726
4727void clear_extent_buffer_dirty(const struct extent_buffer *eb)
4728{
4729	int i;
4730	int num_pages;
4731	struct page *page;
4732
4733	if (eb->fs_info->nodesize < PAGE_SIZE)
4734		return clear_subpage_extent_buffer_dirty(eb);
4735
4736	num_pages = num_extent_pages(eb);
4737
4738	for (i = 0; i < num_pages; i++) {
4739		page = eb->pages[i];
4740		if (!PageDirty(page))
4741			continue;
 
4742		lock_page(page);
4743		btree_clear_page_dirty(page);
 
 
 
 
 
 
 
 
 
4744		ClearPageError(page);
4745		unlock_page(page);
4746	}
4747	WARN_ON(atomic_read(&eb->refs) == 0);
4748}
4749
4750bool set_extent_buffer_dirty(struct extent_buffer *eb)
4751{
4752	int i;
4753	int num_pages;
4754	bool was_dirty;
4755
4756	check_buffer_tree_ref(eb);
4757
4758	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4759
4760	num_pages = num_extent_pages(eb);
4761	WARN_ON(atomic_read(&eb->refs) == 0);
4762	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4763
4764	if (!was_dirty) {
4765		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
4766
4767		/*
4768		 * For subpage case, we can have other extent buffers in the
4769		 * same page, and in clear_subpage_extent_buffer_dirty() we
4770		 * have to clear page dirty without subpage lock held.
4771		 * This can cause race where our page gets dirty cleared after
4772		 * we just set it.
4773		 *
4774		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4775		 * its page for other reasons, we can use page lock to prevent
4776		 * the above race.
4777		 */
4778		if (subpage)
4779			lock_page(eb->pages[0]);
4780		for (i = 0; i < num_pages; i++)
4781			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
4782					     eb->start, eb->len);
4783		if (subpage)
4784			unlock_page(eb->pages[0]);
4785	}
4786#ifdef CONFIG_BTRFS_DEBUG
4787	for (i = 0; i < num_pages; i++)
4788		ASSERT(PageDirty(eb->pages[i]));
4789#endif
4790
4791	return was_dirty;
4792}
4793
4794void clear_extent_buffer_uptodate(struct extent_buffer *eb)
 
 
 
 
 
 
 
 
 
 
 
4795{
4796	struct btrfs_fs_info *fs_info = eb->fs_info;
4797	struct page *page;
4798	int num_pages;
4799	int i;
4800
4801	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4802	num_pages = num_extent_pages(eb);
4803	for (i = 0; i < num_pages; i++) {
4804		page = eb->pages[i];
4805		if (!page)
4806			continue;
4807
4808		/*
4809		 * This is special handling for metadata subpage, as regular
4810		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4811		 */
4812		if (fs_info->nodesize >= PAGE_SIZE)
4813			ClearPageUptodate(page);
4814		else
4815			btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
4816						     eb->len);
4817	}
 
4818}
4819
4820void set_extent_buffer_uptodate(struct extent_buffer *eb)
4821{
4822	struct btrfs_fs_info *fs_info = eb->fs_info;
4823	struct page *page;
4824	int num_pages;
4825	int i;
4826
4827	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4828	num_pages = num_extent_pages(eb);
4829	for (i = 0; i < num_pages; i++) {
4830		page = eb->pages[i];
4831
4832		/*
4833		 * This is special handling for metadata subpage, as regular
4834		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4835		 */
4836		if (fs_info->nodesize >= PAGE_SIZE)
4837			SetPageUptodate(page);
4838		else
4839			btrfs_subpage_set_uptodate(fs_info, page, eb->start,
4840						   eb->len);
4841	}
 
4842}
4843
4844static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
4845				      int mirror_num,
4846				      struct btrfs_tree_parent_check *check)
4847{
4848	struct btrfs_fs_info *fs_info = eb->fs_info;
4849	struct extent_io_tree *io_tree;
4850	struct page *page = eb->pages[0];
4851	struct extent_state *cached_state = NULL;
4852	struct btrfs_bio_ctrl bio_ctrl = {
4853		.mirror_num = mirror_num,
4854		.parent_check = check,
4855	};
4856	int ret = 0;
4857
4858	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
4859	ASSERT(PagePrivate(page));
4860	ASSERT(check);
4861	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
4862
4863	if (wait == WAIT_NONE) {
4864		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1,
4865				     &cached_state))
4866			return -EAGAIN;
4867	} else {
4868		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1,
4869				  &cached_state);
4870		if (ret < 0)
4871			return ret;
4872	}
4873
4874	ret = 0;
4875	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
4876	    PageUptodate(page) ||
4877	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
4878		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4879		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
4880			      &cached_state);
4881		return ret;
4882	}
4883
4884	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4885	eb->read_mirror = 0;
4886	atomic_set(&eb->io_pages, 1);
4887	check_buffer_tree_ref(eb);
4888	bio_ctrl.end_io_func = end_bio_extent_readpage;
4889
4890	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
4891
4892	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
4893	ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl,
4894				 eb->start, page, eb->len,
4895				 eb->start - page_offset(page), 0, true);
4896	if (ret) {
4897		/*
4898		 * In the endio function, if we hit something wrong we will
4899		 * increase the io_pages, so here we need to decrease it for
4900		 * error path.
4901		 */
4902		atomic_dec(&eb->io_pages);
4903	}
4904	submit_one_bio(&bio_ctrl);
4905	if (ret || wait != WAIT_COMPLETE) {
4906		free_extent_state(cached_state);
4907		return ret;
 
 
 
 
 
 
 
 
4908	}
 
 
4909
4910	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1,
4911			EXTENT_LOCKED, &cached_state);
4912	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4913		ret = -EIO;
4914	return ret;
4915}
4916
4917int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4918			     struct btrfs_tree_parent_check *check)
 
4919{
4920	int i;
 
4921	struct page *page;
4922	int err;
4923	int ret = 0;
4924	int locked_pages = 0;
4925	int all_uptodate = 1;
4926	int num_pages;
4927	unsigned long num_reads = 0;
4928	struct btrfs_bio_ctrl bio_ctrl = {
4929		.mirror_num = mirror_num,
4930		.parent_check = check,
4931	};
4932
4933	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4934		return 0;
4935
4936	/*
4937	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4938	 * operation, which could potentially still be in flight.  In this case
4939	 * we simply want to return an error.
4940	 */
4941	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4942		return -EIO;
4943
4944	if (eb->fs_info->nodesize < PAGE_SIZE)
4945		return read_extent_buffer_subpage(eb, wait, mirror_num, check);
4946
4947	num_pages = num_extent_pages(eb);
4948	for (i = 0; i < num_pages; i++) {
4949		page = eb->pages[i];
4950		if (wait == WAIT_NONE) {
4951			/*
4952			 * WAIT_NONE is only utilized by readahead. If we can't
4953			 * acquire the lock atomically it means either the eb
4954			 * is being read out or under modification.
4955			 * Either way the eb will be or has been cached,
4956			 * readahead can exit safely.
4957			 */
4958			if (!trylock_page(page))
4959				goto unlock_exit;
4960		} else {
4961			lock_page(page);
4962		}
4963		locked_pages++;
4964	}
4965	/*
4966	 * We need to firstly lock all pages to make sure that
4967	 * the uptodate bit of our pages won't be affected by
4968	 * clear_extent_buffer_uptodate().
4969	 */
4970	for (i = 0; i < num_pages; i++) {
4971		page = eb->pages[i];
4972		if (!PageUptodate(page)) {
4973			num_reads++;
4974			all_uptodate = 0;
4975		}
4976	}
4977
4978	if (all_uptodate) {
4979		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 
4980		goto unlock_exit;
4981	}
4982
4983	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4984	eb->read_mirror = 0;
4985	atomic_set(&eb->io_pages, num_reads);
4986	/*
4987	 * It is possible for release_folio to clear the TREE_REF bit before we
4988	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
4989	 */
4990	check_buffer_tree_ref(eb);
4991	bio_ctrl.end_io_func = end_bio_extent_readpage;
4992	for (i = 0; i < num_pages; i++) {
4993		page = eb->pages[i];
4994
4995		if (!PageUptodate(page)) {
4996			if (ret) {
4997				atomic_dec(&eb->io_pages);
4998				unlock_page(page);
4999				continue;
5000			}
5001
5002			ClearPageError(page);
5003			err = submit_extent_page(REQ_OP_READ, NULL,
5004					 &bio_ctrl, page_offset(page), page,
5005					 PAGE_SIZE, 0, 0, false);
5006			if (err) {
5007				/*
5008				 * We failed to submit the bio so it's the
5009				 * caller's responsibility to perform cleanup
5010				 * i.e unlock page/set error bit.
5011				 */
5012				ret = err;
5013				SetPageError(page);
5014				unlock_page(page);
5015				atomic_dec(&eb->io_pages);
5016			}
5017		} else {
5018			unlock_page(page);
5019		}
5020	}
5021
5022	submit_one_bio(&bio_ctrl);
 
 
 
 
5023
5024	if (ret || wait != WAIT_COMPLETE)
5025		return ret;
5026
5027	for (i = 0; i < num_pages; i++) {
5028		page = eb->pages[i];
5029		wait_on_page_locked(page);
5030		if (!PageUptodate(page))
5031			ret = -EIO;
5032	}
5033
5034	return ret;
5035
5036unlock_exit:
 
5037	while (locked_pages > 0) {
5038		locked_pages--;
5039		page = eb->pages[locked_pages];
5040		unlock_page(page);
 
5041	}
5042	return ret;
5043}
5044
5045static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5046			    unsigned long len)
5047{
5048	btrfs_warn(eb->fs_info,
5049		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
5050		eb->start, eb->len, start, len);
5051	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5052
5053	return true;
5054}
5055
5056/*
5057 * Check if the [start, start + len) range is valid before reading/writing
5058 * the eb.
5059 * NOTE: @start and @len are offset inside the eb, not logical address.
5060 *
5061 * Caller should not touch the dst/src memory if this function returns error.
5062 */
5063static inline int check_eb_range(const struct extent_buffer *eb,
5064				 unsigned long start, unsigned long len)
5065{
5066	unsigned long offset;
5067
5068	/* start, start + len should not go beyond eb->len nor overflow */
5069	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5070		return report_eb_range(eb, start, len);
5071
5072	return false;
5073}
5074
5075void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5076			unsigned long start, unsigned long len)
5077{
5078	size_t cur;
5079	size_t offset;
5080	struct page *page;
5081	char *kaddr;
5082	char *dst = (char *)dstv;
5083	unsigned long i = get_eb_page_index(start);
 
5084
5085	if (check_eb_range(eb, start, len))
5086		return;
5087
5088	offset = get_eb_offset_in_page(eb, start);
5089
5090	while (len > 0) {
5091		page = eb->pages[i];
5092
5093		cur = min(len, (PAGE_SIZE - offset));
5094		kaddr = page_address(page);
5095		memcpy(dst, kaddr + offset, cur);
5096
5097		dst += cur;
5098		len -= cur;
5099		offset = 0;
5100		i++;
5101	}
5102}
5103
5104int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5105				       void __user *dstv,
5106				       unsigned long start, unsigned long len)
 
5107{
5108	size_t cur;
5109	size_t offset;
5110	struct page *page;
5111	char *kaddr;
5112	char __user *dst = (char __user *)dstv;
5113	unsigned long i = get_eb_page_index(start);
5114	int ret = 0;
5115
5116	WARN_ON(start > eb->len);
5117	WARN_ON(start + len > eb->start + eb->len);
5118
5119	offset = get_eb_offset_in_page(eb, start);
5120
5121	while (len > 0) {
5122		page = eb->pages[i];
5123
5124		cur = min(len, (PAGE_SIZE - offset));
5125		kaddr = page_address(page);
5126		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5127			ret = -EFAULT;
5128			break;
5129		}
5130
5131		dst += cur;
5132		len -= cur;
 
 
5133		offset = 0;
5134		i++;
5135	}
5136
5137	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
5138}
5139
5140int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5141			 unsigned long start, unsigned long len)
 
5142{
5143	size_t cur;
5144	size_t offset;
5145	struct page *page;
5146	char *kaddr;
5147	char *ptr = (char *)ptrv;
5148	unsigned long i = get_eb_page_index(start);
 
5149	int ret = 0;
5150
5151	if (check_eb_range(eb, start, len))
5152		return -EINVAL;
5153
5154	offset = get_eb_offset_in_page(eb, start);
5155
5156	while (len > 0) {
5157		page = eb->pages[i];
5158
5159		cur = min(len, (PAGE_SIZE - offset));
5160
5161		kaddr = page_address(page);
5162		ret = memcmp(ptr, kaddr + offset, cur);
5163		if (ret)
5164			break;
5165
5166		ptr += cur;
5167		len -= cur;
5168		offset = 0;
5169		i++;
5170	}
5171	return ret;
5172}
5173
5174/*
5175 * Check that the extent buffer is uptodate.
5176 *
5177 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
5178 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
5179 */
5180static void assert_eb_page_uptodate(const struct extent_buffer *eb,
5181				    struct page *page)
5182{
5183	struct btrfs_fs_info *fs_info = eb->fs_info;
5184
5185	/*
5186	 * If we are using the commit root we could potentially clear a page
5187	 * Uptodate while we're using the extent buffer that we've previously
5188	 * looked up.  We don't want to complain in this case, as the page was
5189	 * valid before, we just didn't write it out.  Instead we want to catch
5190	 * the case where we didn't actually read the block properly, which
5191	 * would have !PageUptodate && !PageError, as we clear PageError before
5192	 * reading.
5193	 */
5194	if (fs_info->nodesize < PAGE_SIZE) {
5195		bool uptodate, error;
5196
5197		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
5198						       eb->start, eb->len);
5199		error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
5200		WARN_ON(!uptodate && !error);
5201	} else {
5202		WARN_ON(!PageUptodate(page) && !PageError(page));
5203	}
5204}
5205
5206void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5207		const void *srcv)
5208{
5209	char *kaddr;
5210
5211	assert_eb_page_uptodate(eb, eb->pages[0]);
5212	kaddr = page_address(eb->pages[0]) +
5213		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
5214						   chunk_tree_uuid));
5215	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
5216}
5217
5218void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5219{
5220	char *kaddr;
5221
5222	assert_eb_page_uptodate(eb, eb->pages[0]);
5223	kaddr = page_address(eb->pages[0]) +
5224		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
5225	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
5226}
5227
5228void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5229			 unsigned long start, unsigned long len)
5230{
5231	size_t cur;
5232	size_t offset;
5233	struct page *page;
5234	char *kaddr;
5235	char *src = (char *)srcv;
5236	unsigned long i = get_eb_page_index(start);
 
5237
5238	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
5239
5240	if (check_eb_range(eb, start, len))
5241		return;
5242
5243	offset = get_eb_offset_in_page(eb, start);
5244
5245	while (len > 0) {
5246		page = eb->pages[i];
5247		assert_eb_page_uptodate(eb, page);
5248
5249		cur = min(len, PAGE_SIZE - offset);
5250		kaddr = page_address(page);
5251		memcpy(kaddr + offset, src, cur);
5252
5253		src += cur;
5254		len -= cur;
5255		offset = 0;
5256		i++;
5257	}
5258}
5259
5260void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5261		unsigned long len)
5262{
5263	size_t cur;
5264	size_t offset;
5265	struct page *page;
5266	char *kaddr;
5267	unsigned long i = get_eb_page_index(start);
 
5268
5269	if (check_eb_range(eb, start, len))
5270		return;
5271
5272	offset = get_eb_offset_in_page(eb, start);
5273
5274	while (len > 0) {
5275		page = eb->pages[i];
5276		assert_eb_page_uptodate(eb, page);
5277
5278		cur = min(len, PAGE_SIZE - offset);
5279		kaddr = page_address(page);
5280		memset(kaddr + offset, 0, cur);
5281
5282		len -= cur;
5283		offset = 0;
5284		i++;
5285	}
5286}
5287
5288void copy_extent_buffer_full(const struct extent_buffer *dst,
5289			     const struct extent_buffer *src)
5290{
5291	int i;
5292	int num_pages;
5293
5294	ASSERT(dst->len == src->len);
5295
5296	if (dst->fs_info->nodesize >= PAGE_SIZE) {
5297		num_pages = num_extent_pages(dst);
5298		for (i = 0; i < num_pages; i++)
5299			copy_page(page_address(dst->pages[i]),
5300				  page_address(src->pages[i]));
5301	} else {
5302		size_t src_offset = get_eb_offset_in_page(src, 0);
5303		size_t dst_offset = get_eb_offset_in_page(dst, 0);
5304
5305		ASSERT(src->fs_info->nodesize < PAGE_SIZE);
5306		memcpy(page_address(dst->pages[0]) + dst_offset,
5307		       page_address(src->pages[0]) + src_offset,
5308		       src->len);
5309	}
5310}
5311
5312void copy_extent_buffer(const struct extent_buffer *dst,
5313			const struct extent_buffer *src,
5314			unsigned long dst_offset, unsigned long src_offset,
5315			unsigned long len)
5316{
5317	u64 dst_len = dst->len;
5318	size_t cur;
5319	size_t offset;
5320	struct page *page;
5321	char *kaddr;
5322	unsigned long i = get_eb_page_index(dst_offset);
5323
5324	if (check_eb_range(dst, dst_offset, len) ||
5325	    check_eb_range(src, src_offset, len))
5326		return;
5327
5328	WARN_ON(src->len != dst_len);
5329
5330	offset = get_eb_offset_in_page(dst, dst_offset);
 
5331
5332	while (len > 0) {
5333		page = dst->pages[i];
5334		assert_eb_page_uptodate(dst, page);
5335
5336		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5337
5338		kaddr = page_address(page);
5339		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5340
5341		src_offset += cur;
5342		len -= cur;
5343		offset = 0;
5344		i++;
5345	}
5346}
5347
5348/*
5349 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5350 * given bit number
5351 * @eb: the extent buffer
5352 * @start: offset of the bitmap item in the extent buffer
5353 * @nr: bit number
5354 * @page_index: return index of the page in the extent buffer that contains the
5355 * given bit number
5356 * @page_offset: return offset into the page given by page_index
5357 *
5358 * This helper hides the ugliness of finding the byte in an extent buffer which
5359 * contains a given bit.
5360 */
5361static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5362				    unsigned long start, unsigned long nr,
5363				    unsigned long *page_index,
5364				    size_t *page_offset)
5365{
5366	size_t byte_offset = BIT_BYTE(nr);
5367	size_t offset;
5368
5369	/*
5370	 * The byte we want is the offset of the extent buffer + the offset of
5371	 * the bitmap item in the extent buffer + the offset of the byte in the
5372	 * bitmap item.
5373	 */
5374	offset = start + offset_in_page(eb->start) + byte_offset;
5375
5376	*page_index = offset >> PAGE_SHIFT;
5377	*page_offset = offset_in_page(offset);
5378}
5379
5380/*
5381 * Determine whether a bit in a bitmap item is set.
5382 *
5383 * @eb:     the extent buffer
5384 * @start:  offset of the bitmap item in the extent buffer
5385 * @nr:     bit number to test
5386 */
5387int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5388			   unsigned long nr)
5389{
5390	u8 *kaddr;
5391	struct page *page;
5392	unsigned long i;
5393	size_t offset;
5394
5395	eb_bitmap_offset(eb, start, nr, &i, &offset);
5396	page = eb->pages[i];
5397	assert_eb_page_uptodate(eb, page);
5398	kaddr = page_address(page);
5399	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5400}
5401
5402/*
5403 * Set an area of a bitmap to 1.
5404 *
5405 * @eb:     the extent buffer
5406 * @start:  offset of the bitmap item in the extent buffer
5407 * @pos:    bit number of the first bit
5408 * @len:    number of bits to set
5409 */
5410void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5411			      unsigned long pos, unsigned long len)
5412{
5413	u8 *kaddr;
5414	struct page *page;
5415	unsigned long i;
5416	size_t offset;
5417	const unsigned int size = pos + len;
5418	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5419	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5420
5421	eb_bitmap_offset(eb, start, pos, &i, &offset);
5422	page = eb->pages[i];
5423	assert_eb_page_uptodate(eb, page);
5424	kaddr = page_address(page);
5425
5426	while (len >= bits_to_set) {
5427		kaddr[offset] |= mask_to_set;
5428		len -= bits_to_set;
5429		bits_to_set = BITS_PER_BYTE;
5430		mask_to_set = ~0;
5431		if (++offset >= PAGE_SIZE && len > 0) {
5432			offset = 0;
5433			page = eb->pages[++i];
5434			assert_eb_page_uptodate(eb, page);
5435			kaddr = page_address(page);
5436		}
5437	}
5438	if (len) {
5439		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5440		kaddr[offset] |= mask_to_set;
5441	}
5442}
5443
5444
5445/*
5446 * Clear an area of a bitmap.
5447 *
5448 * @eb:     the extent buffer
5449 * @start:  offset of the bitmap item in the extent buffer
5450 * @pos:    bit number of the first bit
5451 * @len:    number of bits to clear
5452 */
5453void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5454				unsigned long start, unsigned long pos,
5455				unsigned long len)
5456{
5457	u8 *kaddr;
5458	struct page *page;
5459	unsigned long i;
5460	size_t offset;
5461	const unsigned int size = pos + len;
5462	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5463	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5464
5465	eb_bitmap_offset(eb, start, pos, &i, &offset);
5466	page = eb->pages[i];
5467	assert_eb_page_uptodate(eb, page);
5468	kaddr = page_address(page);
5469
5470	while (len >= bits_to_clear) {
5471		kaddr[offset] &= ~mask_to_clear;
5472		len -= bits_to_clear;
5473		bits_to_clear = BITS_PER_BYTE;
5474		mask_to_clear = ~0;
5475		if (++offset >= PAGE_SIZE && len > 0) {
5476			offset = 0;
5477			page = eb->pages[++i];
5478			assert_eb_page_uptodate(eb, page);
5479			kaddr = page_address(page);
5480		}
5481	}
5482	if (len) {
5483		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5484		kaddr[offset] &= ~mask_to_clear;
5485	}
5486}
5487
5488static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5489{
5490	unsigned long distance = (src > dst) ? src - dst : dst - src;
5491	return distance < len;
5492}
5493
5494static void copy_pages(struct page *dst_page, struct page *src_page,
5495		       unsigned long dst_off, unsigned long src_off,
5496		       unsigned long len)
5497{
5498	char *dst_kaddr = page_address(dst_page);
5499	char *src_kaddr;
5500	int must_memmove = 0;
5501
5502	if (dst_page != src_page) {
5503		src_kaddr = page_address(src_page);
5504	} else {
5505		src_kaddr = dst_kaddr;
5506		if (areas_overlap(src_off, dst_off, len))
5507			must_memmove = 1;
5508	}
5509
5510	if (must_memmove)
5511		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5512	else
5513		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5514}
5515
5516void memcpy_extent_buffer(const struct extent_buffer *dst,
5517			  unsigned long dst_offset, unsigned long src_offset,
5518			  unsigned long len)
5519{
5520	size_t cur;
5521	size_t dst_off_in_page;
5522	size_t src_off_in_page;
 
5523	unsigned long dst_i;
5524	unsigned long src_i;
5525
5526	if (check_eb_range(dst, dst_offset, len) ||
5527	    check_eb_range(dst, src_offset, len))
5528		return;
 
 
 
 
 
 
 
5529
5530	while (len > 0) {
5531		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
5532		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
 
 
5533
5534		dst_i = get_eb_page_index(dst_offset);
5535		src_i = get_eb_page_index(src_offset);
5536
5537		cur = min(len, (unsigned long)(PAGE_SIZE -
5538					       src_off_in_page));
5539		cur = min_t(unsigned long, cur,
5540			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5541
5542		copy_pages(dst->pages[dst_i], dst->pages[src_i],
 
5543			   dst_off_in_page, src_off_in_page, cur);
5544
5545		src_offset += cur;
5546		dst_offset += cur;
5547		len -= cur;
5548	}
5549}
5550
5551void memmove_extent_buffer(const struct extent_buffer *dst,
5552			   unsigned long dst_offset, unsigned long src_offset,
5553			   unsigned long len)
5554{
5555	size_t cur;
5556	size_t dst_off_in_page;
5557	size_t src_off_in_page;
5558	unsigned long dst_end = dst_offset + len - 1;
5559	unsigned long src_end = src_offset + len - 1;
 
5560	unsigned long dst_i;
5561	unsigned long src_i;
5562
5563	if (check_eb_range(dst, dst_offset, len) ||
5564	    check_eb_range(dst, src_offset, len))
5565		return;
 
 
 
 
 
 
 
5566	if (dst_offset < src_offset) {
5567		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5568		return;
5569	}
5570	while (len > 0) {
5571		dst_i = get_eb_page_index(dst_end);
5572		src_i = get_eb_page_index(src_end);
5573
5574		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
5575		src_off_in_page = get_eb_offset_in_page(dst, src_end);
 
 
5576
5577		cur = min_t(unsigned long, len, src_off_in_page + 1);
5578		cur = min(cur, dst_off_in_page + 1);
5579		copy_pages(dst->pages[dst_i], dst->pages[src_i],
 
5580			   dst_off_in_page - cur + 1,
5581			   src_off_in_page - cur + 1, cur);
5582
5583		dst_end -= cur;
5584		src_end -= cur;
5585		len -= cur;
5586	}
5587}
5588
5589#define GANG_LOOKUP_SIZE	16
5590static struct extent_buffer *get_next_extent_buffer(
5591		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
5592{
5593	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
5594	struct extent_buffer *found = NULL;
5595	u64 page_start = page_offset(page);
5596	u64 cur = page_start;
5597
5598	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
5599	lockdep_assert_held(&fs_info->buffer_lock);
5600
5601	while (cur < page_start + PAGE_SIZE) {
5602		int ret;
5603		int i;
5604
5605		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
5606				(void **)gang, cur >> fs_info->sectorsize_bits,
5607				min_t(unsigned int, GANG_LOOKUP_SIZE,
5608				      PAGE_SIZE / fs_info->nodesize));
5609		if (ret == 0)
5610			goto out;
5611		for (i = 0; i < ret; i++) {
5612			/* Already beyond page end */
5613			if (gang[i]->start >= page_start + PAGE_SIZE)
5614				goto out;
5615			/* Found one */
5616			if (gang[i]->start >= bytenr) {
5617				found = gang[i];
5618				goto out;
5619			}
5620		}
5621		cur = gang[ret - 1]->start + gang[ret - 1]->len;
5622	}
5623out:
5624	return found;
5625}
5626
5627static int try_release_subpage_extent_buffer(struct page *page)
5628{
5629	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
5630	u64 cur = page_offset(page);
5631	const u64 end = page_offset(page) + PAGE_SIZE;
5632	int ret;
5633
5634	while (cur < end) {
5635		struct extent_buffer *eb = NULL;
5636
5637		/*
5638		 * Unlike try_release_extent_buffer() which uses page->private
5639		 * to grab buffer, for subpage case we rely on radix tree, thus
5640		 * we need to ensure radix tree consistency.
5641		 *
5642		 * We also want an atomic snapshot of the radix tree, thus go
5643		 * with spinlock rather than RCU.
5644		 */
5645		spin_lock(&fs_info->buffer_lock);
5646		eb = get_next_extent_buffer(fs_info, page, cur);
5647		if (!eb) {
5648			/* No more eb in the page range after or at cur */
5649			spin_unlock(&fs_info->buffer_lock);
5650			break;
5651		}
5652		cur = eb->start + eb->len;
5653
5654		/*
5655		 * The same as try_release_extent_buffer(), to ensure the eb
5656		 * won't disappear out from under us.
5657		 */
5658		spin_lock(&eb->refs_lock);
5659		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5660			spin_unlock(&eb->refs_lock);
5661			spin_unlock(&fs_info->buffer_lock);
5662			break;
5663		}
5664		spin_unlock(&fs_info->buffer_lock);
5665
5666		/*
5667		 * If tree ref isn't set then we know the ref on this eb is a
5668		 * real ref, so just return, this eb will likely be freed soon
5669		 * anyway.
5670		 */
5671		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5672			spin_unlock(&eb->refs_lock);
5673			break;
5674		}
5675
5676		/*
5677		 * Here we don't care about the return value, we will always
5678		 * check the page private at the end.  And
5679		 * release_extent_buffer() will release the refs_lock.
5680		 */
5681		release_extent_buffer(eb);
5682	}
5683	/*
5684	 * Finally to check if we have cleared page private, as if we have
5685	 * released all ebs in the page, the page private should be cleared now.
5686	 */
5687	spin_lock(&page->mapping->private_lock);
5688	if (!PagePrivate(page))
5689		ret = 1;
5690	else
5691		ret = 0;
5692	spin_unlock(&page->mapping->private_lock);
5693	return ret;
5694
5695}
5696
5697int try_release_extent_buffer(struct page *page)
5698{
5699	struct extent_buffer *eb;
5700
5701	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
5702		return try_release_subpage_extent_buffer(page);
5703
5704	/*
5705	 * We need to make sure nobody is changing page->private, as we rely on
5706	 * page->private as the pointer to extent buffer.
5707	 */
5708	spin_lock(&page->mapping->private_lock);
5709	if (!PagePrivate(page)) {
5710		spin_unlock(&page->mapping->private_lock);
5711		return 1;
5712	}
5713
5714	eb = (struct extent_buffer *)page->private;
5715	BUG_ON(!eb);
5716
5717	/*
5718	 * This is a little awful but should be ok, we need to make sure that
5719	 * the eb doesn't disappear out from under us while we're looking at
5720	 * this page.
5721	 */
5722	spin_lock(&eb->refs_lock);
5723	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5724		spin_unlock(&eb->refs_lock);
5725		spin_unlock(&page->mapping->private_lock);
5726		return 0;
5727	}
5728	spin_unlock(&page->mapping->private_lock);
5729
 
 
 
5730	/*
5731	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5732	 * so just return, this page will likely be freed soon anyway.
5733	 */
5734	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5735		spin_unlock(&eb->refs_lock);
5736		return 0;
5737	}
 
5738
5739	return release_extent_buffer(eb);
5740}
5741
5742/*
5743 * btrfs_readahead_tree_block - attempt to readahead a child block
5744 * @fs_info:	the fs_info
5745 * @bytenr:	bytenr to read
5746 * @owner_root: objectid of the root that owns this eb
5747 * @gen:	generation for the uptodate check, can be 0
5748 * @level:	level for the eb
5749 *
5750 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
5751 * normal uptodate check of the eb, without checking the generation.  If we have
5752 * to read the block we will not block on anything.
5753 */
5754void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
5755				u64 bytenr, u64 owner_root, u64 gen, int level)
5756{
5757	struct btrfs_tree_parent_check check = {
5758		.has_first_key = 0,
5759		.level = level,
5760		.transid = gen
5761	};
5762	struct extent_buffer *eb;
5763	int ret;
5764
5765	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
5766	if (IS_ERR(eb))
5767		return;
5768
5769	if (btrfs_buffer_uptodate(eb, gen, 1)) {
5770		free_extent_buffer(eb);
5771		return;
5772	}
5773
5774	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
5775	if (ret < 0)
5776		free_extent_buffer_stale(eb);
5777	else
5778		free_extent_buffer(eb);
5779}
5780
5781/*
5782 * btrfs_readahead_node_child - readahead a node's child block
5783 * @node:	parent node we're reading from
5784 * @slot:	slot in the parent node for the child we want to read
5785 *
5786 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5787 * the slot in the node provided.
5788 */
5789void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5790{
5791	btrfs_readahead_tree_block(node->fs_info,
5792				   btrfs_node_blockptr(node, slot),
5793				   btrfs_header_owner(node),
5794				   btrfs_node_ptr_generation(node, slot),
5795				   btrfs_header_level(node) - 1);
5796}
v3.5.6
 
 
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
   7#include <linux/module.h>
   8#include <linux/spinlock.h>
   9#include <linux/blkdev.h>
  10#include <linux/swap.h>
  11#include <linux/writeback.h>
  12#include <linux/pagevec.h>
  13#include <linux/prefetch.h>
  14#include <linux/cleancache.h>
 
  15#include "extent_io.h"
 
  16#include "extent_map.h"
  17#include "compat.h"
  18#include "ctree.h"
  19#include "btrfs_inode.h"
  20#include "volumes.h"
  21#include "check-integrity.h"
  22#include "locking.h"
  23#include "rcu-string.h"
 
 
 
 
 
 
 
 
 
 
 
 
  24
  25static struct kmem_cache *extent_state_cache;
  26static struct kmem_cache *extent_buffer_cache;
  27
  28static LIST_HEAD(buffers);
  29static LIST_HEAD(states);
  30
  31#define LEAK_DEBUG 0
  32#if LEAK_DEBUG
  33static DEFINE_SPINLOCK(leak_lock);
  34#endif
  35
  36#define BUFFER_LRU_MAX 64
  37
  38struct tree_entry {
  39	u64 start;
  40	u64 end;
  41	struct rb_node rb_node;
  42};
  43
  44struct extent_page_data {
  45	struct bio *bio;
  46	struct extent_io_tree *tree;
  47	get_extent_t *get_extent;
  48
  49	/* tells writepage not to lock the state bits for this range
  50	 * it still does the unlocking
  51	 */
  52	unsigned int extent_locked:1;
  53
  54	/* tells the submit_bio code to use a WRITE_SYNC */
  55	unsigned int sync_io:1;
  56};
  57
  58static noinline void flush_write_bio(void *data);
  59static inline struct btrfs_fs_info *
  60tree_fs_info(struct extent_io_tree *tree)
  61{
  62	return btrfs_sb(tree->mapping->host->i_sb);
  63}
  64
  65int __init extent_io_init(void)
  66{
  67	extent_state_cache = kmem_cache_create("extent_state",
  68			sizeof(struct extent_state), 0,
  69			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  70	if (!extent_state_cache)
  71		return -ENOMEM;
  72
  73	extent_buffer_cache = kmem_cache_create("extent_buffers",
  74			sizeof(struct extent_buffer), 0,
  75			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  76	if (!extent_buffer_cache)
  77		goto free_state_cache;
  78	return 0;
  79
  80free_state_cache:
  81	kmem_cache_destroy(extent_state_cache);
  82	return -ENOMEM;
  83}
  84
  85void extent_io_exit(void)
  86{
  87	struct extent_state *state;
  88	struct extent_buffer *eb;
 
  89
  90	while (!list_empty(&states)) {
  91		state = list_entry(states.next, struct extent_state, leak_list);
  92		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
  93		       "state %lu in tree %p refs %d\n",
  94		       (unsigned long long)state->start,
  95		       (unsigned long long)state->end,
  96		       state->state, state->tree, atomic_read(&state->refs));
  97		list_del(&state->leak_list);
  98		kmem_cache_free(extent_state_cache, state);
  99
 100	}
 101
 102	while (!list_empty(&buffers)) {
 103		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
 104		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
 105		       "refs %d\n", (unsigned long long)eb->start,
 106		       eb->len, atomic_read(&eb->refs));
 
 
 107		list_del(&eb->leak_list);
 108		kmem_cache_free(extent_buffer_cache, eb);
 109	}
 110	if (extent_state_cache)
 111		kmem_cache_destroy(extent_state_cache);
 112	if (extent_buffer_cache)
 113		kmem_cache_destroy(extent_buffer_cache);
 114}
 
 
 
 
 115
 116void extent_io_tree_init(struct extent_io_tree *tree,
 117			 struct address_space *mapping)
 118{
 119	tree->state = RB_ROOT;
 120	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
 121	tree->ops = NULL;
 122	tree->dirty_bytes = 0;
 123	spin_lock_init(&tree->lock);
 124	spin_lock_init(&tree->buffer_lock);
 125	tree->mapping = mapping;
 126}
 127
 128static struct extent_state *alloc_extent_state(gfp_t mask)
 129{
 130	struct extent_state *state;
 131#if LEAK_DEBUG
 132	unsigned long flags;
 133#endif
 
 
 134
 135	state = kmem_cache_alloc(extent_state_cache, mask);
 136	if (!state)
 137		return state;
 138	state->state = 0;
 139	state->private = 0;
 140	state->tree = NULL;
 141#if LEAK_DEBUG
 142	spin_lock_irqsave(&leak_lock, flags);
 143	list_add(&state->leak_list, &states);
 144	spin_unlock_irqrestore(&leak_lock, flags);
 145#endif
 146	atomic_set(&state->refs, 1);
 147	init_waitqueue_head(&state->wq);
 148	trace_alloc_extent_state(state, mask, _RET_IP_);
 149	return state;
 150}
 151
 152void free_extent_state(struct extent_state *state)
 153{
 154	if (!state)
 155		return;
 156	if (atomic_dec_and_test(&state->refs)) {
 157#if LEAK_DEBUG
 158		unsigned long flags;
 159#endif
 160		WARN_ON(state->tree);
 161#if LEAK_DEBUG
 162		spin_lock_irqsave(&leak_lock, flags);
 163		list_del(&state->leak_list);
 164		spin_unlock_irqrestore(&leak_lock, flags);
 165#endif
 166		trace_free_extent_state(state, _RET_IP_);
 167		kmem_cache_free(extent_state_cache, state);
 168	}
 169}
 170
 171static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
 172				   struct rb_node *node)
 173{
 174	struct rb_node **p = &root->rb_node;
 175	struct rb_node *parent = NULL;
 176	struct tree_entry *entry;
 
 177
 178	while (*p) {
 179		parent = *p;
 180		entry = rb_entry(parent, struct tree_entry, rb_node);
 181
 182		if (offset < entry->start)
 183			p = &(*p)->rb_left;
 184		else if (offset > entry->end)
 185			p = &(*p)->rb_right;
 186		else
 187			return parent;
 188	}
 189
 190	rb_link_node(node, parent, p);
 191	rb_insert_color(node, root);
 192	return NULL;
 193}
 194
 195static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 196				     struct rb_node **prev_ret,
 197				     struct rb_node **next_ret)
 198{
 199	struct rb_root *root = &tree->state;
 200	struct rb_node *n = root->rb_node;
 201	struct rb_node *prev = NULL;
 202	struct rb_node *orig_prev = NULL;
 203	struct tree_entry *entry;
 204	struct tree_entry *prev_entry = NULL;
 205
 206	while (n) {
 207		entry = rb_entry(n, struct tree_entry, rb_node);
 208		prev = n;
 209		prev_entry = entry;
 210
 211		if (offset < entry->start)
 212			n = n->rb_left;
 213		else if (offset > entry->end)
 214			n = n->rb_right;
 215		else
 216			return n;
 217	}
 218
 219	if (prev_ret) {
 220		orig_prev = prev;
 221		while (prev && offset > prev_entry->end) {
 222			prev = rb_next(prev);
 223			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 224		}
 225		*prev_ret = prev;
 226		prev = orig_prev;
 
 
 
 
 
 
 
 
 
 227	}
 228
 229	if (next_ret) {
 230		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 231		while (prev && offset < prev_entry->start) {
 232			prev = rb_prev(prev);
 233			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 234		}
 235		*next_ret = prev;
 236	}
 237	return NULL;
 238}
 239
 240static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 241					  u64 offset)
 242{
 243	struct rb_node *prev = NULL;
 244	struct rb_node *ret;
 245
 246	ret = __etree_search(tree, offset, &prev, NULL);
 247	if (!ret)
 248		return prev;
 249	return ret;
 250}
 251
 252static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 253		     struct extent_state *other)
 254{
 255	if (tree->ops && tree->ops->merge_extent_hook)
 256		tree->ops->merge_extent_hook(tree->mapping->host, new,
 257					     other);
 258}
 259
 260/*
 261 * utility function to look for merge candidates inside a given range.
 262 * Any extents with matching state are merged together into a single
 263 * extent in the tree.  Extents with EXTENT_IO in their state field
 264 * are not merged because the end_io handlers need to be able to do
 265 * operations on them without sleeping (or doing allocations/splits).
 266 *
 267 * This should be called with the tree lock held.
 268 */
 269static void merge_state(struct extent_io_tree *tree,
 270		        struct extent_state *state)
 271{
 272	struct extent_state *other;
 273	struct rb_node *other_node;
 274
 275	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 276		return;
 277
 278	other_node = rb_prev(&state->rb_node);
 279	if (other_node) {
 280		other = rb_entry(other_node, struct extent_state, rb_node);
 281		if (other->end == state->start - 1 &&
 282		    other->state == state->state) {
 283			merge_cb(tree, state, other);
 284			state->start = other->start;
 285			other->tree = NULL;
 286			rb_erase(&other->rb_node, &tree->state);
 287			free_extent_state(other);
 288		}
 289	}
 290	other_node = rb_next(&state->rb_node);
 291	if (other_node) {
 292		other = rb_entry(other_node, struct extent_state, rb_node);
 293		if (other->start == state->end + 1 &&
 294		    other->state == state->state) {
 295			merge_cb(tree, state, other);
 296			state->end = other->end;
 297			other->tree = NULL;
 298			rb_erase(&other->rb_node, &tree->state);
 299			free_extent_state(other);
 300		}
 301	}
 302}
 303
 304static void set_state_cb(struct extent_io_tree *tree,
 305			 struct extent_state *state, int *bits)
 306{
 307	if (tree->ops && tree->ops->set_bit_hook)
 308		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 309}
 
 
 310
 311static void clear_state_cb(struct extent_io_tree *tree,
 312			   struct extent_state *state, int *bits)
 313{
 314	if (tree->ops && tree->ops->clear_bit_hook)
 315		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 316}
 317
 318static void set_state_bits(struct extent_io_tree *tree,
 319			   struct extent_state *state, int *bits);
 320
 321/*
 322 * insert an extent_state struct into the tree.  'bits' are set on the
 323 * struct before it is inserted.
 324 *
 325 * This may return -EEXIST if the extent is already there, in which case the
 326 * state struct is freed.
 327 *
 328 * The tree lock is not taken internally.  This is a utility function and
 329 * probably isn't what you want to call (see set/clear_extent_bit).
 330 */
 331static int insert_state(struct extent_io_tree *tree,
 332			struct extent_state *state, u64 start, u64 end,
 333			int *bits)
 334{
 335	struct rb_node *node;
 336
 337	if (end < start) {
 338		printk(KERN_ERR "btrfs end < start %llu %llu\n",
 339		       (unsigned long long)end,
 340		       (unsigned long long)start);
 341		WARN_ON(1);
 342	}
 343	state->start = start;
 344	state->end = end;
 345
 346	set_state_bits(tree, state, bits);
 347
 348	node = tree_insert(&tree->state, end, &state->rb_node);
 349	if (node) {
 350		struct extent_state *found;
 351		found = rb_entry(node, struct extent_state, rb_node);
 352		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
 353		       "%llu %llu\n", (unsigned long long)found->start,
 354		       (unsigned long long)found->end,
 355		       (unsigned long long)start, (unsigned long long)end);
 356		return -EEXIST;
 357	}
 358	state->tree = tree;
 359	merge_state(tree, state);
 360	return 0;
 361}
 362
 363static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 364		     u64 split)
 365{
 366	if (tree->ops && tree->ops->split_extent_hook)
 367		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 
 
 
 
 368}
 369
 370/*
 371 * split a given extent state struct in two, inserting the preallocated
 372 * struct 'prealloc' as the newly created second half.  'split' indicates an
 373 * offset inside 'orig' where it should be split.
 374 *
 375 * Before calling,
 376 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 377 * are two extent state structs in the tree:
 378 * prealloc: [orig->start, split - 1]
 379 * orig: [ split, orig->end ]
 380 *
 381 * The tree locks are not taken by this function. They need to be held
 382 * by the caller.
 383 */
 384static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 385		       struct extent_state *prealloc, u64 split)
 386{
 387	struct rb_node *node;
 
 
 388
 389	split_cb(tree, orig, split);
 390
 391	prealloc->start = orig->start;
 392	prealloc->end = split - 1;
 393	prealloc->state = orig->state;
 394	orig->start = split;
 395
 396	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
 397	if (node) {
 398		free_extent_state(prealloc);
 399		return -EEXIST;
 400	}
 401	prealloc->tree = tree;
 402	return 0;
 403}
 404
 405static struct extent_state *next_state(struct extent_state *state)
 406{
 407	struct rb_node *next = rb_next(&state->rb_node);
 408	if (next)
 409		return rb_entry(next, struct extent_state, rb_node);
 410	else
 411		return NULL;
 412}
 413
 414/*
 415 * utility function to clear some bits in an extent state struct.
 416 * it will optionally wake up any one waiting on this state (wake == 1).
 417 *
 418 * If no bits are set on the state struct after clearing things, the
 419 * struct is freed and removed from the tree
 420 */
 421static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 422					    struct extent_state *state,
 423					    int *bits, int wake)
 424{
 425	struct extent_state *next;
 426	int bits_to_clear = *bits & ~EXTENT_CTLBITS;
 427
 428	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 429		u64 range = state->end - state->start + 1;
 430		WARN_ON(range > tree->dirty_bytes);
 431		tree->dirty_bytes -= range;
 432	}
 433	clear_state_cb(tree, state, bits);
 434	state->state &= ~bits_to_clear;
 435	if (wake)
 436		wake_up(&state->wq);
 437	if (state->state == 0) {
 438		next = next_state(state);
 439		if (state->tree) {
 440			rb_erase(&state->rb_node, &tree->state);
 441			state->tree = NULL;
 442			free_extent_state(state);
 443		} else {
 444			WARN_ON(1);
 445		}
 446	} else {
 447		merge_state(tree, state);
 448		next = next_state(state);
 449	}
 450	return next;
 451}
 452
 453static struct extent_state *
 454alloc_extent_state_atomic(struct extent_state *prealloc)
 455{
 456	if (!prealloc)
 457		prealloc = alloc_extent_state(GFP_ATOMIC);
 458
 459	return prealloc;
 460}
 461
 462void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 463{
 464	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
 465		    "Extent tree was modified by another "
 466		    "thread while locked.");
 467}
 468
 469/*
 470 * clear some bits on a range in the tree.  This may require splitting
 471 * or inserting elements in the tree, so the gfp mask is used to
 472 * indicate which allocations or sleeping are allowed.
 473 *
 474 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 475 * the given range from the tree regardless of state (ie for truncate).
 476 *
 477 * the range [start, end] is inclusive.
 478 *
 479 * This takes the tree lock, and returns 0 on success and < 0 on error.
 
 480 */
 481int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 482		     int bits, int wake, int delete,
 483		     struct extent_state **cached_state,
 484		     gfp_t mask)
 485{
 486	struct extent_state *state;
 487	struct extent_state *cached;
 488	struct extent_state *prealloc = NULL;
 489	struct rb_node *node;
 490	u64 last_end;
 491	int err;
 492	int clear = 0;
 493
 494	if (delete)
 495		bits |= ~EXTENT_CTLBITS;
 496	bits |= EXTENT_FIRST_DELALLOC;
 497
 498	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 499		clear = 1;
 500again:
 501	if (!prealloc && (mask & __GFP_WAIT)) {
 502		prealloc = alloc_extent_state(mask);
 503		if (!prealloc)
 504			return -ENOMEM;
 505	}
 
 
 506
 507	spin_lock(&tree->lock);
 508	if (cached_state) {
 509		cached = *cached_state;
 510
 511		if (clear) {
 512			*cached_state = NULL;
 513			cached_state = NULL;
 514		}
 515
 516		if (cached && cached->tree && cached->start <= start &&
 517		    cached->end > start) {
 518			if (clear)
 519				atomic_dec(&cached->refs);
 520			state = cached;
 521			goto hit_next;
 522		}
 523		if (clear)
 524			free_extent_state(cached);
 525	}
 526	/*
 527	 * this search will find the extents that end after
 528	 * our range starts
 529	 */
 530	node = tree_search(tree, start);
 531	if (!node)
 532		goto out;
 533	state = rb_entry(node, struct extent_state, rb_node);
 534hit_next:
 535	if (state->start > end)
 536		goto out;
 537	WARN_ON(state->end < start);
 538	last_end = state->end;
 539
 540	/* the state doesn't have the wanted bits, go ahead */
 541	if (!(state->state & bits)) {
 542		state = next_state(state);
 543		goto next;
 544	}
 545
 546	/*
 547	 *     | ---- desired range ---- |
 548	 *  | state | or
 549	 *  | ------------- state -------------- |
 550	 *
 551	 * We need to split the extent we found, and may flip
 552	 * bits on second half.
 553	 *
 554	 * If the extent we found extends past our range, we
 555	 * just split and search again.  It'll get split again
 556	 * the next time though.
 557	 *
 558	 * If the extent we found is inside our range, we clear
 559	 * the desired bit on it.
 560	 */
 561
 562	if (state->start < start) {
 563		prealloc = alloc_extent_state_atomic(prealloc);
 564		BUG_ON(!prealloc);
 565		err = split_state(tree, state, prealloc, start);
 566		if (err)
 567			extent_io_tree_panic(tree, err);
 568
 569		prealloc = NULL;
 570		if (err)
 571			goto out;
 572		if (state->end <= end) {
 573			state = clear_state_bit(tree, state, &bits, wake);
 574			goto next;
 575		}
 576		goto search_again;
 577	}
 578	/*
 579	 * | ---- desired range ---- |
 580	 *                        | state |
 581	 * We need to split the extent, and clear the bit
 582	 * on the first half
 583	 */
 584	if (state->start <= end && state->end > end) {
 585		prealloc = alloc_extent_state_atomic(prealloc);
 586		BUG_ON(!prealloc);
 587		err = split_state(tree, state, prealloc, end + 1);
 588		if (err)
 589			extent_io_tree_panic(tree, err);
 590
 591		if (wake)
 592			wake_up(&state->wq);
 593
 594		clear_state_bit(tree, prealloc, &bits, wake);
 595
 596		prealloc = NULL;
 597		goto out;
 598	}
 599
 600	state = clear_state_bit(tree, state, &bits, wake);
 601next:
 602	if (last_end == (u64)-1)
 603		goto out;
 604	start = last_end + 1;
 605	if (start <= end && state && !need_resched())
 606		goto hit_next;
 607	goto search_again;
 608
 609out:
 610	spin_unlock(&tree->lock);
 611	if (prealloc)
 612		free_extent_state(prealloc);
 613
 614	return 0;
 615
 616search_again:
 617	if (start > end)
 618		goto out;
 619	spin_unlock(&tree->lock);
 620	if (mask & __GFP_WAIT)
 621		cond_resched();
 622	goto again;
 623}
 624
 625static void wait_on_state(struct extent_io_tree *tree,
 626			  struct extent_state *state)
 627		__releases(tree->lock)
 628		__acquires(tree->lock)
 629{
 630	DEFINE_WAIT(wait);
 631	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 632	spin_unlock(&tree->lock);
 633	schedule();
 634	spin_lock(&tree->lock);
 635	finish_wait(&state->wq, &wait);
 636}
 637
 638/*
 639 * waits for one or more bits to clear on a range in the state tree.
 640 * The range [start, end] is inclusive.
 641 * The tree lock is taken by this function
 642 */
 643void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
 644{
 645	struct extent_state *state;
 646	struct rb_node *node;
 647
 648	spin_lock(&tree->lock);
 649again:
 650	while (1) {
 651		/*
 652		 * this search will find all the extents that end after
 653		 * our range starts
 654		 */
 655		node = tree_search(tree, start);
 656		if (!node)
 657			break;
 658
 659		state = rb_entry(node, struct extent_state, rb_node);
 660
 661		if (state->start > end)
 662			goto out;
 663
 664		if (state->state & bits) {
 665			start = state->start;
 666			atomic_inc(&state->refs);
 667			wait_on_state(tree, state);
 668			free_extent_state(state);
 669			goto again;
 670		}
 671		start = state->end + 1;
 672
 673		if (start > end)
 674			break;
 675
 676		cond_resched_lock(&tree->lock);
 677	}
 678out:
 679	spin_unlock(&tree->lock);
 680}
 681
 682static void set_state_bits(struct extent_io_tree *tree,
 683			   struct extent_state *state,
 684			   int *bits)
 685{
 686	int bits_to_set = *bits & ~EXTENT_CTLBITS;
 687
 688	set_state_cb(tree, state, bits);
 689	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 690		u64 range = state->end - state->start + 1;
 691		tree->dirty_bytes += range;
 692	}
 693	state->state |= bits_to_set;
 694}
 695
 696static void cache_state(struct extent_state *state,
 697			struct extent_state **cached_ptr)
 698{
 699	if (cached_ptr && !(*cached_ptr)) {
 700		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
 701			*cached_ptr = state;
 702			atomic_inc(&state->refs);
 703		}
 704	}
 705}
 706
 707static void uncache_state(struct extent_state **cached_ptr)
 708{
 709	if (cached_ptr && (*cached_ptr)) {
 710		struct extent_state *state = *cached_ptr;
 711		*cached_ptr = NULL;
 712		free_extent_state(state);
 713	}
 714}
 715
 716/*
 717 * set some bits on a range in the tree.  This may require allocations or
 718 * sleeping, so the gfp mask is used to indicate what is allowed.
 719 *
 720 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 721 * part of the range already has the desired bits set.  The start of the
 722 * existing range is returned in failed_start in this case.
 723 *
 724 * [start, end] is inclusive This takes the tree lock.
 725 */
 726
 727static int __must_check
 728__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 729		 int bits, int exclusive_bits, u64 *failed_start,
 730		 struct extent_state **cached_state, gfp_t mask)
 731{
 732	struct extent_state *state;
 733	struct extent_state *prealloc = NULL;
 734	struct rb_node *node;
 735	int err = 0;
 736	u64 last_start;
 737	u64 last_end;
 738
 739	bits |= EXTENT_FIRST_DELALLOC;
 740again:
 741	if (!prealloc && (mask & __GFP_WAIT)) {
 742		prealloc = alloc_extent_state(mask);
 743		BUG_ON(!prealloc);
 744	}
 745
 746	spin_lock(&tree->lock);
 747	if (cached_state && *cached_state) {
 748		state = *cached_state;
 749		if (state->start <= start && state->end > start &&
 750		    state->tree) {
 751			node = &state->rb_node;
 752			goto hit_next;
 753		}
 754	}
 755	/*
 756	 * this search will find all the extents that end after
 757	 * our range starts.
 758	 */
 759	node = tree_search(tree, start);
 760	if (!node) {
 761		prealloc = alloc_extent_state_atomic(prealloc);
 762		BUG_ON(!prealloc);
 763		err = insert_state(tree, prealloc, start, end, &bits);
 764		if (err)
 765			extent_io_tree_panic(tree, err);
 766
 767		prealloc = NULL;
 768		goto out;
 769	}
 770	state = rb_entry(node, struct extent_state, rb_node);
 771hit_next:
 772	last_start = state->start;
 773	last_end = state->end;
 774
 775	/*
 776	 * | ---- desired range ---- |
 777	 * | state |
 778	 *
 779	 * Just lock what we found and keep going
 780	 */
 781	if (state->start == start && state->end <= end) {
 782		if (state->state & exclusive_bits) {
 783			*failed_start = state->start;
 784			err = -EEXIST;
 785			goto out;
 786		}
 787
 788		set_state_bits(tree, state, &bits);
 789		cache_state(state, cached_state);
 790		merge_state(tree, state);
 791		if (last_end == (u64)-1)
 792			goto out;
 793		start = last_end + 1;
 794		state = next_state(state);
 795		if (start < end && state && state->start == start &&
 796		    !need_resched())
 797			goto hit_next;
 798		goto search_again;
 799	}
 800
 801	/*
 802	 *     | ---- desired range ---- |
 803	 * | state |
 804	 *   or
 805	 * | ------------- state -------------- |
 806	 *
 807	 * We need to split the extent we found, and may flip bits on
 808	 * second half.
 809	 *
 810	 * If the extent we found extends past our
 811	 * range, we just split and search again.  It'll get split
 812	 * again the next time though.
 813	 *
 814	 * If the extent we found is inside our range, we set the
 815	 * desired bit on it.
 816	 */
 817	if (state->start < start) {
 818		if (state->state & exclusive_bits) {
 819			*failed_start = start;
 820			err = -EEXIST;
 821			goto out;
 822		}
 823
 824		prealloc = alloc_extent_state_atomic(prealloc);
 825		BUG_ON(!prealloc);
 826		err = split_state(tree, state, prealloc, start);
 827		if (err)
 828			extent_io_tree_panic(tree, err);
 829
 830		prealloc = NULL;
 831		if (err)
 832			goto out;
 833		if (state->end <= end) {
 834			set_state_bits(tree, state, &bits);
 835			cache_state(state, cached_state);
 836			merge_state(tree, state);
 837			if (last_end == (u64)-1)
 838				goto out;
 839			start = last_end + 1;
 840			state = next_state(state);
 841			if (start < end && state && state->start == start &&
 842			    !need_resched())
 843				goto hit_next;
 844		}
 845		goto search_again;
 
 846	}
 847	/*
 848	 * | ---- desired range ---- |
 849	 *     | state | or               | state |
 850	 *
 851	 * There's a hole, we need to insert something in it and
 852	 * ignore the extent we found.
 853	 */
 854	if (state->start > start) {
 855		u64 this_end;
 856		if (end < last_start)
 857			this_end = end;
 858		else
 859			this_end = last_start - 1;
 860
 861		prealloc = alloc_extent_state_atomic(prealloc);
 862		BUG_ON(!prealloc);
 863
 864		/*
 865		 * Avoid to free 'prealloc' if it can be merged with
 866		 * the later extent.
 
 
 
 
 867		 */
 868		err = insert_state(tree, prealloc, start, this_end,
 869				   &bits);
 870		if (err)
 871			extent_io_tree_panic(tree, err);
 872
 873		cache_state(prealloc, cached_state);
 874		prealloc = NULL;
 875		start = this_end + 1;
 876		goto search_again;
 877	}
 878	/*
 879	 * | ---- desired range ---- |
 880	 *                        | state |
 881	 * We need to split the extent, and set the bit
 882	 * on the first half
 883	 */
 884	if (state->start <= end && state->end > end) {
 885		if (state->state & exclusive_bits) {
 886			*failed_start = start;
 887			err = -EEXIST;
 888			goto out;
 889		}
 890
 891		prealloc = alloc_extent_state_atomic(prealloc);
 892		BUG_ON(!prealloc);
 893		err = split_state(tree, state, prealloc, end + 1);
 894		if (err)
 895			extent_io_tree_panic(tree, err);
 896
 897		set_state_bits(tree, prealloc, &bits);
 898		cache_state(prealloc, cached_state);
 899		merge_state(tree, prealloc);
 900		prealloc = NULL;
 901		goto out;
 902	}
 903
 904	goto search_again;
 905
 906out:
 907	spin_unlock(&tree->lock);
 908	if (prealloc)
 909		free_extent_state(prealloc);
 910
 911	return err;
 912
 913search_again:
 914	if (start > end)
 915		goto out;
 916	spin_unlock(&tree->lock);
 917	if (mask & __GFP_WAIT)
 918		cond_resched();
 919	goto again;
 920}
 921
 922int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
 923		   u64 *failed_start, struct extent_state **cached_state,
 924		   gfp_t mask)
 925{
 926	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
 927				cached_state, mask);
 928}
 929
 930
 931/**
 932 * convert_extent - convert all bits in a given range from one bit to another
 933 * @tree:	the io tree to search
 934 * @start:	the start offset in bytes
 935 * @end:	the end offset in bytes (inclusive)
 936 * @bits:	the bits to set in this range
 937 * @clear_bits:	the bits to clear in this range
 938 * @mask:	the allocation mask
 939 *
 940 * This will go through and set bits for the given range.  If any states exist
 941 * already in this range they are set with the given bit and cleared of the
 942 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 943 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 944 * boundary bits like LOCK.
 945 */
 946int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 947		       int bits, int clear_bits, gfp_t mask)
 948{
 949	struct extent_state *state;
 950	struct extent_state *prealloc = NULL;
 951	struct rb_node *node;
 952	int err = 0;
 953	u64 last_start;
 954	u64 last_end;
 955
 956again:
 957	if (!prealloc && (mask & __GFP_WAIT)) {
 958		prealloc = alloc_extent_state(mask);
 959		if (!prealloc)
 960			return -ENOMEM;
 961	}
 962
 963	spin_lock(&tree->lock);
 964	/*
 965	 * this search will find all the extents that end after
 966	 * our range starts.
 967	 */
 968	node = tree_search(tree, start);
 969	if (!node) {
 970		prealloc = alloc_extent_state_atomic(prealloc);
 971		if (!prealloc) {
 972			err = -ENOMEM;
 973			goto out;
 974		}
 975		err = insert_state(tree, prealloc, start, end, &bits);
 976		prealloc = NULL;
 977		if (err)
 978			extent_io_tree_panic(tree, err);
 979		goto out;
 980	}
 981	state = rb_entry(node, struct extent_state, rb_node);
 982hit_next:
 983	last_start = state->start;
 984	last_end = state->end;
 985
 986	/*
 987	 * | ---- desired range ---- |
 988	 * | state |
 989	 *
 990	 * Just lock what we found and keep going
 991	 */
 992	if (state->start == start && state->end <= end) {
 993		set_state_bits(tree, state, &bits);
 994		state = clear_state_bit(tree, state, &clear_bits, 0);
 995		if (last_end == (u64)-1)
 996			goto out;
 997		start = last_end + 1;
 998		if (start < end && state && state->start == start &&
 999		    !need_resched())
1000			goto hit_next;
1001		goto search_again;
1002	}
1003
1004	/*
1005	 *     | ---- desired range ---- |
1006	 * | state |
1007	 *   or
1008	 * | ------------- state -------------- |
1009	 *
1010	 * We need to split the extent we found, and may flip bits on
1011	 * second half.
1012	 *
1013	 * If the extent we found extends past our
1014	 * range, we just split and search again.  It'll get split
1015	 * again the next time though.
1016	 *
1017	 * If the extent we found is inside our range, we set the
1018	 * desired bit on it.
1019	 */
1020	if (state->start < start) {
1021		prealloc = alloc_extent_state_atomic(prealloc);
1022		if (!prealloc) {
1023			err = -ENOMEM;
1024			goto out;
1025		}
1026		err = split_state(tree, state, prealloc, start);
1027		if (err)
1028			extent_io_tree_panic(tree, err);
1029		prealloc = NULL;
1030		if (err)
1031			goto out;
1032		if (state->end <= end) {
1033			set_state_bits(tree, state, &bits);
1034			state = clear_state_bit(tree, state, &clear_bits, 0);
1035			if (last_end == (u64)-1)
1036				goto out;
1037			start = last_end + 1;
1038			if (start < end && state && state->start == start &&
1039			    !need_resched())
1040				goto hit_next;
1041		}
1042		goto search_again;
1043	}
1044	/*
1045	 * | ---- desired range ---- |
1046	 *     | state | or               | state |
1047	 *
1048	 * There's a hole, we need to insert something in it and
1049	 * ignore the extent we found.
1050	 */
1051	if (state->start > start) {
1052		u64 this_end;
1053		if (end < last_start)
1054			this_end = end;
1055		else
1056			this_end = last_start - 1;
1057
1058		prealloc = alloc_extent_state_atomic(prealloc);
1059		if (!prealloc) {
1060			err = -ENOMEM;
1061			goto out;
1062		}
1063
1064		/*
1065		 * Avoid to free 'prealloc' if it can be merged with
1066		 * the later extent.
1067		 */
1068		err = insert_state(tree, prealloc, start, this_end,
1069				   &bits);
1070		if (err)
1071			extent_io_tree_panic(tree, err);
1072		prealloc = NULL;
1073		start = this_end + 1;
1074		goto search_again;
1075	}
1076	/*
1077	 * | ---- desired range ---- |
1078	 *                        | state |
1079	 * We need to split the extent, and set the bit
1080	 * on the first half
1081	 */
1082	if (state->start <= end && state->end > end) {
1083		prealloc = alloc_extent_state_atomic(prealloc);
1084		if (!prealloc) {
1085			err = -ENOMEM;
1086			goto out;
1087		}
1088
1089		err = split_state(tree, state, prealloc, end + 1);
1090		if (err)
1091			extent_io_tree_panic(tree, err);
1092
1093		set_state_bits(tree, prealloc, &bits);
1094		clear_state_bit(tree, prealloc, &clear_bits, 0);
1095		prealloc = NULL;
1096		goto out;
1097	}
1098
1099	goto search_again;
1100
1101out:
1102	spin_unlock(&tree->lock);
1103	if (prealloc)
1104		free_extent_state(prealloc);
1105
1106	return err;
1107
1108search_again:
1109	if (start > end)
1110		goto out;
1111	spin_unlock(&tree->lock);
1112	if (mask & __GFP_WAIT)
1113		cond_resched();
1114	goto again;
1115}
1116
1117/* wrappers around set/clear extent bit */
1118int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1119		     gfp_t mask)
1120{
1121	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1122			      NULL, mask);
1123}
1124
1125int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1126		    int bits, gfp_t mask)
1127{
1128	return set_extent_bit(tree, start, end, bits, NULL,
1129			      NULL, mask);
1130}
1131
1132int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1133		      int bits, gfp_t mask)
1134{
1135	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1136}
1137
1138int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1139			struct extent_state **cached_state, gfp_t mask)
1140{
1141	return set_extent_bit(tree, start, end,
1142			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1143			      NULL, cached_state, mask);
1144}
1145
1146int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1147		       gfp_t mask)
1148{
1149	return clear_extent_bit(tree, start, end,
1150				EXTENT_DIRTY | EXTENT_DELALLOC |
1151				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1152}
1153
1154int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1155		     gfp_t mask)
1156{
1157	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1158			      NULL, mask);
1159}
1160
1161int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1162			struct extent_state **cached_state, gfp_t mask)
1163{
1164	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1165			      cached_state, mask);
1166}
1167
1168int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1169			  struct extent_state **cached_state, gfp_t mask)
1170{
1171	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1172				cached_state, mask);
1173}
1174
1175/*
1176 * either insert or lock state struct between start and end use mask to tell
1177 * us if waiting is desired.
1178 */
1179int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1180		     int bits, struct extent_state **cached_state)
1181{
1182	int err;
1183	u64 failed_start;
1184	while (1) {
1185		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1186				       EXTENT_LOCKED, &failed_start,
1187				       cached_state, GFP_NOFS);
1188		if (err == -EEXIST) {
1189			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1190			start = failed_start;
1191		} else
1192			break;
1193		WARN_ON(start > end);
1194	}
1195	return err;
1196}
1197
1198int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1199{
1200	return lock_extent_bits(tree, start, end, 0, NULL);
1201}
1202
1203int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1204{
1205	int err;
1206	u64 failed_start;
1207
1208	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1209			       &failed_start, NULL, GFP_NOFS);
1210	if (err == -EEXIST) {
1211		if (failed_start > start)
1212			clear_extent_bit(tree, start, failed_start - 1,
1213					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1214		return 0;
1215	}
1216	return 1;
1217}
1218
1219int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1220			 struct extent_state **cached, gfp_t mask)
1221{
1222	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1223				mask);
1224}
1225
1226int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1227{
1228	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1229				GFP_NOFS);
1230}
1231
1232/*
1233 * helper function to set both pages and extents in the tree writeback
1234 */
1235static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1236{
1237	unsigned long index = start >> PAGE_CACHE_SHIFT;
1238	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1239	struct page *page;
1240
1241	while (index <= end_index) {
1242		page = find_get_page(tree->mapping, index);
1243		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1244		set_page_writeback(page);
1245		page_cache_release(page);
1246		index++;
1247	}
1248	return 0;
1249}
1250
1251/* find the first state struct with 'bits' set after 'start', and
1252 * return it.  tree->lock must be held.  NULL will returned if
1253 * nothing was found after 'start'
1254 */
1255struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1256						 u64 start, int bits)
1257{
1258	struct rb_node *node;
1259	struct extent_state *state;
1260
1261	/*
1262	 * this search will find all the extents that end after
1263	 * our range starts.
1264	 */
1265	node = tree_search(tree, start);
1266	if (!node)
1267		goto out;
1268
1269	while (1) {
1270		state = rb_entry(node, struct extent_state, rb_node);
1271		if (state->end >= start && (state->state & bits))
1272			return state;
1273
1274		node = rb_next(node);
1275		if (!node)
1276			break;
1277	}
1278out:
1279	return NULL;
1280}
1281
1282/*
1283 * find the first offset in the io tree with 'bits' set. zero is
1284 * returned if we find something, and *start_ret and *end_ret are
1285 * set to reflect the state struct that was found.
1286 *
1287 * If nothing was found, 1 is returned. If found something, return 0.
1288 */
1289int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1290			  u64 *start_ret, u64 *end_ret, int bits)
1291{
1292	struct extent_state *state;
1293	int ret = 1;
1294
1295	spin_lock(&tree->lock);
1296	state = find_first_extent_bit_state(tree, start, bits);
1297	if (state) {
1298		*start_ret = state->start;
1299		*end_ret = state->end;
1300		ret = 0;
1301	}
1302	spin_unlock(&tree->lock);
1303	return ret;
1304}
1305
1306/*
1307 * find a contiguous range of bytes in the file marked as delalloc, not
1308 * more than 'max_bytes'.  start and end are used to return the range,
1309 *
1310 * 1 is returned if we find something, 0 if nothing was in the tree
1311 */
1312static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1313					u64 *start, u64 *end, u64 max_bytes,
1314					struct extent_state **cached_state)
1315{
1316	struct rb_node *node;
1317	struct extent_state *state;
1318	u64 cur_start = *start;
1319	u64 found = 0;
1320	u64 total_bytes = 0;
1321
1322	spin_lock(&tree->lock);
1323
1324	/*
1325	 * this search will find all the extents that end after
1326	 * our range starts.
1327	 */
1328	node = tree_search(tree, cur_start);
1329	if (!node) {
1330		if (!found)
1331			*end = (u64)-1;
1332		goto out;
1333	}
1334
1335	while (1) {
1336		state = rb_entry(node, struct extent_state, rb_node);
1337		if (found && (state->start != cur_start ||
1338			      (state->state & EXTENT_BOUNDARY))) {
1339			goto out;
1340		}
1341		if (!(state->state & EXTENT_DELALLOC)) {
1342			if (!found)
1343				*end = state->end;
1344			goto out;
1345		}
1346		if (!found) {
1347			*start = state->start;
1348			*cached_state = state;
1349			atomic_inc(&state->refs);
1350		}
1351		found++;
1352		*end = state->end;
1353		cur_start = state->end + 1;
1354		node = rb_next(node);
1355		if (!node)
1356			break;
1357		total_bytes += state->end - state->start + 1;
1358		if (total_bytes >= max_bytes)
1359			break;
1360	}
1361out:
1362	spin_unlock(&tree->lock);
1363	return found;
1364}
1365
1366static noinline void __unlock_for_delalloc(struct inode *inode,
1367					   struct page *locked_page,
1368					   u64 start, u64 end)
1369{
1370	int ret;
1371	struct page *pages[16];
1372	unsigned long index = start >> PAGE_CACHE_SHIFT;
1373	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1374	unsigned long nr_pages = end_index - index + 1;
1375	int i;
1376
 
1377	if (index == locked_page->index && end_index == index)
1378		return;
1379
1380	while (nr_pages > 0) {
1381		ret = find_get_pages_contig(inode->i_mapping, index,
1382				     min_t(unsigned long, nr_pages,
1383				     ARRAY_SIZE(pages)), pages);
1384		for (i = 0; i < ret; i++) {
1385			if (pages[i] != locked_page)
1386				unlock_page(pages[i]);
1387			page_cache_release(pages[i]);
1388		}
1389		nr_pages -= ret;
1390		index += ret;
1391		cond_resched();
1392	}
1393}
1394
1395static noinline int lock_delalloc_pages(struct inode *inode,
1396					struct page *locked_page,
1397					u64 delalloc_start,
1398					u64 delalloc_end)
1399{
1400	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1401	unsigned long start_index = index;
1402	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1403	unsigned long pages_locked = 0;
1404	struct page *pages[16];
1405	unsigned long nrpages;
1406	int ret;
1407	int i;
1408
1409	/* the caller is responsible for locking the start index */
1410	if (index == locked_page->index && index == end_index)
1411		return 0;
1412
1413	/* skip the page at the start index */
1414	nrpages = end_index - index + 1;
1415	while (nrpages > 0) {
1416		ret = find_get_pages_contig(inode->i_mapping, index,
1417				     min_t(unsigned long,
1418				     nrpages, ARRAY_SIZE(pages)), pages);
1419		if (ret == 0) {
1420			ret = -EAGAIN;
1421			goto done;
1422		}
1423		/* now we have an array of pages, lock them all */
1424		for (i = 0; i < ret; i++) {
1425			/*
1426			 * the caller is taking responsibility for
1427			 * locked_page
1428			 */
1429			if (pages[i] != locked_page) {
1430				lock_page(pages[i]);
1431				if (!PageDirty(pages[i]) ||
1432				    pages[i]->mapping != inode->i_mapping) {
1433					ret = -EAGAIN;
1434					unlock_page(pages[i]);
1435					page_cache_release(pages[i]);
1436					goto done;
1437				}
1438			}
1439			page_cache_release(pages[i]);
1440			pages_locked++;
1441		}
1442		nrpages -= ret;
1443		index += ret;
1444		cond_resched();
1445	}
1446	ret = 0;
1447done:
1448	if (ret && pages_locked) {
1449		__unlock_for_delalloc(inode, locked_page,
1450			      delalloc_start,
1451			      ((u64)(start_index + pages_locked - 1)) <<
1452			      PAGE_CACHE_SHIFT);
1453	}
1454	return ret;
1455}
1456
1457/*
1458 * find a contiguous range of bytes in the file marked as delalloc, not
1459 * more than 'max_bytes'.  start and end are used to return the range,
 
 
 
 
 
1460 *
1461 * 1 is returned if we find something, 0 if nothing was in the tree
 
 
 
 
1462 */
1463static noinline u64 find_lock_delalloc_range(struct inode *inode,
1464					     struct extent_io_tree *tree,
1465					     struct page *locked_page,
1466					     u64 *start, u64 *end,
1467					     u64 max_bytes)
1468{
 
 
 
 
 
 
1469	u64 delalloc_start;
1470	u64 delalloc_end;
1471	u64 found;
1472	struct extent_state *cached_state = NULL;
1473	int ret;
1474	int loops = 0;
1475
 
 
 
 
 
 
1476again:
1477	/* step one, find a bunch of delalloc bytes starting at start */
1478	delalloc_start = *start;
1479	delalloc_end = 0;
1480	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1481				    max_bytes, &cached_state);
1482	if (!found || delalloc_end <= *start) {
1483		*start = delalloc_start;
1484		*end = delalloc_end;
 
 
1485		free_extent_state(cached_state);
1486		return found;
1487	}
1488
1489	/*
1490	 * start comes from the offset of locked_page.  We have to lock
1491	 * pages in order, so we can't process delalloc bytes before
1492	 * locked_page
1493	 */
1494	if (delalloc_start < *start)
1495		delalloc_start = *start;
1496
1497	/*
1498	 * make sure to limit the number of pages we try to lock down
1499	 * if we're looping.
1500	 */
1501	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1502		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1503
1504	/* step two, lock all the pages after the page that has start */
1505	ret = lock_delalloc_pages(inode, locked_page,
1506				  delalloc_start, delalloc_end);
 
1507	if (ret == -EAGAIN) {
1508		/* some of the pages are gone, lets avoid looping by
1509		 * shortening the size of the delalloc range we're searching
1510		 */
1511		free_extent_state(cached_state);
 
1512		if (!loops) {
1513			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1514			max_bytes = PAGE_CACHE_SIZE - offset;
1515			loops = 1;
1516			goto again;
1517		} else {
1518			found = 0;
1519			goto out_failed;
1520		}
1521	}
1522	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1523
1524	/* step three, lock the state bits for the whole range */
1525	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1526
1527	/* then test to make sure it is all still delalloc */
1528	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1529			     EXTENT_DELALLOC, 1, cached_state);
1530	if (!ret) {
1531		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1532				     &cached_state, GFP_NOFS);
1533		__unlock_for_delalloc(inode, locked_page,
1534			      delalloc_start, delalloc_end);
1535		cond_resched();
1536		goto again;
1537	}
1538	free_extent_state(cached_state);
1539	*start = delalloc_start;
1540	*end = delalloc_end;
1541out_failed:
1542	return found;
1543}
1544
1545int extent_clear_unlock_delalloc(struct inode *inode,
1546				struct extent_io_tree *tree,
1547				u64 start, u64 end, struct page *locked_page,
1548				unsigned long op)
1549{
1550	int ret;
1551	struct page *pages[16];
1552	unsigned long index = start >> PAGE_CACHE_SHIFT;
1553	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1554	unsigned long nr_pages = end_index - index + 1;
1555	int i;
1556	int clear_bits = 0;
1557
1558	if (op & EXTENT_CLEAR_UNLOCK)
1559		clear_bits |= EXTENT_LOCKED;
1560	if (op & EXTENT_CLEAR_DIRTY)
1561		clear_bits |= EXTENT_DIRTY;
1562
1563	if (op & EXTENT_CLEAR_DELALLOC)
1564		clear_bits |= EXTENT_DELALLOC;
1565
1566	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1567	if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1568		    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1569		    EXTENT_SET_PRIVATE2)))
1570		return 0;
1571
1572	while (nr_pages > 0) {
1573		ret = find_get_pages_contig(inode->i_mapping, index,
1574				     min_t(unsigned long,
1575				     nr_pages, ARRAY_SIZE(pages)), pages);
1576		for (i = 0; i < ret; i++) {
1577
1578			if (op & EXTENT_SET_PRIVATE2)
1579				SetPagePrivate2(pages[i]);
 
 
1580
1581			if (pages[i] == locked_page) {
1582				page_cache_release(pages[i]);
1583				continue;
1584			}
1585			if (op & EXTENT_CLEAR_DIRTY)
1586				clear_page_dirty_for_io(pages[i]);
1587			if (op & EXTENT_SET_WRITEBACK)
1588				set_page_writeback(pages[i]);
1589			if (op & EXTENT_END_WRITEBACK)
1590				end_page_writeback(pages[i]);
1591			if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1592				unlock_page(pages[i]);
1593			page_cache_release(pages[i]);
1594		}
1595		nr_pages -= ret;
1596		index += ret;
1597		cond_resched();
1598	}
1599	return 0;
1600}
1601
1602/*
1603 * count the number of bytes in the tree that have a given bit(s)
1604 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1605 * cached.  The total number found is returned.
1606 */
1607u64 count_range_bits(struct extent_io_tree *tree,
1608		     u64 *start, u64 search_end, u64 max_bytes,
1609		     unsigned long bits, int contig)
1610{
1611	struct rb_node *node;
1612	struct extent_state *state;
1613	u64 cur_start = *start;
1614	u64 total_bytes = 0;
1615	u64 last = 0;
1616	int found = 0;
1617
1618	if (search_end <= cur_start) {
1619		WARN_ON(1);
1620		return 0;
1621	}
 
 
 
 
 
 
 
 
 
 
1622
1623	spin_lock(&tree->lock);
1624	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1625		total_bytes = tree->dirty_bytes;
1626		goto out;
1627	}
1628	/*
1629	 * this search will find all the extents that end after
1630	 * our range starts.
1631	 */
1632	node = tree_search(tree, cur_start);
1633	if (!node)
1634		goto out;
1635
1636	while (1) {
1637		state = rb_entry(node, struct extent_state, rb_node);
1638		if (state->start > search_end)
1639			break;
1640		if (contig && found && state->start > last + 1)
1641			break;
1642		if (state->end >= cur_start && (state->state & bits) == bits) {
1643			total_bytes += min(search_end, state->end) + 1 -
1644				       max(cur_start, state->start);
1645			if (total_bytes >= max_bytes)
1646				break;
1647			if (!found) {
1648				*start = max(cur_start, state->start);
1649				found = 1;
1650			}
1651			last = state->end;
1652		} else if (contig && found) {
1653			break;
1654		}
1655		node = rb_next(node);
1656		if (!node)
1657			break;
1658	}
1659out:
1660	spin_unlock(&tree->lock);
1661	return total_bytes;
1662}
1663
1664/*
1665 * set the private field for a given byte offset in the tree.  If there isn't
1666 * an extent_state there already, this does nothing.
1667 */
1668int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1669{
1670	struct rb_node *node;
1671	struct extent_state *state;
1672	int ret = 0;
1673
1674	spin_lock(&tree->lock);
1675	/*
1676	 * this search will find all the extents that end after
1677	 * our range starts.
1678	 */
1679	node = tree_search(tree, start);
1680	if (!node) {
1681		ret = -ENOENT;
1682		goto out;
1683	}
1684	state = rb_entry(node, struct extent_state, rb_node);
1685	if (state->start != start) {
1686		ret = -ENOENT;
1687		goto out;
1688	}
1689	state->private = private;
1690out:
1691	spin_unlock(&tree->lock);
1692	return ret;
1693}
1694
1695int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1696{
1697	struct rb_node *node;
1698	struct extent_state *state;
1699	int ret = 0;
1700
1701	spin_lock(&tree->lock);
1702	/*
1703	 * this search will find all the extents that end after
1704	 * our range starts.
1705	 */
1706	node = tree_search(tree, start);
1707	if (!node) {
1708		ret = -ENOENT;
1709		goto out;
1710	}
1711	state = rb_entry(node, struct extent_state, rb_node);
1712	if (state->start != start) {
1713		ret = -ENOENT;
1714		goto out;
1715	}
1716	*private = state->private;
1717out:
1718	spin_unlock(&tree->lock);
1719	return ret;
1720}
1721
1722/*
1723 * searches a range in the state tree for a given mask.
1724 * If 'filled' == 1, this returns 1 only if every extent in the tree
1725 * has the bits set.  Otherwise, 1 is returned if any bit in the
1726 * range is found set.
1727 */
1728int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1729		   int bits, int filled, struct extent_state *cached)
1730{
1731	struct extent_state *state = NULL;
1732	struct rb_node *node;
1733	int bitset = 0;
 
 
 
 
1734
1735	spin_lock(&tree->lock);
1736	if (cached && cached->tree && cached->start <= start &&
1737	    cached->end > start)
1738		node = &cached->rb_node;
1739	else
1740		node = tree_search(tree, start);
1741	while (node && start <= end) {
1742		state = rb_entry(node, struct extent_state, rb_node);
1743
1744		if (filled && state->start > start) {
1745			bitset = 0;
1746			break;
1747		}
1748
1749		if (state->start > end)
1750			break;
1751
1752		if (state->state & bits) {
1753			bitset = 1;
1754			if (!filled)
1755				break;
1756		} else if (filled) {
1757			bitset = 0;
1758			break;
1759		}
1760
1761		if (state->end == (u64)-1)
1762			break;
 
 
 
 
1763
1764		start = state->end + 1;
1765		if (start > end)
1766			break;
1767		node = rb_next(node);
1768		if (!node) {
1769			if (filled)
1770				bitset = 0;
1771			break;
1772		}
1773	}
1774	spin_unlock(&tree->lock);
1775	return bitset;
1776}
1777
1778/*
1779 * helper function to set a given page up to date if all the
1780 * extents in the tree for that page are up to date
 
 
1781 */
1782static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1783{
1784	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1785	u64 end = start + PAGE_CACHE_SIZE - 1;
1786	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1787		SetPageUptodate(page);
1788}
1789
1790/*
1791 * helper function to unlock a page if all the extents in the tree
1792 * for that page are unlocked
1793 */
1794static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1795{
1796	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1797	u64 end = start + PAGE_CACHE_SIZE - 1;
1798	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1799		unlock_page(page);
1800}
1801
1802/*
1803 * helper function to end page writeback if all the extents
1804 * in the tree for that page are done with writeback
1805 */
1806static void check_page_writeback(struct extent_io_tree *tree,
1807				 struct page *page)
1808{
1809	end_page_writeback(page);
1810}
1811
1812/*
1813 * When IO fails, either with EIO or csum verification fails, we
1814 * try other mirrors that might have a good copy of the data.  This
1815 * io_failure_record is used to record state as we go through all the
1816 * mirrors.  If another mirror has good data, the page is set up to date
1817 * and things continue.  If a good mirror can't be found, the original
1818 * bio end_io callback is called to indicate things have failed.
1819 */
1820struct io_failure_record {
1821	struct page *page;
1822	u64 start;
1823	u64 len;
1824	u64 logical;
1825	unsigned long bio_flags;
1826	int this_mirror;
1827	int failed_mirror;
1828	int in_validation;
1829};
1830
1831static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1832				int did_repair)
1833{
1834	int ret;
1835	int err = 0;
1836	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1837
1838	set_state_private(failure_tree, rec->start, 0);
1839	ret = clear_extent_bits(failure_tree, rec->start,
1840				rec->start + rec->len - 1,
1841				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1842	if (ret)
1843		err = ret;
1844
1845	if (did_repair) {
1846		ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1847					rec->start + rec->len - 1,
1848					EXTENT_DAMAGED, GFP_NOFS);
1849		if (ret && !err)
1850			err = ret;
1851	}
1852
1853	kfree(rec);
1854	return err;
1855}
1856
1857static void repair_io_failure_callback(struct bio *bio, int err)
 
 
1858{
1859	complete(bio->bi_private);
1860}
1861
1862/*
1863 * this bypasses the standard btrfs submit functions deliberately, as
1864 * the standard behavior is to write all copies in a raid setup. here we only
1865 * want to write the one bad copy. so we do the mapping for ourselves and issue
1866 * submit_bio directly.
1867 * to avoid any synchonization issues, wait for the data after writing, which
1868 * actually prevents the read that triggered the error from finishing.
1869 * currently, there can be no more than two copies of every data bit. thus,
1870 * exactly one rewrite is required.
1871 */
1872int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1873			u64 length, u64 logical, struct page *page,
1874			int mirror_num)
1875{
1876	struct bio *bio;
1877	struct btrfs_device *dev;
1878	DECLARE_COMPLETION_ONSTACK(compl);
1879	u64 map_length = 0;
1880	u64 sector;
1881	struct btrfs_bio *bbio = NULL;
1882	int ret;
1883
1884	BUG_ON(!mirror_num);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1885
1886	bio = bio_alloc(GFP_NOFS, 1);
1887	if (!bio)
1888		return -EIO;
1889	bio->bi_private = &compl;
1890	bio->bi_end_io = repair_io_failure_callback;
1891	bio->bi_size = 0;
1892	map_length = length;
 
 
 
 
 
 
1893
1894	ret = btrfs_map_block(map_tree, WRITE, logical,
1895			      &map_length, &bbio, mirror_num);
1896	if (ret) {
1897		bio_put(bio);
1898		return -EIO;
1899	}
1900	BUG_ON(mirror_num != bbio->mirror_num);
1901	sector = bbio->stripes[mirror_num-1].physical >> 9;
1902	bio->bi_sector = sector;
1903	dev = bbio->stripes[mirror_num-1].dev;
1904	kfree(bbio);
1905	if (!dev || !dev->bdev || !dev->writeable) {
1906		bio_put(bio);
1907		return -EIO;
1908	}
1909	bio->bi_bdev = dev->bdev;
1910	bio_add_page(bio, page, length, start-page_offset(page));
1911	btrfsic_submit_bio(WRITE_SYNC, bio);
1912	wait_for_completion(&compl);
1913
1914	if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1915		/* try to remap that extent elsewhere? */
1916		bio_put(bio);
1917		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
1918		return -EIO;
1919	}
1920
1921	printk_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1922		      "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1923		      start, rcu_str_deref(dev->name), sector);
1924
1925	bio_put(bio);
1926	return 0;
1927}
1928
1929int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1930			 int mirror_num)
 
1931{
1932	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1933	u64 start = eb->start;
1934	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1935	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
1936
1937	for (i = 0; i < num_pages; i++) {
1938		struct page *p = extent_buffer_page(eb, i);
1939		ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1940					start, p, mirror_num);
1941		if (ret)
1942			break;
1943		start += PAGE_CACHE_SIZE;
 
 
 
 
 
 
 
 
 
1944	}
1945
1946	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1947}
1948
1949/*
1950 * each time an IO finishes, we do a fast check in the IO failure tree
1951 * to see if we need to process or clean up an io_failure_record
1952 */
1953static int clean_io_failure(u64 start, struct page *page)
1954{
1955	u64 private;
1956	u64 private_failure;
1957	struct io_failure_record *failrec;
1958	struct btrfs_mapping_tree *map_tree;
1959	struct extent_state *state;
1960	int num_copies;
1961	int did_repair = 0;
1962	int ret;
1963	struct inode *inode = page->mapping->host;
1964
1965	private = 0;
1966	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1967				(u64)-1, 1, EXTENT_DIRTY, 0);
1968	if (!ret)
1969		return 0;
1970
1971	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1972				&private_failure);
1973	if (ret)
1974		return 0;
1975
1976	failrec = (struct io_failure_record *)(unsigned long) private_failure;
1977	BUG_ON(!failrec->this_mirror);
1978
1979	if (failrec->in_validation) {
1980		/* there was no real error, just free the record */
1981		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1982			 failrec->start);
1983		did_repair = 1;
1984		goto out;
1985	}
1986
1987	spin_lock(&BTRFS_I(inode)->io_tree.lock);
1988	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1989					    failrec->start,
1990					    EXTENT_LOCKED);
1991	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1992
1993	if (state && state->start == failrec->start) {
1994		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1995		num_copies = btrfs_num_copies(map_tree, failrec->logical,
1996						failrec->len);
1997		if (num_copies > 1)  {
1998			ret = repair_io_failure(map_tree, start, failrec->len,
1999						failrec->logical, page,
2000						failrec->failed_mirror);
2001			did_repair = !ret;
2002		}
2003	}
2004
2005out:
2006	if (!ret)
2007		ret = free_io_failure(inode, failrec, did_repair);
 
2008
2009	return ret;
 
2010}
2011
2012/*
2013 * this is a generic handler for readpage errors (default
2014 * readpage_io_failed_hook). if other copies exist, read those and write back
2015 * good data to the failed position. does not investigate in remapping the
2016 * failed extent elsewhere, hoping the device will be smart enough to do this as
2017 * needed
2018 */
 
 
 
 
 
 
2019
2020static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2021				u64 start, u64 end, int failed_mirror,
2022				struct extent_state *state)
2023{
2024	struct io_failure_record *failrec = NULL;
2025	u64 private;
2026	struct extent_map *em;
2027	struct inode *inode = page->mapping->host;
2028	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2029	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2030	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2031	struct bio *bio;
2032	int num_copies;
2033	int ret;
2034	int read_mode;
2035	u64 logical;
2036
2037	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
 
2038
2039	ret = get_state_private(failure_tree, start, &private);
2040	if (ret) {
2041		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2042		if (!failrec)
2043			return -ENOMEM;
2044		failrec->start = start;
2045		failrec->len = end - start + 1;
2046		failrec->this_mirror = 0;
2047		failrec->bio_flags = 0;
2048		failrec->in_validation = 0;
2049
2050		read_lock(&em_tree->lock);
2051		em = lookup_extent_mapping(em_tree, start, failrec->len);
2052		if (!em) {
2053			read_unlock(&em_tree->lock);
2054			kfree(failrec);
2055			return -EIO;
2056		}
2057
2058		if (em->start > start || em->start + em->len < start) {
2059			free_extent_map(em);
2060			em = NULL;
2061		}
2062		read_unlock(&em_tree->lock);
2063
2064		if (!em || IS_ERR(em)) {
2065			kfree(failrec);
2066			return -EIO;
2067		}
2068		logical = start - em->start;
2069		logical = em->block_start + logical;
2070		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2071			logical = em->block_start;
2072			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2073			extent_set_compress_type(&failrec->bio_flags,
2074						 em->compress_type);
2075		}
2076		pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2077			 "len=%llu\n", logical, start, failrec->len);
2078		failrec->logical = logical;
2079		free_extent_map(em);
2080
2081		/* set the bits in the private failure tree */
2082		ret = set_extent_bits(failure_tree, start, end,
2083					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2084		if (ret >= 0)
2085			ret = set_state_private(failure_tree, start,
2086						(u64)(unsigned long)failrec);
2087		/* set the bits in the inode's tree */
2088		if (ret >= 0)
2089			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2090						GFP_NOFS);
2091		if (ret < 0) {
2092			kfree(failrec);
2093			return ret;
2094		}
2095	} else {
2096		failrec = (struct io_failure_record *)(unsigned long)private;
2097		pr_debug("bio_readpage_error: (found) logical=%llu, "
2098			 "start=%llu, len=%llu, validation=%d\n",
2099			 failrec->logical, failrec->start, failrec->len,
2100			 failrec->in_validation);
2101		/*
2102		 * when data can be on disk more than twice, add to failrec here
2103		 * (e.g. with a list for failed_mirror) to make
2104		 * clean_io_failure() clean all those errors at once.
2105		 */
2106	}
2107	num_copies = btrfs_num_copies(
2108			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
2109			      failrec->logical, failrec->len);
2110	if (num_copies == 1) {
2111		/*
2112		 * we only have a single copy of the data, so don't bother with
2113		 * all the retry and error correction code that follows. no
2114		 * matter what the error is, it is very likely to persist.
2115		 */
2116		pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2117			 "state=%p, num_copies=%d, next_mirror %d, "
2118			 "failed_mirror %d\n", state, num_copies,
2119			 failrec->this_mirror, failed_mirror);
2120		free_io_failure(inode, failrec, 0);
2121		return -EIO;
2122	}
2123
2124	if (!state) {
2125		spin_lock(&tree->lock);
2126		state = find_first_extent_bit_state(tree, failrec->start,
2127						    EXTENT_LOCKED);
2128		if (state && state->start != failrec->start)
2129			state = NULL;
2130		spin_unlock(&tree->lock);
2131	}
2132
2133	/*
2134	 * there are two premises:
2135	 *	a) deliver good data to the caller
2136	 *	b) correct the bad sectors on disk
2137	 */
2138	if (failed_bio->bi_vcnt > 1) {
2139		/*
2140		 * to fulfill b), we need to know the exact failing sectors, as
2141		 * we don't want to rewrite any more than the failed ones. thus,
2142		 * we need separate read requests for the failed bio
2143		 *
2144		 * if the following BUG_ON triggers, our validation request got
2145		 * merged. we need separate requests for our algorithm to work.
2146		 */
2147		BUG_ON(failrec->in_validation);
2148		failrec->in_validation = 1;
2149		failrec->this_mirror = failed_mirror;
2150		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2151	} else {
2152		/*
2153		 * we're ready to fulfill a) and b) alongside. get a good copy
2154		 * of the failed sector and if we succeed, we have setup
2155		 * everything for repair_io_failure to do the rest for us.
2156		 */
2157		if (failrec->in_validation) {
2158			BUG_ON(failrec->this_mirror != failed_mirror);
2159			failrec->in_validation = 0;
2160			failrec->this_mirror = 0;
2161		}
2162		failrec->failed_mirror = failed_mirror;
2163		failrec->this_mirror++;
2164		if (failrec->this_mirror == failed_mirror)
2165			failrec->this_mirror++;
2166		read_mode = READ_SYNC;
2167	}
2168
2169	if (!state || failrec->this_mirror > num_copies) {
2170		pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2171			 "next_mirror %d, failed_mirror %d\n", state,
2172			 num_copies, failrec->this_mirror, failed_mirror);
2173		free_io_failure(inode, failrec, 0);
2174		return -EIO;
2175	}
2176
2177	bio = bio_alloc(GFP_NOFS, 1);
2178	if (!bio) {
2179		free_io_failure(inode, failrec, 0);
2180		return -EIO;
2181	}
2182	bio->bi_private = state;
2183	bio->bi_end_io = failed_bio->bi_end_io;
2184	bio->bi_sector = failrec->logical >> 9;
2185	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2186	bio->bi_size = 0;
2187
2188	bio_add_page(bio, page, failrec->len, start - page_offset(page));
2189
2190	pr_debug("bio_readpage_error: submitting new read[%#x] to "
2191		 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2192		 failrec->this_mirror, num_copies, failrec->in_validation);
2193
2194	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2195					 failrec->this_mirror,
2196					 failrec->bio_flags, 0);
2197	return ret;
2198}
2199
2200/* lots and lots of room for performance fixes in the end_bio funcs */
2201
2202int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2203{
2204	int uptodate = (err == 0);
2205	struct extent_io_tree *tree;
2206	int ret;
 
 
 
 
2207
2208	tree = &BTRFS_I(page->mapping->host)->io_tree;
 
 
2209
2210	if (tree->ops && tree->ops->writepage_end_io_hook) {
2211		ret = tree->ops->writepage_end_io_hook(page, start,
2212					       end, NULL, uptodate);
2213		if (ret)
2214			uptodate = 0;
2215	}
2216
2217	if (!uptodate) {
2218		ClearPageUptodate(page);
2219		SetPageError(page);
 
2220	}
2221	return 0;
2222}
2223
2224/*
2225 * after a writepage IO is done, we need to:
2226 * clear the uptodate bits on error
2227 * clear the writeback bits in the extent tree for this IO
2228 * end_page_writeback if the page has no more pending IO
2229 *
2230 * Scheduling is not allowed, so the extent state tree is expected
2231 * to have one and only one object corresponding to this IO.
2232 */
2233static void end_bio_extent_writepage(struct bio *bio, int err)
2234{
2235	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2236	struct extent_io_tree *tree;
 
2237	u64 start;
2238	u64 end;
2239	int whole_page;
 
2240
2241	do {
 
2242		struct page *page = bvec->bv_page;
2243		tree = &BTRFS_I(page->mapping->host)->io_tree;
 
 
 
 
 
 
 
 
 
 
 
 
2244
2245		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2246			 bvec->bv_offset;
2247		end = start + bvec->bv_len - 1;
2248
2249		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2250			whole_page = 1;
2251		else
2252			whole_page = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2253
2254		if (--bvec >= bio->bi_io_vec)
2255			prefetchw(&bvec->bv_page->flags);
 
 
 
2256
2257		if (end_extent_writepage(page, err, start, end))
2258			continue;
 
 
 
 
 
 
 
 
 
 
 
 
2259
2260		if (whole_page)
2261			end_page_writeback(page);
2262		else
2263			check_page_writeback(tree, page);
2264	} while (bvec >= bio->bi_io_vec);
 
 
 
2265
2266	bio_put(bio);
 
 
 
 
 
 
2267}
2268
2269/*
2270 * after a readpage IO is done, we need to:
2271 * clear the uptodate bits on error
2272 * set the uptodate bits if things worked
2273 * set the page up to date if all extents in the tree are uptodate
2274 * clear the lock bit in the extent tree
2275 * unlock the page if there are no other extents locked for it
2276 *
2277 * Scheduling is not allowed, so the extent state tree is expected
2278 * to have one and only one object corresponding to this IO.
2279 */
2280static void end_bio_extent_readpage(struct bio *bio, int err)
2281{
2282	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2283	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2284	struct bio_vec *bvec = bio->bi_io_vec;
2285	struct extent_io_tree *tree;
2286	u64 start;
2287	u64 end;
2288	int whole_page;
 
2289	int mirror;
2290	int ret;
2291
2292	if (err)
2293		uptodate = 0;
2294
2295	do {
2296		struct page *page = bvec->bv_page;
2297		struct extent_state *cached = NULL;
2298		struct extent_state *state;
 
 
 
 
 
 
 
 
 
 
 
2299
2300		pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2301			 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2302			 (long int)bio->bi_bdev);
2303		tree = &BTRFS_I(page->mapping->host)->io_tree;
 
 
 
 
 
 
 
 
 
 
 
 
2304
2305		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2306			bvec->bv_offset;
2307		end = start + bvec->bv_len - 1;
 
2308
2309		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2310			whole_page = 1;
2311		else
2312			whole_page = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2313
2314		if (++bvec <= bvec_end)
2315			prefetchw(&bvec->bv_page->flags);
 
 
 
 
 
 
 
 
 
 
2316
2317		spin_lock(&tree->lock);
2318		state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2319		if (state && state->start == start) {
 
2320			/*
2321			 * take a reference on the state, unlock will drop
2322			 * the ref
 
 
 
 
 
2323			 */
2324			cache_state(state, &cached);
2325		}
2326		spin_unlock(&tree->lock);
 
2327
2328		mirror = (int)(unsigned long)bio->bi_bdev;
2329		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2330			ret = tree->ops->readpage_end_io_hook(page, start, end,
2331							      state, mirror);
2332			if (ret)
2333				uptodate = 0;
2334			else
2335				clean_io_failure(start, page);
2336		}
2337
2338		if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2339			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2340			if (!ret && !err &&
2341			    test_bit(BIO_UPTODATE, &bio->bi_flags))
2342				uptodate = 1;
2343		} else if (!uptodate) {
2344			/*
2345			 * The generic bio_readpage_error handles errors the
2346			 * following way: If possible, new read requests are
2347			 * created and submitted and will end up in
2348			 * end_bio_extent_readpage as well (if we're lucky, not
2349			 * in the !uptodate case). In that case it returns 0 and
2350			 * we just go on with the next page in our bio. If it
2351			 * can't handle the error it will return -EIO and we
2352			 * remain responsible for that page.
2353			 */
2354			ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2355			if (ret == 0) {
2356				uptodate =
2357					test_bit(BIO_UPTODATE, &bio->bi_flags);
2358				if (err)
2359					uptodate = 0;
2360				uncache_state(&cached);
2361				continue;
2362			}
2363		}
2364
2365		if (uptodate && tree->track_uptodate) {
2366			set_extent_uptodate(tree, start, end, &cached,
2367					    GFP_ATOMIC);
2368		}
2369		unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2370
2371		if (whole_page) {
2372			if (uptodate) {
2373				SetPageUptodate(page);
2374			} else {
2375				ClearPageUptodate(page);
2376				SetPageError(page);
2377			}
2378			unlock_page(page);
2379		} else {
2380			if (uptodate) {
2381				check_page_uptodate(tree, page);
2382			} else {
2383				ClearPageUptodate(page);
2384				SetPageError(page);
2385			}
2386			check_page_locked(tree, page);
2387		}
2388	} while (bvec <= bvec_end);
2389
 
 
 
 
2390	bio_put(bio);
2391}
2392
2393struct bio *
2394btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2395		gfp_t gfp_flags)
 
 
 
 
 
 
 
 
 
2396{
2397	struct bio *bio;
 
 
 
2398
2399	bio = bio_alloc(gfp_flags, nr_vecs);
2400
2401	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2402		while (!bio && (nr_vecs /= 2))
2403			bio = bio_alloc(gfp_flags, nr_vecs);
2404	}
 
 
 
 
 
 
2405
2406	if (bio) {
2407		bio->bi_size = 0;
2408		bio->bi_bdev = bdev;
2409		bio->bi_sector = first_sector;
2410	}
2411	return bio;
2412}
2413
2414/*
2415 * Since writes are async, they will only return -ENOMEM.
2416 * Reads can return the full range of I/O error conditions.
 
 
 
 
 
 
 
 
 
 
 
 
 
2417 */
2418static int __must_check submit_one_bio(int rw, struct bio *bio,
2419				       int mirror_num, unsigned long bio_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2420{
2421	int ret = 0;
2422	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2423	struct page *page = bvec->bv_page;
2424	struct extent_io_tree *tree = bio->bi_private;
2425	u64 start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2426
2427	start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
 
 
 
 
2428
2429	bio->bi_private = NULL;
 
 
 
 
 
 
 
 
 
2430
2431	bio_get(bio);
2432
2433	if (tree->ops && tree->ops->submit_bio_hook)
2434		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2435					   mirror_num, bio_flags, start);
 
 
 
 
2436	else
2437		btrfsic_submit_bio(rw, bio);
 
 
 
 
 
2438
2439	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2440		ret = -EOPNOTSUPP;
2441	bio_put(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2442	return ret;
2443}
2444
2445static int merge_bio(struct extent_io_tree *tree, struct page *page,
2446		     unsigned long offset, size_t size, struct bio *bio,
2447		     unsigned long bio_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2448{
2449	int ret = 0;
2450	if (tree->ops && tree->ops->merge_bio_hook)
2451		ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2452						bio_flags);
2453	BUG_ON(ret < 0);
2454	return ret;
 
 
 
 
 
 
 
 
 
 
 
2455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2456}
2457
2458static int submit_extent_page(int rw, struct extent_io_tree *tree,
2459			      struct page *page, sector_t sector,
2460			      size_t size, unsigned long offset,
2461			      struct block_device *bdev,
2462			      struct bio **bio_ret,
2463			      unsigned long max_pages,
2464			      bio_end_io_t end_io_func,
2465			      int mirror_num,
2466			      unsigned long prev_bio_flags,
2467			      unsigned long bio_flags)
2468{
 
2469	int ret = 0;
2470	struct bio *bio;
2471	int nr;
2472	int contig = 0;
2473	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2474	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2475	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2476
2477	if (bio_ret && *bio_ret) {
2478		bio = *bio_ret;
2479		if (old_compressed)
2480			contig = bio->bi_sector == sector;
 
 
2481		else
2482			contig = bio->bi_sector + (bio->bi_size >> 9) ==
2483				sector;
 
2484
2485		if (prev_bio_flags != bio_flags || !contig ||
2486		    merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2487		    bio_add_page(bio, page, page_size, offset) < page_size) {
2488			ret = submit_one_bio(rw, bio, mirror_num,
2489					     prev_bio_flags);
2490			if (ret < 0)
2491				return ret;
2492			bio = NULL;
2493		} else {
2494			return 0;
2495		}
2496	}
2497	if (this_compressed)
2498		nr = BIO_MAX_PAGES;
 
 
2499	else
2500		nr = bio_get_nr_vecs(bdev);
 
 
 
 
 
 
 
 
2501
2502	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2503	if (!bio)
2504		return -ENOMEM;
 
2505
2506	bio_add_page(bio, page, page_size, offset);
2507	bio->bi_end_io = end_io_func;
2508	bio->bi_private = tree;
2509
2510	if (bio_ret)
2511		*bio_ret = bio;
2512	else
2513		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2514
2515	return ret;
 
2516}
2517
2518void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2519{
2520	if (!PagePrivate(page)) {
2521		SetPagePrivate(page);
2522		page_cache_get(page);
2523		set_page_private(page, (unsigned long)eb);
2524	} else {
2525		WARN_ON(page->private != (unsigned long)eb);
2526	}
 
 
 
 
 
2527}
2528
2529void set_page_extent_mapped(struct page *page)
 
 
2530{
2531	if (!PagePrivate(page)) {
2532		SetPagePrivate(page);
2533		page_cache_get(page);
2534		set_page_private(page, EXTENT_PAGE_PRIVATE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2535	}
 
2536}
2537
2538/*
2539 * basic readpage implementation.  Locked extent state structs are inserted
2540 * into the tree that are removed when the IO is done (by the end_io
2541 * handlers)
2542 * XXX JDM: This needs looking at to ensure proper page locking
 
2543 */
2544static int __extent_read_full_page(struct extent_io_tree *tree,
2545				   struct page *page,
2546				   get_extent_t *get_extent,
2547				   struct bio **bio, int mirror_num,
2548				   unsigned long *bio_flags)
2549{
2550	struct inode *inode = page->mapping->host;
2551	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2552	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2553	u64 end;
2554	u64 cur = start;
2555	u64 extent_offset;
2556	u64 last_byte = i_size_read(inode);
2557	u64 block_start;
2558	u64 cur_end;
2559	sector_t sector;
2560	struct extent_map *em;
2561	struct block_device *bdev;
2562	struct btrfs_ordered_extent *ordered;
2563	int ret;
2564	int nr = 0;
2565	size_t pg_offset = 0;
2566	size_t iosize;
2567	size_t disk_io_size;
2568	size_t blocksize = inode->i_sb->s_blocksize;
2569	unsigned long this_bio_flag = 0;
2570
2571	set_page_extent_mapped(page);
2572
2573	if (!PageUptodate(page)) {
2574		if (cleancache_get_page(page) == 0) {
2575			BUG_ON(blocksize != PAGE_SIZE);
2576			goto out;
2577		}
2578	}
2579
2580	end = page_end;
2581	while (1) {
2582		lock_extent(tree, start, end);
2583		ordered = btrfs_lookup_ordered_extent(inode, start);
2584		if (!ordered)
2585			break;
2586		unlock_extent(tree, start, end);
2587		btrfs_start_ordered_extent(inode, ordered, 1);
2588		btrfs_put_ordered_extent(ordered);
2589	}
2590
2591	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2592		char *userpage;
2593		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2594
2595		if (zero_offset) {
2596			iosize = PAGE_CACHE_SIZE - zero_offset;
2597			userpage = kmap_atomic(page);
2598			memset(userpage + zero_offset, 0, iosize);
2599			flush_dcache_page(page);
2600			kunmap_atomic(userpage);
2601		}
2602	}
 
 
2603	while (cur <= end) {
 
 
 
 
 
2604		if (cur >= last_byte) {
2605			char *userpage;
2606			struct extent_state *cached = NULL;
2607
2608			iosize = PAGE_CACHE_SIZE - pg_offset;
2609			userpage = kmap_atomic(page);
2610			memset(userpage + pg_offset, 0, iosize);
2611			flush_dcache_page(page);
2612			kunmap_atomic(userpage);
2613			set_extent_uptodate(tree, cur, cur + iosize - 1,
2614					    &cached, GFP_NOFS);
2615			unlock_extent_cached(tree, cur, cur + iosize - 1,
2616					     &cached, GFP_NOFS);
2617			break;
2618		}
2619		em = get_extent(inode, page, pg_offset, cur,
2620				end - cur + 1, 0);
2621		if (IS_ERR_OR_NULL(em)) {
2622			SetPageError(page);
2623			unlock_extent(tree, cur, end);
 
2624			break;
2625		}
2626		extent_offset = cur - em->start;
2627		BUG_ON(extent_map_end(em) <= cur);
2628		BUG_ON(end < cur);
2629
2630		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2631			this_bio_flag = EXTENT_BIO_COMPRESSED;
2632			extent_set_compress_type(&this_bio_flag,
2633						 em->compress_type);
2634		}
2635
2636		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2637		cur_end = min(extent_map_end(em) - 1, end);
2638		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2639		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2640			disk_io_size = em->block_len;
2641			sector = em->block_start >> 9;
2642		} else {
2643			sector = (em->block_start + extent_offset) >> 9;
2644			disk_io_size = iosize;
2645		}
2646		bdev = em->bdev;
2647		block_start = em->block_start;
2648		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2649			block_start = EXTENT_MAP_HOLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2650		free_extent_map(em);
2651		em = NULL;
2652
2653		/* we've found a hole, just zero and go on */
2654		if (block_start == EXTENT_MAP_HOLE) {
2655			char *userpage;
2656			struct extent_state *cached = NULL;
2657
2658			userpage = kmap_atomic(page);
2659			memset(userpage + pg_offset, 0, iosize);
2660			flush_dcache_page(page);
2661			kunmap_atomic(userpage);
2662
2663			set_extent_uptodate(tree, cur, cur + iosize - 1,
2664					    &cached, GFP_NOFS);
2665			unlock_extent_cached(tree, cur, cur + iosize - 1,
2666			                     &cached, GFP_NOFS);
2667			cur = cur + iosize;
2668			pg_offset += iosize;
2669			continue;
2670		}
2671		/* the get_extent function already copied into the page */
2672		if (test_range_bit(tree, cur, cur_end,
2673				   EXTENT_UPTODATE, 1, NULL)) {
2674			check_page_uptodate(tree, page);
2675			unlock_extent(tree, cur, cur + iosize - 1);
2676			cur = cur + iosize;
2677			pg_offset += iosize;
2678			continue;
2679		}
2680		/* we have an inline extent but it didn't get marked up
2681		 * to date.  Error out
2682		 */
2683		if (block_start == EXTENT_MAP_INLINE) {
2684			SetPageError(page);
2685			unlock_extent(tree, cur, cur + iosize - 1);
2686			cur = cur + iosize;
2687			pg_offset += iosize;
2688			continue;
2689		}
2690
2691		ret = 0;
2692		if (tree->ops && tree->ops->readpage_io_hook) {
2693			ret = tree->ops->readpage_io_hook(page, cur,
2694							  cur + iosize - 1);
 
 
 
 
 
 
 
 
2695		}
2696		if (!ret) {
2697			unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2698			pnr -= page->index;
2699			ret = submit_extent_page(READ, tree, page,
2700					 sector, disk_io_size, pg_offset,
2701					 bdev, bio, pnr,
2702					 end_bio_extent_readpage, mirror_num,
2703					 *bio_flags,
2704					 this_bio_flag);
2705			BUG_ON(ret == -ENOMEM);
2706			nr++;
2707			*bio_flags = this_bio_flag;
2708		}
2709		if (ret)
2710			SetPageError(page);
2711		cur = cur + iosize;
2712		pg_offset += iosize;
2713	}
2714out:
2715	if (!nr) {
2716		if (!PageError(page))
2717			SetPageUptodate(page);
2718		unlock_page(page);
2719	}
2720	return 0;
2721}
2722
2723int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2724			    get_extent_t *get_extent, int mirror_num)
2725{
2726	struct bio *bio = NULL;
2727	unsigned long bio_flags = 0;
 
 
 
2728	int ret;
2729
2730	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2731				      &bio_flags);
2732	if (bio)
2733		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
 
 
 
 
2734	return ret;
2735}
2736
2737static noinline void update_nr_written(struct page *page,
2738				      struct writeback_control *wbc,
2739				      unsigned long nr_written)
2740{
2741	wbc->nr_to_write -= nr_written;
2742	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2743	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2744		page->mapping->writeback_index = page->index + nr_written;
 
 
 
 
 
 
 
 
2745}
2746
2747/*
2748 * the writepage semantics are similar to regular writepage.  extent
2749 * records are inserted to lock ranges in the tree, and as dirty areas
2750 * are found, they are marked writeback.  Then the lock bits are removed
2751 * and the end_io handler clears the writeback ranges
 
 
 
 
2752 */
2753static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2754			      void *data)
2755{
2756	struct inode *inode = page->mapping->host;
2757	struct extent_page_data *epd = data;
2758	struct extent_io_tree *tree = epd->tree;
2759	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2760	u64 delalloc_start;
2761	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2762	u64 end;
2763	u64 cur = start;
2764	u64 extent_offset;
2765	u64 last_byte = i_size_read(inode);
2766	u64 block_start;
2767	u64 iosize;
2768	sector_t sector;
2769	struct extent_state *cached_state = NULL;
2770	struct extent_map *em;
2771	struct block_device *bdev;
2772	int ret;
2773	int nr = 0;
2774	size_t pg_offset = 0;
2775	size_t blocksize;
2776	loff_t i_size = i_size_read(inode);
2777	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2778	u64 nr_delalloc;
2779	u64 delalloc_end;
2780	int page_started;
2781	int compressed;
2782	int write_flags;
2783	unsigned long nr_written = 0;
2784	bool fill_delalloc = true;
2785
2786	if (wbc->sync_mode == WB_SYNC_ALL)
2787		write_flags = WRITE_SYNC;
2788	else
2789		write_flags = WRITE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2790
2791	trace___extent_writepage(page, inode, wbc);
 
 
 
 
2792
2793	WARN_ON(!PageLocked(page));
 
 
 
 
 
 
 
 
2794
2795	ClearPageError(page);
 
2796
2797	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2798	if (page->index > end_index ||
2799	   (page->index == end_index && !pg_offset)) {
2800		page->mapping->a_ops->invalidatepage(page, 0);
2801		unlock_page(page);
2802		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2803	}
2804
2805	if (page->index == end_index) {
2806		char *userpage;
2807
2808		userpage = kmap_atomic(page);
2809		memset(userpage + pg_offset, 0,
2810		       PAGE_CACHE_SIZE - pg_offset);
2811		kunmap_atomic(userpage);
2812		flush_dcache_page(page);
2813	}
2814	pg_offset = 0;
2815
2816	set_page_extent_mapped(page);
 
2817
2818	if (!tree->ops || !tree->ops->fill_delalloc)
2819		fill_delalloc = false;
 
2820
2821	delalloc_start = start;
2822	delalloc_end = 0;
2823	page_started = 0;
2824	if (!epd->extent_locked && fill_delalloc) {
2825		u64 delalloc_to_write = 0;
2826		/*
2827		 * make sure the wbc mapping index is at least updated
2828		 * to this page.
2829		 */
2830		update_nr_written(page, wbc, 0);
2831
2832		while (delalloc_end < page_end) {
2833			nr_delalloc = find_lock_delalloc_range(inode, tree,
2834						       page,
2835						       &delalloc_start,
2836						       &delalloc_end,
2837						       128 * 1024 * 1024);
2838			if (nr_delalloc == 0) {
2839				delalloc_start = delalloc_end + 1;
2840				continue;
2841			}
2842			ret = tree->ops->fill_delalloc(inode, page,
2843						       delalloc_start,
2844						       delalloc_end,
2845						       &page_started,
2846						       &nr_written);
2847			/* File system has been set read-only */
2848			if (ret) {
2849				SetPageError(page);
2850				goto done;
2851			}
2852			/*
2853			 * delalloc_end is already one less than the total
2854			 * length, so we don't subtract one from
2855			 * PAGE_CACHE_SIZE
2856			 */
2857			delalloc_to_write += (delalloc_end - delalloc_start +
2858					      PAGE_CACHE_SIZE) >>
2859					      PAGE_CACHE_SHIFT;
2860			delalloc_start = delalloc_end + 1;
2861		}
2862		if (wbc->nr_to_write < delalloc_to_write) {
2863			int thresh = 8192;
2864
2865			if (delalloc_to_write < thresh * 2)
2866				thresh = delalloc_to_write;
2867			wbc->nr_to_write = min_t(u64, delalloc_to_write,
2868						 thresh);
2869		}
2870
2871		/* did the fill delalloc function already unlock and start
2872		 * the IO?
2873		 */
2874		if (page_started) {
2875			ret = 0;
2876			/*
2877			 * we've unlocked the page, so we can't update
2878			 * the mapping's writeback index, just update
2879			 * nr_to_write.
2880			 */
2881			wbc->nr_to_write -= nr_written;
2882			goto done_unlocked;
2883		}
2884	}
2885	if (tree->ops && tree->ops->writepage_start_hook) {
2886		ret = tree->ops->writepage_start_hook(page, start,
2887						      page_end);
2888		if (ret) {
2889			/* Fixup worker will requeue */
2890			if (ret == -EBUSY)
2891				wbc->pages_skipped++;
2892			else
2893				redirty_page_for_writepage(wbc, page);
2894			update_nr_written(page, wbc, nr_written);
2895			unlock_page(page);
2896			ret = 0;
2897			goto done_unlocked;
2898		}
2899	}
2900
2901	/*
2902	 * we don't want to touch the inode after unlocking the page,
2903	 * so we update the mapping writeback index now
2904	 */
2905	update_nr_written(page, wbc, nr_written + 1);
2906
2907	end = page_end;
2908	if (last_byte <= start) {
2909		if (tree->ops && tree->ops->writepage_end_io_hook)
2910			tree->ops->writepage_end_io_hook(page, start,
2911							 page_end, NULL, 1);
2912		goto done;
2913	}
2914
2915	blocksize = inode->i_sb->s_blocksize;
2916
 
2917	while (cur <= end) {
2918		if (cur >= last_byte) {
2919			if (tree->ops && tree->ops->writepage_end_io_hook)
2920				tree->ops->writepage_end_io_hook(page, cur,
2921							 page_end, NULL, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2922			break;
2923		}
2924		em = epd->get_extent(inode, page, pg_offset, cur,
2925				     end - cur + 1, 1);
2926		if (IS_ERR_OR_NULL(em)) {
2927			SetPageError(page);
 
 
 
 
 
 
 
 
 
 
 
2928			break;
2929		}
2930
2931		extent_offset = cur - em->start;
2932		BUG_ON(extent_map_end(em) <= cur);
2933		BUG_ON(end < cur);
2934		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2935		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2936		sector = (em->block_start + extent_offset) >> 9;
2937		bdev = em->bdev;
2938		block_start = em->block_start;
2939		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 
 
 
 
 
 
 
 
 
 
 
2940		free_extent_map(em);
2941		em = NULL;
2942
2943		/*
2944		 * compressed and inline extents are written through other
2945		 * paths in the FS
2946		 */
2947		if (compressed || block_start == EXTENT_MAP_HOLE ||
2948		    block_start == EXTENT_MAP_INLINE) {
2949			/*
2950			 * end_io notification does not happen here for
2951			 * compressed extents
2952			 */
2953			if (!compressed && tree->ops &&
2954			    tree->ops->writepage_end_io_hook)
2955				tree->ops->writepage_end_io_hook(page, cur,
2956							 cur + iosize - 1,
2957							 NULL, 1);
2958			else if (compressed) {
2959				/* we don't want to end_page_writeback on
2960				 * a compressed extent.  this happens
2961				 * elsewhere
2962				 */
2963				nr++;
2964			}
2965
 
 
2966			cur += iosize;
2967			pg_offset += iosize;
2968			continue;
2969		}
2970		/* leave this out until we have a page_mkwrite call */
2971		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2972				   EXTENT_DIRTY, 0, NULL)) {
2973			cur = cur + iosize;
2974			pg_offset += iosize;
2975			continue;
2976		}
2977
2978		if (tree->ops && tree->ops->writepage_io_hook) {
2979			ret = tree->ops->writepage_io_hook(page, cur,
2980						cur + iosize - 1);
2981		} else {
2982			ret = 0;
2983		}
 
 
 
 
 
 
 
2984		if (ret) {
2985			SetPageError(page);
2986		} else {
2987			unsigned long max_nr = end_index + 1;
2988
2989			set_range_writeback(tree, cur, cur + iosize - 1);
2990			if (!PageWriteback(page)) {
2991				printk(KERN_ERR "btrfs warning page %lu not "
2992				       "writeback, cur %llu end %llu\n",
2993				       page->index, (unsigned long long)cur,
2994				       (unsigned long long)end);
2995			}
2996
2997			ret = submit_extent_page(write_flags, tree, page,
2998						 sector, iosize, pg_offset,
2999						 bdev, &epd->bio, max_nr,
3000						 end_bio_extent_writepage,
3001						 0, 0, 0);
3002			if (ret)
3003				SetPageError(page);
3004		}
3005		cur = cur + iosize;
3006		pg_offset += iosize;
3007		nr++;
3008	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3009done:
3010	if (nr == 0) {
3011		/* make sure the mapping tag for page dirty gets cleared */
3012		set_page_writeback(page);
3013		end_page_writeback(page);
3014	}
3015	unlock_page(page);
3016
3017done_unlocked:
3018
3019	/* drop our reference on any cached states */
3020	free_extent_state(cached_state);
3021	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3022}
3023
3024static int eb_wait(void *word)
3025{
3026	io_schedule();
3027	return 0;
3028}
3029
3030static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3031{
3032	wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3033		    TASK_UNINTERRUPTIBLE);
 
3034}
3035
3036static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3037				     struct btrfs_fs_info *fs_info,
3038				     struct extent_page_data *epd)
 
 
 
 
 
 
 
 
 
3039{
3040	unsigned long i, num_pages;
 
3041	int flush = 0;
3042	int ret = 0;
3043
3044	if (!btrfs_try_tree_write_lock(eb)) {
 
3045		flush = 1;
3046		flush_write_bio(epd);
3047		btrfs_tree_lock(eb);
3048	}
3049
3050	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3051		btrfs_tree_unlock(eb);
3052		if (!epd->sync_io)
3053			return 0;
3054		if (!flush) {
3055			flush_write_bio(epd);
3056			flush = 1;
3057		}
3058		while (1) {
3059			wait_on_extent_buffer_writeback(eb);
3060			btrfs_tree_lock(eb);
3061			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3062				break;
3063			btrfs_tree_unlock(eb);
3064		}
3065	}
3066
 
 
 
 
 
 
3067	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3068		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
 
3069		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3070		spin_lock(&fs_info->delalloc_lock);
3071		if (fs_info->dirty_metadata_bytes >= eb->len)
3072			fs_info->dirty_metadata_bytes -= eb->len;
3073		else
3074			WARN_ON(1);
3075		spin_unlock(&fs_info->delalloc_lock);
3076		ret = 1;
 
 
3077	}
3078
3079	btrfs_tree_unlock(eb);
3080
3081	if (!ret)
 
 
 
 
 
 
3082		return ret;
3083
3084	num_pages = num_extent_pages(eb->start, eb->len);
3085	for (i = 0; i < num_pages; i++) {
3086		struct page *p = extent_buffer_page(eb, i);
3087
3088		if (!trylock_page(p)) {
3089			if (!flush) {
3090				flush_write_bio(epd);
3091				flush = 1;
3092			}
3093			lock_page(p);
3094		}
3095	}
3096
3097	return ret;
3098}
3099
3100static void end_extent_buffer_writeback(struct extent_buffer *eb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3101{
3102	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3103	smp_mb__after_clear_bit();
3104	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3105}
3106
3107static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3108{
3109	int uptodate = err == 0;
3110	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3111	struct extent_buffer *eb;
3112	int done;
 
3113
3114	do {
 
3115		struct page *page = bvec->bv_page;
3116
3117		bvec--;
3118		eb = (struct extent_buffer *)page->private;
3119		BUG_ON(!eb);
3120		done = atomic_dec_and_test(&eb->io_pages);
3121
3122		if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3123			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3124			ClearPageUptodate(page);
3125			SetPageError(page);
3126		}
3127
3128		end_page_writeback(page);
3129
3130		if (!done)
3131			continue;
3132
3133		end_extent_buffer_writeback(eb);
3134	} while (bvec >= bio->bi_io_vec);
3135
3136	bio_put(bio);
 
3137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3138}
3139
3140static int write_one_eb(struct extent_buffer *eb,
3141			struct btrfs_fs_info *fs_info,
3142			struct writeback_control *wbc,
3143			struct extent_page_data *epd)
3144{
3145	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3146	u64 offset = eb->start;
3147	unsigned long i, num_pages;
3148	int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3149	int ret = 0;
3150
3151	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3152	num_pages = num_extent_pages(eb->start, eb->len);
3153	atomic_set(&eb->io_pages, num_pages);
 
 
3154	for (i = 0; i < num_pages; i++) {
3155		struct page *p = extent_buffer_page(eb, i);
3156
3157		clear_page_dirty_for_io(p);
3158		set_page_writeback(p);
3159		ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3160					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3161					 -1, end_bio_extent_buffer_writepage,
3162					 0, 0, 0);
3163		if (ret) {
3164			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3165			SetPageError(p);
 
3166			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3167				end_extent_buffer_writeback(eb);
3168			ret = -EIO;
3169			break;
3170		}
3171		offset += PAGE_CACHE_SIZE;
3172		update_nr_written(p, wbc, 1);
3173		unlock_page(p);
3174	}
3175
3176	if (unlikely(ret)) {
3177		for (; i < num_pages; i++) {
3178			struct page *p = extent_buffer_page(eb, i);
 
3179			unlock_page(p);
3180		}
3181	}
3182
3183	return ret;
3184}
3185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3186int btree_write_cache_pages(struct address_space *mapping,
3187				   struct writeback_control *wbc)
3188{
3189	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3190	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3191	struct extent_buffer *eb, *prev_eb = NULL;
3192	struct extent_page_data epd = {
3193		.bio = NULL,
3194		.tree = tree,
3195		.extent_locked = 0,
3196		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3197	};
 
3198	int ret = 0;
3199	int done = 0;
3200	int nr_to_write_done = 0;
3201	struct pagevec pvec;
3202	int nr_pages;
3203	pgoff_t index;
3204	pgoff_t end;		/* Inclusive */
3205	int scanned = 0;
3206	int tag;
3207
3208	pagevec_init(&pvec, 0);
3209	if (wbc->range_cyclic) {
3210		index = mapping->writeback_index; /* Start from prev offset */
3211		end = -1;
 
 
 
 
 
3212	} else {
3213		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3214		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3215		scanned = 1;
3216	}
3217	if (wbc->sync_mode == WB_SYNC_ALL)
3218		tag = PAGECACHE_TAG_TOWRITE;
3219	else
3220		tag = PAGECACHE_TAG_DIRTY;
 
3221retry:
3222	if (wbc->sync_mode == WB_SYNC_ALL)
3223		tag_pages_for_writeback(mapping, index, end);
3224	while (!done && !nr_to_write_done && (index <= end) &&
3225	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3226			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3227		unsigned i;
3228
3229		scanned = 1;
3230		for (i = 0; i < nr_pages; i++) {
3231			struct page *page = pvec.pages[i];
3232
3233			if (!PagePrivate(page))
3234				continue;
3235
3236			if (!wbc->range_cyclic && page->index > end) {
3237				done = 1;
3238				break;
3239			}
3240
3241			eb = (struct extent_buffer *)page->private;
3242			if (!eb) {
3243				WARN_ON(1);
3244				continue;
3245			}
3246
3247			if (eb == prev_eb)
3248				continue;
3249
3250			if (!atomic_inc_not_zero(&eb->refs)) {
3251				WARN_ON(1);
3252				continue;
3253			}
3254
3255			prev_eb = eb;
3256			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3257			if (!ret) {
3258				free_extent_buffer(eb);
3259				continue;
3260			}
3261
3262			ret = write_one_eb(eb, fs_info, wbc, &epd);
3263			if (ret) {
3264				done = 1;
3265				free_extent_buffer(eb);
3266				break;
3267			}
3268			free_extent_buffer(eb);
3269
3270			/*
3271			 * the filesystem may choose to bump up nr_to_write.
3272			 * We have to make sure to honor the new nr_to_write
3273			 * at any time
3274			 */
3275			nr_to_write_done = wbc->nr_to_write <= 0;
3276		}
3277		pagevec_release(&pvec);
3278		cond_resched();
3279	}
3280	if (!scanned && !done) {
3281		/*
3282		 * We hit the last page and there is more work to be done: wrap
3283		 * back to the start of the file
3284		 */
3285		scanned = 1;
3286		index = 0;
3287		goto retry;
3288	}
3289	flush_write_bio(&epd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3290	return ret;
3291}
3292
3293/**
3294 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3295 * @mapping: address space structure to write
3296 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3297 * @writepage: function called for each page
3298 * @data: data passed to writepage function
3299 *
3300 * If a page is already under I/O, write_cache_pages() skips it, even
3301 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3302 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3303 * and msync() need to guarantee that all the data which was dirty at the time
3304 * the call was made get new I/O started against them.  If wbc->sync_mode is
3305 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3306 * existing IO to complete.
3307 */
3308static int extent_write_cache_pages(struct extent_io_tree *tree,
3309			     struct address_space *mapping,
3310			     struct writeback_control *wbc,
3311			     writepage_t writepage, void *data,
3312			     void (*flush_fn)(void *))
3313{
3314	struct inode *inode = mapping->host;
3315	int ret = 0;
3316	int done = 0;
3317	int nr_to_write_done = 0;
3318	struct pagevec pvec;
3319	int nr_pages;
3320	pgoff_t index;
3321	pgoff_t end;		/* Inclusive */
 
 
3322	int scanned = 0;
3323	int tag;
3324
3325	/*
3326	 * We have to hold onto the inode so that ordered extents can do their
3327	 * work when the IO finishes.  The alternative to this is failing to add
3328	 * an ordered extent if the igrab() fails there and that is a huge pain
3329	 * to deal with, so instead just hold onto the inode throughout the
3330	 * writepages operation.  If it fails here we are freeing up the inode
3331	 * anyway and we'd rather not waste our time writing out stuff that is
3332	 * going to be truncated anyway.
3333	 */
3334	if (!igrab(inode))
3335		return 0;
3336
3337	pagevec_init(&pvec, 0);
3338	if (wbc->range_cyclic) {
3339		index = mapping->writeback_index; /* Start from prev offset */
3340		end = -1;
 
 
 
 
 
3341	} else {
3342		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3343		end = wbc->range_end >> PAGE_CACHE_SHIFT;
 
 
3344		scanned = 1;
3345	}
3346	if (wbc->sync_mode == WB_SYNC_ALL)
 
 
 
 
 
 
 
 
 
 
 
 
 
3347		tag = PAGECACHE_TAG_TOWRITE;
3348	else
3349		tag = PAGECACHE_TAG_DIRTY;
3350retry:
3351	if (wbc->sync_mode == WB_SYNC_ALL)
3352		tag_pages_for_writeback(mapping, index, end);
 
3353	while (!done && !nr_to_write_done && (index <= end) &&
3354	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3355			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3356		unsigned i;
3357
3358		scanned = 1;
3359		for (i = 0; i < nr_pages; i++) {
3360			struct page *page = pvec.pages[i];
3361
 
3362			/*
3363			 * At this point we hold neither mapping->tree_lock nor
3364			 * lock on the page itself: the page may be truncated or
3365			 * invalidated (changing page->mapping to NULL), or even
3366			 * swizzled back from swapper_space to tmpfs file
3367			 * mapping
3368			 */
3369			if (tree->ops &&
3370			    tree->ops->write_cache_pages_lock_hook) {
3371				tree->ops->write_cache_pages_lock_hook(page,
3372							       data, flush_fn);
3373			} else {
3374				if (!trylock_page(page)) {
3375					flush_fn(data);
3376					lock_page(page);
3377				}
3378			}
3379
3380			if (unlikely(page->mapping != mapping)) {
3381				unlock_page(page);
3382				continue;
3383			}
3384
3385			if (!wbc->range_cyclic && page->index > end) {
3386				done = 1;
3387				unlock_page(page);
3388				continue;
3389			}
3390
3391			if (wbc->sync_mode != WB_SYNC_NONE) {
3392				if (PageWriteback(page))
3393					flush_fn(data);
3394				wait_on_page_writeback(page);
3395			}
3396
3397			if (PageWriteback(page) ||
3398			    !clear_page_dirty_for_io(page)) {
3399				unlock_page(page);
3400				continue;
3401			}
3402
3403			ret = (*writepage)(page, wbc, data);
3404
3405			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3406				unlock_page(page);
3407				ret = 0;
3408			}
3409			if (ret)
3410				done = 1;
3411
3412			/*
3413			 * the filesystem may choose to bump up nr_to_write.
3414			 * We have to make sure to honor the new nr_to_write
3415			 * at any time
3416			 */
3417			nr_to_write_done = wbc->nr_to_write <= 0;
3418		}
3419		pagevec_release(&pvec);
3420		cond_resched();
3421	}
3422	if (!scanned && !done) {
3423		/*
3424		 * We hit the last page and there is more work to be done: wrap
3425		 * back to the start of the file
3426		 */
3427		scanned = 1;
3428		index = 0;
 
 
 
 
 
 
 
 
3429		goto retry;
3430	}
3431	btrfs_add_delayed_iput(inode);
3432	return ret;
3433}
3434
3435static void flush_epd_write_bio(struct extent_page_data *epd)
3436{
3437	if (epd->bio) {
3438		int rw = WRITE;
3439		int ret;
3440
3441		if (epd->sync_io)
3442			rw = WRITE_SYNC;
3443
3444		ret = submit_one_bio(rw, epd->bio, 0, 0);
3445		BUG_ON(ret < 0); /* -ENOMEM */
3446		epd->bio = NULL;
3447	}
3448}
3449
3450static noinline void flush_write_bio(void *data)
3451{
3452	struct extent_page_data *epd = data;
3453	flush_epd_write_bio(epd);
3454}
3455
3456int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3457			  get_extent_t *get_extent,
3458			  struct writeback_control *wbc)
3459{
3460	int ret;
3461	struct extent_page_data epd = {
3462		.bio = NULL,
3463		.tree = tree,
3464		.get_extent = get_extent,
3465		.extent_locked = 0,
3466		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3467	};
3468
3469	ret = __extent_writepage(page, wbc, &epd);
 
3470
3471	flush_epd_write_bio(&epd);
3472	return ret;
3473}
3474
3475int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3476			      u64 start, u64 end, get_extent_t *get_extent,
3477			      int mode)
 
 
 
3478{
 
 
3479	int ret = 0;
3480	struct address_space *mapping = inode->i_mapping;
3481	struct page *page;
3482	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3483		PAGE_CACHE_SHIFT;
3484
3485	struct extent_page_data epd = {
3486		.bio = NULL,
3487		.tree = tree,
3488		.get_extent = get_extent,
3489		.extent_locked = 1,
3490		.sync_io = mode == WB_SYNC_ALL,
3491	};
3492	struct writeback_control wbc_writepages = {
3493		.sync_mode	= mode,
3494		.nr_to_write	= nr_pages * 2,
3495		.range_start	= start,
3496		.range_end	= end + 1,
 
 
 
3497	};
3498
3499	while (start <= end) {
3500		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3501		if (clear_page_dirty_for_io(page))
3502			ret = __extent_writepage(page, &wbc_writepages, &epd);
3503		else {
3504			if (tree->ops && tree->ops->writepage_end_io_hook)
3505				tree->ops->writepage_end_io_hook(page, start,
3506						 start + PAGE_CACHE_SIZE - 1,
3507						 NULL, 1);
3508			unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
3509		}
3510		page_cache_release(page);
3511		start += PAGE_CACHE_SIZE;
3512	}
3513
3514	flush_epd_write_bio(&epd);
 
 
 
 
3515	return ret;
3516}
3517
3518int extent_writepages(struct extent_io_tree *tree,
3519		      struct address_space *mapping,
3520		      get_extent_t *get_extent,
3521		      struct writeback_control *wbc)
3522{
 
3523	int ret = 0;
3524	struct extent_page_data epd = {
3525		.bio = NULL,
3526		.tree = tree,
3527		.get_extent = get_extent,
3528		.extent_locked = 0,
3529		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3530	};
3531
3532	ret = extent_write_cache_pages(tree, mapping, wbc,
3533				       __extent_writepage, &epd,
3534				       flush_write_bio);
3535	flush_epd_write_bio(&epd);
 
 
 
 
3536	return ret;
3537}
3538
3539int extent_readpages(struct extent_io_tree *tree,
3540		     struct address_space *mapping,
3541		     struct list_head *pages, unsigned nr_pages,
3542		     get_extent_t get_extent)
3543{
3544	struct bio *bio = NULL;
3545	unsigned page_idx;
3546	unsigned long bio_flags = 0;
3547
3548	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3549		struct page *page = list_entry(pages->prev, struct page, lru);
3550
3551		prefetchw(&page->flags);
3552		list_del(&page->lru);
3553		if (!add_to_page_cache_lru(page, mapping,
3554					page->index, GFP_NOFS)) {
3555			__extent_read_full_page(tree, page, get_extent,
3556						&bio, 0, &bio_flags);
3557		}
3558		page_cache_release(page);
3559	}
3560	BUG_ON(!list_empty(pages));
3561	if (bio)
3562		return submit_one_bio(READ, bio, 0, bio_flags);
3563	return 0;
3564}
3565
3566/*
3567 * basic invalidatepage code, this waits on any locked or writeback
3568 * ranges corresponding to the page, and then deletes any extent state
3569 * records from the tree
3570 */
3571int extent_invalidatepage(struct extent_io_tree *tree,
3572			  struct page *page, unsigned long offset)
3573{
3574	struct extent_state *cached_state = NULL;
3575	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3576	u64 end = start + PAGE_CACHE_SIZE - 1;
3577	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3578
3579	start += (offset + blocksize - 1) & ~(blocksize - 1);
 
 
 
3580	if (start > end)
3581		return 0;
3582
3583	lock_extent_bits(tree, start, end, 0, &cached_state);
3584	wait_on_page_writeback(page);
3585	clear_extent_bit(tree, start, end,
3586			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3587			 EXTENT_DO_ACCOUNTING,
3588			 1, 1, &cached_state, GFP_NOFS);
 
 
 
3589	return 0;
3590}
3591
3592/*
3593 * a helper for releasepage, this tests for areas of the page that
3594 * are locked or under IO and drops the related state bits if it is safe
3595 * to drop the page.
3596 */
3597int try_release_extent_state(struct extent_map_tree *map,
3598			     struct extent_io_tree *tree, struct page *page,
3599			     gfp_t mask)
3600{
3601	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3602	u64 end = start + PAGE_CACHE_SIZE - 1;
3603	int ret = 1;
3604
3605	if (test_range_bit(tree, start, end,
3606			   EXTENT_IOBITS, 0, NULL))
3607		ret = 0;
3608	else {
3609		if ((mask & GFP_NOFS) == GFP_NOFS)
3610			mask = GFP_NOFS;
3611		/*
3612		 * at this point we can safely clear everything except the
3613		 * locked bit and the nodatasum bit
3614		 */
3615		ret = clear_extent_bit(tree, start, end,
3616				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3617				 0, 0, NULL, mask);
 
 
3618
3619		/* if clear_extent_bit failed for enomem reasons,
3620		 * we can't allow the release to continue.
3621		 */
3622		if (ret < 0)
3623			ret = 0;
3624		else
3625			ret = 1;
3626	}
3627	return ret;
3628}
3629
3630/*
3631 * a helper for releasepage.  As long as there are no locked extents
3632 * in the range corresponding to the page, both state records and extent
3633 * map records are removed
3634 */
3635int try_release_extent_mapping(struct extent_map_tree *map,
3636			       struct extent_io_tree *tree, struct page *page,
3637			       gfp_t mask)
3638{
3639	struct extent_map *em;
3640	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3641	u64 end = start + PAGE_CACHE_SIZE - 1;
 
 
 
3642
3643	if ((mask & __GFP_WAIT) &&
3644	    page->mapping->host->i_size > 16 * 1024 * 1024) {
3645		u64 len;
3646		while (start <= end) {
 
 
 
3647			len = end - start + 1;
3648			write_lock(&map->lock);
3649			em = lookup_extent_mapping(map, start, len);
3650			if (!em) {
3651				write_unlock(&map->lock);
3652				break;
3653			}
3654			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3655			    em->start != start) {
3656				write_unlock(&map->lock);
3657				free_extent_map(em);
3658				break;
3659			}
3660			if (!test_range_bit(tree, em->start,
3661					    extent_map_end(em) - 1,
3662					    EXTENT_LOCKED | EXTENT_WRITEBACK,
3663					    0, NULL)) {
3664				remove_extent_mapping(map, em);
3665				/* once for the rb tree */
3666				free_extent_map(em);
3667			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3668			start = extent_map_end(em);
3669			write_unlock(&map->lock);
3670
3671			/* once for us */
3672			free_extent_map(em);
 
 
3673		}
3674	}
3675	return try_release_extent_state(map, tree, page, mask);
3676}
3677
3678/*
3679 * helper function for fiemap, which doesn't want to see any holes.
3680 * This maps until we find something past 'last'
 
3681 */
3682static struct extent_map *get_extent_skip_holes(struct inode *inode,
3683						u64 offset,
3684						u64 last,
3685						get_extent_t *get_extent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3686{
3687	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3688	struct extent_map *em;
3689	u64 len;
3690
3691	if (offset >= last)
3692		return NULL;
3693
3694	while(1) {
3695		len = last - offset;
3696		if (len == 0)
3697			break;
3698		len = (len + sectorsize - 1) & ~(sectorsize - 1);
3699		em = get_extent(inode, NULL, 0, offset, len, 0);
3700		if (IS_ERR_OR_NULL(em))
3701			return em;
3702
3703		/* if this isn't a hole return it */
3704		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3705		    em->block_start != EXTENT_MAP_HOLE) {
3706			return em;
3707		}
 
 
 
 
 
 
3708
3709		/* this is a hole, advance to the next extent */
3710		offset = extent_map_end(em);
3711		free_extent_map(em);
3712		if (offset >= last)
3713			break;
 
 
 
 
 
 
 
 
 
 
3714	}
3715	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3716}
3717
3718int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3719		__u64 start, __u64 len, get_extent_t *get_extent)
 
 
 
 
 
 
 
 
 
 
 
3720{
3721	int ret = 0;
3722	u64 off = start;
3723	u64 max = start + len;
3724	u32 flags = 0;
3725	u32 found_type;
3726	u64 last;
3727	u64 last_for_get_extent = 0;
3728	u64 disko = 0;
3729	u64 isize = i_size_read(inode);
3730	struct btrfs_key found_key;
3731	struct extent_map *em = NULL;
3732	struct extent_state *cached_state = NULL;
3733	struct btrfs_path *path;
3734	struct btrfs_file_extent_item *item;
3735	int end = 0;
3736	u64 em_start = 0;
3737	u64 em_len = 0;
3738	u64 em_end = 0;
3739	unsigned long emflags;
3740
3741	if (len == 0)
3742		return -EINVAL;
 
 
 
 
3743
3744	path = btrfs_alloc_path();
3745	if (!path)
3746		return -ENOMEM;
3747	path->leave_spinning = 1;
3748
3749	start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3750	len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
 
3751
3752	/*
3753	 * lookup the last file extent.  We're not using i_size here
3754	 * because there might be preallocation past i_size
3755	 */
3756	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3757				       path, btrfs_ino(inode), -1, 0);
3758	if (ret < 0) {
3759		btrfs_free_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3760		return ret;
 
 
 
 
 
3761	}
3762	WARN_ON(!ret);
3763	path->slots[0]--;
3764	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3765			      struct btrfs_file_extent_item);
3766	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3767	found_type = btrfs_key_type(&found_key);
3768
3769	/* No extents, but there might be delalloc bits */
3770	if (found_key.objectid != btrfs_ino(inode) ||
3771	    found_type != BTRFS_EXTENT_DATA_KEY) {
3772		/* have to trust i_size as the end */
3773		last = (u64)-1;
3774		last_for_get_extent = isize;
3775	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3776		/*
3777		 * remember the start of the last extent.  There are a
3778		 * bunch of different factors that go into the length of the
3779		 * extent, so its much less complex to remember where it started
3780		 */
3781		last = found_key.offset;
3782		last_for_get_extent = last + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3783	}
3784	btrfs_free_path(path);
3785
3786	/*
3787	 * we might have some extents allocated but more delalloc past those
3788	 * extents.  so, we trust isize unless the start of the last extent is
3789	 * beyond isize
 
 
3790	 */
3791	if (last < isize) {
3792		last = (u64)-1;
3793		last_for_get_extent = isize;
 
 
 
 
 
 
 
 
 
 
 
3794	}
3795
3796	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3797			 &cached_state);
 
3798
3799	em = get_extent_skip_holes(inode, start, last_for_get_extent,
3800				   get_extent);
3801	if (!em)
3802		goto out;
3803	if (IS_ERR(em)) {
3804		ret = PTR_ERR(em);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3805		goto out;
3806	}
3807
3808	while (!end) {
3809		u64 offset_in_extent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3810
3811		/* break if the extent we found is outside the range */
3812		if (em->start >= max || extent_map_end(em) < off)
3813			break;
3814
 
 
3815		/*
3816		 * get_extent may return an extent that starts before our
3817		 * requested range.  We have to make sure the ranges
3818		 * we return to fiemap always move forward and don't
3819		 * overlap, so adjust the offsets here
3820		 */
3821		em_start = max(em->start, off);
 
3822
3823		/*
3824		 * record the offset from the start of the extent
3825		 * for adjusting the disk offset below
3826		 */
3827		offset_in_extent = em_start - em->start;
3828		em_end = extent_map_end(em);
3829		em_len = em_end - em_start;
3830		emflags = em->flags;
3831		disko = 0;
3832		flags = 0;
3833
3834		/*
3835		 * bump off for our next call to get_extent
3836		 */
3837		off = extent_map_end(em);
3838		if (off >= max)
3839			end = 1;
3840
3841		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3842			end = 1;
3843			flags |= FIEMAP_EXTENT_LAST;
3844		} else if (em->block_start == EXTENT_MAP_INLINE) {
3845			flags |= (FIEMAP_EXTENT_DATA_INLINE |
3846				  FIEMAP_EXTENT_NOT_ALIGNED);
3847		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
3848			flags |= (FIEMAP_EXTENT_DELALLOC |
3849				  FIEMAP_EXTENT_UNKNOWN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3850		} else {
3851			disko = em->block_start + offset_in_extent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3852		}
3853		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3854			flags |= FIEMAP_EXTENT_ENCODED;
3855
3856		free_extent_map(em);
3857		em = NULL;
3858		if ((em_start >= last) || em_len == (u64)-1 ||
3859		   (last == (u64)-1 && isize <= em_end)) {
3860			flags |= FIEMAP_EXTENT_LAST;
3861			end = 1;
3862		}
3863
3864		/* now scan forward to see if this is really the last extent. */
3865		em = get_extent_skip_holes(inode, off, last_for_get_extent,
3866					   get_extent);
3867		if (IS_ERR(em)) {
3868			ret = PTR_ERR(em);
3869			goto out;
3870		}
3871		if (!em) {
3872			flags |= FIEMAP_EXTENT_LAST;
3873			end = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3874		}
3875		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3876					      em_len, flags);
3877		if (ret)
3878			goto out_free;
3879	}
3880out_free:
3881	free_extent_map(em);
 
 
 
 
3882out:
3883	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3884			     &cached_state, GFP_NOFS);
 
3885	return ret;
3886}
3887
3888inline struct page *extent_buffer_page(struct extent_buffer *eb,
3889					      unsigned long i)
3890{
3891	return eb->pages[i];
3892}
3893
3894inline unsigned long num_extent_pages(u64 start, u64 len)
3895{
3896	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3897		(start >> PAGE_CACHE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3898}
3899
3900static void __free_extent_buffer(struct extent_buffer *eb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3901{
3902#if LEAK_DEBUG
3903	unsigned long flags;
3904	spin_lock_irqsave(&leak_lock, flags);
3905	list_del(&eb->leak_list);
3906	spin_unlock_irqrestore(&leak_lock, flags);
3907#endif
3908	if (eb->pages && eb->pages != eb->inline_pages)
3909		kfree(eb->pages);
3910	kmem_cache_free(extent_buffer_cache, eb);
3911}
3912
3913static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3914						   u64 start,
3915						   unsigned long len,
3916						   gfp_t mask)
3917{
3918	struct extent_buffer *eb = NULL;
3919#if LEAK_DEBUG
3920	unsigned long flags;
3921#endif
3922
3923	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3924	if (eb == NULL)
3925		return NULL;
3926	eb->start = start;
3927	eb->len = len;
3928	eb->tree = tree;
3929	eb->bflags = 0;
3930	rwlock_init(&eb->lock);
3931	atomic_set(&eb->write_locks, 0);
3932	atomic_set(&eb->read_locks, 0);
3933	atomic_set(&eb->blocking_readers, 0);
3934	atomic_set(&eb->blocking_writers, 0);
3935	atomic_set(&eb->spinning_readers, 0);
3936	atomic_set(&eb->spinning_writers, 0);
3937	eb->lock_nested = 0;
3938	init_waitqueue_head(&eb->write_lock_wq);
3939	init_waitqueue_head(&eb->read_lock_wq);
3940
3941#if LEAK_DEBUG
3942	spin_lock_irqsave(&leak_lock, flags);
3943	list_add(&eb->leak_list, &buffers);
3944	spin_unlock_irqrestore(&leak_lock, flags);
3945#endif
3946	spin_lock_init(&eb->refs_lock);
3947	atomic_set(&eb->refs, 1);
3948	atomic_set(&eb->io_pages, 0);
3949
3950	if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3951		struct page **pages;
3952		int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3953			PAGE_CACHE_SHIFT;
3954		pages = kzalloc(num_pages, mask);
3955		if (!pages) {
3956			__free_extent_buffer(eb);
3957			return NULL;
3958		}
3959		eb->pages = pages;
3960	} else {
3961		eb->pages = eb->inline_pages;
3962	}
3963
3964	return eb;
3965}
3966
3967struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
3968{
3969	unsigned long i;
3970	struct page *p;
3971	struct extent_buffer *new;
3972	unsigned long num_pages = num_extent_pages(src->start, src->len);
 
3973
3974	new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
3975	if (new == NULL)
3976		return NULL;
3977
 
 
 
 
 
 
 
 
 
 
 
 
 
3978	for (i = 0; i < num_pages; i++) {
3979		p = alloc_page(GFP_ATOMIC);
3980		BUG_ON(!p);
3981		attach_extent_buffer_page(new, p);
 
 
 
 
 
3982		WARN_ON(PageDirty(p));
3983		SetPageUptodate(p);
3984		new->pages[i] = p;
3985	}
3986
3987	copy_extent_buffer(new, src, 0, 0, src->len);
3988	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
3989	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
3990
3991	return new;
3992}
3993
3994struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
 
3995{
3996	struct extent_buffer *eb;
3997	unsigned long num_pages = num_extent_pages(0, len);
3998	unsigned long i;
 
3999
4000	eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4001	if (!eb)
4002		return NULL;
4003
 
 
 
 
 
4004	for (i = 0; i < num_pages; i++) {
4005		eb->pages[i] = alloc_page(GFP_ATOMIC);
4006		if (!eb->pages[i])
 
 
4007			goto err;
4008	}
 
4009	set_extent_buffer_uptodate(eb);
4010	btrfs_set_header_nritems(eb, 0);
4011	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4012
4013	return eb;
4014err:
4015	for (i--; i > 0; i--)
4016		__free_page(eb->pages[i]);
 
 
 
 
4017	__free_extent_buffer(eb);
4018	return NULL;
4019}
4020
4021static int extent_buffer_under_io(struct extent_buffer *eb)
 
4022{
4023	return (atomic_read(&eb->io_pages) ||
4024		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4025		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4026}
4027
4028/*
4029 * Helper for releasing extent buffer page.
4030 */
4031static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4032						unsigned long start_idx)
4033{
4034	unsigned long index;
4035	unsigned long num_pages;
4036	struct page *page;
4037	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4038
4039	BUG_ON(extent_buffer_under_io(eb));
 
 
 
4040
4041	num_pages = num_extent_pages(eb->start, eb->len);
4042	index = start_idx + num_pages;
4043	if (start_idx >= index)
4044		return;
4045
4046	do {
4047		index--;
4048		page = extent_buffer_page(eb, index);
4049		if (page && mapped) {
4050			spin_lock(&page->mapping->private_lock);
4051			/*
4052			 * We do this since we'll remove the pages after we've
4053			 * removed the eb from the radix tree, so we could race
4054			 * and have this page now attached to the new eb.  So
4055			 * only clear page_private if it's still connected to
4056			 * this eb.
4057			 */
4058			if (PagePrivate(page) &&
4059			    page->private == (unsigned long)eb) {
4060				BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4061				BUG_ON(PageDirty(page));
4062				BUG_ON(PageWriteback(page));
4063				/*
4064				 * We need to make sure we haven't be attached
4065				 * to a new eb.
4066				 */
4067				ClearPagePrivate(page);
4068				set_page_private(page, 0);
4069				/* One for the page private */
4070				page_cache_release(page);
4071			}
4072			spin_unlock(&page->mapping->private_lock);
4073
4074		}
4075		if (page) {
4076			/* One for when we alloced the page */
4077			page_cache_release(page);
4078		}
4079	} while (index != start_idx);
4080}
4081
4082/*
4083 * Helper for releasing the extent buffer.
4084 */
4085static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4086{
4087	btrfs_release_extent_buffer_page(eb, 0);
4088	__free_extent_buffer(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4089}
4090
4091static void check_buffer_tree_ref(struct extent_buffer *eb)
 
 
4092{
4093	/* the ref bit is tricky.  We have to make sure it is set
4094	 * if we have the buffer dirty.   Otherwise the
4095	 * code to free a buffer can end up dropping a dirty
4096	 * page
4097	 *
4098	 * Once the ref bit is set, it won't go away while the
4099	 * buffer is dirty or in writeback, and it also won't
4100	 * go away while we have the reference count on the
4101	 * eb bumped.
4102	 *
4103	 * We can't just set the ref bit without bumping the
4104	 * ref on the eb because free_extent_buffer might
4105	 * see the ref bit and try to clear it.  If this happens
4106	 * free_extent_buffer might end up dropping our original
4107	 * ref by mistake and freeing the page before we are able
4108	 * to add one more ref.
4109	 *
4110	 * So bump the ref count first, then set the bit.  If someone
4111	 * beat us to it, drop the ref we added.
4112	 */
4113	if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4114		atomic_inc(&eb->refs);
4115		if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4116			atomic_dec(&eb->refs);
 
 
 
4117	}
 
 
 
 
 
 
 
4118}
 
4119
4120static void mark_extent_buffer_accessed(struct extent_buffer *eb)
 
4121{
4122	unsigned long num_pages, i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4123
4124	check_buffer_tree_ref(eb);
 
 
 
 
 
 
 
 
 
 
4125
4126	num_pages = num_extent_pages(eb->start, eb->len);
4127	for (i = 0; i < num_pages; i++) {
4128		struct page *p = extent_buffer_page(eb, i);
4129		mark_page_accessed(p);
 
 
 
 
 
 
 
 
 
4130	}
 
4131}
4132
4133struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4134					  u64 start, unsigned long len)
4135{
4136	unsigned long num_pages = num_extent_pages(start, len);
4137	unsigned long i;
4138	unsigned long index = start >> PAGE_CACHE_SHIFT;
 
4139	struct extent_buffer *eb;
4140	struct extent_buffer *exists = NULL;
4141	struct page *p;
4142	struct address_space *mapping = tree->mapping;
 
4143	int uptodate = 1;
4144	int ret;
4145
4146	rcu_read_lock();
4147	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4148	if (eb && atomic_inc_not_zero(&eb->refs)) {
4149		rcu_read_unlock();
4150		mark_extent_buffer_accessed(eb);
 
 
 
 
 
 
 
 
 
 
 
4151		return eb;
4152	}
4153	rcu_read_unlock();
4154
4155	eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4156	if (!eb)
4157		return NULL;
 
 
 
 
 
 
 
 
 
4158
 
4159	for (i = 0; i < num_pages; i++, index++) {
4160		p = find_or_create_page(mapping, index, GFP_NOFS);
 
 
4161		if (!p) {
4162			WARN_ON(1);
4163			goto free_eb;
4164		}
4165
4166		spin_lock(&mapping->private_lock);
4167		if (PagePrivate(p)) {
4168			/*
4169			 * We could have already allocated an eb for this page
4170			 * and attached one so lets see if we can get a ref on
4171			 * the existing eb, and if we can we know it's good and
4172			 * we can just return that one, else we know we can just
4173			 * overwrite page->private.
4174			 */
4175			exists = (struct extent_buffer *)p->private;
4176			if (atomic_inc_not_zero(&exists->refs)) {
4177				spin_unlock(&mapping->private_lock);
 
 
4178				unlock_page(p);
4179				page_cache_release(p);
4180				mark_extent_buffer_accessed(exists);
4181				goto free_eb;
4182			}
 
4183
4184			/*
4185			 * Do this so attach doesn't complain and we need to
4186			 * drop the ref the old guy had.
4187			 */
4188			ClearPagePrivate(p);
4189			WARN_ON(PageDirty(p));
4190			page_cache_release(p);
 
 
4191		}
4192		attach_extent_buffer_page(eb, p);
 
 
 
 
 
 
 
 
 
 
 
 
4193		spin_unlock(&mapping->private_lock);
4194		WARN_ON(PageDirty(p));
4195		mark_page_accessed(p);
4196		eb->pages[i] = p;
4197		if (!PageUptodate(p))
4198			uptodate = 0;
4199
4200		/*
4201		 * see below about how we avoid a nasty race with release page
4202		 * and why we unlock later
 
 
 
4203		 */
4204	}
4205	if (uptodate)
4206		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4207again:
4208	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4209	if (ret)
 
4210		goto free_eb;
 
4211
4212	spin_lock(&tree->buffer_lock);
4213	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
 
 
 
4214	if (ret == -EEXIST) {
4215		exists = radix_tree_lookup(&tree->buffer,
4216						start >> PAGE_CACHE_SHIFT);
4217		if (!atomic_inc_not_zero(&exists->refs)) {
4218			spin_unlock(&tree->buffer_lock);
4219			radix_tree_preload_end();
4220			exists = NULL;
4221			goto again;
4222		}
4223		spin_unlock(&tree->buffer_lock);
4224		radix_tree_preload_end();
4225		mark_extent_buffer_accessed(exists);
4226		goto free_eb;
4227	}
4228	/* add one reference for the tree */
4229	spin_lock(&eb->refs_lock);
4230	check_buffer_tree_ref(eb);
4231	spin_unlock(&eb->refs_lock);
4232	spin_unlock(&tree->buffer_lock);
4233	radix_tree_preload_end();
4234
4235	/*
4236	 * there is a race where release page may have
4237	 * tried to find this extent buffer in the radix
4238	 * but failed.  It will tell the VM it is safe to
4239	 * reclaim the, and it will clear the page private bit.
4240	 * We must make sure to set the page private bit properly
4241	 * after the extent buffer is in the radix tree so
4242	 * it doesn't get lost
4243	 */
4244	SetPageChecked(eb->pages[0]);
4245	for (i = 1; i < num_pages; i++) {
4246		p = extent_buffer_page(eb, i);
4247		ClearPageChecked(p);
4248		unlock_page(p);
4249	}
4250	unlock_page(eb->pages[0]);
4251	return eb;
4252
4253free_eb:
 
4254	for (i = 0; i < num_pages; i++) {
4255		if (eb->pages[i])
4256			unlock_page(eb->pages[i]);
4257	}
4258
4259	WARN_ON(!atomic_dec_and_test(&eb->refs));
4260	btrfs_release_extent_buffer(eb);
4261	return exists;
4262}
4263
4264struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4265					 u64 start, unsigned long len)
4266{
4267	struct extent_buffer *eb;
4268
4269	rcu_read_lock();
4270	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4271	if (eb && atomic_inc_not_zero(&eb->refs)) {
4272		rcu_read_unlock();
4273		mark_extent_buffer_accessed(eb);
4274		return eb;
4275	}
4276	rcu_read_unlock();
4277
4278	return NULL;
4279}
4280
4281static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4282{
4283	struct extent_buffer *eb =
4284			container_of(head, struct extent_buffer, rcu_head);
4285
4286	__free_extent_buffer(eb);
4287}
4288
4289/* Expects to have eb->eb_lock already held */
4290static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4291{
 
 
4292	WARN_ON(atomic_read(&eb->refs) == 0);
4293	if (atomic_dec_and_test(&eb->refs)) {
4294		if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
 
 
4295			spin_unlock(&eb->refs_lock);
 
 
 
 
 
4296		} else {
4297			struct extent_io_tree *tree = eb->tree;
4298
4299			spin_unlock(&eb->refs_lock);
4300
4301			spin_lock(&tree->buffer_lock);
4302			radix_tree_delete(&tree->buffer,
4303					  eb->start >> PAGE_CACHE_SHIFT);
4304			spin_unlock(&tree->buffer_lock);
4305		}
4306
 
4307		/* Should be safe to release our pages at this point */
4308		btrfs_release_extent_buffer_page(eb, 0);
4309
 
 
 
 
 
4310		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4311		return;
4312	}
4313	spin_unlock(&eb->refs_lock);
 
 
4314}
4315
4316void free_extent_buffer(struct extent_buffer *eb)
4317{
 
4318	if (!eb)
4319		return;
4320
 
 
 
 
 
 
 
 
 
 
4321	spin_lock(&eb->refs_lock);
4322	if (atomic_read(&eb->refs) == 2 &&
4323	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4324		atomic_dec(&eb->refs);
4325
4326	if (atomic_read(&eb->refs) == 2 &&
4327	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4328	    !extent_buffer_under_io(eb) &&
4329	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4330		atomic_dec(&eb->refs);
4331
4332	/*
4333	 * I know this is terrible, but it's temporary until we stop tracking
4334	 * the uptodate bits and such for the extent buffers.
4335	 */
4336	release_extent_buffer(eb, GFP_ATOMIC);
4337}
4338
4339void free_extent_buffer_stale(struct extent_buffer *eb)
4340{
4341	if (!eb)
4342		return;
4343
4344	spin_lock(&eb->refs_lock);
4345	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4346
4347	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4348	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4349		atomic_dec(&eb->refs);
4350	release_extent_buffer(eb, GFP_NOFS);
4351}
4352
4353void clear_extent_buffer_dirty(struct extent_buffer *eb)
4354{
4355	unsigned long i;
4356	unsigned long num_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4357	struct page *page;
4358
4359	num_pages = num_extent_pages(eb->start, eb->len);
 
 
 
4360
4361	for (i = 0; i < num_pages; i++) {
4362		page = extent_buffer_page(eb, i);
4363		if (!PageDirty(page))
4364			continue;
4365
4366		lock_page(page);
4367		WARN_ON(!PagePrivate(page));
4368
4369		clear_page_dirty_for_io(page);
4370		spin_lock_irq(&page->mapping->tree_lock);
4371		if (!PageDirty(page)) {
4372			radix_tree_tag_clear(&page->mapping->page_tree,
4373						page_index(page),
4374						PAGECACHE_TAG_DIRTY);
4375		}
4376		spin_unlock_irq(&page->mapping->tree_lock);
4377		ClearPageError(page);
4378		unlock_page(page);
4379	}
4380	WARN_ON(atomic_read(&eb->refs) == 0);
4381}
4382
4383int set_extent_buffer_dirty(struct extent_buffer *eb)
4384{
4385	unsigned long i;
4386	unsigned long num_pages;
4387	int was_dirty = 0;
4388
4389	check_buffer_tree_ref(eb);
4390
4391	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4392
4393	num_pages = num_extent_pages(eb->start, eb->len);
4394	WARN_ON(atomic_read(&eb->refs) == 0);
4395	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4397	for (i = 0; i < num_pages; i++)
4398		set_page_dirty(extent_buffer_page(eb, i));
 
 
4399	return was_dirty;
4400}
4401
4402static int range_straddles_pages(u64 start, u64 len)
4403{
4404	if (len < PAGE_CACHE_SIZE)
4405		return 1;
4406	if (start & (PAGE_CACHE_SIZE - 1))
4407		return 1;
4408	if ((start + len) & (PAGE_CACHE_SIZE - 1))
4409		return 1;
4410	return 0;
4411}
4412
4413int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4414{
4415	unsigned long i;
4416	struct page *page;
4417	unsigned long num_pages;
 
4418
4419	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4420	num_pages = num_extent_pages(eb->start, eb->len);
4421	for (i = 0; i < num_pages; i++) {
4422		page = extent_buffer_page(eb, i);
4423		if (page)
 
 
 
 
 
 
 
4424			ClearPageUptodate(page);
 
 
 
4425	}
4426	return 0;
4427}
4428
4429int set_extent_buffer_uptodate(struct extent_buffer *eb)
4430{
4431	unsigned long i;
4432	struct page *page;
4433	unsigned long num_pages;
 
4434
4435	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4436	num_pages = num_extent_pages(eb->start, eb->len);
4437	for (i = 0; i < num_pages; i++) {
4438		page = extent_buffer_page(eb, i);
4439		SetPageUptodate(page);
 
 
 
 
 
 
 
 
 
4440	}
4441	return 0;
4442}
4443
4444int extent_range_uptodate(struct extent_io_tree *tree,
4445			  u64 start, u64 end)
 
4446{
4447	struct page *page;
4448	int ret;
4449	int pg_uptodate = 1;
4450	int uptodate;
4451	unsigned long index;
4452
4453	if (range_straddles_pages(start, end - start + 1)) {
4454		ret = test_range_bit(tree, start, end,
4455				     EXTENT_UPTODATE, 1, NULL);
4456		if (ret)
4457			return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4458	}
4459	while (start <= end) {
4460		index = start >> PAGE_CACHE_SHIFT;
4461		page = find_get_page(tree->mapping, index);
4462		if (!page)
4463			return 1;
4464		uptodate = PageUptodate(page);
4465		page_cache_release(page);
4466		if (!uptodate) {
4467			pg_uptodate = 0;
4468			break;
4469		}
4470		start += PAGE_CACHE_SIZE;
4471	}
4472	return pg_uptodate;
4473}
4474
4475int extent_buffer_uptodate(struct extent_buffer *eb)
4476{
4477	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 
 
4478}
4479
4480int read_extent_buffer_pages(struct extent_io_tree *tree,
4481			     struct extent_buffer *eb, u64 start, int wait,
4482			     get_extent_t *get_extent, int mirror_num)
4483{
4484	unsigned long i;
4485	unsigned long start_i;
4486	struct page *page;
4487	int err;
4488	int ret = 0;
4489	int locked_pages = 0;
4490	int all_uptodate = 1;
4491	unsigned long num_pages;
4492	unsigned long num_reads = 0;
4493	struct bio *bio = NULL;
4494	unsigned long bio_flags = 0;
 
 
4495
4496	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4497		return 0;
4498
4499	if (start) {
4500		WARN_ON(start < eb->start);
4501		start_i = (start >> PAGE_CACHE_SHIFT) -
4502			(eb->start >> PAGE_CACHE_SHIFT);
4503	} else {
4504		start_i = 0;
4505	}
 
 
 
4506
4507	num_pages = num_extent_pages(eb->start, eb->len);
4508	for (i = start_i; i < num_pages; i++) {
4509		page = extent_buffer_page(eb, i);
4510		if (wait == WAIT_NONE) {
 
 
 
 
 
 
 
4511			if (!trylock_page(page))
4512				goto unlock_exit;
4513		} else {
4514			lock_page(page);
4515		}
4516		locked_pages++;
 
 
 
 
 
 
 
 
4517		if (!PageUptodate(page)) {
4518			num_reads++;
4519			all_uptodate = 0;
4520		}
4521	}
 
4522	if (all_uptodate) {
4523		if (start_i == 0)
4524			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4525		goto unlock_exit;
4526	}
4527
4528	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4529	eb->read_mirror = 0;
4530	atomic_set(&eb->io_pages, num_reads);
4531	for (i = start_i; i < num_pages; i++) {
4532		page = extent_buffer_page(eb, i);
 
 
 
 
 
 
 
4533		if (!PageUptodate(page)) {
 
 
 
 
 
 
4534			ClearPageError(page);
4535			err = __extent_read_full_page(tree, page,
4536						      get_extent, &bio,
4537						      mirror_num, &bio_flags);
4538			if (err)
 
 
 
 
 
4539				ret = err;
 
 
 
 
4540		} else {
4541			unlock_page(page);
4542		}
4543	}
4544
4545	if (bio) {
4546		err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4547		if (err)
4548			return err;
4549	}
4550
4551	if (ret || wait != WAIT_COMPLETE)
4552		return ret;
4553
4554	for (i = start_i; i < num_pages; i++) {
4555		page = extent_buffer_page(eb, i);
4556		wait_on_page_locked(page);
4557		if (!PageUptodate(page))
4558			ret = -EIO;
4559	}
4560
4561	return ret;
4562
4563unlock_exit:
4564	i = start_i;
4565	while (locked_pages > 0) {
4566		page = extent_buffer_page(eb, i);
4567		i++;
4568		unlock_page(page);
4569		locked_pages--;
4570	}
4571	return ret;
4572}
4573
4574void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4575			unsigned long start,
4576			unsigned long len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4577{
4578	size_t cur;
4579	size_t offset;
4580	struct page *page;
4581	char *kaddr;
4582	char *dst = (char *)dstv;
4583	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4584	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4585
4586	WARN_ON(start > eb->len);
4587	WARN_ON(start + len > eb->start + eb->len);
4588
4589	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4590
4591	while (len > 0) {
4592		page = extent_buffer_page(eb, i);
4593
4594		cur = min(len, (PAGE_CACHE_SIZE - offset));
4595		kaddr = page_address(page);
4596		memcpy(dst, kaddr + offset, cur);
4597
4598		dst += cur;
4599		len -= cur;
4600		offset = 0;
4601		i++;
4602	}
4603}
4604
4605int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4606			       unsigned long min_len, char **map,
4607			       unsigned long *map_start,
4608			       unsigned long *map_len)
4609{
4610	size_t offset = start & (PAGE_CACHE_SIZE - 1);
 
 
4611	char *kaddr;
4612	struct page *p;
4613	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4614	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4615	unsigned long end_i = (start_offset + start + min_len - 1) >>
4616		PAGE_CACHE_SHIFT;
 
 
 
 
 
 
4617
4618	if (i != end_i)
4619		return -EINVAL;
 
 
 
 
4620
4621	if (i == 0) {
4622		offset = start_offset;
4623		*map_start = 0;
4624	} else {
4625		offset = 0;
4626		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4627	}
4628
4629	if (start + min_len > eb->len) {
4630		printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4631		       "wanted %lu %lu\n", (unsigned long long)eb->start,
4632		       eb->len, start, min_len);
4633		WARN_ON(1);
4634		return -EINVAL;
4635	}
4636
4637	p = extent_buffer_page(eb, i);
4638	kaddr = page_address(p);
4639	*map = kaddr + offset;
4640	*map_len = PAGE_CACHE_SIZE - offset;
4641	return 0;
4642}
4643
4644int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4645			  unsigned long start,
4646			  unsigned long len)
4647{
4648	size_t cur;
4649	size_t offset;
4650	struct page *page;
4651	char *kaddr;
4652	char *ptr = (char *)ptrv;
4653	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4654	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4655	int ret = 0;
4656
4657	WARN_ON(start > eb->len);
4658	WARN_ON(start + len > eb->start + eb->len);
4659
4660	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4661
4662	while (len > 0) {
4663		page = extent_buffer_page(eb, i);
4664
4665		cur = min(len, (PAGE_CACHE_SIZE - offset));
4666
4667		kaddr = page_address(page);
4668		ret = memcmp(ptr, kaddr + offset, cur);
4669		if (ret)
4670			break;
4671
4672		ptr += cur;
4673		len -= cur;
4674		offset = 0;
4675		i++;
4676	}
4677	return ret;
4678}
4679
4680void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4681			 unsigned long start, unsigned long len)
4682{
4683	size_t cur;
4684	size_t offset;
4685	struct page *page;
4686	char *kaddr;
4687	char *src = (char *)srcv;
4688	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4689	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4690
4691	WARN_ON(start > eb->len);
4692	WARN_ON(start + len > eb->start + eb->len);
 
 
4693
4694	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4695
4696	while (len > 0) {
4697		page = extent_buffer_page(eb, i);
4698		WARN_ON(!PageUptodate(page));
4699
4700		cur = min(len, PAGE_CACHE_SIZE - offset);
4701		kaddr = page_address(page);
4702		memcpy(kaddr + offset, src, cur);
4703
4704		src += cur;
4705		len -= cur;
4706		offset = 0;
4707		i++;
4708	}
4709}
4710
4711void memset_extent_buffer(struct extent_buffer *eb, char c,
4712			  unsigned long start, unsigned long len)
4713{
4714	size_t cur;
4715	size_t offset;
4716	struct page *page;
4717	char *kaddr;
4718	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4719	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4720
4721	WARN_ON(start > eb->len);
4722	WARN_ON(start + len > eb->start + eb->len);
4723
4724	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4725
4726	while (len > 0) {
4727		page = extent_buffer_page(eb, i);
4728		WARN_ON(!PageUptodate(page));
4729
4730		cur = min(len, PAGE_CACHE_SIZE - offset);
4731		kaddr = page_address(page);
4732		memset(kaddr + offset, c, cur);
4733
4734		len -= cur;
4735		offset = 0;
4736		i++;
4737	}
4738}
4739
4740void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4741			unsigned long dst_offset, unsigned long src_offset,
4742			unsigned long len)
4743{
4744	u64 dst_len = dst->len;
4745	size_t cur;
4746	size_t offset;
4747	struct page *page;
4748	char *kaddr;
4749	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4750	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
 
 
 
4751
4752	WARN_ON(src->len != dst_len);
4753
4754	offset = (start_offset + dst_offset) &
4755		((unsigned long)PAGE_CACHE_SIZE - 1);
4756
4757	while (len > 0) {
4758		page = extent_buffer_page(dst, i);
4759		WARN_ON(!PageUptodate(page));
4760
4761		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4762
4763		kaddr = page_address(page);
4764		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4765
4766		src_offset += cur;
4767		len -= cur;
4768		offset = 0;
4769		i++;
4770	}
4771}
4772
4773static void move_pages(struct page *dst_page, struct page *src_page,
4774		       unsigned long dst_off, unsigned long src_off,
4775		       unsigned long len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4776{
4777	char *dst_kaddr = page_address(dst_page);
4778	if (dst_page == src_page) {
4779		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4780	} else {
4781		char *src_kaddr = page_address(src_page);
4782		char *p = dst_kaddr + dst_off + len;
4783		char *s = src_kaddr + src_off + len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4784
4785		while (len--)
4786			*--p = *--s;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4787	}
4788}
4789
4790static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4791{
4792	unsigned long distance = (src > dst) ? src - dst : dst - src;
4793	return distance < len;
4794}
4795
4796static void copy_pages(struct page *dst_page, struct page *src_page,
4797		       unsigned long dst_off, unsigned long src_off,
4798		       unsigned long len)
4799{
4800	char *dst_kaddr = page_address(dst_page);
4801	char *src_kaddr;
4802	int must_memmove = 0;
4803
4804	if (dst_page != src_page) {
4805		src_kaddr = page_address(src_page);
4806	} else {
4807		src_kaddr = dst_kaddr;
4808		if (areas_overlap(src_off, dst_off, len))
4809			must_memmove = 1;
4810	}
4811
4812	if (must_memmove)
4813		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4814	else
4815		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4816}
4817
4818void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4819			   unsigned long src_offset, unsigned long len)
 
4820{
4821	size_t cur;
4822	size_t dst_off_in_page;
4823	size_t src_off_in_page;
4824	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4825	unsigned long dst_i;
4826	unsigned long src_i;
4827
4828	if (src_offset + len > dst->len) {
4829		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4830		       "len %lu dst len %lu\n", src_offset, len, dst->len);
4831		BUG_ON(1);
4832	}
4833	if (dst_offset + len > dst->len) {
4834		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4835		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
4836		BUG_ON(1);
4837	}
4838
4839	while (len > 0) {
4840		dst_off_in_page = (start_offset + dst_offset) &
4841			((unsigned long)PAGE_CACHE_SIZE - 1);
4842		src_off_in_page = (start_offset + src_offset) &
4843			((unsigned long)PAGE_CACHE_SIZE - 1);
4844
4845		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4846		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4847
4848		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4849					       src_off_in_page));
4850		cur = min_t(unsigned long, cur,
4851			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4852
4853		copy_pages(extent_buffer_page(dst, dst_i),
4854			   extent_buffer_page(dst, src_i),
4855			   dst_off_in_page, src_off_in_page, cur);
4856
4857		src_offset += cur;
4858		dst_offset += cur;
4859		len -= cur;
4860	}
4861}
4862
4863void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4864			   unsigned long src_offset, unsigned long len)
 
4865{
4866	size_t cur;
4867	size_t dst_off_in_page;
4868	size_t src_off_in_page;
4869	unsigned long dst_end = dst_offset + len - 1;
4870	unsigned long src_end = src_offset + len - 1;
4871	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4872	unsigned long dst_i;
4873	unsigned long src_i;
4874
4875	if (src_offset + len > dst->len) {
4876		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4877		       "len %lu len %lu\n", src_offset, len, dst->len);
4878		BUG_ON(1);
4879	}
4880	if (dst_offset + len > dst->len) {
4881		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4882		       "len %lu len %lu\n", dst_offset, len, dst->len);
4883		BUG_ON(1);
4884	}
4885	if (dst_offset < src_offset) {
4886		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4887		return;
4888	}
4889	while (len > 0) {
4890		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4891		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4892
4893		dst_off_in_page = (start_offset + dst_end) &
4894			((unsigned long)PAGE_CACHE_SIZE - 1);
4895		src_off_in_page = (start_offset + src_end) &
4896			((unsigned long)PAGE_CACHE_SIZE - 1);
4897
4898		cur = min_t(unsigned long, len, src_off_in_page + 1);
4899		cur = min(cur, dst_off_in_page + 1);
4900		move_pages(extent_buffer_page(dst, dst_i),
4901			   extent_buffer_page(dst, src_i),
4902			   dst_off_in_page - cur + 1,
4903			   src_off_in_page - cur + 1, cur);
4904
4905		dst_end -= cur;
4906		src_end -= cur;
4907		len -= cur;
4908	}
4909}
4910
4911int try_release_extent_buffer(struct page *page, gfp_t mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4912{
4913	struct extent_buffer *eb;
4914
 
 
 
4915	/*
4916	 * We need to make sure noboody is attaching this page to an eb right
4917	 * now.
4918	 */
4919	spin_lock(&page->mapping->private_lock);
4920	if (!PagePrivate(page)) {
4921		spin_unlock(&page->mapping->private_lock);
4922		return 1;
4923	}
4924
4925	eb = (struct extent_buffer *)page->private;
4926	BUG_ON(!eb);
4927
4928	/*
4929	 * This is a little awful but should be ok, we need to make sure that
4930	 * the eb doesn't disappear out from under us while we're looking at
4931	 * this page.
4932	 */
4933	spin_lock(&eb->refs_lock);
4934	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4935		spin_unlock(&eb->refs_lock);
4936		spin_unlock(&page->mapping->private_lock);
4937		return 0;
4938	}
4939	spin_unlock(&page->mapping->private_lock);
4940
4941	if ((mask & GFP_NOFS) == GFP_NOFS)
4942		mask = GFP_NOFS;
4943
4944	/*
4945	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4946	 * so just return, this page will likely be freed soon anyway.
4947	 */
4948	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4949		spin_unlock(&eb->refs_lock);
4950		return 0;
4951	}
4952	release_extent_buffer(eb, mask);
4953
4954	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4955}