Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include "ctree.h"
10#include "fs.h"
11#include "messages.h"
12#include "misc.h"
13#include "delayed-inode.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "qgroup.h"
17#include "locking.h"
18#include "inode-item.h"
19#include "space-info.h"
20#include "accessors.h"
21#include "file-item.h"
22
23#define BTRFS_DELAYED_WRITEBACK 512
24#define BTRFS_DELAYED_BACKGROUND 128
25#define BTRFS_DELAYED_BATCH 16
26
27static struct kmem_cache *delayed_node_cache;
28
29int __init btrfs_delayed_inode_init(void)
30{
31 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
32 sizeof(struct btrfs_delayed_node),
33 0,
34 SLAB_MEM_SPREAD,
35 NULL);
36 if (!delayed_node_cache)
37 return -ENOMEM;
38 return 0;
39}
40
41void __cold btrfs_delayed_inode_exit(void)
42{
43 kmem_cache_destroy(delayed_node_cache);
44}
45
46static inline void btrfs_init_delayed_node(
47 struct btrfs_delayed_node *delayed_node,
48 struct btrfs_root *root, u64 inode_id)
49{
50 delayed_node->root = root;
51 delayed_node->inode_id = inode_id;
52 refcount_set(&delayed_node->refs, 0);
53 delayed_node->ins_root = RB_ROOT_CACHED;
54 delayed_node->del_root = RB_ROOT_CACHED;
55 mutex_init(&delayed_node->mutex);
56 INIT_LIST_HEAD(&delayed_node->n_list);
57 INIT_LIST_HEAD(&delayed_node->p_list);
58}
59
60static struct btrfs_delayed_node *btrfs_get_delayed_node(
61 struct btrfs_inode *btrfs_inode)
62{
63 struct btrfs_root *root = btrfs_inode->root;
64 u64 ino = btrfs_ino(btrfs_inode);
65 struct btrfs_delayed_node *node;
66
67 node = READ_ONCE(btrfs_inode->delayed_node);
68 if (node) {
69 refcount_inc(&node->refs);
70 return node;
71 }
72
73 spin_lock(&root->inode_lock);
74 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
75
76 if (node) {
77 if (btrfs_inode->delayed_node) {
78 refcount_inc(&node->refs); /* can be accessed */
79 BUG_ON(btrfs_inode->delayed_node != node);
80 spin_unlock(&root->inode_lock);
81 return node;
82 }
83
84 /*
85 * It's possible that we're racing into the middle of removing
86 * this node from the radix tree. In this case, the refcount
87 * was zero and it should never go back to one. Just return
88 * NULL like it was never in the radix at all; our release
89 * function is in the process of removing it.
90 *
91 * Some implementations of refcount_inc refuse to bump the
92 * refcount once it has hit zero. If we don't do this dance
93 * here, refcount_inc() may decide to just WARN_ONCE() instead
94 * of actually bumping the refcount.
95 *
96 * If this node is properly in the radix, we want to bump the
97 * refcount twice, once for the inode and once for this get
98 * operation.
99 */
100 if (refcount_inc_not_zero(&node->refs)) {
101 refcount_inc(&node->refs);
102 btrfs_inode->delayed_node = node;
103 } else {
104 node = NULL;
105 }
106
107 spin_unlock(&root->inode_lock);
108 return node;
109 }
110 spin_unlock(&root->inode_lock);
111
112 return NULL;
113}
114
115/* Will return either the node or PTR_ERR(-ENOMEM) */
116static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
117 struct btrfs_inode *btrfs_inode)
118{
119 struct btrfs_delayed_node *node;
120 struct btrfs_root *root = btrfs_inode->root;
121 u64 ino = btrfs_ino(btrfs_inode);
122 int ret;
123
124again:
125 node = btrfs_get_delayed_node(btrfs_inode);
126 if (node)
127 return node;
128
129 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130 if (!node)
131 return ERR_PTR(-ENOMEM);
132 btrfs_init_delayed_node(node, root, ino);
133
134 /* cached in the btrfs inode and can be accessed */
135 refcount_set(&node->refs, 2);
136
137 ret = radix_tree_preload(GFP_NOFS);
138 if (ret) {
139 kmem_cache_free(delayed_node_cache, node);
140 return ERR_PTR(ret);
141 }
142
143 spin_lock(&root->inode_lock);
144 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 if (ret == -EEXIST) {
146 spin_unlock(&root->inode_lock);
147 kmem_cache_free(delayed_node_cache, node);
148 radix_tree_preload_end();
149 goto again;
150 }
151 btrfs_inode->delayed_node = node;
152 spin_unlock(&root->inode_lock);
153 radix_tree_preload_end();
154
155 return node;
156}
157
158/*
159 * Call it when holding delayed_node->mutex
160 *
161 * If mod = 1, add this node into the prepared list.
162 */
163static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 struct btrfs_delayed_node *node,
165 int mod)
166{
167 spin_lock(&root->lock);
168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169 if (!list_empty(&node->p_list))
170 list_move_tail(&node->p_list, &root->prepare_list);
171 else if (mod)
172 list_add_tail(&node->p_list, &root->prepare_list);
173 } else {
174 list_add_tail(&node->n_list, &root->node_list);
175 list_add_tail(&node->p_list, &root->prepare_list);
176 refcount_inc(&node->refs); /* inserted into list */
177 root->nodes++;
178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
179 }
180 spin_unlock(&root->lock);
181}
182
183/* Call it when holding delayed_node->mutex */
184static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 struct btrfs_delayed_node *node)
186{
187 spin_lock(&root->lock);
188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189 root->nodes--;
190 refcount_dec(&node->refs); /* not in the list */
191 list_del_init(&node->n_list);
192 if (!list_empty(&node->p_list))
193 list_del_init(&node->p_list);
194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195 }
196 spin_unlock(&root->lock);
197}
198
199static struct btrfs_delayed_node *btrfs_first_delayed_node(
200 struct btrfs_delayed_root *delayed_root)
201{
202 struct list_head *p;
203 struct btrfs_delayed_node *node = NULL;
204
205 spin_lock(&delayed_root->lock);
206 if (list_empty(&delayed_root->node_list))
207 goto out;
208
209 p = delayed_root->node_list.next;
210 node = list_entry(p, struct btrfs_delayed_node, n_list);
211 refcount_inc(&node->refs);
212out:
213 spin_unlock(&delayed_root->lock);
214
215 return node;
216}
217
218static struct btrfs_delayed_node *btrfs_next_delayed_node(
219 struct btrfs_delayed_node *node)
220{
221 struct btrfs_delayed_root *delayed_root;
222 struct list_head *p;
223 struct btrfs_delayed_node *next = NULL;
224
225 delayed_root = node->root->fs_info->delayed_root;
226 spin_lock(&delayed_root->lock);
227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 /* not in the list */
229 if (list_empty(&delayed_root->node_list))
230 goto out;
231 p = delayed_root->node_list.next;
232 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
233 goto out;
234 else
235 p = node->n_list.next;
236
237 next = list_entry(p, struct btrfs_delayed_node, n_list);
238 refcount_inc(&next->refs);
239out:
240 spin_unlock(&delayed_root->lock);
241
242 return next;
243}
244
245static void __btrfs_release_delayed_node(
246 struct btrfs_delayed_node *delayed_node,
247 int mod)
248{
249 struct btrfs_delayed_root *delayed_root;
250
251 if (!delayed_node)
252 return;
253
254 delayed_root = delayed_node->root->fs_info->delayed_root;
255
256 mutex_lock(&delayed_node->mutex);
257 if (delayed_node->count)
258 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259 else
260 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 mutex_unlock(&delayed_node->mutex);
262
263 if (refcount_dec_and_test(&delayed_node->refs)) {
264 struct btrfs_root *root = delayed_node->root;
265
266 spin_lock(&root->inode_lock);
267 /*
268 * Once our refcount goes to zero, nobody is allowed to bump it
269 * back up. We can delete it now.
270 */
271 ASSERT(refcount_read(&delayed_node->refs) == 0);
272 radix_tree_delete(&root->delayed_nodes_tree,
273 delayed_node->inode_id);
274 spin_unlock(&root->inode_lock);
275 kmem_cache_free(delayed_node_cache, delayed_node);
276 }
277}
278
279static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280{
281 __btrfs_release_delayed_node(node, 0);
282}
283
284static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285 struct btrfs_delayed_root *delayed_root)
286{
287 struct list_head *p;
288 struct btrfs_delayed_node *node = NULL;
289
290 spin_lock(&delayed_root->lock);
291 if (list_empty(&delayed_root->prepare_list))
292 goto out;
293
294 p = delayed_root->prepare_list.next;
295 list_del_init(p);
296 node = list_entry(p, struct btrfs_delayed_node, p_list);
297 refcount_inc(&node->refs);
298out:
299 spin_unlock(&delayed_root->lock);
300
301 return node;
302}
303
304static inline void btrfs_release_prepared_delayed_node(
305 struct btrfs_delayed_node *node)
306{
307 __btrfs_release_delayed_node(node, 1);
308}
309
310static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
311 struct btrfs_delayed_node *node,
312 enum btrfs_delayed_item_type type)
313{
314 struct btrfs_delayed_item *item;
315
316 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
317 if (item) {
318 item->data_len = data_len;
319 item->type = type;
320 item->bytes_reserved = 0;
321 item->delayed_node = node;
322 RB_CLEAR_NODE(&item->rb_node);
323 INIT_LIST_HEAD(&item->log_list);
324 item->logged = false;
325 refcount_set(&item->refs, 1);
326 }
327 return item;
328}
329
330/*
331 * __btrfs_lookup_delayed_item - look up the delayed item by key
332 * @delayed_node: pointer to the delayed node
333 * @index: the dir index value to lookup (offset of a dir index key)
334 *
335 * Note: if we don't find the right item, we will return the prev item and
336 * the next item.
337 */
338static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339 struct rb_root *root,
340 u64 index)
341{
342 struct rb_node *node = root->rb_node;
343 struct btrfs_delayed_item *delayed_item = NULL;
344
345 while (node) {
346 delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 rb_node);
348 if (delayed_item->index < index)
349 node = node->rb_right;
350 else if (delayed_item->index > index)
351 node = node->rb_left;
352 else
353 return delayed_item;
354 }
355
356 return NULL;
357}
358
359static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
360 struct btrfs_delayed_item *ins)
361{
362 struct rb_node **p, *node;
363 struct rb_node *parent_node = NULL;
364 struct rb_root_cached *root;
365 struct btrfs_delayed_item *item;
366 bool leftmost = true;
367
368 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
369 root = &delayed_node->ins_root;
370 else
371 root = &delayed_node->del_root;
372
373 p = &root->rb_root.rb_node;
374 node = &ins->rb_node;
375
376 while (*p) {
377 parent_node = *p;
378 item = rb_entry(parent_node, struct btrfs_delayed_item,
379 rb_node);
380
381 if (item->index < ins->index) {
382 p = &(*p)->rb_right;
383 leftmost = false;
384 } else if (item->index > ins->index) {
385 p = &(*p)->rb_left;
386 } else {
387 return -EEXIST;
388 }
389 }
390
391 rb_link_node(node, parent_node, p);
392 rb_insert_color_cached(node, root, leftmost);
393
394 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
395 ins->index >= delayed_node->index_cnt)
396 delayed_node->index_cnt = ins->index + 1;
397
398 delayed_node->count++;
399 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
400 return 0;
401}
402
403static void finish_one_item(struct btrfs_delayed_root *delayed_root)
404{
405 int seq = atomic_inc_return(&delayed_root->items_seq);
406
407 /* atomic_dec_return implies a barrier */
408 if ((atomic_dec_return(&delayed_root->items) <
409 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
410 cond_wake_up_nomb(&delayed_root->wait);
411}
412
413static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
414{
415 struct rb_root_cached *root;
416 struct btrfs_delayed_root *delayed_root;
417
418 /* Not inserted, ignore it. */
419 if (RB_EMPTY_NODE(&delayed_item->rb_node))
420 return;
421
422 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
423
424 BUG_ON(!delayed_root);
425
426 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
427 root = &delayed_item->delayed_node->ins_root;
428 else
429 root = &delayed_item->delayed_node->del_root;
430
431 rb_erase_cached(&delayed_item->rb_node, root);
432 RB_CLEAR_NODE(&delayed_item->rb_node);
433 delayed_item->delayed_node->count--;
434
435 finish_one_item(delayed_root);
436}
437
438static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
439{
440 if (item) {
441 __btrfs_remove_delayed_item(item);
442 if (refcount_dec_and_test(&item->refs))
443 kfree(item);
444 }
445}
446
447static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
448 struct btrfs_delayed_node *delayed_node)
449{
450 struct rb_node *p;
451 struct btrfs_delayed_item *item = NULL;
452
453 p = rb_first_cached(&delayed_node->ins_root);
454 if (p)
455 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
456
457 return item;
458}
459
460static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
461 struct btrfs_delayed_node *delayed_node)
462{
463 struct rb_node *p;
464 struct btrfs_delayed_item *item = NULL;
465
466 p = rb_first_cached(&delayed_node->del_root);
467 if (p)
468 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
469
470 return item;
471}
472
473static struct btrfs_delayed_item *__btrfs_next_delayed_item(
474 struct btrfs_delayed_item *item)
475{
476 struct rb_node *p;
477 struct btrfs_delayed_item *next = NULL;
478
479 p = rb_next(&item->rb_node);
480 if (p)
481 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
482
483 return next;
484}
485
486static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
487 struct btrfs_delayed_item *item)
488{
489 struct btrfs_block_rsv *src_rsv;
490 struct btrfs_block_rsv *dst_rsv;
491 struct btrfs_fs_info *fs_info = trans->fs_info;
492 u64 num_bytes;
493 int ret;
494
495 if (!trans->bytes_reserved)
496 return 0;
497
498 src_rsv = trans->block_rsv;
499 dst_rsv = &fs_info->delayed_block_rsv;
500
501 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
502
503 /*
504 * Here we migrate space rsv from transaction rsv, since have already
505 * reserved space when starting a transaction. So no need to reserve
506 * qgroup space here.
507 */
508 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
509 if (!ret) {
510 trace_btrfs_space_reservation(fs_info, "delayed_item",
511 item->delayed_node->inode_id,
512 num_bytes, 1);
513 /*
514 * For insertions we track reserved metadata space by accounting
515 * for the number of leaves that will be used, based on the delayed
516 * node's index_items_size field.
517 */
518 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
519 item->bytes_reserved = num_bytes;
520 }
521
522 return ret;
523}
524
525static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
526 struct btrfs_delayed_item *item)
527{
528 struct btrfs_block_rsv *rsv;
529 struct btrfs_fs_info *fs_info = root->fs_info;
530
531 if (!item->bytes_reserved)
532 return;
533
534 rsv = &fs_info->delayed_block_rsv;
535 /*
536 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
537 * to release/reserve qgroup space.
538 */
539 trace_btrfs_space_reservation(fs_info, "delayed_item",
540 item->delayed_node->inode_id,
541 item->bytes_reserved, 0);
542 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
543}
544
545static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
546 unsigned int num_leaves)
547{
548 struct btrfs_fs_info *fs_info = node->root->fs_info;
549 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
550
551 /* There are no space reservations during log replay, bail out. */
552 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
553 return;
554
555 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
556 bytes, 0);
557 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
558}
559
560static int btrfs_delayed_inode_reserve_metadata(
561 struct btrfs_trans_handle *trans,
562 struct btrfs_root *root,
563 struct btrfs_delayed_node *node)
564{
565 struct btrfs_fs_info *fs_info = root->fs_info;
566 struct btrfs_block_rsv *src_rsv;
567 struct btrfs_block_rsv *dst_rsv;
568 u64 num_bytes;
569 int ret;
570
571 src_rsv = trans->block_rsv;
572 dst_rsv = &fs_info->delayed_block_rsv;
573
574 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
575
576 /*
577 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
578 * which doesn't reserve space for speed. This is a problem since we
579 * still need to reserve space for this update, so try to reserve the
580 * space.
581 *
582 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
583 * we always reserve enough to update the inode item.
584 */
585 if (!src_rsv || (!trans->bytes_reserved &&
586 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
587 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
588 BTRFS_QGROUP_RSV_META_PREALLOC, true);
589 if (ret < 0)
590 return ret;
591 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
592 BTRFS_RESERVE_NO_FLUSH);
593 /* NO_FLUSH could only fail with -ENOSPC */
594 ASSERT(ret == 0 || ret == -ENOSPC);
595 if (ret)
596 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
597 } else {
598 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
599 }
600
601 if (!ret) {
602 trace_btrfs_space_reservation(fs_info, "delayed_inode",
603 node->inode_id, num_bytes, 1);
604 node->bytes_reserved = num_bytes;
605 }
606
607 return ret;
608}
609
610static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
611 struct btrfs_delayed_node *node,
612 bool qgroup_free)
613{
614 struct btrfs_block_rsv *rsv;
615
616 if (!node->bytes_reserved)
617 return;
618
619 rsv = &fs_info->delayed_block_rsv;
620 trace_btrfs_space_reservation(fs_info, "delayed_inode",
621 node->inode_id, node->bytes_reserved, 0);
622 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
623 if (qgroup_free)
624 btrfs_qgroup_free_meta_prealloc(node->root,
625 node->bytes_reserved);
626 else
627 btrfs_qgroup_convert_reserved_meta(node->root,
628 node->bytes_reserved);
629 node->bytes_reserved = 0;
630}
631
632/*
633 * Insert a single delayed item or a batch of delayed items, as many as possible
634 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
635 * in the rbtree, and if there's a gap between two consecutive dir index items,
636 * then it means at some point we had delayed dir indexes to add but they got
637 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
638 * into the subvolume tree. Dir index keys also have their offsets coming from a
639 * monotonically increasing counter, so we can't get new keys with an offset that
640 * fits within a gap between delayed dir index items.
641 */
642static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
643 struct btrfs_root *root,
644 struct btrfs_path *path,
645 struct btrfs_delayed_item *first_item)
646{
647 struct btrfs_fs_info *fs_info = root->fs_info;
648 struct btrfs_delayed_node *node = first_item->delayed_node;
649 LIST_HEAD(item_list);
650 struct btrfs_delayed_item *curr;
651 struct btrfs_delayed_item *next;
652 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
653 struct btrfs_item_batch batch;
654 struct btrfs_key first_key;
655 const u32 first_data_size = first_item->data_len;
656 int total_size;
657 char *ins_data = NULL;
658 int ret;
659 bool continuous_keys_only = false;
660
661 lockdep_assert_held(&node->mutex);
662
663 /*
664 * During normal operation the delayed index offset is continuously
665 * increasing, so we can batch insert all items as there will not be any
666 * overlapping keys in the tree.
667 *
668 * The exception to this is log replay, where we may have interleaved
669 * offsets in the tree, so our batch needs to be continuous keys only in
670 * order to ensure we do not end up with out of order items in our leaf.
671 */
672 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
673 continuous_keys_only = true;
674
675 /*
676 * For delayed items to insert, we track reserved metadata bytes based
677 * on the number of leaves that we will use.
678 * See btrfs_insert_delayed_dir_index() and
679 * btrfs_delayed_item_reserve_metadata()).
680 */
681 ASSERT(first_item->bytes_reserved == 0);
682
683 list_add_tail(&first_item->tree_list, &item_list);
684 batch.total_data_size = first_data_size;
685 batch.nr = 1;
686 total_size = first_data_size + sizeof(struct btrfs_item);
687 curr = first_item;
688
689 while (true) {
690 int next_size;
691
692 next = __btrfs_next_delayed_item(curr);
693 if (!next)
694 break;
695
696 /*
697 * We cannot allow gaps in the key space if we're doing log
698 * replay.
699 */
700 if (continuous_keys_only && (next->index != curr->index + 1))
701 break;
702
703 ASSERT(next->bytes_reserved == 0);
704
705 next_size = next->data_len + sizeof(struct btrfs_item);
706 if (total_size + next_size > max_size)
707 break;
708
709 list_add_tail(&next->tree_list, &item_list);
710 batch.nr++;
711 total_size += next_size;
712 batch.total_data_size += next->data_len;
713 curr = next;
714 }
715
716 if (batch.nr == 1) {
717 first_key.objectid = node->inode_id;
718 first_key.type = BTRFS_DIR_INDEX_KEY;
719 first_key.offset = first_item->index;
720 batch.keys = &first_key;
721 batch.data_sizes = &first_data_size;
722 } else {
723 struct btrfs_key *ins_keys;
724 u32 *ins_sizes;
725 int i = 0;
726
727 ins_data = kmalloc(batch.nr * sizeof(u32) +
728 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
729 if (!ins_data) {
730 ret = -ENOMEM;
731 goto out;
732 }
733 ins_sizes = (u32 *)ins_data;
734 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
735 batch.keys = ins_keys;
736 batch.data_sizes = ins_sizes;
737 list_for_each_entry(curr, &item_list, tree_list) {
738 ins_keys[i].objectid = node->inode_id;
739 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
740 ins_keys[i].offset = curr->index;
741 ins_sizes[i] = curr->data_len;
742 i++;
743 }
744 }
745
746 ret = btrfs_insert_empty_items(trans, root, path, &batch);
747 if (ret)
748 goto out;
749
750 list_for_each_entry(curr, &item_list, tree_list) {
751 char *data_ptr;
752
753 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
754 write_extent_buffer(path->nodes[0], &curr->data,
755 (unsigned long)data_ptr, curr->data_len);
756 path->slots[0]++;
757 }
758
759 /*
760 * Now release our path before releasing the delayed items and their
761 * metadata reservations, so that we don't block other tasks for more
762 * time than needed.
763 */
764 btrfs_release_path(path);
765
766 ASSERT(node->index_item_leaves > 0);
767
768 /*
769 * For normal operations we will batch an entire leaf's worth of delayed
770 * items, so if there are more items to process we can decrement
771 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
772 *
773 * However for log replay we may not have inserted an entire leaf's
774 * worth of items, we may have not had continuous items, so decrementing
775 * here would mess up the index_item_leaves accounting. For this case
776 * only clean up the accounting when there are no items left.
777 */
778 if (next && !continuous_keys_only) {
779 /*
780 * We inserted one batch of items into a leaf a there are more
781 * items to flush in a future batch, now release one unit of
782 * metadata space from the delayed block reserve, corresponding
783 * the leaf we just flushed to.
784 */
785 btrfs_delayed_item_release_leaves(node, 1);
786 node->index_item_leaves--;
787 } else if (!next) {
788 /*
789 * There are no more items to insert. We can have a number of
790 * reserved leaves > 1 here - this happens when many dir index
791 * items are added and then removed before they are flushed (file
792 * names with a very short life, never span a transaction). So
793 * release all remaining leaves.
794 */
795 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
796 node->index_item_leaves = 0;
797 }
798
799 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
800 list_del(&curr->tree_list);
801 btrfs_release_delayed_item(curr);
802 }
803out:
804 kfree(ins_data);
805 return ret;
806}
807
808static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
809 struct btrfs_path *path,
810 struct btrfs_root *root,
811 struct btrfs_delayed_node *node)
812{
813 int ret = 0;
814
815 while (ret == 0) {
816 struct btrfs_delayed_item *curr;
817
818 mutex_lock(&node->mutex);
819 curr = __btrfs_first_delayed_insertion_item(node);
820 if (!curr) {
821 mutex_unlock(&node->mutex);
822 break;
823 }
824 ret = btrfs_insert_delayed_item(trans, root, path, curr);
825 mutex_unlock(&node->mutex);
826 }
827
828 return ret;
829}
830
831static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
832 struct btrfs_root *root,
833 struct btrfs_path *path,
834 struct btrfs_delayed_item *item)
835{
836 const u64 ino = item->delayed_node->inode_id;
837 struct btrfs_fs_info *fs_info = root->fs_info;
838 struct btrfs_delayed_item *curr, *next;
839 struct extent_buffer *leaf = path->nodes[0];
840 LIST_HEAD(batch_list);
841 int nitems, slot, last_slot;
842 int ret;
843 u64 total_reserved_size = item->bytes_reserved;
844
845 ASSERT(leaf != NULL);
846
847 slot = path->slots[0];
848 last_slot = btrfs_header_nritems(leaf) - 1;
849 /*
850 * Our caller always gives us a path pointing to an existing item, so
851 * this can not happen.
852 */
853 ASSERT(slot <= last_slot);
854 if (WARN_ON(slot > last_slot))
855 return -ENOENT;
856
857 nitems = 1;
858 curr = item;
859 list_add_tail(&curr->tree_list, &batch_list);
860
861 /*
862 * Keep checking if the next delayed item matches the next item in the
863 * leaf - if so, we can add it to the batch of items to delete from the
864 * leaf.
865 */
866 while (slot < last_slot) {
867 struct btrfs_key key;
868
869 next = __btrfs_next_delayed_item(curr);
870 if (!next)
871 break;
872
873 slot++;
874 btrfs_item_key_to_cpu(leaf, &key, slot);
875 if (key.objectid != ino ||
876 key.type != BTRFS_DIR_INDEX_KEY ||
877 key.offset != next->index)
878 break;
879 nitems++;
880 curr = next;
881 list_add_tail(&curr->tree_list, &batch_list);
882 total_reserved_size += curr->bytes_reserved;
883 }
884
885 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
886 if (ret)
887 return ret;
888
889 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
890 if (total_reserved_size > 0) {
891 /*
892 * Check btrfs_delayed_item_reserve_metadata() to see why we
893 * don't need to release/reserve qgroup space.
894 */
895 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
896 total_reserved_size, 0);
897 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
898 total_reserved_size, NULL);
899 }
900
901 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
902 list_del(&curr->tree_list);
903 btrfs_release_delayed_item(curr);
904 }
905
906 return 0;
907}
908
909static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
910 struct btrfs_path *path,
911 struct btrfs_root *root,
912 struct btrfs_delayed_node *node)
913{
914 struct btrfs_key key;
915 int ret = 0;
916
917 key.objectid = node->inode_id;
918 key.type = BTRFS_DIR_INDEX_KEY;
919
920 while (ret == 0) {
921 struct btrfs_delayed_item *item;
922
923 mutex_lock(&node->mutex);
924 item = __btrfs_first_delayed_deletion_item(node);
925 if (!item) {
926 mutex_unlock(&node->mutex);
927 break;
928 }
929
930 key.offset = item->index;
931 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
932 if (ret > 0) {
933 /*
934 * There's no matching item in the leaf. This means we
935 * have already deleted this item in a past run of the
936 * delayed items. We ignore errors when running delayed
937 * items from an async context, through a work queue job
938 * running btrfs_async_run_delayed_root(), and don't
939 * release delayed items that failed to complete. This
940 * is because we will retry later, and at transaction
941 * commit time we always run delayed items and will
942 * then deal with errors if they fail to run again.
943 *
944 * So just release delayed items for which we can't find
945 * an item in the tree, and move to the next item.
946 */
947 btrfs_release_path(path);
948 btrfs_release_delayed_item(item);
949 ret = 0;
950 } else if (ret == 0) {
951 ret = btrfs_batch_delete_items(trans, root, path, item);
952 btrfs_release_path(path);
953 }
954
955 /*
956 * We unlock and relock on each iteration, this is to prevent
957 * blocking other tasks for too long while we are being run from
958 * the async context (work queue job). Those tasks are typically
959 * running system calls like creat/mkdir/rename/unlink/etc which
960 * need to add delayed items to this delayed node.
961 */
962 mutex_unlock(&node->mutex);
963 }
964
965 return ret;
966}
967
968static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
969{
970 struct btrfs_delayed_root *delayed_root;
971
972 if (delayed_node &&
973 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
974 BUG_ON(!delayed_node->root);
975 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
976 delayed_node->count--;
977
978 delayed_root = delayed_node->root->fs_info->delayed_root;
979 finish_one_item(delayed_root);
980 }
981}
982
983static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
984{
985
986 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
987 struct btrfs_delayed_root *delayed_root;
988
989 ASSERT(delayed_node->root);
990 delayed_node->count--;
991
992 delayed_root = delayed_node->root->fs_info->delayed_root;
993 finish_one_item(delayed_root);
994 }
995}
996
997static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
998 struct btrfs_root *root,
999 struct btrfs_path *path,
1000 struct btrfs_delayed_node *node)
1001{
1002 struct btrfs_fs_info *fs_info = root->fs_info;
1003 struct btrfs_key key;
1004 struct btrfs_inode_item *inode_item;
1005 struct extent_buffer *leaf;
1006 int mod;
1007 int ret;
1008
1009 key.objectid = node->inode_id;
1010 key.type = BTRFS_INODE_ITEM_KEY;
1011 key.offset = 0;
1012
1013 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1014 mod = -1;
1015 else
1016 mod = 1;
1017
1018 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1019 if (ret > 0)
1020 ret = -ENOENT;
1021 if (ret < 0)
1022 goto out;
1023
1024 leaf = path->nodes[0];
1025 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1026 struct btrfs_inode_item);
1027 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1028 sizeof(struct btrfs_inode_item));
1029 btrfs_mark_buffer_dirty(leaf);
1030
1031 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1032 goto out;
1033
1034 path->slots[0]++;
1035 if (path->slots[0] >= btrfs_header_nritems(leaf))
1036 goto search;
1037again:
1038 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1039 if (key.objectid != node->inode_id)
1040 goto out;
1041
1042 if (key.type != BTRFS_INODE_REF_KEY &&
1043 key.type != BTRFS_INODE_EXTREF_KEY)
1044 goto out;
1045
1046 /*
1047 * Delayed iref deletion is for the inode who has only one link,
1048 * so there is only one iref. The case that several irefs are
1049 * in the same item doesn't exist.
1050 */
1051 btrfs_del_item(trans, root, path);
1052out:
1053 btrfs_release_delayed_iref(node);
1054 btrfs_release_path(path);
1055err_out:
1056 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1057 btrfs_release_delayed_inode(node);
1058
1059 /*
1060 * If we fail to update the delayed inode we need to abort the
1061 * transaction, because we could leave the inode with the improper
1062 * counts behind.
1063 */
1064 if (ret && ret != -ENOENT)
1065 btrfs_abort_transaction(trans, ret);
1066
1067 return ret;
1068
1069search:
1070 btrfs_release_path(path);
1071
1072 key.type = BTRFS_INODE_EXTREF_KEY;
1073 key.offset = -1;
1074
1075 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1076 if (ret < 0)
1077 goto err_out;
1078 ASSERT(ret);
1079
1080 ret = 0;
1081 leaf = path->nodes[0];
1082 path->slots[0]--;
1083 goto again;
1084}
1085
1086static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1087 struct btrfs_root *root,
1088 struct btrfs_path *path,
1089 struct btrfs_delayed_node *node)
1090{
1091 int ret;
1092
1093 mutex_lock(&node->mutex);
1094 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1095 mutex_unlock(&node->mutex);
1096 return 0;
1097 }
1098
1099 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1100 mutex_unlock(&node->mutex);
1101 return ret;
1102}
1103
1104static inline int
1105__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1106 struct btrfs_path *path,
1107 struct btrfs_delayed_node *node)
1108{
1109 int ret;
1110
1111 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1112 if (ret)
1113 return ret;
1114
1115 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1116 if (ret)
1117 return ret;
1118
1119 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1120 return ret;
1121}
1122
1123/*
1124 * Called when committing the transaction.
1125 * Returns 0 on success.
1126 * Returns < 0 on error and returns with an aborted transaction with any
1127 * outstanding delayed items cleaned up.
1128 */
1129static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1130{
1131 struct btrfs_fs_info *fs_info = trans->fs_info;
1132 struct btrfs_delayed_root *delayed_root;
1133 struct btrfs_delayed_node *curr_node, *prev_node;
1134 struct btrfs_path *path;
1135 struct btrfs_block_rsv *block_rsv;
1136 int ret = 0;
1137 bool count = (nr > 0);
1138
1139 if (TRANS_ABORTED(trans))
1140 return -EIO;
1141
1142 path = btrfs_alloc_path();
1143 if (!path)
1144 return -ENOMEM;
1145
1146 block_rsv = trans->block_rsv;
1147 trans->block_rsv = &fs_info->delayed_block_rsv;
1148
1149 delayed_root = fs_info->delayed_root;
1150
1151 curr_node = btrfs_first_delayed_node(delayed_root);
1152 while (curr_node && (!count || nr--)) {
1153 ret = __btrfs_commit_inode_delayed_items(trans, path,
1154 curr_node);
1155 if (ret) {
1156 btrfs_release_delayed_node(curr_node);
1157 curr_node = NULL;
1158 btrfs_abort_transaction(trans, ret);
1159 break;
1160 }
1161
1162 prev_node = curr_node;
1163 curr_node = btrfs_next_delayed_node(curr_node);
1164 btrfs_release_delayed_node(prev_node);
1165 }
1166
1167 if (curr_node)
1168 btrfs_release_delayed_node(curr_node);
1169 btrfs_free_path(path);
1170 trans->block_rsv = block_rsv;
1171
1172 return ret;
1173}
1174
1175int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1176{
1177 return __btrfs_run_delayed_items(trans, -1);
1178}
1179
1180int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1181{
1182 return __btrfs_run_delayed_items(trans, nr);
1183}
1184
1185int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1186 struct btrfs_inode *inode)
1187{
1188 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1189 struct btrfs_path *path;
1190 struct btrfs_block_rsv *block_rsv;
1191 int ret;
1192
1193 if (!delayed_node)
1194 return 0;
1195
1196 mutex_lock(&delayed_node->mutex);
1197 if (!delayed_node->count) {
1198 mutex_unlock(&delayed_node->mutex);
1199 btrfs_release_delayed_node(delayed_node);
1200 return 0;
1201 }
1202 mutex_unlock(&delayed_node->mutex);
1203
1204 path = btrfs_alloc_path();
1205 if (!path) {
1206 btrfs_release_delayed_node(delayed_node);
1207 return -ENOMEM;
1208 }
1209
1210 block_rsv = trans->block_rsv;
1211 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1212
1213 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1214
1215 btrfs_release_delayed_node(delayed_node);
1216 btrfs_free_path(path);
1217 trans->block_rsv = block_rsv;
1218
1219 return ret;
1220}
1221
1222int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1223{
1224 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1225 struct btrfs_trans_handle *trans;
1226 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1227 struct btrfs_path *path;
1228 struct btrfs_block_rsv *block_rsv;
1229 int ret;
1230
1231 if (!delayed_node)
1232 return 0;
1233
1234 mutex_lock(&delayed_node->mutex);
1235 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1236 mutex_unlock(&delayed_node->mutex);
1237 btrfs_release_delayed_node(delayed_node);
1238 return 0;
1239 }
1240 mutex_unlock(&delayed_node->mutex);
1241
1242 trans = btrfs_join_transaction(delayed_node->root);
1243 if (IS_ERR(trans)) {
1244 ret = PTR_ERR(trans);
1245 goto out;
1246 }
1247
1248 path = btrfs_alloc_path();
1249 if (!path) {
1250 ret = -ENOMEM;
1251 goto trans_out;
1252 }
1253
1254 block_rsv = trans->block_rsv;
1255 trans->block_rsv = &fs_info->delayed_block_rsv;
1256
1257 mutex_lock(&delayed_node->mutex);
1258 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1259 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1260 path, delayed_node);
1261 else
1262 ret = 0;
1263 mutex_unlock(&delayed_node->mutex);
1264
1265 btrfs_free_path(path);
1266 trans->block_rsv = block_rsv;
1267trans_out:
1268 btrfs_end_transaction(trans);
1269 btrfs_btree_balance_dirty(fs_info);
1270out:
1271 btrfs_release_delayed_node(delayed_node);
1272
1273 return ret;
1274}
1275
1276void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1277{
1278 struct btrfs_delayed_node *delayed_node;
1279
1280 delayed_node = READ_ONCE(inode->delayed_node);
1281 if (!delayed_node)
1282 return;
1283
1284 inode->delayed_node = NULL;
1285 btrfs_release_delayed_node(delayed_node);
1286}
1287
1288struct btrfs_async_delayed_work {
1289 struct btrfs_delayed_root *delayed_root;
1290 int nr;
1291 struct btrfs_work work;
1292};
1293
1294static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1295{
1296 struct btrfs_async_delayed_work *async_work;
1297 struct btrfs_delayed_root *delayed_root;
1298 struct btrfs_trans_handle *trans;
1299 struct btrfs_path *path;
1300 struct btrfs_delayed_node *delayed_node = NULL;
1301 struct btrfs_root *root;
1302 struct btrfs_block_rsv *block_rsv;
1303 int total_done = 0;
1304
1305 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1306 delayed_root = async_work->delayed_root;
1307
1308 path = btrfs_alloc_path();
1309 if (!path)
1310 goto out;
1311
1312 do {
1313 if (atomic_read(&delayed_root->items) <
1314 BTRFS_DELAYED_BACKGROUND / 2)
1315 break;
1316
1317 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1318 if (!delayed_node)
1319 break;
1320
1321 root = delayed_node->root;
1322
1323 trans = btrfs_join_transaction(root);
1324 if (IS_ERR(trans)) {
1325 btrfs_release_path(path);
1326 btrfs_release_prepared_delayed_node(delayed_node);
1327 total_done++;
1328 continue;
1329 }
1330
1331 block_rsv = trans->block_rsv;
1332 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1333
1334 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1335
1336 trans->block_rsv = block_rsv;
1337 btrfs_end_transaction(trans);
1338 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1339
1340 btrfs_release_path(path);
1341 btrfs_release_prepared_delayed_node(delayed_node);
1342 total_done++;
1343
1344 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1345 || total_done < async_work->nr);
1346
1347 btrfs_free_path(path);
1348out:
1349 wake_up(&delayed_root->wait);
1350 kfree(async_work);
1351}
1352
1353
1354static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1355 struct btrfs_fs_info *fs_info, int nr)
1356{
1357 struct btrfs_async_delayed_work *async_work;
1358
1359 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1360 if (!async_work)
1361 return -ENOMEM;
1362
1363 async_work->delayed_root = delayed_root;
1364 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1365 NULL);
1366 async_work->nr = nr;
1367
1368 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1369 return 0;
1370}
1371
1372void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1373{
1374 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1375}
1376
1377static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1378{
1379 int val = atomic_read(&delayed_root->items_seq);
1380
1381 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1382 return 1;
1383
1384 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1385 return 1;
1386
1387 return 0;
1388}
1389
1390void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1391{
1392 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1393
1394 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1395 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1396 return;
1397
1398 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1399 int seq;
1400 int ret;
1401
1402 seq = atomic_read(&delayed_root->items_seq);
1403
1404 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1405 if (ret)
1406 return;
1407
1408 wait_event_interruptible(delayed_root->wait,
1409 could_end_wait(delayed_root, seq));
1410 return;
1411 }
1412
1413 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1414}
1415
1416/* Will return 0 or -ENOMEM */
1417int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1418 const char *name, int name_len,
1419 struct btrfs_inode *dir,
1420 struct btrfs_disk_key *disk_key, u8 flags,
1421 u64 index)
1422{
1423 struct btrfs_fs_info *fs_info = trans->fs_info;
1424 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1425 struct btrfs_delayed_node *delayed_node;
1426 struct btrfs_delayed_item *delayed_item;
1427 struct btrfs_dir_item *dir_item;
1428 bool reserve_leaf_space;
1429 u32 data_len;
1430 int ret;
1431
1432 delayed_node = btrfs_get_or_create_delayed_node(dir);
1433 if (IS_ERR(delayed_node))
1434 return PTR_ERR(delayed_node);
1435
1436 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1437 delayed_node,
1438 BTRFS_DELAYED_INSERTION_ITEM);
1439 if (!delayed_item) {
1440 ret = -ENOMEM;
1441 goto release_node;
1442 }
1443
1444 delayed_item->index = index;
1445
1446 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1447 dir_item->location = *disk_key;
1448 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1449 btrfs_set_stack_dir_data_len(dir_item, 0);
1450 btrfs_set_stack_dir_name_len(dir_item, name_len);
1451 btrfs_set_stack_dir_flags(dir_item, flags);
1452 memcpy((char *)(dir_item + 1), name, name_len);
1453
1454 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1455
1456 mutex_lock(&delayed_node->mutex);
1457
1458 if (delayed_node->index_item_leaves == 0 ||
1459 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1460 delayed_node->curr_index_batch_size = data_len;
1461 reserve_leaf_space = true;
1462 } else {
1463 delayed_node->curr_index_batch_size += data_len;
1464 reserve_leaf_space = false;
1465 }
1466
1467 if (reserve_leaf_space) {
1468 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1469 /*
1470 * Space was reserved for a dir index item insertion when we
1471 * started the transaction, so getting a failure here should be
1472 * impossible.
1473 */
1474 if (WARN_ON(ret)) {
1475 mutex_unlock(&delayed_node->mutex);
1476 btrfs_release_delayed_item(delayed_item);
1477 goto release_node;
1478 }
1479
1480 delayed_node->index_item_leaves++;
1481 } else if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
1482 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1483
1484 /*
1485 * Adding the new dir index item does not require touching another
1486 * leaf, so we can release 1 unit of metadata that was previously
1487 * reserved when starting the transaction. This applies only to
1488 * the case where we had a transaction start and excludes the
1489 * transaction join case (when replaying log trees).
1490 */
1491 trace_btrfs_space_reservation(fs_info, "transaction",
1492 trans->transid, bytes, 0);
1493 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1494 ASSERT(trans->bytes_reserved >= bytes);
1495 trans->bytes_reserved -= bytes;
1496 }
1497
1498 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1499 if (unlikely(ret)) {
1500 btrfs_err(trans->fs_info,
1501 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1502 name_len, name, delayed_node->root->root_key.objectid,
1503 delayed_node->inode_id, ret);
1504 BUG();
1505 }
1506 mutex_unlock(&delayed_node->mutex);
1507
1508release_node:
1509 btrfs_release_delayed_node(delayed_node);
1510 return ret;
1511}
1512
1513static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1514 struct btrfs_delayed_node *node,
1515 u64 index)
1516{
1517 struct btrfs_delayed_item *item;
1518
1519 mutex_lock(&node->mutex);
1520 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1521 if (!item) {
1522 mutex_unlock(&node->mutex);
1523 return 1;
1524 }
1525
1526 /*
1527 * For delayed items to insert, we track reserved metadata bytes based
1528 * on the number of leaves that we will use.
1529 * See btrfs_insert_delayed_dir_index() and
1530 * btrfs_delayed_item_reserve_metadata()).
1531 */
1532 ASSERT(item->bytes_reserved == 0);
1533 ASSERT(node->index_item_leaves > 0);
1534
1535 /*
1536 * If there's only one leaf reserved, we can decrement this item from the
1537 * current batch, otherwise we can not because we don't know which leaf
1538 * it belongs to. With the current limit on delayed items, we rarely
1539 * accumulate enough dir index items to fill more than one leaf (even
1540 * when using a leaf size of 4K).
1541 */
1542 if (node->index_item_leaves == 1) {
1543 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1544
1545 ASSERT(node->curr_index_batch_size >= data_len);
1546 node->curr_index_batch_size -= data_len;
1547 }
1548
1549 btrfs_release_delayed_item(item);
1550
1551 /* If we now have no more dir index items, we can release all leaves. */
1552 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1553 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1554 node->index_item_leaves = 0;
1555 }
1556
1557 mutex_unlock(&node->mutex);
1558 return 0;
1559}
1560
1561int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1562 struct btrfs_inode *dir, u64 index)
1563{
1564 struct btrfs_delayed_node *node;
1565 struct btrfs_delayed_item *item;
1566 int ret;
1567
1568 node = btrfs_get_or_create_delayed_node(dir);
1569 if (IS_ERR(node))
1570 return PTR_ERR(node);
1571
1572 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
1573 if (!ret)
1574 goto end;
1575
1576 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1577 if (!item) {
1578 ret = -ENOMEM;
1579 goto end;
1580 }
1581
1582 item->index = index;
1583
1584 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1585 /*
1586 * we have reserved enough space when we start a new transaction,
1587 * so reserving metadata failure is impossible.
1588 */
1589 if (ret < 0) {
1590 btrfs_err(trans->fs_info,
1591"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1592 btrfs_release_delayed_item(item);
1593 goto end;
1594 }
1595
1596 mutex_lock(&node->mutex);
1597 ret = __btrfs_add_delayed_item(node, item);
1598 if (unlikely(ret)) {
1599 btrfs_err(trans->fs_info,
1600 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1601 index, node->root->root_key.objectid,
1602 node->inode_id, ret);
1603 btrfs_delayed_item_release_metadata(dir->root, item);
1604 btrfs_release_delayed_item(item);
1605 }
1606 mutex_unlock(&node->mutex);
1607end:
1608 btrfs_release_delayed_node(node);
1609 return ret;
1610}
1611
1612int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1613{
1614 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1615
1616 if (!delayed_node)
1617 return -ENOENT;
1618
1619 /*
1620 * Since we have held i_mutex of this directory, it is impossible that
1621 * a new directory index is added into the delayed node and index_cnt
1622 * is updated now. So we needn't lock the delayed node.
1623 */
1624 if (!delayed_node->index_cnt) {
1625 btrfs_release_delayed_node(delayed_node);
1626 return -EINVAL;
1627 }
1628
1629 inode->index_cnt = delayed_node->index_cnt;
1630 btrfs_release_delayed_node(delayed_node);
1631 return 0;
1632}
1633
1634bool btrfs_readdir_get_delayed_items(struct inode *inode,
1635 struct list_head *ins_list,
1636 struct list_head *del_list)
1637{
1638 struct btrfs_delayed_node *delayed_node;
1639 struct btrfs_delayed_item *item;
1640
1641 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1642 if (!delayed_node)
1643 return false;
1644
1645 /*
1646 * We can only do one readdir with delayed items at a time because of
1647 * item->readdir_list.
1648 */
1649 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
1650 btrfs_inode_lock(BTRFS_I(inode), 0);
1651
1652 mutex_lock(&delayed_node->mutex);
1653 item = __btrfs_first_delayed_insertion_item(delayed_node);
1654 while (item) {
1655 refcount_inc(&item->refs);
1656 list_add_tail(&item->readdir_list, ins_list);
1657 item = __btrfs_next_delayed_item(item);
1658 }
1659
1660 item = __btrfs_first_delayed_deletion_item(delayed_node);
1661 while (item) {
1662 refcount_inc(&item->refs);
1663 list_add_tail(&item->readdir_list, del_list);
1664 item = __btrfs_next_delayed_item(item);
1665 }
1666 mutex_unlock(&delayed_node->mutex);
1667 /*
1668 * This delayed node is still cached in the btrfs inode, so refs
1669 * must be > 1 now, and we needn't check it is going to be freed
1670 * or not.
1671 *
1672 * Besides that, this function is used to read dir, we do not
1673 * insert/delete delayed items in this period. So we also needn't
1674 * requeue or dequeue this delayed node.
1675 */
1676 refcount_dec(&delayed_node->refs);
1677
1678 return true;
1679}
1680
1681void btrfs_readdir_put_delayed_items(struct inode *inode,
1682 struct list_head *ins_list,
1683 struct list_head *del_list)
1684{
1685 struct btrfs_delayed_item *curr, *next;
1686
1687 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1688 list_del(&curr->readdir_list);
1689 if (refcount_dec_and_test(&curr->refs))
1690 kfree(curr);
1691 }
1692
1693 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1694 list_del(&curr->readdir_list);
1695 if (refcount_dec_and_test(&curr->refs))
1696 kfree(curr);
1697 }
1698
1699 /*
1700 * The VFS is going to do up_read(), so we need to downgrade back to a
1701 * read lock.
1702 */
1703 downgrade_write(&inode->i_rwsem);
1704}
1705
1706int btrfs_should_delete_dir_index(struct list_head *del_list,
1707 u64 index)
1708{
1709 struct btrfs_delayed_item *curr;
1710 int ret = 0;
1711
1712 list_for_each_entry(curr, del_list, readdir_list) {
1713 if (curr->index > index)
1714 break;
1715 if (curr->index == index) {
1716 ret = 1;
1717 break;
1718 }
1719 }
1720 return ret;
1721}
1722
1723/*
1724 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1725 *
1726 */
1727int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1728 struct list_head *ins_list)
1729{
1730 struct btrfs_dir_item *di;
1731 struct btrfs_delayed_item *curr, *next;
1732 struct btrfs_key location;
1733 char *name;
1734 int name_len;
1735 int over = 0;
1736 unsigned char d_type;
1737
1738 if (list_empty(ins_list))
1739 return 0;
1740
1741 /*
1742 * Changing the data of the delayed item is impossible. So
1743 * we needn't lock them. And we have held i_mutex of the
1744 * directory, nobody can delete any directory indexes now.
1745 */
1746 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1747 list_del(&curr->readdir_list);
1748
1749 if (curr->index < ctx->pos) {
1750 if (refcount_dec_and_test(&curr->refs))
1751 kfree(curr);
1752 continue;
1753 }
1754
1755 ctx->pos = curr->index;
1756
1757 di = (struct btrfs_dir_item *)curr->data;
1758 name = (char *)(di + 1);
1759 name_len = btrfs_stack_dir_name_len(di);
1760
1761 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1762 btrfs_disk_key_to_cpu(&location, &di->location);
1763
1764 over = !dir_emit(ctx, name, name_len,
1765 location.objectid, d_type);
1766
1767 if (refcount_dec_and_test(&curr->refs))
1768 kfree(curr);
1769
1770 if (over)
1771 return 1;
1772 ctx->pos++;
1773 }
1774 return 0;
1775}
1776
1777static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1778 struct btrfs_inode_item *inode_item,
1779 struct inode *inode)
1780{
1781 u64 flags;
1782
1783 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1784 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1785 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1786 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1787 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1788 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1789 btrfs_set_stack_inode_generation(inode_item,
1790 BTRFS_I(inode)->generation);
1791 btrfs_set_stack_inode_sequence(inode_item,
1792 inode_peek_iversion(inode));
1793 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1794 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1795 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1796 BTRFS_I(inode)->ro_flags);
1797 btrfs_set_stack_inode_flags(inode_item, flags);
1798 btrfs_set_stack_inode_block_group(inode_item, 0);
1799
1800 btrfs_set_stack_timespec_sec(&inode_item->atime,
1801 inode->i_atime.tv_sec);
1802 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1803 inode->i_atime.tv_nsec);
1804
1805 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1806 inode->i_mtime.tv_sec);
1807 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1808 inode->i_mtime.tv_nsec);
1809
1810 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1811 inode->i_ctime.tv_sec);
1812 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1813 inode->i_ctime.tv_nsec);
1814
1815 btrfs_set_stack_timespec_sec(&inode_item->otime,
1816 BTRFS_I(inode)->i_otime.tv_sec);
1817 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1818 BTRFS_I(inode)->i_otime.tv_nsec);
1819}
1820
1821int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1822{
1823 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1824 struct btrfs_delayed_node *delayed_node;
1825 struct btrfs_inode_item *inode_item;
1826
1827 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1828 if (!delayed_node)
1829 return -ENOENT;
1830
1831 mutex_lock(&delayed_node->mutex);
1832 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1833 mutex_unlock(&delayed_node->mutex);
1834 btrfs_release_delayed_node(delayed_node);
1835 return -ENOENT;
1836 }
1837
1838 inode_item = &delayed_node->inode_item;
1839
1840 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1841 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1842 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1843 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1844 round_up(i_size_read(inode), fs_info->sectorsize));
1845 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1846 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1847 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1848 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1849 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1850
1851 inode_set_iversion_queried(inode,
1852 btrfs_stack_inode_sequence(inode_item));
1853 inode->i_rdev = 0;
1854 *rdev = btrfs_stack_inode_rdev(inode_item);
1855 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1856 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1857
1858 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1859 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1860
1861 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1862 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1863
1864 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1865 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1866
1867 BTRFS_I(inode)->i_otime.tv_sec =
1868 btrfs_stack_timespec_sec(&inode_item->otime);
1869 BTRFS_I(inode)->i_otime.tv_nsec =
1870 btrfs_stack_timespec_nsec(&inode_item->otime);
1871
1872 inode->i_generation = BTRFS_I(inode)->generation;
1873 BTRFS_I(inode)->index_cnt = (u64)-1;
1874
1875 mutex_unlock(&delayed_node->mutex);
1876 btrfs_release_delayed_node(delayed_node);
1877 return 0;
1878}
1879
1880int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1881 struct btrfs_root *root,
1882 struct btrfs_inode *inode)
1883{
1884 struct btrfs_delayed_node *delayed_node;
1885 int ret = 0;
1886
1887 delayed_node = btrfs_get_or_create_delayed_node(inode);
1888 if (IS_ERR(delayed_node))
1889 return PTR_ERR(delayed_node);
1890
1891 mutex_lock(&delayed_node->mutex);
1892 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1893 fill_stack_inode_item(trans, &delayed_node->inode_item,
1894 &inode->vfs_inode);
1895 goto release_node;
1896 }
1897
1898 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1899 if (ret)
1900 goto release_node;
1901
1902 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1903 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1904 delayed_node->count++;
1905 atomic_inc(&root->fs_info->delayed_root->items);
1906release_node:
1907 mutex_unlock(&delayed_node->mutex);
1908 btrfs_release_delayed_node(delayed_node);
1909 return ret;
1910}
1911
1912int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1913{
1914 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1915 struct btrfs_delayed_node *delayed_node;
1916
1917 /*
1918 * we don't do delayed inode updates during log recovery because it
1919 * leads to enospc problems. This means we also can't do
1920 * delayed inode refs
1921 */
1922 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1923 return -EAGAIN;
1924
1925 delayed_node = btrfs_get_or_create_delayed_node(inode);
1926 if (IS_ERR(delayed_node))
1927 return PTR_ERR(delayed_node);
1928
1929 /*
1930 * We don't reserve space for inode ref deletion is because:
1931 * - We ONLY do async inode ref deletion for the inode who has only
1932 * one link(i_nlink == 1), it means there is only one inode ref.
1933 * And in most case, the inode ref and the inode item are in the
1934 * same leaf, and we will deal with them at the same time.
1935 * Since we are sure we will reserve the space for the inode item,
1936 * it is unnecessary to reserve space for inode ref deletion.
1937 * - If the inode ref and the inode item are not in the same leaf,
1938 * We also needn't worry about enospc problem, because we reserve
1939 * much more space for the inode update than it needs.
1940 * - At the worst, we can steal some space from the global reservation.
1941 * It is very rare.
1942 */
1943 mutex_lock(&delayed_node->mutex);
1944 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1945 goto release_node;
1946
1947 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1948 delayed_node->count++;
1949 atomic_inc(&fs_info->delayed_root->items);
1950release_node:
1951 mutex_unlock(&delayed_node->mutex);
1952 btrfs_release_delayed_node(delayed_node);
1953 return 0;
1954}
1955
1956static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1957{
1958 struct btrfs_root *root = delayed_node->root;
1959 struct btrfs_fs_info *fs_info = root->fs_info;
1960 struct btrfs_delayed_item *curr_item, *prev_item;
1961
1962 mutex_lock(&delayed_node->mutex);
1963 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1964 while (curr_item) {
1965 prev_item = curr_item;
1966 curr_item = __btrfs_next_delayed_item(prev_item);
1967 btrfs_release_delayed_item(prev_item);
1968 }
1969
1970 if (delayed_node->index_item_leaves > 0) {
1971 btrfs_delayed_item_release_leaves(delayed_node,
1972 delayed_node->index_item_leaves);
1973 delayed_node->index_item_leaves = 0;
1974 }
1975
1976 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1977 while (curr_item) {
1978 btrfs_delayed_item_release_metadata(root, curr_item);
1979 prev_item = curr_item;
1980 curr_item = __btrfs_next_delayed_item(prev_item);
1981 btrfs_release_delayed_item(prev_item);
1982 }
1983
1984 btrfs_release_delayed_iref(delayed_node);
1985
1986 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1987 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1988 btrfs_release_delayed_inode(delayed_node);
1989 }
1990 mutex_unlock(&delayed_node->mutex);
1991}
1992
1993void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1994{
1995 struct btrfs_delayed_node *delayed_node;
1996
1997 delayed_node = btrfs_get_delayed_node(inode);
1998 if (!delayed_node)
1999 return;
2000
2001 __btrfs_kill_delayed_node(delayed_node);
2002 btrfs_release_delayed_node(delayed_node);
2003}
2004
2005void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2006{
2007 u64 inode_id = 0;
2008 struct btrfs_delayed_node *delayed_nodes[8];
2009 int i, n;
2010
2011 while (1) {
2012 spin_lock(&root->inode_lock);
2013 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
2014 (void **)delayed_nodes, inode_id,
2015 ARRAY_SIZE(delayed_nodes));
2016 if (!n) {
2017 spin_unlock(&root->inode_lock);
2018 break;
2019 }
2020
2021 inode_id = delayed_nodes[n - 1]->inode_id + 1;
2022 for (i = 0; i < n; i++) {
2023 /*
2024 * Don't increase refs in case the node is dead and
2025 * about to be removed from the tree in the loop below
2026 */
2027 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
2028 delayed_nodes[i] = NULL;
2029 }
2030 spin_unlock(&root->inode_lock);
2031
2032 for (i = 0; i < n; i++) {
2033 if (!delayed_nodes[i])
2034 continue;
2035 __btrfs_kill_delayed_node(delayed_nodes[i]);
2036 btrfs_release_delayed_node(delayed_nodes[i]);
2037 }
2038 }
2039}
2040
2041void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2042{
2043 struct btrfs_delayed_node *curr_node, *prev_node;
2044
2045 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2046 while (curr_node) {
2047 __btrfs_kill_delayed_node(curr_node);
2048
2049 prev_node = curr_node;
2050 curr_node = btrfs_next_delayed_node(curr_node);
2051 btrfs_release_delayed_node(prev_node);
2052 }
2053}
2054
2055void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2056 struct list_head *ins_list,
2057 struct list_head *del_list)
2058{
2059 struct btrfs_delayed_node *node;
2060 struct btrfs_delayed_item *item;
2061
2062 node = btrfs_get_delayed_node(inode);
2063 if (!node)
2064 return;
2065
2066 mutex_lock(&node->mutex);
2067 item = __btrfs_first_delayed_insertion_item(node);
2068 while (item) {
2069 /*
2070 * It's possible that the item is already in a log list. This
2071 * can happen in case two tasks are trying to log the same
2072 * directory. For example if we have tasks A and task B:
2073 *
2074 * Task A collected the delayed items into a log list while
2075 * under the inode's log_mutex (at btrfs_log_inode()), but it
2076 * only releases the items after logging the inodes they point
2077 * to (if they are new inodes), which happens after unlocking
2078 * the log mutex;
2079 *
2080 * Task B enters btrfs_log_inode() and acquires the log_mutex
2081 * of the same directory inode, before task B releases the
2082 * delayed items. This can happen for example when logging some
2083 * inode we need to trigger logging of its parent directory, so
2084 * logging two files that have the same parent directory can
2085 * lead to this.
2086 *
2087 * If this happens, just ignore delayed items already in a log
2088 * list. All the tasks logging the directory are under a log
2089 * transaction and whichever finishes first can not sync the log
2090 * before the other completes and leaves the log transaction.
2091 */
2092 if (!item->logged && list_empty(&item->log_list)) {
2093 refcount_inc(&item->refs);
2094 list_add_tail(&item->log_list, ins_list);
2095 }
2096 item = __btrfs_next_delayed_item(item);
2097 }
2098
2099 item = __btrfs_first_delayed_deletion_item(node);
2100 while (item) {
2101 /* It may be non-empty, for the same reason mentioned above. */
2102 if (!item->logged && list_empty(&item->log_list)) {
2103 refcount_inc(&item->refs);
2104 list_add_tail(&item->log_list, del_list);
2105 }
2106 item = __btrfs_next_delayed_item(item);
2107 }
2108 mutex_unlock(&node->mutex);
2109
2110 /*
2111 * We are called during inode logging, which means the inode is in use
2112 * and can not be evicted before we finish logging the inode. So we never
2113 * have the last reference on the delayed inode.
2114 * Also, we don't use btrfs_release_delayed_node() because that would
2115 * requeue the delayed inode (change its order in the list of prepared
2116 * nodes) and we don't want to do such change because we don't create or
2117 * delete delayed items.
2118 */
2119 ASSERT(refcount_read(&node->refs) > 1);
2120 refcount_dec(&node->refs);
2121}
2122
2123void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2124 struct list_head *ins_list,
2125 struct list_head *del_list)
2126{
2127 struct btrfs_delayed_node *node;
2128 struct btrfs_delayed_item *item;
2129 struct btrfs_delayed_item *next;
2130
2131 node = btrfs_get_delayed_node(inode);
2132 if (!node)
2133 return;
2134
2135 mutex_lock(&node->mutex);
2136
2137 list_for_each_entry_safe(item, next, ins_list, log_list) {
2138 item->logged = true;
2139 list_del_init(&item->log_list);
2140 if (refcount_dec_and_test(&item->refs))
2141 kfree(item);
2142 }
2143
2144 list_for_each_entry_safe(item, next, del_list, log_list) {
2145 item->logged = true;
2146 list_del_init(&item->log_list);
2147 if (refcount_dec_and_test(&item->refs))
2148 kfree(item);
2149 }
2150
2151 mutex_unlock(&node->mutex);
2152
2153 /*
2154 * We are called during inode logging, which means the inode is in use
2155 * and can not be evicted before we finish logging the inode. So we never
2156 * have the last reference on the delayed inode.
2157 * Also, we don't use btrfs_release_delayed_node() because that would
2158 * requeue the delayed inode (change its order in the list of prepared
2159 * nodes) and we don't want to do such change because we don't create or
2160 * delete delayed items.
2161 */
2162 ASSERT(refcount_read(&node->refs) > 1);
2163 refcount_dec(&node->refs);
2164}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include <linux/sched/mm.h>
10#include "misc.h"
11#include "delayed-inode.h"
12#include "disk-io.h"
13#include "transaction.h"
14#include "ctree.h"
15#include "qgroup.h"
16#include "locking.h"
17
18#define BTRFS_DELAYED_WRITEBACK 512
19#define BTRFS_DELAYED_BACKGROUND 128
20#define BTRFS_DELAYED_BATCH 16
21
22static struct kmem_cache *delayed_node_cache;
23
24int __init btrfs_delayed_inode_init(void)
25{
26 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
27 sizeof(struct btrfs_delayed_node),
28 0,
29 SLAB_MEM_SPREAD,
30 NULL);
31 if (!delayed_node_cache)
32 return -ENOMEM;
33 return 0;
34}
35
36void __cold btrfs_delayed_inode_exit(void)
37{
38 kmem_cache_destroy(delayed_node_cache);
39}
40
41static inline void btrfs_init_delayed_node(
42 struct btrfs_delayed_node *delayed_node,
43 struct btrfs_root *root, u64 inode_id)
44{
45 delayed_node->root = root;
46 delayed_node->inode_id = inode_id;
47 refcount_set(&delayed_node->refs, 0);
48 delayed_node->ins_root = RB_ROOT_CACHED;
49 delayed_node->del_root = RB_ROOT_CACHED;
50 mutex_init(&delayed_node->mutex);
51 INIT_LIST_HEAD(&delayed_node->n_list);
52 INIT_LIST_HEAD(&delayed_node->p_list);
53}
54
55static inline int btrfs_is_continuous_delayed_item(
56 struct btrfs_delayed_item *item1,
57 struct btrfs_delayed_item *item2)
58{
59 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
60 item1->key.objectid == item2->key.objectid &&
61 item1->key.type == item2->key.type &&
62 item1->key.offset + 1 == item2->key.offset)
63 return 1;
64 return 0;
65}
66
67static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 struct btrfs_inode *btrfs_inode)
69{
70 struct btrfs_root *root = btrfs_inode->root;
71 u64 ino = btrfs_ino(btrfs_inode);
72 struct btrfs_delayed_node *node;
73
74 node = READ_ONCE(btrfs_inode->delayed_node);
75 if (node) {
76 refcount_inc(&node->refs);
77 return node;
78 }
79
80 spin_lock(&root->inode_lock);
81 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
82
83 if (node) {
84 if (btrfs_inode->delayed_node) {
85 refcount_inc(&node->refs); /* can be accessed */
86 BUG_ON(btrfs_inode->delayed_node != node);
87 spin_unlock(&root->inode_lock);
88 return node;
89 }
90
91 /*
92 * It's possible that we're racing into the middle of removing
93 * this node from the radix tree. In this case, the refcount
94 * was zero and it should never go back to one. Just return
95 * NULL like it was never in the radix at all; our release
96 * function is in the process of removing it.
97 *
98 * Some implementations of refcount_inc refuse to bump the
99 * refcount once it has hit zero. If we don't do this dance
100 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 * of actually bumping the refcount.
102 *
103 * If this node is properly in the radix, we want to bump the
104 * refcount twice, once for the inode and once for this get
105 * operation.
106 */
107 if (refcount_inc_not_zero(&node->refs)) {
108 refcount_inc(&node->refs);
109 btrfs_inode->delayed_node = node;
110 } else {
111 node = NULL;
112 }
113
114 spin_unlock(&root->inode_lock);
115 return node;
116 }
117 spin_unlock(&root->inode_lock);
118
119 return NULL;
120}
121
122/* Will return either the node or PTR_ERR(-ENOMEM) */
123static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124 struct btrfs_inode *btrfs_inode)
125{
126 struct btrfs_delayed_node *node;
127 struct btrfs_root *root = btrfs_inode->root;
128 u64 ino = btrfs_ino(btrfs_inode);
129 int ret;
130
131again:
132 node = btrfs_get_delayed_node(btrfs_inode);
133 if (node)
134 return node;
135
136 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
137 if (!node)
138 return ERR_PTR(-ENOMEM);
139 btrfs_init_delayed_node(node, root, ino);
140
141 /* cached in the btrfs inode and can be accessed */
142 refcount_set(&node->refs, 2);
143
144 ret = radix_tree_preload(GFP_NOFS);
145 if (ret) {
146 kmem_cache_free(delayed_node_cache, node);
147 return ERR_PTR(ret);
148 }
149
150 spin_lock(&root->inode_lock);
151 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
152 if (ret == -EEXIST) {
153 spin_unlock(&root->inode_lock);
154 kmem_cache_free(delayed_node_cache, node);
155 radix_tree_preload_end();
156 goto again;
157 }
158 btrfs_inode->delayed_node = node;
159 spin_unlock(&root->inode_lock);
160 radix_tree_preload_end();
161
162 return node;
163}
164
165/*
166 * Call it when holding delayed_node->mutex
167 *
168 * If mod = 1, add this node into the prepared list.
169 */
170static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
171 struct btrfs_delayed_node *node,
172 int mod)
173{
174 spin_lock(&root->lock);
175 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
176 if (!list_empty(&node->p_list))
177 list_move_tail(&node->p_list, &root->prepare_list);
178 else if (mod)
179 list_add_tail(&node->p_list, &root->prepare_list);
180 } else {
181 list_add_tail(&node->n_list, &root->node_list);
182 list_add_tail(&node->p_list, &root->prepare_list);
183 refcount_inc(&node->refs); /* inserted into list */
184 root->nodes++;
185 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
186 }
187 spin_unlock(&root->lock);
188}
189
190/* Call it when holding delayed_node->mutex */
191static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
192 struct btrfs_delayed_node *node)
193{
194 spin_lock(&root->lock);
195 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
196 root->nodes--;
197 refcount_dec(&node->refs); /* not in the list */
198 list_del_init(&node->n_list);
199 if (!list_empty(&node->p_list))
200 list_del_init(&node->p_list);
201 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
202 }
203 spin_unlock(&root->lock);
204}
205
206static struct btrfs_delayed_node *btrfs_first_delayed_node(
207 struct btrfs_delayed_root *delayed_root)
208{
209 struct list_head *p;
210 struct btrfs_delayed_node *node = NULL;
211
212 spin_lock(&delayed_root->lock);
213 if (list_empty(&delayed_root->node_list))
214 goto out;
215
216 p = delayed_root->node_list.next;
217 node = list_entry(p, struct btrfs_delayed_node, n_list);
218 refcount_inc(&node->refs);
219out:
220 spin_unlock(&delayed_root->lock);
221
222 return node;
223}
224
225static struct btrfs_delayed_node *btrfs_next_delayed_node(
226 struct btrfs_delayed_node *node)
227{
228 struct btrfs_delayed_root *delayed_root;
229 struct list_head *p;
230 struct btrfs_delayed_node *next = NULL;
231
232 delayed_root = node->root->fs_info->delayed_root;
233 spin_lock(&delayed_root->lock);
234 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
235 /* not in the list */
236 if (list_empty(&delayed_root->node_list))
237 goto out;
238 p = delayed_root->node_list.next;
239 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
240 goto out;
241 else
242 p = node->n_list.next;
243
244 next = list_entry(p, struct btrfs_delayed_node, n_list);
245 refcount_inc(&next->refs);
246out:
247 spin_unlock(&delayed_root->lock);
248
249 return next;
250}
251
252static void __btrfs_release_delayed_node(
253 struct btrfs_delayed_node *delayed_node,
254 int mod)
255{
256 struct btrfs_delayed_root *delayed_root;
257
258 if (!delayed_node)
259 return;
260
261 delayed_root = delayed_node->root->fs_info->delayed_root;
262
263 mutex_lock(&delayed_node->mutex);
264 if (delayed_node->count)
265 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
266 else
267 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
268 mutex_unlock(&delayed_node->mutex);
269
270 if (refcount_dec_and_test(&delayed_node->refs)) {
271 struct btrfs_root *root = delayed_node->root;
272
273 spin_lock(&root->inode_lock);
274 /*
275 * Once our refcount goes to zero, nobody is allowed to bump it
276 * back up. We can delete it now.
277 */
278 ASSERT(refcount_read(&delayed_node->refs) == 0);
279 radix_tree_delete(&root->delayed_nodes_tree,
280 delayed_node->inode_id);
281 spin_unlock(&root->inode_lock);
282 kmem_cache_free(delayed_node_cache, delayed_node);
283 }
284}
285
286static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
287{
288 __btrfs_release_delayed_node(node, 0);
289}
290
291static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
292 struct btrfs_delayed_root *delayed_root)
293{
294 struct list_head *p;
295 struct btrfs_delayed_node *node = NULL;
296
297 spin_lock(&delayed_root->lock);
298 if (list_empty(&delayed_root->prepare_list))
299 goto out;
300
301 p = delayed_root->prepare_list.next;
302 list_del_init(p);
303 node = list_entry(p, struct btrfs_delayed_node, p_list);
304 refcount_inc(&node->refs);
305out:
306 spin_unlock(&delayed_root->lock);
307
308 return node;
309}
310
311static inline void btrfs_release_prepared_delayed_node(
312 struct btrfs_delayed_node *node)
313{
314 __btrfs_release_delayed_node(node, 1);
315}
316
317static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
318{
319 struct btrfs_delayed_item *item;
320 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
321 if (item) {
322 item->data_len = data_len;
323 item->ins_or_del = 0;
324 item->bytes_reserved = 0;
325 item->delayed_node = NULL;
326 refcount_set(&item->refs, 1);
327 }
328 return item;
329}
330
331/*
332 * __btrfs_lookup_delayed_item - look up the delayed item by key
333 * @delayed_node: pointer to the delayed node
334 * @key: the key to look up
335 * @prev: used to store the prev item if the right item isn't found
336 * @next: used to store the next item if the right item isn't found
337 *
338 * Note: if we don't find the right item, we will return the prev item and
339 * the next item.
340 */
341static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
342 struct rb_root *root,
343 struct btrfs_key *key,
344 struct btrfs_delayed_item **prev,
345 struct btrfs_delayed_item **next)
346{
347 struct rb_node *node, *prev_node = NULL;
348 struct btrfs_delayed_item *delayed_item = NULL;
349 int ret = 0;
350
351 node = root->rb_node;
352
353 while (node) {
354 delayed_item = rb_entry(node, struct btrfs_delayed_item,
355 rb_node);
356 prev_node = node;
357 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
358 if (ret < 0)
359 node = node->rb_right;
360 else if (ret > 0)
361 node = node->rb_left;
362 else
363 return delayed_item;
364 }
365
366 if (prev) {
367 if (!prev_node)
368 *prev = NULL;
369 else if (ret < 0)
370 *prev = delayed_item;
371 else if ((node = rb_prev(prev_node)) != NULL) {
372 *prev = rb_entry(node, struct btrfs_delayed_item,
373 rb_node);
374 } else
375 *prev = NULL;
376 }
377
378 if (next) {
379 if (!prev_node)
380 *next = NULL;
381 else if (ret > 0)
382 *next = delayed_item;
383 else if ((node = rb_next(prev_node)) != NULL) {
384 *next = rb_entry(node, struct btrfs_delayed_item,
385 rb_node);
386 } else
387 *next = NULL;
388 }
389 return NULL;
390}
391
392static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
393 struct btrfs_delayed_node *delayed_node,
394 struct btrfs_key *key)
395{
396 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
397 NULL, NULL);
398}
399
400static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
401 struct btrfs_delayed_item *ins,
402 int action)
403{
404 struct rb_node **p, *node;
405 struct rb_node *parent_node = NULL;
406 struct rb_root_cached *root;
407 struct btrfs_delayed_item *item;
408 int cmp;
409 bool leftmost = true;
410
411 if (action == BTRFS_DELAYED_INSERTION_ITEM)
412 root = &delayed_node->ins_root;
413 else if (action == BTRFS_DELAYED_DELETION_ITEM)
414 root = &delayed_node->del_root;
415 else
416 BUG();
417 p = &root->rb_root.rb_node;
418 node = &ins->rb_node;
419
420 while (*p) {
421 parent_node = *p;
422 item = rb_entry(parent_node, struct btrfs_delayed_item,
423 rb_node);
424
425 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
426 if (cmp < 0) {
427 p = &(*p)->rb_right;
428 leftmost = false;
429 } else if (cmp > 0) {
430 p = &(*p)->rb_left;
431 } else {
432 return -EEXIST;
433 }
434 }
435
436 rb_link_node(node, parent_node, p);
437 rb_insert_color_cached(node, root, leftmost);
438 ins->delayed_node = delayed_node;
439 ins->ins_or_del = action;
440
441 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
442 action == BTRFS_DELAYED_INSERTION_ITEM &&
443 ins->key.offset >= delayed_node->index_cnt)
444 delayed_node->index_cnt = ins->key.offset + 1;
445
446 delayed_node->count++;
447 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
448 return 0;
449}
450
451static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
452 struct btrfs_delayed_item *item)
453{
454 return __btrfs_add_delayed_item(node, item,
455 BTRFS_DELAYED_INSERTION_ITEM);
456}
457
458static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
459 struct btrfs_delayed_item *item)
460{
461 return __btrfs_add_delayed_item(node, item,
462 BTRFS_DELAYED_DELETION_ITEM);
463}
464
465static void finish_one_item(struct btrfs_delayed_root *delayed_root)
466{
467 int seq = atomic_inc_return(&delayed_root->items_seq);
468
469 /* atomic_dec_return implies a barrier */
470 if ((atomic_dec_return(&delayed_root->items) <
471 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
472 cond_wake_up_nomb(&delayed_root->wait);
473}
474
475static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
476{
477 struct rb_root_cached *root;
478 struct btrfs_delayed_root *delayed_root;
479
480 /* Not associated with any delayed_node */
481 if (!delayed_item->delayed_node)
482 return;
483 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
484
485 BUG_ON(!delayed_root);
486 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
487 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
488
489 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
490 root = &delayed_item->delayed_node->ins_root;
491 else
492 root = &delayed_item->delayed_node->del_root;
493
494 rb_erase_cached(&delayed_item->rb_node, root);
495 delayed_item->delayed_node->count--;
496
497 finish_one_item(delayed_root);
498}
499
500static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
501{
502 if (item) {
503 __btrfs_remove_delayed_item(item);
504 if (refcount_dec_and_test(&item->refs))
505 kfree(item);
506 }
507}
508
509static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
510 struct btrfs_delayed_node *delayed_node)
511{
512 struct rb_node *p;
513 struct btrfs_delayed_item *item = NULL;
514
515 p = rb_first_cached(&delayed_node->ins_root);
516 if (p)
517 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
518
519 return item;
520}
521
522static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
523 struct btrfs_delayed_node *delayed_node)
524{
525 struct rb_node *p;
526 struct btrfs_delayed_item *item = NULL;
527
528 p = rb_first_cached(&delayed_node->del_root);
529 if (p)
530 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
531
532 return item;
533}
534
535static struct btrfs_delayed_item *__btrfs_next_delayed_item(
536 struct btrfs_delayed_item *item)
537{
538 struct rb_node *p;
539 struct btrfs_delayed_item *next = NULL;
540
541 p = rb_next(&item->rb_node);
542 if (p)
543 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
544
545 return next;
546}
547
548static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
549 struct btrfs_root *root,
550 struct btrfs_delayed_item *item)
551{
552 struct btrfs_block_rsv *src_rsv;
553 struct btrfs_block_rsv *dst_rsv;
554 struct btrfs_fs_info *fs_info = root->fs_info;
555 u64 num_bytes;
556 int ret;
557
558 if (!trans->bytes_reserved)
559 return 0;
560
561 src_rsv = trans->block_rsv;
562 dst_rsv = &fs_info->delayed_block_rsv;
563
564 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
565
566 /*
567 * Here we migrate space rsv from transaction rsv, since have already
568 * reserved space when starting a transaction. So no need to reserve
569 * qgroup space here.
570 */
571 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
572 if (!ret) {
573 trace_btrfs_space_reservation(fs_info, "delayed_item",
574 item->key.objectid,
575 num_bytes, 1);
576 item->bytes_reserved = num_bytes;
577 }
578
579 return ret;
580}
581
582static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
583 struct btrfs_delayed_item *item)
584{
585 struct btrfs_block_rsv *rsv;
586 struct btrfs_fs_info *fs_info = root->fs_info;
587
588 if (!item->bytes_reserved)
589 return;
590
591 rsv = &fs_info->delayed_block_rsv;
592 /*
593 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
594 * to release/reserve qgroup space.
595 */
596 trace_btrfs_space_reservation(fs_info, "delayed_item",
597 item->key.objectid, item->bytes_reserved,
598 0);
599 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
600}
601
602static int btrfs_delayed_inode_reserve_metadata(
603 struct btrfs_trans_handle *trans,
604 struct btrfs_root *root,
605 struct btrfs_delayed_node *node)
606{
607 struct btrfs_fs_info *fs_info = root->fs_info;
608 struct btrfs_block_rsv *src_rsv;
609 struct btrfs_block_rsv *dst_rsv;
610 u64 num_bytes;
611 int ret;
612
613 src_rsv = trans->block_rsv;
614 dst_rsv = &fs_info->delayed_block_rsv;
615
616 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
617
618 /*
619 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
620 * which doesn't reserve space for speed. This is a problem since we
621 * still need to reserve space for this update, so try to reserve the
622 * space.
623 *
624 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
625 * we always reserve enough to update the inode item.
626 */
627 if (!src_rsv || (!trans->bytes_reserved &&
628 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
629 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
630 BTRFS_QGROUP_RSV_META_PREALLOC, true);
631 if (ret < 0)
632 return ret;
633 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
634 BTRFS_RESERVE_NO_FLUSH);
635 /* NO_FLUSH could only fail with -ENOSPC */
636 ASSERT(ret == 0 || ret == -ENOSPC);
637 if (ret)
638 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
639 } else {
640 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
641 }
642
643 if (!ret) {
644 trace_btrfs_space_reservation(fs_info, "delayed_inode",
645 node->inode_id, num_bytes, 1);
646 node->bytes_reserved = num_bytes;
647 }
648
649 return ret;
650}
651
652static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
653 struct btrfs_delayed_node *node,
654 bool qgroup_free)
655{
656 struct btrfs_block_rsv *rsv;
657
658 if (!node->bytes_reserved)
659 return;
660
661 rsv = &fs_info->delayed_block_rsv;
662 trace_btrfs_space_reservation(fs_info, "delayed_inode",
663 node->inode_id, node->bytes_reserved, 0);
664 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
665 if (qgroup_free)
666 btrfs_qgroup_free_meta_prealloc(node->root,
667 node->bytes_reserved);
668 else
669 btrfs_qgroup_convert_reserved_meta(node->root,
670 node->bytes_reserved);
671 node->bytes_reserved = 0;
672}
673
674/*
675 * This helper will insert some continuous items into the same leaf according
676 * to the free space of the leaf.
677 */
678static int btrfs_batch_insert_items(struct btrfs_root *root,
679 struct btrfs_path *path,
680 struct btrfs_delayed_item *item)
681{
682 struct btrfs_delayed_item *curr, *next;
683 int free_space;
684 int total_size = 0;
685 struct extent_buffer *leaf;
686 char *data_ptr;
687 struct btrfs_key *keys;
688 u32 *data_size;
689 struct list_head head;
690 int slot;
691 int nitems;
692 int i;
693 int ret = 0;
694
695 BUG_ON(!path->nodes[0]);
696
697 leaf = path->nodes[0];
698 free_space = btrfs_leaf_free_space(leaf);
699 INIT_LIST_HEAD(&head);
700
701 next = item;
702 nitems = 0;
703
704 /*
705 * count the number of the continuous items that we can insert in batch
706 */
707 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
708 free_space) {
709 total_size += next->data_len + sizeof(struct btrfs_item);
710 list_add_tail(&next->tree_list, &head);
711 nitems++;
712
713 curr = next;
714 next = __btrfs_next_delayed_item(curr);
715 if (!next)
716 break;
717
718 if (!btrfs_is_continuous_delayed_item(curr, next))
719 break;
720 }
721
722 if (!nitems) {
723 ret = 0;
724 goto out;
725 }
726
727 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
728 if (!keys) {
729 ret = -ENOMEM;
730 goto out;
731 }
732
733 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
734 if (!data_size) {
735 ret = -ENOMEM;
736 goto error;
737 }
738
739 /* get keys of all the delayed items */
740 i = 0;
741 list_for_each_entry(next, &head, tree_list) {
742 keys[i] = next->key;
743 data_size[i] = next->data_len;
744 i++;
745 }
746
747 /* insert the keys of the items */
748 setup_items_for_insert(root, path, keys, data_size, nitems);
749
750 /* insert the dir index items */
751 slot = path->slots[0];
752 list_for_each_entry_safe(curr, next, &head, tree_list) {
753 data_ptr = btrfs_item_ptr(leaf, slot, char);
754 write_extent_buffer(leaf, &curr->data,
755 (unsigned long)data_ptr,
756 curr->data_len);
757 slot++;
758
759 btrfs_delayed_item_release_metadata(root, curr);
760
761 list_del(&curr->tree_list);
762 btrfs_release_delayed_item(curr);
763 }
764
765error:
766 kfree(data_size);
767 kfree(keys);
768out:
769 return ret;
770}
771
772/*
773 * This helper can just do simple insertion that needn't extend item for new
774 * data, such as directory name index insertion, inode insertion.
775 */
776static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
777 struct btrfs_root *root,
778 struct btrfs_path *path,
779 struct btrfs_delayed_item *delayed_item)
780{
781 struct extent_buffer *leaf;
782 unsigned int nofs_flag;
783 char *ptr;
784 int ret;
785
786 nofs_flag = memalloc_nofs_save();
787 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
788 delayed_item->data_len);
789 memalloc_nofs_restore(nofs_flag);
790 if (ret < 0 && ret != -EEXIST)
791 return ret;
792
793 leaf = path->nodes[0];
794
795 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
796
797 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
798 delayed_item->data_len);
799 btrfs_mark_buffer_dirty(leaf);
800
801 btrfs_delayed_item_release_metadata(root, delayed_item);
802 return 0;
803}
804
805/*
806 * we insert an item first, then if there are some continuous items, we try
807 * to insert those items into the same leaf.
808 */
809static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
810 struct btrfs_path *path,
811 struct btrfs_root *root,
812 struct btrfs_delayed_node *node)
813{
814 struct btrfs_delayed_item *curr, *prev;
815 int ret = 0;
816
817do_again:
818 mutex_lock(&node->mutex);
819 curr = __btrfs_first_delayed_insertion_item(node);
820 if (!curr)
821 goto insert_end;
822
823 ret = btrfs_insert_delayed_item(trans, root, path, curr);
824 if (ret < 0) {
825 btrfs_release_path(path);
826 goto insert_end;
827 }
828
829 prev = curr;
830 curr = __btrfs_next_delayed_item(prev);
831 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
832 /* insert the continuous items into the same leaf */
833 path->slots[0]++;
834 btrfs_batch_insert_items(root, path, curr);
835 }
836 btrfs_release_delayed_item(prev);
837 btrfs_mark_buffer_dirty(path->nodes[0]);
838
839 btrfs_release_path(path);
840 mutex_unlock(&node->mutex);
841 goto do_again;
842
843insert_end:
844 mutex_unlock(&node->mutex);
845 return ret;
846}
847
848static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
849 struct btrfs_root *root,
850 struct btrfs_path *path,
851 struct btrfs_delayed_item *item)
852{
853 struct btrfs_delayed_item *curr, *next;
854 struct extent_buffer *leaf;
855 struct btrfs_key key;
856 struct list_head head;
857 int nitems, i, last_item;
858 int ret = 0;
859
860 BUG_ON(!path->nodes[0]);
861
862 leaf = path->nodes[0];
863
864 i = path->slots[0];
865 last_item = btrfs_header_nritems(leaf) - 1;
866 if (i > last_item)
867 return -ENOENT; /* FIXME: Is errno suitable? */
868
869 next = item;
870 INIT_LIST_HEAD(&head);
871 btrfs_item_key_to_cpu(leaf, &key, i);
872 nitems = 0;
873 /*
874 * count the number of the dir index items that we can delete in batch
875 */
876 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
877 list_add_tail(&next->tree_list, &head);
878 nitems++;
879
880 curr = next;
881 next = __btrfs_next_delayed_item(curr);
882 if (!next)
883 break;
884
885 if (!btrfs_is_continuous_delayed_item(curr, next))
886 break;
887
888 i++;
889 if (i > last_item)
890 break;
891 btrfs_item_key_to_cpu(leaf, &key, i);
892 }
893
894 if (!nitems)
895 return 0;
896
897 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
898 if (ret)
899 goto out;
900
901 list_for_each_entry_safe(curr, next, &head, tree_list) {
902 btrfs_delayed_item_release_metadata(root, curr);
903 list_del(&curr->tree_list);
904 btrfs_release_delayed_item(curr);
905 }
906
907out:
908 return ret;
909}
910
911static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
912 struct btrfs_path *path,
913 struct btrfs_root *root,
914 struct btrfs_delayed_node *node)
915{
916 struct btrfs_delayed_item *curr, *prev;
917 unsigned int nofs_flag;
918 int ret = 0;
919
920do_again:
921 mutex_lock(&node->mutex);
922 curr = __btrfs_first_delayed_deletion_item(node);
923 if (!curr)
924 goto delete_fail;
925
926 nofs_flag = memalloc_nofs_save();
927 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
928 memalloc_nofs_restore(nofs_flag);
929 if (ret < 0)
930 goto delete_fail;
931 else if (ret > 0) {
932 /*
933 * can't find the item which the node points to, so this node
934 * is invalid, just drop it.
935 */
936 prev = curr;
937 curr = __btrfs_next_delayed_item(prev);
938 btrfs_release_delayed_item(prev);
939 ret = 0;
940 btrfs_release_path(path);
941 if (curr) {
942 mutex_unlock(&node->mutex);
943 goto do_again;
944 } else
945 goto delete_fail;
946 }
947
948 btrfs_batch_delete_items(trans, root, path, curr);
949 btrfs_release_path(path);
950 mutex_unlock(&node->mutex);
951 goto do_again;
952
953delete_fail:
954 btrfs_release_path(path);
955 mutex_unlock(&node->mutex);
956 return ret;
957}
958
959static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
960{
961 struct btrfs_delayed_root *delayed_root;
962
963 if (delayed_node &&
964 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
965 BUG_ON(!delayed_node->root);
966 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
967 delayed_node->count--;
968
969 delayed_root = delayed_node->root->fs_info->delayed_root;
970 finish_one_item(delayed_root);
971 }
972}
973
974static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
975{
976
977 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
978 struct btrfs_delayed_root *delayed_root;
979
980 ASSERT(delayed_node->root);
981 delayed_node->count--;
982
983 delayed_root = delayed_node->root->fs_info->delayed_root;
984 finish_one_item(delayed_root);
985 }
986}
987
988static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
989 struct btrfs_root *root,
990 struct btrfs_path *path,
991 struct btrfs_delayed_node *node)
992{
993 struct btrfs_fs_info *fs_info = root->fs_info;
994 struct btrfs_key key;
995 struct btrfs_inode_item *inode_item;
996 struct extent_buffer *leaf;
997 unsigned int nofs_flag;
998 int mod;
999 int ret;
1000
1001 key.objectid = node->inode_id;
1002 key.type = BTRFS_INODE_ITEM_KEY;
1003 key.offset = 0;
1004
1005 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1006 mod = -1;
1007 else
1008 mod = 1;
1009
1010 nofs_flag = memalloc_nofs_save();
1011 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1012 memalloc_nofs_restore(nofs_flag);
1013 if (ret > 0)
1014 ret = -ENOENT;
1015 if (ret < 0)
1016 goto out;
1017
1018 leaf = path->nodes[0];
1019 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_inode_item);
1021 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1022 sizeof(struct btrfs_inode_item));
1023 btrfs_mark_buffer_dirty(leaf);
1024
1025 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1026 goto out;
1027
1028 path->slots[0]++;
1029 if (path->slots[0] >= btrfs_header_nritems(leaf))
1030 goto search;
1031again:
1032 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1033 if (key.objectid != node->inode_id)
1034 goto out;
1035
1036 if (key.type != BTRFS_INODE_REF_KEY &&
1037 key.type != BTRFS_INODE_EXTREF_KEY)
1038 goto out;
1039
1040 /*
1041 * Delayed iref deletion is for the inode who has only one link,
1042 * so there is only one iref. The case that several irefs are
1043 * in the same item doesn't exist.
1044 */
1045 btrfs_del_item(trans, root, path);
1046out:
1047 btrfs_release_delayed_iref(node);
1048 btrfs_release_path(path);
1049err_out:
1050 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1051 btrfs_release_delayed_inode(node);
1052
1053 /*
1054 * If we fail to update the delayed inode we need to abort the
1055 * transaction, because we could leave the inode with the improper
1056 * counts behind.
1057 */
1058 if (ret && ret != -ENOENT)
1059 btrfs_abort_transaction(trans, ret);
1060
1061 return ret;
1062
1063search:
1064 btrfs_release_path(path);
1065
1066 key.type = BTRFS_INODE_EXTREF_KEY;
1067 key.offset = -1;
1068
1069 nofs_flag = memalloc_nofs_save();
1070 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1071 memalloc_nofs_restore(nofs_flag);
1072 if (ret < 0)
1073 goto err_out;
1074 ASSERT(ret);
1075
1076 ret = 0;
1077 leaf = path->nodes[0];
1078 path->slots[0]--;
1079 goto again;
1080}
1081
1082static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1083 struct btrfs_root *root,
1084 struct btrfs_path *path,
1085 struct btrfs_delayed_node *node)
1086{
1087 int ret;
1088
1089 mutex_lock(&node->mutex);
1090 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1091 mutex_unlock(&node->mutex);
1092 return 0;
1093 }
1094
1095 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1096 mutex_unlock(&node->mutex);
1097 return ret;
1098}
1099
1100static inline int
1101__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1102 struct btrfs_path *path,
1103 struct btrfs_delayed_node *node)
1104{
1105 int ret;
1106
1107 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1108 if (ret)
1109 return ret;
1110
1111 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1112 if (ret)
1113 return ret;
1114
1115 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1116 return ret;
1117}
1118
1119/*
1120 * Called when committing the transaction.
1121 * Returns 0 on success.
1122 * Returns < 0 on error and returns with an aborted transaction with any
1123 * outstanding delayed items cleaned up.
1124 */
1125static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1126{
1127 struct btrfs_fs_info *fs_info = trans->fs_info;
1128 struct btrfs_delayed_root *delayed_root;
1129 struct btrfs_delayed_node *curr_node, *prev_node;
1130 struct btrfs_path *path;
1131 struct btrfs_block_rsv *block_rsv;
1132 int ret = 0;
1133 bool count = (nr > 0);
1134
1135 if (TRANS_ABORTED(trans))
1136 return -EIO;
1137
1138 path = btrfs_alloc_path();
1139 if (!path)
1140 return -ENOMEM;
1141
1142 block_rsv = trans->block_rsv;
1143 trans->block_rsv = &fs_info->delayed_block_rsv;
1144
1145 delayed_root = fs_info->delayed_root;
1146
1147 curr_node = btrfs_first_delayed_node(delayed_root);
1148 while (curr_node && (!count || nr--)) {
1149 ret = __btrfs_commit_inode_delayed_items(trans, path,
1150 curr_node);
1151 if (ret) {
1152 btrfs_release_delayed_node(curr_node);
1153 curr_node = NULL;
1154 btrfs_abort_transaction(trans, ret);
1155 break;
1156 }
1157
1158 prev_node = curr_node;
1159 curr_node = btrfs_next_delayed_node(curr_node);
1160 btrfs_release_delayed_node(prev_node);
1161 }
1162
1163 if (curr_node)
1164 btrfs_release_delayed_node(curr_node);
1165 btrfs_free_path(path);
1166 trans->block_rsv = block_rsv;
1167
1168 return ret;
1169}
1170
1171int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1172{
1173 return __btrfs_run_delayed_items(trans, -1);
1174}
1175
1176int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1177{
1178 return __btrfs_run_delayed_items(trans, nr);
1179}
1180
1181int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1182 struct btrfs_inode *inode)
1183{
1184 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1185 struct btrfs_path *path;
1186 struct btrfs_block_rsv *block_rsv;
1187 int ret;
1188
1189 if (!delayed_node)
1190 return 0;
1191
1192 mutex_lock(&delayed_node->mutex);
1193 if (!delayed_node->count) {
1194 mutex_unlock(&delayed_node->mutex);
1195 btrfs_release_delayed_node(delayed_node);
1196 return 0;
1197 }
1198 mutex_unlock(&delayed_node->mutex);
1199
1200 path = btrfs_alloc_path();
1201 if (!path) {
1202 btrfs_release_delayed_node(delayed_node);
1203 return -ENOMEM;
1204 }
1205
1206 block_rsv = trans->block_rsv;
1207 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1208
1209 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1210
1211 btrfs_release_delayed_node(delayed_node);
1212 btrfs_free_path(path);
1213 trans->block_rsv = block_rsv;
1214
1215 return ret;
1216}
1217
1218int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1219{
1220 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1221 struct btrfs_trans_handle *trans;
1222 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1223 struct btrfs_path *path;
1224 struct btrfs_block_rsv *block_rsv;
1225 int ret;
1226
1227 if (!delayed_node)
1228 return 0;
1229
1230 mutex_lock(&delayed_node->mutex);
1231 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1232 mutex_unlock(&delayed_node->mutex);
1233 btrfs_release_delayed_node(delayed_node);
1234 return 0;
1235 }
1236 mutex_unlock(&delayed_node->mutex);
1237
1238 trans = btrfs_join_transaction(delayed_node->root);
1239 if (IS_ERR(trans)) {
1240 ret = PTR_ERR(trans);
1241 goto out;
1242 }
1243
1244 path = btrfs_alloc_path();
1245 if (!path) {
1246 ret = -ENOMEM;
1247 goto trans_out;
1248 }
1249
1250 block_rsv = trans->block_rsv;
1251 trans->block_rsv = &fs_info->delayed_block_rsv;
1252
1253 mutex_lock(&delayed_node->mutex);
1254 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1255 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1256 path, delayed_node);
1257 else
1258 ret = 0;
1259 mutex_unlock(&delayed_node->mutex);
1260
1261 btrfs_free_path(path);
1262 trans->block_rsv = block_rsv;
1263trans_out:
1264 btrfs_end_transaction(trans);
1265 btrfs_btree_balance_dirty(fs_info);
1266out:
1267 btrfs_release_delayed_node(delayed_node);
1268
1269 return ret;
1270}
1271
1272void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1273{
1274 struct btrfs_delayed_node *delayed_node;
1275
1276 delayed_node = READ_ONCE(inode->delayed_node);
1277 if (!delayed_node)
1278 return;
1279
1280 inode->delayed_node = NULL;
1281 btrfs_release_delayed_node(delayed_node);
1282}
1283
1284struct btrfs_async_delayed_work {
1285 struct btrfs_delayed_root *delayed_root;
1286 int nr;
1287 struct btrfs_work work;
1288};
1289
1290static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1291{
1292 struct btrfs_async_delayed_work *async_work;
1293 struct btrfs_delayed_root *delayed_root;
1294 struct btrfs_trans_handle *trans;
1295 struct btrfs_path *path;
1296 struct btrfs_delayed_node *delayed_node = NULL;
1297 struct btrfs_root *root;
1298 struct btrfs_block_rsv *block_rsv;
1299 int total_done = 0;
1300
1301 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1302 delayed_root = async_work->delayed_root;
1303
1304 path = btrfs_alloc_path();
1305 if (!path)
1306 goto out;
1307
1308 do {
1309 if (atomic_read(&delayed_root->items) <
1310 BTRFS_DELAYED_BACKGROUND / 2)
1311 break;
1312
1313 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1314 if (!delayed_node)
1315 break;
1316
1317 root = delayed_node->root;
1318
1319 trans = btrfs_join_transaction(root);
1320 if (IS_ERR(trans)) {
1321 btrfs_release_path(path);
1322 btrfs_release_prepared_delayed_node(delayed_node);
1323 total_done++;
1324 continue;
1325 }
1326
1327 block_rsv = trans->block_rsv;
1328 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1329
1330 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1331
1332 trans->block_rsv = block_rsv;
1333 btrfs_end_transaction(trans);
1334 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1335
1336 btrfs_release_path(path);
1337 btrfs_release_prepared_delayed_node(delayed_node);
1338 total_done++;
1339
1340 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1341 || total_done < async_work->nr);
1342
1343 btrfs_free_path(path);
1344out:
1345 wake_up(&delayed_root->wait);
1346 kfree(async_work);
1347}
1348
1349
1350static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1351 struct btrfs_fs_info *fs_info, int nr)
1352{
1353 struct btrfs_async_delayed_work *async_work;
1354
1355 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1356 if (!async_work)
1357 return -ENOMEM;
1358
1359 async_work->delayed_root = delayed_root;
1360 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1361 NULL);
1362 async_work->nr = nr;
1363
1364 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1365 return 0;
1366}
1367
1368void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1369{
1370 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1371}
1372
1373static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1374{
1375 int val = atomic_read(&delayed_root->items_seq);
1376
1377 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1378 return 1;
1379
1380 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1381 return 1;
1382
1383 return 0;
1384}
1385
1386void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1387{
1388 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1389
1390 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1391 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1392 return;
1393
1394 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1395 int seq;
1396 int ret;
1397
1398 seq = atomic_read(&delayed_root->items_seq);
1399
1400 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1401 if (ret)
1402 return;
1403
1404 wait_event_interruptible(delayed_root->wait,
1405 could_end_wait(delayed_root, seq));
1406 return;
1407 }
1408
1409 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1410}
1411
1412/* Will return 0 or -ENOMEM */
1413int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1414 const char *name, int name_len,
1415 struct btrfs_inode *dir,
1416 struct btrfs_disk_key *disk_key, u8 type,
1417 u64 index)
1418{
1419 struct btrfs_delayed_node *delayed_node;
1420 struct btrfs_delayed_item *delayed_item;
1421 struct btrfs_dir_item *dir_item;
1422 int ret;
1423
1424 delayed_node = btrfs_get_or_create_delayed_node(dir);
1425 if (IS_ERR(delayed_node))
1426 return PTR_ERR(delayed_node);
1427
1428 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1429 if (!delayed_item) {
1430 ret = -ENOMEM;
1431 goto release_node;
1432 }
1433
1434 delayed_item->key.objectid = btrfs_ino(dir);
1435 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1436 delayed_item->key.offset = index;
1437
1438 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1439 dir_item->location = *disk_key;
1440 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1441 btrfs_set_stack_dir_data_len(dir_item, 0);
1442 btrfs_set_stack_dir_name_len(dir_item, name_len);
1443 btrfs_set_stack_dir_type(dir_item, type);
1444 memcpy((char *)(dir_item + 1), name, name_len);
1445
1446 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1447 /*
1448 * we have reserved enough space when we start a new transaction,
1449 * so reserving metadata failure is impossible
1450 */
1451 BUG_ON(ret);
1452
1453 mutex_lock(&delayed_node->mutex);
1454 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1455 if (unlikely(ret)) {
1456 btrfs_err(trans->fs_info,
1457 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1458 name_len, name, delayed_node->root->root_key.objectid,
1459 delayed_node->inode_id, ret);
1460 BUG();
1461 }
1462 mutex_unlock(&delayed_node->mutex);
1463
1464release_node:
1465 btrfs_release_delayed_node(delayed_node);
1466 return ret;
1467}
1468
1469static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1470 struct btrfs_delayed_node *node,
1471 struct btrfs_key *key)
1472{
1473 struct btrfs_delayed_item *item;
1474
1475 mutex_lock(&node->mutex);
1476 item = __btrfs_lookup_delayed_insertion_item(node, key);
1477 if (!item) {
1478 mutex_unlock(&node->mutex);
1479 return 1;
1480 }
1481
1482 btrfs_delayed_item_release_metadata(node->root, item);
1483 btrfs_release_delayed_item(item);
1484 mutex_unlock(&node->mutex);
1485 return 0;
1486}
1487
1488int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1489 struct btrfs_inode *dir, u64 index)
1490{
1491 struct btrfs_delayed_node *node;
1492 struct btrfs_delayed_item *item;
1493 struct btrfs_key item_key;
1494 int ret;
1495
1496 node = btrfs_get_or_create_delayed_node(dir);
1497 if (IS_ERR(node))
1498 return PTR_ERR(node);
1499
1500 item_key.objectid = btrfs_ino(dir);
1501 item_key.type = BTRFS_DIR_INDEX_KEY;
1502 item_key.offset = index;
1503
1504 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1505 &item_key);
1506 if (!ret)
1507 goto end;
1508
1509 item = btrfs_alloc_delayed_item(0);
1510 if (!item) {
1511 ret = -ENOMEM;
1512 goto end;
1513 }
1514
1515 item->key = item_key;
1516
1517 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1518 /*
1519 * we have reserved enough space when we start a new transaction,
1520 * so reserving metadata failure is impossible.
1521 */
1522 if (ret < 0) {
1523 btrfs_err(trans->fs_info,
1524"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1525 btrfs_release_delayed_item(item);
1526 goto end;
1527 }
1528
1529 mutex_lock(&node->mutex);
1530 ret = __btrfs_add_delayed_deletion_item(node, item);
1531 if (unlikely(ret)) {
1532 btrfs_err(trans->fs_info,
1533 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1534 index, node->root->root_key.objectid,
1535 node->inode_id, ret);
1536 btrfs_delayed_item_release_metadata(dir->root, item);
1537 btrfs_release_delayed_item(item);
1538 }
1539 mutex_unlock(&node->mutex);
1540end:
1541 btrfs_release_delayed_node(node);
1542 return ret;
1543}
1544
1545int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1546{
1547 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1548
1549 if (!delayed_node)
1550 return -ENOENT;
1551
1552 /*
1553 * Since we have held i_mutex of this directory, it is impossible that
1554 * a new directory index is added into the delayed node and index_cnt
1555 * is updated now. So we needn't lock the delayed node.
1556 */
1557 if (!delayed_node->index_cnt) {
1558 btrfs_release_delayed_node(delayed_node);
1559 return -EINVAL;
1560 }
1561
1562 inode->index_cnt = delayed_node->index_cnt;
1563 btrfs_release_delayed_node(delayed_node);
1564 return 0;
1565}
1566
1567bool btrfs_readdir_get_delayed_items(struct inode *inode,
1568 struct list_head *ins_list,
1569 struct list_head *del_list)
1570{
1571 struct btrfs_delayed_node *delayed_node;
1572 struct btrfs_delayed_item *item;
1573
1574 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1575 if (!delayed_node)
1576 return false;
1577
1578 /*
1579 * We can only do one readdir with delayed items at a time because of
1580 * item->readdir_list.
1581 */
1582 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1583 btrfs_inode_lock(inode, 0);
1584
1585 mutex_lock(&delayed_node->mutex);
1586 item = __btrfs_first_delayed_insertion_item(delayed_node);
1587 while (item) {
1588 refcount_inc(&item->refs);
1589 list_add_tail(&item->readdir_list, ins_list);
1590 item = __btrfs_next_delayed_item(item);
1591 }
1592
1593 item = __btrfs_first_delayed_deletion_item(delayed_node);
1594 while (item) {
1595 refcount_inc(&item->refs);
1596 list_add_tail(&item->readdir_list, del_list);
1597 item = __btrfs_next_delayed_item(item);
1598 }
1599 mutex_unlock(&delayed_node->mutex);
1600 /*
1601 * This delayed node is still cached in the btrfs inode, so refs
1602 * must be > 1 now, and we needn't check it is going to be freed
1603 * or not.
1604 *
1605 * Besides that, this function is used to read dir, we do not
1606 * insert/delete delayed items in this period. So we also needn't
1607 * requeue or dequeue this delayed node.
1608 */
1609 refcount_dec(&delayed_node->refs);
1610
1611 return true;
1612}
1613
1614void btrfs_readdir_put_delayed_items(struct inode *inode,
1615 struct list_head *ins_list,
1616 struct list_head *del_list)
1617{
1618 struct btrfs_delayed_item *curr, *next;
1619
1620 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1621 list_del(&curr->readdir_list);
1622 if (refcount_dec_and_test(&curr->refs))
1623 kfree(curr);
1624 }
1625
1626 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1627 list_del(&curr->readdir_list);
1628 if (refcount_dec_and_test(&curr->refs))
1629 kfree(curr);
1630 }
1631
1632 /*
1633 * The VFS is going to do up_read(), so we need to downgrade back to a
1634 * read lock.
1635 */
1636 downgrade_write(&inode->i_rwsem);
1637}
1638
1639int btrfs_should_delete_dir_index(struct list_head *del_list,
1640 u64 index)
1641{
1642 struct btrfs_delayed_item *curr;
1643 int ret = 0;
1644
1645 list_for_each_entry(curr, del_list, readdir_list) {
1646 if (curr->key.offset > index)
1647 break;
1648 if (curr->key.offset == index) {
1649 ret = 1;
1650 break;
1651 }
1652 }
1653 return ret;
1654}
1655
1656/*
1657 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1658 *
1659 */
1660int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1661 struct list_head *ins_list)
1662{
1663 struct btrfs_dir_item *di;
1664 struct btrfs_delayed_item *curr, *next;
1665 struct btrfs_key location;
1666 char *name;
1667 int name_len;
1668 int over = 0;
1669 unsigned char d_type;
1670
1671 if (list_empty(ins_list))
1672 return 0;
1673
1674 /*
1675 * Changing the data of the delayed item is impossible. So
1676 * we needn't lock them. And we have held i_mutex of the
1677 * directory, nobody can delete any directory indexes now.
1678 */
1679 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1680 list_del(&curr->readdir_list);
1681
1682 if (curr->key.offset < ctx->pos) {
1683 if (refcount_dec_and_test(&curr->refs))
1684 kfree(curr);
1685 continue;
1686 }
1687
1688 ctx->pos = curr->key.offset;
1689
1690 di = (struct btrfs_dir_item *)curr->data;
1691 name = (char *)(di + 1);
1692 name_len = btrfs_stack_dir_name_len(di);
1693
1694 d_type = fs_ftype_to_dtype(di->type);
1695 btrfs_disk_key_to_cpu(&location, &di->location);
1696
1697 over = !dir_emit(ctx, name, name_len,
1698 location.objectid, d_type);
1699
1700 if (refcount_dec_and_test(&curr->refs))
1701 kfree(curr);
1702
1703 if (over)
1704 return 1;
1705 ctx->pos++;
1706 }
1707 return 0;
1708}
1709
1710static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1711 struct btrfs_inode_item *inode_item,
1712 struct inode *inode)
1713{
1714 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1715 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1716 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1717 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1718 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1719 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1720 btrfs_set_stack_inode_generation(inode_item,
1721 BTRFS_I(inode)->generation);
1722 btrfs_set_stack_inode_sequence(inode_item,
1723 inode_peek_iversion(inode));
1724 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1725 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1726 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1727 btrfs_set_stack_inode_block_group(inode_item, 0);
1728
1729 btrfs_set_stack_timespec_sec(&inode_item->atime,
1730 inode->i_atime.tv_sec);
1731 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1732 inode->i_atime.tv_nsec);
1733
1734 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1735 inode->i_mtime.tv_sec);
1736 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1737 inode->i_mtime.tv_nsec);
1738
1739 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1740 inode->i_ctime.tv_sec);
1741 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1742 inode->i_ctime.tv_nsec);
1743
1744 btrfs_set_stack_timespec_sec(&inode_item->otime,
1745 BTRFS_I(inode)->i_otime.tv_sec);
1746 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1747 BTRFS_I(inode)->i_otime.tv_nsec);
1748}
1749
1750int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1751{
1752 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1753 struct btrfs_delayed_node *delayed_node;
1754 struct btrfs_inode_item *inode_item;
1755
1756 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1757 if (!delayed_node)
1758 return -ENOENT;
1759
1760 mutex_lock(&delayed_node->mutex);
1761 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1762 mutex_unlock(&delayed_node->mutex);
1763 btrfs_release_delayed_node(delayed_node);
1764 return -ENOENT;
1765 }
1766
1767 inode_item = &delayed_node->inode_item;
1768
1769 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1770 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1771 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1772 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1773 round_up(i_size_read(inode), fs_info->sectorsize));
1774 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1775 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1776 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1777 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1778 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1779
1780 inode_set_iversion_queried(inode,
1781 btrfs_stack_inode_sequence(inode_item));
1782 inode->i_rdev = 0;
1783 *rdev = btrfs_stack_inode_rdev(inode_item);
1784 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1785
1786 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1787 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1788
1789 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1790 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1791
1792 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1793 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1794
1795 BTRFS_I(inode)->i_otime.tv_sec =
1796 btrfs_stack_timespec_sec(&inode_item->otime);
1797 BTRFS_I(inode)->i_otime.tv_nsec =
1798 btrfs_stack_timespec_nsec(&inode_item->otime);
1799
1800 inode->i_generation = BTRFS_I(inode)->generation;
1801 BTRFS_I(inode)->index_cnt = (u64)-1;
1802
1803 mutex_unlock(&delayed_node->mutex);
1804 btrfs_release_delayed_node(delayed_node);
1805 return 0;
1806}
1807
1808int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1809 struct btrfs_root *root,
1810 struct btrfs_inode *inode)
1811{
1812 struct btrfs_delayed_node *delayed_node;
1813 int ret = 0;
1814
1815 delayed_node = btrfs_get_or_create_delayed_node(inode);
1816 if (IS_ERR(delayed_node))
1817 return PTR_ERR(delayed_node);
1818
1819 mutex_lock(&delayed_node->mutex);
1820 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1821 fill_stack_inode_item(trans, &delayed_node->inode_item,
1822 &inode->vfs_inode);
1823 goto release_node;
1824 }
1825
1826 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1827 if (ret)
1828 goto release_node;
1829
1830 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1831 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1832 delayed_node->count++;
1833 atomic_inc(&root->fs_info->delayed_root->items);
1834release_node:
1835 mutex_unlock(&delayed_node->mutex);
1836 btrfs_release_delayed_node(delayed_node);
1837 return ret;
1838}
1839
1840int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1841{
1842 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1843 struct btrfs_delayed_node *delayed_node;
1844
1845 /*
1846 * we don't do delayed inode updates during log recovery because it
1847 * leads to enospc problems. This means we also can't do
1848 * delayed inode refs
1849 */
1850 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1851 return -EAGAIN;
1852
1853 delayed_node = btrfs_get_or_create_delayed_node(inode);
1854 if (IS_ERR(delayed_node))
1855 return PTR_ERR(delayed_node);
1856
1857 /*
1858 * We don't reserve space for inode ref deletion is because:
1859 * - We ONLY do async inode ref deletion for the inode who has only
1860 * one link(i_nlink == 1), it means there is only one inode ref.
1861 * And in most case, the inode ref and the inode item are in the
1862 * same leaf, and we will deal with them at the same time.
1863 * Since we are sure we will reserve the space for the inode item,
1864 * it is unnecessary to reserve space for inode ref deletion.
1865 * - If the inode ref and the inode item are not in the same leaf,
1866 * We also needn't worry about enospc problem, because we reserve
1867 * much more space for the inode update than it needs.
1868 * - At the worst, we can steal some space from the global reservation.
1869 * It is very rare.
1870 */
1871 mutex_lock(&delayed_node->mutex);
1872 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1873 goto release_node;
1874
1875 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1876 delayed_node->count++;
1877 atomic_inc(&fs_info->delayed_root->items);
1878release_node:
1879 mutex_unlock(&delayed_node->mutex);
1880 btrfs_release_delayed_node(delayed_node);
1881 return 0;
1882}
1883
1884static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1885{
1886 struct btrfs_root *root = delayed_node->root;
1887 struct btrfs_fs_info *fs_info = root->fs_info;
1888 struct btrfs_delayed_item *curr_item, *prev_item;
1889
1890 mutex_lock(&delayed_node->mutex);
1891 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1892 while (curr_item) {
1893 btrfs_delayed_item_release_metadata(root, curr_item);
1894 prev_item = curr_item;
1895 curr_item = __btrfs_next_delayed_item(prev_item);
1896 btrfs_release_delayed_item(prev_item);
1897 }
1898
1899 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1900 while (curr_item) {
1901 btrfs_delayed_item_release_metadata(root, curr_item);
1902 prev_item = curr_item;
1903 curr_item = __btrfs_next_delayed_item(prev_item);
1904 btrfs_release_delayed_item(prev_item);
1905 }
1906
1907 btrfs_release_delayed_iref(delayed_node);
1908
1909 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1910 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1911 btrfs_release_delayed_inode(delayed_node);
1912 }
1913 mutex_unlock(&delayed_node->mutex);
1914}
1915
1916void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1917{
1918 struct btrfs_delayed_node *delayed_node;
1919
1920 delayed_node = btrfs_get_delayed_node(inode);
1921 if (!delayed_node)
1922 return;
1923
1924 __btrfs_kill_delayed_node(delayed_node);
1925 btrfs_release_delayed_node(delayed_node);
1926}
1927
1928void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1929{
1930 u64 inode_id = 0;
1931 struct btrfs_delayed_node *delayed_nodes[8];
1932 int i, n;
1933
1934 while (1) {
1935 spin_lock(&root->inode_lock);
1936 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1937 (void **)delayed_nodes, inode_id,
1938 ARRAY_SIZE(delayed_nodes));
1939 if (!n) {
1940 spin_unlock(&root->inode_lock);
1941 break;
1942 }
1943
1944 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1945 for (i = 0; i < n; i++) {
1946 /*
1947 * Don't increase refs in case the node is dead and
1948 * about to be removed from the tree in the loop below
1949 */
1950 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1951 delayed_nodes[i] = NULL;
1952 }
1953 spin_unlock(&root->inode_lock);
1954
1955 for (i = 0; i < n; i++) {
1956 if (!delayed_nodes[i])
1957 continue;
1958 __btrfs_kill_delayed_node(delayed_nodes[i]);
1959 btrfs_release_delayed_node(delayed_nodes[i]);
1960 }
1961 }
1962}
1963
1964void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1965{
1966 struct btrfs_delayed_node *curr_node, *prev_node;
1967
1968 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1969 while (curr_node) {
1970 __btrfs_kill_delayed_node(curr_node);
1971
1972 prev_node = curr_node;
1973 curr_node = btrfs_next_delayed_node(curr_node);
1974 btrfs_release_delayed_node(prev_node);
1975 }
1976}
1977