Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block driver for media (i.e., flash cards)
   4 *
   5 * Copyright 2002 Hewlett-Packard Company
   6 * Copyright 2005-2008 Pierre Ossman
   7 *
   8 * Use consistent with the GNU GPL is permitted,
   9 * provided that this copyright notice is
  10 * preserved in its entirety in all copies and derived works.
  11 *
  12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  14 * FITNESS FOR ANY PARTICULAR PURPOSE.
  15 *
  16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
  17 *
  18 * Author:  Andrew Christian
  19 *          28 May 2002
  20 */
  21#include <linux/moduleparam.h>
  22#include <linux/module.h>
  23#include <linux/init.h>
  24
  25#include <linux/kernel.h>
  26#include <linux/fs.h>
  27#include <linux/slab.h>
  28#include <linux/errno.h>
  29#include <linux/hdreg.h>
  30#include <linux/kdev_t.h>
  31#include <linux/kref.h>
  32#include <linux/blkdev.h>
  33#include <linux/cdev.h>
  34#include <linux/mutex.h>
  35#include <linux/scatterlist.h>
  36#include <linux/string_helpers.h>
  37#include <linux/delay.h>
  38#include <linux/capability.h>
  39#include <linux/compat.h>
  40#include <linux/pm_runtime.h>
  41#include <linux/idr.h>
  42#include <linux/debugfs.h>
  43
  44#include <linux/mmc/ioctl.h>
  45#include <linux/mmc/card.h>
  46#include <linux/mmc/host.h>
  47#include <linux/mmc/mmc.h>
  48#include <linux/mmc/sd.h>
  49
  50#include <linux/uaccess.h>
  51
  52#include "queue.h"
  53#include "block.h"
  54#include "core.h"
  55#include "card.h"
  56#include "crypto.h"
  57#include "host.h"
  58#include "bus.h"
  59#include "mmc_ops.h"
  60#include "quirks.h"
  61#include "sd_ops.h"
  62
  63MODULE_ALIAS("mmc:block");
  64#ifdef MODULE_PARAM_PREFIX
  65#undef MODULE_PARAM_PREFIX
  66#endif
  67#define MODULE_PARAM_PREFIX "mmcblk."
  68
  69/*
  70 * Set a 10 second timeout for polling write request busy state. Note, mmc core
  71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
  72 * second software timer to timeout the whole request, so 10 seconds should be
  73 * ample.
  74 */
  75#define MMC_BLK_TIMEOUT_MS  (10 * 1000)
  76#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
  77#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
  78
  79#define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
  80				  (rq_data_dir(req) == WRITE))
  81static DEFINE_MUTEX(block_mutex);
  82
  83/*
  84 * The defaults come from config options but can be overriden by module
  85 * or bootarg options.
  86 */
  87static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
  88
  89/*
  90 * We've only got one major, so number of mmcblk devices is
  91 * limited to (1 << 20) / number of minors per device.  It is also
  92 * limited by the MAX_DEVICES below.
  93 */
  94static int max_devices;
  95
  96#define MAX_DEVICES 256
  97
  98static DEFINE_IDA(mmc_blk_ida);
  99static DEFINE_IDA(mmc_rpmb_ida);
 100
 101struct mmc_blk_busy_data {
 102	struct mmc_card *card;
 103	u32 status;
 104};
 105
 106/*
 107 * There is one mmc_blk_data per slot.
 108 */
 109struct mmc_blk_data {
 110	struct device	*parent;
 111	struct gendisk	*disk;
 112	struct mmc_queue queue;
 113	struct list_head part;
 114	struct list_head rpmbs;
 115
 116	unsigned int	flags;
 117#define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
 118#define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
 119
 120	struct kref	kref;
 121	unsigned int	read_only;
 122	unsigned int	part_type;
 123	unsigned int	reset_done;
 124#define MMC_BLK_READ		BIT(0)
 125#define MMC_BLK_WRITE		BIT(1)
 126#define MMC_BLK_DISCARD		BIT(2)
 127#define MMC_BLK_SECDISCARD	BIT(3)
 128#define MMC_BLK_CQE_RECOVERY	BIT(4)
 129#define MMC_BLK_TRIM		BIT(5)
 130
 131	/*
 132	 * Only set in main mmc_blk_data associated
 133	 * with mmc_card with dev_set_drvdata, and keeps
 134	 * track of the current selected device partition.
 135	 */
 136	unsigned int	part_curr;
 137#define MMC_BLK_PART_INVALID	UINT_MAX	/* Unknown partition active */
 138	int	area_type;
 139
 140	/* debugfs files (only in main mmc_blk_data) */
 141	struct dentry *status_dentry;
 142	struct dentry *ext_csd_dentry;
 143};
 144
 145/* Device type for RPMB character devices */
 146static dev_t mmc_rpmb_devt;
 147
 148/* Bus type for RPMB character devices */
 149static struct bus_type mmc_rpmb_bus_type = {
 150	.name = "mmc_rpmb",
 151};
 152
 153/**
 154 * struct mmc_rpmb_data - special RPMB device type for these areas
 155 * @dev: the device for the RPMB area
 156 * @chrdev: character device for the RPMB area
 157 * @id: unique device ID number
 158 * @part_index: partition index (0 on first)
 159 * @md: parent MMC block device
 160 * @node: list item, so we can put this device on a list
 161 */
 162struct mmc_rpmb_data {
 163	struct device dev;
 164	struct cdev chrdev;
 165	int id;
 166	unsigned int part_index;
 167	struct mmc_blk_data *md;
 168	struct list_head node;
 169};
 170
 171static DEFINE_MUTEX(open_lock);
 172
 173module_param(perdev_minors, int, 0444);
 174MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
 175
 176static inline int mmc_blk_part_switch(struct mmc_card *card,
 177				      unsigned int part_type);
 178static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
 179			       struct mmc_card *card,
 180			       int recovery_mode,
 181			       struct mmc_queue *mq);
 182static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
 
 
 183
 184static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
 185{
 186	struct mmc_blk_data *md;
 187
 188	mutex_lock(&open_lock);
 189	md = disk->private_data;
 190	if (md && !kref_get_unless_zero(&md->kref))
 191		md = NULL;
 192	mutex_unlock(&open_lock);
 193
 194	return md;
 195}
 196
 197static inline int mmc_get_devidx(struct gendisk *disk)
 198{
 199	int devidx = disk->first_minor / perdev_minors;
 200	return devidx;
 201}
 202
 203static void mmc_blk_kref_release(struct kref *ref)
 204{
 205	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
 206	int devidx;
 207
 208	devidx = mmc_get_devidx(md->disk);
 209	ida_simple_remove(&mmc_blk_ida, devidx);
 210
 211	mutex_lock(&open_lock);
 212	md->disk->private_data = NULL;
 213	mutex_unlock(&open_lock);
 214
 215	put_disk(md->disk);
 216	kfree(md);
 217}
 218
 219static void mmc_blk_put(struct mmc_blk_data *md)
 220{
 221	kref_put(&md->kref, mmc_blk_kref_release);
 222}
 223
 224static ssize_t power_ro_lock_show(struct device *dev,
 225		struct device_attribute *attr, char *buf)
 226{
 227	int ret;
 228	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 229	struct mmc_card *card = md->queue.card;
 230	int locked = 0;
 231
 232	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
 233		locked = 2;
 234	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
 235		locked = 1;
 236
 237	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
 238
 239	mmc_blk_put(md);
 240
 241	return ret;
 242}
 243
 244static ssize_t power_ro_lock_store(struct device *dev,
 245		struct device_attribute *attr, const char *buf, size_t count)
 246{
 247	int ret;
 248	struct mmc_blk_data *md, *part_md;
 249	struct mmc_queue *mq;
 250	struct request *req;
 251	unsigned long set;
 252
 253	if (kstrtoul(buf, 0, &set))
 254		return -EINVAL;
 255
 256	if (set != 1)
 257		return count;
 258
 259	md = mmc_blk_get(dev_to_disk(dev));
 260	mq = &md->queue;
 261
 262	/* Dispatch locking to the block layer */
 263	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
 264	if (IS_ERR(req)) {
 265		count = PTR_ERR(req);
 266		goto out_put;
 267	}
 268	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
 
 269	blk_execute_rq(req, false);
 270	ret = req_to_mmc_queue_req(req)->drv_op_result;
 271	blk_mq_free_request(req);
 272
 273	if (!ret) {
 274		pr_info("%s: Locking boot partition ro until next power on\n",
 275			md->disk->disk_name);
 276		set_disk_ro(md->disk, 1);
 277
 278		list_for_each_entry(part_md, &md->part, part)
 279			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
 280				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
 281				set_disk_ro(part_md->disk, 1);
 282			}
 283	}
 284out_put:
 285	mmc_blk_put(md);
 286	return count;
 287}
 288
 289static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
 290		power_ro_lock_show, power_ro_lock_store);
 291
 292static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
 293			     char *buf)
 294{
 295	int ret;
 296	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 297
 298	ret = snprintf(buf, PAGE_SIZE, "%d\n",
 299		       get_disk_ro(dev_to_disk(dev)) ^
 300		       md->read_only);
 301	mmc_blk_put(md);
 302	return ret;
 303}
 304
 305static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
 306			      const char *buf, size_t count)
 307{
 308	int ret;
 309	char *end;
 310	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 311	unsigned long set = simple_strtoul(buf, &end, 0);
 312	if (end == buf) {
 313		ret = -EINVAL;
 314		goto out;
 315	}
 316
 317	set_disk_ro(dev_to_disk(dev), set || md->read_only);
 318	ret = count;
 319out:
 320	mmc_blk_put(md);
 321	return ret;
 322}
 323
 324static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
 325
 326static struct attribute *mmc_disk_attrs[] = {
 327	&dev_attr_force_ro.attr,
 328	&dev_attr_ro_lock_until_next_power_on.attr,
 329	NULL,
 330};
 331
 332static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
 333		struct attribute *a, int n)
 334{
 335	struct device *dev = kobj_to_dev(kobj);
 336	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 337	umode_t mode = a->mode;
 338
 339	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
 340	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
 341	    md->queue.card->ext_csd.boot_ro_lockable) {
 342		mode = S_IRUGO;
 343		if (!(md->queue.card->ext_csd.boot_ro_lock &
 344				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
 345			mode |= S_IWUSR;
 346	}
 347
 348	mmc_blk_put(md);
 349	return mode;
 350}
 351
 352static const struct attribute_group mmc_disk_attr_group = {
 353	.is_visible	= mmc_disk_attrs_is_visible,
 354	.attrs		= mmc_disk_attrs,
 355};
 356
 357static const struct attribute_group *mmc_disk_attr_groups[] = {
 358	&mmc_disk_attr_group,
 359	NULL,
 360};
 361
 362static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
 363{
 364	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
 365	int ret = -ENXIO;
 366
 367	mutex_lock(&block_mutex);
 368	if (md) {
 369		ret = 0;
 370		if ((mode & FMODE_WRITE) && md->read_only) {
 371			mmc_blk_put(md);
 372			ret = -EROFS;
 373		}
 374	}
 375	mutex_unlock(&block_mutex);
 376
 377	return ret;
 378}
 379
 380static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
 381{
 382	struct mmc_blk_data *md = disk->private_data;
 383
 384	mutex_lock(&block_mutex);
 385	mmc_blk_put(md);
 386	mutex_unlock(&block_mutex);
 387}
 388
 389static int
 390mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 391{
 392	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
 393	geo->heads = 4;
 394	geo->sectors = 16;
 395	return 0;
 396}
 397
 398struct mmc_blk_ioc_data {
 399	struct mmc_ioc_cmd ic;
 400	unsigned char *buf;
 401	u64 buf_bytes;
 
 
 
 
 402	struct mmc_rpmb_data *rpmb;
 403};
 404
 405static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
 406	struct mmc_ioc_cmd __user *user)
 407{
 408	struct mmc_blk_ioc_data *idata;
 409	int err;
 410
 411	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
 412	if (!idata) {
 413		err = -ENOMEM;
 414		goto out;
 415	}
 416
 417	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
 418		err = -EFAULT;
 419		goto idata_err;
 420	}
 421
 422	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
 423	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
 424		err = -EOVERFLOW;
 425		goto idata_err;
 426	}
 427
 428	if (!idata->buf_bytes) {
 429		idata->buf = NULL;
 430		return idata;
 431	}
 432
 433	idata->buf = memdup_user((void __user *)(unsigned long)
 434				 idata->ic.data_ptr, idata->buf_bytes);
 435	if (IS_ERR(idata->buf)) {
 436		err = PTR_ERR(idata->buf);
 437		goto idata_err;
 438	}
 439
 440	return idata;
 441
 442idata_err:
 443	kfree(idata);
 444out:
 445	return ERR_PTR(err);
 446}
 447
 448static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
 449				      struct mmc_blk_ioc_data *idata)
 450{
 451	struct mmc_ioc_cmd *ic = &idata->ic;
 452
 453	if (copy_to_user(&(ic_ptr->response), ic->response,
 454			 sizeof(ic->response)))
 455		return -EFAULT;
 456
 457	if (!idata->ic.write_flag) {
 458		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
 459				 idata->buf, idata->buf_bytes))
 460			return -EFAULT;
 461	}
 462
 463	return 0;
 464}
 465
 466static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
 467			       struct mmc_blk_ioc_data *idata)
 468{
 469	struct mmc_command cmd = {}, sbc = {};
 470	struct mmc_data data = {};
 471	struct mmc_request mrq = {};
 472	struct scatterlist sg;
 
 
 473	int err;
 474	unsigned int target_part;
 
 
 475
 476	if (!card || !md || !idata)
 477		return -EINVAL;
 478
 
 
 
 
 
 
 479	/*
 480	 * The RPMB accesses comes in from the character device, so we
 481	 * need to target these explicitly. Else we just target the
 482	 * partition type for the block device the ioctl() was issued
 483	 * on.
 484	 */
 485	if (idata->rpmb) {
 486		/* Support multiple RPMB partitions */
 487		target_part = idata->rpmb->part_index;
 488		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
 489	} else {
 490		target_part = md->part_type;
 491	}
 492
 493	cmd.opcode = idata->ic.opcode;
 494	cmd.arg = idata->ic.arg;
 495	cmd.flags = idata->ic.flags;
 496
 497	if (idata->buf_bytes) {
 498		data.sg = &sg;
 499		data.sg_len = 1;
 500		data.blksz = idata->ic.blksz;
 501		data.blocks = idata->ic.blocks;
 502
 503		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
 504
 505		if (idata->ic.write_flag)
 506			data.flags = MMC_DATA_WRITE;
 507		else
 508			data.flags = MMC_DATA_READ;
 509
 510		/* data.flags must already be set before doing this. */
 511		mmc_set_data_timeout(&data, card);
 512
 513		/* Allow overriding the timeout_ns for empirical tuning. */
 514		if (idata->ic.data_timeout_ns)
 515			data.timeout_ns = idata->ic.data_timeout_ns;
 516
 517		mrq.data = &data;
 518	}
 519
 520	mrq.cmd = &cmd;
 521
 522	err = mmc_blk_part_switch(card, target_part);
 523	if (err)
 524		return err;
 525
 526	if (idata->ic.is_acmd) {
 527		err = mmc_app_cmd(card->host, card);
 528		if (err)
 529			return err;
 530	}
 531
 532	if (idata->rpmb) {
 533		sbc.opcode = MMC_SET_BLOCK_COUNT;
 534		/*
 535		 * We don't do any blockcount validation because the max size
 536		 * may be increased by a future standard. We just copy the
 537		 * 'Reliable Write' bit here.
 538		 */
 539		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
 
 
 540		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
 541		mrq.sbc = &sbc;
 542	}
 543
 544	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
 545	    (cmd.opcode == MMC_SWITCH))
 546		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
 547
 
 
 
 
 
 
 548	mmc_wait_for_req(card->host, &mrq);
 549	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
 550
 
 
 
 
 
 
 
 
 
 551	if (cmd.error) {
 552		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
 553						__func__, cmd.error);
 554		return cmd.error;
 555	}
 556	if (data.error) {
 557		dev_err(mmc_dev(card->host), "%s: data error %d\n",
 558						__func__, data.error);
 559		return data.error;
 560	}
 561
 562	/*
 563	 * Make sure the cache of the PARTITION_CONFIG register and
 564	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
 565	 * changed it successfully.
 566	 */
 567	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
 568	    (cmd.opcode == MMC_SWITCH)) {
 569		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 570		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
 571
 572		/*
 573		 * Update cache so the next mmc_blk_part_switch call operates
 574		 * on up-to-date data.
 575		 */
 576		card->ext_csd.part_config = value;
 577		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
 578	}
 579
 580	/*
 581	 * Make sure to update CACHE_CTRL in case it was changed. The cache
 582	 * will get turned back on if the card is re-initialized, e.g.
 583	 * suspend/resume or hw reset in recovery.
 584	 */
 585	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
 586	    (cmd.opcode == MMC_SWITCH)) {
 587		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
 588
 589		card->ext_csd.cache_ctrl = value;
 590	}
 591
 592	/*
 593	 * According to the SD specs, some commands require a delay after
 594	 * issuing the command.
 595	 */
 596	if (idata->ic.postsleep_min_us)
 597		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
 598
 599	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
 600		/*
 601		 * Ensure RPMB/R1B command has completed by polling CMD13 "Send Status". Here we
 602		 * allow to override the default timeout value if a custom timeout is specified.
 603		 */
 604		err = mmc_poll_for_busy(card, idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS,
 605					false, MMC_BUSY_IO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 606	}
 607
 608	return err;
 609}
 610
 611static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
 612			     struct mmc_ioc_cmd __user *ic_ptr,
 613			     struct mmc_rpmb_data *rpmb)
 614{
 615	struct mmc_blk_ioc_data *idata;
 616	struct mmc_blk_ioc_data *idatas[1];
 617	struct mmc_queue *mq;
 618	struct mmc_card *card;
 619	int err = 0, ioc_err = 0;
 620	struct request *req;
 621
 622	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
 623	if (IS_ERR(idata))
 624		return PTR_ERR(idata);
 625	/* This will be NULL on non-RPMB ioctl():s */
 626	idata->rpmb = rpmb;
 627
 628	card = md->queue.card;
 629	if (IS_ERR(card)) {
 630		err = PTR_ERR(card);
 631		goto cmd_done;
 632	}
 633
 634	/*
 635	 * Dispatch the ioctl() into the block request queue.
 636	 */
 637	mq = &md->queue;
 638	req = blk_mq_alloc_request(mq->queue,
 639		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 640	if (IS_ERR(req)) {
 641		err = PTR_ERR(req);
 642		goto cmd_done;
 643	}
 644	idatas[0] = idata;
 645	req_to_mmc_queue_req(req)->drv_op =
 646		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 
 647	req_to_mmc_queue_req(req)->drv_op_data = idatas;
 648	req_to_mmc_queue_req(req)->ioc_count = 1;
 649	blk_execute_rq(req, false);
 650	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 651	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
 652	blk_mq_free_request(req);
 653
 654cmd_done:
 655	kfree(idata->buf);
 656	kfree(idata);
 657	return ioc_err ? ioc_err : err;
 658}
 659
 660static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
 661				   struct mmc_ioc_multi_cmd __user *user,
 662				   struct mmc_rpmb_data *rpmb)
 663{
 664	struct mmc_blk_ioc_data **idata = NULL;
 665	struct mmc_ioc_cmd __user *cmds = user->cmds;
 666	struct mmc_card *card;
 667	struct mmc_queue *mq;
 668	int err = 0, ioc_err = 0;
 669	__u64 num_of_cmds;
 670	unsigned int i, n;
 671	struct request *req;
 672
 673	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
 674			   sizeof(num_of_cmds)))
 675		return -EFAULT;
 676
 677	if (!num_of_cmds)
 678		return 0;
 679
 680	if (num_of_cmds > MMC_IOC_MAX_CMDS)
 681		return -EINVAL;
 682
 683	n = num_of_cmds;
 684	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
 685	if (!idata)
 686		return -ENOMEM;
 687
 688	for (i = 0; i < n; i++) {
 689		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
 690		if (IS_ERR(idata[i])) {
 691			err = PTR_ERR(idata[i]);
 692			n = i;
 693			goto cmd_err;
 694		}
 695		/* This will be NULL on non-RPMB ioctl():s */
 696		idata[i]->rpmb = rpmb;
 697	}
 698
 699	card = md->queue.card;
 700	if (IS_ERR(card)) {
 701		err = PTR_ERR(card);
 702		goto cmd_err;
 703	}
 704
 705
 706	/*
 707	 * Dispatch the ioctl()s into the block request queue.
 708	 */
 709	mq = &md->queue;
 710	req = blk_mq_alloc_request(mq->queue,
 711		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 712	if (IS_ERR(req)) {
 713		err = PTR_ERR(req);
 714		goto cmd_err;
 715	}
 716	req_to_mmc_queue_req(req)->drv_op =
 717		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 
 718	req_to_mmc_queue_req(req)->drv_op_data = idata;
 719	req_to_mmc_queue_req(req)->ioc_count = n;
 720	blk_execute_rq(req, false);
 721	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 722
 723	/* copy to user if data and response */
 724	for (i = 0; i < n && !err; i++)
 725		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
 726
 727	blk_mq_free_request(req);
 728
 729cmd_err:
 730	for (i = 0; i < n; i++) {
 731		kfree(idata[i]->buf);
 732		kfree(idata[i]);
 733	}
 734	kfree(idata);
 735	return ioc_err ? ioc_err : err;
 736}
 737
 738static int mmc_blk_check_blkdev(struct block_device *bdev)
 739{
 740	/*
 741	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
 742	 * whole block device, not on a partition.  This prevents overspray
 743	 * between sibling partitions.
 744	 */
 745	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
 746		return -EPERM;
 747	return 0;
 748}
 749
 750static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
 751	unsigned int cmd, unsigned long arg)
 752{
 753	struct mmc_blk_data *md;
 754	int ret;
 755
 756	switch (cmd) {
 757	case MMC_IOC_CMD:
 758		ret = mmc_blk_check_blkdev(bdev);
 759		if (ret)
 760			return ret;
 761		md = mmc_blk_get(bdev->bd_disk);
 762		if (!md)
 763			return -EINVAL;
 764		ret = mmc_blk_ioctl_cmd(md,
 765					(struct mmc_ioc_cmd __user *)arg,
 766					NULL);
 767		mmc_blk_put(md);
 768		return ret;
 769	case MMC_IOC_MULTI_CMD:
 770		ret = mmc_blk_check_blkdev(bdev);
 771		if (ret)
 772			return ret;
 773		md = mmc_blk_get(bdev->bd_disk);
 774		if (!md)
 775			return -EINVAL;
 776		ret = mmc_blk_ioctl_multi_cmd(md,
 777					(struct mmc_ioc_multi_cmd __user *)arg,
 778					NULL);
 779		mmc_blk_put(md);
 780		return ret;
 781	default:
 782		return -EINVAL;
 783	}
 784}
 785
 786#ifdef CONFIG_COMPAT
 787static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
 788	unsigned int cmd, unsigned long arg)
 789{
 790	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
 791}
 792#endif
 793
 794static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
 795					  sector_t *sector)
 796{
 797	struct mmc_blk_data *md;
 798	int ret;
 799
 800	md = mmc_blk_get(disk);
 801	if (!md)
 802		return -EINVAL;
 803
 804	if (md->queue.card)
 805		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
 806	else
 807		ret = -ENODEV;
 808
 809	mmc_blk_put(md);
 810
 811	return ret;
 812}
 813
 814static const struct block_device_operations mmc_bdops = {
 815	.open			= mmc_blk_open,
 816	.release		= mmc_blk_release,
 817	.getgeo			= mmc_blk_getgeo,
 818	.owner			= THIS_MODULE,
 819	.ioctl			= mmc_blk_ioctl,
 820#ifdef CONFIG_COMPAT
 821	.compat_ioctl		= mmc_blk_compat_ioctl,
 822#endif
 823	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
 824};
 825
 826static int mmc_blk_part_switch_pre(struct mmc_card *card,
 827				   unsigned int part_type)
 828{
 
 
 829	int ret = 0;
 830
 831	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 832		if (card->ext_csd.cmdq_en) {
 833			ret = mmc_cmdq_disable(card);
 834			if (ret)
 835				return ret;
 836		}
 837		mmc_retune_pause(card->host);
 838	}
 839
 840	return ret;
 841}
 842
 843static int mmc_blk_part_switch_post(struct mmc_card *card,
 844				    unsigned int part_type)
 845{
 
 
 846	int ret = 0;
 847
 848	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 849		mmc_retune_unpause(card->host);
 850		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
 851			ret = mmc_cmdq_enable(card);
 852	}
 853
 854	return ret;
 855}
 856
 857static inline int mmc_blk_part_switch(struct mmc_card *card,
 858				      unsigned int part_type)
 859{
 860	int ret = 0;
 861	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 862
 863	if (main_md->part_curr == part_type)
 864		return 0;
 865
 866	if (mmc_card_mmc(card)) {
 867		u8 part_config = card->ext_csd.part_config;
 868
 869		ret = mmc_blk_part_switch_pre(card, part_type);
 870		if (ret)
 871			return ret;
 872
 873		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
 874		part_config |= part_type;
 875
 876		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 877				 EXT_CSD_PART_CONFIG, part_config,
 878				 card->ext_csd.part_time);
 879		if (ret) {
 880			mmc_blk_part_switch_post(card, part_type);
 881			return ret;
 882		}
 883
 884		card->ext_csd.part_config = part_config;
 885
 886		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
 887	}
 888
 889	main_md->part_curr = part_type;
 890	return ret;
 891}
 892
 893static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
 894{
 895	int err;
 896	u32 result;
 897	__be32 *blocks;
 898
 899	struct mmc_request mrq = {};
 900	struct mmc_command cmd = {};
 901	struct mmc_data data = {};
 902
 903	struct scatterlist sg;
 904
 905	cmd.opcode = MMC_APP_CMD;
 906	cmd.arg = card->rca << 16;
 907	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 908
 909	err = mmc_wait_for_cmd(card->host, &cmd, 0);
 910	if (err)
 911		return err;
 912	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
 913		return -EIO;
 914
 915	memset(&cmd, 0, sizeof(struct mmc_command));
 916
 917	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
 918	cmd.arg = 0;
 919	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 920
 921	data.blksz = 4;
 922	data.blocks = 1;
 923	data.flags = MMC_DATA_READ;
 924	data.sg = &sg;
 925	data.sg_len = 1;
 926	mmc_set_data_timeout(&data, card);
 927
 928	mrq.cmd = &cmd;
 929	mrq.data = &data;
 930
 931	blocks = kmalloc(4, GFP_KERNEL);
 932	if (!blocks)
 933		return -ENOMEM;
 934
 935	sg_init_one(&sg, blocks, 4);
 936
 937	mmc_wait_for_req(card->host, &mrq);
 938
 939	result = ntohl(*blocks);
 940	kfree(blocks);
 941
 942	if (cmd.error || data.error)
 943		return -EIO;
 944
 945	*written_blocks = result;
 946
 947	return 0;
 948}
 949
 950static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
 951{
 952	if (host->actual_clock)
 953		return host->actual_clock / 1000;
 954
 955	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
 956	if (host->ios.clock)
 957		return host->ios.clock / 2000;
 958
 959	/* How can there be no clock */
 960	WARN_ON_ONCE(1);
 961	return 100; /* 100 kHz is minimum possible value */
 962}
 963
 964static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
 965					    struct mmc_data *data)
 966{
 967	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
 968	unsigned int khz;
 969
 970	if (data->timeout_clks) {
 971		khz = mmc_blk_clock_khz(host);
 972		ms += DIV_ROUND_UP(data->timeout_clks, khz);
 973	}
 974
 975	return ms;
 976}
 977
 978/*
 979 * Attempts to reset the card and get back to the requested partition.
 980 * Therefore any error here must result in cancelling the block layer
 981 * request, it must not be reattempted without going through the mmc_blk
 982 * partition sanity checks.
 983 */
 984static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
 985			 int type)
 986{
 987	int err;
 988	struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
 989
 990	if (md->reset_done & type)
 991		return -EEXIST;
 992
 993	md->reset_done |= type;
 994	err = mmc_hw_reset(host->card);
 995	/*
 996	 * A successful reset will leave the card in the main partition, but
 997	 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
 998	 * in that case.
 999	 */
1000	main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1001	if (err)
1002		return err;
1003	/* Ensure we switch back to the correct partition */
1004	if (mmc_blk_part_switch(host->card, md->part_type))
1005		/*
1006		 * We have failed to get back into the correct
1007		 * partition, so we need to abort the whole request.
1008		 */
1009		return -ENODEV;
1010	return 0;
1011}
1012
1013static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1014{
1015	md->reset_done &= ~type;
1016}
1017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018/*
1019 * The non-block commands come back from the block layer after it queued it and
1020 * processed it with all other requests and then they get issued in this
1021 * function.
1022 */
1023static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1024{
1025	struct mmc_queue_req *mq_rq;
1026	struct mmc_card *card = mq->card;
1027	struct mmc_blk_data *md = mq->blkdata;
1028	struct mmc_blk_ioc_data **idata;
1029	bool rpmb_ioctl;
1030	u8 **ext_csd;
1031	u32 status;
1032	int ret;
1033	int i;
1034
1035	mq_rq = req_to_mmc_queue_req(req);
1036	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1037
1038	switch (mq_rq->drv_op) {
1039	case MMC_DRV_OP_IOCTL:
1040		if (card->ext_csd.cmdq_en) {
1041			ret = mmc_cmdq_disable(card);
1042			if (ret)
1043				break;
1044		}
 
 
 
1045		fallthrough;
1046	case MMC_DRV_OP_IOCTL_RPMB:
1047		idata = mq_rq->drv_op_data;
1048		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1049			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1050			if (ret)
1051				break;
1052		}
1053		/* Always switch back to main area after RPMB access */
1054		if (rpmb_ioctl)
1055			mmc_blk_part_switch(card, 0);
1056		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1057			mmc_cmdq_enable(card);
1058		break;
1059	case MMC_DRV_OP_BOOT_WP:
1060		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1061				 card->ext_csd.boot_ro_lock |
1062				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1063				 card->ext_csd.part_time);
1064		if (ret)
1065			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1066			       md->disk->disk_name, ret);
1067		else
1068			card->ext_csd.boot_ro_lock |=
1069				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1070		break;
1071	case MMC_DRV_OP_GET_CARD_STATUS:
1072		ret = mmc_send_status(card, &status);
1073		if (!ret)
1074			ret = status;
1075		break;
1076	case MMC_DRV_OP_GET_EXT_CSD:
1077		ext_csd = mq_rq->drv_op_data;
1078		ret = mmc_get_ext_csd(card, ext_csd);
1079		break;
1080	default:
1081		pr_err("%s: unknown driver specific operation\n",
1082		       md->disk->disk_name);
1083		ret = -EINVAL;
1084		break;
1085	}
1086	mq_rq->drv_op_result = ret;
1087	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1088}
1089
1090static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1091				   int type, unsigned int erase_arg)
1092{
1093	struct mmc_blk_data *md = mq->blkdata;
1094	struct mmc_card *card = md->queue.card;
1095	unsigned int from, nr;
1096	int err = 0;
1097	blk_status_t status = BLK_STS_OK;
1098
1099	if (!mmc_can_erase(card)) {
1100		status = BLK_STS_NOTSUPP;
1101		goto fail;
1102	}
1103
1104	from = blk_rq_pos(req);
1105	nr = blk_rq_sectors(req);
1106
1107	do {
1108		err = 0;
1109		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1110			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1111					 INAND_CMD38_ARG_EXT_CSD,
1112					 erase_arg == MMC_TRIM_ARG ?
1113					 INAND_CMD38_ARG_TRIM :
1114					 INAND_CMD38_ARG_ERASE,
1115					 card->ext_csd.generic_cmd6_time);
1116		}
1117		if (!err)
1118			err = mmc_erase(card, from, nr, erase_arg);
1119	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1120	if (err)
1121		status = BLK_STS_IOERR;
1122	else
1123		mmc_blk_reset_success(md, type);
1124fail:
1125	blk_mq_end_request(req, status);
1126}
1127
1128static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1129{
1130	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1131}
1132
1133static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1134{
1135	struct mmc_blk_data *md = mq->blkdata;
1136	struct mmc_card *card = md->queue.card;
1137	unsigned int arg = card->erase_arg;
1138
1139	if (mmc_card_broken_sd_discard(card))
1140		arg = SD_ERASE_ARG;
1141
1142	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1143}
1144
1145static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1146				       struct request *req)
1147{
1148	struct mmc_blk_data *md = mq->blkdata;
1149	struct mmc_card *card = md->queue.card;
1150	unsigned int from, nr, arg;
1151	int err = 0, type = MMC_BLK_SECDISCARD;
1152	blk_status_t status = BLK_STS_OK;
1153
1154	if (!(mmc_can_secure_erase_trim(card))) {
1155		status = BLK_STS_NOTSUPP;
1156		goto out;
1157	}
1158
1159	from = blk_rq_pos(req);
1160	nr = blk_rq_sectors(req);
1161
1162	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1163		arg = MMC_SECURE_TRIM1_ARG;
1164	else
1165		arg = MMC_SECURE_ERASE_ARG;
1166
1167retry:
1168	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1169		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1170				 INAND_CMD38_ARG_EXT_CSD,
1171				 arg == MMC_SECURE_TRIM1_ARG ?
1172				 INAND_CMD38_ARG_SECTRIM1 :
1173				 INAND_CMD38_ARG_SECERASE,
1174				 card->ext_csd.generic_cmd6_time);
1175		if (err)
1176			goto out_retry;
1177	}
1178
1179	err = mmc_erase(card, from, nr, arg);
1180	if (err == -EIO)
1181		goto out_retry;
1182	if (err) {
1183		status = BLK_STS_IOERR;
1184		goto out;
1185	}
1186
1187	if (arg == MMC_SECURE_TRIM1_ARG) {
1188		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1189			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1190					 INAND_CMD38_ARG_EXT_CSD,
1191					 INAND_CMD38_ARG_SECTRIM2,
1192					 card->ext_csd.generic_cmd6_time);
1193			if (err)
1194				goto out_retry;
1195		}
1196
1197		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1198		if (err == -EIO)
1199			goto out_retry;
1200		if (err) {
1201			status = BLK_STS_IOERR;
1202			goto out;
1203		}
1204	}
1205
1206out_retry:
1207	if (err && !mmc_blk_reset(md, card->host, type))
1208		goto retry;
1209	if (!err)
1210		mmc_blk_reset_success(md, type);
1211out:
1212	blk_mq_end_request(req, status);
1213}
1214
1215static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1216{
1217	struct mmc_blk_data *md = mq->blkdata;
1218	struct mmc_card *card = md->queue.card;
1219	int ret = 0;
1220
1221	ret = mmc_flush_cache(card->host);
1222	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1223}
1224
1225/*
1226 * Reformat current write as a reliable write, supporting
1227 * both legacy and the enhanced reliable write MMC cards.
1228 * In each transfer we'll handle only as much as a single
1229 * reliable write can handle, thus finish the request in
1230 * partial completions.
1231 */
1232static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1233				    struct mmc_card *card,
1234				    struct request *req)
1235{
1236	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1237		/* Legacy mode imposes restrictions on transfers. */
1238		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1239			brq->data.blocks = 1;
1240
1241		if (brq->data.blocks > card->ext_csd.rel_sectors)
1242			brq->data.blocks = card->ext_csd.rel_sectors;
1243		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1244			brq->data.blocks = 1;
1245	}
1246}
1247
1248#define CMD_ERRORS_EXCL_OOR						\
1249	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1250	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1251	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1252	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1253	 R1_CC_ERROR |		/* Card controller error */		\
1254	 R1_ERROR)		/* General/unknown error */
1255
1256#define CMD_ERRORS							\
1257	(CMD_ERRORS_EXCL_OOR |						\
1258	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1259
1260static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1261{
1262	u32 val;
1263
1264	/*
1265	 * Per the SD specification(physical layer version 4.10)[1],
1266	 * section 4.3.3, it explicitly states that "When the last
1267	 * block of user area is read using CMD18, the host should
1268	 * ignore OUT_OF_RANGE error that may occur even the sequence
1269	 * is correct". And JESD84-B51 for eMMC also has a similar
1270	 * statement on section 6.8.3.
1271	 *
1272	 * Multiple block read/write could be done by either predefined
1273	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1274	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1275	 *
1276	 * However the spec[1] doesn't tell us whether we should also
1277	 * ignore that for predefined method. But per the spec[1], section
1278	 * 4.15 Set Block Count Command, it says"If illegal block count
1279	 * is set, out of range error will be indicated during read/write
1280	 * operation (For example, data transfer is stopped at user area
1281	 * boundary)." In another word, we could expect a out of range error
1282	 * in the response for the following CMD18/25. And if argument of
1283	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1284	 * we could also expect to get a -ETIMEDOUT or any error number from
1285	 * the host drivers due to missing data response(for write)/data(for
1286	 * read), as the cards will stop the data transfer by itself per the
1287	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1288	 */
1289
1290	if (!brq->stop.error) {
1291		bool oor_with_open_end;
1292		/* If there is no error yet, check R1 response */
1293
1294		val = brq->stop.resp[0] & CMD_ERRORS;
1295		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1296
1297		if (val && !oor_with_open_end)
1298			brq->stop.error = -EIO;
1299	}
1300}
1301
1302static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1303			      int recovery_mode, bool *do_rel_wr_p,
1304			      bool *do_data_tag_p)
1305{
1306	struct mmc_blk_data *md = mq->blkdata;
1307	struct mmc_card *card = md->queue.card;
1308	struct mmc_blk_request *brq = &mqrq->brq;
1309	struct request *req = mmc_queue_req_to_req(mqrq);
1310	bool do_rel_wr, do_data_tag;
1311
1312	/*
1313	 * Reliable writes are used to implement Forced Unit Access and
1314	 * are supported only on MMCs.
1315	 */
1316	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1317		    rq_data_dir(req) == WRITE &&
1318		    (md->flags & MMC_BLK_REL_WR);
1319
1320	memset(brq, 0, sizeof(struct mmc_blk_request));
1321
1322	mmc_crypto_prepare_req(mqrq);
1323
1324	brq->mrq.data = &brq->data;
1325	brq->mrq.tag = req->tag;
1326
1327	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1328	brq->stop.arg = 0;
1329
1330	if (rq_data_dir(req) == READ) {
1331		brq->data.flags = MMC_DATA_READ;
1332		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1333	} else {
1334		brq->data.flags = MMC_DATA_WRITE;
1335		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1336	}
1337
1338	brq->data.blksz = 512;
1339	brq->data.blocks = blk_rq_sectors(req);
1340	brq->data.blk_addr = blk_rq_pos(req);
1341
1342	/*
1343	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1344	 * The eMMC will give "high" priority tasks priority over "simple"
1345	 * priority tasks. Here we always set "simple" priority by not setting
1346	 * MMC_DATA_PRIO.
1347	 */
1348
1349	/*
1350	 * The block layer doesn't support all sector count
1351	 * restrictions, so we need to be prepared for too big
1352	 * requests.
1353	 */
1354	if (brq->data.blocks > card->host->max_blk_count)
1355		brq->data.blocks = card->host->max_blk_count;
1356
1357	if (brq->data.blocks > 1) {
1358		/*
1359		 * Some SD cards in SPI mode return a CRC error or even lock up
1360		 * completely when trying to read the last block using a
1361		 * multiblock read command.
1362		 */
1363		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1364		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1365		     get_capacity(md->disk)))
1366			brq->data.blocks--;
1367
1368		/*
1369		 * After a read error, we redo the request one (native) sector
1370		 * at a time in order to accurately determine which
1371		 * sectors can be read successfully.
1372		 */
1373		if (recovery_mode)
1374			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1375
1376		/*
1377		 * Some controllers have HW issues while operating
1378		 * in multiple I/O mode
1379		 */
1380		if (card->host->ops->multi_io_quirk)
1381			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1382						(rq_data_dir(req) == READ) ?
1383						MMC_DATA_READ : MMC_DATA_WRITE,
1384						brq->data.blocks);
1385	}
1386
1387	if (do_rel_wr) {
1388		mmc_apply_rel_rw(brq, card, req);
1389		brq->data.flags |= MMC_DATA_REL_WR;
1390	}
1391
1392	/*
1393	 * Data tag is used only during writing meta data to speed
1394	 * up write and any subsequent read of this meta data
1395	 */
1396	do_data_tag = card->ext_csd.data_tag_unit_size &&
1397		      (req->cmd_flags & REQ_META) &&
1398		      (rq_data_dir(req) == WRITE) &&
1399		      ((brq->data.blocks * brq->data.blksz) >=
1400		       card->ext_csd.data_tag_unit_size);
1401
1402	if (do_data_tag)
1403		brq->data.flags |= MMC_DATA_DAT_TAG;
1404
1405	mmc_set_data_timeout(&brq->data, card);
1406
1407	brq->data.sg = mqrq->sg;
1408	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1409
1410	/*
1411	 * Adjust the sg list so it is the same size as the
1412	 * request.
1413	 */
1414	if (brq->data.blocks != blk_rq_sectors(req)) {
1415		int i, data_size = brq->data.blocks << 9;
1416		struct scatterlist *sg;
1417
1418		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1419			data_size -= sg->length;
1420			if (data_size <= 0) {
1421				sg->length += data_size;
1422				i++;
1423				break;
1424			}
1425		}
1426		brq->data.sg_len = i;
1427	}
1428
1429	if (do_rel_wr_p)
1430		*do_rel_wr_p = do_rel_wr;
1431
1432	if (do_data_tag_p)
1433		*do_data_tag_p = do_data_tag;
1434}
1435
1436#define MMC_CQE_RETRIES 2
1437
1438static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1439{
1440	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1441	struct mmc_request *mrq = &mqrq->brq.mrq;
1442	struct request_queue *q = req->q;
1443	struct mmc_host *host = mq->card->host;
1444	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1445	unsigned long flags;
1446	bool put_card;
1447	int err;
1448
1449	mmc_cqe_post_req(host, mrq);
1450
1451	if (mrq->cmd && mrq->cmd->error)
1452		err = mrq->cmd->error;
1453	else if (mrq->data && mrq->data->error)
1454		err = mrq->data->error;
1455	else
1456		err = 0;
1457
1458	if (err) {
1459		if (mqrq->retries++ < MMC_CQE_RETRIES)
1460			blk_mq_requeue_request(req, true);
1461		else
1462			blk_mq_end_request(req, BLK_STS_IOERR);
1463	} else if (mrq->data) {
1464		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1465			blk_mq_requeue_request(req, true);
1466		else
1467			__blk_mq_end_request(req, BLK_STS_OK);
 
 
1468	} else {
1469		blk_mq_end_request(req, BLK_STS_OK);
1470	}
1471
1472	spin_lock_irqsave(&mq->lock, flags);
1473
1474	mq->in_flight[issue_type] -= 1;
1475
1476	put_card = (mmc_tot_in_flight(mq) == 0);
1477
1478	mmc_cqe_check_busy(mq);
1479
1480	spin_unlock_irqrestore(&mq->lock, flags);
1481
1482	if (!mq->cqe_busy)
1483		blk_mq_run_hw_queues(q, true);
1484
1485	if (put_card)
1486		mmc_put_card(mq->card, &mq->ctx);
1487}
1488
1489void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1490{
1491	struct mmc_card *card = mq->card;
1492	struct mmc_host *host = card->host;
1493	int err;
1494
1495	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1496
1497	err = mmc_cqe_recovery(host);
1498	if (err)
1499		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1500	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1501
1502	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1503}
1504
1505static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1506{
1507	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1508						  brq.mrq);
1509	struct request *req = mmc_queue_req_to_req(mqrq);
1510	struct request_queue *q = req->q;
1511	struct mmc_queue *mq = q->queuedata;
1512
1513	/*
1514	 * Block layer timeouts race with completions which means the normal
1515	 * completion path cannot be used during recovery.
1516	 */
1517	if (mq->in_recovery)
1518		mmc_blk_cqe_complete_rq(mq, req);
1519	else if (likely(!blk_should_fake_timeout(req->q)))
1520		blk_mq_complete_request(req);
1521}
1522
1523static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1524{
1525	mrq->done		= mmc_blk_cqe_req_done;
1526	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1527
1528	return mmc_cqe_start_req(host, mrq);
1529}
1530
1531static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1532						 struct request *req)
1533{
1534	struct mmc_blk_request *brq = &mqrq->brq;
1535
1536	memset(brq, 0, sizeof(*brq));
1537
1538	brq->mrq.cmd = &brq->cmd;
1539	brq->mrq.tag = req->tag;
1540
1541	return &brq->mrq;
1542}
1543
1544static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1545{
1546	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1547	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1548
1549	mrq->cmd->opcode = MMC_SWITCH;
1550	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1551			(EXT_CSD_FLUSH_CACHE << 16) |
1552			(1 << 8) |
1553			EXT_CSD_CMD_SET_NORMAL;
1554	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1555
1556	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1557}
1558
1559static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1560{
1561	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1562	struct mmc_host *host = mq->card->host;
1563	int err;
1564
1565	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1566	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1567	mmc_pre_req(host, &mqrq->brq.mrq);
1568
1569	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1570	if (err)
1571		mmc_post_req(host, &mqrq->brq.mrq, err);
1572
1573	return err;
1574}
1575
1576static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1577{
1578	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1579	struct mmc_host *host = mq->card->host;
1580
1581	if (host->hsq_enabled)
1582		return mmc_blk_hsq_issue_rw_rq(mq, req);
1583
1584	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1585
1586	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1587}
1588
1589static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1590			       struct mmc_card *card,
1591			       int recovery_mode,
1592			       struct mmc_queue *mq)
1593{
1594	u32 readcmd, writecmd;
1595	struct mmc_blk_request *brq = &mqrq->brq;
1596	struct request *req = mmc_queue_req_to_req(mqrq);
1597	struct mmc_blk_data *md = mq->blkdata;
1598	bool do_rel_wr, do_data_tag;
1599
1600	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1601
1602	brq->mrq.cmd = &brq->cmd;
1603
1604	brq->cmd.arg = blk_rq_pos(req);
1605	if (!mmc_card_blockaddr(card))
1606		brq->cmd.arg <<= 9;
1607	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1608
1609	if (brq->data.blocks > 1 || do_rel_wr) {
1610		/* SPI multiblock writes terminate using a special
1611		 * token, not a STOP_TRANSMISSION request.
1612		 */
1613		if (!mmc_host_is_spi(card->host) ||
1614		    rq_data_dir(req) == READ)
1615			brq->mrq.stop = &brq->stop;
1616		readcmd = MMC_READ_MULTIPLE_BLOCK;
1617		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1618	} else {
1619		brq->mrq.stop = NULL;
1620		readcmd = MMC_READ_SINGLE_BLOCK;
1621		writecmd = MMC_WRITE_BLOCK;
1622	}
1623	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1624
1625	/*
1626	 * Pre-defined multi-block transfers are preferable to
1627	 * open ended-ones (and necessary for reliable writes).
1628	 * However, it is not sufficient to just send CMD23,
1629	 * and avoid the final CMD12, as on an error condition
1630	 * CMD12 (stop) needs to be sent anyway. This, coupled
1631	 * with Auto-CMD23 enhancements provided by some
1632	 * hosts, means that the complexity of dealing
1633	 * with this is best left to the host. If CMD23 is
1634	 * supported by card and host, we'll fill sbc in and let
1635	 * the host deal with handling it correctly. This means
1636	 * that for hosts that don't expose MMC_CAP_CMD23, no
1637	 * change of behavior will be observed.
1638	 *
1639	 * N.B: Some MMC cards experience perf degradation.
1640	 * We'll avoid using CMD23-bounded multiblock writes for
1641	 * these, while retaining features like reliable writes.
1642	 */
1643	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1644	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1645	     do_data_tag)) {
1646		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1647		brq->sbc.arg = brq->data.blocks |
1648			(do_rel_wr ? (1 << 31) : 0) |
1649			(do_data_tag ? (1 << 29) : 0);
1650		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1651		brq->mrq.sbc = &brq->sbc;
1652	}
1653}
1654
1655#define MMC_MAX_RETRIES		5
1656#define MMC_DATA_RETRIES	2
1657#define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1658
1659static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1660{
1661	struct mmc_command cmd = {
1662		.opcode = MMC_STOP_TRANSMISSION,
1663		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1664		/* Some hosts wait for busy anyway, so provide a busy timeout */
1665		.busy_timeout = timeout,
1666	};
1667
1668	return mmc_wait_for_cmd(card->host, &cmd, 5);
1669}
1670
1671static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1672{
1673	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1674	struct mmc_blk_request *brq = &mqrq->brq;
1675	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1676	int err;
1677
1678	mmc_retune_hold_now(card->host);
1679
1680	mmc_blk_send_stop(card, timeout);
1681
1682	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1683
1684	mmc_retune_release(card->host);
1685
1686	return err;
1687}
1688
1689#define MMC_READ_SINGLE_RETRIES	2
1690
1691/* Single (native) sector read during recovery */
1692static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1693{
1694	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1695	struct mmc_request *mrq = &mqrq->brq.mrq;
1696	struct mmc_card *card = mq->card;
1697	struct mmc_host *host = card->host;
1698	blk_status_t error = BLK_STS_OK;
1699	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1700
1701	do {
1702		u32 status;
1703		int err;
1704		int retries = 0;
1705
1706		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1707			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1708
1709			mmc_wait_for_req(host, mrq);
1710
1711			err = mmc_send_status(card, &status);
1712			if (err)
1713				goto error_exit;
1714
1715			if (!mmc_host_is_spi(host) &&
1716			    !mmc_ready_for_data(status)) {
1717				err = mmc_blk_fix_state(card, req);
1718				if (err)
1719					goto error_exit;
1720			}
1721
1722			if (!mrq->cmd->error)
1723				break;
1724		}
1725
1726		if (mrq->cmd->error ||
1727		    mrq->data->error ||
1728		    (!mmc_host_is_spi(host) &&
1729		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1730			error = BLK_STS_IOERR;
1731		else
1732			error = BLK_STS_OK;
1733
1734	} while (blk_update_request(req, error, bytes_per_read));
1735
1736	return;
1737
1738error_exit:
1739	mrq->data->bytes_xfered = 0;
1740	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1741	/* Let it try the remaining request again */
1742	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1743		mqrq->retries = MMC_MAX_RETRIES - 1;
1744}
1745
1746static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1747{
1748	return !!brq->mrq.sbc;
1749}
1750
1751static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1752{
1753	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1754}
1755
1756/*
1757 * Check for errors the host controller driver might not have seen such as
1758 * response mode errors or invalid card state.
1759 */
1760static bool mmc_blk_status_error(struct request *req, u32 status)
1761{
1762	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1763	struct mmc_blk_request *brq = &mqrq->brq;
1764	struct mmc_queue *mq = req->q->queuedata;
1765	u32 stop_err_bits;
1766
1767	if (mmc_host_is_spi(mq->card->host))
1768		return false;
1769
1770	stop_err_bits = mmc_blk_stop_err_bits(brq);
1771
1772	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1773	       brq->stop.resp[0] & stop_err_bits ||
1774	       status            & stop_err_bits ||
1775	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1776}
1777
1778static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1779{
1780	return !brq->sbc.error && !brq->cmd.error &&
1781	       !(brq->cmd.resp[0] & CMD_ERRORS);
1782}
1783
1784/*
1785 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1786 * policy:
1787 * 1. A request that has transferred at least some data is considered
1788 * successful and will be requeued if there is remaining data to
1789 * transfer.
1790 * 2. Otherwise the number of retries is incremented and the request
1791 * will be requeued if there are remaining retries.
1792 * 3. Otherwise the request will be errored out.
1793 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1794 * mqrq->retries. So there are only 4 possible actions here:
1795 *	1. do not accept the bytes_xfered value i.e. set it to zero
1796 *	2. change mqrq->retries to determine the number of retries
1797 *	3. try to reset the card
1798 *	4. read one sector at a time
1799 */
1800static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1801{
1802	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1803	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1804	struct mmc_blk_request *brq = &mqrq->brq;
1805	struct mmc_blk_data *md = mq->blkdata;
1806	struct mmc_card *card = mq->card;
1807	u32 status;
1808	u32 blocks;
1809	int err;
1810
1811	/*
1812	 * Some errors the host driver might not have seen. Set the number of
1813	 * bytes transferred to zero in that case.
1814	 */
1815	err = __mmc_send_status(card, &status, 0);
1816	if (err || mmc_blk_status_error(req, status))
1817		brq->data.bytes_xfered = 0;
1818
1819	mmc_retune_release(card->host);
1820
1821	/*
1822	 * Try again to get the status. This also provides an opportunity for
1823	 * re-tuning.
1824	 */
1825	if (err)
1826		err = __mmc_send_status(card, &status, 0);
1827
1828	/*
1829	 * Nothing more to do after the number of bytes transferred has been
1830	 * updated and there is no card.
1831	 */
1832	if (err && mmc_detect_card_removed(card->host))
1833		return;
1834
1835	/* Try to get back to "tran" state */
1836	if (!mmc_host_is_spi(mq->card->host) &&
1837	    (err || !mmc_ready_for_data(status)))
1838		err = mmc_blk_fix_state(mq->card, req);
1839
1840	/*
1841	 * Special case for SD cards where the card might record the number of
1842	 * blocks written.
1843	 */
1844	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1845	    rq_data_dir(req) == WRITE) {
1846		if (mmc_sd_num_wr_blocks(card, &blocks))
1847			brq->data.bytes_xfered = 0;
1848		else
1849			brq->data.bytes_xfered = blocks << 9;
1850	}
1851
1852	/* Reset if the card is in a bad state */
1853	if (!mmc_host_is_spi(mq->card->host) &&
1854	    err && mmc_blk_reset(md, card->host, type)) {
1855		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1856		mqrq->retries = MMC_NO_RETRIES;
1857		return;
1858	}
1859
1860	/*
1861	 * If anything was done, just return and if there is anything remaining
1862	 * on the request it will get requeued.
1863	 */
1864	if (brq->data.bytes_xfered)
1865		return;
1866
1867	/* Reset before last retry */
1868	if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1869	    mmc_blk_reset(md, card->host, type))
1870		return;
1871
1872	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1873	if (brq->sbc.error || brq->cmd.error)
1874		return;
1875
1876	/* Reduce the remaining retries for data errors */
1877	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1878		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1879		return;
1880	}
1881
1882	if (rq_data_dir(req) == READ && brq->data.blocks >
1883			queue_physical_block_size(mq->queue) >> 9) {
1884		/* Read one (native) sector at a time */
1885		mmc_blk_read_single(mq, req);
1886		return;
1887	}
1888}
1889
1890static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1891{
1892	mmc_blk_eval_resp_error(brq);
1893
1894	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1895	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1896}
1897
1898static int mmc_spi_err_check(struct mmc_card *card)
1899{
1900	u32 status = 0;
1901	int err;
1902
1903	/*
1904	 * SPI does not have a TRAN state we have to wait on, instead the
1905	 * card is ready again when it no longer holds the line LOW.
1906	 * We still have to ensure two things here before we know the write
1907	 * was successful:
1908	 * 1. The card has not disconnected during busy and we actually read our
1909	 * own pull-up, thinking it was still connected, so ensure it
1910	 * still responds.
1911	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1912	 * just reconnected card after being disconnected during busy.
1913	 */
1914	err = __mmc_send_status(card, &status, 0);
1915	if (err)
1916		return err;
1917	/* All R1 and R2 bits of SPI are errors in our case */
1918	if (status)
1919		return -EIO;
1920	return 0;
1921}
1922
1923static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1924{
1925	struct mmc_blk_busy_data *data = cb_data;
1926	u32 status = 0;
1927	int err;
1928
1929	err = mmc_send_status(data->card, &status);
1930	if (err)
1931		return err;
1932
1933	/* Accumulate response error bits. */
1934	data->status |= status;
1935
1936	*busy = !mmc_ready_for_data(status);
1937	return 0;
1938}
1939
1940static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1941{
1942	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1943	struct mmc_blk_busy_data cb_data;
1944	int err;
1945
1946	if (rq_data_dir(req) == READ)
1947		return 0;
1948
1949	if (mmc_host_is_spi(card->host)) {
1950		err = mmc_spi_err_check(card);
1951		if (err)
1952			mqrq->brq.data.bytes_xfered = 0;
1953		return err;
1954	}
1955
1956	cb_data.card = card;
1957	cb_data.status = 0;
1958	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
1959				  &mmc_blk_busy_cb, &cb_data);
1960
1961	/*
1962	 * Do not assume data transferred correctly if there are any error bits
1963	 * set.
1964	 */
1965	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1966		mqrq->brq.data.bytes_xfered = 0;
1967		err = err ? err : -EIO;
1968	}
1969
1970	/* Copy the exception bit so it will be seen later on */
1971	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1972		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1973
1974	return err;
1975}
1976
1977static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1978					    struct request *req)
1979{
1980	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1981
1982	mmc_blk_reset_success(mq->blkdata, type);
1983}
1984
1985static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1986{
1987	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1988	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1989
1990	if (nr_bytes) {
1991		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1992			blk_mq_requeue_request(req, true);
1993		else
1994			__blk_mq_end_request(req, BLK_STS_OK);
1995	} else if (!blk_rq_bytes(req)) {
1996		__blk_mq_end_request(req, BLK_STS_IOERR);
1997	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1998		blk_mq_requeue_request(req, true);
1999	} else {
2000		if (mmc_card_removed(mq->card))
2001			req->rq_flags |= RQF_QUIET;
2002		blk_mq_end_request(req, BLK_STS_IOERR);
2003	}
2004}
2005
2006static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2007					struct mmc_queue_req *mqrq)
2008{
2009	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2010	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2011		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2012}
2013
2014static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2015				 struct mmc_queue_req *mqrq)
2016{
2017	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2018		mmc_run_bkops(mq->card);
2019}
2020
2021static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2022{
2023	struct mmc_queue_req *mqrq =
2024		container_of(mrq, struct mmc_queue_req, brq.mrq);
2025	struct request *req = mmc_queue_req_to_req(mqrq);
2026	struct request_queue *q = req->q;
2027	struct mmc_queue *mq = q->queuedata;
2028	struct mmc_host *host = mq->card->host;
2029	unsigned long flags;
2030
2031	if (mmc_blk_rq_error(&mqrq->brq) ||
2032	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2033		spin_lock_irqsave(&mq->lock, flags);
2034		mq->recovery_needed = true;
2035		mq->recovery_req = req;
2036		spin_unlock_irqrestore(&mq->lock, flags);
2037
2038		host->cqe_ops->cqe_recovery_start(host);
2039
2040		schedule_work(&mq->recovery_work);
2041		return;
2042	}
2043
2044	mmc_blk_rw_reset_success(mq, req);
2045
2046	/*
2047	 * Block layer timeouts race with completions which means the normal
2048	 * completion path cannot be used during recovery.
2049	 */
2050	if (mq->in_recovery)
2051		mmc_blk_cqe_complete_rq(mq, req);
2052	else if (likely(!blk_should_fake_timeout(req->q)))
2053		blk_mq_complete_request(req);
2054}
2055
2056void mmc_blk_mq_complete(struct request *req)
2057{
2058	struct mmc_queue *mq = req->q->queuedata;
2059	struct mmc_host *host = mq->card->host;
2060
2061	if (host->cqe_enabled)
2062		mmc_blk_cqe_complete_rq(mq, req);
2063	else if (likely(!blk_should_fake_timeout(req->q)))
2064		mmc_blk_mq_complete_rq(mq, req);
2065}
2066
2067static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2068				       struct request *req)
2069{
2070	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2071	struct mmc_host *host = mq->card->host;
2072
2073	if (mmc_blk_rq_error(&mqrq->brq) ||
2074	    mmc_blk_card_busy(mq->card, req)) {
2075		mmc_blk_mq_rw_recovery(mq, req);
2076	} else {
2077		mmc_blk_rw_reset_success(mq, req);
2078		mmc_retune_release(host);
2079	}
2080
2081	mmc_blk_urgent_bkops(mq, mqrq);
2082}
2083
2084static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
2085{
2086	unsigned long flags;
2087	bool put_card;
2088
2089	spin_lock_irqsave(&mq->lock, flags);
2090
2091	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
2092
2093	put_card = (mmc_tot_in_flight(mq) == 0);
2094
2095	spin_unlock_irqrestore(&mq->lock, flags);
2096
2097	if (put_card)
2098		mmc_put_card(mq->card, &mq->ctx);
2099}
2100
2101static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2102				bool can_sleep)
2103{
 
2104	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2105	struct mmc_request *mrq = &mqrq->brq.mrq;
2106	struct mmc_host *host = mq->card->host;
2107
2108	mmc_post_req(host, mrq, 0);
2109
2110	/*
2111	 * Block layer timeouts race with completions which means the normal
2112	 * completion path cannot be used during recovery.
2113	 */
2114	if (mq->in_recovery) {
2115		mmc_blk_mq_complete_rq(mq, req);
2116	} else if (likely(!blk_should_fake_timeout(req->q))) {
2117		if (can_sleep)
2118			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2119		else
2120			blk_mq_complete_request(req);
2121	}
2122
2123	mmc_blk_mq_dec_in_flight(mq, req);
2124}
2125
2126void mmc_blk_mq_recovery(struct mmc_queue *mq)
2127{
2128	struct request *req = mq->recovery_req;
2129	struct mmc_host *host = mq->card->host;
2130	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2131
2132	mq->recovery_req = NULL;
2133	mq->rw_wait = false;
2134
2135	if (mmc_blk_rq_error(&mqrq->brq)) {
2136		mmc_retune_hold_now(host);
2137		mmc_blk_mq_rw_recovery(mq, req);
2138	}
2139
2140	mmc_blk_urgent_bkops(mq, mqrq);
2141
2142	mmc_blk_mq_post_req(mq, req, true);
2143}
2144
2145static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2146					 struct request **prev_req)
2147{
2148	if (mmc_host_done_complete(mq->card->host))
2149		return;
2150
2151	mutex_lock(&mq->complete_lock);
2152
2153	if (!mq->complete_req)
2154		goto out_unlock;
2155
2156	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2157
2158	if (prev_req)
2159		*prev_req = mq->complete_req;
2160	else
2161		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2162
2163	mq->complete_req = NULL;
2164
2165out_unlock:
2166	mutex_unlock(&mq->complete_lock);
2167}
2168
2169void mmc_blk_mq_complete_work(struct work_struct *work)
2170{
2171	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2172					    complete_work);
2173
2174	mmc_blk_mq_complete_prev_req(mq, NULL);
2175}
2176
2177static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2178{
2179	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2180						  brq.mrq);
2181	struct request *req = mmc_queue_req_to_req(mqrq);
2182	struct request_queue *q = req->q;
2183	struct mmc_queue *mq = q->queuedata;
2184	struct mmc_host *host = mq->card->host;
2185	unsigned long flags;
2186
2187	if (!mmc_host_done_complete(host)) {
2188		bool waiting;
2189
2190		/*
2191		 * We cannot complete the request in this context, so record
2192		 * that there is a request to complete, and that a following
2193		 * request does not need to wait (although it does need to
2194		 * complete complete_req first).
2195		 */
2196		spin_lock_irqsave(&mq->lock, flags);
2197		mq->complete_req = req;
2198		mq->rw_wait = false;
2199		waiting = mq->waiting;
2200		spin_unlock_irqrestore(&mq->lock, flags);
2201
2202		/*
2203		 * If 'waiting' then the waiting task will complete this
2204		 * request, otherwise queue a work to do it. Note that
2205		 * complete_work may still race with the dispatch of a following
2206		 * request.
2207		 */
2208		if (waiting)
2209			wake_up(&mq->wait);
2210		else
2211			queue_work(mq->card->complete_wq, &mq->complete_work);
2212
2213		return;
2214	}
2215
2216	/* Take the recovery path for errors or urgent background operations */
2217	if (mmc_blk_rq_error(&mqrq->brq) ||
2218	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2219		spin_lock_irqsave(&mq->lock, flags);
2220		mq->recovery_needed = true;
2221		mq->recovery_req = req;
2222		spin_unlock_irqrestore(&mq->lock, flags);
2223		wake_up(&mq->wait);
2224		schedule_work(&mq->recovery_work);
2225		return;
2226	}
2227
2228	mmc_blk_rw_reset_success(mq, req);
2229
2230	mq->rw_wait = false;
2231	wake_up(&mq->wait);
2232
2233	/* context unknown */
2234	mmc_blk_mq_post_req(mq, req, false);
2235}
2236
2237static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2238{
2239	unsigned long flags;
2240	bool done;
2241
2242	/*
2243	 * Wait while there is another request in progress, but not if recovery
2244	 * is needed. Also indicate whether there is a request waiting to start.
2245	 */
2246	spin_lock_irqsave(&mq->lock, flags);
2247	if (mq->recovery_needed) {
2248		*err = -EBUSY;
2249		done = true;
2250	} else {
2251		done = !mq->rw_wait;
2252	}
2253	mq->waiting = !done;
2254	spin_unlock_irqrestore(&mq->lock, flags);
2255
2256	return done;
2257}
2258
2259static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2260{
2261	int err = 0;
2262
2263	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2264
2265	/* Always complete the previous request if there is one */
2266	mmc_blk_mq_complete_prev_req(mq, prev_req);
2267
2268	return err;
2269}
2270
2271static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2272				  struct request *req)
2273{
2274	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2275	struct mmc_host *host = mq->card->host;
2276	struct request *prev_req = NULL;
2277	int err = 0;
2278
2279	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2280
2281	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2282
2283	mmc_pre_req(host, &mqrq->brq.mrq);
2284
2285	err = mmc_blk_rw_wait(mq, &prev_req);
2286	if (err)
2287		goto out_post_req;
2288
2289	mq->rw_wait = true;
2290
2291	err = mmc_start_request(host, &mqrq->brq.mrq);
2292
2293	if (prev_req)
2294		mmc_blk_mq_post_req(mq, prev_req, true);
2295
2296	if (err)
2297		mq->rw_wait = false;
2298
2299	/* Release re-tuning here where there is no synchronization required */
2300	if (err || mmc_host_done_complete(host))
2301		mmc_retune_release(host);
2302
2303out_post_req:
2304	if (err)
2305		mmc_post_req(host, &mqrq->brq.mrq, err);
2306
2307	return err;
2308}
2309
2310static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2311{
2312	if (host->cqe_enabled)
2313		return host->cqe_ops->cqe_wait_for_idle(host);
2314
2315	return mmc_blk_rw_wait(mq, NULL);
2316}
2317
2318enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2319{
2320	struct mmc_blk_data *md = mq->blkdata;
2321	struct mmc_card *card = md->queue.card;
2322	struct mmc_host *host = card->host;
2323	int ret;
2324
2325	ret = mmc_blk_part_switch(card, md->part_type);
2326	if (ret)
2327		return MMC_REQ_FAILED_TO_START;
2328
2329	switch (mmc_issue_type(mq, req)) {
2330	case MMC_ISSUE_SYNC:
2331		ret = mmc_blk_wait_for_idle(mq, host);
2332		if (ret)
2333			return MMC_REQ_BUSY;
2334		switch (req_op(req)) {
2335		case REQ_OP_DRV_IN:
2336		case REQ_OP_DRV_OUT:
2337			mmc_blk_issue_drv_op(mq, req);
2338			break;
2339		case REQ_OP_DISCARD:
2340			mmc_blk_issue_discard_rq(mq, req);
2341			break;
2342		case REQ_OP_SECURE_ERASE:
2343			mmc_blk_issue_secdiscard_rq(mq, req);
2344			break;
2345		case REQ_OP_WRITE_ZEROES:
2346			mmc_blk_issue_trim_rq(mq, req);
2347			break;
2348		case REQ_OP_FLUSH:
2349			mmc_blk_issue_flush(mq, req);
2350			break;
2351		default:
2352			WARN_ON_ONCE(1);
2353			return MMC_REQ_FAILED_TO_START;
2354		}
2355		return MMC_REQ_FINISHED;
2356	case MMC_ISSUE_DCMD:
2357	case MMC_ISSUE_ASYNC:
2358		switch (req_op(req)) {
2359		case REQ_OP_FLUSH:
2360			if (!mmc_cache_enabled(host)) {
2361				blk_mq_end_request(req, BLK_STS_OK);
2362				return MMC_REQ_FINISHED;
2363			}
2364			ret = mmc_blk_cqe_issue_flush(mq, req);
2365			break;
2366		case REQ_OP_READ:
2367		case REQ_OP_WRITE:
 
 
 
2368			if (host->cqe_enabled)
2369				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2370			else
2371				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2372			break;
2373		default:
2374			WARN_ON_ONCE(1);
2375			ret = -EINVAL;
2376		}
2377		if (!ret)
2378			return MMC_REQ_STARTED;
2379		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2380	default:
2381		WARN_ON_ONCE(1);
2382		return MMC_REQ_FAILED_TO_START;
2383	}
2384}
2385
2386static inline int mmc_blk_readonly(struct mmc_card *card)
2387{
2388	return mmc_card_readonly(card) ||
2389	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2390}
2391
2392static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2393					      struct device *parent,
2394					      sector_t size,
2395					      bool default_ro,
2396					      const char *subname,
2397					      int area_type,
2398					      unsigned int part_type)
2399{
2400	struct mmc_blk_data *md;
2401	int devidx, ret;
2402	char cap_str[10];
2403	bool cache_enabled = false;
2404	bool fua_enabled = false;
2405
2406	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2407	if (devidx < 0) {
2408		/*
2409		 * We get -ENOSPC because there are no more any available
2410		 * devidx. The reason may be that, either userspace haven't yet
2411		 * unmounted the partitions, which postpones mmc_blk_release()
2412		 * from being called, or the device has more partitions than
2413		 * what we support.
2414		 */
2415		if (devidx == -ENOSPC)
2416			dev_err(mmc_dev(card->host),
2417				"no more device IDs available\n");
2418
2419		return ERR_PTR(devidx);
2420	}
2421
2422	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2423	if (!md) {
2424		ret = -ENOMEM;
2425		goto out;
2426	}
2427
2428	md->area_type = area_type;
2429
2430	/*
2431	 * Set the read-only status based on the supported commands
2432	 * and the write protect switch.
2433	 */
2434	md->read_only = mmc_blk_readonly(card);
2435
2436	md->disk = mmc_init_queue(&md->queue, card);
2437	if (IS_ERR(md->disk)) {
2438		ret = PTR_ERR(md->disk);
2439		goto err_kfree;
2440	}
2441
2442	INIT_LIST_HEAD(&md->part);
2443	INIT_LIST_HEAD(&md->rpmbs);
2444	kref_init(&md->kref);
2445
2446	md->queue.blkdata = md;
2447	md->part_type = part_type;
2448
2449	md->disk->major	= MMC_BLOCK_MAJOR;
2450	md->disk->minors = perdev_minors;
2451	md->disk->first_minor = devidx * perdev_minors;
2452	md->disk->fops = &mmc_bdops;
2453	md->disk->private_data = md;
2454	md->parent = parent;
2455	set_disk_ro(md->disk, md->read_only || default_ro);
2456	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2457		md->disk->flags |= GENHD_FL_NO_PART;
2458
2459	/*
2460	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2461	 *
2462	 * - be set for removable media with permanent block devices
2463	 * - be unset for removable block devices with permanent media
2464	 *
2465	 * Since MMC block devices clearly fall under the second
2466	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2467	 * should use the block device creation/destruction hotplug
2468	 * messages to tell when the card is present.
2469	 */
2470
2471	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2472		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2473
2474	set_capacity(md->disk, size);
2475
2476	if (mmc_host_cmd23(card->host)) {
2477		if ((mmc_card_mmc(card) &&
2478		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2479		    (mmc_card_sd(card) &&
2480		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2481			md->flags |= MMC_BLK_CMD23;
2482	}
2483
2484	if (md->flags & MMC_BLK_CMD23 &&
2485	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2486	     card->ext_csd.rel_sectors)) {
2487		md->flags |= MMC_BLK_REL_WR;
2488		fua_enabled = true;
2489		cache_enabled = true;
2490	}
2491	if (mmc_cache_enabled(card->host))
2492		cache_enabled  = true;
2493
2494	blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2495
2496	string_get_size((u64)size, 512, STRING_UNITS_2,
2497			cap_str, sizeof(cap_str));
2498	pr_info("%s: %s %s %s %s\n",
2499		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2500		cap_str, md->read_only ? "(ro)" : "");
2501
2502	/* used in ->open, must be set before add_disk: */
2503	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2504		dev_set_drvdata(&card->dev, md);
2505	ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2506	if (ret)
2507		goto err_put_disk;
2508	return md;
2509
2510 err_put_disk:
2511	put_disk(md->disk);
2512	blk_mq_free_tag_set(&md->queue.tag_set);
2513 err_kfree:
2514	kfree(md);
2515 out:
2516	ida_simple_remove(&mmc_blk_ida, devidx);
2517	return ERR_PTR(ret);
2518}
2519
2520static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2521{
2522	sector_t size;
2523
2524	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2525		/*
2526		 * The EXT_CSD sector count is in number or 512 byte
2527		 * sectors.
2528		 */
2529		size = card->ext_csd.sectors;
2530	} else {
2531		/*
2532		 * The CSD capacity field is in units of read_blkbits.
2533		 * set_capacity takes units of 512 bytes.
2534		 */
2535		size = (typeof(sector_t))card->csd.capacity
2536			<< (card->csd.read_blkbits - 9);
2537	}
2538
2539	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2540					MMC_BLK_DATA_AREA_MAIN, 0);
2541}
2542
2543static int mmc_blk_alloc_part(struct mmc_card *card,
2544			      struct mmc_blk_data *md,
2545			      unsigned int part_type,
2546			      sector_t size,
2547			      bool default_ro,
2548			      const char *subname,
2549			      int area_type)
2550{
2551	struct mmc_blk_data *part_md;
2552
2553	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2554				    subname, area_type, part_type);
2555	if (IS_ERR(part_md))
2556		return PTR_ERR(part_md);
2557	list_add(&part_md->part, &md->part);
2558
2559	return 0;
2560}
2561
2562/**
2563 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2564 * @filp: the character device file
2565 * @cmd: the ioctl() command
2566 * @arg: the argument from userspace
2567 *
2568 * This will essentially just redirect the ioctl()s coming in over to
2569 * the main block device spawning the RPMB character device.
2570 */
2571static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2572			   unsigned long arg)
2573{
2574	struct mmc_rpmb_data *rpmb = filp->private_data;
2575	int ret;
2576
2577	switch (cmd) {
2578	case MMC_IOC_CMD:
2579		ret = mmc_blk_ioctl_cmd(rpmb->md,
2580					(struct mmc_ioc_cmd __user *)arg,
2581					rpmb);
2582		break;
2583	case MMC_IOC_MULTI_CMD:
2584		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2585					(struct mmc_ioc_multi_cmd __user *)arg,
2586					rpmb);
2587		break;
2588	default:
2589		ret = -EINVAL;
2590		break;
2591	}
2592
2593	return ret;
2594}
2595
2596#ifdef CONFIG_COMPAT
2597static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2598			      unsigned long arg)
2599{
2600	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2601}
2602#endif
2603
2604static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2605{
2606	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2607						  struct mmc_rpmb_data, chrdev);
2608
2609	get_device(&rpmb->dev);
2610	filp->private_data = rpmb;
2611	mmc_blk_get(rpmb->md->disk);
2612
2613	return nonseekable_open(inode, filp);
2614}
2615
2616static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2617{
2618	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2619						  struct mmc_rpmb_data, chrdev);
2620
2621	mmc_blk_put(rpmb->md);
2622	put_device(&rpmb->dev);
2623
2624	return 0;
2625}
2626
2627static const struct file_operations mmc_rpmb_fileops = {
2628	.release = mmc_rpmb_chrdev_release,
2629	.open = mmc_rpmb_chrdev_open,
2630	.owner = THIS_MODULE,
2631	.llseek = no_llseek,
2632	.unlocked_ioctl = mmc_rpmb_ioctl,
2633#ifdef CONFIG_COMPAT
2634	.compat_ioctl = mmc_rpmb_ioctl_compat,
2635#endif
2636};
2637
2638static void mmc_blk_rpmb_device_release(struct device *dev)
2639{
2640	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2641
2642	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2643	kfree(rpmb);
2644}
2645
2646static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2647				   struct mmc_blk_data *md,
2648				   unsigned int part_index,
2649				   sector_t size,
2650				   const char *subname)
2651{
2652	int devidx, ret;
2653	char rpmb_name[DISK_NAME_LEN];
2654	char cap_str[10];
2655	struct mmc_rpmb_data *rpmb;
2656
2657	/* This creates the minor number for the RPMB char device */
2658	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2659	if (devidx < 0)
2660		return devidx;
2661
2662	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2663	if (!rpmb) {
2664		ida_simple_remove(&mmc_rpmb_ida, devidx);
2665		return -ENOMEM;
2666	}
2667
2668	snprintf(rpmb_name, sizeof(rpmb_name),
2669		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2670
2671	rpmb->id = devidx;
2672	rpmb->part_index = part_index;
2673	rpmb->dev.init_name = rpmb_name;
2674	rpmb->dev.bus = &mmc_rpmb_bus_type;
2675	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2676	rpmb->dev.parent = &card->dev;
2677	rpmb->dev.release = mmc_blk_rpmb_device_release;
2678	device_initialize(&rpmb->dev);
2679	dev_set_drvdata(&rpmb->dev, rpmb);
2680	rpmb->md = md;
2681
2682	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2683	rpmb->chrdev.owner = THIS_MODULE;
2684	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2685	if (ret) {
2686		pr_err("%s: could not add character device\n", rpmb_name);
2687		goto out_put_device;
2688	}
2689
2690	list_add(&rpmb->node, &md->rpmbs);
2691
2692	string_get_size((u64)size, 512, STRING_UNITS_2,
2693			cap_str, sizeof(cap_str));
2694
2695	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2696		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2697		MAJOR(mmc_rpmb_devt), rpmb->id);
2698
2699	return 0;
2700
2701out_put_device:
2702	put_device(&rpmb->dev);
2703	return ret;
2704}
2705
2706static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2707
2708{
2709	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2710	put_device(&rpmb->dev);
2711}
2712
2713/* MMC Physical partitions consist of two boot partitions and
2714 * up to four general purpose partitions.
2715 * For each partition enabled in EXT_CSD a block device will be allocatedi
2716 * to provide access to the partition.
2717 */
2718
2719static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2720{
2721	int idx, ret;
2722
2723	if (!mmc_card_mmc(card))
2724		return 0;
2725
2726	for (idx = 0; idx < card->nr_parts; idx++) {
2727		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2728			/*
2729			 * RPMB partitions does not provide block access, they
2730			 * are only accessed using ioctl():s. Thus create
2731			 * special RPMB block devices that do not have a
2732			 * backing block queue for these.
2733			 */
2734			ret = mmc_blk_alloc_rpmb_part(card, md,
2735				card->part[idx].part_cfg,
2736				card->part[idx].size >> 9,
2737				card->part[idx].name);
2738			if (ret)
2739				return ret;
2740		} else if (card->part[idx].size) {
2741			ret = mmc_blk_alloc_part(card, md,
2742				card->part[idx].part_cfg,
2743				card->part[idx].size >> 9,
2744				card->part[idx].force_ro,
2745				card->part[idx].name,
2746				card->part[idx].area_type);
2747			if (ret)
2748				return ret;
2749		}
2750	}
2751
2752	return 0;
2753}
2754
2755static void mmc_blk_remove_req(struct mmc_blk_data *md)
2756{
2757	/*
2758	 * Flush remaining requests and free queues. It is freeing the queue
2759	 * that stops new requests from being accepted.
2760	 */
2761	del_gendisk(md->disk);
2762	mmc_cleanup_queue(&md->queue);
2763	mmc_blk_put(md);
2764}
2765
2766static void mmc_blk_remove_parts(struct mmc_card *card,
2767				 struct mmc_blk_data *md)
2768{
2769	struct list_head *pos, *q;
2770	struct mmc_blk_data *part_md;
2771	struct mmc_rpmb_data *rpmb;
2772
2773	/* Remove RPMB partitions */
2774	list_for_each_safe(pos, q, &md->rpmbs) {
2775		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2776		list_del(pos);
2777		mmc_blk_remove_rpmb_part(rpmb);
2778	}
2779	/* Remove block partitions */
2780	list_for_each_safe(pos, q, &md->part) {
2781		part_md = list_entry(pos, struct mmc_blk_data, part);
2782		list_del(pos);
2783		mmc_blk_remove_req(part_md);
2784	}
2785}
2786
2787#ifdef CONFIG_DEBUG_FS
2788
2789static int mmc_dbg_card_status_get(void *data, u64 *val)
2790{
2791	struct mmc_card *card = data;
2792	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2793	struct mmc_queue *mq = &md->queue;
2794	struct request *req;
2795	int ret;
2796
2797	/* Ask the block layer about the card status */
2798	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2799	if (IS_ERR(req))
2800		return PTR_ERR(req);
2801	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
 
2802	blk_execute_rq(req, false);
2803	ret = req_to_mmc_queue_req(req)->drv_op_result;
2804	if (ret >= 0) {
2805		*val = ret;
2806		ret = 0;
2807	}
2808	blk_mq_free_request(req);
2809
2810	return ret;
2811}
2812DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2813			 NULL, "%08llx\n");
2814
2815/* That is two digits * 512 + 1 for newline */
2816#define EXT_CSD_STR_LEN 1025
2817
2818static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2819{
2820	struct mmc_card *card = inode->i_private;
2821	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2822	struct mmc_queue *mq = &md->queue;
2823	struct request *req;
2824	char *buf;
2825	ssize_t n = 0;
2826	u8 *ext_csd;
2827	int err, i;
2828
2829	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2830	if (!buf)
2831		return -ENOMEM;
2832
2833	/* Ask the block layer for the EXT CSD */
2834	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2835	if (IS_ERR(req)) {
2836		err = PTR_ERR(req);
2837		goto out_free;
2838	}
2839	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
 
2840	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2841	blk_execute_rq(req, false);
2842	err = req_to_mmc_queue_req(req)->drv_op_result;
2843	blk_mq_free_request(req);
2844	if (err) {
2845		pr_err("FAILED %d\n", err);
2846		goto out_free;
2847	}
2848
2849	for (i = 0; i < 512; i++)
2850		n += sprintf(buf + n, "%02x", ext_csd[i]);
2851	n += sprintf(buf + n, "\n");
2852
2853	if (n != EXT_CSD_STR_LEN) {
2854		err = -EINVAL;
2855		kfree(ext_csd);
2856		goto out_free;
2857	}
2858
2859	filp->private_data = buf;
2860	kfree(ext_csd);
2861	return 0;
2862
2863out_free:
2864	kfree(buf);
2865	return err;
2866}
2867
2868static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2869				size_t cnt, loff_t *ppos)
2870{
2871	char *buf = filp->private_data;
2872
2873	return simple_read_from_buffer(ubuf, cnt, ppos,
2874				       buf, EXT_CSD_STR_LEN);
2875}
2876
2877static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2878{
2879	kfree(file->private_data);
2880	return 0;
2881}
2882
2883static const struct file_operations mmc_dbg_ext_csd_fops = {
2884	.open		= mmc_ext_csd_open,
2885	.read		= mmc_ext_csd_read,
2886	.release	= mmc_ext_csd_release,
2887	.llseek		= default_llseek,
2888};
2889
2890static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2891{
2892	struct dentry *root;
2893
2894	if (!card->debugfs_root)
2895		return 0;
2896
2897	root = card->debugfs_root;
2898
2899	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2900		md->status_dentry =
2901			debugfs_create_file_unsafe("status", 0400, root,
2902						   card,
2903						   &mmc_dbg_card_status_fops);
2904		if (!md->status_dentry)
2905			return -EIO;
2906	}
2907
2908	if (mmc_card_mmc(card)) {
2909		md->ext_csd_dentry =
2910			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2911					    &mmc_dbg_ext_csd_fops);
2912		if (!md->ext_csd_dentry)
2913			return -EIO;
2914	}
2915
2916	return 0;
2917}
2918
2919static void mmc_blk_remove_debugfs(struct mmc_card *card,
2920				   struct mmc_blk_data *md)
2921{
2922	if (!card->debugfs_root)
2923		return;
2924
2925	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2926		debugfs_remove(md->status_dentry);
2927		md->status_dentry = NULL;
2928	}
2929
2930	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2931		debugfs_remove(md->ext_csd_dentry);
2932		md->ext_csd_dentry = NULL;
2933	}
2934}
2935
2936#else
2937
2938static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2939{
2940	return 0;
2941}
2942
2943static void mmc_blk_remove_debugfs(struct mmc_card *card,
2944				   struct mmc_blk_data *md)
2945{
2946}
2947
2948#endif /* CONFIG_DEBUG_FS */
2949
2950static int mmc_blk_probe(struct mmc_card *card)
2951{
2952	struct mmc_blk_data *md;
2953	int ret = 0;
2954
2955	/*
2956	 * Check that the card supports the command class(es) we need.
2957	 */
2958	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2959		return -ENODEV;
2960
2961	mmc_fixup_device(card, mmc_blk_fixups);
2962
2963	card->complete_wq = alloc_workqueue("mmc_complete",
2964					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2965	if (!card->complete_wq) {
2966		pr_err("Failed to create mmc completion workqueue");
2967		return -ENOMEM;
2968	}
2969
2970	md = mmc_blk_alloc(card);
2971	if (IS_ERR(md)) {
2972		ret = PTR_ERR(md);
2973		goto out_free;
2974	}
2975
2976	ret = mmc_blk_alloc_parts(card, md);
2977	if (ret)
2978		goto out;
2979
2980	/* Add two debugfs entries */
2981	mmc_blk_add_debugfs(card, md);
2982
2983	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2984	pm_runtime_use_autosuspend(&card->dev);
2985
2986	/*
2987	 * Don't enable runtime PM for SD-combo cards here. Leave that
2988	 * decision to be taken during the SDIO init sequence instead.
2989	 */
2990	if (!mmc_card_sd_combo(card)) {
2991		pm_runtime_set_active(&card->dev);
2992		pm_runtime_enable(&card->dev);
2993	}
2994
2995	return 0;
2996
2997out:
2998	mmc_blk_remove_parts(card, md);
2999	mmc_blk_remove_req(md);
3000out_free:
3001	destroy_workqueue(card->complete_wq);
3002	return ret;
3003}
3004
3005static void mmc_blk_remove(struct mmc_card *card)
3006{
3007	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3008
3009	mmc_blk_remove_debugfs(card, md);
3010	mmc_blk_remove_parts(card, md);
3011	pm_runtime_get_sync(&card->dev);
3012	if (md->part_curr != md->part_type) {
3013		mmc_claim_host(card->host);
3014		mmc_blk_part_switch(card, md->part_type);
3015		mmc_release_host(card->host);
3016	}
3017	if (!mmc_card_sd_combo(card))
3018		pm_runtime_disable(&card->dev);
3019	pm_runtime_put_noidle(&card->dev);
3020	mmc_blk_remove_req(md);
3021	dev_set_drvdata(&card->dev, NULL);
3022	destroy_workqueue(card->complete_wq);
3023}
3024
3025static int _mmc_blk_suspend(struct mmc_card *card)
3026{
3027	struct mmc_blk_data *part_md;
3028	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3029
3030	if (md) {
3031		mmc_queue_suspend(&md->queue);
3032		list_for_each_entry(part_md, &md->part, part) {
3033			mmc_queue_suspend(&part_md->queue);
3034		}
3035	}
3036	return 0;
3037}
3038
3039static void mmc_blk_shutdown(struct mmc_card *card)
3040{
3041	_mmc_blk_suspend(card);
3042}
3043
3044#ifdef CONFIG_PM_SLEEP
3045static int mmc_blk_suspend(struct device *dev)
3046{
3047	struct mmc_card *card = mmc_dev_to_card(dev);
3048
3049	return _mmc_blk_suspend(card);
3050}
3051
3052static int mmc_blk_resume(struct device *dev)
3053{
3054	struct mmc_blk_data *part_md;
3055	struct mmc_blk_data *md = dev_get_drvdata(dev);
3056
3057	if (md) {
3058		/*
3059		 * Resume involves the card going into idle state,
3060		 * so current partition is always the main one.
3061		 */
3062		md->part_curr = md->part_type;
3063		mmc_queue_resume(&md->queue);
3064		list_for_each_entry(part_md, &md->part, part) {
3065			mmc_queue_resume(&part_md->queue);
3066		}
3067	}
3068	return 0;
3069}
3070#endif
3071
3072static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3073
3074static struct mmc_driver mmc_driver = {
3075	.drv		= {
3076		.name	= "mmcblk",
3077		.pm	= &mmc_blk_pm_ops,
3078	},
3079	.probe		= mmc_blk_probe,
3080	.remove		= mmc_blk_remove,
3081	.shutdown	= mmc_blk_shutdown,
3082};
3083
3084static int __init mmc_blk_init(void)
3085{
3086	int res;
3087
3088	res  = bus_register(&mmc_rpmb_bus_type);
3089	if (res < 0) {
3090		pr_err("mmcblk: could not register RPMB bus type\n");
3091		return res;
3092	}
3093	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3094	if (res < 0) {
3095		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3096		goto out_bus_unreg;
3097	}
3098
3099	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3100		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3101
3102	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3103
3104	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3105	if (res)
3106		goto out_chrdev_unreg;
3107
3108	res = mmc_register_driver(&mmc_driver);
3109	if (res)
3110		goto out_blkdev_unreg;
3111
3112	return 0;
3113
3114out_blkdev_unreg:
3115	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3116out_chrdev_unreg:
3117	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3118out_bus_unreg:
3119	bus_unregister(&mmc_rpmb_bus_type);
3120	return res;
3121}
3122
3123static void __exit mmc_blk_exit(void)
3124{
3125	mmc_unregister_driver(&mmc_driver);
3126	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3127	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3128	bus_unregister(&mmc_rpmb_bus_type);
3129}
3130
3131module_init(mmc_blk_init);
3132module_exit(mmc_blk_exit);
3133
3134MODULE_LICENSE("GPL");
3135MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3136
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block driver for media (i.e., flash cards)
   4 *
   5 * Copyright 2002 Hewlett-Packard Company
   6 * Copyright 2005-2008 Pierre Ossman
   7 *
   8 * Use consistent with the GNU GPL is permitted,
   9 * provided that this copyright notice is
  10 * preserved in its entirety in all copies and derived works.
  11 *
  12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  14 * FITNESS FOR ANY PARTICULAR PURPOSE.
  15 *
  16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
  17 *
  18 * Author:  Andrew Christian
  19 *          28 May 2002
  20 */
  21#include <linux/moduleparam.h>
  22#include <linux/module.h>
  23#include <linux/init.h>
  24
  25#include <linux/kernel.h>
  26#include <linux/fs.h>
  27#include <linux/slab.h>
  28#include <linux/errno.h>
  29#include <linux/hdreg.h>
  30#include <linux/kdev_t.h>
  31#include <linux/kref.h>
  32#include <linux/blkdev.h>
  33#include <linux/cdev.h>
  34#include <linux/mutex.h>
  35#include <linux/scatterlist.h>
  36#include <linux/string_helpers.h>
  37#include <linux/delay.h>
  38#include <linux/capability.h>
  39#include <linux/compat.h>
  40#include <linux/pm_runtime.h>
  41#include <linux/idr.h>
  42#include <linux/debugfs.h>
  43
  44#include <linux/mmc/ioctl.h>
  45#include <linux/mmc/card.h>
  46#include <linux/mmc/host.h>
  47#include <linux/mmc/mmc.h>
  48#include <linux/mmc/sd.h>
  49
  50#include <linux/uaccess.h>
  51
  52#include "queue.h"
  53#include "block.h"
  54#include "core.h"
  55#include "card.h"
  56#include "crypto.h"
  57#include "host.h"
  58#include "bus.h"
  59#include "mmc_ops.h"
  60#include "quirks.h"
  61#include "sd_ops.h"
  62
  63MODULE_ALIAS("mmc:block");
  64#ifdef MODULE_PARAM_PREFIX
  65#undef MODULE_PARAM_PREFIX
  66#endif
  67#define MODULE_PARAM_PREFIX "mmcblk."
  68
  69/*
  70 * Set a 10 second timeout for polling write request busy state. Note, mmc core
  71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
  72 * second software timer to timeout the whole request, so 10 seconds should be
  73 * ample.
  74 */
  75#define MMC_BLK_TIMEOUT_MS  (10 * 1000)
  76#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
  77#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
  78
 
 
  79static DEFINE_MUTEX(block_mutex);
  80
  81/*
  82 * The defaults come from config options but can be overriden by module
  83 * or bootarg options.
  84 */
  85static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
  86
  87/*
  88 * We've only got one major, so number of mmcblk devices is
  89 * limited to (1 << 20) / number of minors per device.  It is also
  90 * limited by the MAX_DEVICES below.
  91 */
  92static int max_devices;
  93
  94#define MAX_DEVICES 256
  95
  96static DEFINE_IDA(mmc_blk_ida);
  97static DEFINE_IDA(mmc_rpmb_ida);
  98
  99struct mmc_blk_busy_data {
 100	struct mmc_card *card;
 101	u32 status;
 102};
 103
 104/*
 105 * There is one mmc_blk_data per slot.
 106 */
 107struct mmc_blk_data {
 108	struct device	*parent;
 109	struct gendisk	*disk;
 110	struct mmc_queue queue;
 111	struct list_head part;
 112	struct list_head rpmbs;
 113
 114	unsigned int	flags;
 115#define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
 116#define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
 117
 118	struct kref	kref;
 119	unsigned int	read_only;
 120	unsigned int	part_type;
 121	unsigned int	reset_done;
 122#define MMC_BLK_READ		BIT(0)
 123#define MMC_BLK_WRITE		BIT(1)
 124#define MMC_BLK_DISCARD		BIT(2)
 125#define MMC_BLK_SECDISCARD	BIT(3)
 126#define MMC_BLK_CQE_RECOVERY	BIT(4)
 127#define MMC_BLK_TRIM		BIT(5)
 128
 129	/*
 130	 * Only set in main mmc_blk_data associated
 131	 * with mmc_card with dev_set_drvdata, and keeps
 132	 * track of the current selected device partition.
 133	 */
 134	unsigned int	part_curr;
 135#define MMC_BLK_PART_INVALID	UINT_MAX	/* Unknown partition active */
 136	int	area_type;
 137
 138	/* debugfs files (only in main mmc_blk_data) */
 139	struct dentry *status_dentry;
 140	struct dentry *ext_csd_dentry;
 141};
 142
 143/* Device type for RPMB character devices */
 144static dev_t mmc_rpmb_devt;
 145
 146/* Bus type for RPMB character devices */
 147static const struct bus_type mmc_rpmb_bus_type = {
 148	.name = "mmc_rpmb",
 149};
 150
 151/**
 152 * struct mmc_rpmb_data - special RPMB device type for these areas
 153 * @dev: the device for the RPMB area
 154 * @chrdev: character device for the RPMB area
 155 * @id: unique device ID number
 156 * @part_index: partition index (0 on first)
 157 * @md: parent MMC block device
 158 * @node: list item, so we can put this device on a list
 159 */
 160struct mmc_rpmb_data {
 161	struct device dev;
 162	struct cdev chrdev;
 163	int id;
 164	unsigned int part_index;
 165	struct mmc_blk_data *md;
 166	struct list_head node;
 167};
 168
 169static DEFINE_MUTEX(open_lock);
 170
 171module_param(perdev_minors, int, 0444);
 172MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
 173
 174static inline int mmc_blk_part_switch(struct mmc_card *card,
 175				      unsigned int part_type);
 176static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
 177			       struct mmc_card *card,
 178			       int recovery_mode,
 179			       struct mmc_queue *mq);
 180static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
 181static int mmc_spi_err_check(struct mmc_card *card);
 182static int mmc_blk_busy_cb(void *cb_data, bool *busy);
 183
 184static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
 185{
 186	struct mmc_blk_data *md;
 187
 188	mutex_lock(&open_lock);
 189	md = disk->private_data;
 190	if (md && !kref_get_unless_zero(&md->kref))
 191		md = NULL;
 192	mutex_unlock(&open_lock);
 193
 194	return md;
 195}
 196
 197static inline int mmc_get_devidx(struct gendisk *disk)
 198{
 199	int devidx = disk->first_minor / perdev_minors;
 200	return devidx;
 201}
 202
 203static void mmc_blk_kref_release(struct kref *ref)
 204{
 205	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
 206	int devidx;
 207
 208	devidx = mmc_get_devidx(md->disk);
 209	ida_free(&mmc_blk_ida, devidx);
 210
 211	mutex_lock(&open_lock);
 212	md->disk->private_data = NULL;
 213	mutex_unlock(&open_lock);
 214
 215	put_disk(md->disk);
 216	kfree(md);
 217}
 218
 219static void mmc_blk_put(struct mmc_blk_data *md)
 220{
 221	kref_put(&md->kref, mmc_blk_kref_release);
 222}
 223
 224static ssize_t power_ro_lock_show(struct device *dev,
 225		struct device_attribute *attr, char *buf)
 226{
 227	int ret;
 228	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 229	struct mmc_card *card = md->queue.card;
 230	int locked = 0;
 231
 232	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
 233		locked = 2;
 234	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
 235		locked = 1;
 236
 237	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
 238
 239	mmc_blk_put(md);
 240
 241	return ret;
 242}
 243
 244static ssize_t power_ro_lock_store(struct device *dev,
 245		struct device_attribute *attr, const char *buf, size_t count)
 246{
 247	int ret;
 248	struct mmc_blk_data *md, *part_md;
 249	struct mmc_queue *mq;
 250	struct request *req;
 251	unsigned long set;
 252
 253	if (kstrtoul(buf, 0, &set))
 254		return -EINVAL;
 255
 256	if (set != 1)
 257		return count;
 258
 259	md = mmc_blk_get(dev_to_disk(dev));
 260	mq = &md->queue;
 261
 262	/* Dispatch locking to the block layer */
 263	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
 264	if (IS_ERR(req)) {
 265		count = PTR_ERR(req);
 266		goto out_put;
 267	}
 268	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
 269	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
 270	blk_execute_rq(req, false);
 271	ret = req_to_mmc_queue_req(req)->drv_op_result;
 272	blk_mq_free_request(req);
 273
 274	if (!ret) {
 275		pr_info("%s: Locking boot partition ro until next power on\n",
 276			md->disk->disk_name);
 277		set_disk_ro(md->disk, 1);
 278
 279		list_for_each_entry(part_md, &md->part, part)
 280			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
 281				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
 282				set_disk_ro(part_md->disk, 1);
 283			}
 284	}
 285out_put:
 286	mmc_blk_put(md);
 287	return count;
 288}
 289
 290static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
 291		power_ro_lock_show, power_ro_lock_store);
 292
 293static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
 294			     char *buf)
 295{
 296	int ret;
 297	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 298
 299	ret = snprintf(buf, PAGE_SIZE, "%d\n",
 300		       get_disk_ro(dev_to_disk(dev)) ^
 301		       md->read_only);
 302	mmc_blk_put(md);
 303	return ret;
 304}
 305
 306static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
 307			      const char *buf, size_t count)
 308{
 309	int ret;
 310	char *end;
 311	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 312	unsigned long set = simple_strtoul(buf, &end, 0);
 313	if (end == buf) {
 314		ret = -EINVAL;
 315		goto out;
 316	}
 317
 318	set_disk_ro(dev_to_disk(dev), set || md->read_only);
 319	ret = count;
 320out:
 321	mmc_blk_put(md);
 322	return ret;
 323}
 324
 325static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
 326
 327static struct attribute *mmc_disk_attrs[] = {
 328	&dev_attr_force_ro.attr,
 329	&dev_attr_ro_lock_until_next_power_on.attr,
 330	NULL,
 331};
 332
 333static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
 334		struct attribute *a, int n)
 335{
 336	struct device *dev = kobj_to_dev(kobj);
 337	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 338	umode_t mode = a->mode;
 339
 340	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
 341	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
 342	    md->queue.card->ext_csd.boot_ro_lockable) {
 343		mode = S_IRUGO;
 344		if (!(md->queue.card->ext_csd.boot_ro_lock &
 345				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
 346			mode |= S_IWUSR;
 347	}
 348
 349	mmc_blk_put(md);
 350	return mode;
 351}
 352
 353static const struct attribute_group mmc_disk_attr_group = {
 354	.is_visible	= mmc_disk_attrs_is_visible,
 355	.attrs		= mmc_disk_attrs,
 356};
 357
 358static const struct attribute_group *mmc_disk_attr_groups[] = {
 359	&mmc_disk_attr_group,
 360	NULL,
 361};
 362
 363static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
 364{
 365	struct mmc_blk_data *md = mmc_blk_get(disk);
 366	int ret = -ENXIO;
 367
 368	mutex_lock(&block_mutex);
 369	if (md) {
 370		ret = 0;
 371		if ((mode & BLK_OPEN_WRITE) && md->read_only) {
 372			mmc_blk_put(md);
 373			ret = -EROFS;
 374		}
 375	}
 376	mutex_unlock(&block_mutex);
 377
 378	return ret;
 379}
 380
 381static void mmc_blk_release(struct gendisk *disk)
 382{
 383	struct mmc_blk_data *md = disk->private_data;
 384
 385	mutex_lock(&block_mutex);
 386	mmc_blk_put(md);
 387	mutex_unlock(&block_mutex);
 388}
 389
 390static int
 391mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 392{
 393	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
 394	geo->heads = 4;
 395	geo->sectors = 16;
 396	return 0;
 397}
 398
 399struct mmc_blk_ioc_data {
 400	struct mmc_ioc_cmd ic;
 401	unsigned char *buf;
 402	u64 buf_bytes;
 403	unsigned int flags;
 404#define MMC_BLK_IOC_DROP	BIT(0)	/* drop this mrq */
 405#define MMC_BLK_IOC_SBC	BIT(1)	/* use mrq.sbc */
 406
 407	struct mmc_rpmb_data *rpmb;
 408};
 409
 410static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
 411	struct mmc_ioc_cmd __user *user)
 412{
 413	struct mmc_blk_ioc_data *idata;
 414	int err;
 415
 416	idata = kzalloc(sizeof(*idata), GFP_KERNEL);
 417	if (!idata) {
 418		err = -ENOMEM;
 419		goto out;
 420	}
 421
 422	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
 423		err = -EFAULT;
 424		goto idata_err;
 425	}
 426
 427	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
 428	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
 429		err = -EOVERFLOW;
 430		goto idata_err;
 431	}
 432
 433	if (!idata->buf_bytes) {
 434		idata->buf = NULL;
 435		return idata;
 436	}
 437
 438	idata->buf = memdup_user((void __user *)(unsigned long)
 439				 idata->ic.data_ptr, idata->buf_bytes);
 440	if (IS_ERR(idata->buf)) {
 441		err = PTR_ERR(idata->buf);
 442		goto idata_err;
 443	}
 444
 445	return idata;
 446
 447idata_err:
 448	kfree(idata);
 449out:
 450	return ERR_PTR(err);
 451}
 452
 453static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
 454				      struct mmc_blk_ioc_data *idata)
 455{
 456	struct mmc_ioc_cmd *ic = &idata->ic;
 457
 458	if (copy_to_user(&(ic_ptr->response), ic->response,
 459			 sizeof(ic->response)))
 460		return -EFAULT;
 461
 462	if (!idata->ic.write_flag) {
 463		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
 464				 idata->buf, idata->buf_bytes))
 465			return -EFAULT;
 466	}
 467
 468	return 0;
 469}
 470
 471static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
 472			       struct mmc_blk_ioc_data **idatas, int i)
 473{
 474	struct mmc_command cmd = {}, sbc = {};
 475	struct mmc_data data = {};
 476	struct mmc_request mrq = {};
 477	struct scatterlist sg;
 478	bool r1b_resp;
 479	unsigned int busy_timeout_ms;
 480	int err;
 481	unsigned int target_part;
 482	struct mmc_blk_ioc_data *idata = idatas[i];
 483	struct mmc_blk_ioc_data *prev_idata = NULL;
 484
 485	if (!card || !md || !idata)
 486		return -EINVAL;
 487
 488	if (idata->flags & MMC_BLK_IOC_DROP)
 489		return 0;
 490
 491	if (idata->flags & MMC_BLK_IOC_SBC && i > 0)
 492		prev_idata = idatas[i - 1];
 493
 494	/*
 495	 * The RPMB accesses comes in from the character device, so we
 496	 * need to target these explicitly. Else we just target the
 497	 * partition type for the block device the ioctl() was issued
 498	 * on.
 499	 */
 500	if (idata->rpmb) {
 501		/* Support multiple RPMB partitions */
 502		target_part = idata->rpmb->part_index;
 503		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
 504	} else {
 505		target_part = md->part_type;
 506	}
 507
 508	cmd.opcode = idata->ic.opcode;
 509	cmd.arg = idata->ic.arg;
 510	cmd.flags = idata->ic.flags;
 511
 512	if (idata->buf_bytes) {
 513		data.sg = &sg;
 514		data.sg_len = 1;
 515		data.blksz = idata->ic.blksz;
 516		data.blocks = idata->ic.blocks;
 517
 518		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
 519
 520		if (idata->ic.write_flag)
 521			data.flags = MMC_DATA_WRITE;
 522		else
 523			data.flags = MMC_DATA_READ;
 524
 525		/* data.flags must already be set before doing this. */
 526		mmc_set_data_timeout(&data, card);
 527
 528		/* Allow overriding the timeout_ns for empirical tuning. */
 529		if (idata->ic.data_timeout_ns)
 530			data.timeout_ns = idata->ic.data_timeout_ns;
 531
 532		mrq.data = &data;
 533	}
 534
 535	mrq.cmd = &cmd;
 536
 537	err = mmc_blk_part_switch(card, target_part);
 538	if (err)
 539		return err;
 540
 541	if (idata->ic.is_acmd) {
 542		err = mmc_app_cmd(card->host, card);
 543		if (err)
 544			return err;
 545	}
 546
 547	if (idata->rpmb || prev_idata) {
 548		sbc.opcode = MMC_SET_BLOCK_COUNT;
 549		/*
 550		 * We don't do any blockcount validation because the max size
 551		 * may be increased by a future standard. We just copy the
 552		 * 'Reliable Write' bit here.
 553		 */
 554		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
 555		if (prev_idata)
 556			sbc.arg = prev_idata->ic.arg;
 557		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
 558		mrq.sbc = &sbc;
 559	}
 560
 561	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
 562	    (cmd.opcode == MMC_SWITCH))
 563		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
 564
 565	/* If it's an R1B response we need some more preparations. */
 566	busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
 567	r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
 568	if (r1b_resp)
 569		mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
 570
 571	mmc_wait_for_req(card->host, &mrq);
 572	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
 573
 574	if (prev_idata) {
 575		memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
 576		if (sbc.error) {
 577			dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
 578							__func__, sbc.error);
 579			return sbc.error;
 580		}
 581	}
 582
 583	if (cmd.error) {
 584		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
 585						__func__, cmd.error);
 586		return cmd.error;
 587	}
 588	if (data.error) {
 589		dev_err(mmc_dev(card->host), "%s: data error %d\n",
 590						__func__, data.error);
 591		return data.error;
 592	}
 593
 594	/*
 595	 * Make sure the cache of the PARTITION_CONFIG register and
 596	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
 597	 * changed it successfully.
 598	 */
 599	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
 600	    (cmd.opcode == MMC_SWITCH)) {
 601		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 602		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
 603
 604		/*
 605		 * Update cache so the next mmc_blk_part_switch call operates
 606		 * on up-to-date data.
 607		 */
 608		card->ext_csd.part_config = value;
 609		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
 610	}
 611
 612	/*
 613	 * Make sure to update CACHE_CTRL in case it was changed. The cache
 614	 * will get turned back on if the card is re-initialized, e.g.
 615	 * suspend/resume or hw reset in recovery.
 616	 */
 617	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
 618	    (cmd.opcode == MMC_SWITCH)) {
 619		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
 620
 621		card->ext_csd.cache_ctrl = value;
 622	}
 623
 624	/*
 625	 * According to the SD specs, some commands require a delay after
 626	 * issuing the command.
 627	 */
 628	if (idata->ic.postsleep_min_us)
 629		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
 630
 631	if (mmc_host_is_spi(card->host)) {
 632		if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
 633			return mmc_spi_err_check(card);
 634		return err;
 635	}
 636
 637	/*
 638	 * Ensure RPMB, writes and R1B responses are completed by polling with
 639	 * CMD13. Note that, usually we don't need to poll when using HW busy
 640	 * detection, but here it's needed since some commands may indicate the
 641	 * error through the R1 status bits.
 642	 */
 643	if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
 644		struct mmc_blk_busy_data cb_data = {
 645			.card = card,
 646		};
 647
 648		err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
 649					  &mmc_blk_busy_cb, &cb_data);
 650
 651		idata->ic.response[0] = cb_data.status;
 652	}
 653
 654	return err;
 655}
 656
 657static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
 658			     struct mmc_ioc_cmd __user *ic_ptr,
 659			     struct mmc_rpmb_data *rpmb)
 660{
 661	struct mmc_blk_ioc_data *idata;
 662	struct mmc_blk_ioc_data *idatas[1];
 663	struct mmc_queue *mq;
 664	struct mmc_card *card;
 665	int err = 0, ioc_err = 0;
 666	struct request *req;
 667
 668	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
 669	if (IS_ERR(idata))
 670		return PTR_ERR(idata);
 671	/* This will be NULL on non-RPMB ioctl():s */
 672	idata->rpmb = rpmb;
 673
 674	card = md->queue.card;
 675	if (IS_ERR(card)) {
 676		err = PTR_ERR(card);
 677		goto cmd_done;
 678	}
 679
 680	/*
 681	 * Dispatch the ioctl() into the block request queue.
 682	 */
 683	mq = &md->queue;
 684	req = blk_mq_alloc_request(mq->queue,
 685		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 686	if (IS_ERR(req)) {
 687		err = PTR_ERR(req);
 688		goto cmd_done;
 689	}
 690	idatas[0] = idata;
 691	req_to_mmc_queue_req(req)->drv_op =
 692		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 693	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
 694	req_to_mmc_queue_req(req)->drv_op_data = idatas;
 695	req_to_mmc_queue_req(req)->ioc_count = 1;
 696	blk_execute_rq(req, false);
 697	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 698	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
 699	blk_mq_free_request(req);
 700
 701cmd_done:
 702	kfree(idata->buf);
 703	kfree(idata);
 704	return ioc_err ? ioc_err : err;
 705}
 706
 707static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
 708				   struct mmc_ioc_multi_cmd __user *user,
 709				   struct mmc_rpmb_data *rpmb)
 710{
 711	struct mmc_blk_ioc_data **idata = NULL;
 712	struct mmc_ioc_cmd __user *cmds = user->cmds;
 713	struct mmc_card *card;
 714	struct mmc_queue *mq;
 715	int err = 0, ioc_err = 0;
 716	__u64 num_of_cmds;
 717	unsigned int i, n;
 718	struct request *req;
 719
 720	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
 721			   sizeof(num_of_cmds)))
 722		return -EFAULT;
 723
 724	if (!num_of_cmds)
 725		return 0;
 726
 727	if (num_of_cmds > MMC_IOC_MAX_CMDS)
 728		return -EINVAL;
 729
 730	n = num_of_cmds;
 731	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
 732	if (!idata)
 733		return -ENOMEM;
 734
 735	for (i = 0; i < n; i++) {
 736		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
 737		if (IS_ERR(idata[i])) {
 738			err = PTR_ERR(idata[i]);
 739			n = i;
 740			goto cmd_err;
 741		}
 742		/* This will be NULL on non-RPMB ioctl():s */
 743		idata[i]->rpmb = rpmb;
 744	}
 745
 746	card = md->queue.card;
 747	if (IS_ERR(card)) {
 748		err = PTR_ERR(card);
 749		goto cmd_err;
 750	}
 751
 752
 753	/*
 754	 * Dispatch the ioctl()s into the block request queue.
 755	 */
 756	mq = &md->queue;
 757	req = blk_mq_alloc_request(mq->queue,
 758		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 759	if (IS_ERR(req)) {
 760		err = PTR_ERR(req);
 761		goto cmd_err;
 762	}
 763	req_to_mmc_queue_req(req)->drv_op =
 764		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 765	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
 766	req_to_mmc_queue_req(req)->drv_op_data = idata;
 767	req_to_mmc_queue_req(req)->ioc_count = n;
 768	blk_execute_rq(req, false);
 769	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 770
 771	/* copy to user if data and response */
 772	for (i = 0; i < n && !err; i++)
 773		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
 774
 775	blk_mq_free_request(req);
 776
 777cmd_err:
 778	for (i = 0; i < n; i++) {
 779		kfree(idata[i]->buf);
 780		kfree(idata[i]);
 781	}
 782	kfree(idata);
 783	return ioc_err ? ioc_err : err;
 784}
 785
 786static int mmc_blk_check_blkdev(struct block_device *bdev)
 787{
 788	/*
 789	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
 790	 * whole block device, not on a partition.  This prevents overspray
 791	 * between sibling partitions.
 792	 */
 793	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
 794		return -EPERM;
 795	return 0;
 796}
 797
 798static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
 799	unsigned int cmd, unsigned long arg)
 800{
 801	struct mmc_blk_data *md;
 802	int ret;
 803
 804	switch (cmd) {
 805	case MMC_IOC_CMD:
 806		ret = mmc_blk_check_blkdev(bdev);
 807		if (ret)
 808			return ret;
 809		md = mmc_blk_get(bdev->bd_disk);
 810		if (!md)
 811			return -EINVAL;
 812		ret = mmc_blk_ioctl_cmd(md,
 813					(struct mmc_ioc_cmd __user *)arg,
 814					NULL);
 815		mmc_blk_put(md);
 816		return ret;
 817	case MMC_IOC_MULTI_CMD:
 818		ret = mmc_blk_check_blkdev(bdev);
 819		if (ret)
 820			return ret;
 821		md = mmc_blk_get(bdev->bd_disk);
 822		if (!md)
 823			return -EINVAL;
 824		ret = mmc_blk_ioctl_multi_cmd(md,
 825					(struct mmc_ioc_multi_cmd __user *)arg,
 826					NULL);
 827		mmc_blk_put(md);
 828		return ret;
 829	default:
 830		return -EINVAL;
 831	}
 832}
 833
 834#ifdef CONFIG_COMPAT
 835static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
 836	unsigned int cmd, unsigned long arg)
 837{
 838	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
 839}
 840#endif
 841
 842static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
 843					  sector_t *sector)
 844{
 845	struct mmc_blk_data *md;
 846	int ret;
 847
 848	md = mmc_blk_get(disk);
 849	if (!md)
 850		return -EINVAL;
 851
 852	if (md->queue.card)
 853		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
 854	else
 855		ret = -ENODEV;
 856
 857	mmc_blk_put(md);
 858
 859	return ret;
 860}
 861
 862static const struct block_device_operations mmc_bdops = {
 863	.open			= mmc_blk_open,
 864	.release		= mmc_blk_release,
 865	.getgeo			= mmc_blk_getgeo,
 866	.owner			= THIS_MODULE,
 867	.ioctl			= mmc_blk_ioctl,
 868#ifdef CONFIG_COMPAT
 869	.compat_ioctl		= mmc_blk_compat_ioctl,
 870#endif
 871	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
 872};
 873
 874static int mmc_blk_part_switch_pre(struct mmc_card *card,
 875				   unsigned int part_type)
 876{
 877	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
 878	const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
 879	int ret = 0;
 880
 881	if ((part_type & mask) == rpmb) {
 882		if (card->ext_csd.cmdq_en) {
 883			ret = mmc_cmdq_disable(card);
 884			if (ret)
 885				return ret;
 886		}
 887		mmc_retune_pause(card->host);
 888	}
 889
 890	return ret;
 891}
 892
 893static int mmc_blk_part_switch_post(struct mmc_card *card,
 894				    unsigned int part_type)
 895{
 896	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
 897	const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
 898	int ret = 0;
 899
 900	if ((part_type & mask) == rpmb) {
 901		mmc_retune_unpause(card->host);
 902		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
 903			ret = mmc_cmdq_enable(card);
 904	}
 905
 906	return ret;
 907}
 908
 909static inline int mmc_blk_part_switch(struct mmc_card *card,
 910				      unsigned int part_type)
 911{
 912	int ret = 0;
 913	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 914
 915	if (main_md->part_curr == part_type)
 916		return 0;
 917
 918	if (mmc_card_mmc(card)) {
 919		u8 part_config = card->ext_csd.part_config;
 920
 921		ret = mmc_blk_part_switch_pre(card, part_type);
 922		if (ret)
 923			return ret;
 924
 925		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
 926		part_config |= part_type;
 927
 928		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 929				 EXT_CSD_PART_CONFIG, part_config,
 930				 card->ext_csd.part_time);
 931		if (ret) {
 932			mmc_blk_part_switch_post(card, part_type);
 933			return ret;
 934		}
 935
 936		card->ext_csd.part_config = part_config;
 937
 938		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
 939	}
 940
 941	main_md->part_curr = part_type;
 942	return ret;
 943}
 944
 945static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
 946{
 947	int err;
 948	u32 result;
 949	__be32 *blocks;
 950
 951	struct mmc_request mrq = {};
 952	struct mmc_command cmd = {};
 953	struct mmc_data data = {};
 954
 955	struct scatterlist sg;
 956
 957	err = mmc_app_cmd(card->host, card);
 
 
 
 
 958	if (err)
 959		return err;
 
 
 
 
 960
 961	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
 962	cmd.arg = 0;
 963	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 964
 965	data.blksz = 4;
 966	data.blocks = 1;
 967	data.flags = MMC_DATA_READ;
 968	data.sg = &sg;
 969	data.sg_len = 1;
 970	mmc_set_data_timeout(&data, card);
 971
 972	mrq.cmd = &cmd;
 973	mrq.data = &data;
 974
 975	blocks = kmalloc(4, GFP_KERNEL);
 976	if (!blocks)
 977		return -ENOMEM;
 978
 979	sg_init_one(&sg, blocks, 4);
 980
 981	mmc_wait_for_req(card->host, &mrq);
 982
 983	result = ntohl(*blocks);
 984	kfree(blocks);
 985
 986	if (cmd.error || data.error)
 987		return -EIO;
 988
 989	*written_blocks = result;
 990
 991	return 0;
 992}
 993
 994static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
 995{
 996	if (host->actual_clock)
 997		return host->actual_clock / 1000;
 998
 999	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
1000	if (host->ios.clock)
1001		return host->ios.clock / 2000;
1002
1003	/* How can there be no clock */
1004	WARN_ON_ONCE(1);
1005	return 100; /* 100 kHz is minimum possible value */
1006}
1007
1008static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1009					    struct mmc_data *data)
1010{
1011	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1012	unsigned int khz;
1013
1014	if (data->timeout_clks) {
1015		khz = mmc_blk_clock_khz(host);
1016		ms += DIV_ROUND_UP(data->timeout_clks, khz);
1017	}
1018
1019	return ms;
1020}
1021
1022/*
1023 * Attempts to reset the card and get back to the requested partition.
1024 * Therefore any error here must result in cancelling the block layer
1025 * request, it must not be reattempted without going through the mmc_blk
1026 * partition sanity checks.
1027 */
1028static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1029			 int type)
1030{
1031	int err;
1032	struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1033
1034	if (md->reset_done & type)
1035		return -EEXIST;
1036
1037	md->reset_done |= type;
1038	err = mmc_hw_reset(host->card);
1039	/*
1040	 * A successful reset will leave the card in the main partition, but
1041	 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1042	 * in that case.
1043	 */
1044	main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1045	if (err)
1046		return err;
1047	/* Ensure we switch back to the correct partition */
1048	if (mmc_blk_part_switch(host->card, md->part_type))
1049		/*
1050		 * We have failed to get back into the correct
1051		 * partition, so we need to abort the whole request.
1052		 */
1053		return -ENODEV;
1054	return 0;
1055}
1056
1057static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1058{
1059	md->reset_done &= ~type;
1060}
1061
1062static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1063{
1064	struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1065	int i;
1066
1067	for (i = 1; i < mq_rq->ioc_count; i++) {
1068		if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1069		    mmc_op_multi(idata[i]->ic.opcode)) {
1070			idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1071			idata[i]->flags |= MMC_BLK_IOC_SBC;
1072		}
1073	}
1074}
1075
1076/*
1077 * The non-block commands come back from the block layer after it queued it and
1078 * processed it with all other requests and then they get issued in this
1079 * function.
1080 */
1081static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1082{
1083	struct mmc_queue_req *mq_rq;
1084	struct mmc_card *card = mq->card;
1085	struct mmc_blk_data *md = mq->blkdata;
1086	struct mmc_blk_ioc_data **idata;
1087	bool rpmb_ioctl;
1088	u8 **ext_csd;
1089	u32 status;
1090	int ret;
1091	int i;
1092
1093	mq_rq = req_to_mmc_queue_req(req);
1094	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1095
1096	switch (mq_rq->drv_op) {
1097	case MMC_DRV_OP_IOCTL:
1098		if (card->ext_csd.cmdq_en) {
1099			ret = mmc_cmdq_disable(card);
1100			if (ret)
1101				break;
1102		}
1103
1104		mmc_blk_check_sbc(mq_rq);
1105
1106		fallthrough;
1107	case MMC_DRV_OP_IOCTL_RPMB:
1108		idata = mq_rq->drv_op_data;
1109		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1110			ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1111			if (ret)
1112				break;
1113		}
1114		/* Always switch back to main area after RPMB access */
1115		if (rpmb_ioctl)
1116			mmc_blk_part_switch(card, 0);
1117		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1118			mmc_cmdq_enable(card);
1119		break;
1120	case MMC_DRV_OP_BOOT_WP:
1121		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1122				 card->ext_csd.boot_ro_lock |
1123				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1124				 card->ext_csd.part_time);
1125		if (ret)
1126			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1127			       md->disk->disk_name, ret);
1128		else
1129			card->ext_csd.boot_ro_lock |=
1130				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1131		break;
1132	case MMC_DRV_OP_GET_CARD_STATUS:
1133		ret = mmc_send_status(card, &status);
1134		if (!ret)
1135			ret = status;
1136		break;
1137	case MMC_DRV_OP_GET_EXT_CSD:
1138		ext_csd = mq_rq->drv_op_data;
1139		ret = mmc_get_ext_csd(card, ext_csd);
1140		break;
1141	default:
1142		pr_err("%s: unknown driver specific operation\n",
1143		       md->disk->disk_name);
1144		ret = -EINVAL;
1145		break;
1146	}
1147	mq_rq->drv_op_result = ret;
1148	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1149}
1150
1151static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1152				   int type, unsigned int erase_arg)
1153{
1154	struct mmc_blk_data *md = mq->blkdata;
1155	struct mmc_card *card = md->queue.card;
1156	unsigned int from, nr;
1157	int err = 0;
1158	blk_status_t status = BLK_STS_OK;
1159
1160	if (!mmc_can_erase(card)) {
1161		status = BLK_STS_NOTSUPP;
1162		goto fail;
1163	}
1164
1165	from = blk_rq_pos(req);
1166	nr = blk_rq_sectors(req);
1167
1168	do {
1169		err = 0;
1170		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1171			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1172					 INAND_CMD38_ARG_EXT_CSD,
1173					 erase_arg == MMC_TRIM_ARG ?
1174					 INAND_CMD38_ARG_TRIM :
1175					 INAND_CMD38_ARG_ERASE,
1176					 card->ext_csd.generic_cmd6_time);
1177		}
1178		if (!err)
1179			err = mmc_erase(card, from, nr, erase_arg);
1180	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1181	if (err)
1182		status = BLK_STS_IOERR;
1183	else
1184		mmc_blk_reset_success(md, type);
1185fail:
1186	blk_mq_end_request(req, status);
1187}
1188
1189static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1190{
1191	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1192}
1193
1194static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1195{
1196	struct mmc_blk_data *md = mq->blkdata;
1197	struct mmc_card *card = md->queue.card;
1198	unsigned int arg = card->erase_arg;
1199
1200	if (mmc_card_broken_sd_discard(card))
1201		arg = SD_ERASE_ARG;
1202
1203	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1204}
1205
1206static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1207				       struct request *req)
1208{
1209	struct mmc_blk_data *md = mq->blkdata;
1210	struct mmc_card *card = md->queue.card;
1211	unsigned int from, nr, arg;
1212	int err = 0, type = MMC_BLK_SECDISCARD;
1213	blk_status_t status = BLK_STS_OK;
1214
1215	if (!(mmc_can_secure_erase_trim(card))) {
1216		status = BLK_STS_NOTSUPP;
1217		goto out;
1218	}
1219
1220	from = blk_rq_pos(req);
1221	nr = blk_rq_sectors(req);
1222
1223	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1224		arg = MMC_SECURE_TRIM1_ARG;
1225	else
1226		arg = MMC_SECURE_ERASE_ARG;
1227
1228retry:
1229	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1230		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1231				 INAND_CMD38_ARG_EXT_CSD,
1232				 arg == MMC_SECURE_TRIM1_ARG ?
1233				 INAND_CMD38_ARG_SECTRIM1 :
1234				 INAND_CMD38_ARG_SECERASE,
1235				 card->ext_csd.generic_cmd6_time);
1236		if (err)
1237			goto out_retry;
1238	}
1239
1240	err = mmc_erase(card, from, nr, arg);
1241	if (err == -EIO)
1242		goto out_retry;
1243	if (err) {
1244		status = BLK_STS_IOERR;
1245		goto out;
1246	}
1247
1248	if (arg == MMC_SECURE_TRIM1_ARG) {
1249		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1250			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1251					 INAND_CMD38_ARG_EXT_CSD,
1252					 INAND_CMD38_ARG_SECTRIM2,
1253					 card->ext_csd.generic_cmd6_time);
1254			if (err)
1255				goto out_retry;
1256		}
1257
1258		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1259		if (err == -EIO)
1260			goto out_retry;
1261		if (err) {
1262			status = BLK_STS_IOERR;
1263			goto out;
1264		}
1265	}
1266
1267out_retry:
1268	if (err && !mmc_blk_reset(md, card->host, type))
1269		goto retry;
1270	if (!err)
1271		mmc_blk_reset_success(md, type);
1272out:
1273	blk_mq_end_request(req, status);
1274}
1275
1276static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1277{
1278	struct mmc_blk_data *md = mq->blkdata;
1279	struct mmc_card *card = md->queue.card;
1280	int ret = 0;
1281
1282	ret = mmc_flush_cache(card->host);
1283	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1284}
1285
1286/*
1287 * Reformat current write as a reliable write, supporting
1288 * both legacy and the enhanced reliable write MMC cards.
1289 * In each transfer we'll handle only as much as a single
1290 * reliable write can handle, thus finish the request in
1291 * partial completions.
1292 */
1293static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1294				    struct mmc_card *card,
1295				    struct request *req)
1296{
1297	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1298		/* Legacy mode imposes restrictions on transfers. */
1299		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1300			brq->data.blocks = 1;
1301
1302		if (brq->data.blocks > card->ext_csd.rel_sectors)
1303			brq->data.blocks = card->ext_csd.rel_sectors;
1304		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1305			brq->data.blocks = 1;
1306	}
1307}
1308
1309#define CMD_ERRORS_EXCL_OOR						\
1310	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1311	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1312	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1313	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1314	 R1_CC_ERROR |		/* Card controller error */		\
1315	 R1_ERROR)		/* General/unknown error */
1316
1317#define CMD_ERRORS							\
1318	(CMD_ERRORS_EXCL_OOR |						\
1319	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1320
1321static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1322{
1323	u32 val;
1324
1325	/*
1326	 * Per the SD specification(physical layer version 4.10)[1],
1327	 * section 4.3.3, it explicitly states that "When the last
1328	 * block of user area is read using CMD18, the host should
1329	 * ignore OUT_OF_RANGE error that may occur even the sequence
1330	 * is correct". And JESD84-B51 for eMMC also has a similar
1331	 * statement on section 6.8.3.
1332	 *
1333	 * Multiple block read/write could be done by either predefined
1334	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1335	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1336	 *
1337	 * However the spec[1] doesn't tell us whether we should also
1338	 * ignore that for predefined method. But per the spec[1], section
1339	 * 4.15 Set Block Count Command, it says"If illegal block count
1340	 * is set, out of range error will be indicated during read/write
1341	 * operation (For example, data transfer is stopped at user area
1342	 * boundary)." In another word, we could expect a out of range error
1343	 * in the response for the following CMD18/25. And if argument of
1344	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1345	 * we could also expect to get a -ETIMEDOUT or any error number from
1346	 * the host drivers due to missing data response(for write)/data(for
1347	 * read), as the cards will stop the data transfer by itself per the
1348	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1349	 */
1350
1351	if (!brq->stop.error) {
1352		bool oor_with_open_end;
1353		/* If there is no error yet, check R1 response */
1354
1355		val = brq->stop.resp[0] & CMD_ERRORS;
1356		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1357
1358		if (val && !oor_with_open_end)
1359			brq->stop.error = -EIO;
1360	}
1361}
1362
1363static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1364			      int recovery_mode, bool *do_rel_wr_p,
1365			      bool *do_data_tag_p)
1366{
1367	struct mmc_blk_data *md = mq->blkdata;
1368	struct mmc_card *card = md->queue.card;
1369	struct mmc_blk_request *brq = &mqrq->brq;
1370	struct request *req = mmc_queue_req_to_req(mqrq);
1371	bool do_rel_wr, do_data_tag;
1372
1373	/*
1374	 * Reliable writes are used to implement Forced Unit Access and
1375	 * are supported only on MMCs.
1376	 */
1377	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1378		    rq_data_dir(req) == WRITE &&
1379		    (md->flags & MMC_BLK_REL_WR);
1380
1381	memset(brq, 0, sizeof(struct mmc_blk_request));
1382
1383	mmc_crypto_prepare_req(mqrq);
1384
1385	brq->mrq.data = &brq->data;
1386	brq->mrq.tag = req->tag;
1387
1388	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1389	brq->stop.arg = 0;
1390
1391	if (rq_data_dir(req) == READ) {
1392		brq->data.flags = MMC_DATA_READ;
1393		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1394	} else {
1395		brq->data.flags = MMC_DATA_WRITE;
1396		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1397	}
1398
1399	brq->data.blksz = 512;
1400	brq->data.blocks = blk_rq_sectors(req);
1401	brq->data.blk_addr = blk_rq_pos(req);
1402
1403	/*
1404	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1405	 * The eMMC will give "high" priority tasks priority over "simple"
1406	 * priority tasks. Here we always set "simple" priority by not setting
1407	 * MMC_DATA_PRIO.
1408	 */
1409
1410	/*
1411	 * The block layer doesn't support all sector count
1412	 * restrictions, so we need to be prepared for too big
1413	 * requests.
1414	 */
1415	if (brq->data.blocks > card->host->max_blk_count)
1416		brq->data.blocks = card->host->max_blk_count;
1417
1418	if (brq->data.blocks > 1) {
1419		/*
1420		 * Some SD cards in SPI mode return a CRC error or even lock up
1421		 * completely when trying to read the last block using a
1422		 * multiblock read command.
1423		 */
1424		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1425		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1426		     get_capacity(md->disk)))
1427			brq->data.blocks--;
1428
1429		/*
1430		 * After a read error, we redo the request one (native) sector
1431		 * at a time in order to accurately determine which
1432		 * sectors can be read successfully.
1433		 */
1434		if (recovery_mode)
1435			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1436
1437		/*
1438		 * Some controllers have HW issues while operating
1439		 * in multiple I/O mode
1440		 */
1441		if (card->host->ops->multi_io_quirk)
1442			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1443						(rq_data_dir(req) == READ) ?
1444						MMC_DATA_READ : MMC_DATA_WRITE,
1445						brq->data.blocks);
1446	}
1447
1448	if (do_rel_wr) {
1449		mmc_apply_rel_rw(brq, card, req);
1450		brq->data.flags |= MMC_DATA_REL_WR;
1451	}
1452
1453	/*
1454	 * Data tag is used only during writing meta data to speed
1455	 * up write and any subsequent read of this meta data
1456	 */
1457	do_data_tag = card->ext_csd.data_tag_unit_size &&
1458		      (req->cmd_flags & REQ_META) &&
1459		      (rq_data_dir(req) == WRITE) &&
1460		      ((brq->data.blocks * brq->data.blksz) >=
1461		       card->ext_csd.data_tag_unit_size);
1462
1463	if (do_data_tag)
1464		brq->data.flags |= MMC_DATA_DAT_TAG;
1465
1466	mmc_set_data_timeout(&brq->data, card);
1467
1468	brq->data.sg = mqrq->sg;
1469	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1470
1471	/*
1472	 * Adjust the sg list so it is the same size as the
1473	 * request.
1474	 */
1475	if (brq->data.blocks != blk_rq_sectors(req)) {
1476		int i, data_size = brq->data.blocks << 9;
1477		struct scatterlist *sg;
1478
1479		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1480			data_size -= sg->length;
1481			if (data_size <= 0) {
1482				sg->length += data_size;
1483				i++;
1484				break;
1485			}
1486		}
1487		brq->data.sg_len = i;
1488	}
1489
1490	if (do_rel_wr_p)
1491		*do_rel_wr_p = do_rel_wr;
1492
1493	if (do_data_tag_p)
1494		*do_data_tag_p = do_data_tag;
1495}
1496
1497#define MMC_CQE_RETRIES 2
1498
1499static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1500{
1501	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1502	struct mmc_request *mrq = &mqrq->brq.mrq;
1503	struct request_queue *q = req->q;
1504	struct mmc_host *host = mq->card->host;
1505	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1506	unsigned long flags;
1507	bool put_card;
1508	int err;
1509
1510	mmc_cqe_post_req(host, mrq);
1511
1512	if (mrq->cmd && mrq->cmd->error)
1513		err = mrq->cmd->error;
1514	else if (mrq->data && mrq->data->error)
1515		err = mrq->data->error;
1516	else
1517		err = 0;
1518
1519	if (err) {
1520		if (mqrq->retries++ < MMC_CQE_RETRIES)
1521			blk_mq_requeue_request(req, true);
1522		else
1523			blk_mq_end_request(req, BLK_STS_IOERR);
1524	} else if (mrq->data) {
1525		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1526			blk_mq_requeue_request(req, true);
1527		else
1528			__blk_mq_end_request(req, BLK_STS_OK);
1529	} else if (mq->in_recovery) {
1530		blk_mq_requeue_request(req, true);
1531	} else {
1532		blk_mq_end_request(req, BLK_STS_OK);
1533	}
1534
1535	spin_lock_irqsave(&mq->lock, flags);
1536
1537	mq->in_flight[issue_type] -= 1;
1538
1539	put_card = (mmc_tot_in_flight(mq) == 0);
1540
1541	mmc_cqe_check_busy(mq);
1542
1543	spin_unlock_irqrestore(&mq->lock, flags);
1544
1545	if (!mq->cqe_busy)
1546		blk_mq_run_hw_queues(q, true);
1547
1548	if (put_card)
1549		mmc_put_card(mq->card, &mq->ctx);
1550}
1551
1552void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1553{
1554	struct mmc_card *card = mq->card;
1555	struct mmc_host *host = card->host;
1556	int err;
1557
1558	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1559
1560	err = mmc_cqe_recovery(host);
1561	if (err)
1562		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1563	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1564
1565	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1566}
1567
1568static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1569{
1570	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1571						  brq.mrq);
1572	struct request *req = mmc_queue_req_to_req(mqrq);
1573	struct request_queue *q = req->q;
1574	struct mmc_queue *mq = q->queuedata;
1575
1576	/*
1577	 * Block layer timeouts race with completions which means the normal
1578	 * completion path cannot be used during recovery.
1579	 */
1580	if (mq->in_recovery)
1581		mmc_blk_cqe_complete_rq(mq, req);
1582	else if (likely(!blk_should_fake_timeout(req->q)))
1583		blk_mq_complete_request(req);
1584}
1585
1586static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1587{
1588	mrq->done		= mmc_blk_cqe_req_done;
1589	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1590
1591	return mmc_cqe_start_req(host, mrq);
1592}
1593
1594static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1595						 struct request *req)
1596{
1597	struct mmc_blk_request *brq = &mqrq->brq;
1598
1599	memset(brq, 0, sizeof(*brq));
1600
1601	brq->mrq.cmd = &brq->cmd;
1602	brq->mrq.tag = req->tag;
1603
1604	return &brq->mrq;
1605}
1606
1607static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1608{
1609	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1610	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1611
1612	mrq->cmd->opcode = MMC_SWITCH;
1613	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1614			(EXT_CSD_FLUSH_CACHE << 16) |
1615			(1 << 8) |
1616			EXT_CSD_CMD_SET_NORMAL;
1617	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1618
1619	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1620}
1621
1622static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1623{
1624	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1625	struct mmc_host *host = mq->card->host;
1626	int err;
1627
1628	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1629	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1630	mmc_pre_req(host, &mqrq->brq.mrq);
1631
1632	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1633	if (err)
1634		mmc_post_req(host, &mqrq->brq.mrq, err);
1635
1636	return err;
1637}
1638
1639static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1640{
1641	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1642	struct mmc_host *host = mq->card->host;
1643
1644	if (host->hsq_enabled)
1645		return mmc_blk_hsq_issue_rw_rq(mq, req);
1646
1647	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1648
1649	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1650}
1651
1652static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1653			       struct mmc_card *card,
1654			       int recovery_mode,
1655			       struct mmc_queue *mq)
1656{
1657	u32 readcmd, writecmd;
1658	struct mmc_blk_request *brq = &mqrq->brq;
1659	struct request *req = mmc_queue_req_to_req(mqrq);
1660	struct mmc_blk_data *md = mq->blkdata;
1661	bool do_rel_wr, do_data_tag;
1662
1663	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1664
1665	brq->mrq.cmd = &brq->cmd;
1666
1667	brq->cmd.arg = blk_rq_pos(req);
1668	if (!mmc_card_blockaddr(card))
1669		brq->cmd.arg <<= 9;
1670	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1671
1672	if (brq->data.blocks > 1 || do_rel_wr) {
1673		/* SPI multiblock writes terminate using a special
1674		 * token, not a STOP_TRANSMISSION request.
1675		 */
1676		if (!mmc_host_is_spi(card->host) ||
1677		    rq_data_dir(req) == READ)
1678			brq->mrq.stop = &brq->stop;
1679		readcmd = MMC_READ_MULTIPLE_BLOCK;
1680		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1681	} else {
1682		brq->mrq.stop = NULL;
1683		readcmd = MMC_READ_SINGLE_BLOCK;
1684		writecmd = MMC_WRITE_BLOCK;
1685	}
1686	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1687
1688	/*
1689	 * Pre-defined multi-block transfers are preferable to
1690	 * open ended-ones (and necessary for reliable writes).
1691	 * However, it is not sufficient to just send CMD23,
1692	 * and avoid the final CMD12, as on an error condition
1693	 * CMD12 (stop) needs to be sent anyway. This, coupled
1694	 * with Auto-CMD23 enhancements provided by some
1695	 * hosts, means that the complexity of dealing
1696	 * with this is best left to the host. If CMD23 is
1697	 * supported by card and host, we'll fill sbc in and let
1698	 * the host deal with handling it correctly. This means
1699	 * that for hosts that don't expose MMC_CAP_CMD23, no
1700	 * change of behavior will be observed.
1701	 *
1702	 * N.B: Some MMC cards experience perf degradation.
1703	 * We'll avoid using CMD23-bounded multiblock writes for
1704	 * these, while retaining features like reliable writes.
1705	 */
1706	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1707	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1708	     do_data_tag)) {
1709		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1710		brq->sbc.arg = brq->data.blocks |
1711			(do_rel_wr ? (1 << 31) : 0) |
1712			(do_data_tag ? (1 << 29) : 0);
1713		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1714		brq->mrq.sbc = &brq->sbc;
1715	}
1716}
1717
1718#define MMC_MAX_RETRIES		5
1719#define MMC_DATA_RETRIES	2
1720#define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1721
1722static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1723{
1724	struct mmc_command cmd = {
1725		.opcode = MMC_STOP_TRANSMISSION,
1726		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1727		/* Some hosts wait for busy anyway, so provide a busy timeout */
1728		.busy_timeout = timeout,
1729	};
1730
1731	return mmc_wait_for_cmd(card->host, &cmd, 5);
1732}
1733
1734static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1735{
1736	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1737	struct mmc_blk_request *brq = &mqrq->brq;
1738	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1739	int err;
1740
1741	mmc_retune_hold_now(card->host);
1742
1743	mmc_blk_send_stop(card, timeout);
1744
1745	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1746
1747	mmc_retune_release(card->host);
1748
1749	return err;
1750}
1751
1752#define MMC_READ_SINGLE_RETRIES	2
1753
1754/* Single (native) sector read during recovery */
1755static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1756{
1757	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1758	struct mmc_request *mrq = &mqrq->brq.mrq;
1759	struct mmc_card *card = mq->card;
1760	struct mmc_host *host = card->host;
1761	blk_status_t error = BLK_STS_OK;
1762	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1763
1764	do {
1765		u32 status;
1766		int err;
1767		int retries = 0;
1768
1769		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1770			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1771
1772			mmc_wait_for_req(host, mrq);
1773
1774			err = mmc_send_status(card, &status);
1775			if (err)
1776				goto error_exit;
1777
1778			if (!mmc_host_is_spi(host) &&
1779			    !mmc_ready_for_data(status)) {
1780				err = mmc_blk_fix_state(card, req);
1781				if (err)
1782					goto error_exit;
1783			}
1784
1785			if (!mrq->cmd->error)
1786				break;
1787		}
1788
1789		if (mrq->cmd->error ||
1790		    mrq->data->error ||
1791		    (!mmc_host_is_spi(host) &&
1792		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1793			error = BLK_STS_IOERR;
1794		else
1795			error = BLK_STS_OK;
1796
1797	} while (blk_update_request(req, error, bytes_per_read));
1798
1799	return;
1800
1801error_exit:
1802	mrq->data->bytes_xfered = 0;
1803	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1804	/* Let it try the remaining request again */
1805	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1806		mqrq->retries = MMC_MAX_RETRIES - 1;
1807}
1808
1809static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1810{
1811	return !!brq->mrq.sbc;
1812}
1813
1814static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1815{
1816	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1817}
1818
1819/*
1820 * Check for errors the host controller driver might not have seen such as
1821 * response mode errors or invalid card state.
1822 */
1823static bool mmc_blk_status_error(struct request *req, u32 status)
1824{
1825	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1826	struct mmc_blk_request *brq = &mqrq->brq;
1827	struct mmc_queue *mq = req->q->queuedata;
1828	u32 stop_err_bits;
1829
1830	if (mmc_host_is_spi(mq->card->host))
1831		return false;
1832
1833	stop_err_bits = mmc_blk_stop_err_bits(brq);
1834
1835	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1836	       brq->stop.resp[0] & stop_err_bits ||
1837	       status            & stop_err_bits ||
1838	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1839}
1840
1841static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1842{
1843	return !brq->sbc.error && !brq->cmd.error &&
1844	       !(brq->cmd.resp[0] & CMD_ERRORS);
1845}
1846
1847/*
1848 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1849 * policy:
1850 * 1. A request that has transferred at least some data is considered
1851 * successful and will be requeued if there is remaining data to
1852 * transfer.
1853 * 2. Otherwise the number of retries is incremented and the request
1854 * will be requeued if there are remaining retries.
1855 * 3. Otherwise the request will be errored out.
1856 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1857 * mqrq->retries. So there are only 4 possible actions here:
1858 *	1. do not accept the bytes_xfered value i.e. set it to zero
1859 *	2. change mqrq->retries to determine the number of retries
1860 *	3. try to reset the card
1861 *	4. read one sector at a time
1862 */
1863static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1864{
1865	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1866	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1867	struct mmc_blk_request *brq = &mqrq->brq;
1868	struct mmc_blk_data *md = mq->blkdata;
1869	struct mmc_card *card = mq->card;
1870	u32 status;
1871	u32 blocks;
1872	int err;
1873
1874	/*
1875	 * Some errors the host driver might not have seen. Set the number of
1876	 * bytes transferred to zero in that case.
1877	 */
1878	err = __mmc_send_status(card, &status, 0);
1879	if (err || mmc_blk_status_error(req, status))
1880		brq->data.bytes_xfered = 0;
1881
1882	mmc_retune_release(card->host);
1883
1884	/*
1885	 * Try again to get the status. This also provides an opportunity for
1886	 * re-tuning.
1887	 */
1888	if (err)
1889		err = __mmc_send_status(card, &status, 0);
1890
1891	/*
1892	 * Nothing more to do after the number of bytes transferred has been
1893	 * updated and there is no card.
1894	 */
1895	if (err && mmc_detect_card_removed(card->host))
1896		return;
1897
1898	/* Try to get back to "tran" state */
1899	if (!mmc_host_is_spi(mq->card->host) &&
1900	    (err || !mmc_ready_for_data(status)))
1901		err = mmc_blk_fix_state(mq->card, req);
1902
1903	/*
1904	 * Special case for SD cards where the card might record the number of
1905	 * blocks written.
1906	 */
1907	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1908	    rq_data_dir(req) == WRITE) {
1909		if (mmc_sd_num_wr_blocks(card, &blocks))
1910			brq->data.bytes_xfered = 0;
1911		else
1912			brq->data.bytes_xfered = blocks << 9;
1913	}
1914
1915	/* Reset if the card is in a bad state */
1916	if (!mmc_host_is_spi(mq->card->host) &&
1917	    err && mmc_blk_reset(md, card->host, type)) {
1918		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1919		mqrq->retries = MMC_NO_RETRIES;
1920		return;
1921	}
1922
1923	/*
1924	 * If anything was done, just return and if there is anything remaining
1925	 * on the request it will get requeued.
1926	 */
1927	if (brq->data.bytes_xfered)
1928		return;
1929
1930	/* Reset before last retry */
1931	if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1932	    mmc_blk_reset(md, card->host, type))
1933		return;
1934
1935	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1936	if (brq->sbc.error || brq->cmd.error)
1937		return;
1938
1939	/* Reduce the remaining retries for data errors */
1940	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1941		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1942		return;
1943	}
1944
1945	if (rq_data_dir(req) == READ && brq->data.blocks >
1946			queue_physical_block_size(mq->queue) >> 9) {
1947		/* Read one (native) sector at a time */
1948		mmc_blk_read_single(mq, req);
1949		return;
1950	}
1951}
1952
1953static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1954{
1955	mmc_blk_eval_resp_error(brq);
1956
1957	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1958	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1959}
1960
1961static int mmc_spi_err_check(struct mmc_card *card)
1962{
1963	u32 status = 0;
1964	int err;
1965
1966	/*
1967	 * SPI does not have a TRAN state we have to wait on, instead the
1968	 * card is ready again when it no longer holds the line LOW.
1969	 * We still have to ensure two things here before we know the write
1970	 * was successful:
1971	 * 1. The card has not disconnected during busy and we actually read our
1972	 * own pull-up, thinking it was still connected, so ensure it
1973	 * still responds.
1974	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1975	 * just reconnected card after being disconnected during busy.
1976	 */
1977	err = __mmc_send_status(card, &status, 0);
1978	if (err)
1979		return err;
1980	/* All R1 and R2 bits of SPI are errors in our case */
1981	if (status)
1982		return -EIO;
1983	return 0;
1984}
1985
1986static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1987{
1988	struct mmc_blk_busy_data *data = cb_data;
1989	u32 status = 0;
1990	int err;
1991
1992	err = mmc_send_status(data->card, &status);
1993	if (err)
1994		return err;
1995
1996	/* Accumulate response error bits. */
1997	data->status |= status;
1998
1999	*busy = !mmc_ready_for_data(status);
2000	return 0;
2001}
2002
2003static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
2004{
2005	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2006	struct mmc_blk_busy_data cb_data;
2007	int err;
2008
2009	if (rq_data_dir(req) == READ)
2010		return 0;
2011
2012	if (mmc_host_is_spi(card->host)) {
2013		err = mmc_spi_err_check(card);
2014		if (err)
2015			mqrq->brq.data.bytes_xfered = 0;
2016		return err;
2017	}
2018
2019	cb_data.card = card;
2020	cb_data.status = 0;
2021	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
2022				  &mmc_blk_busy_cb, &cb_data);
2023
2024	/*
2025	 * Do not assume data transferred correctly if there are any error bits
2026	 * set.
2027	 */
2028	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2029		mqrq->brq.data.bytes_xfered = 0;
2030		err = err ? err : -EIO;
2031	}
2032
2033	/* Copy the exception bit so it will be seen later on */
2034	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2035		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2036
2037	return err;
2038}
2039
2040static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2041					    struct request *req)
2042{
2043	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2044
2045	mmc_blk_reset_success(mq->blkdata, type);
2046}
2047
2048static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2049{
2050	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2051	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2052
2053	if (nr_bytes) {
2054		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2055			blk_mq_requeue_request(req, true);
2056		else
2057			__blk_mq_end_request(req, BLK_STS_OK);
2058	} else if (!blk_rq_bytes(req)) {
2059		__blk_mq_end_request(req, BLK_STS_IOERR);
2060	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2061		blk_mq_requeue_request(req, true);
2062	} else {
2063		if (mmc_card_removed(mq->card))
2064			req->rq_flags |= RQF_QUIET;
2065		blk_mq_end_request(req, BLK_STS_IOERR);
2066	}
2067}
2068
2069static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2070					struct mmc_queue_req *mqrq)
2071{
2072	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2073	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2074		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2075}
2076
2077static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2078				 struct mmc_queue_req *mqrq)
2079{
2080	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2081		mmc_run_bkops(mq->card);
2082}
2083
2084static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2085{
2086	struct mmc_queue_req *mqrq =
2087		container_of(mrq, struct mmc_queue_req, brq.mrq);
2088	struct request *req = mmc_queue_req_to_req(mqrq);
2089	struct request_queue *q = req->q;
2090	struct mmc_queue *mq = q->queuedata;
2091	struct mmc_host *host = mq->card->host;
2092	unsigned long flags;
2093
2094	if (mmc_blk_rq_error(&mqrq->brq) ||
2095	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2096		spin_lock_irqsave(&mq->lock, flags);
2097		mq->recovery_needed = true;
2098		mq->recovery_req = req;
2099		spin_unlock_irqrestore(&mq->lock, flags);
2100
2101		host->cqe_ops->cqe_recovery_start(host);
2102
2103		schedule_work(&mq->recovery_work);
2104		return;
2105	}
2106
2107	mmc_blk_rw_reset_success(mq, req);
2108
2109	/*
2110	 * Block layer timeouts race with completions which means the normal
2111	 * completion path cannot be used during recovery.
2112	 */
2113	if (mq->in_recovery)
2114		mmc_blk_cqe_complete_rq(mq, req);
2115	else if (likely(!blk_should_fake_timeout(req->q)))
2116		blk_mq_complete_request(req);
2117}
2118
2119void mmc_blk_mq_complete(struct request *req)
2120{
2121	struct mmc_queue *mq = req->q->queuedata;
2122	struct mmc_host *host = mq->card->host;
2123
2124	if (host->cqe_enabled)
2125		mmc_blk_cqe_complete_rq(mq, req);
2126	else if (likely(!blk_should_fake_timeout(req->q)))
2127		mmc_blk_mq_complete_rq(mq, req);
2128}
2129
2130static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2131				       struct request *req)
2132{
2133	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2134	struct mmc_host *host = mq->card->host;
2135
2136	if (mmc_blk_rq_error(&mqrq->brq) ||
2137	    mmc_blk_card_busy(mq->card, req)) {
2138		mmc_blk_mq_rw_recovery(mq, req);
2139	} else {
2140		mmc_blk_rw_reset_success(mq, req);
2141		mmc_retune_release(host);
2142	}
2143
2144	mmc_blk_urgent_bkops(mq, mqrq);
2145}
2146
2147static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2148{
2149	unsigned long flags;
2150	bool put_card;
2151
2152	spin_lock_irqsave(&mq->lock, flags);
2153
2154	mq->in_flight[issue_type] -= 1;
2155
2156	put_card = (mmc_tot_in_flight(mq) == 0);
2157
2158	spin_unlock_irqrestore(&mq->lock, flags);
2159
2160	if (put_card)
2161		mmc_put_card(mq->card, &mq->ctx);
2162}
2163
2164static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2165				bool can_sleep)
2166{
2167	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2168	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2169	struct mmc_request *mrq = &mqrq->brq.mrq;
2170	struct mmc_host *host = mq->card->host;
2171
2172	mmc_post_req(host, mrq, 0);
2173
2174	/*
2175	 * Block layer timeouts race with completions which means the normal
2176	 * completion path cannot be used during recovery.
2177	 */
2178	if (mq->in_recovery) {
2179		mmc_blk_mq_complete_rq(mq, req);
2180	} else if (likely(!blk_should_fake_timeout(req->q))) {
2181		if (can_sleep)
2182			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2183		else
2184			blk_mq_complete_request(req);
2185	}
2186
2187	mmc_blk_mq_dec_in_flight(mq, issue_type);
2188}
2189
2190void mmc_blk_mq_recovery(struct mmc_queue *mq)
2191{
2192	struct request *req = mq->recovery_req;
2193	struct mmc_host *host = mq->card->host;
2194	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2195
2196	mq->recovery_req = NULL;
2197	mq->rw_wait = false;
2198
2199	if (mmc_blk_rq_error(&mqrq->brq)) {
2200		mmc_retune_hold_now(host);
2201		mmc_blk_mq_rw_recovery(mq, req);
2202	}
2203
2204	mmc_blk_urgent_bkops(mq, mqrq);
2205
2206	mmc_blk_mq_post_req(mq, req, true);
2207}
2208
2209static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2210					 struct request **prev_req)
2211{
2212	if (mmc_host_done_complete(mq->card->host))
2213		return;
2214
2215	mutex_lock(&mq->complete_lock);
2216
2217	if (!mq->complete_req)
2218		goto out_unlock;
2219
2220	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2221
2222	if (prev_req)
2223		*prev_req = mq->complete_req;
2224	else
2225		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2226
2227	mq->complete_req = NULL;
2228
2229out_unlock:
2230	mutex_unlock(&mq->complete_lock);
2231}
2232
2233void mmc_blk_mq_complete_work(struct work_struct *work)
2234{
2235	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2236					    complete_work);
2237
2238	mmc_blk_mq_complete_prev_req(mq, NULL);
2239}
2240
2241static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2242{
2243	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2244						  brq.mrq);
2245	struct request *req = mmc_queue_req_to_req(mqrq);
2246	struct request_queue *q = req->q;
2247	struct mmc_queue *mq = q->queuedata;
2248	struct mmc_host *host = mq->card->host;
2249	unsigned long flags;
2250
2251	if (!mmc_host_done_complete(host)) {
2252		bool waiting;
2253
2254		/*
2255		 * We cannot complete the request in this context, so record
2256		 * that there is a request to complete, and that a following
2257		 * request does not need to wait (although it does need to
2258		 * complete complete_req first).
2259		 */
2260		spin_lock_irqsave(&mq->lock, flags);
2261		mq->complete_req = req;
2262		mq->rw_wait = false;
2263		waiting = mq->waiting;
2264		spin_unlock_irqrestore(&mq->lock, flags);
2265
2266		/*
2267		 * If 'waiting' then the waiting task will complete this
2268		 * request, otherwise queue a work to do it. Note that
2269		 * complete_work may still race with the dispatch of a following
2270		 * request.
2271		 */
2272		if (waiting)
2273			wake_up(&mq->wait);
2274		else
2275			queue_work(mq->card->complete_wq, &mq->complete_work);
2276
2277		return;
2278	}
2279
2280	/* Take the recovery path for errors or urgent background operations */
2281	if (mmc_blk_rq_error(&mqrq->brq) ||
2282	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2283		spin_lock_irqsave(&mq->lock, flags);
2284		mq->recovery_needed = true;
2285		mq->recovery_req = req;
2286		spin_unlock_irqrestore(&mq->lock, flags);
2287		wake_up(&mq->wait);
2288		schedule_work(&mq->recovery_work);
2289		return;
2290	}
2291
2292	mmc_blk_rw_reset_success(mq, req);
2293
2294	mq->rw_wait = false;
2295	wake_up(&mq->wait);
2296
2297	/* context unknown */
2298	mmc_blk_mq_post_req(mq, req, false);
2299}
2300
2301static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2302{
2303	unsigned long flags;
2304	bool done;
2305
2306	/*
2307	 * Wait while there is another request in progress, but not if recovery
2308	 * is needed. Also indicate whether there is a request waiting to start.
2309	 */
2310	spin_lock_irqsave(&mq->lock, flags);
2311	if (mq->recovery_needed) {
2312		*err = -EBUSY;
2313		done = true;
2314	} else {
2315		done = !mq->rw_wait;
2316	}
2317	mq->waiting = !done;
2318	spin_unlock_irqrestore(&mq->lock, flags);
2319
2320	return done;
2321}
2322
2323static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2324{
2325	int err = 0;
2326
2327	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2328
2329	/* Always complete the previous request if there is one */
2330	mmc_blk_mq_complete_prev_req(mq, prev_req);
2331
2332	return err;
2333}
2334
2335static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2336				  struct request *req)
2337{
2338	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2339	struct mmc_host *host = mq->card->host;
2340	struct request *prev_req = NULL;
2341	int err = 0;
2342
2343	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2344
2345	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2346
2347	mmc_pre_req(host, &mqrq->brq.mrq);
2348
2349	err = mmc_blk_rw_wait(mq, &prev_req);
2350	if (err)
2351		goto out_post_req;
2352
2353	mq->rw_wait = true;
2354
2355	err = mmc_start_request(host, &mqrq->brq.mrq);
2356
2357	if (prev_req)
2358		mmc_blk_mq_post_req(mq, prev_req, true);
2359
2360	if (err)
2361		mq->rw_wait = false;
2362
2363	/* Release re-tuning here where there is no synchronization required */
2364	if (err || mmc_host_done_complete(host))
2365		mmc_retune_release(host);
2366
2367out_post_req:
2368	if (err)
2369		mmc_post_req(host, &mqrq->brq.mrq, err);
2370
2371	return err;
2372}
2373
2374static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2375{
2376	if (host->cqe_enabled)
2377		return host->cqe_ops->cqe_wait_for_idle(host);
2378
2379	return mmc_blk_rw_wait(mq, NULL);
2380}
2381
2382enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2383{
2384	struct mmc_blk_data *md = mq->blkdata;
2385	struct mmc_card *card = md->queue.card;
2386	struct mmc_host *host = card->host;
2387	int ret;
2388
2389	ret = mmc_blk_part_switch(card, md->part_type);
2390	if (ret)
2391		return MMC_REQ_FAILED_TO_START;
2392
2393	switch (mmc_issue_type(mq, req)) {
2394	case MMC_ISSUE_SYNC:
2395		ret = mmc_blk_wait_for_idle(mq, host);
2396		if (ret)
2397			return MMC_REQ_BUSY;
2398		switch (req_op(req)) {
2399		case REQ_OP_DRV_IN:
2400		case REQ_OP_DRV_OUT:
2401			mmc_blk_issue_drv_op(mq, req);
2402			break;
2403		case REQ_OP_DISCARD:
2404			mmc_blk_issue_discard_rq(mq, req);
2405			break;
2406		case REQ_OP_SECURE_ERASE:
2407			mmc_blk_issue_secdiscard_rq(mq, req);
2408			break;
2409		case REQ_OP_WRITE_ZEROES:
2410			mmc_blk_issue_trim_rq(mq, req);
2411			break;
2412		case REQ_OP_FLUSH:
2413			mmc_blk_issue_flush(mq, req);
2414			break;
2415		default:
2416			WARN_ON_ONCE(1);
2417			return MMC_REQ_FAILED_TO_START;
2418		}
2419		return MMC_REQ_FINISHED;
2420	case MMC_ISSUE_DCMD:
2421	case MMC_ISSUE_ASYNC:
2422		switch (req_op(req)) {
2423		case REQ_OP_FLUSH:
2424			if (!mmc_cache_enabled(host)) {
2425				blk_mq_end_request(req, BLK_STS_OK);
2426				return MMC_REQ_FINISHED;
2427			}
2428			ret = mmc_blk_cqe_issue_flush(mq, req);
2429			break;
 
2430		case REQ_OP_WRITE:
2431			card->written_flag = true;
2432			fallthrough;
2433		case REQ_OP_READ:
2434			if (host->cqe_enabled)
2435				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2436			else
2437				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2438			break;
2439		default:
2440			WARN_ON_ONCE(1);
2441			ret = -EINVAL;
2442		}
2443		if (!ret)
2444			return MMC_REQ_STARTED;
2445		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2446	default:
2447		WARN_ON_ONCE(1);
2448		return MMC_REQ_FAILED_TO_START;
2449	}
2450}
2451
2452static inline int mmc_blk_readonly(struct mmc_card *card)
2453{
2454	return mmc_card_readonly(card) ||
2455	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2456}
2457
2458static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2459					      struct device *parent,
2460					      sector_t size,
2461					      bool default_ro,
2462					      const char *subname,
2463					      int area_type,
2464					      unsigned int part_type)
2465{
2466	struct mmc_blk_data *md;
2467	int devidx, ret;
2468	char cap_str[10];
2469	bool cache_enabled = false;
2470	bool fua_enabled = false;
2471
2472	devidx = ida_alloc_max(&mmc_blk_ida, max_devices - 1, GFP_KERNEL);
2473	if (devidx < 0) {
2474		/*
2475		 * We get -ENOSPC because there are no more any available
2476		 * devidx. The reason may be that, either userspace haven't yet
2477		 * unmounted the partitions, which postpones mmc_blk_release()
2478		 * from being called, or the device has more partitions than
2479		 * what we support.
2480		 */
2481		if (devidx == -ENOSPC)
2482			dev_err(mmc_dev(card->host),
2483				"no more device IDs available\n");
2484
2485		return ERR_PTR(devidx);
2486	}
2487
2488	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2489	if (!md) {
2490		ret = -ENOMEM;
2491		goto out;
2492	}
2493
2494	md->area_type = area_type;
2495
2496	/*
2497	 * Set the read-only status based on the supported commands
2498	 * and the write protect switch.
2499	 */
2500	md->read_only = mmc_blk_readonly(card);
2501
2502	md->disk = mmc_init_queue(&md->queue, card);
2503	if (IS_ERR(md->disk)) {
2504		ret = PTR_ERR(md->disk);
2505		goto err_kfree;
2506	}
2507
2508	INIT_LIST_HEAD(&md->part);
2509	INIT_LIST_HEAD(&md->rpmbs);
2510	kref_init(&md->kref);
2511
2512	md->queue.blkdata = md;
2513	md->part_type = part_type;
2514
2515	md->disk->major	= MMC_BLOCK_MAJOR;
2516	md->disk->minors = perdev_minors;
2517	md->disk->first_minor = devidx * perdev_minors;
2518	md->disk->fops = &mmc_bdops;
2519	md->disk->private_data = md;
2520	md->parent = parent;
2521	set_disk_ro(md->disk, md->read_only || default_ro);
2522	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2523		md->disk->flags |= GENHD_FL_NO_PART;
2524
2525	/*
2526	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2527	 *
2528	 * - be set for removable media with permanent block devices
2529	 * - be unset for removable block devices with permanent media
2530	 *
2531	 * Since MMC block devices clearly fall under the second
2532	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2533	 * should use the block device creation/destruction hotplug
2534	 * messages to tell when the card is present.
2535	 */
2536
2537	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2538		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2539
2540	set_capacity(md->disk, size);
2541
2542	if (mmc_host_cmd23(card->host)) {
2543		if ((mmc_card_mmc(card) &&
2544		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2545		    (mmc_card_sd(card) &&
2546		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2547			md->flags |= MMC_BLK_CMD23;
2548	}
2549
2550	if (md->flags & MMC_BLK_CMD23 &&
2551	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2552	     card->ext_csd.rel_sectors)) {
2553		md->flags |= MMC_BLK_REL_WR;
2554		fua_enabled = true;
2555		cache_enabled = true;
2556	}
2557	if (mmc_cache_enabled(card->host))
2558		cache_enabled  = true;
2559
2560	blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2561
2562	string_get_size((u64)size, 512, STRING_UNITS_2,
2563			cap_str, sizeof(cap_str));
2564	pr_info("%s: %s %s %s%s\n",
2565		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2566		cap_str, md->read_only ? " (ro)" : "");
2567
2568	/* used in ->open, must be set before add_disk: */
2569	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2570		dev_set_drvdata(&card->dev, md);
2571	ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2572	if (ret)
2573		goto err_put_disk;
2574	return md;
2575
2576 err_put_disk:
2577	put_disk(md->disk);
2578	blk_mq_free_tag_set(&md->queue.tag_set);
2579 err_kfree:
2580	kfree(md);
2581 out:
2582	ida_free(&mmc_blk_ida, devidx);
2583	return ERR_PTR(ret);
2584}
2585
2586static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2587{
2588	sector_t size;
2589
2590	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2591		/*
2592		 * The EXT_CSD sector count is in number or 512 byte
2593		 * sectors.
2594		 */
2595		size = card->ext_csd.sectors;
2596	} else {
2597		/*
2598		 * The CSD capacity field is in units of read_blkbits.
2599		 * set_capacity takes units of 512 bytes.
2600		 */
2601		size = (typeof(sector_t))card->csd.capacity
2602			<< (card->csd.read_blkbits - 9);
2603	}
2604
2605	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2606					MMC_BLK_DATA_AREA_MAIN, 0);
2607}
2608
2609static int mmc_blk_alloc_part(struct mmc_card *card,
2610			      struct mmc_blk_data *md,
2611			      unsigned int part_type,
2612			      sector_t size,
2613			      bool default_ro,
2614			      const char *subname,
2615			      int area_type)
2616{
2617	struct mmc_blk_data *part_md;
2618
2619	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2620				    subname, area_type, part_type);
2621	if (IS_ERR(part_md))
2622		return PTR_ERR(part_md);
2623	list_add(&part_md->part, &md->part);
2624
2625	return 0;
2626}
2627
2628/**
2629 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2630 * @filp: the character device file
2631 * @cmd: the ioctl() command
2632 * @arg: the argument from userspace
2633 *
2634 * This will essentially just redirect the ioctl()s coming in over to
2635 * the main block device spawning the RPMB character device.
2636 */
2637static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2638			   unsigned long arg)
2639{
2640	struct mmc_rpmb_data *rpmb = filp->private_data;
2641	int ret;
2642
2643	switch (cmd) {
2644	case MMC_IOC_CMD:
2645		ret = mmc_blk_ioctl_cmd(rpmb->md,
2646					(struct mmc_ioc_cmd __user *)arg,
2647					rpmb);
2648		break;
2649	case MMC_IOC_MULTI_CMD:
2650		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2651					(struct mmc_ioc_multi_cmd __user *)arg,
2652					rpmb);
2653		break;
2654	default:
2655		ret = -EINVAL;
2656		break;
2657	}
2658
2659	return ret;
2660}
2661
2662#ifdef CONFIG_COMPAT
2663static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2664			      unsigned long arg)
2665{
2666	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2667}
2668#endif
2669
2670static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2671{
2672	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2673						  struct mmc_rpmb_data, chrdev);
2674
2675	get_device(&rpmb->dev);
2676	filp->private_data = rpmb;
2677	mmc_blk_get(rpmb->md->disk);
2678
2679	return nonseekable_open(inode, filp);
2680}
2681
2682static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2683{
2684	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2685						  struct mmc_rpmb_data, chrdev);
2686
2687	mmc_blk_put(rpmb->md);
2688	put_device(&rpmb->dev);
2689
2690	return 0;
2691}
2692
2693static const struct file_operations mmc_rpmb_fileops = {
2694	.release = mmc_rpmb_chrdev_release,
2695	.open = mmc_rpmb_chrdev_open,
2696	.owner = THIS_MODULE,
2697	.llseek = no_llseek,
2698	.unlocked_ioctl = mmc_rpmb_ioctl,
2699#ifdef CONFIG_COMPAT
2700	.compat_ioctl = mmc_rpmb_ioctl_compat,
2701#endif
2702};
2703
2704static void mmc_blk_rpmb_device_release(struct device *dev)
2705{
2706	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2707
2708	ida_free(&mmc_rpmb_ida, rpmb->id);
2709	kfree(rpmb);
2710}
2711
2712static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2713				   struct mmc_blk_data *md,
2714				   unsigned int part_index,
2715				   sector_t size,
2716				   const char *subname)
2717{
2718	int devidx, ret;
2719	char rpmb_name[DISK_NAME_LEN];
2720	char cap_str[10];
2721	struct mmc_rpmb_data *rpmb;
2722
2723	/* This creates the minor number for the RPMB char device */
2724	devidx = ida_alloc_max(&mmc_rpmb_ida, max_devices - 1, GFP_KERNEL);
2725	if (devidx < 0)
2726		return devidx;
2727
2728	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2729	if (!rpmb) {
2730		ida_free(&mmc_rpmb_ida, devidx);
2731		return -ENOMEM;
2732	}
2733
2734	snprintf(rpmb_name, sizeof(rpmb_name),
2735		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2736
2737	rpmb->id = devidx;
2738	rpmb->part_index = part_index;
2739	rpmb->dev.init_name = rpmb_name;
2740	rpmb->dev.bus = &mmc_rpmb_bus_type;
2741	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2742	rpmb->dev.parent = &card->dev;
2743	rpmb->dev.release = mmc_blk_rpmb_device_release;
2744	device_initialize(&rpmb->dev);
2745	dev_set_drvdata(&rpmb->dev, rpmb);
2746	rpmb->md = md;
2747
2748	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2749	rpmb->chrdev.owner = THIS_MODULE;
2750	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2751	if (ret) {
2752		pr_err("%s: could not add character device\n", rpmb_name);
2753		goto out_put_device;
2754	}
2755
2756	list_add(&rpmb->node, &md->rpmbs);
2757
2758	string_get_size((u64)size, 512, STRING_UNITS_2,
2759			cap_str, sizeof(cap_str));
2760
2761	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2762		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2763		MAJOR(mmc_rpmb_devt), rpmb->id);
2764
2765	return 0;
2766
2767out_put_device:
2768	put_device(&rpmb->dev);
2769	return ret;
2770}
2771
2772static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2773
2774{
2775	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2776	put_device(&rpmb->dev);
2777}
2778
2779/* MMC Physical partitions consist of two boot partitions and
2780 * up to four general purpose partitions.
2781 * For each partition enabled in EXT_CSD a block device will be allocatedi
2782 * to provide access to the partition.
2783 */
2784
2785static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2786{
2787	int idx, ret;
2788
2789	if (!mmc_card_mmc(card))
2790		return 0;
2791
2792	for (idx = 0; idx < card->nr_parts; idx++) {
2793		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2794			/*
2795			 * RPMB partitions does not provide block access, they
2796			 * are only accessed using ioctl():s. Thus create
2797			 * special RPMB block devices that do not have a
2798			 * backing block queue for these.
2799			 */
2800			ret = mmc_blk_alloc_rpmb_part(card, md,
2801				card->part[idx].part_cfg,
2802				card->part[idx].size >> 9,
2803				card->part[idx].name);
2804			if (ret)
2805				return ret;
2806		} else if (card->part[idx].size) {
2807			ret = mmc_blk_alloc_part(card, md,
2808				card->part[idx].part_cfg,
2809				card->part[idx].size >> 9,
2810				card->part[idx].force_ro,
2811				card->part[idx].name,
2812				card->part[idx].area_type);
2813			if (ret)
2814				return ret;
2815		}
2816	}
2817
2818	return 0;
2819}
2820
2821static void mmc_blk_remove_req(struct mmc_blk_data *md)
2822{
2823	/*
2824	 * Flush remaining requests and free queues. It is freeing the queue
2825	 * that stops new requests from being accepted.
2826	 */
2827	del_gendisk(md->disk);
2828	mmc_cleanup_queue(&md->queue);
2829	mmc_blk_put(md);
2830}
2831
2832static void mmc_blk_remove_parts(struct mmc_card *card,
2833				 struct mmc_blk_data *md)
2834{
2835	struct list_head *pos, *q;
2836	struct mmc_blk_data *part_md;
2837	struct mmc_rpmb_data *rpmb;
2838
2839	/* Remove RPMB partitions */
2840	list_for_each_safe(pos, q, &md->rpmbs) {
2841		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2842		list_del(pos);
2843		mmc_blk_remove_rpmb_part(rpmb);
2844	}
2845	/* Remove block partitions */
2846	list_for_each_safe(pos, q, &md->part) {
2847		part_md = list_entry(pos, struct mmc_blk_data, part);
2848		list_del(pos);
2849		mmc_blk_remove_req(part_md);
2850	}
2851}
2852
2853#ifdef CONFIG_DEBUG_FS
2854
2855static int mmc_dbg_card_status_get(void *data, u64 *val)
2856{
2857	struct mmc_card *card = data;
2858	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2859	struct mmc_queue *mq = &md->queue;
2860	struct request *req;
2861	int ret;
2862
2863	/* Ask the block layer about the card status */
2864	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2865	if (IS_ERR(req))
2866		return PTR_ERR(req);
2867	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2868	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2869	blk_execute_rq(req, false);
2870	ret = req_to_mmc_queue_req(req)->drv_op_result;
2871	if (ret >= 0) {
2872		*val = ret;
2873		ret = 0;
2874	}
2875	blk_mq_free_request(req);
2876
2877	return ret;
2878}
2879DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2880			 NULL, "%08llx\n");
2881
2882/* That is two digits * 512 + 1 for newline */
2883#define EXT_CSD_STR_LEN 1025
2884
2885static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2886{
2887	struct mmc_card *card = inode->i_private;
2888	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2889	struct mmc_queue *mq = &md->queue;
2890	struct request *req;
2891	char *buf;
2892	ssize_t n = 0;
2893	u8 *ext_csd;
2894	int err, i;
2895
2896	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2897	if (!buf)
2898		return -ENOMEM;
2899
2900	/* Ask the block layer for the EXT CSD */
2901	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2902	if (IS_ERR(req)) {
2903		err = PTR_ERR(req);
2904		goto out_free;
2905	}
2906	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2907	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2908	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2909	blk_execute_rq(req, false);
2910	err = req_to_mmc_queue_req(req)->drv_op_result;
2911	blk_mq_free_request(req);
2912	if (err) {
2913		pr_err("FAILED %d\n", err);
2914		goto out_free;
2915	}
2916
2917	for (i = 0; i < 512; i++)
2918		n += sprintf(buf + n, "%02x", ext_csd[i]);
2919	n += sprintf(buf + n, "\n");
2920
2921	if (n != EXT_CSD_STR_LEN) {
2922		err = -EINVAL;
2923		kfree(ext_csd);
2924		goto out_free;
2925	}
2926
2927	filp->private_data = buf;
2928	kfree(ext_csd);
2929	return 0;
2930
2931out_free:
2932	kfree(buf);
2933	return err;
2934}
2935
2936static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2937				size_t cnt, loff_t *ppos)
2938{
2939	char *buf = filp->private_data;
2940
2941	return simple_read_from_buffer(ubuf, cnt, ppos,
2942				       buf, EXT_CSD_STR_LEN);
2943}
2944
2945static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2946{
2947	kfree(file->private_data);
2948	return 0;
2949}
2950
2951static const struct file_operations mmc_dbg_ext_csd_fops = {
2952	.open		= mmc_ext_csd_open,
2953	.read		= mmc_ext_csd_read,
2954	.release	= mmc_ext_csd_release,
2955	.llseek		= default_llseek,
2956};
2957
2958static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2959{
2960	struct dentry *root;
2961
2962	if (!card->debugfs_root)
2963		return;
2964
2965	root = card->debugfs_root;
2966
2967	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2968		md->status_dentry =
2969			debugfs_create_file_unsafe("status", 0400, root,
2970						   card,
2971						   &mmc_dbg_card_status_fops);
 
 
2972	}
2973
2974	if (mmc_card_mmc(card)) {
2975		md->ext_csd_dentry =
2976			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2977					    &mmc_dbg_ext_csd_fops);
 
 
2978	}
 
 
2979}
2980
2981static void mmc_blk_remove_debugfs(struct mmc_card *card,
2982				   struct mmc_blk_data *md)
2983{
2984	if (!card->debugfs_root)
2985		return;
2986
2987	debugfs_remove(md->status_dentry);
2988	md->status_dentry = NULL;
 
 
2989
2990	debugfs_remove(md->ext_csd_dentry);
2991	md->ext_csd_dentry = NULL;
 
 
2992}
2993
2994#else
2995
2996static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2997{
 
2998}
2999
3000static void mmc_blk_remove_debugfs(struct mmc_card *card,
3001				   struct mmc_blk_data *md)
3002{
3003}
3004
3005#endif /* CONFIG_DEBUG_FS */
3006
3007static int mmc_blk_probe(struct mmc_card *card)
3008{
3009	struct mmc_blk_data *md;
3010	int ret = 0;
3011
3012	/*
3013	 * Check that the card supports the command class(es) we need.
3014	 */
3015	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3016		return -ENODEV;
3017
3018	mmc_fixup_device(card, mmc_blk_fixups);
3019
3020	card->complete_wq = alloc_workqueue("mmc_complete",
3021					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3022	if (!card->complete_wq) {
3023		pr_err("Failed to create mmc completion workqueue");
3024		return -ENOMEM;
3025	}
3026
3027	md = mmc_blk_alloc(card);
3028	if (IS_ERR(md)) {
3029		ret = PTR_ERR(md);
3030		goto out_free;
3031	}
3032
3033	ret = mmc_blk_alloc_parts(card, md);
3034	if (ret)
3035		goto out;
3036
3037	/* Add two debugfs entries */
3038	mmc_blk_add_debugfs(card, md);
3039
3040	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3041	pm_runtime_use_autosuspend(&card->dev);
3042
3043	/*
3044	 * Don't enable runtime PM for SD-combo cards here. Leave that
3045	 * decision to be taken during the SDIO init sequence instead.
3046	 */
3047	if (!mmc_card_sd_combo(card)) {
3048		pm_runtime_set_active(&card->dev);
3049		pm_runtime_enable(&card->dev);
3050	}
3051
3052	return 0;
3053
3054out:
3055	mmc_blk_remove_parts(card, md);
3056	mmc_blk_remove_req(md);
3057out_free:
3058	destroy_workqueue(card->complete_wq);
3059	return ret;
3060}
3061
3062static void mmc_blk_remove(struct mmc_card *card)
3063{
3064	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3065
3066	mmc_blk_remove_debugfs(card, md);
3067	mmc_blk_remove_parts(card, md);
3068	pm_runtime_get_sync(&card->dev);
3069	if (md->part_curr != md->part_type) {
3070		mmc_claim_host(card->host);
3071		mmc_blk_part_switch(card, md->part_type);
3072		mmc_release_host(card->host);
3073	}
3074	if (!mmc_card_sd_combo(card))
3075		pm_runtime_disable(&card->dev);
3076	pm_runtime_put_noidle(&card->dev);
3077	mmc_blk_remove_req(md);
 
3078	destroy_workqueue(card->complete_wq);
3079}
3080
3081static int _mmc_blk_suspend(struct mmc_card *card)
3082{
3083	struct mmc_blk_data *part_md;
3084	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3085
3086	if (md) {
3087		mmc_queue_suspend(&md->queue);
3088		list_for_each_entry(part_md, &md->part, part) {
3089			mmc_queue_suspend(&part_md->queue);
3090		}
3091	}
3092	return 0;
3093}
3094
3095static void mmc_blk_shutdown(struct mmc_card *card)
3096{
3097	_mmc_blk_suspend(card);
3098}
3099
3100#ifdef CONFIG_PM_SLEEP
3101static int mmc_blk_suspend(struct device *dev)
3102{
3103	struct mmc_card *card = mmc_dev_to_card(dev);
3104
3105	return _mmc_blk_suspend(card);
3106}
3107
3108static int mmc_blk_resume(struct device *dev)
3109{
3110	struct mmc_blk_data *part_md;
3111	struct mmc_blk_data *md = dev_get_drvdata(dev);
3112
3113	if (md) {
3114		/*
3115		 * Resume involves the card going into idle state,
3116		 * so current partition is always the main one.
3117		 */
3118		md->part_curr = md->part_type;
3119		mmc_queue_resume(&md->queue);
3120		list_for_each_entry(part_md, &md->part, part) {
3121			mmc_queue_resume(&part_md->queue);
3122		}
3123	}
3124	return 0;
3125}
3126#endif
3127
3128static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3129
3130static struct mmc_driver mmc_driver = {
3131	.drv		= {
3132		.name	= "mmcblk",
3133		.pm	= &mmc_blk_pm_ops,
3134	},
3135	.probe		= mmc_blk_probe,
3136	.remove		= mmc_blk_remove,
3137	.shutdown	= mmc_blk_shutdown,
3138};
3139
3140static int __init mmc_blk_init(void)
3141{
3142	int res;
3143
3144	res  = bus_register(&mmc_rpmb_bus_type);
3145	if (res < 0) {
3146		pr_err("mmcblk: could not register RPMB bus type\n");
3147		return res;
3148	}
3149	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3150	if (res < 0) {
3151		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3152		goto out_bus_unreg;
3153	}
3154
3155	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3156		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3157
3158	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3159
3160	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3161	if (res)
3162		goto out_chrdev_unreg;
3163
3164	res = mmc_register_driver(&mmc_driver);
3165	if (res)
3166		goto out_blkdev_unreg;
3167
3168	return 0;
3169
3170out_blkdev_unreg:
3171	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3172out_chrdev_unreg:
3173	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3174out_bus_unreg:
3175	bus_unregister(&mmc_rpmb_bus_type);
3176	return res;
3177}
3178
3179static void __exit mmc_blk_exit(void)
3180{
3181	mmc_unregister_driver(&mmc_driver);
3182	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3183	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3184	bus_unregister(&mmc_rpmb_bus_type);
3185}
3186
3187module_init(mmc_blk_init);
3188module_exit(mmc_blk_exit);
3189
3190MODULE_LICENSE("GPL");
3191MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");