Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Functions related to setting various queue properties from drivers
  4 */
  5#include <linux/kernel.h>
  6#include <linux/module.h>
  7#include <linux/init.h>
  8#include <linux/bio.h>
  9#include <linux/blkdev.h>
 10#include <linux/pagemap.h>
 11#include <linux/backing-dev-defs.h>
 12#include <linux/gcd.h>
 13#include <linux/lcm.h>
 14#include <linux/jiffies.h>
 15#include <linux/gfp.h>
 16#include <linux/dma-mapping.h>
 17
 18#include "blk.h"
 
 19#include "blk-wbt.h"
 20
 21void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
 22{
 23	q->rq_timeout = timeout;
 24}
 25EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
 26
 27/**
 28 * blk_set_default_limits - reset limits to default values
 29 * @lim:  the queue_limits structure to reset
 30 *
 31 * Description:
 32 *   Returns a queue_limit struct to its default state.
 33 */
 34void blk_set_default_limits(struct queue_limits *lim)
 35{
 36	lim->max_segments = BLK_MAX_SEGMENTS;
 37	lim->max_discard_segments = 1;
 38	lim->max_integrity_segments = 0;
 39	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
 40	lim->virt_boundary_mask = 0;
 41	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
 42	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
 43	lim->max_dev_sectors = 0;
 44	lim->chunk_sectors = 0;
 45	lim->max_write_zeroes_sectors = 0;
 46	lim->max_zone_append_sectors = 0;
 47	lim->max_discard_sectors = 0;
 48	lim->max_hw_discard_sectors = 0;
 49	lim->max_secure_erase_sectors = 0;
 50	lim->discard_granularity = 0;
 51	lim->discard_alignment = 0;
 52	lim->discard_misaligned = 0;
 53	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
 54	lim->bounce = BLK_BOUNCE_NONE;
 55	lim->alignment_offset = 0;
 56	lim->io_opt = 0;
 57	lim->misaligned = 0;
 58	lim->zoned = BLK_ZONED_NONE;
 59	lim->zone_write_granularity = 0;
 60	lim->dma_alignment = 511;
 61}
 62
 63/**
 64 * blk_set_stacking_limits - set default limits for stacking devices
 65 * @lim:  the queue_limits structure to reset
 66 *
 67 * Description:
 68 *   Returns a queue_limit struct to its default state. Should be used
 69 *   by stacking drivers like DM that have no internal limits.
 70 */
 71void blk_set_stacking_limits(struct queue_limits *lim)
 72{
 73	blk_set_default_limits(lim);
 
 
 
 
 
 
 74
 75	/* Inherit limits from component devices */
 76	lim->max_segments = USHRT_MAX;
 77	lim->max_discard_segments = USHRT_MAX;
 78	lim->max_hw_sectors = UINT_MAX;
 79	lim->max_segment_size = UINT_MAX;
 80	lim->max_sectors = UINT_MAX;
 81	lim->max_dev_sectors = UINT_MAX;
 82	lim->max_write_zeroes_sectors = UINT_MAX;
 83	lim->max_zone_append_sectors = UINT_MAX;
 
 84}
 85EXPORT_SYMBOL(blk_set_stacking_limits);
 86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 87/**
 88 * blk_queue_bounce_limit - set bounce buffer limit for queue
 89 * @q: the request queue for the device
 90 * @bounce: bounce limit to enforce
 91 *
 92 * Description:
 93 *    Force bouncing for ISA DMA ranges or highmem.
 94 *
 95 *    DEPRECATED, don't use in new code.
 96 **/
 97void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
 98{
 99	q->limits.bounce = bounce;
100}
101EXPORT_SYMBOL(blk_queue_bounce_limit);
102
103/**
104 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
105 * @q:  the request queue for the device
106 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
107 *
108 * Description:
109 *    Enables a low level driver to set a hard upper limit,
110 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
111 *    the device driver based upon the capabilities of the I/O
112 *    controller.
113 *
114 *    max_dev_sectors is a hard limit imposed by the storage device for
115 *    READ/WRITE requests. It is set by the disk driver.
116 *
117 *    max_sectors is a soft limit imposed by the block layer for
118 *    filesystem type requests.  This value can be overridden on a
119 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
120 *    The soft limit can not exceed max_hw_sectors.
121 **/
122void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
123{
124	struct queue_limits *limits = &q->limits;
125	unsigned int max_sectors;
126
127	if ((max_hw_sectors << 9) < PAGE_SIZE) {
128		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
129		printk(KERN_INFO "%s: set to minimum %d\n",
130		       __func__, max_hw_sectors);
131	}
132
133	max_hw_sectors = round_down(max_hw_sectors,
134				    limits->logical_block_size >> SECTOR_SHIFT);
135	limits->max_hw_sectors = max_hw_sectors;
136
137	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
138	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
 
 
 
 
 
139	max_sectors = round_down(max_sectors,
140				 limits->logical_block_size >> SECTOR_SHIFT);
141	limits->max_sectors = max_sectors;
142
143	if (!q->disk)
144		return;
145	q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
146}
147EXPORT_SYMBOL(blk_queue_max_hw_sectors);
148
149/**
150 * blk_queue_chunk_sectors - set size of the chunk for this queue
151 * @q:  the request queue for the device
152 * @chunk_sectors:  chunk sectors in the usual 512b unit
153 *
154 * Description:
155 *    If a driver doesn't want IOs to cross a given chunk size, it can set
156 *    this limit and prevent merging across chunks. Note that the block layer
157 *    must accept a page worth of data at any offset. So if the crossing of
158 *    chunks is a hard limitation in the driver, it must still be prepared
159 *    to split single page bios.
160 **/
161void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
162{
163	q->limits.chunk_sectors = chunk_sectors;
164}
165EXPORT_SYMBOL(blk_queue_chunk_sectors);
166
167/**
168 * blk_queue_max_discard_sectors - set max sectors for a single discard
169 * @q:  the request queue for the device
170 * @max_discard_sectors: maximum number of sectors to discard
171 **/
172void blk_queue_max_discard_sectors(struct request_queue *q,
173		unsigned int max_discard_sectors)
174{
175	q->limits.max_hw_discard_sectors = max_discard_sectors;
176	q->limits.max_discard_sectors = max_discard_sectors;
 
 
 
177}
178EXPORT_SYMBOL(blk_queue_max_discard_sectors);
179
180/**
181 * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
182 * @q:  the request queue for the device
183 * @max_sectors: maximum number of sectors to secure_erase
184 **/
185void blk_queue_max_secure_erase_sectors(struct request_queue *q,
186		unsigned int max_sectors)
187{
188	q->limits.max_secure_erase_sectors = max_sectors;
189}
190EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
191
192/**
193 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
194 *                                      write zeroes
195 * @q:  the request queue for the device
196 * @max_write_zeroes_sectors: maximum number of sectors to write per command
197 **/
198void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
199		unsigned int max_write_zeroes_sectors)
200{
201	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
202}
203EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
204
205/**
206 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
207 * @q:  the request queue for the device
208 * @max_zone_append_sectors: maximum number of sectors to write per command
209 **/
210void blk_queue_max_zone_append_sectors(struct request_queue *q,
211		unsigned int max_zone_append_sectors)
212{
213	unsigned int max_sectors;
214
215	if (WARN_ON(!blk_queue_is_zoned(q)))
216		return;
217
218	max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
219	max_sectors = min(q->limits.chunk_sectors, max_sectors);
220
221	/*
222	 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
223	 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
224	 * or the max_hw_sectors limit not set.
225	 */
226	WARN_ON(!max_sectors);
227
228	q->limits.max_zone_append_sectors = max_sectors;
229}
230EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
231
232/**
233 * blk_queue_max_segments - set max hw segments for a request for this queue
234 * @q:  the request queue for the device
235 * @max_segments:  max number of segments
236 *
237 * Description:
238 *    Enables a low level driver to set an upper limit on the number of
239 *    hw data segments in a request.
240 **/
241void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
242{
243	if (!max_segments) {
244		max_segments = 1;
245		printk(KERN_INFO "%s: set to minimum %d\n",
246		       __func__, max_segments);
247	}
248
249	q->limits.max_segments = max_segments;
250}
251EXPORT_SYMBOL(blk_queue_max_segments);
252
253/**
254 * blk_queue_max_discard_segments - set max segments for discard requests
255 * @q:  the request queue for the device
256 * @max_segments:  max number of segments
257 *
258 * Description:
259 *    Enables a low level driver to set an upper limit on the number of
260 *    segments in a discard request.
261 **/
262void blk_queue_max_discard_segments(struct request_queue *q,
263		unsigned short max_segments)
264{
265	q->limits.max_discard_segments = max_segments;
266}
267EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
268
269/**
270 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
271 * @q:  the request queue for the device
272 * @max_size:  max size of segment in bytes
273 *
274 * Description:
275 *    Enables a low level driver to set an upper limit on the size of a
276 *    coalesced segment
277 **/
278void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
279{
280	if (max_size < PAGE_SIZE) {
281		max_size = PAGE_SIZE;
282		printk(KERN_INFO "%s: set to minimum %d\n",
283		       __func__, max_size);
284	}
285
286	/* see blk_queue_virt_boundary() for the explanation */
287	WARN_ON_ONCE(q->limits.virt_boundary_mask);
288
289	q->limits.max_segment_size = max_size;
290}
291EXPORT_SYMBOL(blk_queue_max_segment_size);
292
293/**
294 * blk_queue_logical_block_size - set logical block size for the queue
295 * @q:  the request queue for the device
296 * @size:  the logical block size, in bytes
297 *
298 * Description:
299 *   This should be set to the lowest possible block size that the
300 *   storage device can address.  The default of 512 covers most
301 *   hardware.
302 **/
303void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
304{
305	struct queue_limits *limits = &q->limits;
306
307	limits->logical_block_size = size;
308
 
 
 
309	if (limits->physical_block_size < size)
310		limits->physical_block_size = size;
311
312	if (limits->io_min < limits->physical_block_size)
313		limits->io_min = limits->physical_block_size;
314
315	limits->max_hw_sectors =
316		round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
317	limits->max_sectors =
318		round_down(limits->max_sectors, size >> SECTOR_SHIFT);
319}
320EXPORT_SYMBOL(blk_queue_logical_block_size);
321
322/**
323 * blk_queue_physical_block_size - set physical block size for the queue
324 * @q:  the request queue for the device
325 * @size:  the physical block size, in bytes
326 *
327 * Description:
328 *   This should be set to the lowest possible sector size that the
329 *   hardware can operate on without reverting to read-modify-write
330 *   operations.
331 */
332void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
333{
334	q->limits.physical_block_size = size;
335
336	if (q->limits.physical_block_size < q->limits.logical_block_size)
337		q->limits.physical_block_size = q->limits.logical_block_size;
338
 
 
 
339	if (q->limits.io_min < q->limits.physical_block_size)
340		q->limits.io_min = q->limits.physical_block_size;
341}
342EXPORT_SYMBOL(blk_queue_physical_block_size);
343
344/**
345 * blk_queue_zone_write_granularity - set zone write granularity for the queue
346 * @q:  the request queue for the zoned device
347 * @size:  the zone write granularity size, in bytes
348 *
349 * Description:
350 *   This should be set to the lowest possible size allowing to write in
351 *   sequential zones of a zoned block device.
352 */
353void blk_queue_zone_write_granularity(struct request_queue *q,
354				      unsigned int size)
355{
356	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
357		return;
358
359	q->limits.zone_write_granularity = size;
360
361	if (q->limits.zone_write_granularity < q->limits.logical_block_size)
362		q->limits.zone_write_granularity = q->limits.logical_block_size;
363}
364EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
365
366/**
367 * blk_queue_alignment_offset - set physical block alignment offset
368 * @q:	the request queue for the device
369 * @offset: alignment offset in bytes
370 *
371 * Description:
372 *   Some devices are naturally misaligned to compensate for things like
373 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
374 *   should call this function for devices whose first sector is not
375 *   naturally aligned.
376 */
377void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
378{
379	q->limits.alignment_offset =
380		offset & (q->limits.physical_block_size - 1);
381	q->limits.misaligned = 0;
382}
383EXPORT_SYMBOL(blk_queue_alignment_offset);
384
385void disk_update_readahead(struct gendisk *disk)
386{
387	struct request_queue *q = disk->queue;
388
389	/*
390	 * For read-ahead of large files to be effective, we need to read ahead
391	 * at least twice the optimal I/O size.
392	 */
393	disk->bdi->ra_pages =
394		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
395	disk->bdi->io_pages = queue_max_sectors(q) >> (PAGE_SHIFT - 9);
396}
397EXPORT_SYMBOL_GPL(disk_update_readahead);
398
399/**
400 * blk_limits_io_min - set minimum request size for a device
401 * @limits: the queue limits
402 * @min:  smallest I/O size in bytes
403 *
404 * Description:
405 *   Some devices have an internal block size bigger than the reported
406 *   hardware sector size.  This function can be used to signal the
407 *   smallest I/O the device can perform without incurring a performance
408 *   penalty.
409 */
410void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
411{
412	limits->io_min = min;
413
414	if (limits->io_min < limits->logical_block_size)
415		limits->io_min = limits->logical_block_size;
416
417	if (limits->io_min < limits->physical_block_size)
418		limits->io_min = limits->physical_block_size;
419}
420EXPORT_SYMBOL(blk_limits_io_min);
421
422/**
423 * blk_queue_io_min - set minimum request size for the queue
424 * @q:	the request queue for the device
425 * @min:  smallest I/O size in bytes
426 *
427 * Description:
428 *   Storage devices may report a granularity or preferred minimum I/O
429 *   size which is the smallest request the device can perform without
430 *   incurring a performance penalty.  For disk drives this is often the
431 *   physical block size.  For RAID arrays it is often the stripe chunk
432 *   size.  A properly aligned multiple of minimum_io_size is the
433 *   preferred request size for workloads where a high number of I/O
434 *   operations is desired.
435 */
436void blk_queue_io_min(struct request_queue *q, unsigned int min)
437{
438	blk_limits_io_min(&q->limits, min);
439}
440EXPORT_SYMBOL(blk_queue_io_min);
441
442/**
443 * blk_limits_io_opt - set optimal request size for a device
444 * @limits: the queue limits
445 * @opt:  smallest I/O size in bytes
446 *
447 * Description:
448 *   Storage devices may report an optimal I/O size, which is the
449 *   device's preferred unit for sustained I/O.  This is rarely reported
450 *   for disk drives.  For RAID arrays it is usually the stripe width or
451 *   the internal track size.  A properly aligned multiple of
452 *   optimal_io_size is the preferred request size for workloads where
453 *   sustained throughput is desired.
454 */
455void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
456{
457	limits->io_opt = opt;
458}
459EXPORT_SYMBOL(blk_limits_io_opt);
460
461/**
462 * blk_queue_io_opt - set optimal request size for the queue
463 * @q:	the request queue for the device
464 * @opt:  optimal request size in bytes
465 *
466 * Description:
467 *   Storage devices may report an optimal I/O size, which is the
468 *   device's preferred unit for sustained I/O.  This is rarely reported
469 *   for disk drives.  For RAID arrays it is usually the stripe width or
470 *   the internal track size.  A properly aligned multiple of
471 *   optimal_io_size is the preferred request size for workloads where
472 *   sustained throughput is desired.
473 */
474void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
475{
476	blk_limits_io_opt(&q->limits, opt);
477	if (!q->disk)
478		return;
479	q->disk->bdi->ra_pages =
480		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
481}
482EXPORT_SYMBOL(blk_queue_io_opt);
483
484static int queue_limit_alignment_offset(const struct queue_limits *lim,
485		sector_t sector)
486{
487	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
488	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
489		<< SECTOR_SHIFT;
490
491	return (granularity + lim->alignment_offset - alignment) % granularity;
492}
493
494static unsigned int queue_limit_discard_alignment(
495		const struct queue_limits *lim, sector_t sector)
496{
497	unsigned int alignment, granularity, offset;
498
499	if (!lim->max_discard_sectors)
500		return 0;
501
502	/* Why are these in bytes, not sectors? */
503	alignment = lim->discard_alignment >> SECTOR_SHIFT;
504	granularity = lim->discard_granularity >> SECTOR_SHIFT;
505	if (!granularity)
506		return 0;
507
508	/* Offset of the partition start in 'granularity' sectors */
509	offset = sector_div(sector, granularity);
510
511	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
512	offset = (granularity + alignment - offset) % granularity;
513
514	/* Turn it back into bytes, gaah */
515	return offset << SECTOR_SHIFT;
516}
517
518static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
519{
520	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
521	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
522		sectors = PAGE_SIZE >> SECTOR_SHIFT;
523	return sectors;
524}
525
526/**
527 * blk_stack_limits - adjust queue_limits for stacked devices
528 * @t:	the stacking driver limits (top device)
529 * @b:  the underlying queue limits (bottom, component device)
530 * @start:  first data sector within component device
531 *
532 * Description:
533 *    This function is used by stacking drivers like MD and DM to ensure
534 *    that all component devices have compatible block sizes and
535 *    alignments.  The stacking driver must provide a queue_limits
536 *    struct (top) and then iteratively call the stacking function for
537 *    all component (bottom) devices.  The stacking function will
538 *    attempt to combine the values and ensure proper alignment.
539 *
540 *    Returns 0 if the top and bottom queue_limits are compatible.  The
541 *    top device's block sizes and alignment offsets may be adjusted to
542 *    ensure alignment with the bottom device. If no compatible sizes
543 *    and alignments exist, -1 is returned and the resulting top
544 *    queue_limits will have the misaligned flag set to indicate that
545 *    the alignment_offset is undefined.
546 */
547int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
548		     sector_t start)
549{
550	unsigned int top, bottom, alignment, ret = 0;
551
552	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
 
 
553	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
554	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
555	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
556					b->max_write_zeroes_sectors);
557	t->max_zone_append_sectors = min(t->max_zone_append_sectors,
558					b->max_zone_append_sectors);
559	t->bounce = max(t->bounce, b->bounce);
560
561	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
562					    b->seg_boundary_mask);
563	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
564					    b->virt_boundary_mask);
565
566	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
567	t->max_discard_segments = min_not_zero(t->max_discard_segments,
568					       b->max_discard_segments);
569	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
570						 b->max_integrity_segments);
571
572	t->max_segment_size = min_not_zero(t->max_segment_size,
573					   b->max_segment_size);
574
575	t->misaligned |= b->misaligned;
576
577	alignment = queue_limit_alignment_offset(b, start);
578
579	/* Bottom device has different alignment.  Check that it is
580	 * compatible with the current top alignment.
581	 */
582	if (t->alignment_offset != alignment) {
583
584		top = max(t->physical_block_size, t->io_min)
585			+ t->alignment_offset;
586		bottom = max(b->physical_block_size, b->io_min) + alignment;
587
588		/* Verify that top and bottom intervals line up */
589		if (max(top, bottom) % min(top, bottom)) {
590			t->misaligned = 1;
591			ret = -1;
592		}
593	}
594
595	t->logical_block_size = max(t->logical_block_size,
596				    b->logical_block_size);
597
598	t->physical_block_size = max(t->physical_block_size,
599				     b->physical_block_size);
600
601	t->io_min = max(t->io_min, b->io_min);
602	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
603	t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
604
605	/* Set non-power-of-2 compatible chunk_sectors boundary */
606	if (b->chunk_sectors)
607		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
608
609	/* Physical block size a multiple of the logical block size? */
610	if (t->physical_block_size & (t->logical_block_size - 1)) {
611		t->physical_block_size = t->logical_block_size;
612		t->misaligned = 1;
613		ret = -1;
614	}
615
616	/* Minimum I/O a multiple of the physical block size? */
617	if (t->io_min & (t->physical_block_size - 1)) {
618		t->io_min = t->physical_block_size;
619		t->misaligned = 1;
620		ret = -1;
621	}
622
623	/* Optimal I/O a multiple of the physical block size? */
624	if (t->io_opt & (t->physical_block_size - 1)) {
625		t->io_opt = 0;
626		t->misaligned = 1;
627		ret = -1;
628	}
629
630	/* chunk_sectors a multiple of the physical block size? */
631	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
632		t->chunk_sectors = 0;
633		t->misaligned = 1;
634		ret = -1;
635	}
636
637	t->raid_partial_stripes_expensive =
638		max(t->raid_partial_stripes_expensive,
639		    b->raid_partial_stripes_expensive);
640
641	/* Find lowest common alignment_offset */
642	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
643		% max(t->physical_block_size, t->io_min);
644
645	/* Verify that new alignment_offset is on a logical block boundary */
646	if (t->alignment_offset & (t->logical_block_size - 1)) {
647		t->misaligned = 1;
648		ret = -1;
649	}
650
651	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
652	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
653	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
654
655	/* Discard alignment and granularity */
656	if (b->discard_granularity) {
657		alignment = queue_limit_discard_alignment(b, start);
658
659		if (t->discard_granularity != 0 &&
660		    t->discard_alignment != alignment) {
661			top = t->discard_granularity + t->discard_alignment;
662			bottom = b->discard_granularity + alignment;
663
664			/* Verify that top and bottom intervals line up */
665			if ((max(top, bottom) % min(top, bottom)) != 0)
666				t->discard_misaligned = 1;
667		}
668
669		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
670						      b->max_discard_sectors);
671		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
672							 b->max_hw_discard_sectors);
673		t->discard_granularity = max(t->discard_granularity,
674					     b->discard_granularity);
675		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
676			t->discard_granularity;
677	}
678	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
679						   b->max_secure_erase_sectors);
680	t->zone_write_granularity = max(t->zone_write_granularity,
681					b->zone_write_granularity);
682	t->zoned = max(t->zoned, b->zoned);
 
 
 
 
683	return ret;
684}
685EXPORT_SYMBOL(blk_stack_limits);
686
687/**
688 * disk_stack_limits - adjust queue limits for stacked drivers
689 * @disk:  MD/DM gendisk (top)
690 * @bdev:  the underlying block device (bottom)
691 * @offset:  offset to beginning of data within component device
 
692 *
693 * Description:
694 *    Merges the limits for a top level gendisk and a bottom level
695 *    block_device.
 
 
 
 
696 */
697void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
698		       sector_t offset)
699{
700	struct request_queue *t = disk->queue;
701
702	if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
703			get_start_sect(bdev) + (offset >> 9)) < 0)
704		pr_notice("%s: Warning: Device %pg is misaligned\n",
705			disk->disk_name, bdev);
706
707	disk_update_readahead(disk);
708}
709EXPORT_SYMBOL(disk_stack_limits);
710
711/**
712 * blk_queue_update_dma_pad - update pad mask
713 * @q:     the request queue for the device
714 * @mask:  pad mask
715 *
716 * Update dma pad mask.
717 *
718 * Appending pad buffer to a request modifies the last entry of a
719 * scatter list such that it includes the pad buffer.
720 **/
721void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
722{
723	if (mask > q->dma_pad_mask)
724		q->dma_pad_mask = mask;
725}
726EXPORT_SYMBOL(blk_queue_update_dma_pad);
727
728/**
729 * blk_queue_segment_boundary - set boundary rules for segment merging
730 * @q:  the request queue for the device
731 * @mask:  the memory boundary mask
732 **/
733void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
734{
735	if (mask < PAGE_SIZE - 1) {
736		mask = PAGE_SIZE - 1;
737		printk(KERN_INFO "%s: set to minimum %lx\n",
738		       __func__, mask);
739	}
740
741	q->limits.seg_boundary_mask = mask;
742}
743EXPORT_SYMBOL(blk_queue_segment_boundary);
744
745/**
746 * blk_queue_virt_boundary - set boundary rules for bio merging
747 * @q:  the request queue for the device
748 * @mask:  the memory boundary mask
749 **/
750void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
751{
752	q->limits.virt_boundary_mask = mask;
753
754	/*
755	 * Devices that require a virtual boundary do not support scatter/gather
756	 * I/O natively, but instead require a descriptor list entry for each
757	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
758	 * of that they are not limited by our notion of "segment size".
759	 */
760	if (mask)
761		q->limits.max_segment_size = UINT_MAX;
762}
763EXPORT_SYMBOL(blk_queue_virt_boundary);
764
765/**
766 * blk_queue_dma_alignment - set dma length and memory alignment
767 * @q:     the request queue for the device
768 * @mask:  alignment mask
769 *
770 * description:
771 *    set required memory and length alignment for direct dma transactions.
772 *    this is used when building direct io requests for the queue.
773 *
774 **/
775void blk_queue_dma_alignment(struct request_queue *q, int mask)
776{
777	q->limits.dma_alignment = mask;
778}
779EXPORT_SYMBOL(blk_queue_dma_alignment);
780
781/**
782 * blk_queue_update_dma_alignment - update dma length and memory alignment
783 * @q:     the request queue for the device
784 * @mask:  alignment mask
785 *
786 * description:
787 *    update required memory and length alignment for direct dma transactions.
788 *    If the requested alignment is larger than the current alignment, then
789 *    the current queue alignment is updated to the new value, otherwise it
790 *    is left alone.  The design of this is to allow multiple objects
791 *    (driver, device, transport etc) to set their respective
792 *    alignments without having them interfere.
793 *
794 **/
795void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
796{
797	BUG_ON(mask > PAGE_SIZE);
798
799	if (mask > q->limits.dma_alignment)
800		q->limits.dma_alignment = mask;
801}
802EXPORT_SYMBOL(blk_queue_update_dma_alignment);
803
804/**
805 * blk_set_queue_depth - tell the block layer about the device queue depth
806 * @q:		the request queue for the device
807 * @depth:		queue depth
808 *
809 */
810void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
811{
812	q->queue_depth = depth;
813	rq_qos_queue_depth_changed(q);
814}
815EXPORT_SYMBOL(blk_set_queue_depth);
816
817/**
818 * blk_queue_write_cache - configure queue's write cache
819 * @q:		the request queue for the device
820 * @wc:		write back cache on or off
821 * @fua:	device supports FUA writes, if true
822 *
823 * Tell the block layer about the write cache of @q.
824 */
825void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
826{
827	if (wc)
 
828		blk_queue_flag_set(QUEUE_FLAG_WC, q);
829	else
 
830		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
 
831	if (fua)
832		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
833	else
834		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
835
836	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
837}
838EXPORT_SYMBOL_GPL(blk_queue_write_cache);
839
840/**
841 * blk_queue_required_elevator_features - Set a queue required elevator features
842 * @q:		the request queue for the target device
843 * @features:	Required elevator features OR'ed together
844 *
845 * Tell the block layer that for the device controlled through @q, only the
846 * only elevators that can be used are those that implement at least the set of
847 * features specified by @features.
848 */
849void blk_queue_required_elevator_features(struct request_queue *q,
850					  unsigned int features)
851{
852	q->required_elevator_features = features;
853}
854EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
855
856/**
857 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
858 * @q:		the request queue for the device
859 * @dev:	the device pointer for dma
860 *
861 * Tell the block layer about merging the segments by dma map of @q.
862 */
863bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
864				       struct device *dev)
865{
866	unsigned long boundary = dma_get_merge_boundary(dev);
867
868	if (!boundary)
869		return false;
870
871	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
872	blk_queue_virt_boundary(q, boundary);
873
874	return true;
875}
876EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
877
878static bool disk_has_partitions(struct gendisk *disk)
879{
880	unsigned long idx;
881	struct block_device *part;
882	bool ret = false;
883
884	rcu_read_lock();
885	xa_for_each(&disk->part_tbl, idx, part) {
886		if (bdev_is_partition(part)) {
887			ret = true;
888			break;
889		}
890	}
891	rcu_read_unlock();
892
893	return ret;
894}
895
896/**
897 * disk_set_zoned - configure the zoned model for a disk
898 * @disk:	the gendisk of the queue to configure
899 * @model:	the zoned model to set
900 *
901 * Set the zoned model of @disk to @model.
902 *
903 * When @model is BLK_ZONED_HM (host managed), this should be called only
904 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
905 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
906 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
907 * on the disk.
908 */
909void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
910{
911	struct request_queue *q = disk->queue;
912
913	switch (model) {
914	case BLK_ZONED_HM:
915		/*
916		 * Host managed devices are supported only if
917		 * CONFIG_BLK_DEV_ZONED is enabled.
918		 */
919		WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
920		break;
921	case BLK_ZONED_HA:
922		/*
923		 * Host aware devices can be treated either as regular block
924		 * devices (similar to drive managed devices) or as zoned block
925		 * devices to take advantage of the zone command set, similarly
926		 * to host managed devices. We try the latter if there are no
927		 * partitions and zoned block device support is enabled, else
928		 * we do nothing special as far as the block layer is concerned.
929		 */
930		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
931		    disk_has_partitions(disk))
932			model = BLK_ZONED_NONE;
933		break;
934	case BLK_ZONED_NONE:
935	default:
936		if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
937			model = BLK_ZONED_NONE;
938		break;
939	}
940
941	q->limits.zoned = model;
942	if (model != BLK_ZONED_NONE) {
943		/*
944		 * Set the zone write granularity to the device logical block
945		 * size by default. The driver can change this value if needed.
946		 */
947		blk_queue_zone_write_granularity(q,
948						queue_logical_block_size(q));
949	} else {
950		disk_clear_zone_settings(disk);
951	}
952}
953EXPORT_SYMBOL_GPL(disk_set_zoned);
954
955int bdev_alignment_offset(struct block_device *bdev)
956{
957	struct request_queue *q = bdev_get_queue(bdev);
958
959	if (q->limits.misaligned)
960		return -1;
961	if (bdev_is_partition(bdev))
962		return queue_limit_alignment_offset(&q->limits,
963				bdev->bd_start_sect);
964	return q->limits.alignment_offset;
965}
966EXPORT_SYMBOL_GPL(bdev_alignment_offset);
967
968unsigned int bdev_discard_alignment(struct block_device *bdev)
969{
970	struct request_queue *q = bdev_get_queue(bdev);
971
972	if (bdev_is_partition(bdev))
973		return queue_limit_discard_alignment(&q->limits,
974				bdev->bd_start_sect);
975	return q->limits.discard_alignment;
976}
977EXPORT_SYMBOL_GPL(bdev_discard_alignment);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions related to setting various queue properties from drivers
   4 */
   5#include <linux/kernel.h>
   6#include <linux/module.h>
   7#include <linux/init.h>
   8#include <linux/bio.h>
   9#include <linux/blkdev.h>
  10#include <linux/pagemap.h>
  11#include <linux/backing-dev-defs.h>
  12#include <linux/gcd.h>
  13#include <linux/lcm.h>
  14#include <linux/jiffies.h>
  15#include <linux/gfp.h>
  16#include <linux/dma-mapping.h>
  17
  18#include "blk.h"
  19#include "blk-rq-qos.h"
  20#include "blk-wbt.h"
  21
  22void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
  23{
  24	q->rq_timeout = timeout;
  25}
  26EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
  27
  28/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  29 * blk_set_stacking_limits - set default limits for stacking devices
  30 * @lim:  the queue_limits structure to reset
  31 *
  32 * Prepare queue limits for applying limits from underlying devices using
  33 * blk_stack_limits().
 
  34 */
  35void blk_set_stacking_limits(struct queue_limits *lim)
  36{
  37	memset(lim, 0, sizeof(*lim));
  38	lim->logical_block_size = SECTOR_SIZE;
  39	lim->physical_block_size = SECTOR_SIZE;
  40	lim->io_min = SECTOR_SIZE;
  41	lim->discard_granularity = SECTOR_SIZE;
  42	lim->dma_alignment = SECTOR_SIZE - 1;
  43	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
  44
  45	/* Inherit limits from component devices */
  46	lim->max_segments = USHRT_MAX;
  47	lim->max_discard_segments = USHRT_MAX;
  48	lim->max_hw_sectors = UINT_MAX;
  49	lim->max_segment_size = UINT_MAX;
  50	lim->max_sectors = UINT_MAX;
  51	lim->max_dev_sectors = UINT_MAX;
  52	lim->max_write_zeroes_sectors = UINT_MAX;
  53	lim->max_zone_append_sectors = UINT_MAX;
  54	lim->max_user_discard_sectors = UINT_MAX;
  55}
  56EXPORT_SYMBOL(blk_set_stacking_limits);
  57
  58static void blk_apply_bdi_limits(struct backing_dev_info *bdi,
  59		struct queue_limits *lim)
  60{
  61	/*
  62	 * For read-ahead of large files to be effective, we need to read ahead
  63	 * at least twice the optimal I/O size.
  64	 */
  65	bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
  66	bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
  67}
  68
  69static int blk_validate_zoned_limits(struct queue_limits *lim)
  70{
  71	if (!lim->zoned) {
  72		if (WARN_ON_ONCE(lim->max_open_zones) ||
  73		    WARN_ON_ONCE(lim->max_active_zones) ||
  74		    WARN_ON_ONCE(lim->zone_write_granularity) ||
  75		    WARN_ON_ONCE(lim->max_zone_append_sectors))
  76			return -EINVAL;
  77		return 0;
  78	}
  79
  80	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
  81		return -EINVAL;
  82
  83	if (lim->zone_write_granularity < lim->logical_block_size)
  84		lim->zone_write_granularity = lim->logical_block_size;
  85
  86	if (lim->max_zone_append_sectors) {
  87		/*
  88		 * The Zone Append size is limited by the maximum I/O size
  89		 * and the zone size given that it can't span zones.
  90		 */
  91		lim->max_zone_append_sectors =
  92			min3(lim->max_hw_sectors,
  93			     lim->max_zone_append_sectors,
  94			     lim->chunk_sectors);
  95	}
  96
  97	return 0;
  98}
  99
 100/*
 101 * Check that the limits in lim are valid, initialize defaults for unset
 102 * values, and cap values based on others where needed.
 103 */
 104static int blk_validate_limits(struct queue_limits *lim)
 105{
 106	unsigned int max_hw_sectors;
 107
 108	/*
 109	 * Unless otherwise specified, default to 512 byte logical blocks and a
 110	 * physical block size equal to the logical block size.
 111	 */
 112	if (!lim->logical_block_size)
 113		lim->logical_block_size = SECTOR_SIZE;
 114	if (lim->physical_block_size < lim->logical_block_size)
 115		lim->physical_block_size = lim->logical_block_size;
 116
 117	/*
 118	 * The minimum I/O size defaults to the physical block size unless
 119	 * explicitly overridden.
 120	 */
 121	if (lim->io_min < lim->physical_block_size)
 122		lim->io_min = lim->physical_block_size;
 123
 124	/*
 125	 * max_hw_sectors has a somewhat weird default for historical reason,
 126	 * but driver really should set their own instead of relying on this
 127	 * value.
 128	 *
 129	 * The block layer relies on the fact that every driver can
 130	 * handle at lest a page worth of data per I/O, and needs the value
 131	 * aligned to the logical block size.
 132	 */
 133	if (!lim->max_hw_sectors)
 134		lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
 135	if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
 136		return -EINVAL;
 137	lim->max_hw_sectors = round_down(lim->max_hw_sectors,
 138			lim->logical_block_size >> SECTOR_SHIFT);
 139
 140	/*
 141	 * The actual max_sectors value is a complex beast and also takes the
 142	 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
 143	 * value into account.  The ->max_sectors value is always calculated
 144	 * from these, so directly setting it won't have any effect.
 145	 */
 146	max_hw_sectors = min_not_zero(lim->max_hw_sectors,
 147				lim->max_dev_sectors);
 148	if (lim->max_user_sectors) {
 149		if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE)
 150			return -EINVAL;
 151		lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
 152	} else {
 153		lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
 154	}
 155	lim->max_sectors = round_down(lim->max_sectors,
 156			lim->logical_block_size >> SECTOR_SHIFT);
 157
 158	/*
 159	 * Random default for the maximum number of segments.  Driver should not
 160	 * rely on this and set their own.
 161	 */
 162	if (!lim->max_segments)
 163		lim->max_segments = BLK_MAX_SEGMENTS;
 164
 165	lim->max_discard_sectors =
 166		min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
 167
 168	if (!lim->max_discard_segments)
 169		lim->max_discard_segments = 1;
 170
 171	if (lim->discard_granularity < lim->physical_block_size)
 172		lim->discard_granularity = lim->physical_block_size;
 173
 174	/*
 175	 * By default there is no limit on the segment boundary alignment,
 176	 * but if there is one it can't be smaller than the page size as
 177	 * that would break all the normal I/O patterns.
 178	 */
 179	if (!lim->seg_boundary_mask)
 180		lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
 181	if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1))
 182		return -EINVAL;
 183
 184	/*
 185	 * Stacking device may have both virtual boundary and max segment
 186	 * size limit, so allow this setting now, and long-term the two
 187	 * might need to move out of stacking limits since we have immutable
 188	 * bvec and lower layer bio splitting is supposed to handle the two
 189	 * correctly.
 190	 */
 191	if (lim->virt_boundary_mask) {
 192		if (!lim->max_segment_size)
 193			lim->max_segment_size = UINT_MAX;
 194	} else {
 195		/*
 196		 * The maximum segment size has an odd historic 64k default that
 197		 * drivers probably should override.  Just like the I/O size we
 198		 * require drivers to at least handle a full page per segment.
 199		 */
 200		if (!lim->max_segment_size)
 201			lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
 202		if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
 203			return -EINVAL;
 204	}
 205
 206	/*
 207	 * We require drivers to at least do logical block aligned I/O, but
 208	 * historically could not check for that due to the separate calls
 209	 * to set the limits.  Once the transition is finished the check
 210	 * below should be narrowed down to check the logical block size.
 211	 */
 212	if (!lim->dma_alignment)
 213		lim->dma_alignment = SECTOR_SIZE - 1;
 214	if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
 215		return -EINVAL;
 216
 217	if (lim->alignment_offset) {
 218		lim->alignment_offset &= (lim->physical_block_size - 1);
 219		lim->misaligned = 0;
 220	}
 221
 222	return blk_validate_zoned_limits(lim);
 223}
 224
 225/*
 226 * Set the default limits for a newly allocated queue.  @lim contains the
 227 * initial limits set by the driver, which could be no limit in which case
 228 * all fields are cleared to zero.
 229 */
 230int blk_set_default_limits(struct queue_limits *lim)
 231{
 232	/*
 233	 * Most defaults are set by capping the bounds in blk_validate_limits,
 234	 * but max_user_discard_sectors is special and needs an explicit
 235	 * initialization to the max value here.
 236	 */
 237	lim->max_user_discard_sectors = UINT_MAX;
 238	return blk_validate_limits(lim);
 239}
 240
 241/**
 242 * queue_limits_commit_update - commit an atomic update of queue limits
 243 * @q:		queue to update
 244 * @lim:	limits to apply
 245 *
 246 * Apply the limits in @lim that were obtained from queue_limits_start_update()
 247 * and updated by the caller to @q.
 248 *
 249 * Returns 0 if successful, else a negative error code.
 250 */
 251int queue_limits_commit_update(struct request_queue *q,
 252		struct queue_limits *lim)
 253	__releases(q->limits_lock)
 254{
 255	int error = blk_validate_limits(lim);
 256
 257	if (!error) {
 258		q->limits = *lim;
 259		if (q->disk)
 260			blk_apply_bdi_limits(q->disk->bdi, lim);
 261	}
 262	mutex_unlock(&q->limits_lock);
 263	return error;
 264}
 265EXPORT_SYMBOL_GPL(queue_limits_commit_update);
 266
 267/**
 268 * queue_limits_set - apply queue limits to queue
 269 * @q:		queue to update
 270 * @lim:	limits to apply
 271 *
 272 * Apply the limits in @lim that were freshly initialized to @q.
 273 * To update existing limits use queue_limits_start_update() and
 274 * queue_limits_commit_update() instead.
 275 *
 276 * Returns 0 if successful, else a negative error code.
 277 */
 278int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
 279{
 280	mutex_lock(&q->limits_lock);
 281	return queue_limits_commit_update(q, lim);
 282}
 283EXPORT_SYMBOL_GPL(queue_limits_set);
 284
 285/**
 286 * blk_queue_bounce_limit - set bounce buffer limit for queue
 287 * @q: the request queue for the device
 288 * @bounce: bounce limit to enforce
 289 *
 290 * Description:
 291 *    Force bouncing for ISA DMA ranges or highmem.
 292 *
 293 *    DEPRECATED, don't use in new code.
 294 **/
 295void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
 296{
 297	q->limits.bounce = bounce;
 298}
 299EXPORT_SYMBOL(blk_queue_bounce_limit);
 300
 301/**
 302 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
 303 * @q:  the request queue for the device
 304 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
 305 *
 306 * Description:
 307 *    Enables a low level driver to set a hard upper limit,
 308 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
 309 *    the device driver based upon the capabilities of the I/O
 310 *    controller.
 311 *
 312 *    max_dev_sectors is a hard limit imposed by the storage device for
 313 *    READ/WRITE requests. It is set by the disk driver.
 314 *
 315 *    max_sectors is a soft limit imposed by the block layer for
 316 *    filesystem type requests.  This value can be overridden on a
 317 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
 318 *    The soft limit can not exceed max_hw_sectors.
 319 **/
 320void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
 321{
 322	struct queue_limits *limits = &q->limits;
 323	unsigned int max_sectors;
 324
 325	if ((max_hw_sectors << 9) < PAGE_SIZE) {
 326		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
 327		pr_info("%s: set to minimum %u\n", __func__, max_hw_sectors);
 
 328	}
 329
 330	max_hw_sectors = round_down(max_hw_sectors,
 331				    limits->logical_block_size >> SECTOR_SHIFT);
 332	limits->max_hw_sectors = max_hw_sectors;
 333
 334	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
 335
 336	if (limits->max_user_sectors)
 337		max_sectors = min(max_sectors, limits->max_user_sectors);
 338	else
 339		max_sectors = min(max_sectors, BLK_DEF_MAX_SECTORS_CAP);
 340
 341	max_sectors = round_down(max_sectors,
 342				 limits->logical_block_size >> SECTOR_SHIFT);
 343	limits->max_sectors = max_sectors;
 344
 345	if (!q->disk)
 346		return;
 347	q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
 348}
 349EXPORT_SYMBOL(blk_queue_max_hw_sectors);
 350
 351/**
 352 * blk_queue_chunk_sectors - set size of the chunk for this queue
 353 * @q:  the request queue for the device
 354 * @chunk_sectors:  chunk sectors in the usual 512b unit
 355 *
 356 * Description:
 357 *    If a driver doesn't want IOs to cross a given chunk size, it can set
 358 *    this limit and prevent merging across chunks. Note that the block layer
 359 *    must accept a page worth of data at any offset. So if the crossing of
 360 *    chunks is a hard limitation in the driver, it must still be prepared
 361 *    to split single page bios.
 362 **/
 363void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
 364{
 365	q->limits.chunk_sectors = chunk_sectors;
 366}
 367EXPORT_SYMBOL(blk_queue_chunk_sectors);
 368
 369/**
 370 * blk_queue_max_discard_sectors - set max sectors for a single discard
 371 * @q:  the request queue for the device
 372 * @max_discard_sectors: maximum number of sectors to discard
 373 **/
 374void blk_queue_max_discard_sectors(struct request_queue *q,
 375		unsigned int max_discard_sectors)
 376{
 377	struct queue_limits *lim = &q->limits;
 378
 379	lim->max_hw_discard_sectors = max_discard_sectors;
 380	lim->max_discard_sectors =
 381		min(max_discard_sectors, lim->max_user_discard_sectors);
 382}
 383EXPORT_SYMBOL(blk_queue_max_discard_sectors);
 384
 385/**
 386 * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
 387 * @q:  the request queue for the device
 388 * @max_sectors: maximum number of sectors to secure_erase
 389 **/
 390void blk_queue_max_secure_erase_sectors(struct request_queue *q,
 391		unsigned int max_sectors)
 392{
 393	q->limits.max_secure_erase_sectors = max_sectors;
 394}
 395EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
 396
 397/**
 398 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
 399 *                                      write zeroes
 400 * @q:  the request queue for the device
 401 * @max_write_zeroes_sectors: maximum number of sectors to write per command
 402 **/
 403void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
 404		unsigned int max_write_zeroes_sectors)
 405{
 406	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
 407}
 408EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
 409
 410/**
 411 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
 412 * @q:  the request queue for the device
 413 * @max_zone_append_sectors: maximum number of sectors to write per command
 414 **/
 415void blk_queue_max_zone_append_sectors(struct request_queue *q,
 416		unsigned int max_zone_append_sectors)
 417{
 418	unsigned int max_sectors;
 419
 420	if (WARN_ON(!blk_queue_is_zoned(q)))
 421		return;
 422
 423	max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
 424	max_sectors = min(q->limits.chunk_sectors, max_sectors);
 425
 426	/*
 427	 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
 428	 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
 429	 * or the max_hw_sectors limit not set.
 430	 */
 431	WARN_ON(!max_sectors);
 432
 433	q->limits.max_zone_append_sectors = max_sectors;
 434}
 435EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
 436
 437/**
 438 * blk_queue_max_segments - set max hw segments for a request for this queue
 439 * @q:  the request queue for the device
 440 * @max_segments:  max number of segments
 441 *
 442 * Description:
 443 *    Enables a low level driver to set an upper limit on the number of
 444 *    hw data segments in a request.
 445 **/
 446void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
 447{
 448	if (!max_segments) {
 449		max_segments = 1;
 450		pr_info("%s: set to minimum %u\n", __func__, max_segments);
 
 451	}
 452
 453	q->limits.max_segments = max_segments;
 454}
 455EXPORT_SYMBOL(blk_queue_max_segments);
 456
 457/**
 458 * blk_queue_max_discard_segments - set max segments for discard requests
 459 * @q:  the request queue for the device
 460 * @max_segments:  max number of segments
 461 *
 462 * Description:
 463 *    Enables a low level driver to set an upper limit on the number of
 464 *    segments in a discard request.
 465 **/
 466void blk_queue_max_discard_segments(struct request_queue *q,
 467		unsigned short max_segments)
 468{
 469	q->limits.max_discard_segments = max_segments;
 470}
 471EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
 472
 473/**
 474 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
 475 * @q:  the request queue for the device
 476 * @max_size:  max size of segment in bytes
 477 *
 478 * Description:
 479 *    Enables a low level driver to set an upper limit on the size of a
 480 *    coalesced segment
 481 **/
 482void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
 483{
 484	if (max_size < PAGE_SIZE) {
 485		max_size = PAGE_SIZE;
 486		pr_info("%s: set to minimum %u\n", __func__, max_size);
 
 487	}
 488
 489	/* see blk_queue_virt_boundary() for the explanation */
 490	WARN_ON_ONCE(q->limits.virt_boundary_mask);
 491
 492	q->limits.max_segment_size = max_size;
 493}
 494EXPORT_SYMBOL(blk_queue_max_segment_size);
 495
 496/**
 497 * blk_queue_logical_block_size - set logical block size for the queue
 498 * @q:  the request queue for the device
 499 * @size:  the logical block size, in bytes
 500 *
 501 * Description:
 502 *   This should be set to the lowest possible block size that the
 503 *   storage device can address.  The default of 512 covers most
 504 *   hardware.
 505 **/
 506void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
 507{
 508	struct queue_limits *limits = &q->limits;
 509
 510	limits->logical_block_size = size;
 511
 512	if (limits->discard_granularity < limits->logical_block_size)
 513		limits->discard_granularity = limits->logical_block_size;
 514
 515	if (limits->physical_block_size < size)
 516		limits->physical_block_size = size;
 517
 518	if (limits->io_min < limits->physical_block_size)
 519		limits->io_min = limits->physical_block_size;
 520
 521	limits->max_hw_sectors =
 522		round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
 523	limits->max_sectors =
 524		round_down(limits->max_sectors, size >> SECTOR_SHIFT);
 525}
 526EXPORT_SYMBOL(blk_queue_logical_block_size);
 527
 528/**
 529 * blk_queue_physical_block_size - set physical block size for the queue
 530 * @q:  the request queue for the device
 531 * @size:  the physical block size, in bytes
 532 *
 533 * Description:
 534 *   This should be set to the lowest possible sector size that the
 535 *   hardware can operate on without reverting to read-modify-write
 536 *   operations.
 537 */
 538void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
 539{
 540	q->limits.physical_block_size = size;
 541
 542	if (q->limits.physical_block_size < q->limits.logical_block_size)
 543		q->limits.physical_block_size = q->limits.logical_block_size;
 544
 545	if (q->limits.discard_granularity < q->limits.physical_block_size)
 546		q->limits.discard_granularity = q->limits.physical_block_size;
 547
 548	if (q->limits.io_min < q->limits.physical_block_size)
 549		q->limits.io_min = q->limits.physical_block_size;
 550}
 551EXPORT_SYMBOL(blk_queue_physical_block_size);
 552
 553/**
 554 * blk_queue_zone_write_granularity - set zone write granularity for the queue
 555 * @q:  the request queue for the zoned device
 556 * @size:  the zone write granularity size, in bytes
 557 *
 558 * Description:
 559 *   This should be set to the lowest possible size allowing to write in
 560 *   sequential zones of a zoned block device.
 561 */
 562void blk_queue_zone_write_granularity(struct request_queue *q,
 563				      unsigned int size)
 564{
 565	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
 566		return;
 567
 568	q->limits.zone_write_granularity = size;
 569
 570	if (q->limits.zone_write_granularity < q->limits.logical_block_size)
 571		q->limits.zone_write_granularity = q->limits.logical_block_size;
 572}
 573EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
 574
 575/**
 576 * blk_queue_alignment_offset - set physical block alignment offset
 577 * @q:	the request queue for the device
 578 * @offset: alignment offset in bytes
 579 *
 580 * Description:
 581 *   Some devices are naturally misaligned to compensate for things like
 582 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
 583 *   should call this function for devices whose first sector is not
 584 *   naturally aligned.
 585 */
 586void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
 587{
 588	q->limits.alignment_offset =
 589		offset & (q->limits.physical_block_size - 1);
 590	q->limits.misaligned = 0;
 591}
 592EXPORT_SYMBOL(blk_queue_alignment_offset);
 593
 594void disk_update_readahead(struct gendisk *disk)
 595{
 596	blk_apply_bdi_limits(disk->bdi, &disk->queue->limits);
 
 
 
 
 
 
 
 
 597}
 598EXPORT_SYMBOL_GPL(disk_update_readahead);
 599
 600/**
 601 * blk_limits_io_min - set minimum request size for a device
 602 * @limits: the queue limits
 603 * @min:  smallest I/O size in bytes
 604 *
 605 * Description:
 606 *   Some devices have an internal block size bigger than the reported
 607 *   hardware sector size.  This function can be used to signal the
 608 *   smallest I/O the device can perform without incurring a performance
 609 *   penalty.
 610 */
 611void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
 612{
 613	limits->io_min = min;
 614
 615	if (limits->io_min < limits->logical_block_size)
 616		limits->io_min = limits->logical_block_size;
 617
 618	if (limits->io_min < limits->physical_block_size)
 619		limits->io_min = limits->physical_block_size;
 620}
 621EXPORT_SYMBOL(blk_limits_io_min);
 622
 623/**
 624 * blk_queue_io_min - set minimum request size for the queue
 625 * @q:	the request queue for the device
 626 * @min:  smallest I/O size in bytes
 627 *
 628 * Description:
 629 *   Storage devices may report a granularity or preferred minimum I/O
 630 *   size which is the smallest request the device can perform without
 631 *   incurring a performance penalty.  For disk drives this is often the
 632 *   physical block size.  For RAID arrays it is often the stripe chunk
 633 *   size.  A properly aligned multiple of minimum_io_size is the
 634 *   preferred request size for workloads where a high number of I/O
 635 *   operations is desired.
 636 */
 637void blk_queue_io_min(struct request_queue *q, unsigned int min)
 638{
 639	blk_limits_io_min(&q->limits, min);
 640}
 641EXPORT_SYMBOL(blk_queue_io_min);
 642
 643/**
 644 * blk_limits_io_opt - set optimal request size for a device
 645 * @limits: the queue limits
 646 * @opt:  smallest I/O size in bytes
 647 *
 648 * Description:
 649 *   Storage devices may report an optimal I/O size, which is the
 650 *   device's preferred unit for sustained I/O.  This is rarely reported
 651 *   for disk drives.  For RAID arrays it is usually the stripe width or
 652 *   the internal track size.  A properly aligned multiple of
 653 *   optimal_io_size is the preferred request size for workloads where
 654 *   sustained throughput is desired.
 655 */
 656void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
 657{
 658	limits->io_opt = opt;
 659}
 660EXPORT_SYMBOL(blk_limits_io_opt);
 661
 662/**
 663 * blk_queue_io_opt - set optimal request size for the queue
 664 * @q:	the request queue for the device
 665 * @opt:  optimal request size in bytes
 666 *
 667 * Description:
 668 *   Storage devices may report an optimal I/O size, which is the
 669 *   device's preferred unit for sustained I/O.  This is rarely reported
 670 *   for disk drives.  For RAID arrays it is usually the stripe width or
 671 *   the internal track size.  A properly aligned multiple of
 672 *   optimal_io_size is the preferred request size for workloads where
 673 *   sustained throughput is desired.
 674 */
 675void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
 676{
 677	blk_limits_io_opt(&q->limits, opt);
 678	if (!q->disk)
 679		return;
 680	q->disk->bdi->ra_pages =
 681		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
 682}
 683EXPORT_SYMBOL(blk_queue_io_opt);
 684
 685static int queue_limit_alignment_offset(const struct queue_limits *lim,
 686		sector_t sector)
 687{
 688	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
 689	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
 690		<< SECTOR_SHIFT;
 691
 692	return (granularity + lim->alignment_offset - alignment) % granularity;
 693}
 694
 695static unsigned int queue_limit_discard_alignment(
 696		const struct queue_limits *lim, sector_t sector)
 697{
 698	unsigned int alignment, granularity, offset;
 699
 700	if (!lim->max_discard_sectors)
 701		return 0;
 702
 703	/* Why are these in bytes, not sectors? */
 704	alignment = lim->discard_alignment >> SECTOR_SHIFT;
 705	granularity = lim->discard_granularity >> SECTOR_SHIFT;
 706	if (!granularity)
 707		return 0;
 708
 709	/* Offset of the partition start in 'granularity' sectors */
 710	offset = sector_div(sector, granularity);
 711
 712	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
 713	offset = (granularity + alignment - offset) % granularity;
 714
 715	/* Turn it back into bytes, gaah */
 716	return offset << SECTOR_SHIFT;
 717}
 718
 719static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
 720{
 721	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
 722	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
 723		sectors = PAGE_SIZE >> SECTOR_SHIFT;
 724	return sectors;
 725}
 726
 727/**
 728 * blk_stack_limits - adjust queue_limits for stacked devices
 729 * @t:	the stacking driver limits (top device)
 730 * @b:  the underlying queue limits (bottom, component device)
 731 * @start:  first data sector within component device
 732 *
 733 * Description:
 734 *    This function is used by stacking drivers like MD and DM to ensure
 735 *    that all component devices have compatible block sizes and
 736 *    alignments.  The stacking driver must provide a queue_limits
 737 *    struct (top) and then iteratively call the stacking function for
 738 *    all component (bottom) devices.  The stacking function will
 739 *    attempt to combine the values and ensure proper alignment.
 740 *
 741 *    Returns 0 if the top and bottom queue_limits are compatible.  The
 742 *    top device's block sizes and alignment offsets may be adjusted to
 743 *    ensure alignment with the bottom device. If no compatible sizes
 744 *    and alignments exist, -1 is returned and the resulting top
 745 *    queue_limits will have the misaligned flag set to indicate that
 746 *    the alignment_offset is undefined.
 747 */
 748int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
 749		     sector_t start)
 750{
 751	unsigned int top, bottom, alignment, ret = 0;
 752
 753	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
 754	t->max_user_sectors = min_not_zero(t->max_user_sectors,
 755			b->max_user_sectors);
 756	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
 757	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
 758	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
 759					b->max_write_zeroes_sectors);
 760	t->max_zone_append_sectors = min(t->max_zone_append_sectors,
 761					b->max_zone_append_sectors);
 762	t->bounce = max(t->bounce, b->bounce);
 763
 764	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
 765					    b->seg_boundary_mask);
 766	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
 767					    b->virt_boundary_mask);
 768
 769	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
 770	t->max_discard_segments = min_not_zero(t->max_discard_segments,
 771					       b->max_discard_segments);
 772	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
 773						 b->max_integrity_segments);
 774
 775	t->max_segment_size = min_not_zero(t->max_segment_size,
 776					   b->max_segment_size);
 777
 778	t->misaligned |= b->misaligned;
 779
 780	alignment = queue_limit_alignment_offset(b, start);
 781
 782	/* Bottom device has different alignment.  Check that it is
 783	 * compatible with the current top alignment.
 784	 */
 785	if (t->alignment_offset != alignment) {
 786
 787		top = max(t->physical_block_size, t->io_min)
 788			+ t->alignment_offset;
 789		bottom = max(b->physical_block_size, b->io_min) + alignment;
 790
 791		/* Verify that top and bottom intervals line up */
 792		if (max(top, bottom) % min(top, bottom)) {
 793			t->misaligned = 1;
 794			ret = -1;
 795		}
 796	}
 797
 798	t->logical_block_size = max(t->logical_block_size,
 799				    b->logical_block_size);
 800
 801	t->physical_block_size = max(t->physical_block_size,
 802				     b->physical_block_size);
 803
 804	t->io_min = max(t->io_min, b->io_min);
 805	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
 806	t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
 807
 808	/* Set non-power-of-2 compatible chunk_sectors boundary */
 809	if (b->chunk_sectors)
 810		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
 811
 812	/* Physical block size a multiple of the logical block size? */
 813	if (t->physical_block_size & (t->logical_block_size - 1)) {
 814		t->physical_block_size = t->logical_block_size;
 815		t->misaligned = 1;
 816		ret = -1;
 817	}
 818
 819	/* Minimum I/O a multiple of the physical block size? */
 820	if (t->io_min & (t->physical_block_size - 1)) {
 821		t->io_min = t->physical_block_size;
 822		t->misaligned = 1;
 823		ret = -1;
 824	}
 825
 826	/* Optimal I/O a multiple of the physical block size? */
 827	if (t->io_opt & (t->physical_block_size - 1)) {
 828		t->io_opt = 0;
 829		t->misaligned = 1;
 830		ret = -1;
 831	}
 832
 833	/* chunk_sectors a multiple of the physical block size? */
 834	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
 835		t->chunk_sectors = 0;
 836		t->misaligned = 1;
 837		ret = -1;
 838	}
 839
 840	t->raid_partial_stripes_expensive =
 841		max(t->raid_partial_stripes_expensive,
 842		    b->raid_partial_stripes_expensive);
 843
 844	/* Find lowest common alignment_offset */
 845	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
 846		% max(t->physical_block_size, t->io_min);
 847
 848	/* Verify that new alignment_offset is on a logical block boundary */
 849	if (t->alignment_offset & (t->logical_block_size - 1)) {
 850		t->misaligned = 1;
 851		ret = -1;
 852	}
 853
 854	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
 855	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
 856	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
 857
 858	/* Discard alignment and granularity */
 859	if (b->discard_granularity) {
 860		alignment = queue_limit_discard_alignment(b, start);
 861
 862		if (t->discard_granularity != 0 &&
 863		    t->discard_alignment != alignment) {
 864			top = t->discard_granularity + t->discard_alignment;
 865			bottom = b->discard_granularity + alignment;
 866
 867			/* Verify that top and bottom intervals line up */
 868			if ((max(top, bottom) % min(top, bottom)) != 0)
 869				t->discard_misaligned = 1;
 870		}
 871
 872		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
 873						      b->max_discard_sectors);
 874		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
 875							 b->max_hw_discard_sectors);
 876		t->discard_granularity = max(t->discard_granularity,
 877					     b->discard_granularity);
 878		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
 879			t->discard_granularity;
 880	}
 881	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
 882						   b->max_secure_erase_sectors);
 883	t->zone_write_granularity = max(t->zone_write_granularity,
 884					b->zone_write_granularity);
 885	t->zoned = max(t->zoned, b->zoned);
 886	if (!t->zoned) {
 887		t->zone_write_granularity = 0;
 888		t->max_zone_append_sectors = 0;
 889	}
 890	return ret;
 891}
 892EXPORT_SYMBOL(blk_stack_limits);
 893
 894/**
 895 * queue_limits_stack_bdev - adjust queue_limits for stacked devices
 896 * @t:	the stacking driver limits (top device)
 897 * @bdev:  the underlying block device (bottom)
 898 * @offset:  offset to beginning of data within component device
 899 * @pfx: prefix to use for warnings logged
 900 *
 901 * Description:
 902 *    This function is used by stacking drivers like MD and DM to ensure
 903 *    that all component devices have compatible block sizes and
 904 *    alignments.  The stacking driver must provide a queue_limits
 905 *    struct (top) and then iteratively call the stacking function for
 906 *    all component (bottom) devices.  The stacking function will
 907 *    attempt to combine the values and ensure proper alignment.
 908 */
 909void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
 910		sector_t offset, const char *pfx)
 911{
 912	if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits,
 913			get_start_sect(bdev) + offset))
 
 
 914		pr_notice("%s: Warning: Device %pg is misaligned\n",
 915			pfx, bdev);
 
 
 916}
 917EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
 918
 919/**
 920 * blk_queue_update_dma_pad - update pad mask
 921 * @q:     the request queue for the device
 922 * @mask:  pad mask
 923 *
 924 * Update dma pad mask.
 925 *
 926 * Appending pad buffer to a request modifies the last entry of a
 927 * scatter list such that it includes the pad buffer.
 928 **/
 929void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
 930{
 931	if (mask > q->dma_pad_mask)
 932		q->dma_pad_mask = mask;
 933}
 934EXPORT_SYMBOL(blk_queue_update_dma_pad);
 935
 936/**
 937 * blk_queue_segment_boundary - set boundary rules for segment merging
 938 * @q:  the request queue for the device
 939 * @mask:  the memory boundary mask
 940 **/
 941void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
 942{
 943	if (mask < PAGE_SIZE - 1) {
 944		mask = PAGE_SIZE - 1;
 945		pr_info("%s: set to minimum %lx\n", __func__, mask);
 
 946	}
 947
 948	q->limits.seg_boundary_mask = mask;
 949}
 950EXPORT_SYMBOL(blk_queue_segment_boundary);
 951
 952/**
 953 * blk_queue_virt_boundary - set boundary rules for bio merging
 954 * @q:  the request queue for the device
 955 * @mask:  the memory boundary mask
 956 **/
 957void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
 958{
 959	q->limits.virt_boundary_mask = mask;
 960
 961	/*
 962	 * Devices that require a virtual boundary do not support scatter/gather
 963	 * I/O natively, but instead require a descriptor list entry for each
 964	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
 965	 * of that they are not limited by our notion of "segment size".
 966	 */
 967	if (mask)
 968		q->limits.max_segment_size = UINT_MAX;
 969}
 970EXPORT_SYMBOL(blk_queue_virt_boundary);
 971
 972/**
 973 * blk_queue_dma_alignment - set dma length and memory alignment
 974 * @q:     the request queue for the device
 975 * @mask:  alignment mask
 976 *
 977 * description:
 978 *    set required memory and length alignment for direct dma transactions.
 979 *    this is used when building direct io requests for the queue.
 980 *
 981 **/
 982void blk_queue_dma_alignment(struct request_queue *q, int mask)
 983{
 984	q->limits.dma_alignment = mask;
 985}
 986EXPORT_SYMBOL(blk_queue_dma_alignment);
 987
 988/**
 989 * blk_queue_update_dma_alignment - update dma length and memory alignment
 990 * @q:     the request queue for the device
 991 * @mask:  alignment mask
 992 *
 993 * description:
 994 *    update required memory and length alignment for direct dma transactions.
 995 *    If the requested alignment is larger than the current alignment, then
 996 *    the current queue alignment is updated to the new value, otherwise it
 997 *    is left alone.  The design of this is to allow multiple objects
 998 *    (driver, device, transport etc) to set their respective
 999 *    alignments without having them interfere.
1000 *
1001 **/
1002void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
1003{
1004	BUG_ON(mask > PAGE_SIZE);
1005
1006	if (mask > q->limits.dma_alignment)
1007		q->limits.dma_alignment = mask;
1008}
1009EXPORT_SYMBOL(blk_queue_update_dma_alignment);
1010
1011/**
1012 * blk_set_queue_depth - tell the block layer about the device queue depth
1013 * @q:		the request queue for the device
1014 * @depth:		queue depth
1015 *
1016 */
1017void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
1018{
1019	q->queue_depth = depth;
1020	rq_qos_queue_depth_changed(q);
1021}
1022EXPORT_SYMBOL(blk_set_queue_depth);
1023
1024/**
1025 * blk_queue_write_cache - configure queue's write cache
1026 * @q:		the request queue for the device
1027 * @wc:		write back cache on or off
1028 * @fua:	device supports FUA writes, if true
1029 *
1030 * Tell the block layer about the write cache of @q.
1031 */
1032void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
1033{
1034	if (wc) {
1035		blk_queue_flag_set(QUEUE_FLAG_HW_WC, q);
1036		blk_queue_flag_set(QUEUE_FLAG_WC, q);
1037	} else {
1038		blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q);
1039		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
1040	}
1041	if (fua)
1042		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
1043	else
1044		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
 
 
1045}
1046EXPORT_SYMBOL_GPL(blk_queue_write_cache);
1047
1048/**
1049 * blk_queue_required_elevator_features - Set a queue required elevator features
1050 * @q:		the request queue for the target device
1051 * @features:	Required elevator features OR'ed together
1052 *
1053 * Tell the block layer that for the device controlled through @q, only the
1054 * only elevators that can be used are those that implement at least the set of
1055 * features specified by @features.
1056 */
1057void blk_queue_required_elevator_features(struct request_queue *q,
1058					  unsigned int features)
1059{
1060	q->required_elevator_features = features;
1061}
1062EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
1063
1064/**
1065 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
1066 * @q:		the request queue for the device
1067 * @dev:	the device pointer for dma
1068 *
1069 * Tell the block layer about merging the segments by dma map of @q.
1070 */
1071bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1072				       struct device *dev)
1073{
1074	unsigned long boundary = dma_get_merge_boundary(dev);
1075
1076	if (!boundary)
1077		return false;
1078
1079	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
1080	blk_queue_virt_boundary(q, boundary);
1081
1082	return true;
1083}
1084EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
1085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086/**
1087 * disk_set_zoned - inidicate a zoned device
1088 * @disk:	gendisk to configure
 
 
 
 
 
 
 
 
 
1089 */
1090void disk_set_zoned(struct gendisk *disk)
1091{
1092	struct request_queue *q = disk->queue;
1093
1094	WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1095
1096	/*
1097	 * Set the zone write granularity to the device logical block
1098	 * size by default. The driver can change this value if needed.
1099	 */
1100	q->limits.zoned = true;
1101	blk_queue_zone_write_granularity(q, queue_logical_block_size(q));
 
 
 
 
 
1102}
1103EXPORT_SYMBOL_GPL(disk_set_zoned);
1104
1105int bdev_alignment_offset(struct block_device *bdev)
1106{
1107	struct request_queue *q = bdev_get_queue(bdev);
1108
1109	if (q->limits.misaligned)
1110		return -1;
1111	if (bdev_is_partition(bdev))
1112		return queue_limit_alignment_offset(&q->limits,
1113				bdev->bd_start_sect);
1114	return q->limits.alignment_offset;
1115}
1116EXPORT_SYMBOL_GPL(bdev_alignment_offset);
1117
1118unsigned int bdev_discard_alignment(struct block_device *bdev)
1119{
1120	struct request_queue *q = bdev_get_queue(bdev);
1121
1122	if (bdev_is_partition(bdev))
1123		return queue_limit_discard_alignment(&q->limits,
1124				bdev->bd_start_sect);
1125	return q->limits.discard_alignment;
1126}
1127EXPORT_SYMBOL_GPL(bdev_discard_alignment);