Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include "ctree.h"
10#include "fs.h"
11#include "messages.h"
12#include "misc.h"
13#include "delayed-inode.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "qgroup.h"
17#include "locking.h"
18#include "inode-item.h"
19#include "space-info.h"
20#include "accessors.h"
21#include "file-item.h"
22
23#define BTRFS_DELAYED_WRITEBACK 512
24#define BTRFS_DELAYED_BACKGROUND 128
25#define BTRFS_DELAYED_BATCH 16
26
27static struct kmem_cache *delayed_node_cache;
28
29int __init btrfs_delayed_inode_init(void)
30{
31 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
32 sizeof(struct btrfs_delayed_node),
33 0,
34 SLAB_MEM_SPREAD,
35 NULL);
36 if (!delayed_node_cache)
37 return -ENOMEM;
38 return 0;
39}
40
41void __cold btrfs_delayed_inode_exit(void)
42{
43 kmem_cache_destroy(delayed_node_cache);
44}
45
46static inline void btrfs_init_delayed_node(
47 struct btrfs_delayed_node *delayed_node,
48 struct btrfs_root *root, u64 inode_id)
49{
50 delayed_node->root = root;
51 delayed_node->inode_id = inode_id;
52 refcount_set(&delayed_node->refs, 0);
53 delayed_node->ins_root = RB_ROOT_CACHED;
54 delayed_node->del_root = RB_ROOT_CACHED;
55 mutex_init(&delayed_node->mutex);
56 INIT_LIST_HEAD(&delayed_node->n_list);
57 INIT_LIST_HEAD(&delayed_node->p_list);
58}
59
60static struct btrfs_delayed_node *btrfs_get_delayed_node(
61 struct btrfs_inode *btrfs_inode)
62{
63 struct btrfs_root *root = btrfs_inode->root;
64 u64 ino = btrfs_ino(btrfs_inode);
65 struct btrfs_delayed_node *node;
66
67 node = READ_ONCE(btrfs_inode->delayed_node);
68 if (node) {
69 refcount_inc(&node->refs);
70 return node;
71 }
72
73 spin_lock(&root->inode_lock);
74 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
75
76 if (node) {
77 if (btrfs_inode->delayed_node) {
78 refcount_inc(&node->refs); /* can be accessed */
79 BUG_ON(btrfs_inode->delayed_node != node);
80 spin_unlock(&root->inode_lock);
81 return node;
82 }
83
84 /*
85 * It's possible that we're racing into the middle of removing
86 * this node from the radix tree. In this case, the refcount
87 * was zero and it should never go back to one. Just return
88 * NULL like it was never in the radix at all; our release
89 * function is in the process of removing it.
90 *
91 * Some implementations of refcount_inc refuse to bump the
92 * refcount once it has hit zero. If we don't do this dance
93 * here, refcount_inc() may decide to just WARN_ONCE() instead
94 * of actually bumping the refcount.
95 *
96 * If this node is properly in the radix, we want to bump the
97 * refcount twice, once for the inode and once for this get
98 * operation.
99 */
100 if (refcount_inc_not_zero(&node->refs)) {
101 refcount_inc(&node->refs);
102 btrfs_inode->delayed_node = node;
103 } else {
104 node = NULL;
105 }
106
107 spin_unlock(&root->inode_lock);
108 return node;
109 }
110 spin_unlock(&root->inode_lock);
111
112 return NULL;
113}
114
115/* Will return either the node or PTR_ERR(-ENOMEM) */
116static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
117 struct btrfs_inode *btrfs_inode)
118{
119 struct btrfs_delayed_node *node;
120 struct btrfs_root *root = btrfs_inode->root;
121 u64 ino = btrfs_ino(btrfs_inode);
122 int ret;
123
124again:
125 node = btrfs_get_delayed_node(btrfs_inode);
126 if (node)
127 return node;
128
129 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130 if (!node)
131 return ERR_PTR(-ENOMEM);
132 btrfs_init_delayed_node(node, root, ino);
133
134 /* cached in the btrfs inode and can be accessed */
135 refcount_set(&node->refs, 2);
136
137 ret = radix_tree_preload(GFP_NOFS);
138 if (ret) {
139 kmem_cache_free(delayed_node_cache, node);
140 return ERR_PTR(ret);
141 }
142
143 spin_lock(&root->inode_lock);
144 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 if (ret == -EEXIST) {
146 spin_unlock(&root->inode_lock);
147 kmem_cache_free(delayed_node_cache, node);
148 radix_tree_preload_end();
149 goto again;
150 }
151 btrfs_inode->delayed_node = node;
152 spin_unlock(&root->inode_lock);
153 radix_tree_preload_end();
154
155 return node;
156}
157
158/*
159 * Call it when holding delayed_node->mutex
160 *
161 * If mod = 1, add this node into the prepared list.
162 */
163static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 struct btrfs_delayed_node *node,
165 int mod)
166{
167 spin_lock(&root->lock);
168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169 if (!list_empty(&node->p_list))
170 list_move_tail(&node->p_list, &root->prepare_list);
171 else if (mod)
172 list_add_tail(&node->p_list, &root->prepare_list);
173 } else {
174 list_add_tail(&node->n_list, &root->node_list);
175 list_add_tail(&node->p_list, &root->prepare_list);
176 refcount_inc(&node->refs); /* inserted into list */
177 root->nodes++;
178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
179 }
180 spin_unlock(&root->lock);
181}
182
183/* Call it when holding delayed_node->mutex */
184static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 struct btrfs_delayed_node *node)
186{
187 spin_lock(&root->lock);
188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189 root->nodes--;
190 refcount_dec(&node->refs); /* not in the list */
191 list_del_init(&node->n_list);
192 if (!list_empty(&node->p_list))
193 list_del_init(&node->p_list);
194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195 }
196 spin_unlock(&root->lock);
197}
198
199static struct btrfs_delayed_node *btrfs_first_delayed_node(
200 struct btrfs_delayed_root *delayed_root)
201{
202 struct list_head *p;
203 struct btrfs_delayed_node *node = NULL;
204
205 spin_lock(&delayed_root->lock);
206 if (list_empty(&delayed_root->node_list))
207 goto out;
208
209 p = delayed_root->node_list.next;
210 node = list_entry(p, struct btrfs_delayed_node, n_list);
211 refcount_inc(&node->refs);
212out:
213 spin_unlock(&delayed_root->lock);
214
215 return node;
216}
217
218static struct btrfs_delayed_node *btrfs_next_delayed_node(
219 struct btrfs_delayed_node *node)
220{
221 struct btrfs_delayed_root *delayed_root;
222 struct list_head *p;
223 struct btrfs_delayed_node *next = NULL;
224
225 delayed_root = node->root->fs_info->delayed_root;
226 spin_lock(&delayed_root->lock);
227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 /* not in the list */
229 if (list_empty(&delayed_root->node_list))
230 goto out;
231 p = delayed_root->node_list.next;
232 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
233 goto out;
234 else
235 p = node->n_list.next;
236
237 next = list_entry(p, struct btrfs_delayed_node, n_list);
238 refcount_inc(&next->refs);
239out:
240 spin_unlock(&delayed_root->lock);
241
242 return next;
243}
244
245static void __btrfs_release_delayed_node(
246 struct btrfs_delayed_node *delayed_node,
247 int mod)
248{
249 struct btrfs_delayed_root *delayed_root;
250
251 if (!delayed_node)
252 return;
253
254 delayed_root = delayed_node->root->fs_info->delayed_root;
255
256 mutex_lock(&delayed_node->mutex);
257 if (delayed_node->count)
258 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259 else
260 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 mutex_unlock(&delayed_node->mutex);
262
263 if (refcount_dec_and_test(&delayed_node->refs)) {
264 struct btrfs_root *root = delayed_node->root;
265
266 spin_lock(&root->inode_lock);
267 /*
268 * Once our refcount goes to zero, nobody is allowed to bump it
269 * back up. We can delete it now.
270 */
271 ASSERT(refcount_read(&delayed_node->refs) == 0);
272 radix_tree_delete(&root->delayed_nodes_tree,
273 delayed_node->inode_id);
274 spin_unlock(&root->inode_lock);
275 kmem_cache_free(delayed_node_cache, delayed_node);
276 }
277}
278
279static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280{
281 __btrfs_release_delayed_node(node, 0);
282}
283
284static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285 struct btrfs_delayed_root *delayed_root)
286{
287 struct list_head *p;
288 struct btrfs_delayed_node *node = NULL;
289
290 spin_lock(&delayed_root->lock);
291 if (list_empty(&delayed_root->prepare_list))
292 goto out;
293
294 p = delayed_root->prepare_list.next;
295 list_del_init(p);
296 node = list_entry(p, struct btrfs_delayed_node, p_list);
297 refcount_inc(&node->refs);
298out:
299 spin_unlock(&delayed_root->lock);
300
301 return node;
302}
303
304static inline void btrfs_release_prepared_delayed_node(
305 struct btrfs_delayed_node *node)
306{
307 __btrfs_release_delayed_node(node, 1);
308}
309
310static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
311 struct btrfs_delayed_node *node,
312 enum btrfs_delayed_item_type type)
313{
314 struct btrfs_delayed_item *item;
315
316 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
317 if (item) {
318 item->data_len = data_len;
319 item->type = type;
320 item->bytes_reserved = 0;
321 item->delayed_node = node;
322 RB_CLEAR_NODE(&item->rb_node);
323 INIT_LIST_HEAD(&item->log_list);
324 item->logged = false;
325 refcount_set(&item->refs, 1);
326 }
327 return item;
328}
329
330/*
331 * __btrfs_lookup_delayed_item - look up the delayed item by key
332 * @delayed_node: pointer to the delayed node
333 * @index: the dir index value to lookup (offset of a dir index key)
334 *
335 * Note: if we don't find the right item, we will return the prev item and
336 * the next item.
337 */
338static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339 struct rb_root *root,
340 u64 index)
341{
342 struct rb_node *node = root->rb_node;
343 struct btrfs_delayed_item *delayed_item = NULL;
344
345 while (node) {
346 delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 rb_node);
348 if (delayed_item->index < index)
349 node = node->rb_right;
350 else if (delayed_item->index > index)
351 node = node->rb_left;
352 else
353 return delayed_item;
354 }
355
356 return NULL;
357}
358
359static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
360 struct btrfs_delayed_item *ins)
361{
362 struct rb_node **p, *node;
363 struct rb_node *parent_node = NULL;
364 struct rb_root_cached *root;
365 struct btrfs_delayed_item *item;
366 bool leftmost = true;
367
368 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
369 root = &delayed_node->ins_root;
370 else
371 root = &delayed_node->del_root;
372
373 p = &root->rb_root.rb_node;
374 node = &ins->rb_node;
375
376 while (*p) {
377 parent_node = *p;
378 item = rb_entry(parent_node, struct btrfs_delayed_item,
379 rb_node);
380
381 if (item->index < ins->index) {
382 p = &(*p)->rb_right;
383 leftmost = false;
384 } else if (item->index > ins->index) {
385 p = &(*p)->rb_left;
386 } else {
387 return -EEXIST;
388 }
389 }
390
391 rb_link_node(node, parent_node, p);
392 rb_insert_color_cached(node, root, leftmost);
393
394 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
395 ins->index >= delayed_node->index_cnt)
396 delayed_node->index_cnt = ins->index + 1;
397
398 delayed_node->count++;
399 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
400 return 0;
401}
402
403static void finish_one_item(struct btrfs_delayed_root *delayed_root)
404{
405 int seq = atomic_inc_return(&delayed_root->items_seq);
406
407 /* atomic_dec_return implies a barrier */
408 if ((atomic_dec_return(&delayed_root->items) <
409 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
410 cond_wake_up_nomb(&delayed_root->wait);
411}
412
413static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
414{
415 struct rb_root_cached *root;
416 struct btrfs_delayed_root *delayed_root;
417
418 /* Not inserted, ignore it. */
419 if (RB_EMPTY_NODE(&delayed_item->rb_node))
420 return;
421
422 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
423
424 BUG_ON(!delayed_root);
425
426 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
427 root = &delayed_item->delayed_node->ins_root;
428 else
429 root = &delayed_item->delayed_node->del_root;
430
431 rb_erase_cached(&delayed_item->rb_node, root);
432 RB_CLEAR_NODE(&delayed_item->rb_node);
433 delayed_item->delayed_node->count--;
434
435 finish_one_item(delayed_root);
436}
437
438static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
439{
440 if (item) {
441 __btrfs_remove_delayed_item(item);
442 if (refcount_dec_and_test(&item->refs))
443 kfree(item);
444 }
445}
446
447static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
448 struct btrfs_delayed_node *delayed_node)
449{
450 struct rb_node *p;
451 struct btrfs_delayed_item *item = NULL;
452
453 p = rb_first_cached(&delayed_node->ins_root);
454 if (p)
455 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
456
457 return item;
458}
459
460static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
461 struct btrfs_delayed_node *delayed_node)
462{
463 struct rb_node *p;
464 struct btrfs_delayed_item *item = NULL;
465
466 p = rb_first_cached(&delayed_node->del_root);
467 if (p)
468 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
469
470 return item;
471}
472
473static struct btrfs_delayed_item *__btrfs_next_delayed_item(
474 struct btrfs_delayed_item *item)
475{
476 struct rb_node *p;
477 struct btrfs_delayed_item *next = NULL;
478
479 p = rb_next(&item->rb_node);
480 if (p)
481 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
482
483 return next;
484}
485
486static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
487 struct btrfs_delayed_item *item)
488{
489 struct btrfs_block_rsv *src_rsv;
490 struct btrfs_block_rsv *dst_rsv;
491 struct btrfs_fs_info *fs_info = trans->fs_info;
492 u64 num_bytes;
493 int ret;
494
495 if (!trans->bytes_reserved)
496 return 0;
497
498 src_rsv = trans->block_rsv;
499 dst_rsv = &fs_info->delayed_block_rsv;
500
501 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
502
503 /*
504 * Here we migrate space rsv from transaction rsv, since have already
505 * reserved space when starting a transaction. So no need to reserve
506 * qgroup space here.
507 */
508 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
509 if (!ret) {
510 trace_btrfs_space_reservation(fs_info, "delayed_item",
511 item->delayed_node->inode_id,
512 num_bytes, 1);
513 /*
514 * For insertions we track reserved metadata space by accounting
515 * for the number of leaves that will be used, based on the delayed
516 * node's index_items_size field.
517 */
518 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
519 item->bytes_reserved = num_bytes;
520 }
521
522 return ret;
523}
524
525static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
526 struct btrfs_delayed_item *item)
527{
528 struct btrfs_block_rsv *rsv;
529 struct btrfs_fs_info *fs_info = root->fs_info;
530
531 if (!item->bytes_reserved)
532 return;
533
534 rsv = &fs_info->delayed_block_rsv;
535 /*
536 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
537 * to release/reserve qgroup space.
538 */
539 trace_btrfs_space_reservation(fs_info, "delayed_item",
540 item->delayed_node->inode_id,
541 item->bytes_reserved, 0);
542 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
543}
544
545static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
546 unsigned int num_leaves)
547{
548 struct btrfs_fs_info *fs_info = node->root->fs_info;
549 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
550
551 /* There are no space reservations during log replay, bail out. */
552 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
553 return;
554
555 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
556 bytes, 0);
557 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
558}
559
560static int btrfs_delayed_inode_reserve_metadata(
561 struct btrfs_trans_handle *trans,
562 struct btrfs_root *root,
563 struct btrfs_delayed_node *node)
564{
565 struct btrfs_fs_info *fs_info = root->fs_info;
566 struct btrfs_block_rsv *src_rsv;
567 struct btrfs_block_rsv *dst_rsv;
568 u64 num_bytes;
569 int ret;
570
571 src_rsv = trans->block_rsv;
572 dst_rsv = &fs_info->delayed_block_rsv;
573
574 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
575
576 /*
577 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
578 * which doesn't reserve space for speed. This is a problem since we
579 * still need to reserve space for this update, so try to reserve the
580 * space.
581 *
582 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
583 * we always reserve enough to update the inode item.
584 */
585 if (!src_rsv || (!trans->bytes_reserved &&
586 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
587 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
588 BTRFS_QGROUP_RSV_META_PREALLOC, true);
589 if (ret < 0)
590 return ret;
591 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
592 BTRFS_RESERVE_NO_FLUSH);
593 /* NO_FLUSH could only fail with -ENOSPC */
594 ASSERT(ret == 0 || ret == -ENOSPC);
595 if (ret)
596 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
597 } else {
598 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
599 }
600
601 if (!ret) {
602 trace_btrfs_space_reservation(fs_info, "delayed_inode",
603 node->inode_id, num_bytes, 1);
604 node->bytes_reserved = num_bytes;
605 }
606
607 return ret;
608}
609
610static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
611 struct btrfs_delayed_node *node,
612 bool qgroup_free)
613{
614 struct btrfs_block_rsv *rsv;
615
616 if (!node->bytes_reserved)
617 return;
618
619 rsv = &fs_info->delayed_block_rsv;
620 trace_btrfs_space_reservation(fs_info, "delayed_inode",
621 node->inode_id, node->bytes_reserved, 0);
622 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
623 if (qgroup_free)
624 btrfs_qgroup_free_meta_prealloc(node->root,
625 node->bytes_reserved);
626 else
627 btrfs_qgroup_convert_reserved_meta(node->root,
628 node->bytes_reserved);
629 node->bytes_reserved = 0;
630}
631
632/*
633 * Insert a single delayed item or a batch of delayed items, as many as possible
634 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
635 * in the rbtree, and if there's a gap between two consecutive dir index items,
636 * then it means at some point we had delayed dir indexes to add but they got
637 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
638 * into the subvolume tree. Dir index keys also have their offsets coming from a
639 * monotonically increasing counter, so we can't get new keys with an offset that
640 * fits within a gap between delayed dir index items.
641 */
642static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
643 struct btrfs_root *root,
644 struct btrfs_path *path,
645 struct btrfs_delayed_item *first_item)
646{
647 struct btrfs_fs_info *fs_info = root->fs_info;
648 struct btrfs_delayed_node *node = first_item->delayed_node;
649 LIST_HEAD(item_list);
650 struct btrfs_delayed_item *curr;
651 struct btrfs_delayed_item *next;
652 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
653 struct btrfs_item_batch batch;
654 struct btrfs_key first_key;
655 const u32 first_data_size = first_item->data_len;
656 int total_size;
657 char *ins_data = NULL;
658 int ret;
659 bool continuous_keys_only = false;
660
661 lockdep_assert_held(&node->mutex);
662
663 /*
664 * During normal operation the delayed index offset is continuously
665 * increasing, so we can batch insert all items as there will not be any
666 * overlapping keys in the tree.
667 *
668 * The exception to this is log replay, where we may have interleaved
669 * offsets in the tree, so our batch needs to be continuous keys only in
670 * order to ensure we do not end up with out of order items in our leaf.
671 */
672 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
673 continuous_keys_only = true;
674
675 /*
676 * For delayed items to insert, we track reserved metadata bytes based
677 * on the number of leaves that we will use.
678 * See btrfs_insert_delayed_dir_index() and
679 * btrfs_delayed_item_reserve_metadata()).
680 */
681 ASSERT(first_item->bytes_reserved == 0);
682
683 list_add_tail(&first_item->tree_list, &item_list);
684 batch.total_data_size = first_data_size;
685 batch.nr = 1;
686 total_size = first_data_size + sizeof(struct btrfs_item);
687 curr = first_item;
688
689 while (true) {
690 int next_size;
691
692 next = __btrfs_next_delayed_item(curr);
693 if (!next)
694 break;
695
696 /*
697 * We cannot allow gaps in the key space if we're doing log
698 * replay.
699 */
700 if (continuous_keys_only && (next->index != curr->index + 1))
701 break;
702
703 ASSERT(next->bytes_reserved == 0);
704
705 next_size = next->data_len + sizeof(struct btrfs_item);
706 if (total_size + next_size > max_size)
707 break;
708
709 list_add_tail(&next->tree_list, &item_list);
710 batch.nr++;
711 total_size += next_size;
712 batch.total_data_size += next->data_len;
713 curr = next;
714 }
715
716 if (batch.nr == 1) {
717 first_key.objectid = node->inode_id;
718 first_key.type = BTRFS_DIR_INDEX_KEY;
719 first_key.offset = first_item->index;
720 batch.keys = &first_key;
721 batch.data_sizes = &first_data_size;
722 } else {
723 struct btrfs_key *ins_keys;
724 u32 *ins_sizes;
725 int i = 0;
726
727 ins_data = kmalloc(batch.nr * sizeof(u32) +
728 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
729 if (!ins_data) {
730 ret = -ENOMEM;
731 goto out;
732 }
733 ins_sizes = (u32 *)ins_data;
734 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
735 batch.keys = ins_keys;
736 batch.data_sizes = ins_sizes;
737 list_for_each_entry(curr, &item_list, tree_list) {
738 ins_keys[i].objectid = node->inode_id;
739 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
740 ins_keys[i].offset = curr->index;
741 ins_sizes[i] = curr->data_len;
742 i++;
743 }
744 }
745
746 ret = btrfs_insert_empty_items(trans, root, path, &batch);
747 if (ret)
748 goto out;
749
750 list_for_each_entry(curr, &item_list, tree_list) {
751 char *data_ptr;
752
753 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
754 write_extent_buffer(path->nodes[0], &curr->data,
755 (unsigned long)data_ptr, curr->data_len);
756 path->slots[0]++;
757 }
758
759 /*
760 * Now release our path before releasing the delayed items and their
761 * metadata reservations, so that we don't block other tasks for more
762 * time than needed.
763 */
764 btrfs_release_path(path);
765
766 ASSERT(node->index_item_leaves > 0);
767
768 /*
769 * For normal operations we will batch an entire leaf's worth of delayed
770 * items, so if there are more items to process we can decrement
771 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
772 *
773 * However for log replay we may not have inserted an entire leaf's
774 * worth of items, we may have not had continuous items, so decrementing
775 * here would mess up the index_item_leaves accounting. For this case
776 * only clean up the accounting when there are no items left.
777 */
778 if (next && !continuous_keys_only) {
779 /*
780 * We inserted one batch of items into a leaf a there are more
781 * items to flush in a future batch, now release one unit of
782 * metadata space from the delayed block reserve, corresponding
783 * the leaf we just flushed to.
784 */
785 btrfs_delayed_item_release_leaves(node, 1);
786 node->index_item_leaves--;
787 } else if (!next) {
788 /*
789 * There are no more items to insert. We can have a number of
790 * reserved leaves > 1 here - this happens when many dir index
791 * items are added and then removed before they are flushed (file
792 * names with a very short life, never span a transaction). So
793 * release all remaining leaves.
794 */
795 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
796 node->index_item_leaves = 0;
797 }
798
799 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
800 list_del(&curr->tree_list);
801 btrfs_release_delayed_item(curr);
802 }
803out:
804 kfree(ins_data);
805 return ret;
806}
807
808static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
809 struct btrfs_path *path,
810 struct btrfs_root *root,
811 struct btrfs_delayed_node *node)
812{
813 int ret = 0;
814
815 while (ret == 0) {
816 struct btrfs_delayed_item *curr;
817
818 mutex_lock(&node->mutex);
819 curr = __btrfs_first_delayed_insertion_item(node);
820 if (!curr) {
821 mutex_unlock(&node->mutex);
822 break;
823 }
824 ret = btrfs_insert_delayed_item(trans, root, path, curr);
825 mutex_unlock(&node->mutex);
826 }
827
828 return ret;
829}
830
831static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
832 struct btrfs_root *root,
833 struct btrfs_path *path,
834 struct btrfs_delayed_item *item)
835{
836 const u64 ino = item->delayed_node->inode_id;
837 struct btrfs_fs_info *fs_info = root->fs_info;
838 struct btrfs_delayed_item *curr, *next;
839 struct extent_buffer *leaf = path->nodes[0];
840 LIST_HEAD(batch_list);
841 int nitems, slot, last_slot;
842 int ret;
843 u64 total_reserved_size = item->bytes_reserved;
844
845 ASSERT(leaf != NULL);
846
847 slot = path->slots[0];
848 last_slot = btrfs_header_nritems(leaf) - 1;
849 /*
850 * Our caller always gives us a path pointing to an existing item, so
851 * this can not happen.
852 */
853 ASSERT(slot <= last_slot);
854 if (WARN_ON(slot > last_slot))
855 return -ENOENT;
856
857 nitems = 1;
858 curr = item;
859 list_add_tail(&curr->tree_list, &batch_list);
860
861 /*
862 * Keep checking if the next delayed item matches the next item in the
863 * leaf - if so, we can add it to the batch of items to delete from the
864 * leaf.
865 */
866 while (slot < last_slot) {
867 struct btrfs_key key;
868
869 next = __btrfs_next_delayed_item(curr);
870 if (!next)
871 break;
872
873 slot++;
874 btrfs_item_key_to_cpu(leaf, &key, slot);
875 if (key.objectid != ino ||
876 key.type != BTRFS_DIR_INDEX_KEY ||
877 key.offset != next->index)
878 break;
879 nitems++;
880 curr = next;
881 list_add_tail(&curr->tree_list, &batch_list);
882 total_reserved_size += curr->bytes_reserved;
883 }
884
885 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
886 if (ret)
887 return ret;
888
889 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
890 if (total_reserved_size > 0) {
891 /*
892 * Check btrfs_delayed_item_reserve_metadata() to see why we
893 * don't need to release/reserve qgroup space.
894 */
895 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
896 total_reserved_size, 0);
897 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
898 total_reserved_size, NULL);
899 }
900
901 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
902 list_del(&curr->tree_list);
903 btrfs_release_delayed_item(curr);
904 }
905
906 return 0;
907}
908
909static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
910 struct btrfs_path *path,
911 struct btrfs_root *root,
912 struct btrfs_delayed_node *node)
913{
914 struct btrfs_key key;
915 int ret = 0;
916
917 key.objectid = node->inode_id;
918 key.type = BTRFS_DIR_INDEX_KEY;
919
920 while (ret == 0) {
921 struct btrfs_delayed_item *item;
922
923 mutex_lock(&node->mutex);
924 item = __btrfs_first_delayed_deletion_item(node);
925 if (!item) {
926 mutex_unlock(&node->mutex);
927 break;
928 }
929
930 key.offset = item->index;
931 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
932 if (ret > 0) {
933 /*
934 * There's no matching item in the leaf. This means we
935 * have already deleted this item in a past run of the
936 * delayed items. We ignore errors when running delayed
937 * items from an async context, through a work queue job
938 * running btrfs_async_run_delayed_root(), and don't
939 * release delayed items that failed to complete. This
940 * is because we will retry later, and at transaction
941 * commit time we always run delayed items and will
942 * then deal with errors if they fail to run again.
943 *
944 * So just release delayed items for which we can't find
945 * an item in the tree, and move to the next item.
946 */
947 btrfs_release_path(path);
948 btrfs_release_delayed_item(item);
949 ret = 0;
950 } else if (ret == 0) {
951 ret = btrfs_batch_delete_items(trans, root, path, item);
952 btrfs_release_path(path);
953 }
954
955 /*
956 * We unlock and relock on each iteration, this is to prevent
957 * blocking other tasks for too long while we are being run from
958 * the async context (work queue job). Those tasks are typically
959 * running system calls like creat/mkdir/rename/unlink/etc which
960 * need to add delayed items to this delayed node.
961 */
962 mutex_unlock(&node->mutex);
963 }
964
965 return ret;
966}
967
968static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
969{
970 struct btrfs_delayed_root *delayed_root;
971
972 if (delayed_node &&
973 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
974 BUG_ON(!delayed_node->root);
975 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
976 delayed_node->count--;
977
978 delayed_root = delayed_node->root->fs_info->delayed_root;
979 finish_one_item(delayed_root);
980 }
981}
982
983static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
984{
985
986 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
987 struct btrfs_delayed_root *delayed_root;
988
989 ASSERT(delayed_node->root);
990 delayed_node->count--;
991
992 delayed_root = delayed_node->root->fs_info->delayed_root;
993 finish_one_item(delayed_root);
994 }
995}
996
997static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
998 struct btrfs_root *root,
999 struct btrfs_path *path,
1000 struct btrfs_delayed_node *node)
1001{
1002 struct btrfs_fs_info *fs_info = root->fs_info;
1003 struct btrfs_key key;
1004 struct btrfs_inode_item *inode_item;
1005 struct extent_buffer *leaf;
1006 int mod;
1007 int ret;
1008
1009 key.objectid = node->inode_id;
1010 key.type = BTRFS_INODE_ITEM_KEY;
1011 key.offset = 0;
1012
1013 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1014 mod = -1;
1015 else
1016 mod = 1;
1017
1018 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1019 if (ret > 0)
1020 ret = -ENOENT;
1021 if (ret < 0)
1022 goto out;
1023
1024 leaf = path->nodes[0];
1025 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1026 struct btrfs_inode_item);
1027 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1028 sizeof(struct btrfs_inode_item));
1029 btrfs_mark_buffer_dirty(leaf);
1030
1031 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1032 goto out;
1033
1034 path->slots[0]++;
1035 if (path->slots[0] >= btrfs_header_nritems(leaf))
1036 goto search;
1037again:
1038 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1039 if (key.objectid != node->inode_id)
1040 goto out;
1041
1042 if (key.type != BTRFS_INODE_REF_KEY &&
1043 key.type != BTRFS_INODE_EXTREF_KEY)
1044 goto out;
1045
1046 /*
1047 * Delayed iref deletion is for the inode who has only one link,
1048 * so there is only one iref. The case that several irefs are
1049 * in the same item doesn't exist.
1050 */
1051 btrfs_del_item(trans, root, path);
1052out:
1053 btrfs_release_delayed_iref(node);
1054 btrfs_release_path(path);
1055err_out:
1056 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1057 btrfs_release_delayed_inode(node);
1058
1059 /*
1060 * If we fail to update the delayed inode we need to abort the
1061 * transaction, because we could leave the inode with the improper
1062 * counts behind.
1063 */
1064 if (ret && ret != -ENOENT)
1065 btrfs_abort_transaction(trans, ret);
1066
1067 return ret;
1068
1069search:
1070 btrfs_release_path(path);
1071
1072 key.type = BTRFS_INODE_EXTREF_KEY;
1073 key.offset = -1;
1074
1075 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1076 if (ret < 0)
1077 goto err_out;
1078 ASSERT(ret);
1079
1080 ret = 0;
1081 leaf = path->nodes[0];
1082 path->slots[0]--;
1083 goto again;
1084}
1085
1086static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1087 struct btrfs_root *root,
1088 struct btrfs_path *path,
1089 struct btrfs_delayed_node *node)
1090{
1091 int ret;
1092
1093 mutex_lock(&node->mutex);
1094 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1095 mutex_unlock(&node->mutex);
1096 return 0;
1097 }
1098
1099 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1100 mutex_unlock(&node->mutex);
1101 return ret;
1102}
1103
1104static inline int
1105__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1106 struct btrfs_path *path,
1107 struct btrfs_delayed_node *node)
1108{
1109 int ret;
1110
1111 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1112 if (ret)
1113 return ret;
1114
1115 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1116 if (ret)
1117 return ret;
1118
1119 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1120 return ret;
1121}
1122
1123/*
1124 * Called when committing the transaction.
1125 * Returns 0 on success.
1126 * Returns < 0 on error and returns with an aborted transaction with any
1127 * outstanding delayed items cleaned up.
1128 */
1129static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1130{
1131 struct btrfs_fs_info *fs_info = trans->fs_info;
1132 struct btrfs_delayed_root *delayed_root;
1133 struct btrfs_delayed_node *curr_node, *prev_node;
1134 struct btrfs_path *path;
1135 struct btrfs_block_rsv *block_rsv;
1136 int ret = 0;
1137 bool count = (nr > 0);
1138
1139 if (TRANS_ABORTED(trans))
1140 return -EIO;
1141
1142 path = btrfs_alloc_path();
1143 if (!path)
1144 return -ENOMEM;
1145
1146 block_rsv = trans->block_rsv;
1147 trans->block_rsv = &fs_info->delayed_block_rsv;
1148
1149 delayed_root = fs_info->delayed_root;
1150
1151 curr_node = btrfs_first_delayed_node(delayed_root);
1152 while (curr_node && (!count || nr--)) {
1153 ret = __btrfs_commit_inode_delayed_items(trans, path,
1154 curr_node);
1155 if (ret) {
1156 btrfs_release_delayed_node(curr_node);
1157 curr_node = NULL;
1158 btrfs_abort_transaction(trans, ret);
1159 break;
1160 }
1161
1162 prev_node = curr_node;
1163 curr_node = btrfs_next_delayed_node(curr_node);
1164 btrfs_release_delayed_node(prev_node);
1165 }
1166
1167 if (curr_node)
1168 btrfs_release_delayed_node(curr_node);
1169 btrfs_free_path(path);
1170 trans->block_rsv = block_rsv;
1171
1172 return ret;
1173}
1174
1175int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1176{
1177 return __btrfs_run_delayed_items(trans, -1);
1178}
1179
1180int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1181{
1182 return __btrfs_run_delayed_items(trans, nr);
1183}
1184
1185int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1186 struct btrfs_inode *inode)
1187{
1188 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1189 struct btrfs_path *path;
1190 struct btrfs_block_rsv *block_rsv;
1191 int ret;
1192
1193 if (!delayed_node)
1194 return 0;
1195
1196 mutex_lock(&delayed_node->mutex);
1197 if (!delayed_node->count) {
1198 mutex_unlock(&delayed_node->mutex);
1199 btrfs_release_delayed_node(delayed_node);
1200 return 0;
1201 }
1202 mutex_unlock(&delayed_node->mutex);
1203
1204 path = btrfs_alloc_path();
1205 if (!path) {
1206 btrfs_release_delayed_node(delayed_node);
1207 return -ENOMEM;
1208 }
1209
1210 block_rsv = trans->block_rsv;
1211 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1212
1213 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1214
1215 btrfs_release_delayed_node(delayed_node);
1216 btrfs_free_path(path);
1217 trans->block_rsv = block_rsv;
1218
1219 return ret;
1220}
1221
1222int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1223{
1224 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1225 struct btrfs_trans_handle *trans;
1226 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1227 struct btrfs_path *path;
1228 struct btrfs_block_rsv *block_rsv;
1229 int ret;
1230
1231 if (!delayed_node)
1232 return 0;
1233
1234 mutex_lock(&delayed_node->mutex);
1235 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1236 mutex_unlock(&delayed_node->mutex);
1237 btrfs_release_delayed_node(delayed_node);
1238 return 0;
1239 }
1240 mutex_unlock(&delayed_node->mutex);
1241
1242 trans = btrfs_join_transaction(delayed_node->root);
1243 if (IS_ERR(trans)) {
1244 ret = PTR_ERR(trans);
1245 goto out;
1246 }
1247
1248 path = btrfs_alloc_path();
1249 if (!path) {
1250 ret = -ENOMEM;
1251 goto trans_out;
1252 }
1253
1254 block_rsv = trans->block_rsv;
1255 trans->block_rsv = &fs_info->delayed_block_rsv;
1256
1257 mutex_lock(&delayed_node->mutex);
1258 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1259 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1260 path, delayed_node);
1261 else
1262 ret = 0;
1263 mutex_unlock(&delayed_node->mutex);
1264
1265 btrfs_free_path(path);
1266 trans->block_rsv = block_rsv;
1267trans_out:
1268 btrfs_end_transaction(trans);
1269 btrfs_btree_balance_dirty(fs_info);
1270out:
1271 btrfs_release_delayed_node(delayed_node);
1272
1273 return ret;
1274}
1275
1276void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1277{
1278 struct btrfs_delayed_node *delayed_node;
1279
1280 delayed_node = READ_ONCE(inode->delayed_node);
1281 if (!delayed_node)
1282 return;
1283
1284 inode->delayed_node = NULL;
1285 btrfs_release_delayed_node(delayed_node);
1286}
1287
1288struct btrfs_async_delayed_work {
1289 struct btrfs_delayed_root *delayed_root;
1290 int nr;
1291 struct btrfs_work work;
1292};
1293
1294static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1295{
1296 struct btrfs_async_delayed_work *async_work;
1297 struct btrfs_delayed_root *delayed_root;
1298 struct btrfs_trans_handle *trans;
1299 struct btrfs_path *path;
1300 struct btrfs_delayed_node *delayed_node = NULL;
1301 struct btrfs_root *root;
1302 struct btrfs_block_rsv *block_rsv;
1303 int total_done = 0;
1304
1305 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1306 delayed_root = async_work->delayed_root;
1307
1308 path = btrfs_alloc_path();
1309 if (!path)
1310 goto out;
1311
1312 do {
1313 if (atomic_read(&delayed_root->items) <
1314 BTRFS_DELAYED_BACKGROUND / 2)
1315 break;
1316
1317 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1318 if (!delayed_node)
1319 break;
1320
1321 root = delayed_node->root;
1322
1323 trans = btrfs_join_transaction(root);
1324 if (IS_ERR(trans)) {
1325 btrfs_release_path(path);
1326 btrfs_release_prepared_delayed_node(delayed_node);
1327 total_done++;
1328 continue;
1329 }
1330
1331 block_rsv = trans->block_rsv;
1332 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1333
1334 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1335
1336 trans->block_rsv = block_rsv;
1337 btrfs_end_transaction(trans);
1338 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1339
1340 btrfs_release_path(path);
1341 btrfs_release_prepared_delayed_node(delayed_node);
1342 total_done++;
1343
1344 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1345 || total_done < async_work->nr);
1346
1347 btrfs_free_path(path);
1348out:
1349 wake_up(&delayed_root->wait);
1350 kfree(async_work);
1351}
1352
1353
1354static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1355 struct btrfs_fs_info *fs_info, int nr)
1356{
1357 struct btrfs_async_delayed_work *async_work;
1358
1359 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1360 if (!async_work)
1361 return -ENOMEM;
1362
1363 async_work->delayed_root = delayed_root;
1364 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1365 NULL);
1366 async_work->nr = nr;
1367
1368 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1369 return 0;
1370}
1371
1372void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1373{
1374 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1375}
1376
1377static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1378{
1379 int val = atomic_read(&delayed_root->items_seq);
1380
1381 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1382 return 1;
1383
1384 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1385 return 1;
1386
1387 return 0;
1388}
1389
1390void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1391{
1392 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1393
1394 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1395 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1396 return;
1397
1398 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1399 int seq;
1400 int ret;
1401
1402 seq = atomic_read(&delayed_root->items_seq);
1403
1404 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1405 if (ret)
1406 return;
1407
1408 wait_event_interruptible(delayed_root->wait,
1409 could_end_wait(delayed_root, seq));
1410 return;
1411 }
1412
1413 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1414}
1415
1416/* Will return 0 or -ENOMEM */
1417int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1418 const char *name, int name_len,
1419 struct btrfs_inode *dir,
1420 struct btrfs_disk_key *disk_key, u8 flags,
1421 u64 index)
1422{
1423 struct btrfs_fs_info *fs_info = trans->fs_info;
1424 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1425 struct btrfs_delayed_node *delayed_node;
1426 struct btrfs_delayed_item *delayed_item;
1427 struct btrfs_dir_item *dir_item;
1428 bool reserve_leaf_space;
1429 u32 data_len;
1430 int ret;
1431
1432 delayed_node = btrfs_get_or_create_delayed_node(dir);
1433 if (IS_ERR(delayed_node))
1434 return PTR_ERR(delayed_node);
1435
1436 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1437 delayed_node,
1438 BTRFS_DELAYED_INSERTION_ITEM);
1439 if (!delayed_item) {
1440 ret = -ENOMEM;
1441 goto release_node;
1442 }
1443
1444 delayed_item->index = index;
1445
1446 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1447 dir_item->location = *disk_key;
1448 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1449 btrfs_set_stack_dir_data_len(dir_item, 0);
1450 btrfs_set_stack_dir_name_len(dir_item, name_len);
1451 btrfs_set_stack_dir_flags(dir_item, flags);
1452 memcpy((char *)(dir_item + 1), name, name_len);
1453
1454 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1455
1456 mutex_lock(&delayed_node->mutex);
1457
1458 if (delayed_node->index_item_leaves == 0 ||
1459 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1460 delayed_node->curr_index_batch_size = data_len;
1461 reserve_leaf_space = true;
1462 } else {
1463 delayed_node->curr_index_batch_size += data_len;
1464 reserve_leaf_space = false;
1465 }
1466
1467 if (reserve_leaf_space) {
1468 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1469 /*
1470 * Space was reserved for a dir index item insertion when we
1471 * started the transaction, so getting a failure here should be
1472 * impossible.
1473 */
1474 if (WARN_ON(ret)) {
1475 mutex_unlock(&delayed_node->mutex);
1476 btrfs_release_delayed_item(delayed_item);
1477 goto release_node;
1478 }
1479
1480 delayed_node->index_item_leaves++;
1481 } else if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
1482 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1483
1484 /*
1485 * Adding the new dir index item does not require touching another
1486 * leaf, so we can release 1 unit of metadata that was previously
1487 * reserved when starting the transaction. This applies only to
1488 * the case where we had a transaction start and excludes the
1489 * transaction join case (when replaying log trees).
1490 */
1491 trace_btrfs_space_reservation(fs_info, "transaction",
1492 trans->transid, bytes, 0);
1493 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1494 ASSERT(trans->bytes_reserved >= bytes);
1495 trans->bytes_reserved -= bytes;
1496 }
1497
1498 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1499 if (unlikely(ret)) {
1500 btrfs_err(trans->fs_info,
1501 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1502 name_len, name, delayed_node->root->root_key.objectid,
1503 delayed_node->inode_id, ret);
1504 BUG();
1505 }
1506 mutex_unlock(&delayed_node->mutex);
1507
1508release_node:
1509 btrfs_release_delayed_node(delayed_node);
1510 return ret;
1511}
1512
1513static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1514 struct btrfs_delayed_node *node,
1515 u64 index)
1516{
1517 struct btrfs_delayed_item *item;
1518
1519 mutex_lock(&node->mutex);
1520 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1521 if (!item) {
1522 mutex_unlock(&node->mutex);
1523 return 1;
1524 }
1525
1526 /*
1527 * For delayed items to insert, we track reserved metadata bytes based
1528 * on the number of leaves that we will use.
1529 * See btrfs_insert_delayed_dir_index() and
1530 * btrfs_delayed_item_reserve_metadata()).
1531 */
1532 ASSERT(item->bytes_reserved == 0);
1533 ASSERT(node->index_item_leaves > 0);
1534
1535 /*
1536 * If there's only one leaf reserved, we can decrement this item from the
1537 * current batch, otherwise we can not because we don't know which leaf
1538 * it belongs to. With the current limit on delayed items, we rarely
1539 * accumulate enough dir index items to fill more than one leaf (even
1540 * when using a leaf size of 4K).
1541 */
1542 if (node->index_item_leaves == 1) {
1543 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1544
1545 ASSERT(node->curr_index_batch_size >= data_len);
1546 node->curr_index_batch_size -= data_len;
1547 }
1548
1549 btrfs_release_delayed_item(item);
1550
1551 /* If we now have no more dir index items, we can release all leaves. */
1552 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1553 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1554 node->index_item_leaves = 0;
1555 }
1556
1557 mutex_unlock(&node->mutex);
1558 return 0;
1559}
1560
1561int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1562 struct btrfs_inode *dir, u64 index)
1563{
1564 struct btrfs_delayed_node *node;
1565 struct btrfs_delayed_item *item;
1566 int ret;
1567
1568 node = btrfs_get_or_create_delayed_node(dir);
1569 if (IS_ERR(node))
1570 return PTR_ERR(node);
1571
1572 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
1573 if (!ret)
1574 goto end;
1575
1576 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1577 if (!item) {
1578 ret = -ENOMEM;
1579 goto end;
1580 }
1581
1582 item->index = index;
1583
1584 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1585 /*
1586 * we have reserved enough space when we start a new transaction,
1587 * so reserving metadata failure is impossible.
1588 */
1589 if (ret < 0) {
1590 btrfs_err(trans->fs_info,
1591"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1592 btrfs_release_delayed_item(item);
1593 goto end;
1594 }
1595
1596 mutex_lock(&node->mutex);
1597 ret = __btrfs_add_delayed_item(node, item);
1598 if (unlikely(ret)) {
1599 btrfs_err(trans->fs_info,
1600 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1601 index, node->root->root_key.objectid,
1602 node->inode_id, ret);
1603 btrfs_delayed_item_release_metadata(dir->root, item);
1604 btrfs_release_delayed_item(item);
1605 }
1606 mutex_unlock(&node->mutex);
1607end:
1608 btrfs_release_delayed_node(node);
1609 return ret;
1610}
1611
1612int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1613{
1614 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1615
1616 if (!delayed_node)
1617 return -ENOENT;
1618
1619 /*
1620 * Since we have held i_mutex of this directory, it is impossible that
1621 * a new directory index is added into the delayed node and index_cnt
1622 * is updated now. So we needn't lock the delayed node.
1623 */
1624 if (!delayed_node->index_cnt) {
1625 btrfs_release_delayed_node(delayed_node);
1626 return -EINVAL;
1627 }
1628
1629 inode->index_cnt = delayed_node->index_cnt;
1630 btrfs_release_delayed_node(delayed_node);
1631 return 0;
1632}
1633
1634bool btrfs_readdir_get_delayed_items(struct inode *inode,
1635 struct list_head *ins_list,
1636 struct list_head *del_list)
1637{
1638 struct btrfs_delayed_node *delayed_node;
1639 struct btrfs_delayed_item *item;
1640
1641 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1642 if (!delayed_node)
1643 return false;
1644
1645 /*
1646 * We can only do one readdir with delayed items at a time because of
1647 * item->readdir_list.
1648 */
1649 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
1650 btrfs_inode_lock(BTRFS_I(inode), 0);
1651
1652 mutex_lock(&delayed_node->mutex);
1653 item = __btrfs_first_delayed_insertion_item(delayed_node);
1654 while (item) {
1655 refcount_inc(&item->refs);
1656 list_add_tail(&item->readdir_list, ins_list);
1657 item = __btrfs_next_delayed_item(item);
1658 }
1659
1660 item = __btrfs_first_delayed_deletion_item(delayed_node);
1661 while (item) {
1662 refcount_inc(&item->refs);
1663 list_add_tail(&item->readdir_list, del_list);
1664 item = __btrfs_next_delayed_item(item);
1665 }
1666 mutex_unlock(&delayed_node->mutex);
1667 /*
1668 * This delayed node is still cached in the btrfs inode, so refs
1669 * must be > 1 now, and we needn't check it is going to be freed
1670 * or not.
1671 *
1672 * Besides that, this function is used to read dir, we do not
1673 * insert/delete delayed items in this period. So we also needn't
1674 * requeue or dequeue this delayed node.
1675 */
1676 refcount_dec(&delayed_node->refs);
1677
1678 return true;
1679}
1680
1681void btrfs_readdir_put_delayed_items(struct inode *inode,
1682 struct list_head *ins_list,
1683 struct list_head *del_list)
1684{
1685 struct btrfs_delayed_item *curr, *next;
1686
1687 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1688 list_del(&curr->readdir_list);
1689 if (refcount_dec_and_test(&curr->refs))
1690 kfree(curr);
1691 }
1692
1693 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1694 list_del(&curr->readdir_list);
1695 if (refcount_dec_and_test(&curr->refs))
1696 kfree(curr);
1697 }
1698
1699 /*
1700 * The VFS is going to do up_read(), so we need to downgrade back to a
1701 * read lock.
1702 */
1703 downgrade_write(&inode->i_rwsem);
1704}
1705
1706int btrfs_should_delete_dir_index(struct list_head *del_list,
1707 u64 index)
1708{
1709 struct btrfs_delayed_item *curr;
1710 int ret = 0;
1711
1712 list_for_each_entry(curr, del_list, readdir_list) {
1713 if (curr->index > index)
1714 break;
1715 if (curr->index == index) {
1716 ret = 1;
1717 break;
1718 }
1719 }
1720 return ret;
1721}
1722
1723/*
1724 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1725 *
1726 */
1727int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1728 struct list_head *ins_list)
1729{
1730 struct btrfs_dir_item *di;
1731 struct btrfs_delayed_item *curr, *next;
1732 struct btrfs_key location;
1733 char *name;
1734 int name_len;
1735 int over = 0;
1736 unsigned char d_type;
1737
1738 if (list_empty(ins_list))
1739 return 0;
1740
1741 /*
1742 * Changing the data of the delayed item is impossible. So
1743 * we needn't lock them. And we have held i_mutex of the
1744 * directory, nobody can delete any directory indexes now.
1745 */
1746 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1747 list_del(&curr->readdir_list);
1748
1749 if (curr->index < ctx->pos) {
1750 if (refcount_dec_and_test(&curr->refs))
1751 kfree(curr);
1752 continue;
1753 }
1754
1755 ctx->pos = curr->index;
1756
1757 di = (struct btrfs_dir_item *)curr->data;
1758 name = (char *)(di + 1);
1759 name_len = btrfs_stack_dir_name_len(di);
1760
1761 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1762 btrfs_disk_key_to_cpu(&location, &di->location);
1763
1764 over = !dir_emit(ctx, name, name_len,
1765 location.objectid, d_type);
1766
1767 if (refcount_dec_and_test(&curr->refs))
1768 kfree(curr);
1769
1770 if (over)
1771 return 1;
1772 ctx->pos++;
1773 }
1774 return 0;
1775}
1776
1777static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1778 struct btrfs_inode_item *inode_item,
1779 struct inode *inode)
1780{
1781 u64 flags;
1782
1783 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1784 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1785 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1786 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1787 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1788 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1789 btrfs_set_stack_inode_generation(inode_item,
1790 BTRFS_I(inode)->generation);
1791 btrfs_set_stack_inode_sequence(inode_item,
1792 inode_peek_iversion(inode));
1793 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1794 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1795 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1796 BTRFS_I(inode)->ro_flags);
1797 btrfs_set_stack_inode_flags(inode_item, flags);
1798 btrfs_set_stack_inode_block_group(inode_item, 0);
1799
1800 btrfs_set_stack_timespec_sec(&inode_item->atime,
1801 inode->i_atime.tv_sec);
1802 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1803 inode->i_atime.tv_nsec);
1804
1805 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1806 inode->i_mtime.tv_sec);
1807 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1808 inode->i_mtime.tv_nsec);
1809
1810 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1811 inode->i_ctime.tv_sec);
1812 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1813 inode->i_ctime.tv_nsec);
1814
1815 btrfs_set_stack_timespec_sec(&inode_item->otime,
1816 BTRFS_I(inode)->i_otime.tv_sec);
1817 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1818 BTRFS_I(inode)->i_otime.tv_nsec);
1819}
1820
1821int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1822{
1823 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1824 struct btrfs_delayed_node *delayed_node;
1825 struct btrfs_inode_item *inode_item;
1826
1827 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1828 if (!delayed_node)
1829 return -ENOENT;
1830
1831 mutex_lock(&delayed_node->mutex);
1832 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1833 mutex_unlock(&delayed_node->mutex);
1834 btrfs_release_delayed_node(delayed_node);
1835 return -ENOENT;
1836 }
1837
1838 inode_item = &delayed_node->inode_item;
1839
1840 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1841 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1842 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1843 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1844 round_up(i_size_read(inode), fs_info->sectorsize));
1845 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1846 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1847 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1848 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1849 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1850
1851 inode_set_iversion_queried(inode,
1852 btrfs_stack_inode_sequence(inode_item));
1853 inode->i_rdev = 0;
1854 *rdev = btrfs_stack_inode_rdev(inode_item);
1855 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1856 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1857
1858 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1859 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1860
1861 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1862 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1863
1864 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1865 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1866
1867 BTRFS_I(inode)->i_otime.tv_sec =
1868 btrfs_stack_timespec_sec(&inode_item->otime);
1869 BTRFS_I(inode)->i_otime.tv_nsec =
1870 btrfs_stack_timespec_nsec(&inode_item->otime);
1871
1872 inode->i_generation = BTRFS_I(inode)->generation;
1873 BTRFS_I(inode)->index_cnt = (u64)-1;
1874
1875 mutex_unlock(&delayed_node->mutex);
1876 btrfs_release_delayed_node(delayed_node);
1877 return 0;
1878}
1879
1880int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1881 struct btrfs_root *root,
1882 struct btrfs_inode *inode)
1883{
1884 struct btrfs_delayed_node *delayed_node;
1885 int ret = 0;
1886
1887 delayed_node = btrfs_get_or_create_delayed_node(inode);
1888 if (IS_ERR(delayed_node))
1889 return PTR_ERR(delayed_node);
1890
1891 mutex_lock(&delayed_node->mutex);
1892 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1893 fill_stack_inode_item(trans, &delayed_node->inode_item,
1894 &inode->vfs_inode);
1895 goto release_node;
1896 }
1897
1898 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1899 if (ret)
1900 goto release_node;
1901
1902 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1903 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1904 delayed_node->count++;
1905 atomic_inc(&root->fs_info->delayed_root->items);
1906release_node:
1907 mutex_unlock(&delayed_node->mutex);
1908 btrfs_release_delayed_node(delayed_node);
1909 return ret;
1910}
1911
1912int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1913{
1914 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1915 struct btrfs_delayed_node *delayed_node;
1916
1917 /*
1918 * we don't do delayed inode updates during log recovery because it
1919 * leads to enospc problems. This means we also can't do
1920 * delayed inode refs
1921 */
1922 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1923 return -EAGAIN;
1924
1925 delayed_node = btrfs_get_or_create_delayed_node(inode);
1926 if (IS_ERR(delayed_node))
1927 return PTR_ERR(delayed_node);
1928
1929 /*
1930 * We don't reserve space for inode ref deletion is because:
1931 * - We ONLY do async inode ref deletion for the inode who has only
1932 * one link(i_nlink == 1), it means there is only one inode ref.
1933 * And in most case, the inode ref and the inode item are in the
1934 * same leaf, and we will deal with them at the same time.
1935 * Since we are sure we will reserve the space for the inode item,
1936 * it is unnecessary to reserve space for inode ref deletion.
1937 * - If the inode ref and the inode item are not in the same leaf,
1938 * We also needn't worry about enospc problem, because we reserve
1939 * much more space for the inode update than it needs.
1940 * - At the worst, we can steal some space from the global reservation.
1941 * It is very rare.
1942 */
1943 mutex_lock(&delayed_node->mutex);
1944 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1945 goto release_node;
1946
1947 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1948 delayed_node->count++;
1949 atomic_inc(&fs_info->delayed_root->items);
1950release_node:
1951 mutex_unlock(&delayed_node->mutex);
1952 btrfs_release_delayed_node(delayed_node);
1953 return 0;
1954}
1955
1956static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1957{
1958 struct btrfs_root *root = delayed_node->root;
1959 struct btrfs_fs_info *fs_info = root->fs_info;
1960 struct btrfs_delayed_item *curr_item, *prev_item;
1961
1962 mutex_lock(&delayed_node->mutex);
1963 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1964 while (curr_item) {
1965 prev_item = curr_item;
1966 curr_item = __btrfs_next_delayed_item(prev_item);
1967 btrfs_release_delayed_item(prev_item);
1968 }
1969
1970 if (delayed_node->index_item_leaves > 0) {
1971 btrfs_delayed_item_release_leaves(delayed_node,
1972 delayed_node->index_item_leaves);
1973 delayed_node->index_item_leaves = 0;
1974 }
1975
1976 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1977 while (curr_item) {
1978 btrfs_delayed_item_release_metadata(root, curr_item);
1979 prev_item = curr_item;
1980 curr_item = __btrfs_next_delayed_item(prev_item);
1981 btrfs_release_delayed_item(prev_item);
1982 }
1983
1984 btrfs_release_delayed_iref(delayed_node);
1985
1986 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1987 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1988 btrfs_release_delayed_inode(delayed_node);
1989 }
1990 mutex_unlock(&delayed_node->mutex);
1991}
1992
1993void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1994{
1995 struct btrfs_delayed_node *delayed_node;
1996
1997 delayed_node = btrfs_get_delayed_node(inode);
1998 if (!delayed_node)
1999 return;
2000
2001 __btrfs_kill_delayed_node(delayed_node);
2002 btrfs_release_delayed_node(delayed_node);
2003}
2004
2005void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2006{
2007 u64 inode_id = 0;
2008 struct btrfs_delayed_node *delayed_nodes[8];
2009 int i, n;
2010
2011 while (1) {
2012 spin_lock(&root->inode_lock);
2013 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
2014 (void **)delayed_nodes, inode_id,
2015 ARRAY_SIZE(delayed_nodes));
2016 if (!n) {
2017 spin_unlock(&root->inode_lock);
2018 break;
2019 }
2020
2021 inode_id = delayed_nodes[n - 1]->inode_id + 1;
2022 for (i = 0; i < n; i++) {
2023 /*
2024 * Don't increase refs in case the node is dead and
2025 * about to be removed from the tree in the loop below
2026 */
2027 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
2028 delayed_nodes[i] = NULL;
2029 }
2030 spin_unlock(&root->inode_lock);
2031
2032 for (i = 0; i < n; i++) {
2033 if (!delayed_nodes[i])
2034 continue;
2035 __btrfs_kill_delayed_node(delayed_nodes[i]);
2036 btrfs_release_delayed_node(delayed_nodes[i]);
2037 }
2038 }
2039}
2040
2041void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2042{
2043 struct btrfs_delayed_node *curr_node, *prev_node;
2044
2045 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2046 while (curr_node) {
2047 __btrfs_kill_delayed_node(curr_node);
2048
2049 prev_node = curr_node;
2050 curr_node = btrfs_next_delayed_node(curr_node);
2051 btrfs_release_delayed_node(prev_node);
2052 }
2053}
2054
2055void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2056 struct list_head *ins_list,
2057 struct list_head *del_list)
2058{
2059 struct btrfs_delayed_node *node;
2060 struct btrfs_delayed_item *item;
2061
2062 node = btrfs_get_delayed_node(inode);
2063 if (!node)
2064 return;
2065
2066 mutex_lock(&node->mutex);
2067 item = __btrfs_first_delayed_insertion_item(node);
2068 while (item) {
2069 /*
2070 * It's possible that the item is already in a log list. This
2071 * can happen in case two tasks are trying to log the same
2072 * directory. For example if we have tasks A and task B:
2073 *
2074 * Task A collected the delayed items into a log list while
2075 * under the inode's log_mutex (at btrfs_log_inode()), but it
2076 * only releases the items after logging the inodes they point
2077 * to (if they are new inodes), which happens after unlocking
2078 * the log mutex;
2079 *
2080 * Task B enters btrfs_log_inode() and acquires the log_mutex
2081 * of the same directory inode, before task B releases the
2082 * delayed items. This can happen for example when logging some
2083 * inode we need to trigger logging of its parent directory, so
2084 * logging two files that have the same parent directory can
2085 * lead to this.
2086 *
2087 * If this happens, just ignore delayed items already in a log
2088 * list. All the tasks logging the directory are under a log
2089 * transaction and whichever finishes first can not sync the log
2090 * before the other completes and leaves the log transaction.
2091 */
2092 if (!item->logged && list_empty(&item->log_list)) {
2093 refcount_inc(&item->refs);
2094 list_add_tail(&item->log_list, ins_list);
2095 }
2096 item = __btrfs_next_delayed_item(item);
2097 }
2098
2099 item = __btrfs_first_delayed_deletion_item(node);
2100 while (item) {
2101 /* It may be non-empty, for the same reason mentioned above. */
2102 if (!item->logged && list_empty(&item->log_list)) {
2103 refcount_inc(&item->refs);
2104 list_add_tail(&item->log_list, del_list);
2105 }
2106 item = __btrfs_next_delayed_item(item);
2107 }
2108 mutex_unlock(&node->mutex);
2109
2110 /*
2111 * We are called during inode logging, which means the inode is in use
2112 * and can not be evicted before we finish logging the inode. So we never
2113 * have the last reference on the delayed inode.
2114 * Also, we don't use btrfs_release_delayed_node() because that would
2115 * requeue the delayed inode (change its order in the list of prepared
2116 * nodes) and we don't want to do such change because we don't create or
2117 * delete delayed items.
2118 */
2119 ASSERT(refcount_read(&node->refs) > 1);
2120 refcount_dec(&node->refs);
2121}
2122
2123void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2124 struct list_head *ins_list,
2125 struct list_head *del_list)
2126{
2127 struct btrfs_delayed_node *node;
2128 struct btrfs_delayed_item *item;
2129 struct btrfs_delayed_item *next;
2130
2131 node = btrfs_get_delayed_node(inode);
2132 if (!node)
2133 return;
2134
2135 mutex_lock(&node->mutex);
2136
2137 list_for_each_entry_safe(item, next, ins_list, log_list) {
2138 item->logged = true;
2139 list_del_init(&item->log_list);
2140 if (refcount_dec_and_test(&item->refs))
2141 kfree(item);
2142 }
2143
2144 list_for_each_entry_safe(item, next, del_list, log_list) {
2145 item->logged = true;
2146 list_del_init(&item->log_list);
2147 if (refcount_dec_and_test(&item->refs))
2148 kfree(item);
2149 }
2150
2151 mutex_unlock(&node->mutex);
2152
2153 /*
2154 * We are called during inode logging, which means the inode is in use
2155 * and can not be evicted before we finish logging the inode. So we never
2156 * have the last reference on the delayed inode.
2157 * Also, we don't use btrfs_release_delayed_node() because that would
2158 * requeue the delayed inode (change its order in the list of prepared
2159 * nodes) and we don't want to do such change because we don't create or
2160 * delete delayed items.
2161 */
2162 ASSERT(refcount_read(&node->refs) > 1);
2163 refcount_dec(&node->refs);
2164}
1/*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20#include <linux/slab.h>
21#include "delayed-inode.h"
22#include "disk-io.h"
23#include "transaction.h"
24#include "ctree.h"
25
26#define BTRFS_DELAYED_WRITEBACK 512
27#define BTRFS_DELAYED_BACKGROUND 128
28#define BTRFS_DELAYED_BATCH 16
29
30static struct kmem_cache *delayed_node_cache;
31
32int __init btrfs_delayed_inode_init(void)
33{
34 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 sizeof(struct btrfs_delayed_node),
36 0,
37 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
38 NULL);
39 if (!delayed_node_cache)
40 return -ENOMEM;
41 return 0;
42}
43
44void btrfs_delayed_inode_exit(void)
45{
46 if (delayed_node_cache)
47 kmem_cache_destroy(delayed_node_cache);
48}
49
50static inline void btrfs_init_delayed_node(
51 struct btrfs_delayed_node *delayed_node,
52 struct btrfs_root *root, u64 inode_id)
53{
54 delayed_node->root = root;
55 delayed_node->inode_id = inode_id;
56 atomic_set(&delayed_node->refs, 0);
57 delayed_node->count = 0;
58 delayed_node->flags = 0;
59 delayed_node->ins_root = RB_ROOT;
60 delayed_node->del_root = RB_ROOT;
61 mutex_init(&delayed_node->mutex);
62 delayed_node->index_cnt = 0;
63 INIT_LIST_HEAD(&delayed_node->n_list);
64 INIT_LIST_HEAD(&delayed_node->p_list);
65 delayed_node->bytes_reserved = 0;
66 memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
67}
68
69static inline int btrfs_is_continuous_delayed_item(
70 struct btrfs_delayed_item *item1,
71 struct btrfs_delayed_item *item2)
72{
73 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
74 item1->key.objectid == item2->key.objectid &&
75 item1->key.type == item2->key.type &&
76 item1->key.offset + 1 == item2->key.offset)
77 return 1;
78 return 0;
79}
80
81static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
82 struct btrfs_root *root)
83{
84 return root->fs_info->delayed_root;
85}
86
87static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
88{
89 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
90 struct btrfs_root *root = btrfs_inode->root;
91 u64 ino = btrfs_ino(inode);
92 struct btrfs_delayed_node *node;
93
94 node = ACCESS_ONCE(btrfs_inode->delayed_node);
95 if (node) {
96 atomic_inc(&node->refs);
97 return node;
98 }
99
100 spin_lock(&root->inode_lock);
101 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
102 if (node) {
103 if (btrfs_inode->delayed_node) {
104 atomic_inc(&node->refs); /* can be accessed */
105 BUG_ON(btrfs_inode->delayed_node != node);
106 spin_unlock(&root->inode_lock);
107 return node;
108 }
109 btrfs_inode->delayed_node = node;
110 /* can be accessed and cached in the inode */
111 atomic_add(2, &node->refs);
112 spin_unlock(&root->inode_lock);
113 return node;
114 }
115 spin_unlock(&root->inode_lock);
116
117 return NULL;
118}
119
120/* Will return either the node or PTR_ERR(-ENOMEM) */
121static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
122 struct inode *inode)
123{
124 struct btrfs_delayed_node *node;
125 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
126 struct btrfs_root *root = btrfs_inode->root;
127 u64 ino = btrfs_ino(inode);
128 int ret;
129
130again:
131 node = btrfs_get_delayed_node(inode);
132 if (node)
133 return node;
134
135 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
136 if (!node)
137 return ERR_PTR(-ENOMEM);
138 btrfs_init_delayed_node(node, root, ino);
139
140 /* cached in the btrfs inode and can be accessed */
141 atomic_add(2, &node->refs);
142
143 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
144 if (ret) {
145 kmem_cache_free(delayed_node_cache, node);
146 return ERR_PTR(ret);
147 }
148
149 spin_lock(&root->inode_lock);
150 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151 if (ret == -EEXIST) {
152 kmem_cache_free(delayed_node_cache, node);
153 spin_unlock(&root->inode_lock);
154 radix_tree_preload_end();
155 goto again;
156 }
157 btrfs_inode->delayed_node = node;
158 spin_unlock(&root->inode_lock);
159 radix_tree_preload_end();
160
161 return node;
162}
163
164/*
165 * Call it when holding delayed_node->mutex
166 *
167 * If mod = 1, add this node into the prepared list.
168 */
169static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
170 struct btrfs_delayed_node *node,
171 int mod)
172{
173 spin_lock(&root->lock);
174 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
175 if (!list_empty(&node->p_list))
176 list_move_tail(&node->p_list, &root->prepare_list);
177 else if (mod)
178 list_add_tail(&node->p_list, &root->prepare_list);
179 } else {
180 list_add_tail(&node->n_list, &root->node_list);
181 list_add_tail(&node->p_list, &root->prepare_list);
182 atomic_inc(&node->refs); /* inserted into list */
183 root->nodes++;
184 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
185 }
186 spin_unlock(&root->lock);
187}
188
189/* Call it when holding delayed_node->mutex */
190static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
191 struct btrfs_delayed_node *node)
192{
193 spin_lock(&root->lock);
194 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
195 root->nodes--;
196 atomic_dec(&node->refs); /* not in the list */
197 list_del_init(&node->n_list);
198 if (!list_empty(&node->p_list))
199 list_del_init(&node->p_list);
200 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
201 }
202 spin_unlock(&root->lock);
203}
204
205static struct btrfs_delayed_node *btrfs_first_delayed_node(
206 struct btrfs_delayed_root *delayed_root)
207{
208 struct list_head *p;
209 struct btrfs_delayed_node *node = NULL;
210
211 spin_lock(&delayed_root->lock);
212 if (list_empty(&delayed_root->node_list))
213 goto out;
214
215 p = delayed_root->node_list.next;
216 node = list_entry(p, struct btrfs_delayed_node, n_list);
217 atomic_inc(&node->refs);
218out:
219 spin_unlock(&delayed_root->lock);
220
221 return node;
222}
223
224static struct btrfs_delayed_node *btrfs_next_delayed_node(
225 struct btrfs_delayed_node *node)
226{
227 struct btrfs_delayed_root *delayed_root;
228 struct list_head *p;
229 struct btrfs_delayed_node *next = NULL;
230
231 delayed_root = node->root->fs_info->delayed_root;
232 spin_lock(&delayed_root->lock);
233 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
234 /* not in the list */
235 if (list_empty(&delayed_root->node_list))
236 goto out;
237 p = delayed_root->node_list.next;
238 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
239 goto out;
240 else
241 p = node->n_list.next;
242
243 next = list_entry(p, struct btrfs_delayed_node, n_list);
244 atomic_inc(&next->refs);
245out:
246 spin_unlock(&delayed_root->lock);
247
248 return next;
249}
250
251static void __btrfs_release_delayed_node(
252 struct btrfs_delayed_node *delayed_node,
253 int mod)
254{
255 struct btrfs_delayed_root *delayed_root;
256
257 if (!delayed_node)
258 return;
259
260 delayed_root = delayed_node->root->fs_info->delayed_root;
261
262 mutex_lock(&delayed_node->mutex);
263 if (delayed_node->count)
264 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
265 else
266 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
267 mutex_unlock(&delayed_node->mutex);
268
269 if (atomic_dec_and_test(&delayed_node->refs)) {
270 struct btrfs_root *root = delayed_node->root;
271 spin_lock(&root->inode_lock);
272 if (atomic_read(&delayed_node->refs) == 0) {
273 radix_tree_delete(&root->delayed_nodes_tree,
274 delayed_node->inode_id);
275 kmem_cache_free(delayed_node_cache, delayed_node);
276 }
277 spin_unlock(&root->inode_lock);
278 }
279}
280
281static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
282{
283 __btrfs_release_delayed_node(node, 0);
284}
285
286static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
287 struct btrfs_delayed_root *delayed_root)
288{
289 struct list_head *p;
290 struct btrfs_delayed_node *node = NULL;
291
292 spin_lock(&delayed_root->lock);
293 if (list_empty(&delayed_root->prepare_list))
294 goto out;
295
296 p = delayed_root->prepare_list.next;
297 list_del_init(p);
298 node = list_entry(p, struct btrfs_delayed_node, p_list);
299 atomic_inc(&node->refs);
300out:
301 spin_unlock(&delayed_root->lock);
302
303 return node;
304}
305
306static inline void btrfs_release_prepared_delayed_node(
307 struct btrfs_delayed_node *node)
308{
309 __btrfs_release_delayed_node(node, 1);
310}
311
312static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
313{
314 struct btrfs_delayed_item *item;
315 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
316 if (item) {
317 item->data_len = data_len;
318 item->ins_or_del = 0;
319 item->bytes_reserved = 0;
320 item->delayed_node = NULL;
321 atomic_set(&item->refs, 1);
322 }
323 return item;
324}
325
326/*
327 * __btrfs_lookup_delayed_item - look up the delayed item by key
328 * @delayed_node: pointer to the delayed node
329 * @key: the key to look up
330 * @prev: used to store the prev item if the right item isn't found
331 * @next: used to store the next item if the right item isn't found
332 *
333 * Note: if we don't find the right item, we will return the prev item and
334 * the next item.
335 */
336static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
337 struct rb_root *root,
338 struct btrfs_key *key,
339 struct btrfs_delayed_item **prev,
340 struct btrfs_delayed_item **next)
341{
342 struct rb_node *node, *prev_node = NULL;
343 struct btrfs_delayed_item *delayed_item = NULL;
344 int ret = 0;
345
346 node = root->rb_node;
347
348 while (node) {
349 delayed_item = rb_entry(node, struct btrfs_delayed_item,
350 rb_node);
351 prev_node = node;
352 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
353 if (ret < 0)
354 node = node->rb_right;
355 else if (ret > 0)
356 node = node->rb_left;
357 else
358 return delayed_item;
359 }
360
361 if (prev) {
362 if (!prev_node)
363 *prev = NULL;
364 else if (ret < 0)
365 *prev = delayed_item;
366 else if ((node = rb_prev(prev_node)) != NULL) {
367 *prev = rb_entry(node, struct btrfs_delayed_item,
368 rb_node);
369 } else
370 *prev = NULL;
371 }
372
373 if (next) {
374 if (!prev_node)
375 *next = NULL;
376 else if (ret > 0)
377 *next = delayed_item;
378 else if ((node = rb_next(prev_node)) != NULL) {
379 *next = rb_entry(node, struct btrfs_delayed_item,
380 rb_node);
381 } else
382 *next = NULL;
383 }
384 return NULL;
385}
386
387static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
388 struct btrfs_delayed_node *delayed_node,
389 struct btrfs_key *key)
390{
391 struct btrfs_delayed_item *item;
392
393 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
394 NULL, NULL);
395 return item;
396}
397
398static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
399 struct btrfs_delayed_item *ins,
400 int action)
401{
402 struct rb_node **p, *node;
403 struct rb_node *parent_node = NULL;
404 struct rb_root *root;
405 struct btrfs_delayed_item *item;
406 int cmp;
407
408 if (action == BTRFS_DELAYED_INSERTION_ITEM)
409 root = &delayed_node->ins_root;
410 else if (action == BTRFS_DELAYED_DELETION_ITEM)
411 root = &delayed_node->del_root;
412 else
413 BUG();
414 p = &root->rb_node;
415 node = &ins->rb_node;
416
417 while (*p) {
418 parent_node = *p;
419 item = rb_entry(parent_node, struct btrfs_delayed_item,
420 rb_node);
421
422 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
423 if (cmp < 0)
424 p = &(*p)->rb_right;
425 else if (cmp > 0)
426 p = &(*p)->rb_left;
427 else
428 return -EEXIST;
429 }
430
431 rb_link_node(node, parent_node, p);
432 rb_insert_color(node, root);
433 ins->delayed_node = delayed_node;
434 ins->ins_or_del = action;
435
436 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
437 action == BTRFS_DELAYED_INSERTION_ITEM &&
438 ins->key.offset >= delayed_node->index_cnt)
439 delayed_node->index_cnt = ins->key.offset + 1;
440
441 delayed_node->count++;
442 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
443 return 0;
444}
445
446static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
447 struct btrfs_delayed_item *item)
448{
449 return __btrfs_add_delayed_item(node, item,
450 BTRFS_DELAYED_INSERTION_ITEM);
451}
452
453static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
454 struct btrfs_delayed_item *item)
455{
456 return __btrfs_add_delayed_item(node, item,
457 BTRFS_DELAYED_DELETION_ITEM);
458}
459
460static void finish_one_item(struct btrfs_delayed_root *delayed_root)
461{
462 int seq = atomic_inc_return(&delayed_root->items_seq);
463 if ((atomic_dec_return(&delayed_root->items) <
464 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
465 waitqueue_active(&delayed_root->wait))
466 wake_up(&delayed_root->wait);
467}
468
469static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
470{
471 struct rb_root *root;
472 struct btrfs_delayed_root *delayed_root;
473
474 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
475
476 BUG_ON(!delayed_root);
477 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
478 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
479
480 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
481 root = &delayed_item->delayed_node->ins_root;
482 else
483 root = &delayed_item->delayed_node->del_root;
484
485 rb_erase(&delayed_item->rb_node, root);
486 delayed_item->delayed_node->count--;
487
488 finish_one_item(delayed_root);
489}
490
491static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
492{
493 if (item) {
494 __btrfs_remove_delayed_item(item);
495 if (atomic_dec_and_test(&item->refs))
496 kfree(item);
497 }
498}
499
500static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
501 struct btrfs_delayed_node *delayed_node)
502{
503 struct rb_node *p;
504 struct btrfs_delayed_item *item = NULL;
505
506 p = rb_first(&delayed_node->ins_root);
507 if (p)
508 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
509
510 return item;
511}
512
513static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
514 struct btrfs_delayed_node *delayed_node)
515{
516 struct rb_node *p;
517 struct btrfs_delayed_item *item = NULL;
518
519 p = rb_first(&delayed_node->del_root);
520 if (p)
521 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
522
523 return item;
524}
525
526static struct btrfs_delayed_item *__btrfs_next_delayed_item(
527 struct btrfs_delayed_item *item)
528{
529 struct rb_node *p;
530 struct btrfs_delayed_item *next = NULL;
531
532 p = rb_next(&item->rb_node);
533 if (p)
534 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
535
536 return next;
537}
538
539static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
540 struct btrfs_root *root,
541 struct btrfs_delayed_item *item)
542{
543 struct btrfs_block_rsv *src_rsv;
544 struct btrfs_block_rsv *dst_rsv;
545 u64 num_bytes;
546 int ret;
547
548 if (!trans->bytes_reserved)
549 return 0;
550
551 src_rsv = trans->block_rsv;
552 dst_rsv = &root->fs_info->delayed_block_rsv;
553
554 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
555 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
556 if (!ret) {
557 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
558 item->key.objectid,
559 num_bytes, 1);
560 item->bytes_reserved = num_bytes;
561 }
562
563 return ret;
564}
565
566static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
567 struct btrfs_delayed_item *item)
568{
569 struct btrfs_block_rsv *rsv;
570
571 if (!item->bytes_reserved)
572 return;
573
574 rsv = &root->fs_info->delayed_block_rsv;
575 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
576 item->key.objectid, item->bytes_reserved,
577 0);
578 btrfs_block_rsv_release(root, rsv,
579 item->bytes_reserved);
580}
581
582static int btrfs_delayed_inode_reserve_metadata(
583 struct btrfs_trans_handle *trans,
584 struct btrfs_root *root,
585 struct inode *inode,
586 struct btrfs_delayed_node *node)
587{
588 struct btrfs_block_rsv *src_rsv;
589 struct btrfs_block_rsv *dst_rsv;
590 u64 num_bytes;
591 int ret;
592 bool release = false;
593
594 src_rsv = trans->block_rsv;
595 dst_rsv = &root->fs_info->delayed_block_rsv;
596
597 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
598
599 /*
600 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
601 * which doesn't reserve space for speed. This is a problem since we
602 * still need to reserve space for this update, so try to reserve the
603 * space.
604 *
605 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
606 * we're accounted for.
607 */
608 if (!src_rsv || (!trans->bytes_reserved &&
609 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
610 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
611 BTRFS_RESERVE_NO_FLUSH);
612 /*
613 * Since we're under a transaction reserve_metadata_bytes could
614 * try to commit the transaction which will make it return
615 * EAGAIN to make us stop the transaction we have, so return
616 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
617 */
618 if (ret == -EAGAIN)
619 ret = -ENOSPC;
620 if (!ret) {
621 node->bytes_reserved = num_bytes;
622 trace_btrfs_space_reservation(root->fs_info,
623 "delayed_inode",
624 btrfs_ino(inode),
625 num_bytes, 1);
626 }
627 return ret;
628 } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
629 spin_lock(&BTRFS_I(inode)->lock);
630 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
631 &BTRFS_I(inode)->runtime_flags)) {
632 spin_unlock(&BTRFS_I(inode)->lock);
633 release = true;
634 goto migrate;
635 }
636 spin_unlock(&BTRFS_I(inode)->lock);
637
638 /* Ok we didn't have space pre-reserved. This shouldn't happen
639 * too often but it can happen if we do delalloc to an existing
640 * inode which gets dirtied because of the time update, and then
641 * isn't touched again until after the transaction commits and
642 * then we try to write out the data. First try to be nice and
643 * reserve something strictly for us. If not be a pain and try
644 * to steal from the delalloc block rsv.
645 */
646 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
647 BTRFS_RESERVE_NO_FLUSH);
648 if (!ret)
649 goto out;
650
651 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
652 if (!WARN_ON(ret))
653 goto out;
654
655 /*
656 * Ok this is a problem, let's just steal from the global rsv
657 * since this really shouldn't happen that often.
658 */
659 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
660 dst_rsv, num_bytes);
661 goto out;
662 }
663
664migrate:
665 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
666
667out:
668 /*
669 * Migrate only takes a reservation, it doesn't touch the size of the
670 * block_rsv. This is to simplify people who don't normally have things
671 * migrated from their block rsv. If they go to release their
672 * reservation, that will decrease the size as well, so if migrate
673 * reduced size we'd end up with a negative size. But for the
674 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
675 * but we could in fact do this reserve/migrate dance several times
676 * between the time we did the original reservation and we'd clean it
677 * up. So to take care of this, release the space for the meta
678 * reservation here. I think it may be time for a documentation page on
679 * how block rsvs. work.
680 */
681 if (!ret) {
682 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
683 btrfs_ino(inode), num_bytes, 1);
684 node->bytes_reserved = num_bytes;
685 }
686
687 if (release) {
688 trace_btrfs_space_reservation(root->fs_info, "delalloc",
689 btrfs_ino(inode), num_bytes, 0);
690 btrfs_block_rsv_release(root, src_rsv, num_bytes);
691 }
692
693 return ret;
694}
695
696static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
697 struct btrfs_delayed_node *node)
698{
699 struct btrfs_block_rsv *rsv;
700
701 if (!node->bytes_reserved)
702 return;
703
704 rsv = &root->fs_info->delayed_block_rsv;
705 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
706 node->inode_id, node->bytes_reserved, 0);
707 btrfs_block_rsv_release(root, rsv,
708 node->bytes_reserved);
709 node->bytes_reserved = 0;
710}
711
712/*
713 * This helper will insert some continuous items into the same leaf according
714 * to the free space of the leaf.
715 */
716static int btrfs_batch_insert_items(struct btrfs_root *root,
717 struct btrfs_path *path,
718 struct btrfs_delayed_item *item)
719{
720 struct btrfs_delayed_item *curr, *next;
721 int free_space;
722 int total_data_size = 0, total_size = 0;
723 struct extent_buffer *leaf;
724 char *data_ptr;
725 struct btrfs_key *keys;
726 u32 *data_size;
727 struct list_head head;
728 int slot;
729 int nitems;
730 int i;
731 int ret = 0;
732
733 BUG_ON(!path->nodes[0]);
734
735 leaf = path->nodes[0];
736 free_space = btrfs_leaf_free_space(root, leaf);
737 INIT_LIST_HEAD(&head);
738
739 next = item;
740 nitems = 0;
741
742 /*
743 * count the number of the continuous items that we can insert in batch
744 */
745 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
746 free_space) {
747 total_data_size += next->data_len;
748 total_size += next->data_len + sizeof(struct btrfs_item);
749 list_add_tail(&next->tree_list, &head);
750 nitems++;
751
752 curr = next;
753 next = __btrfs_next_delayed_item(curr);
754 if (!next)
755 break;
756
757 if (!btrfs_is_continuous_delayed_item(curr, next))
758 break;
759 }
760
761 if (!nitems) {
762 ret = 0;
763 goto out;
764 }
765
766 /*
767 * we need allocate some memory space, but it might cause the task
768 * to sleep, so we set all locked nodes in the path to blocking locks
769 * first.
770 */
771 btrfs_set_path_blocking(path);
772
773 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
774 if (!keys) {
775 ret = -ENOMEM;
776 goto out;
777 }
778
779 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
780 if (!data_size) {
781 ret = -ENOMEM;
782 goto error;
783 }
784
785 /* get keys of all the delayed items */
786 i = 0;
787 list_for_each_entry(next, &head, tree_list) {
788 keys[i] = next->key;
789 data_size[i] = next->data_len;
790 i++;
791 }
792
793 /* reset all the locked nodes in the patch to spinning locks. */
794 btrfs_clear_path_blocking(path, NULL, 0);
795
796 /* insert the keys of the items */
797 setup_items_for_insert(root, path, keys, data_size,
798 total_data_size, total_size, nitems);
799
800 /* insert the dir index items */
801 slot = path->slots[0];
802 list_for_each_entry_safe(curr, next, &head, tree_list) {
803 data_ptr = btrfs_item_ptr(leaf, slot, char);
804 write_extent_buffer(leaf, &curr->data,
805 (unsigned long)data_ptr,
806 curr->data_len);
807 slot++;
808
809 btrfs_delayed_item_release_metadata(root, curr);
810
811 list_del(&curr->tree_list);
812 btrfs_release_delayed_item(curr);
813 }
814
815error:
816 kfree(data_size);
817 kfree(keys);
818out:
819 return ret;
820}
821
822/*
823 * This helper can just do simple insertion that needn't extend item for new
824 * data, such as directory name index insertion, inode insertion.
825 */
826static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
827 struct btrfs_root *root,
828 struct btrfs_path *path,
829 struct btrfs_delayed_item *delayed_item)
830{
831 struct extent_buffer *leaf;
832 char *ptr;
833 int ret;
834
835 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
836 delayed_item->data_len);
837 if (ret < 0 && ret != -EEXIST)
838 return ret;
839
840 leaf = path->nodes[0];
841
842 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
843
844 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
845 delayed_item->data_len);
846 btrfs_mark_buffer_dirty(leaf);
847
848 btrfs_delayed_item_release_metadata(root, delayed_item);
849 return 0;
850}
851
852/*
853 * we insert an item first, then if there are some continuous items, we try
854 * to insert those items into the same leaf.
855 */
856static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
857 struct btrfs_path *path,
858 struct btrfs_root *root,
859 struct btrfs_delayed_node *node)
860{
861 struct btrfs_delayed_item *curr, *prev;
862 int ret = 0;
863
864do_again:
865 mutex_lock(&node->mutex);
866 curr = __btrfs_first_delayed_insertion_item(node);
867 if (!curr)
868 goto insert_end;
869
870 ret = btrfs_insert_delayed_item(trans, root, path, curr);
871 if (ret < 0) {
872 btrfs_release_path(path);
873 goto insert_end;
874 }
875
876 prev = curr;
877 curr = __btrfs_next_delayed_item(prev);
878 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
879 /* insert the continuous items into the same leaf */
880 path->slots[0]++;
881 btrfs_batch_insert_items(root, path, curr);
882 }
883 btrfs_release_delayed_item(prev);
884 btrfs_mark_buffer_dirty(path->nodes[0]);
885
886 btrfs_release_path(path);
887 mutex_unlock(&node->mutex);
888 goto do_again;
889
890insert_end:
891 mutex_unlock(&node->mutex);
892 return ret;
893}
894
895static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
896 struct btrfs_root *root,
897 struct btrfs_path *path,
898 struct btrfs_delayed_item *item)
899{
900 struct btrfs_delayed_item *curr, *next;
901 struct extent_buffer *leaf;
902 struct btrfs_key key;
903 struct list_head head;
904 int nitems, i, last_item;
905 int ret = 0;
906
907 BUG_ON(!path->nodes[0]);
908
909 leaf = path->nodes[0];
910
911 i = path->slots[0];
912 last_item = btrfs_header_nritems(leaf) - 1;
913 if (i > last_item)
914 return -ENOENT; /* FIXME: Is errno suitable? */
915
916 next = item;
917 INIT_LIST_HEAD(&head);
918 btrfs_item_key_to_cpu(leaf, &key, i);
919 nitems = 0;
920 /*
921 * count the number of the dir index items that we can delete in batch
922 */
923 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
924 list_add_tail(&next->tree_list, &head);
925 nitems++;
926
927 curr = next;
928 next = __btrfs_next_delayed_item(curr);
929 if (!next)
930 break;
931
932 if (!btrfs_is_continuous_delayed_item(curr, next))
933 break;
934
935 i++;
936 if (i > last_item)
937 break;
938 btrfs_item_key_to_cpu(leaf, &key, i);
939 }
940
941 if (!nitems)
942 return 0;
943
944 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
945 if (ret)
946 goto out;
947
948 list_for_each_entry_safe(curr, next, &head, tree_list) {
949 btrfs_delayed_item_release_metadata(root, curr);
950 list_del(&curr->tree_list);
951 btrfs_release_delayed_item(curr);
952 }
953
954out:
955 return ret;
956}
957
958static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
959 struct btrfs_path *path,
960 struct btrfs_root *root,
961 struct btrfs_delayed_node *node)
962{
963 struct btrfs_delayed_item *curr, *prev;
964 int ret = 0;
965
966do_again:
967 mutex_lock(&node->mutex);
968 curr = __btrfs_first_delayed_deletion_item(node);
969 if (!curr)
970 goto delete_fail;
971
972 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
973 if (ret < 0)
974 goto delete_fail;
975 else if (ret > 0) {
976 /*
977 * can't find the item which the node points to, so this node
978 * is invalid, just drop it.
979 */
980 prev = curr;
981 curr = __btrfs_next_delayed_item(prev);
982 btrfs_release_delayed_item(prev);
983 ret = 0;
984 btrfs_release_path(path);
985 if (curr) {
986 mutex_unlock(&node->mutex);
987 goto do_again;
988 } else
989 goto delete_fail;
990 }
991
992 btrfs_batch_delete_items(trans, root, path, curr);
993 btrfs_release_path(path);
994 mutex_unlock(&node->mutex);
995 goto do_again;
996
997delete_fail:
998 btrfs_release_path(path);
999 mutex_unlock(&node->mutex);
1000 return ret;
1001}
1002
1003static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1004{
1005 struct btrfs_delayed_root *delayed_root;
1006
1007 if (delayed_node &&
1008 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1009 BUG_ON(!delayed_node->root);
1010 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1011 delayed_node->count--;
1012
1013 delayed_root = delayed_node->root->fs_info->delayed_root;
1014 finish_one_item(delayed_root);
1015 }
1016}
1017
1018static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1019{
1020 struct btrfs_delayed_root *delayed_root;
1021
1022 ASSERT(delayed_node->root);
1023 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1024 delayed_node->count--;
1025
1026 delayed_root = delayed_node->root->fs_info->delayed_root;
1027 finish_one_item(delayed_root);
1028}
1029
1030static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1031 struct btrfs_root *root,
1032 struct btrfs_path *path,
1033 struct btrfs_delayed_node *node)
1034{
1035 struct btrfs_key key;
1036 struct btrfs_inode_item *inode_item;
1037 struct extent_buffer *leaf;
1038 int mod;
1039 int ret;
1040
1041 key.objectid = node->inode_id;
1042 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1043 key.offset = 0;
1044
1045 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1046 mod = -1;
1047 else
1048 mod = 1;
1049
1050 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1051 if (ret > 0) {
1052 btrfs_release_path(path);
1053 return -ENOENT;
1054 } else if (ret < 0) {
1055 return ret;
1056 }
1057
1058 leaf = path->nodes[0];
1059 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1060 struct btrfs_inode_item);
1061 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1062 sizeof(struct btrfs_inode_item));
1063 btrfs_mark_buffer_dirty(leaf);
1064
1065 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1066 goto no_iref;
1067
1068 path->slots[0]++;
1069 if (path->slots[0] >= btrfs_header_nritems(leaf))
1070 goto search;
1071again:
1072 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1073 if (key.objectid != node->inode_id)
1074 goto out;
1075
1076 if (key.type != BTRFS_INODE_REF_KEY &&
1077 key.type != BTRFS_INODE_EXTREF_KEY)
1078 goto out;
1079
1080 /*
1081 * Delayed iref deletion is for the inode who has only one link,
1082 * so there is only one iref. The case that several irefs are
1083 * in the same item doesn't exist.
1084 */
1085 btrfs_del_item(trans, root, path);
1086out:
1087 btrfs_release_delayed_iref(node);
1088no_iref:
1089 btrfs_release_path(path);
1090err_out:
1091 btrfs_delayed_inode_release_metadata(root, node);
1092 btrfs_release_delayed_inode(node);
1093
1094 return ret;
1095
1096search:
1097 btrfs_release_path(path);
1098
1099 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1100 key.offset = -1;
1101 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1102 if (ret < 0)
1103 goto err_out;
1104 ASSERT(ret);
1105
1106 ret = 0;
1107 leaf = path->nodes[0];
1108 path->slots[0]--;
1109 goto again;
1110}
1111
1112static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1113 struct btrfs_root *root,
1114 struct btrfs_path *path,
1115 struct btrfs_delayed_node *node)
1116{
1117 int ret;
1118
1119 mutex_lock(&node->mutex);
1120 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1121 mutex_unlock(&node->mutex);
1122 return 0;
1123 }
1124
1125 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1126 mutex_unlock(&node->mutex);
1127 return ret;
1128}
1129
1130static inline int
1131__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1132 struct btrfs_path *path,
1133 struct btrfs_delayed_node *node)
1134{
1135 int ret;
1136
1137 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1138 if (ret)
1139 return ret;
1140
1141 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1142 if (ret)
1143 return ret;
1144
1145 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1146 return ret;
1147}
1148
1149/*
1150 * Called when committing the transaction.
1151 * Returns 0 on success.
1152 * Returns < 0 on error and returns with an aborted transaction with any
1153 * outstanding delayed items cleaned up.
1154 */
1155static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1156 struct btrfs_root *root, int nr)
1157{
1158 struct btrfs_delayed_root *delayed_root;
1159 struct btrfs_delayed_node *curr_node, *prev_node;
1160 struct btrfs_path *path;
1161 struct btrfs_block_rsv *block_rsv;
1162 int ret = 0;
1163 bool count = (nr > 0);
1164
1165 if (trans->aborted)
1166 return -EIO;
1167
1168 path = btrfs_alloc_path();
1169 if (!path)
1170 return -ENOMEM;
1171 path->leave_spinning = 1;
1172
1173 block_rsv = trans->block_rsv;
1174 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1175
1176 delayed_root = btrfs_get_delayed_root(root);
1177
1178 curr_node = btrfs_first_delayed_node(delayed_root);
1179 while (curr_node && (!count || (count && nr--))) {
1180 ret = __btrfs_commit_inode_delayed_items(trans, path,
1181 curr_node);
1182 if (ret) {
1183 btrfs_release_delayed_node(curr_node);
1184 curr_node = NULL;
1185 btrfs_abort_transaction(trans, root, ret);
1186 break;
1187 }
1188
1189 prev_node = curr_node;
1190 curr_node = btrfs_next_delayed_node(curr_node);
1191 btrfs_release_delayed_node(prev_node);
1192 }
1193
1194 if (curr_node)
1195 btrfs_release_delayed_node(curr_node);
1196 btrfs_free_path(path);
1197 trans->block_rsv = block_rsv;
1198
1199 return ret;
1200}
1201
1202int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1203 struct btrfs_root *root)
1204{
1205 return __btrfs_run_delayed_items(trans, root, -1);
1206}
1207
1208int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1209 struct btrfs_root *root, int nr)
1210{
1211 return __btrfs_run_delayed_items(trans, root, nr);
1212}
1213
1214int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1215 struct inode *inode)
1216{
1217 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1218 struct btrfs_path *path;
1219 struct btrfs_block_rsv *block_rsv;
1220 int ret;
1221
1222 if (!delayed_node)
1223 return 0;
1224
1225 mutex_lock(&delayed_node->mutex);
1226 if (!delayed_node->count) {
1227 mutex_unlock(&delayed_node->mutex);
1228 btrfs_release_delayed_node(delayed_node);
1229 return 0;
1230 }
1231 mutex_unlock(&delayed_node->mutex);
1232
1233 path = btrfs_alloc_path();
1234 if (!path) {
1235 btrfs_release_delayed_node(delayed_node);
1236 return -ENOMEM;
1237 }
1238 path->leave_spinning = 1;
1239
1240 block_rsv = trans->block_rsv;
1241 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1242
1243 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1244
1245 btrfs_release_delayed_node(delayed_node);
1246 btrfs_free_path(path);
1247 trans->block_rsv = block_rsv;
1248
1249 return ret;
1250}
1251
1252int btrfs_commit_inode_delayed_inode(struct inode *inode)
1253{
1254 struct btrfs_trans_handle *trans;
1255 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1256 struct btrfs_path *path;
1257 struct btrfs_block_rsv *block_rsv;
1258 int ret;
1259
1260 if (!delayed_node)
1261 return 0;
1262
1263 mutex_lock(&delayed_node->mutex);
1264 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1265 mutex_unlock(&delayed_node->mutex);
1266 btrfs_release_delayed_node(delayed_node);
1267 return 0;
1268 }
1269 mutex_unlock(&delayed_node->mutex);
1270
1271 trans = btrfs_join_transaction(delayed_node->root);
1272 if (IS_ERR(trans)) {
1273 ret = PTR_ERR(trans);
1274 goto out;
1275 }
1276
1277 path = btrfs_alloc_path();
1278 if (!path) {
1279 ret = -ENOMEM;
1280 goto trans_out;
1281 }
1282 path->leave_spinning = 1;
1283
1284 block_rsv = trans->block_rsv;
1285 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1286
1287 mutex_lock(&delayed_node->mutex);
1288 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1289 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1290 path, delayed_node);
1291 else
1292 ret = 0;
1293 mutex_unlock(&delayed_node->mutex);
1294
1295 btrfs_free_path(path);
1296 trans->block_rsv = block_rsv;
1297trans_out:
1298 btrfs_end_transaction(trans, delayed_node->root);
1299 btrfs_btree_balance_dirty(delayed_node->root);
1300out:
1301 btrfs_release_delayed_node(delayed_node);
1302
1303 return ret;
1304}
1305
1306void btrfs_remove_delayed_node(struct inode *inode)
1307{
1308 struct btrfs_delayed_node *delayed_node;
1309
1310 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1311 if (!delayed_node)
1312 return;
1313
1314 BTRFS_I(inode)->delayed_node = NULL;
1315 btrfs_release_delayed_node(delayed_node);
1316}
1317
1318struct btrfs_async_delayed_work {
1319 struct btrfs_delayed_root *delayed_root;
1320 int nr;
1321 struct btrfs_work work;
1322};
1323
1324static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1325{
1326 struct btrfs_async_delayed_work *async_work;
1327 struct btrfs_delayed_root *delayed_root;
1328 struct btrfs_trans_handle *trans;
1329 struct btrfs_path *path;
1330 struct btrfs_delayed_node *delayed_node = NULL;
1331 struct btrfs_root *root;
1332 struct btrfs_block_rsv *block_rsv;
1333 int total_done = 0;
1334
1335 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1336 delayed_root = async_work->delayed_root;
1337
1338 path = btrfs_alloc_path();
1339 if (!path)
1340 goto out;
1341
1342again:
1343 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1344 goto free_path;
1345
1346 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1347 if (!delayed_node)
1348 goto free_path;
1349
1350 path->leave_spinning = 1;
1351 root = delayed_node->root;
1352
1353 trans = btrfs_join_transaction(root);
1354 if (IS_ERR(trans))
1355 goto release_path;
1356
1357 block_rsv = trans->block_rsv;
1358 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1359
1360 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1361
1362 trans->block_rsv = block_rsv;
1363 btrfs_end_transaction(trans, root);
1364 btrfs_btree_balance_dirty_nodelay(root);
1365
1366release_path:
1367 btrfs_release_path(path);
1368 total_done++;
1369
1370 btrfs_release_prepared_delayed_node(delayed_node);
1371 if (async_work->nr == 0 || total_done < async_work->nr)
1372 goto again;
1373
1374free_path:
1375 btrfs_free_path(path);
1376out:
1377 wake_up(&delayed_root->wait);
1378 kfree(async_work);
1379}
1380
1381
1382static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1383 struct btrfs_root *root, int nr)
1384{
1385 struct btrfs_async_delayed_work *async_work;
1386
1387 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1388 return 0;
1389
1390 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1391 if (!async_work)
1392 return -ENOMEM;
1393
1394 async_work->delayed_root = delayed_root;
1395 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root,
1396 NULL, NULL);
1397 async_work->nr = nr;
1398
1399 btrfs_queue_work(root->fs_info->delayed_workers, &async_work->work);
1400 return 0;
1401}
1402
1403void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1404{
1405 struct btrfs_delayed_root *delayed_root;
1406 delayed_root = btrfs_get_delayed_root(root);
1407 WARN_ON(btrfs_first_delayed_node(delayed_root));
1408}
1409
1410static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1411{
1412 int val = atomic_read(&delayed_root->items_seq);
1413
1414 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1415 return 1;
1416
1417 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1418 return 1;
1419
1420 return 0;
1421}
1422
1423void btrfs_balance_delayed_items(struct btrfs_root *root)
1424{
1425 struct btrfs_delayed_root *delayed_root;
1426
1427 delayed_root = btrfs_get_delayed_root(root);
1428
1429 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1430 return;
1431
1432 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1433 int seq;
1434 int ret;
1435
1436 seq = atomic_read(&delayed_root->items_seq);
1437
1438 ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
1439 if (ret)
1440 return;
1441
1442 wait_event_interruptible(delayed_root->wait,
1443 could_end_wait(delayed_root, seq));
1444 return;
1445 }
1446
1447 btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
1448}
1449
1450/* Will return 0 or -ENOMEM */
1451int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1452 struct btrfs_root *root, const char *name,
1453 int name_len, struct inode *dir,
1454 struct btrfs_disk_key *disk_key, u8 type,
1455 u64 index)
1456{
1457 struct btrfs_delayed_node *delayed_node;
1458 struct btrfs_delayed_item *delayed_item;
1459 struct btrfs_dir_item *dir_item;
1460 int ret;
1461
1462 delayed_node = btrfs_get_or_create_delayed_node(dir);
1463 if (IS_ERR(delayed_node))
1464 return PTR_ERR(delayed_node);
1465
1466 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1467 if (!delayed_item) {
1468 ret = -ENOMEM;
1469 goto release_node;
1470 }
1471
1472 delayed_item->key.objectid = btrfs_ino(dir);
1473 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1474 delayed_item->key.offset = index;
1475
1476 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1477 dir_item->location = *disk_key;
1478 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1479 btrfs_set_stack_dir_data_len(dir_item, 0);
1480 btrfs_set_stack_dir_name_len(dir_item, name_len);
1481 btrfs_set_stack_dir_type(dir_item, type);
1482 memcpy((char *)(dir_item + 1), name, name_len);
1483
1484 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1485 /*
1486 * we have reserved enough space when we start a new transaction,
1487 * so reserving metadata failure is impossible
1488 */
1489 BUG_ON(ret);
1490
1491
1492 mutex_lock(&delayed_node->mutex);
1493 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1494 if (unlikely(ret)) {
1495 btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
1496 "into the insertion tree of the delayed node"
1497 "(root id: %llu, inode id: %llu, errno: %d)",
1498 name_len, name, delayed_node->root->objectid,
1499 delayed_node->inode_id, ret);
1500 BUG();
1501 }
1502 mutex_unlock(&delayed_node->mutex);
1503
1504release_node:
1505 btrfs_release_delayed_node(delayed_node);
1506 return ret;
1507}
1508
1509static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1510 struct btrfs_delayed_node *node,
1511 struct btrfs_key *key)
1512{
1513 struct btrfs_delayed_item *item;
1514
1515 mutex_lock(&node->mutex);
1516 item = __btrfs_lookup_delayed_insertion_item(node, key);
1517 if (!item) {
1518 mutex_unlock(&node->mutex);
1519 return 1;
1520 }
1521
1522 btrfs_delayed_item_release_metadata(root, item);
1523 btrfs_release_delayed_item(item);
1524 mutex_unlock(&node->mutex);
1525 return 0;
1526}
1527
1528int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1529 struct btrfs_root *root, struct inode *dir,
1530 u64 index)
1531{
1532 struct btrfs_delayed_node *node;
1533 struct btrfs_delayed_item *item;
1534 struct btrfs_key item_key;
1535 int ret;
1536
1537 node = btrfs_get_or_create_delayed_node(dir);
1538 if (IS_ERR(node))
1539 return PTR_ERR(node);
1540
1541 item_key.objectid = btrfs_ino(dir);
1542 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1543 item_key.offset = index;
1544
1545 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1546 if (!ret)
1547 goto end;
1548
1549 item = btrfs_alloc_delayed_item(0);
1550 if (!item) {
1551 ret = -ENOMEM;
1552 goto end;
1553 }
1554
1555 item->key = item_key;
1556
1557 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1558 /*
1559 * we have reserved enough space when we start a new transaction,
1560 * so reserving metadata failure is impossible.
1561 */
1562 BUG_ON(ret);
1563
1564 mutex_lock(&node->mutex);
1565 ret = __btrfs_add_delayed_deletion_item(node, item);
1566 if (unlikely(ret)) {
1567 btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
1568 "into the deletion tree of the delayed node"
1569 "(root id: %llu, inode id: %llu, errno: %d)",
1570 index, node->root->objectid, node->inode_id,
1571 ret);
1572 BUG();
1573 }
1574 mutex_unlock(&node->mutex);
1575end:
1576 btrfs_release_delayed_node(node);
1577 return ret;
1578}
1579
1580int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1581{
1582 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1583
1584 if (!delayed_node)
1585 return -ENOENT;
1586
1587 /*
1588 * Since we have held i_mutex of this directory, it is impossible that
1589 * a new directory index is added into the delayed node and index_cnt
1590 * is updated now. So we needn't lock the delayed node.
1591 */
1592 if (!delayed_node->index_cnt) {
1593 btrfs_release_delayed_node(delayed_node);
1594 return -EINVAL;
1595 }
1596
1597 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1598 btrfs_release_delayed_node(delayed_node);
1599 return 0;
1600}
1601
1602void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1603 struct list_head *del_list)
1604{
1605 struct btrfs_delayed_node *delayed_node;
1606 struct btrfs_delayed_item *item;
1607
1608 delayed_node = btrfs_get_delayed_node(inode);
1609 if (!delayed_node)
1610 return;
1611
1612 mutex_lock(&delayed_node->mutex);
1613 item = __btrfs_first_delayed_insertion_item(delayed_node);
1614 while (item) {
1615 atomic_inc(&item->refs);
1616 list_add_tail(&item->readdir_list, ins_list);
1617 item = __btrfs_next_delayed_item(item);
1618 }
1619
1620 item = __btrfs_first_delayed_deletion_item(delayed_node);
1621 while (item) {
1622 atomic_inc(&item->refs);
1623 list_add_tail(&item->readdir_list, del_list);
1624 item = __btrfs_next_delayed_item(item);
1625 }
1626 mutex_unlock(&delayed_node->mutex);
1627 /*
1628 * This delayed node is still cached in the btrfs inode, so refs
1629 * must be > 1 now, and we needn't check it is going to be freed
1630 * or not.
1631 *
1632 * Besides that, this function is used to read dir, we do not
1633 * insert/delete delayed items in this period. So we also needn't
1634 * requeue or dequeue this delayed node.
1635 */
1636 atomic_dec(&delayed_node->refs);
1637}
1638
1639void btrfs_put_delayed_items(struct list_head *ins_list,
1640 struct list_head *del_list)
1641{
1642 struct btrfs_delayed_item *curr, *next;
1643
1644 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1645 list_del(&curr->readdir_list);
1646 if (atomic_dec_and_test(&curr->refs))
1647 kfree(curr);
1648 }
1649
1650 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1651 list_del(&curr->readdir_list);
1652 if (atomic_dec_and_test(&curr->refs))
1653 kfree(curr);
1654 }
1655}
1656
1657int btrfs_should_delete_dir_index(struct list_head *del_list,
1658 u64 index)
1659{
1660 struct btrfs_delayed_item *curr, *next;
1661 int ret;
1662
1663 if (list_empty(del_list))
1664 return 0;
1665
1666 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1667 if (curr->key.offset > index)
1668 break;
1669
1670 list_del(&curr->readdir_list);
1671 ret = (curr->key.offset == index);
1672
1673 if (atomic_dec_and_test(&curr->refs))
1674 kfree(curr);
1675
1676 if (ret)
1677 return 1;
1678 else
1679 continue;
1680 }
1681 return 0;
1682}
1683
1684/*
1685 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1686 *
1687 */
1688int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1689 struct list_head *ins_list)
1690{
1691 struct btrfs_dir_item *di;
1692 struct btrfs_delayed_item *curr, *next;
1693 struct btrfs_key location;
1694 char *name;
1695 int name_len;
1696 int over = 0;
1697 unsigned char d_type;
1698
1699 if (list_empty(ins_list))
1700 return 0;
1701
1702 /*
1703 * Changing the data of the delayed item is impossible. So
1704 * we needn't lock them. And we have held i_mutex of the
1705 * directory, nobody can delete any directory indexes now.
1706 */
1707 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1708 list_del(&curr->readdir_list);
1709
1710 if (curr->key.offset < ctx->pos) {
1711 if (atomic_dec_and_test(&curr->refs))
1712 kfree(curr);
1713 continue;
1714 }
1715
1716 ctx->pos = curr->key.offset;
1717
1718 di = (struct btrfs_dir_item *)curr->data;
1719 name = (char *)(di + 1);
1720 name_len = btrfs_stack_dir_name_len(di);
1721
1722 d_type = btrfs_filetype_table[di->type];
1723 btrfs_disk_key_to_cpu(&location, &di->location);
1724
1725 over = !dir_emit(ctx, name, name_len,
1726 location.objectid, d_type);
1727
1728 if (atomic_dec_and_test(&curr->refs))
1729 kfree(curr);
1730
1731 if (over)
1732 return 1;
1733 }
1734 return 0;
1735}
1736
1737static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1738 struct btrfs_inode_item *inode_item,
1739 struct inode *inode)
1740{
1741 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1742 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1743 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1744 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1745 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1746 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1747 btrfs_set_stack_inode_generation(inode_item,
1748 BTRFS_I(inode)->generation);
1749 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1750 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1751 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1752 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1753 btrfs_set_stack_inode_block_group(inode_item, 0);
1754
1755 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1756 inode->i_atime.tv_sec);
1757 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1758 inode->i_atime.tv_nsec);
1759
1760 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1761 inode->i_mtime.tv_sec);
1762 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1763 inode->i_mtime.tv_nsec);
1764
1765 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1766 inode->i_ctime.tv_sec);
1767 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1768 inode->i_ctime.tv_nsec);
1769}
1770
1771int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1772{
1773 struct btrfs_delayed_node *delayed_node;
1774 struct btrfs_inode_item *inode_item;
1775 struct btrfs_timespec *tspec;
1776
1777 delayed_node = btrfs_get_delayed_node(inode);
1778 if (!delayed_node)
1779 return -ENOENT;
1780
1781 mutex_lock(&delayed_node->mutex);
1782 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1783 mutex_unlock(&delayed_node->mutex);
1784 btrfs_release_delayed_node(delayed_node);
1785 return -ENOENT;
1786 }
1787
1788 inode_item = &delayed_node->inode_item;
1789
1790 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1791 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1792 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1793 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1794 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1795 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1796 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1797 inode->i_version = btrfs_stack_inode_sequence(inode_item);
1798 inode->i_rdev = 0;
1799 *rdev = btrfs_stack_inode_rdev(inode_item);
1800 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1801
1802 tspec = btrfs_inode_atime(inode_item);
1803 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1804 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1805
1806 tspec = btrfs_inode_mtime(inode_item);
1807 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1808 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1809
1810 tspec = btrfs_inode_ctime(inode_item);
1811 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1812 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1813
1814 inode->i_generation = BTRFS_I(inode)->generation;
1815 BTRFS_I(inode)->index_cnt = (u64)-1;
1816
1817 mutex_unlock(&delayed_node->mutex);
1818 btrfs_release_delayed_node(delayed_node);
1819 return 0;
1820}
1821
1822int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1823 struct btrfs_root *root, struct inode *inode)
1824{
1825 struct btrfs_delayed_node *delayed_node;
1826 int ret = 0;
1827
1828 delayed_node = btrfs_get_or_create_delayed_node(inode);
1829 if (IS_ERR(delayed_node))
1830 return PTR_ERR(delayed_node);
1831
1832 mutex_lock(&delayed_node->mutex);
1833 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1834 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1835 goto release_node;
1836 }
1837
1838 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1839 delayed_node);
1840 if (ret)
1841 goto release_node;
1842
1843 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1844 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1845 delayed_node->count++;
1846 atomic_inc(&root->fs_info->delayed_root->items);
1847release_node:
1848 mutex_unlock(&delayed_node->mutex);
1849 btrfs_release_delayed_node(delayed_node);
1850 return ret;
1851}
1852
1853int btrfs_delayed_delete_inode_ref(struct inode *inode)
1854{
1855 struct btrfs_delayed_node *delayed_node;
1856
1857 delayed_node = btrfs_get_or_create_delayed_node(inode);
1858 if (IS_ERR(delayed_node))
1859 return PTR_ERR(delayed_node);
1860
1861 /*
1862 * We don't reserve space for inode ref deletion is because:
1863 * - We ONLY do async inode ref deletion for the inode who has only
1864 * one link(i_nlink == 1), it means there is only one inode ref.
1865 * And in most case, the inode ref and the inode item are in the
1866 * same leaf, and we will deal with them at the same time.
1867 * Since we are sure we will reserve the space for the inode item,
1868 * it is unnecessary to reserve space for inode ref deletion.
1869 * - If the inode ref and the inode item are not in the same leaf,
1870 * We also needn't worry about enospc problem, because we reserve
1871 * much more space for the inode update than it needs.
1872 * - At the worst, we can steal some space from the global reservation.
1873 * It is very rare.
1874 */
1875 mutex_lock(&delayed_node->mutex);
1876 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1877 goto release_node;
1878
1879 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1880 delayed_node->count++;
1881 atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
1882release_node:
1883 mutex_unlock(&delayed_node->mutex);
1884 btrfs_release_delayed_node(delayed_node);
1885 return 0;
1886}
1887
1888static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1889{
1890 struct btrfs_root *root = delayed_node->root;
1891 struct btrfs_delayed_item *curr_item, *prev_item;
1892
1893 mutex_lock(&delayed_node->mutex);
1894 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1895 while (curr_item) {
1896 btrfs_delayed_item_release_metadata(root, curr_item);
1897 prev_item = curr_item;
1898 curr_item = __btrfs_next_delayed_item(prev_item);
1899 btrfs_release_delayed_item(prev_item);
1900 }
1901
1902 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1903 while (curr_item) {
1904 btrfs_delayed_item_release_metadata(root, curr_item);
1905 prev_item = curr_item;
1906 curr_item = __btrfs_next_delayed_item(prev_item);
1907 btrfs_release_delayed_item(prev_item);
1908 }
1909
1910 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1911 btrfs_release_delayed_iref(delayed_node);
1912
1913 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1914 btrfs_delayed_inode_release_metadata(root, delayed_node);
1915 btrfs_release_delayed_inode(delayed_node);
1916 }
1917 mutex_unlock(&delayed_node->mutex);
1918}
1919
1920void btrfs_kill_delayed_inode_items(struct inode *inode)
1921{
1922 struct btrfs_delayed_node *delayed_node;
1923
1924 delayed_node = btrfs_get_delayed_node(inode);
1925 if (!delayed_node)
1926 return;
1927
1928 __btrfs_kill_delayed_node(delayed_node);
1929 btrfs_release_delayed_node(delayed_node);
1930}
1931
1932void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1933{
1934 u64 inode_id = 0;
1935 struct btrfs_delayed_node *delayed_nodes[8];
1936 int i, n;
1937
1938 while (1) {
1939 spin_lock(&root->inode_lock);
1940 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1941 (void **)delayed_nodes, inode_id,
1942 ARRAY_SIZE(delayed_nodes));
1943 if (!n) {
1944 spin_unlock(&root->inode_lock);
1945 break;
1946 }
1947
1948 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1949
1950 for (i = 0; i < n; i++)
1951 atomic_inc(&delayed_nodes[i]->refs);
1952 spin_unlock(&root->inode_lock);
1953
1954 for (i = 0; i < n; i++) {
1955 __btrfs_kill_delayed_node(delayed_nodes[i]);
1956 btrfs_release_delayed_node(delayed_nodes[i]);
1957 }
1958 }
1959}
1960
1961void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1962{
1963 struct btrfs_delayed_root *delayed_root;
1964 struct btrfs_delayed_node *curr_node, *prev_node;
1965
1966 delayed_root = btrfs_get_delayed_root(root);
1967
1968 curr_node = btrfs_first_delayed_node(delayed_root);
1969 while (curr_node) {
1970 __btrfs_kill_delayed_node(curr_node);
1971
1972 prev_node = curr_node;
1973 curr_node = btrfs_next_delayed_node(curr_node);
1974 btrfs_release_delayed_node(prev_node);
1975 }
1976}
1977