Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/sched/mm.h>
10#include <linux/spinlock.h>
11#include <linux/blkdev.h>
12#include <linux/swap.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include <linux/prefetch.h>
16#include <linux/fsverity.h>
17#include "misc.h"
18#include "extent_io.h"
19#include "extent-io-tree.h"
20#include "extent_map.h"
21#include "ctree.h"
22#include "btrfs_inode.h"
23#include "bio.h"
24#include "check-integrity.h"
25#include "locking.h"
26#include "rcu-string.h"
27#include "backref.h"
28#include "disk-io.h"
29#include "subpage.h"
30#include "zoned.h"
31#include "block-group.h"
32#include "compression.h"
33#include "fs.h"
34#include "accessors.h"
35#include "file-item.h"
36#include "file.h"
37#include "dev-replace.h"
38#include "super.h"
39
40static struct kmem_cache *extent_buffer_cache;
41
42#ifdef CONFIG_BTRFS_DEBUG
43static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
44{
45 struct btrfs_fs_info *fs_info = eb->fs_info;
46 unsigned long flags;
47
48 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
49 list_add(&eb->leak_list, &fs_info->allocated_ebs);
50 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
51}
52
53static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
54{
55 struct btrfs_fs_info *fs_info = eb->fs_info;
56 unsigned long flags;
57
58 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
59 list_del(&eb->leak_list);
60 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
61}
62
63void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
64{
65 struct extent_buffer *eb;
66 unsigned long flags;
67
68 /*
69 * If we didn't get into open_ctree our allocated_ebs will not be
70 * initialized, so just skip this.
71 */
72 if (!fs_info->allocated_ebs.next)
73 return;
74
75 WARN_ON(!list_empty(&fs_info->allocated_ebs));
76 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
77 while (!list_empty(&fs_info->allocated_ebs)) {
78 eb = list_first_entry(&fs_info->allocated_ebs,
79 struct extent_buffer, leak_list);
80 pr_err(
81 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
82 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
83 btrfs_header_owner(eb));
84 list_del(&eb->leak_list);
85 kmem_cache_free(extent_buffer_cache, eb);
86 }
87 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
88}
89#else
90#define btrfs_leak_debug_add_eb(eb) do {} while (0)
91#define btrfs_leak_debug_del_eb(eb) do {} while (0)
92#endif
93
94/*
95 * Structure to record info about the bio being assembled, and other info like
96 * how many bytes are there before stripe/ordered extent boundary.
97 */
98struct btrfs_bio_ctrl {
99 struct bio *bio;
100 int mirror_num;
101 enum btrfs_compression_type compress_type;
102 u32 len_to_stripe_boundary;
103 u32 len_to_oe_boundary;
104 btrfs_bio_end_io_t end_io_func;
105
106 /*
107 * This is for metadata read, to provide the extra needed verification
108 * info. This has to be provided for submit_one_bio(), as
109 * submit_one_bio() can submit a bio if it ends at stripe boundary. If
110 * no such parent_check is provided, the metadata can hit false alert at
111 * endio time.
112 */
113 struct btrfs_tree_parent_check *parent_check;
114
115 /*
116 * Tell writepage not to lock the state bits for this range, it still
117 * does the unlocking.
118 */
119 bool extent_locked;
120
121 /* Tell the submit_bio code to use REQ_SYNC */
122 bool sync_io;
123};
124
125static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
126{
127 struct bio *bio;
128 struct bio_vec *bv;
129 struct btrfs_inode *inode;
130 int mirror_num;
131
132 if (!bio_ctrl->bio)
133 return;
134
135 bio = bio_ctrl->bio;
136 bv = bio_first_bvec_all(bio);
137 inode = BTRFS_I(bv->bv_page->mapping->host);
138 mirror_num = bio_ctrl->mirror_num;
139
140 /* Caller should ensure the bio has at least some range added */
141 ASSERT(bio->bi_iter.bi_size);
142
143 btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset;
144
145 if (!is_data_inode(&inode->vfs_inode)) {
146 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
147 /*
148 * For metadata read, we should have the parent_check,
149 * and copy it to bbio for metadata verification.
150 */
151 ASSERT(bio_ctrl->parent_check);
152 memcpy(&btrfs_bio(bio)->parent_check,
153 bio_ctrl->parent_check,
154 sizeof(struct btrfs_tree_parent_check));
155 }
156 btrfs_submit_metadata_bio(inode, bio, mirror_num);
157 } else if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
158 btrfs_submit_data_write_bio(inode, bio, mirror_num);
159 } else {
160 btrfs_submit_data_read_bio(inode, bio, mirror_num,
161 bio_ctrl->compress_type);
162 }
163
164 /* The bio is owned by the end_io handler now */
165 bio_ctrl->bio = NULL;
166}
167
168/*
169 * Submit or fail the current bio in the bio_ctrl structure.
170 */
171static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
172{
173 struct bio *bio = bio_ctrl->bio;
174
175 if (!bio)
176 return;
177
178 if (ret) {
179 ASSERT(ret < 0);
180 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
181 /* The bio is owned by the end_io handler now */
182 bio_ctrl->bio = NULL;
183 } else {
184 submit_one_bio(bio_ctrl);
185 }
186}
187
188int __init extent_buffer_init_cachep(void)
189{
190 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
191 sizeof(struct extent_buffer), 0,
192 SLAB_MEM_SPREAD, NULL);
193 if (!extent_buffer_cache)
194 return -ENOMEM;
195
196 return 0;
197}
198
199void __cold extent_buffer_free_cachep(void)
200{
201 /*
202 * Make sure all delayed rcu free are flushed before we
203 * destroy caches.
204 */
205 rcu_barrier();
206 kmem_cache_destroy(extent_buffer_cache);
207}
208
209void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
210{
211 unsigned long index = start >> PAGE_SHIFT;
212 unsigned long end_index = end >> PAGE_SHIFT;
213 struct page *page;
214
215 while (index <= end_index) {
216 page = find_get_page(inode->i_mapping, index);
217 BUG_ON(!page); /* Pages should be in the extent_io_tree */
218 clear_page_dirty_for_io(page);
219 put_page(page);
220 index++;
221 }
222}
223
224void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
225{
226 struct address_space *mapping = inode->i_mapping;
227 unsigned long index = start >> PAGE_SHIFT;
228 unsigned long end_index = end >> PAGE_SHIFT;
229 struct folio *folio;
230
231 while (index <= end_index) {
232 folio = filemap_get_folio(mapping, index);
233 filemap_dirty_folio(mapping, folio);
234 folio_account_redirty(folio);
235 index += folio_nr_pages(folio);
236 folio_put(folio);
237 }
238}
239
240/*
241 * Process one page for __process_pages_contig().
242 *
243 * Return >0 if we hit @page == @locked_page.
244 * Return 0 if we updated the page status.
245 * Return -EGAIN if the we need to try again.
246 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
247 */
248static int process_one_page(struct btrfs_fs_info *fs_info,
249 struct address_space *mapping,
250 struct page *page, struct page *locked_page,
251 unsigned long page_ops, u64 start, u64 end)
252{
253 u32 len;
254
255 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
256 len = end + 1 - start;
257
258 if (page_ops & PAGE_SET_ORDERED)
259 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
260 if (page_ops & PAGE_SET_ERROR)
261 btrfs_page_clamp_set_error(fs_info, page, start, len);
262 if (page_ops & PAGE_START_WRITEBACK) {
263 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
264 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
265 }
266 if (page_ops & PAGE_END_WRITEBACK)
267 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
268
269 if (page == locked_page)
270 return 1;
271
272 if (page_ops & PAGE_LOCK) {
273 int ret;
274
275 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
276 if (ret)
277 return ret;
278 if (!PageDirty(page) || page->mapping != mapping) {
279 btrfs_page_end_writer_lock(fs_info, page, start, len);
280 return -EAGAIN;
281 }
282 }
283 if (page_ops & PAGE_UNLOCK)
284 btrfs_page_end_writer_lock(fs_info, page, start, len);
285 return 0;
286}
287
288static int __process_pages_contig(struct address_space *mapping,
289 struct page *locked_page,
290 u64 start, u64 end, unsigned long page_ops,
291 u64 *processed_end)
292{
293 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
294 pgoff_t start_index = start >> PAGE_SHIFT;
295 pgoff_t end_index = end >> PAGE_SHIFT;
296 pgoff_t index = start_index;
297 unsigned long pages_processed = 0;
298 struct folio_batch fbatch;
299 int err = 0;
300 int i;
301
302 if (page_ops & PAGE_LOCK) {
303 ASSERT(page_ops == PAGE_LOCK);
304 ASSERT(processed_end && *processed_end == start);
305 }
306
307 if ((page_ops & PAGE_SET_ERROR) && start_index <= end_index)
308 mapping_set_error(mapping, -EIO);
309
310 folio_batch_init(&fbatch);
311 while (index <= end_index) {
312 int found_folios;
313
314 found_folios = filemap_get_folios_contig(mapping, &index,
315 end_index, &fbatch);
316
317 if (found_folios == 0) {
318 /*
319 * Only if we're going to lock these pages, we can find
320 * nothing at @index.
321 */
322 ASSERT(page_ops & PAGE_LOCK);
323 err = -EAGAIN;
324 goto out;
325 }
326
327 for (i = 0; i < found_folios; i++) {
328 int process_ret;
329 struct folio *folio = fbatch.folios[i];
330 process_ret = process_one_page(fs_info, mapping,
331 &folio->page, locked_page, page_ops,
332 start, end);
333 if (process_ret < 0) {
334 err = -EAGAIN;
335 folio_batch_release(&fbatch);
336 goto out;
337 }
338 pages_processed += folio_nr_pages(folio);
339 }
340 folio_batch_release(&fbatch);
341 cond_resched();
342 }
343out:
344 if (err && processed_end) {
345 /*
346 * Update @processed_end. I know this is awful since it has
347 * two different return value patterns (inclusive vs exclusive).
348 *
349 * But the exclusive pattern is necessary if @start is 0, or we
350 * underflow and check against processed_end won't work as
351 * expected.
352 */
353 if (pages_processed)
354 *processed_end = min(end,
355 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
356 else
357 *processed_end = start;
358 }
359 return err;
360}
361
362static noinline void __unlock_for_delalloc(struct inode *inode,
363 struct page *locked_page,
364 u64 start, u64 end)
365{
366 unsigned long index = start >> PAGE_SHIFT;
367 unsigned long end_index = end >> PAGE_SHIFT;
368
369 ASSERT(locked_page);
370 if (index == locked_page->index && end_index == index)
371 return;
372
373 __process_pages_contig(inode->i_mapping, locked_page, start, end,
374 PAGE_UNLOCK, NULL);
375}
376
377static noinline int lock_delalloc_pages(struct inode *inode,
378 struct page *locked_page,
379 u64 delalloc_start,
380 u64 delalloc_end)
381{
382 unsigned long index = delalloc_start >> PAGE_SHIFT;
383 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
384 u64 processed_end = delalloc_start;
385 int ret;
386
387 ASSERT(locked_page);
388 if (index == locked_page->index && index == end_index)
389 return 0;
390
391 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
392 delalloc_end, PAGE_LOCK, &processed_end);
393 if (ret == -EAGAIN && processed_end > delalloc_start)
394 __unlock_for_delalloc(inode, locked_page, delalloc_start,
395 processed_end);
396 return ret;
397}
398
399/*
400 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
401 * more than @max_bytes.
402 *
403 * @start: The original start bytenr to search.
404 * Will store the extent range start bytenr.
405 * @end: The original end bytenr of the search range
406 * Will store the extent range end bytenr.
407 *
408 * Return true if we find a delalloc range which starts inside the original
409 * range, and @start/@end will store the delalloc range start/end.
410 *
411 * Return false if we can't find any delalloc range which starts inside the
412 * original range, and @start/@end will be the non-delalloc range start/end.
413 */
414EXPORT_FOR_TESTS
415noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
416 struct page *locked_page, u64 *start,
417 u64 *end)
418{
419 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
420 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
421 const u64 orig_start = *start;
422 const u64 orig_end = *end;
423 /* The sanity tests may not set a valid fs_info. */
424 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
425 u64 delalloc_start;
426 u64 delalloc_end;
427 bool found;
428 struct extent_state *cached_state = NULL;
429 int ret;
430 int loops = 0;
431
432 /* Caller should pass a valid @end to indicate the search range end */
433 ASSERT(orig_end > orig_start);
434
435 /* The range should at least cover part of the page */
436 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
437 orig_end <= page_offset(locked_page)));
438again:
439 /* step one, find a bunch of delalloc bytes starting at start */
440 delalloc_start = *start;
441 delalloc_end = 0;
442 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
443 max_bytes, &cached_state);
444 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
445 *start = delalloc_start;
446
447 /* @delalloc_end can be -1, never go beyond @orig_end */
448 *end = min(delalloc_end, orig_end);
449 free_extent_state(cached_state);
450 return false;
451 }
452
453 /*
454 * start comes from the offset of locked_page. We have to lock
455 * pages in order, so we can't process delalloc bytes before
456 * locked_page
457 */
458 if (delalloc_start < *start)
459 delalloc_start = *start;
460
461 /*
462 * make sure to limit the number of pages we try to lock down
463 */
464 if (delalloc_end + 1 - delalloc_start > max_bytes)
465 delalloc_end = delalloc_start + max_bytes - 1;
466
467 /* step two, lock all the pages after the page that has start */
468 ret = lock_delalloc_pages(inode, locked_page,
469 delalloc_start, delalloc_end);
470 ASSERT(!ret || ret == -EAGAIN);
471 if (ret == -EAGAIN) {
472 /* some of the pages are gone, lets avoid looping by
473 * shortening the size of the delalloc range we're searching
474 */
475 free_extent_state(cached_state);
476 cached_state = NULL;
477 if (!loops) {
478 max_bytes = PAGE_SIZE;
479 loops = 1;
480 goto again;
481 } else {
482 found = false;
483 goto out_failed;
484 }
485 }
486
487 /* step three, lock the state bits for the whole range */
488 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
489
490 /* then test to make sure it is all still delalloc */
491 ret = test_range_bit(tree, delalloc_start, delalloc_end,
492 EXTENT_DELALLOC, 1, cached_state);
493 if (!ret) {
494 unlock_extent(tree, delalloc_start, delalloc_end,
495 &cached_state);
496 __unlock_for_delalloc(inode, locked_page,
497 delalloc_start, delalloc_end);
498 cond_resched();
499 goto again;
500 }
501 free_extent_state(cached_state);
502 *start = delalloc_start;
503 *end = delalloc_end;
504out_failed:
505 return found;
506}
507
508void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
509 struct page *locked_page,
510 u32 clear_bits, unsigned long page_ops)
511{
512 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
513
514 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
515 start, end, page_ops, NULL);
516}
517
518static int insert_failrec(struct btrfs_inode *inode,
519 struct io_failure_record *failrec)
520{
521 struct rb_node *exist;
522
523 spin_lock(&inode->io_failure_lock);
524 exist = rb_simple_insert(&inode->io_failure_tree, failrec->bytenr,
525 &failrec->rb_node);
526 spin_unlock(&inode->io_failure_lock);
527
528 return (exist == NULL) ? 0 : -EEXIST;
529}
530
531static struct io_failure_record *get_failrec(struct btrfs_inode *inode, u64 start)
532{
533 struct rb_node *node;
534 struct io_failure_record *failrec = ERR_PTR(-ENOENT);
535
536 spin_lock(&inode->io_failure_lock);
537 node = rb_simple_search(&inode->io_failure_tree, start);
538 if (node)
539 failrec = rb_entry(node, struct io_failure_record, rb_node);
540 spin_unlock(&inode->io_failure_lock);
541 return failrec;
542}
543
544static void free_io_failure(struct btrfs_inode *inode,
545 struct io_failure_record *rec)
546{
547 spin_lock(&inode->io_failure_lock);
548 rb_erase(&rec->rb_node, &inode->io_failure_tree);
549 spin_unlock(&inode->io_failure_lock);
550
551 kfree(rec);
552}
553
554static int next_mirror(const struct io_failure_record *failrec, int cur_mirror)
555{
556 if (cur_mirror == failrec->num_copies)
557 return cur_mirror + 1 - failrec->num_copies;
558 return cur_mirror + 1;
559}
560
561static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror)
562{
563 if (cur_mirror == 1)
564 return failrec->num_copies;
565 return cur_mirror - 1;
566}
567
568/*
569 * each time an IO finishes, we do a fast check in the IO failure tree
570 * to see if we need to process or clean up an io_failure_record
571 */
572int btrfs_clean_io_failure(struct btrfs_inode *inode, u64 start,
573 struct page *page, unsigned int pg_offset)
574{
575 struct btrfs_fs_info *fs_info = inode->root->fs_info;
576 struct extent_io_tree *io_tree = &inode->io_tree;
577 u64 ino = btrfs_ino(inode);
578 u64 locked_start, locked_end;
579 struct io_failure_record *failrec;
580 int mirror;
581 int ret;
582
583 failrec = get_failrec(inode, start);
584 if (IS_ERR(failrec))
585 return 0;
586
587 BUG_ON(!failrec->this_mirror);
588
589 if (sb_rdonly(fs_info->sb))
590 goto out;
591
592 ret = find_first_extent_bit(io_tree, failrec->bytenr, &locked_start,
593 &locked_end, EXTENT_LOCKED, NULL);
594 if (ret || locked_start > failrec->bytenr ||
595 locked_end < failrec->bytenr + failrec->len - 1)
596 goto out;
597
598 mirror = failrec->this_mirror;
599 do {
600 mirror = prev_mirror(failrec, mirror);
601 btrfs_repair_io_failure(fs_info, ino, start, failrec->len,
602 failrec->logical, page, pg_offset, mirror);
603 } while (mirror != failrec->failed_mirror);
604
605out:
606 free_io_failure(inode, failrec);
607 return 0;
608}
609
610/*
611 * Can be called when
612 * - hold extent lock
613 * - under ordered extent
614 * - the inode is freeing
615 */
616void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
617{
618 struct io_failure_record *failrec;
619 struct rb_node *node, *next;
620
621 if (RB_EMPTY_ROOT(&inode->io_failure_tree))
622 return;
623
624 spin_lock(&inode->io_failure_lock);
625 node = rb_simple_search_first(&inode->io_failure_tree, start);
626 while (node) {
627 failrec = rb_entry(node, struct io_failure_record, rb_node);
628 if (failrec->bytenr > end)
629 break;
630
631 next = rb_next(node);
632 rb_erase(&failrec->rb_node, &inode->io_failure_tree);
633 kfree(failrec);
634
635 node = next;
636 }
637 spin_unlock(&inode->io_failure_lock);
638}
639
640static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
641 struct btrfs_bio *bbio,
642 unsigned int bio_offset)
643{
644 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
645 u64 start = bbio->file_offset + bio_offset;
646 struct io_failure_record *failrec;
647 const u32 sectorsize = fs_info->sectorsize;
648 int ret;
649
650 failrec = get_failrec(BTRFS_I(inode), start);
651 if (!IS_ERR(failrec)) {
652 btrfs_debug(fs_info,
653 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
654 failrec->logical, failrec->bytenr, failrec->len);
655 /*
656 * when data can be on disk more than twice, add to failrec here
657 * (e.g. with a list for failed_mirror) to make
658 * clean_io_failure() clean all those errors at once.
659 */
660 ASSERT(failrec->this_mirror == bbio->mirror_num);
661 ASSERT(failrec->len == fs_info->sectorsize);
662 return failrec;
663 }
664
665 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
666 if (!failrec)
667 return ERR_PTR(-ENOMEM);
668
669 RB_CLEAR_NODE(&failrec->rb_node);
670 failrec->bytenr = start;
671 failrec->len = sectorsize;
672 failrec->failed_mirror = bbio->mirror_num;
673 failrec->this_mirror = bbio->mirror_num;
674 failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset;
675
676 btrfs_debug(fs_info,
677 "new io failure record logical %llu start %llu",
678 failrec->logical, start);
679
680 failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize);
681 if (failrec->num_copies == 1) {
682 /*
683 * We only have a single copy of the data, so don't bother with
684 * all the retry and error correction code that follows. No
685 * matter what the error is, it is very likely to persist.
686 */
687 btrfs_debug(fs_info,
688 "cannot repair logical %llu num_copies %d",
689 failrec->logical, failrec->num_copies);
690 kfree(failrec);
691 return ERR_PTR(-EIO);
692 }
693
694 /* Set the bits in the private failure tree */
695 ret = insert_failrec(BTRFS_I(inode), failrec);
696 if (ret) {
697 kfree(failrec);
698 return ERR_PTR(ret);
699 }
700
701 return failrec;
702}
703
704int btrfs_repair_one_sector(struct btrfs_inode *inode, struct btrfs_bio *failed_bbio,
705 u32 bio_offset, struct page *page, unsigned int pgoff,
706 bool submit_buffered)
707{
708 u64 start = failed_bbio->file_offset + bio_offset;
709 struct io_failure_record *failrec;
710 struct btrfs_fs_info *fs_info = inode->root->fs_info;
711 struct bio *failed_bio = &failed_bbio->bio;
712 const int icsum = bio_offset >> fs_info->sectorsize_bits;
713 struct bio *repair_bio;
714 struct btrfs_bio *repair_bbio;
715
716 btrfs_debug(fs_info,
717 "repair read error: read error at %llu", start);
718
719 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
720
721 failrec = btrfs_get_io_failure_record(&inode->vfs_inode, failed_bbio, bio_offset);
722 if (IS_ERR(failrec))
723 return PTR_ERR(failrec);
724
725 /*
726 * There are two premises:
727 * a) deliver good data to the caller
728 * b) correct the bad sectors on disk
729 *
730 * Since we're only doing repair for one sector, we only need to get
731 * a good copy of the failed sector and if we succeed, we have setup
732 * everything for btrfs_repair_io_failure to do the rest for us.
733 */
734 failrec->this_mirror = next_mirror(failrec, failrec->this_mirror);
735 if (failrec->this_mirror == failrec->failed_mirror) {
736 btrfs_debug(fs_info,
737 "failed to repair num_copies %d this_mirror %d failed_mirror %d",
738 failrec->num_copies, failrec->this_mirror, failrec->failed_mirror);
739 free_io_failure(inode, failrec);
740 return -EIO;
741 }
742
743 repair_bio = btrfs_bio_alloc(1, REQ_OP_READ, failed_bbio->end_io,
744 failed_bbio->private);
745 repair_bbio = btrfs_bio(repair_bio);
746 repair_bbio->file_offset = start;
747 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
748
749 if (failed_bbio->csum) {
750 const u32 csum_size = fs_info->csum_size;
751
752 repair_bbio->csum = repair_bbio->csum_inline;
753 memcpy(repair_bbio->csum,
754 failed_bbio->csum + csum_size * icsum, csum_size);
755 }
756
757 bio_add_page(repair_bio, page, failrec->len, pgoff);
758 repair_bbio->iter = repair_bio->bi_iter;
759
760 btrfs_debug(fs_info,
761 "repair read error: submitting new read to mirror %d",
762 failrec->this_mirror);
763
764 /*
765 * At this point we have a bio, so any errors from bio submission will
766 * be handled by the endio on the repair_bio, so we can't return an
767 * error here.
768 */
769 if (submit_buffered)
770 btrfs_submit_data_read_bio(inode, repair_bio,
771 failrec->this_mirror, 0);
772 else
773 btrfs_submit_dio_repair_bio(inode, repair_bio, failrec->this_mirror);
774
775 return BLK_STS_OK;
776}
777
778static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
779{
780 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
781
782 ASSERT(page_offset(page) <= start &&
783 start + len <= page_offset(page) + PAGE_SIZE);
784
785 if (uptodate) {
786 if (fsverity_active(page->mapping->host) &&
787 !PageError(page) &&
788 !PageUptodate(page) &&
789 start < i_size_read(page->mapping->host) &&
790 !fsverity_verify_page(page)) {
791 btrfs_page_set_error(fs_info, page, start, len);
792 } else {
793 btrfs_page_set_uptodate(fs_info, page, start, len);
794 }
795 } else {
796 btrfs_page_clear_uptodate(fs_info, page, start, len);
797 btrfs_page_set_error(fs_info, page, start, len);
798 }
799
800 if (!btrfs_is_subpage(fs_info, page))
801 unlock_page(page);
802 else
803 btrfs_subpage_end_reader(fs_info, page, start, len);
804}
805
806static void end_sector_io(struct page *page, u64 offset, bool uptodate)
807{
808 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
809 const u32 sectorsize = inode->root->fs_info->sectorsize;
810
811 end_page_read(page, uptodate, offset, sectorsize);
812 unlock_extent(&inode->io_tree, offset, offset + sectorsize - 1, NULL);
813}
814
815static void submit_data_read_repair(struct inode *inode,
816 struct btrfs_bio *failed_bbio,
817 u32 bio_offset, const struct bio_vec *bvec,
818 unsigned int error_bitmap)
819{
820 const unsigned int pgoff = bvec->bv_offset;
821 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
822 struct page *page = bvec->bv_page;
823 const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset;
824 const u64 end = start + bvec->bv_len - 1;
825 const u32 sectorsize = fs_info->sectorsize;
826 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
827 int i;
828
829 BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE);
830
831 /* This repair is only for data */
832 ASSERT(is_data_inode(inode));
833
834 /* We're here because we had some read errors or csum mismatch */
835 ASSERT(error_bitmap);
836
837 /*
838 * We only get called on buffered IO, thus page must be mapped and bio
839 * must not be cloned.
840 */
841 ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED));
842
843 /* Iterate through all the sectors in the range */
844 for (i = 0; i < nr_bits; i++) {
845 const unsigned int offset = i * sectorsize;
846 bool uptodate = false;
847 int ret;
848
849 if (!(error_bitmap & (1U << i))) {
850 /*
851 * This sector has no error, just end the page read
852 * and unlock the range.
853 */
854 uptodate = true;
855 goto next;
856 }
857
858 ret = btrfs_repair_one_sector(BTRFS_I(inode), failed_bbio,
859 bio_offset + offset, page, pgoff + offset,
860 true);
861 if (!ret) {
862 /*
863 * We have submitted the read repair, the page release
864 * will be handled by the endio function of the
865 * submitted repair bio.
866 * Thus we don't need to do any thing here.
867 */
868 continue;
869 }
870 /*
871 * Continue on failed repair, otherwise the remaining sectors
872 * will not be properly unlocked.
873 */
874next:
875 end_sector_io(page, start + offset, uptodate);
876 }
877}
878
879/* lots and lots of room for performance fixes in the end_bio funcs */
880
881void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
882{
883 struct btrfs_inode *inode;
884 const bool uptodate = (err == 0);
885 int ret = 0;
886
887 ASSERT(page && page->mapping);
888 inode = BTRFS_I(page->mapping->host);
889 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
890
891 if (!uptodate) {
892 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
893 u32 len;
894
895 ASSERT(end + 1 - start <= U32_MAX);
896 len = end + 1 - start;
897
898 btrfs_page_clear_uptodate(fs_info, page, start, len);
899 btrfs_page_set_error(fs_info, page, start, len);
900 ret = err < 0 ? err : -EIO;
901 mapping_set_error(page->mapping, ret);
902 }
903}
904
905/*
906 * after a writepage IO is done, we need to:
907 * clear the uptodate bits on error
908 * clear the writeback bits in the extent tree for this IO
909 * end_page_writeback if the page has no more pending IO
910 *
911 * Scheduling is not allowed, so the extent state tree is expected
912 * to have one and only one object corresponding to this IO.
913 */
914static void end_bio_extent_writepage(struct btrfs_bio *bbio)
915{
916 struct bio *bio = &bbio->bio;
917 int error = blk_status_to_errno(bio->bi_status);
918 struct bio_vec *bvec;
919 u64 start;
920 u64 end;
921 struct bvec_iter_all iter_all;
922 bool first_bvec = true;
923
924 ASSERT(!bio_flagged(bio, BIO_CLONED));
925 bio_for_each_segment_all(bvec, bio, iter_all) {
926 struct page *page = bvec->bv_page;
927 struct inode *inode = page->mapping->host;
928 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
929 const u32 sectorsize = fs_info->sectorsize;
930
931 /* Our read/write should always be sector aligned. */
932 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
933 btrfs_err(fs_info,
934 "partial page write in btrfs with offset %u and length %u",
935 bvec->bv_offset, bvec->bv_len);
936 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
937 btrfs_info(fs_info,
938 "incomplete page write with offset %u and length %u",
939 bvec->bv_offset, bvec->bv_len);
940
941 start = page_offset(page) + bvec->bv_offset;
942 end = start + bvec->bv_len - 1;
943
944 if (first_bvec) {
945 btrfs_record_physical_zoned(inode, start, bio);
946 first_bvec = false;
947 }
948
949 end_extent_writepage(page, error, start, end);
950
951 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
952 }
953
954 bio_put(bio);
955}
956
957/*
958 * Record previously processed extent range
959 *
960 * For endio_readpage_release_extent() to handle a full extent range, reducing
961 * the extent io operations.
962 */
963struct processed_extent {
964 struct btrfs_inode *inode;
965 /* Start of the range in @inode */
966 u64 start;
967 /* End of the range in @inode */
968 u64 end;
969 bool uptodate;
970};
971
972/*
973 * Try to release processed extent range
974 *
975 * May not release the extent range right now if the current range is
976 * contiguous to processed extent.
977 *
978 * Will release processed extent when any of @inode, @uptodate, the range is
979 * no longer contiguous to the processed range.
980 *
981 * Passing @inode == NULL will force processed extent to be released.
982 */
983static void endio_readpage_release_extent(struct processed_extent *processed,
984 struct btrfs_inode *inode, u64 start, u64 end,
985 bool uptodate)
986{
987 struct extent_state *cached = NULL;
988 struct extent_io_tree *tree;
989
990 /* The first extent, initialize @processed */
991 if (!processed->inode)
992 goto update;
993
994 /*
995 * Contiguous to processed extent, just uptodate the end.
996 *
997 * Several things to notice:
998 *
999 * - bio can be merged as long as on-disk bytenr is contiguous
1000 * This means we can have page belonging to other inodes, thus need to
1001 * check if the inode still matches.
1002 * - bvec can contain range beyond current page for multi-page bvec
1003 * Thus we need to do processed->end + 1 >= start check
1004 */
1005 if (processed->inode == inode && processed->uptodate == uptodate &&
1006 processed->end + 1 >= start && end >= processed->end) {
1007 processed->end = end;
1008 return;
1009 }
1010
1011 tree = &processed->inode->io_tree;
1012 /*
1013 * Now we don't have range contiguous to the processed range, release
1014 * the processed range now.
1015 */
1016 unlock_extent(tree, processed->start, processed->end, &cached);
1017
1018update:
1019 /* Update processed to current range */
1020 processed->inode = inode;
1021 processed->start = start;
1022 processed->end = end;
1023 processed->uptodate = uptodate;
1024}
1025
1026static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
1027{
1028 ASSERT(PageLocked(page));
1029 if (!btrfs_is_subpage(fs_info, page))
1030 return;
1031
1032 ASSERT(PagePrivate(page));
1033 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
1034}
1035
1036/*
1037 * Find extent buffer for a givne bytenr.
1038 *
1039 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
1040 * in endio context.
1041 */
1042static struct extent_buffer *find_extent_buffer_readpage(
1043 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
1044{
1045 struct extent_buffer *eb;
1046
1047 /*
1048 * For regular sectorsize, we can use page->private to grab extent
1049 * buffer
1050 */
1051 if (fs_info->nodesize >= PAGE_SIZE) {
1052 ASSERT(PagePrivate(page) && page->private);
1053 return (struct extent_buffer *)page->private;
1054 }
1055
1056 /* For subpage case, we need to lookup buffer radix tree */
1057 rcu_read_lock();
1058 eb = radix_tree_lookup(&fs_info->buffer_radix,
1059 bytenr >> fs_info->sectorsize_bits);
1060 rcu_read_unlock();
1061 ASSERT(eb);
1062 return eb;
1063}
1064
1065/*
1066 * after a readpage IO is done, we need to:
1067 * clear the uptodate bits on error
1068 * set the uptodate bits if things worked
1069 * set the page up to date if all extents in the tree are uptodate
1070 * clear the lock bit in the extent tree
1071 * unlock the page if there are no other extents locked for it
1072 *
1073 * Scheduling is not allowed, so the extent state tree is expected
1074 * to have one and only one object corresponding to this IO.
1075 */
1076static void end_bio_extent_readpage(struct btrfs_bio *bbio)
1077{
1078 struct bio *bio = &bbio->bio;
1079 struct bio_vec *bvec;
1080 struct processed_extent processed = { 0 };
1081 /*
1082 * The offset to the beginning of a bio, since one bio can never be
1083 * larger than UINT_MAX, u32 here is enough.
1084 */
1085 u32 bio_offset = 0;
1086 int mirror;
1087 struct bvec_iter_all iter_all;
1088
1089 ASSERT(!bio_flagged(bio, BIO_CLONED));
1090 bio_for_each_segment_all(bvec, bio, iter_all) {
1091 bool uptodate = !bio->bi_status;
1092 struct page *page = bvec->bv_page;
1093 struct inode *inode = page->mapping->host;
1094 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1095 const u32 sectorsize = fs_info->sectorsize;
1096 unsigned int error_bitmap = (unsigned int)-1;
1097 bool repair = false;
1098 u64 start;
1099 u64 end;
1100 u32 len;
1101
1102 btrfs_debug(fs_info,
1103 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
1104 bio->bi_iter.bi_sector, bio->bi_status,
1105 bbio->mirror_num);
1106
1107 /*
1108 * We always issue full-sector reads, but if some block in a
1109 * page fails to read, blk_update_request() will advance
1110 * bv_offset and adjust bv_len to compensate. Print a warning
1111 * for unaligned offsets, and an error if they don't add up to
1112 * a full sector.
1113 */
1114 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
1115 btrfs_err(fs_info,
1116 "partial page read in btrfs with offset %u and length %u",
1117 bvec->bv_offset, bvec->bv_len);
1118 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
1119 sectorsize))
1120 btrfs_info(fs_info,
1121 "incomplete page read with offset %u and length %u",
1122 bvec->bv_offset, bvec->bv_len);
1123
1124 start = page_offset(page) + bvec->bv_offset;
1125 end = start + bvec->bv_len - 1;
1126 len = bvec->bv_len;
1127
1128 mirror = bbio->mirror_num;
1129 if (likely(uptodate)) {
1130 if (is_data_inode(inode)) {
1131 error_bitmap = btrfs_verify_data_csum(bbio,
1132 bio_offset, page, start, end);
1133 if (error_bitmap)
1134 uptodate = false;
1135 } else {
1136 if (btrfs_validate_metadata_buffer(bbio,
1137 page, start, end, mirror))
1138 uptodate = false;
1139 }
1140 }
1141
1142 if (likely(uptodate)) {
1143 loff_t i_size = i_size_read(inode);
1144 pgoff_t end_index = i_size >> PAGE_SHIFT;
1145
1146 btrfs_clean_io_failure(BTRFS_I(inode), start, page, 0);
1147
1148 /*
1149 * Zero out the remaining part if this range straddles
1150 * i_size.
1151 *
1152 * Here we should only zero the range inside the bvec,
1153 * not touch anything else.
1154 *
1155 * NOTE: i_size is exclusive while end is inclusive.
1156 */
1157 if (page->index == end_index && i_size <= end) {
1158 u32 zero_start = max(offset_in_page(i_size),
1159 offset_in_page(start));
1160
1161 zero_user_segment(page, zero_start,
1162 offset_in_page(end) + 1);
1163 }
1164 } else if (is_data_inode(inode)) {
1165 /*
1166 * Only try to repair bios that actually made it to a
1167 * device. If the bio failed to be submitted mirror
1168 * is 0 and we need to fail it without retrying.
1169 *
1170 * This also includes the high level bios for compressed
1171 * extents - these never make it to a device and repair
1172 * is already handled on the lower compressed bio.
1173 */
1174 if (mirror > 0)
1175 repair = true;
1176 } else {
1177 struct extent_buffer *eb;
1178
1179 eb = find_extent_buffer_readpage(fs_info, page, start);
1180 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
1181 eb->read_mirror = mirror;
1182 atomic_dec(&eb->io_pages);
1183 }
1184
1185 if (repair) {
1186 /*
1187 * submit_data_read_repair() will handle all the good
1188 * and bad sectors, we just continue to the next bvec.
1189 */
1190 submit_data_read_repair(inode, bbio, bio_offset, bvec,
1191 error_bitmap);
1192 } else {
1193 /* Update page status and unlock */
1194 end_page_read(page, uptodate, start, len);
1195 endio_readpage_release_extent(&processed, BTRFS_I(inode),
1196 start, end, PageUptodate(page));
1197 }
1198
1199 ASSERT(bio_offset + len > bio_offset);
1200 bio_offset += len;
1201
1202 }
1203 /* Release the last extent */
1204 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
1205 btrfs_bio_free_csum(bbio);
1206 bio_put(bio);
1207}
1208
1209/*
1210 * Populate every free slot in a provided array with pages.
1211 *
1212 * @nr_pages: number of pages to allocate
1213 * @page_array: the array to fill with pages; any existing non-null entries in
1214 * the array will be skipped
1215 *
1216 * Return: 0 if all pages were able to be allocated;
1217 * -ENOMEM otherwise, and the caller is responsible for freeing all
1218 * non-null page pointers in the array.
1219 */
1220int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
1221{
1222 unsigned int allocated;
1223
1224 for (allocated = 0; allocated < nr_pages;) {
1225 unsigned int last = allocated;
1226
1227 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
1228
1229 if (allocated == nr_pages)
1230 return 0;
1231
1232 /*
1233 * During this iteration, no page could be allocated, even
1234 * though alloc_pages_bulk_array() falls back to alloc_page()
1235 * if it could not bulk-allocate. So we must be out of memory.
1236 */
1237 if (allocated == last)
1238 return -ENOMEM;
1239
1240 memalloc_retry_wait(GFP_NOFS);
1241 }
1242 return 0;
1243}
1244
1245/*
1246 * Attempt to add a page to bio.
1247 *
1248 * @bio_ctrl: record both the bio, and its bio_flags
1249 * @page: page to add to the bio
1250 * @disk_bytenr: offset of the new bio or to check whether we are adding
1251 * a contiguous page to the previous one
1252 * @size: portion of page that we want to write
1253 * @pg_offset: starting offset in the page
1254 * @compress_type: compression type of the current bio to see if we can merge them
1255 *
1256 * Attempt to add a page to bio considering stripe alignment etc.
1257 *
1258 * Return >= 0 for the number of bytes added to the bio.
1259 * Can return 0 if the current bio is already at stripe/zone boundary.
1260 * Return <0 for error.
1261 */
1262static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
1263 struct page *page,
1264 u64 disk_bytenr, unsigned int size,
1265 unsigned int pg_offset,
1266 enum btrfs_compression_type compress_type)
1267{
1268 struct bio *bio = bio_ctrl->bio;
1269 u32 bio_size = bio->bi_iter.bi_size;
1270 u32 real_size;
1271 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
1272 bool contig = false;
1273 int ret;
1274
1275 ASSERT(bio);
1276 /* The limit should be calculated when bio_ctrl->bio is allocated */
1277 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
1278 if (bio_ctrl->compress_type != compress_type)
1279 return 0;
1280
1281
1282 if (bio->bi_iter.bi_size == 0) {
1283 /* We can always add a page into an empty bio. */
1284 contig = true;
1285 } else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) {
1286 struct bio_vec *bvec = bio_last_bvec_all(bio);
1287
1288 /*
1289 * The contig check requires the following conditions to be met:
1290 * 1) The pages are belonging to the same inode
1291 * This is implied by the call chain.
1292 *
1293 * 2) The range has adjacent logical bytenr
1294 *
1295 * 3) The range has adjacent file offset
1296 * This is required for the usage of btrfs_bio->file_offset.
1297 */
1298 if (bio_end_sector(bio) == sector &&
1299 page_offset(bvec->bv_page) + bvec->bv_offset +
1300 bvec->bv_len == page_offset(page) + pg_offset)
1301 contig = true;
1302 } else {
1303 /*
1304 * For compression, all IO should have its logical bytenr
1305 * set to the starting bytenr of the compressed extent.
1306 */
1307 contig = bio->bi_iter.bi_sector == sector;
1308 }
1309
1310 if (!contig)
1311 return 0;
1312
1313 real_size = min(bio_ctrl->len_to_oe_boundary,
1314 bio_ctrl->len_to_stripe_boundary) - bio_size;
1315 real_size = min(real_size, size);
1316
1317 /*
1318 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
1319 * bio will still execute its endio function on the page!
1320 */
1321 if (real_size == 0)
1322 return 0;
1323
1324 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1325 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
1326 else
1327 ret = bio_add_page(bio, page, real_size, pg_offset);
1328
1329 return ret;
1330}
1331
1332static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
1333 struct btrfs_inode *inode, u64 file_offset)
1334{
1335 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1336 struct btrfs_io_geometry geom;
1337 struct btrfs_ordered_extent *ordered;
1338 struct extent_map *em;
1339 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
1340 int ret;
1341
1342 /*
1343 * Pages for compressed extent are never submitted to disk directly,
1344 * thus it has no real boundary, just set them to U32_MAX.
1345 *
1346 * The split happens for real compressed bio, which happens in
1347 * btrfs_submit_compressed_read/write().
1348 */
1349 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
1350 bio_ctrl->len_to_oe_boundary = U32_MAX;
1351 bio_ctrl->len_to_stripe_boundary = U32_MAX;
1352 return 0;
1353 }
1354 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
1355 if (IS_ERR(em))
1356 return PTR_ERR(em);
1357 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
1358 logical, &geom);
1359 free_extent_map(em);
1360 if (ret < 0) {
1361 return ret;
1362 }
1363 if (geom.len > U32_MAX)
1364 bio_ctrl->len_to_stripe_boundary = U32_MAX;
1365 else
1366 bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
1367
1368 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
1369 bio_ctrl->len_to_oe_boundary = U32_MAX;
1370 return 0;
1371 }
1372
1373 /* Ordered extent not yet created, so we're good */
1374 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
1375 if (!ordered) {
1376 bio_ctrl->len_to_oe_boundary = U32_MAX;
1377 return 0;
1378 }
1379
1380 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
1381 ordered->disk_bytenr + ordered->disk_num_bytes - logical);
1382 btrfs_put_ordered_extent(ordered);
1383 return 0;
1384}
1385
1386static int alloc_new_bio(struct btrfs_inode *inode,
1387 struct btrfs_bio_ctrl *bio_ctrl,
1388 struct writeback_control *wbc,
1389 blk_opf_t opf,
1390 u64 disk_bytenr, u32 offset, u64 file_offset,
1391 enum btrfs_compression_type compress_type)
1392{
1393 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1394 struct bio *bio;
1395 int ret;
1396
1397 ASSERT(bio_ctrl->end_io_func);
1398
1399 bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, bio_ctrl->end_io_func, NULL);
1400 /*
1401 * For compressed page range, its disk_bytenr is always @disk_bytenr
1402 * passed in, no matter if we have added any range into previous bio.
1403 */
1404 if (compress_type != BTRFS_COMPRESS_NONE)
1405 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
1406 else
1407 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
1408 bio_ctrl->bio = bio;
1409 bio_ctrl->compress_type = compress_type;
1410 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
1411 if (ret < 0)
1412 goto error;
1413
1414 if (wbc) {
1415 /*
1416 * For Zone append we need the correct block_device that we are
1417 * going to write to set in the bio to be able to respect the
1418 * hardware limitation. Look it up here:
1419 */
1420 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1421 struct btrfs_device *dev;
1422
1423 dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
1424 fs_info->sectorsize);
1425 if (IS_ERR(dev)) {
1426 ret = PTR_ERR(dev);
1427 goto error;
1428 }
1429
1430 bio_set_dev(bio, dev->bdev);
1431 } else {
1432 /*
1433 * Otherwise pick the last added device to support
1434 * cgroup writeback. For multi-device file systems this
1435 * means blk-cgroup policies have to always be set on the
1436 * last added/replaced device. This is a bit odd but has
1437 * been like that for a long time.
1438 */
1439 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
1440 }
1441 wbc_init_bio(wbc, bio);
1442 } else {
1443 ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
1444 }
1445 return 0;
1446error:
1447 bio_ctrl->bio = NULL;
1448 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
1449 return ret;
1450}
1451
1452/*
1453 * @opf: bio REQ_OP_* and REQ_* flags as one value
1454 * @wbc: optional writeback control for io accounting
1455 * @disk_bytenr: logical bytenr where the write will be
1456 * @page: page to add to the bio
1457 * @size: portion of page that we want to write to
1458 * @pg_offset: offset of the new bio or to check whether we are adding
1459 * a contiguous page to the previous one
1460 * @compress_type: compress type for current bio
1461 *
1462 * The will either add the page into the existing @bio_ctrl->bio, or allocate a
1463 * new one in @bio_ctrl->bio.
1464 * The mirror number for this IO should already be initizlied in
1465 * @bio_ctrl->mirror_num.
1466 */
1467static int submit_extent_page(blk_opf_t opf,
1468 struct writeback_control *wbc,
1469 struct btrfs_bio_ctrl *bio_ctrl,
1470 u64 disk_bytenr, struct page *page,
1471 size_t size, unsigned long pg_offset,
1472 enum btrfs_compression_type compress_type,
1473 bool force_bio_submit)
1474{
1475 int ret = 0;
1476 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1477 unsigned int cur = pg_offset;
1478
1479 ASSERT(bio_ctrl);
1480
1481 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
1482 pg_offset + size <= PAGE_SIZE);
1483
1484 ASSERT(bio_ctrl->end_io_func);
1485
1486 if (force_bio_submit)
1487 submit_one_bio(bio_ctrl);
1488
1489 while (cur < pg_offset + size) {
1490 u32 offset = cur - pg_offset;
1491 int added;
1492
1493 /* Allocate new bio if needed */
1494 if (!bio_ctrl->bio) {
1495 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
1496 disk_bytenr, offset,
1497 page_offset(page) + cur,
1498 compress_type);
1499 if (ret < 0)
1500 return ret;
1501 }
1502 /*
1503 * We must go through btrfs_bio_add_page() to ensure each
1504 * page range won't cross various boundaries.
1505 */
1506 if (compress_type != BTRFS_COMPRESS_NONE)
1507 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
1508 size - offset, pg_offset + offset,
1509 compress_type);
1510 else
1511 added = btrfs_bio_add_page(bio_ctrl, page,
1512 disk_bytenr + offset, size - offset,
1513 pg_offset + offset, compress_type);
1514
1515 /* Metadata page range should never be split */
1516 if (!is_data_inode(&inode->vfs_inode))
1517 ASSERT(added == 0 || added == size - offset);
1518
1519 /* At least we added some page, update the account */
1520 if (wbc && added)
1521 wbc_account_cgroup_owner(wbc, page, added);
1522
1523 /* We have reached boundary, submit right now */
1524 if (added < size - offset) {
1525 /* The bio should contain some page(s) */
1526 ASSERT(bio_ctrl->bio->bi_iter.bi_size);
1527 submit_one_bio(bio_ctrl);
1528 }
1529 cur += added;
1530 }
1531 return 0;
1532}
1533
1534static int attach_extent_buffer_page(struct extent_buffer *eb,
1535 struct page *page,
1536 struct btrfs_subpage *prealloc)
1537{
1538 struct btrfs_fs_info *fs_info = eb->fs_info;
1539 int ret = 0;
1540
1541 /*
1542 * If the page is mapped to btree inode, we should hold the private
1543 * lock to prevent race.
1544 * For cloned or dummy extent buffers, their pages are not mapped and
1545 * will not race with any other ebs.
1546 */
1547 if (page->mapping)
1548 lockdep_assert_held(&page->mapping->private_lock);
1549
1550 if (fs_info->nodesize >= PAGE_SIZE) {
1551 if (!PagePrivate(page))
1552 attach_page_private(page, eb);
1553 else
1554 WARN_ON(page->private != (unsigned long)eb);
1555 return 0;
1556 }
1557
1558 /* Already mapped, just free prealloc */
1559 if (PagePrivate(page)) {
1560 btrfs_free_subpage(prealloc);
1561 return 0;
1562 }
1563
1564 if (prealloc)
1565 /* Has preallocated memory for subpage */
1566 attach_page_private(page, prealloc);
1567 else
1568 /* Do new allocation to attach subpage */
1569 ret = btrfs_attach_subpage(fs_info, page,
1570 BTRFS_SUBPAGE_METADATA);
1571 return ret;
1572}
1573
1574int set_page_extent_mapped(struct page *page)
1575{
1576 struct btrfs_fs_info *fs_info;
1577
1578 ASSERT(page->mapping);
1579
1580 if (PagePrivate(page))
1581 return 0;
1582
1583 fs_info = btrfs_sb(page->mapping->host->i_sb);
1584
1585 if (btrfs_is_subpage(fs_info, page))
1586 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
1587
1588 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
1589 return 0;
1590}
1591
1592void clear_page_extent_mapped(struct page *page)
1593{
1594 struct btrfs_fs_info *fs_info;
1595
1596 ASSERT(page->mapping);
1597
1598 if (!PagePrivate(page))
1599 return;
1600
1601 fs_info = btrfs_sb(page->mapping->host->i_sb);
1602 if (btrfs_is_subpage(fs_info, page))
1603 return btrfs_detach_subpage(fs_info, page);
1604
1605 detach_page_private(page);
1606}
1607
1608static struct extent_map *
1609__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1610 u64 start, u64 len, struct extent_map **em_cached)
1611{
1612 struct extent_map *em;
1613
1614 if (em_cached && *em_cached) {
1615 em = *em_cached;
1616 if (extent_map_in_tree(em) && start >= em->start &&
1617 start < extent_map_end(em)) {
1618 refcount_inc(&em->refs);
1619 return em;
1620 }
1621
1622 free_extent_map(em);
1623 *em_cached = NULL;
1624 }
1625
1626 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
1627 if (em_cached && !IS_ERR(em)) {
1628 BUG_ON(*em_cached);
1629 refcount_inc(&em->refs);
1630 *em_cached = em;
1631 }
1632 return em;
1633}
1634/*
1635 * basic readpage implementation. Locked extent state structs are inserted
1636 * into the tree that are removed when the IO is done (by the end_io
1637 * handlers)
1638 * XXX JDM: This needs looking at to ensure proper page locking
1639 * return 0 on success, otherwise return error
1640 */
1641static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
1642 struct btrfs_bio_ctrl *bio_ctrl,
1643 blk_opf_t read_flags, u64 *prev_em_start)
1644{
1645 struct inode *inode = page->mapping->host;
1646 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1647 u64 start = page_offset(page);
1648 const u64 end = start + PAGE_SIZE - 1;
1649 u64 cur = start;
1650 u64 extent_offset;
1651 u64 last_byte = i_size_read(inode);
1652 u64 block_start;
1653 struct extent_map *em;
1654 int ret = 0;
1655 size_t pg_offset = 0;
1656 size_t iosize;
1657 size_t blocksize = inode->i_sb->s_blocksize;
1658 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1659
1660 ret = set_page_extent_mapped(page);
1661 if (ret < 0) {
1662 unlock_extent(tree, start, end, NULL);
1663 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
1664 unlock_page(page);
1665 goto out;
1666 }
1667
1668 if (page->index == last_byte >> PAGE_SHIFT) {
1669 size_t zero_offset = offset_in_page(last_byte);
1670
1671 if (zero_offset) {
1672 iosize = PAGE_SIZE - zero_offset;
1673 memzero_page(page, zero_offset, iosize);
1674 }
1675 }
1676 bio_ctrl->end_io_func = end_bio_extent_readpage;
1677 begin_page_read(fs_info, page);
1678 while (cur <= end) {
1679 unsigned long this_bio_flag = 0;
1680 bool force_bio_submit = false;
1681 u64 disk_bytenr;
1682
1683 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1684 if (cur >= last_byte) {
1685 iosize = PAGE_SIZE - pg_offset;
1686 memzero_page(page, pg_offset, iosize);
1687 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1688 end_page_read(page, true, cur, iosize);
1689 break;
1690 }
1691 em = __get_extent_map(inode, page, pg_offset, cur,
1692 end - cur + 1, em_cached);
1693 if (IS_ERR(em)) {
1694 unlock_extent(tree, cur, end, NULL);
1695 end_page_read(page, false, cur, end + 1 - cur);
1696 ret = PTR_ERR(em);
1697 break;
1698 }
1699 extent_offset = cur - em->start;
1700 BUG_ON(extent_map_end(em) <= cur);
1701 BUG_ON(end < cur);
1702
1703 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1704 this_bio_flag = em->compress_type;
1705
1706 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1707 iosize = ALIGN(iosize, blocksize);
1708 if (this_bio_flag != BTRFS_COMPRESS_NONE)
1709 disk_bytenr = em->block_start;
1710 else
1711 disk_bytenr = em->block_start + extent_offset;
1712 block_start = em->block_start;
1713 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1714 block_start = EXTENT_MAP_HOLE;
1715
1716 /*
1717 * If we have a file range that points to a compressed extent
1718 * and it's followed by a consecutive file range that points
1719 * to the same compressed extent (possibly with a different
1720 * offset and/or length, so it either points to the whole extent
1721 * or only part of it), we must make sure we do not submit a
1722 * single bio to populate the pages for the 2 ranges because
1723 * this makes the compressed extent read zero out the pages
1724 * belonging to the 2nd range. Imagine the following scenario:
1725 *
1726 * File layout
1727 * [0 - 8K] [8K - 24K]
1728 * | |
1729 * | |
1730 * points to extent X, points to extent X,
1731 * offset 4K, length of 8K offset 0, length 16K
1732 *
1733 * [extent X, compressed length = 4K uncompressed length = 16K]
1734 *
1735 * If the bio to read the compressed extent covers both ranges,
1736 * it will decompress extent X into the pages belonging to the
1737 * first range and then it will stop, zeroing out the remaining
1738 * pages that belong to the other range that points to extent X.
1739 * So here we make sure we submit 2 bios, one for the first
1740 * range and another one for the third range. Both will target
1741 * the same physical extent from disk, but we can't currently
1742 * make the compressed bio endio callback populate the pages
1743 * for both ranges because each compressed bio is tightly
1744 * coupled with a single extent map, and each range can have
1745 * an extent map with a different offset value relative to the
1746 * uncompressed data of our extent and different lengths. This
1747 * is a corner case so we prioritize correctness over
1748 * non-optimal behavior (submitting 2 bios for the same extent).
1749 */
1750 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1751 prev_em_start && *prev_em_start != (u64)-1 &&
1752 *prev_em_start != em->start)
1753 force_bio_submit = true;
1754
1755 if (prev_em_start)
1756 *prev_em_start = em->start;
1757
1758 free_extent_map(em);
1759 em = NULL;
1760
1761 /* we've found a hole, just zero and go on */
1762 if (block_start == EXTENT_MAP_HOLE) {
1763 memzero_page(page, pg_offset, iosize);
1764
1765 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1766 end_page_read(page, true, cur, iosize);
1767 cur = cur + iosize;
1768 pg_offset += iosize;
1769 continue;
1770 }
1771 /* the get_extent function already copied into the page */
1772 if (block_start == EXTENT_MAP_INLINE) {
1773 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1774 end_page_read(page, true, cur, iosize);
1775 cur = cur + iosize;
1776 pg_offset += iosize;
1777 continue;
1778 }
1779
1780 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
1781 bio_ctrl, disk_bytenr, page, iosize,
1782 pg_offset, this_bio_flag,
1783 force_bio_submit);
1784 if (ret) {
1785 /*
1786 * We have to unlock the remaining range, or the page
1787 * will never be unlocked.
1788 */
1789 unlock_extent(tree, cur, end, NULL);
1790 end_page_read(page, false, cur, end + 1 - cur);
1791 goto out;
1792 }
1793 cur = cur + iosize;
1794 pg_offset += iosize;
1795 }
1796out:
1797 return ret;
1798}
1799
1800int btrfs_read_folio(struct file *file, struct folio *folio)
1801{
1802 struct page *page = &folio->page;
1803 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1804 u64 start = page_offset(page);
1805 u64 end = start + PAGE_SIZE - 1;
1806 struct btrfs_bio_ctrl bio_ctrl = { 0 };
1807 int ret;
1808
1809 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1810
1811 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
1812 /*
1813 * If btrfs_do_readpage() failed we will want to submit the assembled
1814 * bio to do the cleanup.
1815 */
1816 submit_one_bio(&bio_ctrl);
1817 return ret;
1818}
1819
1820static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1821 u64 start, u64 end,
1822 struct extent_map **em_cached,
1823 struct btrfs_bio_ctrl *bio_ctrl,
1824 u64 *prev_em_start)
1825{
1826 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1827 int index;
1828
1829 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1830
1831 for (index = 0; index < nr_pages; index++) {
1832 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1833 REQ_RAHEAD, prev_em_start);
1834 put_page(pages[index]);
1835 }
1836}
1837
1838/*
1839 * helper for __extent_writepage, doing all of the delayed allocation setup.
1840 *
1841 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1842 * to write the page (copy into inline extent). In this case the IO has
1843 * been started and the page is already unlocked.
1844 *
1845 * This returns 0 if all went well (page still locked)
1846 * This returns < 0 if there were errors (page still locked)
1847 */
1848static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1849 struct page *page, struct writeback_control *wbc)
1850{
1851 const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
1852 u64 delalloc_start = page_offset(page);
1853 u64 delalloc_to_write = 0;
1854 /* How many pages are started by btrfs_run_delalloc_range() */
1855 unsigned long nr_written = 0;
1856 int ret;
1857 int page_started = 0;
1858
1859 while (delalloc_start < page_end) {
1860 u64 delalloc_end = page_end;
1861 bool found;
1862
1863 found = find_lock_delalloc_range(&inode->vfs_inode, page,
1864 &delalloc_start,
1865 &delalloc_end);
1866 if (!found) {
1867 delalloc_start = delalloc_end + 1;
1868 continue;
1869 }
1870 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1871 delalloc_end, &page_started, &nr_written, wbc);
1872 if (ret) {
1873 btrfs_page_set_error(inode->root->fs_info, page,
1874 page_offset(page), PAGE_SIZE);
1875 return ret;
1876 }
1877 /*
1878 * delalloc_end is already one less than the total length, so
1879 * we don't subtract one from PAGE_SIZE
1880 */
1881 delalloc_to_write += (delalloc_end - delalloc_start +
1882 PAGE_SIZE) >> PAGE_SHIFT;
1883 delalloc_start = delalloc_end + 1;
1884 }
1885 if (wbc->nr_to_write < delalloc_to_write) {
1886 int thresh = 8192;
1887
1888 if (delalloc_to_write < thresh * 2)
1889 thresh = delalloc_to_write;
1890 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1891 thresh);
1892 }
1893
1894 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */
1895 if (page_started) {
1896 /*
1897 * We've unlocked the page, so we can't update the mapping's
1898 * writeback index, just update nr_to_write.
1899 */
1900 wbc->nr_to_write -= nr_written;
1901 return 1;
1902 }
1903
1904 return 0;
1905}
1906
1907/*
1908 * Find the first byte we need to write.
1909 *
1910 * For subpage, one page can contain several sectors, and
1911 * __extent_writepage_io() will just grab all extent maps in the page
1912 * range and try to submit all non-inline/non-compressed extents.
1913 *
1914 * This is a big problem for subpage, we shouldn't re-submit already written
1915 * data at all.
1916 * This function will lookup subpage dirty bit to find which range we really
1917 * need to submit.
1918 *
1919 * Return the next dirty range in [@start, @end).
1920 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1921 */
1922static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1923 struct page *page, u64 *start, u64 *end)
1924{
1925 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1926 struct btrfs_subpage_info *spi = fs_info->subpage_info;
1927 u64 orig_start = *start;
1928 /* Declare as unsigned long so we can use bitmap ops */
1929 unsigned long flags;
1930 int range_start_bit;
1931 int range_end_bit;
1932
1933 /*
1934 * For regular sector size == page size case, since one page only
1935 * contains one sector, we return the page offset directly.
1936 */
1937 if (!btrfs_is_subpage(fs_info, page)) {
1938 *start = page_offset(page);
1939 *end = page_offset(page) + PAGE_SIZE;
1940 return;
1941 }
1942
1943 range_start_bit = spi->dirty_offset +
1944 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1945
1946 /* We should have the page locked, but just in case */
1947 spin_lock_irqsave(&subpage->lock, flags);
1948 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1949 spi->dirty_offset + spi->bitmap_nr_bits);
1950 spin_unlock_irqrestore(&subpage->lock, flags);
1951
1952 range_start_bit -= spi->dirty_offset;
1953 range_end_bit -= spi->dirty_offset;
1954
1955 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1956 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1957}
1958
1959/*
1960 * helper for __extent_writepage. This calls the writepage start hooks,
1961 * and does the loop to map the page into extents and bios.
1962 *
1963 * We return 1 if the IO is started and the page is unlocked,
1964 * 0 if all went well (page still locked)
1965 * < 0 if there were errors (page still locked)
1966 */
1967static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1968 struct page *page,
1969 struct writeback_control *wbc,
1970 struct btrfs_bio_ctrl *bio_ctrl,
1971 loff_t i_size,
1972 int *nr_ret)
1973{
1974 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1975 u64 cur = page_offset(page);
1976 u64 end = cur + PAGE_SIZE - 1;
1977 u64 extent_offset;
1978 u64 block_start;
1979 struct extent_map *em;
1980 int saved_ret = 0;
1981 int ret = 0;
1982 int nr = 0;
1983 enum req_op op = REQ_OP_WRITE;
1984 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1985 bool has_error = false;
1986 bool compressed;
1987
1988 ret = btrfs_writepage_cow_fixup(page);
1989 if (ret) {
1990 /* Fixup worker will requeue */
1991 redirty_page_for_writepage(wbc, page);
1992 unlock_page(page);
1993 return 1;
1994 }
1995
1996 /*
1997 * we don't want to touch the inode after unlocking the page,
1998 * so we update the mapping writeback index now
1999 */
2000 wbc->nr_to_write--;
2001
2002 bio_ctrl->end_io_func = end_bio_extent_writepage;
2003 while (cur <= end) {
2004 u64 disk_bytenr;
2005 u64 em_end;
2006 u64 dirty_range_start = cur;
2007 u64 dirty_range_end;
2008 u32 iosize;
2009
2010 if (cur >= i_size) {
2011 btrfs_writepage_endio_finish_ordered(inode, page, cur,
2012 end, true);
2013 /*
2014 * This range is beyond i_size, thus we don't need to
2015 * bother writing back.
2016 * But we still need to clear the dirty subpage bit, or
2017 * the next time the page gets dirtied, we will try to
2018 * writeback the sectors with subpage dirty bits,
2019 * causing writeback without ordered extent.
2020 */
2021 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
2022 break;
2023 }
2024
2025 find_next_dirty_byte(fs_info, page, &dirty_range_start,
2026 &dirty_range_end);
2027 if (cur < dirty_range_start) {
2028 cur = dirty_range_start;
2029 continue;
2030 }
2031
2032 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
2033 if (IS_ERR(em)) {
2034 btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
2035 ret = PTR_ERR_OR_ZERO(em);
2036 has_error = true;
2037 if (!saved_ret)
2038 saved_ret = ret;
2039 break;
2040 }
2041
2042 extent_offset = cur - em->start;
2043 em_end = extent_map_end(em);
2044 ASSERT(cur <= em_end);
2045 ASSERT(cur < end);
2046 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
2047 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
2048 block_start = em->block_start;
2049 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2050 disk_bytenr = em->block_start + extent_offset;
2051
2052 /*
2053 * Note that em_end from extent_map_end() and dirty_range_end from
2054 * find_next_dirty_byte() are all exclusive
2055 */
2056 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
2057
2058 if (btrfs_use_zone_append(inode, em->block_start))
2059 op = REQ_OP_ZONE_APPEND;
2060
2061 free_extent_map(em);
2062 em = NULL;
2063
2064 /*
2065 * compressed and inline extents are written through other
2066 * paths in the FS
2067 */
2068 if (compressed || block_start == EXTENT_MAP_HOLE ||
2069 block_start == EXTENT_MAP_INLINE) {
2070 if (compressed)
2071 nr++;
2072 else
2073 btrfs_writepage_endio_finish_ordered(inode,
2074 page, cur, cur + iosize - 1, true);
2075 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
2076 cur += iosize;
2077 continue;
2078 }
2079
2080 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
2081 if (!PageWriteback(page)) {
2082 btrfs_err(inode->root->fs_info,
2083 "page %lu not writeback, cur %llu end %llu",
2084 page->index, cur, end);
2085 }
2086
2087 /*
2088 * Although the PageDirty bit is cleared before entering this
2089 * function, subpage dirty bit is not cleared.
2090 * So clear subpage dirty bit here so next time we won't submit
2091 * page for range already written to disk.
2092 */
2093 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
2094
2095 ret = submit_extent_page(op | write_flags, wbc,
2096 bio_ctrl, disk_bytenr,
2097 page, iosize,
2098 cur - page_offset(page),
2099 0, false);
2100 if (ret) {
2101 has_error = true;
2102 if (!saved_ret)
2103 saved_ret = ret;
2104
2105 btrfs_page_set_error(fs_info, page, cur, iosize);
2106 if (PageWriteback(page))
2107 btrfs_page_clear_writeback(fs_info, page, cur,
2108 iosize);
2109 }
2110
2111 cur += iosize;
2112 nr++;
2113 }
2114 /*
2115 * If we finish without problem, we should not only clear page dirty,
2116 * but also empty subpage dirty bits
2117 */
2118 if (!has_error)
2119 btrfs_page_assert_not_dirty(fs_info, page);
2120 else
2121 ret = saved_ret;
2122 *nr_ret = nr;
2123 return ret;
2124}
2125
2126/*
2127 * the writepage semantics are similar to regular writepage. extent
2128 * records are inserted to lock ranges in the tree, and as dirty areas
2129 * are found, they are marked writeback. Then the lock bits are removed
2130 * and the end_io handler clears the writeback ranges
2131 *
2132 * Return 0 if everything goes well.
2133 * Return <0 for error.
2134 */
2135static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2136 struct btrfs_bio_ctrl *bio_ctrl)
2137{
2138 struct folio *folio = page_folio(page);
2139 struct inode *inode = page->mapping->host;
2140 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2141 const u64 page_start = page_offset(page);
2142 const u64 page_end = page_start + PAGE_SIZE - 1;
2143 int ret;
2144 int nr = 0;
2145 size_t pg_offset;
2146 loff_t i_size = i_size_read(inode);
2147 unsigned long end_index = i_size >> PAGE_SHIFT;
2148
2149 trace___extent_writepage(page, inode, wbc);
2150
2151 WARN_ON(!PageLocked(page));
2152
2153 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
2154 page_offset(page), PAGE_SIZE);
2155
2156 pg_offset = offset_in_page(i_size);
2157 if (page->index > end_index ||
2158 (page->index == end_index && !pg_offset)) {
2159 folio_invalidate(folio, 0, folio_size(folio));
2160 folio_unlock(folio);
2161 return 0;
2162 }
2163
2164 if (page->index == end_index)
2165 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
2166
2167 ret = set_page_extent_mapped(page);
2168 if (ret < 0) {
2169 SetPageError(page);
2170 goto done;
2171 }
2172
2173 if (!bio_ctrl->extent_locked) {
2174 ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
2175 if (ret == 1)
2176 return 0;
2177 if (ret)
2178 goto done;
2179 }
2180
2181 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, bio_ctrl, i_size,
2182 &nr);
2183 if (ret == 1)
2184 return 0;
2185
2186done:
2187 if (nr == 0) {
2188 /* make sure the mapping tag for page dirty gets cleared */
2189 set_page_writeback(page);
2190 end_page_writeback(page);
2191 }
2192 /*
2193 * Here we used to have a check for PageError() and then set @ret and
2194 * call end_extent_writepage().
2195 *
2196 * But in fact setting @ret here will cause different error paths
2197 * between subpage and regular sectorsize.
2198 *
2199 * For regular page size, we never submit current page, but only add
2200 * current page to current bio.
2201 * The bio submission can only happen in next page.
2202 * Thus if we hit the PageError() branch, @ret is already set to
2203 * non-zero value and will not get updated for regular sectorsize.
2204 *
2205 * But for subpage case, it's possible we submit part of current page,
2206 * thus can get PageError() set by submitted bio of the same page,
2207 * while our @ret is still 0.
2208 *
2209 * So here we unify the behavior and don't set @ret.
2210 * Error can still be properly passed to higher layer as page will
2211 * be set error, here we just don't handle the IO failure.
2212 *
2213 * NOTE: This is just a hotfix for subpage.
2214 * The root fix will be properly ending ordered extent when we hit
2215 * an error during writeback.
2216 *
2217 * But that needs a bigger refactoring, as we not only need to grab the
2218 * submitted OE, but also need to know exactly at which bytenr we hit
2219 * the error.
2220 * Currently the full page based __extent_writepage_io() is not
2221 * capable of that.
2222 */
2223 if (PageError(page))
2224 end_extent_writepage(page, ret, page_start, page_end);
2225 if (bio_ctrl->extent_locked) {
2226 /*
2227 * If bio_ctrl->extent_locked, it's from extent_write_locked_range(),
2228 * the page can either be locked by lock_page() or
2229 * process_one_page().
2230 * Let btrfs_page_unlock_writer() handle both cases.
2231 */
2232 ASSERT(wbc);
2233 btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
2234 wbc->range_end + 1 - wbc->range_start);
2235 } else {
2236 unlock_page(page);
2237 }
2238 ASSERT(ret <= 0);
2239 return ret;
2240}
2241
2242void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
2243{
2244 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
2245 TASK_UNINTERRUPTIBLE);
2246}
2247
2248static void end_extent_buffer_writeback(struct extent_buffer *eb)
2249{
2250 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2251 smp_mb__after_atomic();
2252 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
2253}
2254
2255/*
2256 * Lock extent buffer status and pages for writeback.
2257 *
2258 * May try to flush write bio if we can't get the lock.
2259 *
2260 * Return 0 if the extent buffer doesn't need to be submitted.
2261 * (E.g. the extent buffer is not dirty)
2262 * Return >0 is the extent buffer is submitted to bio.
2263 * Return <0 if something went wrong, no page is locked.
2264 */
2265static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
2266 struct btrfs_bio_ctrl *bio_ctrl)
2267{
2268 struct btrfs_fs_info *fs_info = eb->fs_info;
2269 int i, num_pages;
2270 int flush = 0;
2271 int ret = 0;
2272
2273 if (!btrfs_try_tree_write_lock(eb)) {
2274 submit_write_bio(bio_ctrl, 0);
2275 flush = 1;
2276 btrfs_tree_lock(eb);
2277 }
2278
2279 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
2280 btrfs_tree_unlock(eb);
2281 if (!bio_ctrl->sync_io)
2282 return 0;
2283 if (!flush) {
2284 submit_write_bio(bio_ctrl, 0);
2285 flush = 1;
2286 }
2287 while (1) {
2288 wait_on_extent_buffer_writeback(eb);
2289 btrfs_tree_lock(eb);
2290 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
2291 break;
2292 btrfs_tree_unlock(eb);
2293 }
2294 }
2295
2296 /*
2297 * We need to do this to prevent races in people who check if the eb is
2298 * under IO since we can end up having no IO bits set for a short period
2299 * of time.
2300 */
2301 spin_lock(&eb->refs_lock);
2302 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2303 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2304 spin_unlock(&eb->refs_lock);
2305 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2306 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2307 -eb->len,
2308 fs_info->dirty_metadata_batch);
2309 ret = 1;
2310 } else {
2311 spin_unlock(&eb->refs_lock);
2312 }
2313
2314 btrfs_tree_unlock(eb);
2315
2316 /*
2317 * Either we don't need to submit any tree block, or we're submitting
2318 * subpage eb.
2319 * Subpage metadata doesn't use page locking at all, so we can skip
2320 * the page locking.
2321 */
2322 if (!ret || fs_info->nodesize < PAGE_SIZE)
2323 return ret;
2324
2325 num_pages = num_extent_pages(eb);
2326 for (i = 0; i < num_pages; i++) {
2327 struct page *p = eb->pages[i];
2328
2329 if (!trylock_page(p)) {
2330 if (!flush) {
2331 submit_write_bio(bio_ctrl, 0);
2332 flush = 1;
2333 }
2334 lock_page(p);
2335 }
2336 }
2337
2338 return ret;
2339}
2340
2341static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
2342{
2343 struct btrfs_fs_info *fs_info = eb->fs_info;
2344
2345 btrfs_page_set_error(fs_info, page, eb->start, eb->len);
2346 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
2347 return;
2348
2349 /*
2350 * A read may stumble upon this buffer later, make sure that it gets an
2351 * error and knows there was an error.
2352 */
2353 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
2354
2355 /*
2356 * We need to set the mapping with the io error as well because a write
2357 * error will flip the file system readonly, and then syncfs() will
2358 * return a 0 because we are readonly if we don't modify the err seq for
2359 * the superblock.
2360 */
2361 mapping_set_error(page->mapping, -EIO);
2362
2363 /*
2364 * If we error out, we should add back the dirty_metadata_bytes
2365 * to make it consistent.
2366 */
2367 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2368 eb->len, fs_info->dirty_metadata_batch);
2369
2370 /*
2371 * If writeback for a btree extent that doesn't belong to a log tree
2372 * failed, increment the counter transaction->eb_write_errors.
2373 * We do this because while the transaction is running and before it's
2374 * committing (when we call filemap_fdata[write|wait]_range against
2375 * the btree inode), we might have
2376 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
2377 * returns an error or an error happens during writeback, when we're
2378 * committing the transaction we wouldn't know about it, since the pages
2379 * can be no longer dirty nor marked anymore for writeback (if a
2380 * subsequent modification to the extent buffer didn't happen before the
2381 * transaction commit), which makes filemap_fdata[write|wait]_range not
2382 * able to find the pages tagged with SetPageError at transaction
2383 * commit time. So if this happens we must abort the transaction,
2384 * otherwise we commit a super block with btree roots that point to
2385 * btree nodes/leafs whose content on disk is invalid - either garbage
2386 * or the content of some node/leaf from a past generation that got
2387 * cowed or deleted and is no longer valid.
2388 *
2389 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
2390 * not be enough - we need to distinguish between log tree extents vs
2391 * non-log tree extents, and the next filemap_fdatawait_range() call
2392 * will catch and clear such errors in the mapping - and that call might
2393 * be from a log sync and not from a transaction commit. Also, checking
2394 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
2395 * not done and would not be reliable - the eb might have been released
2396 * from memory and reading it back again means that flag would not be
2397 * set (since it's a runtime flag, not persisted on disk).
2398 *
2399 * Using the flags below in the btree inode also makes us achieve the
2400 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
2401 * writeback for all dirty pages and before filemap_fdatawait_range()
2402 * is called, the writeback for all dirty pages had already finished
2403 * with errors - because we were not using AS_EIO/AS_ENOSPC,
2404 * filemap_fdatawait_range() would return success, as it could not know
2405 * that writeback errors happened (the pages were no longer tagged for
2406 * writeback).
2407 */
2408 switch (eb->log_index) {
2409 case -1:
2410 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
2411 break;
2412 case 0:
2413 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2414 break;
2415 case 1:
2416 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2417 break;
2418 default:
2419 BUG(); /* unexpected, logic error */
2420 }
2421}
2422
2423/*
2424 * The endio specific version which won't touch any unsafe spinlock in endio
2425 * context.
2426 */
2427static struct extent_buffer *find_extent_buffer_nolock(
2428 struct btrfs_fs_info *fs_info, u64 start)
2429{
2430 struct extent_buffer *eb;
2431
2432 rcu_read_lock();
2433 eb = radix_tree_lookup(&fs_info->buffer_radix,
2434 start >> fs_info->sectorsize_bits);
2435 if (eb && atomic_inc_not_zero(&eb->refs)) {
2436 rcu_read_unlock();
2437 return eb;
2438 }
2439 rcu_read_unlock();
2440 return NULL;
2441}
2442
2443/*
2444 * The endio function for subpage extent buffer write.
2445 *
2446 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
2447 * after all extent buffers in the page has finished their writeback.
2448 */
2449static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio)
2450{
2451 struct bio *bio = &bbio->bio;
2452 struct btrfs_fs_info *fs_info;
2453 struct bio_vec *bvec;
2454 struct bvec_iter_all iter_all;
2455
2456 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
2457 ASSERT(fs_info->nodesize < PAGE_SIZE);
2458
2459 ASSERT(!bio_flagged(bio, BIO_CLONED));
2460 bio_for_each_segment_all(bvec, bio, iter_all) {
2461 struct page *page = bvec->bv_page;
2462 u64 bvec_start = page_offset(page) + bvec->bv_offset;
2463 u64 bvec_end = bvec_start + bvec->bv_len - 1;
2464 u64 cur_bytenr = bvec_start;
2465
2466 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
2467
2468 /* Iterate through all extent buffers in the range */
2469 while (cur_bytenr <= bvec_end) {
2470 struct extent_buffer *eb;
2471 int done;
2472
2473 /*
2474 * Here we can't use find_extent_buffer(), as it may
2475 * try to lock eb->refs_lock, which is not safe in endio
2476 * context.
2477 */
2478 eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
2479 ASSERT(eb);
2480
2481 cur_bytenr = eb->start + eb->len;
2482
2483 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
2484 done = atomic_dec_and_test(&eb->io_pages);
2485 ASSERT(done);
2486
2487 if (bio->bi_status ||
2488 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
2489 ClearPageUptodate(page);
2490 set_btree_ioerr(page, eb);
2491 }
2492
2493 btrfs_subpage_clear_writeback(fs_info, page, eb->start,
2494 eb->len);
2495 end_extent_buffer_writeback(eb);
2496 /*
2497 * free_extent_buffer() will grab spinlock which is not
2498 * safe in endio context. Thus here we manually dec
2499 * the ref.
2500 */
2501 atomic_dec(&eb->refs);
2502 }
2503 }
2504 bio_put(bio);
2505}
2506
2507static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio)
2508{
2509 struct bio *bio = &bbio->bio;
2510 struct bio_vec *bvec;
2511 struct extent_buffer *eb;
2512 int done;
2513 struct bvec_iter_all iter_all;
2514
2515 ASSERT(!bio_flagged(bio, BIO_CLONED));
2516 bio_for_each_segment_all(bvec, bio, iter_all) {
2517 struct page *page = bvec->bv_page;
2518
2519 eb = (struct extent_buffer *)page->private;
2520 BUG_ON(!eb);
2521 done = atomic_dec_and_test(&eb->io_pages);
2522
2523 if (bio->bi_status ||
2524 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
2525 ClearPageUptodate(page);
2526 set_btree_ioerr(page, eb);
2527 }
2528
2529 end_page_writeback(page);
2530
2531 if (!done)
2532 continue;
2533
2534 end_extent_buffer_writeback(eb);
2535 }
2536
2537 bio_put(bio);
2538}
2539
2540static void prepare_eb_write(struct extent_buffer *eb)
2541{
2542 u32 nritems;
2543 unsigned long start;
2544 unsigned long end;
2545
2546 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
2547 atomic_set(&eb->io_pages, num_extent_pages(eb));
2548
2549 /* Set btree blocks beyond nritems with 0 to avoid stale content */
2550 nritems = btrfs_header_nritems(eb);
2551 if (btrfs_header_level(eb) > 0) {
2552 end = btrfs_node_key_ptr_offset(eb, nritems);
2553 memzero_extent_buffer(eb, end, eb->len - end);
2554 } else {
2555 /*
2556 * Leaf:
2557 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
2558 */
2559 start = btrfs_item_nr_offset(eb, nritems);
2560 end = btrfs_item_nr_offset(eb, 0);
2561 if (nritems == 0)
2562 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
2563 else
2564 end += btrfs_item_offset(eb, nritems - 1);
2565 memzero_extent_buffer(eb, start, end - start);
2566 }
2567}
2568
2569/*
2570 * Unlike the work in write_one_eb(), we rely completely on extent locking.
2571 * Page locking is only utilized at minimum to keep the VMM code happy.
2572 */
2573static int write_one_subpage_eb(struct extent_buffer *eb,
2574 struct writeback_control *wbc,
2575 struct btrfs_bio_ctrl *bio_ctrl)
2576{
2577 struct btrfs_fs_info *fs_info = eb->fs_info;
2578 struct page *page = eb->pages[0];
2579 blk_opf_t write_flags = wbc_to_write_flags(wbc);
2580 bool no_dirty_ebs = false;
2581 int ret;
2582
2583 prepare_eb_write(eb);
2584
2585 /* clear_page_dirty_for_io() in subpage helper needs page locked */
2586 lock_page(page);
2587 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
2588
2589 /* Check if this is the last dirty bit to update nr_written */
2590 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
2591 eb->start, eb->len);
2592 if (no_dirty_ebs)
2593 clear_page_dirty_for_io(page);
2594
2595 bio_ctrl->end_io_func = end_bio_subpage_eb_writepage;
2596
2597 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
2598 bio_ctrl, eb->start, page, eb->len,
2599 eb->start - page_offset(page), 0, false);
2600 if (ret) {
2601 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
2602 set_btree_ioerr(page, eb);
2603 unlock_page(page);
2604
2605 if (atomic_dec_and_test(&eb->io_pages))
2606 end_extent_buffer_writeback(eb);
2607 return -EIO;
2608 }
2609 unlock_page(page);
2610 /*
2611 * Submission finished without problem, if no range of the page is
2612 * dirty anymore, we have submitted a page. Update nr_written in wbc.
2613 */
2614 if (no_dirty_ebs)
2615 wbc->nr_to_write--;
2616 return ret;
2617}
2618
2619static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
2620 struct writeback_control *wbc,
2621 struct btrfs_bio_ctrl *bio_ctrl)
2622{
2623 u64 disk_bytenr = eb->start;
2624 int i, num_pages;
2625 blk_opf_t write_flags = wbc_to_write_flags(wbc);
2626 int ret = 0;
2627
2628 prepare_eb_write(eb);
2629
2630 bio_ctrl->end_io_func = end_bio_extent_buffer_writepage;
2631
2632 num_pages = num_extent_pages(eb);
2633 for (i = 0; i < num_pages; i++) {
2634 struct page *p = eb->pages[i];
2635
2636 clear_page_dirty_for_io(p);
2637 set_page_writeback(p);
2638 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
2639 bio_ctrl, disk_bytenr, p,
2640 PAGE_SIZE, 0, 0, false);
2641 if (ret) {
2642 set_btree_ioerr(p, eb);
2643 if (PageWriteback(p))
2644 end_page_writeback(p);
2645 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
2646 end_extent_buffer_writeback(eb);
2647 ret = -EIO;
2648 break;
2649 }
2650 disk_bytenr += PAGE_SIZE;
2651 wbc->nr_to_write--;
2652 unlock_page(p);
2653 }
2654
2655 if (unlikely(ret)) {
2656 for (; i < num_pages; i++) {
2657 struct page *p = eb->pages[i];
2658 clear_page_dirty_for_io(p);
2659 unlock_page(p);
2660 }
2661 }
2662
2663 return ret;
2664}
2665
2666/*
2667 * Submit one subpage btree page.
2668 *
2669 * The main difference to submit_eb_page() is:
2670 * - Page locking
2671 * For subpage, we don't rely on page locking at all.
2672 *
2673 * - Flush write bio
2674 * We only flush bio if we may be unable to fit current extent buffers into
2675 * current bio.
2676 *
2677 * Return >=0 for the number of submitted extent buffers.
2678 * Return <0 for fatal error.
2679 */
2680static int submit_eb_subpage(struct page *page,
2681 struct writeback_control *wbc,
2682 struct btrfs_bio_ctrl *bio_ctrl)
2683{
2684 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2685 int submitted = 0;
2686 u64 page_start = page_offset(page);
2687 int bit_start = 0;
2688 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
2689 int ret;
2690
2691 /* Lock and write each dirty extent buffers in the range */
2692 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
2693 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
2694 struct extent_buffer *eb;
2695 unsigned long flags;
2696 u64 start;
2697
2698 /*
2699 * Take private lock to ensure the subpage won't be detached
2700 * in the meantime.
2701 */
2702 spin_lock(&page->mapping->private_lock);
2703 if (!PagePrivate(page)) {
2704 spin_unlock(&page->mapping->private_lock);
2705 break;
2706 }
2707 spin_lock_irqsave(&subpage->lock, flags);
2708 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
2709 subpage->bitmaps)) {
2710 spin_unlock_irqrestore(&subpage->lock, flags);
2711 spin_unlock(&page->mapping->private_lock);
2712 bit_start++;
2713 continue;
2714 }
2715
2716 start = page_start + bit_start * fs_info->sectorsize;
2717 bit_start += sectors_per_node;
2718
2719 /*
2720 * Here we just want to grab the eb without touching extra
2721 * spin locks, so call find_extent_buffer_nolock().
2722 */
2723 eb = find_extent_buffer_nolock(fs_info, start);
2724 spin_unlock_irqrestore(&subpage->lock, flags);
2725 spin_unlock(&page->mapping->private_lock);
2726
2727 /*
2728 * The eb has already reached 0 refs thus find_extent_buffer()
2729 * doesn't return it. We don't need to write back such eb
2730 * anyway.
2731 */
2732 if (!eb)
2733 continue;
2734
2735 ret = lock_extent_buffer_for_io(eb, bio_ctrl);
2736 if (ret == 0) {
2737 free_extent_buffer(eb);
2738 continue;
2739 }
2740 if (ret < 0) {
2741 free_extent_buffer(eb);
2742 goto cleanup;
2743 }
2744 ret = write_one_subpage_eb(eb, wbc, bio_ctrl);
2745 free_extent_buffer(eb);
2746 if (ret < 0)
2747 goto cleanup;
2748 submitted++;
2749 }
2750 return submitted;
2751
2752cleanup:
2753 /* We hit error, end bio for the submitted extent buffers */
2754 submit_write_bio(bio_ctrl, ret);
2755 return ret;
2756}
2757
2758/*
2759 * Submit all page(s) of one extent buffer.
2760 *
2761 * @page: the page of one extent buffer
2762 * @eb_context: to determine if we need to submit this page, if current page
2763 * belongs to this eb, we don't need to submit
2764 *
2765 * The caller should pass each page in their bytenr order, and here we use
2766 * @eb_context to determine if we have submitted pages of one extent buffer.
2767 *
2768 * If we have, we just skip until we hit a new page that doesn't belong to
2769 * current @eb_context.
2770 *
2771 * If not, we submit all the page(s) of the extent buffer.
2772 *
2773 * Return >0 if we have submitted the extent buffer successfully.
2774 * Return 0 if we don't need to submit the page, as it's already submitted by
2775 * previous call.
2776 * Return <0 for fatal error.
2777 */
2778static int submit_eb_page(struct page *page, struct writeback_control *wbc,
2779 struct btrfs_bio_ctrl *bio_ctrl,
2780 struct extent_buffer **eb_context)
2781{
2782 struct address_space *mapping = page->mapping;
2783 struct btrfs_block_group *cache = NULL;
2784 struct extent_buffer *eb;
2785 int ret;
2786
2787 if (!PagePrivate(page))
2788 return 0;
2789
2790 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
2791 return submit_eb_subpage(page, wbc, bio_ctrl);
2792
2793 spin_lock(&mapping->private_lock);
2794 if (!PagePrivate(page)) {
2795 spin_unlock(&mapping->private_lock);
2796 return 0;
2797 }
2798
2799 eb = (struct extent_buffer *)page->private;
2800
2801 /*
2802 * Shouldn't happen and normally this would be a BUG_ON but no point
2803 * crashing the machine for something we can survive anyway.
2804 */
2805 if (WARN_ON(!eb)) {
2806 spin_unlock(&mapping->private_lock);
2807 return 0;
2808 }
2809
2810 if (eb == *eb_context) {
2811 spin_unlock(&mapping->private_lock);
2812 return 0;
2813 }
2814 ret = atomic_inc_not_zero(&eb->refs);
2815 spin_unlock(&mapping->private_lock);
2816 if (!ret)
2817 return 0;
2818
2819 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
2820 /*
2821 * If for_sync, this hole will be filled with
2822 * trasnsaction commit.
2823 */
2824 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
2825 ret = -EAGAIN;
2826 else
2827 ret = 0;
2828 free_extent_buffer(eb);
2829 return ret;
2830 }
2831
2832 *eb_context = eb;
2833
2834 ret = lock_extent_buffer_for_io(eb, bio_ctrl);
2835 if (ret <= 0) {
2836 btrfs_revert_meta_write_pointer(cache, eb);
2837 if (cache)
2838 btrfs_put_block_group(cache);
2839 free_extent_buffer(eb);
2840 return ret;
2841 }
2842 if (cache) {
2843 /*
2844 * Implies write in zoned mode. Mark the last eb in a block group.
2845 */
2846 btrfs_schedule_zone_finish_bg(cache, eb);
2847 btrfs_put_block_group(cache);
2848 }
2849 ret = write_one_eb(eb, wbc, bio_ctrl);
2850 free_extent_buffer(eb);
2851 if (ret < 0)
2852 return ret;
2853 return 1;
2854}
2855
2856int btree_write_cache_pages(struct address_space *mapping,
2857 struct writeback_control *wbc)
2858{
2859 struct extent_buffer *eb_context = NULL;
2860 struct btrfs_bio_ctrl bio_ctrl = {
2861 .extent_locked = 0,
2862 .sync_io = (wbc->sync_mode == WB_SYNC_ALL),
2863 };
2864 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
2865 int ret = 0;
2866 int done = 0;
2867 int nr_to_write_done = 0;
2868 struct pagevec pvec;
2869 int nr_pages;
2870 pgoff_t index;
2871 pgoff_t end; /* Inclusive */
2872 int scanned = 0;
2873 xa_mark_t tag;
2874
2875 pagevec_init(&pvec);
2876 if (wbc->range_cyclic) {
2877 index = mapping->writeback_index; /* Start from prev offset */
2878 end = -1;
2879 /*
2880 * Start from the beginning does not need to cycle over the
2881 * range, mark it as scanned.
2882 */
2883 scanned = (index == 0);
2884 } else {
2885 index = wbc->range_start >> PAGE_SHIFT;
2886 end = wbc->range_end >> PAGE_SHIFT;
2887 scanned = 1;
2888 }
2889 if (wbc->sync_mode == WB_SYNC_ALL)
2890 tag = PAGECACHE_TAG_TOWRITE;
2891 else
2892 tag = PAGECACHE_TAG_DIRTY;
2893 btrfs_zoned_meta_io_lock(fs_info);
2894retry:
2895 if (wbc->sync_mode == WB_SYNC_ALL)
2896 tag_pages_for_writeback(mapping, index, end);
2897 while (!done && !nr_to_write_done && (index <= end) &&
2898 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2899 tag))) {
2900 unsigned i;
2901
2902 for (i = 0; i < nr_pages; i++) {
2903 struct page *page = pvec.pages[i];
2904
2905 ret = submit_eb_page(page, wbc, &bio_ctrl, &eb_context);
2906 if (ret == 0)
2907 continue;
2908 if (ret < 0) {
2909 done = 1;
2910 break;
2911 }
2912
2913 /*
2914 * the filesystem may choose to bump up nr_to_write.
2915 * We have to make sure to honor the new nr_to_write
2916 * at any time
2917 */
2918 nr_to_write_done = wbc->nr_to_write <= 0;
2919 }
2920 pagevec_release(&pvec);
2921 cond_resched();
2922 }
2923 if (!scanned && !done) {
2924 /*
2925 * We hit the last page and there is more work to be done: wrap
2926 * back to the start of the file
2927 */
2928 scanned = 1;
2929 index = 0;
2930 goto retry;
2931 }
2932 /*
2933 * If something went wrong, don't allow any metadata write bio to be
2934 * submitted.
2935 *
2936 * This would prevent use-after-free if we had dirty pages not
2937 * cleaned up, which can still happen by fuzzed images.
2938 *
2939 * - Bad extent tree
2940 * Allowing existing tree block to be allocated for other trees.
2941 *
2942 * - Log tree operations
2943 * Exiting tree blocks get allocated to log tree, bumps its
2944 * generation, then get cleaned in tree re-balance.
2945 * Such tree block will not be written back, since it's clean,
2946 * thus no WRITTEN flag set.
2947 * And after log writes back, this tree block is not traced by
2948 * any dirty extent_io_tree.
2949 *
2950 * - Offending tree block gets re-dirtied from its original owner
2951 * Since it has bumped generation, no WRITTEN flag, it can be
2952 * reused without COWing. This tree block will not be traced
2953 * by btrfs_transaction::dirty_pages.
2954 *
2955 * Now such dirty tree block will not be cleaned by any dirty
2956 * extent io tree. Thus we don't want to submit such wild eb
2957 * if the fs already has error.
2958 *
2959 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2960 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2961 */
2962 if (ret > 0)
2963 ret = 0;
2964 if (!ret && BTRFS_FS_ERROR(fs_info))
2965 ret = -EROFS;
2966 submit_write_bio(&bio_ctrl, ret);
2967
2968 btrfs_zoned_meta_io_unlock(fs_info);
2969 return ret;
2970}
2971
2972/*
2973 * Walk the list of dirty pages of the given address space and write all of them.
2974 *
2975 * @mapping: address space structure to write
2976 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2977 * @bio_ctrl: holds context for the write, namely the bio
2978 *
2979 * If a page is already under I/O, write_cache_pages() skips it, even
2980 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2981 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2982 * and msync() need to guarantee that all the data which was dirty at the time
2983 * the call was made get new I/O started against them. If wbc->sync_mode is
2984 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2985 * existing IO to complete.
2986 */
2987static int extent_write_cache_pages(struct address_space *mapping,
2988 struct writeback_control *wbc,
2989 struct btrfs_bio_ctrl *bio_ctrl)
2990{
2991 struct inode *inode = mapping->host;
2992 int ret = 0;
2993 int done = 0;
2994 int nr_to_write_done = 0;
2995 struct pagevec pvec;
2996 int nr_pages;
2997 pgoff_t index;
2998 pgoff_t end; /* Inclusive */
2999 pgoff_t done_index;
3000 int range_whole = 0;
3001 int scanned = 0;
3002 xa_mark_t tag;
3003
3004 /*
3005 * We have to hold onto the inode so that ordered extents can do their
3006 * work when the IO finishes. The alternative to this is failing to add
3007 * an ordered extent if the igrab() fails there and that is a huge pain
3008 * to deal with, so instead just hold onto the inode throughout the
3009 * writepages operation. If it fails here we are freeing up the inode
3010 * anyway and we'd rather not waste our time writing out stuff that is
3011 * going to be truncated anyway.
3012 */
3013 if (!igrab(inode))
3014 return 0;
3015
3016 pagevec_init(&pvec);
3017 if (wbc->range_cyclic) {
3018 index = mapping->writeback_index; /* Start from prev offset */
3019 end = -1;
3020 /*
3021 * Start from the beginning does not need to cycle over the
3022 * range, mark it as scanned.
3023 */
3024 scanned = (index == 0);
3025 } else {
3026 index = wbc->range_start >> PAGE_SHIFT;
3027 end = wbc->range_end >> PAGE_SHIFT;
3028 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3029 range_whole = 1;
3030 scanned = 1;
3031 }
3032
3033 /*
3034 * We do the tagged writepage as long as the snapshot flush bit is set
3035 * and we are the first one who do the filemap_flush() on this inode.
3036 *
3037 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3038 * not race in and drop the bit.
3039 */
3040 if (range_whole && wbc->nr_to_write == LONG_MAX &&
3041 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3042 &BTRFS_I(inode)->runtime_flags))
3043 wbc->tagged_writepages = 1;
3044
3045 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3046 tag = PAGECACHE_TAG_TOWRITE;
3047 else
3048 tag = PAGECACHE_TAG_DIRTY;
3049retry:
3050 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3051 tag_pages_for_writeback(mapping, index, end);
3052 done_index = index;
3053 while (!done && !nr_to_write_done && (index <= end) &&
3054 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3055 &index, end, tag))) {
3056 unsigned i;
3057
3058 for (i = 0; i < nr_pages; i++) {
3059 struct page *page = pvec.pages[i];
3060
3061 done_index = page->index + 1;
3062 /*
3063 * At this point we hold neither the i_pages lock nor
3064 * the page lock: the page may be truncated or
3065 * invalidated (changing page->mapping to NULL),
3066 * or even swizzled back from swapper_space to
3067 * tmpfs file mapping
3068 */
3069 if (!trylock_page(page)) {
3070 submit_write_bio(bio_ctrl, 0);
3071 lock_page(page);
3072 }
3073
3074 if (unlikely(page->mapping != mapping)) {
3075 unlock_page(page);
3076 continue;
3077 }
3078
3079 if (wbc->sync_mode != WB_SYNC_NONE) {
3080 if (PageWriteback(page))
3081 submit_write_bio(bio_ctrl, 0);
3082 wait_on_page_writeback(page);
3083 }
3084
3085 if (PageWriteback(page) ||
3086 !clear_page_dirty_for_io(page)) {
3087 unlock_page(page);
3088 continue;
3089 }
3090
3091 ret = __extent_writepage(page, wbc, bio_ctrl);
3092 if (ret < 0) {
3093 done = 1;
3094 break;
3095 }
3096
3097 /*
3098 * the filesystem may choose to bump up nr_to_write.
3099 * We have to make sure to honor the new nr_to_write
3100 * at any time
3101 */
3102 nr_to_write_done = wbc->nr_to_write <= 0;
3103 }
3104 pagevec_release(&pvec);
3105 cond_resched();
3106 }
3107 if (!scanned && !done) {
3108 /*
3109 * We hit the last page and there is more work to be done: wrap
3110 * back to the start of the file
3111 */
3112 scanned = 1;
3113 index = 0;
3114
3115 /*
3116 * If we're looping we could run into a page that is locked by a
3117 * writer and that writer could be waiting on writeback for a
3118 * page in our current bio, and thus deadlock, so flush the
3119 * write bio here.
3120 */
3121 submit_write_bio(bio_ctrl, 0);
3122 goto retry;
3123 }
3124
3125 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
3126 mapping->writeback_index = done_index;
3127
3128 btrfs_add_delayed_iput(BTRFS_I(inode));
3129 return ret;
3130}
3131
3132/*
3133 * Submit the pages in the range to bio for call sites which delalloc range has
3134 * already been ran (aka, ordered extent inserted) and all pages are still
3135 * locked.
3136 */
3137int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
3138{
3139 bool found_error = false;
3140 int first_error = 0;
3141 int ret = 0;
3142 struct address_space *mapping = inode->i_mapping;
3143 struct page *page;
3144 u64 cur = start;
3145 unsigned long nr_pages;
3146 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
3147 struct btrfs_bio_ctrl bio_ctrl = {
3148 .extent_locked = 1,
3149 .sync_io = 1,
3150 };
3151 struct writeback_control wbc_writepages = {
3152 .sync_mode = WB_SYNC_ALL,
3153 .range_start = start,
3154 .range_end = end + 1,
3155 /* We're called from an async helper function */
3156 .punt_to_cgroup = 1,
3157 .no_cgroup_owner = 1,
3158 };
3159
3160 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
3161 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
3162 PAGE_SHIFT;
3163 wbc_writepages.nr_to_write = nr_pages * 2;
3164
3165 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
3166 while (cur <= end) {
3167 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
3168
3169 page = find_get_page(mapping, cur >> PAGE_SHIFT);
3170 /*
3171 * All pages in the range are locked since
3172 * btrfs_run_delalloc_range(), thus there is no way to clear
3173 * the page dirty flag.
3174 */
3175 ASSERT(PageLocked(page));
3176 ASSERT(PageDirty(page));
3177 clear_page_dirty_for_io(page);
3178 ret = __extent_writepage(page, &wbc_writepages, &bio_ctrl);
3179 ASSERT(ret <= 0);
3180 if (ret < 0) {
3181 found_error = true;
3182 first_error = ret;
3183 }
3184 put_page(page);
3185 cur = cur_end + 1;
3186 }
3187
3188 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
3189
3190 wbc_detach_inode(&wbc_writepages);
3191 if (found_error)
3192 return first_error;
3193 return ret;
3194}
3195
3196int extent_writepages(struct address_space *mapping,
3197 struct writeback_control *wbc)
3198{
3199 struct inode *inode = mapping->host;
3200 int ret = 0;
3201 struct btrfs_bio_ctrl bio_ctrl = {
3202 .extent_locked = 0,
3203 .sync_io = (wbc->sync_mode == WB_SYNC_ALL),
3204 };
3205
3206 /*
3207 * Allow only a single thread to do the reloc work in zoned mode to
3208 * protect the write pointer updates.
3209 */
3210 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
3211 ret = extent_write_cache_pages(mapping, wbc, &bio_ctrl);
3212 submit_write_bio(&bio_ctrl, ret);
3213 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
3214 return ret;
3215}
3216
3217void extent_readahead(struct readahead_control *rac)
3218{
3219 struct btrfs_bio_ctrl bio_ctrl = { 0 };
3220 struct page *pagepool[16];
3221 struct extent_map *em_cached = NULL;
3222 u64 prev_em_start = (u64)-1;
3223 int nr;
3224
3225 while ((nr = readahead_page_batch(rac, pagepool))) {
3226 u64 contig_start = readahead_pos(rac);
3227 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
3228
3229 contiguous_readpages(pagepool, nr, contig_start, contig_end,
3230 &em_cached, &bio_ctrl, &prev_em_start);
3231 }
3232
3233 if (em_cached)
3234 free_extent_map(em_cached);
3235 submit_one_bio(&bio_ctrl);
3236}
3237
3238/*
3239 * basic invalidate_folio code, this waits on any locked or writeback
3240 * ranges corresponding to the folio, and then deletes any extent state
3241 * records from the tree
3242 */
3243int extent_invalidate_folio(struct extent_io_tree *tree,
3244 struct folio *folio, size_t offset)
3245{
3246 struct extent_state *cached_state = NULL;
3247 u64 start = folio_pos(folio);
3248 u64 end = start + folio_size(folio) - 1;
3249 size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
3250
3251 /* This function is only called for the btree inode */
3252 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
3253
3254 start += ALIGN(offset, blocksize);
3255 if (start > end)
3256 return 0;
3257
3258 lock_extent(tree, start, end, &cached_state);
3259 folio_wait_writeback(folio);
3260
3261 /*
3262 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
3263 * so here we only need to unlock the extent range to free any
3264 * existing extent state.
3265 */
3266 unlock_extent(tree, start, end, &cached_state);
3267 return 0;
3268}
3269
3270/*
3271 * a helper for release_folio, this tests for areas of the page that
3272 * are locked or under IO and drops the related state bits if it is safe
3273 * to drop the page.
3274 */
3275static int try_release_extent_state(struct extent_io_tree *tree,
3276 struct page *page, gfp_t mask)
3277{
3278 u64 start = page_offset(page);
3279 u64 end = start + PAGE_SIZE - 1;
3280 int ret = 1;
3281
3282 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
3283 ret = 0;
3284 } else {
3285 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
3286 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS);
3287
3288 /*
3289 * At this point we can safely clear everything except the
3290 * locked bit, the nodatasum bit and the delalloc new bit.
3291 * The delalloc new bit will be cleared by ordered extent
3292 * completion.
3293 */
3294 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL,
3295 mask, NULL);
3296
3297 /* if clear_extent_bit failed for enomem reasons,
3298 * we can't allow the release to continue.
3299 */
3300 if (ret < 0)
3301 ret = 0;
3302 else
3303 ret = 1;
3304 }
3305 return ret;
3306}
3307
3308/*
3309 * a helper for release_folio. As long as there are no locked extents
3310 * in the range corresponding to the page, both state records and extent
3311 * map records are removed
3312 */
3313int try_release_extent_mapping(struct page *page, gfp_t mask)
3314{
3315 struct extent_map *em;
3316 u64 start = page_offset(page);
3317 u64 end = start + PAGE_SIZE - 1;
3318 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
3319 struct extent_io_tree *tree = &btrfs_inode->io_tree;
3320 struct extent_map_tree *map = &btrfs_inode->extent_tree;
3321
3322 if (gfpflags_allow_blocking(mask) &&
3323 page->mapping->host->i_size > SZ_16M) {
3324 u64 len;
3325 while (start <= end) {
3326 struct btrfs_fs_info *fs_info;
3327 u64 cur_gen;
3328
3329 len = end - start + 1;
3330 write_lock(&map->lock);
3331 em = lookup_extent_mapping(map, start, len);
3332 if (!em) {
3333 write_unlock(&map->lock);
3334 break;
3335 }
3336 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3337 em->start != start) {
3338 write_unlock(&map->lock);
3339 free_extent_map(em);
3340 break;
3341 }
3342 if (test_range_bit(tree, em->start,
3343 extent_map_end(em) - 1,
3344 EXTENT_LOCKED, 0, NULL))
3345 goto next;
3346 /*
3347 * If it's not in the list of modified extents, used
3348 * by a fast fsync, we can remove it. If it's being
3349 * logged we can safely remove it since fsync took an
3350 * extra reference on the em.
3351 */
3352 if (list_empty(&em->list) ||
3353 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
3354 goto remove_em;
3355 /*
3356 * If it's in the list of modified extents, remove it
3357 * only if its generation is older then the current one,
3358 * in which case we don't need it for a fast fsync.
3359 * Otherwise don't remove it, we could be racing with an
3360 * ongoing fast fsync that could miss the new extent.
3361 */
3362 fs_info = btrfs_inode->root->fs_info;
3363 spin_lock(&fs_info->trans_lock);
3364 cur_gen = fs_info->generation;
3365 spin_unlock(&fs_info->trans_lock);
3366 if (em->generation >= cur_gen)
3367 goto next;
3368remove_em:
3369 /*
3370 * We only remove extent maps that are not in the list of
3371 * modified extents or that are in the list but with a
3372 * generation lower then the current generation, so there
3373 * is no need to set the full fsync flag on the inode (it
3374 * hurts the fsync performance for workloads with a data
3375 * size that exceeds or is close to the system's memory).
3376 */
3377 remove_extent_mapping(map, em);
3378 /* once for the rb tree */
3379 free_extent_map(em);
3380next:
3381 start = extent_map_end(em);
3382 write_unlock(&map->lock);
3383
3384 /* once for us */
3385 free_extent_map(em);
3386
3387 cond_resched(); /* Allow large-extent preemption. */
3388 }
3389 }
3390 return try_release_extent_state(tree, page, mask);
3391}
3392
3393/*
3394 * To cache previous fiemap extent
3395 *
3396 * Will be used for merging fiemap extent
3397 */
3398struct fiemap_cache {
3399 u64 offset;
3400 u64 phys;
3401 u64 len;
3402 u32 flags;
3403 bool cached;
3404};
3405
3406/*
3407 * Helper to submit fiemap extent.
3408 *
3409 * Will try to merge current fiemap extent specified by @offset, @phys,
3410 * @len and @flags with cached one.
3411 * And only when we fails to merge, cached one will be submitted as
3412 * fiemap extent.
3413 *
3414 * Return value is the same as fiemap_fill_next_extent().
3415 */
3416static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
3417 struct fiemap_cache *cache,
3418 u64 offset, u64 phys, u64 len, u32 flags)
3419{
3420 int ret = 0;
3421
3422 /* Set at the end of extent_fiemap(). */
3423 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
3424
3425 if (!cache->cached)
3426 goto assign;
3427
3428 /*
3429 * Sanity check, extent_fiemap() should have ensured that new
3430 * fiemap extent won't overlap with cached one.
3431 * Not recoverable.
3432 *
3433 * NOTE: Physical address can overlap, due to compression
3434 */
3435 if (cache->offset + cache->len > offset) {
3436 WARN_ON(1);
3437 return -EINVAL;
3438 }
3439
3440 /*
3441 * Only merges fiemap extents if
3442 * 1) Their logical addresses are continuous
3443 *
3444 * 2) Their physical addresses are continuous
3445 * So truly compressed (physical size smaller than logical size)
3446 * extents won't get merged with each other
3447 *
3448 * 3) Share same flags
3449 */
3450 if (cache->offset + cache->len == offset &&
3451 cache->phys + cache->len == phys &&
3452 cache->flags == flags) {
3453 cache->len += len;
3454 return 0;
3455 }
3456
3457 /* Not mergeable, need to submit cached one */
3458 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3459 cache->len, cache->flags);
3460 cache->cached = false;
3461 if (ret)
3462 return ret;
3463assign:
3464 cache->cached = true;
3465 cache->offset = offset;
3466 cache->phys = phys;
3467 cache->len = len;
3468 cache->flags = flags;
3469
3470 return 0;
3471}
3472
3473/*
3474 * Emit last fiemap cache
3475 *
3476 * The last fiemap cache may still be cached in the following case:
3477 * 0 4k 8k
3478 * |<- Fiemap range ->|
3479 * |<------------ First extent ----------->|
3480 *
3481 * In this case, the first extent range will be cached but not emitted.
3482 * So we must emit it before ending extent_fiemap().
3483 */
3484static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
3485 struct fiemap_cache *cache)
3486{
3487 int ret;
3488
3489 if (!cache->cached)
3490 return 0;
3491
3492 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3493 cache->len, cache->flags);
3494 cache->cached = false;
3495 if (ret > 0)
3496 ret = 0;
3497 return ret;
3498}
3499
3500static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
3501{
3502 struct extent_buffer *clone;
3503 struct btrfs_key key;
3504 int slot;
3505 int ret;
3506
3507 path->slots[0]++;
3508 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
3509 return 0;
3510
3511 ret = btrfs_next_leaf(inode->root, path);
3512 if (ret != 0)
3513 return ret;
3514
3515 /*
3516 * Don't bother with cloning if there are no more file extent items for
3517 * our inode.
3518 */
3519 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3520 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
3521 return 1;
3522
3523 /* See the comment at fiemap_search_slot() about why we clone. */
3524 clone = btrfs_clone_extent_buffer(path->nodes[0]);
3525 if (!clone)
3526 return -ENOMEM;
3527
3528 slot = path->slots[0];
3529 btrfs_release_path(path);
3530 path->nodes[0] = clone;
3531 path->slots[0] = slot;
3532
3533 return 0;
3534}
3535
3536/*
3537 * Search for the first file extent item that starts at a given file offset or
3538 * the one that starts immediately before that offset.
3539 * Returns: 0 on success, < 0 on error, 1 if not found.
3540 */
3541static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
3542 u64 file_offset)
3543{
3544 const u64 ino = btrfs_ino(inode);
3545 struct btrfs_root *root = inode->root;
3546 struct extent_buffer *clone;
3547 struct btrfs_key key;
3548 int slot;
3549 int ret;
3550
3551 key.objectid = ino;
3552 key.type = BTRFS_EXTENT_DATA_KEY;
3553 key.offset = file_offset;
3554
3555 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3556 if (ret < 0)
3557 return ret;
3558
3559 if (ret > 0 && path->slots[0] > 0) {
3560 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3561 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3562 path->slots[0]--;
3563 }
3564
3565 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3566 ret = btrfs_next_leaf(root, path);
3567 if (ret != 0)
3568 return ret;
3569
3570 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3571 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3572 return 1;
3573 }
3574
3575 /*
3576 * We clone the leaf and use it during fiemap. This is because while
3577 * using the leaf we do expensive things like checking if an extent is
3578 * shared, which can take a long time. In order to prevent blocking
3579 * other tasks for too long, we use a clone of the leaf. We have locked
3580 * the file range in the inode's io tree, so we know none of our file
3581 * extent items can change. This way we avoid blocking other tasks that
3582 * want to insert items for other inodes in the same leaf or b+tree
3583 * rebalance operations (triggered for example when someone is trying
3584 * to push items into this leaf when trying to insert an item in a
3585 * neighbour leaf).
3586 * We also need the private clone because holding a read lock on an
3587 * extent buffer of the subvolume's b+tree will make lockdep unhappy
3588 * when we call fiemap_fill_next_extent(), because that may cause a page
3589 * fault when filling the user space buffer with fiemap data.
3590 */
3591 clone = btrfs_clone_extent_buffer(path->nodes[0]);
3592 if (!clone)
3593 return -ENOMEM;
3594
3595 slot = path->slots[0];
3596 btrfs_release_path(path);
3597 path->nodes[0] = clone;
3598 path->slots[0] = slot;
3599
3600 return 0;
3601}
3602
3603/*
3604 * Process a range which is a hole or a prealloc extent in the inode's subvolume
3605 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
3606 * extent. The end offset (@end) is inclusive.
3607 */
3608static int fiemap_process_hole(struct btrfs_inode *inode,
3609 struct fiemap_extent_info *fieinfo,
3610 struct fiemap_cache *cache,
3611 struct extent_state **delalloc_cached_state,
3612 struct btrfs_backref_share_check_ctx *backref_ctx,
3613 u64 disk_bytenr, u64 extent_offset,
3614 u64 extent_gen,
3615 u64 start, u64 end)
3616{
3617 const u64 i_size = i_size_read(&inode->vfs_inode);
3618 u64 cur_offset = start;
3619 u64 last_delalloc_end = 0;
3620 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
3621 bool checked_extent_shared = false;
3622 int ret;
3623
3624 /*
3625 * There can be no delalloc past i_size, so don't waste time looking for
3626 * it beyond i_size.
3627 */
3628 while (cur_offset < end && cur_offset < i_size) {
3629 u64 delalloc_start;
3630 u64 delalloc_end;
3631 u64 prealloc_start;
3632 u64 prealloc_len = 0;
3633 bool delalloc;
3634
3635 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
3636 delalloc_cached_state,
3637 &delalloc_start,
3638 &delalloc_end);
3639 if (!delalloc)
3640 break;
3641
3642 /*
3643 * If this is a prealloc extent we have to report every section
3644 * of it that has no delalloc.
3645 */
3646 if (disk_bytenr != 0) {
3647 if (last_delalloc_end == 0) {
3648 prealloc_start = start;
3649 prealloc_len = delalloc_start - start;
3650 } else {
3651 prealloc_start = last_delalloc_end + 1;
3652 prealloc_len = delalloc_start - prealloc_start;
3653 }
3654 }
3655
3656 if (prealloc_len > 0) {
3657 if (!checked_extent_shared && fieinfo->fi_extents_max) {
3658 ret = btrfs_is_data_extent_shared(inode,
3659 disk_bytenr,
3660 extent_gen,
3661 backref_ctx);
3662 if (ret < 0)
3663 return ret;
3664 else if (ret > 0)
3665 prealloc_flags |= FIEMAP_EXTENT_SHARED;
3666
3667 checked_extent_shared = true;
3668 }
3669 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3670 disk_bytenr + extent_offset,
3671 prealloc_len, prealloc_flags);
3672 if (ret)
3673 return ret;
3674 extent_offset += prealloc_len;
3675 }
3676
3677 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
3678 delalloc_end + 1 - delalloc_start,
3679 FIEMAP_EXTENT_DELALLOC |
3680 FIEMAP_EXTENT_UNKNOWN);
3681 if (ret)
3682 return ret;
3683
3684 last_delalloc_end = delalloc_end;
3685 cur_offset = delalloc_end + 1;
3686 extent_offset += cur_offset - delalloc_start;
3687 cond_resched();
3688 }
3689
3690 /*
3691 * Either we found no delalloc for the whole prealloc extent or we have
3692 * a prealloc extent that spans i_size or starts at or after i_size.
3693 */
3694 if (disk_bytenr != 0 && last_delalloc_end < end) {
3695 u64 prealloc_start;
3696 u64 prealloc_len;
3697
3698 if (last_delalloc_end == 0) {
3699 prealloc_start = start;
3700 prealloc_len = end + 1 - start;
3701 } else {
3702 prealloc_start = last_delalloc_end + 1;
3703 prealloc_len = end + 1 - prealloc_start;
3704 }
3705
3706 if (!checked_extent_shared && fieinfo->fi_extents_max) {
3707 ret = btrfs_is_data_extent_shared(inode,
3708 disk_bytenr,
3709 extent_gen,
3710 backref_ctx);
3711 if (ret < 0)
3712 return ret;
3713 else if (ret > 0)
3714 prealloc_flags |= FIEMAP_EXTENT_SHARED;
3715 }
3716 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3717 disk_bytenr + extent_offset,
3718 prealloc_len, prealloc_flags);
3719 if (ret)
3720 return ret;
3721 }
3722
3723 return 0;
3724}
3725
3726static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
3727 struct btrfs_path *path,
3728 u64 *last_extent_end_ret)
3729{
3730 const u64 ino = btrfs_ino(inode);
3731 struct btrfs_root *root = inode->root;
3732 struct extent_buffer *leaf;
3733 struct btrfs_file_extent_item *ei;
3734 struct btrfs_key key;
3735 u64 disk_bytenr;
3736 int ret;
3737
3738 /*
3739 * Lookup the last file extent. We're not using i_size here because
3740 * there might be preallocation past i_size.
3741 */
3742 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
3743 /* There can't be a file extent item at offset (u64)-1 */
3744 ASSERT(ret != 0);
3745 if (ret < 0)
3746 return ret;
3747
3748 /*
3749 * For a non-existing key, btrfs_search_slot() always leaves us at a
3750 * slot > 0, except if the btree is empty, which is impossible because
3751 * at least it has the inode item for this inode and all the items for
3752 * the root inode 256.
3753 */
3754 ASSERT(path->slots[0] > 0);
3755 path->slots[0]--;
3756 leaf = path->nodes[0];
3757 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3758 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
3759 /* No file extent items in the subvolume tree. */
3760 *last_extent_end_ret = 0;
3761 return 0;
3762 }
3763
3764 /*
3765 * For an inline extent, the disk_bytenr is where inline data starts at,
3766 * so first check if we have an inline extent item before checking if we
3767 * have an implicit hole (disk_bytenr == 0).
3768 */
3769 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
3770 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
3771 *last_extent_end_ret = btrfs_file_extent_end(path);
3772 return 0;
3773 }
3774
3775 /*
3776 * Find the last file extent item that is not a hole (when NO_HOLES is
3777 * not enabled). This should take at most 2 iterations in the worst
3778 * case: we have one hole file extent item at slot 0 of a leaf and
3779 * another hole file extent item as the last item in the previous leaf.
3780 * This is because we merge file extent items that represent holes.
3781 */
3782 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3783 while (disk_bytenr == 0) {
3784 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
3785 if (ret < 0) {
3786 return ret;
3787 } else if (ret > 0) {
3788 /* No file extent items that are not holes. */
3789 *last_extent_end_ret = 0;
3790 return 0;
3791 }
3792 leaf = path->nodes[0];
3793 ei = btrfs_item_ptr(leaf, path->slots[0],
3794 struct btrfs_file_extent_item);
3795 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3796 }
3797
3798 *last_extent_end_ret = btrfs_file_extent_end(path);
3799 return 0;
3800}
3801
3802int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3803 u64 start, u64 len)
3804{
3805 const u64 ino = btrfs_ino(inode);
3806 struct extent_state *cached_state = NULL;
3807 struct extent_state *delalloc_cached_state = NULL;
3808 struct btrfs_path *path;
3809 struct fiemap_cache cache = { 0 };
3810 struct btrfs_backref_share_check_ctx *backref_ctx;
3811 u64 last_extent_end;
3812 u64 prev_extent_end;
3813 u64 lockstart;
3814 u64 lockend;
3815 bool stopped = false;
3816 int ret;
3817
3818 backref_ctx = btrfs_alloc_backref_share_check_ctx();
3819 path = btrfs_alloc_path();
3820 if (!backref_ctx || !path) {
3821 ret = -ENOMEM;
3822 goto out;
3823 }
3824
3825 lockstart = round_down(start, inode->root->fs_info->sectorsize);
3826 lockend = round_up(start + len, inode->root->fs_info->sectorsize);
3827 prev_extent_end = lockstart;
3828
3829 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3830 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3831
3832 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3833 if (ret < 0)
3834 goto out_unlock;
3835 btrfs_release_path(path);
3836
3837 path->reada = READA_FORWARD;
3838 ret = fiemap_search_slot(inode, path, lockstart);
3839 if (ret < 0) {
3840 goto out_unlock;
3841 } else if (ret > 0) {
3842 /*
3843 * No file extent item found, but we may have delalloc between
3844 * the current offset and i_size. So check for that.
3845 */
3846 ret = 0;
3847 goto check_eof_delalloc;
3848 }
3849
3850 while (prev_extent_end < lockend) {
3851 struct extent_buffer *leaf = path->nodes[0];
3852 struct btrfs_file_extent_item *ei;
3853 struct btrfs_key key;
3854 u64 extent_end;
3855 u64 extent_len;
3856 u64 extent_offset = 0;
3857 u64 extent_gen;
3858 u64 disk_bytenr = 0;
3859 u64 flags = 0;
3860 int extent_type;
3861 u8 compression;
3862
3863 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3864 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3865 break;
3866
3867 extent_end = btrfs_file_extent_end(path);
3868
3869 /*
3870 * The first iteration can leave us at an extent item that ends
3871 * before our range's start. Move to the next item.
3872 */
3873 if (extent_end <= lockstart)
3874 goto next_item;
3875
3876 backref_ctx->curr_leaf_bytenr = leaf->start;
3877
3878 /* We have in implicit hole (NO_HOLES feature enabled). */
3879 if (prev_extent_end < key.offset) {
3880 const u64 range_end = min(key.offset, lockend) - 1;
3881
3882 ret = fiemap_process_hole(inode, fieinfo, &cache,
3883 &delalloc_cached_state,
3884 backref_ctx, 0, 0, 0,
3885 prev_extent_end, range_end);
3886 if (ret < 0) {
3887 goto out_unlock;
3888 } else if (ret > 0) {
3889 /* fiemap_fill_next_extent() told us to stop. */
3890 stopped = true;
3891 break;
3892 }
3893
3894 /* We've reached the end of the fiemap range, stop. */
3895 if (key.offset >= lockend) {
3896 stopped = true;
3897 break;
3898 }
3899 }
3900
3901 extent_len = extent_end - key.offset;
3902 ei = btrfs_item_ptr(leaf, path->slots[0],
3903 struct btrfs_file_extent_item);
3904 compression = btrfs_file_extent_compression(leaf, ei);
3905 extent_type = btrfs_file_extent_type(leaf, ei);
3906 extent_gen = btrfs_file_extent_generation(leaf, ei);
3907
3908 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3909 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3910 if (compression == BTRFS_COMPRESS_NONE)
3911 extent_offset = btrfs_file_extent_offset(leaf, ei);
3912 }
3913
3914 if (compression != BTRFS_COMPRESS_NONE)
3915 flags |= FIEMAP_EXTENT_ENCODED;
3916
3917 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3918 flags |= FIEMAP_EXTENT_DATA_INLINE;
3919 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3920 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3921 extent_len, flags);
3922 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3923 ret = fiemap_process_hole(inode, fieinfo, &cache,
3924 &delalloc_cached_state,
3925 backref_ctx,
3926 disk_bytenr, extent_offset,
3927 extent_gen, key.offset,
3928 extent_end - 1);
3929 } else if (disk_bytenr == 0) {
3930 /* We have an explicit hole. */
3931 ret = fiemap_process_hole(inode, fieinfo, &cache,
3932 &delalloc_cached_state,
3933 backref_ctx, 0, 0, 0,
3934 key.offset, extent_end - 1);
3935 } else {
3936 /* We have a regular extent. */
3937 if (fieinfo->fi_extents_max) {
3938 ret = btrfs_is_data_extent_shared(inode,
3939 disk_bytenr,
3940 extent_gen,
3941 backref_ctx);
3942 if (ret < 0)
3943 goto out_unlock;
3944 else if (ret > 0)
3945 flags |= FIEMAP_EXTENT_SHARED;
3946 }
3947
3948 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3949 disk_bytenr + extent_offset,
3950 extent_len, flags);
3951 }
3952
3953 if (ret < 0) {
3954 goto out_unlock;
3955 } else if (ret > 0) {
3956 /* fiemap_fill_next_extent() told us to stop. */
3957 stopped = true;
3958 break;
3959 }
3960
3961 prev_extent_end = extent_end;
3962next_item:
3963 if (fatal_signal_pending(current)) {
3964 ret = -EINTR;
3965 goto out_unlock;
3966 }
3967
3968 ret = fiemap_next_leaf_item(inode, path);
3969 if (ret < 0) {
3970 goto out_unlock;
3971 } else if (ret > 0) {
3972 /* No more file extent items for this inode. */
3973 break;
3974 }
3975 cond_resched();
3976 }
3977
3978check_eof_delalloc:
3979 /*
3980 * Release (and free) the path before emitting any final entries to
3981 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3982 * once we find no more file extent items exist, we may have a
3983 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3984 * faults when copying data to the user space buffer.
3985 */
3986 btrfs_free_path(path);
3987 path = NULL;
3988
3989 if (!stopped && prev_extent_end < lockend) {
3990 ret = fiemap_process_hole(inode, fieinfo, &cache,
3991 &delalloc_cached_state, backref_ctx,
3992 0, 0, 0, prev_extent_end, lockend - 1);
3993 if (ret < 0)
3994 goto out_unlock;
3995 prev_extent_end = lockend;
3996 }
3997
3998 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3999 const u64 i_size = i_size_read(&inode->vfs_inode);
4000
4001 if (prev_extent_end < i_size) {
4002 u64 delalloc_start;
4003 u64 delalloc_end;
4004 bool delalloc;
4005
4006 delalloc = btrfs_find_delalloc_in_range(inode,
4007 prev_extent_end,
4008 i_size - 1,
4009 &delalloc_cached_state,
4010 &delalloc_start,
4011 &delalloc_end);
4012 if (!delalloc)
4013 cache.flags |= FIEMAP_EXTENT_LAST;
4014 } else {
4015 cache.flags |= FIEMAP_EXTENT_LAST;
4016 }
4017 }
4018
4019 ret = emit_last_fiemap_cache(fieinfo, &cache);
4020
4021out_unlock:
4022 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
4023 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4024out:
4025 free_extent_state(delalloc_cached_state);
4026 btrfs_free_backref_share_ctx(backref_ctx);
4027 btrfs_free_path(path);
4028 return ret;
4029}
4030
4031static void __free_extent_buffer(struct extent_buffer *eb)
4032{
4033 kmem_cache_free(extent_buffer_cache, eb);
4034}
4035
4036int extent_buffer_under_io(const struct extent_buffer *eb)
4037{
4038 return (atomic_read(&eb->io_pages) ||
4039 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4040 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4041}
4042
4043static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
4044{
4045 struct btrfs_subpage *subpage;
4046
4047 lockdep_assert_held(&page->mapping->private_lock);
4048
4049 if (PagePrivate(page)) {
4050 subpage = (struct btrfs_subpage *)page->private;
4051 if (atomic_read(&subpage->eb_refs))
4052 return true;
4053 /*
4054 * Even there is no eb refs here, we may still have
4055 * end_page_read() call relying on page::private.
4056 */
4057 if (atomic_read(&subpage->readers))
4058 return true;
4059 }
4060 return false;
4061}
4062
4063static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
4064{
4065 struct btrfs_fs_info *fs_info = eb->fs_info;
4066 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4067
4068 /*
4069 * For mapped eb, we're going to change the page private, which should
4070 * be done under the private_lock.
4071 */
4072 if (mapped)
4073 spin_lock(&page->mapping->private_lock);
4074
4075 if (!PagePrivate(page)) {
4076 if (mapped)
4077 spin_unlock(&page->mapping->private_lock);
4078 return;
4079 }
4080
4081 if (fs_info->nodesize >= PAGE_SIZE) {
4082 /*
4083 * We do this since we'll remove the pages after we've
4084 * removed the eb from the radix tree, so we could race
4085 * and have this page now attached to the new eb. So
4086 * only clear page_private if it's still connected to
4087 * this eb.
4088 */
4089 if (PagePrivate(page) &&
4090 page->private == (unsigned long)eb) {
4091 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4092 BUG_ON(PageDirty(page));
4093 BUG_ON(PageWriteback(page));
4094 /*
4095 * We need to make sure we haven't be attached
4096 * to a new eb.
4097 */
4098 detach_page_private(page);
4099 }
4100 if (mapped)
4101 spin_unlock(&page->mapping->private_lock);
4102 return;
4103 }
4104
4105 /*
4106 * For subpage, we can have dummy eb with page private. In this case,
4107 * we can directly detach the private as such page is only attached to
4108 * one dummy eb, no sharing.
4109 */
4110 if (!mapped) {
4111 btrfs_detach_subpage(fs_info, page);
4112 return;
4113 }
4114
4115 btrfs_page_dec_eb_refs(fs_info, page);
4116
4117 /*
4118 * We can only detach the page private if there are no other ebs in the
4119 * page range and no unfinished IO.
4120 */
4121 if (!page_range_has_eb(fs_info, page))
4122 btrfs_detach_subpage(fs_info, page);
4123
4124 spin_unlock(&page->mapping->private_lock);
4125}
4126
4127/* Release all pages attached to the extent buffer */
4128static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4129{
4130 int i;
4131 int num_pages;
4132
4133 ASSERT(!extent_buffer_under_io(eb));
4134
4135 num_pages = num_extent_pages(eb);
4136 for (i = 0; i < num_pages; i++) {
4137 struct page *page = eb->pages[i];
4138
4139 if (!page)
4140 continue;
4141
4142 detach_extent_buffer_page(eb, page);
4143
4144 /* One for when we allocated the page */
4145 put_page(page);
4146 }
4147}
4148
4149/*
4150 * Helper for releasing the extent buffer.
4151 */
4152static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4153{
4154 btrfs_release_extent_buffer_pages(eb);
4155 btrfs_leak_debug_del_eb(eb);
4156 __free_extent_buffer(eb);
4157}
4158
4159static struct extent_buffer *
4160__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4161 unsigned long len)
4162{
4163 struct extent_buffer *eb = NULL;
4164
4165 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4166 eb->start = start;
4167 eb->len = len;
4168 eb->fs_info = fs_info;
4169 init_rwsem(&eb->lock);
4170
4171 btrfs_leak_debug_add_eb(eb);
4172 INIT_LIST_HEAD(&eb->release_list);
4173
4174 spin_lock_init(&eb->refs_lock);
4175 atomic_set(&eb->refs, 1);
4176 atomic_set(&eb->io_pages, 0);
4177
4178 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
4179
4180 return eb;
4181}
4182
4183struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
4184{
4185 int i;
4186 struct extent_buffer *new;
4187 int num_pages = num_extent_pages(src);
4188 int ret;
4189
4190 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4191 if (new == NULL)
4192 return NULL;
4193
4194 /*
4195 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
4196 * btrfs_release_extent_buffer() have different behavior for
4197 * UNMAPPED subpage extent buffer.
4198 */
4199 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4200
4201 ret = btrfs_alloc_page_array(num_pages, new->pages);
4202 if (ret) {
4203 btrfs_release_extent_buffer(new);
4204 return NULL;
4205 }
4206
4207 for (i = 0; i < num_pages; i++) {
4208 int ret;
4209 struct page *p = new->pages[i];
4210
4211 ret = attach_extent_buffer_page(new, p, NULL);
4212 if (ret < 0) {
4213 btrfs_release_extent_buffer(new);
4214 return NULL;
4215 }
4216 WARN_ON(PageDirty(p));
4217 copy_page(page_address(p), page_address(src->pages[i]));
4218 }
4219 set_extent_buffer_uptodate(new);
4220
4221 return new;
4222}
4223
4224struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4225 u64 start, unsigned long len)
4226{
4227 struct extent_buffer *eb;
4228 int num_pages;
4229 int i;
4230 int ret;
4231
4232 eb = __alloc_extent_buffer(fs_info, start, len);
4233 if (!eb)
4234 return NULL;
4235
4236 num_pages = num_extent_pages(eb);
4237 ret = btrfs_alloc_page_array(num_pages, eb->pages);
4238 if (ret)
4239 goto err;
4240
4241 for (i = 0; i < num_pages; i++) {
4242 struct page *p = eb->pages[i];
4243
4244 ret = attach_extent_buffer_page(eb, p, NULL);
4245 if (ret < 0)
4246 goto err;
4247 }
4248
4249 set_extent_buffer_uptodate(eb);
4250 btrfs_set_header_nritems(eb, 0);
4251 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4252
4253 return eb;
4254err:
4255 for (i = 0; i < num_pages; i++) {
4256 if (eb->pages[i]) {
4257 detach_extent_buffer_page(eb, eb->pages[i]);
4258 __free_page(eb->pages[i]);
4259 }
4260 }
4261 __free_extent_buffer(eb);
4262 return NULL;
4263}
4264
4265struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4266 u64 start)
4267{
4268 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4269}
4270
4271static void check_buffer_tree_ref(struct extent_buffer *eb)
4272{
4273 int refs;
4274 /*
4275 * The TREE_REF bit is first set when the extent_buffer is added
4276 * to the radix tree. It is also reset, if unset, when a new reference
4277 * is created by find_extent_buffer.
4278 *
4279 * It is only cleared in two cases: freeing the last non-tree
4280 * reference to the extent_buffer when its STALE bit is set or
4281 * calling release_folio when the tree reference is the only reference.
4282 *
4283 * In both cases, care is taken to ensure that the extent_buffer's
4284 * pages are not under io. However, release_folio can be concurrently
4285 * called with creating new references, which is prone to race
4286 * conditions between the calls to check_buffer_tree_ref in those
4287 * codepaths and clearing TREE_REF in try_release_extent_buffer.
4288 *
4289 * The actual lifetime of the extent_buffer in the radix tree is
4290 * adequately protected by the refcount, but the TREE_REF bit and
4291 * its corresponding reference are not. To protect against this
4292 * class of races, we call check_buffer_tree_ref from the codepaths
4293 * which trigger io after they set eb->io_pages. Note that once io is
4294 * initiated, TREE_REF can no longer be cleared, so that is the
4295 * moment at which any such race is best fixed.
4296 */
4297 refs = atomic_read(&eb->refs);
4298 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4299 return;
4300
4301 spin_lock(&eb->refs_lock);
4302 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4303 atomic_inc(&eb->refs);
4304 spin_unlock(&eb->refs_lock);
4305}
4306
4307static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4308 struct page *accessed)
4309{
4310 int num_pages, i;
4311
4312 check_buffer_tree_ref(eb);
4313
4314 num_pages = num_extent_pages(eb);
4315 for (i = 0; i < num_pages; i++) {
4316 struct page *p = eb->pages[i];
4317
4318 if (p != accessed)
4319 mark_page_accessed(p);
4320 }
4321}
4322
4323struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4324 u64 start)
4325{
4326 struct extent_buffer *eb;
4327
4328 eb = find_extent_buffer_nolock(fs_info, start);
4329 if (!eb)
4330 return NULL;
4331 /*
4332 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
4333 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
4334 * another task running free_extent_buffer() might have seen that flag
4335 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
4336 * writeback flags not set) and it's still in the tree (flag
4337 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
4338 * decrementing the extent buffer's reference count twice. So here we
4339 * could race and increment the eb's reference count, clear its stale
4340 * flag, mark it as dirty and drop our reference before the other task
4341 * finishes executing free_extent_buffer, which would later result in
4342 * an attempt to free an extent buffer that is dirty.
4343 */
4344 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4345 spin_lock(&eb->refs_lock);
4346 spin_unlock(&eb->refs_lock);
4347 }
4348 mark_extent_buffer_accessed(eb, NULL);
4349 return eb;
4350}
4351
4352#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4353struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4354 u64 start)
4355{
4356 struct extent_buffer *eb, *exists = NULL;
4357 int ret;
4358
4359 eb = find_extent_buffer(fs_info, start);
4360 if (eb)
4361 return eb;
4362 eb = alloc_dummy_extent_buffer(fs_info, start);
4363 if (!eb)
4364 return ERR_PTR(-ENOMEM);
4365 eb->fs_info = fs_info;
4366again:
4367 ret = radix_tree_preload(GFP_NOFS);
4368 if (ret) {
4369 exists = ERR_PTR(ret);
4370 goto free_eb;
4371 }
4372 spin_lock(&fs_info->buffer_lock);
4373 ret = radix_tree_insert(&fs_info->buffer_radix,
4374 start >> fs_info->sectorsize_bits, eb);
4375 spin_unlock(&fs_info->buffer_lock);
4376 radix_tree_preload_end();
4377 if (ret == -EEXIST) {
4378 exists = find_extent_buffer(fs_info, start);
4379 if (exists)
4380 goto free_eb;
4381 else
4382 goto again;
4383 }
4384 check_buffer_tree_ref(eb);
4385 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4386
4387 return eb;
4388free_eb:
4389 btrfs_release_extent_buffer(eb);
4390 return exists;
4391}
4392#endif
4393
4394static struct extent_buffer *grab_extent_buffer(
4395 struct btrfs_fs_info *fs_info, struct page *page)
4396{
4397 struct extent_buffer *exists;
4398
4399 /*
4400 * For subpage case, we completely rely on radix tree to ensure we
4401 * don't try to insert two ebs for the same bytenr. So here we always
4402 * return NULL and just continue.
4403 */
4404 if (fs_info->nodesize < PAGE_SIZE)
4405 return NULL;
4406
4407 /* Page not yet attached to an extent buffer */
4408 if (!PagePrivate(page))
4409 return NULL;
4410
4411 /*
4412 * We could have already allocated an eb for this page and attached one
4413 * so lets see if we can get a ref on the existing eb, and if we can we
4414 * know it's good and we can just return that one, else we know we can
4415 * just overwrite page->private.
4416 */
4417 exists = (struct extent_buffer *)page->private;
4418 if (atomic_inc_not_zero(&exists->refs))
4419 return exists;
4420
4421 WARN_ON(PageDirty(page));
4422 detach_page_private(page);
4423 return NULL;
4424}
4425
4426static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
4427{
4428 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4429 btrfs_err(fs_info, "bad tree block start %llu", start);
4430 return -EINVAL;
4431 }
4432
4433 if (fs_info->nodesize < PAGE_SIZE &&
4434 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
4435 btrfs_err(fs_info,
4436 "tree block crosses page boundary, start %llu nodesize %u",
4437 start, fs_info->nodesize);
4438 return -EINVAL;
4439 }
4440 if (fs_info->nodesize >= PAGE_SIZE &&
4441 !PAGE_ALIGNED(start)) {
4442 btrfs_err(fs_info,
4443 "tree block is not page aligned, start %llu nodesize %u",
4444 start, fs_info->nodesize);
4445 return -EINVAL;
4446 }
4447 return 0;
4448}
4449
4450struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4451 u64 start, u64 owner_root, int level)
4452{
4453 unsigned long len = fs_info->nodesize;
4454 int num_pages;
4455 int i;
4456 unsigned long index = start >> PAGE_SHIFT;
4457 struct extent_buffer *eb;
4458 struct extent_buffer *exists = NULL;
4459 struct page *p;
4460 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4461 u64 lockdep_owner = owner_root;
4462 int uptodate = 1;
4463 int ret;
4464
4465 if (check_eb_alignment(fs_info, start))
4466 return ERR_PTR(-EINVAL);
4467
4468#if BITS_PER_LONG == 32
4469 if (start >= MAX_LFS_FILESIZE) {
4470 btrfs_err_rl(fs_info,
4471 "extent buffer %llu is beyond 32bit page cache limit", start);
4472 btrfs_err_32bit_limit(fs_info);
4473 return ERR_PTR(-EOVERFLOW);
4474 }
4475 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
4476 btrfs_warn_32bit_limit(fs_info);
4477#endif
4478
4479 eb = find_extent_buffer(fs_info, start);
4480 if (eb)
4481 return eb;
4482
4483 eb = __alloc_extent_buffer(fs_info, start, len);
4484 if (!eb)
4485 return ERR_PTR(-ENOMEM);
4486
4487 /*
4488 * The reloc trees are just snapshots, so we need them to appear to be
4489 * just like any other fs tree WRT lockdep.
4490 */
4491 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
4492 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4493
4494 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
4495
4496 num_pages = num_extent_pages(eb);
4497 for (i = 0; i < num_pages; i++, index++) {
4498 struct btrfs_subpage *prealloc = NULL;
4499
4500 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4501 if (!p) {
4502 exists = ERR_PTR(-ENOMEM);
4503 goto free_eb;
4504 }
4505
4506 /*
4507 * Preallocate page->private for subpage case, so that we won't
4508 * allocate memory with private_lock hold. The memory will be
4509 * freed by attach_extent_buffer_page() or freed manually if
4510 * we exit earlier.
4511 *
4512 * Although we have ensured one subpage eb can only have one
4513 * page, but it may change in the future for 16K page size
4514 * support, so we still preallocate the memory in the loop.
4515 */
4516 if (fs_info->nodesize < PAGE_SIZE) {
4517 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
4518 if (IS_ERR(prealloc)) {
4519 ret = PTR_ERR(prealloc);
4520 unlock_page(p);
4521 put_page(p);
4522 exists = ERR_PTR(ret);
4523 goto free_eb;
4524 }
4525 }
4526
4527 spin_lock(&mapping->private_lock);
4528 exists = grab_extent_buffer(fs_info, p);
4529 if (exists) {
4530 spin_unlock(&mapping->private_lock);
4531 unlock_page(p);
4532 put_page(p);
4533 mark_extent_buffer_accessed(exists, p);
4534 btrfs_free_subpage(prealloc);
4535 goto free_eb;
4536 }
4537 /* Should not fail, as we have preallocated the memory */
4538 ret = attach_extent_buffer_page(eb, p, prealloc);
4539 ASSERT(!ret);
4540 /*
4541 * To inform we have extra eb under allocation, so that
4542 * detach_extent_buffer_page() won't release the page private
4543 * when the eb hasn't yet been inserted into radix tree.
4544 *
4545 * The ref will be decreased when the eb released the page, in
4546 * detach_extent_buffer_page().
4547 * Thus needs no special handling in error path.
4548 */
4549 btrfs_page_inc_eb_refs(fs_info, p);
4550 spin_unlock(&mapping->private_lock);
4551
4552 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
4553 eb->pages[i] = p;
4554 if (!PageUptodate(p))
4555 uptodate = 0;
4556
4557 /*
4558 * We can't unlock the pages just yet since the extent buffer
4559 * hasn't been properly inserted in the radix tree, this
4560 * opens a race with btree_release_folio which can free a page
4561 * while we are still filling in all pages for the buffer and
4562 * we could crash.
4563 */
4564 }
4565 if (uptodate)
4566 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4567again:
4568 ret = radix_tree_preload(GFP_NOFS);
4569 if (ret) {
4570 exists = ERR_PTR(ret);
4571 goto free_eb;
4572 }
4573
4574 spin_lock(&fs_info->buffer_lock);
4575 ret = radix_tree_insert(&fs_info->buffer_radix,
4576 start >> fs_info->sectorsize_bits, eb);
4577 spin_unlock(&fs_info->buffer_lock);
4578 radix_tree_preload_end();
4579 if (ret == -EEXIST) {
4580 exists = find_extent_buffer(fs_info, start);
4581 if (exists)
4582 goto free_eb;
4583 else
4584 goto again;
4585 }
4586 /* add one reference for the tree */
4587 check_buffer_tree_ref(eb);
4588 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4589
4590 /*
4591 * Now it's safe to unlock the pages because any calls to
4592 * btree_release_folio will correctly detect that a page belongs to a
4593 * live buffer and won't free them prematurely.
4594 */
4595 for (i = 0; i < num_pages; i++)
4596 unlock_page(eb->pages[i]);
4597 return eb;
4598
4599free_eb:
4600 WARN_ON(!atomic_dec_and_test(&eb->refs));
4601 for (i = 0; i < num_pages; i++) {
4602 if (eb->pages[i])
4603 unlock_page(eb->pages[i]);
4604 }
4605
4606 btrfs_release_extent_buffer(eb);
4607 return exists;
4608}
4609
4610static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4611{
4612 struct extent_buffer *eb =
4613 container_of(head, struct extent_buffer, rcu_head);
4614
4615 __free_extent_buffer(eb);
4616}
4617
4618static int release_extent_buffer(struct extent_buffer *eb)
4619 __releases(&eb->refs_lock)
4620{
4621 lockdep_assert_held(&eb->refs_lock);
4622
4623 WARN_ON(atomic_read(&eb->refs) == 0);
4624 if (atomic_dec_and_test(&eb->refs)) {
4625 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4626 struct btrfs_fs_info *fs_info = eb->fs_info;
4627
4628 spin_unlock(&eb->refs_lock);
4629
4630 spin_lock(&fs_info->buffer_lock);
4631 radix_tree_delete(&fs_info->buffer_radix,
4632 eb->start >> fs_info->sectorsize_bits);
4633 spin_unlock(&fs_info->buffer_lock);
4634 } else {
4635 spin_unlock(&eb->refs_lock);
4636 }
4637
4638 btrfs_leak_debug_del_eb(eb);
4639 /* Should be safe to release our pages at this point */
4640 btrfs_release_extent_buffer_pages(eb);
4641#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4642 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
4643 __free_extent_buffer(eb);
4644 return 1;
4645 }
4646#endif
4647 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4648 return 1;
4649 }
4650 spin_unlock(&eb->refs_lock);
4651
4652 return 0;
4653}
4654
4655void free_extent_buffer(struct extent_buffer *eb)
4656{
4657 int refs;
4658 if (!eb)
4659 return;
4660
4661 refs = atomic_read(&eb->refs);
4662 while (1) {
4663 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
4664 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
4665 refs == 1))
4666 break;
4667 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
4668 return;
4669 }
4670
4671 spin_lock(&eb->refs_lock);
4672 if (atomic_read(&eb->refs) == 2 &&
4673 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4674 !extent_buffer_under_io(eb) &&
4675 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4676 atomic_dec(&eb->refs);
4677
4678 /*
4679 * I know this is terrible, but it's temporary until we stop tracking
4680 * the uptodate bits and such for the extent buffers.
4681 */
4682 release_extent_buffer(eb);
4683}
4684
4685void free_extent_buffer_stale(struct extent_buffer *eb)
4686{
4687 if (!eb)
4688 return;
4689
4690 spin_lock(&eb->refs_lock);
4691 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4692
4693 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4694 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4695 atomic_dec(&eb->refs);
4696 release_extent_buffer(eb);
4697}
4698
4699static void btree_clear_page_dirty(struct page *page)
4700{
4701 ASSERT(PageDirty(page));
4702 ASSERT(PageLocked(page));
4703 clear_page_dirty_for_io(page);
4704 xa_lock_irq(&page->mapping->i_pages);
4705 if (!PageDirty(page))
4706 __xa_clear_mark(&page->mapping->i_pages,
4707 page_index(page), PAGECACHE_TAG_DIRTY);
4708 xa_unlock_irq(&page->mapping->i_pages);
4709}
4710
4711static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4712{
4713 struct btrfs_fs_info *fs_info = eb->fs_info;
4714 struct page *page = eb->pages[0];
4715 bool last;
4716
4717 /* btree_clear_page_dirty() needs page locked */
4718 lock_page(page);
4719 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
4720 eb->len);
4721 if (last)
4722 btree_clear_page_dirty(page);
4723 unlock_page(page);
4724 WARN_ON(atomic_read(&eb->refs) == 0);
4725}
4726
4727void clear_extent_buffer_dirty(const struct extent_buffer *eb)
4728{
4729 int i;
4730 int num_pages;
4731 struct page *page;
4732
4733 if (eb->fs_info->nodesize < PAGE_SIZE)
4734 return clear_subpage_extent_buffer_dirty(eb);
4735
4736 num_pages = num_extent_pages(eb);
4737
4738 for (i = 0; i < num_pages; i++) {
4739 page = eb->pages[i];
4740 if (!PageDirty(page))
4741 continue;
4742 lock_page(page);
4743 btree_clear_page_dirty(page);
4744 ClearPageError(page);
4745 unlock_page(page);
4746 }
4747 WARN_ON(atomic_read(&eb->refs) == 0);
4748}
4749
4750bool set_extent_buffer_dirty(struct extent_buffer *eb)
4751{
4752 int i;
4753 int num_pages;
4754 bool was_dirty;
4755
4756 check_buffer_tree_ref(eb);
4757
4758 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4759
4760 num_pages = num_extent_pages(eb);
4761 WARN_ON(atomic_read(&eb->refs) == 0);
4762 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4763
4764 if (!was_dirty) {
4765 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
4766
4767 /*
4768 * For subpage case, we can have other extent buffers in the
4769 * same page, and in clear_subpage_extent_buffer_dirty() we
4770 * have to clear page dirty without subpage lock held.
4771 * This can cause race where our page gets dirty cleared after
4772 * we just set it.
4773 *
4774 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4775 * its page for other reasons, we can use page lock to prevent
4776 * the above race.
4777 */
4778 if (subpage)
4779 lock_page(eb->pages[0]);
4780 for (i = 0; i < num_pages; i++)
4781 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
4782 eb->start, eb->len);
4783 if (subpage)
4784 unlock_page(eb->pages[0]);
4785 }
4786#ifdef CONFIG_BTRFS_DEBUG
4787 for (i = 0; i < num_pages; i++)
4788 ASSERT(PageDirty(eb->pages[i]));
4789#endif
4790
4791 return was_dirty;
4792}
4793
4794void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4795{
4796 struct btrfs_fs_info *fs_info = eb->fs_info;
4797 struct page *page;
4798 int num_pages;
4799 int i;
4800
4801 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4802 num_pages = num_extent_pages(eb);
4803 for (i = 0; i < num_pages; i++) {
4804 page = eb->pages[i];
4805 if (!page)
4806 continue;
4807
4808 /*
4809 * This is special handling for metadata subpage, as regular
4810 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4811 */
4812 if (fs_info->nodesize >= PAGE_SIZE)
4813 ClearPageUptodate(page);
4814 else
4815 btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
4816 eb->len);
4817 }
4818}
4819
4820void set_extent_buffer_uptodate(struct extent_buffer *eb)
4821{
4822 struct btrfs_fs_info *fs_info = eb->fs_info;
4823 struct page *page;
4824 int num_pages;
4825 int i;
4826
4827 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4828 num_pages = num_extent_pages(eb);
4829 for (i = 0; i < num_pages; i++) {
4830 page = eb->pages[i];
4831
4832 /*
4833 * This is special handling for metadata subpage, as regular
4834 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4835 */
4836 if (fs_info->nodesize >= PAGE_SIZE)
4837 SetPageUptodate(page);
4838 else
4839 btrfs_subpage_set_uptodate(fs_info, page, eb->start,
4840 eb->len);
4841 }
4842}
4843
4844static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
4845 int mirror_num,
4846 struct btrfs_tree_parent_check *check)
4847{
4848 struct btrfs_fs_info *fs_info = eb->fs_info;
4849 struct extent_io_tree *io_tree;
4850 struct page *page = eb->pages[0];
4851 struct extent_state *cached_state = NULL;
4852 struct btrfs_bio_ctrl bio_ctrl = {
4853 .mirror_num = mirror_num,
4854 .parent_check = check,
4855 };
4856 int ret = 0;
4857
4858 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
4859 ASSERT(PagePrivate(page));
4860 ASSERT(check);
4861 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
4862
4863 if (wait == WAIT_NONE) {
4864 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1,
4865 &cached_state))
4866 return -EAGAIN;
4867 } else {
4868 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1,
4869 &cached_state);
4870 if (ret < 0)
4871 return ret;
4872 }
4873
4874 ret = 0;
4875 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
4876 PageUptodate(page) ||
4877 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
4878 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4879 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
4880 &cached_state);
4881 return ret;
4882 }
4883
4884 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4885 eb->read_mirror = 0;
4886 atomic_set(&eb->io_pages, 1);
4887 check_buffer_tree_ref(eb);
4888 bio_ctrl.end_io_func = end_bio_extent_readpage;
4889
4890 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
4891
4892 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
4893 ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl,
4894 eb->start, page, eb->len,
4895 eb->start - page_offset(page), 0, true);
4896 if (ret) {
4897 /*
4898 * In the endio function, if we hit something wrong we will
4899 * increase the io_pages, so here we need to decrease it for
4900 * error path.
4901 */
4902 atomic_dec(&eb->io_pages);
4903 }
4904 submit_one_bio(&bio_ctrl);
4905 if (ret || wait != WAIT_COMPLETE) {
4906 free_extent_state(cached_state);
4907 return ret;
4908 }
4909
4910 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1,
4911 EXTENT_LOCKED, &cached_state);
4912 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4913 ret = -EIO;
4914 return ret;
4915}
4916
4917int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4918 struct btrfs_tree_parent_check *check)
4919{
4920 int i;
4921 struct page *page;
4922 int err;
4923 int ret = 0;
4924 int locked_pages = 0;
4925 int all_uptodate = 1;
4926 int num_pages;
4927 unsigned long num_reads = 0;
4928 struct btrfs_bio_ctrl bio_ctrl = {
4929 .mirror_num = mirror_num,
4930 .parent_check = check,
4931 };
4932
4933 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4934 return 0;
4935
4936 /*
4937 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4938 * operation, which could potentially still be in flight. In this case
4939 * we simply want to return an error.
4940 */
4941 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4942 return -EIO;
4943
4944 if (eb->fs_info->nodesize < PAGE_SIZE)
4945 return read_extent_buffer_subpage(eb, wait, mirror_num, check);
4946
4947 num_pages = num_extent_pages(eb);
4948 for (i = 0; i < num_pages; i++) {
4949 page = eb->pages[i];
4950 if (wait == WAIT_NONE) {
4951 /*
4952 * WAIT_NONE is only utilized by readahead. If we can't
4953 * acquire the lock atomically it means either the eb
4954 * is being read out or under modification.
4955 * Either way the eb will be or has been cached,
4956 * readahead can exit safely.
4957 */
4958 if (!trylock_page(page))
4959 goto unlock_exit;
4960 } else {
4961 lock_page(page);
4962 }
4963 locked_pages++;
4964 }
4965 /*
4966 * We need to firstly lock all pages to make sure that
4967 * the uptodate bit of our pages won't be affected by
4968 * clear_extent_buffer_uptodate().
4969 */
4970 for (i = 0; i < num_pages; i++) {
4971 page = eb->pages[i];
4972 if (!PageUptodate(page)) {
4973 num_reads++;
4974 all_uptodate = 0;
4975 }
4976 }
4977
4978 if (all_uptodate) {
4979 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4980 goto unlock_exit;
4981 }
4982
4983 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4984 eb->read_mirror = 0;
4985 atomic_set(&eb->io_pages, num_reads);
4986 /*
4987 * It is possible for release_folio to clear the TREE_REF bit before we
4988 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
4989 */
4990 check_buffer_tree_ref(eb);
4991 bio_ctrl.end_io_func = end_bio_extent_readpage;
4992 for (i = 0; i < num_pages; i++) {
4993 page = eb->pages[i];
4994
4995 if (!PageUptodate(page)) {
4996 if (ret) {
4997 atomic_dec(&eb->io_pages);
4998 unlock_page(page);
4999 continue;
5000 }
5001
5002 ClearPageError(page);
5003 err = submit_extent_page(REQ_OP_READ, NULL,
5004 &bio_ctrl, page_offset(page), page,
5005 PAGE_SIZE, 0, 0, false);
5006 if (err) {
5007 /*
5008 * We failed to submit the bio so it's the
5009 * caller's responsibility to perform cleanup
5010 * i.e unlock page/set error bit.
5011 */
5012 ret = err;
5013 SetPageError(page);
5014 unlock_page(page);
5015 atomic_dec(&eb->io_pages);
5016 }
5017 } else {
5018 unlock_page(page);
5019 }
5020 }
5021
5022 submit_one_bio(&bio_ctrl);
5023
5024 if (ret || wait != WAIT_COMPLETE)
5025 return ret;
5026
5027 for (i = 0; i < num_pages; i++) {
5028 page = eb->pages[i];
5029 wait_on_page_locked(page);
5030 if (!PageUptodate(page))
5031 ret = -EIO;
5032 }
5033
5034 return ret;
5035
5036unlock_exit:
5037 while (locked_pages > 0) {
5038 locked_pages--;
5039 page = eb->pages[locked_pages];
5040 unlock_page(page);
5041 }
5042 return ret;
5043}
5044
5045static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5046 unsigned long len)
5047{
5048 btrfs_warn(eb->fs_info,
5049 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
5050 eb->start, eb->len, start, len);
5051 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5052
5053 return true;
5054}
5055
5056/*
5057 * Check if the [start, start + len) range is valid before reading/writing
5058 * the eb.
5059 * NOTE: @start and @len are offset inside the eb, not logical address.
5060 *
5061 * Caller should not touch the dst/src memory if this function returns error.
5062 */
5063static inline int check_eb_range(const struct extent_buffer *eb,
5064 unsigned long start, unsigned long len)
5065{
5066 unsigned long offset;
5067
5068 /* start, start + len should not go beyond eb->len nor overflow */
5069 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5070 return report_eb_range(eb, start, len);
5071
5072 return false;
5073}
5074
5075void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5076 unsigned long start, unsigned long len)
5077{
5078 size_t cur;
5079 size_t offset;
5080 struct page *page;
5081 char *kaddr;
5082 char *dst = (char *)dstv;
5083 unsigned long i = get_eb_page_index(start);
5084
5085 if (check_eb_range(eb, start, len))
5086 return;
5087
5088 offset = get_eb_offset_in_page(eb, start);
5089
5090 while (len > 0) {
5091 page = eb->pages[i];
5092
5093 cur = min(len, (PAGE_SIZE - offset));
5094 kaddr = page_address(page);
5095 memcpy(dst, kaddr + offset, cur);
5096
5097 dst += cur;
5098 len -= cur;
5099 offset = 0;
5100 i++;
5101 }
5102}
5103
5104int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5105 void __user *dstv,
5106 unsigned long start, unsigned long len)
5107{
5108 size_t cur;
5109 size_t offset;
5110 struct page *page;
5111 char *kaddr;
5112 char __user *dst = (char __user *)dstv;
5113 unsigned long i = get_eb_page_index(start);
5114 int ret = 0;
5115
5116 WARN_ON(start > eb->len);
5117 WARN_ON(start + len > eb->start + eb->len);
5118
5119 offset = get_eb_offset_in_page(eb, start);
5120
5121 while (len > 0) {
5122 page = eb->pages[i];
5123
5124 cur = min(len, (PAGE_SIZE - offset));
5125 kaddr = page_address(page);
5126 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5127 ret = -EFAULT;
5128 break;
5129 }
5130
5131 dst += cur;
5132 len -= cur;
5133 offset = 0;
5134 i++;
5135 }
5136
5137 return ret;
5138}
5139
5140int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5141 unsigned long start, unsigned long len)
5142{
5143 size_t cur;
5144 size_t offset;
5145 struct page *page;
5146 char *kaddr;
5147 char *ptr = (char *)ptrv;
5148 unsigned long i = get_eb_page_index(start);
5149 int ret = 0;
5150
5151 if (check_eb_range(eb, start, len))
5152 return -EINVAL;
5153
5154 offset = get_eb_offset_in_page(eb, start);
5155
5156 while (len > 0) {
5157 page = eb->pages[i];
5158
5159 cur = min(len, (PAGE_SIZE - offset));
5160
5161 kaddr = page_address(page);
5162 ret = memcmp(ptr, kaddr + offset, cur);
5163 if (ret)
5164 break;
5165
5166 ptr += cur;
5167 len -= cur;
5168 offset = 0;
5169 i++;
5170 }
5171 return ret;
5172}
5173
5174/*
5175 * Check that the extent buffer is uptodate.
5176 *
5177 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
5178 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
5179 */
5180static void assert_eb_page_uptodate(const struct extent_buffer *eb,
5181 struct page *page)
5182{
5183 struct btrfs_fs_info *fs_info = eb->fs_info;
5184
5185 /*
5186 * If we are using the commit root we could potentially clear a page
5187 * Uptodate while we're using the extent buffer that we've previously
5188 * looked up. We don't want to complain in this case, as the page was
5189 * valid before, we just didn't write it out. Instead we want to catch
5190 * the case where we didn't actually read the block properly, which
5191 * would have !PageUptodate && !PageError, as we clear PageError before
5192 * reading.
5193 */
5194 if (fs_info->nodesize < PAGE_SIZE) {
5195 bool uptodate, error;
5196
5197 uptodate = btrfs_subpage_test_uptodate(fs_info, page,
5198 eb->start, eb->len);
5199 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
5200 WARN_ON(!uptodate && !error);
5201 } else {
5202 WARN_ON(!PageUptodate(page) && !PageError(page));
5203 }
5204}
5205
5206void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5207 const void *srcv)
5208{
5209 char *kaddr;
5210
5211 assert_eb_page_uptodate(eb, eb->pages[0]);
5212 kaddr = page_address(eb->pages[0]) +
5213 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
5214 chunk_tree_uuid));
5215 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
5216}
5217
5218void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5219{
5220 char *kaddr;
5221
5222 assert_eb_page_uptodate(eb, eb->pages[0]);
5223 kaddr = page_address(eb->pages[0]) +
5224 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
5225 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
5226}
5227
5228void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5229 unsigned long start, unsigned long len)
5230{
5231 size_t cur;
5232 size_t offset;
5233 struct page *page;
5234 char *kaddr;
5235 char *src = (char *)srcv;
5236 unsigned long i = get_eb_page_index(start);
5237
5238 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
5239
5240 if (check_eb_range(eb, start, len))
5241 return;
5242
5243 offset = get_eb_offset_in_page(eb, start);
5244
5245 while (len > 0) {
5246 page = eb->pages[i];
5247 assert_eb_page_uptodate(eb, page);
5248
5249 cur = min(len, PAGE_SIZE - offset);
5250 kaddr = page_address(page);
5251 memcpy(kaddr + offset, src, cur);
5252
5253 src += cur;
5254 len -= cur;
5255 offset = 0;
5256 i++;
5257 }
5258}
5259
5260void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5261 unsigned long len)
5262{
5263 size_t cur;
5264 size_t offset;
5265 struct page *page;
5266 char *kaddr;
5267 unsigned long i = get_eb_page_index(start);
5268
5269 if (check_eb_range(eb, start, len))
5270 return;
5271
5272 offset = get_eb_offset_in_page(eb, start);
5273
5274 while (len > 0) {
5275 page = eb->pages[i];
5276 assert_eb_page_uptodate(eb, page);
5277
5278 cur = min(len, PAGE_SIZE - offset);
5279 kaddr = page_address(page);
5280 memset(kaddr + offset, 0, cur);
5281
5282 len -= cur;
5283 offset = 0;
5284 i++;
5285 }
5286}
5287
5288void copy_extent_buffer_full(const struct extent_buffer *dst,
5289 const struct extent_buffer *src)
5290{
5291 int i;
5292 int num_pages;
5293
5294 ASSERT(dst->len == src->len);
5295
5296 if (dst->fs_info->nodesize >= PAGE_SIZE) {
5297 num_pages = num_extent_pages(dst);
5298 for (i = 0; i < num_pages; i++)
5299 copy_page(page_address(dst->pages[i]),
5300 page_address(src->pages[i]));
5301 } else {
5302 size_t src_offset = get_eb_offset_in_page(src, 0);
5303 size_t dst_offset = get_eb_offset_in_page(dst, 0);
5304
5305 ASSERT(src->fs_info->nodesize < PAGE_SIZE);
5306 memcpy(page_address(dst->pages[0]) + dst_offset,
5307 page_address(src->pages[0]) + src_offset,
5308 src->len);
5309 }
5310}
5311
5312void copy_extent_buffer(const struct extent_buffer *dst,
5313 const struct extent_buffer *src,
5314 unsigned long dst_offset, unsigned long src_offset,
5315 unsigned long len)
5316{
5317 u64 dst_len = dst->len;
5318 size_t cur;
5319 size_t offset;
5320 struct page *page;
5321 char *kaddr;
5322 unsigned long i = get_eb_page_index(dst_offset);
5323
5324 if (check_eb_range(dst, dst_offset, len) ||
5325 check_eb_range(src, src_offset, len))
5326 return;
5327
5328 WARN_ON(src->len != dst_len);
5329
5330 offset = get_eb_offset_in_page(dst, dst_offset);
5331
5332 while (len > 0) {
5333 page = dst->pages[i];
5334 assert_eb_page_uptodate(dst, page);
5335
5336 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5337
5338 kaddr = page_address(page);
5339 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5340
5341 src_offset += cur;
5342 len -= cur;
5343 offset = 0;
5344 i++;
5345 }
5346}
5347
5348/*
5349 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5350 * given bit number
5351 * @eb: the extent buffer
5352 * @start: offset of the bitmap item in the extent buffer
5353 * @nr: bit number
5354 * @page_index: return index of the page in the extent buffer that contains the
5355 * given bit number
5356 * @page_offset: return offset into the page given by page_index
5357 *
5358 * This helper hides the ugliness of finding the byte in an extent buffer which
5359 * contains a given bit.
5360 */
5361static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5362 unsigned long start, unsigned long nr,
5363 unsigned long *page_index,
5364 size_t *page_offset)
5365{
5366 size_t byte_offset = BIT_BYTE(nr);
5367 size_t offset;
5368
5369 /*
5370 * The byte we want is the offset of the extent buffer + the offset of
5371 * the bitmap item in the extent buffer + the offset of the byte in the
5372 * bitmap item.
5373 */
5374 offset = start + offset_in_page(eb->start) + byte_offset;
5375
5376 *page_index = offset >> PAGE_SHIFT;
5377 *page_offset = offset_in_page(offset);
5378}
5379
5380/*
5381 * Determine whether a bit in a bitmap item is set.
5382 *
5383 * @eb: the extent buffer
5384 * @start: offset of the bitmap item in the extent buffer
5385 * @nr: bit number to test
5386 */
5387int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5388 unsigned long nr)
5389{
5390 u8 *kaddr;
5391 struct page *page;
5392 unsigned long i;
5393 size_t offset;
5394
5395 eb_bitmap_offset(eb, start, nr, &i, &offset);
5396 page = eb->pages[i];
5397 assert_eb_page_uptodate(eb, page);
5398 kaddr = page_address(page);
5399 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5400}
5401
5402/*
5403 * Set an area of a bitmap to 1.
5404 *
5405 * @eb: the extent buffer
5406 * @start: offset of the bitmap item in the extent buffer
5407 * @pos: bit number of the first bit
5408 * @len: number of bits to set
5409 */
5410void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5411 unsigned long pos, unsigned long len)
5412{
5413 u8 *kaddr;
5414 struct page *page;
5415 unsigned long i;
5416 size_t offset;
5417 const unsigned int size = pos + len;
5418 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5419 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5420
5421 eb_bitmap_offset(eb, start, pos, &i, &offset);
5422 page = eb->pages[i];
5423 assert_eb_page_uptodate(eb, page);
5424 kaddr = page_address(page);
5425
5426 while (len >= bits_to_set) {
5427 kaddr[offset] |= mask_to_set;
5428 len -= bits_to_set;
5429 bits_to_set = BITS_PER_BYTE;
5430 mask_to_set = ~0;
5431 if (++offset >= PAGE_SIZE && len > 0) {
5432 offset = 0;
5433 page = eb->pages[++i];
5434 assert_eb_page_uptodate(eb, page);
5435 kaddr = page_address(page);
5436 }
5437 }
5438 if (len) {
5439 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5440 kaddr[offset] |= mask_to_set;
5441 }
5442}
5443
5444
5445/*
5446 * Clear an area of a bitmap.
5447 *
5448 * @eb: the extent buffer
5449 * @start: offset of the bitmap item in the extent buffer
5450 * @pos: bit number of the first bit
5451 * @len: number of bits to clear
5452 */
5453void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5454 unsigned long start, unsigned long pos,
5455 unsigned long len)
5456{
5457 u8 *kaddr;
5458 struct page *page;
5459 unsigned long i;
5460 size_t offset;
5461 const unsigned int size = pos + len;
5462 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5463 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5464
5465 eb_bitmap_offset(eb, start, pos, &i, &offset);
5466 page = eb->pages[i];
5467 assert_eb_page_uptodate(eb, page);
5468 kaddr = page_address(page);
5469
5470 while (len >= bits_to_clear) {
5471 kaddr[offset] &= ~mask_to_clear;
5472 len -= bits_to_clear;
5473 bits_to_clear = BITS_PER_BYTE;
5474 mask_to_clear = ~0;
5475 if (++offset >= PAGE_SIZE && len > 0) {
5476 offset = 0;
5477 page = eb->pages[++i];
5478 assert_eb_page_uptodate(eb, page);
5479 kaddr = page_address(page);
5480 }
5481 }
5482 if (len) {
5483 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5484 kaddr[offset] &= ~mask_to_clear;
5485 }
5486}
5487
5488static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5489{
5490 unsigned long distance = (src > dst) ? src - dst : dst - src;
5491 return distance < len;
5492}
5493
5494static void copy_pages(struct page *dst_page, struct page *src_page,
5495 unsigned long dst_off, unsigned long src_off,
5496 unsigned long len)
5497{
5498 char *dst_kaddr = page_address(dst_page);
5499 char *src_kaddr;
5500 int must_memmove = 0;
5501
5502 if (dst_page != src_page) {
5503 src_kaddr = page_address(src_page);
5504 } else {
5505 src_kaddr = dst_kaddr;
5506 if (areas_overlap(src_off, dst_off, len))
5507 must_memmove = 1;
5508 }
5509
5510 if (must_memmove)
5511 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5512 else
5513 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5514}
5515
5516void memcpy_extent_buffer(const struct extent_buffer *dst,
5517 unsigned long dst_offset, unsigned long src_offset,
5518 unsigned long len)
5519{
5520 size_t cur;
5521 size_t dst_off_in_page;
5522 size_t src_off_in_page;
5523 unsigned long dst_i;
5524 unsigned long src_i;
5525
5526 if (check_eb_range(dst, dst_offset, len) ||
5527 check_eb_range(dst, src_offset, len))
5528 return;
5529
5530 while (len > 0) {
5531 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
5532 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
5533
5534 dst_i = get_eb_page_index(dst_offset);
5535 src_i = get_eb_page_index(src_offset);
5536
5537 cur = min(len, (unsigned long)(PAGE_SIZE -
5538 src_off_in_page));
5539 cur = min_t(unsigned long, cur,
5540 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5541
5542 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5543 dst_off_in_page, src_off_in_page, cur);
5544
5545 src_offset += cur;
5546 dst_offset += cur;
5547 len -= cur;
5548 }
5549}
5550
5551void memmove_extent_buffer(const struct extent_buffer *dst,
5552 unsigned long dst_offset, unsigned long src_offset,
5553 unsigned long len)
5554{
5555 size_t cur;
5556 size_t dst_off_in_page;
5557 size_t src_off_in_page;
5558 unsigned long dst_end = dst_offset + len - 1;
5559 unsigned long src_end = src_offset + len - 1;
5560 unsigned long dst_i;
5561 unsigned long src_i;
5562
5563 if (check_eb_range(dst, dst_offset, len) ||
5564 check_eb_range(dst, src_offset, len))
5565 return;
5566 if (dst_offset < src_offset) {
5567 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5568 return;
5569 }
5570 while (len > 0) {
5571 dst_i = get_eb_page_index(dst_end);
5572 src_i = get_eb_page_index(src_end);
5573
5574 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
5575 src_off_in_page = get_eb_offset_in_page(dst, src_end);
5576
5577 cur = min_t(unsigned long, len, src_off_in_page + 1);
5578 cur = min(cur, dst_off_in_page + 1);
5579 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5580 dst_off_in_page - cur + 1,
5581 src_off_in_page - cur + 1, cur);
5582
5583 dst_end -= cur;
5584 src_end -= cur;
5585 len -= cur;
5586 }
5587}
5588
5589#define GANG_LOOKUP_SIZE 16
5590static struct extent_buffer *get_next_extent_buffer(
5591 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
5592{
5593 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
5594 struct extent_buffer *found = NULL;
5595 u64 page_start = page_offset(page);
5596 u64 cur = page_start;
5597
5598 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
5599 lockdep_assert_held(&fs_info->buffer_lock);
5600
5601 while (cur < page_start + PAGE_SIZE) {
5602 int ret;
5603 int i;
5604
5605 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
5606 (void **)gang, cur >> fs_info->sectorsize_bits,
5607 min_t(unsigned int, GANG_LOOKUP_SIZE,
5608 PAGE_SIZE / fs_info->nodesize));
5609 if (ret == 0)
5610 goto out;
5611 for (i = 0; i < ret; i++) {
5612 /* Already beyond page end */
5613 if (gang[i]->start >= page_start + PAGE_SIZE)
5614 goto out;
5615 /* Found one */
5616 if (gang[i]->start >= bytenr) {
5617 found = gang[i];
5618 goto out;
5619 }
5620 }
5621 cur = gang[ret - 1]->start + gang[ret - 1]->len;
5622 }
5623out:
5624 return found;
5625}
5626
5627static int try_release_subpage_extent_buffer(struct page *page)
5628{
5629 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
5630 u64 cur = page_offset(page);
5631 const u64 end = page_offset(page) + PAGE_SIZE;
5632 int ret;
5633
5634 while (cur < end) {
5635 struct extent_buffer *eb = NULL;
5636
5637 /*
5638 * Unlike try_release_extent_buffer() which uses page->private
5639 * to grab buffer, for subpage case we rely on radix tree, thus
5640 * we need to ensure radix tree consistency.
5641 *
5642 * We also want an atomic snapshot of the radix tree, thus go
5643 * with spinlock rather than RCU.
5644 */
5645 spin_lock(&fs_info->buffer_lock);
5646 eb = get_next_extent_buffer(fs_info, page, cur);
5647 if (!eb) {
5648 /* No more eb in the page range after or at cur */
5649 spin_unlock(&fs_info->buffer_lock);
5650 break;
5651 }
5652 cur = eb->start + eb->len;
5653
5654 /*
5655 * The same as try_release_extent_buffer(), to ensure the eb
5656 * won't disappear out from under us.
5657 */
5658 spin_lock(&eb->refs_lock);
5659 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5660 spin_unlock(&eb->refs_lock);
5661 spin_unlock(&fs_info->buffer_lock);
5662 break;
5663 }
5664 spin_unlock(&fs_info->buffer_lock);
5665
5666 /*
5667 * If tree ref isn't set then we know the ref on this eb is a
5668 * real ref, so just return, this eb will likely be freed soon
5669 * anyway.
5670 */
5671 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5672 spin_unlock(&eb->refs_lock);
5673 break;
5674 }
5675
5676 /*
5677 * Here we don't care about the return value, we will always
5678 * check the page private at the end. And
5679 * release_extent_buffer() will release the refs_lock.
5680 */
5681 release_extent_buffer(eb);
5682 }
5683 /*
5684 * Finally to check if we have cleared page private, as if we have
5685 * released all ebs in the page, the page private should be cleared now.
5686 */
5687 spin_lock(&page->mapping->private_lock);
5688 if (!PagePrivate(page))
5689 ret = 1;
5690 else
5691 ret = 0;
5692 spin_unlock(&page->mapping->private_lock);
5693 return ret;
5694
5695}
5696
5697int try_release_extent_buffer(struct page *page)
5698{
5699 struct extent_buffer *eb;
5700
5701 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
5702 return try_release_subpage_extent_buffer(page);
5703
5704 /*
5705 * We need to make sure nobody is changing page->private, as we rely on
5706 * page->private as the pointer to extent buffer.
5707 */
5708 spin_lock(&page->mapping->private_lock);
5709 if (!PagePrivate(page)) {
5710 spin_unlock(&page->mapping->private_lock);
5711 return 1;
5712 }
5713
5714 eb = (struct extent_buffer *)page->private;
5715 BUG_ON(!eb);
5716
5717 /*
5718 * This is a little awful but should be ok, we need to make sure that
5719 * the eb doesn't disappear out from under us while we're looking at
5720 * this page.
5721 */
5722 spin_lock(&eb->refs_lock);
5723 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5724 spin_unlock(&eb->refs_lock);
5725 spin_unlock(&page->mapping->private_lock);
5726 return 0;
5727 }
5728 spin_unlock(&page->mapping->private_lock);
5729
5730 /*
5731 * If tree ref isn't set then we know the ref on this eb is a real ref,
5732 * so just return, this page will likely be freed soon anyway.
5733 */
5734 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5735 spin_unlock(&eb->refs_lock);
5736 return 0;
5737 }
5738
5739 return release_extent_buffer(eb);
5740}
5741
5742/*
5743 * btrfs_readahead_tree_block - attempt to readahead a child block
5744 * @fs_info: the fs_info
5745 * @bytenr: bytenr to read
5746 * @owner_root: objectid of the root that owns this eb
5747 * @gen: generation for the uptodate check, can be 0
5748 * @level: level for the eb
5749 *
5750 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
5751 * normal uptodate check of the eb, without checking the generation. If we have
5752 * to read the block we will not block on anything.
5753 */
5754void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
5755 u64 bytenr, u64 owner_root, u64 gen, int level)
5756{
5757 struct btrfs_tree_parent_check check = {
5758 .has_first_key = 0,
5759 .level = level,
5760 .transid = gen
5761 };
5762 struct extent_buffer *eb;
5763 int ret;
5764
5765 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
5766 if (IS_ERR(eb))
5767 return;
5768
5769 if (btrfs_buffer_uptodate(eb, gen, 1)) {
5770 free_extent_buffer(eb);
5771 return;
5772 }
5773
5774 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
5775 if (ret < 0)
5776 free_extent_buffer_stale(eb);
5777 else
5778 free_extent_buffer(eb);
5779}
5780
5781/*
5782 * btrfs_readahead_node_child - readahead a node's child block
5783 * @node: parent node we're reading from
5784 * @slot: slot in the parent node for the child we want to read
5785 *
5786 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5787 * the slot in the node provided.
5788 */
5789void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5790{
5791 btrfs_readahead_tree_block(node->fs_info,
5792 btrfs_node_blockptr(node, slot),
5793 btrfs_header_owner(node),
5794 btrfs_node_ptr_generation(node, slot),
5795 btrfs_header_level(node) - 1);
5796}
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
14#include <linux/prefetch.h>
15#include <linux/cleancache.h>
16#include "extent_io.h"
17#include "extent-io-tree.h"
18#include "extent_map.h"
19#include "ctree.h"
20#include "btrfs_inode.h"
21#include "volumes.h"
22#include "check-integrity.h"
23#include "locking.h"
24#include "rcu-string.h"
25#include "backref.h"
26#include "disk-io.h"
27
28static struct kmem_cache *extent_state_cache;
29static struct kmem_cache *extent_buffer_cache;
30static struct bio_set btrfs_bioset;
31
32static inline bool extent_state_in_tree(const struct extent_state *state)
33{
34 return !RB_EMPTY_NODE(&state->rb_node);
35}
36
37#ifdef CONFIG_BTRFS_DEBUG
38static LIST_HEAD(states);
39static DEFINE_SPINLOCK(leak_lock);
40
41static inline void btrfs_leak_debug_add(spinlock_t *lock,
42 struct list_head *new,
43 struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(lock, flags);
50}
51
52static inline void btrfs_leak_debug_del(spinlock_t *lock,
53 struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(lock, flags);
60}
61
62void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63{
64 struct extent_buffer *eb;
65 unsigned long flags;
66
67 /*
68 * If we didn't get into open_ctree our allocated_ebs will not be
69 * initialized, so just skip this.
70 */
71 if (!fs_info->allocated_ebs.next)
72 return;
73
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
78 pr_err(
79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86}
87
88static inline void btrfs_extent_state_leak_debug_check(void)
89{
90 struct extent_state *state;
91
92 while (!list_empty(&states)) {
93 state = list_entry(states.next, struct extent_state, leak_list);
94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95 state->start, state->end, state->state,
96 extent_state_in_tree(state),
97 refcount_read(&state->refs));
98 list_del(&state->leak_list);
99 kmem_cache_free(extent_state_cache, state);
100 }
101}
102
103#define btrfs_debug_check_extent_io_range(tree, start, end) \
104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106 struct extent_io_tree *tree, u64 start, u64 end)
107{
108 struct inode *inode = tree->private_data;
109 u64 isize;
110
111 if (!inode || !is_data_inode(inode))
112 return;
113
114 isize = i_size_read(inode);
115 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117 "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119 }
120}
121#else
122#define btrfs_leak_debug_add(lock, new, head) do {} while (0)
123#define btrfs_leak_debug_del(lock, entry) do {} while (0)
124#define btrfs_extent_state_leak_debug_check() do {} while (0)
125#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
126#endif
127
128struct tree_entry {
129 u64 start;
130 u64 end;
131 struct rb_node rb_node;
132};
133
134struct extent_page_data {
135 struct bio *bio;
136 /* tells writepage not to lock the state bits for this range
137 * it still does the unlocking
138 */
139 unsigned int extent_locked:1;
140
141 /* tells the submit_bio code to use REQ_SYNC */
142 unsigned int sync_io:1;
143};
144
145static int add_extent_changeset(struct extent_state *state, unsigned bits,
146 struct extent_changeset *changeset,
147 int set)
148{
149 int ret;
150
151 if (!changeset)
152 return 0;
153 if (set && (state->state & bits) == bits)
154 return 0;
155 if (!set && (state->state & bits) == 0)
156 return 0;
157 changeset->bytes_changed += state->end - state->start + 1;
158 ret = ulist_add(&changeset->range_changed, state->start, state->end,
159 GFP_ATOMIC);
160 return ret;
161}
162
163static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164 unsigned long bio_flags)
165{
166 blk_status_t ret = 0;
167 struct extent_io_tree *tree = bio->bi_private;
168
169 bio->bi_private = NULL;
170
171 if (tree->ops)
172 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
173 mirror_num, bio_flags);
174 else
175 btrfsic_submit_bio(bio);
176
177 return blk_status_to_errno(ret);
178}
179
180/* Cleanup unsubmitted bios */
181static void end_write_bio(struct extent_page_data *epd, int ret)
182{
183 if (epd->bio) {
184 epd->bio->bi_status = errno_to_blk_status(ret);
185 bio_endio(epd->bio);
186 epd->bio = NULL;
187 }
188}
189
190/*
191 * Submit bio from extent page data via submit_one_bio
192 *
193 * Return 0 if everything is OK.
194 * Return <0 for error.
195 */
196static int __must_check flush_write_bio(struct extent_page_data *epd)
197{
198 int ret = 0;
199
200 if (epd->bio) {
201 ret = submit_one_bio(epd->bio, 0, 0);
202 /*
203 * Clean up of epd->bio is handled by its endio function.
204 * And endio is either triggered by successful bio execution
205 * or the error handler of submit bio hook.
206 * So at this point, no matter what happened, we don't need
207 * to clean up epd->bio.
208 */
209 epd->bio = NULL;
210 }
211 return ret;
212}
213
214int __init extent_state_cache_init(void)
215{
216 extent_state_cache = kmem_cache_create("btrfs_extent_state",
217 sizeof(struct extent_state), 0,
218 SLAB_MEM_SPREAD, NULL);
219 if (!extent_state_cache)
220 return -ENOMEM;
221 return 0;
222}
223
224int __init extent_io_init(void)
225{
226 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
227 sizeof(struct extent_buffer), 0,
228 SLAB_MEM_SPREAD, NULL);
229 if (!extent_buffer_cache)
230 return -ENOMEM;
231
232 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
233 offsetof(struct btrfs_io_bio, bio),
234 BIOSET_NEED_BVECS))
235 goto free_buffer_cache;
236
237 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
238 goto free_bioset;
239
240 return 0;
241
242free_bioset:
243 bioset_exit(&btrfs_bioset);
244
245free_buffer_cache:
246 kmem_cache_destroy(extent_buffer_cache);
247 extent_buffer_cache = NULL;
248 return -ENOMEM;
249}
250
251void __cold extent_state_cache_exit(void)
252{
253 btrfs_extent_state_leak_debug_check();
254 kmem_cache_destroy(extent_state_cache);
255}
256
257void __cold extent_io_exit(void)
258{
259 /*
260 * Make sure all delayed rcu free are flushed before we
261 * destroy caches.
262 */
263 rcu_barrier();
264 kmem_cache_destroy(extent_buffer_cache);
265 bioset_exit(&btrfs_bioset);
266}
267
268/*
269 * For the file_extent_tree, we want to hold the inode lock when we lookup and
270 * update the disk_i_size, but lockdep will complain because our io_tree we hold
271 * the tree lock and get the inode lock when setting delalloc. These two things
272 * are unrelated, so make a class for the file_extent_tree so we don't get the
273 * two locking patterns mixed up.
274 */
275static struct lock_class_key file_extent_tree_class;
276
277void extent_io_tree_init(struct btrfs_fs_info *fs_info,
278 struct extent_io_tree *tree, unsigned int owner,
279 void *private_data)
280{
281 tree->fs_info = fs_info;
282 tree->state = RB_ROOT;
283 tree->ops = NULL;
284 tree->dirty_bytes = 0;
285 spin_lock_init(&tree->lock);
286 tree->private_data = private_data;
287 tree->owner = owner;
288 if (owner == IO_TREE_INODE_FILE_EXTENT)
289 lockdep_set_class(&tree->lock, &file_extent_tree_class);
290}
291
292void extent_io_tree_release(struct extent_io_tree *tree)
293{
294 spin_lock(&tree->lock);
295 /*
296 * Do a single barrier for the waitqueue_active check here, the state
297 * of the waitqueue should not change once extent_io_tree_release is
298 * called.
299 */
300 smp_mb();
301 while (!RB_EMPTY_ROOT(&tree->state)) {
302 struct rb_node *node;
303 struct extent_state *state;
304
305 node = rb_first(&tree->state);
306 state = rb_entry(node, struct extent_state, rb_node);
307 rb_erase(&state->rb_node, &tree->state);
308 RB_CLEAR_NODE(&state->rb_node);
309 /*
310 * btree io trees aren't supposed to have tasks waiting for
311 * changes in the flags of extent states ever.
312 */
313 ASSERT(!waitqueue_active(&state->wq));
314 free_extent_state(state);
315
316 cond_resched_lock(&tree->lock);
317 }
318 spin_unlock(&tree->lock);
319}
320
321static struct extent_state *alloc_extent_state(gfp_t mask)
322{
323 struct extent_state *state;
324
325 /*
326 * The given mask might be not appropriate for the slab allocator,
327 * drop the unsupported bits
328 */
329 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330 state = kmem_cache_alloc(extent_state_cache, mask);
331 if (!state)
332 return state;
333 state->state = 0;
334 state->failrec = NULL;
335 RB_CLEAR_NODE(&state->rb_node);
336 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337 refcount_set(&state->refs, 1);
338 init_waitqueue_head(&state->wq);
339 trace_alloc_extent_state(state, mask, _RET_IP_);
340 return state;
341}
342
343void free_extent_state(struct extent_state *state)
344{
345 if (!state)
346 return;
347 if (refcount_dec_and_test(&state->refs)) {
348 WARN_ON(extent_state_in_tree(state));
349 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350 trace_free_extent_state(state, _RET_IP_);
351 kmem_cache_free(extent_state_cache, state);
352 }
353}
354
355static struct rb_node *tree_insert(struct rb_root *root,
356 struct rb_node *search_start,
357 u64 offset,
358 struct rb_node *node,
359 struct rb_node ***p_in,
360 struct rb_node **parent_in)
361{
362 struct rb_node **p;
363 struct rb_node *parent = NULL;
364 struct tree_entry *entry;
365
366 if (p_in && parent_in) {
367 p = *p_in;
368 parent = *parent_in;
369 goto do_insert;
370 }
371
372 p = search_start ? &search_start : &root->rb_node;
373 while (*p) {
374 parent = *p;
375 entry = rb_entry(parent, struct tree_entry, rb_node);
376
377 if (offset < entry->start)
378 p = &(*p)->rb_left;
379 else if (offset > entry->end)
380 p = &(*p)->rb_right;
381 else
382 return parent;
383 }
384
385do_insert:
386 rb_link_node(node, parent, p);
387 rb_insert_color(node, root);
388 return NULL;
389}
390
391/**
392 * __etree_search - searche @tree for an entry that contains @offset. Such
393 * entry would have entry->start <= offset && entry->end >= offset.
394 *
395 * @tree - the tree to search
396 * @offset - offset that should fall within an entry in @tree
397 * @next_ret - pointer to the first entry whose range ends after @offset
398 * @prev - pointer to the first entry whose range begins before @offset
399 * @p_ret - pointer where new node should be anchored (used when inserting an
400 * entry in the tree)
401 * @parent_ret - points to entry which would have been the parent of the entry,
402 * containing @offset
403 *
404 * This function returns a pointer to the entry that contains @offset byte
405 * address. If no such entry exists, then NULL is returned and the other
406 * pointer arguments to the function are filled, otherwise the found entry is
407 * returned and other pointers are left untouched.
408 */
409static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410 struct rb_node **next_ret,
411 struct rb_node **prev_ret,
412 struct rb_node ***p_ret,
413 struct rb_node **parent_ret)
414{
415 struct rb_root *root = &tree->state;
416 struct rb_node **n = &root->rb_node;
417 struct rb_node *prev = NULL;
418 struct rb_node *orig_prev = NULL;
419 struct tree_entry *entry;
420 struct tree_entry *prev_entry = NULL;
421
422 while (*n) {
423 prev = *n;
424 entry = rb_entry(prev, struct tree_entry, rb_node);
425 prev_entry = entry;
426
427 if (offset < entry->start)
428 n = &(*n)->rb_left;
429 else if (offset > entry->end)
430 n = &(*n)->rb_right;
431 else
432 return *n;
433 }
434
435 if (p_ret)
436 *p_ret = n;
437 if (parent_ret)
438 *parent_ret = prev;
439
440 if (next_ret) {
441 orig_prev = prev;
442 while (prev && offset > prev_entry->end) {
443 prev = rb_next(prev);
444 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445 }
446 *next_ret = prev;
447 prev = orig_prev;
448 }
449
450 if (prev_ret) {
451 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452 while (prev && offset < prev_entry->start) {
453 prev = rb_prev(prev);
454 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 }
456 *prev_ret = prev;
457 }
458 return NULL;
459}
460
461static inline struct rb_node *
462tree_search_for_insert(struct extent_io_tree *tree,
463 u64 offset,
464 struct rb_node ***p_ret,
465 struct rb_node **parent_ret)
466{
467 struct rb_node *next= NULL;
468 struct rb_node *ret;
469
470 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471 if (!ret)
472 return next;
473 return ret;
474}
475
476static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477 u64 offset)
478{
479 return tree_search_for_insert(tree, offset, NULL, NULL);
480}
481
482/*
483 * utility function to look for merge candidates inside a given range.
484 * Any extents with matching state are merged together into a single
485 * extent in the tree. Extents with EXTENT_IO in their state field
486 * are not merged because the end_io handlers need to be able to do
487 * operations on them without sleeping (or doing allocations/splits).
488 *
489 * This should be called with the tree lock held.
490 */
491static void merge_state(struct extent_io_tree *tree,
492 struct extent_state *state)
493{
494 struct extent_state *other;
495 struct rb_node *other_node;
496
497 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498 return;
499
500 other_node = rb_prev(&state->rb_node);
501 if (other_node) {
502 other = rb_entry(other_node, struct extent_state, rb_node);
503 if (other->end == state->start - 1 &&
504 other->state == state->state) {
505 if (tree->private_data &&
506 is_data_inode(tree->private_data))
507 btrfs_merge_delalloc_extent(tree->private_data,
508 state, other);
509 state->start = other->start;
510 rb_erase(&other->rb_node, &tree->state);
511 RB_CLEAR_NODE(&other->rb_node);
512 free_extent_state(other);
513 }
514 }
515 other_node = rb_next(&state->rb_node);
516 if (other_node) {
517 other = rb_entry(other_node, struct extent_state, rb_node);
518 if (other->start == state->end + 1 &&
519 other->state == state->state) {
520 if (tree->private_data &&
521 is_data_inode(tree->private_data))
522 btrfs_merge_delalloc_extent(tree->private_data,
523 state, other);
524 state->end = other->end;
525 rb_erase(&other->rb_node, &tree->state);
526 RB_CLEAR_NODE(&other->rb_node);
527 free_extent_state(other);
528 }
529 }
530}
531
532static void set_state_bits(struct extent_io_tree *tree,
533 struct extent_state *state, unsigned *bits,
534 struct extent_changeset *changeset);
535
536/*
537 * insert an extent_state struct into the tree. 'bits' are set on the
538 * struct before it is inserted.
539 *
540 * This may return -EEXIST if the extent is already there, in which case the
541 * state struct is freed.
542 *
543 * The tree lock is not taken internally. This is a utility function and
544 * probably isn't what you want to call (see set/clear_extent_bit).
545 */
546static int insert_state(struct extent_io_tree *tree,
547 struct extent_state *state, u64 start, u64 end,
548 struct rb_node ***p,
549 struct rb_node **parent,
550 unsigned *bits, struct extent_changeset *changeset)
551{
552 struct rb_node *node;
553
554 if (end < start) {
555 btrfs_err(tree->fs_info,
556 "insert state: end < start %llu %llu", end, start);
557 WARN_ON(1);
558 }
559 state->start = start;
560 state->end = end;
561
562 set_state_bits(tree, state, bits, changeset);
563
564 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565 if (node) {
566 struct extent_state *found;
567 found = rb_entry(node, struct extent_state, rb_node);
568 btrfs_err(tree->fs_info,
569 "found node %llu %llu on insert of %llu %llu",
570 found->start, found->end, start, end);
571 return -EEXIST;
572 }
573 merge_state(tree, state);
574 return 0;
575}
576
577/*
578 * split a given extent state struct in two, inserting the preallocated
579 * struct 'prealloc' as the newly created second half. 'split' indicates an
580 * offset inside 'orig' where it should be split.
581 *
582 * Before calling,
583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
584 * are two extent state structs in the tree:
585 * prealloc: [orig->start, split - 1]
586 * orig: [ split, orig->end ]
587 *
588 * The tree locks are not taken by this function. They need to be held
589 * by the caller.
590 */
591static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592 struct extent_state *prealloc, u64 split)
593{
594 struct rb_node *node;
595
596 if (tree->private_data && is_data_inode(tree->private_data))
597 btrfs_split_delalloc_extent(tree->private_data, orig, split);
598
599 prealloc->start = orig->start;
600 prealloc->end = split - 1;
601 prealloc->state = orig->state;
602 orig->start = split;
603
604 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605 &prealloc->rb_node, NULL, NULL);
606 if (node) {
607 free_extent_state(prealloc);
608 return -EEXIST;
609 }
610 return 0;
611}
612
613static struct extent_state *next_state(struct extent_state *state)
614{
615 struct rb_node *next = rb_next(&state->rb_node);
616 if (next)
617 return rb_entry(next, struct extent_state, rb_node);
618 else
619 return NULL;
620}
621
622/*
623 * utility function to clear some bits in an extent state struct.
624 * it will optionally wake up anyone waiting on this state (wake == 1).
625 *
626 * If no bits are set on the state struct after clearing things, the
627 * struct is freed and removed from the tree
628 */
629static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630 struct extent_state *state,
631 unsigned *bits, int wake,
632 struct extent_changeset *changeset)
633{
634 struct extent_state *next;
635 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636 int ret;
637
638 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639 u64 range = state->end - state->start + 1;
640 WARN_ON(range > tree->dirty_bytes);
641 tree->dirty_bytes -= range;
642 }
643
644 if (tree->private_data && is_data_inode(tree->private_data))
645 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646
647 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648 BUG_ON(ret < 0);
649 state->state &= ~bits_to_clear;
650 if (wake)
651 wake_up(&state->wq);
652 if (state->state == 0) {
653 next = next_state(state);
654 if (extent_state_in_tree(state)) {
655 rb_erase(&state->rb_node, &tree->state);
656 RB_CLEAR_NODE(&state->rb_node);
657 free_extent_state(state);
658 } else {
659 WARN_ON(1);
660 }
661 } else {
662 merge_state(tree, state);
663 next = next_state(state);
664 }
665 return next;
666}
667
668static struct extent_state *
669alloc_extent_state_atomic(struct extent_state *prealloc)
670{
671 if (!prealloc)
672 prealloc = alloc_extent_state(GFP_ATOMIC);
673
674 return prealloc;
675}
676
677static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678{
679 struct inode *inode = tree->private_data;
680
681 btrfs_panic(btrfs_sb(inode->i_sb), err,
682 "locking error: extent tree was modified by another thread while locked");
683}
684
685/*
686 * clear some bits on a range in the tree. This may require splitting
687 * or inserting elements in the tree, so the gfp mask is used to
688 * indicate which allocations or sleeping are allowed.
689 *
690 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691 * the given range from the tree regardless of state (ie for truncate).
692 *
693 * the range [start, end] is inclusive.
694 *
695 * This takes the tree lock, and returns 0 on success and < 0 on error.
696 */
697int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
698 unsigned bits, int wake, int delete,
699 struct extent_state **cached_state,
700 gfp_t mask, struct extent_changeset *changeset)
701{
702 struct extent_state *state;
703 struct extent_state *cached;
704 struct extent_state *prealloc = NULL;
705 struct rb_node *node;
706 u64 last_end;
707 int err;
708 int clear = 0;
709
710 btrfs_debug_check_extent_io_range(tree, start, end);
711 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
712
713 if (bits & EXTENT_DELALLOC)
714 bits |= EXTENT_NORESERVE;
715
716 if (delete)
717 bits |= ~EXTENT_CTLBITS;
718
719 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
720 clear = 1;
721again:
722 if (!prealloc && gfpflags_allow_blocking(mask)) {
723 /*
724 * Don't care for allocation failure here because we might end
725 * up not needing the pre-allocated extent state at all, which
726 * is the case if we only have in the tree extent states that
727 * cover our input range and don't cover too any other range.
728 * If we end up needing a new extent state we allocate it later.
729 */
730 prealloc = alloc_extent_state(mask);
731 }
732
733 spin_lock(&tree->lock);
734 if (cached_state) {
735 cached = *cached_state;
736
737 if (clear) {
738 *cached_state = NULL;
739 cached_state = NULL;
740 }
741
742 if (cached && extent_state_in_tree(cached) &&
743 cached->start <= start && cached->end > start) {
744 if (clear)
745 refcount_dec(&cached->refs);
746 state = cached;
747 goto hit_next;
748 }
749 if (clear)
750 free_extent_state(cached);
751 }
752 /*
753 * this search will find the extents that end after
754 * our range starts
755 */
756 node = tree_search(tree, start);
757 if (!node)
758 goto out;
759 state = rb_entry(node, struct extent_state, rb_node);
760hit_next:
761 if (state->start > end)
762 goto out;
763 WARN_ON(state->end < start);
764 last_end = state->end;
765
766 /* the state doesn't have the wanted bits, go ahead */
767 if (!(state->state & bits)) {
768 state = next_state(state);
769 goto next;
770 }
771
772 /*
773 * | ---- desired range ---- |
774 * | state | or
775 * | ------------- state -------------- |
776 *
777 * We need to split the extent we found, and may flip
778 * bits on second half.
779 *
780 * If the extent we found extends past our range, we
781 * just split and search again. It'll get split again
782 * the next time though.
783 *
784 * If the extent we found is inside our range, we clear
785 * the desired bit on it.
786 */
787
788 if (state->start < start) {
789 prealloc = alloc_extent_state_atomic(prealloc);
790 BUG_ON(!prealloc);
791 err = split_state(tree, state, prealloc, start);
792 if (err)
793 extent_io_tree_panic(tree, err);
794
795 prealloc = NULL;
796 if (err)
797 goto out;
798 if (state->end <= end) {
799 state = clear_state_bit(tree, state, &bits, wake,
800 changeset);
801 goto next;
802 }
803 goto search_again;
804 }
805 /*
806 * | ---- desired range ---- |
807 * | state |
808 * We need to split the extent, and clear the bit
809 * on the first half
810 */
811 if (state->start <= end && state->end > end) {
812 prealloc = alloc_extent_state_atomic(prealloc);
813 BUG_ON(!prealloc);
814 err = split_state(tree, state, prealloc, end + 1);
815 if (err)
816 extent_io_tree_panic(tree, err);
817
818 if (wake)
819 wake_up(&state->wq);
820
821 clear_state_bit(tree, prealloc, &bits, wake, changeset);
822
823 prealloc = NULL;
824 goto out;
825 }
826
827 state = clear_state_bit(tree, state, &bits, wake, changeset);
828next:
829 if (last_end == (u64)-1)
830 goto out;
831 start = last_end + 1;
832 if (start <= end && state && !need_resched())
833 goto hit_next;
834
835search_again:
836 if (start > end)
837 goto out;
838 spin_unlock(&tree->lock);
839 if (gfpflags_allow_blocking(mask))
840 cond_resched();
841 goto again;
842
843out:
844 spin_unlock(&tree->lock);
845 if (prealloc)
846 free_extent_state(prealloc);
847
848 return 0;
849
850}
851
852static void wait_on_state(struct extent_io_tree *tree,
853 struct extent_state *state)
854 __releases(tree->lock)
855 __acquires(tree->lock)
856{
857 DEFINE_WAIT(wait);
858 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
859 spin_unlock(&tree->lock);
860 schedule();
861 spin_lock(&tree->lock);
862 finish_wait(&state->wq, &wait);
863}
864
865/*
866 * waits for one or more bits to clear on a range in the state tree.
867 * The range [start, end] is inclusive.
868 * The tree lock is taken by this function
869 */
870static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871 unsigned long bits)
872{
873 struct extent_state *state;
874 struct rb_node *node;
875
876 btrfs_debug_check_extent_io_range(tree, start, end);
877
878 spin_lock(&tree->lock);
879again:
880 while (1) {
881 /*
882 * this search will find all the extents that end after
883 * our range starts
884 */
885 node = tree_search(tree, start);
886process_node:
887 if (!node)
888 break;
889
890 state = rb_entry(node, struct extent_state, rb_node);
891
892 if (state->start > end)
893 goto out;
894
895 if (state->state & bits) {
896 start = state->start;
897 refcount_inc(&state->refs);
898 wait_on_state(tree, state);
899 free_extent_state(state);
900 goto again;
901 }
902 start = state->end + 1;
903
904 if (start > end)
905 break;
906
907 if (!cond_resched_lock(&tree->lock)) {
908 node = rb_next(node);
909 goto process_node;
910 }
911 }
912out:
913 spin_unlock(&tree->lock);
914}
915
916static void set_state_bits(struct extent_io_tree *tree,
917 struct extent_state *state,
918 unsigned *bits, struct extent_changeset *changeset)
919{
920 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
921 int ret;
922
923 if (tree->private_data && is_data_inode(tree->private_data))
924 btrfs_set_delalloc_extent(tree->private_data, state, bits);
925
926 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
927 u64 range = state->end - state->start + 1;
928 tree->dirty_bytes += range;
929 }
930 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931 BUG_ON(ret < 0);
932 state->state |= bits_to_set;
933}
934
935static void cache_state_if_flags(struct extent_state *state,
936 struct extent_state **cached_ptr,
937 unsigned flags)
938{
939 if (cached_ptr && !(*cached_ptr)) {
940 if (!flags || (state->state & flags)) {
941 *cached_ptr = state;
942 refcount_inc(&state->refs);
943 }
944 }
945}
946
947static void cache_state(struct extent_state *state,
948 struct extent_state **cached_ptr)
949{
950 return cache_state_if_flags(state, cached_ptr,
951 EXTENT_LOCKED | EXTENT_BOUNDARY);
952}
953
954/*
955 * set some bits on a range in the tree. This may require allocations or
956 * sleeping, so the gfp mask is used to indicate what is allowed.
957 *
958 * If any of the exclusive bits are set, this will fail with -EEXIST if some
959 * part of the range already has the desired bits set. The start of the
960 * existing range is returned in failed_start in this case.
961 *
962 * [start, end] is inclusive This takes the tree lock.
963 */
964
965static int __must_check
966__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
967 unsigned bits, unsigned exclusive_bits,
968 u64 *failed_start, struct extent_state **cached_state,
969 gfp_t mask, struct extent_changeset *changeset)
970{
971 struct extent_state *state;
972 struct extent_state *prealloc = NULL;
973 struct rb_node *node;
974 struct rb_node **p;
975 struct rb_node *parent;
976 int err = 0;
977 u64 last_start;
978 u64 last_end;
979
980 btrfs_debug_check_extent_io_range(tree, start, end);
981 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
982
983again:
984 if (!prealloc && gfpflags_allow_blocking(mask)) {
985 /*
986 * Don't care for allocation failure here because we might end
987 * up not needing the pre-allocated extent state at all, which
988 * is the case if we only have in the tree extent states that
989 * cover our input range and don't cover too any other range.
990 * If we end up needing a new extent state we allocate it later.
991 */
992 prealloc = alloc_extent_state(mask);
993 }
994
995 spin_lock(&tree->lock);
996 if (cached_state && *cached_state) {
997 state = *cached_state;
998 if (state->start <= start && state->end > start &&
999 extent_state_in_tree(state)) {
1000 node = &state->rb_node;
1001 goto hit_next;
1002 }
1003 }
1004 /*
1005 * this search will find all the extents that end after
1006 * our range starts.
1007 */
1008 node = tree_search_for_insert(tree, start, &p, &parent);
1009 if (!node) {
1010 prealloc = alloc_extent_state_atomic(prealloc);
1011 BUG_ON(!prealloc);
1012 err = insert_state(tree, prealloc, start, end,
1013 &p, &parent, &bits, changeset);
1014 if (err)
1015 extent_io_tree_panic(tree, err);
1016
1017 cache_state(prealloc, cached_state);
1018 prealloc = NULL;
1019 goto out;
1020 }
1021 state = rb_entry(node, struct extent_state, rb_node);
1022hit_next:
1023 last_start = state->start;
1024 last_end = state->end;
1025
1026 /*
1027 * | ---- desired range ---- |
1028 * | state |
1029 *
1030 * Just lock what we found and keep going
1031 */
1032 if (state->start == start && state->end <= end) {
1033 if (state->state & exclusive_bits) {
1034 *failed_start = state->start;
1035 err = -EEXIST;
1036 goto out;
1037 }
1038
1039 set_state_bits(tree, state, &bits, changeset);
1040 cache_state(state, cached_state);
1041 merge_state(tree, state);
1042 if (last_end == (u64)-1)
1043 goto out;
1044 start = last_end + 1;
1045 state = next_state(state);
1046 if (start < end && state && state->start == start &&
1047 !need_resched())
1048 goto hit_next;
1049 goto search_again;
1050 }
1051
1052 /*
1053 * | ---- desired range ---- |
1054 * | state |
1055 * or
1056 * | ------------- state -------------- |
1057 *
1058 * We need to split the extent we found, and may flip bits on
1059 * second half.
1060 *
1061 * If the extent we found extends past our
1062 * range, we just split and search again. It'll get split
1063 * again the next time though.
1064 *
1065 * If the extent we found is inside our range, we set the
1066 * desired bit on it.
1067 */
1068 if (state->start < start) {
1069 if (state->state & exclusive_bits) {
1070 *failed_start = start;
1071 err = -EEXIST;
1072 goto out;
1073 }
1074
1075 /*
1076 * If this extent already has all the bits we want set, then
1077 * skip it, not necessary to split it or do anything with it.
1078 */
1079 if ((state->state & bits) == bits) {
1080 start = state->end + 1;
1081 cache_state(state, cached_state);
1082 goto search_again;
1083 }
1084
1085 prealloc = alloc_extent_state_atomic(prealloc);
1086 BUG_ON(!prealloc);
1087 err = split_state(tree, state, prealloc, start);
1088 if (err)
1089 extent_io_tree_panic(tree, err);
1090
1091 prealloc = NULL;
1092 if (err)
1093 goto out;
1094 if (state->end <= end) {
1095 set_state_bits(tree, state, &bits, changeset);
1096 cache_state(state, cached_state);
1097 merge_state(tree, state);
1098 if (last_end == (u64)-1)
1099 goto out;
1100 start = last_end + 1;
1101 state = next_state(state);
1102 if (start < end && state && state->start == start &&
1103 !need_resched())
1104 goto hit_next;
1105 }
1106 goto search_again;
1107 }
1108 /*
1109 * | ---- desired range ---- |
1110 * | state | or | state |
1111 *
1112 * There's a hole, we need to insert something in it and
1113 * ignore the extent we found.
1114 */
1115 if (state->start > start) {
1116 u64 this_end;
1117 if (end < last_start)
1118 this_end = end;
1119 else
1120 this_end = last_start - 1;
1121
1122 prealloc = alloc_extent_state_atomic(prealloc);
1123 BUG_ON(!prealloc);
1124
1125 /*
1126 * Avoid to free 'prealloc' if it can be merged with
1127 * the later extent.
1128 */
1129 err = insert_state(tree, prealloc, start, this_end,
1130 NULL, NULL, &bits, changeset);
1131 if (err)
1132 extent_io_tree_panic(tree, err);
1133
1134 cache_state(prealloc, cached_state);
1135 prealloc = NULL;
1136 start = this_end + 1;
1137 goto search_again;
1138 }
1139 /*
1140 * | ---- desired range ---- |
1141 * | state |
1142 * We need to split the extent, and set the bit
1143 * on the first half
1144 */
1145 if (state->start <= end && state->end > end) {
1146 if (state->state & exclusive_bits) {
1147 *failed_start = start;
1148 err = -EEXIST;
1149 goto out;
1150 }
1151
1152 prealloc = alloc_extent_state_atomic(prealloc);
1153 BUG_ON(!prealloc);
1154 err = split_state(tree, state, prealloc, end + 1);
1155 if (err)
1156 extent_io_tree_panic(tree, err);
1157
1158 set_state_bits(tree, prealloc, &bits, changeset);
1159 cache_state(prealloc, cached_state);
1160 merge_state(tree, prealloc);
1161 prealloc = NULL;
1162 goto out;
1163 }
1164
1165search_again:
1166 if (start > end)
1167 goto out;
1168 spin_unlock(&tree->lock);
1169 if (gfpflags_allow_blocking(mask))
1170 cond_resched();
1171 goto again;
1172
1173out:
1174 spin_unlock(&tree->lock);
1175 if (prealloc)
1176 free_extent_state(prealloc);
1177
1178 return err;
1179
1180}
1181
1182int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1183 unsigned bits, u64 * failed_start,
1184 struct extent_state **cached_state, gfp_t mask)
1185{
1186 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1187 cached_state, mask, NULL);
1188}
1189
1190
1191/**
1192 * convert_extent_bit - convert all bits in a given range from one bit to
1193 * another
1194 * @tree: the io tree to search
1195 * @start: the start offset in bytes
1196 * @end: the end offset in bytes (inclusive)
1197 * @bits: the bits to set in this range
1198 * @clear_bits: the bits to clear in this range
1199 * @cached_state: state that we're going to cache
1200 *
1201 * This will go through and set bits for the given range. If any states exist
1202 * already in this range they are set with the given bit and cleared of the
1203 * clear_bits. This is only meant to be used by things that are mergeable, ie
1204 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1205 * boundary bits like LOCK.
1206 *
1207 * All allocations are done with GFP_NOFS.
1208 */
1209int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1210 unsigned bits, unsigned clear_bits,
1211 struct extent_state **cached_state)
1212{
1213 struct extent_state *state;
1214 struct extent_state *prealloc = NULL;
1215 struct rb_node *node;
1216 struct rb_node **p;
1217 struct rb_node *parent;
1218 int err = 0;
1219 u64 last_start;
1220 u64 last_end;
1221 bool first_iteration = true;
1222
1223 btrfs_debug_check_extent_io_range(tree, start, end);
1224 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225 clear_bits);
1226
1227again:
1228 if (!prealloc) {
1229 /*
1230 * Best effort, don't worry if extent state allocation fails
1231 * here for the first iteration. We might have a cached state
1232 * that matches exactly the target range, in which case no
1233 * extent state allocations are needed. We'll only know this
1234 * after locking the tree.
1235 */
1236 prealloc = alloc_extent_state(GFP_NOFS);
1237 if (!prealloc && !first_iteration)
1238 return -ENOMEM;
1239 }
1240
1241 spin_lock(&tree->lock);
1242 if (cached_state && *cached_state) {
1243 state = *cached_state;
1244 if (state->start <= start && state->end > start &&
1245 extent_state_in_tree(state)) {
1246 node = &state->rb_node;
1247 goto hit_next;
1248 }
1249 }
1250
1251 /*
1252 * this search will find all the extents that end after
1253 * our range starts.
1254 */
1255 node = tree_search_for_insert(tree, start, &p, &parent);
1256 if (!node) {
1257 prealloc = alloc_extent_state_atomic(prealloc);
1258 if (!prealloc) {
1259 err = -ENOMEM;
1260 goto out;
1261 }
1262 err = insert_state(tree, prealloc, start, end,
1263 &p, &parent, &bits, NULL);
1264 if (err)
1265 extent_io_tree_panic(tree, err);
1266 cache_state(prealloc, cached_state);
1267 prealloc = NULL;
1268 goto out;
1269 }
1270 state = rb_entry(node, struct extent_state, rb_node);
1271hit_next:
1272 last_start = state->start;
1273 last_end = state->end;
1274
1275 /*
1276 * | ---- desired range ---- |
1277 * | state |
1278 *
1279 * Just lock what we found and keep going
1280 */
1281 if (state->start == start && state->end <= end) {
1282 set_state_bits(tree, state, &bits, NULL);
1283 cache_state(state, cached_state);
1284 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1285 if (last_end == (u64)-1)
1286 goto out;
1287 start = last_end + 1;
1288 if (start < end && state && state->start == start &&
1289 !need_resched())
1290 goto hit_next;
1291 goto search_again;
1292 }
1293
1294 /*
1295 * | ---- desired range ---- |
1296 * | state |
1297 * or
1298 * | ------------- state -------------- |
1299 *
1300 * We need to split the extent we found, and may flip bits on
1301 * second half.
1302 *
1303 * If the extent we found extends past our
1304 * range, we just split and search again. It'll get split
1305 * again the next time though.
1306 *
1307 * If the extent we found is inside our range, we set the
1308 * desired bit on it.
1309 */
1310 if (state->start < start) {
1311 prealloc = alloc_extent_state_atomic(prealloc);
1312 if (!prealloc) {
1313 err = -ENOMEM;
1314 goto out;
1315 }
1316 err = split_state(tree, state, prealloc, start);
1317 if (err)
1318 extent_io_tree_panic(tree, err);
1319 prealloc = NULL;
1320 if (err)
1321 goto out;
1322 if (state->end <= end) {
1323 set_state_bits(tree, state, &bits, NULL);
1324 cache_state(state, cached_state);
1325 state = clear_state_bit(tree, state, &clear_bits, 0,
1326 NULL);
1327 if (last_end == (u64)-1)
1328 goto out;
1329 start = last_end + 1;
1330 if (start < end && state && state->start == start &&
1331 !need_resched())
1332 goto hit_next;
1333 }
1334 goto search_again;
1335 }
1336 /*
1337 * | ---- desired range ---- |
1338 * | state | or | state |
1339 *
1340 * There's a hole, we need to insert something in it and
1341 * ignore the extent we found.
1342 */
1343 if (state->start > start) {
1344 u64 this_end;
1345 if (end < last_start)
1346 this_end = end;
1347 else
1348 this_end = last_start - 1;
1349
1350 prealloc = alloc_extent_state_atomic(prealloc);
1351 if (!prealloc) {
1352 err = -ENOMEM;
1353 goto out;
1354 }
1355
1356 /*
1357 * Avoid to free 'prealloc' if it can be merged with
1358 * the later extent.
1359 */
1360 err = insert_state(tree, prealloc, start, this_end,
1361 NULL, NULL, &bits, NULL);
1362 if (err)
1363 extent_io_tree_panic(tree, err);
1364 cache_state(prealloc, cached_state);
1365 prealloc = NULL;
1366 start = this_end + 1;
1367 goto search_again;
1368 }
1369 /*
1370 * | ---- desired range ---- |
1371 * | state |
1372 * We need to split the extent, and set the bit
1373 * on the first half
1374 */
1375 if (state->start <= end && state->end > end) {
1376 prealloc = alloc_extent_state_atomic(prealloc);
1377 if (!prealloc) {
1378 err = -ENOMEM;
1379 goto out;
1380 }
1381
1382 err = split_state(tree, state, prealloc, end + 1);
1383 if (err)
1384 extent_io_tree_panic(tree, err);
1385
1386 set_state_bits(tree, prealloc, &bits, NULL);
1387 cache_state(prealloc, cached_state);
1388 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1389 prealloc = NULL;
1390 goto out;
1391 }
1392
1393search_again:
1394 if (start > end)
1395 goto out;
1396 spin_unlock(&tree->lock);
1397 cond_resched();
1398 first_iteration = false;
1399 goto again;
1400
1401out:
1402 spin_unlock(&tree->lock);
1403 if (prealloc)
1404 free_extent_state(prealloc);
1405
1406 return err;
1407}
1408
1409/* wrappers around set/clear extent bit */
1410int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1411 unsigned bits, struct extent_changeset *changeset)
1412{
1413 /*
1414 * We don't support EXTENT_LOCKED yet, as current changeset will
1415 * record any bits changed, so for EXTENT_LOCKED case, it will
1416 * either fail with -EEXIST or changeset will record the whole
1417 * range.
1418 */
1419 BUG_ON(bits & EXTENT_LOCKED);
1420
1421 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1422 changeset);
1423}
1424
1425int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426 unsigned bits)
1427{
1428 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429 GFP_NOWAIT, NULL);
1430}
1431
1432int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433 unsigned bits, int wake, int delete,
1434 struct extent_state **cached)
1435{
1436 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1437 cached, GFP_NOFS, NULL);
1438}
1439
1440int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1441 unsigned bits, struct extent_changeset *changeset)
1442{
1443 /*
1444 * Don't support EXTENT_LOCKED case, same reason as
1445 * set_record_extent_bits().
1446 */
1447 BUG_ON(bits & EXTENT_LOCKED);
1448
1449 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1450 changeset);
1451}
1452
1453/*
1454 * either insert or lock state struct between start and end use mask to tell
1455 * us if waiting is desired.
1456 */
1457int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1458 struct extent_state **cached_state)
1459{
1460 int err;
1461 u64 failed_start;
1462
1463 while (1) {
1464 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1465 EXTENT_LOCKED, &failed_start,
1466 cached_state, GFP_NOFS, NULL);
1467 if (err == -EEXIST) {
1468 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469 start = failed_start;
1470 } else
1471 break;
1472 WARN_ON(start > end);
1473 }
1474 return err;
1475}
1476
1477int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1478{
1479 int err;
1480 u64 failed_start;
1481
1482 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1483 &failed_start, NULL, GFP_NOFS, NULL);
1484 if (err == -EEXIST) {
1485 if (failed_start > start)
1486 clear_extent_bit(tree, start, failed_start - 1,
1487 EXTENT_LOCKED, 1, 0, NULL);
1488 return 0;
1489 }
1490 return 1;
1491}
1492
1493void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1494{
1495 unsigned long index = start >> PAGE_SHIFT;
1496 unsigned long end_index = end >> PAGE_SHIFT;
1497 struct page *page;
1498
1499 while (index <= end_index) {
1500 page = find_get_page(inode->i_mapping, index);
1501 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502 clear_page_dirty_for_io(page);
1503 put_page(page);
1504 index++;
1505 }
1506}
1507
1508void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1509{
1510 unsigned long index = start >> PAGE_SHIFT;
1511 unsigned long end_index = end >> PAGE_SHIFT;
1512 struct page *page;
1513
1514 while (index <= end_index) {
1515 page = find_get_page(inode->i_mapping, index);
1516 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1517 __set_page_dirty_nobuffers(page);
1518 account_page_redirty(page);
1519 put_page(page);
1520 index++;
1521 }
1522}
1523
1524/* find the first state struct with 'bits' set after 'start', and
1525 * return it. tree->lock must be held. NULL will returned if
1526 * nothing was found after 'start'
1527 */
1528static struct extent_state *
1529find_first_extent_bit_state(struct extent_io_tree *tree,
1530 u64 start, unsigned bits)
1531{
1532 struct rb_node *node;
1533 struct extent_state *state;
1534
1535 /*
1536 * this search will find all the extents that end after
1537 * our range starts.
1538 */
1539 node = tree_search(tree, start);
1540 if (!node)
1541 goto out;
1542
1543 while (1) {
1544 state = rb_entry(node, struct extent_state, rb_node);
1545 if (state->end >= start && (state->state & bits))
1546 return state;
1547
1548 node = rb_next(node);
1549 if (!node)
1550 break;
1551 }
1552out:
1553 return NULL;
1554}
1555
1556/*
1557 * find the first offset in the io tree with 'bits' set. zero is
1558 * returned if we find something, and *start_ret and *end_ret are
1559 * set to reflect the state struct that was found.
1560 *
1561 * If nothing was found, 1 is returned. If found something, return 0.
1562 */
1563int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1564 u64 *start_ret, u64 *end_ret, unsigned bits,
1565 struct extent_state **cached_state)
1566{
1567 struct extent_state *state;
1568 int ret = 1;
1569
1570 spin_lock(&tree->lock);
1571 if (cached_state && *cached_state) {
1572 state = *cached_state;
1573 if (state->end == start - 1 && extent_state_in_tree(state)) {
1574 while ((state = next_state(state)) != NULL) {
1575 if (state->state & bits)
1576 goto got_it;
1577 }
1578 free_extent_state(*cached_state);
1579 *cached_state = NULL;
1580 goto out;
1581 }
1582 free_extent_state(*cached_state);
1583 *cached_state = NULL;
1584 }
1585
1586 state = find_first_extent_bit_state(tree, start, bits);
1587got_it:
1588 if (state) {
1589 cache_state_if_flags(state, cached_state, 0);
1590 *start_ret = state->start;
1591 *end_ret = state->end;
1592 ret = 0;
1593 }
1594out:
1595 spin_unlock(&tree->lock);
1596 return ret;
1597}
1598
1599/**
1600 * find_contiguous_extent_bit: find a contiguous area of bits
1601 * @tree - io tree to check
1602 * @start - offset to start the search from
1603 * @start_ret - the first offset we found with the bits set
1604 * @end_ret - the final contiguous range of the bits that were set
1605 * @bits - bits to look for
1606 *
1607 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608 * to set bits appropriately, and then merge them again. During this time it
1609 * will drop the tree->lock, so use this helper if you want to find the actual
1610 * contiguous area for given bits. We will search to the first bit we find, and
1611 * then walk down the tree until we find a non-contiguous area. The area
1612 * returned will be the full contiguous area with the bits set.
1613 */
1614int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1615 u64 *start_ret, u64 *end_ret, unsigned bits)
1616{
1617 struct extent_state *state;
1618 int ret = 1;
1619
1620 spin_lock(&tree->lock);
1621 state = find_first_extent_bit_state(tree, start, bits);
1622 if (state) {
1623 *start_ret = state->start;
1624 *end_ret = state->end;
1625 while ((state = next_state(state)) != NULL) {
1626 if (state->start > (*end_ret + 1))
1627 break;
1628 *end_ret = state->end;
1629 }
1630 ret = 0;
1631 }
1632 spin_unlock(&tree->lock);
1633 return ret;
1634}
1635
1636/**
1637 * find_first_clear_extent_bit - find the first range that has @bits not set.
1638 * This range could start before @start.
1639 *
1640 * @tree - the tree to search
1641 * @start - the offset at/after which the found extent should start
1642 * @start_ret - records the beginning of the range
1643 * @end_ret - records the end of the range (inclusive)
1644 * @bits - the set of bits which must be unset
1645 *
1646 * Since unallocated range is also considered one which doesn't have the bits
1647 * set it's possible that @end_ret contains -1, this happens in case the range
1648 * spans (last_range_end, end of device]. In this case it's up to the caller to
1649 * trim @end_ret to the appropriate size.
1650 */
1651void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1652 u64 *start_ret, u64 *end_ret, unsigned bits)
1653{
1654 struct extent_state *state;
1655 struct rb_node *node, *prev = NULL, *next;
1656
1657 spin_lock(&tree->lock);
1658
1659 /* Find first extent with bits cleared */
1660 while (1) {
1661 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1662 if (!node && !next && !prev) {
1663 /*
1664 * Tree is completely empty, send full range and let
1665 * caller deal with it
1666 */
1667 *start_ret = 0;
1668 *end_ret = -1;
1669 goto out;
1670 } else if (!node && !next) {
1671 /*
1672 * We are past the last allocated chunk, set start at
1673 * the end of the last extent.
1674 */
1675 state = rb_entry(prev, struct extent_state, rb_node);
1676 *start_ret = state->end + 1;
1677 *end_ret = -1;
1678 goto out;
1679 } else if (!node) {
1680 node = next;
1681 }
1682 /*
1683 * At this point 'node' either contains 'start' or start is
1684 * before 'node'
1685 */
1686 state = rb_entry(node, struct extent_state, rb_node);
1687
1688 if (in_range(start, state->start, state->end - state->start + 1)) {
1689 if (state->state & bits) {
1690 /*
1691 * |--range with bits sets--|
1692 * |
1693 * start
1694 */
1695 start = state->end + 1;
1696 } else {
1697 /*
1698 * 'start' falls within a range that doesn't
1699 * have the bits set, so take its start as
1700 * the beginning of the desired range
1701 *
1702 * |--range with bits cleared----|
1703 * |
1704 * start
1705 */
1706 *start_ret = state->start;
1707 break;
1708 }
1709 } else {
1710 /*
1711 * |---prev range---|---hole/unset---|---node range---|
1712 * |
1713 * start
1714 *
1715 * or
1716 *
1717 * |---hole/unset--||--first node--|
1718 * 0 |
1719 * start
1720 */
1721 if (prev) {
1722 state = rb_entry(prev, struct extent_state,
1723 rb_node);
1724 *start_ret = state->end + 1;
1725 } else {
1726 *start_ret = 0;
1727 }
1728 break;
1729 }
1730 }
1731
1732 /*
1733 * Find the longest stretch from start until an entry which has the
1734 * bits set
1735 */
1736 while (1) {
1737 state = rb_entry(node, struct extent_state, rb_node);
1738 if (state->end >= start && !(state->state & bits)) {
1739 *end_ret = state->end;
1740 } else {
1741 *end_ret = state->start - 1;
1742 break;
1743 }
1744
1745 node = rb_next(node);
1746 if (!node)
1747 break;
1748 }
1749out:
1750 spin_unlock(&tree->lock);
1751}
1752
1753/*
1754 * find a contiguous range of bytes in the file marked as delalloc, not
1755 * more than 'max_bytes'. start and end are used to return the range,
1756 *
1757 * true is returned if we find something, false if nothing was in the tree
1758 */
1759bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1760 u64 *end, u64 max_bytes,
1761 struct extent_state **cached_state)
1762{
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 bool found = false;
1767 u64 total_bytes = 0;
1768
1769 spin_lock(&tree->lock);
1770
1771 /*
1772 * this search will find all the extents that end after
1773 * our range starts.
1774 */
1775 node = tree_search(tree, cur_start);
1776 if (!node) {
1777 *end = (u64)-1;
1778 goto out;
1779 }
1780
1781 while (1) {
1782 state = rb_entry(node, struct extent_state, rb_node);
1783 if (found && (state->start != cur_start ||
1784 (state->state & EXTENT_BOUNDARY))) {
1785 goto out;
1786 }
1787 if (!(state->state & EXTENT_DELALLOC)) {
1788 if (!found)
1789 *end = state->end;
1790 goto out;
1791 }
1792 if (!found) {
1793 *start = state->start;
1794 *cached_state = state;
1795 refcount_inc(&state->refs);
1796 }
1797 found = true;
1798 *end = state->end;
1799 cur_start = state->end + 1;
1800 node = rb_next(node);
1801 total_bytes += state->end - state->start + 1;
1802 if (total_bytes >= max_bytes)
1803 break;
1804 if (!node)
1805 break;
1806 }
1807out:
1808 spin_unlock(&tree->lock);
1809 return found;
1810}
1811
1812static int __process_pages_contig(struct address_space *mapping,
1813 struct page *locked_page,
1814 pgoff_t start_index, pgoff_t end_index,
1815 unsigned long page_ops, pgoff_t *index_ret);
1816
1817static noinline void __unlock_for_delalloc(struct inode *inode,
1818 struct page *locked_page,
1819 u64 start, u64 end)
1820{
1821 unsigned long index = start >> PAGE_SHIFT;
1822 unsigned long end_index = end >> PAGE_SHIFT;
1823
1824 ASSERT(locked_page);
1825 if (index == locked_page->index && end_index == index)
1826 return;
1827
1828 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1829 PAGE_UNLOCK, NULL);
1830}
1831
1832static noinline int lock_delalloc_pages(struct inode *inode,
1833 struct page *locked_page,
1834 u64 delalloc_start,
1835 u64 delalloc_end)
1836{
1837 unsigned long index = delalloc_start >> PAGE_SHIFT;
1838 unsigned long index_ret = index;
1839 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1840 int ret;
1841
1842 ASSERT(locked_page);
1843 if (index == locked_page->index && index == end_index)
1844 return 0;
1845
1846 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1847 end_index, PAGE_LOCK, &index_ret);
1848 if (ret == -EAGAIN)
1849 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1850 (u64)index_ret << PAGE_SHIFT);
1851 return ret;
1852}
1853
1854/*
1855 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856 * more than @max_bytes. @Start and @end are used to return the range,
1857 *
1858 * Return: true if we find something
1859 * false if nothing was in the tree
1860 */
1861EXPORT_FOR_TESTS
1862noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1863 struct page *locked_page, u64 *start,
1864 u64 *end)
1865{
1866 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1867 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1868 u64 delalloc_start;
1869 u64 delalloc_end;
1870 bool found;
1871 struct extent_state *cached_state = NULL;
1872 int ret;
1873 int loops = 0;
1874
1875again:
1876 /* step one, find a bunch of delalloc bytes starting at start */
1877 delalloc_start = *start;
1878 delalloc_end = 0;
1879 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1880 max_bytes, &cached_state);
1881 if (!found || delalloc_end <= *start) {
1882 *start = delalloc_start;
1883 *end = delalloc_end;
1884 free_extent_state(cached_state);
1885 return false;
1886 }
1887
1888 /*
1889 * start comes from the offset of locked_page. We have to lock
1890 * pages in order, so we can't process delalloc bytes before
1891 * locked_page
1892 */
1893 if (delalloc_start < *start)
1894 delalloc_start = *start;
1895
1896 /*
1897 * make sure to limit the number of pages we try to lock down
1898 */
1899 if (delalloc_end + 1 - delalloc_start > max_bytes)
1900 delalloc_end = delalloc_start + max_bytes - 1;
1901
1902 /* step two, lock all the pages after the page that has start */
1903 ret = lock_delalloc_pages(inode, locked_page,
1904 delalloc_start, delalloc_end);
1905 ASSERT(!ret || ret == -EAGAIN);
1906 if (ret == -EAGAIN) {
1907 /* some of the pages are gone, lets avoid looping by
1908 * shortening the size of the delalloc range we're searching
1909 */
1910 free_extent_state(cached_state);
1911 cached_state = NULL;
1912 if (!loops) {
1913 max_bytes = PAGE_SIZE;
1914 loops = 1;
1915 goto again;
1916 } else {
1917 found = false;
1918 goto out_failed;
1919 }
1920 }
1921
1922 /* step three, lock the state bits for the whole range */
1923 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1924
1925 /* then test to make sure it is all still delalloc */
1926 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1927 EXTENT_DELALLOC, 1, cached_state);
1928 if (!ret) {
1929 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1930 &cached_state);
1931 __unlock_for_delalloc(inode, locked_page,
1932 delalloc_start, delalloc_end);
1933 cond_resched();
1934 goto again;
1935 }
1936 free_extent_state(cached_state);
1937 *start = delalloc_start;
1938 *end = delalloc_end;
1939out_failed:
1940 return found;
1941}
1942
1943static int __process_pages_contig(struct address_space *mapping,
1944 struct page *locked_page,
1945 pgoff_t start_index, pgoff_t end_index,
1946 unsigned long page_ops, pgoff_t *index_ret)
1947{
1948 unsigned long nr_pages = end_index - start_index + 1;
1949 unsigned long pages_locked = 0;
1950 pgoff_t index = start_index;
1951 struct page *pages[16];
1952 unsigned ret;
1953 int err = 0;
1954 int i;
1955
1956 if (page_ops & PAGE_LOCK) {
1957 ASSERT(page_ops == PAGE_LOCK);
1958 ASSERT(index_ret && *index_ret == start_index);
1959 }
1960
1961 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1962 mapping_set_error(mapping, -EIO);
1963
1964 while (nr_pages > 0) {
1965 ret = find_get_pages_contig(mapping, index,
1966 min_t(unsigned long,
1967 nr_pages, ARRAY_SIZE(pages)), pages);
1968 if (ret == 0) {
1969 /*
1970 * Only if we're going to lock these pages,
1971 * can we find nothing at @index.
1972 */
1973 ASSERT(page_ops & PAGE_LOCK);
1974 err = -EAGAIN;
1975 goto out;
1976 }
1977
1978 for (i = 0; i < ret; i++) {
1979 if (page_ops & PAGE_SET_PRIVATE2)
1980 SetPagePrivate2(pages[i]);
1981
1982 if (locked_page && pages[i] == locked_page) {
1983 put_page(pages[i]);
1984 pages_locked++;
1985 continue;
1986 }
1987 if (page_ops & PAGE_CLEAR_DIRTY)
1988 clear_page_dirty_for_io(pages[i]);
1989 if (page_ops & PAGE_SET_WRITEBACK)
1990 set_page_writeback(pages[i]);
1991 if (page_ops & PAGE_SET_ERROR)
1992 SetPageError(pages[i]);
1993 if (page_ops & PAGE_END_WRITEBACK)
1994 end_page_writeback(pages[i]);
1995 if (page_ops & PAGE_UNLOCK)
1996 unlock_page(pages[i]);
1997 if (page_ops & PAGE_LOCK) {
1998 lock_page(pages[i]);
1999 if (!PageDirty(pages[i]) ||
2000 pages[i]->mapping != mapping) {
2001 unlock_page(pages[i]);
2002 for (; i < ret; i++)
2003 put_page(pages[i]);
2004 err = -EAGAIN;
2005 goto out;
2006 }
2007 }
2008 put_page(pages[i]);
2009 pages_locked++;
2010 }
2011 nr_pages -= ret;
2012 index += ret;
2013 cond_resched();
2014 }
2015out:
2016 if (err && index_ret)
2017 *index_ret = start_index + pages_locked - 1;
2018 return err;
2019}
2020
2021void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2022 struct page *locked_page,
2023 unsigned clear_bits,
2024 unsigned long page_ops)
2025{
2026 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2027
2028 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2029 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2030 page_ops, NULL);
2031}
2032
2033/*
2034 * count the number of bytes in the tree that have a given bit(s)
2035 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2036 * cached. The total number found is returned.
2037 */
2038u64 count_range_bits(struct extent_io_tree *tree,
2039 u64 *start, u64 search_end, u64 max_bytes,
2040 unsigned bits, int contig)
2041{
2042 struct rb_node *node;
2043 struct extent_state *state;
2044 u64 cur_start = *start;
2045 u64 total_bytes = 0;
2046 u64 last = 0;
2047 int found = 0;
2048
2049 if (WARN_ON(search_end <= cur_start))
2050 return 0;
2051
2052 spin_lock(&tree->lock);
2053 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2054 total_bytes = tree->dirty_bytes;
2055 goto out;
2056 }
2057 /*
2058 * this search will find all the extents that end after
2059 * our range starts.
2060 */
2061 node = tree_search(tree, cur_start);
2062 if (!node)
2063 goto out;
2064
2065 while (1) {
2066 state = rb_entry(node, struct extent_state, rb_node);
2067 if (state->start > search_end)
2068 break;
2069 if (contig && found && state->start > last + 1)
2070 break;
2071 if (state->end >= cur_start && (state->state & bits) == bits) {
2072 total_bytes += min(search_end, state->end) + 1 -
2073 max(cur_start, state->start);
2074 if (total_bytes >= max_bytes)
2075 break;
2076 if (!found) {
2077 *start = max(cur_start, state->start);
2078 found = 1;
2079 }
2080 last = state->end;
2081 } else if (contig && found) {
2082 break;
2083 }
2084 node = rb_next(node);
2085 if (!node)
2086 break;
2087 }
2088out:
2089 spin_unlock(&tree->lock);
2090 return total_bytes;
2091}
2092
2093/*
2094 * set the private field for a given byte offset in the tree. If there isn't
2095 * an extent_state there already, this does nothing.
2096 */
2097int set_state_failrec(struct extent_io_tree *tree, u64 start,
2098 struct io_failure_record *failrec)
2099{
2100 struct rb_node *node;
2101 struct extent_state *state;
2102 int ret = 0;
2103
2104 spin_lock(&tree->lock);
2105 /*
2106 * this search will find all the extents that end after
2107 * our range starts.
2108 */
2109 node = tree_search(tree, start);
2110 if (!node) {
2111 ret = -ENOENT;
2112 goto out;
2113 }
2114 state = rb_entry(node, struct extent_state, rb_node);
2115 if (state->start != start) {
2116 ret = -ENOENT;
2117 goto out;
2118 }
2119 state->failrec = failrec;
2120out:
2121 spin_unlock(&tree->lock);
2122 return ret;
2123}
2124
2125struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2126{
2127 struct rb_node *node;
2128 struct extent_state *state;
2129 struct io_failure_record *failrec;
2130
2131 spin_lock(&tree->lock);
2132 /*
2133 * this search will find all the extents that end after
2134 * our range starts.
2135 */
2136 node = tree_search(tree, start);
2137 if (!node) {
2138 failrec = ERR_PTR(-ENOENT);
2139 goto out;
2140 }
2141 state = rb_entry(node, struct extent_state, rb_node);
2142 if (state->start != start) {
2143 failrec = ERR_PTR(-ENOENT);
2144 goto out;
2145 }
2146
2147 failrec = state->failrec;
2148out:
2149 spin_unlock(&tree->lock);
2150 return failrec;
2151}
2152
2153/*
2154 * searches a range in the state tree for a given mask.
2155 * If 'filled' == 1, this returns 1 only if every extent in the tree
2156 * has the bits set. Otherwise, 1 is returned if any bit in the
2157 * range is found set.
2158 */
2159int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2160 unsigned bits, int filled, struct extent_state *cached)
2161{
2162 struct extent_state *state = NULL;
2163 struct rb_node *node;
2164 int bitset = 0;
2165
2166 spin_lock(&tree->lock);
2167 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2168 cached->end > start)
2169 node = &cached->rb_node;
2170 else
2171 node = tree_search(tree, start);
2172 while (node && start <= end) {
2173 state = rb_entry(node, struct extent_state, rb_node);
2174
2175 if (filled && state->start > start) {
2176 bitset = 0;
2177 break;
2178 }
2179
2180 if (state->start > end)
2181 break;
2182
2183 if (state->state & bits) {
2184 bitset = 1;
2185 if (!filled)
2186 break;
2187 } else if (filled) {
2188 bitset = 0;
2189 break;
2190 }
2191
2192 if (state->end == (u64)-1)
2193 break;
2194
2195 start = state->end + 1;
2196 if (start > end)
2197 break;
2198 node = rb_next(node);
2199 if (!node) {
2200 if (filled)
2201 bitset = 0;
2202 break;
2203 }
2204 }
2205 spin_unlock(&tree->lock);
2206 return bitset;
2207}
2208
2209/*
2210 * helper function to set a given page up to date if all the
2211 * extents in the tree for that page are up to date
2212 */
2213static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2214{
2215 u64 start = page_offset(page);
2216 u64 end = start + PAGE_SIZE - 1;
2217 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2218 SetPageUptodate(page);
2219}
2220
2221int free_io_failure(struct extent_io_tree *failure_tree,
2222 struct extent_io_tree *io_tree,
2223 struct io_failure_record *rec)
2224{
2225 int ret;
2226 int err = 0;
2227
2228 set_state_failrec(failure_tree, rec->start, NULL);
2229 ret = clear_extent_bits(failure_tree, rec->start,
2230 rec->start + rec->len - 1,
2231 EXTENT_LOCKED | EXTENT_DIRTY);
2232 if (ret)
2233 err = ret;
2234
2235 ret = clear_extent_bits(io_tree, rec->start,
2236 rec->start + rec->len - 1,
2237 EXTENT_DAMAGED);
2238 if (ret && !err)
2239 err = ret;
2240
2241 kfree(rec);
2242 return err;
2243}
2244
2245/*
2246 * this bypasses the standard btrfs submit functions deliberately, as
2247 * the standard behavior is to write all copies in a raid setup. here we only
2248 * want to write the one bad copy. so we do the mapping for ourselves and issue
2249 * submit_bio directly.
2250 * to avoid any synchronization issues, wait for the data after writing, which
2251 * actually prevents the read that triggered the error from finishing.
2252 * currently, there can be no more than two copies of every data bit. thus,
2253 * exactly one rewrite is required.
2254 */
2255int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2256 u64 length, u64 logical, struct page *page,
2257 unsigned int pg_offset, int mirror_num)
2258{
2259 struct bio *bio;
2260 struct btrfs_device *dev;
2261 u64 map_length = 0;
2262 u64 sector;
2263 struct btrfs_bio *bbio = NULL;
2264 int ret;
2265
2266 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2267 BUG_ON(!mirror_num);
2268
2269 bio = btrfs_io_bio_alloc(1);
2270 bio->bi_iter.bi_size = 0;
2271 map_length = length;
2272
2273 /*
2274 * Avoid races with device replace and make sure our bbio has devices
2275 * associated to its stripes that don't go away while we are doing the
2276 * read repair operation.
2277 */
2278 btrfs_bio_counter_inc_blocked(fs_info);
2279 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2280 /*
2281 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2282 * to update all raid stripes, but here we just want to correct
2283 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2284 * stripe's dev and sector.
2285 */
2286 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2287 &map_length, &bbio, 0);
2288 if (ret) {
2289 btrfs_bio_counter_dec(fs_info);
2290 bio_put(bio);
2291 return -EIO;
2292 }
2293 ASSERT(bbio->mirror_num == 1);
2294 } else {
2295 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2296 &map_length, &bbio, mirror_num);
2297 if (ret) {
2298 btrfs_bio_counter_dec(fs_info);
2299 bio_put(bio);
2300 return -EIO;
2301 }
2302 BUG_ON(mirror_num != bbio->mirror_num);
2303 }
2304
2305 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2306 bio->bi_iter.bi_sector = sector;
2307 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2308 btrfs_put_bbio(bbio);
2309 if (!dev || !dev->bdev ||
2310 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2311 btrfs_bio_counter_dec(fs_info);
2312 bio_put(bio);
2313 return -EIO;
2314 }
2315 bio_set_dev(bio, dev->bdev);
2316 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2317 bio_add_page(bio, page, length, pg_offset);
2318
2319 if (btrfsic_submit_bio_wait(bio)) {
2320 /* try to remap that extent elsewhere? */
2321 btrfs_bio_counter_dec(fs_info);
2322 bio_put(bio);
2323 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2324 return -EIO;
2325 }
2326
2327 btrfs_info_rl_in_rcu(fs_info,
2328 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2329 ino, start,
2330 rcu_str_deref(dev->name), sector);
2331 btrfs_bio_counter_dec(fs_info);
2332 bio_put(bio);
2333 return 0;
2334}
2335
2336int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2337{
2338 struct btrfs_fs_info *fs_info = eb->fs_info;
2339 u64 start = eb->start;
2340 int i, num_pages = num_extent_pages(eb);
2341 int ret = 0;
2342
2343 if (sb_rdonly(fs_info->sb))
2344 return -EROFS;
2345
2346 for (i = 0; i < num_pages; i++) {
2347 struct page *p = eb->pages[i];
2348
2349 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2350 start - page_offset(p), mirror_num);
2351 if (ret)
2352 break;
2353 start += PAGE_SIZE;
2354 }
2355
2356 return ret;
2357}
2358
2359/*
2360 * each time an IO finishes, we do a fast check in the IO failure tree
2361 * to see if we need to process or clean up an io_failure_record
2362 */
2363int clean_io_failure(struct btrfs_fs_info *fs_info,
2364 struct extent_io_tree *failure_tree,
2365 struct extent_io_tree *io_tree, u64 start,
2366 struct page *page, u64 ino, unsigned int pg_offset)
2367{
2368 u64 private;
2369 struct io_failure_record *failrec;
2370 struct extent_state *state;
2371 int num_copies;
2372 int ret;
2373
2374 private = 0;
2375 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2376 EXTENT_DIRTY, 0);
2377 if (!ret)
2378 return 0;
2379
2380 failrec = get_state_failrec(failure_tree, start);
2381 if (IS_ERR(failrec))
2382 return 0;
2383
2384 BUG_ON(!failrec->this_mirror);
2385
2386 if (failrec->in_validation) {
2387 /* there was no real error, just free the record */
2388 btrfs_debug(fs_info,
2389 "clean_io_failure: freeing dummy error at %llu",
2390 failrec->start);
2391 goto out;
2392 }
2393 if (sb_rdonly(fs_info->sb))
2394 goto out;
2395
2396 spin_lock(&io_tree->lock);
2397 state = find_first_extent_bit_state(io_tree,
2398 failrec->start,
2399 EXTENT_LOCKED);
2400 spin_unlock(&io_tree->lock);
2401
2402 if (state && state->start <= failrec->start &&
2403 state->end >= failrec->start + failrec->len - 1) {
2404 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2405 failrec->len);
2406 if (num_copies > 1) {
2407 repair_io_failure(fs_info, ino, start, failrec->len,
2408 failrec->logical, page, pg_offset,
2409 failrec->failed_mirror);
2410 }
2411 }
2412
2413out:
2414 free_io_failure(failure_tree, io_tree, failrec);
2415
2416 return 0;
2417}
2418
2419/*
2420 * Can be called when
2421 * - hold extent lock
2422 * - under ordered extent
2423 * - the inode is freeing
2424 */
2425void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2426{
2427 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2428 struct io_failure_record *failrec;
2429 struct extent_state *state, *next;
2430
2431 if (RB_EMPTY_ROOT(&failure_tree->state))
2432 return;
2433
2434 spin_lock(&failure_tree->lock);
2435 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2436 while (state) {
2437 if (state->start > end)
2438 break;
2439
2440 ASSERT(state->end <= end);
2441
2442 next = next_state(state);
2443
2444 failrec = state->failrec;
2445 free_extent_state(state);
2446 kfree(failrec);
2447
2448 state = next;
2449 }
2450 spin_unlock(&failure_tree->lock);
2451}
2452
2453static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2454 u64 start, u64 end)
2455{
2456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2457 struct io_failure_record *failrec;
2458 struct extent_map *em;
2459 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2460 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2461 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2462 int ret;
2463 u64 logical;
2464
2465 failrec = get_state_failrec(failure_tree, start);
2466 if (!IS_ERR(failrec)) {
2467 btrfs_debug(fs_info,
2468 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2469 failrec->logical, failrec->start, failrec->len,
2470 failrec->in_validation);
2471 /*
2472 * when data can be on disk more than twice, add to failrec here
2473 * (e.g. with a list for failed_mirror) to make
2474 * clean_io_failure() clean all those errors at once.
2475 */
2476
2477 return failrec;
2478 }
2479
2480 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2481 if (!failrec)
2482 return ERR_PTR(-ENOMEM);
2483
2484 failrec->start = start;
2485 failrec->len = end - start + 1;
2486 failrec->this_mirror = 0;
2487 failrec->bio_flags = 0;
2488 failrec->in_validation = 0;
2489
2490 read_lock(&em_tree->lock);
2491 em = lookup_extent_mapping(em_tree, start, failrec->len);
2492 if (!em) {
2493 read_unlock(&em_tree->lock);
2494 kfree(failrec);
2495 return ERR_PTR(-EIO);
2496 }
2497
2498 if (em->start > start || em->start + em->len <= start) {
2499 free_extent_map(em);
2500 em = NULL;
2501 }
2502 read_unlock(&em_tree->lock);
2503 if (!em) {
2504 kfree(failrec);
2505 return ERR_PTR(-EIO);
2506 }
2507
2508 logical = start - em->start;
2509 logical = em->block_start + logical;
2510 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2511 logical = em->block_start;
2512 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2513 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2514 }
2515
2516 btrfs_debug(fs_info,
2517 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2518 logical, start, failrec->len);
2519
2520 failrec->logical = logical;
2521 free_extent_map(em);
2522
2523 /* Set the bits in the private failure tree */
2524 ret = set_extent_bits(failure_tree, start, end,
2525 EXTENT_LOCKED | EXTENT_DIRTY);
2526 if (ret >= 0) {
2527 ret = set_state_failrec(failure_tree, start, failrec);
2528 /* Set the bits in the inode's tree */
2529 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2530 } else if (ret < 0) {
2531 kfree(failrec);
2532 return ERR_PTR(ret);
2533 }
2534
2535 return failrec;
2536}
2537
2538static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2539 struct io_failure_record *failrec,
2540 int failed_mirror)
2541{
2542 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2543 int num_copies;
2544
2545 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2546 if (num_copies == 1) {
2547 /*
2548 * we only have a single copy of the data, so don't bother with
2549 * all the retry and error correction code that follows. no
2550 * matter what the error is, it is very likely to persist.
2551 */
2552 btrfs_debug(fs_info,
2553 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2554 num_copies, failrec->this_mirror, failed_mirror);
2555 return false;
2556 }
2557
2558 /*
2559 * there are two premises:
2560 * a) deliver good data to the caller
2561 * b) correct the bad sectors on disk
2562 */
2563 if (needs_validation) {
2564 /*
2565 * to fulfill b), we need to know the exact failing sectors, as
2566 * we don't want to rewrite any more than the failed ones. thus,
2567 * we need separate read requests for the failed bio
2568 *
2569 * if the following BUG_ON triggers, our validation request got
2570 * merged. we need separate requests for our algorithm to work.
2571 */
2572 BUG_ON(failrec->in_validation);
2573 failrec->in_validation = 1;
2574 failrec->this_mirror = failed_mirror;
2575 } else {
2576 /*
2577 * we're ready to fulfill a) and b) alongside. get a good copy
2578 * of the failed sector and if we succeed, we have setup
2579 * everything for repair_io_failure to do the rest for us.
2580 */
2581 if (failrec->in_validation) {
2582 BUG_ON(failrec->this_mirror != failed_mirror);
2583 failrec->in_validation = 0;
2584 failrec->this_mirror = 0;
2585 }
2586 failrec->failed_mirror = failed_mirror;
2587 failrec->this_mirror++;
2588 if (failrec->this_mirror == failed_mirror)
2589 failrec->this_mirror++;
2590 }
2591
2592 if (failrec->this_mirror > num_copies) {
2593 btrfs_debug(fs_info,
2594 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2595 num_copies, failrec->this_mirror, failed_mirror);
2596 return false;
2597 }
2598
2599 return true;
2600}
2601
2602static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2603{
2604 u64 len = 0;
2605 const u32 blocksize = inode->i_sb->s_blocksize;
2606
2607 /*
2608 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2609 * I/O error. In this case, we already know exactly which sector was
2610 * bad, so we don't need to validate.
2611 */
2612 if (bio->bi_status == BLK_STS_OK)
2613 return false;
2614
2615 /*
2616 * We need to validate each sector individually if the failed I/O was
2617 * for multiple sectors.
2618 *
2619 * There are a few possible bios that can end up here:
2620 * 1. A buffered read bio, which is not cloned.
2621 * 2. A direct I/O read bio, which is cloned.
2622 * 3. A (buffered or direct) repair bio, which is not cloned.
2623 *
2624 * For cloned bios (case 2), we can get the size from
2625 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2626 * it from the bvecs.
2627 */
2628 if (bio_flagged(bio, BIO_CLONED)) {
2629 if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2630 return true;
2631 } else {
2632 struct bio_vec *bvec;
2633 int i;
2634
2635 bio_for_each_bvec_all(bvec, bio, i) {
2636 len += bvec->bv_len;
2637 if (len > blocksize)
2638 return true;
2639 }
2640 }
2641 return false;
2642}
2643
2644blk_status_t btrfs_submit_read_repair(struct inode *inode,
2645 struct bio *failed_bio, u64 phy_offset,
2646 struct page *page, unsigned int pgoff,
2647 u64 start, u64 end, int failed_mirror,
2648 submit_bio_hook_t *submit_bio_hook)
2649{
2650 struct io_failure_record *failrec;
2651 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2652 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2653 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2654 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2655 const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits;
2656 bool need_validation;
2657 struct bio *repair_bio;
2658 struct btrfs_io_bio *repair_io_bio;
2659 blk_status_t status;
2660
2661 btrfs_debug(fs_info,
2662 "repair read error: read error at %llu", start);
2663
2664 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2665
2666 failrec = btrfs_get_io_failure_record(inode, start, end);
2667 if (IS_ERR(failrec))
2668 return errno_to_blk_status(PTR_ERR(failrec));
2669
2670 need_validation = btrfs_io_needs_validation(inode, failed_bio);
2671
2672 if (!btrfs_check_repairable(inode, need_validation, failrec,
2673 failed_mirror)) {
2674 free_io_failure(failure_tree, tree, failrec);
2675 return BLK_STS_IOERR;
2676 }
2677
2678 repair_bio = btrfs_io_bio_alloc(1);
2679 repair_io_bio = btrfs_io_bio(repair_bio);
2680 repair_bio->bi_opf = REQ_OP_READ;
2681 if (need_validation)
2682 repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2683 repair_bio->bi_end_io = failed_bio->bi_end_io;
2684 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2685 repair_bio->bi_private = failed_bio->bi_private;
2686
2687 if (failed_io_bio->csum) {
2688 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2689
2690 repair_io_bio->csum = repair_io_bio->csum_inline;
2691 memcpy(repair_io_bio->csum,
2692 failed_io_bio->csum + csum_size * icsum, csum_size);
2693 }
2694
2695 bio_add_page(repair_bio, page, failrec->len, pgoff);
2696 repair_io_bio->logical = failrec->start;
2697 repair_io_bio->iter = repair_bio->bi_iter;
2698
2699 btrfs_debug(btrfs_sb(inode->i_sb),
2700"repair read error: submitting new read to mirror %d, in_validation=%d",
2701 failrec->this_mirror, failrec->in_validation);
2702
2703 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2704 failrec->bio_flags);
2705 if (status) {
2706 free_io_failure(failure_tree, tree, failrec);
2707 bio_put(repair_bio);
2708 }
2709 return status;
2710}
2711
2712/* lots and lots of room for performance fixes in the end_bio funcs */
2713
2714void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2715{
2716 int uptodate = (err == 0);
2717 int ret = 0;
2718
2719 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2720
2721 if (!uptodate) {
2722 ClearPageUptodate(page);
2723 SetPageError(page);
2724 ret = err < 0 ? err : -EIO;
2725 mapping_set_error(page->mapping, ret);
2726 }
2727}
2728
2729/*
2730 * after a writepage IO is done, we need to:
2731 * clear the uptodate bits on error
2732 * clear the writeback bits in the extent tree for this IO
2733 * end_page_writeback if the page has no more pending IO
2734 *
2735 * Scheduling is not allowed, so the extent state tree is expected
2736 * to have one and only one object corresponding to this IO.
2737 */
2738static void end_bio_extent_writepage(struct bio *bio)
2739{
2740 int error = blk_status_to_errno(bio->bi_status);
2741 struct bio_vec *bvec;
2742 u64 start;
2743 u64 end;
2744 struct bvec_iter_all iter_all;
2745
2746 ASSERT(!bio_flagged(bio, BIO_CLONED));
2747 bio_for_each_segment_all(bvec, bio, iter_all) {
2748 struct page *page = bvec->bv_page;
2749 struct inode *inode = page->mapping->host;
2750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2751
2752 /* We always issue full-page reads, but if some block
2753 * in a page fails to read, blk_update_request() will
2754 * advance bv_offset and adjust bv_len to compensate.
2755 * Print a warning for nonzero offsets, and an error
2756 * if they don't add up to a full page. */
2757 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2758 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2759 btrfs_err(fs_info,
2760 "partial page write in btrfs with offset %u and length %u",
2761 bvec->bv_offset, bvec->bv_len);
2762 else
2763 btrfs_info(fs_info,
2764 "incomplete page write in btrfs with offset %u and length %u",
2765 bvec->bv_offset, bvec->bv_len);
2766 }
2767
2768 start = page_offset(page);
2769 end = start + bvec->bv_offset + bvec->bv_len - 1;
2770
2771 end_extent_writepage(page, error, start, end);
2772 end_page_writeback(page);
2773 }
2774
2775 bio_put(bio);
2776}
2777
2778static void
2779endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2780 int uptodate)
2781{
2782 struct extent_state *cached = NULL;
2783 u64 end = start + len - 1;
2784
2785 if (uptodate && tree->track_uptodate)
2786 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2787 unlock_extent_cached_atomic(tree, start, end, &cached);
2788}
2789
2790/*
2791 * after a readpage IO is done, we need to:
2792 * clear the uptodate bits on error
2793 * set the uptodate bits if things worked
2794 * set the page up to date if all extents in the tree are uptodate
2795 * clear the lock bit in the extent tree
2796 * unlock the page if there are no other extents locked for it
2797 *
2798 * Scheduling is not allowed, so the extent state tree is expected
2799 * to have one and only one object corresponding to this IO.
2800 */
2801static void end_bio_extent_readpage(struct bio *bio)
2802{
2803 struct bio_vec *bvec;
2804 int uptodate = !bio->bi_status;
2805 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2806 struct extent_io_tree *tree, *failure_tree;
2807 u64 offset = 0;
2808 u64 start;
2809 u64 end;
2810 u64 len;
2811 u64 extent_start = 0;
2812 u64 extent_len = 0;
2813 int mirror;
2814 int ret;
2815 struct bvec_iter_all iter_all;
2816
2817 ASSERT(!bio_flagged(bio, BIO_CLONED));
2818 bio_for_each_segment_all(bvec, bio, iter_all) {
2819 struct page *page = bvec->bv_page;
2820 struct inode *inode = page->mapping->host;
2821 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2822 bool data_inode = btrfs_ino(BTRFS_I(inode))
2823 != BTRFS_BTREE_INODE_OBJECTID;
2824
2825 btrfs_debug(fs_info,
2826 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2827 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2828 io_bio->mirror_num);
2829 tree = &BTRFS_I(inode)->io_tree;
2830 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2831
2832 /* We always issue full-page reads, but if some block
2833 * in a page fails to read, blk_update_request() will
2834 * advance bv_offset and adjust bv_len to compensate.
2835 * Print a warning for nonzero offsets, and an error
2836 * if they don't add up to a full page. */
2837 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2838 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2839 btrfs_err(fs_info,
2840 "partial page read in btrfs with offset %u and length %u",
2841 bvec->bv_offset, bvec->bv_len);
2842 else
2843 btrfs_info(fs_info,
2844 "incomplete page read in btrfs with offset %u and length %u",
2845 bvec->bv_offset, bvec->bv_len);
2846 }
2847
2848 start = page_offset(page);
2849 end = start + bvec->bv_offset + bvec->bv_len - 1;
2850 len = bvec->bv_len;
2851
2852 mirror = io_bio->mirror_num;
2853 if (likely(uptodate)) {
2854 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2855 page, start, end,
2856 mirror);
2857 if (ret)
2858 uptodate = 0;
2859 else
2860 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2861 failure_tree, tree, start,
2862 page,
2863 btrfs_ino(BTRFS_I(inode)), 0);
2864 }
2865
2866 if (likely(uptodate))
2867 goto readpage_ok;
2868
2869 if (data_inode) {
2870
2871 /*
2872 * The generic bio_readpage_error handles errors the
2873 * following way: If possible, new read requests are
2874 * created and submitted and will end up in
2875 * end_bio_extent_readpage as well (if we're lucky,
2876 * not in the !uptodate case). In that case it returns
2877 * 0 and we just go on with the next page in our bio.
2878 * If it can't handle the error it will return -EIO and
2879 * we remain responsible for that page.
2880 */
2881 if (!btrfs_submit_read_repair(inode, bio, offset, page,
2882 start - page_offset(page),
2883 start, end, mirror,
2884 tree->ops->submit_bio_hook)) {
2885 uptodate = !bio->bi_status;
2886 offset += len;
2887 continue;
2888 }
2889 } else {
2890 struct extent_buffer *eb;
2891
2892 eb = (struct extent_buffer *)page->private;
2893 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2894 eb->read_mirror = mirror;
2895 atomic_dec(&eb->io_pages);
2896 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2897 &eb->bflags))
2898 btree_readahead_hook(eb, -EIO);
2899 }
2900readpage_ok:
2901 if (likely(uptodate)) {
2902 loff_t i_size = i_size_read(inode);
2903 pgoff_t end_index = i_size >> PAGE_SHIFT;
2904 unsigned off;
2905
2906 /* Zero out the end if this page straddles i_size */
2907 off = offset_in_page(i_size);
2908 if (page->index == end_index && off)
2909 zero_user_segment(page, off, PAGE_SIZE);
2910 SetPageUptodate(page);
2911 } else {
2912 ClearPageUptodate(page);
2913 SetPageError(page);
2914 }
2915 unlock_page(page);
2916 offset += len;
2917
2918 if (unlikely(!uptodate)) {
2919 if (extent_len) {
2920 endio_readpage_release_extent(tree,
2921 extent_start,
2922 extent_len, 1);
2923 extent_start = 0;
2924 extent_len = 0;
2925 }
2926 endio_readpage_release_extent(tree, start,
2927 end - start + 1, 0);
2928 } else if (!extent_len) {
2929 extent_start = start;
2930 extent_len = end + 1 - start;
2931 } else if (extent_start + extent_len == start) {
2932 extent_len += end + 1 - start;
2933 } else {
2934 endio_readpage_release_extent(tree, extent_start,
2935 extent_len, uptodate);
2936 extent_start = start;
2937 extent_len = end + 1 - start;
2938 }
2939 }
2940
2941 if (extent_len)
2942 endio_readpage_release_extent(tree, extent_start, extent_len,
2943 uptodate);
2944 btrfs_io_bio_free_csum(io_bio);
2945 bio_put(bio);
2946}
2947
2948/*
2949 * Initialize the members up to but not including 'bio'. Use after allocating a
2950 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2951 * 'bio' because use of __GFP_ZERO is not supported.
2952 */
2953static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2954{
2955 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2956}
2957
2958/*
2959 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2960 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2961 * for the appropriate container_of magic
2962 */
2963struct bio *btrfs_bio_alloc(u64 first_byte)
2964{
2965 struct bio *bio;
2966
2967 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2968 bio->bi_iter.bi_sector = first_byte >> 9;
2969 btrfs_io_bio_init(btrfs_io_bio(bio));
2970 return bio;
2971}
2972
2973struct bio *btrfs_bio_clone(struct bio *bio)
2974{
2975 struct btrfs_io_bio *btrfs_bio;
2976 struct bio *new;
2977
2978 /* Bio allocation backed by a bioset does not fail */
2979 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2980 btrfs_bio = btrfs_io_bio(new);
2981 btrfs_io_bio_init(btrfs_bio);
2982 btrfs_bio->iter = bio->bi_iter;
2983 return new;
2984}
2985
2986struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2987{
2988 struct bio *bio;
2989
2990 /* Bio allocation backed by a bioset does not fail */
2991 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2992 btrfs_io_bio_init(btrfs_io_bio(bio));
2993 return bio;
2994}
2995
2996struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2997{
2998 struct bio *bio;
2999 struct btrfs_io_bio *btrfs_bio;
3000
3001 /* this will never fail when it's backed by a bioset */
3002 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3003 ASSERT(bio);
3004
3005 btrfs_bio = btrfs_io_bio(bio);
3006 btrfs_io_bio_init(btrfs_bio);
3007
3008 bio_trim(bio, offset >> 9, size >> 9);
3009 btrfs_bio->iter = bio->bi_iter;
3010 return bio;
3011}
3012
3013/*
3014 * @opf: bio REQ_OP_* and REQ_* flags as one value
3015 * @wbc: optional writeback control for io accounting
3016 * @page: page to add to the bio
3017 * @pg_offset: offset of the new bio or to check whether we are adding
3018 * a contiguous page to the previous one
3019 * @size: portion of page that we want to write
3020 * @offset: starting offset in the page
3021 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
3022 * @end_io_func: end_io callback for new bio
3023 * @mirror_num: desired mirror to read/write
3024 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3025 * @bio_flags: flags of the current bio to see if we can merge them
3026 */
3027static int submit_extent_page(unsigned int opf,
3028 struct writeback_control *wbc,
3029 struct page *page, u64 offset,
3030 size_t size, unsigned long pg_offset,
3031 struct bio **bio_ret,
3032 bio_end_io_t end_io_func,
3033 int mirror_num,
3034 unsigned long prev_bio_flags,
3035 unsigned long bio_flags,
3036 bool force_bio_submit)
3037{
3038 int ret = 0;
3039 struct bio *bio;
3040 size_t page_size = min_t(size_t, size, PAGE_SIZE);
3041 sector_t sector = offset >> 9;
3042 struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3043
3044 ASSERT(bio_ret);
3045
3046 if (*bio_ret) {
3047 bool contig;
3048 bool can_merge = true;
3049
3050 bio = *bio_ret;
3051 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3052 contig = bio->bi_iter.bi_sector == sector;
3053 else
3054 contig = bio_end_sector(bio) == sector;
3055
3056 ASSERT(tree->ops);
3057 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3058 can_merge = false;
3059
3060 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3061 force_bio_submit ||
3062 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3063 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3064 if (ret < 0) {
3065 *bio_ret = NULL;
3066 return ret;
3067 }
3068 bio = NULL;
3069 } else {
3070 if (wbc)
3071 wbc_account_cgroup_owner(wbc, page, page_size);
3072 return 0;
3073 }
3074 }
3075
3076 bio = btrfs_bio_alloc(offset);
3077 bio_add_page(bio, page, page_size, pg_offset);
3078 bio->bi_end_io = end_io_func;
3079 bio->bi_private = tree;
3080 bio->bi_write_hint = page->mapping->host->i_write_hint;
3081 bio->bi_opf = opf;
3082 if (wbc) {
3083 struct block_device *bdev;
3084
3085 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3086 bio_set_dev(bio, bdev);
3087 wbc_init_bio(wbc, bio);
3088 wbc_account_cgroup_owner(wbc, page, page_size);
3089 }
3090
3091 *bio_ret = bio;
3092
3093 return ret;
3094}
3095
3096static void attach_extent_buffer_page(struct extent_buffer *eb,
3097 struct page *page)
3098{
3099 if (!PagePrivate(page))
3100 attach_page_private(page, eb);
3101 else
3102 WARN_ON(page->private != (unsigned long)eb);
3103}
3104
3105void set_page_extent_mapped(struct page *page)
3106{
3107 if (!PagePrivate(page))
3108 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3109}
3110
3111static struct extent_map *
3112__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3113 u64 start, u64 len, get_extent_t *get_extent,
3114 struct extent_map **em_cached)
3115{
3116 struct extent_map *em;
3117
3118 if (em_cached && *em_cached) {
3119 em = *em_cached;
3120 if (extent_map_in_tree(em) && start >= em->start &&
3121 start < extent_map_end(em)) {
3122 refcount_inc(&em->refs);
3123 return em;
3124 }
3125
3126 free_extent_map(em);
3127 *em_cached = NULL;
3128 }
3129
3130 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3131 if (em_cached && !IS_ERR_OR_NULL(em)) {
3132 BUG_ON(*em_cached);
3133 refcount_inc(&em->refs);
3134 *em_cached = em;
3135 }
3136 return em;
3137}
3138/*
3139 * basic readpage implementation. Locked extent state structs are inserted
3140 * into the tree that are removed when the IO is done (by the end_io
3141 * handlers)
3142 * XXX JDM: This needs looking at to ensure proper page locking
3143 * return 0 on success, otherwise return error
3144 */
3145static int __do_readpage(struct page *page,
3146 get_extent_t *get_extent,
3147 struct extent_map **em_cached,
3148 struct bio **bio, int mirror_num,
3149 unsigned long *bio_flags, unsigned int read_flags,
3150 u64 *prev_em_start)
3151{
3152 struct inode *inode = page->mapping->host;
3153 u64 start = page_offset(page);
3154 const u64 end = start + PAGE_SIZE - 1;
3155 u64 cur = start;
3156 u64 extent_offset;
3157 u64 last_byte = i_size_read(inode);
3158 u64 block_start;
3159 u64 cur_end;
3160 struct extent_map *em;
3161 int ret = 0;
3162 int nr = 0;
3163 size_t pg_offset = 0;
3164 size_t iosize;
3165 size_t disk_io_size;
3166 size_t blocksize = inode->i_sb->s_blocksize;
3167 unsigned long this_bio_flag = 0;
3168 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3169
3170 set_page_extent_mapped(page);
3171
3172 if (!PageUptodate(page)) {
3173 if (cleancache_get_page(page) == 0) {
3174 BUG_ON(blocksize != PAGE_SIZE);
3175 unlock_extent(tree, start, end);
3176 goto out;
3177 }
3178 }
3179
3180 if (page->index == last_byte >> PAGE_SHIFT) {
3181 char *userpage;
3182 size_t zero_offset = offset_in_page(last_byte);
3183
3184 if (zero_offset) {
3185 iosize = PAGE_SIZE - zero_offset;
3186 userpage = kmap_atomic(page);
3187 memset(userpage + zero_offset, 0, iosize);
3188 flush_dcache_page(page);
3189 kunmap_atomic(userpage);
3190 }
3191 }
3192 while (cur <= end) {
3193 bool force_bio_submit = false;
3194 u64 offset;
3195
3196 if (cur >= last_byte) {
3197 char *userpage;
3198 struct extent_state *cached = NULL;
3199
3200 iosize = PAGE_SIZE - pg_offset;
3201 userpage = kmap_atomic(page);
3202 memset(userpage + pg_offset, 0, iosize);
3203 flush_dcache_page(page);
3204 kunmap_atomic(userpage);
3205 set_extent_uptodate(tree, cur, cur + iosize - 1,
3206 &cached, GFP_NOFS);
3207 unlock_extent_cached(tree, cur,
3208 cur + iosize - 1, &cached);
3209 break;
3210 }
3211 em = __get_extent_map(inode, page, pg_offset, cur,
3212 end - cur + 1, get_extent, em_cached);
3213 if (IS_ERR_OR_NULL(em)) {
3214 SetPageError(page);
3215 unlock_extent(tree, cur, end);
3216 break;
3217 }
3218 extent_offset = cur - em->start;
3219 BUG_ON(extent_map_end(em) <= cur);
3220 BUG_ON(end < cur);
3221
3222 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3223 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3224 extent_set_compress_type(&this_bio_flag,
3225 em->compress_type);
3226 }
3227
3228 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3229 cur_end = min(extent_map_end(em) - 1, end);
3230 iosize = ALIGN(iosize, blocksize);
3231 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3232 disk_io_size = em->block_len;
3233 offset = em->block_start;
3234 } else {
3235 offset = em->block_start + extent_offset;
3236 disk_io_size = iosize;
3237 }
3238 block_start = em->block_start;
3239 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3240 block_start = EXTENT_MAP_HOLE;
3241
3242 /*
3243 * If we have a file range that points to a compressed extent
3244 * and it's followed by a consecutive file range that points to
3245 * to the same compressed extent (possibly with a different
3246 * offset and/or length, so it either points to the whole extent
3247 * or only part of it), we must make sure we do not submit a
3248 * single bio to populate the pages for the 2 ranges because
3249 * this makes the compressed extent read zero out the pages
3250 * belonging to the 2nd range. Imagine the following scenario:
3251 *
3252 * File layout
3253 * [0 - 8K] [8K - 24K]
3254 * | |
3255 * | |
3256 * points to extent X, points to extent X,
3257 * offset 4K, length of 8K offset 0, length 16K
3258 *
3259 * [extent X, compressed length = 4K uncompressed length = 16K]
3260 *
3261 * If the bio to read the compressed extent covers both ranges,
3262 * it will decompress extent X into the pages belonging to the
3263 * first range and then it will stop, zeroing out the remaining
3264 * pages that belong to the other range that points to extent X.
3265 * So here we make sure we submit 2 bios, one for the first
3266 * range and another one for the third range. Both will target
3267 * the same physical extent from disk, but we can't currently
3268 * make the compressed bio endio callback populate the pages
3269 * for both ranges because each compressed bio is tightly
3270 * coupled with a single extent map, and each range can have
3271 * an extent map with a different offset value relative to the
3272 * uncompressed data of our extent and different lengths. This
3273 * is a corner case so we prioritize correctness over
3274 * non-optimal behavior (submitting 2 bios for the same extent).
3275 */
3276 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3277 prev_em_start && *prev_em_start != (u64)-1 &&
3278 *prev_em_start != em->start)
3279 force_bio_submit = true;
3280
3281 if (prev_em_start)
3282 *prev_em_start = em->start;
3283
3284 free_extent_map(em);
3285 em = NULL;
3286
3287 /* we've found a hole, just zero and go on */
3288 if (block_start == EXTENT_MAP_HOLE) {
3289 char *userpage;
3290 struct extent_state *cached = NULL;
3291
3292 userpage = kmap_atomic(page);
3293 memset(userpage + pg_offset, 0, iosize);
3294 flush_dcache_page(page);
3295 kunmap_atomic(userpage);
3296
3297 set_extent_uptodate(tree, cur, cur + iosize - 1,
3298 &cached, GFP_NOFS);
3299 unlock_extent_cached(tree, cur,
3300 cur + iosize - 1, &cached);
3301 cur = cur + iosize;
3302 pg_offset += iosize;
3303 continue;
3304 }
3305 /* the get_extent function already copied into the page */
3306 if (test_range_bit(tree, cur, cur_end,
3307 EXTENT_UPTODATE, 1, NULL)) {
3308 check_page_uptodate(tree, page);
3309 unlock_extent(tree, cur, cur + iosize - 1);
3310 cur = cur + iosize;
3311 pg_offset += iosize;
3312 continue;
3313 }
3314 /* we have an inline extent but it didn't get marked up
3315 * to date. Error out
3316 */
3317 if (block_start == EXTENT_MAP_INLINE) {
3318 SetPageError(page);
3319 unlock_extent(tree, cur, cur + iosize - 1);
3320 cur = cur + iosize;
3321 pg_offset += iosize;
3322 continue;
3323 }
3324
3325 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3326 page, offset, disk_io_size,
3327 pg_offset, bio,
3328 end_bio_extent_readpage, mirror_num,
3329 *bio_flags,
3330 this_bio_flag,
3331 force_bio_submit);
3332 if (!ret) {
3333 nr++;
3334 *bio_flags = this_bio_flag;
3335 } else {
3336 SetPageError(page);
3337 unlock_extent(tree, cur, cur + iosize - 1);
3338 goto out;
3339 }
3340 cur = cur + iosize;
3341 pg_offset += iosize;
3342 }
3343out:
3344 if (!nr) {
3345 if (!PageError(page))
3346 SetPageUptodate(page);
3347 unlock_page(page);
3348 }
3349 return ret;
3350}
3351
3352static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3353 u64 start, u64 end,
3354 struct extent_map **em_cached,
3355 struct bio **bio,
3356 unsigned long *bio_flags,
3357 u64 *prev_em_start)
3358{
3359 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3360 int index;
3361
3362 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3363
3364 for (index = 0; index < nr_pages; index++) {
3365 __do_readpage(pages[index], btrfs_get_extent, em_cached,
3366 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3367 put_page(pages[index]);
3368 }
3369}
3370
3371static int __extent_read_full_page(struct page *page,
3372 get_extent_t *get_extent,
3373 struct bio **bio, int mirror_num,
3374 unsigned long *bio_flags,
3375 unsigned int read_flags)
3376{
3377 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3378 u64 start = page_offset(page);
3379 u64 end = start + PAGE_SIZE - 1;
3380 int ret;
3381
3382 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3383
3384 ret = __do_readpage(page, get_extent, NULL, bio, mirror_num,
3385 bio_flags, read_flags, NULL);
3386 return ret;
3387}
3388
3389int extent_read_full_page(struct page *page, get_extent_t *get_extent,
3390 int mirror_num)
3391{
3392 struct bio *bio = NULL;
3393 unsigned long bio_flags = 0;
3394 int ret;
3395
3396 ret = __extent_read_full_page(page, get_extent, &bio, mirror_num,
3397 &bio_flags, 0);
3398 if (bio)
3399 ret = submit_one_bio(bio, mirror_num, bio_flags);
3400 return ret;
3401}
3402
3403static void update_nr_written(struct writeback_control *wbc,
3404 unsigned long nr_written)
3405{
3406 wbc->nr_to_write -= nr_written;
3407}
3408
3409/*
3410 * helper for __extent_writepage, doing all of the delayed allocation setup.
3411 *
3412 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3413 * to write the page (copy into inline extent). In this case the IO has
3414 * been started and the page is already unlocked.
3415 *
3416 * This returns 0 if all went well (page still locked)
3417 * This returns < 0 if there were errors (page still locked)
3418 */
3419static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3420 struct page *page, struct writeback_control *wbc,
3421 u64 delalloc_start, unsigned long *nr_written)
3422{
3423 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3424 bool found;
3425 u64 delalloc_to_write = 0;
3426 u64 delalloc_end = 0;
3427 int ret;
3428 int page_started = 0;
3429
3430
3431 while (delalloc_end < page_end) {
3432 found = find_lock_delalloc_range(&inode->vfs_inode, page,
3433 &delalloc_start,
3434 &delalloc_end);
3435 if (!found) {
3436 delalloc_start = delalloc_end + 1;
3437 continue;
3438 }
3439 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3440 delalloc_end, &page_started, nr_written, wbc);
3441 if (ret) {
3442 SetPageError(page);
3443 /*
3444 * btrfs_run_delalloc_range should return < 0 for error
3445 * but just in case, we use > 0 here meaning the IO is
3446 * started, so we don't want to return > 0 unless
3447 * things are going well.
3448 */
3449 return ret < 0 ? ret : -EIO;
3450 }
3451 /*
3452 * delalloc_end is already one less than the total length, so
3453 * we don't subtract one from PAGE_SIZE
3454 */
3455 delalloc_to_write += (delalloc_end - delalloc_start +
3456 PAGE_SIZE) >> PAGE_SHIFT;
3457 delalloc_start = delalloc_end + 1;
3458 }
3459 if (wbc->nr_to_write < delalloc_to_write) {
3460 int thresh = 8192;
3461
3462 if (delalloc_to_write < thresh * 2)
3463 thresh = delalloc_to_write;
3464 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3465 thresh);
3466 }
3467
3468 /* did the fill delalloc function already unlock and start
3469 * the IO?
3470 */
3471 if (page_started) {
3472 /*
3473 * we've unlocked the page, so we can't update
3474 * the mapping's writeback index, just update
3475 * nr_to_write.
3476 */
3477 wbc->nr_to_write -= *nr_written;
3478 return 1;
3479 }
3480
3481 return 0;
3482}
3483
3484/*
3485 * helper for __extent_writepage. This calls the writepage start hooks,
3486 * and does the loop to map the page into extents and bios.
3487 *
3488 * We return 1 if the IO is started and the page is unlocked,
3489 * 0 if all went well (page still locked)
3490 * < 0 if there were errors (page still locked)
3491 */
3492static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3493 struct page *page,
3494 struct writeback_control *wbc,
3495 struct extent_page_data *epd,
3496 loff_t i_size,
3497 unsigned long nr_written,
3498 int *nr_ret)
3499{
3500 struct extent_io_tree *tree = &inode->io_tree;
3501 u64 start = page_offset(page);
3502 u64 page_end = start + PAGE_SIZE - 1;
3503 u64 end;
3504 u64 cur = start;
3505 u64 extent_offset;
3506 u64 block_start;
3507 u64 iosize;
3508 struct extent_map *em;
3509 size_t pg_offset = 0;
3510 size_t blocksize;
3511 int ret = 0;
3512 int nr = 0;
3513 const unsigned int write_flags = wbc_to_write_flags(wbc);
3514 bool compressed;
3515
3516 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3517 if (ret) {
3518 /* Fixup worker will requeue */
3519 redirty_page_for_writepage(wbc, page);
3520 update_nr_written(wbc, nr_written);
3521 unlock_page(page);
3522 return 1;
3523 }
3524
3525 /*
3526 * we don't want to touch the inode after unlocking the page,
3527 * so we update the mapping writeback index now
3528 */
3529 update_nr_written(wbc, nr_written + 1);
3530
3531 end = page_end;
3532 blocksize = inode->vfs_inode.i_sb->s_blocksize;
3533
3534 while (cur <= end) {
3535 u64 em_end;
3536 u64 offset;
3537
3538 if (cur >= i_size) {
3539 btrfs_writepage_endio_finish_ordered(page, cur,
3540 page_end, 1);
3541 break;
3542 }
3543 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3544 if (IS_ERR_OR_NULL(em)) {
3545 SetPageError(page);
3546 ret = PTR_ERR_OR_ZERO(em);
3547 break;
3548 }
3549
3550 extent_offset = cur - em->start;
3551 em_end = extent_map_end(em);
3552 BUG_ON(em_end <= cur);
3553 BUG_ON(end < cur);
3554 iosize = min(em_end - cur, end - cur + 1);
3555 iosize = ALIGN(iosize, blocksize);
3556 offset = em->block_start + extent_offset;
3557 block_start = em->block_start;
3558 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3559 free_extent_map(em);
3560 em = NULL;
3561
3562 /*
3563 * compressed and inline extents are written through other
3564 * paths in the FS
3565 */
3566 if (compressed || block_start == EXTENT_MAP_HOLE ||
3567 block_start == EXTENT_MAP_INLINE) {
3568 if (compressed)
3569 nr++;
3570 else
3571 btrfs_writepage_endio_finish_ordered(page, cur,
3572 cur + iosize - 1, 1);
3573 cur += iosize;
3574 pg_offset += iosize;
3575 continue;
3576 }
3577
3578 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3579 if (!PageWriteback(page)) {
3580 btrfs_err(inode->root->fs_info,
3581 "page %lu not writeback, cur %llu end %llu",
3582 page->index, cur, end);
3583 }
3584
3585 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3586 page, offset, iosize, pg_offset,
3587 &epd->bio,
3588 end_bio_extent_writepage,
3589 0, 0, 0, false);
3590 if (ret) {
3591 SetPageError(page);
3592 if (PageWriteback(page))
3593 end_page_writeback(page);
3594 }
3595
3596 cur = cur + iosize;
3597 pg_offset += iosize;
3598 nr++;
3599 }
3600 *nr_ret = nr;
3601 return ret;
3602}
3603
3604/*
3605 * the writepage semantics are similar to regular writepage. extent
3606 * records are inserted to lock ranges in the tree, and as dirty areas
3607 * are found, they are marked writeback. Then the lock bits are removed
3608 * and the end_io handler clears the writeback ranges
3609 *
3610 * Return 0 if everything goes well.
3611 * Return <0 for error.
3612 */
3613static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3614 struct extent_page_data *epd)
3615{
3616 struct inode *inode = page->mapping->host;
3617 u64 start = page_offset(page);
3618 u64 page_end = start + PAGE_SIZE - 1;
3619 int ret;
3620 int nr = 0;
3621 size_t pg_offset;
3622 loff_t i_size = i_size_read(inode);
3623 unsigned long end_index = i_size >> PAGE_SHIFT;
3624 unsigned long nr_written = 0;
3625
3626 trace___extent_writepage(page, inode, wbc);
3627
3628 WARN_ON(!PageLocked(page));
3629
3630 ClearPageError(page);
3631
3632 pg_offset = offset_in_page(i_size);
3633 if (page->index > end_index ||
3634 (page->index == end_index && !pg_offset)) {
3635 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3636 unlock_page(page);
3637 return 0;
3638 }
3639
3640 if (page->index == end_index) {
3641 char *userpage;
3642
3643 userpage = kmap_atomic(page);
3644 memset(userpage + pg_offset, 0,
3645 PAGE_SIZE - pg_offset);
3646 kunmap_atomic(userpage);
3647 flush_dcache_page(page);
3648 }
3649
3650 set_page_extent_mapped(page);
3651
3652 if (!epd->extent_locked) {
3653 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3654 &nr_written);
3655 if (ret == 1)
3656 return 0;
3657 if (ret)
3658 goto done;
3659 }
3660
3661 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3662 nr_written, &nr);
3663 if (ret == 1)
3664 return 0;
3665
3666done:
3667 if (nr == 0) {
3668 /* make sure the mapping tag for page dirty gets cleared */
3669 set_page_writeback(page);
3670 end_page_writeback(page);
3671 }
3672 if (PageError(page)) {
3673 ret = ret < 0 ? ret : -EIO;
3674 end_extent_writepage(page, ret, start, page_end);
3675 }
3676 unlock_page(page);
3677 ASSERT(ret <= 0);
3678 return ret;
3679}
3680
3681void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3682{
3683 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3684 TASK_UNINTERRUPTIBLE);
3685}
3686
3687static void end_extent_buffer_writeback(struct extent_buffer *eb)
3688{
3689 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3690 smp_mb__after_atomic();
3691 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3692}
3693
3694/*
3695 * Lock eb pages and flush the bio if we can't the locks
3696 *
3697 * Return 0 if nothing went wrong
3698 * Return >0 is same as 0, except bio is not submitted
3699 * Return <0 if something went wrong, no page is locked
3700 */
3701static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3702 struct extent_page_data *epd)
3703{
3704 struct btrfs_fs_info *fs_info = eb->fs_info;
3705 int i, num_pages, failed_page_nr;
3706 int flush = 0;
3707 int ret = 0;
3708
3709 if (!btrfs_try_tree_write_lock(eb)) {
3710 ret = flush_write_bio(epd);
3711 if (ret < 0)
3712 return ret;
3713 flush = 1;
3714 btrfs_tree_lock(eb);
3715 }
3716
3717 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3718 btrfs_tree_unlock(eb);
3719 if (!epd->sync_io)
3720 return 0;
3721 if (!flush) {
3722 ret = flush_write_bio(epd);
3723 if (ret < 0)
3724 return ret;
3725 flush = 1;
3726 }
3727 while (1) {
3728 wait_on_extent_buffer_writeback(eb);
3729 btrfs_tree_lock(eb);
3730 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3731 break;
3732 btrfs_tree_unlock(eb);
3733 }
3734 }
3735
3736 /*
3737 * We need to do this to prevent races in people who check if the eb is
3738 * under IO since we can end up having no IO bits set for a short period
3739 * of time.
3740 */
3741 spin_lock(&eb->refs_lock);
3742 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3743 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3744 spin_unlock(&eb->refs_lock);
3745 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3746 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3747 -eb->len,
3748 fs_info->dirty_metadata_batch);
3749 ret = 1;
3750 } else {
3751 spin_unlock(&eb->refs_lock);
3752 }
3753
3754 btrfs_tree_unlock(eb);
3755
3756 if (!ret)
3757 return ret;
3758
3759 num_pages = num_extent_pages(eb);
3760 for (i = 0; i < num_pages; i++) {
3761 struct page *p = eb->pages[i];
3762
3763 if (!trylock_page(p)) {
3764 if (!flush) {
3765 int err;
3766
3767 err = flush_write_bio(epd);
3768 if (err < 0) {
3769 ret = err;
3770 failed_page_nr = i;
3771 goto err_unlock;
3772 }
3773 flush = 1;
3774 }
3775 lock_page(p);
3776 }
3777 }
3778
3779 return ret;
3780err_unlock:
3781 /* Unlock already locked pages */
3782 for (i = 0; i < failed_page_nr; i++)
3783 unlock_page(eb->pages[i]);
3784 /*
3785 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3786 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3787 * be made and undo everything done before.
3788 */
3789 btrfs_tree_lock(eb);
3790 spin_lock(&eb->refs_lock);
3791 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3792 end_extent_buffer_writeback(eb);
3793 spin_unlock(&eb->refs_lock);
3794 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3795 fs_info->dirty_metadata_batch);
3796 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3797 btrfs_tree_unlock(eb);
3798 return ret;
3799}
3800
3801static void set_btree_ioerr(struct page *page)
3802{
3803 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3804 struct btrfs_fs_info *fs_info;
3805
3806 SetPageError(page);
3807 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3808 return;
3809
3810 /*
3811 * If we error out, we should add back the dirty_metadata_bytes
3812 * to make it consistent.
3813 */
3814 fs_info = eb->fs_info;
3815 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3816 eb->len, fs_info->dirty_metadata_batch);
3817
3818 /*
3819 * If writeback for a btree extent that doesn't belong to a log tree
3820 * failed, increment the counter transaction->eb_write_errors.
3821 * We do this because while the transaction is running and before it's
3822 * committing (when we call filemap_fdata[write|wait]_range against
3823 * the btree inode), we might have
3824 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3825 * returns an error or an error happens during writeback, when we're
3826 * committing the transaction we wouldn't know about it, since the pages
3827 * can be no longer dirty nor marked anymore for writeback (if a
3828 * subsequent modification to the extent buffer didn't happen before the
3829 * transaction commit), which makes filemap_fdata[write|wait]_range not
3830 * able to find the pages tagged with SetPageError at transaction
3831 * commit time. So if this happens we must abort the transaction,
3832 * otherwise we commit a super block with btree roots that point to
3833 * btree nodes/leafs whose content on disk is invalid - either garbage
3834 * or the content of some node/leaf from a past generation that got
3835 * cowed or deleted and is no longer valid.
3836 *
3837 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3838 * not be enough - we need to distinguish between log tree extents vs
3839 * non-log tree extents, and the next filemap_fdatawait_range() call
3840 * will catch and clear such errors in the mapping - and that call might
3841 * be from a log sync and not from a transaction commit. Also, checking
3842 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3843 * not done and would not be reliable - the eb might have been released
3844 * from memory and reading it back again means that flag would not be
3845 * set (since it's a runtime flag, not persisted on disk).
3846 *
3847 * Using the flags below in the btree inode also makes us achieve the
3848 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3849 * writeback for all dirty pages and before filemap_fdatawait_range()
3850 * is called, the writeback for all dirty pages had already finished
3851 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3852 * filemap_fdatawait_range() would return success, as it could not know
3853 * that writeback errors happened (the pages were no longer tagged for
3854 * writeback).
3855 */
3856 switch (eb->log_index) {
3857 case -1:
3858 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3859 break;
3860 case 0:
3861 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3862 break;
3863 case 1:
3864 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3865 break;
3866 default:
3867 BUG(); /* unexpected, logic error */
3868 }
3869}
3870
3871static void end_bio_extent_buffer_writepage(struct bio *bio)
3872{
3873 struct bio_vec *bvec;
3874 struct extent_buffer *eb;
3875 int done;
3876 struct bvec_iter_all iter_all;
3877
3878 ASSERT(!bio_flagged(bio, BIO_CLONED));
3879 bio_for_each_segment_all(bvec, bio, iter_all) {
3880 struct page *page = bvec->bv_page;
3881
3882 eb = (struct extent_buffer *)page->private;
3883 BUG_ON(!eb);
3884 done = atomic_dec_and_test(&eb->io_pages);
3885
3886 if (bio->bi_status ||
3887 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3888 ClearPageUptodate(page);
3889 set_btree_ioerr(page);
3890 }
3891
3892 end_page_writeback(page);
3893
3894 if (!done)
3895 continue;
3896
3897 end_extent_buffer_writeback(eb);
3898 }
3899
3900 bio_put(bio);
3901}
3902
3903static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3904 struct writeback_control *wbc,
3905 struct extent_page_data *epd)
3906{
3907 u64 offset = eb->start;
3908 u32 nritems;
3909 int i, num_pages;
3910 unsigned long start, end;
3911 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3912 int ret = 0;
3913
3914 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3915 num_pages = num_extent_pages(eb);
3916 atomic_set(&eb->io_pages, num_pages);
3917
3918 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3919 nritems = btrfs_header_nritems(eb);
3920 if (btrfs_header_level(eb) > 0) {
3921 end = btrfs_node_key_ptr_offset(nritems);
3922
3923 memzero_extent_buffer(eb, end, eb->len - end);
3924 } else {
3925 /*
3926 * leaf:
3927 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3928 */
3929 start = btrfs_item_nr_offset(nritems);
3930 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3931 memzero_extent_buffer(eb, start, end - start);
3932 }
3933
3934 for (i = 0; i < num_pages; i++) {
3935 struct page *p = eb->pages[i];
3936
3937 clear_page_dirty_for_io(p);
3938 set_page_writeback(p);
3939 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3940 p, offset, PAGE_SIZE, 0,
3941 &epd->bio,
3942 end_bio_extent_buffer_writepage,
3943 0, 0, 0, false);
3944 if (ret) {
3945 set_btree_ioerr(p);
3946 if (PageWriteback(p))
3947 end_page_writeback(p);
3948 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3949 end_extent_buffer_writeback(eb);
3950 ret = -EIO;
3951 break;
3952 }
3953 offset += PAGE_SIZE;
3954 update_nr_written(wbc, 1);
3955 unlock_page(p);
3956 }
3957
3958 if (unlikely(ret)) {
3959 for (; i < num_pages; i++) {
3960 struct page *p = eb->pages[i];
3961 clear_page_dirty_for_io(p);
3962 unlock_page(p);
3963 }
3964 }
3965
3966 return ret;
3967}
3968
3969int btree_write_cache_pages(struct address_space *mapping,
3970 struct writeback_control *wbc)
3971{
3972 struct extent_buffer *eb, *prev_eb = NULL;
3973 struct extent_page_data epd = {
3974 .bio = NULL,
3975 .extent_locked = 0,
3976 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3977 };
3978 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3979 int ret = 0;
3980 int done = 0;
3981 int nr_to_write_done = 0;
3982 struct pagevec pvec;
3983 int nr_pages;
3984 pgoff_t index;
3985 pgoff_t end; /* Inclusive */
3986 int scanned = 0;
3987 xa_mark_t tag;
3988
3989 pagevec_init(&pvec);
3990 if (wbc->range_cyclic) {
3991 index = mapping->writeback_index; /* Start from prev offset */
3992 end = -1;
3993 /*
3994 * Start from the beginning does not need to cycle over the
3995 * range, mark it as scanned.
3996 */
3997 scanned = (index == 0);
3998 } else {
3999 index = wbc->range_start >> PAGE_SHIFT;
4000 end = wbc->range_end >> PAGE_SHIFT;
4001 scanned = 1;
4002 }
4003 if (wbc->sync_mode == WB_SYNC_ALL)
4004 tag = PAGECACHE_TAG_TOWRITE;
4005 else
4006 tag = PAGECACHE_TAG_DIRTY;
4007retry:
4008 if (wbc->sync_mode == WB_SYNC_ALL)
4009 tag_pages_for_writeback(mapping, index, end);
4010 while (!done && !nr_to_write_done && (index <= end) &&
4011 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4012 tag))) {
4013 unsigned i;
4014
4015 for (i = 0; i < nr_pages; i++) {
4016 struct page *page = pvec.pages[i];
4017
4018 if (!PagePrivate(page))
4019 continue;
4020
4021 spin_lock(&mapping->private_lock);
4022 if (!PagePrivate(page)) {
4023 spin_unlock(&mapping->private_lock);
4024 continue;
4025 }
4026
4027 eb = (struct extent_buffer *)page->private;
4028
4029 /*
4030 * Shouldn't happen and normally this would be a BUG_ON
4031 * but no sense in crashing the users box for something
4032 * we can survive anyway.
4033 */
4034 if (WARN_ON(!eb)) {
4035 spin_unlock(&mapping->private_lock);
4036 continue;
4037 }
4038
4039 if (eb == prev_eb) {
4040 spin_unlock(&mapping->private_lock);
4041 continue;
4042 }
4043
4044 ret = atomic_inc_not_zero(&eb->refs);
4045 spin_unlock(&mapping->private_lock);
4046 if (!ret)
4047 continue;
4048
4049 prev_eb = eb;
4050 ret = lock_extent_buffer_for_io(eb, &epd);
4051 if (!ret) {
4052 free_extent_buffer(eb);
4053 continue;
4054 } else if (ret < 0) {
4055 done = 1;
4056 free_extent_buffer(eb);
4057 break;
4058 }
4059
4060 ret = write_one_eb(eb, wbc, &epd);
4061 if (ret) {
4062 done = 1;
4063 free_extent_buffer(eb);
4064 break;
4065 }
4066 free_extent_buffer(eb);
4067
4068 /*
4069 * the filesystem may choose to bump up nr_to_write.
4070 * We have to make sure to honor the new nr_to_write
4071 * at any time
4072 */
4073 nr_to_write_done = wbc->nr_to_write <= 0;
4074 }
4075 pagevec_release(&pvec);
4076 cond_resched();
4077 }
4078 if (!scanned && !done) {
4079 /*
4080 * We hit the last page and there is more work to be done: wrap
4081 * back to the start of the file
4082 */
4083 scanned = 1;
4084 index = 0;
4085 goto retry;
4086 }
4087 ASSERT(ret <= 0);
4088 if (ret < 0) {
4089 end_write_bio(&epd, ret);
4090 return ret;
4091 }
4092 /*
4093 * If something went wrong, don't allow any metadata write bio to be
4094 * submitted.
4095 *
4096 * This would prevent use-after-free if we had dirty pages not
4097 * cleaned up, which can still happen by fuzzed images.
4098 *
4099 * - Bad extent tree
4100 * Allowing existing tree block to be allocated for other trees.
4101 *
4102 * - Log tree operations
4103 * Exiting tree blocks get allocated to log tree, bumps its
4104 * generation, then get cleaned in tree re-balance.
4105 * Such tree block will not be written back, since it's clean,
4106 * thus no WRITTEN flag set.
4107 * And after log writes back, this tree block is not traced by
4108 * any dirty extent_io_tree.
4109 *
4110 * - Offending tree block gets re-dirtied from its original owner
4111 * Since it has bumped generation, no WRITTEN flag, it can be
4112 * reused without COWing. This tree block will not be traced
4113 * by btrfs_transaction::dirty_pages.
4114 *
4115 * Now such dirty tree block will not be cleaned by any dirty
4116 * extent io tree. Thus we don't want to submit such wild eb
4117 * if the fs already has error.
4118 */
4119 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4120 ret = flush_write_bio(&epd);
4121 } else {
4122 ret = -EROFS;
4123 end_write_bio(&epd, ret);
4124 }
4125 return ret;
4126}
4127
4128/**
4129 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4130 * @mapping: address space structure to write
4131 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4132 * @data: data passed to __extent_writepage function
4133 *
4134 * If a page is already under I/O, write_cache_pages() skips it, even
4135 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4136 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4137 * and msync() need to guarantee that all the data which was dirty at the time
4138 * the call was made get new I/O started against them. If wbc->sync_mode is
4139 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4140 * existing IO to complete.
4141 */
4142static int extent_write_cache_pages(struct address_space *mapping,
4143 struct writeback_control *wbc,
4144 struct extent_page_data *epd)
4145{
4146 struct inode *inode = mapping->host;
4147 int ret = 0;
4148 int done = 0;
4149 int nr_to_write_done = 0;
4150 struct pagevec pvec;
4151 int nr_pages;
4152 pgoff_t index;
4153 pgoff_t end; /* Inclusive */
4154 pgoff_t done_index;
4155 int range_whole = 0;
4156 int scanned = 0;
4157 xa_mark_t tag;
4158
4159 /*
4160 * We have to hold onto the inode so that ordered extents can do their
4161 * work when the IO finishes. The alternative to this is failing to add
4162 * an ordered extent if the igrab() fails there and that is a huge pain
4163 * to deal with, so instead just hold onto the inode throughout the
4164 * writepages operation. If it fails here we are freeing up the inode
4165 * anyway and we'd rather not waste our time writing out stuff that is
4166 * going to be truncated anyway.
4167 */
4168 if (!igrab(inode))
4169 return 0;
4170
4171 pagevec_init(&pvec);
4172 if (wbc->range_cyclic) {
4173 index = mapping->writeback_index; /* Start from prev offset */
4174 end = -1;
4175 /*
4176 * Start from the beginning does not need to cycle over the
4177 * range, mark it as scanned.
4178 */
4179 scanned = (index == 0);
4180 } else {
4181 index = wbc->range_start >> PAGE_SHIFT;
4182 end = wbc->range_end >> PAGE_SHIFT;
4183 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4184 range_whole = 1;
4185 scanned = 1;
4186 }
4187
4188 /*
4189 * We do the tagged writepage as long as the snapshot flush bit is set
4190 * and we are the first one who do the filemap_flush() on this inode.
4191 *
4192 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4193 * not race in and drop the bit.
4194 */
4195 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4196 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4197 &BTRFS_I(inode)->runtime_flags))
4198 wbc->tagged_writepages = 1;
4199
4200 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4201 tag = PAGECACHE_TAG_TOWRITE;
4202 else
4203 tag = PAGECACHE_TAG_DIRTY;
4204retry:
4205 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4206 tag_pages_for_writeback(mapping, index, end);
4207 done_index = index;
4208 while (!done && !nr_to_write_done && (index <= end) &&
4209 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4210 &index, end, tag))) {
4211 unsigned i;
4212
4213 for (i = 0; i < nr_pages; i++) {
4214 struct page *page = pvec.pages[i];
4215
4216 done_index = page->index + 1;
4217 /*
4218 * At this point we hold neither the i_pages lock nor
4219 * the page lock: the page may be truncated or
4220 * invalidated (changing page->mapping to NULL),
4221 * or even swizzled back from swapper_space to
4222 * tmpfs file mapping
4223 */
4224 if (!trylock_page(page)) {
4225 ret = flush_write_bio(epd);
4226 BUG_ON(ret < 0);
4227 lock_page(page);
4228 }
4229
4230 if (unlikely(page->mapping != mapping)) {
4231 unlock_page(page);
4232 continue;
4233 }
4234
4235 if (wbc->sync_mode != WB_SYNC_NONE) {
4236 if (PageWriteback(page)) {
4237 ret = flush_write_bio(epd);
4238 BUG_ON(ret < 0);
4239 }
4240 wait_on_page_writeback(page);
4241 }
4242
4243 if (PageWriteback(page) ||
4244 !clear_page_dirty_for_io(page)) {
4245 unlock_page(page);
4246 continue;
4247 }
4248
4249 ret = __extent_writepage(page, wbc, epd);
4250 if (ret < 0) {
4251 done = 1;
4252 break;
4253 }
4254
4255 /*
4256 * the filesystem may choose to bump up nr_to_write.
4257 * We have to make sure to honor the new nr_to_write
4258 * at any time
4259 */
4260 nr_to_write_done = wbc->nr_to_write <= 0;
4261 }
4262 pagevec_release(&pvec);
4263 cond_resched();
4264 }
4265 if (!scanned && !done) {
4266 /*
4267 * We hit the last page and there is more work to be done: wrap
4268 * back to the start of the file
4269 */
4270 scanned = 1;
4271 index = 0;
4272
4273 /*
4274 * If we're looping we could run into a page that is locked by a
4275 * writer and that writer could be waiting on writeback for a
4276 * page in our current bio, and thus deadlock, so flush the
4277 * write bio here.
4278 */
4279 ret = flush_write_bio(epd);
4280 if (!ret)
4281 goto retry;
4282 }
4283
4284 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4285 mapping->writeback_index = done_index;
4286
4287 btrfs_add_delayed_iput(inode);
4288 return ret;
4289}
4290
4291int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4292{
4293 int ret;
4294 struct extent_page_data epd = {
4295 .bio = NULL,
4296 .extent_locked = 0,
4297 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4298 };
4299
4300 ret = __extent_writepage(page, wbc, &epd);
4301 ASSERT(ret <= 0);
4302 if (ret < 0) {
4303 end_write_bio(&epd, ret);
4304 return ret;
4305 }
4306
4307 ret = flush_write_bio(&epd);
4308 ASSERT(ret <= 0);
4309 return ret;
4310}
4311
4312int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4313 int mode)
4314{
4315 int ret = 0;
4316 struct address_space *mapping = inode->i_mapping;
4317 struct page *page;
4318 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4319 PAGE_SHIFT;
4320
4321 struct extent_page_data epd = {
4322 .bio = NULL,
4323 .extent_locked = 1,
4324 .sync_io = mode == WB_SYNC_ALL,
4325 };
4326 struct writeback_control wbc_writepages = {
4327 .sync_mode = mode,
4328 .nr_to_write = nr_pages * 2,
4329 .range_start = start,
4330 .range_end = end + 1,
4331 /* We're called from an async helper function */
4332 .punt_to_cgroup = 1,
4333 .no_cgroup_owner = 1,
4334 };
4335
4336 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4337 while (start <= end) {
4338 page = find_get_page(mapping, start >> PAGE_SHIFT);
4339 if (clear_page_dirty_for_io(page))
4340 ret = __extent_writepage(page, &wbc_writepages, &epd);
4341 else {
4342 btrfs_writepage_endio_finish_ordered(page, start,
4343 start + PAGE_SIZE - 1, 1);
4344 unlock_page(page);
4345 }
4346 put_page(page);
4347 start += PAGE_SIZE;
4348 }
4349
4350 ASSERT(ret <= 0);
4351 if (ret == 0)
4352 ret = flush_write_bio(&epd);
4353 else
4354 end_write_bio(&epd, ret);
4355
4356 wbc_detach_inode(&wbc_writepages);
4357 return ret;
4358}
4359
4360int extent_writepages(struct address_space *mapping,
4361 struct writeback_control *wbc)
4362{
4363 int ret = 0;
4364 struct extent_page_data epd = {
4365 .bio = NULL,
4366 .extent_locked = 0,
4367 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4368 };
4369
4370 ret = extent_write_cache_pages(mapping, wbc, &epd);
4371 ASSERT(ret <= 0);
4372 if (ret < 0) {
4373 end_write_bio(&epd, ret);
4374 return ret;
4375 }
4376 ret = flush_write_bio(&epd);
4377 return ret;
4378}
4379
4380void extent_readahead(struct readahead_control *rac)
4381{
4382 struct bio *bio = NULL;
4383 unsigned long bio_flags = 0;
4384 struct page *pagepool[16];
4385 struct extent_map *em_cached = NULL;
4386 u64 prev_em_start = (u64)-1;
4387 int nr;
4388
4389 while ((nr = readahead_page_batch(rac, pagepool))) {
4390 u64 contig_start = page_offset(pagepool[0]);
4391 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4392
4393 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4394
4395 contiguous_readpages(pagepool, nr, contig_start, contig_end,
4396 &em_cached, &bio, &bio_flags, &prev_em_start);
4397 }
4398
4399 if (em_cached)
4400 free_extent_map(em_cached);
4401
4402 if (bio) {
4403 if (submit_one_bio(bio, 0, bio_flags))
4404 return;
4405 }
4406}
4407
4408/*
4409 * basic invalidatepage code, this waits on any locked or writeback
4410 * ranges corresponding to the page, and then deletes any extent state
4411 * records from the tree
4412 */
4413int extent_invalidatepage(struct extent_io_tree *tree,
4414 struct page *page, unsigned long offset)
4415{
4416 struct extent_state *cached_state = NULL;
4417 u64 start = page_offset(page);
4418 u64 end = start + PAGE_SIZE - 1;
4419 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4420
4421 start += ALIGN(offset, blocksize);
4422 if (start > end)
4423 return 0;
4424
4425 lock_extent_bits(tree, start, end, &cached_state);
4426 wait_on_page_writeback(page);
4427 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4428 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4429 return 0;
4430}
4431
4432/*
4433 * a helper for releasepage, this tests for areas of the page that
4434 * are locked or under IO and drops the related state bits if it is safe
4435 * to drop the page.
4436 */
4437static int try_release_extent_state(struct extent_io_tree *tree,
4438 struct page *page, gfp_t mask)
4439{
4440 u64 start = page_offset(page);
4441 u64 end = start + PAGE_SIZE - 1;
4442 int ret = 1;
4443
4444 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4445 ret = 0;
4446 } else {
4447 /*
4448 * at this point we can safely clear everything except the
4449 * locked bit and the nodatasum bit
4450 */
4451 ret = __clear_extent_bit(tree, start, end,
4452 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4453 0, 0, NULL, mask, NULL);
4454
4455 /* if clear_extent_bit failed for enomem reasons,
4456 * we can't allow the release to continue.
4457 */
4458 if (ret < 0)
4459 ret = 0;
4460 else
4461 ret = 1;
4462 }
4463 return ret;
4464}
4465
4466/*
4467 * a helper for releasepage. As long as there are no locked extents
4468 * in the range corresponding to the page, both state records and extent
4469 * map records are removed
4470 */
4471int try_release_extent_mapping(struct page *page, gfp_t mask)
4472{
4473 struct extent_map *em;
4474 u64 start = page_offset(page);
4475 u64 end = start + PAGE_SIZE - 1;
4476 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4477 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4478 struct extent_map_tree *map = &btrfs_inode->extent_tree;
4479
4480 if (gfpflags_allow_blocking(mask) &&
4481 page->mapping->host->i_size > SZ_16M) {
4482 u64 len;
4483 while (start <= end) {
4484 struct btrfs_fs_info *fs_info;
4485 u64 cur_gen;
4486
4487 len = end - start + 1;
4488 write_lock(&map->lock);
4489 em = lookup_extent_mapping(map, start, len);
4490 if (!em) {
4491 write_unlock(&map->lock);
4492 break;
4493 }
4494 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4495 em->start != start) {
4496 write_unlock(&map->lock);
4497 free_extent_map(em);
4498 break;
4499 }
4500 if (test_range_bit(tree, em->start,
4501 extent_map_end(em) - 1,
4502 EXTENT_LOCKED, 0, NULL))
4503 goto next;
4504 /*
4505 * If it's not in the list of modified extents, used
4506 * by a fast fsync, we can remove it. If it's being
4507 * logged we can safely remove it since fsync took an
4508 * extra reference on the em.
4509 */
4510 if (list_empty(&em->list) ||
4511 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
4512 goto remove_em;
4513 /*
4514 * If it's in the list of modified extents, remove it
4515 * only if its generation is older then the current one,
4516 * in which case we don't need it for a fast fsync.
4517 * Otherwise don't remove it, we could be racing with an
4518 * ongoing fast fsync that could miss the new extent.
4519 */
4520 fs_info = btrfs_inode->root->fs_info;
4521 spin_lock(&fs_info->trans_lock);
4522 cur_gen = fs_info->generation;
4523 spin_unlock(&fs_info->trans_lock);
4524 if (em->generation >= cur_gen)
4525 goto next;
4526remove_em:
4527 /*
4528 * We only remove extent maps that are not in the list of
4529 * modified extents or that are in the list but with a
4530 * generation lower then the current generation, so there
4531 * is no need to set the full fsync flag on the inode (it
4532 * hurts the fsync performance for workloads with a data
4533 * size that exceeds or is close to the system's memory).
4534 */
4535 remove_extent_mapping(map, em);
4536 /* once for the rb tree */
4537 free_extent_map(em);
4538next:
4539 start = extent_map_end(em);
4540 write_unlock(&map->lock);
4541
4542 /* once for us */
4543 free_extent_map(em);
4544
4545 cond_resched(); /* Allow large-extent preemption. */
4546 }
4547 }
4548 return try_release_extent_state(tree, page, mask);
4549}
4550
4551/*
4552 * helper function for fiemap, which doesn't want to see any holes.
4553 * This maps until we find something past 'last'
4554 */
4555static struct extent_map *get_extent_skip_holes(struct inode *inode,
4556 u64 offset, u64 last)
4557{
4558 u64 sectorsize = btrfs_inode_sectorsize(inode);
4559 struct extent_map *em;
4560 u64 len;
4561
4562 if (offset >= last)
4563 return NULL;
4564
4565 while (1) {
4566 len = last - offset;
4567 if (len == 0)
4568 break;
4569 len = ALIGN(len, sectorsize);
4570 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4571 if (IS_ERR_OR_NULL(em))
4572 return em;
4573
4574 /* if this isn't a hole return it */
4575 if (em->block_start != EXTENT_MAP_HOLE)
4576 return em;
4577
4578 /* this is a hole, advance to the next extent */
4579 offset = extent_map_end(em);
4580 free_extent_map(em);
4581 if (offset >= last)
4582 break;
4583 }
4584 return NULL;
4585}
4586
4587/*
4588 * To cache previous fiemap extent
4589 *
4590 * Will be used for merging fiemap extent
4591 */
4592struct fiemap_cache {
4593 u64 offset;
4594 u64 phys;
4595 u64 len;
4596 u32 flags;
4597 bool cached;
4598};
4599
4600/*
4601 * Helper to submit fiemap extent.
4602 *
4603 * Will try to merge current fiemap extent specified by @offset, @phys,
4604 * @len and @flags with cached one.
4605 * And only when we fails to merge, cached one will be submitted as
4606 * fiemap extent.
4607 *
4608 * Return value is the same as fiemap_fill_next_extent().
4609 */
4610static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4611 struct fiemap_cache *cache,
4612 u64 offset, u64 phys, u64 len, u32 flags)
4613{
4614 int ret = 0;
4615
4616 if (!cache->cached)
4617 goto assign;
4618
4619 /*
4620 * Sanity check, extent_fiemap() should have ensured that new
4621 * fiemap extent won't overlap with cached one.
4622 * Not recoverable.
4623 *
4624 * NOTE: Physical address can overlap, due to compression
4625 */
4626 if (cache->offset + cache->len > offset) {
4627 WARN_ON(1);
4628 return -EINVAL;
4629 }
4630
4631 /*
4632 * Only merges fiemap extents if
4633 * 1) Their logical addresses are continuous
4634 *
4635 * 2) Their physical addresses are continuous
4636 * So truly compressed (physical size smaller than logical size)
4637 * extents won't get merged with each other
4638 *
4639 * 3) Share same flags except FIEMAP_EXTENT_LAST
4640 * So regular extent won't get merged with prealloc extent
4641 */
4642 if (cache->offset + cache->len == offset &&
4643 cache->phys + cache->len == phys &&
4644 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4645 (flags & ~FIEMAP_EXTENT_LAST)) {
4646 cache->len += len;
4647 cache->flags |= flags;
4648 goto try_submit_last;
4649 }
4650
4651 /* Not mergeable, need to submit cached one */
4652 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4653 cache->len, cache->flags);
4654 cache->cached = false;
4655 if (ret)
4656 return ret;
4657assign:
4658 cache->cached = true;
4659 cache->offset = offset;
4660 cache->phys = phys;
4661 cache->len = len;
4662 cache->flags = flags;
4663try_submit_last:
4664 if (cache->flags & FIEMAP_EXTENT_LAST) {
4665 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4666 cache->phys, cache->len, cache->flags);
4667 cache->cached = false;
4668 }
4669 return ret;
4670}
4671
4672/*
4673 * Emit last fiemap cache
4674 *
4675 * The last fiemap cache may still be cached in the following case:
4676 * 0 4k 8k
4677 * |<- Fiemap range ->|
4678 * |<------------ First extent ----------->|
4679 *
4680 * In this case, the first extent range will be cached but not emitted.
4681 * So we must emit it before ending extent_fiemap().
4682 */
4683static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4684 struct fiemap_cache *cache)
4685{
4686 int ret;
4687
4688 if (!cache->cached)
4689 return 0;
4690
4691 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4692 cache->len, cache->flags);
4693 cache->cached = false;
4694 if (ret > 0)
4695 ret = 0;
4696 return ret;
4697}
4698
4699int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4700 u64 start, u64 len)
4701{
4702 int ret = 0;
4703 u64 off = start;
4704 u64 max = start + len;
4705 u32 flags = 0;
4706 u32 found_type;
4707 u64 last;
4708 u64 last_for_get_extent = 0;
4709 u64 disko = 0;
4710 u64 isize = i_size_read(inode);
4711 struct btrfs_key found_key;
4712 struct extent_map *em = NULL;
4713 struct extent_state *cached_state = NULL;
4714 struct btrfs_path *path;
4715 struct btrfs_root *root = BTRFS_I(inode)->root;
4716 struct fiemap_cache cache = { 0 };
4717 struct ulist *roots;
4718 struct ulist *tmp_ulist;
4719 int end = 0;
4720 u64 em_start = 0;
4721 u64 em_len = 0;
4722 u64 em_end = 0;
4723
4724 if (len == 0)
4725 return -EINVAL;
4726
4727 path = btrfs_alloc_path();
4728 if (!path)
4729 return -ENOMEM;
4730 path->leave_spinning = 1;
4731
4732 roots = ulist_alloc(GFP_KERNEL);
4733 tmp_ulist = ulist_alloc(GFP_KERNEL);
4734 if (!roots || !tmp_ulist) {
4735 ret = -ENOMEM;
4736 goto out_free_ulist;
4737 }
4738
4739 start = round_down(start, btrfs_inode_sectorsize(inode));
4740 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4741
4742 /*
4743 * lookup the last file extent. We're not using i_size here
4744 * because there might be preallocation past i_size
4745 */
4746 ret = btrfs_lookup_file_extent(NULL, root, path,
4747 btrfs_ino(BTRFS_I(inode)), -1, 0);
4748 if (ret < 0) {
4749 goto out_free_ulist;
4750 } else {
4751 WARN_ON(!ret);
4752 if (ret == 1)
4753 ret = 0;
4754 }
4755
4756 path->slots[0]--;
4757 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4758 found_type = found_key.type;
4759
4760 /* No extents, but there might be delalloc bits */
4761 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4762 found_type != BTRFS_EXTENT_DATA_KEY) {
4763 /* have to trust i_size as the end */
4764 last = (u64)-1;
4765 last_for_get_extent = isize;
4766 } else {
4767 /*
4768 * remember the start of the last extent. There are a
4769 * bunch of different factors that go into the length of the
4770 * extent, so its much less complex to remember where it started
4771 */
4772 last = found_key.offset;
4773 last_for_get_extent = last + 1;
4774 }
4775 btrfs_release_path(path);
4776
4777 /*
4778 * we might have some extents allocated but more delalloc past those
4779 * extents. so, we trust isize unless the start of the last extent is
4780 * beyond isize
4781 */
4782 if (last < isize) {
4783 last = (u64)-1;
4784 last_for_get_extent = isize;
4785 }
4786
4787 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4788 &cached_state);
4789
4790 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4791 if (!em)
4792 goto out;
4793 if (IS_ERR(em)) {
4794 ret = PTR_ERR(em);
4795 goto out;
4796 }
4797
4798 while (!end) {
4799 u64 offset_in_extent = 0;
4800
4801 /* break if the extent we found is outside the range */
4802 if (em->start >= max || extent_map_end(em) < off)
4803 break;
4804
4805 /*
4806 * get_extent may return an extent that starts before our
4807 * requested range. We have to make sure the ranges
4808 * we return to fiemap always move forward and don't
4809 * overlap, so adjust the offsets here
4810 */
4811 em_start = max(em->start, off);
4812
4813 /*
4814 * record the offset from the start of the extent
4815 * for adjusting the disk offset below. Only do this if the
4816 * extent isn't compressed since our in ram offset may be past
4817 * what we have actually allocated on disk.
4818 */
4819 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4820 offset_in_extent = em_start - em->start;
4821 em_end = extent_map_end(em);
4822 em_len = em_end - em_start;
4823 flags = 0;
4824 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4825 disko = em->block_start + offset_in_extent;
4826 else
4827 disko = 0;
4828
4829 /*
4830 * bump off for our next call to get_extent
4831 */
4832 off = extent_map_end(em);
4833 if (off >= max)
4834 end = 1;
4835
4836 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4837 end = 1;
4838 flags |= FIEMAP_EXTENT_LAST;
4839 } else if (em->block_start == EXTENT_MAP_INLINE) {
4840 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4841 FIEMAP_EXTENT_NOT_ALIGNED);
4842 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4843 flags |= (FIEMAP_EXTENT_DELALLOC |
4844 FIEMAP_EXTENT_UNKNOWN);
4845 } else if (fieinfo->fi_extents_max) {
4846 u64 bytenr = em->block_start -
4847 (em->start - em->orig_start);
4848
4849 /*
4850 * As btrfs supports shared space, this information
4851 * can be exported to userspace tools via
4852 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4853 * then we're just getting a count and we can skip the
4854 * lookup stuff.
4855 */
4856 ret = btrfs_check_shared(root,
4857 btrfs_ino(BTRFS_I(inode)),
4858 bytenr, roots, tmp_ulist);
4859 if (ret < 0)
4860 goto out_free;
4861 if (ret)
4862 flags |= FIEMAP_EXTENT_SHARED;
4863 ret = 0;
4864 }
4865 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4866 flags |= FIEMAP_EXTENT_ENCODED;
4867 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4868 flags |= FIEMAP_EXTENT_UNWRITTEN;
4869
4870 free_extent_map(em);
4871 em = NULL;
4872 if ((em_start >= last) || em_len == (u64)-1 ||
4873 (last == (u64)-1 && isize <= em_end)) {
4874 flags |= FIEMAP_EXTENT_LAST;
4875 end = 1;
4876 }
4877
4878 /* now scan forward to see if this is really the last extent. */
4879 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4880 if (IS_ERR(em)) {
4881 ret = PTR_ERR(em);
4882 goto out;
4883 }
4884 if (!em) {
4885 flags |= FIEMAP_EXTENT_LAST;
4886 end = 1;
4887 }
4888 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4889 em_len, flags);
4890 if (ret) {
4891 if (ret == 1)
4892 ret = 0;
4893 goto out_free;
4894 }
4895 }
4896out_free:
4897 if (!ret)
4898 ret = emit_last_fiemap_cache(fieinfo, &cache);
4899 free_extent_map(em);
4900out:
4901 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4902 &cached_state);
4903
4904out_free_ulist:
4905 btrfs_free_path(path);
4906 ulist_free(roots);
4907 ulist_free(tmp_ulist);
4908 return ret;
4909}
4910
4911static void __free_extent_buffer(struct extent_buffer *eb)
4912{
4913 kmem_cache_free(extent_buffer_cache, eb);
4914}
4915
4916int extent_buffer_under_io(const struct extent_buffer *eb)
4917{
4918 return (atomic_read(&eb->io_pages) ||
4919 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4920 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4921}
4922
4923/*
4924 * Release all pages attached to the extent buffer.
4925 */
4926static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4927{
4928 int i;
4929 int num_pages;
4930 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4931
4932 BUG_ON(extent_buffer_under_io(eb));
4933
4934 num_pages = num_extent_pages(eb);
4935 for (i = 0; i < num_pages; i++) {
4936 struct page *page = eb->pages[i];
4937
4938 if (!page)
4939 continue;
4940 if (mapped)
4941 spin_lock(&page->mapping->private_lock);
4942 /*
4943 * We do this since we'll remove the pages after we've
4944 * removed the eb from the radix tree, so we could race
4945 * and have this page now attached to the new eb. So
4946 * only clear page_private if it's still connected to
4947 * this eb.
4948 */
4949 if (PagePrivate(page) &&
4950 page->private == (unsigned long)eb) {
4951 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4952 BUG_ON(PageDirty(page));
4953 BUG_ON(PageWriteback(page));
4954 /*
4955 * We need to make sure we haven't be attached
4956 * to a new eb.
4957 */
4958 detach_page_private(page);
4959 }
4960
4961 if (mapped)
4962 spin_unlock(&page->mapping->private_lock);
4963
4964 /* One for when we allocated the page */
4965 put_page(page);
4966 }
4967}
4968
4969/*
4970 * Helper for releasing the extent buffer.
4971 */
4972static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4973{
4974 btrfs_release_extent_buffer_pages(eb);
4975 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4976 __free_extent_buffer(eb);
4977}
4978
4979static struct extent_buffer *
4980__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4981 unsigned long len)
4982{
4983 struct extent_buffer *eb = NULL;
4984
4985 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4986 eb->start = start;
4987 eb->len = len;
4988 eb->fs_info = fs_info;
4989 eb->bflags = 0;
4990 rwlock_init(&eb->lock);
4991 atomic_set(&eb->blocking_readers, 0);
4992 eb->blocking_writers = 0;
4993 eb->lock_nested = false;
4994 init_waitqueue_head(&eb->write_lock_wq);
4995 init_waitqueue_head(&eb->read_lock_wq);
4996
4997 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4998 &fs_info->allocated_ebs);
4999
5000 spin_lock_init(&eb->refs_lock);
5001 atomic_set(&eb->refs, 1);
5002 atomic_set(&eb->io_pages, 0);
5003
5004 /*
5005 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
5006 */
5007 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
5008 > MAX_INLINE_EXTENT_BUFFER_SIZE);
5009 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
5010
5011#ifdef CONFIG_BTRFS_DEBUG
5012 eb->spinning_writers = 0;
5013 atomic_set(&eb->spinning_readers, 0);
5014 atomic_set(&eb->read_locks, 0);
5015 eb->write_locks = 0;
5016#endif
5017
5018 return eb;
5019}
5020
5021struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5022{
5023 int i;
5024 struct page *p;
5025 struct extent_buffer *new;
5026 int num_pages = num_extent_pages(src);
5027
5028 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5029 if (new == NULL)
5030 return NULL;
5031
5032 for (i = 0; i < num_pages; i++) {
5033 p = alloc_page(GFP_NOFS);
5034 if (!p) {
5035 btrfs_release_extent_buffer(new);
5036 return NULL;
5037 }
5038 attach_extent_buffer_page(new, p);
5039 WARN_ON(PageDirty(p));
5040 SetPageUptodate(p);
5041 new->pages[i] = p;
5042 copy_page(page_address(p), page_address(src->pages[i]));
5043 }
5044
5045 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5046 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5047
5048 return new;
5049}
5050
5051struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5052 u64 start, unsigned long len)
5053{
5054 struct extent_buffer *eb;
5055 int num_pages;
5056 int i;
5057
5058 eb = __alloc_extent_buffer(fs_info, start, len);
5059 if (!eb)
5060 return NULL;
5061
5062 num_pages = num_extent_pages(eb);
5063 for (i = 0; i < num_pages; i++) {
5064 eb->pages[i] = alloc_page(GFP_NOFS);
5065 if (!eb->pages[i])
5066 goto err;
5067 }
5068 set_extent_buffer_uptodate(eb);
5069 btrfs_set_header_nritems(eb, 0);
5070 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5071
5072 return eb;
5073err:
5074 for (; i > 0; i--)
5075 __free_page(eb->pages[i - 1]);
5076 __free_extent_buffer(eb);
5077 return NULL;
5078}
5079
5080struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5081 u64 start)
5082{
5083 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5084}
5085
5086static void check_buffer_tree_ref(struct extent_buffer *eb)
5087{
5088 int refs;
5089 /*
5090 * The TREE_REF bit is first set when the extent_buffer is added
5091 * to the radix tree. It is also reset, if unset, when a new reference
5092 * is created by find_extent_buffer.
5093 *
5094 * It is only cleared in two cases: freeing the last non-tree
5095 * reference to the extent_buffer when its STALE bit is set or
5096 * calling releasepage when the tree reference is the only reference.
5097 *
5098 * In both cases, care is taken to ensure that the extent_buffer's
5099 * pages are not under io. However, releasepage can be concurrently
5100 * called with creating new references, which is prone to race
5101 * conditions between the calls to check_buffer_tree_ref in those
5102 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5103 *
5104 * The actual lifetime of the extent_buffer in the radix tree is
5105 * adequately protected by the refcount, but the TREE_REF bit and
5106 * its corresponding reference are not. To protect against this
5107 * class of races, we call check_buffer_tree_ref from the codepaths
5108 * which trigger io after they set eb->io_pages. Note that once io is
5109 * initiated, TREE_REF can no longer be cleared, so that is the
5110 * moment at which any such race is best fixed.
5111 */
5112 refs = atomic_read(&eb->refs);
5113 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5114 return;
5115
5116 spin_lock(&eb->refs_lock);
5117 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5118 atomic_inc(&eb->refs);
5119 spin_unlock(&eb->refs_lock);
5120}
5121
5122static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5123 struct page *accessed)
5124{
5125 int num_pages, i;
5126
5127 check_buffer_tree_ref(eb);
5128
5129 num_pages = num_extent_pages(eb);
5130 for (i = 0; i < num_pages; i++) {
5131 struct page *p = eb->pages[i];
5132
5133 if (p != accessed)
5134 mark_page_accessed(p);
5135 }
5136}
5137
5138struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5139 u64 start)
5140{
5141 struct extent_buffer *eb;
5142
5143 rcu_read_lock();
5144 eb = radix_tree_lookup(&fs_info->buffer_radix,
5145 start >> PAGE_SHIFT);
5146 if (eb && atomic_inc_not_zero(&eb->refs)) {
5147 rcu_read_unlock();
5148 /*
5149 * Lock our eb's refs_lock to avoid races with
5150 * free_extent_buffer. When we get our eb it might be flagged
5151 * with EXTENT_BUFFER_STALE and another task running
5152 * free_extent_buffer might have seen that flag set,
5153 * eb->refs == 2, that the buffer isn't under IO (dirty and
5154 * writeback flags not set) and it's still in the tree (flag
5155 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5156 * of decrementing the extent buffer's reference count twice.
5157 * So here we could race and increment the eb's reference count,
5158 * clear its stale flag, mark it as dirty and drop our reference
5159 * before the other task finishes executing free_extent_buffer,
5160 * which would later result in an attempt to free an extent
5161 * buffer that is dirty.
5162 */
5163 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5164 spin_lock(&eb->refs_lock);
5165 spin_unlock(&eb->refs_lock);
5166 }
5167 mark_extent_buffer_accessed(eb, NULL);
5168 return eb;
5169 }
5170 rcu_read_unlock();
5171
5172 return NULL;
5173}
5174
5175#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5176struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5177 u64 start)
5178{
5179 struct extent_buffer *eb, *exists = NULL;
5180 int ret;
5181
5182 eb = find_extent_buffer(fs_info, start);
5183 if (eb)
5184 return eb;
5185 eb = alloc_dummy_extent_buffer(fs_info, start);
5186 if (!eb)
5187 return ERR_PTR(-ENOMEM);
5188 eb->fs_info = fs_info;
5189again:
5190 ret = radix_tree_preload(GFP_NOFS);
5191 if (ret) {
5192 exists = ERR_PTR(ret);
5193 goto free_eb;
5194 }
5195 spin_lock(&fs_info->buffer_lock);
5196 ret = radix_tree_insert(&fs_info->buffer_radix,
5197 start >> PAGE_SHIFT, eb);
5198 spin_unlock(&fs_info->buffer_lock);
5199 radix_tree_preload_end();
5200 if (ret == -EEXIST) {
5201 exists = find_extent_buffer(fs_info, start);
5202 if (exists)
5203 goto free_eb;
5204 else
5205 goto again;
5206 }
5207 check_buffer_tree_ref(eb);
5208 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5209
5210 return eb;
5211free_eb:
5212 btrfs_release_extent_buffer(eb);
5213 return exists;
5214}
5215#endif
5216
5217struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5218 u64 start)
5219{
5220 unsigned long len = fs_info->nodesize;
5221 int num_pages;
5222 int i;
5223 unsigned long index = start >> PAGE_SHIFT;
5224 struct extent_buffer *eb;
5225 struct extent_buffer *exists = NULL;
5226 struct page *p;
5227 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5228 int uptodate = 1;
5229 int ret;
5230
5231 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5232 btrfs_err(fs_info, "bad tree block start %llu", start);
5233 return ERR_PTR(-EINVAL);
5234 }
5235
5236 eb = find_extent_buffer(fs_info, start);
5237 if (eb)
5238 return eb;
5239
5240 eb = __alloc_extent_buffer(fs_info, start, len);
5241 if (!eb)
5242 return ERR_PTR(-ENOMEM);
5243
5244 num_pages = num_extent_pages(eb);
5245 for (i = 0; i < num_pages; i++, index++) {
5246 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5247 if (!p) {
5248 exists = ERR_PTR(-ENOMEM);
5249 goto free_eb;
5250 }
5251
5252 spin_lock(&mapping->private_lock);
5253 if (PagePrivate(p)) {
5254 /*
5255 * We could have already allocated an eb for this page
5256 * and attached one so lets see if we can get a ref on
5257 * the existing eb, and if we can we know it's good and
5258 * we can just return that one, else we know we can just
5259 * overwrite page->private.
5260 */
5261 exists = (struct extent_buffer *)p->private;
5262 if (atomic_inc_not_zero(&exists->refs)) {
5263 spin_unlock(&mapping->private_lock);
5264 unlock_page(p);
5265 put_page(p);
5266 mark_extent_buffer_accessed(exists, p);
5267 goto free_eb;
5268 }
5269 exists = NULL;
5270
5271 /*
5272 * Do this so attach doesn't complain and we need to
5273 * drop the ref the old guy had.
5274 */
5275 ClearPagePrivate(p);
5276 WARN_ON(PageDirty(p));
5277 put_page(p);
5278 }
5279 attach_extent_buffer_page(eb, p);
5280 spin_unlock(&mapping->private_lock);
5281 WARN_ON(PageDirty(p));
5282 eb->pages[i] = p;
5283 if (!PageUptodate(p))
5284 uptodate = 0;
5285
5286 /*
5287 * We can't unlock the pages just yet since the extent buffer
5288 * hasn't been properly inserted in the radix tree, this
5289 * opens a race with btree_releasepage which can free a page
5290 * while we are still filling in all pages for the buffer and
5291 * we could crash.
5292 */
5293 }
5294 if (uptodate)
5295 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5296again:
5297 ret = radix_tree_preload(GFP_NOFS);
5298 if (ret) {
5299 exists = ERR_PTR(ret);
5300 goto free_eb;
5301 }
5302
5303 spin_lock(&fs_info->buffer_lock);
5304 ret = radix_tree_insert(&fs_info->buffer_radix,
5305 start >> PAGE_SHIFT, eb);
5306 spin_unlock(&fs_info->buffer_lock);
5307 radix_tree_preload_end();
5308 if (ret == -EEXIST) {
5309 exists = find_extent_buffer(fs_info, start);
5310 if (exists)
5311 goto free_eb;
5312 else
5313 goto again;
5314 }
5315 /* add one reference for the tree */
5316 check_buffer_tree_ref(eb);
5317 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5318
5319 /*
5320 * Now it's safe to unlock the pages because any calls to
5321 * btree_releasepage will correctly detect that a page belongs to a
5322 * live buffer and won't free them prematurely.
5323 */
5324 for (i = 0; i < num_pages; i++)
5325 unlock_page(eb->pages[i]);
5326 return eb;
5327
5328free_eb:
5329 WARN_ON(!atomic_dec_and_test(&eb->refs));
5330 for (i = 0; i < num_pages; i++) {
5331 if (eb->pages[i])
5332 unlock_page(eb->pages[i]);
5333 }
5334
5335 btrfs_release_extent_buffer(eb);
5336 return exists;
5337}
5338
5339static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5340{
5341 struct extent_buffer *eb =
5342 container_of(head, struct extent_buffer, rcu_head);
5343
5344 __free_extent_buffer(eb);
5345}
5346
5347static int release_extent_buffer(struct extent_buffer *eb)
5348 __releases(&eb->refs_lock)
5349{
5350 lockdep_assert_held(&eb->refs_lock);
5351
5352 WARN_ON(atomic_read(&eb->refs) == 0);
5353 if (atomic_dec_and_test(&eb->refs)) {
5354 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5355 struct btrfs_fs_info *fs_info = eb->fs_info;
5356
5357 spin_unlock(&eb->refs_lock);
5358
5359 spin_lock(&fs_info->buffer_lock);
5360 radix_tree_delete(&fs_info->buffer_radix,
5361 eb->start >> PAGE_SHIFT);
5362 spin_unlock(&fs_info->buffer_lock);
5363 } else {
5364 spin_unlock(&eb->refs_lock);
5365 }
5366
5367 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5368 /* Should be safe to release our pages at this point */
5369 btrfs_release_extent_buffer_pages(eb);
5370#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5371 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5372 __free_extent_buffer(eb);
5373 return 1;
5374 }
5375#endif
5376 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5377 return 1;
5378 }
5379 spin_unlock(&eb->refs_lock);
5380
5381 return 0;
5382}
5383
5384void free_extent_buffer(struct extent_buffer *eb)
5385{
5386 int refs;
5387 int old;
5388 if (!eb)
5389 return;
5390
5391 while (1) {
5392 refs = atomic_read(&eb->refs);
5393 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5394 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5395 refs == 1))
5396 break;
5397 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5398 if (old == refs)
5399 return;
5400 }
5401
5402 spin_lock(&eb->refs_lock);
5403 if (atomic_read(&eb->refs) == 2 &&
5404 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5405 !extent_buffer_under_io(eb) &&
5406 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5407 atomic_dec(&eb->refs);
5408
5409 /*
5410 * I know this is terrible, but it's temporary until we stop tracking
5411 * the uptodate bits and such for the extent buffers.
5412 */
5413 release_extent_buffer(eb);
5414}
5415
5416void free_extent_buffer_stale(struct extent_buffer *eb)
5417{
5418 if (!eb)
5419 return;
5420
5421 spin_lock(&eb->refs_lock);
5422 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5423
5424 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5425 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5426 atomic_dec(&eb->refs);
5427 release_extent_buffer(eb);
5428}
5429
5430void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5431{
5432 int i;
5433 int num_pages;
5434 struct page *page;
5435
5436 num_pages = num_extent_pages(eb);
5437
5438 for (i = 0; i < num_pages; i++) {
5439 page = eb->pages[i];
5440 if (!PageDirty(page))
5441 continue;
5442
5443 lock_page(page);
5444 WARN_ON(!PagePrivate(page));
5445
5446 clear_page_dirty_for_io(page);
5447 xa_lock_irq(&page->mapping->i_pages);
5448 if (!PageDirty(page))
5449 __xa_clear_mark(&page->mapping->i_pages,
5450 page_index(page), PAGECACHE_TAG_DIRTY);
5451 xa_unlock_irq(&page->mapping->i_pages);
5452 ClearPageError(page);
5453 unlock_page(page);
5454 }
5455 WARN_ON(atomic_read(&eb->refs) == 0);
5456}
5457
5458bool set_extent_buffer_dirty(struct extent_buffer *eb)
5459{
5460 int i;
5461 int num_pages;
5462 bool was_dirty;
5463
5464 check_buffer_tree_ref(eb);
5465
5466 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5467
5468 num_pages = num_extent_pages(eb);
5469 WARN_ON(atomic_read(&eb->refs) == 0);
5470 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5471
5472 if (!was_dirty)
5473 for (i = 0; i < num_pages; i++)
5474 set_page_dirty(eb->pages[i]);
5475
5476#ifdef CONFIG_BTRFS_DEBUG
5477 for (i = 0; i < num_pages; i++)
5478 ASSERT(PageDirty(eb->pages[i]));
5479#endif
5480
5481 return was_dirty;
5482}
5483
5484void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5485{
5486 int i;
5487 struct page *page;
5488 int num_pages;
5489
5490 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5491 num_pages = num_extent_pages(eb);
5492 for (i = 0; i < num_pages; i++) {
5493 page = eb->pages[i];
5494 if (page)
5495 ClearPageUptodate(page);
5496 }
5497}
5498
5499void set_extent_buffer_uptodate(struct extent_buffer *eb)
5500{
5501 int i;
5502 struct page *page;
5503 int num_pages;
5504
5505 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5506 num_pages = num_extent_pages(eb);
5507 for (i = 0; i < num_pages; i++) {
5508 page = eb->pages[i];
5509 SetPageUptodate(page);
5510 }
5511}
5512
5513int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5514{
5515 int i;
5516 struct page *page;
5517 int err;
5518 int ret = 0;
5519 int locked_pages = 0;
5520 int all_uptodate = 1;
5521 int num_pages;
5522 unsigned long num_reads = 0;
5523 struct bio *bio = NULL;
5524 unsigned long bio_flags = 0;
5525
5526 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5527 return 0;
5528
5529 num_pages = num_extent_pages(eb);
5530 for (i = 0; i < num_pages; i++) {
5531 page = eb->pages[i];
5532 if (wait == WAIT_NONE) {
5533 if (!trylock_page(page))
5534 goto unlock_exit;
5535 } else {
5536 lock_page(page);
5537 }
5538 locked_pages++;
5539 }
5540 /*
5541 * We need to firstly lock all pages to make sure that
5542 * the uptodate bit of our pages won't be affected by
5543 * clear_extent_buffer_uptodate().
5544 */
5545 for (i = 0; i < num_pages; i++) {
5546 page = eb->pages[i];
5547 if (!PageUptodate(page)) {
5548 num_reads++;
5549 all_uptodate = 0;
5550 }
5551 }
5552
5553 if (all_uptodate) {
5554 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5555 goto unlock_exit;
5556 }
5557
5558 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5559 eb->read_mirror = 0;
5560 atomic_set(&eb->io_pages, num_reads);
5561 /*
5562 * It is possible for releasepage to clear the TREE_REF bit before we
5563 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5564 */
5565 check_buffer_tree_ref(eb);
5566 for (i = 0; i < num_pages; i++) {
5567 page = eb->pages[i];
5568
5569 if (!PageUptodate(page)) {
5570 if (ret) {
5571 atomic_dec(&eb->io_pages);
5572 unlock_page(page);
5573 continue;
5574 }
5575
5576 ClearPageError(page);
5577 err = __extent_read_full_page(page,
5578 btree_get_extent, &bio,
5579 mirror_num, &bio_flags,
5580 REQ_META);
5581 if (err) {
5582 ret = err;
5583 /*
5584 * We use &bio in above __extent_read_full_page,
5585 * so we ensure that if it returns error, the
5586 * current page fails to add itself to bio and
5587 * it's been unlocked.
5588 *
5589 * We must dec io_pages by ourselves.
5590 */
5591 atomic_dec(&eb->io_pages);
5592 }
5593 } else {
5594 unlock_page(page);
5595 }
5596 }
5597
5598 if (bio) {
5599 err = submit_one_bio(bio, mirror_num, bio_flags);
5600 if (err)
5601 return err;
5602 }
5603
5604 if (ret || wait != WAIT_COMPLETE)
5605 return ret;
5606
5607 for (i = 0; i < num_pages; i++) {
5608 page = eb->pages[i];
5609 wait_on_page_locked(page);
5610 if (!PageUptodate(page))
5611 ret = -EIO;
5612 }
5613
5614 return ret;
5615
5616unlock_exit:
5617 while (locked_pages > 0) {
5618 locked_pages--;
5619 page = eb->pages[locked_pages];
5620 unlock_page(page);
5621 }
5622 return ret;
5623}
5624
5625void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5626 unsigned long start, unsigned long len)
5627{
5628 size_t cur;
5629 size_t offset;
5630 struct page *page;
5631 char *kaddr;
5632 char *dst = (char *)dstv;
5633 unsigned long i = start >> PAGE_SHIFT;
5634
5635 if (start + len > eb->len) {
5636 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5637 eb->start, eb->len, start, len);
5638 memset(dst, 0, len);
5639 return;
5640 }
5641
5642 offset = offset_in_page(start);
5643
5644 while (len > 0) {
5645 page = eb->pages[i];
5646
5647 cur = min(len, (PAGE_SIZE - offset));
5648 kaddr = page_address(page);
5649 memcpy(dst, kaddr + offset, cur);
5650
5651 dst += cur;
5652 len -= cur;
5653 offset = 0;
5654 i++;
5655 }
5656}
5657
5658int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5659 void __user *dstv,
5660 unsigned long start, unsigned long len)
5661{
5662 size_t cur;
5663 size_t offset;
5664 struct page *page;
5665 char *kaddr;
5666 char __user *dst = (char __user *)dstv;
5667 unsigned long i = start >> PAGE_SHIFT;
5668 int ret = 0;
5669
5670 WARN_ON(start > eb->len);
5671 WARN_ON(start + len > eb->start + eb->len);
5672
5673 offset = offset_in_page(start);
5674
5675 while (len > 0) {
5676 page = eb->pages[i];
5677
5678 cur = min(len, (PAGE_SIZE - offset));
5679 kaddr = page_address(page);
5680 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5681 ret = -EFAULT;
5682 break;
5683 }
5684
5685 dst += cur;
5686 len -= cur;
5687 offset = 0;
5688 i++;
5689 }
5690
5691 return ret;
5692}
5693
5694int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5695 unsigned long start, unsigned long len)
5696{
5697 size_t cur;
5698 size_t offset;
5699 struct page *page;
5700 char *kaddr;
5701 char *ptr = (char *)ptrv;
5702 unsigned long i = start >> PAGE_SHIFT;
5703 int ret = 0;
5704
5705 WARN_ON(start > eb->len);
5706 WARN_ON(start + len > eb->start + eb->len);
5707
5708 offset = offset_in_page(start);
5709
5710 while (len > 0) {
5711 page = eb->pages[i];
5712
5713 cur = min(len, (PAGE_SIZE - offset));
5714
5715 kaddr = page_address(page);
5716 ret = memcmp(ptr, kaddr + offset, cur);
5717 if (ret)
5718 break;
5719
5720 ptr += cur;
5721 len -= cur;
5722 offset = 0;
5723 i++;
5724 }
5725 return ret;
5726}
5727
5728void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5729 const void *srcv)
5730{
5731 char *kaddr;
5732
5733 WARN_ON(!PageUptodate(eb->pages[0]));
5734 kaddr = page_address(eb->pages[0]);
5735 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5736 BTRFS_FSID_SIZE);
5737}
5738
5739void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5740{
5741 char *kaddr;
5742
5743 WARN_ON(!PageUptodate(eb->pages[0]));
5744 kaddr = page_address(eb->pages[0]);
5745 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5746 BTRFS_FSID_SIZE);
5747}
5748
5749void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5750 unsigned long start, unsigned long len)
5751{
5752 size_t cur;
5753 size_t offset;
5754 struct page *page;
5755 char *kaddr;
5756 char *src = (char *)srcv;
5757 unsigned long i = start >> PAGE_SHIFT;
5758
5759 WARN_ON(start > eb->len);
5760 WARN_ON(start + len > eb->start + eb->len);
5761
5762 offset = offset_in_page(start);
5763
5764 while (len > 0) {
5765 page = eb->pages[i];
5766 WARN_ON(!PageUptodate(page));
5767
5768 cur = min(len, PAGE_SIZE - offset);
5769 kaddr = page_address(page);
5770 memcpy(kaddr + offset, src, cur);
5771
5772 src += cur;
5773 len -= cur;
5774 offset = 0;
5775 i++;
5776 }
5777}
5778
5779void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5780 unsigned long len)
5781{
5782 size_t cur;
5783 size_t offset;
5784 struct page *page;
5785 char *kaddr;
5786 unsigned long i = start >> PAGE_SHIFT;
5787
5788 WARN_ON(start > eb->len);
5789 WARN_ON(start + len > eb->start + eb->len);
5790
5791 offset = offset_in_page(start);
5792
5793 while (len > 0) {
5794 page = eb->pages[i];
5795 WARN_ON(!PageUptodate(page));
5796
5797 cur = min(len, PAGE_SIZE - offset);
5798 kaddr = page_address(page);
5799 memset(kaddr + offset, 0, cur);
5800
5801 len -= cur;
5802 offset = 0;
5803 i++;
5804 }
5805}
5806
5807void copy_extent_buffer_full(const struct extent_buffer *dst,
5808 const struct extent_buffer *src)
5809{
5810 int i;
5811 int num_pages;
5812
5813 ASSERT(dst->len == src->len);
5814
5815 num_pages = num_extent_pages(dst);
5816 for (i = 0; i < num_pages; i++)
5817 copy_page(page_address(dst->pages[i]),
5818 page_address(src->pages[i]));
5819}
5820
5821void copy_extent_buffer(const struct extent_buffer *dst,
5822 const struct extent_buffer *src,
5823 unsigned long dst_offset, unsigned long src_offset,
5824 unsigned long len)
5825{
5826 u64 dst_len = dst->len;
5827 size_t cur;
5828 size_t offset;
5829 struct page *page;
5830 char *kaddr;
5831 unsigned long i = dst_offset >> PAGE_SHIFT;
5832
5833 WARN_ON(src->len != dst_len);
5834
5835 offset = offset_in_page(dst_offset);
5836
5837 while (len > 0) {
5838 page = dst->pages[i];
5839 WARN_ON(!PageUptodate(page));
5840
5841 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5842
5843 kaddr = page_address(page);
5844 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5845
5846 src_offset += cur;
5847 len -= cur;
5848 offset = 0;
5849 i++;
5850 }
5851}
5852
5853/*
5854 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5855 * given bit number
5856 * @eb: the extent buffer
5857 * @start: offset of the bitmap item in the extent buffer
5858 * @nr: bit number
5859 * @page_index: return index of the page in the extent buffer that contains the
5860 * given bit number
5861 * @page_offset: return offset into the page given by page_index
5862 *
5863 * This helper hides the ugliness of finding the byte in an extent buffer which
5864 * contains a given bit.
5865 */
5866static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5867 unsigned long start, unsigned long nr,
5868 unsigned long *page_index,
5869 size_t *page_offset)
5870{
5871 size_t byte_offset = BIT_BYTE(nr);
5872 size_t offset;
5873
5874 /*
5875 * The byte we want is the offset of the extent buffer + the offset of
5876 * the bitmap item in the extent buffer + the offset of the byte in the
5877 * bitmap item.
5878 */
5879 offset = start + byte_offset;
5880
5881 *page_index = offset >> PAGE_SHIFT;
5882 *page_offset = offset_in_page(offset);
5883}
5884
5885/**
5886 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5887 * @eb: the extent buffer
5888 * @start: offset of the bitmap item in the extent buffer
5889 * @nr: bit number to test
5890 */
5891int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5892 unsigned long nr)
5893{
5894 u8 *kaddr;
5895 struct page *page;
5896 unsigned long i;
5897 size_t offset;
5898
5899 eb_bitmap_offset(eb, start, nr, &i, &offset);
5900 page = eb->pages[i];
5901 WARN_ON(!PageUptodate(page));
5902 kaddr = page_address(page);
5903 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5904}
5905
5906/**
5907 * extent_buffer_bitmap_set - set an area of a bitmap
5908 * @eb: the extent buffer
5909 * @start: offset of the bitmap item in the extent buffer
5910 * @pos: bit number of the first bit
5911 * @len: number of bits to set
5912 */
5913void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5914 unsigned long pos, unsigned long len)
5915{
5916 u8 *kaddr;
5917 struct page *page;
5918 unsigned long i;
5919 size_t offset;
5920 const unsigned int size = pos + len;
5921 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5922 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5923
5924 eb_bitmap_offset(eb, start, pos, &i, &offset);
5925 page = eb->pages[i];
5926 WARN_ON(!PageUptodate(page));
5927 kaddr = page_address(page);
5928
5929 while (len >= bits_to_set) {
5930 kaddr[offset] |= mask_to_set;
5931 len -= bits_to_set;
5932 bits_to_set = BITS_PER_BYTE;
5933 mask_to_set = ~0;
5934 if (++offset >= PAGE_SIZE && len > 0) {
5935 offset = 0;
5936 page = eb->pages[++i];
5937 WARN_ON(!PageUptodate(page));
5938 kaddr = page_address(page);
5939 }
5940 }
5941 if (len) {
5942 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5943 kaddr[offset] |= mask_to_set;
5944 }
5945}
5946
5947
5948/**
5949 * extent_buffer_bitmap_clear - clear an area of a bitmap
5950 * @eb: the extent buffer
5951 * @start: offset of the bitmap item in the extent buffer
5952 * @pos: bit number of the first bit
5953 * @len: number of bits to clear
5954 */
5955void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5956 unsigned long start, unsigned long pos,
5957 unsigned long len)
5958{
5959 u8 *kaddr;
5960 struct page *page;
5961 unsigned long i;
5962 size_t offset;
5963 const unsigned int size = pos + len;
5964 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5965 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5966
5967 eb_bitmap_offset(eb, start, pos, &i, &offset);
5968 page = eb->pages[i];
5969 WARN_ON(!PageUptodate(page));
5970 kaddr = page_address(page);
5971
5972 while (len >= bits_to_clear) {
5973 kaddr[offset] &= ~mask_to_clear;
5974 len -= bits_to_clear;
5975 bits_to_clear = BITS_PER_BYTE;
5976 mask_to_clear = ~0;
5977 if (++offset >= PAGE_SIZE && len > 0) {
5978 offset = 0;
5979 page = eb->pages[++i];
5980 WARN_ON(!PageUptodate(page));
5981 kaddr = page_address(page);
5982 }
5983 }
5984 if (len) {
5985 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5986 kaddr[offset] &= ~mask_to_clear;
5987 }
5988}
5989
5990static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5991{
5992 unsigned long distance = (src > dst) ? src - dst : dst - src;
5993 return distance < len;
5994}
5995
5996static void copy_pages(struct page *dst_page, struct page *src_page,
5997 unsigned long dst_off, unsigned long src_off,
5998 unsigned long len)
5999{
6000 char *dst_kaddr = page_address(dst_page);
6001 char *src_kaddr;
6002 int must_memmove = 0;
6003
6004 if (dst_page != src_page) {
6005 src_kaddr = page_address(src_page);
6006 } else {
6007 src_kaddr = dst_kaddr;
6008 if (areas_overlap(src_off, dst_off, len))
6009 must_memmove = 1;
6010 }
6011
6012 if (must_memmove)
6013 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6014 else
6015 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6016}
6017
6018void memcpy_extent_buffer(const struct extent_buffer *dst,
6019 unsigned long dst_offset, unsigned long src_offset,
6020 unsigned long len)
6021{
6022 struct btrfs_fs_info *fs_info = dst->fs_info;
6023 size_t cur;
6024 size_t dst_off_in_page;
6025 size_t src_off_in_page;
6026 unsigned long dst_i;
6027 unsigned long src_i;
6028
6029 if (src_offset + len > dst->len) {
6030 btrfs_err(fs_info,
6031 "memmove bogus src_offset %lu move len %lu dst len %lu",
6032 src_offset, len, dst->len);
6033 BUG();
6034 }
6035 if (dst_offset + len > dst->len) {
6036 btrfs_err(fs_info,
6037 "memmove bogus dst_offset %lu move len %lu dst len %lu",
6038 dst_offset, len, dst->len);
6039 BUG();
6040 }
6041
6042 while (len > 0) {
6043 dst_off_in_page = offset_in_page(dst_offset);
6044 src_off_in_page = offset_in_page(src_offset);
6045
6046 dst_i = dst_offset >> PAGE_SHIFT;
6047 src_i = src_offset >> PAGE_SHIFT;
6048
6049 cur = min(len, (unsigned long)(PAGE_SIZE -
6050 src_off_in_page));
6051 cur = min_t(unsigned long, cur,
6052 (unsigned long)(PAGE_SIZE - dst_off_in_page));
6053
6054 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6055 dst_off_in_page, src_off_in_page, cur);
6056
6057 src_offset += cur;
6058 dst_offset += cur;
6059 len -= cur;
6060 }
6061}
6062
6063void memmove_extent_buffer(const struct extent_buffer *dst,
6064 unsigned long dst_offset, unsigned long src_offset,
6065 unsigned long len)
6066{
6067 struct btrfs_fs_info *fs_info = dst->fs_info;
6068 size_t cur;
6069 size_t dst_off_in_page;
6070 size_t src_off_in_page;
6071 unsigned long dst_end = dst_offset + len - 1;
6072 unsigned long src_end = src_offset + len - 1;
6073 unsigned long dst_i;
6074 unsigned long src_i;
6075
6076 if (src_offset + len > dst->len) {
6077 btrfs_err(fs_info,
6078 "memmove bogus src_offset %lu move len %lu len %lu",
6079 src_offset, len, dst->len);
6080 BUG();
6081 }
6082 if (dst_offset + len > dst->len) {
6083 btrfs_err(fs_info,
6084 "memmove bogus dst_offset %lu move len %lu len %lu",
6085 dst_offset, len, dst->len);
6086 BUG();
6087 }
6088 if (dst_offset < src_offset) {
6089 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6090 return;
6091 }
6092 while (len > 0) {
6093 dst_i = dst_end >> PAGE_SHIFT;
6094 src_i = src_end >> PAGE_SHIFT;
6095
6096 dst_off_in_page = offset_in_page(dst_end);
6097 src_off_in_page = offset_in_page(src_end);
6098
6099 cur = min_t(unsigned long, len, src_off_in_page + 1);
6100 cur = min(cur, dst_off_in_page + 1);
6101 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6102 dst_off_in_page - cur + 1,
6103 src_off_in_page - cur + 1, cur);
6104
6105 dst_end -= cur;
6106 src_end -= cur;
6107 len -= cur;
6108 }
6109}
6110
6111int try_release_extent_buffer(struct page *page)
6112{
6113 struct extent_buffer *eb;
6114
6115 /*
6116 * We need to make sure nobody is attaching this page to an eb right
6117 * now.
6118 */
6119 spin_lock(&page->mapping->private_lock);
6120 if (!PagePrivate(page)) {
6121 spin_unlock(&page->mapping->private_lock);
6122 return 1;
6123 }
6124
6125 eb = (struct extent_buffer *)page->private;
6126 BUG_ON(!eb);
6127
6128 /*
6129 * This is a little awful but should be ok, we need to make sure that
6130 * the eb doesn't disappear out from under us while we're looking at
6131 * this page.
6132 */
6133 spin_lock(&eb->refs_lock);
6134 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6135 spin_unlock(&eb->refs_lock);
6136 spin_unlock(&page->mapping->private_lock);
6137 return 0;
6138 }
6139 spin_unlock(&page->mapping->private_lock);
6140
6141 /*
6142 * If tree ref isn't set then we know the ref on this eb is a real ref,
6143 * so just return, this page will likely be freed soon anyway.
6144 */
6145 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6146 spin_unlock(&eb->refs_lock);
6147 return 0;
6148 }
6149
6150 return release_extent_buffer(eb);
6151}