Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block driver for media (i.e., flash cards)
   4 *
   5 * Copyright 2002 Hewlett-Packard Company
   6 * Copyright 2005-2008 Pierre Ossman
   7 *
   8 * Use consistent with the GNU GPL is permitted,
   9 * provided that this copyright notice is
  10 * preserved in its entirety in all copies and derived works.
  11 *
  12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  14 * FITNESS FOR ANY PARTICULAR PURPOSE.
  15 *
  16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
  17 *
  18 * Author:  Andrew Christian
  19 *          28 May 2002
  20 */
  21#include <linux/moduleparam.h>
  22#include <linux/module.h>
  23#include <linux/init.h>
  24
  25#include <linux/kernel.h>
  26#include <linux/fs.h>
  27#include <linux/slab.h>
  28#include <linux/errno.h>
  29#include <linux/hdreg.h>
  30#include <linux/kdev_t.h>
  31#include <linux/kref.h>
  32#include <linux/blkdev.h>
  33#include <linux/cdev.h>
  34#include <linux/mutex.h>
  35#include <linux/scatterlist.h>
  36#include <linux/string_helpers.h>
  37#include <linux/delay.h>
  38#include <linux/capability.h>
  39#include <linux/compat.h>
  40#include <linux/pm_runtime.h>
  41#include <linux/idr.h>
  42#include <linux/debugfs.h>
  43
  44#include <linux/mmc/ioctl.h>
  45#include <linux/mmc/card.h>
  46#include <linux/mmc/host.h>
  47#include <linux/mmc/mmc.h>
  48#include <linux/mmc/sd.h>
  49
  50#include <linux/uaccess.h>
  51
  52#include "queue.h"
  53#include "block.h"
  54#include "core.h"
  55#include "card.h"
  56#include "crypto.h"
  57#include "host.h"
  58#include "bus.h"
  59#include "mmc_ops.h"
  60#include "quirks.h"
  61#include "sd_ops.h"
  62
  63MODULE_ALIAS("mmc:block");
  64#ifdef MODULE_PARAM_PREFIX
  65#undef MODULE_PARAM_PREFIX
  66#endif
  67#define MODULE_PARAM_PREFIX "mmcblk."
  68
  69/*
  70 * Set a 10 second timeout for polling write request busy state. Note, mmc core
  71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
  72 * second software timer to timeout the whole request, so 10 seconds should be
  73 * ample.
  74 */
  75#define MMC_BLK_TIMEOUT_MS  (10 * 1000)
  76#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
  77#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
  78
  79#define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
  80				  (rq_data_dir(req) == WRITE))
  81static DEFINE_MUTEX(block_mutex);
  82
  83/*
  84 * The defaults come from config options but can be overriden by module
  85 * or bootarg options.
  86 */
  87static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
  88
  89/*
  90 * We've only got one major, so number of mmcblk devices is
  91 * limited to (1 << 20) / number of minors per device.  It is also
  92 * limited by the MAX_DEVICES below.
  93 */
  94static int max_devices;
  95
  96#define MAX_DEVICES 256
  97
  98static DEFINE_IDA(mmc_blk_ida);
  99static DEFINE_IDA(mmc_rpmb_ida);
 100
 101struct mmc_blk_busy_data {
 102	struct mmc_card *card;
 103	u32 status;
 104};
 105
 106/*
 107 * There is one mmc_blk_data per slot.
 108 */
 109struct mmc_blk_data {
 110	struct device	*parent;
 111	struct gendisk	*disk;
 112	struct mmc_queue queue;
 113	struct list_head part;
 114	struct list_head rpmbs;
 115
 116	unsigned int	flags;
 117#define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
 118#define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
 119
 120	struct kref	kref;
 121	unsigned int	read_only;
 122	unsigned int	part_type;
 123	unsigned int	reset_done;
 124#define MMC_BLK_READ		BIT(0)
 125#define MMC_BLK_WRITE		BIT(1)
 126#define MMC_BLK_DISCARD		BIT(2)
 127#define MMC_BLK_SECDISCARD	BIT(3)
 128#define MMC_BLK_CQE_RECOVERY	BIT(4)
 129#define MMC_BLK_TRIM		BIT(5)
 130
 131	/*
 132	 * Only set in main mmc_blk_data associated
 133	 * with mmc_card with dev_set_drvdata, and keeps
 134	 * track of the current selected device partition.
 135	 */
 136	unsigned int	part_curr;
 137#define MMC_BLK_PART_INVALID	UINT_MAX	/* Unknown partition active */
 
 138	int	area_type;
 139
 140	/* debugfs files (only in main mmc_blk_data) */
 141	struct dentry *status_dentry;
 142	struct dentry *ext_csd_dentry;
 143};
 144
 145/* Device type for RPMB character devices */
 146static dev_t mmc_rpmb_devt;
 147
 148/* Bus type for RPMB character devices */
 149static struct bus_type mmc_rpmb_bus_type = {
 150	.name = "mmc_rpmb",
 151};
 152
 153/**
 154 * struct mmc_rpmb_data - special RPMB device type for these areas
 155 * @dev: the device for the RPMB area
 156 * @chrdev: character device for the RPMB area
 157 * @id: unique device ID number
 158 * @part_index: partition index (0 on first)
 159 * @md: parent MMC block device
 160 * @node: list item, so we can put this device on a list
 161 */
 162struct mmc_rpmb_data {
 163	struct device dev;
 164	struct cdev chrdev;
 165	int id;
 166	unsigned int part_index;
 167	struct mmc_blk_data *md;
 168	struct list_head node;
 169};
 170
 171static DEFINE_MUTEX(open_lock);
 172
 173module_param(perdev_minors, int, 0444);
 174MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
 175
 176static inline int mmc_blk_part_switch(struct mmc_card *card,
 177				      unsigned int part_type);
 178static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
 179			       struct mmc_card *card,
 180			       int recovery_mode,
 181			       struct mmc_queue *mq);
 182static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
 183
 184static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
 185{
 186	struct mmc_blk_data *md;
 187
 188	mutex_lock(&open_lock);
 189	md = disk->private_data;
 190	if (md && !kref_get_unless_zero(&md->kref))
 191		md = NULL;
 
 
 192	mutex_unlock(&open_lock);
 193
 194	return md;
 195}
 196
 197static inline int mmc_get_devidx(struct gendisk *disk)
 198{
 199	int devidx = disk->first_minor / perdev_minors;
 200	return devidx;
 201}
 202
 203static void mmc_blk_kref_release(struct kref *ref)
 204{
 205	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
 206	int devidx;
 207
 208	devidx = mmc_get_devidx(md->disk);
 209	ida_simple_remove(&mmc_blk_ida, devidx);
 210
 211	mutex_lock(&open_lock);
 212	md->disk->private_data = NULL;
 
 
 
 
 
 
 
 213	mutex_unlock(&open_lock);
 214
 215	put_disk(md->disk);
 216	kfree(md);
 217}
 218
 219static void mmc_blk_put(struct mmc_blk_data *md)
 220{
 221	kref_put(&md->kref, mmc_blk_kref_release);
 222}
 223
 224static ssize_t power_ro_lock_show(struct device *dev,
 225		struct device_attribute *attr, char *buf)
 226{
 227	int ret;
 228	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 229	struct mmc_card *card = md->queue.card;
 230	int locked = 0;
 231
 232	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
 233		locked = 2;
 234	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
 235		locked = 1;
 236
 237	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
 238
 239	mmc_blk_put(md);
 240
 241	return ret;
 242}
 243
 244static ssize_t power_ro_lock_store(struct device *dev,
 245		struct device_attribute *attr, const char *buf, size_t count)
 246{
 247	int ret;
 248	struct mmc_blk_data *md, *part_md;
 249	struct mmc_queue *mq;
 250	struct request *req;
 251	unsigned long set;
 252
 253	if (kstrtoul(buf, 0, &set))
 254		return -EINVAL;
 255
 256	if (set != 1)
 257		return count;
 258
 259	md = mmc_blk_get(dev_to_disk(dev));
 260	mq = &md->queue;
 261
 262	/* Dispatch locking to the block layer */
 263	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
 264	if (IS_ERR(req)) {
 265		count = PTR_ERR(req);
 266		goto out_put;
 267	}
 268	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
 269	blk_execute_rq(req, false);
 270	ret = req_to_mmc_queue_req(req)->drv_op_result;
 271	blk_mq_free_request(req);
 272
 273	if (!ret) {
 274		pr_info("%s: Locking boot partition ro until next power on\n",
 275			md->disk->disk_name);
 276		set_disk_ro(md->disk, 1);
 277
 278		list_for_each_entry(part_md, &md->part, part)
 279			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
 280				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
 281				set_disk_ro(part_md->disk, 1);
 282			}
 283	}
 284out_put:
 285	mmc_blk_put(md);
 286	return count;
 287}
 288
 289static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
 290		power_ro_lock_show, power_ro_lock_store);
 291
 292static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
 293			     char *buf)
 294{
 295	int ret;
 296	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 297
 298	ret = snprintf(buf, PAGE_SIZE, "%d\n",
 299		       get_disk_ro(dev_to_disk(dev)) ^
 300		       md->read_only);
 301	mmc_blk_put(md);
 302	return ret;
 303}
 304
 305static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
 306			      const char *buf, size_t count)
 307{
 308	int ret;
 309	char *end;
 310	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 311	unsigned long set = simple_strtoul(buf, &end, 0);
 312	if (end == buf) {
 313		ret = -EINVAL;
 314		goto out;
 315	}
 316
 317	set_disk_ro(dev_to_disk(dev), set || md->read_only);
 318	ret = count;
 319out:
 320	mmc_blk_put(md);
 321	return ret;
 322}
 323
 324static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
 325
 326static struct attribute *mmc_disk_attrs[] = {
 327	&dev_attr_force_ro.attr,
 328	&dev_attr_ro_lock_until_next_power_on.attr,
 329	NULL,
 330};
 331
 332static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
 333		struct attribute *a, int n)
 334{
 335	struct device *dev = kobj_to_dev(kobj);
 336	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 337	umode_t mode = a->mode;
 338
 339	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
 340	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
 341	    md->queue.card->ext_csd.boot_ro_lockable) {
 342		mode = S_IRUGO;
 343		if (!(md->queue.card->ext_csd.boot_ro_lock &
 344				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
 345			mode |= S_IWUSR;
 346	}
 347
 348	mmc_blk_put(md);
 349	return mode;
 350}
 351
 352static const struct attribute_group mmc_disk_attr_group = {
 353	.is_visible	= mmc_disk_attrs_is_visible,
 354	.attrs		= mmc_disk_attrs,
 355};
 356
 357static const struct attribute_group *mmc_disk_attr_groups[] = {
 358	&mmc_disk_attr_group,
 359	NULL,
 360};
 361
 362static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
 363{
 364	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
 365	int ret = -ENXIO;
 366
 367	mutex_lock(&block_mutex);
 368	if (md) {
 369		ret = 0;
 370		if ((mode & FMODE_WRITE) && md->read_only) {
 371			mmc_blk_put(md);
 372			ret = -EROFS;
 373		}
 374	}
 375	mutex_unlock(&block_mutex);
 376
 377	return ret;
 378}
 379
 380static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
 381{
 382	struct mmc_blk_data *md = disk->private_data;
 383
 384	mutex_lock(&block_mutex);
 385	mmc_blk_put(md);
 386	mutex_unlock(&block_mutex);
 387}
 388
 389static int
 390mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 391{
 392	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
 393	geo->heads = 4;
 394	geo->sectors = 16;
 395	return 0;
 396}
 397
 398struct mmc_blk_ioc_data {
 399	struct mmc_ioc_cmd ic;
 400	unsigned char *buf;
 401	u64 buf_bytes;
 402	struct mmc_rpmb_data *rpmb;
 403};
 404
 405static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
 406	struct mmc_ioc_cmd __user *user)
 407{
 408	struct mmc_blk_ioc_data *idata;
 409	int err;
 410
 411	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
 412	if (!idata) {
 413		err = -ENOMEM;
 414		goto out;
 415	}
 416
 417	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
 418		err = -EFAULT;
 419		goto idata_err;
 420	}
 421
 422	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
 423	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
 424		err = -EOVERFLOW;
 425		goto idata_err;
 426	}
 427
 428	if (!idata->buf_bytes) {
 429		idata->buf = NULL;
 430		return idata;
 431	}
 432
 433	idata->buf = memdup_user((void __user *)(unsigned long)
 434				 idata->ic.data_ptr, idata->buf_bytes);
 435	if (IS_ERR(idata->buf)) {
 436		err = PTR_ERR(idata->buf);
 437		goto idata_err;
 438	}
 439
 440	return idata;
 441
 442idata_err:
 443	kfree(idata);
 444out:
 445	return ERR_PTR(err);
 446}
 447
 448static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
 449				      struct mmc_blk_ioc_data *idata)
 450{
 451	struct mmc_ioc_cmd *ic = &idata->ic;
 452
 453	if (copy_to_user(&(ic_ptr->response), ic->response,
 454			 sizeof(ic->response)))
 455		return -EFAULT;
 456
 457	if (!idata->ic.write_flag) {
 458		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
 459				 idata->buf, idata->buf_bytes))
 460			return -EFAULT;
 461	}
 462
 463	return 0;
 464}
 465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
 467			       struct mmc_blk_ioc_data *idata)
 468{
 469	struct mmc_command cmd = {}, sbc = {};
 470	struct mmc_data data = {};
 471	struct mmc_request mrq = {};
 472	struct scatterlist sg;
 473	int err;
 474	unsigned int target_part;
 475
 476	if (!card || !md || !idata)
 477		return -EINVAL;
 478
 479	/*
 480	 * The RPMB accesses comes in from the character device, so we
 481	 * need to target these explicitly. Else we just target the
 482	 * partition type for the block device the ioctl() was issued
 483	 * on.
 484	 */
 485	if (idata->rpmb) {
 486		/* Support multiple RPMB partitions */
 487		target_part = idata->rpmb->part_index;
 488		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
 489	} else {
 490		target_part = md->part_type;
 491	}
 492
 493	cmd.opcode = idata->ic.opcode;
 494	cmd.arg = idata->ic.arg;
 495	cmd.flags = idata->ic.flags;
 496
 497	if (idata->buf_bytes) {
 498		data.sg = &sg;
 499		data.sg_len = 1;
 500		data.blksz = idata->ic.blksz;
 501		data.blocks = idata->ic.blocks;
 502
 503		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
 504
 505		if (idata->ic.write_flag)
 506			data.flags = MMC_DATA_WRITE;
 507		else
 508			data.flags = MMC_DATA_READ;
 509
 510		/* data.flags must already be set before doing this. */
 511		mmc_set_data_timeout(&data, card);
 512
 513		/* Allow overriding the timeout_ns for empirical tuning. */
 514		if (idata->ic.data_timeout_ns)
 515			data.timeout_ns = idata->ic.data_timeout_ns;
 516
 
 
 
 
 
 
 
 
 
 
 
 
 
 517		mrq.data = &data;
 518	}
 519
 520	mrq.cmd = &cmd;
 521
 522	err = mmc_blk_part_switch(card, target_part);
 523	if (err)
 524		return err;
 525
 526	if (idata->ic.is_acmd) {
 527		err = mmc_app_cmd(card->host, card);
 528		if (err)
 529			return err;
 530	}
 531
 532	if (idata->rpmb) {
 533		sbc.opcode = MMC_SET_BLOCK_COUNT;
 534		/*
 535		 * We don't do any blockcount validation because the max size
 536		 * may be increased by a future standard. We just copy the
 537		 * 'Reliable Write' bit here.
 538		 */
 539		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
 540		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
 541		mrq.sbc = &sbc;
 542	}
 543
 544	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
 545	    (cmd.opcode == MMC_SWITCH))
 546		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
 547
 548	mmc_wait_for_req(card->host, &mrq);
 549	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
 550
 551	if (cmd.error) {
 552		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
 553						__func__, cmd.error);
 554		return cmd.error;
 555	}
 556	if (data.error) {
 557		dev_err(mmc_dev(card->host), "%s: data error %d\n",
 558						__func__, data.error);
 559		return data.error;
 560	}
 561
 562	/*
 563	 * Make sure the cache of the PARTITION_CONFIG register and
 564	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
 565	 * changed it successfully.
 566	 */
 567	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
 568	    (cmd.opcode == MMC_SWITCH)) {
 569		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 570		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
 571
 572		/*
 573		 * Update cache so the next mmc_blk_part_switch call operates
 574		 * on up-to-date data.
 575		 */
 576		card->ext_csd.part_config = value;
 577		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
 578	}
 579
 580	/*
 581	 * Make sure to update CACHE_CTRL in case it was changed. The cache
 582	 * will get turned back on if the card is re-initialized, e.g.
 583	 * suspend/resume or hw reset in recovery.
 584	 */
 585	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
 586	    (cmd.opcode == MMC_SWITCH)) {
 587		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
 588
 589		card->ext_csd.cache_ctrl = value;
 590	}
 591
 592	/*
 593	 * According to the SD specs, some commands require a delay after
 594	 * issuing the command.
 595	 */
 596	if (idata->ic.postsleep_min_us)
 597		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
 598
 599	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
 
 
 600		/*
 601		 * Ensure RPMB/R1B command has completed by polling CMD13 "Send Status". Here we
 602		 * allow to override the default timeout value if a custom timeout is specified.
 603		 */
 604		err = mmc_poll_for_busy(card, idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS,
 605					false, MMC_BUSY_IO);
 606	}
 607
 608	return err;
 609}
 610
 611static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
 612			     struct mmc_ioc_cmd __user *ic_ptr,
 613			     struct mmc_rpmb_data *rpmb)
 614{
 615	struct mmc_blk_ioc_data *idata;
 616	struct mmc_blk_ioc_data *idatas[1];
 617	struct mmc_queue *mq;
 618	struct mmc_card *card;
 619	int err = 0, ioc_err = 0;
 620	struct request *req;
 621
 622	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
 623	if (IS_ERR(idata))
 624		return PTR_ERR(idata);
 625	/* This will be NULL on non-RPMB ioctl():s */
 626	idata->rpmb = rpmb;
 627
 628	card = md->queue.card;
 629	if (IS_ERR(card)) {
 630		err = PTR_ERR(card);
 631		goto cmd_done;
 632	}
 633
 634	/*
 635	 * Dispatch the ioctl() into the block request queue.
 636	 */
 637	mq = &md->queue;
 638	req = blk_mq_alloc_request(mq->queue,
 639		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 640	if (IS_ERR(req)) {
 641		err = PTR_ERR(req);
 642		goto cmd_done;
 643	}
 644	idatas[0] = idata;
 645	req_to_mmc_queue_req(req)->drv_op =
 646		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 647	req_to_mmc_queue_req(req)->drv_op_data = idatas;
 648	req_to_mmc_queue_req(req)->ioc_count = 1;
 649	blk_execute_rq(req, false);
 650	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 651	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
 652	blk_mq_free_request(req);
 653
 654cmd_done:
 655	kfree(idata->buf);
 656	kfree(idata);
 657	return ioc_err ? ioc_err : err;
 658}
 659
 660static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
 661				   struct mmc_ioc_multi_cmd __user *user,
 662				   struct mmc_rpmb_data *rpmb)
 663{
 664	struct mmc_blk_ioc_data **idata = NULL;
 665	struct mmc_ioc_cmd __user *cmds = user->cmds;
 666	struct mmc_card *card;
 667	struct mmc_queue *mq;
 668	int err = 0, ioc_err = 0;
 669	__u64 num_of_cmds;
 670	unsigned int i, n;
 671	struct request *req;
 672
 673	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
 674			   sizeof(num_of_cmds)))
 675		return -EFAULT;
 676
 677	if (!num_of_cmds)
 678		return 0;
 679
 680	if (num_of_cmds > MMC_IOC_MAX_CMDS)
 681		return -EINVAL;
 682
 683	n = num_of_cmds;
 684	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
 685	if (!idata)
 686		return -ENOMEM;
 687
 688	for (i = 0; i < n; i++) {
 689		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
 690		if (IS_ERR(idata[i])) {
 691			err = PTR_ERR(idata[i]);
 692			n = i;
 693			goto cmd_err;
 694		}
 695		/* This will be NULL on non-RPMB ioctl():s */
 696		idata[i]->rpmb = rpmb;
 697	}
 698
 699	card = md->queue.card;
 700	if (IS_ERR(card)) {
 701		err = PTR_ERR(card);
 702		goto cmd_err;
 703	}
 704
 705
 706	/*
 707	 * Dispatch the ioctl()s into the block request queue.
 708	 */
 709	mq = &md->queue;
 710	req = blk_mq_alloc_request(mq->queue,
 711		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 712	if (IS_ERR(req)) {
 713		err = PTR_ERR(req);
 714		goto cmd_err;
 715	}
 716	req_to_mmc_queue_req(req)->drv_op =
 717		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 718	req_to_mmc_queue_req(req)->drv_op_data = idata;
 719	req_to_mmc_queue_req(req)->ioc_count = n;
 720	blk_execute_rq(req, false);
 721	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 722
 723	/* copy to user if data and response */
 724	for (i = 0; i < n && !err; i++)
 725		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
 726
 727	blk_mq_free_request(req);
 728
 729cmd_err:
 730	for (i = 0; i < n; i++) {
 731		kfree(idata[i]->buf);
 732		kfree(idata[i]);
 733	}
 734	kfree(idata);
 735	return ioc_err ? ioc_err : err;
 736}
 737
 738static int mmc_blk_check_blkdev(struct block_device *bdev)
 739{
 740	/*
 741	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
 742	 * whole block device, not on a partition.  This prevents overspray
 743	 * between sibling partitions.
 744	 */
 745	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
 746		return -EPERM;
 747	return 0;
 748}
 749
 750static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
 751	unsigned int cmd, unsigned long arg)
 752{
 753	struct mmc_blk_data *md;
 754	int ret;
 755
 756	switch (cmd) {
 757	case MMC_IOC_CMD:
 758		ret = mmc_blk_check_blkdev(bdev);
 759		if (ret)
 760			return ret;
 761		md = mmc_blk_get(bdev->bd_disk);
 762		if (!md)
 763			return -EINVAL;
 764		ret = mmc_blk_ioctl_cmd(md,
 765					(struct mmc_ioc_cmd __user *)arg,
 766					NULL);
 767		mmc_blk_put(md);
 768		return ret;
 769	case MMC_IOC_MULTI_CMD:
 770		ret = mmc_blk_check_blkdev(bdev);
 771		if (ret)
 772			return ret;
 773		md = mmc_blk_get(bdev->bd_disk);
 774		if (!md)
 775			return -EINVAL;
 776		ret = mmc_blk_ioctl_multi_cmd(md,
 777					(struct mmc_ioc_multi_cmd __user *)arg,
 778					NULL);
 779		mmc_blk_put(md);
 780		return ret;
 781	default:
 782		return -EINVAL;
 783	}
 784}
 785
 786#ifdef CONFIG_COMPAT
 787static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
 788	unsigned int cmd, unsigned long arg)
 789{
 790	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
 791}
 792#endif
 793
 794static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
 795					  sector_t *sector)
 796{
 797	struct mmc_blk_data *md;
 798	int ret;
 799
 800	md = mmc_blk_get(disk);
 801	if (!md)
 802		return -EINVAL;
 803
 804	if (md->queue.card)
 805		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
 806	else
 807		ret = -ENODEV;
 808
 809	mmc_blk_put(md);
 810
 811	return ret;
 812}
 813
 814static const struct block_device_operations mmc_bdops = {
 815	.open			= mmc_blk_open,
 816	.release		= mmc_blk_release,
 817	.getgeo			= mmc_blk_getgeo,
 818	.owner			= THIS_MODULE,
 819	.ioctl			= mmc_blk_ioctl,
 820#ifdef CONFIG_COMPAT
 821	.compat_ioctl		= mmc_blk_compat_ioctl,
 822#endif
 823	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
 824};
 825
 826static int mmc_blk_part_switch_pre(struct mmc_card *card,
 827				   unsigned int part_type)
 828{
 829	int ret = 0;
 830
 831	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 832		if (card->ext_csd.cmdq_en) {
 833			ret = mmc_cmdq_disable(card);
 834			if (ret)
 835				return ret;
 836		}
 837		mmc_retune_pause(card->host);
 838	}
 839
 840	return ret;
 841}
 842
 843static int mmc_blk_part_switch_post(struct mmc_card *card,
 844				    unsigned int part_type)
 845{
 846	int ret = 0;
 847
 848	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 849		mmc_retune_unpause(card->host);
 850		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
 851			ret = mmc_cmdq_enable(card);
 852	}
 853
 854	return ret;
 855}
 856
 857static inline int mmc_blk_part_switch(struct mmc_card *card,
 858				      unsigned int part_type)
 859{
 860	int ret = 0;
 861	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 862
 863	if (main_md->part_curr == part_type)
 864		return 0;
 865
 866	if (mmc_card_mmc(card)) {
 867		u8 part_config = card->ext_csd.part_config;
 868
 869		ret = mmc_blk_part_switch_pre(card, part_type);
 870		if (ret)
 871			return ret;
 872
 873		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
 874		part_config |= part_type;
 875
 876		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 877				 EXT_CSD_PART_CONFIG, part_config,
 878				 card->ext_csd.part_time);
 879		if (ret) {
 880			mmc_blk_part_switch_post(card, part_type);
 881			return ret;
 882		}
 883
 884		card->ext_csd.part_config = part_config;
 885
 886		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
 887	}
 888
 889	main_md->part_curr = part_type;
 890	return ret;
 891}
 892
 893static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
 894{
 895	int err;
 896	u32 result;
 897	__be32 *blocks;
 898
 899	struct mmc_request mrq = {};
 900	struct mmc_command cmd = {};
 901	struct mmc_data data = {};
 902
 903	struct scatterlist sg;
 904
 905	cmd.opcode = MMC_APP_CMD;
 906	cmd.arg = card->rca << 16;
 907	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 908
 909	err = mmc_wait_for_cmd(card->host, &cmd, 0);
 910	if (err)
 911		return err;
 912	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
 913		return -EIO;
 914
 915	memset(&cmd, 0, sizeof(struct mmc_command));
 916
 917	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
 918	cmd.arg = 0;
 919	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 920
 921	data.blksz = 4;
 922	data.blocks = 1;
 923	data.flags = MMC_DATA_READ;
 924	data.sg = &sg;
 925	data.sg_len = 1;
 926	mmc_set_data_timeout(&data, card);
 927
 928	mrq.cmd = &cmd;
 929	mrq.data = &data;
 930
 931	blocks = kmalloc(4, GFP_KERNEL);
 932	if (!blocks)
 933		return -ENOMEM;
 934
 935	sg_init_one(&sg, blocks, 4);
 936
 937	mmc_wait_for_req(card->host, &mrq);
 938
 939	result = ntohl(*blocks);
 940	kfree(blocks);
 941
 942	if (cmd.error || data.error)
 943		return -EIO;
 944
 945	*written_blocks = result;
 946
 947	return 0;
 948}
 949
 950static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
 951{
 952	if (host->actual_clock)
 953		return host->actual_clock / 1000;
 954
 955	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
 956	if (host->ios.clock)
 957		return host->ios.clock / 2000;
 958
 959	/* How can there be no clock */
 960	WARN_ON_ONCE(1);
 961	return 100; /* 100 kHz is minimum possible value */
 962}
 963
 964static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
 965					    struct mmc_data *data)
 966{
 967	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
 968	unsigned int khz;
 969
 970	if (data->timeout_clks) {
 971		khz = mmc_blk_clock_khz(host);
 972		ms += DIV_ROUND_UP(data->timeout_clks, khz);
 973	}
 974
 975	return ms;
 976}
 977
 978/*
 979 * Attempts to reset the card and get back to the requested partition.
 980 * Therefore any error here must result in cancelling the block layer
 981 * request, it must not be reattempted without going through the mmc_blk
 982 * partition sanity checks.
 983 */
 984static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
 985			 int type)
 986{
 987	int err;
 988	struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
 989
 990	if (md->reset_done & type)
 991		return -EEXIST;
 992
 993	md->reset_done |= type;
 994	err = mmc_hw_reset(host->card);
 995	/*
 996	 * A successful reset will leave the card in the main partition, but
 997	 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
 998	 * in that case.
 999	 */
1000	main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1001	if (err)
1002		return err;
1003	/* Ensure we switch back to the correct partition */
1004	if (mmc_blk_part_switch(host->card, md->part_type))
1005		/*
1006		 * We have failed to get back into the correct
1007		 * partition, so we need to abort the whole request.
1008		 */
1009		return -ENODEV;
1010	return 0;
 
 
 
 
 
 
 
 
 
1011}
1012
1013static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1014{
1015	md->reset_done &= ~type;
1016}
1017
1018/*
1019 * The non-block commands come back from the block layer after it queued it and
1020 * processed it with all other requests and then they get issued in this
1021 * function.
1022 */
1023static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1024{
1025	struct mmc_queue_req *mq_rq;
1026	struct mmc_card *card = mq->card;
1027	struct mmc_blk_data *md = mq->blkdata;
1028	struct mmc_blk_ioc_data **idata;
1029	bool rpmb_ioctl;
1030	u8 **ext_csd;
1031	u32 status;
1032	int ret;
1033	int i;
1034
1035	mq_rq = req_to_mmc_queue_req(req);
1036	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1037
1038	switch (mq_rq->drv_op) {
1039	case MMC_DRV_OP_IOCTL:
1040		if (card->ext_csd.cmdq_en) {
1041			ret = mmc_cmdq_disable(card);
1042			if (ret)
1043				break;
1044		}
1045		fallthrough;
1046	case MMC_DRV_OP_IOCTL_RPMB:
1047		idata = mq_rq->drv_op_data;
1048		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1049			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1050			if (ret)
1051				break;
1052		}
1053		/* Always switch back to main area after RPMB access */
1054		if (rpmb_ioctl)
1055			mmc_blk_part_switch(card, 0);
1056		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1057			mmc_cmdq_enable(card);
1058		break;
1059	case MMC_DRV_OP_BOOT_WP:
1060		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1061				 card->ext_csd.boot_ro_lock |
1062				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1063				 card->ext_csd.part_time);
1064		if (ret)
1065			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1066			       md->disk->disk_name, ret);
1067		else
1068			card->ext_csd.boot_ro_lock |=
1069				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1070		break;
1071	case MMC_DRV_OP_GET_CARD_STATUS:
1072		ret = mmc_send_status(card, &status);
1073		if (!ret)
1074			ret = status;
1075		break;
1076	case MMC_DRV_OP_GET_EXT_CSD:
1077		ext_csd = mq_rq->drv_op_data;
1078		ret = mmc_get_ext_csd(card, ext_csd);
1079		break;
1080	default:
1081		pr_err("%s: unknown driver specific operation\n",
1082		       md->disk->disk_name);
1083		ret = -EINVAL;
1084		break;
1085	}
1086	mq_rq->drv_op_result = ret;
1087	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1088}
1089
1090static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1091				   int type, unsigned int erase_arg)
1092{
1093	struct mmc_blk_data *md = mq->blkdata;
1094	struct mmc_card *card = md->queue.card;
1095	unsigned int from, nr;
1096	int err = 0;
1097	blk_status_t status = BLK_STS_OK;
1098
1099	if (!mmc_can_erase(card)) {
1100		status = BLK_STS_NOTSUPP;
1101		goto fail;
1102	}
1103
1104	from = blk_rq_pos(req);
1105	nr = blk_rq_sectors(req);
1106
1107	do {
1108		err = 0;
1109		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1110			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1111					 INAND_CMD38_ARG_EXT_CSD,
1112					 erase_arg == MMC_TRIM_ARG ?
1113					 INAND_CMD38_ARG_TRIM :
1114					 INAND_CMD38_ARG_ERASE,
1115					 card->ext_csd.generic_cmd6_time);
1116		}
1117		if (!err)
1118			err = mmc_erase(card, from, nr, erase_arg);
1119	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1120	if (err)
1121		status = BLK_STS_IOERR;
1122	else
1123		mmc_blk_reset_success(md, type);
1124fail:
1125	blk_mq_end_request(req, status);
1126}
1127
1128static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1129{
1130	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1131}
1132
1133static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1134{
1135	struct mmc_blk_data *md = mq->blkdata;
1136	struct mmc_card *card = md->queue.card;
1137	unsigned int arg = card->erase_arg;
1138
1139	if (mmc_card_broken_sd_discard(card))
1140		arg = SD_ERASE_ARG;
1141
1142	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1143}
1144
1145static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1146				       struct request *req)
1147{
1148	struct mmc_blk_data *md = mq->blkdata;
1149	struct mmc_card *card = md->queue.card;
1150	unsigned int from, nr, arg;
1151	int err = 0, type = MMC_BLK_SECDISCARD;
1152	blk_status_t status = BLK_STS_OK;
1153
1154	if (!(mmc_can_secure_erase_trim(card))) {
1155		status = BLK_STS_NOTSUPP;
1156		goto out;
1157	}
1158
1159	from = blk_rq_pos(req);
1160	nr = blk_rq_sectors(req);
1161
1162	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1163		arg = MMC_SECURE_TRIM1_ARG;
1164	else
1165		arg = MMC_SECURE_ERASE_ARG;
1166
1167retry:
1168	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1169		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1170				 INAND_CMD38_ARG_EXT_CSD,
1171				 arg == MMC_SECURE_TRIM1_ARG ?
1172				 INAND_CMD38_ARG_SECTRIM1 :
1173				 INAND_CMD38_ARG_SECERASE,
1174				 card->ext_csd.generic_cmd6_time);
1175		if (err)
1176			goto out_retry;
1177	}
1178
1179	err = mmc_erase(card, from, nr, arg);
1180	if (err == -EIO)
1181		goto out_retry;
1182	if (err) {
1183		status = BLK_STS_IOERR;
1184		goto out;
1185	}
1186
1187	if (arg == MMC_SECURE_TRIM1_ARG) {
1188		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1189			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1190					 INAND_CMD38_ARG_EXT_CSD,
1191					 INAND_CMD38_ARG_SECTRIM2,
1192					 card->ext_csd.generic_cmd6_time);
1193			if (err)
1194				goto out_retry;
1195		}
1196
1197		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1198		if (err == -EIO)
1199			goto out_retry;
1200		if (err) {
1201			status = BLK_STS_IOERR;
1202			goto out;
1203		}
1204	}
1205
1206out_retry:
1207	if (err && !mmc_blk_reset(md, card->host, type))
1208		goto retry;
1209	if (!err)
1210		mmc_blk_reset_success(md, type);
1211out:
1212	blk_mq_end_request(req, status);
1213}
1214
1215static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1216{
1217	struct mmc_blk_data *md = mq->blkdata;
1218	struct mmc_card *card = md->queue.card;
1219	int ret = 0;
1220
1221	ret = mmc_flush_cache(card->host);
1222	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1223}
1224
1225/*
1226 * Reformat current write as a reliable write, supporting
1227 * both legacy and the enhanced reliable write MMC cards.
1228 * In each transfer we'll handle only as much as a single
1229 * reliable write can handle, thus finish the request in
1230 * partial completions.
1231 */
1232static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1233				    struct mmc_card *card,
1234				    struct request *req)
1235{
1236	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1237		/* Legacy mode imposes restrictions on transfers. */
1238		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1239			brq->data.blocks = 1;
1240
1241		if (brq->data.blocks > card->ext_csd.rel_sectors)
1242			brq->data.blocks = card->ext_csd.rel_sectors;
1243		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1244			brq->data.blocks = 1;
1245	}
1246}
1247
1248#define CMD_ERRORS_EXCL_OOR						\
1249	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1250	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1251	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1252	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1253	 R1_CC_ERROR |		/* Card controller error */		\
1254	 R1_ERROR)		/* General/unknown error */
1255
1256#define CMD_ERRORS							\
1257	(CMD_ERRORS_EXCL_OOR |						\
1258	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1259
1260static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1261{
1262	u32 val;
1263
1264	/*
1265	 * Per the SD specification(physical layer version 4.10)[1],
1266	 * section 4.3.3, it explicitly states that "When the last
1267	 * block of user area is read using CMD18, the host should
1268	 * ignore OUT_OF_RANGE error that may occur even the sequence
1269	 * is correct". And JESD84-B51 for eMMC also has a similar
1270	 * statement on section 6.8.3.
1271	 *
1272	 * Multiple block read/write could be done by either predefined
1273	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1274	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1275	 *
1276	 * However the spec[1] doesn't tell us whether we should also
1277	 * ignore that for predefined method. But per the spec[1], section
1278	 * 4.15 Set Block Count Command, it says"If illegal block count
1279	 * is set, out of range error will be indicated during read/write
1280	 * operation (For example, data transfer is stopped at user area
1281	 * boundary)." In another word, we could expect a out of range error
1282	 * in the response for the following CMD18/25. And if argument of
1283	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1284	 * we could also expect to get a -ETIMEDOUT or any error number from
1285	 * the host drivers due to missing data response(for write)/data(for
1286	 * read), as the cards will stop the data transfer by itself per the
1287	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1288	 */
1289
1290	if (!brq->stop.error) {
1291		bool oor_with_open_end;
1292		/* If there is no error yet, check R1 response */
1293
1294		val = brq->stop.resp[0] & CMD_ERRORS;
1295		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1296
1297		if (val && !oor_with_open_end)
1298			brq->stop.error = -EIO;
1299	}
1300}
1301
1302static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1303			      int recovery_mode, bool *do_rel_wr_p,
1304			      bool *do_data_tag_p)
1305{
1306	struct mmc_blk_data *md = mq->blkdata;
1307	struct mmc_card *card = md->queue.card;
1308	struct mmc_blk_request *brq = &mqrq->brq;
1309	struct request *req = mmc_queue_req_to_req(mqrq);
1310	bool do_rel_wr, do_data_tag;
1311
1312	/*
1313	 * Reliable writes are used to implement Forced Unit Access and
1314	 * are supported only on MMCs.
1315	 */
1316	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1317		    rq_data_dir(req) == WRITE &&
1318		    (md->flags & MMC_BLK_REL_WR);
1319
1320	memset(brq, 0, sizeof(struct mmc_blk_request));
1321
1322	mmc_crypto_prepare_req(mqrq);
1323
1324	brq->mrq.data = &brq->data;
1325	brq->mrq.tag = req->tag;
1326
1327	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1328	brq->stop.arg = 0;
1329
1330	if (rq_data_dir(req) == READ) {
1331		brq->data.flags = MMC_DATA_READ;
1332		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1333	} else {
1334		brq->data.flags = MMC_DATA_WRITE;
1335		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1336	}
1337
1338	brq->data.blksz = 512;
1339	brq->data.blocks = blk_rq_sectors(req);
1340	brq->data.blk_addr = blk_rq_pos(req);
1341
1342	/*
1343	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1344	 * The eMMC will give "high" priority tasks priority over "simple"
1345	 * priority tasks. Here we always set "simple" priority by not setting
1346	 * MMC_DATA_PRIO.
1347	 */
1348
1349	/*
1350	 * The block layer doesn't support all sector count
1351	 * restrictions, so we need to be prepared for too big
1352	 * requests.
1353	 */
1354	if (brq->data.blocks > card->host->max_blk_count)
1355		brq->data.blocks = card->host->max_blk_count;
1356
1357	if (brq->data.blocks > 1) {
1358		/*
1359		 * Some SD cards in SPI mode return a CRC error or even lock up
1360		 * completely when trying to read the last block using a
1361		 * multiblock read command.
1362		 */
1363		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1364		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1365		     get_capacity(md->disk)))
1366			brq->data.blocks--;
1367
1368		/*
1369		 * After a read error, we redo the request one (native) sector
1370		 * at a time in order to accurately determine which
1371		 * sectors can be read successfully.
1372		 */
1373		if (recovery_mode)
1374			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1375
1376		/*
1377		 * Some controllers have HW issues while operating
1378		 * in multiple I/O mode
1379		 */
1380		if (card->host->ops->multi_io_quirk)
1381			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1382						(rq_data_dir(req) == READ) ?
1383						MMC_DATA_READ : MMC_DATA_WRITE,
1384						brq->data.blocks);
1385	}
1386
1387	if (do_rel_wr) {
1388		mmc_apply_rel_rw(brq, card, req);
1389		brq->data.flags |= MMC_DATA_REL_WR;
1390	}
1391
1392	/*
1393	 * Data tag is used only during writing meta data to speed
1394	 * up write and any subsequent read of this meta data
1395	 */
1396	do_data_tag = card->ext_csd.data_tag_unit_size &&
1397		      (req->cmd_flags & REQ_META) &&
1398		      (rq_data_dir(req) == WRITE) &&
1399		      ((brq->data.blocks * brq->data.blksz) >=
1400		       card->ext_csd.data_tag_unit_size);
1401
1402	if (do_data_tag)
1403		brq->data.flags |= MMC_DATA_DAT_TAG;
1404
1405	mmc_set_data_timeout(&brq->data, card);
1406
1407	brq->data.sg = mqrq->sg;
1408	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1409
1410	/*
1411	 * Adjust the sg list so it is the same size as the
1412	 * request.
1413	 */
1414	if (brq->data.blocks != blk_rq_sectors(req)) {
1415		int i, data_size = brq->data.blocks << 9;
1416		struct scatterlist *sg;
1417
1418		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1419			data_size -= sg->length;
1420			if (data_size <= 0) {
1421				sg->length += data_size;
1422				i++;
1423				break;
1424			}
1425		}
1426		brq->data.sg_len = i;
1427	}
1428
1429	if (do_rel_wr_p)
1430		*do_rel_wr_p = do_rel_wr;
1431
1432	if (do_data_tag_p)
1433		*do_data_tag_p = do_data_tag;
1434}
1435
1436#define MMC_CQE_RETRIES 2
1437
1438static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1439{
1440	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1441	struct mmc_request *mrq = &mqrq->brq.mrq;
1442	struct request_queue *q = req->q;
1443	struct mmc_host *host = mq->card->host;
1444	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1445	unsigned long flags;
1446	bool put_card;
1447	int err;
1448
1449	mmc_cqe_post_req(host, mrq);
1450
1451	if (mrq->cmd && mrq->cmd->error)
1452		err = mrq->cmd->error;
1453	else if (mrq->data && mrq->data->error)
1454		err = mrq->data->error;
1455	else
1456		err = 0;
1457
1458	if (err) {
1459		if (mqrq->retries++ < MMC_CQE_RETRIES)
1460			blk_mq_requeue_request(req, true);
1461		else
1462			blk_mq_end_request(req, BLK_STS_IOERR);
1463	} else if (mrq->data) {
1464		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1465			blk_mq_requeue_request(req, true);
1466		else
1467			__blk_mq_end_request(req, BLK_STS_OK);
1468	} else {
1469		blk_mq_end_request(req, BLK_STS_OK);
1470	}
1471
1472	spin_lock_irqsave(&mq->lock, flags);
1473
1474	mq->in_flight[issue_type] -= 1;
1475
1476	put_card = (mmc_tot_in_flight(mq) == 0);
1477
1478	mmc_cqe_check_busy(mq);
1479
1480	spin_unlock_irqrestore(&mq->lock, flags);
1481
1482	if (!mq->cqe_busy)
1483		blk_mq_run_hw_queues(q, true);
1484
1485	if (put_card)
1486		mmc_put_card(mq->card, &mq->ctx);
1487}
1488
1489void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1490{
1491	struct mmc_card *card = mq->card;
1492	struct mmc_host *host = card->host;
1493	int err;
1494
1495	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1496
1497	err = mmc_cqe_recovery(host);
1498	if (err)
1499		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1500	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
 
1501
1502	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1503}
1504
1505static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1506{
1507	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1508						  brq.mrq);
1509	struct request *req = mmc_queue_req_to_req(mqrq);
1510	struct request_queue *q = req->q;
1511	struct mmc_queue *mq = q->queuedata;
1512
1513	/*
1514	 * Block layer timeouts race with completions which means the normal
1515	 * completion path cannot be used during recovery.
1516	 */
1517	if (mq->in_recovery)
1518		mmc_blk_cqe_complete_rq(mq, req);
1519	else if (likely(!blk_should_fake_timeout(req->q)))
1520		blk_mq_complete_request(req);
1521}
1522
1523static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1524{
1525	mrq->done		= mmc_blk_cqe_req_done;
1526	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1527
1528	return mmc_cqe_start_req(host, mrq);
1529}
1530
1531static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1532						 struct request *req)
1533{
1534	struct mmc_blk_request *brq = &mqrq->brq;
1535
1536	memset(brq, 0, sizeof(*brq));
1537
1538	brq->mrq.cmd = &brq->cmd;
1539	brq->mrq.tag = req->tag;
1540
1541	return &brq->mrq;
1542}
1543
1544static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1545{
1546	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1547	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1548
1549	mrq->cmd->opcode = MMC_SWITCH;
1550	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1551			(EXT_CSD_FLUSH_CACHE << 16) |
1552			(1 << 8) |
1553			EXT_CSD_CMD_SET_NORMAL;
1554	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1555
1556	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1557}
1558
1559static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1560{
1561	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1562	struct mmc_host *host = mq->card->host;
1563	int err;
1564
1565	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1566	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1567	mmc_pre_req(host, &mqrq->brq.mrq);
1568
1569	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1570	if (err)
1571		mmc_post_req(host, &mqrq->brq.mrq, err);
1572
1573	return err;
1574}
1575
1576static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1577{
1578	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1579	struct mmc_host *host = mq->card->host;
1580
1581	if (host->hsq_enabled)
1582		return mmc_blk_hsq_issue_rw_rq(mq, req);
1583
1584	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1585
1586	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1587}
1588
1589static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1590			       struct mmc_card *card,
1591			       int recovery_mode,
1592			       struct mmc_queue *mq)
1593{
1594	u32 readcmd, writecmd;
1595	struct mmc_blk_request *brq = &mqrq->brq;
1596	struct request *req = mmc_queue_req_to_req(mqrq);
1597	struct mmc_blk_data *md = mq->blkdata;
1598	bool do_rel_wr, do_data_tag;
1599
1600	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1601
1602	brq->mrq.cmd = &brq->cmd;
1603
1604	brq->cmd.arg = blk_rq_pos(req);
1605	if (!mmc_card_blockaddr(card))
1606		brq->cmd.arg <<= 9;
1607	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1608
1609	if (brq->data.blocks > 1 || do_rel_wr) {
1610		/* SPI multiblock writes terminate using a special
1611		 * token, not a STOP_TRANSMISSION request.
1612		 */
1613		if (!mmc_host_is_spi(card->host) ||
1614		    rq_data_dir(req) == READ)
1615			brq->mrq.stop = &brq->stop;
1616		readcmd = MMC_READ_MULTIPLE_BLOCK;
1617		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1618	} else {
1619		brq->mrq.stop = NULL;
1620		readcmd = MMC_READ_SINGLE_BLOCK;
1621		writecmd = MMC_WRITE_BLOCK;
1622	}
1623	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1624
1625	/*
1626	 * Pre-defined multi-block transfers are preferable to
1627	 * open ended-ones (and necessary for reliable writes).
1628	 * However, it is not sufficient to just send CMD23,
1629	 * and avoid the final CMD12, as on an error condition
1630	 * CMD12 (stop) needs to be sent anyway. This, coupled
1631	 * with Auto-CMD23 enhancements provided by some
1632	 * hosts, means that the complexity of dealing
1633	 * with this is best left to the host. If CMD23 is
1634	 * supported by card and host, we'll fill sbc in and let
1635	 * the host deal with handling it correctly. This means
1636	 * that for hosts that don't expose MMC_CAP_CMD23, no
1637	 * change of behavior will be observed.
1638	 *
1639	 * N.B: Some MMC cards experience perf degradation.
1640	 * We'll avoid using CMD23-bounded multiblock writes for
1641	 * these, while retaining features like reliable writes.
1642	 */
1643	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1644	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1645	     do_data_tag)) {
1646		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1647		brq->sbc.arg = brq->data.blocks |
1648			(do_rel_wr ? (1 << 31) : 0) |
1649			(do_data_tag ? (1 << 29) : 0);
1650		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1651		brq->mrq.sbc = &brq->sbc;
1652	}
1653}
1654
1655#define MMC_MAX_RETRIES		5
1656#define MMC_DATA_RETRIES	2
1657#define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1658
1659static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1660{
1661	struct mmc_command cmd = {
1662		.opcode = MMC_STOP_TRANSMISSION,
1663		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1664		/* Some hosts wait for busy anyway, so provide a busy timeout */
1665		.busy_timeout = timeout,
1666	};
1667
1668	return mmc_wait_for_cmd(card->host, &cmd, 5);
1669}
1670
1671static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1672{
1673	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1674	struct mmc_blk_request *brq = &mqrq->brq;
1675	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1676	int err;
1677
1678	mmc_retune_hold_now(card->host);
1679
1680	mmc_blk_send_stop(card, timeout);
1681
1682	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1683
1684	mmc_retune_release(card->host);
1685
1686	return err;
1687}
1688
1689#define MMC_READ_SINGLE_RETRIES	2
1690
1691/* Single (native) sector read during recovery */
1692static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1693{
1694	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1695	struct mmc_request *mrq = &mqrq->brq.mrq;
1696	struct mmc_card *card = mq->card;
1697	struct mmc_host *host = card->host;
1698	blk_status_t error = BLK_STS_OK;
1699	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1700
1701	do {
1702		u32 status;
1703		int err;
1704		int retries = 0;
1705
1706		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1707			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
 
1708
1709			mmc_wait_for_req(host, mrq);
 
 
1710
1711			err = mmc_send_status(card, &status);
 
 
1712			if (err)
1713				goto error_exit;
 
1714
1715			if (!mmc_host_is_spi(host) &&
1716			    !mmc_ready_for_data(status)) {
1717				err = mmc_blk_fix_state(card, req);
1718				if (err)
1719					goto error_exit;
1720			}
1721
1722			if (!mrq->cmd->error)
1723				break;
1724		}
1725
1726		if (mrq->cmd->error ||
1727		    mrq->data->error ||
1728		    (!mmc_host_is_spi(host) &&
1729		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1730			error = BLK_STS_IOERR;
1731		else
1732			error = BLK_STS_OK;
1733
1734	} while (blk_update_request(req, error, bytes_per_read));
1735
1736	return;
1737
1738error_exit:
1739	mrq->data->bytes_xfered = 0;
1740	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1741	/* Let it try the remaining request again */
1742	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1743		mqrq->retries = MMC_MAX_RETRIES - 1;
1744}
1745
1746static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1747{
1748	return !!brq->mrq.sbc;
1749}
1750
1751static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1752{
1753	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1754}
1755
1756/*
1757 * Check for errors the host controller driver might not have seen such as
1758 * response mode errors or invalid card state.
1759 */
1760static bool mmc_blk_status_error(struct request *req, u32 status)
1761{
1762	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1763	struct mmc_blk_request *brq = &mqrq->brq;
1764	struct mmc_queue *mq = req->q->queuedata;
1765	u32 stop_err_bits;
1766
1767	if (mmc_host_is_spi(mq->card->host))
1768		return false;
1769
1770	stop_err_bits = mmc_blk_stop_err_bits(brq);
1771
1772	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1773	       brq->stop.resp[0] & stop_err_bits ||
1774	       status            & stop_err_bits ||
1775	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1776}
1777
1778static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1779{
1780	return !brq->sbc.error && !brq->cmd.error &&
1781	       !(brq->cmd.resp[0] & CMD_ERRORS);
1782}
1783
1784/*
1785 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1786 * policy:
1787 * 1. A request that has transferred at least some data is considered
1788 * successful and will be requeued if there is remaining data to
1789 * transfer.
1790 * 2. Otherwise the number of retries is incremented and the request
1791 * will be requeued if there are remaining retries.
1792 * 3. Otherwise the request will be errored out.
1793 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1794 * mqrq->retries. So there are only 4 possible actions here:
1795 *	1. do not accept the bytes_xfered value i.e. set it to zero
1796 *	2. change mqrq->retries to determine the number of retries
1797 *	3. try to reset the card
1798 *	4. read one sector at a time
1799 */
1800static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1801{
1802	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1803	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1804	struct mmc_blk_request *brq = &mqrq->brq;
1805	struct mmc_blk_data *md = mq->blkdata;
1806	struct mmc_card *card = mq->card;
1807	u32 status;
1808	u32 blocks;
1809	int err;
1810
1811	/*
1812	 * Some errors the host driver might not have seen. Set the number of
1813	 * bytes transferred to zero in that case.
1814	 */
1815	err = __mmc_send_status(card, &status, 0);
1816	if (err || mmc_blk_status_error(req, status))
1817		brq->data.bytes_xfered = 0;
1818
1819	mmc_retune_release(card->host);
1820
1821	/*
1822	 * Try again to get the status. This also provides an opportunity for
1823	 * re-tuning.
1824	 */
1825	if (err)
1826		err = __mmc_send_status(card, &status, 0);
1827
1828	/*
1829	 * Nothing more to do after the number of bytes transferred has been
1830	 * updated and there is no card.
1831	 */
1832	if (err && mmc_detect_card_removed(card->host))
1833		return;
1834
1835	/* Try to get back to "tran" state */
1836	if (!mmc_host_is_spi(mq->card->host) &&
1837	    (err || !mmc_ready_for_data(status)))
1838		err = mmc_blk_fix_state(mq->card, req);
1839
1840	/*
1841	 * Special case for SD cards where the card might record the number of
1842	 * blocks written.
1843	 */
1844	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1845	    rq_data_dir(req) == WRITE) {
1846		if (mmc_sd_num_wr_blocks(card, &blocks))
1847			brq->data.bytes_xfered = 0;
1848		else
1849			brq->data.bytes_xfered = blocks << 9;
1850	}
1851
1852	/* Reset if the card is in a bad state */
1853	if (!mmc_host_is_spi(mq->card->host) &&
1854	    err && mmc_blk_reset(md, card->host, type)) {
1855		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1856		mqrq->retries = MMC_NO_RETRIES;
1857		return;
1858	}
1859
1860	/*
1861	 * If anything was done, just return and if there is anything remaining
1862	 * on the request it will get requeued.
1863	 */
1864	if (brq->data.bytes_xfered)
1865		return;
1866
1867	/* Reset before last retry */
1868	if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1869	    mmc_blk_reset(md, card->host, type))
1870		return;
1871
1872	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1873	if (brq->sbc.error || brq->cmd.error)
1874		return;
1875
1876	/* Reduce the remaining retries for data errors */
1877	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1878		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1879		return;
1880	}
1881
1882	if (rq_data_dir(req) == READ && brq->data.blocks >
1883			queue_physical_block_size(mq->queue) >> 9) {
1884		/* Read one (native) sector at a time */
 
1885		mmc_blk_read_single(mq, req);
1886		return;
1887	}
1888}
1889
1890static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1891{
1892	mmc_blk_eval_resp_error(brq);
1893
1894	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1895	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1896}
1897
1898static int mmc_spi_err_check(struct mmc_card *card)
1899{
1900	u32 status = 0;
1901	int err;
1902
1903	/*
1904	 * SPI does not have a TRAN state we have to wait on, instead the
1905	 * card is ready again when it no longer holds the line LOW.
1906	 * We still have to ensure two things here before we know the write
1907	 * was successful:
1908	 * 1. The card has not disconnected during busy and we actually read our
1909	 * own pull-up, thinking it was still connected, so ensure it
1910	 * still responds.
1911	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1912	 * just reconnected card after being disconnected during busy.
1913	 */
1914	err = __mmc_send_status(card, &status, 0);
1915	if (err)
1916		return err;
1917	/* All R1 and R2 bits of SPI are errors in our case */
1918	if (status)
1919		return -EIO;
1920	return 0;
1921}
1922
1923static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1924{
1925	struct mmc_blk_busy_data *data = cb_data;
1926	u32 status = 0;
1927	int err;
1928
1929	err = mmc_send_status(data->card, &status);
1930	if (err)
1931		return err;
1932
1933	/* Accumulate response error bits. */
1934	data->status |= status;
1935
1936	*busy = !mmc_ready_for_data(status);
1937	return 0;
1938}
1939
1940static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1941{
1942	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1943	struct mmc_blk_busy_data cb_data;
1944	int err;
1945
1946	if (rq_data_dir(req) == READ)
1947		return 0;
1948
1949	if (mmc_host_is_spi(card->host)) {
1950		err = mmc_spi_err_check(card);
1951		if (err)
1952			mqrq->brq.data.bytes_xfered = 0;
1953		return err;
1954	}
1955
1956	cb_data.card = card;
1957	cb_data.status = 0;
1958	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
1959				  &mmc_blk_busy_cb, &cb_data);
1960
1961	/*
1962	 * Do not assume data transferred correctly if there are any error bits
1963	 * set.
1964	 */
1965	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1966		mqrq->brq.data.bytes_xfered = 0;
1967		err = err ? err : -EIO;
1968	}
1969
1970	/* Copy the exception bit so it will be seen later on */
1971	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1972		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1973
1974	return err;
1975}
1976
1977static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1978					    struct request *req)
1979{
1980	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1981
1982	mmc_blk_reset_success(mq->blkdata, type);
1983}
1984
1985static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1986{
1987	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1988	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1989
1990	if (nr_bytes) {
1991		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1992			blk_mq_requeue_request(req, true);
1993		else
1994			__blk_mq_end_request(req, BLK_STS_OK);
1995	} else if (!blk_rq_bytes(req)) {
1996		__blk_mq_end_request(req, BLK_STS_IOERR);
1997	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1998		blk_mq_requeue_request(req, true);
1999	} else {
2000		if (mmc_card_removed(mq->card))
2001			req->rq_flags |= RQF_QUIET;
2002		blk_mq_end_request(req, BLK_STS_IOERR);
2003	}
2004}
2005
2006static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2007					struct mmc_queue_req *mqrq)
2008{
2009	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2010	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2011		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2012}
2013
2014static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2015				 struct mmc_queue_req *mqrq)
2016{
2017	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2018		mmc_run_bkops(mq->card);
2019}
2020
2021static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2022{
2023	struct mmc_queue_req *mqrq =
2024		container_of(mrq, struct mmc_queue_req, brq.mrq);
2025	struct request *req = mmc_queue_req_to_req(mqrq);
2026	struct request_queue *q = req->q;
2027	struct mmc_queue *mq = q->queuedata;
2028	struct mmc_host *host = mq->card->host;
2029	unsigned long flags;
2030
2031	if (mmc_blk_rq_error(&mqrq->brq) ||
2032	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2033		spin_lock_irqsave(&mq->lock, flags);
2034		mq->recovery_needed = true;
2035		mq->recovery_req = req;
2036		spin_unlock_irqrestore(&mq->lock, flags);
2037
2038		host->cqe_ops->cqe_recovery_start(host);
2039
2040		schedule_work(&mq->recovery_work);
2041		return;
2042	}
2043
2044	mmc_blk_rw_reset_success(mq, req);
2045
2046	/*
2047	 * Block layer timeouts race with completions which means the normal
2048	 * completion path cannot be used during recovery.
2049	 */
2050	if (mq->in_recovery)
2051		mmc_blk_cqe_complete_rq(mq, req);
2052	else if (likely(!blk_should_fake_timeout(req->q)))
2053		blk_mq_complete_request(req);
2054}
2055
2056void mmc_blk_mq_complete(struct request *req)
2057{
2058	struct mmc_queue *mq = req->q->queuedata;
2059	struct mmc_host *host = mq->card->host;
2060
2061	if (host->cqe_enabled)
2062		mmc_blk_cqe_complete_rq(mq, req);
2063	else if (likely(!blk_should_fake_timeout(req->q)))
2064		mmc_blk_mq_complete_rq(mq, req);
2065}
2066
2067static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2068				       struct request *req)
2069{
2070	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2071	struct mmc_host *host = mq->card->host;
2072
2073	if (mmc_blk_rq_error(&mqrq->brq) ||
2074	    mmc_blk_card_busy(mq->card, req)) {
2075		mmc_blk_mq_rw_recovery(mq, req);
2076	} else {
2077		mmc_blk_rw_reset_success(mq, req);
2078		mmc_retune_release(host);
2079	}
2080
2081	mmc_blk_urgent_bkops(mq, mqrq);
2082}
2083
2084static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
2085{
2086	unsigned long flags;
2087	bool put_card;
2088
2089	spin_lock_irqsave(&mq->lock, flags);
2090
2091	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
2092
2093	put_card = (mmc_tot_in_flight(mq) == 0);
2094
2095	spin_unlock_irqrestore(&mq->lock, flags);
2096
2097	if (put_card)
2098		mmc_put_card(mq->card, &mq->ctx);
2099}
2100
2101static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2102				bool can_sleep)
2103{
2104	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2105	struct mmc_request *mrq = &mqrq->brq.mrq;
2106	struct mmc_host *host = mq->card->host;
2107
2108	mmc_post_req(host, mrq, 0);
2109
2110	/*
2111	 * Block layer timeouts race with completions which means the normal
2112	 * completion path cannot be used during recovery.
2113	 */
2114	if (mq->in_recovery) {
2115		mmc_blk_mq_complete_rq(mq, req);
2116	} else if (likely(!blk_should_fake_timeout(req->q))) {
2117		if (can_sleep)
2118			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2119		else
2120			blk_mq_complete_request(req);
2121	}
2122
2123	mmc_blk_mq_dec_in_flight(mq, req);
2124}
2125
2126void mmc_blk_mq_recovery(struct mmc_queue *mq)
2127{
2128	struct request *req = mq->recovery_req;
2129	struct mmc_host *host = mq->card->host;
2130	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2131
2132	mq->recovery_req = NULL;
2133	mq->rw_wait = false;
2134
2135	if (mmc_blk_rq_error(&mqrq->brq)) {
2136		mmc_retune_hold_now(host);
2137		mmc_blk_mq_rw_recovery(mq, req);
2138	}
2139
2140	mmc_blk_urgent_bkops(mq, mqrq);
2141
2142	mmc_blk_mq_post_req(mq, req, true);
2143}
2144
2145static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2146					 struct request **prev_req)
2147{
2148	if (mmc_host_done_complete(mq->card->host))
2149		return;
2150
2151	mutex_lock(&mq->complete_lock);
2152
2153	if (!mq->complete_req)
2154		goto out_unlock;
2155
2156	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2157
2158	if (prev_req)
2159		*prev_req = mq->complete_req;
2160	else
2161		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2162
2163	mq->complete_req = NULL;
2164
2165out_unlock:
2166	mutex_unlock(&mq->complete_lock);
2167}
2168
2169void mmc_blk_mq_complete_work(struct work_struct *work)
2170{
2171	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2172					    complete_work);
2173
2174	mmc_blk_mq_complete_prev_req(mq, NULL);
2175}
2176
2177static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2178{
2179	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2180						  brq.mrq);
2181	struct request *req = mmc_queue_req_to_req(mqrq);
2182	struct request_queue *q = req->q;
2183	struct mmc_queue *mq = q->queuedata;
2184	struct mmc_host *host = mq->card->host;
2185	unsigned long flags;
2186
2187	if (!mmc_host_done_complete(host)) {
2188		bool waiting;
2189
2190		/*
2191		 * We cannot complete the request in this context, so record
2192		 * that there is a request to complete, and that a following
2193		 * request does not need to wait (although it does need to
2194		 * complete complete_req first).
2195		 */
2196		spin_lock_irqsave(&mq->lock, flags);
2197		mq->complete_req = req;
2198		mq->rw_wait = false;
2199		waiting = mq->waiting;
2200		spin_unlock_irqrestore(&mq->lock, flags);
2201
2202		/*
2203		 * If 'waiting' then the waiting task will complete this
2204		 * request, otherwise queue a work to do it. Note that
2205		 * complete_work may still race with the dispatch of a following
2206		 * request.
2207		 */
2208		if (waiting)
2209			wake_up(&mq->wait);
2210		else
2211			queue_work(mq->card->complete_wq, &mq->complete_work);
2212
2213		return;
2214	}
2215
2216	/* Take the recovery path for errors or urgent background operations */
2217	if (mmc_blk_rq_error(&mqrq->brq) ||
2218	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2219		spin_lock_irqsave(&mq->lock, flags);
2220		mq->recovery_needed = true;
2221		mq->recovery_req = req;
2222		spin_unlock_irqrestore(&mq->lock, flags);
2223		wake_up(&mq->wait);
2224		schedule_work(&mq->recovery_work);
2225		return;
2226	}
2227
2228	mmc_blk_rw_reset_success(mq, req);
2229
2230	mq->rw_wait = false;
2231	wake_up(&mq->wait);
2232
2233	/* context unknown */
2234	mmc_blk_mq_post_req(mq, req, false);
2235}
2236
2237static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2238{
2239	unsigned long flags;
2240	bool done;
2241
2242	/*
2243	 * Wait while there is another request in progress, but not if recovery
2244	 * is needed. Also indicate whether there is a request waiting to start.
2245	 */
2246	spin_lock_irqsave(&mq->lock, flags);
2247	if (mq->recovery_needed) {
2248		*err = -EBUSY;
2249		done = true;
2250	} else {
2251		done = !mq->rw_wait;
2252	}
2253	mq->waiting = !done;
2254	spin_unlock_irqrestore(&mq->lock, flags);
2255
2256	return done;
2257}
2258
2259static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2260{
2261	int err = 0;
2262
2263	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2264
2265	/* Always complete the previous request if there is one */
2266	mmc_blk_mq_complete_prev_req(mq, prev_req);
2267
2268	return err;
2269}
2270
2271static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2272				  struct request *req)
2273{
2274	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2275	struct mmc_host *host = mq->card->host;
2276	struct request *prev_req = NULL;
2277	int err = 0;
2278
2279	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2280
2281	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2282
2283	mmc_pre_req(host, &mqrq->brq.mrq);
2284
2285	err = mmc_blk_rw_wait(mq, &prev_req);
2286	if (err)
2287		goto out_post_req;
2288
2289	mq->rw_wait = true;
2290
2291	err = mmc_start_request(host, &mqrq->brq.mrq);
2292
2293	if (prev_req)
2294		mmc_blk_mq_post_req(mq, prev_req, true);
2295
2296	if (err)
2297		mq->rw_wait = false;
2298
2299	/* Release re-tuning here where there is no synchronization required */
2300	if (err || mmc_host_done_complete(host))
2301		mmc_retune_release(host);
2302
2303out_post_req:
2304	if (err)
2305		mmc_post_req(host, &mqrq->brq.mrq, err);
2306
2307	return err;
2308}
2309
2310static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2311{
2312	if (host->cqe_enabled)
2313		return host->cqe_ops->cqe_wait_for_idle(host);
2314
2315	return mmc_blk_rw_wait(mq, NULL);
2316}
2317
2318enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2319{
2320	struct mmc_blk_data *md = mq->blkdata;
2321	struct mmc_card *card = md->queue.card;
2322	struct mmc_host *host = card->host;
2323	int ret;
2324
2325	ret = mmc_blk_part_switch(card, md->part_type);
2326	if (ret)
2327		return MMC_REQ_FAILED_TO_START;
2328
2329	switch (mmc_issue_type(mq, req)) {
2330	case MMC_ISSUE_SYNC:
2331		ret = mmc_blk_wait_for_idle(mq, host);
2332		if (ret)
2333			return MMC_REQ_BUSY;
2334		switch (req_op(req)) {
2335		case REQ_OP_DRV_IN:
2336		case REQ_OP_DRV_OUT:
2337			mmc_blk_issue_drv_op(mq, req);
2338			break;
2339		case REQ_OP_DISCARD:
2340			mmc_blk_issue_discard_rq(mq, req);
2341			break;
2342		case REQ_OP_SECURE_ERASE:
2343			mmc_blk_issue_secdiscard_rq(mq, req);
2344			break;
2345		case REQ_OP_WRITE_ZEROES:
2346			mmc_blk_issue_trim_rq(mq, req);
2347			break;
2348		case REQ_OP_FLUSH:
2349			mmc_blk_issue_flush(mq, req);
2350			break;
2351		default:
2352			WARN_ON_ONCE(1);
2353			return MMC_REQ_FAILED_TO_START;
2354		}
2355		return MMC_REQ_FINISHED;
2356	case MMC_ISSUE_DCMD:
2357	case MMC_ISSUE_ASYNC:
2358		switch (req_op(req)) {
2359		case REQ_OP_FLUSH:
2360			if (!mmc_cache_enabled(host)) {
2361				blk_mq_end_request(req, BLK_STS_OK);
2362				return MMC_REQ_FINISHED;
2363			}
2364			ret = mmc_blk_cqe_issue_flush(mq, req);
2365			break;
2366		case REQ_OP_READ:
2367		case REQ_OP_WRITE:
2368			if (host->cqe_enabled)
2369				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2370			else
2371				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2372			break;
2373		default:
2374			WARN_ON_ONCE(1);
2375			ret = -EINVAL;
2376		}
2377		if (!ret)
2378			return MMC_REQ_STARTED;
2379		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2380	default:
2381		WARN_ON_ONCE(1);
2382		return MMC_REQ_FAILED_TO_START;
2383	}
2384}
2385
2386static inline int mmc_blk_readonly(struct mmc_card *card)
2387{
2388	return mmc_card_readonly(card) ||
2389	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2390}
2391
2392static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2393					      struct device *parent,
2394					      sector_t size,
2395					      bool default_ro,
2396					      const char *subname,
2397					      int area_type,
2398					      unsigned int part_type)
2399{
2400	struct mmc_blk_data *md;
2401	int devidx, ret;
2402	char cap_str[10];
2403	bool cache_enabled = false;
2404	bool fua_enabled = false;
2405
2406	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2407	if (devidx < 0) {
2408		/*
2409		 * We get -ENOSPC because there are no more any available
2410		 * devidx. The reason may be that, either userspace haven't yet
2411		 * unmounted the partitions, which postpones mmc_blk_release()
2412		 * from being called, or the device has more partitions than
2413		 * what we support.
2414		 */
2415		if (devidx == -ENOSPC)
2416			dev_err(mmc_dev(card->host),
2417				"no more device IDs available\n");
2418
2419		return ERR_PTR(devidx);
2420	}
2421
2422	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2423	if (!md) {
2424		ret = -ENOMEM;
2425		goto out;
2426	}
2427
2428	md->area_type = area_type;
2429
2430	/*
2431	 * Set the read-only status based on the supported commands
2432	 * and the write protect switch.
2433	 */
2434	md->read_only = mmc_blk_readonly(card);
2435
2436	md->disk = mmc_init_queue(&md->queue, card);
2437	if (IS_ERR(md->disk)) {
2438		ret = PTR_ERR(md->disk);
2439		goto err_kfree;
2440	}
2441
2442	INIT_LIST_HEAD(&md->part);
2443	INIT_LIST_HEAD(&md->rpmbs);
2444	kref_init(&md->kref);
 
 
 
 
2445
2446	md->queue.blkdata = md;
2447	md->part_type = part_type;
 
 
 
 
 
 
 
 
 
 
 
2448
2449	md->disk->major	= MMC_BLOCK_MAJOR;
2450	md->disk->minors = perdev_minors;
2451	md->disk->first_minor = devidx * perdev_minors;
2452	md->disk->fops = &mmc_bdops;
2453	md->disk->private_data = md;
 
2454	md->parent = parent;
2455	set_disk_ro(md->disk, md->read_only || default_ro);
 
2456	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2457		md->disk->flags |= GENHD_FL_NO_PART;
 
2458
2459	/*
2460	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2461	 *
2462	 * - be set for removable media with permanent block devices
2463	 * - be unset for removable block devices with permanent media
2464	 *
2465	 * Since MMC block devices clearly fall under the second
2466	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2467	 * should use the block device creation/destruction hotplug
2468	 * messages to tell when the card is present.
2469	 */
2470
2471	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2472		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2473
2474	set_capacity(md->disk, size);
2475
2476	if (mmc_host_cmd23(card->host)) {
2477		if ((mmc_card_mmc(card) &&
2478		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2479		    (mmc_card_sd(card) &&
2480		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2481			md->flags |= MMC_BLK_CMD23;
2482	}
2483
2484	if (md->flags & MMC_BLK_CMD23 &&
 
2485	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2486	     card->ext_csd.rel_sectors)) {
2487		md->flags |= MMC_BLK_REL_WR;
2488		fua_enabled = true;
2489		cache_enabled = true;
2490	}
2491	if (mmc_cache_enabled(card->host))
2492		cache_enabled  = true;
2493
2494	blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2495
2496	string_get_size((u64)size, 512, STRING_UNITS_2,
2497			cap_str, sizeof(cap_str));
2498	pr_info("%s: %s %s %s %s\n",
2499		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2500		cap_str, md->read_only ? "(ro)" : "");
2501
2502	/* used in ->open, must be set before add_disk: */
2503	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2504		dev_set_drvdata(&card->dev, md);
2505	ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2506	if (ret)
2507		goto err_put_disk;
2508	return md;
2509
2510 err_put_disk:
2511	put_disk(md->disk);
2512	blk_mq_free_tag_set(&md->queue.tag_set);
2513 err_kfree:
2514	kfree(md);
2515 out:
2516	ida_simple_remove(&mmc_blk_ida, devidx);
2517	return ERR_PTR(ret);
2518}
2519
2520static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2521{
2522	sector_t size;
2523
2524	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2525		/*
2526		 * The EXT_CSD sector count is in number or 512 byte
2527		 * sectors.
2528		 */
2529		size = card->ext_csd.sectors;
2530	} else {
2531		/*
2532		 * The CSD capacity field is in units of read_blkbits.
2533		 * set_capacity takes units of 512 bytes.
2534		 */
2535		size = (typeof(sector_t))card->csd.capacity
2536			<< (card->csd.read_blkbits - 9);
2537	}
2538
2539	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2540					MMC_BLK_DATA_AREA_MAIN, 0);
2541}
2542
2543static int mmc_blk_alloc_part(struct mmc_card *card,
2544			      struct mmc_blk_data *md,
2545			      unsigned int part_type,
2546			      sector_t size,
2547			      bool default_ro,
2548			      const char *subname,
2549			      int area_type)
2550{
 
2551	struct mmc_blk_data *part_md;
2552
2553	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2554				    subname, area_type, part_type);
2555	if (IS_ERR(part_md))
2556		return PTR_ERR(part_md);
 
2557	list_add(&part_md->part, &md->part);
2558
 
 
 
 
 
2559	return 0;
2560}
2561
2562/**
2563 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2564 * @filp: the character device file
2565 * @cmd: the ioctl() command
2566 * @arg: the argument from userspace
2567 *
2568 * This will essentially just redirect the ioctl()s coming in over to
2569 * the main block device spawning the RPMB character device.
2570 */
2571static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2572			   unsigned long arg)
2573{
2574	struct mmc_rpmb_data *rpmb = filp->private_data;
2575	int ret;
2576
2577	switch (cmd) {
2578	case MMC_IOC_CMD:
2579		ret = mmc_blk_ioctl_cmd(rpmb->md,
2580					(struct mmc_ioc_cmd __user *)arg,
2581					rpmb);
2582		break;
2583	case MMC_IOC_MULTI_CMD:
2584		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2585					(struct mmc_ioc_multi_cmd __user *)arg,
2586					rpmb);
2587		break;
2588	default:
2589		ret = -EINVAL;
2590		break;
2591	}
2592
2593	return ret;
2594}
2595
2596#ifdef CONFIG_COMPAT
2597static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2598			      unsigned long arg)
2599{
2600	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2601}
2602#endif
2603
2604static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2605{
2606	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2607						  struct mmc_rpmb_data, chrdev);
2608
2609	get_device(&rpmb->dev);
2610	filp->private_data = rpmb;
2611	mmc_blk_get(rpmb->md->disk);
2612
2613	return nonseekable_open(inode, filp);
2614}
2615
2616static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2617{
2618	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2619						  struct mmc_rpmb_data, chrdev);
2620
2621	mmc_blk_put(rpmb->md);
2622	put_device(&rpmb->dev);
2623
2624	return 0;
2625}
2626
2627static const struct file_operations mmc_rpmb_fileops = {
2628	.release = mmc_rpmb_chrdev_release,
2629	.open = mmc_rpmb_chrdev_open,
2630	.owner = THIS_MODULE,
2631	.llseek = no_llseek,
2632	.unlocked_ioctl = mmc_rpmb_ioctl,
2633#ifdef CONFIG_COMPAT
2634	.compat_ioctl = mmc_rpmb_ioctl_compat,
2635#endif
2636};
2637
2638static void mmc_blk_rpmb_device_release(struct device *dev)
2639{
2640	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2641
2642	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2643	kfree(rpmb);
2644}
2645
2646static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2647				   struct mmc_blk_data *md,
2648				   unsigned int part_index,
2649				   sector_t size,
2650				   const char *subname)
2651{
2652	int devidx, ret;
2653	char rpmb_name[DISK_NAME_LEN];
2654	char cap_str[10];
2655	struct mmc_rpmb_data *rpmb;
2656
2657	/* This creates the minor number for the RPMB char device */
2658	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2659	if (devidx < 0)
2660		return devidx;
2661
2662	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2663	if (!rpmb) {
2664		ida_simple_remove(&mmc_rpmb_ida, devidx);
2665		return -ENOMEM;
2666	}
2667
2668	snprintf(rpmb_name, sizeof(rpmb_name),
2669		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2670
2671	rpmb->id = devidx;
2672	rpmb->part_index = part_index;
2673	rpmb->dev.init_name = rpmb_name;
2674	rpmb->dev.bus = &mmc_rpmb_bus_type;
2675	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2676	rpmb->dev.parent = &card->dev;
2677	rpmb->dev.release = mmc_blk_rpmb_device_release;
2678	device_initialize(&rpmb->dev);
2679	dev_set_drvdata(&rpmb->dev, rpmb);
2680	rpmb->md = md;
2681
2682	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2683	rpmb->chrdev.owner = THIS_MODULE;
2684	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2685	if (ret) {
2686		pr_err("%s: could not add character device\n", rpmb_name);
2687		goto out_put_device;
2688	}
2689
2690	list_add(&rpmb->node, &md->rpmbs);
2691
2692	string_get_size((u64)size, 512, STRING_UNITS_2,
2693			cap_str, sizeof(cap_str));
2694
2695	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2696		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
 
2697		MAJOR(mmc_rpmb_devt), rpmb->id);
2698
2699	return 0;
2700
2701out_put_device:
2702	put_device(&rpmb->dev);
2703	return ret;
2704}
2705
2706static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2707
2708{
2709	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2710	put_device(&rpmb->dev);
2711}
2712
2713/* MMC Physical partitions consist of two boot partitions and
2714 * up to four general purpose partitions.
2715 * For each partition enabled in EXT_CSD a block device will be allocatedi
2716 * to provide access to the partition.
2717 */
2718
2719static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2720{
2721	int idx, ret;
2722
2723	if (!mmc_card_mmc(card))
2724		return 0;
2725
2726	for (idx = 0; idx < card->nr_parts; idx++) {
2727		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2728			/*
2729			 * RPMB partitions does not provide block access, they
2730			 * are only accessed using ioctl():s. Thus create
2731			 * special RPMB block devices that do not have a
2732			 * backing block queue for these.
2733			 */
2734			ret = mmc_blk_alloc_rpmb_part(card, md,
2735				card->part[idx].part_cfg,
2736				card->part[idx].size >> 9,
2737				card->part[idx].name);
2738			if (ret)
2739				return ret;
2740		} else if (card->part[idx].size) {
2741			ret = mmc_blk_alloc_part(card, md,
2742				card->part[idx].part_cfg,
2743				card->part[idx].size >> 9,
2744				card->part[idx].force_ro,
2745				card->part[idx].name,
2746				card->part[idx].area_type);
2747			if (ret)
2748				return ret;
2749		}
2750	}
2751
2752	return 0;
2753}
2754
2755static void mmc_blk_remove_req(struct mmc_blk_data *md)
2756{
2757	/*
2758	 * Flush remaining requests and free queues. It is freeing the queue
2759	 * that stops new requests from being accepted.
2760	 */
2761	del_gendisk(md->disk);
2762	mmc_cleanup_queue(&md->queue);
2763	mmc_blk_put(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2764}
2765
2766static void mmc_blk_remove_parts(struct mmc_card *card,
2767				 struct mmc_blk_data *md)
2768{
2769	struct list_head *pos, *q;
2770	struct mmc_blk_data *part_md;
2771	struct mmc_rpmb_data *rpmb;
2772
2773	/* Remove RPMB partitions */
2774	list_for_each_safe(pos, q, &md->rpmbs) {
2775		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2776		list_del(pos);
2777		mmc_blk_remove_rpmb_part(rpmb);
2778	}
2779	/* Remove block partitions */
2780	list_for_each_safe(pos, q, &md->part) {
2781		part_md = list_entry(pos, struct mmc_blk_data, part);
2782		list_del(pos);
2783		mmc_blk_remove_req(part_md);
2784	}
2785}
2786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2787#ifdef CONFIG_DEBUG_FS
2788
2789static int mmc_dbg_card_status_get(void *data, u64 *val)
2790{
2791	struct mmc_card *card = data;
2792	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2793	struct mmc_queue *mq = &md->queue;
2794	struct request *req;
2795	int ret;
2796
2797	/* Ask the block layer about the card status */
2798	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2799	if (IS_ERR(req))
2800		return PTR_ERR(req);
2801	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2802	blk_execute_rq(req, false);
2803	ret = req_to_mmc_queue_req(req)->drv_op_result;
2804	if (ret >= 0) {
2805		*val = ret;
2806		ret = 0;
2807	}
2808	blk_mq_free_request(req);
2809
2810	return ret;
2811}
2812DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2813			 NULL, "%08llx\n");
2814
2815/* That is two digits * 512 + 1 for newline */
2816#define EXT_CSD_STR_LEN 1025
2817
2818static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2819{
2820	struct mmc_card *card = inode->i_private;
2821	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2822	struct mmc_queue *mq = &md->queue;
2823	struct request *req;
2824	char *buf;
2825	ssize_t n = 0;
2826	u8 *ext_csd;
2827	int err, i;
2828
2829	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2830	if (!buf)
2831		return -ENOMEM;
2832
2833	/* Ask the block layer for the EXT CSD */
2834	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2835	if (IS_ERR(req)) {
2836		err = PTR_ERR(req);
2837		goto out_free;
2838	}
2839	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2840	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2841	blk_execute_rq(req, false);
2842	err = req_to_mmc_queue_req(req)->drv_op_result;
2843	blk_mq_free_request(req);
2844	if (err) {
2845		pr_err("FAILED %d\n", err);
2846		goto out_free;
2847	}
2848
2849	for (i = 0; i < 512; i++)
2850		n += sprintf(buf + n, "%02x", ext_csd[i]);
2851	n += sprintf(buf + n, "\n");
2852
2853	if (n != EXT_CSD_STR_LEN) {
2854		err = -EINVAL;
2855		kfree(ext_csd);
2856		goto out_free;
2857	}
2858
2859	filp->private_data = buf;
2860	kfree(ext_csd);
2861	return 0;
2862
2863out_free:
2864	kfree(buf);
2865	return err;
2866}
2867
2868static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2869				size_t cnt, loff_t *ppos)
2870{
2871	char *buf = filp->private_data;
2872
2873	return simple_read_from_buffer(ubuf, cnt, ppos,
2874				       buf, EXT_CSD_STR_LEN);
2875}
2876
2877static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2878{
2879	kfree(file->private_data);
2880	return 0;
2881}
2882
2883static const struct file_operations mmc_dbg_ext_csd_fops = {
2884	.open		= mmc_ext_csd_open,
2885	.read		= mmc_ext_csd_read,
2886	.release	= mmc_ext_csd_release,
2887	.llseek		= default_llseek,
2888};
2889
2890static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2891{
2892	struct dentry *root;
2893
2894	if (!card->debugfs_root)
2895		return 0;
2896
2897	root = card->debugfs_root;
2898
2899	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2900		md->status_dentry =
2901			debugfs_create_file_unsafe("status", 0400, root,
2902						   card,
2903						   &mmc_dbg_card_status_fops);
2904		if (!md->status_dentry)
2905			return -EIO;
2906	}
2907
2908	if (mmc_card_mmc(card)) {
2909		md->ext_csd_dentry =
2910			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2911					    &mmc_dbg_ext_csd_fops);
2912		if (!md->ext_csd_dentry)
2913			return -EIO;
2914	}
2915
2916	return 0;
2917}
2918
2919static void mmc_blk_remove_debugfs(struct mmc_card *card,
2920				   struct mmc_blk_data *md)
2921{
2922	if (!card->debugfs_root)
2923		return;
2924
2925	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2926		debugfs_remove(md->status_dentry);
2927		md->status_dentry = NULL;
2928	}
2929
2930	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2931		debugfs_remove(md->ext_csd_dentry);
2932		md->ext_csd_dentry = NULL;
2933	}
2934}
2935
2936#else
2937
2938static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2939{
2940	return 0;
2941}
2942
2943static void mmc_blk_remove_debugfs(struct mmc_card *card,
2944				   struct mmc_blk_data *md)
2945{
2946}
2947
2948#endif /* CONFIG_DEBUG_FS */
2949
2950static int mmc_blk_probe(struct mmc_card *card)
2951{
2952	struct mmc_blk_data *md;
2953	int ret = 0;
2954
2955	/*
2956	 * Check that the card supports the command class(es) we need.
2957	 */
2958	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2959		return -ENODEV;
2960
2961	mmc_fixup_device(card, mmc_blk_fixups);
2962
2963	card->complete_wq = alloc_workqueue("mmc_complete",
2964					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2965	if (!card->complete_wq) {
2966		pr_err("Failed to create mmc completion workqueue");
2967		return -ENOMEM;
2968	}
2969
2970	md = mmc_blk_alloc(card);
2971	if (IS_ERR(md)) {
2972		ret = PTR_ERR(md);
2973		goto out_free;
2974	}
2975
2976	ret = mmc_blk_alloc_parts(card, md);
2977	if (ret)
 
 
 
 
 
2978		goto out;
2979
 
 
 
 
 
 
 
 
 
 
2980	/* Add two debugfs entries */
2981	mmc_blk_add_debugfs(card, md);
2982
2983	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2984	pm_runtime_use_autosuspend(&card->dev);
2985
2986	/*
2987	 * Don't enable runtime PM for SD-combo cards here. Leave that
2988	 * decision to be taken during the SDIO init sequence instead.
2989	 */
2990	if (!mmc_card_sd_combo(card)) {
2991		pm_runtime_set_active(&card->dev);
2992		pm_runtime_enable(&card->dev);
2993	}
2994
2995	return 0;
2996
2997out:
2998	mmc_blk_remove_parts(card, md);
2999	mmc_blk_remove_req(md);
3000out_free:
3001	destroy_workqueue(card->complete_wq);
3002	return ret;
3003}
3004
3005static void mmc_blk_remove(struct mmc_card *card)
3006{
3007	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3008
3009	mmc_blk_remove_debugfs(card, md);
3010	mmc_blk_remove_parts(card, md);
3011	pm_runtime_get_sync(&card->dev);
3012	if (md->part_curr != md->part_type) {
3013		mmc_claim_host(card->host);
3014		mmc_blk_part_switch(card, md->part_type);
3015		mmc_release_host(card->host);
3016	}
3017	if (!mmc_card_sd_combo(card))
3018		pm_runtime_disable(&card->dev);
3019	pm_runtime_put_noidle(&card->dev);
3020	mmc_blk_remove_req(md);
3021	dev_set_drvdata(&card->dev, NULL);
3022	destroy_workqueue(card->complete_wq);
3023}
3024
3025static int _mmc_blk_suspend(struct mmc_card *card)
3026{
3027	struct mmc_blk_data *part_md;
3028	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3029
3030	if (md) {
3031		mmc_queue_suspend(&md->queue);
3032		list_for_each_entry(part_md, &md->part, part) {
3033			mmc_queue_suspend(&part_md->queue);
3034		}
3035	}
3036	return 0;
3037}
3038
3039static void mmc_blk_shutdown(struct mmc_card *card)
3040{
3041	_mmc_blk_suspend(card);
3042}
3043
3044#ifdef CONFIG_PM_SLEEP
3045static int mmc_blk_suspend(struct device *dev)
3046{
3047	struct mmc_card *card = mmc_dev_to_card(dev);
3048
3049	return _mmc_blk_suspend(card);
3050}
3051
3052static int mmc_blk_resume(struct device *dev)
3053{
3054	struct mmc_blk_data *part_md;
3055	struct mmc_blk_data *md = dev_get_drvdata(dev);
3056
3057	if (md) {
3058		/*
3059		 * Resume involves the card going into idle state,
3060		 * so current partition is always the main one.
3061		 */
3062		md->part_curr = md->part_type;
3063		mmc_queue_resume(&md->queue);
3064		list_for_each_entry(part_md, &md->part, part) {
3065			mmc_queue_resume(&part_md->queue);
3066		}
3067	}
3068	return 0;
3069}
3070#endif
3071
3072static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3073
3074static struct mmc_driver mmc_driver = {
3075	.drv		= {
3076		.name	= "mmcblk",
3077		.pm	= &mmc_blk_pm_ops,
3078	},
3079	.probe		= mmc_blk_probe,
3080	.remove		= mmc_blk_remove,
3081	.shutdown	= mmc_blk_shutdown,
3082};
3083
3084static int __init mmc_blk_init(void)
3085{
3086	int res;
3087
3088	res  = bus_register(&mmc_rpmb_bus_type);
3089	if (res < 0) {
3090		pr_err("mmcblk: could not register RPMB bus type\n");
3091		return res;
3092	}
3093	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3094	if (res < 0) {
3095		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3096		goto out_bus_unreg;
3097	}
3098
3099	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3100		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3101
3102	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3103
3104	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3105	if (res)
3106		goto out_chrdev_unreg;
3107
3108	res = mmc_register_driver(&mmc_driver);
3109	if (res)
3110		goto out_blkdev_unreg;
3111
3112	return 0;
3113
3114out_blkdev_unreg:
3115	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3116out_chrdev_unreg:
3117	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3118out_bus_unreg:
3119	bus_unregister(&mmc_rpmb_bus_type);
3120	return res;
3121}
3122
3123static void __exit mmc_blk_exit(void)
3124{
3125	mmc_unregister_driver(&mmc_driver);
3126	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3127	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3128	bus_unregister(&mmc_rpmb_bus_type);
3129}
3130
3131module_init(mmc_blk_init);
3132module_exit(mmc_blk_exit);
3133
3134MODULE_LICENSE("GPL");
3135MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3136
v5.9
 
   1/*
   2 * Block driver for media (i.e., flash cards)
   3 *
   4 * Copyright 2002 Hewlett-Packard Company
   5 * Copyright 2005-2008 Pierre Ossman
   6 *
   7 * Use consistent with the GNU GPL is permitted,
   8 * provided that this copyright notice is
   9 * preserved in its entirety in all copies and derived works.
  10 *
  11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  13 * FITNESS FOR ANY PARTICULAR PURPOSE.
  14 *
  15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
  16 *
  17 * Author:  Andrew Christian
  18 *          28 May 2002
  19 */
  20#include <linux/moduleparam.h>
  21#include <linux/module.h>
  22#include <linux/init.h>
  23
  24#include <linux/kernel.h>
  25#include <linux/fs.h>
  26#include <linux/slab.h>
  27#include <linux/errno.h>
  28#include <linux/hdreg.h>
  29#include <linux/kdev_t.h>
 
  30#include <linux/blkdev.h>
  31#include <linux/cdev.h>
  32#include <linux/mutex.h>
  33#include <linux/scatterlist.h>
  34#include <linux/string_helpers.h>
  35#include <linux/delay.h>
  36#include <linux/capability.h>
  37#include <linux/compat.h>
  38#include <linux/pm_runtime.h>
  39#include <linux/idr.h>
  40#include <linux/debugfs.h>
  41
  42#include <linux/mmc/ioctl.h>
  43#include <linux/mmc/card.h>
  44#include <linux/mmc/host.h>
  45#include <linux/mmc/mmc.h>
  46#include <linux/mmc/sd.h>
  47
  48#include <linux/uaccess.h>
  49
  50#include "queue.h"
  51#include "block.h"
  52#include "core.h"
  53#include "card.h"
 
  54#include "host.h"
  55#include "bus.h"
  56#include "mmc_ops.h"
  57#include "quirks.h"
  58#include "sd_ops.h"
  59
  60MODULE_ALIAS("mmc:block");
  61#ifdef MODULE_PARAM_PREFIX
  62#undef MODULE_PARAM_PREFIX
  63#endif
  64#define MODULE_PARAM_PREFIX "mmcblk."
  65
  66/*
  67 * Set a 10 second timeout for polling write request busy state. Note, mmc core
  68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
  69 * second software timer to timeout the whole request, so 10 seconds should be
  70 * ample.
  71 */
  72#define MMC_BLK_TIMEOUT_MS  (10 * 1000)
  73#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
  74#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
  75
  76#define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
  77				  (rq_data_dir(req) == WRITE))
  78static DEFINE_MUTEX(block_mutex);
  79
  80/*
  81 * The defaults come from config options but can be overriden by module
  82 * or bootarg options.
  83 */
  84static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
  85
  86/*
  87 * We've only got one major, so number of mmcblk devices is
  88 * limited to (1 << 20) / number of minors per device.  It is also
  89 * limited by the MAX_DEVICES below.
  90 */
  91static int max_devices;
  92
  93#define MAX_DEVICES 256
  94
  95static DEFINE_IDA(mmc_blk_ida);
  96static DEFINE_IDA(mmc_rpmb_ida);
  97
 
 
 
 
 
  98/*
  99 * There is one mmc_blk_data per slot.
 100 */
 101struct mmc_blk_data {
 102	struct device	*parent;
 103	struct gendisk	*disk;
 104	struct mmc_queue queue;
 105	struct list_head part;
 106	struct list_head rpmbs;
 107
 108	unsigned int	flags;
 109#define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
 110#define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
 111
 112	unsigned int	usage;
 113	unsigned int	read_only;
 114	unsigned int	part_type;
 115	unsigned int	reset_done;
 116#define MMC_BLK_READ		BIT(0)
 117#define MMC_BLK_WRITE		BIT(1)
 118#define MMC_BLK_DISCARD		BIT(2)
 119#define MMC_BLK_SECDISCARD	BIT(3)
 120#define MMC_BLK_CQE_RECOVERY	BIT(4)
 
 121
 122	/*
 123	 * Only set in main mmc_blk_data associated
 124	 * with mmc_card with dev_set_drvdata, and keeps
 125	 * track of the current selected device partition.
 126	 */
 127	unsigned int	part_curr;
 128	struct device_attribute force_ro;
 129	struct device_attribute power_ro_lock;
 130	int	area_type;
 131
 132	/* debugfs files (only in main mmc_blk_data) */
 133	struct dentry *status_dentry;
 134	struct dentry *ext_csd_dentry;
 135};
 136
 137/* Device type for RPMB character devices */
 138static dev_t mmc_rpmb_devt;
 139
 140/* Bus type for RPMB character devices */
 141static struct bus_type mmc_rpmb_bus_type = {
 142	.name = "mmc_rpmb",
 143};
 144
 145/**
 146 * struct mmc_rpmb_data - special RPMB device type for these areas
 147 * @dev: the device for the RPMB area
 148 * @chrdev: character device for the RPMB area
 149 * @id: unique device ID number
 150 * @part_index: partition index (0 on first)
 151 * @md: parent MMC block device
 152 * @node: list item, so we can put this device on a list
 153 */
 154struct mmc_rpmb_data {
 155	struct device dev;
 156	struct cdev chrdev;
 157	int id;
 158	unsigned int part_index;
 159	struct mmc_blk_data *md;
 160	struct list_head node;
 161};
 162
 163static DEFINE_MUTEX(open_lock);
 164
 165module_param(perdev_minors, int, 0444);
 166MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
 167
 168static inline int mmc_blk_part_switch(struct mmc_card *card,
 169				      unsigned int part_type);
 170static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
 171			       struct mmc_card *card,
 172			       int disable_multi,
 173			       struct mmc_queue *mq);
 174static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
 175
 176static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
 177{
 178	struct mmc_blk_data *md;
 179
 180	mutex_lock(&open_lock);
 181	md = disk->private_data;
 182	if (md && md->usage == 0)
 183		md = NULL;
 184	if (md)
 185		md->usage++;
 186	mutex_unlock(&open_lock);
 187
 188	return md;
 189}
 190
 191static inline int mmc_get_devidx(struct gendisk *disk)
 192{
 193	int devidx = disk->first_minor / perdev_minors;
 194	return devidx;
 195}
 196
 197static void mmc_blk_put(struct mmc_blk_data *md)
 198{
 
 
 
 
 
 
 199	mutex_lock(&open_lock);
 200	md->usage--;
 201	if (md->usage == 0) {
 202		int devidx = mmc_get_devidx(md->disk);
 203		blk_put_queue(md->queue.queue);
 204		ida_simple_remove(&mmc_blk_ida, devidx);
 205		put_disk(md->disk);
 206		kfree(md);
 207	}
 208	mutex_unlock(&open_lock);
 
 
 
 
 
 
 
 
 209}
 210
 211static ssize_t power_ro_lock_show(struct device *dev,
 212		struct device_attribute *attr, char *buf)
 213{
 214	int ret;
 215	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 216	struct mmc_card *card = md->queue.card;
 217	int locked = 0;
 218
 219	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
 220		locked = 2;
 221	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
 222		locked = 1;
 223
 224	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
 225
 226	mmc_blk_put(md);
 227
 228	return ret;
 229}
 230
 231static ssize_t power_ro_lock_store(struct device *dev,
 232		struct device_attribute *attr, const char *buf, size_t count)
 233{
 234	int ret;
 235	struct mmc_blk_data *md, *part_md;
 236	struct mmc_queue *mq;
 237	struct request *req;
 238	unsigned long set;
 239
 240	if (kstrtoul(buf, 0, &set))
 241		return -EINVAL;
 242
 243	if (set != 1)
 244		return count;
 245
 246	md = mmc_blk_get(dev_to_disk(dev));
 247	mq = &md->queue;
 248
 249	/* Dispatch locking to the block layer */
 250	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
 251	if (IS_ERR(req)) {
 252		count = PTR_ERR(req);
 253		goto out_put;
 254	}
 255	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
 256	blk_execute_rq(mq->queue, NULL, req, 0);
 257	ret = req_to_mmc_queue_req(req)->drv_op_result;
 258	blk_put_request(req);
 259
 260	if (!ret) {
 261		pr_info("%s: Locking boot partition ro until next power on\n",
 262			md->disk->disk_name);
 263		set_disk_ro(md->disk, 1);
 264
 265		list_for_each_entry(part_md, &md->part, part)
 266			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
 267				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
 268				set_disk_ro(part_md->disk, 1);
 269			}
 270	}
 271out_put:
 272	mmc_blk_put(md);
 273	return count;
 274}
 275
 
 
 
 276static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
 277			     char *buf)
 278{
 279	int ret;
 280	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 281
 282	ret = snprintf(buf, PAGE_SIZE, "%d\n",
 283		       get_disk_ro(dev_to_disk(dev)) ^
 284		       md->read_only);
 285	mmc_blk_put(md);
 286	return ret;
 287}
 288
 289static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
 290			      const char *buf, size_t count)
 291{
 292	int ret;
 293	char *end;
 294	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 295	unsigned long set = simple_strtoul(buf, &end, 0);
 296	if (end == buf) {
 297		ret = -EINVAL;
 298		goto out;
 299	}
 300
 301	set_disk_ro(dev_to_disk(dev), set || md->read_only);
 302	ret = count;
 303out:
 304	mmc_blk_put(md);
 305	return ret;
 306}
 307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
 309{
 310	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
 311	int ret = -ENXIO;
 312
 313	mutex_lock(&block_mutex);
 314	if (md) {
 315		ret = 0;
 316		if ((mode & FMODE_WRITE) && md->read_only) {
 317			mmc_blk_put(md);
 318			ret = -EROFS;
 319		}
 320	}
 321	mutex_unlock(&block_mutex);
 322
 323	return ret;
 324}
 325
 326static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
 327{
 328	struct mmc_blk_data *md = disk->private_data;
 329
 330	mutex_lock(&block_mutex);
 331	mmc_blk_put(md);
 332	mutex_unlock(&block_mutex);
 333}
 334
 335static int
 336mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 337{
 338	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
 339	geo->heads = 4;
 340	geo->sectors = 16;
 341	return 0;
 342}
 343
 344struct mmc_blk_ioc_data {
 345	struct mmc_ioc_cmd ic;
 346	unsigned char *buf;
 347	u64 buf_bytes;
 348	struct mmc_rpmb_data *rpmb;
 349};
 350
 351static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
 352	struct mmc_ioc_cmd __user *user)
 353{
 354	struct mmc_blk_ioc_data *idata;
 355	int err;
 356
 357	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
 358	if (!idata) {
 359		err = -ENOMEM;
 360		goto out;
 361	}
 362
 363	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
 364		err = -EFAULT;
 365		goto idata_err;
 366	}
 367
 368	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
 369	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
 370		err = -EOVERFLOW;
 371		goto idata_err;
 372	}
 373
 374	if (!idata->buf_bytes) {
 375		idata->buf = NULL;
 376		return idata;
 377	}
 378
 379	idata->buf = memdup_user((void __user *)(unsigned long)
 380				 idata->ic.data_ptr, idata->buf_bytes);
 381	if (IS_ERR(idata->buf)) {
 382		err = PTR_ERR(idata->buf);
 383		goto idata_err;
 384	}
 385
 386	return idata;
 387
 388idata_err:
 389	kfree(idata);
 390out:
 391	return ERR_PTR(err);
 392}
 393
 394static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
 395				      struct mmc_blk_ioc_data *idata)
 396{
 397	struct mmc_ioc_cmd *ic = &idata->ic;
 398
 399	if (copy_to_user(&(ic_ptr->response), ic->response,
 400			 sizeof(ic->response)))
 401		return -EFAULT;
 402
 403	if (!idata->ic.write_flag) {
 404		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
 405				 idata->buf, idata->buf_bytes))
 406			return -EFAULT;
 407	}
 408
 409	return 0;
 410}
 411
 412static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
 413			    u32 *resp_errs)
 414{
 415	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
 416	int err = 0;
 417	u32 status;
 418
 419	do {
 420		bool done = time_after(jiffies, timeout);
 421
 422		err = __mmc_send_status(card, &status, 5);
 423		if (err) {
 424			dev_err(mmc_dev(card->host),
 425				"error %d requesting status\n", err);
 426			return err;
 427		}
 428
 429		/* Accumulate any response error bits seen */
 430		if (resp_errs)
 431			*resp_errs |= status;
 432
 433		/*
 434		 * Timeout if the device never becomes ready for data and never
 435		 * leaves the program state.
 436		 */
 437		if (done) {
 438			dev_err(mmc_dev(card->host),
 439				"Card stuck in wrong state! %s status: %#x\n",
 440				 __func__, status);
 441			return -ETIMEDOUT;
 442		}
 443	} while (!mmc_ready_for_data(status));
 444
 445	return err;
 446}
 447
 448static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
 449			       struct mmc_blk_ioc_data *idata)
 450{
 451	struct mmc_command cmd = {}, sbc = {};
 452	struct mmc_data data = {};
 453	struct mmc_request mrq = {};
 454	struct scatterlist sg;
 455	int err;
 456	unsigned int target_part;
 457
 458	if (!card || !md || !idata)
 459		return -EINVAL;
 460
 461	/*
 462	 * The RPMB accesses comes in from the character device, so we
 463	 * need to target these explicitly. Else we just target the
 464	 * partition type for the block device the ioctl() was issued
 465	 * on.
 466	 */
 467	if (idata->rpmb) {
 468		/* Support multiple RPMB partitions */
 469		target_part = idata->rpmb->part_index;
 470		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
 471	} else {
 472		target_part = md->part_type;
 473	}
 474
 475	cmd.opcode = idata->ic.opcode;
 476	cmd.arg = idata->ic.arg;
 477	cmd.flags = idata->ic.flags;
 478
 479	if (idata->buf_bytes) {
 480		data.sg = &sg;
 481		data.sg_len = 1;
 482		data.blksz = idata->ic.blksz;
 483		data.blocks = idata->ic.blocks;
 484
 485		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
 486
 487		if (idata->ic.write_flag)
 488			data.flags = MMC_DATA_WRITE;
 489		else
 490			data.flags = MMC_DATA_READ;
 491
 492		/* data.flags must already be set before doing this. */
 493		mmc_set_data_timeout(&data, card);
 494
 495		/* Allow overriding the timeout_ns for empirical tuning. */
 496		if (idata->ic.data_timeout_ns)
 497			data.timeout_ns = idata->ic.data_timeout_ns;
 498
 499		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
 500			/*
 501			 * Pretend this is a data transfer and rely on the
 502			 * host driver to compute timeout.  When all host
 503			 * drivers support cmd.cmd_timeout for R1B, this
 504			 * can be changed to:
 505			 *
 506			 *     mrq.data = NULL;
 507			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
 508			 */
 509			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
 510		}
 511
 512		mrq.data = &data;
 513	}
 514
 515	mrq.cmd = &cmd;
 516
 517	err = mmc_blk_part_switch(card, target_part);
 518	if (err)
 519		return err;
 520
 521	if (idata->ic.is_acmd) {
 522		err = mmc_app_cmd(card->host, card);
 523		if (err)
 524			return err;
 525	}
 526
 527	if (idata->rpmb) {
 528		sbc.opcode = MMC_SET_BLOCK_COUNT;
 529		/*
 530		 * We don't do any blockcount validation because the max size
 531		 * may be increased by a future standard. We just copy the
 532		 * 'Reliable Write' bit here.
 533		 */
 534		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
 535		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
 536		mrq.sbc = &sbc;
 537	}
 538
 539	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
 540	    (cmd.opcode == MMC_SWITCH))
 541		return mmc_sanitize(card);
 542
 543	mmc_wait_for_req(card->host, &mrq);
 
 544
 545	if (cmd.error) {
 546		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
 547						__func__, cmd.error);
 548		return cmd.error;
 549	}
 550	if (data.error) {
 551		dev_err(mmc_dev(card->host), "%s: data error %d\n",
 552						__func__, data.error);
 553		return data.error;
 554	}
 555
 556	/*
 557	 * Make sure the cache of the PARTITION_CONFIG register and
 558	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
 559	 * changed it successfully.
 560	 */
 561	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
 562	    (cmd.opcode == MMC_SWITCH)) {
 563		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 564		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
 565
 566		/*
 567		 * Update cache so the next mmc_blk_part_switch call operates
 568		 * on up-to-date data.
 569		 */
 570		card->ext_csd.part_config = value;
 571		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
 572	}
 573
 574	/*
 
 
 
 
 
 
 
 
 
 
 
 
 575	 * According to the SD specs, some commands require a delay after
 576	 * issuing the command.
 577	 */
 578	if (idata->ic.postsleep_min_us)
 579		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
 580
 581	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
 582
 583	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B)) {
 584		/*
 585		 * Ensure RPMB/R1B command has completed by polling CMD13
 586		 * "Send Status".
 587		 */
 588		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
 
 589	}
 590
 591	return err;
 592}
 593
 594static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
 595			     struct mmc_ioc_cmd __user *ic_ptr,
 596			     struct mmc_rpmb_data *rpmb)
 597{
 598	struct mmc_blk_ioc_data *idata;
 599	struct mmc_blk_ioc_data *idatas[1];
 600	struct mmc_queue *mq;
 601	struct mmc_card *card;
 602	int err = 0, ioc_err = 0;
 603	struct request *req;
 604
 605	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
 606	if (IS_ERR(idata))
 607		return PTR_ERR(idata);
 608	/* This will be NULL on non-RPMB ioctl():s */
 609	idata->rpmb = rpmb;
 610
 611	card = md->queue.card;
 612	if (IS_ERR(card)) {
 613		err = PTR_ERR(card);
 614		goto cmd_done;
 615	}
 616
 617	/*
 618	 * Dispatch the ioctl() into the block request queue.
 619	 */
 620	mq = &md->queue;
 621	req = blk_get_request(mq->queue,
 622		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 623	if (IS_ERR(req)) {
 624		err = PTR_ERR(req);
 625		goto cmd_done;
 626	}
 627	idatas[0] = idata;
 628	req_to_mmc_queue_req(req)->drv_op =
 629		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 630	req_to_mmc_queue_req(req)->drv_op_data = idatas;
 631	req_to_mmc_queue_req(req)->ioc_count = 1;
 632	blk_execute_rq(mq->queue, NULL, req, 0);
 633	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 634	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
 635	blk_put_request(req);
 636
 637cmd_done:
 638	kfree(idata->buf);
 639	kfree(idata);
 640	return ioc_err ? ioc_err : err;
 641}
 642
 643static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
 644				   struct mmc_ioc_multi_cmd __user *user,
 645				   struct mmc_rpmb_data *rpmb)
 646{
 647	struct mmc_blk_ioc_data **idata = NULL;
 648	struct mmc_ioc_cmd __user *cmds = user->cmds;
 649	struct mmc_card *card;
 650	struct mmc_queue *mq;
 651	int i, err = 0, ioc_err = 0;
 652	__u64 num_of_cmds;
 
 653	struct request *req;
 654
 655	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
 656			   sizeof(num_of_cmds)))
 657		return -EFAULT;
 658
 659	if (!num_of_cmds)
 660		return 0;
 661
 662	if (num_of_cmds > MMC_IOC_MAX_CMDS)
 663		return -EINVAL;
 664
 665	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
 
 666	if (!idata)
 667		return -ENOMEM;
 668
 669	for (i = 0; i < num_of_cmds; i++) {
 670		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
 671		if (IS_ERR(idata[i])) {
 672			err = PTR_ERR(idata[i]);
 673			num_of_cmds = i;
 674			goto cmd_err;
 675		}
 676		/* This will be NULL on non-RPMB ioctl():s */
 677		idata[i]->rpmb = rpmb;
 678	}
 679
 680	card = md->queue.card;
 681	if (IS_ERR(card)) {
 682		err = PTR_ERR(card);
 683		goto cmd_err;
 684	}
 685
 686
 687	/*
 688	 * Dispatch the ioctl()s into the block request queue.
 689	 */
 690	mq = &md->queue;
 691	req = blk_get_request(mq->queue,
 692		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 693	if (IS_ERR(req)) {
 694		err = PTR_ERR(req);
 695		goto cmd_err;
 696	}
 697	req_to_mmc_queue_req(req)->drv_op =
 698		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 699	req_to_mmc_queue_req(req)->drv_op_data = idata;
 700	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
 701	blk_execute_rq(mq->queue, NULL, req, 0);
 702	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 703
 704	/* copy to user if data and response */
 705	for (i = 0; i < num_of_cmds && !err; i++)
 706		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
 707
 708	blk_put_request(req);
 709
 710cmd_err:
 711	for (i = 0; i < num_of_cmds; i++) {
 712		kfree(idata[i]->buf);
 713		kfree(idata[i]);
 714	}
 715	kfree(idata);
 716	return ioc_err ? ioc_err : err;
 717}
 718
 719static int mmc_blk_check_blkdev(struct block_device *bdev)
 720{
 721	/*
 722	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
 723	 * whole block device, not on a partition.  This prevents overspray
 724	 * between sibling partitions.
 725	 */
 726	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
 727		return -EPERM;
 728	return 0;
 729}
 730
 731static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
 732	unsigned int cmd, unsigned long arg)
 733{
 734	struct mmc_blk_data *md;
 735	int ret;
 736
 737	switch (cmd) {
 738	case MMC_IOC_CMD:
 739		ret = mmc_blk_check_blkdev(bdev);
 740		if (ret)
 741			return ret;
 742		md = mmc_blk_get(bdev->bd_disk);
 743		if (!md)
 744			return -EINVAL;
 745		ret = mmc_blk_ioctl_cmd(md,
 746					(struct mmc_ioc_cmd __user *)arg,
 747					NULL);
 748		mmc_blk_put(md);
 749		return ret;
 750	case MMC_IOC_MULTI_CMD:
 751		ret = mmc_blk_check_blkdev(bdev);
 752		if (ret)
 753			return ret;
 754		md = mmc_blk_get(bdev->bd_disk);
 755		if (!md)
 756			return -EINVAL;
 757		ret = mmc_blk_ioctl_multi_cmd(md,
 758					(struct mmc_ioc_multi_cmd __user *)arg,
 759					NULL);
 760		mmc_blk_put(md);
 761		return ret;
 762	default:
 763		return -EINVAL;
 764	}
 765}
 766
 767#ifdef CONFIG_COMPAT
 768static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
 769	unsigned int cmd, unsigned long arg)
 770{
 771	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
 772}
 773#endif
 774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775static const struct block_device_operations mmc_bdops = {
 776	.open			= mmc_blk_open,
 777	.release		= mmc_blk_release,
 778	.getgeo			= mmc_blk_getgeo,
 779	.owner			= THIS_MODULE,
 780	.ioctl			= mmc_blk_ioctl,
 781#ifdef CONFIG_COMPAT
 782	.compat_ioctl		= mmc_blk_compat_ioctl,
 783#endif
 
 784};
 785
 786static int mmc_blk_part_switch_pre(struct mmc_card *card,
 787				   unsigned int part_type)
 788{
 789	int ret = 0;
 790
 791	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 792		if (card->ext_csd.cmdq_en) {
 793			ret = mmc_cmdq_disable(card);
 794			if (ret)
 795				return ret;
 796		}
 797		mmc_retune_pause(card->host);
 798	}
 799
 800	return ret;
 801}
 802
 803static int mmc_blk_part_switch_post(struct mmc_card *card,
 804				    unsigned int part_type)
 805{
 806	int ret = 0;
 807
 808	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 809		mmc_retune_unpause(card->host);
 810		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
 811			ret = mmc_cmdq_enable(card);
 812	}
 813
 814	return ret;
 815}
 816
 817static inline int mmc_blk_part_switch(struct mmc_card *card,
 818				      unsigned int part_type)
 819{
 820	int ret = 0;
 821	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 822
 823	if (main_md->part_curr == part_type)
 824		return 0;
 825
 826	if (mmc_card_mmc(card)) {
 827		u8 part_config = card->ext_csd.part_config;
 828
 829		ret = mmc_blk_part_switch_pre(card, part_type);
 830		if (ret)
 831			return ret;
 832
 833		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
 834		part_config |= part_type;
 835
 836		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 837				 EXT_CSD_PART_CONFIG, part_config,
 838				 card->ext_csd.part_time);
 839		if (ret) {
 840			mmc_blk_part_switch_post(card, part_type);
 841			return ret;
 842		}
 843
 844		card->ext_csd.part_config = part_config;
 845
 846		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
 847	}
 848
 849	main_md->part_curr = part_type;
 850	return ret;
 851}
 852
 853static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
 854{
 855	int err;
 856	u32 result;
 857	__be32 *blocks;
 858
 859	struct mmc_request mrq = {};
 860	struct mmc_command cmd = {};
 861	struct mmc_data data = {};
 862
 863	struct scatterlist sg;
 864
 865	cmd.opcode = MMC_APP_CMD;
 866	cmd.arg = card->rca << 16;
 867	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 868
 869	err = mmc_wait_for_cmd(card->host, &cmd, 0);
 870	if (err)
 871		return err;
 872	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
 873		return -EIO;
 874
 875	memset(&cmd, 0, sizeof(struct mmc_command));
 876
 877	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
 878	cmd.arg = 0;
 879	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 880
 881	data.blksz = 4;
 882	data.blocks = 1;
 883	data.flags = MMC_DATA_READ;
 884	data.sg = &sg;
 885	data.sg_len = 1;
 886	mmc_set_data_timeout(&data, card);
 887
 888	mrq.cmd = &cmd;
 889	mrq.data = &data;
 890
 891	blocks = kmalloc(4, GFP_KERNEL);
 892	if (!blocks)
 893		return -ENOMEM;
 894
 895	sg_init_one(&sg, blocks, 4);
 896
 897	mmc_wait_for_req(card->host, &mrq);
 898
 899	result = ntohl(*blocks);
 900	kfree(blocks);
 901
 902	if (cmd.error || data.error)
 903		return -EIO;
 904
 905	*written_blocks = result;
 906
 907	return 0;
 908}
 909
 910static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
 911{
 912	if (host->actual_clock)
 913		return host->actual_clock / 1000;
 914
 915	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
 916	if (host->ios.clock)
 917		return host->ios.clock / 2000;
 918
 919	/* How can there be no clock */
 920	WARN_ON_ONCE(1);
 921	return 100; /* 100 kHz is minimum possible value */
 922}
 923
 924static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
 925					    struct mmc_data *data)
 926{
 927	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
 928	unsigned int khz;
 929
 930	if (data->timeout_clks) {
 931		khz = mmc_blk_clock_khz(host);
 932		ms += DIV_ROUND_UP(data->timeout_clks, khz);
 933	}
 934
 935	return ms;
 936}
 937
 
 
 
 
 
 
 938static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
 939			 int type)
 940{
 941	int err;
 
 942
 943	if (md->reset_done & type)
 944		return -EEXIST;
 945
 946	md->reset_done |= type;
 947	err = mmc_hw_reset(host);
 
 
 
 
 
 
 
 
 948	/* Ensure we switch back to the correct partition */
 949	if (err != -EOPNOTSUPP) {
 950		struct mmc_blk_data *main_md =
 951			dev_get_drvdata(&host->card->dev);
 952		int part_err;
 953
 954		main_md->part_curr = main_md->part_type;
 955		part_err = mmc_blk_part_switch(host->card, md->part_type);
 956		if (part_err) {
 957			/*
 958			 * We have failed to get back into the correct
 959			 * partition, so we need to abort the whole request.
 960			 */
 961			return -ENODEV;
 962		}
 963	}
 964	return err;
 965}
 966
 967static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
 968{
 969	md->reset_done &= ~type;
 970}
 971
 972/*
 973 * The non-block commands come back from the block layer after it queued it and
 974 * processed it with all other requests and then they get issued in this
 975 * function.
 976 */
 977static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
 978{
 979	struct mmc_queue_req *mq_rq;
 980	struct mmc_card *card = mq->card;
 981	struct mmc_blk_data *md = mq->blkdata;
 982	struct mmc_blk_ioc_data **idata;
 983	bool rpmb_ioctl;
 984	u8 **ext_csd;
 985	u32 status;
 986	int ret;
 987	int i;
 988
 989	mq_rq = req_to_mmc_queue_req(req);
 990	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
 991
 992	switch (mq_rq->drv_op) {
 993	case MMC_DRV_OP_IOCTL:
 
 
 
 
 
 
 994	case MMC_DRV_OP_IOCTL_RPMB:
 995		idata = mq_rq->drv_op_data;
 996		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
 997			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
 998			if (ret)
 999				break;
1000		}
1001		/* Always switch back to main area after RPMB access */
1002		if (rpmb_ioctl)
1003			mmc_blk_part_switch(card, 0);
 
 
1004		break;
1005	case MMC_DRV_OP_BOOT_WP:
1006		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1007				 card->ext_csd.boot_ro_lock |
1008				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1009				 card->ext_csd.part_time);
1010		if (ret)
1011			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1012			       md->disk->disk_name, ret);
1013		else
1014			card->ext_csd.boot_ro_lock |=
1015				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1016		break;
1017	case MMC_DRV_OP_GET_CARD_STATUS:
1018		ret = mmc_send_status(card, &status);
1019		if (!ret)
1020			ret = status;
1021		break;
1022	case MMC_DRV_OP_GET_EXT_CSD:
1023		ext_csd = mq_rq->drv_op_data;
1024		ret = mmc_get_ext_csd(card, ext_csd);
1025		break;
1026	default:
1027		pr_err("%s: unknown driver specific operation\n",
1028		       md->disk->disk_name);
1029		ret = -EINVAL;
1030		break;
1031	}
1032	mq_rq->drv_op_result = ret;
1033	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1034}
1035
1036static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
 
1037{
1038	struct mmc_blk_data *md = mq->blkdata;
1039	struct mmc_card *card = md->queue.card;
1040	unsigned int from, nr;
1041	int err = 0, type = MMC_BLK_DISCARD;
1042	blk_status_t status = BLK_STS_OK;
1043
1044	if (!mmc_can_erase(card)) {
1045		status = BLK_STS_NOTSUPP;
1046		goto fail;
1047	}
1048
1049	from = blk_rq_pos(req);
1050	nr = blk_rq_sectors(req);
1051
1052	do {
1053		err = 0;
1054		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1055			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1056					 INAND_CMD38_ARG_EXT_CSD,
1057					 card->erase_arg == MMC_TRIM_ARG ?
1058					 INAND_CMD38_ARG_TRIM :
1059					 INAND_CMD38_ARG_ERASE,
1060					 card->ext_csd.generic_cmd6_time);
1061		}
1062		if (!err)
1063			err = mmc_erase(card, from, nr, card->erase_arg);
1064	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1065	if (err)
1066		status = BLK_STS_IOERR;
1067	else
1068		mmc_blk_reset_success(md, type);
1069fail:
1070	blk_mq_end_request(req, status);
1071}
1072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1074				       struct request *req)
1075{
1076	struct mmc_blk_data *md = mq->blkdata;
1077	struct mmc_card *card = md->queue.card;
1078	unsigned int from, nr, arg;
1079	int err = 0, type = MMC_BLK_SECDISCARD;
1080	blk_status_t status = BLK_STS_OK;
1081
1082	if (!(mmc_can_secure_erase_trim(card))) {
1083		status = BLK_STS_NOTSUPP;
1084		goto out;
1085	}
1086
1087	from = blk_rq_pos(req);
1088	nr = blk_rq_sectors(req);
1089
1090	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1091		arg = MMC_SECURE_TRIM1_ARG;
1092	else
1093		arg = MMC_SECURE_ERASE_ARG;
1094
1095retry:
1096	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1097		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1098				 INAND_CMD38_ARG_EXT_CSD,
1099				 arg == MMC_SECURE_TRIM1_ARG ?
1100				 INAND_CMD38_ARG_SECTRIM1 :
1101				 INAND_CMD38_ARG_SECERASE,
1102				 card->ext_csd.generic_cmd6_time);
1103		if (err)
1104			goto out_retry;
1105	}
1106
1107	err = mmc_erase(card, from, nr, arg);
1108	if (err == -EIO)
1109		goto out_retry;
1110	if (err) {
1111		status = BLK_STS_IOERR;
1112		goto out;
1113	}
1114
1115	if (arg == MMC_SECURE_TRIM1_ARG) {
1116		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1117			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1118					 INAND_CMD38_ARG_EXT_CSD,
1119					 INAND_CMD38_ARG_SECTRIM2,
1120					 card->ext_csd.generic_cmd6_time);
1121			if (err)
1122				goto out_retry;
1123		}
1124
1125		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1126		if (err == -EIO)
1127			goto out_retry;
1128		if (err) {
1129			status = BLK_STS_IOERR;
1130			goto out;
1131		}
1132	}
1133
1134out_retry:
1135	if (err && !mmc_blk_reset(md, card->host, type))
1136		goto retry;
1137	if (!err)
1138		mmc_blk_reset_success(md, type);
1139out:
1140	blk_mq_end_request(req, status);
1141}
1142
1143static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1144{
1145	struct mmc_blk_data *md = mq->blkdata;
1146	struct mmc_card *card = md->queue.card;
1147	int ret = 0;
1148
1149	ret = mmc_flush_cache(card);
1150	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1151}
1152
1153/*
1154 * Reformat current write as a reliable write, supporting
1155 * both legacy and the enhanced reliable write MMC cards.
1156 * In each transfer we'll handle only as much as a single
1157 * reliable write can handle, thus finish the request in
1158 * partial completions.
1159 */
1160static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1161				    struct mmc_card *card,
1162				    struct request *req)
1163{
1164	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1165		/* Legacy mode imposes restrictions on transfers. */
1166		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1167			brq->data.blocks = 1;
1168
1169		if (brq->data.blocks > card->ext_csd.rel_sectors)
1170			brq->data.blocks = card->ext_csd.rel_sectors;
1171		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1172			brq->data.blocks = 1;
1173	}
1174}
1175
1176#define CMD_ERRORS_EXCL_OOR						\
1177	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1178	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1179	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1180	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1181	 R1_CC_ERROR |		/* Card controller error */		\
1182	 R1_ERROR)		/* General/unknown error */
1183
1184#define CMD_ERRORS							\
1185	(CMD_ERRORS_EXCL_OOR |						\
1186	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1187
1188static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1189{
1190	u32 val;
1191
1192	/*
1193	 * Per the SD specification(physical layer version 4.10)[1],
1194	 * section 4.3.3, it explicitly states that "When the last
1195	 * block of user area is read using CMD18, the host should
1196	 * ignore OUT_OF_RANGE error that may occur even the sequence
1197	 * is correct". And JESD84-B51 for eMMC also has a similar
1198	 * statement on section 6.8.3.
1199	 *
1200	 * Multiple block read/write could be done by either predefined
1201	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1202	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1203	 *
1204	 * However the spec[1] doesn't tell us whether we should also
1205	 * ignore that for predefined method. But per the spec[1], section
1206	 * 4.15 Set Block Count Command, it says"If illegal block count
1207	 * is set, out of range error will be indicated during read/write
1208	 * operation (For example, data transfer is stopped at user area
1209	 * boundary)." In another word, we could expect a out of range error
1210	 * in the response for the following CMD18/25. And if argument of
1211	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1212	 * we could also expect to get a -ETIMEDOUT or any error number from
1213	 * the host drivers due to missing data response(for write)/data(for
1214	 * read), as the cards will stop the data transfer by itself per the
1215	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1216	 */
1217
1218	if (!brq->stop.error) {
1219		bool oor_with_open_end;
1220		/* If there is no error yet, check R1 response */
1221
1222		val = brq->stop.resp[0] & CMD_ERRORS;
1223		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1224
1225		if (val && !oor_with_open_end)
1226			brq->stop.error = -EIO;
1227	}
1228}
1229
1230static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1231			      int disable_multi, bool *do_rel_wr_p,
1232			      bool *do_data_tag_p)
1233{
1234	struct mmc_blk_data *md = mq->blkdata;
1235	struct mmc_card *card = md->queue.card;
1236	struct mmc_blk_request *brq = &mqrq->brq;
1237	struct request *req = mmc_queue_req_to_req(mqrq);
1238	bool do_rel_wr, do_data_tag;
1239
1240	/*
1241	 * Reliable writes are used to implement Forced Unit Access and
1242	 * are supported only on MMCs.
1243	 */
1244	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1245		    rq_data_dir(req) == WRITE &&
1246		    (md->flags & MMC_BLK_REL_WR);
1247
1248	memset(brq, 0, sizeof(struct mmc_blk_request));
1249
 
 
1250	brq->mrq.data = &brq->data;
1251	brq->mrq.tag = req->tag;
1252
1253	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1254	brq->stop.arg = 0;
1255
1256	if (rq_data_dir(req) == READ) {
1257		brq->data.flags = MMC_DATA_READ;
1258		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1259	} else {
1260		brq->data.flags = MMC_DATA_WRITE;
1261		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1262	}
1263
1264	brq->data.blksz = 512;
1265	brq->data.blocks = blk_rq_sectors(req);
1266	brq->data.blk_addr = blk_rq_pos(req);
1267
1268	/*
1269	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1270	 * The eMMC will give "high" priority tasks priority over "simple"
1271	 * priority tasks. Here we always set "simple" priority by not setting
1272	 * MMC_DATA_PRIO.
1273	 */
1274
1275	/*
1276	 * The block layer doesn't support all sector count
1277	 * restrictions, so we need to be prepared for too big
1278	 * requests.
1279	 */
1280	if (brq->data.blocks > card->host->max_blk_count)
1281		brq->data.blocks = card->host->max_blk_count;
1282
1283	if (brq->data.blocks > 1) {
1284		/*
1285		 * Some SD cards in SPI mode return a CRC error or even lock up
1286		 * completely when trying to read the last block using a
1287		 * multiblock read command.
1288		 */
1289		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1290		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1291		     get_capacity(md->disk)))
1292			brq->data.blocks--;
1293
1294		/*
1295		 * After a read error, we redo the request one sector
1296		 * at a time in order to accurately determine which
1297		 * sectors can be read successfully.
1298		 */
1299		if (disable_multi)
1300			brq->data.blocks = 1;
1301
1302		/*
1303		 * Some controllers have HW issues while operating
1304		 * in multiple I/O mode
1305		 */
1306		if (card->host->ops->multi_io_quirk)
1307			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1308						(rq_data_dir(req) == READ) ?
1309						MMC_DATA_READ : MMC_DATA_WRITE,
1310						brq->data.blocks);
1311	}
1312
1313	if (do_rel_wr) {
1314		mmc_apply_rel_rw(brq, card, req);
1315		brq->data.flags |= MMC_DATA_REL_WR;
1316	}
1317
1318	/*
1319	 * Data tag is used only during writing meta data to speed
1320	 * up write and any subsequent read of this meta data
1321	 */
1322	do_data_tag = card->ext_csd.data_tag_unit_size &&
1323		      (req->cmd_flags & REQ_META) &&
1324		      (rq_data_dir(req) == WRITE) &&
1325		      ((brq->data.blocks * brq->data.blksz) >=
1326		       card->ext_csd.data_tag_unit_size);
1327
1328	if (do_data_tag)
1329		brq->data.flags |= MMC_DATA_DAT_TAG;
1330
1331	mmc_set_data_timeout(&brq->data, card);
1332
1333	brq->data.sg = mqrq->sg;
1334	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1335
1336	/*
1337	 * Adjust the sg list so it is the same size as the
1338	 * request.
1339	 */
1340	if (brq->data.blocks != blk_rq_sectors(req)) {
1341		int i, data_size = brq->data.blocks << 9;
1342		struct scatterlist *sg;
1343
1344		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1345			data_size -= sg->length;
1346			if (data_size <= 0) {
1347				sg->length += data_size;
1348				i++;
1349				break;
1350			}
1351		}
1352		brq->data.sg_len = i;
1353	}
1354
1355	if (do_rel_wr_p)
1356		*do_rel_wr_p = do_rel_wr;
1357
1358	if (do_data_tag_p)
1359		*do_data_tag_p = do_data_tag;
1360}
1361
1362#define MMC_CQE_RETRIES 2
1363
1364static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1365{
1366	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1367	struct mmc_request *mrq = &mqrq->brq.mrq;
1368	struct request_queue *q = req->q;
1369	struct mmc_host *host = mq->card->host;
1370	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1371	unsigned long flags;
1372	bool put_card;
1373	int err;
1374
1375	mmc_cqe_post_req(host, mrq);
1376
1377	if (mrq->cmd && mrq->cmd->error)
1378		err = mrq->cmd->error;
1379	else if (mrq->data && mrq->data->error)
1380		err = mrq->data->error;
1381	else
1382		err = 0;
1383
1384	if (err) {
1385		if (mqrq->retries++ < MMC_CQE_RETRIES)
1386			blk_mq_requeue_request(req, true);
1387		else
1388			blk_mq_end_request(req, BLK_STS_IOERR);
1389	} else if (mrq->data) {
1390		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1391			blk_mq_requeue_request(req, true);
1392		else
1393			__blk_mq_end_request(req, BLK_STS_OK);
1394	} else {
1395		blk_mq_end_request(req, BLK_STS_OK);
1396	}
1397
1398	spin_lock_irqsave(&mq->lock, flags);
1399
1400	mq->in_flight[issue_type] -= 1;
1401
1402	put_card = (mmc_tot_in_flight(mq) == 0);
1403
1404	mmc_cqe_check_busy(mq);
1405
1406	spin_unlock_irqrestore(&mq->lock, flags);
1407
1408	if (!mq->cqe_busy)
1409		blk_mq_run_hw_queues(q, true);
1410
1411	if (put_card)
1412		mmc_put_card(mq->card, &mq->ctx);
1413}
1414
1415void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1416{
1417	struct mmc_card *card = mq->card;
1418	struct mmc_host *host = card->host;
1419	int err;
1420
1421	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1422
1423	err = mmc_cqe_recovery(host);
1424	if (err)
1425		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1426	else
1427		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1428
1429	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1430}
1431
1432static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1433{
1434	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1435						  brq.mrq);
1436	struct request *req = mmc_queue_req_to_req(mqrq);
1437	struct request_queue *q = req->q;
1438	struct mmc_queue *mq = q->queuedata;
1439
1440	/*
1441	 * Block layer timeouts race with completions which means the normal
1442	 * completion path cannot be used during recovery.
1443	 */
1444	if (mq->in_recovery)
1445		mmc_blk_cqe_complete_rq(mq, req);
1446	else if (likely(!blk_should_fake_timeout(req->q)))
1447		blk_mq_complete_request(req);
1448}
1449
1450static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1451{
1452	mrq->done		= mmc_blk_cqe_req_done;
1453	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1454
1455	return mmc_cqe_start_req(host, mrq);
1456}
1457
1458static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1459						 struct request *req)
1460{
1461	struct mmc_blk_request *brq = &mqrq->brq;
1462
1463	memset(brq, 0, sizeof(*brq));
1464
1465	brq->mrq.cmd = &brq->cmd;
1466	brq->mrq.tag = req->tag;
1467
1468	return &brq->mrq;
1469}
1470
1471static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1472{
1473	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1474	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1475
1476	mrq->cmd->opcode = MMC_SWITCH;
1477	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1478			(EXT_CSD_FLUSH_CACHE << 16) |
1479			(1 << 8) |
1480			EXT_CSD_CMD_SET_NORMAL;
1481	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1482
1483	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1484}
1485
1486static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1487{
1488	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1489	struct mmc_host *host = mq->card->host;
1490	int err;
1491
1492	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1493	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1494	mmc_pre_req(host, &mqrq->brq.mrq);
1495
1496	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1497	if (err)
1498		mmc_post_req(host, &mqrq->brq.mrq, err);
1499
1500	return err;
1501}
1502
1503static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1504{
1505	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1506	struct mmc_host *host = mq->card->host;
1507
1508	if (host->hsq_enabled)
1509		return mmc_blk_hsq_issue_rw_rq(mq, req);
1510
1511	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1512
1513	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1514}
1515
1516static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1517			       struct mmc_card *card,
1518			       int disable_multi,
1519			       struct mmc_queue *mq)
1520{
1521	u32 readcmd, writecmd;
1522	struct mmc_blk_request *brq = &mqrq->brq;
1523	struct request *req = mmc_queue_req_to_req(mqrq);
1524	struct mmc_blk_data *md = mq->blkdata;
1525	bool do_rel_wr, do_data_tag;
1526
1527	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1528
1529	brq->mrq.cmd = &brq->cmd;
1530
1531	brq->cmd.arg = blk_rq_pos(req);
1532	if (!mmc_card_blockaddr(card))
1533		brq->cmd.arg <<= 9;
1534	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1535
1536	if (brq->data.blocks > 1 || do_rel_wr) {
1537		/* SPI multiblock writes terminate using a special
1538		 * token, not a STOP_TRANSMISSION request.
1539		 */
1540		if (!mmc_host_is_spi(card->host) ||
1541		    rq_data_dir(req) == READ)
1542			brq->mrq.stop = &brq->stop;
1543		readcmd = MMC_READ_MULTIPLE_BLOCK;
1544		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1545	} else {
1546		brq->mrq.stop = NULL;
1547		readcmd = MMC_READ_SINGLE_BLOCK;
1548		writecmd = MMC_WRITE_BLOCK;
1549	}
1550	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1551
1552	/*
1553	 * Pre-defined multi-block transfers are preferable to
1554	 * open ended-ones (and necessary for reliable writes).
1555	 * However, it is not sufficient to just send CMD23,
1556	 * and avoid the final CMD12, as on an error condition
1557	 * CMD12 (stop) needs to be sent anyway. This, coupled
1558	 * with Auto-CMD23 enhancements provided by some
1559	 * hosts, means that the complexity of dealing
1560	 * with this is best left to the host. If CMD23 is
1561	 * supported by card and host, we'll fill sbc in and let
1562	 * the host deal with handling it correctly. This means
1563	 * that for hosts that don't expose MMC_CAP_CMD23, no
1564	 * change of behavior will be observed.
1565	 *
1566	 * N.B: Some MMC cards experience perf degradation.
1567	 * We'll avoid using CMD23-bounded multiblock writes for
1568	 * these, while retaining features like reliable writes.
1569	 */
1570	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1571	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1572	     do_data_tag)) {
1573		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1574		brq->sbc.arg = brq->data.blocks |
1575			(do_rel_wr ? (1 << 31) : 0) |
1576			(do_data_tag ? (1 << 29) : 0);
1577		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1578		brq->mrq.sbc = &brq->sbc;
1579	}
1580}
1581
1582#define MMC_MAX_RETRIES		5
1583#define MMC_DATA_RETRIES	2
1584#define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1585
1586static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1587{
1588	struct mmc_command cmd = {
1589		.opcode = MMC_STOP_TRANSMISSION,
1590		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1591		/* Some hosts wait for busy anyway, so provide a busy timeout */
1592		.busy_timeout = timeout,
1593	};
1594
1595	return mmc_wait_for_cmd(card->host, &cmd, 5);
1596}
1597
1598static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1599{
1600	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1601	struct mmc_blk_request *brq = &mqrq->brq;
1602	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1603	int err;
1604
1605	mmc_retune_hold_now(card->host);
1606
1607	mmc_blk_send_stop(card, timeout);
1608
1609	err = card_busy_detect(card, timeout, NULL);
1610
1611	mmc_retune_release(card->host);
1612
1613	return err;
1614}
1615
1616#define MMC_READ_SINGLE_RETRIES	2
1617
1618/* Single sector read during recovery */
1619static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1620{
1621	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1622	struct mmc_request *mrq = &mqrq->brq.mrq;
1623	struct mmc_card *card = mq->card;
1624	struct mmc_host *host = card->host;
1625	blk_status_t error = BLK_STS_OK;
1626	int retries = 0;
1627
1628	do {
1629		u32 status;
1630		int err;
 
1631
1632		mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1633
1634		mmc_wait_for_req(host, mrq);
1635
1636		err = mmc_send_status(card, &status);
1637		if (err)
1638			goto error_exit;
1639
1640		if (!mmc_host_is_spi(host) &&
1641		    !mmc_ready_for_data(status)) {
1642			err = mmc_blk_fix_state(card, req);
1643			if (err)
1644				goto error_exit;
1645		}
1646
1647		if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1648			continue;
 
 
 
 
1649
1650		retries = 0;
 
 
1651
1652		if (mrq->cmd->error ||
1653		    mrq->data->error ||
1654		    (!mmc_host_is_spi(host) &&
1655		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1656			error = BLK_STS_IOERR;
1657		else
1658			error = BLK_STS_OK;
1659
1660	} while (blk_update_request(req, error, 512));
1661
1662	return;
1663
1664error_exit:
1665	mrq->data->bytes_xfered = 0;
1666	blk_update_request(req, BLK_STS_IOERR, 512);
1667	/* Let it try the remaining request again */
1668	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1669		mqrq->retries = MMC_MAX_RETRIES - 1;
1670}
1671
1672static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1673{
1674	return !!brq->mrq.sbc;
1675}
1676
1677static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1678{
1679	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1680}
1681
1682/*
1683 * Check for errors the host controller driver might not have seen such as
1684 * response mode errors or invalid card state.
1685 */
1686static bool mmc_blk_status_error(struct request *req, u32 status)
1687{
1688	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1689	struct mmc_blk_request *brq = &mqrq->brq;
1690	struct mmc_queue *mq = req->q->queuedata;
1691	u32 stop_err_bits;
1692
1693	if (mmc_host_is_spi(mq->card->host))
1694		return false;
1695
1696	stop_err_bits = mmc_blk_stop_err_bits(brq);
1697
1698	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1699	       brq->stop.resp[0] & stop_err_bits ||
1700	       status            & stop_err_bits ||
1701	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1702}
1703
1704static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1705{
1706	return !brq->sbc.error && !brq->cmd.error &&
1707	       !(brq->cmd.resp[0] & CMD_ERRORS);
1708}
1709
1710/*
1711 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1712 * policy:
1713 * 1. A request that has transferred at least some data is considered
1714 * successful and will be requeued if there is remaining data to
1715 * transfer.
1716 * 2. Otherwise the number of retries is incremented and the request
1717 * will be requeued if there are remaining retries.
1718 * 3. Otherwise the request will be errored out.
1719 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1720 * mqrq->retries. So there are only 4 possible actions here:
1721 *	1. do not accept the bytes_xfered value i.e. set it to zero
1722 *	2. change mqrq->retries to determine the number of retries
1723 *	3. try to reset the card
1724 *	4. read one sector at a time
1725 */
1726static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1727{
1728	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1729	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1730	struct mmc_blk_request *brq = &mqrq->brq;
1731	struct mmc_blk_data *md = mq->blkdata;
1732	struct mmc_card *card = mq->card;
1733	u32 status;
1734	u32 blocks;
1735	int err;
1736
1737	/*
1738	 * Some errors the host driver might not have seen. Set the number of
1739	 * bytes transferred to zero in that case.
1740	 */
1741	err = __mmc_send_status(card, &status, 0);
1742	if (err || mmc_blk_status_error(req, status))
1743		brq->data.bytes_xfered = 0;
1744
1745	mmc_retune_release(card->host);
1746
1747	/*
1748	 * Try again to get the status. This also provides an opportunity for
1749	 * re-tuning.
1750	 */
1751	if (err)
1752		err = __mmc_send_status(card, &status, 0);
1753
1754	/*
1755	 * Nothing more to do after the number of bytes transferred has been
1756	 * updated and there is no card.
1757	 */
1758	if (err && mmc_detect_card_removed(card->host))
1759		return;
1760
1761	/* Try to get back to "tran" state */
1762	if (!mmc_host_is_spi(mq->card->host) &&
1763	    (err || !mmc_ready_for_data(status)))
1764		err = mmc_blk_fix_state(mq->card, req);
1765
1766	/*
1767	 * Special case for SD cards where the card might record the number of
1768	 * blocks written.
1769	 */
1770	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1771	    rq_data_dir(req) == WRITE) {
1772		if (mmc_sd_num_wr_blocks(card, &blocks))
1773			brq->data.bytes_xfered = 0;
1774		else
1775			brq->data.bytes_xfered = blocks << 9;
1776	}
1777
1778	/* Reset if the card is in a bad state */
1779	if (!mmc_host_is_spi(mq->card->host) &&
1780	    err && mmc_blk_reset(md, card->host, type)) {
1781		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1782		mqrq->retries = MMC_NO_RETRIES;
1783		return;
1784	}
1785
1786	/*
1787	 * If anything was done, just return and if there is anything remaining
1788	 * on the request it will get requeued.
1789	 */
1790	if (brq->data.bytes_xfered)
1791		return;
1792
1793	/* Reset before last retry */
1794	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1795		mmc_blk_reset(md, card->host, type);
 
1796
1797	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1798	if (brq->sbc.error || brq->cmd.error)
1799		return;
1800
1801	/* Reduce the remaining retries for data errors */
1802	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1803		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1804		return;
1805	}
1806
1807	/* FIXME: Missing single sector read for large sector size */
1808	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1809	    brq->data.blocks > 1) {
1810		/* Read one sector at a time */
1811		mmc_blk_read_single(mq, req);
1812		return;
1813	}
1814}
1815
1816static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1817{
1818	mmc_blk_eval_resp_error(brq);
1819
1820	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1821	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1822}
1823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1824static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1825{
1826	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1827	u32 status = 0;
1828	int err;
1829
1830	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1831		return 0;
1832
1833	err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
 
 
 
 
 
 
 
 
 
 
1834
1835	/*
1836	 * Do not assume data transferred correctly if there are any error bits
1837	 * set.
1838	 */
1839	if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1840		mqrq->brq.data.bytes_xfered = 0;
1841		err = err ? err : -EIO;
1842	}
1843
1844	/* Copy the exception bit so it will be seen later on */
1845	if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1846		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1847
1848	return err;
1849}
1850
1851static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1852					    struct request *req)
1853{
1854	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1855
1856	mmc_blk_reset_success(mq->blkdata, type);
1857}
1858
1859static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1860{
1861	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1862	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1863
1864	if (nr_bytes) {
1865		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1866			blk_mq_requeue_request(req, true);
1867		else
1868			__blk_mq_end_request(req, BLK_STS_OK);
1869	} else if (!blk_rq_bytes(req)) {
1870		__blk_mq_end_request(req, BLK_STS_IOERR);
1871	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1872		blk_mq_requeue_request(req, true);
1873	} else {
1874		if (mmc_card_removed(mq->card))
1875			req->rq_flags |= RQF_QUIET;
1876		blk_mq_end_request(req, BLK_STS_IOERR);
1877	}
1878}
1879
1880static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1881					struct mmc_queue_req *mqrq)
1882{
1883	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1884	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1885		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1886}
1887
1888static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1889				 struct mmc_queue_req *mqrq)
1890{
1891	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1892		mmc_run_bkops(mq->card);
1893}
1894
1895static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1896{
1897	struct mmc_queue_req *mqrq =
1898		container_of(mrq, struct mmc_queue_req, brq.mrq);
1899	struct request *req = mmc_queue_req_to_req(mqrq);
1900	struct request_queue *q = req->q;
1901	struct mmc_queue *mq = q->queuedata;
1902	struct mmc_host *host = mq->card->host;
1903	unsigned long flags;
1904
1905	if (mmc_blk_rq_error(&mqrq->brq) ||
1906	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1907		spin_lock_irqsave(&mq->lock, flags);
1908		mq->recovery_needed = true;
1909		mq->recovery_req = req;
1910		spin_unlock_irqrestore(&mq->lock, flags);
1911
1912		host->cqe_ops->cqe_recovery_start(host);
1913
1914		schedule_work(&mq->recovery_work);
1915		return;
1916	}
1917
1918	mmc_blk_rw_reset_success(mq, req);
1919
1920	/*
1921	 * Block layer timeouts race with completions which means the normal
1922	 * completion path cannot be used during recovery.
1923	 */
1924	if (mq->in_recovery)
1925		mmc_blk_cqe_complete_rq(mq, req);
1926	else if (likely(!blk_should_fake_timeout(req->q)))
1927		blk_mq_complete_request(req);
1928}
1929
1930void mmc_blk_mq_complete(struct request *req)
1931{
1932	struct mmc_queue *mq = req->q->queuedata;
 
1933
1934	if (mq->use_cqe)
1935		mmc_blk_cqe_complete_rq(mq, req);
1936	else if (likely(!blk_should_fake_timeout(req->q)))
1937		mmc_blk_mq_complete_rq(mq, req);
1938}
1939
1940static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1941				       struct request *req)
1942{
1943	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1944	struct mmc_host *host = mq->card->host;
1945
1946	if (mmc_blk_rq_error(&mqrq->brq) ||
1947	    mmc_blk_card_busy(mq->card, req)) {
1948		mmc_blk_mq_rw_recovery(mq, req);
1949	} else {
1950		mmc_blk_rw_reset_success(mq, req);
1951		mmc_retune_release(host);
1952	}
1953
1954	mmc_blk_urgent_bkops(mq, mqrq);
1955}
1956
1957static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1958{
1959	unsigned long flags;
1960	bool put_card;
1961
1962	spin_lock_irqsave(&mq->lock, flags);
1963
1964	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1965
1966	put_card = (mmc_tot_in_flight(mq) == 0);
1967
1968	spin_unlock_irqrestore(&mq->lock, flags);
1969
1970	if (put_card)
1971		mmc_put_card(mq->card, &mq->ctx);
1972}
1973
1974static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
 
1975{
1976	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1977	struct mmc_request *mrq = &mqrq->brq.mrq;
1978	struct mmc_host *host = mq->card->host;
1979
1980	mmc_post_req(host, mrq, 0);
1981
1982	/*
1983	 * Block layer timeouts race with completions which means the normal
1984	 * completion path cannot be used during recovery.
1985	 */
1986	if (mq->in_recovery)
1987		mmc_blk_mq_complete_rq(mq, req);
1988	else if (likely(!blk_should_fake_timeout(req->q)))
1989		blk_mq_complete_request(req);
 
 
 
 
1990
1991	mmc_blk_mq_dec_in_flight(mq, req);
1992}
1993
1994void mmc_blk_mq_recovery(struct mmc_queue *mq)
1995{
1996	struct request *req = mq->recovery_req;
1997	struct mmc_host *host = mq->card->host;
1998	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1999
2000	mq->recovery_req = NULL;
2001	mq->rw_wait = false;
2002
2003	if (mmc_blk_rq_error(&mqrq->brq)) {
2004		mmc_retune_hold_now(host);
2005		mmc_blk_mq_rw_recovery(mq, req);
2006	}
2007
2008	mmc_blk_urgent_bkops(mq, mqrq);
2009
2010	mmc_blk_mq_post_req(mq, req);
2011}
2012
2013static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2014					 struct request **prev_req)
2015{
2016	if (mmc_host_done_complete(mq->card->host))
2017		return;
2018
2019	mutex_lock(&mq->complete_lock);
2020
2021	if (!mq->complete_req)
2022		goto out_unlock;
2023
2024	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2025
2026	if (prev_req)
2027		*prev_req = mq->complete_req;
2028	else
2029		mmc_blk_mq_post_req(mq, mq->complete_req);
2030
2031	mq->complete_req = NULL;
2032
2033out_unlock:
2034	mutex_unlock(&mq->complete_lock);
2035}
2036
2037void mmc_blk_mq_complete_work(struct work_struct *work)
2038{
2039	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2040					    complete_work);
2041
2042	mmc_blk_mq_complete_prev_req(mq, NULL);
2043}
2044
2045static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2046{
2047	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2048						  brq.mrq);
2049	struct request *req = mmc_queue_req_to_req(mqrq);
2050	struct request_queue *q = req->q;
2051	struct mmc_queue *mq = q->queuedata;
2052	struct mmc_host *host = mq->card->host;
2053	unsigned long flags;
2054
2055	if (!mmc_host_done_complete(host)) {
2056		bool waiting;
2057
2058		/*
2059		 * We cannot complete the request in this context, so record
2060		 * that there is a request to complete, and that a following
2061		 * request does not need to wait (although it does need to
2062		 * complete complete_req first).
2063		 */
2064		spin_lock_irqsave(&mq->lock, flags);
2065		mq->complete_req = req;
2066		mq->rw_wait = false;
2067		waiting = mq->waiting;
2068		spin_unlock_irqrestore(&mq->lock, flags);
2069
2070		/*
2071		 * If 'waiting' then the waiting task will complete this
2072		 * request, otherwise queue a work to do it. Note that
2073		 * complete_work may still race with the dispatch of a following
2074		 * request.
2075		 */
2076		if (waiting)
2077			wake_up(&mq->wait);
2078		else
2079			queue_work(mq->card->complete_wq, &mq->complete_work);
2080
2081		return;
2082	}
2083
2084	/* Take the recovery path for errors or urgent background operations */
2085	if (mmc_blk_rq_error(&mqrq->brq) ||
2086	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2087		spin_lock_irqsave(&mq->lock, flags);
2088		mq->recovery_needed = true;
2089		mq->recovery_req = req;
2090		spin_unlock_irqrestore(&mq->lock, flags);
2091		wake_up(&mq->wait);
2092		schedule_work(&mq->recovery_work);
2093		return;
2094	}
2095
2096	mmc_blk_rw_reset_success(mq, req);
2097
2098	mq->rw_wait = false;
2099	wake_up(&mq->wait);
2100
2101	mmc_blk_mq_post_req(mq, req);
 
2102}
2103
2104static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2105{
2106	unsigned long flags;
2107	bool done;
2108
2109	/*
2110	 * Wait while there is another request in progress, but not if recovery
2111	 * is needed. Also indicate whether there is a request waiting to start.
2112	 */
2113	spin_lock_irqsave(&mq->lock, flags);
2114	if (mq->recovery_needed) {
2115		*err = -EBUSY;
2116		done = true;
2117	} else {
2118		done = !mq->rw_wait;
2119	}
2120	mq->waiting = !done;
2121	spin_unlock_irqrestore(&mq->lock, flags);
2122
2123	return done;
2124}
2125
2126static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2127{
2128	int err = 0;
2129
2130	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2131
2132	/* Always complete the previous request if there is one */
2133	mmc_blk_mq_complete_prev_req(mq, prev_req);
2134
2135	return err;
2136}
2137
2138static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2139				  struct request *req)
2140{
2141	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2142	struct mmc_host *host = mq->card->host;
2143	struct request *prev_req = NULL;
2144	int err = 0;
2145
2146	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2147
2148	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2149
2150	mmc_pre_req(host, &mqrq->brq.mrq);
2151
2152	err = mmc_blk_rw_wait(mq, &prev_req);
2153	if (err)
2154		goto out_post_req;
2155
2156	mq->rw_wait = true;
2157
2158	err = mmc_start_request(host, &mqrq->brq.mrq);
2159
2160	if (prev_req)
2161		mmc_blk_mq_post_req(mq, prev_req);
2162
2163	if (err)
2164		mq->rw_wait = false;
2165
2166	/* Release re-tuning here where there is no synchronization required */
2167	if (err || mmc_host_done_complete(host))
2168		mmc_retune_release(host);
2169
2170out_post_req:
2171	if (err)
2172		mmc_post_req(host, &mqrq->brq.mrq, err);
2173
2174	return err;
2175}
2176
2177static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2178{
2179	if (mq->use_cqe)
2180		return host->cqe_ops->cqe_wait_for_idle(host);
2181
2182	return mmc_blk_rw_wait(mq, NULL);
2183}
2184
2185enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2186{
2187	struct mmc_blk_data *md = mq->blkdata;
2188	struct mmc_card *card = md->queue.card;
2189	struct mmc_host *host = card->host;
2190	int ret;
2191
2192	ret = mmc_blk_part_switch(card, md->part_type);
2193	if (ret)
2194		return MMC_REQ_FAILED_TO_START;
2195
2196	switch (mmc_issue_type(mq, req)) {
2197	case MMC_ISSUE_SYNC:
2198		ret = mmc_blk_wait_for_idle(mq, host);
2199		if (ret)
2200			return MMC_REQ_BUSY;
2201		switch (req_op(req)) {
2202		case REQ_OP_DRV_IN:
2203		case REQ_OP_DRV_OUT:
2204			mmc_blk_issue_drv_op(mq, req);
2205			break;
2206		case REQ_OP_DISCARD:
2207			mmc_blk_issue_discard_rq(mq, req);
2208			break;
2209		case REQ_OP_SECURE_ERASE:
2210			mmc_blk_issue_secdiscard_rq(mq, req);
2211			break;
 
 
 
2212		case REQ_OP_FLUSH:
2213			mmc_blk_issue_flush(mq, req);
2214			break;
2215		default:
2216			WARN_ON_ONCE(1);
2217			return MMC_REQ_FAILED_TO_START;
2218		}
2219		return MMC_REQ_FINISHED;
2220	case MMC_ISSUE_DCMD:
2221	case MMC_ISSUE_ASYNC:
2222		switch (req_op(req)) {
2223		case REQ_OP_FLUSH:
 
 
 
 
2224			ret = mmc_blk_cqe_issue_flush(mq, req);
2225			break;
2226		case REQ_OP_READ:
2227		case REQ_OP_WRITE:
2228			if (mq->use_cqe)
2229				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2230			else
2231				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2232			break;
2233		default:
2234			WARN_ON_ONCE(1);
2235			ret = -EINVAL;
2236		}
2237		if (!ret)
2238			return MMC_REQ_STARTED;
2239		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2240	default:
2241		WARN_ON_ONCE(1);
2242		return MMC_REQ_FAILED_TO_START;
2243	}
2244}
2245
2246static inline int mmc_blk_readonly(struct mmc_card *card)
2247{
2248	return mmc_card_readonly(card) ||
2249	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2250}
2251
2252static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2253					      struct device *parent,
2254					      sector_t size,
2255					      bool default_ro,
2256					      const char *subname,
2257					      int area_type)
 
2258{
2259	struct mmc_blk_data *md;
2260	int devidx, ret;
 
 
 
2261
2262	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2263	if (devidx < 0) {
2264		/*
2265		 * We get -ENOSPC because there are no more any available
2266		 * devidx. The reason may be that, either userspace haven't yet
2267		 * unmounted the partitions, which postpones mmc_blk_release()
2268		 * from being called, or the device has more partitions than
2269		 * what we support.
2270		 */
2271		if (devidx == -ENOSPC)
2272			dev_err(mmc_dev(card->host),
2273				"no more device IDs available\n");
2274
2275		return ERR_PTR(devidx);
2276	}
2277
2278	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2279	if (!md) {
2280		ret = -ENOMEM;
2281		goto out;
2282	}
2283
2284	md->area_type = area_type;
2285
2286	/*
2287	 * Set the read-only status based on the supported commands
2288	 * and the write protect switch.
2289	 */
2290	md->read_only = mmc_blk_readonly(card);
2291
2292	md->disk = alloc_disk(perdev_minors);
2293	if (md->disk == NULL) {
2294		ret = -ENOMEM;
2295		goto err_kfree;
2296	}
2297
2298	INIT_LIST_HEAD(&md->part);
2299	INIT_LIST_HEAD(&md->rpmbs);
2300	md->usage = 1;
2301
2302	ret = mmc_init_queue(&md->queue, card);
2303	if (ret)
2304		goto err_putdisk;
2305
2306	md->queue.blkdata = md;
2307
2308	/*
2309	 * Keep an extra reference to the queue so that we can shutdown the
2310	 * queue (i.e. call blk_cleanup_queue()) while there are still
2311	 * references to the 'md'. The corresponding blk_put_queue() is in
2312	 * mmc_blk_put().
2313	 */
2314	if (!blk_get_queue(md->queue.queue)) {
2315		mmc_cleanup_queue(&md->queue);
2316		ret = -ENODEV;
2317		goto err_putdisk;
2318	}
2319
2320	md->disk->major	= MMC_BLOCK_MAJOR;
 
2321	md->disk->first_minor = devidx * perdev_minors;
2322	md->disk->fops = &mmc_bdops;
2323	md->disk->private_data = md;
2324	md->disk->queue = md->queue.queue;
2325	md->parent = parent;
2326	set_disk_ro(md->disk, md->read_only || default_ro);
2327	md->disk->flags = GENHD_FL_EXT_DEVT;
2328	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2329		md->disk->flags |= GENHD_FL_NO_PART_SCAN
2330				   | GENHD_FL_SUPPRESS_PARTITION_INFO;
2331
2332	/*
2333	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2334	 *
2335	 * - be set for removable media with permanent block devices
2336	 * - be unset for removable block devices with permanent media
2337	 *
2338	 * Since MMC block devices clearly fall under the second
2339	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2340	 * should use the block device creation/destruction hotplug
2341	 * messages to tell when the card is present.
2342	 */
2343
2344	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2345		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2346
2347	set_capacity(md->disk, size);
2348
2349	if (mmc_host_cmd23(card->host)) {
2350		if ((mmc_card_mmc(card) &&
2351		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2352		    (mmc_card_sd(card) &&
2353		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2354			md->flags |= MMC_BLK_CMD23;
2355	}
2356
2357	if (mmc_card_mmc(card) &&
2358	    md->flags & MMC_BLK_CMD23 &&
2359	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2360	     card->ext_csd.rel_sectors)) {
2361		md->flags |= MMC_BLK_REL_WR;
2362		blk_queue_write_cache(md->queue.queue, true, true);
 
2363	}
 
 
 
 
 
 
 
 
 
 
2364
 
 
 
 
 
 
2365	return md;
2366
2367 err_putdisk:
2368	put_disk(md->disk);
 
2369 err_kfree:
2370	kfree(md);
2371 out:
2372	ida_simple_remove(&mmc_blk_ida, devidx);
2373	return ERR_PTR(ret);
2374}
2375
2376static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2377{
2378	sector_t size;
2379
2380	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2381		/*
2382		 * The EXT_CSD sector count is in number or 512 byte
2383		 * sectors.
2384		 */
2385		size = card->ext_csd.sectors;
2386	} else {
2387		/*
2388		 * The CSD capacity field is in units of read_blkbits.
2389		 * set_capacity takes units of 512 bytes.
2390		 */
2391		size = (typeof(sector_t))card->csd.capacity
2392			<< (card->csd.read_blkbits - 9);
2393	}
2394
2395	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2396					MMC_BLK_DATA_AREA_MAIN);
2397}
2398
2399static int mmc_blk_alloc_part(struct mmc_card *card,
2400			      struct mmc_blk_data *md,
2401			      unsigned int part_type,
2402			      sector_t size,
2403			      bool default_ro,
2404			      const char *subname,
2405			      int area_type)
2406{
2407	char cap_str[10];
2408	struct mmc_blk_data *part_md;
2409
2410	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2411				    subname, area_type);
2412	if (IS_ERR(part_md))
2413		return PTR_ERR(part_md);
2414	part_md->part_type = part_type;
2415	list_add(&part_md->part, &md->part);
2416
2417	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2418			cap_str, sizeof(cap_str));
2419	pr_info("%s: %s %s partition %u %s\n",
2420	       part_md->disk->disk_name, mmc_card_id(card),
2421	       mmc_card_name(card), part_md->part_type, cap_str);
2422	return 0;
2423}
2424
2425/**
2426 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2427 * @filp: the character device file
2428 * @cmd: the ioctl() command
2429 * @arg: the argument from userspace
2430 *
2431 * This will essentially just redirect the ioctl()s coming in over to
2432 * the main block device spawning the RPMB character device.
2433 */
2434static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2435			   unsigned long arg)
2436{
2437	struct mmc_rpmb_data *rpmb = filp->private_data;
2438	int ret;
2439
2440	switch (cmd) {
2441	case MMC_IOC_CMD:
2442		ret = mmc_blk_ioctl_cmd(rpmb->md,
2443					(struct mmc_ioc_cmd __user *)arg,
2444					rpmb);
2445		break;
2446	case MMC_IOC_MULTI_CMD:
2447		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2448					(struct mmc_ioc_multi_cmd __user *)arg,
2449					rpmb);
2450		break;
2451	default:
2452		ret = -EINVAL;
2453		break;
2454	}
2455
2456	return ret;
2457}
2458
2459#ifdef CONFIG_COMPAT
2460static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2461			      unsigned long arg)
2462{
2463	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2464}
2465#endif
2466
2467static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2468{
2469	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2470						  struct mmc_rpmb_data, chrdev);
2471
2472	get_device(&rpmb->dev);
2473	filp->private_data = rpmb;
2474	mmc_blk_get(rpmb->md->disk);
2475
2476	return nonseekable_open(inode, filp);
2477}
2478
2479static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2480{
2481	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2482						  struct mmc_rpmb_data, chrdev);
2483
2484	mmc_blk_put(rpmb->md);
2485	put_device(&rpmb->dev);
2486
2487	return 0;
2488}
2489
2490static const struct file_operations mmc_rpmb_fileops = {
2491	.release = mmc_rpmb_chrdev_release,
2492	.open = mmc_rpmb_chrdev_open,
2493	.owner = THIS_MODULE,
2494	.llseek = no_llseek,
2495	.unlocked_ioctl = mmc_rpmb_ioctl,
2496#ifdef CONFIG_COMPAT
2497	.compat_ioctl = mmc_rpmb_ioctl_compat,
2498#endif
2499};
2500
2501static void mmc_blk_rpmb_device_release(struct device *dev)
2502{
2503	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2504
2505	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2506	kfree(rpmb);
2507}
2508
2509static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2510				   struct mmc_blk_data *md,
2511				   unsigned int part_index,
2512				   sector_t size,
2513				   const char *subname)
2514{
2515	int devidx, ret;
2516	char rpmb_name[DISK_NAME_LEN];
2517	char cap_str[10];
2518	struct mmc_rpmb_data *rpmb;
2519
2520	/* This creates the minor number for the RPMB char device */
2521	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2522	if (devidx < 0)
2523		return devidx;
2524
2525	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2526	if (!rpmb) {
2527		ida_simple_remove(&mmc_rpmb_ida, devidx);
2528		return -ENOMEM;
2529	}
2530
2531	snprintf(rpmb_name, sizeof(rpmb_name),
2532		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2533
2534	rpmb->id = devidx;
2535	rpmb->part_index = part_index;
2536	rpmb->dev.init_name = rpmb_name;
2537	rpmb->dev.bus = &mmc_rpmb_bus_type;
2538	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2539	rpmb->dev.parent = &card->dev;
2540	rpmb->dev.release = mmc_blk_rpmb_device_release;
2541	device_initialize(&rpmb->dev);
2542	dev_set_drvdata(&rpmb->dev, rpmb);
2543	rpmb->md = md;
2544
2545	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2546	rpmb->chrdev.owner = THIS_MODULE;
2547	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2548	if (ret) {
2549		pr_err("%s: could not add character device\n", rpmb_name);
2550		goto out_put_device;
2551	}
2552
2553	list_add(&rpmb->node, &md->rpmbs);
2554
2555	string_get_size((u64)size, 512, STRING_UNITS_2,
2556			cap_str, sizeof(cap_str));
2557
2558	pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2559		rpmb_name, mmc_card_id(card),
2560		mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2561		MAJOR(mmc_rpmb_devt), rpmb->id);
2562
2563	return 0;
2564
2565out_put_device:
2566	put_device(&rpmb->dev);
2567	return ret;
2568}
2569
2570static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2571
2572{
2573	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2574	put_device(&rpmb->dev);
2575}
2576
2577/* MMC Physical partitions consist of two boot partitions and
2578 * up to four general purpose partitions.
2579 * For each partition enabled in EXT_CSD a block device will be allocatedi
2580 * to provide access to the partition.
2581 */
2582
2583static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2584{
2585	int idx, ret;
2586
2587	if (!mmc_card_mmc(card))
2588		return 0;
2589
2590	for (idx = 0; idx < card->nr_parts; idx++) {
2591		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2592			/*
2593			 * RPMB partitions does not provide block access, they
2594			 * are only accessed using ioctl():s. Thus create
2595			 * special RPMB block devices that do not have a
2596			 * backing block queue for these.
2597			 */
2598			ret = mmc_blk_alloc_rpmb_part(card, md,
2599				card->part[idx].part_cfg,
2600				card->part[idx].size >> 9,
2601				card->part[idx].name);
2602			if (ret)
2603				return ret;
2604		} else if (card->part[idx].size) {
2605			ret = mmc_blk_alloc_part(card, md,
2606				card->part[idx].part_cfg,
2607				card->part[idx].size >> 9,
2608				card->part[idx].force_ro,
2609				card->part[idx].name,
2610				card->part[idx].area_type);
2611			if (ret)
2612				return ret;
2613		}
2614	}
2615
2616	return 0;
2617}
2618
2619static void mmc_blk_remove_req(struct mmc_blk_data *md)
2620{
2621	struct mmc_card *card;
2622
2623	if (md) {
2624		/*
2625		 * Flush remaining requests and free queues. It
2626		 * is freeing the queue that stops new requests
2627		 * from being accepted.
2628		 */
2629		card = md->queue.card;
2630		if (md->disk->flags & GENHD_FL_UP) {
2631			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2632			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2633					card->ext_csd.boot_ro_lockable)
2634				device_remove_file(disk_to_dev(md->disk),
2635					&md->power_ro_lock);
2636
2637			del_gendisk(md->disk);
2638		}
2639		mmc_cleanup_queue(&md->queue);
2640		mmc_blk_put(md);
2641	}
2642}
2643
2644static void mmc_blk_remove_parts(struct mmc_card *card,
2645				 struct mmc_blk_data *md)
2646{
2647	struct list_head *pos, *q;
2648	struct mmc_blk_data *part_md;
2649	struct mmc_rpmb_data *rpmb;
2650
2651	/* Remove RPMB partitions */
2652	list_for_each_safe(pos, q, &md->rpmbs) {
2653		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2654		list_del(pos);
2655		mmc_blk_remove_rpmb_part(rpmb);
2656	}
2657	/* Remove block partitions */
2658	list_for_each_safe(pos, q, &md->part) {
2659		part_md = list_entry(pos, struct mmc_blk_data, part);
2660		list_del(pos);
2661		mmc_blk_remove_req(part_md);
2662	}
2663}
2664
2665static int mmc_add_disk(struct mmc_blk_data *md)
2666{
2667	int ret;
2668	struct mmc_card *card = md->queue.card;
2669
2670	device_add_disk(md->parent, md->disk, NULL);
2671	md->force_ro.show = force_ro_show;
2672	md->force_ro.store = force_ro_store;
2673	sysfs_attr_init(&md->force_ro.attr);
2674	md->force_ro.attr.name = "force_ro";
2675	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2676	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2677	if (ret)
2678		goto force_ro_fail;
2679
2680	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2681	     card->ext_csd.boot_ro_lockable) {
2682		umode_t mode;
2683
2684		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2685			mode = S_IRUGO;
2686		else
2687			mode = S_IRUGO | S_IWUSR;
2688
2689		md->power_ro_lock.show = power_ro_lock_show;
2690		md->power_ro_lock.store = power_ro_lock_store;
2691		sysfs_attr_init(&md->power_ro_lock.attr);
2692		md->power_ro_lock.attr.mode = mode;
2693		md->power_ro_lock.attr.name =
2694					"ro_lock_until_next_power_on";
2695		ret = device_create_file(disk_to_dev(md->disk),
2696				&md->power_ro_lock);
2697		if (ret)
2698			goto power_ro_lock_fail;
2699	}
2700	return ret;
2701
2702power_ro_lock_fail:
2703	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2704force_ro_fail:
2705	del_gendisk(md->disk);
2706
2707	return ret;
2708}
2709
2710#ifdef CONFIG_DEBUG_FS
2711
2712static int mmc_dbg_card_status_get(void *data, u64 *val)
2713{
2714	struct mmc_card *card = data;
2715	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2716	struct mmc_queue *mq = &md->queue;
2717	struct request *req;
2718	int ret;
2719
2720	/* Ask the block layer about the card status */
2721	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2722	if (IS_ERR(req))
2723		return PTR_ERR(req);
2724	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2725	blk_execute_rq(mq->queue, NULL, req, 0);
2726	ret = req_to_mmc_queue_req(req)->drv_op_result;
2727	if (ret >= 0) {
2728		*val = ret;
2729		ret = 0;
2730	}
2731	blk_put_request(req);
2732
2733	return ret;
2734}
2735DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2736			 NULL, "%08llx\n");
2737
2738/* That is two digits * 512 + 1 for newline */
2739#define EXT_CSD_STR_LEN 1025
2740
2741static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2742{
2743	struct mmc_card *card = inode->i_private;
2744	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2745	struct mmc_queue *mq = &md->queue;
2746	struct request *req;
2747	char *buf;
2748	ssize_t n = 0;
2749	u8 *ext_csd;
2750	int err, i;
2751
2752	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2753	if (!buf)
2754		return -ENOMEM;
2755
2756	/* Ask the block layer for the EXT CSD */
2757	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2758	if (IS_ERR(req)) {
2759		err = PTR_ERR(req);
2760		goto out_free;
2761	}
2762	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2763	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2764	blk_execute_rq(mq->queue, NULL, req, 0);
2765	err = req_to_mmc_queue_req(req)->drv_op_result;
2766	blk_put_request(req);
2767	if (err) {
2768		pr_err("FAILED %d\n", err);
2769		goto out_free;
2770	}
2771
2772	for (i = 0; i < 512; i++)
2773		n += sprintf(buf + n, "%02x", ext_csd[i]);
2774	n += sprintf(buf + n, "\n");
2775
2776	if (n != EXT_CSD_STR_LEN) {
2777		err = -EINVAL;
2778		kfree(ext_csd);
2779		goto out_free;
2780	}
2781
2782	filp->private_data = buf;
2783	kfree(ext_csd);
2784	return 0;
2785
2786out_free:
2787	kfree(buf);
2788	return err;
2789}
2790
2791static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2792				size_t cnt, loff_t *ppos)
2793{
2794	char *buf = filp->private_data;
2795
2796	return simple_read_from_buffer(ubuf, cnt, ppos,
2797				       buf, EXT_CSD_STR_LEN);
2798}
2799
2800static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2801{
2802	kfree(file->private_data);
2803	return 0;
2804}
2805
2806static const struct file_operations mmc_dbg_ext_csd_fops = {
2807	.open		= mmc_ext_csd_open,
2808	.read		= mmc_ext_csd_read,
2809	.release	= mmc_ext_csd_release,
2810	.llseek		= default_llseek,
2811};
2812
2813static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2814{
2815	struct dentry *root;
2816
2817	if (!card->debugfs_root)
2818		return 0;
2819
2820	root = card->debugfs_root;
2821
2822	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2823		md->status_dentry =
2824			debugfs_create_file_unsafe("status", 0400, root,
2825						   card,
2826						   &mmc_dbg_card_status_fops);
2827		if (!md->status_dentry)
2828			return -EIO;
2829	}
2830
2831	if (mmc_card_mmc(card)) {
2832		md->ext_csd_dentry =
2833			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2834					    &mmc_dbg_ext_csd_fops);
2835		if (!md->ext_csd_dentry)
2836			return -EIO;
2837	}
2838
2839	return 0;
2840}
2841
2842static void mmc_blk_remove_debugfs(struct mmc_card *card,
2843				   struct mmc_blk_data *md)
2844{
2845	if (!card->debugfs_root)
2846		return;
2847
2848	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2849		debugfs_remove(md->status_dentry);
2850		md->status_dentry = NULL;
2851	}
2852
2853	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2854		debugfs_remove(md->ext_csd_dentry);
2855		md->ext_csd_dentry = NULL;
2856	}
2857}
2858
2859#else
2860
2861static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2862{
2863	return 0;
2864}
2865
2866static void mmc_blk_remove_debugfs(struct mmc_card *card,
2867				   struct mmc_blk_data *md)
2868{
2869}
2870
2871#endif /* CONFIG_DEBUG_FS */
2872
2873static int mmc_blk_probe(struct mmc_card *card)
2874{
2875	struct mmc_blk_data *md, *part_md;
2876	char cap_str[10];
2877
2878	/*
2879	 * Check that the card supports the command class(es) we need.
2880	 */
2881	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2882		return -ENODEV;
2883
2884	mmc_fixup_device(card, mmc_blk_fixups);
2885
2886	card->complete_wq = alloc_workqueue("mmc_complete",
2887					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2888	if (unlikely(!card->complete_wq)) {
2889		pr_err("Failed to create mmc completion workqueue");
2890		return -ENOMEM;
2891	}
2892
2893	md = mmc_blk_alloc(card);
2894	if (IS_ERR(md))
2895		return PTR_ERR(md);
 
 
2896
2897	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2898			cap_str, sizeof(cap_str));
2899	pr_info("%s: %s %s %s %s\n",
2900		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2901		cap_str, md->read_only ? "(ro)" : "");
2902
2903	if (mmc_blk_alloc_parts(card, md))
2904		goto out;
2905
2906	dev_set_drvdata(&card->dev, md);
2907
2908	if (mmc_add_disk(md))
2909		goto out;
2910
2911	list_for_each_entry(part_md, &md->part, part) {
2912		if (mmc_add_disk(part_md))
2913			goto out;
2914	}
2915
2916	/* Add two debugfs entries */
2917	mmc_blk_add_debugfs(card, md);
2918
2919	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2920	pm_runtime_use_autosuspend(&card->dev);
2921
2922	/*
2923	 * Don't enable runtime PM for SD-combo cards here. Leave that
2924	 * decision to be taken during the SDIO init sequence instead.
2925	 */
2926	if (card->type != MMC_TYPE_SD_COMBO) {
2927		pm_runtime_set_active(&card->dev);
2928		pm_runtime_enable(&card->dev);
2929	}
2930
2931	return 0;
2932
2933 out:
2934	mmc_blk_remove_parts(card, md);
2935	mmc_blk_remove_req(md);
2936	return 0;
 
 
2937}
2938
2939static void mmc_blk_remove(struct mmc_card *card)
2940{
2941	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2942
2943	mmc_blk_remove_debugfs(card, md);
2944	mmc_blk_remove_parts(card, md);
2945	pm_runtime_get_sync(&card->dev);
2946	if (md->part_curr != md->part_type) {
2947		mmc_claim_host(card->host);
2948		mmc_blk_part_switch(card, md->part_type);
2949		mmc_release_host(card->host);
2950	}
2951	if (card->type != MMC_TYPE_SD_COMBO)
2952		pm_runtime_disable(&card->dev);
2953	pm_runtime_put_noidle(&card->dev);
2954	mmc_blk_remove_req(md);
2955	dev_set_drvdata(&card->dev, NULL);
2956	destroy_workqueue(card->complete_wq);
2957}
2958
2959static int _mmc_blk_suspend(struct mmc_card *card)
2960{
2961	struct mmc_blk_data *part_md;
2962	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2963
2964	if (md) {
2965		mmc_queue_suspend(&md->queue);
2966		list_for_each_entry(part_md, &md->part, part) {
2967			mmc_queue_suspend(&part_md->queue);
2968		}
2969	}
2970	return 0;
2971}
2972
2973static void mmc_blk_shutdown(struct mmc_card *card)
2974{
2975	_mmc_blk_suspend(card);
2976}
2977
2978#ifdef CONFIG_PM_SLEEP
2979static int mmc_blk_suspend(struct device *dev)
2980{
2981	struct mmc_card *card = mmc_dev_to_card(dev);
2982
2983	return _mmc_blk_suspend(card);
2984}
2985
2986static int mmc_blk_resume(struct device *dev)
2987{
2988	struct mmc_blk_data *part_md;
2989	struct mmc_blk_data *md = dev_get_drvdata(dev);
2990
2991	if (md) {
2992		/*
2993		 * Resume involves the card going into idle state,
2994		 * so current partition is always the main one.
2995		 */
2996		md->part_curr = md->part_type;
2997		mmc_queue_resume(&md->queue);
2998		list_for_each_entry(part_md, &md->part, part) {
2999			mmc_queue_resume(&part_md->queue);
3000		}
3001	}
3002	return 0;
3003}
3004#endif
3005
3006static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3007
3008static struct mmc_driver mmc_driver = {
3009	.drv		= {
3010		.name	= "mmcblk",
3011		.pm	= &mmc_blk_pm_ops,
3012	},
3013	.probe		= mmc_blk_probe,
3014	.remove		= mmc_blk_remove,
3015	.shutdown	= mmc_blk_shutdown,
3016};
3017
3018static int __init mmc_blk_init(void)
3019{
3020	int res;
3021
3022	res  = bus_register(&mmc_rpmb_bus_type);
3023	if (res < 0) {
3024		pr_err("mmcblk: could not register RPMB bus type\n");
3025		return res;
3026	}
3027	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3028	if (res < 0) {
3029		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3030		goto out_bus_unreg;
3031	}
3032
3033	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3034		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3035
3036	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3037
3038	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3039	if (res)
3040		goto out_chrdev_unreg;
3041
3042	res = mmc_register_driver(&mmc_driver);
3043	if (res)
3044		goto out_blkdev_unreg;
3045
3046	return 0;
3047
3048out_blkdev_unreg:
3049	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3050out_chrdev_unreg:
3051	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3052out_bus_unreg:
3053	bus_unregister(&mmc_rpmb_bus_type);
3054	return res;
3055}
3056
3057static void __exit mmc_blk_exit(void)
3058{
3059	mmc_unregister_driver(&mmc_driver);
3060	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3061	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3062	bus_unregister(&mmc_rpmb_bus_type);
3063}
3064
3065module_init(mmc_blk_init);
3066module_exit(mmc_blk_exit);
3067
3068MODULE_LICENSE("GPL");
3069MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3070