Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block driver for media (i.e., flash cards)
   4 *
   5 * Copyright 2002 Hewlett-Packard Company
   6 * Copyright 2005-2008 Pierre Ossman
   7 *
   8 * Use consistent with the GNU GPL is permitted,
   9 * provided that this copyright notice is
  10 * preserved in its entirety in all copies and derived works.
  11 *
  12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  14 * FITNESS FOR ANY PARTICULAR PURPOSE.
  15 *
  16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
  17 *
  18 * Author:  Andrew Christian
  19 *          28 May 2002
  20 */
  21#include <linux/moduleparam.h>
  22#include <linux/module.h>
  23#include <linux/init.h>
  24
  25#include <linux/kernel.h>
  26#include <linux/fs.h>
  27#include <linux/slab.h>
  28#include <linux/errno.h>
  29#include <linux/hdreg.h>
  30#include <linux/kdev_t.h>
  31#include <linux/kref.h>
  32#include <linux/blkdev.h>
  33#include <linux/cdev.h>
  34#include <linux/mutex.h>
  35#include <linux/scatterlist.h>
  36#include <linux/string_helpers.h>
  37#include <linux/delay.h>
  38#include <linux/capability.h>
  39#include <linux/compat.h>
  40#include <linux/pm_runtime.h>
  41#include <linux/idr.h>
  42#include <linux/debugfs.h>
  43
  44#include <linux/mmc/ioctl.h>
  45#include <linux/mmc/card.h>
  46#include <linux/mmc/host.h>
  47#include <linux/mmc/mmc.h>
  48#include <linux/mmc/sd.h>
  49
  50#include <linux/uaccess.h>
  51
  52#include "queue.h"
  53#include "block.h"
  54#include "core.h"
  55#include "card.h"
  56#include "crypto.h"
  57#include "host.h"
  58#include "bus.h"
  59#include "mmc_ops.h"
  60#include "quirks.h"
  61#include "sd_ops.h"
  62
  63MODULE_ALIAS("mmc:block");
  64#ifdef MODULE_PARAM_PREFIX
  65#undef MODULE_PARAM_PREFIX
  66#endif
  67#define MODULE_PARAM_PREFIX "mmcblk."
  68
  69/*
  70 * Set a 10 second timeout for polling write request busy state. Note, mmc core
  71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
  72 * second software timer to timeout the whole request, so 10 seconds should be
  73 * ample.
  74 */
  75#define MMC_BLK_TIMEOUT_MS  (10 * 1000)
  76#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
  77#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
  78
  79#define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
  80				  (rq_data_dir(req) == WRITE))
  81static DEFINE_MUTEX(block_mutex);
  82
  83/*
  84 * The defaults come from config options but can be overriden by module
  85 * or bootarg options.
  86 */
  87static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
  88
  89/*
  90 * We've only got one major, so number of mmcblk devices is
  91 * limited to (1 << 20) / number of minors per device.  It is also
  92 * limited by the MAX_DEVICES below.
  93 */
  94static int max_devices;
  95
  96#define MAX_DEVICES 256
  97
  98static DEFINE_IDA(mmc_blk_ida);
  99static DEFINE_IDA(mmc_rpmb_ida);
 100
 101struct mmc_blk_busy_data {
 102	struct mmc_card *card;
 103	u32 status;
 104};
 105
 106/*
 107 * There is one mmc_blk_data per slot.
 108 */
 109struct mmc_blk_data {
 110	struct device	*parent;
 111	struct gendisk	*disk;
 112	struct mmc_queue queue;
 113	struct list_head part;
 114	struct list_head rpmbs;
 115
 116	unsigned int	flags;
 117#define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
 118#define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
 119
 120	struct kref	kref;
 121	unsigned int	read_only;
 122	unsigned int	part_type;
 123	unsigned int	reset_done;
 124#define MMC_BLK_READ		BIT(0)
 125#define MMC_BLK_WRITE		BIT(1)
 126#define MMC_BLK_DISCARD		BIT(2)
 127#define MMC_BLK_SECDISCARD	BIT(3)
 128#define MMC_BLK_CQE_RECOVERY	BIT(4)
 129#define MMC_BLK_TRIM		BIT(5)
 130
 131	/*
 132	 * Only set in main mmc_blk_data associated
 133	 * with mmc_card with dev_set_drvdata, and keeps
 134	 * track of the current selected device partition.
 135	 */
 136	unsigned int	part_curr;
 137#define MMC_BLK_PART_INVALID	UINT_MAX	/* Unknown partition active */
 
 138	int	area_type;
 139
 140	/* debugfs files (only in main mmc_blk_data) */
 141	struct dentry *status_dentry;
 142	struct dentry *ext_csd_dentry;
 143};
 144
 145/* Device type for RPMB character devices */
 146static dev_t mmc_rpmb_devt;
 147
 148/* Bus type for RPMB character devices */
 149static struct bus_type mmc_rpmb_bus_type = {
 150	.name = "mmc_rpmb",
 151};
 152
 153/**
 154 * struct mmc_rpmb_data - special RPMB device type for these areas
 155 * @dev: the device for the RPMB area
 156 * @chrdev: character device for the RPMB area
 157 * @id: unique device ID number
 158 * @part_index: partition index (0 on first)
 159 * @md: parent MMC block device
 160 * @node: list item, so we can put this device on a list
 161 */
 162struct mmc_rpmb_data {
 163	struct device dev;
 164	struct cdev chrdev;
 165	int id;
 166	unsigned int part_index;
 167	struct mmc_blk_data *md;
 168	struct list_head node;
 169};
 170
 171static DEFINE_MUTEX(open_lock);
 172
 173module_param(perdev_minors, int, 0444);
 174MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
 175
 176static inline int mmc_blk_part_switch(struct mmc_card *card,
 177				      unsigned int part_type);
 178static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
 179			       struct mmc_card *card,
 180			       int recovery_mode,
 181			       struct mmc_queue *mq);
 182static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
 183
 184static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
 185{
 186	struct mmc_blk_data *md;
 187
 188	mutex_lock(&open_lock);
 189	md = disk->private_data;
 190	if (md && !kref_get_unless_zero(&md->kref))
 191		md = NULL;
 192	mutex_unlock(&open_lock);
 193
 194	return md;
 195}
 196
 197static inline int mmc_get_devidx(struct gendisk *disk)
 198{
 199	int devidx = disk->first_minor / perdev_minors;
 200	return devidx;
 201}
 202
 203static void mmc_blk_kref_release(struct kref *ref)
 204{
 205	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
 206	int devidx;
 207
 208	devidx = mmc_get_devidx(md->disk);
 209	ida_simple_remove(&mmc_blk_ida, devidx);
 210
 211	mutex_lock(&open_lock);
 212	md->disk->private_data = NULL;
 213	mutex_unlock(&open_lock);
 214
 215	put_disk(md->disk);
 216	kfree(md);
 217}
 218
 219static void mmc_blk_put(struct mmc_blk_data *md)
 220{
 221	kref_put(&md->kref, mmc_blk_kref_release);
 222}
 223
 224static ssize_t power_ro_lock_show(struct device *dev,
 225		struct device_attribute *attr, char *buf)
 226{
 227	int ret;
 228	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 229	struct mmc_card *card = md->queue.card;
 230	int locked = 0;
 231
 232	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
 233		locked = 2;
 234	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
 235		locked = 1;
 236
 237	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
 238
 239	mmc_blk_put(md);
 240
 241	return ret;
 242}
 243
 244static ssize_t power_ro_lock_store(struct device *dev,
 245		struct device_attribute *attr, const char *buf, size_t count)
 246{
 247	int ret;
 248	struct mmc_blk_data *md, *part_md;
 249	struct mmc_queue *mq;
 250	struct request *req;
 251	unsigned long set;
 252
 253	if (kstrtoul(buf, 0, &set))
 254		return -EINVAL;
 255
 256	if (set != 1)
 257		return count;
 258
 259	md = mmc_blk_get(dev_to_disk(dev));
 260	mq = &md->queue;
 261
 262	/* Dispatch locking to the block layer */
 263	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
 264	if (IS_ERR(req)) {
 265		count = PTR_ERR(req);
 266		goto out_put;
 267	}
 268	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
 269	blk_execute_rq(req, false);
 270	ret = req_to_mmc_queue_req(req)->drv_op_result;
 271	blk_mq_free_request(req);
 272
 273	if (!ret) {
 274		pr_info("%s: Locking boot partition ro until next power on\n",
 275			md->disk->disk_name);
 276		set_disk_ro(md->disk, 1);
 277
 278		list_for_each_entry(part_md, &md->part, part)
 279			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
 280				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
 281				set_disk_ro(part_md->disk, 1);
 282			}
 283	}
 284out_put:
 285	mmc_blk_put(md);
 286	return count;
 287}
 288
 289static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
 290		power_ro_lock_show, power_ro_lock_store);
 291
 292static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
 293			     char *buf)
 294{
 295	int ret;
 296	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 297
 298	ret = snprintf(buf, PAGE_SIZE, "%d\n",
 299		       get_disk_ro(dev_to_disk(dev)) ^
 300		       md->read_only);
 301	mmc_blk_put(md);
 302	return ret;
 303}
 304
 305static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
 306			      const char *buf, size_t count)
 307{
 308	int ret;
 309	char *end;
 310	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 311	unsigned long set = simple_strtoul(buf, &end, 0);
 312	if (end == buf) {
 313		ret = -EINVAL;
 314		goto out;
 315	}
 316
 317	set_disk_ro(dev_to_disk(dev), set || md->read_only);
 318	ret = count;
 319out:
 320	mmc_blk_put(md);
 321	return ret;
 322}
 323
 324static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
 325
 326static struct attribute *mmc_disk_attrs[] = {
 327	&dev_attr_force_ro.attr,
 328	&dev_attr_ro_lock_until_next_power_on.attr,
 329	NULL,
 330};
 331
 332static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
 333		struct attribute *a, int n)
 334{
 335	struct device *dev = kobj_to_dev(kobj);
 336	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 337	umode_t mode = a->mode;
 338
 339	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
 340	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
 341	    md->queue.card->ext_csd.boot_ro_lockable) {
 342		mode = S_IRUGO;
 343		if (!(md->queue.card->ext_csd.boot_ro_lock &
 344				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
 345			mode |= S_IWUSR;
 346	}
 347
 348	mmc_blk_put(md);
 349	return mode;
 350}
 351
 352static const struct attribute_group mmc_disk_attr_group = {
 353	.is_visible	= mmc_disk_attrs_is_visible,
 354	.attrs		= mmc_disk_attrs,
 355};
 356
 357static const struct attribute_group *mmc_disk_attr_groups[] = {
 358	&mmc_disk_attr_group,
 359	NULL,
 360};
 361
 362static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
 363{
 364	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
 365	int ret = -ENXIO;
 366
 367	mutex_lock(&block_mutex);
 368	if (md) {
 369		ret = 0;
 370		if ((mode & FMODE_WRITE) && md->read_only) {
 371			mmc_blk_put(md);
 372			ret = -EROFS;
 373		}
 374	}
 375	mutex_unlock(&block_mutex);
 376
 377	return ret;
 378}
 379
 380static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
 381{
 382	struct mmc_blk_data *md = disk->private_data;
 383
 384	mutex_lock(&block_mutex);
 385	mmc_blk_put(md);
 386	mutex_unlock(&block_mutex);
 387}
 388
 389static int
 390mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 391{
 392	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
 393	geo->heads = 4;
 394	geo->sectors = 16;
 395	return 0;
 396}
 397
 398struct mmc_blk_ioc_data {
 399	struct mmc_ioc_cmd ic;
 400	unsigned char *buf;
 401	u64 buf_bytes;
 402	struct mmc_rpmb_data *rpmb;
 403};
 404
 405static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
 406	struct mmc_ioc_cmd __user *user)
 407{
 408	struct mmc_blk_ioc_data *idata;
 409	int err;
 410
 411	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
 412	if (!idata) {
 413		err = -ENOMEM;
 414		goto out;
 415	}
 416
 417	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
 418		err = -EFAULT;
 419		goto idata_err;
 420	}
 421
 422	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
 423	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
 424		err = -EOVERFLOW;
 425		goto idata_err;
 426	}
 427
 428	if (!idata->buf_bytes) {
 429		idata->buf = NULL;
 430		return idata;
 431	}
 432
 433	idata->buf = memdup_user((void __user *)(unsigned long)
 434				 idata->ic.data_ptr, idata->buf_bytes);
 435	if (IS_ERR(idata->buf)) {
 436		err = PTR_ERR(idata->buf);
 437		goto idata_err;
 438	}
 439
 440	return idata;
 441
 442idata_err:
 443	kfree(idata);
 444out:
 445	return ERR_PTR(err);
 446}
 447
 448static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
 449				      struct mmc_blk_ioc_data *idata)
 450{
 451	struct mmc_ioc_cmd *ic = &idata->ic;
 452
 453	if (copy_to_user(&(ic_ptr->response), ic->response,
 454			 sizeof(ic->response)))
 455		return -EFAULT;
 456
 457	if (!idata->ic.write_flag) {
 458		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
 459				 idata->buf, idata->buf_bytes))
 460			return -EFAULT;
 461	}
 462
 463	return 0;
 464}
 465
 466static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
 467			       struct mmc_blk_ioc_data *idata)
 468{
 469	struct mmc_command cmd = {}, sbc = {};
 470	struct mmc_data data = {};
 471	struct mmc_request mrq = {};
 472	struct scatterlist sg;
 473	int err;
 474	unsigned int target_part;
 475
 476	if (!card || !md || !idata)
 477		return -EINVAL;
 478
 479	/*
 480	 * The RPMB accesses comes in from the character device, so we
 481	 * need to target these explicitly. Else we just target the
 482	 * partition type for the block device the ioctl() was issued
 483	 * on.
 484	 */
 485	if (idata->rpmb) {
 486		/* Support multiple RPMB partitions */
 487		target_part = idata->rpmb->part_index;
 488		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
 489	} else {
 490		target_part = md->part_type;
 491	}
 492
 493	cmd.opcode = idata->ic.opcode;
 494	cmd.arg = idata->ic.arg;
 495	cmd.flags = idata->ic.flags;
 496
 497	if (idata->buf_bytes) {
 498		data.sg = &sg;
 499		data.sg_len = 1;
 500		data.blksz = idata->ic.blksz;
 501		data.blocks = idata->ic.blocks;
 502
 503		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
 504
 505		if (idata->ic.write_flag)
 506			data.flags = MMC_DATA_WRITE;
 507		else
 508			data.flags = MMC_DATA_READ;
 509
 510		/* data.flags must already be set before doing this. */
 511		mmc_set_data_timeout(&data, card);
 512
 513		/* Allow overriding the timeout_ns for empirical tuning. */
 514		if (idata->ic.data_timeout_ns)
 515			data.timeout_ns = idata->ic.data_timeout_ns;
 516
 
 
 
 
 
 
 
 
 
 
 
 
 
 517		mrq.data = &data;
 518	}
 519
 520	mrq.cmd = &cmd;
 521
 522	err = mmc_blk_part_switch(card, target_part);
 523	if (err)
 524		return err;
 525
 526	if (idata->ic.is_acmd) {
 527		err = mmc_app_cmd(card->host, card);
 528		if (err)
 529			return err;
 530	}
 531
 532	if (idata->rpmb) {
 533		sbc.opcode = MMC_SET_BLOCK_COUNT;
 534		/*
 535		 * We don't do any blockcount validation because the max size
 536		 * may be increased by a future standard. We just copy the
 537		 * 'Reliable Write' bit here.
 538		 */
 539		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
 540		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
 541		mrq.sbc = &sbc;
 542	}
 543
 544	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
 545	    (cmd.opcode == MMC_SWITCH))
 546		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
 547
 548	mmc_wait_for_req(card->host, &mrq);
 549	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
 550
 551	if (cmd.error) {
 552		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
 553						__func__, cmd.error);
 554		return cmd.error;
 555	}
 556	if (data.error) {
 557		dev_err(mmc_dev(card->host), "%s: data error %d\n",
 558						__func__, data.error);
 559		return data.error;
 560	}
 561
 562	/*
 563	 * Make sure the cache of the PARTITION_CONFIG register and
 564	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
 565	 * changed it successfully.
 566	 */
 567	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
 568	    (cmd.opcode == MMC_SWITCH)) {
 569		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 570		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
 571
 572		/*
 573		 * Update cache so the next mmc_blk_part_switch call operates
 574		 * on up-to-date data.
 575		 */
 576		card->ext_csd.part_config = value;
 577		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
 578	}
 579
 580	/*
 581	 * Make sure to update CACHE_CTRL in case it was changed. The cache
 582	 * will get turned back on if the card is re-initialized, e.g.
 583	 * suspend/resume or hw reset in recovery.
 584	 */
 585	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
 586	    (cmd.opcode == MMC_SWITCH)) {
 587		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
 588
 589		card->ext_csd.cache_ctrl = value;
 590	}
 591
 592	/*
 593	 * According to the SD specs, some commands require a delay after
 594	 * issuing the command.
 595	 */
 596	if (idata->ic.postsleep_min_us)
 597		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
 598
 599	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
 600		/*
 601		 * Ensure RPMB/R1B command has completed by polling CMD13 "Send Status". Here we
 602		 * allow to override the default timeout value if a custom timeout is specified.
 603		 */
 604		err = mmc_poll_for_busy(card, idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS,
 605					false, MMC_BUSY_IO);
 606	}
 607
 608	return err;
 609}
 610
 611static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
 612			     struct mmc_ioc_cmd __user *ic_ptr,
 613			     struct mmc_rpmb_data *rpmb)
 614{
 615	struct mmc_blk_ioc_data *idata;
 616	struct mmc_blk_ioc_data *idatas[1];
 617	struct mmc_queue *mq;
 618	struct mmc_card *card;
 619	int err = 0, ioc_err = 0;
 620	struct request *req;
 621
 622	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
 623	if (IS_ERR(idata))
 624		return PTR_ERR(idata);
 625	/* This will be NULL on non-RPMB ioctl():s */
 626	idata->rpmb = rpmb;
 627
 628	card = md->queue.card;
 629	if (IS_ERR(card)) {
 630		err = PTR_ERR(card);
 631		goto cmd_done;
 632	}
 633
 634	/*
 635	 * Dispatch the ioctl() into the block request queue.
 636	 */
 637	mq = &md->queue;
 638	req = blk_mq_alloc_request(mq->queue,
 639		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 640	if (IS_ERR(req)) {
 641		err = PTR_ERR(req);
 642		goto cmd_done;
 643	}
 644	idatas[0] = idata;
 645	req_to_mmc_queue_req(req)->drv_op =
 646		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 647	req_to_mmc_queue_req(req)->drv_op_data = idatas;
 648	req_to_mmc_queue_req(req)->ioc_count = 1;
 649	blk_execute_rq(req, false);
 650	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 651	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
 652	blk_mq_free_request(req);
 653
 654cmd_done:
 655	kfree(idata->buf);
 656	kfree(idata);
 657	return ioc_err ? ioc_err : err;
 658}
 659
 660static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
 661				   struct mmc_ioc_multi_cmd __user *user,
 662				   struct mmc_rpmb_data *rpmb)
 663{
 664	struct mmc_blk_ioc_data **idata = NULL;
 665	struct mmc_ioc_cmd __user *cmds = user->cmds;
 666	struct mmc_card *card;
 667	struct mmc_queue *mq;
 668	int err = 0, ioc_err = 0;
 669	__u64 num_of_cmds;
 670	unsigned int i, n;
 671	struct request *req;
 672
 673	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
 674			   sizeof(num_of_cmds)))
 675		return -EFAULT;
 676
 677	if (!num_of_cmds)
 678		return 0;
 679
 680	if (num_of_cmds > MMC_IOC_MAX_CMDS)
 681		return -EINVAL;
 682
 683	n = num_of_cmds;
 684	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
 685	if (!idata)
 686		return -ENOMEM;
 687
 688	for (i = 0; i < n; i++) {
 689		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
 690		if (IS_ERR(idata[i])) {
 691			err = PTR_ERR(idata[i]);
 692			n = i;
 693			goto cmd_err;
 694		}
 695		/* This will be NULL on non-RPMB ioctl():s */
 696		idata[i]->rpmb = rpmb;
 697	}
 698
 699	card = md->queue.card;
 700	if (IS_ERR(card)) {
 701		err = PTR_ERR(card);
 702		goto cmd_err;
 703	}
 704
 705
 706	/*
 707	 * Dispatch the ioctl()s into the block request queue.
 708	 */
 709	mq = &md->queue;
 710	req = blk_mq_alloc_request(mq->queue,
 711		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 712	if (IS_ERR(req)) {
 713		err = PTR_ERR(req);
 714		goto cmd_err;
 715	}
 716	req_to_mmc_queue_req(req)->drv_op =
 717		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 718	req_to_mmc_queue_req(req)->drv_op_data = idata;
 719	req_to_mmc_queue_req(req)->ioc_count = n;
 720	blk_execute_rq(req, false);
 721	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 722
 723	/* copy to user if data and response */
 724	for (i = 0; i < n && !err; i++)
 725		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
 726
 727	blk_mq_free_request(req);
 728
 729cmd_err:
 730	for (i = 0; i < n; i++) {
 731		kfree(idata[i]->buf);
 732		kfree(idata[i]);
 733	}
 734	kfree(idata);
 735	return ioc_err ? ioc_err : err;
 736}
 737
 738static int mmc_blk_check_blkdev(struct block_device *bdev)
 739{
 740	/*
 741	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
 742	 * whole block device, not on a partition.  This prevents overspray
 743	 * between sibling partitions.
 744	 */
 745	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
 746		return -EPERM;
 747	return 0;
 748}
 749
 750static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
 751	unsigned int cmd, unsigned long arg)
 752{
 753	struct mmc_blk_data *md;
 754	int ret;
 755
 756	switch (cmd) {
 757	case MMC_IOC_CMD:
 758		ret = mmc_blk_check_blkdev(bdev);
 759		if (ret)
 760			return ret;
 761		md = mmc_blk_get(bdev->bd_disk);
 762		if (!md)
 763			return -EINVAL;
 764		ret = mmc_blk_ioctl_cmd(md,
 765					(struct mmc_ioc_cmd __user *)arg,
 766					NULL);
 767		mmc_blk_put(md);
 768		return ret;
 769	case MMC_IOC_MULTI_CMD:
 770		ret = mmc_blk_check_blkdev(bdev);
 771		if (ret)
 772			return ret;
 773		md = mmc_blk_get(bdev->bd_disk);
 774		if (!md)
 775			return -EINVAL;
 776		ret = mmc_blk_ioctl_multi_cmd(md,
 777					(struct mmc_ioc_multi_cmd __user *)arg,
 778					NULL);
 779		mmc_blk_put(md);
 780		return ret;
 781	default:
 782		return -EINVAL;
 783	}
 784}
 785
 786#ifdef CONFIG_COMPAT
 787static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
 788	unsigned int cmd, unsigned long arg)
 789{
 790	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
 791}
 792#endif
 793
 794static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
 795					  sector_t *sector)
 796{
 797	struct mmc_blk_data *md;
 798	int ret;
 799
 800	md = mmc_blk_get(disk);
 801	if (!md)
 802		return -EINVAL;
 803
 804	if (md->queue.card)
 805		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
 806	else
 807		ret = -ENODEV;
 808
 809	mmc_blk_put(md);
 810
 811	return ret;
 812}
 813
 814static const struct block_device_operations mmc_bdops = {
 815	.open			= mmc_blk_open,
 816	.release		= mmc_blk_release,
 817	.getgeo			= mmc_blk_getgeo,
 818	.owner			= THIS_MODULE,
 819	.ioctl			= mmc_blk_ioctl,
 820#ifdef CONFIG_COMPAT
 821	.compat_ioctl		= mmc_blk_compat_ioctl,
 822#endif
 823	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
 824};
 825
 826static int mmc_blk_part_switch_pre(struct mmc_card *card,
 827				   unsigned int part_type)
 828{
 829	int ret = 0;
 830
 831	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 832		if (card->ext_csd.cmdq_en) {
 833			ret = mmc_cmdq_disable(card);
 834			if (ret)
 835				return ret;
 836		}
 837		mmc_retune_pause(card->host);
 838	}
 839
 840	return ret;
 841}
 842
 843static int mmc_blk_part_switch_post(struct mmc_card *card,
 844				    unsigned int part_type)
 845{
 846	int ret = 0;
 847
 848	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 849		mmc_retune_unpause(card->host);
 850		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
 851			ret = mmc_cmdq_enable(card);
 852	}
 853
 854	return ret;
 855}
 856
 857static inline int mmc_blk_part_switch(struct mmc_card *card,
 858				      unsigned int part_type)
 859{
 860	int ret = 0;
 861	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 862
 863	if (main_md->part_curr == part_type)
 864		return 0;
 865
 866	if (mmc_card_mmc(card)) {
 867		u8 part_config = card->ext_csd.part_config;
 868
 869		ret = mmc_blk_part_switch_pre(card, part_type);
 870		if (ret)
 871			return ret;
 872
 873		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
 874		part_config |= part_type;
 875
 876		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 877				 EXT_CSD_PART_CONFIG, part_config,
 878				 card->ext_csd.part_time);
 879		if (ret) {
 880			mmc_blk_part_switch_post(card, part_type);
 881			return ret;
 882		}
 883
 884		card->ext_csd.part_config = part_config;
 885
 886		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
 887	}
 888
 889	main_md->part_curr = part_type;
 890	return ret;
 891}
 892
 893static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
 894{
 895	int err;
 896	u32 result;
 897	__be32 *blocks;
 898
 899	struct mmc_request mrq = {};
 900	struct mmc_command cmd = {};
 901	struct mmc_data data = {};
 902
 903	struct scatterlist sg;
 904
 905	cmd.opcode = MMC_APP_CMD;
 906	cmd.arg = card->rca << 16;
 907	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 908
 909	err = mmc_wait_for_cmd(card->host, &cmd, 0);
 910	if (err)
 911		return err;
 912	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
 913		return -EIO;
 914
 915	memset(&cmd, 0, sizeof(struct mmc_command));
 916
 917	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
 918	cmd.arg = 0;
 919	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 920
 921	data.blksz = 4;
 922	data.blocks = 1;
 923	data.flags = MMC_DATA_READ;
 924	data.sg = &sg;
 925	data.sg_len = 1;
 926	mmc_set_data_timeout(&data, card);
 927
 928	mrq.cmd = &cmd;
 929	mrq.data = &data;
 930
 931	blocks = kmalloc(4, GFP_KERNEL);
 932	if (!blocks)
 933		return -ENOMEM;
 934
 935	sg_init_one(&sg, blocks, 4);
 936
 937	mmc_wait_for_req(card->host, &mrq);
 938
 939	result = ntohl(*blocks);
 940	kfree(blocks);
 941
 942	if (cmd.error || data.error)
 943		return -EIO;
 944
 945	*written_blocks = result;
 946
 947	return 0;
 948}
 949
 950static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
 951{
 952	if (host->actual_clock)
 953		return host->actual_clock / 1000;
 954
 955	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
 956	if (host->ios.clock)
 957		return host->ios.clock / 2000;
 958
 959	/* How can there be no clock */
 960	WARN_ON_ONCE(1);
 961	return 100; /* 100 kHz is minimum possible value */
 962}
 963
 964static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
 965					    struct mmc_data *data)
 966{
 967	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
 968	unsigned int khz;
 969
 970	if (data->timeout_clks) {
 971		khz = mmc_blk_clock_khz(host);
 972		ms += DIV_ROUND_UP(data->timeout_clks, khz);
 973	}
 974
 975	return ms;
 976}
 977
 978/*
 979 * Attempts to reset the card and get back to the requested partition.
 980 * Therefore any error here must result in cancelling the block layer
 981 * request, it must not be reattempted without going through the mmc_blk
 982 * partition sanity checks.
 983 */
 984static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
 985			 int type)
 986{
 987	int err;
 988	struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
 989
 990	if (md->reset_done & type)
 991		return -EEXIST;
 992
 993	md->reset_done |= type;
 994	err = mmc_hw_reset(host->card);
 995	/*
 996	 * A successful reset will leave the card in the main partition, but
 997	 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
 998	 * in that case.
 999	 */
1000	main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1001	if (err)
1002		return err;
1003	/* Ensure we switch back to the correct partition */
1004	if (mmc_blk_part_switch(host->card, md->part_type))
1005		/*
1006		 * We have failed to get back into the correct
1007		 * partition, so we need to abort the whole request.
1008		 */
1009		return -ENODEV;
1010	return 0;
 
 
 
 
 
 
 
 
 
1011}
1012
1013static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1014{
1015	md->reset_done &= ~type;
1016}
1017
1018/*
1019 * The non-block commands come back from the block layer after it queued it and
1020 * processed it with all other requests and then they get issued in this
1021 * function.
1022 */
1023static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1024{
1025	struct mmc_queue_req *mq_rq;
1026	struct mmc_card *card = mq->card;
1027	struct mmc_blk_data *md = mq->blkdata;
1028	struct mmc_blk_ioc_data **idata;
1029	bool rpmb_ioctl;
1030	u8 **ext_csd;
1031	u32 status;
1032	int ret;
1033	int i;
1034
1035	mq_rq = req_to_mmc_queue_req(req);
1036	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1037
1038	switch (mq_rq->drv_op) {
1039	case MMC_DRV_OP_IOCTL:
1040		if (card->ext_csd.cmdq_en) {
1041			ret = mmc_cmdq_disable(card);
1042			if (ret)
1043				break;
1044		}
1045		fallthrough;
1046	case MMC_DRV_OP_IOCTL_RPMB:
1047		idata = mq_rq->drv_op_data;
1048		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1049			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1050			if (ret)
1051				break;
1052		}
1053		/* Always switch back to main area after RPMB access */
1054		if (rpmb_ioctl)
1055			mmc_blk_part_switch(card, 0);
1056		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1057			mmc_cmdq_enable(card);
1058		break;
1059	case MMC_DRV_OP_BOOT_WP:
1060		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1061				 card->ext_csd.boot_ro_lock |
1062				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1063				 card->ext_csd.part_time);
1064		if (ret)
1065			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1066			       md->disk->disk_name, ret);
1067		else
1068			card->ext_csd.boot_ro_lock |=
1069				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1070		break;
1071	case MMC_DRV_OP_GET_CARD_STATUS:
1072		ret = mmc_send_status(card, &status);
1073		if (!ret)
1074			ret = status;
1075		break;
1076	case MMC_DRV_OP_GET_EXT_CSD:
1077		ext_csd = mq_rq->drv_op_data;
1078		ret = mmc_get_ext_csd(card, ext_csd);
1079		break;
1080	default:
1081		pr_err("%s: unknown driver specific operation\n",
1082		       md->disk->disk_name);
1083		ret = -EINVAL;
1084		break;
1085	}
1086	mq_rq->drv_op_result = ret;
1087	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1088}
1089
1090static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1091				   int type, unsigned int erase_arg)
1092{
1093	struct mmc_blk_data *md = mq->blkdata;
1094	struct mmc_card *card = md->queue.card;
1095	unsigned int from, nr;
1096	int err = 0;
1097	blk_status_t status = BLK_STS_OK;
1098
1099	if (!mmc_can_erase(card)) {
1100		status = BLK_STS_NOTSUPP;
1101		goto fail;
1102	}
1103
1104	from = blk_rq_pos(req);
1105	nr = blk_rq_sectors(req);
1106
1107	do {
1108		err = 0;
1109		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1110			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1111					 INAND_CMD38_ARG_EXT_CSD,
1112					 erase_arg == MMC_TRIM_ARG ?
1113					 INAND_CMD38_ARG_TRIM :
1114					 INAND_CMD38_ARG_ERASE,
1115					 card->ext_csd.generic_cmd6_time);
1116		}
1117		if (!err)
1118			err = mmc_erase(card, from, nr, erase_arg);
1119	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1120	if (err)
1121		status = BLK_STS_IOERR;
1122	else
1123		mmc_blk_reset_success(md, type);
1124fail:
1125	blk_mq_end_request(req, status);
1126}
1127
1128static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1129{
1130	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1131}
1132
1133static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1134{
1135	struct mmc_blk_data *md = mq->blkdata;
1136	struct mmc_card *card = md->queue.card;
1137	unsigned int arg = card->erase_arg;
1138
1139	if (mmc_card_broken_sd_discard(card))
1140		arg = SD_ERASE_ARG;
1141
1142	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1143}
1144
1145static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1146				       struct request *req)
1147{
1148	struct mmc_blk_data *md = mq->blkdata;
1149	struct mmc_card *card = md->queue.card;
1150	unsigned int from, nr, arg;
1151	int err = 0, type = MMC_BLK_SECDISCARD;
1152	blk_status_t status = BLK_STS_OK;
1153
1154	if (!(mmc_can_secure_erase_trim(card))) {
1155		status = BLK_STS_NOTSUPP;
1156		goto out;
1157	}
1158
1159	from = blk_rq_pos(req);
1160	nr = blk_rq_sectors(req);
1161
1162	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1163		arg = MMC_SECURE_TRIM1_ARG;
1164	else
1165		arg = MMC_SECURE_ERASE_ARG;
1166
1167retry:
1168	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1169		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1170				 INAND_CMD38_ARG_EXT_CSD,
1171				 arg == MMC_SECURE_TRIM1_ARG ?
1172				 INAND_CMD38_ARG_SECTRIM1 :
1173				 INAND_CMD38_ARG_SECERASE,
1174				 card->ext_csd.generic_cmd6_time);
1175		if (err)
1176			goto out_retry;
1177	}
1178
1179	err = mmc_erase(card, from, nr, arg);
1180	if (err == -EIO)
1181		goto out_retry;
1182	if (err) {
1183		status = BLK_STS_IOERR;
1184		goto out;
1185	}
1186
1187	if (arg == MMC_SECURE_TRIM1_ARG) {
1188		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1189			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1190					 INAND_CMD38_ARG_EXT_CSD,
1191					 INAND_CMD38_ARG_SECTRIM2,
1192					 card->ext_csd.generic_cmd6_time);
1193			if (err)
1194				goto out_retry;
1195		}
1196
1197		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1198		if (err == -EIO)
1199			goto out_retry;
1200		if (err) {
1201			status = BLK_STS_IOERR;
1202			goto out;
1203		}
1204	}
1205
1206out_retry:
1207	if (err && !mmc_blk_reset(md, card->host, type))
1208		goto retry;
1209	if (!err)
1210		mmc_blk_reset_success(md, type);
1211out:
1212	blk_mq_end_request(req, status);
1213}
1214
1215static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1216{
1217	struct mmc_blk_data *md = mq->blkdata;
1218	struct mmc_card *card = md->queue.card;
1219	int ret = 0;
1220
1221	ret = mmc_flush_cache(card->host);
1222	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1223}
1224
1225/*
1226 * Reformat current write as a reliable write, supporting
1227 * both legacy and the enhanced reliable write MMC cards.
1228 * In each transfer we'll handle only as much as a single
1229 * reliable write can handle, thus finish the request in
1230 * partial completions.
1231 */
1232static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1233				    struct mmc_card *card,
1234				    struct request *req)
1235{
1236	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1237		/* Legacy mode imposes restrictions on transfers. */
1238		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1239			brq->data.blocks = 1;
1240
1241		if (brq->data.blocks > card->ext_csd.rel_sectors)
1242			brq->data.blocks = card->ext_csd.rel_sectors;
1243		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1244			brq->data.blocks = 1;
1245	}
1246}
1247
1248#define CMD_ERRORS_EXCL_OOR						\
1249	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1250	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1251	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1252	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1253	 R1_CC_ERROR |		/* Card controller error */		\
1254	 R1_ERROR)		/* General/unknown error */
1255
1256#define CMD_ERRORS							\
1257	(CMD_ERRORS_EXCL_OOR |						\
1258	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1259
1260static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1261{
1262	u32 val;
1263
1264	/*
1265	 * Per the SD specification(physical layer version 4.10)[1],
1266	 * section 4.3.3, it explicitly states that "When the last
1267	 * block of user area is read using CMD18, the host should
1268	 * ignore OUT_OF_RANGE error that may occur even the sequence
1269	 * is correct". And JESD84-B51 for eMMC also has a similar
1270	 * statement on section 6.8.3.
1271	 *
1272	 * Multiple block read/write could be done by either predefined
1273	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1274	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1275	 *
1276	 * However the spec[1] doesn't tell us whether we should also
1277	 * ignore that for predefined method. But per the spec[1], section
1278	 * 4.15 Set Block Count Command, it says"If illegal block count
1279	 * is set, out of range error will be indicated during read/write
1280	 * operation (For example, data transfer is stopped at user area
1281	 * boundary)." In another word, we could expect a out of range error
1282	 * in the response for the following CMD18/25. And if argument of
1283	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1284	 * we could also expect to get a -ETIMEDOUT or any error number from
1285	 * the host drivers due to missing data response(for write)/data(for
1286	 * read), as the cards will stop the data transfer by itself per the
1287	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1288	 */
1289
1290	if (!brq->stop.error) {
1291		bool oor_with_open_end;
1292		/* If there is no error yet, check R1 response */
1293
1294		val = brq->stop.resp[0] & CMD_ERRORS;
1295		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1296
1297		if (val && !oor_with_open_end)
1298			brq->stop.error = -EIO;
1299	}
1300}
1301
1302static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1303			      int recovery_mode, bool *do_rel_wr_p,
1304			      bool *do_data_tag_p)
1305{
1306	struct mmc_blk_data *md = mq->blkdata;
1307	struct mmc_card *card = md->queue.card;
1308	struct mmc_blk_request *brq = &mqrq->brq;
1309	struct request *req = mmc_queue_req_to_req(mqrq);
1310	bool do_rel_wr, do_data_tag;
1311
1312	/*
1313	 * Reliable writes are used to implement Forced Unit Access and
1314	 * are supported only on MMCs.
1315	 */
1316	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1317		    rq_data_dir(req) == WRITE &&
1318		    (md->flags & MMC_BLK_REL_WR);
1319
1320	memset(brq, 0, sizeof(struct mmc_blk_request));
1321
1322	mmc_crypto_prepare_req(mqrq);
1323
1324	brq->mrq.data = &brq->data;
1325	brq->mrq.tag = req->tag;
1326
1327	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1328	brq->stop.arg = 0;
1329
1330	if (rq_data_dir(req) == READ) {
1331		brq->data.flags = MMC_DATA_READ;
1332		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1333	} else {
1334		brq->data.flags = MMC_DATA_WRITE;
1335		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1336	}
1337
1338	brq->data.blksz = 512;
1339	brq->data.blocks = blk_rq_sectors(req);
1340	brq->data.blk_addr = blk_rq_pos(req);
1341
1342	/*
1343	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1344	 * The eMMC will give "high" priority tasks priority over "simple"
1345	 * priority tasks. Here we always set "simple" priority by not setting
1346	 * MMC_DATA_PRIO.
1347	 */
1348
1349	/*
1350	 * The block layer doesn't support all sector count
1351	 * restrictions, so we need to be prepared for too big
1352	 * requests.
1353	 */
1354	if (brq->data.blocks > card->host->max_blk_count)
1355		brq->data.blocks = card->host->max_blk_count;
1356
1357	if (brq->data.blocks > 1) {
1358		/*
1359		 * Some SD cards in SPI mode return a CRC error or even lock up
1360		 * completely when trying to read the last block using a
1361		 * multiblock read command.
1362		 */
1363		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1364		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1365		     get_capacity(md->disk)))
1366			brq->data.blocks--;
1367
1368		/*
1369		 * After a read error, we redo the request one (native) sector
1370		 * at a time in order to accurately determine which
1371		 * sectors can be read successfully.
1372		 */
1373		if (recovery_mode)
1374			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1375
1376		/*
1377		 * Some controllers have HW issues while operating
1378		 * in multiple I/O mode
1379		 */
1380		if (card->host->ops->multi_io_quirk)
1381			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1382						(rq_data_dir(req) == READ) ?
1383						MMC_DATA_READ : MMC_DATA_WRITE,
1384						brq->data.blocks);
1385	}
1386
1387	if (do_rel_wr) {
1388		mmc_apply_rel_rw(brq, card, req);
1389		brq->data.flags |= MMC_DATA_REL_WR;
1390	}
1391
1392	/*
1393	 * Data tag is used only during writing meta data to speed
1394	 * up write and any subsequent read of this meta data
1395	 */
1396	do_data_tag = card->ext_csd.data_tag_unit_size &&
1397		      (req->cmd_flags & REQ_META) &&
1398		      (rq_data_dir(req) == WRITE) &&
1399		      ((brq->data.blocks * brq->data.blksz) >=
1400		       card->ext_csd.data_tag_unit_size);
1401
1402	if (do_data_tag)
1403		brq->data.flags |= MMC_DATA_DAT_TAG;
1404
1405	mmc_set_data_timeout(&brq->data, card);
1406
1407	brq->data.sg = mqrq->sg;
1408	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1409
1410	/*
1411	 * Adjust the sg list so it is the same size as the
1412	 * request.
1413	 */
1414	if (brq->data.blocks != blk_rq_sectors(req)) {
1415		int i, data_size = brq->data.blocks << 9;
1416		struct scatterlist *sg;
1417
1418		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1419			data_size -= sg->length;
1420			if (data_size <= 0) {
1421				sg->length += data_size;
1422				i++;
1423				break;
1424			}
1425		}
1426		brq->data.sg_len = i;
1427	}
1428
1429	if (do_rel_wr_p)
1430		*do_rel_wr_p = do_rel_wr;
1431
1432	if (do_data_tag_p)
1433		*do_data_tag_p = do_data_tag;
1434}
1435
1436#define MMC_CQE_RETRIES 2
1437
1438static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1439{
1440	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1441	struct mmc_request *mrq = &mqrq->brq.mrq;
1442	struct request_queue *q = req->q;
1443	struct mmc_host *host = mq->card->host;
1444	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1445	unsigned long flags;
1446	bool put_card;
1447	int err;
1448
1449	mmc_cqe_post_req(host, mrq);
1450
1451	if (mrq->cmd && mrq->cmd->error)
1452		err = mrq->cmd->error;
1453	else if (mrq->data && mrq->data->error)
1454		err = mrq->data->error;
1455	else
1456		err = 0;
1457
1458	if (err) {
1459		if (mqrq->retries++ < MMC_CQE_RETRIES)
1460			blk_mq_requeue_request(req, true);
1461		else
1462			blk_mq_end_request(req, BLK_STS_IOERR);
1463	} else if (mrq->data) {
1464		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1465			blk_mq_requeue_request(req, true);
1466		else
1467			__blk_mq_end_request(req, BLK_STS_OK);
1468	} else {
1469		blk_mq_end_request(req, BLK_STS_OK);
1470	}
1471
1472	spin_lock_irqsave(&mq->lock, flags);
1473
1474	mq->in_flight[issue_type] -= 1;
1475
1476	put_card = (mmc_tot_in_flight(mq) == 0);
1477
1478	mmc_cqe_check_busy(mq);
1479
1480	spin_unlock_irqrestore(&mq->lock, flags);
1481
1482	if (!mq->cqe_busy)
1483		blk_mq_run_hw_queues(q, true);
1484
1485	if (put_card)
1486		mmc_put_card(mq->card, &mq->ctx);
1487}
1488
1489void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1490{
1491	struct mmc_card *card = mq->card;
1492	struct mmc_host *host = card->host;
1493	int err;
1494
1495	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1496
1497	err = mmc_cqe_recovery(host);
1498	if (err)
1499		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1500	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
 
1501
1502	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1503}
1504
1505static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1506{
1507	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1508						  brq.mrq);
1509	struct request *req = mmc_queue_req_to_req(mqrq);
1510	struct request_queue *q = req->q;
1511	struct mmc_queue *mq = q->queuedata;
1512
1513	/*
1514	 * Block layer timeouts race with completions which means the normal
1515	 * completion path cannot be used during recovery.
1516	 */
1517	if (mq->in_recovery)
1518		mmc_blk_cqe_complete_rq(mq, req);
1519	else if (likely(!blk_should_fake_timeout(req->q)))
1520		blk_mq_complete_request(req);
1521}
1522
1523static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1524{
1525	mrq->done		= mmc_blk_cqe_req_done;
1526	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1527
1528	return mmc_cqe_start_req(host, mrq);
1529}
1530
1531static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1532						 struct request *req)
1533{
1534	struct mmc_blk_request *brq = &mqrq->brq;
1535
1536	memset(brq, 0, sizeof(*brq));
1537
1538	brq->mrq.cmd = &brq->cmd;
1539	brq->mrq.tag = req->tag;
1540
1541	return &brq->mrq;
1542}
1543
1544static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1545{
1546	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1547	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1548
1549	mrq->cmd->opcode = MMC_SWITCH;
1550	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1551			(EXT_CSD_FLUSH_CACHE << 16) |
1552			(1 << 8) |
1553			EXT_CSD_CMD_SET_NORMAL;
1554	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1555
1556	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1557}
1558
1559static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1560{
1561	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1562	struct mmc_host *host = mq->card->host;
1563	int err;
1564
1565	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1566	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1567	mmc_pre_req(host, &mqrq->brq.mrq);
1568
1569	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1570	if (err)
1571		mmc_post_req(host, &mqrq->brq.mrq, err);
1572
1573	return err;
1574}
1575
1576static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1577{
1578	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1579	struct mmc_host *host = mq->card->host;
1580
1581	if (host->hsq_enabled)
1582		return mmc_blk_hsq_issue_rw_rq(mq, req);
1583
1584	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1585
1586	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1587}
1588
1589static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1590			       struct mmc_card *card,
1591			       int recovery_mode,
1592			       struct mmc_queue *mq)
1593{
1594	u32 readcmd, writecmd;
1595	struct mmc_blk_request *brq = &mqrq->brq;
1596	struct request *req = mmc_queue_req_to_req(mqrq);
1597	struct mmc_blk_data *md = mq->blkdata;
1598	bool do_rel_wr, do_data_tag;
1599
1600	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1601
1602	brq->mrq.cmd = &brq->cmd;
1603
1604	brq->cmd.arg = blk_rq_pos(req);
1605	if (!mmc_card_blockaddr(card))
1606		brq->cmd.arg <<= 9;
1607	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1608
1609	if (brq->data.blocks > 1 || do_rel_wr) {
1610		/* SPI multiblock writes terminate using a special
1611		 * token, not a STOP_TRANSMISSION request.
1612		 */
1613		if (!mmc_host_is_spi(card->host) ||
1614		    rq_data_dir(req) == READ)
1615			brq->mrq.stop = &brq->stop;
1616		readcmd = MMC_READ_MULTIPLE_BLOCK;
1617		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1618	} else {
1619		brq->mrq.stop = NULL;
1620		readcmd = MMC_READ_SINGLE_BLOCK;
1621		writecmd = MMC_WRITE_BLOCK;
1622	}
1623	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1624
1625	/*
1626	 * Pre-defined multi-block transfers are preferable to
1627	 * open ended-ones (and necessary for reliable writes).
1628	 * However, it is not sufficient to just send CMD23,
1629	 * and avoid the final CMD12, as on an error condition
1630	 * CMD12 (stop) needs to be sent anyway. This, coupled
1631	 * with Auto-CMD23 enhancements provided by some
1632	 * hosts, means that the complexity of dealing
1633	 * with this is best left to the host. If CMD23 is
1634	 * supported by card and host, we'll fill sbc in and let
1635	 * the host deal with handling it correctly. This means
1636	 * that for hosts that don't expose MMC_CAP_CMD23, no
1637	 * change of behavior will be observed.
1638	 *
1639	 * N.B: Some MMC cards experience perf degradation.
1640	 * We'll avoid using CMD23-bounded multiblock writes for
1641	 * these, while retaining features like reliable writes.
1642	 */
1643	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1644	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1645	     do_data_tag)) {
1646		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1647		brq->sbc.arg = brq->data.blocks |
1648			(do_rel_wr ? (1 << 31) : 0) |
1649			(do_data_tag ? (1 << 29) : 0);
1650		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1651		brq->mrq.sbc = &brq->sbc;
1652	}
1653}
1654
1655#define MMC_MAX_RETRIES		5
1656#define MMC_DATA_RETRIES	2
1657#define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1658
1659static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1660{
1661	struct mmc_command cmd = {
1662		.opcode = MMC_STOP_TRANSMISSION,
1663		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1664		/* Some hosts wait for busy anyway, so provide a busy timeout */
1665		.busy_timeout = timeout,
1666	};
1667
1668	return mmc_wait_for_cmd(card->host, &cmd, 5);
1669}
1670
1671static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1672{
1673	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1674	struct mmc_blk_request *brq = &mqrq->brq;
1675	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1676	int err;
1677
1678	mmc_retune_hold_now(card->host);
1679
1680	mmc_blk_send_stop(card, timeout);
1681
1682	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1683
1684	mmc_retune_release(card->host);
1685
1686	return err;
1687}
1688
1689#define MMC_READ_SINGLE_RETRIES	2
1690
1691/* Single (native) sector read during recovery */
1692static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1693{
1694	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1695	struct mmc_request *mrq = &mqrq->brq.mrq;
1696	struct mmc_card *card = mq->card;
1697	struct mmc_host *host = card->host;
1698	blk_status_t error = BLK_STS_OK;
1699	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1700
1701	do {
1702		u32 status;
1703		int err;
1704		int retries = 0;
1705
1706		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1707			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
 
1708
1709			mmc_wait_for_req(host, mrq);
 
 
1710
1711			err = mmc_send_status(card, &status);
 
 
1712			if (err)
1713				goto error_exit;
 
1714
1715			if (!mmc_host_is_spi(host) &&
1716			    !mmc_ready_for_data(status)) {
1717				err = mmc_blk_fix_state(card, req);
1718				if (err)
1719					goto error_exit;
1720			}
1721
1722			if (!mrq->cmd->error)
1723				break;
1724		}
1725
1726		if (mrq->cmd->error ||
1727		    mrq->data->error ||
1728		    (!mmc_host_is_spi(host) &&
1729		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1730			error = BLK_STS_IOERR;
1731		else
1732			error = BLK_STS_OK;
1733
1734	} while (blk_update_request(req, error, bytes_per_read));
1735
1736	return;
1737
1738error_exit:
1739	mrq->data->bytes_xfered = 0;
1740	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1741	/* Let it try the remaining request again */
1742	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1743		mqrq->retries = MMC_MAX_RETRIES - 1;
1744}
1745
1746static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1747{
1748	return !!brq->mrq.sbc;
1749}
1750
1751static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1752{
1753	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1754}
1755
1756/*
1757 * Check for errors the host controller driver might not have seen such as
1758 * response mode errors or invalid card state.
1759 */
1760static bool mmc_blk_status_error(struct request *req, u32 status)
1761{
1762	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1763	struct mmc_blk_request *brq = &mqrq->brq;
1764	struct mmc_queue *mq = req->q->queuedata;
1765	u32 stop_err_bits;
1766
1767	if (mmc_host_is_spi(mq->card->host))
1768		return false;
1769
1770	stop_err_bits = mmc_blk_stop_err_bits(brq);
1771
1772	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1773	       brq->stop.resp[0] & stop_err_bits ||
1774	       status            & stop_err_bits ||
1775	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1776}
1777
1778static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1779{
1780	return !brq->sbc.error && !brq->cmd.error &&
1781	       !(brq->cmd.resp[0] & CMD_ERRORS);
1782}
1783
1784/*
1785 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1786 * policy:
1787 * 1. A request that has transferred at least some data is considered
1788 * successful and will be requeued if there is remaining data to
1789 * transfer.
1790 * 2. Otherwise the number of retries is incremented and the request
1791 * will be requeued if there are remaining retries.
1792 * 3. Otherwise the request will be errored out.
1793 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1794 * mqrq->retries. So there are only 4 possible actions here:
1795 *	1. do not accept the bytes_xfered value i.e. set it to zero
1796 *	2. change mqrq->retries to determine the number of retries
1797 *	3. try to reset the card
1798 *	4. read one sector at a time
1799 */
1800static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1801{
1802	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1803	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1804	struct mmc_blk_request *brq = &mqrq->brq;
1805	struct mmc_blk_data *md = mq->blkdata;
1806	struct mmc_card *card = mq->card;
1807	u32 status;
1808	u32 blocks;
1809	int err;
1810
1811	/*
1812	 * Some errors the host driver might not have seen. Set the number of
1813	 * bytes transferred to zero in that case.
1814	 */
1815	err = __mmc_send_status(card, &status, 0);
1816	if (err || mmc_blk_status_error(req, status))
1817		brq->data.bytes_xfered = 0;
1818
1819	mmc_retune_release(card->host);
1820
1821	/*
1822	 * Try again to get the status. This also provides an opportunity for
1823	 * re-tuning.
1824	 */
1825	if (err)
1826		err = __mmc_send_status(card, &status, 0);
1827
1828	/*
1829	 * Nothing more to do after the number of bytes transferred has been
1830	 * updated and there is no card.
1831	 */
1832	if (err && mmc_detect_card_removed(card->host))
1833		return;
1834
1835	/* Try to get back to "tran" state */
1836	if (!mmc_host_is_spi(mq->card->host) &&
1837	    (err || !mmc_ready_for_data(status)))
1838		err = mmc_blk_fix_state(mq->card, req);
1839
1840	/*
1841	 * Special case for SD cards where the card might record the number of
1842	 * blocks written.
1843	 */
1844	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1845	    rq_data_dir(req) == WRITE) {
1846		if (mmc_sd_num_wr_blocks(card, &blocks))
1847			brq->data.bytes_xfered = 0;
1848		else
1849			brq->data.bytes_xfered = blocks << 9;
1850	}
1851
1852	/* Reset if the card is in a bad state */
1853	if (!mmc_host_is_spi(mq->card->host) &&
1854	    err && mmc_blk_reset(md, card->host, type)) {
1855		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1856		mqrq->retries = MMC_NO_RETRIES;
1857		return;
1858	}
1859
1860	/*
1861	 * If anything was done, just return and if there is anything remaining
1862	 * on the request it will get requeued.
1863	 */
1864	if (brq->data.bytes_xfered)
1865		return;
1866
1867	/* Reset before last retry */
1868	if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1869	    mmc_blk_reset(md, card->host, type))
1870		return;
1871
1872	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1873	if (brq->sbc.error || brq->cmd.error)
1874		return;
1875
1876	/* Reduce the remaining retries for data errors */
1877	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1878		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1879		return;
1880	}
1881
1882	if (rq_data_dir(req) == READ && brq->data.blocks >
1883			queue_physical_block_size(mq->queue) >> 9) {
1884		/* Read one (native) sector at a time */
 
1885		mmc_blk_read_single(mq, req);
1886		return;
1887	}
1888}
1889
1890static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1891{
1892	mmc_blk_eval_resp_error(brq);
1893
1894	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1895	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1896}
1897
1898static int mmc_spi_err_check(struct mmc_card *card)
1899{
1900	u32 status = 0;
1901	int err;
1902
1903	/*
1904	 * SPI does not have a TRAN state we have to wait on, instead the
1905	 * card is ready again when it no longer holds the line LOW.
1906	 * We still have to ensure two things here before we know the write
1907	 * was successful:
1908	 * 1. The card has not disconnected during busy and we actually read our
1909	 * own pull-up, thinking it was still connected, so ensure it
1910	 * still responds.
1911	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1912	 * just reconnected card after being disconnected during busy.
1913	 */
1914	err = __mmc_send_status(card, &status, 0);
1915	if (err)
1916		return err;
1917	/* All R1 and R2 bits of SPI are errors in our case */
1918	if (status)
1919		return -EIO;
1920	return 0;
1921}
1922
1923static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1924{
1925	struct mmc_blk_busy_data *data = cb_data;
1926	u32 status = 0;
1927	int err;
1928
1929	err = mmc_send_status(data->card, &status);
1930	if (err)
1931		return err;
1932
1933	/* Accumulate response error bits. */
1934	data->status |= status;
1935
1936	*busy = !mmc_ready_for_data(status);
1937	return 0;
1938}
1939
1940static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1941{
1942	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1943	struct mmc_blk_busy_data cb_data;
1944	int err;
1945
1946	if (rq_data_dir(req) == READ)
1947		return 0;
1948
1949	if (mmc_host_is_spi(card->host)) {
1950		err = mmc_spi_err_check(card);
1951		if (err)
1952			mqrq->brq.data.bytes_xfered = 0;
1953		return err;
1954	}
1955
1956	cb_data.card = card;
1957	cb_data.status = 0;
1958	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
1959				  &mmc_blk_busy_cb, &cb_data);
1960
1961	/*
1962	 * Do not assume data transferred correctly if there are any error bits
1963	 * set.
1964	 */
1965	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1966		mqrq->brq.data.bytes_xfered = 0;
1967		err = err ? err : -EIO;
1968	}
1969
1970	/* Copy the exception bit so it will be seen later on */
1971	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1972		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1973
1974	return err;
1975}
1976
1977static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1978					    struct request *req)
1979{
1980	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1981
1982	mmc_blk_reset_success(mq->blkdata, type);
1983}
1984
1985static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1986{
1987	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1988	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1989
1990	if (nr_bytes) {
1991		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1992			blk_mq_requeue_request(req, true);
1993		else
1994			__blk_mq_end_request(req, BLK_STS_OK);
1995	} else if (!blk_rq_bytes(req)) {
1996		__blk_mq_end_request(req, BLK_STS_IOERR);
1997	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1998		blk_mq_requeue_request(req, true);
1999	} else {
2000		if (mmc_card_removed(mq->card))
2001			req->rq_flags |= RQF_QUIET;
2002		blk_mq_end_request(req, BLK_STS_IOERR);
2003	}
2004}
2005
2006static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2007					struct mmc_queue_req *mqrq)
2008{
2009	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2010	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2011		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2012}
2013
2014static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2015				 struct mmc_queue_req *mqrq)
2016{
2017	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2018		mmc_run_bkops(mq->card);
2019}
2020
2021static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2022{
2023	struct mmc_queue_req *mqrq =
2024		container_of(mrq, struct mmc_queue_req, brq.mrq);
2025	struct request *req = mmc_queue_req_to_req(mqrq);
2026	struct request_queue *q = req->q;
2027	struct mmc_queue *mq = q->queuedata;
2028	struct mmc_host *host = mq->card->host;
2029	unsigned long flags;
2030
2031	if (mmc_blk_rq_error(&mqrq->brq) ||
2032	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2033		spin_lock_irqsave(&mq->lock, flags);
2034		mq->recovery_needed = true;
2035		mq->recovery_req = req;
2036		spin_unlock_irqrestore(&mq->lock, flags);
2037
2038		host->cqe_ops->cqe_recovery_start(host);
2039
2040		schedule_work(&mq->recovery_work);
2041		return;
2042	}
2043
2044	mmc_blk_rw_reset_success(mq, req);
2045
2046	/*
2047	 * Block layer timeouts race with completions which means the normal
2048	 * completion path cannot be used during recovery.
2049	 */
2050	if (mq->in_recovery)
2051		mmc_blk_cqe_complete_rq(mq, req);
2052	else if (likely(!blk_should_fake_timeout(req->q)))
2053		blk_mq_complete_request(req);
2054}
2055
2056void mmc_blk_mq_complete(struct request *req)
2057{
2058	struct mmc_queue *mq = req->q->queuedata;
2059	struct mmc_host *host = mq->card->host;
2060
2061	if (host->cqe_enabled)
2062		mmc_blk_cqe_complete_rq(mq, req);
2063	else if (likely(!blk_should_fake_timeout(req->q)))
2064		mmc_blk_mq_complete_rq(mq, req);
2065}
2066
2067static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2068				       struct request *req)
2069{
2070	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2071	struct mmc_host *host = mq->card->host;
2072
2073	if (mmc_blk_rq_error(&mqrq->brq) ||
2074	    mmc_blk_card_busy(mq->card, req)) {
2075		mmc_blk_mq_rw_recovery(mq, req);
2076	} else {
2077		mmc_blk_rw_reset_success(mq, req);
2078		mmc_retune_release(host);
2079	}
2080
2081	mmc_blk_urgent_bkops(mq, mqrq);
2082}
2083
2084static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
2085{
2086	unsigned long flags;
2087	bool put_card;
2088
2089	spin_lock_irqsave(&mq->lock, flags);
2090
2091	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
2092
2093	put_card = (mmc_tot_in_flight(mq) == 0);
2094
2095	spin_unlock_irqrestore(&mq->lock, flags);
2096
2097	if (put_card)
2098		mmc_put_card(mq->card, &mq->ctx);
2099}
2100
2101static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2102				bool can_sleep)
2103{
2104	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2105	struct mmc_request *mrq = &mqrq->brq.mrq;
2106	struct mmc_host *host = mq->card->host;
2107
2108	mmc_post_req(host, mrq, 0);
2109
2110	/*
2111	 * Block layer timeouts race with completions which means the normal
2112	 * completion path cannot be used during recovery.
2113	 */
2114	if (mq->in_recovery) {
2115		mmc_blk_mq_complete_rq(mq, req);
2116	} else if (likely(!blk_should_fake_timeout(req->q))) {
2117		if (can_sleep)
2118			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2119		else
2120			blk_mq_complete_request(req);
2121	}
2122
2123	mmc_blk_mq_dec_in_flight(mq, req);
2124}
2125
2126void mmc_blk_mq_recovery(struct mmc_queue *mq)
2127{
2128	struct request *req = mq->recovery_req;
2129	struct mmc_host *host = mq->card->host;
2130	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2131
2132	mq->recovery_req = NULL;
2133	mq->rw_wait = false;
2134
2135	if (mmc_blk_rq_error(&mqrq->brq)) {
2136		mmc_retune_hold_now(host);
2137		mmc_blk_mq_rw_recovery(mq, req);
2138	}
2139
2140	mmc_blk_urgent_bkops(mq, mqrq);
2141
2142	mmc_blk_mq_post_req(mq, req, true);
2143}
2144
2145static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2146					 struct request **prev_req)
2147{
2148	if (mmc_host_done_complete(mq->card->host))
2149		return;
2150
2151	mutex_lock(&mq->complete_lock);
2152
2153	if (!mq->complete_req)
2154		goto out_unlock;
2155
2156	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2157
2158	if (prev_req)
2159		*prev_req = mq->complete_req;
2160	else
2161		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2162
2163	mq->complete_req = NULL;
2164
2165out_unlock:
2166	mutex_unlock(&mq->complete_lock);
2167}
2168
2169void mmc_blk_mq_complete_work(struct work_struct *work)
2170{
2171	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2172					    complete_work);
2173
2174	mmc_blk_mq_complete_prev_req(mq, NULL);
2175}
2176
2177static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2178{
2179	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2180						  brq.mrq);
2181	struct request *req = mmc_queue_req_to_req(mqrq);
2182	struct request_queue *q = req->q;
2183	struct mmc_queue *mq = q->queuedata;
2184	struct mmc_host *host = mq->card->host;
2185	unsigned long flags;
2186
2187	if (!mmc_host_done_complete(host)) {
2188		bool waiting;
2189
2190		/*
2191		 * We cannot complete the request in this context, so record
2192		 * that there is a request to complete, and that a following
2193		 * request does not need to wait (although it does need to
2194		 * complete complete_req first).
2195		 */
2196		spin_lock_irqsave(&mq->lock, flags);
2197		mq->complete_req = req;
2198		mq->rw_wait = false;
2199		waiting = mq->waiting;
2200		spin_unlock_irqrestore(&mq->lock, flags);
2201
2202		/*
2203		 * If 'waiting' then the waiting task will complete this
2204		 * request, otherwise queue a work to do it. Note that
2205		 * complete_work may still race with the dispatch of a following
2206		 * request.
2207		 */
2208		if (waiting)
2209			wake_up(&mq->wait);
2210		else
2211			queue_work(mq->card->complete_wq, &mq->complete_work);
2212
2213		return;
2214	}
2215
2216	/* Take the recovery path for errors or urgent background operations */
2217	if (mmc_blk_rq_error(&mqrq->brq) ||
2218	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2219		spin_lock_irqsave(&mq->lock, flags);
2220		mq->recovery_needed = true;
2221		mq->recovery_req = req;
2222		spin_unlock_irqrestore(&mq->lock, flags);
2223		wake_up(&mq->wait);
2224		schedule_work(&mq->recovery_work);
2225		return;
2226	}
2227
2228	mmc_blk_rw_reset_success(mq, req);
2229
2230	mq->rw_wait = false;
2231	wake_up(&mq->wait);
2232
2233	/* context unknown */
2234	mmc_blk_mq_post_req(mq, req, false);
2235}
2236
2237static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2238{
2239	unsigned long flags;
2240	bool done;
2241
2242	/*
2243	 * Wait while there is another request in progress, but not if recovery
2244	 * is needed. Also indicate whether there is a request waiting to start.
2245	 */
2246	spin_lock_irqsave(&mq->lock, flags);
2247	if (mq->recovery_needed) {
2248		*err = -EBUSY;
2249		done = true;
2250	} else {
2251		done = !mq->rw_wait;
2252	}
2253	mq->waiting = !done;
2254	spin_unlock_irqrestore(&mq->lock, flags);
2255
2256	return done;
2257}
2258
2259static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2260{
2261	int err = 0;
2262
2263	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2264
2265	/* Always complete the previous request if there is one */
2266	mmc_blk_mq_complete_prev_req(mq, prev_req);
2267
2268	return err;
2269}
2270
2271static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2272				  struct request *req)
2273{
2274	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2275	struct mmc_host *host = mq->card->host;
2276	struct request *prev_req = NULL;
2277	int err = 0;
2278
2279	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2280
2281	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2282
2283	mmc_pre_req(host, &mqrq->brq.mrq);
2284
2285	err = mmc_blk_rw_wait(mq, &prev_req);
2286	if (err)
2287		goto out_post_req;
2288
2289	mq->rw_wait = true;
2290
2291	err = mmc_start_request(host, &mqrq->brq.mrq);
2292
2293	if (prev_req)
2294		mmc_blk_mq_post_req(mq, prev_req, true);
2295
2296	if (err)
2297		mq->rw_wait = false;
2298
2299	/* Release re-tuning here where there is no synchronization required */
2300	if (err || mmc_host_done_complete(host))
2301		mmc_retune_release(host);
2302
2303out_post_req:
2304	if (err)
2305		mmc_post_req(host, &mqrq->brq.mrq, err);
2306
2307	return err;
2308}
2309
2310static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2311{
2312	if (host->cqe_enabled)
2313		return host->cqe_ops->cqe_wait_for_idle(host);
2314
2315	return mmc_blk_rw_wait(mq, NULL);
2316}
2317
2318enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2319{
2320	struct mmc_blk_data *md = mq->blkdata;
2321	struct mmc_card *card = md->queue.card;
2322	struct mmc_host *host = card->host;
2323	int ret;
2324
2325	ret = mmc_blk_part_switch(card, md->part_type);
2326	if (ret)
2327		return MMC_REQ_FAILED_TO_START;
2328
2329	switch (mmc_issue_type(mq, req)) {
2330	case MMC_ISSUE_SYNC:
2331		ret = mmc_blk_wait_for_idle(mq, host);
2332		if (ret)
2333			return MMC_REQ_BUSY;
2334		switch (req_op(req)) {
2335		case REQ_OP_DRV_IN:
2336		case REQ_OP_DRV_OUT:
2337			mmc_blk_issue_drv_op(mq, req);
2338			break;
2339		case REQ_OP_DISCARD:
2340			mmc_blk_issue_discard_rq(mq, req);
2341			break;
2342		case REQ_OP_SECURE_ERASE:
2343			mmc_blk_issue_secdiscard_rq(mq, req);
2344			break;
2345		case REQ_OP_WRITE_ZEROES:
2346			mmc_blk_issue_trim_rq(mq, req);
2347			break;
2348		case REQ_OP_FLUSH:
2349			mmc_blk_issue_flush(mq, req);
2350			break;
2351		default:
2352			WARN_ON_ONCE(1);
2353			return MMC_REQ_FAILED_TO_START;
2354		}
2355		return MMC_REQ_FINISHED;
2356	case MMC_ISSUE_DCMD:
2357	case MMC_ISSUE_ASYNC:
2358		switch (req_op(req)) {
2359		case REQ_OP_FLUSH:
2360			if (!mmc_cache_enabled(host)) {
2361				blk_mq_end_request(req, BLK_STS_OK);
2362				return MMC_REQ_FINISHED;
2363			}
2364			ret = mmc_blk_cqe_issue_flush(mq, req);
2365			break;
2366		case REQ_OP_READ:
2367		case REQ_OP_WRITE:
2368			if (host->cqe_enabled)
2369				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2370			else
2371				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2372			break;
2373		default:
2374			WARN_ON_ONCE(1);
2375			ret = -EINVAL;
2376		}
2377		if (!ret)
2378			return MMC_REQ_STARTED;
2379		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2380	default:
2381		WARN_ON_ONCE(1);
2382		return MMC_REQ_FAILED_TO_START;
2383	}
2384}
2385
2386static inline int mmc_blk_readonly(struct mmc_card *card)
2387{
2388	return mmc_card_readonly(card) ||
2389	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2390}
2391
2392static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2393					      struct device *parent,
2394					      sector_t size,
2395					      bool default_ro,
2396					      const char *subname,
2397					      int area_type,
2398					      unsigned int part_type)
2399{
2400	struct mmc_blk_data *md;
2401	int devidx, ret;
2402	char cap_str[10];
2403	bool cache_enabled = false;
2404	bool fua_enabled = false;
2405
2406	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2407	if (devidx < 0) {
2408		/*
2409		 * We get -ENOSPC because there are no more any available
2410		 * devidx. The reason may be that, either userspace haven't yet
2411		 * unmounted the partitions, which postpones mmc_blk_release()
2412		 * from being called, or the device has more partitions than
2413		 * what we support.
2414		 */
2415		if (devidx == -ENOSPC)
2416			dev_err(mmc_dev(card->host),
2417				"no more device IDs available\n");
2418
2419		return ERR_PTR(devidx);
2420	}
2421
2422	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2423	if (!md) {
2424		ret = -ENOMEM;
2425		goto out;
2426	}
2427
2428	md->area_type = area_type;
2429
2430	/*
2431	 * Set the read-only status based on the supported commands
2432	 * and the write protect switch.
2433	 */
2434	md->read_only = mmc_blk_readonly(card);
2435
2436	md->disk = mmc_init_queue(&md->queue, card);
2437	if (IS_ERR(md->disk)) {
2438		ret = PTR_ERR(md->disk);
2439		goto err_kfree;
2440	}
2441
2442	INIT_LIST_HEAD(&md->part);
2443	INIT_LIST_HEAD(&md->rpmbs);
2444	kref_init(&md->kref);
2445
2446	md->queue.blkdata = md;
2447	md->part_type = part_type;
2448
2449	md->disk->major	= MMC_BLOCK_MAJOR;
2450	md->disk->minors = perdev_minors;
2451	md->disk->first_minor = devidx * perdev_minors;
2452	md->disk->fops = &mmc_bdops;
2453	md->disk->private_data = md;
2454	md->parent = parent;
2455	set_disk_ro(md->disk, md->read_only || default_ro);
 
2456	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2457		md->disk->flags |= GENHD_FL_NO_PART;
 
2458
2459	/*
2460	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2461	 *
2462	 * - be set for removable media with permanent block devices
2463	 * - be unset for removable block devices with permanent media
2464	 *
2465	 * Since MMC block devices clearly fall under the second
2466	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2467	 * should use the block device creation/destruction hotplug
2468	 * messages to tell when the card is present.
2469	 */
2470
2471	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2472		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2473
2474	set_capacity(md->disk, size);
2475
2476	if (mmc_host_cmd23(card->host)) {
2477		if ((mmc_card_mmc(card) &&
2478		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2479		    (mmc_card_sd(card) &&
2480		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2481			md->flags |= MMC_BLK_CMD23;
2482	}
2483
2484	if (md->flags & MMC_BLK_CMD23 &&
 
2485	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2486	     card->ext_csd.rel_sectors)) {
2487		md->flags |= MMC_BLK_REL_WR;
2488		fua_enabled = true;
2489		cache_enabled = true;
2490	}
2491	if (mmc_cache_enabled(card->host))
2492		cache_enabled  = true;
2493
2494	blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2495
2496	string_get_size((u64)size, 512, STRING_UNITS_2,
2497			cap_str, sizeof(cap_str));
2498	pr_info("%s: %s %s %s %s\n",
2499		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2500		cap_str, md->read_only ? "(ro)" : "");
2501
2502	/* used in ->open, must be set before add_disk: */
2503	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2504		dev_set_drvdata(&card->dev, md);
2505	ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2506	if (ret)
2507		goto err_put_disk;
2508	return md;
2509
2510 err_put_disk:
2511	put_disk(md->disk);
2512	blk_mq_free_tag_set(&md->queue.tag_set);
2513 err_kfree:
2514	kfree(md);
2515 out:
2516	ida_simple_remove(&mmc_blk_ida, devidx);
2517	return ERR_PTR(ret);
2518}
2519
2520static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2521{
2522	sector_t size;
2523
2524	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2525		/*
2526		 * The EXT_CSD sector count is in number or 512 byte
2527		 * sectors.
2528		 */
2529		size = card->ext_csd.sectors;
2530	} else {
2531		/*
2532		 * The CSD capacity field is in units of read_blkbits.
2533		 * set_capacity takes units of 512 bytes.
2534		 */
2535		size = (typeof(sector_t))card->csd.capacity
2536			<< (card->csd.read_blkbits - 9);
2537	}
2538
2539	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2540					MMC_BLK_DATA_AREA_MAIN, 0);
2541}
2542
2543static int mmc_blk_alloc_part(struct mmc_card *card,
2544			      struct mmc_blk_data *md,
2545			      unsigned int part_type,
2546			      sector_t size,
2547			      bool default_ro,
2548			      const char *subname,
2549			      int area_type)
2550{
2551	struct mmc_blk_data *part_md;
2552
2553	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2554				    subname, area_type, part_type);
2555	if (IS_ERR(part_md))
2556		return PTR_ERR(part_md);
 
2557	list_add(&part_md->part, &md->part);
2558
2559	return 0;
2560}
2561
2562/**
2563 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2564 * @filp: the character device file
2565 * @cmd: the ioctl() command
2566 * @arg: the argument from userspace
2567 *
2568 * This will essentially just redirect the ioctl()s coming in over to
2569 * the main block device spawning the RPMB character device.
2570 */
2571static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2572			   unsigned long arg)
2573{
2574	struct mmc_rpmb_data *rpmb = filp->private_data;
2575	int ret;
2576
2577	switch (cmd) {
2578	case MMC_IOC_CMD:
2579		ret = mmc_blk_ioctl_cmd(rpmb->md,
2580					(struct mmc_ioc_cmd __user *)arg,
2581					rpmb);
2582		break;
2583	case MMC_IOC_MULTI_CMD:
2584		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2585					(struct mmc_ioc_multi_cmd __user *)arg,
2586					rpmb);
2587		break;
2588	default:
2589		ret = -EINVAL;
2590		break;
2591	}
2592
2593	return ret;
2594}
2595
2596#ifdef CONFIG_COMPAT
2597static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2598			      unsigned long arg)
2599{
2600	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2601}
2602#endif
2603
2604static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2605{
2606	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2607						  struct mmc_rpmb_data, chrdev);
2608
2609	get_device(&rpmb->dev);
2610	filp->private_data = rpmb;
2611	mmc_blk_get(rpmb->md->disk);
2612
2613	return nonseekable_open(inode, filp);
2614}
2615
2616static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2617{
2618	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2619						  struct mmc_rpmb_data, chrdev);
2620
2621	mmc_blk_put(rpmb->md);
2622	put_device(&rpmb->dev);
2623
2624	return 0;
2625}
2626
2627static const struct file_operations mmc_rpmb_fileops = {
2628	.release = mmc_rpmb_chrdev_release,
2629	.open = mmc_rpmb_chrdev_open,
2630	.owner = THIS_MODULE,
2631	.llseek = no_llseek,
2632	.unlocked_ioctl = mmc_rpmb_ioctl,
2633#ifdef CONFIG_COMPAT
2634	.compat_ioctl = mmc_rpmb_ioctl_compat,
2635#endif
2636};
2637
2638static void mmc_blk_rpmb_device_release(struct device *dev)
2639{
2640	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2641
2642	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2643	kfree(rpmb);
2644}
2645
2646static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2647				   struct mmc_blk_data *md,
2648				   unsigned int part_index,
2649				   sector_t size,
2650				   const char *subname)
2651{
2652	int devidx, ret;
2653	char rpmb_name[DISK_NAME_LEN];
2654	char cap_str[10];
2655	struct mmc_rpmb_data *rpmb;
2656
2657	/* This creates the minor number for the RPMB char device */
2658	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2659	if (devidx < 0)
2660		return devidx;
2661
2662	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2663	if (!rpmb) {
2664		ida_simple_remove(&mmc_rpmb_ida, devidx);
2665		return -ENOMEM;
2666	}
2667
2668	snprintf(rpmb_name, sizeof(rpmb_name),
2669		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2670
2671	rpmb->id = devidx;
2672	rpmb->part_index = part_index;
2673	rpmb->dev.init_name = rpmb_name;
2674	rpmb->dev.bus = &mmc_rpmb_bus_type;
2675	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2676	rpmb->dev.parent = &card->dev;
2677	rpmb->dev.release = mmc_blk_rpmb_device_release;
2678	device_initialize(&rpmb->dev);
2679	dev_set_drvdata(&rpmb->dev, rpmb);
2680	rpmb->md = md;
2681
2682	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2683	rpmb->chrdev.owner = THIS_MODULE;
2684	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2685	if (ret) {
2686		pr_err("%s: could not add character device\n", rpmb_name);
2687		goto out_put_device;
2688	}
2689
2690	list_add(&rpmb->node, &md->rpmbs);
2691
2692	string_get_size((u64)size, 512, STRING_UNITS_2,
2693			cap_str, sizeof(cap_str));
2694
2695	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2696		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2697		MAJOR(mmc_rpmb_devt), rpmb->id);
2698
2699	return 0;
2700
2701out_put_device:
2702	put_device(&rpmb->dev);
2703	return ret;
2704}
2705
2706static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2707
2708{
2709	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2710	put_device(&rpmb->dev);
2711}
2712
2713/* MMC Physical partitions consist of two boot partitions and
2714 * up to four general purpose partitions.
2715 * For each partition enabled in EXT_CSD a block device will be allocatedi
2716 * to provide access to the partition.
2717 */
2718
2719static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2720{
2721	int idx, ret;
2722
2723	if (!mmc_card_mmc(card))
2724		return 0;
2725
2726	for (idx = 0; idx < card->nr_parts; idx++) {
2727		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2728			/*
2729			 * RPMB partitions does not provide block access, they
2730			 * are only accessed using ioctl():s. Thus create
2731			 * special RPMB block devices that do not have a
2732			 * backing block queue for these.
2733			 */
2734			ret = mmc_blk_alloc_rpmb_part(card, md,
2735				card->part[idx].part_cfg,
2736				card->part[idx].size >> 9,
2737				card->part[idx].name);
2738			if (ret)
2739				return ret;
2740		} else if (card->part[idx].size) {
2741			ret = mmc_blk_alloc_part(card, md,
2742				card->part[idx].part_cfg,
2743				card->part[idx].size >> 9,
2744				card->part[idx].force_ro,
2745				card->part[idx].name,
2746				card->part[idx].area_type);
2747			if (ret)
2748				return ret;
2749		}
2750	}
2751
2752	return 0;
2753}
2754
2755static void mmc_blk_remove_req(struct mmc_blk_data *md)
2756{
2757	/*
2758	 * Flush remaining requests and free queues. It is freeing the queue
2759	 * that stops new requests from being accepted.
2760	 */
2761	del_gendisk(md->disk);
2762	mmc_cleanup_queue(&md->queue);
2763	mmc_blk_put(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2764}
2765
2766static void mmc_blk_remove_parts(struct mmc_card *card,
2767				 struct mmc_blk_data *md)
2768{
2769	struct list_head *pos, *q;
2770	struct mmc_blk_data *part_md;
2771	struct mmc_rpmb_data *rpmb;
2772
2773	/* Remove RPMB partitions */
2774	list_for_each_safe(pos, q, &md->rpmbs) {
2775		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2776		list_del(pos);
2777		mmc_blk_remove_rpmb_part(rpmb);
2778	}
2779	/* Remove block partitions */
2780	list_for_each_safe(pos, q, &md->part) {
2781		part_md = list_entry(pos, struct mmc_blk_data, part);
2782		list_del(pos);
2783		mmc_blk_remove_req(part_md);
2784	}
2785}
2786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2787#ifdef CONFIG_DEBUG_FS
2788
2789static int mmc_dbg_card_status_get(void *data, u64 *val)
2790{
2791	struct mmc_card *card = data;
2792	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2793	struct mmc_queue *mq = &md->queue;
2794	struct request *req;
2795	int ret;
2796
2797	/* Ask the block layer about the card status */
2798	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2799	if (IS_ERR(req))
2800		return PTR_ERR(req);
2801	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2802	blk_execute_rq(req, false);
2803	ret = req_to_mmc_queue_req(req)->drv_op_result;
2804	if (ret >= 0) {
2805		*val = ret;
2806		ret = 0;
2807	}
2808	blk_mq_free_request(req);
2809
2810	return ret;
2811}
2812DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2813			 NULL, "%08llx\n");
2814
2815/* That is two digits * 512 + 1 for newline */
2816#define EXT_CSD_STR_LEN 1025
2817
2818static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2819{
2820	struct mmc_card *card = inode->i_private;
2821	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2822	struct mmc_queue *mq = &md->queue;
2823	struct request *req;
2824	char *buf;
2825	ssize_t n = 0;
2826	u8 *ext_csd;
2827	int err, i;
2828
2829	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2830	if (!buf)
2831		return -ENOMEM;
2832
2833	/* Ask the block layer for the EXT CSD */
2834	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2835	if (IS_ERR(req)) {
2836		err = PTR_ERR(req);
2837		goto out_free;
2838	}
2839	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2840	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2841	blk_execute_rq(req, false);
2842	err = req_to_mmc_queue_req(req)->drv_op_result;
2843	blk_mq_free_request(req);
2844	if (err) {
2845		pr_err("FAILED %d\n", err);
2846		goto out_free;
2847	}
2848
2849	for (i = 0; i < 512; i++)
2850		n += sprintf(buf + n, "%02x", ext_csd[i]);
2851	n += sprintf(buf + n, "\n");
2852
2853	if (n != EXT_CSD_STR_LEN) {
2854		err = -EINVAL;
2855		kfree(ext_csd);
2856		goto out_free;
2857	}
2858
2859	filp->private_data = buf;
2860	kfree(ext_csd);
2861	return 0;
2862
2863out_free:
2864	kfree(buf);
2865	return err;
2866}
2867
2868static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2869				size_t cnt, loff_t *ppos)
2870{
2871	char *buf = filp->private_data;
2872
2873	return simple_read_from_buffer(ubuf, cnt, ppos,
2874				       buf, EXT_CSD_STR_LEN);
2875}
2876
2877static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2878{
2879	kfree(file->private_data);
2880	return 0;
2881}
2882
2883static const struct file_operations mmc_dbg_ext_csd_fops = {
2884	.open		= mmc_ext_csd_open,
2885	.read		= mmc_ext_csd_read,
2886	.release	= mmc_ext_csd_release,
2887	.llseek		= default_llseek,
2888};
2889
2890static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2891{
2892	struct dentry *root;
2893
2894	if (!card->debugfs_root)
2895		return 0;
2896
2897	root = card->debugfs_root;
2898
2899	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2900		md->status_dentry =
2901			debugfs_create_file_unsafe("status", 0400, root,
2902						   card,
2903						   &mmc_dbg_card_status_fops);
2904		if (!md->status_dentry)
2905			return -EIO;
2906	}
2907
2908	if (mmc_card_mmc(card)) {
2909		md->ext_csd_dentry =
2910			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2911					    &mmc_dbg_ext_csd_fops);
2912		if (!md->ext_csd_dentry)
2913			return -EIO;
2914	}
2915
2916	return 0;
2917}
2918
2919static void mmc_blk_remove_debugfs(struct mmc_card *card,
2920				   struct mmc_blk_data *md)
2921{
2922	if (!card->debugfs_root)
2923		return;
2924
2925	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2926		debugfs_remove(md->status_dentry);
2927		md->status_dentry = NULL;
2928	}
2929
2930	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2931		debugfs_remove(md->ext_csd_dentry);
2932		md->ext_csd_dentry = NULL;
2933	}
2934}
2935
2936#else
2937
2938static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2939{
2940	return 0;
2941}
2942
2943static void mmc_blk_remove_debugfs(struct mmc_card *card,
2944				   struct mmc_blk_data *md)
2945{
2946}
2947
2948#endif /* CONFIG_DEBUG_FS */
2949
2950static int mmc_blk_probe(struct mmc_card *card)
2951{
2952	struct mmc_blk_data *md;
2953	int ret = 0;
2954
2955	/*
2956	 * Check that the card supports the command class(es) we need.
2957	 */
2958	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2959		return -ENODEV;
2960
2961	mmc_fixup_device(card, mmc_blk_fixups);
2962
2963	card->complete_wq = alloc_workqueue("mmc_complete",
2964					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2965	if (!card->complete_wq) {
2966		pr_err("Failed to create mmc completion workqueue");
2967		return -ENOMEM;
2968	}
2969
2970	md = mmc_blk_alloc(card);
2971	if (IS_ERR(md)) {
2972		ret = PTR_ERR(md);
2973		goto out_free;
2974	}
2975
2976	ret = mmc_blk_alloc_parts(card, md);
2977	if (ret)
2978		goto out;
2979
 
 
 
 
 
 
 
 
 
 
 
 
2980	/* Add two debugfs entries */
2981	mmc_blk_add_debugfs(card, md);
2982
2983	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2984	pm_runtime_use_autosuspend(&card->dev);
2985
2986	/*
2987	 * Don't enable runtime PM for SD-combo cards here. Leave that
2988	 * decision to be taken during the SDIO init sequence instead.
2989	 */
2990	if (!mmc_card_sd_combo(card)) {
2991		pm_runtime_set_active(&card->dev);
2992		pm_runtime_enable(&card->dev);
2993	}
2994
2995	return 0;
2996
2997out:
2998	mmc_blk_remove_parts(card, md);
2999	mmc_blk_remove_req(md);
3000out_free:
3001	destroy_workqueue(card->complete_wq);
3002	return ret;
3003}
3004
3005static void mmc_blk_remove(struct mmc_card *card)
3006{
3007	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3008
3009	mmc_blk_remove_debugfs(card, md);
3010	mmc_blk_remove_parts(card, md);
3011	pm_runtime_get_sync(&card->dev);
3012	if (md->part_curr != md->part_type) {
3013		mmc_claim_host(card->host);
3014		mmc_blk_part_switch(card, md->part_type);
3015		mmc_release_host(card->host);
3016	}
3017	if (!mmc_card_sd_combo(card))
3018		pm_runtime_disable(&card->dev);
3019	pm_runtime_put_noidle(&card->dev);
3020	mmc_blk_remove_req(md);
3021	dev_set_drvdata(&card->dev, NULL);
3022	destroy_workqueue(card->complete_wq);
3023}
3024
3025static int _mmc_blk_suspend(struct mmc_card *card)
3026{
3027	struct mmc_blk_data *part_md;
3028	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3029
3030	if (md) {
3031		mmc_queue_suspend(&md->queue);
3032		list_for_each_entry(part_md, &md->part, part) {
3033			mmc_queue_suspend(&part_md->queue);
3034		}
3035	}
3036	return 0;
3037}
3038
3039static void mmc_blk_shutdown(struct mmc_card *card)
3040{
3041	_mmc_blk_suspend(card);
3042}
3043
3044#ifdef CONFIG_PM_SLEEP
3045static int mmc_blk_suspend(struct device *dev)
3046{
3047	struct mmc_card *card = mmc_dev_to_card(dev);
3048
3049	return _mmc_blk_suspend(card);
3050}
3051
3052static int mmc_blk_resume(struct device *dev)
3053{
3054	struct mmc_blk_data *part_md;
3055	struct mmc_blk_data *md = dev_get_drvdata(dev);
3056
3057	if (md) {
3058		/*
3059		 * Resume involves the card going into idle state,
3060		 * so current partition is always the main one.
3061		 */
3062		md->part_curr = md->part_type;
3063		mmc_queue_resume(&md->queue);
3064		list_for_each_entry(part_md, &md->part, part) {
3065			mmc_queue_resume(&part_md->queue);
3066		}
3067	}
3068	return 0;
3069}
3070#endif
3071
3072static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3073
3074static struct mmc_driver mmc_driver = {
3075	.drv		= {
3076		.name	= "mmcblk",
3077		.pm	= &mmc_blk_pm_ops,
3078	},
3079	.probe		= mmc_blk_probe,
3080	.remove		= mmc_blk_remove,
3081	.shutdown	= mmc_blk_shutdown,
3082};
3083
3084static int __init mmc_blk_init(void)
3085{
3086	int res;
3087
3088	res  = bus_register(&mmc_rpmb_bus_type);
3089	if (res < 0) {
3090		pr_err("mmcblk: could not register RPMB bus type\n");
3091		return res;
3092	}
3093	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3094	if (res < 0) {
3095		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3096		goto out_bus_unreg;
3097	}
3098
3099	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3100		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3101
3102	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3103
3104	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3105	if (res)
3106		goto out_chrdev_unreg;
3107
3108	res = mmc_register_driver(&mmc_driver);
3109	if (res)
3110		goto out_blkdev_unreg;
3111
3112	return 0;
3113
3114out_blkdev_unreg:
3115	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3116out_chrdev_unreg:
3117	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3118out_bus_unreg:
3119	bus_unregister(&mmc_rpmb_bus_type);
3120	return res;
3121}
3122
3123static void __exit mmc_blk_exit(void)
3124{
3125	mmc_unregister_driver(&mmc_driver);
3126	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3127	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3128	bus_unregister(&mmc_rpmb_bus_type);
3129}
3130
3131module_init(mmc_blk_init);
3132module_exit(mmc_blk_exit);
3133
3134MODULE_LICENSE("GPL");
3135MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3136
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block driver for media (i.e., flash cards)
   4 *
   5 * Copyright 2002 Hewlett-Packard Company
   6 * Copyright 2005-2008 Pierre Ossman
   7 *
   8 * Use consistent with the GNU GPL is permitted,
   9 * provided that this copyright notice is
  10 * preserved in its entirety in all copies and derived works.
  11 *
  12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  14 * FITNESS FOR ANY PARTICULAR PURPOSE.
  15 *
  16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
  17 *
  18 * Author:  Andrew Christian
  19 *          28 May 2002
  20 */
  21#include <linux/moduleparam.h>
  22#include <linux/module.h>
  23#include <linux/init.h>
  24
  25#include <linux/kernel.h>
  26#include <linux/fs.h>
  27#include <linux/slab.h>
  28#include <linux/errno.h>
  29#include <linux/hdreg.h>
  30#include <linux/kdev_t.h>
  31#include <linux/kref.h>
  32#include <linux/blkdev.h>
  33#include <linux/cdev.h>
  34#include <linux/mutex.h>
  35#include <linux/scatterlist.h>
  36#include <linux/string_helpers.h>
  37#include <linux/delay.h>
  38#include <linux/capability.h>
  39#include <linux/compat.h>
  40#include <linux/pm_runtime.h>
  41#include <linux/idr.h>
  42#include <linux/debugfs.h>
  43
  44#include <linux/mmc/ioctl.h>
  45#include <linux/mmc/card.h>
  46#include <linux/mmc/host.h>
  47#include <linux/mmc/mmc.h>
  48#include <linux/mmc/sd.h>
  49
  50#include <linux/uaccess.h>
  51
  52#include "queue.h"
  53#include "block.h"
  54#include "core.h"
  55#include "card.h"
  56#include "crypto.h"
  57#include "host.h"
  58#include "bus.h"
  59#include "mmc_ops.h"
  60#include "quirks.h"
  61#include "sd_ops.h"
  62
  63MODULE_ALIAS("mmc:block");
  64#ifdef MODULE_PARAM_PREFIX
  65#undef MODULE_PARAM_PREFIX
  66#endif
  67#define MODULE_PARAM_PREFIX "mmcblk."
  68
  69/*
  70 * Set a 10 second timeout for polling write request busy state. Note, mmc core
  71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
  72 * second software timer to timeout the whole request, so 10 seconds should be
  73 * ample.
  74 */
  75#define MMC_BLK_TIMEOUT_MS  (10 * 1000)
  76#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
  77#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
  78
  79#define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
  80				  (rq_data_dir(req) == WRITE))
  81static DEFINE_MUTEX(block_mutex);
  82
  83/*
  84 * The defaults come from config options but can be overriden by module
  85 * or bootarg options.
  86 */
  87static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
  88
  89/*
  90 * We've only got one major, so number of mmcblk devices is
  91 * limited to (1 << 20) / number of minors per device.  It is also
  92 * limited by the MAX_DEVICES below.
  93 */
  94static int max_devices;
  95
  96#define MAX_DEVICES 256
  97
  98static DEFINE_IDA(mmc_blk_ida);
  99static DEFINE_IDA(mmc_rpmb_ida);
 100
 101struct mmc_blk_busy_data {
 102	struct mmc_card *card;
 103	u32 status;
 104};
 105
 106/*
 107 * There is one mmc_blk_data per slot.
 108 */
 109struct mmc_blk_data {
 110	struct device	*parent;
 111	struct gendisk	*disk;
 112	struct mmc_queue queue;
 113	struct list_head part;
 114	struct list_head rpmbs;
 115
 116	unsigned int	flags;
 117#define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
 118#define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
 119
 120	struct kref	kref;
 121	unsigned int	read_only;
 122	unsigned int	part_type;
 123	unsigned int	reset_done;
 124#define MMC_BLK_READ		BIT(0)
 125#define MMC_BLK_WRITE		BIT(1)
 126#define MMC_BLK_DISCARD		BIT(2)
 127#define MMC_BLK_SECDISCARD	BIT(3)
 128#define MMC_BLK_CQE_RECOVERY	BIT(4)
 
 129
 130	/*
 131	 * Only set in main mmc_blk_data associated
 132	 * with mmc_card with dev_set_drvdata, and keeps
 133	 * track of the current selected device partition.
 134	 */
 135	unsigned int	part_curr;
 136	struct device_attribute force_ro;
 137	struct device_attribute power_ro_lock;
 138	int	area_type;
 139
 140	/* debugfs files (only in main mmc_blk_data) */
 141	struct dentry *status_dentry;
 142	struct dentry *ext_csd_dentry;
 143};
 144
 145/* Device type for RPMB character devices */
 146static dev_t mmc_rpmb_devt;
 147
 148/* Bus type for RPMB character devices */
 149static struct bus_type mmc_rpmb_bus_type = {
 150	.name = "mmc_rpmb",
 151};
 152
 153/**
 154 * struct mmc_rpmb_data - special RPMB device type for these areas
 155 * @dev: the device for the RPMB area
 156 * @chrdev: character device for the RPMB area
 157 * @id: unique device ID number
 158 * @part_index: partition index (0 on first)
 159 * @md: parent MMC block device
 160 * @node: list item, so we can put this device on a list
 161 */
 162struct mmc_rpmb_data {
 163	struct device dev;
 164	struct cdev chrdev;
 165	int id;
 166	unsigned int part_index;
 167	struct mmc_blk_data *md;
 168	struct list_head node;
 169};
 170
 171static DEFINE_MUTEX(open_lock);
 172
 173module_param(perdev_minors, int, 0444);
 174MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
 175
 176static inline int mmc_blk_part_switch(struct mmc_card *card,
 177				      unsigned int part_type);
 178static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
 179			       struct mmc_card *card,
 180			       int disable_multi,
 181			       struct mmc_queue *mq);
 182static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
 183
 184static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
 185{
 186	struct mmc_blk_data *md;
 187
 188	mutex_lock(&open_lock);
 189	md = disk->private_data;
 190	if (md && !kref_get_unless_zero(&md->kref))
 191		md = NULL;
 192	mutex_unlock(&open_lock);
 193
 194	return md;
 195}
 196
 197static inline int mmc_get_devidx(struct gendisk *disk)
 198{
 199	int devidx = disk->first_minor / perdev_minors;
 200	return devidx;
 201}
 202
 203static void mmc_blk_kref_release(struct kref *ref)
 204{
 205	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
 206	int devidx;
 207
 208	devidx = mmc_get_devidx(md->disk);
 209	ida_simple_remove(&mmc_blk_ida, devidx);
 210
 211	mutex_lock(&open_lock);
 212	md->disk->private_data = NULL;
 213	mutex_unlock(&open_lock);
 214
 215	put_disk(md->disk);
 216	kfree(md);
 217}
 218
 219static void mmc_blk_put(struct mmc_blk_data *md)
 220{
 221	kref_put(&md->kref, mmc_blk_kref_release);
 222}
 223
 224static ssize_t power_ro_lock_show(struct device *dev,
 225		struct device_attribute *attr, char *buf)
 226{
 227	int ret;
 228	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 229	struct mmc_card *card = md->queue.card;
 230	int locked = 0;
 231
 232	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
 233		locked = 2;
 234	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
 235		locked = 1;
 236
 237	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
 238
 239	mmc_blk_put(md);
 240
 241	return ret;
 242}
 243
 244static ssize_t power_ro_lock_store(struct device *dev,
 245		struct device_attribute *attr, const char *buf, size_t count)
 246{
 247	int ret;
 248	struct mmc_blk_data *md, *part_md;
 249	struct mmc_queue *mq;
 250	struct request *req;
 251	unsigned long set;
 252
 253	if (kstrtoul(buf, 0, &set))
 254		return -EINVAL;
 255
 256	if (set != 1)
 257		return count;
 258
 259	md = mmc_blk_get(dev_to_disk(dev));
 260	mq = &md->queue;
 261
 262	/* Dispatch locking to the block layer */
 263	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
 264	if (IS_ERR(req)) {
 265		count = PTR_ERR(req);
 266		goto out_put;
 267	}
 268	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
 269	blk_execute_rq(NULL, req, 0);
 270	ret = req_to_mmc_queue_req(req)->drv_op_result;
 271	blk_put_request(req);
 272
 273	if (!ret) {
 274		pr_info("%s: Locking boot partition ro until next power on\n",
 275			md->disk->disk_name);
 276		set_disk_ro(md->disk, 1);
 277
 278		list_for_each_entry(part_md, &md->part, part)
 279			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
 280				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
 281				set_disk_ro(part_md->disk, 1);
 282			}
 283	}
 284out_put:
 285	mmc_blk_put(md);
 286	return count;
 287}
 288
 
 
 
 289static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
 290			     char *buf)
 291{
 292	int ret;
 293	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 294
 295	ret = snprintf(buf, PAGE_SIZE, "%d\n",
 296		       get_disk_ro(dev_to_disk(dev)) ^
 297		       md->read_only);
 298	mmc_blk_put(md);
 299	return ret;
 300}
 301
 302static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
 303			      const char *buf, size_t count)
 304{
 305	int ret;
 306	char *end;
 307	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 308	unsigned long set = simple_strtoul(buf, &end, 0);
 309	if (end == buf) {
 310		ret = -EINVAL;
 311		goto out;
 312	}
 313
 314	set_disk_ro(dev_to_disk(dev), set || md->read_only);
 315	ret = count;
 316out:
 317	mmc_blk_put(md);
 318	return ret;
 319}
 320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 321static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
 322{
 323	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
 324	int ret = -ENXIO;
 325
 326	mutex_lock(&block_mutex);
 327	if (md) {
 328		ret = 0;
 329		if ((mode & FMODE_WRITE) && md->read_only) {
 330			mmc_blk_put(md);
 331			ret = -EROFS;
 332		}
 333	}
 334	mutex_unlock(&block_mutex);
 335
 336	return ret;
 337}
 338
 339static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
 340{
 341	struct mmc_blk_data *md = disk->private_data;
 342
 343	mutex_lock(&block_mutex);
 344	mmc_blk_put(md);
 345	mutex_unlock(&block_mutex);
 346}
 347
 348static int
 349mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 350{
 351	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
 352	geo->heads = 4;
 353	geo->sectors = 16;
 354	return 0;
 355}
 356
 357struct mmc_blk_ioc_data {
 358	struct mmc_ioc_cmd ic;
 359	unsigned char *buf;
 360	u64 buf_bytes;
 361	struct mmc_rpmb_data *rpmb;
 362};
 363
 364static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
 365	struct mmc_ioc_cmd __user *user)
 366{
 367	struct mmc_blk_ioc_data *idata;
 368	int err;
 369
 370	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
 371	if (!idata) {
 372		err = -ENOMEM;
 373		goto out;
 374	}
 375
 376	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
 377		err = -EFAULT;
 378		goto idata_err;
 379	}
 380
 381	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
 382	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
 383		err = -EOVERFLOW;
 384		goto idata_err;
 385	}
 386
 387	if (!idata->buf_bytes) {
 388		idata->buf = NULL;
 389		return idata;
 390	}
 391
 392	idata->buf = memdup_user((void __user *)(unsigned long)
 393				 idata->ic.data_ptr, idata->buf_bytes);
 394	if (IS_ERR(idata->buf)) {
 395		err = PTR_ERR(idata->buf);
 396		goto idata_err;
 397	}
 398
 399	return idata;
 400
 401idata_err:
 402	kfree(idata);
 403out:
 404	return ERR_PTR(err);
 405}
 406
 407static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
 408				      struct mmc_blk_ioc_data *idata)
 409{
 410	struct mmc_ioc_cmd *ic = &idata->ic;
 411
 412	if (copy_to_user(&(ic_ptr->response), ic->response,
 413			 sizeof(ic->response)))
 414		return -EFAULT;
 415
 416	if (!idata->ic.write_flag) {
 417		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
 418				 idata->buf, idata->buf_bytes))
 419			return -EFAULT;
 420	}
 421
 422	return 0;
 423}
 424
 425static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
 426			       struct mmc_blk_ioc_data *idata)
 427{
 428	struct mmc_command cmd = {}, sbc = {};
 429	struct mmc_data data = {};
 430	struct mmc_request mrq = {};
 431	struct scatterlist sg;
 432	int err;
 433	unsigned int target_part;
 434
 435	if (!card || !md || !idata)
 436		return -EINVAL;
 437
 438	/*
 439	 * The RPMB accesses comes in from the character device, so we
 440	 * need to target these explicitly. Else we just target the
 441	 * partition type for the block device the ioctl() was issued
 442	 * on.
 443	 */
 444	if (idata->rpmb) {
 445		/* Support multiple RPMB partitions */
 446		target_part = idata->rpmb->part_index;
 447		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
 448	} else {
 449		target_part = md->part_type;
 450	}
 451
 452	cmd.opcode = idata->ic.opcode;
 453	cmd.arg = idata->ic.arg;
 454	cmd.flags = idata->ic.flags;
 455
 456	if (idata->buf_bytes) {
 457		data.sg = &sg;
 458		data.sg_len = 1;
 459		data.blksz = idata->ic.blksz;
 460		data.blocks = idata->ic.blocks;
 461
 462		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
 463
 464		if (idata->ic.write_flag)
 465			data.flags = MMC_DATA_WRITE;
 466		else
 467			data.flags = MMC_DATA_READ;
 468
 469		/* data.flags must already be set before doing this. */
 470		mmc_set_data_timeout(&data, card);
 471
 472		/* Allow overriding the timeout_ns for empirical tuning. */
 473		if (idata->ic.data_timeout_ns)
 474			data.timeout_ns = idata->ic.data_timeout_ns;
 475
 476		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
 477			/*
 478			 * Pretend this is a data transfer and rely on the
 479			 * host driver to compute timeout.  When all host
 480			 * drivers support cmd.cmd_timeout for R1B, this
 481			 * can be changed to:
 482			 *
 483			 *     mrq.data = NULL;
 484			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
 485			 */
 486			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
 487		}
 488
 489		mrq.data = &data;
 490	}
 491
 492	mrq.cmd = &cmd;
 493
 494	err = mmc_blk_part_switch(card, target_part);
 495	if (err)
 496		return err;
 497
 498	if (idata->ic.is_acmd) {
 499		err = mmc_app_cmd(card->host, card);
 500		if (err)
 501			return err;
 502	}
 503
 504	if (idata->rpmb) {
 505		sbc.opcode = MMC_SET_BLOCK_COUNT;
 506		/*
 507		 * We don't do any blockcount validation because the max size
 508		 * may be increased by a future standard. We just copy the
 509		 * 'Reliable Write' bit here.
 510		 */
 511		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
 512		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
 513		mrq.sbc = &sbc;
 514	}
 515
 516	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
 517	    (cmd.opcode == MMC_SWITCH))
 518		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
 519
 520	mmc_wait_for_req(card->host, &mrq);
 521	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
 522
 523	if (cmd.error) {
 524		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
 525						__func__, cmd.error);
 526		return cmd.error;
 527	}
 528	if (data.error) {
 529		dev_err(mmc_dev(card->host), "%s: data error %d\n",
 530						__func__, data.error);
 531		return data.error;
 532	}
 533
 534	/*
 535	 * Make sure the cache of the PARTITION_CONFIG register and
 536	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
 537	 * changed it successfully.
 538	 */
 539	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
 540	    (cmd.opcode == MMC_SWITCH)) {
 541		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 542		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
 543
 544		/*
 545		 * Update cache so the next mmc_blk_part_switch call operates
 546		 * on up-to-date data.
 547		 */
 548		card->ext_csd.part_config = value;
 549		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
 550	}
 551
 552	/*
 553	 * Make sure to update CACHE_CTRL in case it was changed. The cache
 554	 * will get turned back on if the card is re-initialized, e.g.
 555	 * suspend/resume or hw reset in recovery.
 556	 */
 557	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
 558	    (cmd.opcode == MMC_SWITCH)) {
 559		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
 560
 561		card->ext_csd.cache_ctrl = value;
 562	}
 563
 564	/*
 565	 * According to the SD specs, some commands require a delay after
 566	 * issuing the command.
 567	 */
 568	if (idata->ic.postsleep_min_us)
 569		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
 570
 571	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
 572		/*
 573		 * Ensure RPMB/R1B command has completed by polling CMD13
 574		 * "Send Status".
 575		 */
 576		err = mmc_poll_for_busy(card, MMC_BLK_TIMEOUT_MS, false,
 577					MMC_BUSY_IO);
 578	}
 579
 580	return err;
 581}
 582
 583static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
 584			     struct mmc_ioc_cmd __user *ic_ptr,
 585			     struct mmc_rpmb_data *rpmb)
 586{
 587	struct mmc_blk_ioc_data *idata;
 588	struct mmc_blk_ioc_data *idatas[1];
 589	struct mmc_queue *mq;
 590	struct mmc_card *card;
 591	int err = 0, ioc_err = 0;
 592	struct request *req;
 593
 594	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
 595	if (IS_ERR(idata))
 596		return PTR_ERR(idata);
 597	/* This will be NULL on non-RPMB ioctl():s */
 598	idata->rpmb = rpmb;
 599
 600	card = md->queue.card;
 601	if (IS_ERR(card)) {
 602		err = PTR_ERR(card);
 603		goto cmd_done;
 604	}
 605
 606	/*
 607	 * Dispatch the ioctl() into the block request queue.
 608	 */
 609	mq = &md->queue;
 610	req = blk_get_request(mq->queue,
 611		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 612	if (IS_ERR(req)) {
 613		err = PTR_ERR(req);
 614		goto cmd_done;
 615	}
 616	idatas[0] = idata;
 617	req_to_mmc_queue_req(req)->drv_op =
 618		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 619	req_to_mmc_queue_req(req)->drv_op_data = idatas;
 620	req_to_mmc_queue_req(req)->ioc_count = 1;
 621	blk_execute_rq(NULL, req, 0);
 622	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 623	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
 624	blk_put_request(req);
 625
 626cmd_done:
 627	kfree(idata->buf);
 628	kfree(idata);
 629	return ioc_err ? ioc_err : err;
 630}
 631
 632static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
 633				   struct mmc_ioc_multi_cmd __user *user,
 634				   struct mmc_rpmb_data *rpmb)
 635{
 636	struct mmc_blk_ioc_data **idata = NULL;
 637	struct mmc_ioc_cmd __user *cmds = user->cmds;
 638	struct mmc_card *card;
 639	struct mmc_queue *mq;
 640	int i, err = 0, ioc_err = 0;
 641	__u64 num_of_cmds;
 
 642	struct request *req;
 643
 644	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
 645			   sizeof(num_of_cmds)))
 646		return -EFAULT;
 647
 648	if (!num_of_cmds)
 649		return 0;
 650
 651	if (num_of_cmds > MMC_IOC_MAX_CMDS)
 652		return -EINVAL;
 653
 654	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
 
 655	if (!idata)
 656		return -ENOMEM;
 657
 658	for (i = 0; i < num_of_cmds; i++) {
 659		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
 660		if (IS_ERR(idata[i])) {
 661			err = PTR_ERR(idata[i]);
 662			num_of_cmds = i;
 663			goto cmd_err;
 664		}
 665		/* This will be NULL on non-RPMB ioctl():s */
 666		idata[i]->rpmb = rpmb;
 667	}
 668
 669	card = md->queue.card;
 670	if (IS_ERR(card)) {
 671		err = PTR_ERR(card);
 672		goto cmd_err;
 673	}
 674
 675
 676	/*
 677	 * Dispatch the ioctl()s into the block request queue.
 678	 */
 679	mq = &md->queue;
 680	req = blk_get_request(mq->queue,
 681		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 682	if (IS_ERR(req)) {
 683		err = PTR_ERR(req);
 684		goto cmd_err;
 685	}
 686	req_to_mmc_queue_req(req)->drv_op =
 687		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 688	req_to_mmc_queue_req(req)->drv_op_data = idata;
 689	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
 690	blk_execute_rq(NULL, req, 0);
 691	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 692
 693	/* copy to user if data and response */
 694	for (i = 0; i < num_of_cmds && !err; i++)
 695		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
 696
 697	blk_put_request(req);
 698
 699cmd_err:
 700	for (i = 0; i < num_of_cmds; i++) {
 701		kfree(idata[i]->buf);
 702		kfree(idata[i]);
 703	}
 704	kfree(idata);
 705	return ioc_err ? ioc_err : err;
 706}
 707
 708static int mmc_blk_check_blkdev(struct block_device *bdev)
 709{
 710	/*
 711	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
 712	 * whole block device, not on a partition.  This prevents overspray
 713	 * between sibling partitions.
 714	 */
 715	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
 716		return -EPERM;
 717	return 0;
 718}
 719
 720static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
 721	unsigned int cmd, unsigned long arg)
 722{
 723	struct mmc_blk_data *md;
 724	int ret;
 725
 726	switch (cmd) {
 727	case MMC_IOC_CMD:
 728		ret = mmc_blk_check_blkdev(bdev);
 729		if (ret)
 730			return ret;
 731		md = mmc_blk_get(bdev->bd_disk);
 732		if (!md)
 733			return -EINVAL;
 734		ret = mmc_blk_ioctl_cmd(md,
 735					(struct mmc_ioc_cmd __user *)arg,
 736					NULL);
 737		mmc_blk_put(md);
 738		return ret;
 739	case MMC_IOC_MULTI_CMD:
 740		ret = mmc_blk_check_blkdev(bdev);
 741		if (ret)
 742			return ret;
 743		md = mmc_blk_get(bdev->bd_disk);
 744		if (!md)
 745			return -EINVAL;
 746		ret = mmc_blk_ioctl_multi_cmd(md,
 747					(struct mmc_ioc_multi_cmd __user *)arg,
 748					NULL);
 749		mmc_blk_put(md);
 750		return ret;
 751	default:
 752		return -EINVAL;
 753	}
 754}
 755
 756#ifdef CONFIG_COMPAT
 757static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
 758	unsigned int cmd, unsigned long arg)
 759{
 760	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
 761}
 762#endif
 763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 764static const struct block_device_operations mmc_bdops = {
 765	.open			= mmc_blk_open,
 766	.release		= mmc_blk_release,
 767	.getgeo			= mmc_blk_getgeo,
 768	.owner			= THIS_MODULE,
 769	.ioctl			= mmc_blk_ioctl,
 770#ifdef CONFIG_COMPAT
 771	.compat_ioctl		= mmc_blk_compat_ioctl,
 772#endif
 
 773};
 774
 775static int mmc_blk_part_switch_pre(struct mmc_card *card,
 776				   unsigned int part_type)
 777{
 778	int ret = 0;
 779
 780	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 781		if (card->ext_csd.cmdq_en) {
 782			ret = mmc_cmdq_disable(card);
 783			if (ret)
 784				return ret;
 785		}
 786		mmc_retune_pause(card->host);
 787	}
 788
 789	return ret;
 790}
 791
 792static int mmc_blk_part_switch_post(struct mmc_card *card,
 793				    unsigned int part_type)
 794{
 795	int ret = 0;
 796
 797	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 798		mmc_retune_unpause(card->host);
 799		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
 800			ret = mmc_cmdq_enable(card);
 801	}
 802
 803	return ret;
 804}
 805
 806static inline int mmc_blk_part_switch(struct mmc_card *card,
 807				      unsigned int part_type)
 808{
 809	int ret = 0;
 810	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 811
 812	if (main_md->part_curr == part_type)
 813		return 0;
 814
 815	if (mmc_card_mmc(card)) {
 816		u8 part_config = card->ext_csd.part_config;
 817
 818		ret = mmc_blk_part_switch_pre(card, part_type);
 819		if (ret)
 820			return ret;
 821
 822		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
 823		part_config |= part_type;
 824
 825		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 826				 EXT_CSD_PART_CONFIG, part_config,
 827				 card->ext_csd.part_time);
 828		if (ret) {
 829			mmc_blk_part_switch_post(card, part_type);
 830			return ret;
 831		}
 832
 833		card->ext_csd.part_config = part_config;
 834
 835		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
 836	}
 837
 838	main_md->part_curr = part_type;
 839	return ret;
 840}
 841
 842static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
 843{
 844	int err;
 845	u32 result;
 846	__be32 *blocks;
 847
 848	struct mmc_request mrq = {};
 849	struct mmc_command cmd = {};
 850	struct mmc_data data = {};
 851
 852	struct scatterlist sg;
 853
 854	cmd.opcode = MMC_APP_CMD;
 855	cmd.arg = card->rca << 16;
 856	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 857
 858	err = mmc_wait_for_cmd(card->host, &cmd, 0);
 859	if (err)
 860		return err;
 861	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
 862		return -EIO;
 863
 864	memset(&cmd, 0, sizeof(struct mmc_command));
 865
 866	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
 867	cmd.arg = 0;
 868	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 869
 870	data.blksz = 4;
 871	data.blocks = 1;
 872	data.flags = MMC_DATA_READ;
 873	data.sg = &sg;
 874	data.sg_len = 1;
 875	mmc_set_data_timeout(&data, card);
 876
 877	mrq.cmd = &cmd;
 878	mrq.data = &data;
 879
 880	blocks = kmalloc(4, GFP_KERNEL);
 881	if (!blocks)
 882		return -ENOMEM;
 883
 884	sg_init_one(&sg, blocks, 4);
 885
 886	mmc_wait_for_req(card->host, &mrq);
 887
 888	result = ntohl(*blocks);
 889	kfree(blocks);
 890
 891	if (cmd.error || data.error)
 892		return -EIO;
 893
 894	*written_blocks = result;
 895
 896	return 0;
 897}
 898
 899static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
 900{
 901	if (host->actual_clock)
 902		return host->actual_clock / 1000;
 903
 904	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
 905	if (host->ios.clock)
 906		return host->ios.clock / 2000;
 907
 908	/* How can there be no clock */
 909	WARN_ON_ONCE(1);
 910	return 100; /* 100 kHz is minimum possible value */
 911}
 912
 913static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
 914					    struct mmc_data *data)
 915{
 916	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
 917	unsigned int khz;
 918
 919	if (data->timeout_clks) {
 920		khz = mmc_blk_clock_khz(host);
 921		ms += DIV_ROUND_UP(data->timeout_clks, khz);
 922	}
 923
 924	return ms;
 925}
 926
 
 
 
 
 
 
 927static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
 928			 int type)
 929{
 930	int err;
 
 931
 932	if (md->reset_done & type)
 933		return -EEXIST;
 934
 935	md->reset_done |= type;
 936	err = mmc_hw_reset(host);
 
 
 
 
 
 
 
 
 937	/* Ensure we switch back to the correct partition */
 938	if (err) {
 939		struct mmc_blk_data *main_md =
 940			dev_get_drvdata(&host->card->dev);
 941		int part_err;
 942
 943		main_md->part_curr = main_md->part_type;
 944		part_err = mmc_blk_part_switch(host->card, md->part_type);
 945		if (part_err) {
 946			/*
 947			 * We have failed to get back into the correct
 948			 * partition, so we need to abort the whole request.
 949			 */
 950			return -ENODEV;
 951		}
 952	}
 953	return err;
 954}
 955
 956static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
 957{
 958	md->reset_done &= ~type;
 959}
 960
 961/*
 962 * The non-block commands come back from the block layer after it queued it and
 963 * processed it with all other requests and then they get issued in this
 964 * function.
 965 */
 966static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
 967{
 968	struct mmc_queue_req *mq_rq;
 969	struct mmc_card *card = mq->card;
 970	struct mmc_blk_data *md = mq->blkdata;
 971	struct mmc_blk_ioc_data **idata;
 972	bool rpmb_ioctl;
 973	u8 **ext_csd;
 974	u32 status;
 975	int ret;
 976	int i;
 977
 978	mq_rq = req_to_mmc_queue_req(req);
 979	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
 980
 981	switch (mq_rq->drv_op) {
 982	case MMC_DRV_OP_IOCTL:
 983		if (card->ext_csd.cmdq_en) {
 984			ret = mmc_cmdq_disable(card);
 985			if (ret)
 986				break;
 987		}
 988		fallthrough;
 989	case MMC_DRV_OP_IOCTL_RPMB:
 990		idata = mq_rq->drv_op_data;
 991		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
 992			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
 993			if (ret)
 994				break;
 995		}
 996		/* Always switch back to main area after RPMB access */
 997		if (rpmb_ioctl)
 998			mmc_blk_part_switch(card, 0);
 999		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1000			mmc_cmdq_enable(card);
1001		break;
1002	case MMC_DRV_OP_BOOT_WP:
1003		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1004				 card->ext_csd.boot_ro_lock |
1005				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1006				 card->ext_csd.part_time);
1007		if (ret)
1008			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1009			       md->disk->disk_name, ret);
1010		else
1011			card->ext_csd.boot_ro_lock |=
1012				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1013		break;
1014	case MMC_DRV_OP_GET_CARD_STATUS:
1015		ret = mmc_send_status(card, &status);
1016		if (!ret)
1017			ret = status;
1018		break;
1019	case MMC_DRV_OP_GET_EXT_CSD:
1020		ext_csd = mq_rq->drv_op_data;
1021		ret = mmc_get_ext_csd(card, ext_csd);
1022		break;
1023	default:
1024		pr_err("%s: unknown driver specific operation\n",
1025		       md->disk->disk_name);
1026		ret = -EINVAL;
1027		break;
1028	}
1029	mq_rq->drv_op_result = ret;
1030	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1031}
1032
1033static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
 
1034{
1035	struct mmc_blk_data *md = mq->blkdata;
1036	struct mmc_card *card = md->queue.card;
1037	unsigned int from, nr;
1038	int err = 0, type = MMC_BLK_DISCARD;
1039	blk_status_t status = BLK_STS_OK;
1040
1041	if (!mmc_can_erase(card)) {
1042		status = BLK_STS_NOTSUPP;
1043		goto fail;
1044	}
1045
1046	from = blk_rq_pos(req);
1047	nr = blk_rq_sectors(req);
1048
1049	do {
1050		err = 0;
1051		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1052			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1053					 INAND_CMD38_ARG_EXT_CSD,
1054					 card->erase_arg == MMC_TRIM_ARG ?
1055					 INAND_CMD38_ARG_TRIM :
1056					 INAND_CMD38_ARG_ERASE,
1057					 card->ext_csd.generic_cmd6_time);
1058		}
1059		if (!err)
1060			err = mmc_erase(card, from, nr, card->erase_arg);
1061	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1062	if (err)
1063		status = BLK_STS_IOERR;
1064	else
1065		mmc_blk_reset_success(md, type);
1066fail:
1067	blk_mq_end_request(req, status);
1068}
1069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1071				       struct request *req)
1072{
1073	struct mmc_blk_data *md = mq->blkdata;
1074	struct mmc_card *card = md->queue.card;
1075	unsigned int from, nr, arg;
1076	int err = 0, type = MMC_BLK_SECDISCARD;
1077	blk_status_t status = BLK_STS_OK;
1078
1079	if (!(mmc_can_secure_erase_trim(card))) {
1080		status = BLK_STS_NOTSUPP;
1081		goto out;
1082	}
1083
1084	from = blk_rq_pos(req);
1085	nr = blk_rq_sectors(req);
1086
1087	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1088		arg = MMC_SECURE_TRIM1_ARG;
1089	else
1090		arg = MMC_SECURE_ERASE_ARG;
1091
1092retry:
1093	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1094		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1095				 INAND_CMD38_ARG_EXT_CSD,
1096				 arg == MMC_SECURE_TRIM1_ARG ?
1097				 INAND_CMD38_ARG_SECTRIM1 :
1098				 INAND_CMD38_ARG_SECERASE,
1099				 card->ext_csd.generic_cmd6_time);
1100		if (err)
1101			goto out_retry;
1102	}
1103
1104	err = mmc_erase(card, from, nr, arg);
1105	if (err == -EIO)
1106		goto out_retry;
1107	if (err) {
1108		status = BLK_STS_IOERR;
1109		goto out;
1110	}
1111
1112	if (arg == MMC_SECURE_TRIM1_ARG) {
1113		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1114			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1115					 INAND_CMD38_ARG_EXT_CSD,
1116					 INAND_CMD38_ARG_SECTRIM2,
1117					 card->ext_csd.generic_cmd6_time);
1118			if (err)
1119				goto out_retry;
1120		}
1121
1122		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1123		if (err == -EIO)
1124			goto out_retry;
1125		if (err) {
1126			status = BLK_STS_IOERR;
1127			goto out;
1128		}
1129	}
1130
1131out_retry:
1132	if (err && !mmc_blk_reset(md, card->host, type))
1133		goto retry;
1134	if (!err)
1135		mmc_blk_reset_success(md, type);
1136out:
1137	blk_mq_end_request(req, status);
1138}
1139
1140static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1141{
1142	struct mmc_blk_data *md = mq->blkdata;
1143	struct mmc_card *card = md->queue.card;
1144	int ret = 0;
1145
1146	ret = mmc_flush_cache(card->host);
1147	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1148}
1149
1150/*
1151 * Reformat current write as a reliable write, supporting
1152 * both legacy and the enhanced reliable write MMC cards.
1153 * In each transfer we'll handle only as much as a single
1154 * reliable write can handle, thus finish the request in
1155 * partial completions.
1156 */
1157static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1158				    struct mmc_card *card,
1159				    struct request *req)
1160{
1161	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1162		/* Legacy mode imposes restrictions on transfers. */
1163		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1164			brq->data.blocks = 1;
1165
1166		if (brq->data.blocks > card->ext_csd.rel_sectors)
1167			brq->data.blocks = card->ext_csd.rel_sectors;
1168		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1169			brq->data.blocks = 1;
1170	}
1171}
1172
1173#define CMD_ERRORS_EXCL_OOR						\
1174	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1175	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1176	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1177	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1178	 R1_CC_ERROR |		/* Card controller error */		\
1179	 R1_ERROR)		/* General/unknown error */
1180
1181#define CMD_ERRORS							\
1182	(CMD_ERRORS_EXCL_OOR |						\
1183	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1184
1185static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1186{
1187	u32 val;
1188
1189	/*
1190	 * Per the SD specification(physical layer version 4.10)[1],
1191	 * section 4.3.3, it explicitly states that "When the last
1192	 * block of user area is read using CMD18, the host should
1193	 * ignore OUT_OF_RANGE error that may occur even the sequence
1194	 * is correct". And JESD84-B51 for eMMC also has a similar
1195	 * statement on section 6.8.3.
1196	 *
1197	 * Multiple block read/write could be done by either predefined
1198	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1199	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1200	 *
1201	 * However the spec[1] doesn't tell us whether we should also
1202	 * ignore that for predefined method. But per the spec[1], section
1203	 * 4.15 Set Block Count Command, it says"If illegal block count
1204	 * is set, out of range error will be indicated during read/write
1205	 * operation (For example, data transfer is stopped at user area
1206	 * boundary)." In another word, we could expect a out of range error
1207	 * in the response for the following CMD18/25. And if argument of
1208	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1209	 * we could also expect to get a -ETIMEDOUT or any error number from
1210	 * the host drivers due to missing data response(for write)/data(for
1211	 * read), as the cards will stop the data transfer by itself per the
1212	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1213	 */
1214
1215	if (!brq->stop.error) {
1216		bool oor_with_open_end;
1217		/* If there is no error yet, check R1 response */
1218
1219		val = brq->stop.resp[0] & CMD_ERRORS;
1220		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1221
1222		if (val && !oor_with_open_end)
1223			brq->stop.error = -EIO;
1224	}
1225}
1226
1227static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1228			      int disable_multi, bool *do_rel_wr_p,
1229			      bool *do_data_tag_p)
1230{
1231	struct mmc_blk_data *md = mq->blkdata;
1232	struct mmc_card *card = md->queue.card;
1233	struct mmc_blk_request *brq = &mqrq->brq;
1234	struct request *req = mmc_queue_req_to_req(mqrq);
1235	bool do_rel_wr, do_data_tag;
1236
1237	/*
1238	 * Reliable writes are used to implement Forced Unit Access and
1239	 * are supported only on MMCs.
1240	 */
1241	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1242		    rq_data_dir(req) == WRITE &&
1243		    (md->flags & MMC_BLK_REL_WR);
1244
1245	memset(brq, 0, sizeof(struct mmc_blk_request));
1246
1247	mmc_crypto_prepare_req(mqrq);
1248
1249	brq->mrq.data = &brq->data;
1250	brq->mrq.tag = req->tag;
1251
1252	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1253	brq->stop.arg = 0;
1254
1255	if (rq_data_dir(req) == READ) {
1256		brq->data.flags = MMC_DATA_READ;
1257		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1258	} else {
1259		brq->data.flags = MMC_DATA_WRITE;
1260		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1261	}
1262
1263	brq->data.blksz = 512;
1264	brq->data.blocks = blk_rq_sectors(req);
1265	brq->data.blk_addr = blk_rq_pos(req);
1266
1267	/*
1268	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1269	 * The eMMC will give "high" priority tasks priority over "simple"
1270	 * priority tasks. Here we always set "simple" priority by not setting
1271	 * MMC_DATA_PRIO.
1272	 */
1273
1274	/*
1275	 * The block layer doesn't support all sector count
1276	 * restrictions, so we need to be prepared for too big
1277	 * requests.
1278	 */
1279	if (brq->data.blocks > card->host->max_blk_count)
1280		brq->data.blocks = card->host->max_blk_count;
1281
1282	if (brq->data.blocks > 1) {
1283		/*
1284		 * Some SD cards in SPI mode return a CRC error or even lock up
1285		 * completely when trying to read the last block using a
1286		 * multiblock read command.
1287		 */
1288		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1289		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1290		     get_capacity(md->disk)))
1291			brq->data.blocks--;
1292
1293		/*
1294		 * After a read error, we redo the request one sector
1295		 * at a time in order to accurately determine which
1296		 * sectors can be read successfully.
1297		 */
1298		if (disable_multi)
1299			brq->data.blocks = 1;
1300
1301		/*
1302		 * Some controllers have HW issues while operating
1303		 * in multiple I/O mode
1304		 */
1305		if (card->host->ops->multi_io_quirk)
1306			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1307						(rq_data_dir(req) == READ) ?
1308						MMC_DATA_READ : MMC_DATA_WRITE,
1309						brq->data.blocks);
1310	}
1311
1312	if (do_rel_wr) {
1313		mmc_apply_rel_rw(brq, card, req);
1314		brq->data.flags |= MMC_DATA_REL_WR;
1315	}
1316
1317	/*
1318	 * Data tag is used only during writing meta data to speed
1319	 * up write and any subsequent read of this meta data
1320	 */
1321	do_data_tag = card->ext_csd.data_tag_unit_size &&
1322		      (req->cmd_flags & REQ_META) &&
1323		      (rq_data_dir(req) == WRITE) &&
1324		      ((brq->data.blocks * brq->data.blksz) >=
1325		       card->ext_csd.data_tag_unit_size);
1326
1327	if (do_data_tag)
1328		brq->data.flags |= MMC_DATA_DAT_TAG;
1329
1330	mmc_set_data_timeout(&brq->data, card);
1331
1332	brq->data.sg = mqrq->sg;
1333	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1334
1335	/*
1336	 * Adjust the sg list so it is the same size as the
1337	 * request.
1338	 */
1339	if (brq->data.blocks != blk_rq_sectors(req)) {
1340		int i, data_size = brq->data.blocks << 9;
1341		struct scatterlist *sg;
1342
1343		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1344			data_size -= sg->length;
1345			if (data_size <= 0) {
1346				sg->length += data_size;
1347				i++;
1348				break;
1349			}
1350		}
1351		brq->data.sg_len = i;
1352	}
1353
1354	if (do_rel_wr_p)
1355		*do_rel_wr_p = do_rel_wr;
1356
1357	if (do_data_tag_p)
1358		*do_data_tag_p = do_data_tag;
1359}
1360
1361#define MMC_CQE_RETRIES 2
1362
1363static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1364{
1365	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1366	struct mmc_request *mrq = &mqrq->brq.mrq;
1367	struct request_queue *q = req->q;
1368	struct mmc_host *host = mq->card->host;
1369	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1370	unsigned long flags;
1371	bool put_card;
1372	int err;
1373
1374	mmc_cqe_post_req(host, mrq);
1375
1376	if (mrq->cmd && mrq->cmd->error)
1377		err = mrq->cmd->error;
1378	else if (mrq->data && mrq->data->error)
1379		err = mrq->data->error;
1380	else
1381		err = 0;
1382
1383	if (err) {
1384		if (mqrq->retries++ < MMC_CQE_RETRIES)
1385			blk_mq_requeue_request(req, true);
1386		else
1387			blk_mq_end_request(req, BLK_STS_IOERR);
1388	} else if (mrq->data) {
1389		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1390			blk_mq_requeue_request(req, true);
1391		else
1392			__blk_mq_end_request(req, BLK_STS_OK);
1393	} else {
1394		blk_mq_end_request(req, BLK_STS_OK);
1395	}
1396
1397	spin_lock_irqsave(&mq->lock, flags);
1398
1399	mq->in_flight[issue_type] -= 1;
1400
1401	put_card = (mmc_tot_in_flight(mq) == 0);
1402
1403	mmc_cqe_check_busy(mq);
1404
1405	spin_unlock_irqrestore(&mq->lock, flags);
1406
1407	if (!mq->cqe_busy)
1408		blk_mq_run_hw_queues(q, true);
1409
1410	if (put_card)
1411		mmc_put_card(mq->card, &mq->ctx);
1412}
1413
1414void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1415{
1416	struct mmc_card *card = mq->card;
1417	struct mmc_host *host = card->host;
1418	int err;
1419
1420	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1421
1422	err = mmc_cqe_recovery(host);
1423	if (err)
1424		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1425	else
1426		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1427
1428	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1429}
1430
1431static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1432{
1433	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1434						  brq.mrq);
1435	struct request *req = mmc_queue_req_to_req(mqrq);
1436	struct request_queue *q = req->q;
1437	struct mmc_queue *mq = q->queuedata;
1438
1439	/*
1440	 * Block layer timeouts race with completions which means the normal
1441	 * completion path cannot be used during recovery.
1442	 */
1443	if (mq->in_recovery)
1444		mmc_blk_cqe_complete_rq(mq, req);
1445	else if (likely(!blk_should_fake_timeout(req->q)))
1446		blk_mq_complete_request(req);
1447}
1448
1449static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1450{
1451	mrq->done		= mmc_blk_cqe_req_done;
1452	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1453
1454	return mmc_cqe_start_req(host, mrq);
1455}
1456
1457static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1458						 struct request *req)
1459{
1460	struct mmc_blk_request *brq = &mqrq->brq;
1461
1462	memset(brq, 0, sizeof(*brq));
1463
1464	brq->mrq.cmd = &brq->cmd;
1465	brq->mrq.tag = req->tag;
1466
1467	return &brq->mrq;
1468}
1469
1470static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1471{
1472	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1473	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1474
1475	mrq->cmd->opcode = MMC_SWITCH;
1476	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1477			(EXT_CSD_FLUSH_CACHE << 16) |
1478			(1 << 8) |
1479			EXT_CSD_CMD_SET_NORMAL;
1480	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1481
1482	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1483}
1484
1485static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1486{
1487	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1488	struct mmc_host *host = mq->card->host;
1489	int err;
1490
1491	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1492	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1493	mmc_pre_req(host, &mqrq->brq.mrq);
1494
1495	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1496	if (err)
1497		mmc_post_req(host, &mqrq->brq.mrq, err);
1498
1499	return err;
1500}
1501
1502static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1503{
1504	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1505	struct mmc_host *host = mq->card->host;
1506
1507	if (host->hsq_enabled)
1508		return mmc_blk_hsq_issue_rw_rq(mq, req);
1509
1510	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1511
1512	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1513}
1514
1515static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1516			       struct mmc_card *card,
1517			       int disable_multi,
1518			       struct mmc_queue *mq)
1519{
1520	u32 readcmd, writecmd;
1521	struct mmc_blk_request *brq = &mqrq->brq;
1522	struct request *req = mmc_queue_req_to_req(mqrq);
1523	struct mmc_blk_data *md = mq->blkdata;
1524	bool do_rel_wr, do_data_tag;
1525
1526	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1527
1528	brq->mrq.cmd = &brq->cmd;
1529
1530	brq->cmd.arg = blk_rq_pos(req);
1531	if (!mmc_card_blockaddr(card))
1532		brq->cmd.arg <<= 9;
1533	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1534
1535	if (brq->data.blocks > 1 || do_rel_wr) {
1536		/* SPI multiblock writes terminate using a special
1537		 * token, not a STOP_TRANSMISSION request.
1538		 */
1539		if (!mmc_host_is_spi(card->host) ||
1540		    rq_data_dir(req) == READ)
1541			brq->mrq.stop = &brq->stop;
1542		readcmd = MMC_READ_MULTIPLE_BLOCK;
1543		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1544	} else {
1545		brq->mrq.stop = NULL;
1546		readcmd = MMC_READ_SINGLE_BLOCK;
1547		writecmd = MMC_WRITE_BLOCK;
1548	}
1549	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1550
1551	/*
1552	 * Pre-defined multi-block transfers are preferable to
1553	 * open ended-ones (and necessary for reliable writes).
1554	 * However, it is not sufficient to just send CMD23,
1555	 * and avoid the final CMD12, as on an error condition
1556	 * CMD12 (stop) needs to be sent anyway. This, coupled
1557	 * with Auto-CMD23 enhancements provided by some
1558	 * hosts, means that the complexity of dealing
1559	 * with this is best left to the host. If CMD23 is
1560	 * supported by card and host, we'll fill sbc in and let
1561	 * the host deal with handling it correctly. This means
1562	 * that for hosts that don't expose MMC_CAP_CMD23, no
1563	 * change of behavior will be observed.
1564	 *
1565	 * N.B: Some MMC cards experience perf degradation.
1566	 * We'll avoid using CMD23-bounded multiblock writes for
1567	 * these, while retaining features like reliable writes.
1568	 */
1569	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1570	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1571	     do_data_tag)) {
1572		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1573		brq->sbc.arg = brq->data.blocks |
1574			(do_rel_wr ? (1 << 31) : 0) |
1575			(do_data_tag ? (1 << 29) : 0);
1576		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1577		brq->mrq.sbc = &brq->sbc;
1578	}
1579}
1580
1581#define MMC_MAX_RETRIES		5
1582#define MMC_DATA_RETRIES	2
1583#define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1584
1585static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1586{
1587	struct mmc_command cmd = {
1588		.opcode = MMC_STOP_TRANSMISSION,
1589		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1590		/* Some hosts wait for busy anyway, so provide a busy timeout */
1591		.busy_timeout = timeout,
1592	};
1593
1594	return mmc_wait_for_cmd(card->host, &cmd, 5);
1595}
1596
1597static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1598{
1599	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1600	struct mmc_blk_request *brq = &mqrq->brq;
1601	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1602	int err;
1603
1604	mmc_retune_hold_now(card->host);
1605
1606	mmc_blk_send_stop(card, timeout);
1607
1608	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1609
1610	mmc_retune_release(card->host);
1611
1612	return err;
1613}
1614
1615#define MMC_READ_SINGLE_RETRIES	2
1616
1617/* Single sector read during recovery */
1618static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1619{
1620	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1621	struct mmc_request *mrq = &mqrq->brq.mrq;
1622	struct mmc_card *card = mq->card;
1623	struct mmc_host *host = card->host;
1624	blk_status_t error = BLK_STS_OK;
1625	int retries = 0;
1626
1627	do {
1628		u32 status;
1629		int err;
 
1630
1631		mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1632
1633		mmc_wait_for_req(host, mrq);
1634
1635		err = mmc_send_status(card, &status);
1636		if (err)
1637			goto error_exit;
1638
1639		if (!mmc_host_is_spi(host) &&
1640		    !mmc_ready_for_data(status)) {
1641			err = mmc_blk_fix_state(card, req);
1642			if (err)
1643				goto error_exit;
1644		}
1645
1646		if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1647			continue;
 
 
 
 
1648
1649		retries = 0;
 
 
1650
1651		if (mrq->cmd->error ||
1652		    mrq->data->error ||
1653		    (!mmc_host_is_spi(host) &&
1654		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1655			error = BLK_STS_IOERR;
1656		else
1657			error = BLK_STS_OK;
1658
1659	} while (blk_update_request(req, error, 512));
1660
1661	return;
1662
1663error_exit:
1664	mrq->data->bytes_xfered = 0;
1665	blk_update_request(req, BLK_STS_IOERR, 512);
1666	/* Let it try the remaining request again */
1667	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1668		mqrq->retries = MMC_MAX_RETRIES - 1;
1669}
1670
1671static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1672{
1673	return !!brq->mrq.sbc;
1674}
1675
1676static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1677{
1678	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1679}
1680
1681/*
1682 * Check for errors the host controller driver might not have seen such as
1683 * response mode errors or invalid card state.
1684 */
1685static bool mmc_blk_status_error(struct request *req, u32 status)
1686{
1687	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1688	struct mmc_blk_request *brq = &mqrq->brq;
1689	struct mmc_queue *mq = req->q->queuedata;
1690	u32 stop_err_bits;
1691
1692	if (mmc_host_is_spi(mq->card->host))
1693		return false;
1694
1695	stop_err_bits = mmc_blk_stop_err_bits(brq);
1696
1697	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1698	       brq->stop.resp[0] & stop_err_bits ||
1699	       status            & stop_err_bits ||
1700	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1701}
1702
1703static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1704{
1705	return !brq->sbc.error && !brq->cmd.error &&
1706	       !(brq->cmd.resp[0] & CMD_ERRORS);
1707}
1708
1709/*
1710 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1711 * policy:
1712 * 1. A request that has transferred at least some data is considered
1713 * successful and will be requeued if there is remaining data to
1714 * transfer.
1715 * 2. Otherwise the number of retries is incremented and the request
1716 * will be requeued if there are remaining retries.
1717 * 3. Otherwise the request will be errored out.
1718 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1719 * mqrq->retries. So there are only 4 possible actions here:
1720 *	1. do not accept the bytes_xfered value i.e. set it to zero
1721 *	2. change mqrq->retries to determine the number of retries
1722 *	3. try to reset the card
1723 *	4. read one sector at a time
1724 */
1725static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1726{
1727	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1728	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1729	struct mmc_blk_request *brq = &mqrq->brq;
1730	struct mmc_blk_data *md = mq->blkdata;
1731	struct mmc_card *card = mq->card;
1732	u32 status;
1733	u32 blocks;
1734	int err;
1735
1736	/*
1737	 * Some errors the host driver might not have seen. Set the number of
1738	 * bytes transferred to zero in that case.
1739	 */
1740	err = __mmc_send_status(card, &status, 0);
1741	if (err || mmc_blk_status_error(req, status))
1742		brq->data.bytes_xfered = 0;
1743
1744	mmc_retune_release(card->host);
1745
1746	/*
1747	 * Try again to get the status. This also provides an opportunity for
1748	 * re-tuning.
1749	 */
1750	if (err)
1751		err = __mmc_send_status(card, &status, 0);
1752
1753	/*
1754	 * Nothing more to do after the number of bytes transferred has been
1755	 * updated and there is no card.
1756	 */
1757	if (err && mmc_detect_card_removed(card->host))
1758		return;
1759
1760	/* Try to get back to "tran" state */
1761	if (!mmc_host_is_spi(mq->card->host) &&
1762	    (err || !mmc_ready_for_data(status)))
1763		err = mmc_blk_fix_state(mq->card, req);
1764
1765	/*
1766	 * Special case for SD cards where the card might record the number of
1767	 * blocks written.
1768	 */
1769	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1770	    rq_data_dir(req) == WRITE) {
1771		if (mmc_sd_num_wr_blocks(card, &blocks))
1772			brq->data.bytes_xfered = 0;
1773		else
1774			brq->data.bytes_xfered = blocks << 9;
1775	}
1776
1777	/* Reset if the card is in a bad state */
1778	if (!mmc_host_is_spi(mq->card->host) &&
1779	    err && mmc_blk_reset(md, card->host, type)) {
1780		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1781		mqrq->retries = MMC_NO_RETRIES;
1782		return;
1783	}
1784
1785	/*
1786	 * If anything was done, just return and if there is anything remaining
1787	 * on the request it will get requeued.
1788	 */
1789	if (brq->data.bytes_xfered)
1790		return;
1791
1792	/* Reset before last retry */
1793	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1794		mmc_blk_reset(md, card->host, type);
 
1795
1796	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1797	if (brq->sbc.error || brq->cmd.error)
1798		return;
1799
1800	/* Reduce the remaining retries for data errors */
1801	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1802		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1803		return;
1804	}
1805
1806	/* FIXME: Missing single sector read for large sector size */
1807	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1808	    brq->data.blocks > 1) {
1809		/* Read one sector at a time */
1810		mmc_blk_read_single(mq, req);
1811		return;
1812	}
1813}
1814
1815static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1816{
1817	mmc_blk_eval_resp_error(brq);
1818
1819	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1820	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1821}
1822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1824{
1825	struct mmc_blk_busy_data *data = cb_data;
1826	u32 status = 0;
1827	int err;
1828
1829	err = mmc_send_status(data->card, &status);
1830	if (err)
1831		return err;
1832
1833	/* Accumulate response error bits. */
1834	data->status |= status;
1835
1836	*busy = !mmc_ready_for_data(status);
1837	return 0;
1838}
1839
1840static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1841{
1842	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1843	struct mmc_blk_busy_data cb_data;
1844	int err;
1845
1846	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1847		return 0;
1848
 
 
 
 
 
 
 
1849	cb_data.card = card;
1850	cb_data.status = 0;
1851	err = __mmc_poll_for_busy(card, MMC_BLK_TIMEOUT_MS, &mmc_blk_busy_cb,
1852				  &cb_data);
1853
1854	/*
1855	 * Do not assume data transferred correctly if there are any error bits
1856	 * set.
1857	 */
1858	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1859		mqrq->brq.data.bytes_xfered = 0;
1860		err = err ? err : -EIO;
1861	}
1862
1863	/* Copy the exception bit so it will be seen later on */
1864	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1865		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1866
1867	return err;
1868}
1869
1870static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1871					    struct request *req)
1872{
1873	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1874
1875	mmc_blk_reset_success(mq->blkdata, type);
1876}
1877
1878static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1879{
1880	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1881	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1882
1883	if (nr_bytes) {
1884		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1885			blk_mq_requeue_request(req, true);
1886		else
1887			__blk_mq_end_request(req, BLK_STS_OK);
1888	} else if (!blk_rq_bytes(req)) {
1889		__blk_mq_end_request(req, BLK_STS_IOERR);
1890	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1891		blk_mq_requeue_request(req, true);
1892	} else {
1893		if (mmc_card_removed(mq->card))
1894			req->rq_flags |= RQF_QUIET;
1895		blk_mq_end_request(req, BLK_STS_IOERR);
1896	}
1897}
1898
1899static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1900					struct mmc_queue_req *mqrq)
1901{
1902	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1903	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1904		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1905}
1906
1907static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1908				 struct mmc_queue_req *mqrq)
1909{
1910	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1911		mmc_run_bkops(mq->card);
1912}
1913
1914static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1915{
1916	struct mmc_queue_req *mqrq =
1917		container_of(mrq, struct mmc_queue_req, brq.mrq);
1918	struct request *req = mmc_queue_req_to_req(mqrq);
1919	struct request_queue *q = req->q;
1920	struct mmc_queue *mq = q->queuedata;
1921	struct mmc_host *host = mq->card->host;
1922	unsigned long flags;
1923
1924	if (mmc_blk_rq_error(&mqrq->brq) ||
1925	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1926		spin_lock_irqsave(&mq->lock, flags);
1927		mq->recovery_needed = true;
1928		mq->recovery_req = req;
1929		spin_unlock_irqrestore(&mq->lock, flags);
1930
1931		host->cqe_ops->cqe_recovery_start(host);
1932
1933		schedule_work(&mq->recovery_work);
1934		return;
1935	}
1936
1937	mmc_blk_rw_reset_success(mq, req);
1938
1939	/*
1940	 * Block layer timeouts race with completions which means the normal
1941	 * completion path cannot be used during recovery.
1942	 */
1943	if (mq->in_recovery)
1944		mmc_blk_cqe_complete_rq(mq, req);
1945	else if (likely(!blk_should_fake_timeout(req->q)))
1946		blk_mq_complete_request(req);
1947}
1948
1949void mmc_blk_mq_complete(struct request *req)
1950{
1951	struct mmc_queue *mq = req->q->queuedata;
1952	struct mmc_host *host = mq->card->host;
1953
1954	if (host->cqe_enabled)
1955		mmc_blk_cqe_complete_rq(mq, req);
1956	else if (likely(!blk_should_fake_timeout(req->q)))
1957		mmc_blk_mq_complete_rq(mq, req);
1958}
1959
1960static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1961				       struct request *req)
1962{
1963	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1964	struct mmc_host *host = mq->card->host;
1965
1966	if (mmc_blk_rq_error(&mqrq->brq) ||
1967	    mmc_blk_card_busy(mq->card, req)) {
1968		mmc_blk_mq_rw_recovery(mq, req);
1969	} else {
1970		mmc_blk_rw_reset_success(mq, req);
1971		mmc_retune_release(host);
1972	}
1973
1974	mmc_blk_urgent_bkops(mq, mqrq);
1975}
1976
1977static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1978{
1979	unsigned long flags;
1980	bool put_card;
1981
1982	spin_lock_irqsave(&mq->lock, flags);
1983
1984	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1985
1986	put_card = (mmc_tot_in_flight(mq) == 0);
1987
1988	spin_unlock_irqrestore(&mq->lock, flags);
1989
1990	if (put_card)
1991		mmc_put_card(mq->card, &mq->ctx);
1992}
1993
1994static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
 
1995{
1996	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1997	struct mmc_request *mrq = &mqrq->brq.mrq;
1998	struct mmc_host *host = mq->card->host;
1999
2000	mmc_post_req(host, mrq, 0);
2001
2002	/*
2003	 * Block layer timeouts race with completions which means the normal
2004	 * completion path cannot be used during recovery.
2005	 */
2006	if (mq->in_recovery)
2007		mmc_blk_mq_complete_rq(mq, req);
2008	else if (likely(!blk_should_fake_timeout(req->q)))
2009		blk_mq_complete_request(req);
 
 
 
 
2010
2011	mmc_blk_mq_dec_in_flight(mq, req);
2012}
2013
2014void mmc_blk_mq_recovery(struct mmc_queue *mq)
2015{
2016	struct request *req = mq->recovery_req;
2017	struct mmc_host *host = mq->card->host;
2018	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2019
2020	mq->recovery_req = NULL;
2021	mq->rw_wait = false;
2022
2023	if (mmc_blk_rq_error(&mqrq->brq)) {
2024		mmc_retune_hold_now(host);
2025		mmc_blk_mq_rw_recovery(mq, req);
2026	}
2027
2028	mmc_blk_urgent_bkops(mq, mqrq);
2029
2030	mmc_blk_mq_post_req(mq, req);
2031}
2032
2033static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2034					 struct request **prev_req)
2035{
2036	if (mmc_host_done_complete(mq->card->host))
2037		return;
2038
2039	mutex_lock(&mq->complete_lock);
2040
2041	if (!mq->complete_req)
2042		goto out_unlock;
2043
2044	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2045
2046	if (prev_req)
2047		*prev_req = mq->complete_req;
2048	else
2049		mmc_blk_mq_post_req(mq, mq->complete_req);
2050
2051	mq->complete_req = NULL;
2052
2053out_unlock:
2054	mutex_unlock(&mq->complete_lock);
2055}
2056
2057void mmc_blk_mq_complete_work(struct work_struct *work)
2058{
2059	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2060					    complete_work);
2061
2062	mmc_blk_mq_complete_prev_req(mq, NULL);
2063}
2064
2065static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2066{
2067	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2068						  brq.mrq);
2069	struct request *req = mmc_queue_req_to_req(mqrq);
2070	struct request_queue *q = req->q;
2071	struct mmc_queue *mq = q->queuedata;
2072	struct mmc_host *host = mq->card->host;
2073	unsigned long flags;
2074
2075	if (!mmc_host_done_complete(host)) {
2076		bool waiting;
2077
2078		/*
2079		 * We cannot complete the request in this context, so record
2080		 * that there is a request to complete, and that a following
2081		 * request does not need to wait (although it does need to
2082		 * complete complete_req first).
2083		 */
2084		spin_lock_irqsave(&mq->lock, flags);
2085		mq->complete_req = req;
2086		mq->rw_wait = false;
2087		waiting = mq->waiting;
2088		spin_unlock_irqrestore(&mq->lock, flags);
2089
2090		/*
2091		 * If 'waiting' then the waiting task will complete this
2092		 * request, otherwise queue a work to do it. Note that
2093		 * complete_work may still race with the dispatch of a following
2094		 * request.
2095		 */
2096		if (waiting)
2097			wake_up(&mq->wait);
2098		else
2099			queue_work(mq->card->complete_wq, &mq->complete_work);
2100
2101		return;
2102	}
2103
2104	/* Take the recovery path for errors or urgent background operations */
2105	if (mmc_blk_rq_error(&mqrq->brq) ||
2106	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2107		spin_lock_irqsave(&mq->lock, flags);
2108		mq->recovery_needed = true;
2109		mq->recovery_req = req;
2110		spin_unlock_irqrestore(&mq->lock, flags);
2111		wake_up(&mq->wait);
2112		schedule_work(&mq->recovery_work);
2113		return;
2114	}
2115
2116	mmc_blk_rw_reset_success(mq, req);
2117
2118	mq->rw_wait = false;
2119	wake_up(&mq->wait);
2120
2121	mmc_blk_mq_post_req(mq, req);
 
2122}
2123
2124static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2125{
2126	unsigned long flags;
2127	bool done;
2128
2129	/*
2130	 * Wait while there is another request in progress, but not if recovery
2131	 * is needed. Also indicate whether there is a request waiting to start.
2132	 */
2133	spin_lock_irqsave(&mq->lock, flags);
2134	if (mq->recovery_needed) {
2135		*err = -EBUSY;
2136		done = true;
2137	} else {
2138		done = !mq->rw_wait;
2139	}
2140	mq->waiting = !done;
2141	spin_unlock_irqrestore(&mq->lock, flags);
2142
2143	return done;
2144}
2145
2146static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2147{
2148	int err = 0;
2149
2150	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2151
2152	/* Always complete the previous request if there is one */
2153	mmc_blk_mq_complete_prev_req(mq, prev_req);
2154
2155	return err;
2156}
2157
2158static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2159				  struct request *req)
2160{
2161	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2162	struct mmc_host *host = mq->card->host;
2163	struct request *prev_req = NULL;
2164	int err = 0;
2165
2166	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2167
2168	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2169
2170	mmc_pre_req(host, &mqrq->brq.mrq);
2171
2172	err = mmc_blk_rw_wait(mq, &prev_req);
2173	if (err)
2174		goto out_post_req;
2175
2176	mq->rw_wait = true;
2177
2178	err = mmc_start_request(host, &mqrq->brq.mrq);
2179
2180	if (prev_req)
2181		mmc_blk_mq_post_req(mq, prev_req);
2182
2183	if (err)
2184		mq->rw_wait = false;
2185
2186	/* Release re-tuning here where there is no synchronization required */
2187	if (err || mmc_host_done_complete(host))
2188		mmc_retune_release(host);
2189
2190out_post_req:
2191	if (err)
2192		mmc_post_req(host, &mqrq->brq.mrq, err);
2193
2194	return err;
2195}
2196
2197static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2198{
2199	if (host->cqe_enabled)
2200		return host->cqe_ops->cqe_wait_for_idle(host);
2201
2202	return mmc_blk_rw_wait(mq, NULL);
2203}
2204
2205enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2206{
2207	struct mmc_blk_data *md = mq->blkdata;
2208	struct mmc_card *card = md->queue.card;
2209	struct mmc_host *host = card->host;
2210	int ret;
2211
2212	ret = mmc_blk_part_switch(card, md->part_type);
2213	if (ret)
2214		return MMC_REQ_FAILED_TO_START;
2215
2216	switch (mmc_issue_type(mq, req)) {
2217	case MMC_ISSUE_SYNC:
2218		ret = mmc_blk_wait_for_idle(mq, host);
2219		if (ret)
2220			return MMC_REQ_BUSY;
2221		switch (req_op(req)) {
2222		case REQ_OP_DRV_IN:
2223		case REQ_OP_DRV_OUT:
2224			mmc_blk_issue_drv_op(mq, req);
2225			break;
2226		case REQ_OP_DISCARD:
2227			mmc_blk_issue_discard_rq(mq, req);
2228			break;
2229		case REQ_OP_SECURE_ERASE:
2230			mmc_blk_issue_secdiscard_rq(mq, req);
2231			break;
 
 
 
2232		case REQ_OP_FLUSH:
2233			mmc_blk_issue_flush(mq, req);
2234			break;
2235		default:
2236			WARN_ON_ONCE(1);
2237			return MMC_REQ_FAILED_TO_START;
2238		}
2239		return MMC_REQ_FINISHED;
2240	case MMC_ISSUE_DCMD:
2241	case MMC_ISSUE_ASYNC:
2242		switch (req_op(req)) {
2243		case REQ_OP_FLUSH:
2244			if (!mmc_cache_enabled(host)) {
2245				blk_mq_end_request(req, BLK_STS_OK);
2246				return MMC_REQ_FINISHED;
2247			}
2248			ret = mmc_blk_cqe_issue_flush(mq, req);
2249			break;
2250		case REQ_OP_READ:
2251		case REQ_OP_WRITE:
2252			if (host->cqe_enabled)
2253				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2254			else
2255				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2256			break;
2257		default:
2258			WARN_ON_ONCE(1);
2259			ret = -EINVAL;
2260		}
2261		if (!ret)
2262			return MMC_REQ_STARTED;
2263		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2264	default:
2265		WARN_ON_ONCE(1);
2266		return MMC_REQ_FAILED_TO_START;
2267	}
2268}
2269
2270static inline int mmc_blk_readonly(struct mmc_card *card)
2271{
2272	return mmc_card_readonly(card) ||
2273	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2274}
2275
2276static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2277					      struct device *parent,
2278					      sector_t size,
2279					      bool default_ro,
2280					      const char *subname,
2281					      int area_type)
 
2282{
2283	struct mmc_blk_data *md;
2284	int devidx, ret;
2285	char cap_str[10];
 
 
2286
2287	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2288	if (devidx < 0) {
2289		/*
2290		 * We get -ENOSPC because there are no more any available
2291		 * devidx. The reason may be that, either userspace haven't yet
2292		 * unmounted the partitions, which postpones mmc_blk_release()
2293		 * from being called, or the device has more partitions than
2294		 * what we support.
2295		 */
2296		if (devidx == -ENOSPC)
2297			dev_err(mmc_dev(card->host),
2298				"no more device IDs available\n");
2299
2300		return ERR_PTR(devidx);
2301	}
2302
2303	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2304	if (!md) {
2305		ret = -ENOMEM;
2306		goto out;
2307	}
2308
2309	md->area_type = area_type;
2310
2311	/*
2312	 * Set the read-only status based on the supported commands
2313	 * and the write protect switch.
2314	 */
2315	md->read_only = mmc_blk_readonly(card);
2316
2317	md->disk = mmc_init_queue(&md->queue, card);
2318	if (IS_ERR(md->disk)) {
2319		ret = PTR_ERR(md->disk);
2320		goto err_kfree;
2321	}
2322
2323	INIT_LIST_HEAD(&md->part);
2324	INIT_LIST_HEAD(&md->rpmbs);
2325	kref_init(&md->kref);
2326
2327	md->queue.blkdata = md;
 
2328
2329	md->disk->major	= MMC_BLOCK_MAJOR;
2330	md->disk->minors = perdev_minors;
2331	md->disk->first_minor = devidx * perdev_minors;
2332	md->disk->fops = &mmc_bdops;
2333	md->disk->private_data = md;
2334	md->parent = parent;
2335	set_disk_ro(md->disk, md->read_only || default_ro);
2336	md->disk->flags = GENHD_FL_EXT_DEVT;
2337	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2338		md->disk->flags |= GENHD_FL_NO_PART_SCAN
2339				   | GENHD_FL_SUPPRESS_PARTITION_INFO;
2340
2341	/*
2342	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2343	 *
2344	 * - be set for removable media with permanent block devices
2345	 * - be unset for removable block devices with permanent media
2346	 *
2347	 * Since MMC block devices clearly fall under the second
2348	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2349	 * should use the block device creation/destruction hotplug
2350	 * messages to tell when the card is present.
2351	 */
2352
2353	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2354		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2355
2356	set_capacity(md->disk, size);
2357
2358	if (mmc_host_cmd23(card->host)) {
2359		if ((mmc_card_mmc(card) &&
2360		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2361		    (mmc_card_sd(card) &&
2362		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2363			md->flags |= MMC_BLK_CMD23;
2364	}
2365
2366	if (mmc_card_mmc(card) &&
2367	    md->flags & MMC_BLK_CMD23 &&
2368	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2369	     card->ext_csd.rel_sectors)) {
2370		md->flags |= MMC_BLK_REL_WR;
2371		blk_queue_write_cache(md->queue.queue, true, true);
 
2372	}
 
 
 
 
2373
2374	string_get_size((u64)size, 512, STRING_UNITS_2,
2375			cap_str, sizeof(cap_str));
2376	pr_info("%s: %s %s %s %s\n",
2377		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2378		cap_str, md->read_only ? "(ro)" : "");
2379
 
 
 
 
 
 
2380	return md;
2381
 
 
 
2382 err_kfree:
2383	kfree(md);
2384 out:
2385	ida_simple_remove(&mmc_blk_ida, devidx);
2386	return ERR_PTR(ret);
2387}
2388
2389static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2390{
2391	sector_t size;
2392
2393	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2394		/*
2395		 * The EXT_CSD sector count is in number or 512 byte
2396		 * sectors.
2397		 */
2398		size = card->ext_csd.sectors;
2399	} else {
2400		/*
2401		 * The CSD capacity field is in units of read_blkbits.
2402		 * set_capacity takes units of 512 bytes.
2403		 */
2404		size = (typeof(sector_t))card->csd.capacity
2405			<< (card->csd.read_blkbits - 9);
2406	}
2407
2408	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2409					MMC_BLK_DATA_AREA_MAIN);
2410}
2411
2412static int mmc_blk_alloc_part(struct mmc_card *card,
2413			      struct mmc_blk_data *md,
2414			      unsigned int part_type,
2415			      sector_t size,
2416			      bool default_ro,
2417			      const char *subname,
2418			      int area_type)
2419{
2420	struct mmc_blk_data *part_md;
2421
2422	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2423				    subname, area_type);
2424	if (IS_ERR(part_md))
2425		return PTR_ERR(part_md);
2426	part_md->part_type = part_type;
2427	list_add(&part_md->part, &md->part);
2428
2429	return 0;
2430}
2431
2432/**
2433 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2434 * @filp: the character device file
2435 * @cmd: the ioctl() command
2436 * @arg: the argument from userspace
2437 *
2438 * This will essentially just redirect the ioctl()s coming in over to
2439 * the main block device spawning the RPMB character device.
2440 */
2441static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2442			   unsigned long arg)
2443{
2444	struct mmc_rpmb_data *rpmb = filp->private_data;
2445	int ret;
2446
2447	switch (cmd) {
2448	case MMC_IOC_CMD:
2449		ret = mmc_blk_ioctl_cmd(rpmb->md,
2450					(struct mmc_ioc_cmd __user *)arg,
2451					rpmb);
2452		break;
2453	case MMC_IOC_MULTI_CMD:
2454		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2455					(struct mmc_ioc_multi_cmd __user *)arg,
2456					rpmb);
2457		break;
2458	default:
2459		ret = -EINVAL;
2460		break;
2461	}
2462
2463	return ret;
2464}
2465
2466#ifdef CONFIG_COMPAT
2467static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2468			      unsigned long arg)
2469{
2470	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2471}
2472#endif
2473
2474static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2475{
2476	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2477						  struct mmc_rpmb_data, chrdev);
2478
2479	get_device(&rpmb->dev);
2480	filp->private_data = rpmb;
2481	mmc_blk_get(rpmb->md->disk);
2482
2483	return nonseekable_open(inode, filp);
2484}
2485
2486static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2487{
2488	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2489						  struct mmc_rpmb_data, chrdev);
2490
2491	mmc_blk_put(rpmb->md);
2492	put_device(&rpmb->dev);
2493
2494	return 0;
2495}
2496
2497static const struct file_operations mmc_rpmb_fileops = {
2498	.release = mmc_rpmb_chrdev_release,
2499	.open = mmc_rpmb_chrdev_open,
2500	.owner = THIS_MODULE,
2501	.llseek = no_llseek,
2502	.unlocked_ioctl = mmc_rpmb_ioctl,
2503#ifdef CONFIG_COMPAT
2504	.compat_ioctl = mmc_rpmb_ioctl_compat,
2505#endif
2506};
2507
2508static void mmc_blk_rpmb_device_release(struct device *dev)
2509{
2510	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2511
2512	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2513	kfree(rpmb);
2514}
2515
2516static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2517				   struct mmc_blk_data *md,
2518				   unsigned int part_index,
2519				   sector_t size,
2520				   const char *subname)
2521{
2522	int devidx, ret;
2523	char rpmb_name[DISK_NAME_LEN];
2524	char cap_str[10];
2525	struct mmc_rpmb_data *rpmb;
2526
2527	/* This creates the minor number for the RPMB char device */
2528	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2529	if (devidx < 0)
2530		return devidx;
2531
2532	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2533	if (!rpmb) {
2534		ida_simple_remove(&mmc_rpmb_ida, devidx);
2535		return -ENOMEM;
2536	}
2537
2538	snprintf(rpmb_name, sizeof(rpmb_name),
2539		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2540
2541	rpmb->id = devidx;
2542	rpmb->part_index = part_index;
2543	rpmb->dev.init_name = rpmb_name;
2544	rpmb->dev.bus = &mmc_rpmb_bus_type;
2545	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2546	rpmb->dev.parent = &card->dev;
2547	rpmb->dev.release = mmc_blk_rpmb_device_release;
2548	device_initialize(&rpmb->dev);
2549	dev_set_drvdata(&rpmb->dev, rpmb);
2550	rpmb->md = md;
2551
2552	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2553	rpmb->chrdev.owner = THIS_MODULE;
2554	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2555	if (ret) {
2556		pr_err("%s: could not add character device\n", rpmb_name);
2557		goto out_put_device;
2558	}
2559
2560	list_add(&rpmb->node, &md->rpmbs);
2561
2562	string_get_size((u64)size, 512, STRING_UNITS_2,
2563			cap_str, sizeof(cap_str));
2564
2565	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2566		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2567		MAJOR(mmc_rpmb_devt), rpmb->id);
2568
2569	return 0;
2570
2571out_put_device:
2572	put_device(&rpmb->dev);
2573	return ret;
2574}
2575
2576static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2577
2578{
2579	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2580	put_device(&rpmb->dev);
2581}
2582
2583/* MMC Physical partitions consist of two boot partitions and
2584 * up to four general purpose partitions.
2585 * For each partition enabled in EXT_CSD a block device will be allocatedi
2586 * to provide access to the partition.
2587 */
2588
2589static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2590{
2591	int idx, ret;
2592
2593	if (!mmc_card_mmc(card))
2594		return 0;
2595
2596	for (idx = 0; idx < card->nr_parts; idx++) {
2597		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2598			/*
2599			 * RPMB partitions does not provide block access, they
2600			 * are only accessed using ioctl():s. Thus create
2601			 * special RPMB block devices that do not have a
2602			 * backing block queue for these.
2603			 */
2604			ret = mmc_blk_alloc_rpmb_part(card, md,
2605				card->part[idx].part_cfg,
2606				card->part[idx].size >> 9,
2607				card->part[idx].name);
2608			if (ret)
2609				return ret;
2610		} else if (card->part[idx].size) {
2611			ret = mmc_blk_alloc_part(card, md,
2612				card->part[idx].part_cfg,
2613				card->part[idx].size >> 9,
2614				card->part[idx].force_ro,
2615				card->part[idx].name,
2616				card->part[idx].area_type);
2617			if (ret)
2618				return ret;
2619		}
2620	}
2621
2622	return 0;
2623}
2624
2625static void mmc_blk_remove_req(struct mmc_blk_data *md)
2626{
2627	struct mmc_card *card;
2628
2629	if (md) {
2630		/*
2631		 * Flush remaining requests and free queues. It
2632		 * is freeing the queue that stops new requests
2633		 * from being accepted.
2634		 */
2635		card = md->queue.card;
2636		if (md->disk->flags & GENHD_FL_UP) {
2637			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2638			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2639					card->ext_csd.boot_ro_lockable)
2640				device_remove_file(disk_to_dev(md->disk),
2641					&md->power_ro_lock);
2642
2643			del_gendisk(md->disk);
2644		}
2645		mmc_cleanup_queue(&md->queue);
2646		mmc_blk_put(md);
2647	}
2648}
2649
2650static void mmc_blk_remove_parts(struct mmc_card *card,
2651				 struct mmc_blk_data *md)
2652{
2653	struct list_head *pos, *q;
2654	struct mmc_blk_data *part_md;
2655	struct mmc_rpmb_data *rpmb;
2656
2657	/* Remove RPMB partitions */
2658	list_for_each_safe(pos, q, &md->rpmbs) {
2659		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2660		list_del(pos);
2661		mmc_blk_remove_rpmb_part(rpmb);
2662	}
2663	/* Remove block partitions */
2664	list_for_each_safe(pos, q, &md->part) {
2665		part_md = list_entry(pos, struct mmc_blk_data, part);
2666		list_del(pos);
2667		mmc_blk_remove_req(part_md);
2668	}
2669}
2670
2671static int mmc_add_disk(struct mmc_blk_data *md)
2672{
2673	int ret;
2674	struct mmc_card *card = md->queue.card;
2675
2676	device_add_disk(md->parent, md->disk, NULL);
2677	md->force_ro.show = force_ro_show;
2678	md->force_ro.store = force_ro_store;
2679	sysfs_attr_init(&md->force_ro.attr);
2680	md->force_ro.attr.name = "force_ro";
2681	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2682	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2683	if (ret)
2684		goto force_ro_fail;
2685
2686	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2687	     card->ext_csd.boot_ro_lockable) {
2688		umode_t mode;
2689
2690		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2691			mode = S_IRUGO;
2692		else
2693			mode = S_IRUGO | S_IWUSR;
2694
2695		md->power_ro_lock.show = power_ro_lock_show;
2696		md->power_ro_lock.store = power_ro_lock_store;
2697		sysfs_attr_init(&md->power_ro_lock.attr);
2698		md->power_ro_lock.attr.mode = mode;
2699		md->power_ro_lock.attr.name =
2700					"ro_lock_until_next_power_on";
2701		ret = device_create_file(disk_to_dev(md->disk),
2702				&md->power_ro_lock);
2703		if (ret)
2704			goto power_ro_lock_fail;
2705	}
2706	return ret;
2707
2708power_ro_lock_fail:
2709	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2710force_ro_fail:
2711	del_gendisk(md->disk);
2712
2713	return ret;
2714}
2715
2716#ifdef CONFIG_DEBUG_FS
2717
2718static int mmc_dbg_card_status_get(void *data, u64 *val)
2719{
2720	struct mmc_card *card = data;
2721	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2722	struct mmc_queue *mq = &md->queue;
2723	struct request *req;
2724	int ret;
2725
2726	/* Ask the block layer about the card status */
2727	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2728	if (IS_ERR(req))
2729		return PTR_ERR(req);
2730	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2731	blk_execute_rq(NULL, req, 0);
2732	ret = req_to_mmc_queue_req(req)->drv_op_result;
2733	if (ret >= 0) {
2734		*val = ret;
2735		ret = 0;
2736	}
2737	blk_put_request(req);
2738
2739	return ret;
2740}
2741DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2742			 NULL, "%08llx\n");
2743
2744/* That is two digits * 512 + 1 for newline */
2745#define EXT_CSD_STR_LEN 1025
2746
2747static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2748{
2749	struct mmc_card *card = inode->i_private;
2750	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2751	struct mmc_queue *mq = &md->queue;
2752	struct request *req;
2753	char *buf;
2754	ssize_t n = 0;
2755	u8 *ext_csd;
2756	int err, i;
2757
2758	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2759	if (!buf)
2760		return -ENOMEM;
2761
2762	/* Ask the block layer for the EXT CSD */
2763	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2764	if (IS_ERR(req)) {
2765		err = PTR_ERR(req);
2766		goto out_free;
2767	}
2768	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2769	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2770	blk_execute_rq(NULL, req, 0);
2771	err = req_to_mmc_queue_req(req)->drv_op_result;
2772	blk_put_request(req);
2773	if (err) {
2774		pr_err("FAILED %d\n", err);
2775		goto out_free;
2776	}
2777
2778	for (i = 0; i < 512; i++)
2779		n += sprintf(buf + n, "%02x", ext_csd[i]);
2780	n += sprintf(buf + n, "\n");
2781
2782	if (n != EXT_CSD_STR_LEN) {
2783		err = -EINVAL;
2784		kfree(ext_csd);
2785		goto out_free;
2786	}
2787
2788	filp->private_data = buf;
2789	kfree(ext_csd);
2790	return 0;
2791
2792out_free:
2793	kfree(buf);
2794	return err;
2795}
2796
2797static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2798				size_t cnt, loff_t *ppos)
2799{
2800	char *buf = filp->private_data;
2801
2802	return simple_read_from_buffer(ubuf, cnt, ppos,
2803				       buf, EXT_CSD_STR_LEN);
2804}
2805
2806static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2807{
2808	kfree(file->private_data);
2809	return 0;
2810}
2811
2812static const struct file_operations mmc_dbg_ext_csd_fops = {
2813	.open		= mmc_ext_csd_open,
2814	.read		= mmc_ext_csd_read,
2815	.release	= mmc_ext_csd_release,
2816	.llseek		= default_llseek,
2817};
2818
2819static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2820{
2821	struct dentry *root;
2822
2823	if (!card->debugfs_root)
2824		return 0;
2825
2826	root = card->debugfs_root;
2827
2828	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2829		md->status_dentry =
2830			debugfs_create_file_unsafe("status", 0400, root,
2831						   card,
2832						   &mmc_dbg_card_status_fops);
2833		if (!md->status_dentry)
2834			return -EIO;
2835	}
2836
2837	if (mmc_card_mmc(card)) {
2838		md->ext_csd_dentry =
2839			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2840					    &mmc_dbg_ext_csd_fops);
2841		if (!md->ext_csd_dentry)
2842			return -EIO;
2843	}
2844
2845	return 0;
2846}
2847
2848static void mmc_blk_remove_debugfs(struct mmc_card *card,
2849				   struct mmc_blk_data *md)
2850{
2851	if (!card->debugfs_root)
2852		return;
2853
2854	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2855		debugfs_remove(md->status_dentry);
2856		md->status_dentry = NULL;
2857	}
2858
2859	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2860		debugfs_remove(md->ext_csd_dentry);
2861		md->ext_csd_dentry = NULL;
2862	}
2863}
2864
2865#else
2866
2867static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2868{
2869	return 0;
2870}
2871
2872static void mmc_blk_remove_debugfs(struct mmc_card *card,
2873				   struct mmc_blk_data *md)
2874{
2875}
2876
2877#endif /* CONFIG_DEBUG_FS */
2878
2879static int mmc_blk_probe(struct mmc_card *card)
2880{
2881	struct mmc_blk_data *md, *part_md;
2882	int ret = 0;
2883
2884	/*
2885	 * Check that the card supports the command class(es) we need.
2886	 */
2887	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2888		return -ENODEV;
2889
2890	mmc_fixup_device(card, mmc_blk_fixups);
2891
2892	card->complete_wq = alloc_workqueue("mmc_complete",
2893					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2894	if (!card->complete_wq) {
2895		pr_err("Failed to create mmc completion workqueue");
2896		return -ENOMEM;
2897	}
2898
2899	md = mmc_blk_alloc(card);
2900	if (IS_ERR(md)) {
2901		ret = PTR_ERR(md);
2902		goto out_free;
2903	}
2904
2905	ret = mmc_blk_alloc_parts(card, md);
2906	if (ret)
2907		goto out;
2908
2909	dev_set_drvdata(&card->dev, md);
2910
2911	ret = mmc_add_disk(md);
2912	if (ret)
2913		goto out;
2914
2915	list_for_each_entry(part_md, &md->part, part) {
2916		ret = mmc_add_disk(part_md);
2917		if (ret)
2918			goto out;
2919	}
2920
2921	/* Add two debugfs entries */
2922	mmc_blk_add_debugfs(card, md);
2923
2924	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2925	pm_runtime_use_autosuspend(&card->dev);
2926
2927	/*
2928	 * Don't enable runtime PM for SD-combo cards here. Leave that
2929	 * decision to be taken during the SDIO init sequence instead.
2930	 */
2931	if (card->type != MMC_TYPE_SD_COMBO) {
2932		pm_runtime_set_active(&card->dev);
2933		pm_runtime_enable(&card->dev);
2934	}
2935
2936	return 0;
2937
2938out:
2939	mmc_blk_remove_parts(card, md);
2940	mmc_blk_remove_req(md);
2941out_free:
2942	destroy_workqueue(card->complete_wq);
2943	return ret;
2944}
2945
2946static void mmc_blk_remove(struct mmc_card *card)
2947{
2948	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2949
2950	mmc_blk_remove_debugfs(card, md);
2951	mmc_blk_remove_parts(card, md);
2952	pm_runtime_get_sync(&card->dev);
2953	if (md->part_curr != md->part_type) {
2954		mmc_claim_host(card->host);
2955		mmc_blk_part_switch(card, md->part_type);
2956		mmc_release_host(card->host);
2957	}
2958	if (card->type != MMC_TYPE_SD_COMBO)
2959		pm_runtime_disable(&card->dev);
2960	pm_runtime_put_noidle(&card->dev);
2961	mmc_blk_remove_req(md);
2962	dev_set_drvdata(&card->dev, NULL);
2963	destroy_workqueue(card->complete_wq);
2964}
2965
2966static int _mmc_blk_suspend(struct mmc_card *card)
2967{
2968	struct mmc_blk_data *part_md;
2969	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2970
2971	if (md) {
2972		mmc_queue_suspend(&md->queue);
2973		list_for_each_entry(part_md, &md->part, part) {
2974			mmc_queue_suspend(&part_md->queue);
2975		}
2976	}
2977	return 0;
2978}
2979
2980static void mmc_blk_shutdown(struct mmc_card *card)
2981{
2982	_mmc_blk_suspend(card);
2983}
2984
2985#ifdef CONFIG_PM_SLEEP
2986static int mmc_blk_suspend(struct device *dev)
2987{
2988	struct mmc_card *card = mmc_dev_to_card(dev);
2989
2990	return _mmc_blk_suspend(card);
2991}
2992
2993static int mmc_blk_resume(struct device *dev)
2994{
2995	struct mmc_blk_data *part_md;
2996	struct mmc_blk_data *md = dev_get_drvdata(dev);
2997
2998	if (md) {
2999		/*
3000		 * Resume involves the card going into idle state,
3001		 * so current partition is always the main one.
3002		 */
3003		md->part_curr = md->part_type;
3004		mmc_queue_resume(&md->queue);
3005		list_for_each_entry(part_md, &md->part, part) {
3006			mmc_queue_resume(&part_md->queue);
3007		}
3008	}
3009	return 0;
3010}
3011#endif
3012
3013static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3014
3015static struct mmc_driver mmc_driver = {
3016	.drv		= {
3017		.name	= "mmcblk",
3018		.pm	= &mmc_blk_pm_ops,
3019	},
3020	.probe		= mmc_blk_probe,
3021	.remove		= mmc_blk_remove,
3022	.shutdown	= mmc_blk_shutdown,
3023};
3024
3025static int __init mmc_blk_init(void)
3026{
3027	int res;
3028
3029	res  = bus_register(&mmc_rpmb_bus_type);
3030	if (res < 0) {
3031		pr_err("mmcblk: could not register RPMB bus type\n");
3032		return res;
3033	}
3034	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3035	if (res < 0) {
3036		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3037		goto out_bus_unreg;
3038	}
3039
3040	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3041		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3042
3043	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3044
3045	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3046	if (res)
3047		goto out_chrdev_unreg;
3048
3049	res = mmc_register_driver(&mmc_driver);
3050	if (res)
3051		goto out_blkdev_unreg;
3052
3053	return 0;
3054
3055out_blkdev_unreg:
3056	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3057out_chrdev_unreg:
3058	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3059out_bus_unreg:
3060	bus_unregister(&mmc_rpmb_bus_type);
3061	return res;
3062}
3063
3064static void __exit mmc_blk_exit(void)
3065{
3066	mmc_unregister_driver(&mmc_driver);
3067	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3068	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3069	bus_unregister(&mmc_rpmb_bus_type);
3070}
3071
3072module_init(mmc_blk_init);
3073module_exit(mmc_blk_exit);
3074
3075MODULE_LICENSE("GPL");
3076MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3077