Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include "ctree.h"
10#include "fs.h"
11#include "messages.h"
12#include "misc.h"
13#include "delayed-inode.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "qgroup.h"
17#include "locking.h"
18#include "inode-item.h"
19#include "space-info.h"
20#include "accessors.h"
21#include "file-item.h"
22
23#define BTRFS_DELAYED_WRITEBACK 512
24#define BTRFS_DELAYED_BACKGROUND 128
25#define BTRFS_DELAYED_BATCH 16
26
27static struct kmem_cache *delayed_node_cache;
28
29int __init btrfs_delayed_inode_init(void)
30{
31 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
32 sizeof(struct btrfs_delayed_node),
33 0,
34 SLAB_MEM_SPREAD,
35 NULL);
36 if (!delayed_node_cache)
37 return -ENOMEM;
38 return 0;
39}
40
41void __cold btrfs_delayed_inode_exit(void)
42{
43 kmem_cache_destroy(delayed_node_cache);
44}
45
46static inline void btrfs_init_delayed_node(
47 struct btrfs_delayed_node *delayed_node,
48 struct btrfs_root *root, u64 inode_id)
49{
50 delayed_node->root = root;
51 delayed_node->inode_id = inode_id;
52 refcount_set(&delayed_node->refs, 0);
53 delayed_node->ins_root = RB_ROOT_CACHED;
54 delayed_node->del_root = RB_ROOT_CACHED;
55 mutex_init(&delayed_node->mutex);
56 INIT_LIST_HEAD(&delayed_node->n_list);
57 INIT_LIST_HEAD(&delayed_node->p_list);
58}
59
60static struct btrfs_delayed_node *btrfs_get_delayed_node(
61 struct btrfs_inode *btrfs_inode)
62{
63 struct btrfs_root *root = btrfs_inode->root;
64 u64 ino = btrfs_ino(btrfs_inode);
65 struct btrfs_delayed_node *node;
66
67 node = READ_ONCE(btrfs_inode->delayed_node);
68 if (node) {
69 refcount_inc(&node->refs);
70 return node;
71 }
72
73 spin_lock(&root->inode_lock);
74 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
75
76 if (node) {
77 if (btrfs_inode->delayed_node) {
78 refcount_inc(&node->refs); /* can be accessed */
79 BUG_ON(btrfs_inode->delayed_node != node);
80 spin_unlock(&root->inode_lock);
81 return node;
82 }
83
84 /*
85 * It's possible that we're racing into the middle of removing
86 * this node from the radix tree. In this case, the refcount
87 * was zero and it should never go back to one. Just return
88 * NULL like it was never in the radix at all; our release
89 * function is in the process of removing it.
90 *
91 * Some implementations of refcount_inc refuse to bump the
92 * refcount once it has hit zero. If we don't do this dance
93 * here, refcount_inc() may decide to just WARN_ONCE() instead
94 * of actually bumping the refcount.
95 *
96 * If this node is properly in the radix, we want to bump the
97 * refcount twice, once for the inode and once for this get
98 * operation.
99 */
100 if (refcount_inc_not_zero(&node->refs)) {
101 refcount_inc(&node->refs);
102 btrfs_inode->delayed_node = node;
103 } else {
104 node = NULL;
105 }
106
107 spin_unlock(&root->inode_lock);
108 return node;
109 }
110 spin_unlock(&root->inode_lock);
111
112 return NULL;
113}
114
115/* Will return either the node or PTR_ERR(-ENOMEM) */
116static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
117 struct btrfs_inode *btrfs_inode)
118{
119 struct btrfs_delayed_node *node;
120 struct btrfs_root *root = btrfs_inode->root;
121 u64 ino = btrfs_ino(btrfs_inode);
122 int ret;
123
124again:
125 node = btrfs_get_delayed_node(btrfs_inode);
126 if (node)
127 return node;
128
129 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130 if (!node)
131 return ERR_PTR(-ENOMEM);
132 btrfs_init_delayed_node(node, root, ino);
133
134 /* cached in the btrfs inode and can be accessed */
135 refcount_set(&node->refs, 2);
136
137 ret = radix_tree_preload(GFP_NOFS);
138 if (ret) {
139 kmem_cache_free(delayed_node_cache, node);
140 return ERR_PTR(ret);
141 }
142
143 spin_lock(&root->inode_lock);
144 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 if (ret == -EEXIST) {
146 spin_unlock(&root->inode_lock);
147 kmem_cache_free(delayed_node_cache, node);
148 radix_tree_preload_end();
149 goto again;
150 }
151 btrfs_inode->delayed_node = node;
152 spin_unlock(&root->inode_lock);
153 radix_tree_preload_end();
154
155 return node;
156}
157
158/*
159 * Call it when holding delayed_node->mutex
160 *
161 * If mod = 1, add this node into the prepared list.
162 */
163static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 struct btrfs_delayed_node *node,
165 int mod)
166{
167 spin_lock(&root->lock);
168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169 if (!list_empty(&node->p_list))
170 list_move_tail(&node->p_list, &root->prepare_list);
171 else if (mod)
172 list_add_tail(&node->p_list, &root->prepare_list);
173 } else {
174 list_add_tail(&node->n_list, &root->node_list);
175 list_add_tail(&node->p_list, &root->prepare_list);
176 refcount_inc(&node->refs); /* inserted into list */
177 root->nodes++;
178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
179 }
180 spin_unlock(&root->lock);
181}
182
183/* Call it when holding delayed_node->mutex */
184static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 struct btrfs_delayed_node *node)
186{
187 spin_lock(&root->lock);
188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189 root->nodes--;
190 refcount_dec(&node->refs); /* not in the list */
191 list_del_init(&node->n_list);
192 if (!list_empty(&node->p_list))
193 list_del_init(&node->p_list);
194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195 }
196 spin_unlock(&root->lock);
197}
198
199static struct btrfs_delayed_node *btrfs_first_delayed_node(
200 struct btrfs_delayed_root *delayed_root)
201{
202 struct list_head *p;
203 struct btrfs_delayed_node *node = NULL;
204
205 spin_lock(&delayed_root->lock);
206 if (list_empty(&delayed_root->node_list))
207 goto out;
208
209 p = delayed_root->node_list.next;
210 node = list_entry(p, struct btrfs_delayed_node, n_list);
211 refcount_inc(&node->refs);
212out:
213 spin_unlock(&delayed_root->lock);
214
215 return node;
216}
217
218static struct btrfs_delayed_node *btrfs_next_delayed_node(
219 struct btrfs_delayed_node *node)
220{
221 struct btrfs_delayed_root *delayed_root;
222 struct list_head *p;
223 struct btrfs_delayed_node *next = NULL;
224
225 delayed_root = node->root->fs_info->delayed_root;
226 spin_lock(&delayed_root->lock);
227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 /* not in the list */
229 if (list_empty(&delayed_root->node_list))
230 goto out;
231 p = delayed_root->node_list.next;
232 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
233 goto out;
234 else
235 p = node->n_list.next;
236
237 next = list_entry(p, struct btrfs_delayed_node, n_list);
238 refcount_inc(&next->refs);
239out:
240 spin_unlock(&delayed_root->lock);
241
242 return next;
243}
244
245static void __btrfs_release_delayed_node(
246 struct btrfs_delayed_node *delayed_node,
247 int mod)
248{
249 struct btrfs_delayed_root *delayed_root;
250
251 if (!delayed_node)
252 return;
253
254 delayed_root = delayed_node->root->fs_info->delayed_root;
255
256 mutex_lock(&delayed_node->mutex);
257 if (delayed_node->count)
258 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259 else
260 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 mutex_unlock(&delayed_node->mutex);
262
263 if (refcount_dec_and_test(&delayed_node->refs)) {
264 struct btrfs_root *root = delayed_node->root;
265
266 spin_lock(&root->inode_lock);
267 /*
268 * Once our refcount goes to zero, nobody is allowed to bump it
269 * back up. We can delete it now.
270 */
271 ASSERT(refcount_read(&delayed_node->refs) == 0);
272 radix_tree_delete(&root->delayed_nodes_tree,
273 delayed_node->inode_id);
274 spin_unlock(&root->inode_lock);
275 kmem_cache_free(delayed_node_cache, delayed_node);
276 }
277}
278
279static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280{
281 __btrfs_release_delayed_node(node, 0);
282}
283
284static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285 struct btrfs_delayed_root *delayed_root)
286{
287 struct list_head *p;
288 struct btrfs_delayed_node *node = NULL;
289
290 spin_lock(&delayed_root->lock);
291 if (list_empty(&delayed_root->prepare_list))
292 goto out;
293
294 p = delayed_root->prepare_list.next;
295 list_del_init(p);
296 node = list_entry(p, struct btrfs_delayed_node, p_list);
297 refcount_inc(&node->refs);
298out:
299 spin_unlock(&delayed_root->lock);
300
301 return node;
302}
303
304static inline void btrfs_release_prepared_delayed_node(
305 struct btrfs_delayed_node *node)
306{
307 __btrfs_release_delayed_node(node, 1);
308}
309
310static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
311 struct btrfs_delayed_node *node,
312 enum btrfs_delayed_item_type type)
313{
314 struct btrfs_delayed_item *item;
315
316 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
317 if (item) {
318 item->data_len = data_len;
319 item->type = type;
320 item->bytes_reserved = 0;
321 item->delayed_node = node;
322 RB_CLEAR_NODE(&item->rb_node);
323 INIT_LIST_HEAD(&item->log_list);
324 item->logged = false;
325 refcount_set(&item->refs, 1);
326 }
327 return item;
328}
329
330/*
331 * __btrfs_lookup_delayed_item - look up the delayed item by key
332 * @delayed_node: pointer to the delayed node
333 * @index: the dir index value to lookup (offset of a dir index key)
334 *
335 * Note: if we don't find the right item, we will return the prev item and
336 * the next item.
337 */
338static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339 struct rb_root *root,
340 u64 index)
341{
342 struct rb_node *node = root->rb_node;
343 struct btrfs_delayed_item *delayed_item = NULL;
344
345 while (node) {
346 delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 rb_node);
348 if (delayed_item->index < index)
349 node = node->rb_right;
350 else if (delayed_item->index > index)
351 node = node->rb_left;
352 else
353 return delayed_item;
354 }
355
356 return NULL;
357}
358
359static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
360 struct btrfs_delayed_item *ins)
361{
362 struct rb_node **p, *node;
363 struct rb_node *parent_node = NULL;
364 struct rb_root_cached *root;
365 struct btrfs_delayed_item *item;
366 bool leftmost = true;
367
368 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
369 root = &delayed_node->ins_root;
370 else
371 root = &delayed_node->del_root;
372
373 p = &root->rb_root.rb_node;
374 node = &ins->rb_node;
375
376 while (*p) {
377 parent_node = *p;
378 item = rb_entry(parent_node, struct btrfs_delayed_item,
379 rb_node);
380
381 if (item->index < ins->index) {
382 p = &(*p)->rb_right;
383 leftmost = false;
384 } else if (item->index > ins->index) {
385 p = &(*p)->rb_left;
386 } else {
387 return -EEXIST;
388 }
389 }
390
391 rb_link_node(node, parent_node, p);
392 rb_insert_color_cached(node, root, leftmost);
393
394 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
395 ins->index >= delayed_node->index_cnt)
396 delayed_node->index_cnt = ins->index + 1;
397
398 delayed_node->count++;
399 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
400 return 0;
401}
402
403static void finish_one_item(struct btrfs_delayed_root *delayed_root)
404{
405 int seq = atomic_inc_return(&delayed_root->items_seq);
406
407 /* atomic_dec_return implies a barrier */
408 if ((atomic_dec_return(&delayed_root->items) <
409 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
410 cond_wake_up_nomb(&delayed_root->wait);
411}
412
413static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
414{
415 struct rb_root_cached *root;
416 struct btrfs_delayed_root *delayed_root;
417
418 /* Not inserted, ignore it. */
419 if (RB_EMPTY_NODE(&delayed_item->rb_node))
420 return;
421
422 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
423
424 BUG_ON(!delayed_root);
425
426 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
427 root = &delayed_item->delayed_node->ins_root;
428 else
429 root = &delayed_item->delayed_node->del_root;
430
431 rb_erase_cached(&delayed_item->rb_node, root);
432 RB_CLEAR_NODE(&delayed_item->rb_node);
433 delayed_item->delayed_node->count--;
434
435 finish_one_item(delayed_root);
436}
437
438static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
439{
440 if (item) {
441 __btrfs_remove_delayed_item(item);
442 if (refcount_dec_and_test(&item->refs))
443 kfree(item);
444 }
445}
446
447static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
448 struct btrfs_delayed_node *delayed_node)
449{
450 struct rb_node *p;
451 struct btrfs_delayed_item *item = NULL;
452
453 p = rb_first_cached(&delayed_node->ins_root);
454 if (p)
455 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
456
457 return item;
458}
459
460static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
461 struct btrfs_delayed_node *delayed_node)
462{
463 struct rb_node *p;
464 struct btrfs_delayed_item *item = NULL;
465
466 p = rb_first_cached(&delayed_node->del_root);
467 if (p)
468 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
469
470 return item;
471}
472
473static struct btrfs_delayed_item *__btrfs_next_delayed_item(
474 struct btrfs_delayed_item *item)
475{
476 struct rb_node *p;
477 struct btrfs_delayed_item *next = NULL;
478
479 p = rb_next(&item->rb_node);
480 if (p)
481 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
482
483 return next;
484}
485
486static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
487 struct btrfs_delayed_item *item)
488{
489 struct btrfs_block_rsv *src_rsv;
490 struct btrfs_block_rsv *dst_rsv;
491 struct btrfs_fs_info *fs_info = trans->fs_info;
492 u64 num_bytes;
493 int ret;
494
495 if (!trans->bytes_reserved)
496 return 0;
497
498 src_rsv = trans->block_rsv;
499 dst_rsv = &fs_info->delayed_block_rsv;
500
501 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
502
503 /*
504 * Here we migrate space rsv from transaction rsv, since have already
505 * reserved space when starting a transaction. So no need to reserve
506 * qgroup space here.
507 */
508 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
509 if (!ret) {
510 trace_btrfs_space_reservation(fs_info, "delayed_item",
511 item->delayed_node->inode_id,
512 num_bytes, 1);
513 /*
514 * For insertions we track reserved metadata space by accounting
515 * for the number of leaves that will be used, based on the delayed
516 * node's index_items_size field.
517 */
518 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
519 item->bytes_reserved = num_bytes;
520 }
521
522 return ret;
523}
524
525static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
526 struct btrfs_delayed_item *item)
527{
528 struct btrfs_block_rsv *rsv;
529 struct btrfs_fs_info *fs_info = root->fs_info;
530
531 if (!item->bytes_reserved)
532 return;
533
534 rsv = &fs_info->delayed_block_rsv;
535 /*
536 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
537 * to release/reserve qgroup space.
538 */
539 trace_btrfs_space_reservation(fs_info, "delayed_item",
540 item->delayed_node->inode_id,
541 item->bytes_reserved, 0);
542 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
543}
544
545static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
546 unsigned int num_leaves)
547{
548 struct btrfs_fs_info *fs_info = node->root->fs_info;
549 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
550
551 /* There are no space reservations during log replay, bail out. */
552 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
553 return;
554
555 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
556 bytes, 0);
557 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
558}
559
560static int btrfs_delayed_inode_reserve_metadata(
561 struct btrfs_trans_handle *trans,
562 struct btrfs_root *root,
563 struct btrfs_delayed_node *node)
564{
565 struct btrfs_fs_info *fs_info = root->fs_info;
566 struct btrfs_block_rsv *src_rsv;
567 struct btrfs_block_rsv *dst_rsv;
568 u64 num_bytes;
569 int ret;
570
571 src_rsv = trans->block_rsv;
572 dst_rsv = &fs_info->delayed_block_rsv;
573
574 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
575
576 /*
577 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
578 * which doesn't reserve space for speed. This is a problem since we
579 * still need to reserve space for this update, so try to reserve the
580 * space.
581 *
582 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
583 * we always reserve enough to update the inode item.
584 */
585 if (!src_rsv || (!trans->bytes_reserved &&
586 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
587 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
588 BTRFS_QGROUP_RSV_META_PREALLOC, true);
589 if (ret < 0)
590 return ret;
591 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
592 BTRFS_RESERVE_NO_FLUSH);
593 /* NO_FLUSH could only fail with -ENOSPC */
594 ASSERT(ret == 0 || ret == -ENOSPC);
595 if (ret)
596 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
597 } else {
598 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
599 }
600
601 if (!ret) {
602 trace_btrfs_space_reservation(fs_info, "delayed_inode",
603 node->inode_id, num_bytes, 1);
604 node->bytes_reserved = num_bytes;
605 }
606
607 return ret;
608}
609
610static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
611 struct btrfs_delayed_node *node,
612 bool qgroup_free)
613{
614 struct btrfs_block_rsv *rsv;
615
616 if (!node->bytes_reserved)
617 return;
618
619 rsv = &fs_info->delayed_block_rsv;
620 trace_btrfs_space_reservation(fs_info, "delayed_inode",
621 node->inode_id, node->bytes_reserved, 0);
622 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
623 if (qgroup_free)
624 btrfs_qgroup_free_meta_prealloc(node->root,
625 node->bytes_reserved);
626 else
627 btrfs_qgroup_convert_reserved_meta(node->root,
628 node->bytes_reserved);
629 node->bytes_reserved = 0;
630}
631
632/*
633 * Insert a single delayed item or a batch of delayed items, as many as possible
634 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
635 * in the rbtree, and if there's a gap between two consecutive dir index items,
636 * then it means at some point we had delayed dir indexes to add but they got
637 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
638 * into the subvolume tree. Dir index keys also have their offsets coming from a
639 * monotonically increasing counter, so we can't get new keys with an offset that
640 * fits within a gap between delayed dir index items.
641 */
642static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
643 struct btrfs_root *root,
644 struct btrfs_path *path,
645 struct btrfs_delayed_item *first_item)
646{
647 struct btrfs_fs_info *fs_info = root->fs_info;
648 struct btrfs_delayed_node *node = first_item->delayed_node;
649 LIST_HEAD(item_list);
650 struct btrfs_delayed_item *curr;
651 struct btrfs_delayed_item *next;
652 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
653 struct btrfs_item_batch batch;
654 struct btrfs_key first_key;
655 const u32 first_data_size = first_item->data_len;
656 int total_size;
657 char *ins_data = NULL;
658 int ret;
659 bool continuous_keys_only = false;
660
661 lockdep_assert_held(&node->mutex);
662
663 /*
664 * During normal operation the delayed index offset is continuously
665 * increasing, so we can batch insert all items as there will not be any
666 * overlapping keys in the tree.
667 *
668 * The exception to this is log replay, where we may have interleaved
669 * offsets in the tree, so our batch needs to be continuous keys only in
670 * order to ensure we do not end up with out of order items in our leaf.
671 */
672 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
673 continuous_keys_only = true;
674
675 /*
676 * For delayed items to insert, we track reserved metadata bytes based
677 * on the number of leaves that we will use.
678 * See btrfs_insert_delayed_dir_index() and
679 * btrfs_delayed_item_reserve_metadata()).
680 */
681 ASSERT(first_item->bytes_reserved == 0);
682
683 list_add_tail(&first_item->tree_list, &item_list);
684 batch.total_data_size = first_data_size;
685 batch.nr = 1;
686 total_size = first_data_size + sizeof(struct btrfs_item);
687 curr = first_item;
688
689 while (true) {
690 int next_size;
691
692 next = __btrfs_next_delayed_item(curr);
693 if (!next)
694 break;
695
696 /*
697 * We cannot allow gaps in the key space if we're doing log
698 * replay.
699 */
700 if (continuous_keys_only && (next->index != curr->index + 1))
701 break;
702
703 ASSERT(next->bytes_reserved == 0);
704
705 next_size = next->data_len + sizeof(struct btrfs_item);
706 if (total_size + next_size > max_size)
707 break;
708
709 list_add_tail(&next->tree_list, &item_list);
710 batch.nr++;
711 total_size += next_size;
712 batch.total_data_size += next->data_len;
713 curr = next;
714 }
715
716 if (batch.nr == 1) {
717 first_key.objectid = node->inode_id;
718 first_key.type = BTRFS_DIR_INDEX_KEY;
719 first_key.offset = first_item->index;
720 batch.keys = &first_key;
721 batch.data_sizes = &first_data_size;
722 } else {
723 struct btrfs_key *ins_keys;
724 u32 *ins_sizes;
725 int i = 0;
726
727 ins_data = kmalloc(batch.nr * sizeof(u32) +
728 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
729 if (!ins_data) {
730 ret = -ENOMEM;
731 goto out;
732 }
733 ins_sizes = (u32 *)ins_data;
734 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
735 batch.keys = ins_keys;
736 batch.data_sizes = ins_sizes;
737 list_for_each_entry(curr, &item_list, tree_list) {
738 ins_keys[i].objectid = node->inode_id;
739 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
740 ins_keys[i].offset = curr->index;
741 ins_sizes[i] = curr->data_len;
742 i++;
743 }
744 }
745
746 ret = btrfs_insert_empty_items(trans, root, path, &batch);
747 if (ret)
748 goto out;
749
750 list_for_each_entry(curr, &item_list, tree_list) {
751 char *data_ptr;
752
753 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
754 write_extent_buffer(path->nodes[0], &curr->data,
755 (unsigned long)data_ptr, curr->data_len);
756 path->slots[0]++;
757 }
758
759 /*
760 * Now release our path before releasing the delayed items and their
761 * metadata reservations, so that we don't block other tasks for more
762 * time than needed.
763 */
764 btrfs_release_path(path);
765
766 ASSERT(node->index_item_leaves > 0);
767
768 /*
769 * For normal operations we will batch an entire leaf's worth of delayed
770 * items, so if there are more items to process we can decrement
771 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
772 *
773 * However for log replay we may not have inserted an entire leaf's
774 * worth of items, we may have not had continuous items, so decrementing
775 * here would mess up the index_item_leaves accounting. For this case
776 * only clean up the accounting when there are no items left.
777 */
778 if (next && !continuous_keys_only) {
779 /*
780 * We inserted one batch of items into a leaf a there are more
781 * items to flush in a future batch, now release one unit of
782 * metadata space from the delayed block reserve, corresponding
783 * the leaf we just flushed to.
784 */
785 btrfs_delayed_item_release_leaves(node, 1);
786 node->index_item_leaves--;
787 } else if (!next) {
788 /*
789 * There are no more items to insert. We can have a number of
790 * reserved leaves > 1 here - this happens when many dir index
791 * items are added and then removed before they are flushed (file
792 * names with a very short life, never span a transaction). So
793 * release all remaining leaves.
794 */
795 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
796 node->index_item_leaves = 0;
797 }
798
799 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
800 list_del(&curr->tree_list);
801 btrfs_release_delayed_item(curr);
802 }
803out:
804 kfree(ins_data);
805 return ret;
806}
807
808static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
809 struct btrfs_path *path,
810 struct btrfs_root *root,
811 struct btrfs_delayed_node *node)
812{
813 int ret = 0;
814
815 while (ret == 0) {
816 struct btrfs_delayed_item *curr;
817
818 mutex_lock(&node->mutex);
819 curr = __btrfs_first_delayed_insertion_item(node);
820 if (!curr) {
821 mutex_unlock(&node->mutex);
822 break;
823 }
824 ret = btrfs_insert_delayed_item(trans, root, path, curr);
825 mutex_unlock(&node->mutex);
826 }
827
828 return ret;
829}
830
831static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
832 struct btrfs_root *root,
833 struct btrfs_path *path,
834 struct btrfs_delayed_item *item)
835{
836 const u64 ino = item->delayed_node->inode_id;
837 struct btrfs_fs_info *fs_info = root->fs_info;
838 struct btrfs_delayed_item *curr, *next;
839 struct extent_buffer *leaf = path->nodes[0];
840 LIST_HEAD(batch_list);
841 int nitems, slot, last_slot;
842 int ret;
843 u64 total_reserved_size = item->bytes_reserved;
844
845 ASSERT(leaf != NULL);
846
847 slot = path->slots[0];
848 last_slot = btrfs_header_nritems(leaf) - 1;
849 /*
850 * Our caller always gives us a path pointing to an existing item, so
851 * this can not happen.
852 */
853 ASSERT(slot <= last_slot);
854 if (WARN_ON(slot > last_slot))
855 return -ENOENT;
856
857 nitems = 1;
858 curr = item;
859 list_add_tail(&curr->tree_list, &batch_list);
860
861 /*
862 * Keep checking if the next delayed item matches the next item in the
863 * leaf - if so, we can add it to the batch of items to delete from the
864 * leaf.
865 */
866 while (slot < last_slot) {
867 struct btrfs_key key;
868
869 next = __btrfs_next_delayed_item(curr);
870 if (!next)
871 break;
872
873 slot++;
874 btrfs_item_key_to_cpu(leaf, &key, slot);
875 if (key.objectid != ino ||
876 key.type != BTRFS_DIR_INDEX_KEY ||
877 key.offset != next->index)
878 break;
879 nitems++;
880 curr = next;
881 list_add_tail(&curr->tree_list, &batch_list);
882 total_reserved_size += curr->bytes_reserved;
883 }
884
885 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
886 if (ret)
887 return ret;
888
889 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
890 if (total_reserved_size > 0) {
891 /*
892 * Check btrfs_delayed_item_reserve_metadata() to see why we
893 * don't need to release/reserve qgroup space.
894 */
895 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
896 total_reserved_size, 0);
897 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
898 total_reserved_size, NULL);
899 }
900
901 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
902 list_del(&curr->tree_list);
903 btrfs_release_delayed_item(curr);
904 }
905
906 return 0;
907}
908
909static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
910 struct btrfs_path *path,
911 struct btrfs_root *root,
912 struct btrfs_delayed_node *node)
913{
914 struct btrfs_key key;
915 int ret = 0;
916
917 key.objectid = node->inode_id;
918 key.type = BTRFS_DIR_INDEX_KEY;
919
920 while (ret == 0) {
921 struct btrfs_delayed_item *item;
922
923 mutex_lock(&node->mutex);
924 item = __btrfs_first_delayed_deletion_item(node);
925 if (!item) {
926 mutex_unlock(&node->mutex);
927 break;
928 }
929
930 key.offset = item->index;
931 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
932 if (ret > 0) {
933 /*
934 * There's no matching item in the leaf. This means we
935 * have already deleted this item in a past run of the
936 * delayed items. We ignore errors when running delayed
937 * items from an async context, through a work queue job
938 * running btrfs_async_run_delayed_root(), and don't
939 * release delayed items that failed to complete. This
940 * is because we will retry later, and at transaction
941 * commit time we always run delayed items and will
942 * then deal with errors if they fail to run again.
943 *
944 * So just release delayed items for which we can't find
945 * an item in the tree, and move to the next item.
946 */
947 btrfs_release_path(path);
948 btrfs_release_delayed_item(item);
949 ret = 0;
950 } else if (ret == 0) {
951 ret = btrfs_batch_delete_items(trans, root, path, item);
952 btrfs_release_path(path);
953 }
954
955 /*
956 * We unlock and relock on each iteration, this is to prevent
957 * blocking other tasks for too long while we are being run from
958 * the async context (work queue job). Those tasks are typically
959 * running system calls like creat/mkdir/rename/unlink/etc which
960 * need to add delayed items to this delayed node.
961 */
962 mutex_unlock(&node->mutex);
963 }
964
965 return ret;
966}
967
968static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
969{
970 struct btrfs_delayed_root *delayed_root;
971
972 if (delayed_node &&
973 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
974 BUG_ON(!delayed_node->root);
975 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
976 delayed_node->count--;
977
978 delayed_root = delayed_node->root->fs_info->delayed_root;
979 finish_one_item(delayed_root);
980 }
981}
982
983static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
984{
985
986 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
987 struct btrfs_delayed_root *delayed_root;
988
989 ASSERT(delayed_node->root);
990 delayed_node->count--;
991
992 delayed_root = delayed_node->root->fs_info->delayed_root;
993 finish_one_item(delayed_root);
994 }
995}
996
997static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
998 struct btrfs_root *root,
999 struct btrfs_path *path,
1000 struct btrfs_delayed_node *node)
1001{
1002 struct btrfs_fs_info *fs_info = root->fs_info;
1003 struct btrfs_key key;
1004 struct btrfs_inode_item *inode_item;
1005 struct extent_buffer *leaf;
1006 int mod;
1007 int ret;
1008
1009 key.objectid = node->inode_id;
1010 key.type = BTRFS_INODE_ITEM_KEY;
1011 key.offset = 0;
1012
1013 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1014 mod = -1;
1015 else
1016 mod = 1;
1017
1018 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1019 if (ret > 0)
1020 ret = -ENOENT;
1021 if (ret < 0)
1022 goto out;
1023
1024 leaf = path->nodes[0];
1025 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1026 struct btrfs_inode_item);
1027 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1028 sizeof(struct btrfs_inode_item));
1029 btrfs_mark_buffer_dirty(leaf);
1030
1031 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1032 goto out;
1033
1034 path->slots[0]++;
1035 if (path->slots[0] >= btrfs_header_nritems(leaf))
1036 goto search;
1037again:
1038 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1039 if (key.objectid != node->inode_id)
1040 goto out;
1041
1042 if (key.type != BTRFS_INODE_REF_KEY &&
1043 key.type != BTRFS_INODE_EXTREF_KEY)
1044 goto out;
1045
1046 /*
1047 * Delayed iref deletion is for the inode who has only one link,
1048 * so there is only one iref. The case that several irefs are
1049 * in the same item doesn't exist.
1050 */
1051 btrfs_del_item(trans, root, path);
1052out:
1053 btrfs_release_delayed_iref(node);
1054 btrfs_release_path(path);
1055err_out:
1056 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1057 btrfs_release_delayed_inode(node);
1058
1059 /*
1060 * If we fail to update the delayed inode we need to abort the
1061 * transaction, because we could leave the inode with the improper
1062 * counts behind.
1063 */
1064 if (ret && ret != -ENOENT)
1065 btrfs_abort_transaction(trans, ret);
1066
1067 return ret;
1068
1069search:
1070 btrfs_release_path(path);
1071
1072 key.type = BTRFS_INODE_EXTREF_KEY;
1073 key.offset = -1;
1074
1075 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1076 if (ret < 0)
1077 goto err_out;
1078 ASSERT(ret);
1079
1080 ret = 0;
1081 leaf = path->nodes[0];
1082 path->slots[0]--;
1083 goto again;
1084}
1085
1086static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1087 struct btrfs_root *root,
1088 struct btrfs_path *path,
1089 struct btrfs_delayed_node *node)
1090{
1091 int ret;
1092
1093 mutex_lock(&node->mutex);
1094 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1095 mutex_unlock(&node->mutex);
1096 return 0;
1097 }
1098
1099 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1100 mutex_unlock(&node->mutex);
1101 return ret;
1102}
1103
1104static inline int
1105__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1106 struct btrfs_path *path,
1107 struct btrfs_delayed_node *node)
1108{
1109 int ret;
1110
1111 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1112 if (ret)
1113 return ret;
1114
1115 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1116 if (ret)
1117 return ret;
1118
1119 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1120 return ret;
1121}
1122
1123/*
1124 * Called when committing the transaction.
1125 * Returns 0 on success.
1126 * Returns < 0 on error and returns with an aborted transaction with any
1127 * outstanding delayed items cleaned up.
1128 */
1129static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1130{
1131 struct btrfs_fs_info *fs_info = trans->fs_info;
1132 struct btrfs_delayed_root *delayed_root;
1133 struct btrfs_delayed_node *curr_node, *prev_node;
1134 struct btrfs_path *path;
1135 struct btrfs_block_rsv *block_rsv;
1136 int ret = 0;
1137 bool count = (nr > 0);
1138
1139 if (TRANS_ABORTED(trans))
1140 return -EIO;
1141
1142 path = btrfs_alloc_path();
1143 if (!path)
1144 return -ENOMEM;
1145
1146 block_rsv = trans->block_rsv;
1147 trans->block_rsv = &fs_info->delayed_block_rsv;
1148
1149 delayed_root = fs_info->delayed_root;
1150
1151 curr_node = btrfs_first_delayed_node(delayed_root);
1152 while (curr_node && (!count || nr--)) {
1153 ret = __btrfs_commit_inode_delayed_items(trans, path,
1154 curr_node);
1155 if (ret) {
1156 btrfs_release_delayed_node(curr_node);
1157 curr_node = NULL;
1158 btrfs_abort_transaction(trans, ret);
1159 break;
1160 }
1161
1162 prev_node = curr_node;
1163 curr_node = btrfs_next_delayed_node(curr_node);
1164 btrfs_release_delayed_node(prev_node);
1165 }
1166
1167 if (curr_node)
1168 btrfs_release_delayed_node(curr_node);
1169 btrfs_free_path(path);
1170 trans->block_rsv = block_rsv;
1171
1172 return ret;
1173}
1174
1175int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1176{
1177 return __btrfs_run_delayed_items(trans, -1);
1178}
1179
1180int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1181{
1182 return __btrfs_run_delayed_items(trans, nr);
1183}
1184
1185int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1186 struct btrfs_inode *inode)
1187{
1188 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1189 struct btrfs_path *path;
1190 struct btrfs_block_rsv *block_rsv;
1191 int ret;
1192
1193 if (!delayed_node)
1194 return 0;
1195
1196 mutex_lock(&delayed_node->mutex);
1197 if (!delayed_node->count) {
1198 mutex_unlock(&delayed_node->mutex);
1199 btrfs_release_delayed_node(delayed_node);
1200 return 0;
1201 }
1202 mutex_unlock(&delayed_node->mutex);
1203
1204 path = btrfs_alloc_path();
1205 if (!path) {
1206 btrfs_release_delayed_node(delayed_node);
1207 return -ENOMEM;
1208 }
1209
1210 block_rsv = trans->block_rsv;
1211 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1212
1213 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1214
1215 btrfs_release_delayed_node(delayed_node);
1216 btrfs_free_path(path);
1217 trans->block_rsv = block_rsv;
1218
1219 return ret;
1220}
1221
1222int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1223{
1224 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1225 struct btrfs_trans_handle *trans;
1226 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1227 struct btrfs_path *path;
1228 struct btrfs_block_rsv *block_rsv;
1229 int ret;
1230
1231 if (!delayed_node)
1232 return 0;
1233
1234 mutex_lock(&delayed_node->mutex);
1235 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1236 mutex_unlock(&delayed_node->mutex);
1237 btrfs_release_delayed_node(delayed_node);
1238 return 0;
1239 }
1240 mutex_unlock(&delayed_node->mutex);
1241
1242 trans = btrfs_join_transaction(delayed_node->root);
1243 if (IS_ERR(trans)) {
1244 ret = PTR_ERR(trans);
1245 goto out;
1246 }
1247
1248 path = btrfs_alloc_path();
1249 if (!path) {
1250 ret = -ENOMEM;
1251 goto trans_out;
1252 }
1253
1254 block_rsv = trans->block_rsv;
1255 trans->block_rsv = &fs_info->delayed_block_rsv;
1256
1257 mutex_lock(&delayed_node->mutex);
1258 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1259 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1260 path, delayed_node);
1261 else
1262 ret = 0;
1263 mutex_unlock(&delayed_node->mutex);
1264
1265 btrfs_free_path(path);
1266 trans->block_rsv = block_rsv;
1267trans_out:
1268 btrfs_end_transaction(trans);
1269 btrfs_btree_balance_dirty(fs_info);
1270out:
1271 btrfs_release_delayed_node(delayed_node);
1272
1273 return ret;
1274}
1275
1276void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1277{
1278 struct btrfs_delayed_node *delayed_node;
1279
1280 delayed_node = READ_ONCE(inode->delayed_node);
1281 if (!delayed_node)
1282 return;
1283
1284 inode->delayed_node = NULL;
1285 btrfs_release_delayed_node(delayed_node);
1286}
1287
1288struct btrfs_async_delayed_work {
1289 struct btrfs_delayed_root *delayed_root;
1290 int nr;
1291 struct btrfs_work work;
1292};
1293
1294static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1295{
1296 struct btrfs_async_delayed_work *async_work;
1297 struct btrfs_delayed_root *delayed_root;
1298 struct btrfs_trans_handle *trans;
1299 struct btrfs_path *path;
1300 struct btrfs_delayed_node *delayed_node = NULL;
1301 struct btrfs_root *root;
1302 struct btrfs_block_rsv *block_rsv;
1303 int total_done = 0;
1304
1305 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1306 delayed_root = async_work->delayed_root;
1307
1308 path = btrfs_alloc_path();
1309 if (!path)
1310 goto out;
1311
1312 do {
1313 if (atomic_read(&delayed_root->items) <
1314 BTRFS_DELAYED_BACKGROUND / 2)
1315 break;
1316
1317 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1318 if (!delayed_node)
1319 break;
1320
1321 root = delayed_node->root;
1322
1323 trans = btrfs_join_transaction(root);
1324 if (IS_ERR(trans)) {
1325 btrfs_release_path(path);
1326 btrfs_release_prepared_delayed_node(delayed_node);
1327 total_done++;
1328 continue;
1329 }
1330
1331 block_rsv = trans->block_rsv;
1332 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1333
1334 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1335
1336 trans->block_rsv = block_rsv;
1337 btrfs_end_transaction(trans);
1338 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1339
1340 btrfs_release_path(path);
1341 btrfs_release_prepared_delayed_node(delayed_node);
1342 total_done++;
1343
1344 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1345 || total_done < async_work->nr);
1346
1347 btrfs_free_path(path);
1348out:
1349 wake_up(&delayed_root->wait);
1350 kfree(async_work);
1351}
1352
1353
1354static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1355 struct btrfs_fs_info *fs_info, int nr)
1356{
1357 struct btrfs_async_delayed_work *async_work;
1358
1359 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1360 if (!async_work)
1361 return -ENOMEM;
1362
1363 async_work->delayed_root = delayed_root;
1364 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1365 NULL);
1366 async_work->nr = nr;
1367
1368 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1369 return 0;
1370}
1371
1372void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1373{
1374 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1375}
1376
1377static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1378{
1379 int val = atomic_read(&delayed_root->items_seq);
1380
1381 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1382 return 1;
1383
1384 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1385 return 1;
1386
1387 return 0;
1388}
1389
1390void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1391{
1392 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1393
1394 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1395 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1396 return;
1397
1398 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1399 int seq;
1400 int ret;
1401
1402 seq = atomic_read(&delayed_root->items_seq);
1403
1404 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1405 if (ret)
1406 return;
1407
1408 wait_event_interruptible(delayed_root->wait,
1409 could_end_wait(delayed_root, seq));
1410 return;
1411 }
1412
1413 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1414}
1415
1416/* Will return 0 or -ENOMEM */
1417int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1418 const char *name, int name_len,
1419 struct btrfs_inode *dir,
1420 struct btrfs_disk_key *disk_key, u8 flags,
1421 u64 index)
1422{
1423 struct btrfs_fs_info *fs_info = trans->fs_info;
1424 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1425 struct btrfs_delayed_node *delayed_node;
1426 struct btrfs_delayed_item *delayed_item;
1427 struct btrfs_dir_item *dir_item;
1428 bool reserve_leaf_space;
1429 u32 data_len;
1430 int ret;
1431
1432 delayed_node = btrfs_get_or_create_delayed_node(dir);
1433 if (IS_ERR(delayed_node))
1434 return PTR_ERR(delayed_node);
1435
1436 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1437 delayed_node,
1438 BTRFS_DELAYED_INSERTION_ITEM);
1439 if (!delayed_item) {
1440 ret = -ENOMEM;
1441 goto release_node;
1442 }
1443
1444 delayed_item->index = index;
1445
1446 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1447 dir_item->location = *disk_key;
1448 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1449 btrfs_set_stack_dir_data_len(dir_item, 0);
1450 btrfs_set_stack_dir_name_len(dir_item, name_len);
1451 btrfs_set_stack_dir_flags(dir_item, flags);
1452 memcpy((char *)(dir_item + 1), name, name_len);
1453
1454 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1455
1456 mutex_lock(&delayed_node->mutex);
1457
1458 if (delayed_node->index_item_leaves == 0 ||
1459 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1460 delayed_node->curr_index_batch_size = data_len;
1461 reserve_leaf_space = true;
1462 } else {
1463 delayed_node->curr_index_batch_size += data_len;
1464 reserve_leaf_space = false;
1465 }
1466
1467 if (reserve_leaf_space) {
1468 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1469 /*
1470 * Space was reserved for a dir index item insertion when we
1471 * started the transaction, so getting a failure here should be
1472 * impossible.
1473 */
1474 if (WARN_ON(ret)) {
1475 mutex_unlock(&delayed_node->mutex);
1476 btrfs_release_delayed_item(delayed_item);
1477 goto release_node;
1478 }
1479
1480 delayed_node->index_item_leaves++;
1481 } else if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
1482 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1483
1484 /*
1485 * Adding the new dir index item does not require touching another
1486 * leaf, so we can release 1 unit of metadata that was previously
1487 * reserved when starting the transaction. This applies only to
1488 * the case where we had a transaction start and excludes the
1489 * transaction join case (when replaying log trees).
1490 */
1491 trace_btrfs_space_reservation(fs_info, "transaction",
1492 trans->transid, bytes, 0);
1493 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1494 ASSERT(trans->bytes_reserved >= bytes);
1495 trans->bytes_reserved -= bytes;
1496 }
1497
1498 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1499 if (unlikely(ret)) {
1500 btrfs_err(trans->fs_info,
1501 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1502 name_len, name, delayed_node->root->root_key.objectid,
1503 delayed_node->inode_id, ret);
1504 BUG();
1505 }
1506 mutex_unlock(&delayed_node->mutex);
1507
1508release_node:
1509 btrfs_release_delayed_node(delayed_node);
1510 return ret;
1511}
1512
1513static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1514 struct btrfs_delayed_node *node,
1515 u64 index)
1516{
1517 struct btrfs_delayed_item *item;
1518
1519 mutex_lock(&node->mutex);
1520 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1521 if (!item) {
1522 mutex_unlock(&node->mutex);
1523 return 1;
1524 }
1525
1526 /*
1527 * For delayed items to insert, we track reserved metadata bytes based
1528 * on the number of leaves that we will use.
1529 * See btrfs_insert_delayed_dir_index() and
1530 * btrfs_delayed_item_reserve_metadata()).
1531 */
1532 ASSERT(item->bytes_reserved == 0);
1533 ASSERT(node->index_item_leaves > 0);
1534
1535 /*
1536 * If there's only one leaf reserved, we can decrement this item from the
1537 * current batch, otherwise we can not because we don't know which leaf
1538 * it belongs to. With the current limit on delayed items, we rarely
1539 * accumulate enough dir index items to fill more than one leaf (even
1540 * when using a leaf size of 4K).
1541 */
1542 if (node->index_item_leaves == 1) {
1543 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1544
1545 ASSERT(node->curr_index_batch_size >= data_len);
1546 node->curr_index_batch_size -= data_len;
1547 }
1548
1549 btrfs_release_delayed_item(item);
1550
1551 /* If we now have no more dir index items, we can release all leaves. */
1552 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1553 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1554 node->index_item_leaves = 0;
1555 }
1556
1557 mutex_unlock(&node->mutex);
1558 return 0;
1559}
1560
1561int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1562 struct btrfs_inode *dir, u64 index)
1563{
1564 struct btrfs_delayed_node *node;
1565 struct btrfs_delayed_item *item;
1566 int ret;
1567
1568 node = btrfs_get_or_create_delayed_node(dir);
1569 if (IS_ERR(node))
1570 return PTR_ERR(node);
1571
1572 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
1573 if (!ret)
1574 goto end;
1575
1576 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1577 if (!item) {
1578 ret = -ENOMEM;
1579 goto end;
1580 }
1581
1582 item->index = index;
1583
1584 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1585 /*
1586 * we have reserved enough space when we start a new transaction,
1587 * so reserving metadata failure is impossible.
1588 */
1589 if (ret < 0) {
1590 btrfs_err(trans->fs_info,
1591"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1592 btrfs_release_delayed_item(item);
1593 goto end;
1594 }
1595
1596 mutex_lock(&node->mutex);
1597 ret = __btrfs_add_delayed_item(node, item);
1598 if (unlikely(ret)) {
1599 btrfs_err(trans->fs_info,
1600 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1601 index, node->root->root_key.objectid,
1602 node->inode_id, ret);
1603 btrfs_delayed_item_release_metadata(dir->root, item);
1604 btrfs_release_delayed_item(item);
1605 }
1606 mutex_unlock(&node->mutex);
1607end:
1608 btrfs_release_delayed_node(node);
1609 return ret;
1610}
1611
1612int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1613{
1614 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1615
1616 if (!delayed_node)
1617 return -ENOENT;
1618
1619 /*
1620 * Since we have held i_mutex of this directory, it is impossible that
1621 * a new directory index is added into the delayed node and index_cnt
1622 * is updated now. So we needn't lock the delayed node.
1623 */
1624 if (!delayed_node->index_cnt) {
1625 btrfs_release_delayed_node(delayed_node);
1626 return -EINVAL;
1627 }
1628
1629 inode->index_cnt = delayed_node->index_cnt;
1630 btrfs_release_delayed_node(delayed_node);
1631 return 0;
1632}
1633
1634bool btrfs_readdir_get_delayed_items(struct inode *inode,
1635 struct list_head *ins_list,
1636 struct list_head *del_list)
1637{
1638 struct btrfs_delayed_node *delayed_node;
1639 struct btrfs_delayed_item *item;
1640
1641 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1642 if (!delayed_node)
1643 return false;
1644
1645 /*
1646 * We can only do one readdir with delayed items at a time because of
1647 * item->readdir_list.
1648 */
1649 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
1650 btrfs_inode_lock(BTRFS_I(inode), 0);
1651
1652 mutex_lock(&delayed_node->mutex);
1653 item = __btrfs_first_delayed_insertion_item(delayed_node);
1654 while (item) {
1655 refcount_inc(&item->refs);
1656 list_add_tail(&item->readdir_list, ins_list);
1657 item = __btrfs_next_delayed_item(item);
1658 }
1659
1660 item = __btrfs_first_delayed_deletion_item(delayed_node);
1661 while (item) {
1662 refcount_inc(&item->refs);
1663 list_add_tail(&item->readdir_list, del_list);
1664 item = __btrfs_next_delayed_item(item);
1665 }
1666 mutex_unlock(&delayed_node->mutex);
1667 /*
1668 * This delayed node is still cached in the btrfs inode, so refs
1669 * must be > 1 now, and we needn't check it is going to be freed
1670 * or not.
1671 *
1672 * Besides that, this function is used to read dir, we do not
1673 * insert/delete delayed items in this period. So we also needn't
1674 * requeue or dequeue this delayed node.
1675 */
1676 refcount_dec(&delayed_node->refs);
1677
1678 return true;
1679}
1680
1681void btrfs_readdir_put_delayed_items(struct inode *inode,
1682 struct list_head *ins_list,
1683 struct list_head *del_list)
1684{
1685 struct btrfs_delayed_item *curr, *next;
1686
1687 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1688 list_del(&curr->readdir_list);
1689 if (refcount_dec_and_test(&curr->refs))
1690 kfree(curr);
1691 }
1692
1693 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1694 list_del(&curr->readdir_list);
1695 if (refcount_dec_and_test(&curr->refs))
1696 kfree(curr);
1697 }
1698
1699 /*
1700 * The VFS is going to do up_read(), so we need to downgrade back to a
1701 * read lock.
1702 */
1703 downgrade_write(&inode->i_rwsem);
1704}
1705
1706int btrfs_should_delete_dir_index(struct list_head *del_list,
1707 u64 index)
1708{
1709 struct btrfs_delayed_item *curr;
1710 int ret = 0;
1711
1712 list_for_each_entry(curr, del_list, readdir_list) {
1713 if (curr->index > index)
1714 break;
1715 if (curr->index == index) {
1716 ret = 1;
1717 break;
1718 }
1719 }
1720 return ret;
1721}
1722
1723/*
1724 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1725 *
1726 */
1727int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1728 struct list_head *ins_list)
1729{
1730 struct btrfs_dir_item *di;
1731 struct btrfs_delayed_item *curr, *next;
1732 struct btrfs_key location;
1733 char *name;
1734 int name_len;
1735 int over = 0;
1736 unsigned char d_type;
1737
1738 if (list_empty(ins_list))
1739 return 0;
1740
1741 /*
1742 * Changing the data of the delayed item is impossible. So
1743 * we needn't lock them. And we have held i_mutex of the
1744 * directory, nobody can delete any directory indexes now.
1745 */
1746 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1747 list_del(&curr->readdir_list);
1748
1749 if (curr->index < ctx->pos) {
1750 if (refcount_dec_and_test(&curr->refs))
1751 kfree(curr);
1752 continue;
1753 }
1754
1755 ctx->pos = curr->index;
1756
1757 di = (struct btrfs_dir_item *)curr->data;
1758 name = (char *)(di + 1);
1759 name_len = btrfs_stack_dir_name_len(di);
1760
1761 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1762 btrfs_disk_key_to_cpu(&location, &di->location);
1763
1764 over = !dir_emit(ctx, name, name_len,
1765 location.objectid, d_type);
1766
1767 if (refcount_dec_and_test(&curr->refs))
1768 kfree(curr);
1769
1770 if (over)
1771 return 1;
1772 ctx->pos++;
1773 }
1774 return 0;
1775}
1776
1777static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1778 struct btrfs_inode_item *inode_item,
1779 struct inode *inode)
1780{
1781 u64 flags;
1782
1783 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1784 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1785 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1786 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1787 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1788 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1789 btrfs_set_stack_inode_generation(inode_item,
1790 BTRFS_I(inode)->generation);
1791 btrfs_set_stack_inode_sequence(inode_item,
1792 inode_peek_iversion(inode));
1793 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1794 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1795 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1796 BTRFS_I(inode)->ro_flags);
1797 btrfs_set_stack_inode_flags(inode_item, flags);
1798 btrfs_set_stack_inode_block_group(inode_item, 0);
1799
1800 btrfs_set_stack_timespec_sec(&inode_item->atime,
1801 inode->i_atime.tv_sec);
1802 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1803 inode->i_atime.tv_nsec);
1804
1805 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1806 inode->i_mtime.tv_sec);
1807 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1808 inode->i_mtime.tv_nsec);
1809
1810 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1811 inode->i_ctime.tv_sec);
1812 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1813 inode->i_ctime.tv_nsec);
1814
1815 btrfs_set_stack_timespec_sec(&inode_item->otime,
1816 BTRFS_I(inode)->i_otime.tv_sec);
1817 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1818 BTRFS_I(inode)->i_otime.tv_nsec);
1819}
1820
1821int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1822{
1823 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1824 struct btrfs_delayed_node *delayed_node;
1825 struct btrfs_inode_item *inode_item;
1826
1827 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1828 if (!delayed_node)
1829 return -ENOENT;
1830
1831 mutex_lock(&delayed_node->mutex);
1832 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1833 mutex_unlock(&delayed_node->mutex);
1834 btrfs_release_delayed_node(delayed_node);
1835 return -ENOENT;
1836 }
1837
1838 inode_item = &delayed_node->inode_item;
1839
1840 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1841 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1842 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1843 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1844 round_up(i_size_read(inode), fs_info->sectorsize));
1845 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1846 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1847 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1848 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1849 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1850
1851 inode_set_iversion_queried(inode,
1852 btrfs_stack_inode_sequence(inode_item));
1853 inode->i_rdev = 0;
1854 *rdev = btrfs_stack_inode_rdev(inode_item);
1855 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1856 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1857
1858 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1859 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1860
1861 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1862 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1863
1864 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1865 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1866
1867 BTRFS_I(inode)->i_otime.tv_sec =
1868 btrfs_stack_timespec_sec(&inode_item->otime);
1869 BTRFS_I(inode)->i_otime.tv_nsec =
1870 btrfs_stack_timespec_nsec(&inode_item->otime);
1871
1872 inode->i_generation = BTRFS_I(inode)->generation;
1873 BTRFS_I(inode)->index_cnt = (u64)-1;
1874
1875 mutex_unlock(&delayed_node->mutex);
1876 btrfs_release_delayed_node(delayed_node);
1877 return 0;
1878}
1879
1880int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1881 struct btrfs_root *root,
1882 struct btrfs_inode *inode)
1883{
1884 struct btrfs_delayed_node *delayed_node;
1885 int ret = 0;
1886
1887 delayed_node = btrfs_get_or_create_delayed_node(inode);
1888 if (IS_ERR(delayed_node))
1889 return PTR_ERR(delayed_node);
1890
1891 mutex_lock(&delayed_node->mutex);
1892 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1893 fill_stack_inode_item(trans, &delayed_node->inode_item,
1894 &inode->vfs_inode);
1895 goto release_node;
1896 }
1897
1898 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1899 if (ret)
1900 goto release_node;
1901
1902 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1903 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1904 delayed_node->count++;
1905 atomic_inc(&root->fs_info->delayed_root->items);
1906release_node:
1907 mutex_unlock(&delayed_node->mutex);
1908 btrfs_release_delayed_node(delayed_node);
1909 return ret;
1910}
1911
1912int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1913{
1914 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1915 struct btrfs_delayed_node *delayed_node;
1916
1917 /*
1918 * we don't do delayed inode updates during log recovery because it
1919 * leads to enospc problems. This means we also can't do
1920 * delayed inode refs
1921 */
1922 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1923 return -EAGAIN;
1924
1925 delayed_node = btrfs_get_or_create_delayed_node(inode);
1926 if (IS_ERR(delayed_node))
1927 return PTR_ERR(delayed_node);
1928
1929 /*
1930 * We don't reserve space for inode ref deletion is because:
1931 * - We ONLY do async inode ref deletion for the inode who has only
1932 * one link(i_nlink == 1), it means there is only one inode ref.
1933 * And in most case, the inode ref and the inode item are in the
1934 * same leaf, and we will deal with them at the same time.
1935 * Since we are sure we will reserve the space for the inode item,
1936 * it is unnecessary to reserve space for inode ref deletion.
1937 * - If the inode ref and the inode item are not in the same leaf,
1938 * We also needn't worry about enospc problem, because we reserve
1939 * much more space for the inode update than it needs.
1940 * - At the worst, we can steal some space from the global reservation.
1941 * It is very rare.
1942 */
1943 mutex_lock(&delayed_node->mutex);
1944 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1945 goto release_node;
1946
1947 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1948 delayed_node->count++;
1949 atomic_inc(&fs_info->delayed_root->items);
1950release_node:
1951 mutex_unlock(&delayed_node->mutex);
1952 btrfs_release_delayed_node(delayed_node);
1953 return 0;
1954}
1955
1956static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1957{
1958 struct btrfs_root *root = delayed_node->root;
1959 struct btrfs_fs_info *fs_info = root->fs_info;
1960 struct btrfs_delayed_item *curr_item, *prev_item;
1961
1962 mutex_lock(&delayed_node->mutex);
1963 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1964 while (curr_item) {
1965 prev_item = curr_item;
1966 curr_item = __btrfs_next_delayed_item(prev_item);
1967 btrfs_release_delayed_item(prev_item);
1968 }
1969
1970 if (delayed_node->index_item_leaves > 0) {
1971 btrfs_delayed_item_release_leaves(delayed_node,
1972 delayed_node->index_item_leaves);
1973 delayed_node->index_item_leaves = 0;
1974 }
1975
1976 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1977 while (curr_item) {
1978 btrfs_delayed_item_release_metadata(root, curr_item);
1979 prev_item = curr_item;
1980 curr_item = __btrfs_next_delayed_item(prev_item);
1981 btrfs_release_delayed_item(prev_item);
1982 }
1983
1984 btrfs_release_delayed_iref(delayed_node);
1985
1986 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1987 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1988 btrfs_release_delayed_inode(delayed_node);
1989 }
1990 mutex_unlock(&delayed_node->mutex);
1991}
1992
1993void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1994{
1995 struct btrfs_delayed_node *delayed_node;
1996
1997 delayed_node = btrfs_get_delayed_node(inode);
1998 if (!delayed_node)
1999 return;
2000
2001 __btrfs_kill_delayed_node(delayed_node);
2002 btrfs_release_delayed_node(delayed_node);
2003}
2004
2005void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2006{
2007 u64 inode_id = 0;
2008 struct btrfs_delayed_node *delayed_nodes[8];
2009 int i, n;
2010
2011 while (1) {
2012 spin_lock(&root->inode_lock);
2013 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
2014 (void **)delayed_nodes, inode_id,
2015 ARRAY_SIZE(delayed_nodes));
2016 if (!n) {
2017 spin_unlock(&root->inode_lock);
2018 break;
2019 }
2020
2021 inode_id = delayed_nodes[n - 1]->inode_id + 1;
2022 for (i = 0; i < n; i++) {
2023 /*
2024 * Don't increase refs in case the node is dead and
2025 * about to be removed from the tree in the loop below
2026 */
2027 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
2028 delayed_nodes[i] = NULL;
2029 }
2030 spin_unlock(&root->inode_lock);
2031
2032 for (i = 0; i < n; i++) {
2033 if (!delayed_nodes[i])
2034 continue;
2035 __btrfs_kill_delayed_node(delayed_nodes[i]);
2036 btrfs_release_delayed_node(delayed_nodes[i]);
2037 }
2038 }
2039}
2040
2041void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2042{
2043 struct btrfs_delayed_node *curr_node, *prev_node;
2044
2045 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2046 while (curr_node) {
2047 __btrfs_kill_delayed_node(curr_node);
2048
2049 prev_node = curr_node;
2050 curr_node = btrfs_next_delayed_node(curr_node);
2051 btrfs_release_delayed_node(prev_node);
2052 }
2053}
2054
2055void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2056 struct list_head *ins_list,
2057 struct list_head *del_list)
2058{
2059 struct btrfs_delayed_node *node;
2060 struct btrfs_delayed_item *item;
2061
2062 node = btrfs_get_delayed_node(inode);
2063 if (!node)
2064 return;
2065
2066 mutex_lock(&node->mutex);
2067 item = __btrfs_first_delayed_insertion_item(node);
2068 while (item) {
2069 /*
2070 * It's possible that the item is already in a log list. This
2071 * can happen in case two tasks are trying to log the same
2072 * directory. For example if we have tasks A and task B:
2073 *
2074 * Task A collected the delayed items into a log list while
2075 * under the inode's log_mutex (at btrfs_log_inode()), but it
2076 * only releases the items after logging the inodes they point
2077 * to (if they are new inodes), which happens after unlocking
2078 * the log mutex;
2079 *
2080 * Task B enters btrfs_log_inode() and acquires the log_mutex
2081 * of the same directory inode, before task B releases the
2082 * delayed items. This can happen for example when logging some
2083 * inode we need to trigger logging of its parent directory, so
2084 * logging two files that have the same parent directory can
2085 * lead to this.
2086 *
2087 * If this happens, just ignore delayed items already in a log
2088 * list. All the tasks logging the directory are under a log
2089 * transaction and whichever finishes first can not sync the log
2090 * before the other completes and leaves the log transaction.
2091 */
2092 if (!item->logged && list_empty(&item->log_list)) {
2093 refcount_inc(&item->refs);
2094 list_add_tail(&item->log_list, ins_list);
2095 }
2096 item = __btrfs_next_delayed_item(item);
2097 }
2098
2099 item = __btrfs_first_delayed_deletion_item(node);
2100 while (item) {
2101 /* It may be non-empty, for the same reason mentioned above. */
2102 if (!item->logged && list_empty(&item->log_list)) {
2103 refcount_inc(&item->refs);
2104 list_add_tail(&item->log_list, del_list);
2105 }
2106 item = __btrfs_next_delayed_item(item);
2107 }
2108 mutex_unlock(&node->mutex);
2109
2110 /*
2111 * We are called during inode logging, which means the inode is in use
2112 * and can not be evicted before we finish logging the inode. So we never
2113 * have the last reference on the delayed inode.
2114 * Also, we don't use btrfs_release_delayed_node() because that would
2115 * requeue the delayed inode (change its order in the list of prepared
2116 * nodes) and we don't want to do such change because we don't create or
2117 * delete delayed items.
2118 */
2119 ASSERT(refcount_read(&node->refs) > 1);
2120 refcount_dec(&node->refs);
2121}
2122
2123void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2124 struct list_head *ins_list,
2125 struct list_head *del_list)
2126{
2127 struct btrfs_delayed_node *node;
2128 struct btrfs_delayed_item *item;
2129 struct btrfs_delayed_item *next;
2130
2131 node = btrfs_get_delayed_node(inode);
2132 if (!node)
2133 return;
2134
2135 mutex_lock(&node->mutex);
2136
2137 list_for_each_entry_safe(item, next, ins_list, log_list) {
2138 item->logged = true;
2139 list_del_init(&item->log_list);
2140 if (refcount_dec_and_test(&item->refs))
2141 kfree(item);
2142 }
2143
2144 list_for_each_entry_safe(item, next, del_list, log_list) {
2145 item->logged = true;
2146 list_del_init(&item->log_list);
2147 if (refcount_dec_and_test(&item->refs))
2148 kfree(item);
2149 }
2150
2151 mutex_unlock(&node->mutex);
2152
2153 /*
2154 * We are called during inode logging, which means the inode is in use
2155 * and can not be evicted before we finish logging the inode. So we never
2156 * have the last reference on the delayed inode.
2157 * Also, we don't use btrfs_release_delayed_node() because that would
2158 * requeue the delayed inode (change its order in the list of prepared
2159 * nodes) and we don't want to do such change because we don't create or
2160 * delete delayed items.
2161 */
2162 ASSERT(refcount_read(&node->refs) > 1);
2163 refcount_dec(&node->refs);
2164}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include "ctree.h"
10#include "fs.h"
11#include "messages.h"
12#include "misc.h"
13#include "delayed-inode.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "qgroup.h"
17#include "locking.h"
18#include "inode-item.h"
19#include "space-info.h"
20#include "accessors.h"
21#include "file-item.h"
22
23#define BTRFS_DELAYED_WRITEBACK 512
24#define BTRFS_DELAYED_BACKGROUND 128
25#define BTRFS_DELAYED_BATCH 16
26
27static struct kmem_cache *delayed_node_cache;
28
29int __init btrfs_delayed_inode_init(void)
30{
31 delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32 if (!delayed_node_cache)
33 return -ENOMEM;
34 return 0;
35}
36
37void __cold btrfs_delayed_inode_exit(void)
38{
39 kmem_cache_destroy(delayed_node_cache);
40}
41
42void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43{
44 atomic_set(&delayed_root->items, 0);
45 atomic_set(&delayed_root->items_seq, 0);
46 delayed_root->nodes = 0;
47 spin_lock_init(&delayed_root->lock);
48 init_waitqueue_head(&delayed_root->wait);
49 INIT_LIST_HEAD(&delayed_root->node_list);
50 INIT_LIST_HEAD(&delayed_root->prepare_list);
51}
52
53static inline void btrfs_init_delayed_node(
54 struct btrfs_delayed_node *delayed_node,
55 struct btrfs_root *root, u64 inode_id)
56{
57 delayed_node->root = root;
58 delayed_node->inode_id = inode_id;
59 refcount_set(&delayed_node->refs, 0);
60 delayed_node->ins_root = RB_ROOT_CACHED;
61 delayed_node->del_root = RB_ROOT_CACHED;
62 mutex_init(&delayed_node->mutex);
63 INIT_LIST_HEAD(&delayed_node->n_list);
64 INIT_LIST_HEAD(&delayed_node->p_list);
65}
66
67static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 struct btrfs_inode *btrfs_inode)
69{
70 struct btrfs_root *root = btrfs_inode->root;
71 u64 ino = btrfs_ino(btrfs_inode);
72 struct btrfs_delayed_node *node;
73
74 node = READ_ONCE(btrfs_inode->delayed_node);
75 if (node) {
76 refcount_inc(&node->refs);
77 return node;
78 }
79
80 spin_lock(&root->inode_lock);
81 node = xa_load(&root->delayed_nodes, ino);
82
83 if (node) {
84 if (btrfs_inode->delayed_node) {
85 refcount_inc(&node->refs); /* can be accessed */
86 BUG_ON(btrfs_inode->delayed_node != node);
87 spin_unlock(&root->inode_lock);
88 return node;
89 }
90
91 /*
92 * It's possible that we're racing into the middle of removing
93 * this node from the xarray. In this case, the refcount
94 * was zero and it should never go back to one. Just return
95 * NULL like it was never in the xarray at all; our release
96 * function is in the process of removing it.
97 *
98 * Some implementations of refcount_inc refuse to bump the
99 * refcount once it has hit zero. If we don't do this dance
100 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 * of actually bumping the refcount.
102 *
103 * If this node is properly in the xarray, we want to bump the
104 * refcount twice, once for the inode and once for this get
105 * operation.
106 */
107 if (refcount_inc_not_zero(&node->refs)) {
108 refcount_inc(&node->refs);
109 btrfs_inode->delayed_node = node;
110 } else {
111 node = NULL;
112 }
113
114 spin_unlock(&root->inode_lock);
115 return node;
116 }
117 spin_unlock(&root->inode_lock);
118
119 return NULL;
120}
121
122/* Will return either the node or PTR_ERR(-ENOMEM) */
123static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124 struct btrfs_inode *btrfs_inode)
125{
126 struct btrfs_delayed_node *node;
127 struct btrfs_root *root = btrfs_inode->root;
128 u64 ino = btrfs_ino(btrfs_inode);
129 int ret;
130 void *ptr;
131
132again:
133 node = btrfs_get_delayed_node(btrfs_inode);
134 if (node)
135 return node;
136
137 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
138 if (!node)
139 return ERR_PTR(-ENOMEM);
140 btrfs_init_delayed_node(node, root, ino);
141
142 /* Cached in the inode and can be accessed. */
143 refcount_set(&node->refs, 2);
144
145 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
146 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
147 if (ret == -ENOMEM) {
148 kmem_cache_free(delayed_node_cache, node);
149 return ERR_PTR(-ENOMEM);
150 }
151 spin_lock(&root->inode_lock);
152 ptr = xa_load(&root->delayed_nodes, ino);
153 if (ptr) {
154 /* Somebody inserted it, go back and read it. */
155 spin_unlock(&root->inode_lock);
156 kmem_cache_free(delayed_node_cache, node);
157 node = NULL;
158 goto again;
159 }
160 ptr = xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
161 ASSERT(xa_err(ptr) != -EINVAL);
162 ASSERT(xa_err(ptr) != -ENOMEM);
163 ASSERT(ptr == NULL);
164 btrfs_inode->delayed_node = node;
165 spin_unlock(&root->inode_lock);
166
167 return node;
168}
169
170/*
171 * Call it when holding delayed_node->mutex
172 *
173 * If mod = 1, add this node into the prepared list.
174 */
175static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
176 struct btrfs_delayed_node *node,
177 int mod)
178{
179 spin_lock(&root->lock);
180 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
181 if (!list_empty(&node->p_list))
182 list_move_tail(&node->p_list, &root->prepare_list);
183 else if (mod)
184 list_add_tail(&node->p_list, &root->prepare_list);
185 } else {
186 list_add_tail(&node->n_list, &root->node_list);
187 list_add_tail(&node->p_list, &root->prepare_list);
188 refcount_inc(&node->refs); /* inserted into list */
189 root->nodes++;
190 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
191 }
192 spin_unlock(&root->lock);
193}
194
195/* Call it when holding delayed_node->mutex */
196static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
197 struct btrfs_delayed_node *node)
198{
199 spin_lock(&root->lock);
200 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
201 root->nodes--;
202 refcount_dec(&node->refs); /* not in the list */
203 list_del_init(&node->n_list);
204 if (!list_empty(&node->p_list))
205 list_del_init(&node->p_list);
206 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
207 }
208 spin_unlock(&root->lock);
209}
210
211static struct btrfs_delayed_node *btrfs_first_delayed_node(
212 struct btrfs_delayed_root *delayed_root)
213{
214 struct list_head *p;
215 struct btrfs_delayed_node *node = NULL;
216
217 spin_lock(&delayed_root->lock);
218 if (list_empty(&delayed_root->node_list))
219 goto out;
220
221 p = delayed_root->node_list.next;
222 node = list_entry(p, struct btrfs_delayed_node, n_list);
223 refcount_inc(&node->refs);
224out:
225 spin_unlock(&delayed_root->lock);
226
227 return node;
228}
229
230static struct btrfs_delayed_node *btrfs_next_delayed_node(
231 struct btrfs_delayed_node *node)
232{
233 struct btrfs_delayed_root *delayed_root;
234 struct list_head *p;
235 struct btrfs_delayed_node *next = NULL;
236
237 delayed_root = node->root->fs_info->delayed_root;
238 spin_lock(&delayed_root->lock);
239 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
240 /* not in the list */
241 if (list_empty(&delayed_root->node_list))
242 goto out;
243 p = delayed_root->node_list.next;
244 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
245 goto out;
246 else
247 p = node->n_list.next;
248
249 next = list_entry(p, struct btrfs_delayed_node, n_list);
250 refcount_inc(&next->refs);
251out:
252 spin_unlock(&delayed_root->lock);
253
254 return next;
255}
256
257static void __btrfs_release_delayed_node(
258 struct btrfs_delayed_node *delayed_node,
259 int mod)
260{
261 struct btrfs_delayed_root *delayed_root;
262
263 if (!delayed_node)
264 return;
265
266 delayed_root = delayed_node->root->fs_info->delayed_root;
267
268 mutex_lock(&delayed_node->mutex);
269 if (delayed_node->count)
270 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
271 else
272 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
273 mutex_unlock(&delayed_node->mutex);
274
275 if (refcount_dec_and_test(&delayed_node->refs)) {
276 struct btrfs_root *root = delayed_node->root;
277
278 spin_lock(&root->inode_lock);
279 /*
280 * Once our refcount goes to zero, nobody is allowed to bump it
281 * back up. We can delete it now.
282 */
283 ASSERT(refcount_read(&delayed_node->refs) == 0);
284 xa_erase(&root->delayed_nodes, delayed_node->inode_id);
285 spin_unlock(&root->inode_lock);
286 kmem_cache_free(delayed_node_cache, delayed_node);
287 }
288}
289
290static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
291{
292 __btrfs_release_delayed_node(node, 0);
293}
294
295static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
296 struct btrfs_delayed_root *delayed_root)
297{
298 struct list_head *p;
299 struct btrfs_delayed_node *node = NULL;
300
301 spin_lock(&delayed_root->lock);
302 if (list_empty(&delayed_root->prepare_list))
303 goto out;
304
305 p = delayed_root->prepare_list.next;
306 list_del_init(p);
307 node = list_entry(p, struct btrfs_delayed_node, p_list);
308 refcount_inc(&node->refs);
309out:
310 spin_unlock(&delayed_root->lock);
311
312 return node;
313}
314
315static inline void btrfs_release_prepared_delayed_node(
316 struct btrfs_delayed_node *node)
317{
318 __btrfs_release_delayed_node(node, 1);
319}
320
321static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
322 struct btrfs_delayed_node *node,
323 enum btrfs_delayed_item_type type)
324{
325 struct btrfs_delayed_item *item;
326
327 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
328 if (item) {
329 item->data_len = data_len;
330 item->type = type;
331 item->bytes_reserved = 0;
332 item->delayed_node = node;
333 RB_CLEAR_NODE(&item->rb_node);
334 INIT_LIST_HEAD(&item->log_list);
335 item->logged = false;
336 refcount_set(&item->refs, 1);
337 }
338 return item;
339}
340
341/*
342 * Look up the delayed item by key.
343 *
344 * @delayed_node: pointer to the delayed node
345 * @index: the dir index value to lookup (offset of a dir index key)
346 *
347 * Note: if we don't find the right item, we will return the prev item and
348 * the next item.
349 */
350static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
351 struct rb_root *root,
352 u64 index)
353{
354 struct rb_node *node = root->rb_node;
355 struct btrfs_delayed_item *delayed_item = NULL;
356
357 while (node) {
358 delayed_item = rb_entry(node, struct btrfs_delayed_item,
359 rb_node);
360 if (delayed_item->index < index)
361 node = node->rb_right;
362 else if (delayed_item->index > index)
363 node = node->rb_left;
364 else
365 return delayed_item;
366 }
367
368 return NULL;
369}
370
371static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
372 struct btrfs_delayed_item *ins)
373{
374 struct rb_node **p, *node;
375 struct rb_node *parent_node = NULL;
376 struct rb_root_cached *root;
377 struct btrfs_delayed_item *item;
378 bool leftmost = true;
379
380 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
381 root = &delayed_node->ins_root;
382 else
383 root = &delayed_node->del_root;
384
385 p = &root->rb_root.rb_node;
386 node = &ins->rb_node;
387
388 while (*p) {
389 parent_node = *p;
390 item = rb_entry(parent_node, struct btrfs_delayed_item,
391 rb_node);
392
393 if (item->index < ins->index) {
394 p = &(*p)->rb_right;
395 leftmost = false;
396 } else if (item->index > ins->index) {
397 p = &(*p)->rb_left;
398 } else {
399 return -EEXIST;
400 }
401 }
402
403 rb_link_node(node, parent_node, p);
404 rb_insert_color_cached(node, root, leftmost);
405
406 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
407 ins->index >= delayed_node->index_cnt)
408 delayed_node->index_cnt = ins->index + 1;
409
410 delayed_node->count++;
411 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
412 return 0;
413}
414
415static void finish_one_item(struct btrfs_delayed_root *delayed_root)
416{
417 int seq = atomic_inc_return(&delayed_root->items_seq);
418
419 /* atomic_dec_return implies a barrier */
420 if ((atomic_dec_return(&delayed_root->items) <
421 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
422 cond_wake_up_nomb(&delayed_root->wait);
423}
424
425static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
426{
427 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
428 struct rb_root_cached *root;
429 struct btrfs_delayed_root *delayed_root;
430
431 /* Not inserted, ignore it. */
432 if (RB_EMPTY_NODE(&delayed_item->rb_node))
433 return;
434
435 /* If it's in a rbtree, then we need to have delayed node locked. */
436 lockdep_assert_held(&delayed_node->mutex);
437
438 delayed_root = delayed_node->root->fs_info->delayed_root;
439
440 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
441 root = &delayed_node->ins_root;
442 else
443 root = &delayed_node->del_root;
444
445 rb_erase_cached(&delayed_item->rb_node, root);
446 RB_CLEAR_NODE(&delayed_item->rb_node);
447 delayed_node->count--;
448
449 finish_one_item(delayed_root);
450}
451
452static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
453{
454 if (item) {
455 __btrfs_remove_delayed_item(item);
456 if (refcount_dec_and_test(&item->refs))
457 kfree(item);
458 }
459}
460
461static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
462 struct btrfs_delayed_node *delayed_node)
463{
464 struct rb_node *p;
465 struct btrfs_delayed_item *item = NULL;
466
467 p = rb_first_cached(&delayed_node->ins_root);
468 if (p)
469 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
470
471 return item;
472}
473
474static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
475 struct btrfs_delayed_node *delayed_node)
476{
477 struct rb_node *p;
478 struct btrfs_delayed_item *item = NULL;
479
480 p = rb_first_cached(&delayed_node->del_root);
481 if (p)
482 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
483
484 return item;
485}
486
487static struct btrfs_delayed_item *__btrfs_next_delayed_item(
488 struct btrfs_delayed_item *item)
489{
490 struct rb_node *p;
491 struct btrfs_delayed_item *next = NULL;
492
493 p = rb_next(&item->rb_node);
494 if (p)
495 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
496
497 return next;
498}
499
500static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
501 struct btrfs_delayed_item *item)
502{
503 struct btrfs_block_rsv *src_rsv;
504 struct btrfs_block_rsv *dst_rsv;
505 struct btrfs_fs_info *fs_info = trans->fs_info;
506 u64 num_bytes;
507 int ret;
508
509 if (!trans->bytes_reserved)
510 return 0;
511
512 src_rsv = trans->block_rsv;
513 dst_rsv = &fs_info->delayed_block_rsv;
514
515 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
516
517 /*
518 * Here we migrate space rsv from transaction rsv, since have already
519 * reserved space when starting a transaction. So no need to reserve
520 * qgroup space here.
521 */
522 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
523 if (!ret) {
524 trace_btrfs_space_reservation(fs_info, "delayed_item",
525 item->delayed_node->inode_id,
526 num_bytes, 1);
527 /*
528 * For insertions we track reserved metadata space by accounting
529 * for the number of leaves that will be used, based on the delayed
530 * node's curr_index_batch_size and index_item_leaves fields.
531 */
532 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
533 item->bytes_reserved = num_bytes;
534 }
535
536 return ret;
537}
538
539static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
540 struct btrfs_delayed_item *item)
541{
542 struct btrfs_block_rsv *rsv;
543 struct btrfs_fs_info *fs_info = root->fs_info;
544
545 if (!item->bytes_reserved)
546 return;
547
548 rsv = &fs_info->delayed_block_rsv;
549 /*
550 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
551 * to release/reserve qgroup space.
552 */
553 trace_btrfs_space_reservation(fs_info, "delayed_item",
554 item->delayed_node->inode_id,
555 item->bytes_reserved, 0);
556 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
557}
558
559static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
560 unsigned int num_leaves)
561{
562 struct btrfs_fs_info *fs_info = node->root->fs_info;
563 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
564
565 /* There are no space reservations during log replay, bail out. */
566 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
567 return;
568
569 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
570 bytes, 0);
571 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
572}
573
574static int btrfs_delayed_inode_reserve_metadata(
575 struct btrfs_trans_handle *trans,
576 struct btrfs_root *root,
577 struct btrfs_delayed_node *node)
578{
579 struct btrfs_fs_info *fs_info = root->fs_info;
580 struct btrfs_block_rsv *src_rsv;
581 struct btrfs_block_rsv *dst_rsv;
582 u64 num_bytes;
583 int ret;
584
585 src_rsv = trans->block_rsv;
586 dst_rsv = &fs_info->delayed_block_rsv;
587
588 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
589
590 /*
591 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
592 * which doesn't reserve space for speed. This is a problem since we
593 * still need to reserve space for this update, so try to reserve the
594 * space.
595 *
596 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
597 * we always reserve enough to update the inode item.
598 */
599 if (!src_rsv || (!trans->bytes_reserved &&
600 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
601 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
602 BTRFS_QGROUP_RSV_META_PREALLOC, true);
603 if (ret < 0)
604 return ret;
605 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
606 BTRFS_RESERVE_NO_FLUSH);
607 /* NO_FLUSH could only fail with -ENOSPC */
608 ASSERT(ret == 0 || ret == -ENOSPC);
609 if (ret)
610 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
611 } else {
612 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
613 }
614
615 if (!ret) {
616 trace_btrfs_space_reservation(fs_info, "delayed_inode",
617 node->inode_id, num_bytes, 1);
618 node->bytes_reserved = num_bytes;
619 }
620
621 return ret;
622}
623
624static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
625 struct btrfs_delayed_node *node,
626 bool qgroup_free)
627{
628 struct btrfs_block_rsv *rsv;
629
630 if (!node->bytes_reserved)
631 return;
632
633 rsv = &fs_info->delayed_block_rsv;
634 trace_btrfs_space_reservation(fs_info, "delayed_inode",
635 node->inode_id, node->bytes_reserved, 0);
636 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
637 if (qgroup_free)
638 btrfs_qgroup_free_meta_prealloc(node->root,
639 node->bytes_reserved);
640 else
641 btrfs_qgroup_convert_reserved_meta(node->root,
642 node->bytes_reserved);
643 node->bytes_reserved = 0;
644}
645
646/*
647 * Insert a single delayed item or a batch of delayed items, as many as possible
648 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
649 * in the rbtree, and if there's a gap between two consecutive dir index items,
650 * then it means at some point we had delayed dir indexes to add but they got
651 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
652 * into the subvolume tree. Dir index keys also have their offsets coming from a
653 * monotonically increasing counter, so we can't get new keys with an offset that
654 * fits within a gap between delayed dir index items.
655 */
656static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 struct btrfs_delayed_item *first_item)
660{
661 struct btrfs_fs_info *fs_info = root->fs_info;
662 struct btrfs_delayed_node *node = first_item->delayed_node;
663 LIST_HEAD(item_list);
664 struct btrfs_delayed_item *curr;
665 struct btrfs_delayed_item *next;
666 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
667 struct btrfs_item_batch batch;
668 struct btrfs_key first_key;
669 const u32 first_data_size = first_item->data_len;
670 int total_size;
671 char *ins_data = NULL;
672 int ret;
673 bool continuous_keys_only = false;
674
675 lockdep_assert_held(&node->mutex);
676
677 /*
678 * During normal operation the delayed index offset is continuously
679 * increasing, so we can batch insert all items as there will not be any
680 * overlapping keys in the tree.
681 *
682 * The exception to this is log replay, where we may have interleaved
683 * offsets in the tree, so our batch needs to be continuous keys only in
684 * order to ensure we do not end up with out of order items in our leaf.
685 */
686 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
687 continuous_keys_only = true;
688
689 /*
690 * For delayed items to insert, we track reserved metadata bytes based
691 * on the number of leaves that we will use.
692 * See btrfs_insert_delayed_dir_index() and
693 * btrfs_delayed_item_reserve_metadata()).
694 */
695 ASSERT(first_item->bytes_reserved == 0);
696
697 list_add_tail(&first_item->tree_list, &item_list);
698 batch.total_data_size = first_data_size;
699 batch.nr = 1;
700 total_size = first_data_size + sizeof(struct btrfs_item);
701 curr = first_item;
702
703 while (true) {
704 int next_size;
705
706 next = __btrfs_next_delayed_item(curr);
707 if (!next)
708 break;
709
710 /*
711 * We cannot allow gaps in the key space if we're doing log
712 * replay.
713 */
714 if (continuous_keys_only && (next->index != curr->index + 1))
715 break;
716
717 ASSERT(next->bytes_reserved == 0);
718
719 next_size = next->data_len + sizeof(struct btrfs_item);
720 if (total_size + next_size > max_size)
721 break;
722
723 list_add_tail(&next->tree_list, &item_list);
724 batch.nr++;
725 total_size += next_size;
726 batch.total_data_size += next->data_len;
727 curr = next;
728 }
729
730 if (batch.nr == 1) {
731 first_key.objectid = node->inode_id;
732 first_key.type = BTRFS_DIR_INDEX_KEY;
733 first_key.offset = first_item->index;
734 batch.keys = &first_key;
735 batch.data_sizes = &first_data_size;
736 } else {
737 struct btrfs_key *ins_keys;
738 u32 *ins_sizes;
739 int i = 0;
740
741 ins_data = kmalloc(batch.nr * sizeof(u32) +
742 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
743 if (!ins_data) {
744 ret = -ENOMEM;
745 goto out;
746 }
747 ins_sizes = (u32 *)ins_data;
748 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
749 batch.keys = ins_keys;
750 batch.data_sizes = ins_sizes;
751 list_for_each_entry(curr, &item_list, tree_list) {
752 ins_keys[i].objectid = node->inode_id;
753 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
754 ins_keys[i].offset = curr->index;
755 ins_sizes[i] = curr->data_len;
756 i++;
757 }
758 }
759
760 ret = btrfs_insert_empty_items(trans, root, path, &batch);
761 if (ret)
762 goto out;
763
764 list_for_each_entry(curr, &item_list, tree_list) {
765 char *data_ptr;
766
767 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
768 write_extent_buffer(path->nodes[0], &curr->data,
769 (unsigned long)data_ptr, curr->data_len);
770 path->slots[0]++;
771 }
772
773 /*
774 * Now release our path before releasing the delayed items and their
775 * metadata reservations, so that we don't block other tasks for more
776 * time than needed.
777 */
778 btrfs_release_path(path);
779
780 ASSERT(node->index_item_leaves > 0);
781
782 /*
783 * For normal operations we will batch an entire leaf's worth of delayed
784 * items, so if there are more items to process we can decrement
785 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
786 *
787 * However for log replay we may not have inserted an entire leaf's
788 * worth of items, we may have not had continuous items, so decrementing
789 * here would mess up the index_item_leaves accounting. For this case
790 * only clean up the accounting when there are no items left.
791 */
792 if (next && !continuous_keys_only) {
793 /*
794 * We inserted one batch of items into a leaf a there are more
795 * items to flush in a future batch, now release one unit of
796 * metadata space from the delayed block reserve, corresponding
797 * the leaf we just flushed to.
798 */
799 btrfs_delayed_item_release_leaves(node, 1);
800 node->index_item_leaves--;
801 } else if (!next) {
802 /*
803 * There are no more items to insert. We can have a number of
804 * reserved leaves > 1 here - this happens when many dir index
805 * items are added and then removed before they are flushed (file
806 * names with a very short life, never span a transaction). So
807 * release all remaining leaves.
808 */
809 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
810 node->index_item_leaves = 0;
811 }
812
813 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
814 list_del(&curr->tree_list);
815 btrfs_release_delayed_item(curr);
816 }
817out:
818 kfree(ins_data);
819 return ret;
820}
821
822static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
823 struct btrfs_path *path,
824 struct btrfs_root *root,
825 struct btrfs_delayed_node *node)
826{
827 int ret = 0;
828
829 while (ret == 0) {
830 struct btrfs_delayed_item *curr;
831
832 mutex_lock(&node->mutex);
833 curr = __btrfs_first_delayed_insertion_item(node);
834 if (!curr) {
835 mutex_unlock(&node->mutex);
836 break;
837 }
838 ret = btrfs_insert_delayed_item(trans, root, path, curr);
839 mutex_unlock(&node->mutex);
840 }
841
842 return ret;
843}
844
845static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
846 struct btrfs_root *root,
847 struct btrfs_path *path,
848 struct btrfs_delayed_item *item)
849{
850 const u64 ino = item->delayed_node->inode_id;
851 struct btrfs_fs_info *fs_info = root->fs_info;
852 struct btrfs_delayed_item *curr, *next;
853 struct extent_buffer *leaf = path->nodes[0];
854 LIST_HEAD(batch_list);
855 int nitems, slot, last_slot;
856 int ret;
857 u64 total_reserved_size = item->bytes_reserved;
858
859 ASSERT(leaf != NULL);
860
861 slot = path->slots[0];
862 last_slot = btrfs_header_nritems(leaf) - 1;
863 /*
864 * Our caller always gives us a path pointing to an existing item, so
865 * this can not happen.
866 */
867 ASSERT(slot <= last_slot);
868 if (WARN_ON(slot > last_slot))
869 return -ENOENT;
870
871 nitems = 1;
872 curr = item;
873 list_add_tail(&curr->tree_list, &batch_list);
874
875 /*
876 * Keep checking if the next delayed item matches the next item in the
877 * leaf - if so, we can add it to the batch of items to delete from the
878 * leaf.
879 */
880 while (slot < last_slot) {
881 struct btrfs_key key;
882
883 next = __btrfs_next_delayed_item(curr);
884 if (!next)
885 break;
886
887 slot++;
888 btrfs_item_key_to_cpu(leaf, &key, slot);
889 if (key.objectid != ino ||
890 key.type != BTRFS_DIR_INDEX_KEY ||
891 key.offset != next->index)
892 break;
893 nitems++;
894 curr = next;
895 list_add_tail(&curr->tree_list, &batch_list);
896 total_reserved_size += curr->bytes_reserved;
897 }
898
899 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
900 if (ret)
901 return ret;
902
903 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
904 if (total_reserved_size > 0) {
905 /*
906 * Check btrfs_delayed_item_reserve_metadata() to see why we
907 * don't need to release/reserve qgroup space.
908 */
909 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
910 total_reserved_size, 0);
911 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
912 total_reserved_size, NULL);
913 }
914
915 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
916 list_del(&curr->tree_list);
917 btrfs_release_delayed_item(curr);
918 }
919
920 return 0;
921}
922
923static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
924 struct btrfs_path *path,
925 struct btrfs_root *root,
926 struct btrfs_delayed_node *node)
927{
928 struct btrfs_key key;
929 int ret = 0;
930
931 key.objectid = node->inode_id;
932 key.type = BTRFS_DIR_INDEX_KEY;
933
934 while (ret == 0) {
935 struct btrfs_delayed_item *item;
936
937 mutex_lock(&node->mutex);
938 item = __btrfs_first_delayed_deletion_item(node);
939 if (!item) {
940 mutex_unlock(&node->mutex);
941 break;
942 }
943
944 key.offset = item->index;
945 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
946 if (ret > 0) {
947 /*
948 * There's no matching item in the leaf. This means we
949 * have already deleted this item in a past run of the
950 * delayed items. We ignore errors when running delayed
951 * items from an async context, through a work queue job
952 * running btrfs_async_run_delayed_root(), and don't
953 * release delayed items that failed to complete. This
954 * is because we will retry later, and at transaction
955 * commit time we always run delayed items and will
956 * then deal with errors if they fail to run again.
957 *
958 * So just release delayed items for which we can't find
959 * an item in the tree, and move to the next item.
960 */
961 btrfs_release_path(path);
962 btrfs_release_delayed_item(item);
963 ret = 0;
964 } else if (ret == 0) {
965 ret = btrfs_batch_delete_items(trans, root, path, item);
966 btrfs_release_path(path);
967 }
968
969 /*
970 * We unlock and relock on each iteration, this is to prevent
971 * blocking other tasks for too long while we are being run from
972 * the async context (work queue job). Those tasks are typically
973 * running system calls like creat/mkdir/rename/unlink/etc which
974 * need to add delayed items to this delayed node.
975 */
976 mutex_unlock(&node->mutex);
977 }
978
979 return ret;
980}
981
982static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
983{
984 struct btrfs_delayed_root *delayed_root;
985
986 if (delayed_node &&
987 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
988 ASSERT(delayed_node->root);
989 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
990 delayed_node->count--;
991
992 delayed_root = delayed_node->root->fs_info->delayed_root;
993 finish_one_item(delayed_root);
994 }
995}
996
997static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
998{
999
1000 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
1001 struct btrfs_delayed_root *delayed_root;
1002
1003 ASSERT(delayed_node->root);
1004 delayed_node->count--;
1005
1006 delayed_root = delayed_node->root->fs_info->delayed_root;
1007 finish_one_item(delayed_root);
1008 }
1009}
1010
1011static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1012 struct btrfs_root *root,
1013 struct btrfs_path *path,
1014 struct btrfs_delayed_node *node)
1015{
1016 struct btrfs_fs_info *fs_info = root->fs_info;
1017 struct btrfs_key key;
1018 struct btrfs_inode_item *inode_item;
1019 struct extent_buffer *leaf;
1020 int mod;
1021 int ret;
1022
1023 key.objectid = node->inode_id;
1024 key.type = BTRFS_INODE_ITEM_KEY;
1025 key.offset = 0;
1026
1027 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1028 mod = -1;
1029 else
1030 mod = 1;
1031
1032 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1033 if (ret > 0)
1034 ret = -ENOENT;
1035 if (ret < 0)
1036 goto out;
1037
1038 leaf = path->nodes[0];
1039 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1040 struct btrfs_inode_item);
1041 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1042 sizeof(struct btrfs_inode_item));
1043 btrfs_mark_buffer_dirty(trans, leaf);
1044
1045 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1046 goto out;
1047
1048 /*
1049 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1050 * only one ref left. Check if the next item is an INODE_REF/EXTREF.
1051 *
1052 * But if we're the last item already, release and search for the last
1053 * INODE_REF/EXTREF.
1054 */
1055 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1056 key.objectid = node->inode_id;
1057 key.type = BTRFS_INODE_EXTREF_KEY;
1058 key.offset = (u64)-1;
1059
1060 btrfs_release_path(path);
1061 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1062 if (ret < 0)
1063 goto err_out;
1064 ASSERT(ret > 0);
1065 ASSERT(path->slots[0] > 0);
1066 ret = 0;
1067 path->slots[0]--;
1068 leaf = path->nodes[0];
1069 } else {
1070 path->slots[0]++;
1071 }
1072 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1073 if (key.objectid != node->inode_id)
1074 goto out;
1075 if (key.type != BTRFS_INODE_REF_KEY &&
1076 key.type != BTRFS_INODE_EXTREF_KEY)
1077 goto out;
1078
1079 /*
1080 * Delayed iref deletion is for the inode who has only one link,
1081 * so there is only one iref. The case that several irefs are
1082 * in the same item doesn't exist.
1083 */
1084 ret = btrfs_del_item(trans, root, path);
1085out:
1086 btrfs_release_delayed_iref(node);
1087 btrfs_release_path(path);
1088err_out:
1089 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1090 btrfs_release_delayed_inode(node);
1091
1092 /*
1093 * If we fail to update the delayed inode we need to abort the
1094 * transaction, because we could leave the inode with the improper
1095 * counts behind.
1096 */
1097 if (ret && ret != -ENOENT)
1098 btrfs_abort_transaction(trans, ret);
1099
1100 return ret;
1101}
1102
1103static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1104 struct btrfs_root *root,
1105 struct btrfs_path *path,
1106 struct btrfs_delayed_node *node)
1107{
1108 int ret;
1109
1110 mutex_lock(&node->mutex);
1111 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1112 mutex_unlock(&node->mutex);
1113 return 0;
1114 }
1115
1116 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1117 mutex_unlock(&node->mutex);
1118 return ret;
1119}
1120
1121static inline int
1122__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1123 struct btrfs_path *path,
1124 struct btrfs_delayed_node *node)
1125{
1126 int ret;
1127
1128 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1129 if (ret)
1130 return ret;
1131
1132 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1133 if (ret)
1134 return ret;
1135
1136 ret = btrfs_record_root_in_trans(trans, node->root);
1137 if (ret)
1138 return ret;
1139 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1140 return ret;
1141}
1142
1143/*
1144 * Called when committing the transaction.
1145 * Returns 0 on success.
1146 * Returns < 0 on error and returns with an aborted transaction with any
1147 * outstanding delayed items cleaned up.
1148 */
1149static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1150{
1151 struct btrfs_fs_info *fs_info = trans->fs_info;
1152 struct btrfs_delayed_root *delayed_root;
1153 struct btrfs_delayed_node *curr_node, *prev_node;
1154 struct btrfs_path *path;
1155 struct btrfs_block_rsv *block_rsv;
1156 int ret = 0;
1157 bool count = (nr > 0);
1158
1159 if (TRANS_ABORTED(trans))
1160 return -EIO;
1161
1162 path = btrfs_alloc_path();
1163 if (!path)
1164 return -ENOMEM;
1165
1166 block_rsv = trans->block_rsv;
1167 trans->block_rsv = &fs_info->delayed_block_rsv;
1168
1169 delayed_root = fs_info->delayed_root;
1170
1171 curr_node = btrfs_first_delayed_node(delayed_root);
1172 while (curr_node && (!count || nr--)) {
1173 ret = __btrfs_commit_inode_delayed_items(trans, path,
1174 curr_node);
1175 if (ret) {
1176 btrfs_abort_transaction(trans, ret);
1177 break;
1178 }
1179
1180 prev_node = curr_node;
1181 curr_node = btrfs_next_delayed_node(curr_node);
1182 /*
1183 * See the comment below about releasing path before releasing
1184 * node. If the commit of delayed items was successful the path
1185 * should always be released, but in case of an error, it may
1186 * point to locked extent buffers (a leaf at the very least).
1187 */
1188 ASSERT(path->nodes[0] == NULL);
1189 btrfs_release_delayed_node(prev_node);
1190 }
1191
1192 /*
1193 * Release the path to avoid a potential deadlock and lockdep splat when
1194 * releasing the delayed node, as that requires taking the delayed node's
1195 * mutex. If another task starts running delayed items before we take
1196 * the mutex, it will first lock the mutex and then it may try to lock
1197 * the same btree path (leaf).
1198 */
1199 btrfs_free_path(path);
1200
1201 if (curr_node)
1202 btrfs_release_delayed_node(curr_node);
1203 trans->block_rsv = block_rsv;
1204
1205 return ret;
1206}
1207
1208int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1209{
1210 return __btrfs_run_delayed_items(trans, -1);
1211}
1212
1213int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1214{
1215 return __btrfs_run_delayed_items(trans, nr);
1216}
1217
1218int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1219 struct btrfs_inode *inode)
1220{
1221 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1222 struct btrfs_path *path;
1223 struct btrfs_block_rsv *block_rsv;
1224 int ret;
1225
1226 if (!delayed_node)
1227 return 0;
1228
1229 mutex_lock(&delayed_node->mutex);
1230 if (!delayed_node->count) {
1231 mutex_unlock(&delayed_node->mutex);
1232 btrfs_release_delayed_node(delayed_node);
1233 return 0;
1234 }
1235 mutex_unlock(&delayed_node->mutex);
1236
1237 path = btrfs_alloc_path();
1238 if (!path) {
1239 btrfs_release_delayed_node(delayed_node);
1240 return -ENOMEM;
1241 }
1242
1243 block_rsv = trans->block_rsv;
1244 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1245
1246 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1247
1248 btrfs_release_delayed_node(delayed_node);
1249 btrfs_free_path(path);
1250 trans->block_rsv = block_rsv;
1251
1252 return ret;
1253}
1254
1255int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1256{
1257 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1258 struct btrfs_trans_handle *trans;
1259 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1260 struct btrfs_path *path;
1261 struct btrfs_block_rsv *block_rsv;
1262 int ret;
1263
1264 if (!delayed_node)
1265 return 0;
1266
1267 mutex_lock(&delayed_node->mutex);
1268 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1269 mutex_unlock(&delayed_node->mutex);
1270 btrfs_release_delayed_node(delayed_node);
1271 return 0;
1272 }
1273 mutex_unlock(&delayed_node->mutex);
1274
1275 trans = btrfs_join_transaction(delayed_node->root);
1276 if (IS_ERR(trans)) {
1277 ret = PTR_ERR(trans);
1278 goto out;
1279 }
1280
1281 path = btrfs_alloc_path();
1282 if (!path) {
1283 ret = -ENOMEM;
1284 goto trans_out;
1285 }
1286
1287 block_rsv = trans->block_rsv;
1288 trans->block_rsv = &fs_info->delayed_block_rsv;
1289
1290 mutex_lock(&delayed_node->mutex);
1291 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1292 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1293 path, delayed_node);
1294 else
1295 ret = 0;
1296 mutex_unlock(&delayed_node->mutex);
1297
1298 btrfs_free_path(path);
1299 trans->block_rsv = block_rsv;
1300trans_out:
1301 btrfs_end_transaction(trans);
1302 btrfs_btree_balance_dirty(fs_info);
1303out:
1304 btrfs_release_delayed_node(delayed_node);
1305
1306 return ret;
1307}
1308
1309void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1310{
1311 struct btrfs_delayed_node *delayed_node;
1312
1313 delayed_node = READ_ONCE(inode->delayed_node);
1314 if (!delayed_node)
1315 return;
1316
1317 inode->delayed_node = NULL;
1318 btrfs_release_delayed_node(delayed_node);
1319}
1320
1321struct btrfs_async_delayed_work {
1322 struct btrfs_delayed_root *delayed_root;
1323 int nr;
1324 struct btrfs_work work;
1325};
1326
1327static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1328{
1329 struct btrfs_async_delayed_work *async_work;
1330 struct btrfs_delayed_root *delayed_root;
1331 struct btrfs_trans_handle *trans;
1332 struct btrfs_path *path;
1333 struct btrfs_delayed_node *delayed_node = NULL;
1334 struct btrfs_root *root;
1335 struct btrfs_block_rsv *block_rsv;
1336 int total_done = 0;
1337
1338 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1339 delayed_root = async_work->delayed_root;
1340
1341 path = btrfs_alloc_path();
1342 if (!path)
1343 goto out;
1344
1345 do {
1346 if (atomic_read(&delayed_root->items) <
1347 BTRFS_DELAYED_BACKGROUND / 2)
1348 break;
1349
1350 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1351 if (!delayed_node)
1352 break;
1353
1354 root = delayed_node->root;
1355
1356 trans = btrfs_join_transaction(root);
1357 if (IS_ERR(trans)) {
1358 btrfs_release_path(path);
1359 btrfs_release_prepared_delayed_node(delayed_node);
1360 total_done++;
1361 continue;
1362 }
1363
1364 block_rsv = trans->block_rsv;
1365 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1366
1367 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1368
1369 trans->block_rsv = block_rsv;
1370 btrfs_end_transaction(trans);
1371 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1372
1373 btrfs_release_path(path);
1374 btrfs_release_prepared_delayed_node(delayed_node);
1375 total_done++;
1376
1377 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1378 || total_done < async_work->nr);
1379
1380 btrfs_free_path(path);
1381out:
1382 wake_up(&delayed_root->wait);
1383 kfree(async_work);
1384}
1385
1386
1387static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1388 struct btrfs_fs_info *fs_info, int nr)
1389{
1390 struct btrfs_async_delayed_work *async_work;
1391
1392 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1393 if (!async_work)
1394 return -ENOMEM;
1395
1396 async_work->delayed_root = delayed_root;
1397 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1398 async_work->nr = nr;
1399
1400 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1401 return 0;
1402}
1403
1404void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1405{
1406 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1407}
1408
1409static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1410{
1411 int val = atomic_read(&delayed_root->items_seq);
1412
1413 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1414 return 1;
1415
1416 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1417 return 1;
1418
1419 return 0;
1420}
1421
1422void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1423{
1424 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1425
1426 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1427 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1428 return;
1429
1430 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1431 int seq;
1432 int ret;
1433
1434 seq = atomic_read(&delayed_root->items_seq);
1435
1436 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1437 if (ret)
1438 return;
1439
1440 wait_event_interruptible(delayed_root->wait,
1441 could_end_wait(delayed_root, seq));
1442 return;
1443 }
1444
1445 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1446}
1447
1448static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1449{
1450 struct btrfs_fs_info *fs_info = trans->fs_info;
1451 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1452
1453 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1454 return;
1455
1456 /*
1457 * Adding the new dir index item does not require touching another
1458 * leaf, so we can release 1 unit of metadata that was previously
1459 * reserved when starting the transaction. This applies only to
1460 * the case where we had a transaction start and excludes the
1461 * transaction join case (when replaying log trees).
1462 */
1463 trace_btrfs_space_reservation(fs_info, "transaction",
1464 trans->transid, bytes, 0);
1465 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1466 ASSERT(trans->bytes_reserved >= bytes);
1467 trans->bytes_reserved -= bytes;
1468}
1469
1470/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1471int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1472 const char *name, int name_len,
1473 struct btrfs_inode *dir,
1474 struct btrfs_disk_key *disk_key, u8 flags,
1475 u64 index)
1476{
1477 struct btrfs_fs_info *fs_info = trans->fs_info;
1478 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1479 struct btrfs_delayed_node *delayed_node;
1480 struct btrfs_delayed_item *delayed_item;
1481 struct btrfs_dir_item *dir_item;
1482 bool reserve_leaf_space;
1483 u32 data_len;
1484 int ret;
1485
1486 delayed_node = btrfs_get_or_create_delayed_node(dir);
1487 if (IS_ERR(delayed_node))
1488 return PTR_ERR(delayed_node);
1489
1490 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1491 delayed_node,
1492 BTRFS_DELAYED_INSERTION_ITEM);
1493 if (!delayed_item) {
1494 ret = -ENOMEM;
1495 goto release_node;
1496 }
1497
1498 delayed_item->index = index;
1499
1500 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1501 dir_item->location = *disk_key;
1502 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1503 btrfs_set_stack_dir_data_len(dir_item, 0);
1504 btrfs_set_stack_dir_name_len(dir_item, name_len);
1505 btrfs_set_stack_dir_flags(dir_item, flags);
1506 memcpy((char *)(dir_item + 1), name, name_len);
1507
1508 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1509
1510 mutex_lock(&delayed_node->mutex);
1511
1512 /*
1513 * First attempt to insert the delayed item. This is to make the error
1514 * handling path simpler in case we fail (-EEXIST). There's no risk of
1515 * any other task coming in and running the delayed item before we do
1516 * the metadata space reservation below, because we are holding the
1517 * delayed node's mutex and that mutex must also be locked before the
1518 * node's delayed items can be run.
1519 */
1520 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1521 if (unlikely(ret)) {
1522 btrfs_err(trans->fs_info,
1523"error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1524 name_len, name, index, btrfs_root_id(delayed_node->root),
1525 delayed_node->inode_id, dir->index_cnt,
1526 delayed_node->index_cnt, ret);
1527 btrfs_release_delayed_item(delayed_item);
1528 btrfs_release_dir_index_item_space(trans);
1529 mutex_unlock(&delayed_node->mutex);
1530 goto release_node;
1531 }
1532
1533 if (delayed_node->index_item_leaves == 0 ||
1534 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1535 delayed_node->curr_index_batch_size = data_len;
1536 reserve_leaf_space = true;
1537 } else {
1538 delayed_node->curr_index_batch_size += data_len;
1539 reserve_leaf_space = false;
1540 }
1541
1542 if (reserve_leaf_space) {
1543 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1544 /*
1545 * Space was reserved for a dir index item insertion when we
1546 * started the transaction, so getting a failure here should be
1547 * impossible.
1548 */
1549 if (WARN_ON(ret)) {
1550 btrfs_release_delayed_item(delayed_item);
1551 mutex_unlock(&delayed_node->mutex);
1552 goto release_node;
1553 }
1554
1555 delayed_node->index_item_leaves++;
1556 } else {
1557 btrfs_release_dir_index_item_space(trans);
1558 }
1559 mutex_unlock(&delayed_node->mutex);
1560
1561release_node:
1562 btrfs_release_delayed_node(delayed_node);
1563 return ret;
1564}
1565
1566static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1567 struct btrfs_delayed_node *node,
1568 u64 index)
1569{
1570 struct btrfs_delayed_item *item;
1571
1572 mutex_lock(&node->mutex);
1573 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1574 if (!item) {
1575 mutex_unlock(&node->mutex);
1576 return 1;
1577 }
1578
1579 /*
1580 * For delayed items to insert, we track reserved metadata bytes based
1581 * on the number of leaves that we will use.
1582 * See btrfs_insert_delayed_dir_index() and
1583 * btrfs_delayed_item_reserve_metadata()).
1584 */
1585 ASSERT(item->bytes_reserved == 0);
1586 ASSERT(node->index_item_leaves > 0);
1587
1588 /*
1589 * If there's only one leaf reserved, we can decrement this item from the
1590 * current batch, otherwise we can not because we don't know which leaf
1591 * it belongs to. With the current limit on delayed items, we rarely
1592 * accumulate enough dir index items to fill more than one leaf (even
1593 * when using a leaf size of 4K).
1594 */
1595 if (node->index_item_leaves == 1) {
1596 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1597
1598 ASSERT(node->curr_index_batch_size >= data_len);
1599 node->curr_index_batch_size -= data_len;
1600 }
1601
1602 btrfs_release_delayed_item(item);
1603
1604 /* If we now have no more dir index items, we can release all leaves. */
1605 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1606 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1607 node->index_item_leaves = 0;
1608 }
1609
1610 mutex_unlock(&node->mutex);
1611 return 0;
1612}
1613
1614int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1615 struct btrfs_inode *dir, u64 index)
1616{
1617 struct btrfs_delayed_node *node;
1618 struct btrfs_delayed_item *item;
1619 int ret;
1620
1621 node = btrfs_get_or_create_delayed_node(dir);
1622 if (IS_ERR(node))
1623 return PTR_ERR(node);
1624
1625 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
1626 if (!ret)
1627 goto end;
1628
1629 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1630 if (!item) {
1631 ret = -ENOMEM;
1632 goto end;
1633 }
1634
1635 item->index = index;
1636
1637 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1638 /*
1639 * we have reserved enough space when we start a new transaction,
1640 * so reserving metadata failure is impossible.
1641 */
1642 if (ret < 0) {
1643 btrfs_err(trans->fs_info,
1644"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1645 btrfs_release_delayed_item(item);
1646 goto end;
1647 }
1648
1649 mutex_lock(&node->mutex);
1650 ret = __btrfs_add_delayed_item(node, item);
1651 if (unlikely(ret)) {
1652 btrfs_err(trans->fs_info,
1653 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1654 index, node->root->root_key.objectid,
1655 node->inode_id, ret);
1656 btrfs_delayed_item_release_metadata(dir->root, item);
1657 btrfs_release_delayed_item(item);
1658 }
1659 mutex_unlock(&node->mutex);
1660end:
1661 btrfs_release_delayed_node(node);
1662 return ret;
1663}
1664
1665int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1666{
1667 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1668
1669 if (!delayed_node)
1670 return -ENOENT;
1671
1672 /*
1673 * Since we have held i_mutex of this directory, it is impossible that
1674 * a new directory index is added into the delayed node and index_cnt
1675 * is updated now. So we needn't lock the delayed node.
1676 */
1677 if (!delayed_node->index_cnt) {
1678 btrfs_release_delayed_node(delayed_node);
1679 return -EINVAL;
1680 }
1681
1682 inode->index_cnt = delayed_node->index_cnt;
1683 btrfs_release_delayed_node(delayed_node);
1684 return 0;
1685}
1686
1687bool btrfs_readdir_get_delayed_items(struct inode *inode,
1688 u64 last_index,
1689 struct list_head *ins_list,
1690 struct list_head *del_list)
1691{
1692 struct btrfs_delayed_node *delayed_node;
1693 struct btrfs_delayed_item *item;
1694
1695 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1696 if (!delayed_node)
1697 return false;
1698
1699 /*
1700 * We can only do one readdir with delayed items at a time because of
1701 * item->readdir_list.
1702 */
1703 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
1704 btrfs_inode_lock(BTRFS_I(inode), 0);
1705
1706 mutex_lock(&delayed_node->mutex);
1707 item = __btrfs_first_delayed_insertion_item(delayed_node);
1708 while (item && item->index <= last_index) {
1709 refcount_inc(&item->refs);
1710 list_add_tail(&item->readdir_list, ins_list);
1711 item = __btrfs_next_delayed_item(item);
1712 }
1713
1714 item = __btrfs_first_delayed_deletion_item(delayed_node);
1715 while (item && item->index <= last_index) {
1716 refcount_inc(&item->refs);
1717 list_add_tail(&item->readdir_list, del_list);
1718 item = __btrfs_next_delayed_item(item);
1719 }
1720 mutex_unlock(&delayed_node->mutex);
1721 /*
1722 * This delayed node is still cached in the btrfs inode, so refs
1723 * must be > 1 now, and we needn't check it is going to be freed
1724 * or not.
1725 *
1726 * Besides that, this function is used to read dir, we do not
1727 * insert/delete delayed items in this period. So we also needn't
1728 * requeue or dequeue this delayed node.
1729 */
1730 refcount_dec(&delayed_node->refs);
1731
1732 return true;
1733}
1734
1735void btrfs_readdir_put_delayed_items(struct inode *inode,
1736 struct list_head *ins_list,
1737 struct list_head *del_list)
1738{
1739 struct btrfs_delayed_item *curr, *next;
1740
1741 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1742 list_del(&curr->readdir_list);
1743 if (refcount_dec_and_test(&curr->refs))
1744 kfree(curr);
1745 }
1746
1747 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1748 list_del(&curr->readdir_list);
1749 if (refcount_dec_and_test(&curr->refs))
1750 kfree(curr);
1751 }
1752
1753 /*
1754 * The VFS is going to do up_read(), so we need to downgrade back to a
1755 * read lock.
1756 */
1757 downgrade_write(&inode->i_rwsem);
1758}
1759
1760int btrfs_should_delete_dir_index(struct list_head *del_list,
1761 u64 index)
1762{
1763 struct btrfs_delayed_item *curr;
1764 int ret = 0;
1765
1766 list_for_each_entry(curr, del_list, readdir_list) {
1767 if (curr->index > index)
1768 break;
1769 if (curr->index == index) {
1770 ret = 1;
1771 break;
1772 }
1773 }
1774 return ret;
1775}
1776
1777/*
1778 * Read dir info stored in the delayed tree.
1779 */
1780int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1781 struct list_head *ins_list)
1782{
1783 struct btrfs_dir_item *di;
1784 struct btrfs_delayed_item *curr, *next;
1785 struct btrfs_key location;
1786 char *name;
1787 int name_len;
1788 int over = 0;
1789 unsigned char d_type;
1790
1791 /*
1792 * Changing the data of the delayed item is impossible. So
1793 * we needn't lock them. And we have held i_mutex of the
1794 * directory, nobody can delete any directory indexes now.
1795 */
1796 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1797 list_del(&curr->readdir_list);
1798
1799 if (curr->index < ctx->pos) {
1800 if (refcount_dec_and_test(&curr->refs))
1801 kfree(curr);
1802 continue;
1803 }
1804
1805 ctx->pos = curr->index;
1806
1807 di = (struct btrfs_dir_item *)curr->data;
1808 name = (char *)(di + 1);
1809 name_len = btrfs_stack_dir_name_len(di);
1810
1811 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1812 btrfs_disk_key_to_cpu(&location, &di->location);
1813
1814 over = !dir_emit(ctx, name, name_len,
1815 location.objectid, d_type);
1816
1817 if (refcount_dec_and_test(&curr->refs))
1818 kfree(curr);
1819
1820 if (over)
1821 return 1;
1822 ctx->pos++;
1823 }
1824 return 0;
1825}
1826
1827static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1828 struct btrfs_inode_item *inode_item,
1829 struct inode *inode)
1830{
1831 u64 flags;
1832
1833 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1834 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1835 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1836 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1837 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1838 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1839 btrfs_set_stack_inode_generation(inode_item,
1840 BTRFS_I(inode)->generation);
1841 btrfs_set_stack_inode_sequence(inode_item,
1842 inode_peek_iversion(inode));
1843 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1844 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1845 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1846 BTRFS_I(inode)->ro_flags);
1847 btrfs_set_stack_inode_flags(inode_item, flags);
1848 btrfs_set_stack_inode_block_group(inode_item, 0);
1849
1850 btrfs_set_stack_timespec_sec(&inode_item->atime,
1851 inode_get_atime_sec(inode));
1852 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1853 inode_get_atime_nsec(inode));
1854
1855 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1856 inode_get_mtime_sec(inode));
1857 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1858 inode_get_mtime_nsec(inode));
1859
1860 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1861 inode_get_ctime_sec(inode));
1862 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1863 inode_get_ctime_nsec(inode));
1864
1865 btrfs_set_stack_timespec_sec(&inode_item->otime, BTRFS_I(inode)->i_otime_sec);
1866 btrfs_set_stack_timespec_nsec(&inode_item->otime, BTRFS_I(inode)->i_otime_nsec);
1867}
1868
1869int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1870{
1871 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1872 struct btrfs_delayed_node *delayed_node;
1873 struct btrfs_inode_item *inode_item;
1874
1875 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1876 if (!delayed_node)
1877 return -ENOENT;
1878
1879 mutex_lock(&delayed_node->mutex);
1880 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1881 mutex_unlock(&delayed_node->mutex);
1882 btrfs_release_delayed_node(delayed_node);
1883 return -ENOENT;
1884 }
1885
1886 inode_item = &delayed_node->inode_item;
1887
1888 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1889 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1890 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1891 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1892 round_up(i_size_read(inode), fs_info->sectorsize));
1893 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1894 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1895 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1896 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1897 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1898
1899 inode_set_iversion_queried(inode,
1900 btrfs_stack_inode_sequence(inode_item));
1901 inode->i_rdev = 0;
1902 *rdev = btrfs_stack_inode_rdev(inode_item);
1903 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1904 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1905
1906 inode_set_atime(inode, btrfs_stack_timespec_sec(&inode_item->atime),
1907 btrfs_stack_timespec_nsec(&inode_item->atime));
1908
1909 inode_set_mtime(inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1910 btrfs_stack_timespec_nsec(&inode_item->mtime));
1911
1912 inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1913 btrfs_stack_timespec_nsec(&inode_item->ctime));
1914
1915 BTRFS_I(inode)->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1916 BTRFS_I(inode)->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1917
1918 inode->i_generation = BTRFS_I(inode)->generation;
1919 BTRFS_I(inode)->index_cnt = (u64)-1;
1920
1921 mutex_unlock(&delayed_node->mutex);
1922 btrfs_release_delayed_node(delayed_node);
1923 return 0;
1924}
1925
1926int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1927 struct btrfs_inode *inode)
1928{
1929 struct btrfs_root *root = inode->root;
1930 struct btrfs_delayed_node *delayed_node;
1931 int ret = 0;
1932
1933 delayed_node = btrfs_get_or_create_delayed_node(inode);
1934 if (IS_ERR(delayed_node))
1935 return PTR_ERR(delayed_node);
1936
1937 mutex_lock(&delayed_node->mutex);
1938 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1939 fill_stack_inode_item(trans, &delayed_node->inode_item,
1940 &inode->vfs_inode);
1941 goto release_node;
1942 }
1943
1944 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1945 if (ret)
1946 goto release_node;
1947
1948 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1949 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1950 delayed_node->count++;
1951 atomic_inc(&root->fs_info->delayed_root->items);
1952release_node:
1953 mutex_unlock(&delayed_node->mutex);
1954 btrfs_release_delayed_node(delayed_node);
1955 return ret;
1956}
1957
1958int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1959{
1960 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1961 struct btrfs_delayed_node *delayed_node;
1962
1963 /*
1964 * we don't do delayed inode updates during log recovery because it
1965 * leads to enospc problems. This means we also can't do
1966 * delayed inode refs
1967 */
1968 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1969 return -EAGAIN;
1970
1971 delayed_node = btrfs_get_or_create_delayed_node(inode);
1972 if (IS_ERR(delayed_node))
1973 return PTR_ERR(delayed_node);
1974
1975 /*
1976 * We don't reserve space for inode ref deletion is because:
1977 * - We ONLY do async inode ref deletion for the inode who has only
1978 * one link(i_nlink == 1), it means there is only one inode ref.
1979 * And in most case, the inode ref and the inode item are in the
1980 * same leaf, and we will deal with them at the same time.
1981 * Since we are sure we will reserve the space for the inode item,
1982 * it is unnecessary to reserve space for inode ref deletion.
1983 * - If the inode ref and the inode item are not in the same leaf,
1984 * We also needn't worry about enospc problem, because we reserve
1985 * much more space for the inode update than it needs.
1986 * - At the worst, we can steal some space from the global reservation.
1987 * It is very rare.
1988 */
1989 mutex_lock(&delayed_node->mutex);
1990 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1991 goto release_node;
1992
1993 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1994 delayed_node->count++;
1995 atomic_inc(&fs_info->delayed_root->items);
1996release_node:
1997 mutex_unlock(&delayed_node->mutex);
1998 btrfs_release_delayed_node(delayed_node);
1999 return 0;
2000}
2001
2002static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
2003{
2004 struct btrfs_root *root = delayed_node->root;
2005 struct btrfs_fs_info *fs_info = root->fs_info;
2006 struct btrfs_delayed_item *curr_item, *prev_item;
2007
2008 mutex_lock(&delayed_node->mutex);
2009 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2010 while (curr_item) {
2011 prev_item = curr_item;
2012 curr_item = __btrfs_next_delayed_item(prev_item);
2013 btrfs_release_delayed_item(prev_item);
2014 }
2015
2016 if (delayed_node->index_item_leaves > 0) {
2017 btrfs_delayed_item_release_leaves(delayed_node,
2018 delayed_node->index_item_leaves);
2019 delayed_node->index_item_leaves = 0;
2020 }
2021
2022 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2023 while (curr_item) {
2024 btrfs_delayed_item_release_metadata(root, curr_item);
2025 prev_item = curr_item;
2026 curr_item = __btrfs_next_delayed_item(prev_item);
2027 btrfs_release_delayed_item(prev_item);
2028 }
2029
2030 btrfs_release_delayed_iref(delayed_node);
2031
2032 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2033 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2034 btrfs_release_delayed_inode(delayed_node);
2035 }
2036 mutex_unlock(&delayed_node->mutex);
2037}
2038
2039void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2040{
2041 struct btrfs_delayed_node *delayed_node;
2042
2043 delayed_node = btrfs_get_delayed_node(inode);
2044 if (!delayed_node)
2045 return;
2046
2047 __btrfs_kill_delayed_node(delayed_node);
2048 btrfs_release_delayed_node(delayed_node);
2049}
2050
2051void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2052{
2053 unsigned long index = 0;
2054 struct btrfs_delayed_node *delayed_nodes[8];
2055
2056 while (1) {
2057 struct btrfs_delayed_node *node;
2058 int count;
2059
2060 spin_lock(&root->inode_lock);
2061 if (xa_empty(&root->delayed_nodes)) {
2062 spin_unlock(&root->inode_lock);
2063 return;
2064 }
2065
2066 count = 0;
2067 xa_for_each_start(&root->delayed_nodes, index, node, index) {
2068 /*
2069 * Don't increase refs in case the node is dead and
2070 * about to be removed from the tree in the loop below
2071 */
2072 if (refcount_inc_not_zero(&node->refs)) {
2073 delayed_nodes[count] = node;
2074 count++;
2075 }
2076 if (count >= ARRAY_SIZE(delayed_nodes))
2077 break;
2078 }
2079 spin_unlock(&root->inode_lock);
2080 index++;
2081
2082 for (int i = 0; i < count; i++) {
2083 __btrfs_kill_delayed_node(delayed_nodes[i]);
2084 btrfs_release_delayed_node(delayed_nodes[i]);
2085 }
2086 }
2087}
2088
2089void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2090{
2091 struct btrfs_delayed_node *curr_node, *prev_node;
2092
2093 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2094 while (curr_node) {
2095 __btrfs_kill_delayed_node(curr_node);
2096
2097 prev_node = curr_node;
2098 curr_node = btrfs_next_delayed_node(curr_node);
2099 btrfs_release_delayed_node(prev_node);
2100 }
2101}
2102
2103void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2104 struct list_head *ins_list,
2105 struct list_head *del_list)
2106{
2107 struct btrfs_delayed_node *node;
2108 struct btrfs_delayed_item *item;
2109
2110 node = btrfs_get_delayed_node(inode);
2111 if (!node)
2112 return;
2113
2114 mutex_lock(&node->mutex);
2115 item = __btrfs_first_delayed_insertion_item(node);
2116 while (item) {
2117 /*
2118 * It's possible that the item is already in a log list. This
2119 * can happen in case two tasks are trying to log the same
2120 * directory. For example if we have tasks A and task B:
2121 *
2122 * Task A collected the delayed items into a log list while
2123 * under the inode's log_mutex (at btrfs_log_inode()), but it
2124 * only releases the items after logging the inodes they point
2125 * to (if they are new inodes), which happens after unlocking
2126 * the log mutex;
2127 *
2128 * Task B enters btrfs_log_inode() and acquires the log_mutex
2129 * of the same directory inode, before task B releases the
2130 * delayed items. This can happen for example when logging some
2131 * inode we need to trigger logging of its parent directory, so
2132 * logging two files that have the same parent directory can
2133 * lead to this.
2134 *
2135 * If this happens, just ignore delayed items already in a log
2136 * list. All the tasks logging the directory are under a log
2137 * transaction and whichever finishes first can not sync the log
2138 * before the other completes and leaves the log transaction.
2139 */
2140 if (!item->logged && list_empty(&item->log_list)) {
2141 refcount_inc(&item->refs);
2142 list_add_tail(&item->log_list, ins_list);
2143 }
2144 item = __btrfs_next_delayed_item(item);
2145 }
2146
2147 item = __btrfs_first_delayed_deletion_item(node);
2148 while (item) {
2149 /* It may be non-empty, for the same reason mentioned above. */
2150 if (!item->logged && list_empty(&item->log_list)) {
2151 refcount_inc(&item->refs);
2152 list_add_tail(&item->log_list, del_list);
2153 }
2154 item = __btrfs_next_delayed_item(item);
2155 }
2156 mutex_unlock(&node->mutex);
2157
2158 /*
2159 * We are called during inode logging, which means the inode is in use
2160 * and can not be evicted before we finish logging the inode. So we never
2161 * have the last reference on the delayed inode.
2162 * Also, we don't use btrfs_release_delayed_node() because that would
2163 * requeue the delayed inode (change its order in the list of prepared
2164 * nodes) and we don't want to do such change because we don't create or
2165 * delete delayed items.
2166 */
2167 ASSERT(refcount_read(&node->refs) > 1);
2168 refcount_dec(&node->refs);
2169}
2170
2171void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2172 struct list_head *ins_list,
2173 struct list_head *del_list)
2174{
2175 struct btrfs_delayed_node *node;
2176 struct btrfs_delayed_item *item;
2177 struct btrfs_delayed_item *next;
2178
2179 node = btrfs_get_delayed_node(inode);
2180 if (!node)
2181 return;
2182
2183 mutex_lock(&node->mutex);
2184
2185 list_for_each_entry_safe(item, next, ins_list, log_list) {
2186 item->logged = true;
2187 list_del_init(&item->log_list);
2188 if (refcount_dec_and_test(&item->refs))
2189 kfree(item);
2190 }
2191
2192 list_for_each_entry_safe(item, next, del_list, log_list) {
2193 item->logged = true;
2194 list_del_init(&item->log_list);
2195 if (refcount_dec_and_test(&item->refs))
2196 kfree(item);
2197 }
2198
2199 mutex_unlock(&node->mutex);
2200
2201 /*
2202 * We are called during inode logging, which means the inode is in use
2203 * and can not be evicted before we finish logging the inode. So we never
2204 * have the last reference on the delayed inode.
2205 * Also, we don't use btrfs_release_delayed_node() because that would
2206 * requeue the delayed inode (change its order in the list of prepared
2207 * nodes) and we don't want to do such change because we don't create or
2208 * delete delayed items.
2209 */
2210 ASSERT(refcount_read(&node->refs) > 1);
2211 refcount_dec(&node->refs);
2212}