Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Functions related to setting various queue properties from drivers
  4 */
  5#include <linux/kernel.h>
  6#include <linux/module.h>
  7#include <linux/init.h>
  8#include <linux/bio.h>
  9#include <linux/blkdev.h>
 10#include <linux/pagemap.h>
 11#include <linux/backing-dev-defs.h>
 12#include <linux/gcd.h>
 13#include <linux/lcm.h>
 14#include <linux/jiffies.h>
 15#include <linux/gfp.h>
 16#include <linux/dma-mapping.h>
 17
 18#include "blk.h"
 19#include "blk-wbt.h"
 20
 21void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
 22{
 23	q->rq_timeout = timeout;
 24}
 25EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
 26
 27/**
 28 * blk_set_default_limits - reset limits to default values
 29 * @lim:  the queue_limits structure to reset
 30 *
 31 * Description:
 32 *   Returns a queue_limit struct to its default state.
 33 */
 34void blk_set_default_limits(struct queue_limits *lim)
 35{
 36	lim->max_segments = BLK_MAX_SEGMENTS;
 37	lim->max_discard_segments = 1;
 38	lim->max_integrity_segments = 0;
 39	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
 40	lim->virt_boundary_mask = 0;
 41	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
 42	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
 43	lim->max_dev_sectors = 0;
 44	lim->chunk_sectors = 0;
 
 45	lim->max_write_zeroes_sectors = 0;
 46	lim->max_zone_append_sectors = 0;
 47	lim->max_discard_sectors = 0;
 48	lim->max_hw_discard_sectors = 0;
 49	lim->max_secure_erase_sectors = 0;
 50	lim->discard_granularity = 0;
 51	lim->discard_alignment = 0;
 52	lim->discard_misaligned = 0;
 53	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
 54	lim->bounce = BLK_BOUNCE_NONE;
 55	lim->alignment_offset = 0;
 56	lim->io_opt = 0;
 57	lim->misaligned = 0;
 58	lim->zoned = BLK_ZONED_NONE;
 59	lim->zone_write_granularity = 0;
 60	lim->dma_alignment = 511;
 61}
 
 62
 63/**
 64 * blk_set_stacking_limits - set default limits for stacking devices
 65 * @lim:  the queue_limits structure to reset
 66 *
 67 * Description:
 68 *   Returns a queue_limit struct to its default state. Should be used
 69 *   by stacking drivers like DM that have no internal limits.
 70 */
 71void blk_set_stacking_limits(struct queue_limits *lim)
 72{
 73	blk_set_default_limits(lim);
 74
 75	/* Inherit limits from component devices */
 76	lim->max_segments = USHRT_MAX;
 77	lim->max_discard_segments = USHRT_MAX;
 78	lim->max_hw_sectors = UINT_MAX;
 79	lim->max_segment_size = UINT_MAX;
 80	lim->max_sectors = UINT_MAX;
 81	lim->max_dev_sectors = UINT_MAX;
 
 82	lim->max_write_zeroes_sectors = UINT_MAX;
 83	lim->max_zone_append_sectors = UINT_MAX;
 84}
 85EXPORT_SYMBOL(blk_set_stacking_limits);
 86
 87/**
 88 * blk_queue_bounce_limit - set bounce buffer limit for queue
 89 * @q: the request queue for the device
 90 * @bounce: bounce limit to enforce
 91 *
 92 * Description:
 93 *    Force bouncing for ISA DMA ranges or highmem.
 94 *
 95 *    DEPRECATED, don't use in new code.
 96 **/
 97void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
 98{
 99	q->limits.bounce = bounce;
100}
101EXPORT_SYMBOL(blk_queue_bounce_limit);
102
103/**
104 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
105 * @q:  the request queue for the device
106 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
107 *
108 * Description:
109 *    Enables a low level driver to set a hard upper limit,
110 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
111 *    the device driver based upon the capabilities of the I/O
112 *    controller.
113 *
114 *    max_dev_sectors is a hard limit imposed by the storage device for
115 *    READ/WRITE requests. It is set by the disk driver.
116 *
117 *    max_sectors is a soft limit imposed by the block layer for
118 *    filesystem type requests.  This value can be overridden on a
119 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
120 *    The soft limit can not exceed max_hw_sectors.
121 **/
122void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
123{
124	struct queue_limits *limits = &q->limits;
125	unsigned int max_sectors;
126
127	if ((max_hw_sectors << 9) < PAGE_SIZE) {
128		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
129		printk(KERN_INFO "%s: set to minimum %d\n",
130		       __func__, max_hw_sectors);
131	}
132
133	max_hw_sectors = round_down(max_hw_sectors,
134				    limits->logical_block_size >> SECTOR_SHIFT);
135	limits->max_hw_sectors = max_hw_sectors;
136
137	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
138	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
139	max_sectors = round_down(max_sectors,
140				 limits->logical_block_size >> SECTOR_SHIFT);
141	limits->max_sectors = max_sectors;
142
143	if (!q->disk)
144		return;
145	q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
146}
147EXPORT_SYMBOL(blk_queue_max_hw_sectors);
148
149/**
150 * blk_queue_chunk_sectors - set size of the chunk for this queue
151 * @q:  the request queue for the device
152 * @chunk_sectors:  chunk sectors in the usual 512b unit
153 *
154 * Description:
155 *    If a driver doesn't want IOs to cross a given chunk size, it can set
156 *    this limit and prevent merging across chunks. Note that the block layer
157 *    must accept a page worth of data at any offset. So if the crossing of
158 *    chunks is a hard limitation in the driver, it must still be prepared
159 *    to split single page bios.
160 **/
161void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
162{
163	q->limits.chunk_sectors = chunk_sectors;
164}
165EXPORT_SYMBOL(blk_queue_chunk_sectors);
166
167/**
168 * blk_queue_max_discard_sectors - set max sectors for a single discard
169 * @q:  the request queue for the device
170 * @max_discard_sectors: maximum number of sectors to discard
171 **/
172void blk_queue_max_discard_sectors(struct request_queue *q,
173		unsigned int max_discard_sectors)
174{
175	q->limits.max_hw_discard_sectors = max_discard_sectors;
176	q->limits.max_discard_sectors = max_discard_sectors;
177}
178EXPORT_SYMBOL(blk_queue_max_discard_sectors);
179
180/**
181 * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
182 * @q:  the request queue for the device
183 * @max_sectors: maximum number of sectors to secure_erase
184 **/
185void blk_queue_max_secure_erase_sectors(struct request_queue *q,
186		unsigned int max_sectors)
187{
188	q->limits.max_secure_erase_sectors = max_sectors;
189}
190EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
191
192/**
193 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
194 *                                      write zeroes
195 * @q:  the request queue for the device
196 * @max_write_zeroes_sectors: maximum number of sectors to write per command
197 **/
198void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
199		unsigned int max_write_zeroes_sectors)
200{
201	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
202}
203EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
204
205/**
206 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
207 * @q:  the request queue for the device
208 * @max_zone_append_sectors: maximum number of sectors to write per command
209 **/
210void blk_queue_max_zone_append_sectors(struct request_queue *q,
211		unsigned int max_zone_append_sectors)
212{
213	unsigned int max_sectors;
214
215	if (WARN_ON(!blk_queue_is_zoned(q)))
216		return;
217
218	max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
219	max_sectors = min(q->limits.chunk_sectors, max_sectors);
220
221	/*
222	 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
223	 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
224	 * or the max_hw_sectors limit not set.
225	 */
226	WARN_ON(!max_sectors);
227
228	q->limits.max_zone_append_sectors = max_sectors;
229}
230EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
231
232/**
233 * blk_queue_max_segments - set max hw segments for a request for this queue
234 * @q:  the request queue for the device
235 * @max_segments:  max number of segments
236 *
237 * Description:
238 *    Enables a low level driver to set an upper limit on the number of
239 *    hw data segments in a request.
240 **/
241void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
242{
243	if (!max_segments) {
244		max_segments = 1;
245		printk(KERN_INFO "%s: set to minimum %d\n",
246		       __func__, max_segments);
247	}
248
249	q->limits.max_segments = max_segments;
250}
251EXPORT_SYMBOL(blk_queue_max_segments);
252
253/**
254 * blk_queue_max_discard_segments - set max segments for discard requests
255 * @q:  the request queue for the device
256 * @max_segments:  max number of segments
257 *
258 * Description:
259 *    Enables a low level driver to set an upper limit on the number of
260 *    segments in a discard request.
261 **/
262void blk_queue_max_discard_segments(struct request_queue *q,
263		unsigned short max_segments)
264{
265	q->limits.max_discard_segments = max_segments;
266}
267EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
268
269/**
270 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
271 * @q:  the request queue for the device
272 * @max_size:  max size of segment in bytes
273 *
274 * Description:
275 *    Enables a low level driver to set an upper limit on the size of a
276 *    coalesced segment
277 **/
278void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
279{
280	if (max_size < PAGE_SIZE) {
281		max_size = PAGE_SIZE;
282		printk(KERN_INFO "%s: set to minimum %d\n",
283		       __func__, max_size);
284	}
285
286	/* see blk_queue_virt_boundary() for the explanation */
287	WARN_ON_ONCE(q->limits.virt_boundary_mask);
288
289	q->limits.max_segment_size = max_size;
290}
291EXPORT_SYMBOL(blk_queue_max_segment_size);
292
293/**
294 * blk_queue_logical_block_size - set logical block size for the queue
295 * @q:  the request queue for the device
296 * @size:  the logical block size, in bytes
297 *
298 * Description:
299 *   This should be set to the lowest possible block size that the
300 *   storage device can address.  The default of 512 covers most
301 *   hardware.
302 **/
303void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
304{
305	struct queue_limits *limits = &q->limits;
306
307	limits->logical_block_size = size;
308
309	if (limits->physical_block_size < size)
310		limits->physical_block_size = size;
311
312	if (limits->io_min < limits->physical_block_size)
313		limits->io_min = limits->physical_block_size;
314
315	limits->max_hw_sectors =
316		round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
317	limits->max_sectors =
318		round_down(limits->max_sectors, size >> SECTOR_SHIFT);
319}
320EXPORT_SYMBOL(blk_queue_logical_block_size);
321
322/**
323 * blk_queue_physical_block_size - set physical block size for the queue
324 * @q:  the request queue for the device
325 * @size:  the physical block size, in bytes
326 *
327 * Description:
328 *   This should be set to the lowest possible sector size that the
329 *   hardware can operate on without reverting to read-modify-write
330 *   operations.
331 */
332void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
333{
334	q->limits.physical_block_size = size;
335
336	if (q->limits.physical_block_size < q->limits.logical_block_size)
337		q->limits.physical_block_size = q->limits.logical_block_size;
338
339	if (q->limits.io_min < q->limits.physical_block_size)
340		q->limits.io_min = q->limits.physical_block_size;
341}
342EXPORT_SYMBOL(blk_queue_physical_block_size);
343
344/**
345 * blk_queue_zone_write_granularity - set zone write granularity for the queue
346 * @q:  the request queue for the zoned device
347 * @size:  the zone write granularity size, in bytes
348 *
349 * Description:
350 *   This should be set to the lowest possible size allowing to write in
351 *   sequential zones of a zoned block device.
352 */
353void blk_queue_zone_write_granularity(struct request_queue *q,
354				      unsigned int size)
355{
356	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
357		return;
358
359	q->limits.zone_write_granularity = size;
360
361	if (q->limits.zone_write_granularity < q->limits.logical_block_size)
362		q->limits.zone_write_granularity = q->limits.logical_block_size;
363}
364EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
365
366/**
367 * blk_queue_alignment_offset - set physical block alignment offset
368 * @q:	the request queue for the device
369 * @offset: alignment offset in bytes
370 *
371 * Description:
372 *   Some devices are naturally misaligned to compensate for things like
373 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
374 *   should call this function for devices whose first sector is not
375 *   naturally aligned.
376 */
377void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
378{
379	q->limits.alignment_offset =
380		offset & (q->limits.physical_block_size - 1);
381	q->limits.misaligned = 0;
382}
383EXPORT_SYMBOL(blk_queue_alignment_offset);
384
385void disk_update_readahead(struct gendisk *disk)
386{
387	struct request_queue *q = disk->queue;
388
389	/*
390	 * For read-ahead of large files to be effective, we need to read ahead
391	 * at least twice the optimal I/O size.
392	 */
393	disk->bdi->ra_pages =
394		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
395	disk->bdi->io_pages = queue_max_sectors(q) >> (PAGE_SHIFT - 9);
 
396}
397EXPORT_SYMBOL_GPL(disk_update_readahead);
398
399/**
400 * blk_limits_io_min - set minimum request size for a device
401 * @limits: the queue limits
402 * @min:  smallest I/O size in bytes
403 *
404 * Description:
405 *   Some devices have an internal block size bigger than the reported
406 *   hardware sector size.  This function can be used to signal the
407 *   smallest I/O the device can perform without incurring a performance
408 *   penalty.
409 */
410void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
411{
412	limits->io_min = min;
413
414	if (limits->io_min < limits->logical_block_size)
415		limits->io_min = limits->logical_block_size;
416
417	if (limits->io_min < limits->physical_block_size)
418		limits->io_min = limits->physical_block_size;
419}
420EXPORT_SYMBOL(blk_limits_io_min);
421
422/**
423 * blk_queue_io_min - set minimum request size for the queue
424 * @q:	the request queue for the device
425 * @min:  smallest I/O size in bytes
426 *
427 * Description:
428 *   Storage devices may report a granularity or preferred minimum I/O
429 *   size which is the smallest request the device can perform without
430 *   incurring a performance penalty.  For disk drives this is often the
431 *   physical block size.  For RAID arrays it is often the stripe chunk
432 *   size.  A properly aligned multiple of minimum_io_size is the
433 *   preferred request size for workloads where a high number of I/O
434 *   operations is desired.
435 */
436void blk_queue_io_min(struct request_queue *q, unsigned int min)
437{
438	blk_limits_io_min(&q->limits, min);
439}
440EXPORT_SYMBOL(blk_queue_io_min);
441
442/**
443 * blk_limits_io_opt - set optimal request size for a device
444 * @limits: the queue limits
445 * @opt:  smallest I/O size in bytes
446 *
447 * Description:
448 *   Storage devices may report an optimal I/O size, which is the
449 *   device's preferred unit for sustained I/O.  This is rarely reported
450 *   for disk drives.  For RAID arrays it is usually the stripe width or
451 *   the internal track size.  A properly aligned multiple of
452 *   optimal_io_size is the preferred request size for workloads where
453 *   sustained throughput is desired.
454 */
455void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
456{
457	limits->io_opt = opt;
458}
459EXPORT_SYMBOL(blk_limits_io_opt);
460
461/**
462 * blk_queue_io_opt - set optimal request size for the queue
463 * @q:	the request queue for the device
464 * @opt:  optimal request size in bytes
465 *
466 * Description:
467 *   Storage devices may report an optimal I/O size, which is the
468 *   device's preferred unit for sustained I/O.  This is rarely reported
469 *   for disk drives.  For RAID arrays it is usually the stripe width or
470 *   the internal track size.  A properly aligned multiple of
471 *   optimal_io_size is the preferred request size for workloads where
472 *   sustained throughput is desired.
473 */
474void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
475{
476	blk_limits_io_opt(&q->limits, opt);
477	if (!q->disk)
478		return;
479	q->disk->bdi->ra_pages =
480		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
481}
482EXPORT_SYMBOL(blk_queue_io_opt);
483
484static int queue_limit_alignment_offset(const struct queue_limits *lim,
485		sector_t sector)
486{
487	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
488	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
489		<< SECTOR_SHIFT;
490
491	return (granularity + lim->alignment_offset - alignment) % granularity;
492}
493
494static unsigned int queue_limit_discard_alignment(
495		const struct queue_limits *lim, sector_t sector)
496{
497	unsigned int alignment, granularity, offset;
498
499	if (!lim->max_discard_sectors)
500		return 0;
501
502	/* Why are these in bytes, not sectors? */
503	alignment = lim->discard_alignment >> SECTOR_SHIFT;
504	granularity = lim->discard_granularity >> SECTOR_SHIFT;
505	if (!granularity)
506		return 0;
507
508	/* Offset of the partition start in 'granularity' sectors */
509	offset = sector_div(sector, granularity);
510
511	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
512	offset = (granularity + alignment - offset) % granularity;
513
514	/* Turn it back into bytes, gaah */
515	return offset << SECTOR_SHIFT;
516}
517
518static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
519{
520	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
521	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
522		sectors = PAGE_SIZE >> SECTOR_SHIFT;
523	return sectors;
524}
525
526/**
527 * blk_stack_limits - adjust queue_limits for stacked devices
528 * @t:	the stacking driver limits (top device)
529 * @b:  the underlying queue limits (bottom, component device)
530 * @start:  first data sector within component device
531 *
532 * Description:
533 *    This function is used by stacking drivers like MD and DM to ensure
534 *    that all component devices have compatible block sizes and
535 *    alignments.  The stacking driver must provide a queue_limits
536 *    struct (top) and then iteratively call the stacking function for
537 *    all component (bottom) devices.  The stacking function will
538 *    attempt to combine the values and ensure proper alignment.
539 *
540 *    Returns 0 if the top and bottom queue_limits are compatible.  The
541 *    top device's block sizes and alignment offsets may be adjusted to
542 *    ensure alignment with the bottom device. If no compatible sizes
543 *    and alignments exist, -1 is returned and the resulting top
544 *    queue_limits will have the misaligned flag set to indicate that
545 *    the alignment_offset is undefined.
546 */
547int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
548		     sector_t start)
549{
550	unsigned int top, bottom, alignment, ret = 0;
551
552	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
553	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
554	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
 
 
555	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
556					b->max_write_zeroes_sectors);
557	t->max_zone_append_sectors = min(t->max_zone_append_sectors,
558					b->max_zone_append_sectors);
559	t->bounce = max(t->bounce, b->bounce);
560
561	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
562					    b->seg_boundary_mask);
563	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
564					    b->virt_boundary_mask);
565
566	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
567	t->max_discard_segments = min_not_zero(t->max_discard_segments,
568					       b->max_discard_segments);
569	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
570						 b->max_integrity_segments);
571
572	t->max_segment_size = min_not_zero(t->max_segment_size,
573					   b->max_segment_size);
574
575	t->misaligned |= b->misaligned;
576
577	alignment = queue_limit_alignment_offset(b, start);
578
579	/* Bottom device has different alignment.  Check that it is
580	 * compatible with the current top alignment.
581	 */
582	if (t->alignment_offset != alignment) {
583
584		top = max(t->physical_block_size, t->io_min)
585			+ t->alignment_offset;
586		bottom = max(b->physical_block_size, b->io_min) + alignment;
587
588		/* Verify that top and bottom intervals line up */
589		if (max(top, bottom) % min(top, bottom)) {
590			t->misaligned = 1;
591			ret = -1;
592		}
593	}
594
595	t->logical_block_size = max(t->logical_block_size,
596				    b->logical_block_size);
597
598	t->physical_block_size = max(t->physical_block_size,
599				     b->physical_block_size);
600
601	t->io_min = max(t->io_min, b->io_min);
602	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
603	t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
604
605	/* Set non-power-of-2 compatible chunk_sectors boundary */
606	if (b->chunk_sectors)
607		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
608
609	/* Physical block size a multiple of the logical block size? */
610	if (t->physical_block_size & (t->logical_block_size - 1)) {
611		t->physical_block_size = t->logical_block_size;
612		t->misaligned = 1;
613		ret = -1;
614	}
615
616	/* Minimum I/O a multiple of the physical block size? */
617	if (t->io_min & (t->physical_block_size - 1)) {
618		t->io_min = t->physical_block_size;
619		t->misaligned = 1;
620		ret = -1;
621	}
622
623	/* Optimal I/O a multiple of the physical block size? */
624	if (t->io_opt & (t->physical_block_size - 1)) {
625		t->io_opt = 0;
626		t->misaligned = 1;
627		ret = -1;
628	}
629
630	/* chunk_sectors a multiple of the physical block size? */
631	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
632		t->chunk_sectors = 0;
633		t->misaligned = 1;
634		ret = -1;
635	}
636
637	t->raid_partial_stripes_expensive =
638		max(t->raid_partial_stripes_expensive,
639		    b->raid_partial_stripes_expensive);
640
641	/* Find lowest common alignment_offset */
642	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
643		% max(t->physical_block_size, t->io_min);
644
645	/* Verify that new alignment_offset is on a logical block boundary */
646	if (t->alignment_offset & (t->logical_block_size - 1)) {
647		t->misaligned = 1;
648		ret = -1;
649	}
650
651	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
652	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
653	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
654
655	/* Discard alignment and granularity */
656	if (b->discard_granularity) {
657		alignment = queue_limit_discard_alignment(b, start);
658
659		if (t->discard_granularity != 0 &&
660		    t->discard_alignment != alignment) {
661			top = t->discard_granularity + t->discard_alignment;
662			bottom = b->discard_granularity + alignment;
663
664			/* Verify that top and bottom intervals line up */
665			if ((max(top, bottom) % min(top, bottom)) != 0)
666				t->discard_misaligned = 1;
667		}
668
669		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
670						      b->max_discard_sectors);
671		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
672							 b->max_hw_discard_sectors);
673		t->discard_granularity = max(t->discard_granularity,
674					     b->discard_granularity);
675		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
676			t->discard_granularity;
677	}
678	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
679						   b->max_secure_erase_sectors);
680	t->zone_write_granularity = max(t->zone_write_granularity,
681					b->zone_write_granularity);
682	t->zoned = max(t->zoned, b->zoned);
683	return ret;
684}
685EXPORT_SYMBOL(blk_stack_limits);
686
687/**
688 * disk_stack_limits - adjust queue limits for stacked drivers
689 * @disk:  MD/DM gendisk (top)
690 * @bdev:  the underlying block device (bottom)
691 * @offset:  offset to beginning of data within component device
692 *
693 * Description:
694 *    Merges the limits for a top level gendisk and a bottom level
695 *    block_device.
696 */
697void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
698		       sector_t offset)
699{
700	struct request_queue *t = disk->queue;
701
702	if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
703			get_start_sect(bdev) + (offset >> 9)) < 0)
704		pr_notice("%s: Warning: Device %pg is misaligned\n",
705			disk->disk_name, bdev);
 
 
706
707	disk_update_readahead(disk);
 
 
 
 
708}
709EXPORT_SYMBOL(disk_stack_limits);
710
711/**
712 * blk_queue_update_dma_pad - update pad mask
713 * @q:     the request queue for the device
714 * @mask:  pad mask
715 *
716 * Update dma pad mask.
717 *
718 * Appending pad buffer to a request modifies the last entry of a
719 * scatter list such that it includes the pad buffer.
720 **/
721void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
722{
723	if (mask > q->dma_pad_mask)
724		q->dma_pad_mask = mask;
725}
726EXPORT_SYMBOL(blk_queue_update_dma_pad);
727
728/**
729 * blk_queue_segment_boundary - set boundary rules for segment merging
730 * @q:  the request queue for the device
731 * @mask:  the memory boundary mask
732 **/
733void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
734{
735	if (mask < PAGE_SIZE - 1) {
736		mask = PAGE_SIZE - 1;
737		printk(KERN_INFO "%s: set to minimum %lx\n",
738		       __func__, mask);
739	}
740
741	q->limits.seg_boundary_mask = mask;
742}
743EXPORT_SYMBOL(blk_queue_segment_boundary);
744
745/**
746 * blk_queue_virt_boundary - set boundary rules for bio merging
747 * @q:  the request queue for the device
748 * @mask:  the memory boundary mask
749 **/
750void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
751{
752	q->limits.virt_boundary_mask = mask;
753
754	/*
755	 * Devices that require a virtual boundary do not support scatter/gather
756	 * I/O natively, but instead require a descriptor list entry for each
757	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
758	 * of that they are not limited by our notion of "segment size".
759	 */
760	if (mask)
761		q->limits.max_segment_size = UINT_MAX;
762}
763EXPORT_SYMBOL(blk_queue_virt_boundary);
764
765/**
766 * blk_queue_dma_alignment - set dma length and memory alignment
767 * @q:     the request queue for the device
768 * @mask:  alignment mask
769 *
770 * description:
771 *    set required memory and length alignment for direct dma transactions.
772 *    this is used when building direct io requests for the queue.
773 *
774 **/
775void blk_queue_dma_alignment(struct request_queue *q, int mask)
776{
777	q->limits.dma_alignment = mask;
778}
779EXPORT_SYMBOL(blk_queue_dma_alignment);
780
781/**
782 * blk_queue_update_dma_alignment - update dma length and memory alignment
783 * @q:     the request queue for the device
784 * @mask:  alignment mask
785 *
786 * description:
787 *    update required memory and length alignment for direct dma transactions.
788 *    If the requested alignment is larger than the current alignment, then
789 *    the current queue alignment is updated to the new value, otherwise it
790 *    is left alone.  The design of this is to allow multiple objects
791 *    (driver, device, transport etc) to set their respective
792 *    alignments without having them interfere.
793 *
794 **/
795void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
796{
797	BUG_ON(mask > PAGE_SIZE);
798
799	if (mask > q->limits.dma_alignment)
800		q->limits.dma_alignment = mask;
801}
802EXPORT_SYMBOL(blk_queue_update_dma_alignment);
803
804/**
805 * blk_set_queue_depth - tell the block layer about the device queue depth
806 * @q:		the request queue for the device
807 * @depth:		queue depth
808 *
809 */
810void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
811{
812	q->queue_depth = depth;
813	rq_qos_queue_depth_changed(q);
814}
815EXPORT_SYMBOL(blk_set_queue_depth);
816
817/**
818 * blk_queue_write_cache - configure queue's write cache
819 * @q:		the request queue for the device
820 * @wc:		write back cache on or off
821 * @fua:	device supports FUA writes, if true
822 *
823 * Tell the block layer about the write cache of @q.
824 */
825void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
826{
827	if (wc)
828		blk_queue_flag_set(QUEUE_FLAG_WC, q);
829	else
830		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
831	if (fua)
832		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
833	else
834		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
835
836	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
837}
838EXPORT_SYMBOL_GPL(blk_queue_write_cache);
839
840/**
841 * blk_queue_required_elevator_features - Set a queue required elevator features
842 * @q:		the request queue for the target device
843 * @features:	Required elevator features OR'ed together
844 *
845 * Tell the block layer that for the device controlled through @q, only the
846 * only elevators that can be used are those that implement at least the set of
847 * features specified by @features.
848 */
849void blk_queue_required_elevator_features(struct request_queue *q,
850					  unsigned int features)
851{
852	q->required_elevator_features = features;
853}
854EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
855
856/**
857 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
858 * @q:		the request queue for the device
859 * @dev:	the device pointer for dma
860 *
861 * Tell the block layer about merging the segments by dma map of @q.
862 */
863bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
864				       struct device *dev)
865{
866	unsigned long boundary = dma_get_merge_boundary(dev);
867
868	if (!boundary)
869		return false;
870
871	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
872	blk_queue_virt_boundary(q, boundary);
873
874	return true;
875}
876EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
877
878static bool disk_has_partitions(struct gendisk *disk)
879{
880	unsigned long idx;
881	struct block_device *part;
882	bool ret = false;
883
884	rcu_read_lock();
885	xa_for_each(&disk->part_tbl, idx, part) {
886		if (bdev_is_partition(part)) {
887			ret = true;
888			break;
889		}
890	}
891	rcu_read_unlock();
892
893	return ret;
894}
895
896/**
897 * disk_set_zoned - configure the zoned model for a disk
898 * @disk:	the gendisk of the queue to configure
899 * @model:	the zoned model to set
900 *
901 * Set the zoned model of @disk to @model.
902 *
903 * When @model is BLK_ZONED_HM (host managed), this should be called only
904 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
905 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
906 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
907 * on the disk.
908 */
909void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
910{
911	struct request_queue *q = disk->queue;
912
913	switch (model) {
914	case BLK_ZONED_HM:
915		/*
916		 * Host managed devices are supported only if
917		 * CONFIG_BLK_DEV_ZONED is enabled.
918		 */
919		WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
920		break;
921	case BLK_ZONED_HA:
922		/*
923		 * Host aware devices can be treated either as regular block
924		 * devices (similar to drive managed devices) or as zoned block
925		 * devices to take advantage of the zone command set, similarly
926		 * to host managed devices. We try the latter if there are no
927		 * partitions and zoned block device support is enabled, else
928		 * we do nothing special as far as the block layer is concerned.
929		 */
930		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
931		    disk_has_partitions(disk))
932			model = BLK_ZONED_NONE;
933		break;
934	case BLK_ZONED_NONE:
935	default:
936		if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
937			model = BLK_ZONED_NONE;
938		break;
939	}
940
941	q->limits.zoned = model;
942	if (model != BLK_ZONED_NONE) {
943		/*
944		 * Set the zone write granularity to the device logical block
945		 * size by default. The driver can change this value if needed.
946		 */
947		blk_queue_zone_write_granularity(q,
948						queue_logical_block_size(q));
949	} else {
950		disk_clear_zone_settings(disk);
951	}
952}
953EXPORT_SYMBOL_GPL(disk_set_zoned);
954
955int bdev_alignment_offset(struct block_device *bdev)
956{
957	struct request_queue *q = bdev_get_queue(bdev);
958
959	if (q->limits.misaligned)
960		return -1;
961	if (bdev_is_partition(bdev))
962		return queue_limit_alignment_offset(&q->limits,
963				bdev->bd_start_sect);
964	return q->limits.alignment_offset;
965}
966EXPORT_SYMBOL_GPL(bdev_alignment_offset);
967
968unsigned int bdev_discard_alignment(struct block_device *bdev)
969{
970	struct request_queue *q = bdev_get_queue(bdev);
971
972	if (bdev_is_partition(bdev))
973		return queue_limit_discard_alignment(&q->limits,
974				bdev->bd_start_sect);
975	return q->limits.discard_alignment;
976}
977EXPORT_SYMBOL_GPL(bdev_discard_alignment);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Functions related to setting various queue properties from drivers
  4 */
  5#include <linux/kernel.h>
  6#include <linux/module.h>
  7#include <linux/init.h>
  8#include <linux/bio.h>
  9#include <linux/blkdev.h>
 10#include <linux/pagemap.h>
 
 11#include <linux/gcd.h>
 12#include <linux/lcm.h>
 13#include <linux/jiffies.h>
 14#include <linux/gfp.h>
 15#include <linux/dma-mapping.h>
 16
 17#include "blk.h"
 18#include "blk-wbt.h"
 19
 20void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
 21{
 22	q->rq_timeout = timeout;
 23}
 24EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
 25
 26/**
 27 * blk_set_default_limits - reset limits to default values
 28 * @lim:  the queue_limits structure to reset
 29 *
 30 * Description:
 31 *   Returns a queue_limit struct to its default state.
 32 */
 33void blk_set_default_limits(struct queue_limits *lim)
 34{
 35	lim->max_segments = BLK_MAX_SEGMENTS;
 36	lim->max_discard_segments = 1;
 37	lim->max_integrity_segments = 0;
 38	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
 39	lim->virt_boundary_mask = 0;
 40	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
 41	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
 42	lim->max_dev_sectors = 0;
 43	lim->chunk_sectors = 0;
 44	lim->max_write_same_sectors = 0;
 45	lim->max_write_zeroes_sectors = 0;
 46	lim->max_zone_append_sectors = 0;
 47	lim->max_discard_sectors = 0;
 48	lim->max_hw_discard_sectors = 0;
 
 49	lim->discard_granularity = 0;
 50	lim->discard_alignment = 0;
 51	lim->discard_misaligned = 0;
 52	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
 53	lim->bounce = BLK_BOUNCE_NONE;
 54	lim->alignment_offset = 0;
 55	lim->io_opt = 0;
 56	lim->misaligned = 0;
 57	lim->zoned = BLK_ZONED_NONE;
 58	lim->zone_write_granularity = 0;
 
 59}
 60EXPORT_SYMBOL(blk_set_default_limits);
 61
 62/**
 63 * blk_set_stacking_limits - set default limits for stacking devices
 64 * @lim:  the queue_limits structure to reset
 65 *
 66 * Description:
 67 *   Returns a queue_limit struct to its default state. Should be used
 68 *   by stacking drivers like DM that have no internal limits.
 69 */
 70void blk_set_stacking_limits(struct queue_limits *lim)
 71{
 72	blk_set_default_limits(lim);
 73
 74	/* Inherit limits from component devices */
 75	lim->max_segments = USHRT_MAX;
 76	lim->max_discard_segments = USHRT_MAX;
 77	lim->max_hw_sectors = UINT_MAX;
 78	lim->max_segment_size = UINT_MAX;
 79	lim->max_sectors = UINT_MAX;
 80	lim->max_dev_sectors = UINT_MAX;
 81	lim->max_write_same_sectors = UINT_MAX;
 82	lim->max_write_zeroes_sectors = UINT_MAX;
 83	lim->max_zone_append_sectors = UINT_MAX;
 84}
 85EXPORT_SYMBOL(blk_set_stacking_limits);
 86
 87/**
 88 * blk_queue_bounce_limit - set bounce buffer limit for queue
 89 * @q: the request queue for the device
 90 * @bounce: bounce limit to enforce
 91 *
 92 * Description:
 93 *    Force bouncing for ISA DMA ranges or highmem.
 94 *
 95 *    DEPRECATED, don't use in new code.
 96 **/
 97void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
 98{
 99	q->limits.bounce = bounce;
100}
101EXPORT_SYMBOL(blk_queue_bounce_limit);
102
103/**
104 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
105 * @q:  the request queue for the device
106 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
107 *
108 * Description:
109 *    Enables a low level driver to set a hard upper limit,
110 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
111 *    the device driver based upon the capabilities of the I/O
112 *    controller.
113 *
114 *    max_dev_sectors is a hard limit imposed by the storage device for
115 *    READ/WRITE requests. It is set by the disk driver.
116 *
117 *    max_sectors is a soft limit imposed by the block layer for
118 *    filesystem type requests.  This value can be overridden on a
119 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
120 *    The soft limit can not exceed max_hw_sectors.
121 **/
122void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
123{
124	struct queue_limits *limits = &q->limits;
125	unsigned int max_sectors;
126
127	if ((max_hw_sectors << 9) < PAGE_SIZE) {
128		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
129		printk(KERN_INFO "%s: set to minimum %d\n",
130		       __func__, max_hw_sectors);
131	}
132
133	max_hw_sectors = round_down(max_hw_sectors,
134				    limits->logical_block_size >> SECTOR_SHIFT);
135	limits->max_hw_sectors = max_hw_sectors;
136
137	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
138	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
139	max_sectors = round_down(max_sectors,
140				 limits->logical_block_size >> SECTOR_SHIFT);
141	limits->max_sectors = max_sectors;
142
143	q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
 
 
144}
145EXPORT_SYMBOL(blk_queue_max_hw_sectors);
146
147/**
148 * blk_queue_chunk_sectors - set size of the chunk for this queue
149 * @q:  the request queue for the device
150 * @chunk_sectors:  chunk sectors in the usual 512b unit
151 *
152 * Description:
153 *    If a driver doesn't want IOs to cross a given chunk size, it can set
154 *    this limit and prevent merging across chunks. Note that the block layer
155 *    must accept a page worth of data at any offset. So if the crossing of
156 *    chunks is a hard limitation in the driver, it must still be prepared
157 *    to split single page bios.
158 **/
159void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
160{
161	q->limits.chunk_sectors = chunk_sectors;
162}
163EXPORT_SYMBOL(blk_queue_chunk_sectors);
164
165/**
166 * blk_queue_max_discard_sectors - set max sectors for a single discard
167 * @q:  the request queue for the device
168 * @max_discard_sectors: maximum number of sectors to discard
169 **/
170void blk_queue_max_discard_sectors(struct request_queue *q,
171		unsigned int max_discard_sectors)
172{
173	q->limits.max_hw_discard_sectors = max_discard_sectors;
174	q->limits.max_discard_sectors = max_discard_sectors;
175}
176EXPORT_SYMBOL(blk_queue_max_discard_sectors);
177
178/**
179 * blk_queue_max_write_same_sectors - set max sectors for a single write same
180 * @q:  the request queue for the device
181 * @max_write_same_sectors: maximum number of sectors to write per command
182 **/
183void blk_queue_max_write_same_sectors(struct request_queue *q,
184				      unsigned int max_write_same_sectors)
185{
186	q->limits.max_write_same_sectors = max_write_same_sectors;
187}
188EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
189
190/**
191 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
192 *                                      write zeroes
193 * @q:  the request queue for the device
194 * @max_write_zeroes_sectors: maximum number of sectors to write per command
195 **/
196void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
197		unsigned int max_write_zeroes_sectors)
198{
199	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
200}
201EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
202
203/**
204 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
205 * @q:  the request queue for the device
206 * @max_zone_append_sectors: maximum number of sectors to write per command
207 **/
208void blk_queue_max_zone_append_sectors(struct request_queue *q,
209		unsigned int max_zone_append_sectors)
210{
211	unsigned int max_sectors;
212
213	if (WARN_ON(!blk_queue_is_zoned(q)))
214		return;
215
216	max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
217	max_sectors = min(q->limits.chunk_sectors, max_sectors);
218
219	/*
220	 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
221	 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
222	 * or the max_hw_sectors limit not set.
223	 */
224	WARN_ON(!max_sectors);
225
226	q->limits.max_zone_append_sectors = max_sectors;
227}
228EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
229
230/**
231 * blk_queue_max_segments - set max hw segments for a request for this queue
232 * @q:  the request queue for the device
233 * @max_segments:  max number of segments
234 *
235 * Description:
236 *    Enables a low level driver to set an upper limit on the number of
237 *    hw data segments in a request.
238 **/
239void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
240{
241	if (!max_segments) {
242		max_segments = 1;
243		printk(KERN_INFO "%s: set to minimum %d\n",
244		       __func__, max_segments);
245	}
246
247	q->limits.max_segments = max_segments;
248}
249EXPORT_SYMBOL(blk_queue_max_segments);
250
251/**
252 * blk_queue_max_discard_segments - set max segments for discard requests
253 * @q:  the request queue for the device
254 * @max_segments:  max number of segments
255 *
256 * Description:
257 *    Enables a low level driver to set an upper limit on the number of
258 *    segments in a discard request.
259 **/
260void blk_queue_max_discard_segments(struct request_queue *q,
261		unsigned short max_segments)
262{
263	q->limits.max_discard_segments = max_segments;
264}
265EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
266
267/**
268 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
269 * @q:  the request queue for the device
270 * @max_size:  max size of segment in bytes
271 *
272 * Description:
273 *    Enables a low level driver to set an upper limit on the size of a
274 *    coalesced segment
275 **/
276void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
277{
278	if (max_size < PAGE_SIZE) {
279		max_size = PAGE_SIZE;
280		printk(KERN_INFO "%s: set to minimum %d\n",
281		       __func__, max_size);
282	}
283
284	/* see blk_queue_virt_boundary() for the explanation */
285	WARN_ON_ONCE(q->limits.virt_boundary_mask);
286
287	q->limits.max_segment_size = max_size;
288}
289EXPORT_SYMBOL(blk_queue_max_segment_size);
290
291/**
292 * blk_queue_logical_block_size - set logical block size for the queue
293 * @q:  the request queue for the device
294 * @size:  the logical block size, in bytes
295 *
296 * Description:
297 *   This should be set to the lowest possible block size that the
298 *   storage device can address.  The default of 512 covers most
299 *   hardware.
300 **/
301void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
302{
303	struct queue_limits *limits = &q->limits;
304
305	limits->logical_block_size = size;
306
307	if (limits->physical_block_size < size)
308		limits->physical_block_size = size;
309
310	if (limits->io_min < limits->physical_block_size)
311		limits->io_min = limits->physical_block_size;
312
313	limits->max_hw_sectors =
314		round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
315	limits->max_sectors =
316		round_down(limits->max_sectors, size >> SECTOR_SHIFT);
317}
318EXPORT_SYMBOL(blk_queue_logical_block_size);
319
320/**
321 * blk_queue_physical_block_size - set physical block size for the queue
322 * @q:  the request queue for the device
323 * @size:  the physical block size, in bytes
324 *
325 * Description:
326 *   This should be set to the lowest possible sector size that the
327 *   hardware can operate on without reverting to read-modify-write
328 *   operations.
329 */
330void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
331{
332	q->limits.physical_block_size = size;
333
334	if (q->limits.physical_block_size < q->limits.logical_block_size)
335		q->limits.physical_block_size = q->limits.logical_block_size;
336
337	if (q->limits.io_min < q->limits.physical_block_size)
338		q->limits.io_min = q->limits.physical_block_size;
339}
340EXPORT_SYMBOL(blk_queue_physical_block_size);
341
342/**
343 * blk_queue_zone_write_granularity - set zone write granularity for the queue
344 * @q:  the request queue for the zoned device
345 * @size:  the zone write granularity size, in bytes
346 *
347 * Description:
348 *   This should be set to the lowest possible size allowing to write in
349 *   sequential zones of a zoned block device.
350 */
351void blk_queue_zone_write_granularity(struct request_queue *q,
352				      unsigned int size)
353{
354	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
355		return;
356
357	q->limits.zone_write_granularity = size;
358
359	if (q->limits.zone_write_granularity < q->limits.logical_block_size)
360		q->limits.zone_write_granularity = q->limits.logical_block_size;
361}
362EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
363
364/**
365 * blk_queue_alignment_offset - set physical block alignment offset
366 * @q:	the request queue for the device
367 * @offset: alignment offset in bytes
368 *
369 * Description:
370 *   Some devices are naturally misaligned to compensate for things like
371 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
372 *   should call this function for devices whose first sector is not
373 *   naturally aligned.
374 */
375void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
376{
377	q->limits.alignment_offset =
378		offset & (q->limits.physical_block_size - 1);
379	q->limits.misaligned = 0;
380}
381EXPORT_SYMBOL(blk_queue_alignment_offset);
382
383void blk_queue_update_readahead(struct request_queue *q)
384{
 
 
385	/*
386	 * For read-ahead of large files to be effective, we need to read ahead
387	 * at least twice the optimal I/O size.
388	 */
389	q->backing_dev_info->ra_pages =
390		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
391	q->backing_dev_info->io_pages =
392		queue_max_sectors(q) >> (PAGE_SHIFT - 9);
393}
394EXPORT_SYMBOL_GPL(blk_queue_update_readahead);
395
396/**
397 * blk_limits_io_min - set minimum request size for a device
398 * @limits: the queue limits
399 * @min:  smallest I/O size in bytes
400 *
401 * Description:
402 *   Some devices have an internal block size bigger than the reported
403 *   hardware sector size.  This function can be used to signal the
404 *   smallest I/O the device can perform without incurring a performance
405 *   penalty.
406 */
407void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
408{
409	limits->io_min = min;
410
411	if (limits->io_min < limits->logical_block_size)
412		limits->io_min = limits->logical_block_size;
413
414	if (limits->io_min < limits->physical_block_size)
415		limits->io_min = limits->physical_block_size;
416}
417EXPORT_SYMBOL(blk_limits_io_min);
418
419/**
420 * blk_queue_io_min - set minimum request size for the queue
421 * @q:	the request queue for the device
422 * @min:  smallest I/O size in bytes
423 *
424 * Description:
425 *   Storage devices may report a granularity or preferred minimum I/O
426 *   size which is the smallest request the device can perform without
427 *   incurring a performance penalty.  For disk drives this is often the
428 *   physical block size.  For RAID arrays it is often the stripe chunk
429 *   size.  A properly aligned multiple of minimum_io_size is the
430 *   preferred request size for workloads where a high number of I/O
431 *   operations is desired.
432 */
433void blk_queue_io_min(struct request_queue *q, unsigned int min)
434{
435	blk_limits_io_min(&q->limits, min);
436}
437EXPORT_SYMBOL(blk_queue_io_min);
438
439/**
440 * blk_limits_io_opt - set optimal request size for a device
441 * @limits: the queue limits
442 * @opt:  smallest I/O size in bytes
443 *
444 * Description:
445 *   Storage devices may report an optimal I/O size, which is the
446 *   device's preferred unit for sustained I/O.  This is rarely reported
447 *   for disk drives.  For RAID arrays it is usually the stripe width or
448 *   the internal track size.  A properly aligned multiple of
449 *   optimal_io_size is the preferred request size for workloads where
450 *   sustained throughput is desired.
451 */
452void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
453{
454	limits->io_opt = opt;
455}
456EXPORT_SYMBOL(blk_limits_io_opt);
457
458/**
459 * blk_queue_io_opt - set optimal request size for the queue
460 * @q:	the request queue for the device
461 * @opt:  optimal request size in bytes
462 *
463 * Description:
464 *   Storage devices may report an optimal I/O size, which is the
465 *   device's preferred unit for sustained I/O.  This is rarely reported
466 *   for disk drives.  For RAID arrays it is usually the stripe width or
467 *   the internal track size.  A properly aligned multiple of
468 *   optimal_io_size is the preferred request size for workloads where
469 *   sustained throughput is desired.
470 */
471void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
472{
473	blk_limits_io_opt(&q->limits, opt);
474	q->backing_dev_info->ra_pages =
 
 
475		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
476}
477EXPORT_SYMBOL(blk_queue_io_opt);
478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
480{
481	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
482	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
483		sectors = PAGE_SIZE >> SECTOR_SHIFT;
484	return sectors;
485}
486
487/**
488 * blk_stack_limits - adjust queue_limits for stacked devices
489 * @t:	the stacking driver limits (top device)
490 * @b:  the underlying queue limits (bottom, component device)
491 * @start:  first data sector within component device
492 *
493 * Description:
494 *    This function is used by stacking drivers like MD and DM to ensure
495 *    that all component devices have compatible block sizes and
496 *    alignments.  The stacking driver must provide a queue_limits
497 *    struct (top) and then iteratively call the stacking function for
498 *    all component (bottom) devices.  The stacking function will
499 *    attempt to combine the values and ensure proper alignment.
500 *
501 *    Returns 0 if the top and bottom queue_limits are compatible.  The
502 *    top device's block sizes and alignment offsets may be adjusted to
503 *    ensure alignment with the bottom device. If no compatible sizes
504 *    and alignments exist, -1 is returned and the resulting top
505 *    queue_limits will have the misaligned flag set to indicate that
506 *    the alignment_offset is undefined.
507 */
508int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
509		     sector_t start)
510{
511	unsigned int top, bottom, alignment, ret = 0;
512
513	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
514	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
515	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
516	t->max_write_same_sectors = min(t->max_write_same_sectors,
517					b->max_write_same_sectors);
518	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
519					b->max_write_zeroes_sectors);
520	t->max_zone_append_sectors = min(t->max_zone_append_sectors,
521					b->max_zone_append_sectors);
522	t->bounce = max(t->bounce, b->bounce);
523
524	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
525					    b->seg_boundary_mask);
526	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
527					    b->virt_boundary_mask);
528
529	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
530	t->max_discard_segments = min_not_zero(t->max_discard_segments,
531					       b->max_discard_segments);
532	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
533						 b->max_integrity_segments);
534
535	t->max_segment_size = min_not_zero(t->max_segment_size,
536					   b->max_segment_size);
537
538	t->misaligned |= b->misaligned;
539
540	alignment = queue_limit_alignment_offset(b, start);
541
542	/* Bottom device has different alignment.  Check that it is
543	 * compatible with the current top alignment.
544	 */
545	if (t->alignment_offset != alignment) {
546
547		top = max(t->physical_block_size, t->io_min)
548			+ t->alignment_offset;
549		bottom = max(b->physical_block_size, b->io_min) + alignment;
550
551		/* Verify that top and bottom intervals line up */
552		if (max(top, bottom) % min(top, bottom)) {
553			t->misaligned = 1;
554			ret = -1;
555		}
556	}
557
558	t->logical_block_size = max(t->logical_block_size,
559				    b->logical_block_size);
560
561	t->physical_block_size = max(t->physical_block_size,
562				     b->physical_block_size);
563
564	t->io_min = max(t->io_min, b->io_min);
565	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
 
566
567	/* Set non-power-of-2 compatible chunk_sectors boundary */
568	if (b->chunk_sectors)
569		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
570
571	/* Physical block size a multiple of the logical block size? */
572	if (t->physical_block_size & (t->logical_block_size - 1)) {
573		t->physical_block_size = t->logical_block_size;
574		t->misaligned = 1;
575		ret = -1;
576	}
577
578	/* Minimum I/O a multiple of the physical block size? */
579	if (t->io_min & (t->physical_block_size - 1)) {
580		t->io_min = t->physical_block_size;
581		t->misaligned = 1;
582		ret = -1;
583	}
584
585	/* Optimal I/O a multiple of the physical block size? */
586	if (t->io_opt & (t->physical_block_size - 1)) {
587		t->io_opt = 0;
588		t->misaligned = 1;
589		ret = -1;
590	}
591
592	/* chunk_sectors a multiple of the physical block size? */
593	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
594		t->chunk_sectors = 0;
595		t->misaligned = 1;
596		ret = -1;
597	}
598
599	t->raid_partial_stripes_expensive =
600		max(t->raid_partial_stripes_expensive,
601		    b->raid_partial_stripes_expensive);
602
603	/* Find lowest common alignment_offset */
604	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
605		% max(t->physical_block_size, t->io_min);
606
607	/* Verify that new alignment_offset is on a logical block boundary */
608	if (t->alignment_offset & (t->logical_block_size - 1)) {
609		t->misaligned = 1;
610		ret = -1;
611	}
612
613	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
614	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
615	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
616
617	/* Discard alignment and granularity */
618	if (b->discard_granularity) {
619		alignment = queue_limit_discard_alignment(b, start);
620
621		if (t->discard_granularity != 0 &&
622		    t->discard_alignment != alignment) {
623			top = t->discard_granularity + t->discard_alignment;
624			bottom = b->discard_granularity + alignment;
625
626			/* Verify that top and bottom intervals line up */
627			if ((max(top, bottom) % min(top, bottom)) != 0)
628				t->discard_misaligned = 1;
629		}
630
631		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
632						      b->max_discard_sectors);
633		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
634							 b->max_hw_discard_sectors);
635		t->discard_granularity = max(t->discard_granularity,
636					     b->discard_granularity);
637		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
638			t->discard_granularity;
639	}
640
 
641	t->zone_write_granularity = max(t->zone_write_granularity,
642					b->zone_write_granularity);
643	t->zoned = max(t->zoned, b->zoned);
644	return ret;
645}
646EXPORT_SYMBOL(blk_stack_limits);
647
648/**
649 * disk_stack_limits - adjust queue limits for stacked drivers
650 * @disk:  MD/DM gendisk (top)
651 * @bdev:  the underlying block device (bottom)
652 * @offset:  offset to beginning of data within component device
653 *
654 * Description:
655 *    Merges the limits for a top level gendisk and a bottom level
656 *    block_device.
657 */
658void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
659		       sector_t offset)
660{
661	struct request_queue *t = disk->queue;
662
663	if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
664			get_start_sect(bdev) + (offset >> 9)) < 0) {
665		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
666
667		disk_name(disk, 0, top);
668		bdevname(bdev, bottom);
669
670		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
671		       top, bottom);
672	}
673
674	blk_queue_update_readahead(disk->queue);
675}
676EXPORT_SYMBOL(disk_stack_limits);
677
678/**
679 * blk_queue_update_dma_pad - update pad mask
680 * @q:     the request queue for the device
681 * @mask:  pad mask
682 *
683 * Update dma pad mask.
684 *
685 * Appending pad buffer to a request modifies the last entry of a
686 * scatter list such that it includes the pad buffer.
687 **/
688void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
689{
690	if (mask > q->dma_pad_mask)
691		q->dma_pad_mask = mask;
692}
693EXPORT_SYMBOL(blk_queue_update_dma_pad);
694
695/**
696 * blk_queue_segment_boundary - set boundary rules for segment merging
697 * @q:  the request queue for the device
698 * @mask:  the memory boundary mask
699 **/
700void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
701{
702	if (mask < PAGE_SIZE - 1) {
703		mask = PAGE_SIZE - 1;
704		printk(KERN_INFO "%s: set to minimum %lx\n",
705		       __func__, mask);
706	}
707
708	q->limits.seg_boundary_mask = mask;
709}
710EXPORT_SYMBOL(blk_queue_segment_boundary);
711
712/**
713 * blk_queue_virt_boundary - set boundary rules for bio merging
714 * @q:  the request queue for the device
715 * @mask:  the memory boundary mask
716 **/
717void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
718{
719	q->limits.virt_boundary_mask = mask;
720
721	/*
722	 * Devices that require a virtual boundary do not support scatter/gather
723	 * I/O natively, but instead require a descriptor list entry for each
724	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
725	 * of that they are not limited by our notion of "segment size".
726	 */
727	if (mask)
728		q->limits.max_segment_size = UINT_MAX;
729}
730EXPORT_SYMBOL(blk_queue_virt_boundary);
731
732/**
733 * blk_queue_dma_alignment - set dma length and memory alignment
734 * @q:     the request queue for the device
735 * @mask:  alignment mask
736 *
737 * description:
738 *    set required memory and length alignment for direct dma transactions.
739 *    this is used when building direct io requests for the queue.
740 *
741 **/
742void blk_queue_dma_alignment(struct request_queue *q, int mask)
743{
744	q->dma_alignment = mask;
745}
746EXPORT_SYMBOL(blk_queue_dma_alignment);
747
748/**
749 * blk_queue_update_dma_alignment - update dma length and memory alignment
750 * @q:     the request queue for the device
751 * @mask:  alignment mask
752 *
753 * description:
754 *    update required memory and length alignment for direct dma transactions.
755 *    If the requested alignment is larger than the current alignment, then
756 *    the current queue alignment is updated to the new value, otherwise it
757 *    is left alone.  The design of this is to allow multiple objects
758 *    (driver, device, transport etc) to set their respective
759 *    alignments without having them interfere.
760 *
761 **/
762void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
763{
764	BUG_ON(mask > PAGE_SIZE);
765
766	if (mask > q->dma_alignment)
767		q->dma_alignment = mask;
768}
769EXPORT_SYMBOL(blk_queue_update_dma_alignment);
770
771/**
772 * blk_set_queue_depth - tell the block layer about the device queue depth
773 * @q:		the request queue for the device
774 * @depth:		queue depth
775 *
776 */
777void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
778{
779	q->queue_depth = depth;
780	rq_qos_queue_depth_changed(q);
781}
782EXPORT_SYMBOL(blk_set_queue_depth);
783
784/**
785 * blk_queue_write_cache - configure queue's write cache
786 * @q:		the request queue for the device
787 * @wc:		write back cache on or off
788 * @fua:	device supports FUA writes, if true
789 *
790 * Tell the block layer about the write cache of @q.
791 */
792void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
793{
794	if (wc)
795		blk_queue_flag_set(QUEUE_FLAG_WC, q);
796	else
797		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
798	if (fua)
799		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
800	else
801		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
802
803	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
804}
805EXPORT_SYMBOL_GPL(blk_queue_write_cache);
806
807/**
808 * blk_queue_required_elevator_features - Set a queue required elevator features
809 * @q:		the request queue for the target device
810 * @features:	Required elevator features OR'ed together
811 *
812 * Tell the block layer that for the device controlled through @q, only the
813 * only elevators that can be used are those that implement at least the set of
814 * features specified by @features.
815 */
816void blk_queue_required_elevator_features(struct request_queue *q,
817					  unsigned int features)
818{
819	q->required_elevator_features = features;
820}
821EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
822
823/**
824 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
825 * @q:		the request queue for the device
826 * @dev:	the device pointer for dma
827 *
828 * Tell the block layer about merging the segments by dma map of @q.
829 */
830bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
831				       struct device *dev)
832{
833	unsigned long boundary = dma_get_merge_boundary(dev);
834
835	if (!boundary)
836		return false;
837
838	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
839	blk_queue_virt_boundary(q, boundary);
840
841	return true;
842}
843EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845/**
846 * blk_queue_set_zoned - configure a disk queue zoned model.
847 * @disk:	the gendisk of the queue to configure
848 * @model:	the zoned model to set
849 *
850 * Set the zoned model of the request queue of @disk according to @model.
 
851 * When @model is BLK_ZONED_HM (host managed), this should be called only
852 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
853 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
854 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
855 * on the disk.
856 */
857void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
858{
859	struct request_queue *q = disk->queue;
860
861	switch (model) {
862	case BLK_ZONED_HM:
863		/*
864		 * Host managed devices are supported only if
865		 * CONFIG_BLK_DEV_ZONED is enabled.
866		 */
867		WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
868		break;
869	case BLK_ZONED_HA:
870		/*
871		 * Host aware devices can be treated either as regular block
872		 * devices (similar to drive managed devices) or as zoned block
873		 * devices to take advantage of the zone command set, similarly
874		 * to host managed devices. We try the latter if there are no
875		 * partitions and zoned block device support is enabled, else
876		 * we do nothing special as far as the block layer is concerned.
877		 */
878		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
879		    !xa_empty(&disk->part_tbl))
880			model = BLK_ZONED_NONE;
881		break;
882	case BLK_ZONED_NONE:
883	default:
884		if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
885			model = BLK_ZONED_NONE;
886		break;
887	}
888
889	q->limits.zoned = model;
890	if (model != BLK_ZONED_NONE) {
891		/*
892		 * Set the zone write granularity to the device logical block
893		 * size by default. The driver can change this value if needed.
894		 */
895		blk_queue_zone_write_granularity(q,
896						queue_logical_block_size(q));
897	} else {
898		blk_queue_clear_zone_settings(q);
899	}
900}
901EXPORT_SYMBOL_GPL(blk_queue_set_zoned);