Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Functions related to setting various queue properties from drivers
  4 */
  5#include <linux/kernel.h>
  6#include <linux/module.h>
  7#include <linux/init.h>
  8#include <linux/bio.h>
  9#include <linux/blkdev.h>
 10#include <linux/pagemap.h>
 11#include <linux/backing-dev-defs.h>
 12#include <linux/gcd.h>
 13#include <linux/lcm.h>
 14#include <linux/jiffies.h>
 15#include <linux/gfp.h>
 16#include <linux/dma-mapping.h>
 17
 18#include "blk.h"
 19#include "blk-wbt.h"
 20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 21void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
 22{
 23	q->rq_timeout = timeout;
 24}
 25EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
 26
 
 
 
 
 
 
 
 
 
 
 
 
 27/**
 28 * blk_set_default_limits - reset limits to default values
 29 * @lim:  the queue_limits structure to reset
 30 *
 31 * Description:
 32 *   Returns a queue_limit struct to its default state.
 33 */
 34void blk_set_default_limits(struct queue_limits *lim)
 35{
 36	lim->max_segments = BLK_MAX_SEGMENTS;
 37	lim->max_discard_segments = 1;
 38	lim->max_integrity_segments = 0;
 39	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
 40	lim->virt_boundary_mask = 0;
 41	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
 42	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
 43	lim->max_dev_sectors = 0;
 44	lim->chunk_sectors = 0;
 
 45	lim->max_write_zeroes_sectors = 0;
 46	lim->max_zone_append_sectors = 0;
 47	lim->max_discard_sectors = 0;
 48	lim->max_hw_discard_sectors = 0;
 49	lim->max_secure_erase_sectors = 0;
 50	lim->discard_granularity = 0;
 51	lim->discard_alignment = 0;
 52	lim->discard_misaligned = 0;
 
 53	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
 54	lim->bounce = BLK_BOUNCE_NONE;
 55	lim->alignment_offset = 0;
 56	lim->io_opt = 0;
 57	lim->misaligned = 0;
 
 58	lim->zoned = BLK_ZONED_NONE;
 59	lim->zone_write_granularity = 0;
 60	lim->dma_alignment = 511;
 61}
 
 62
 63/**
 64 * blk_set_stacking_limits - set default limits for stacking devices
 65 * @lim:  the queue_limits structure to reset
 66 *
 67 * Description:
 68 *   Returns a queue_limit struct to its default state. Should be used
 69 *   by stacking drivers like DM that have no internal limits.
 70 */
 71void blk_set_stacking_limits(struct queue_limits *lim)
 72{
 73	blk_set_default_limits(lim);
 74
 75	/* Inherit limits from component devices */
 
 76	lim->max_segments = USHRT_MAX;
 77	lim->max_discard_segments = USHRT_MAX;
 78	lim->max_hw_sectors = UINT_MAX;
 79	lim->max_segment_size = UINT_MAX;
 80	lim->max_sectors = UINT_MAX;
 81	lim->max_dev_sectors = UINT_MAX;
 
 82	lim->max_write_zeroes_sectors = UINT_MAX;
 83	lim->max_zone_append_sectors = UINT_MAX;
 84}
 85EXPORT_SYMBOL(blk_set_stacking_limits);
 86
 87/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88 * blk_queue_bounce_limit - set bounce buffer limit for queue
 89 * @q: the request queue for the device
 90 * @bounce: bounce limit to enforce
 91 *
 92 * Description:
 93 *    Force bouncing for ISA DMA ranges or highmem.
 94 *
 95 *    DEPRECATED, don't use in new code.
 
 96 **/
 97void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
 98{
 99	q->limits.bounce = bounce;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100}
101EXPORT_SYMBOL(blk_queue_bounce_limit);
102
103/**
104 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
105 * @q:  the request queue for the device
106 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
107 *
108 * Description:
109 *    Enables a low level driver to set a hard upper limit,
110 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
111 *    the device driver based upon the capabilities of the I/O
112 *    controller.
113 *
114 *    max_dev_sectors is a hard limit imposed by the storage device for
115 *    READ/WRITE requests. It is set by the disk driver.
116 *
117 *    max_sectors is a soft limit imposed by the block layer for
118 *    filesystem type requests.  This value can be overridden on a
119 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
120 *    The soft limit can not exceed max_hw_sectors.
121 **/
122void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
123{
124	struct queue_limits *limits = &q->limits;
125	unsigned int max_sectors;
126
127	if ((max_hw_sectors << 9) < PAGE_SIZE) {
128		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
129		printk(KERN_INFO "%s: set to minimum %d\n",
130		       __func__, max_hw_sectors);
131	}
132
133	max_hw_sectors = round_down(max_hw_sectors,
134				    limits->logical_block_size >> SECTOR_SHIFT);
135	limits->max_hw_sectors = max_hw_sectors;
136
137	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
138	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
139	max_sectors = round_down(max_sectors,
140				 limits->logical_block_size >> SECTOR_SHIFT);
141	limits->max_sectors = max_sectors;
142
143	if (!q->disk)
144		return;
145	q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
146}
147EXPORT_SYMBOL(blk_queue_max_hw_sectors);
148
149/**
150 * blk_queue_chunk_sectors - set size of the chunk for this queue
151 * @q:  the request queue for the device
152 * @chunk_sectors:  chunk sectors in the usual 512b unit
153 *
154 * Description:
155 *    If a driver doesn't want IOs to cross a given chunk size, it can set
156 *    this limit and prevent merging across chunks. Note that the block layer
157 *    must accept a page worth of data at any offset. So if the crossing of
158 *    chunks is a hard limitation in the driver, it must still be prepared
159 *    to split single page bios.
 
160 **/
161void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
162{
 
163	q->limits.chunk_sectors = chunk_sectors;
164}
165EXPORT_SYMBOL(blk_queue_chunk_sectors);
166
167/**
168 * blk_queue_max_discard_sectors - set max sectors for a single discard
169 * @q:  the request queue for the device
170 * @max_discard_sectors: maximum number of sectors to discard
171 **/
172void blk_queue_max_discard_sectors(struct request_queue *q,
173		unsigned int max_discard_sectors)
174{
175	q->limits.max_hw_discard_sectors = max_discard_sectors;
176	q->limits.max_discard_sectors = max_discard_sectors;
177}
178EXPORT_SYMBOL(blk_queue_max_discard_sectors);
179
180/**
181 * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
182 * @q:  the request queue for the device
183 * @max_sectors: maximum number of sectors to secure_erase
184 **/
185void blk_queue_max_secure_erase_sectors(struct request_queue *q,
186		unsigned int max_sectors)
187{
188	q->limits.max_secure_erase_sectors = max_sectors;
189}
190EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
191
192/**
193 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
194 *                                      write zeroes
195 * @q:  the request queue for the device
196 * @max_write_zeroes_sectors: maximum number of sectors to write per command
197 **/
198void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
199		unsigned int max_write_zeroes_sectors)
200{
201	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
202}
203EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
204
205/**
206 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
207 * @q:  the request queue for the device
208 * @max_zone_append_sectors: maximum number of sectors to write per command
209 **/
210void blk_queue_max_zone_append_sectors(struct request_queue *q,
211		unsigned int max_zone_append_sectors)
212{
213	unsigned int max_sectors;
214
215	if (WARN_ON(!blk_queue_is_zoned(q)))
216		return;
217
218	max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
219	max_sectors = min(q->limits.chunk_sectors, max_sectors);
220
221	/*
222	 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
223	 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
224	 * or the max_hw_sectors limit not set.
225	 */
226	WARN_ON(!max_sectors);
227
228	q->limits.max_zone_append_sectors = max_sectors;
229}
230EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
231
232/**
233 * blk_queue_max_segments - set max hw segments for a request for this queue
234 * @q:  the request queue for the device
235 * @max_segments:  max number of segments
236 *
237 * Description:
238 *    Enables a low level driver to set an upper limit on the number of
239 *    hw data segments in a request.
240 **/
241void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
242{
243	if (!max_segments) {
244		max_segments = 1;
245		printk(KERN_INFO "%s: set to minimum %d\n",
246		       __func__, max_segments);
247	}
248
249	q->limits.max_segments = max_segments;
250}
251EXPORT_SYMBOL(blk_queue_max_segments);
252
253/**
254 * blk_queue_max_discard_segments - set max segments for discard requests
255 * @q:  the request queue for the device
256 * @max_segments:  max number of segments
257 *
258 * Description:
259 *    Enables a low level driver to set an upper limit on the number of
260 *    segments in a discard request.
261 **/
262void blk_queue_max_discard_segments(struct request_queue *q,
263		unsigned short max_segments)
264{
265	q->limits.max_discard_segments = max_segments;
266}
267EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
268
269/**
270 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
271 * @q:  the request queue for the device
272 * @max_size:  max size of segment in bytes
273 *
274 * Description:
275 *    Enables a low level driver to set an upper limit on the size of a
276 *    coalesced segment
277 **/
278void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
279{
280	if (max_size < PAGE_SIZE) {
281		max_size = PAGE_SIZE;
282		printk(KERN_INFO "%s: set to minimum %d\n",
283		       __func__, max_size);
284	}
285
286	/* see blk_queue_virt_boundary() for the explanation */
287	WARN_ON_ONCE(q->limits.virt_boundary_mask);
288
289	q->limits.max_segment_size = max_size;
290}
291EXPORT_SYMBOL(blk_queue_max_segment_size);
292
293/**
294 * blk_queue_logical_block_size - set logical block size for the queue
295 * @q:  the request queue for the device
296 * @size:  the logical block size, in bytes
297 *
298 * Description:
299 *   This should be set to the lowest possible block size that the
300 *   storage device can address.  The default of 512 covers most
301 *   hardware.
302 **/
303void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
304{
305	struct queue_limits *limits = &q->limits;
306
307	limits->logical_block_size = size;
 
308
309	if (limits->physical_block_size < size)
310		limits->physical_block_size = size;
311
312	if (limits->io_min < limits->physical_block_size)
313		limits->io_min = limits->physical_block_size;
314
315	limits->max_hw_sectors =
316		round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
317	limits->max_sectors =
318		round_down(limits->max_sectors, size >> SECTOR_SHIFT);
319}
320EXPORT_SYMBOL(blk_queue_logical_block_size);
321
322/**
323 * blk_queue_physical_block_size - set physical block size for the queue
324 * @q:  the request queue for the device
325 * @size:  the physical block size, in bytes
326 *
327 * Description:
328 *   This should be set to the lowest possible sector size that the
329 *   hardware can operate on without reverting to read-modify-write
330 *   operations.
331 */
332void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
333{
334	q->limits.physical_block_size = size;
335
336	if (q->limits.physical_block_size < q->limits.logical_block_size)
337		q->limits.physical_block_size = q->limits.logical_block_size;
338
339	if (q->limits.io_min < q->limits.physical_block_size)
340		q->limits.io_min = q->limits.physical_block_size;
341}
342EXPORT_SYMBOL(blk_queue_physical_block_size);
343
344/**
345 * blk_queue_zone_write_granularity - set zone write granularity for the queue
346 * @q:  the request queue for the zoned device
347 * @size:  the zone write granularity size, in bytes
348 *
349 * Description:
350 *   This should be set to the lowest possible size allowing to write in
351 *   sequential zones of a zoned block device.
352 */
353void blk_queue_zone_write_granularity(struct request_queue *q,
354				      unsigned int size)
355{
356	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
357		return;
358
359	q->limits.zone_write_granularity = size;
360
361	if (q->limits.zone_write_granularity < q->limits.logical_block_size)
362		q->limits.zone_write_granularity = q->limits.logical_block_size;
363}
364EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
365
366/**
367 * blk_queue_alignment_offset - set physical block alignment offset
368 * @q:	the request queue for the device
369 * @offset: alignment offset in bytes
370 *
371 * Description:
372 *   Some devices are naturally misaligned to compensate for things like
373 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
374 *   should call this function for devices whose first sector is not
375 *   naturally aligned.
376 */
377void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
378{
379	q->limits.alignment_offset =
380		offset & (q->limits.physical_block_size - 1);
381	q->limits.misaligned = 0;
382}
383EXPORT_SYMBOL(blk_queue_alignment_offset);
384
385void disk_update_readahead(struct gendisk *disk)
386{
387	struct request_queue *q = disk->queue;
388
389	/*
390	 * For read-ahead of large files to be effective, we need to read ahead
391	 * at least twice the optimal I/O size.
392	 */
393	disk->bdi->ra_pages =
394		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
395	disk->bdi->io_pages = queue_max_sectors(q) >> (PAGE_SHIFT - 9);
396}
397EXPORT_SYMBOL_GPL(disk_update_readahead);
398
399/**
400 * blk_limits_io_min - set minimum request size for a device
401 * @limits: the queue limits
402 * @min:  smallest I/O size in bytes
403 *
404 * Description:
405 *   Some devices have an internal block size bigger than the reported
406 *   hardware sector size.  This function can be used to signal the
407 *   smallest I/O the device can perform without incurring a performance
408 *   penalty.
409 */
410void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
411{
412	limits->io_min = min;
413
414	if (limits->io_min < limits->logical_block_size)
415		limits->io_min = limits->logical_block_size;
416
417	if (limits->io_min < limits->physical_block_size)
418		limits->io_min = limits->physical_block_size;
419}
420EXPORT_SYMBOL(blk_limits_io_min);
421
422/**
423 * blk_queue_io_min - set minimum request size for the queue
424 * @q:	the request queue for the device
425 * @min:  smallest I/O size in bytes
426 *
427 * Description:
428 *   Storage devices may report a granularity or preferred minimum I/O
429 *   size which is the smallest request the device can perform without
430 *   incurring a performance penalty.  For disk drives this is often the
431 *   physical block size.  For RAID arrays it is often the stripe chunk
432 *   size.  A properly aligned multiple of minimum_io_size is the
433 *   preferred request size for workloads where a high number of I/O
434 *   operations is desired.
435 */
436void blk_queue_io_min(struct request_queue *q, unsigned int min)
437{
438	blk_limits_io_min(&q->limits, min);
439}
440EXPORT_SYMBOL(blk_queue_io_min);
441
442/**
443 * blk_limits_io_opt - set optimal request size for a device
444 * @limits: the queue limits
445 * @opt:  smallest I/O size in bytes
446 *
447 * Description:
448 *   Storage devices may report an optimal I/O size, which is the
449 *   device's preferred unit for sustained I/O.  This is rarely reported
450 *   for disk drives.  For RAID arrays it is usually the stripe width or
451 *   the internal track size.  A properly aligned multiple of
452 *   optimal_io_size is the preferred request size for workloads where
453 *   sustained throughput is desired.
454 */
455void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
456{
457	limits->io_opt = opt;
458}
459EXPORT_SYMBOL(blk_limits_io_opt);
460
461/**
462 * blk_queue_io_opt - set optimal request size for the queue
463 * @q:	the request queue for the device
464 * @opt:  optimal request size in bytes
465 *
466 * Description:
467 *   Storage devices may report an optimal I/O size, which is the
468 *   device's preferred unit for sustained I/O.  This is rarely reported
469 *   for disk drives.  For RAID arrays it is usually the stripe width or
470 *   the internal track size.  A properly aligned multiple of
471 *   optimal_io_size is the preferred request size for workloads where
472 *   sustained throughput is desired.
473 */
474void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
475{
476	blk_limits_io_opt(&q->limits, opt);
477	if (!q->disk)
478		return;
479	q->disk->bdi->ra_pages =
480		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
481}
482EXPORT_SYMBOL(blk_queue_io_opt);
483
484static int queue_limit_alignment_offset(const struct queue_limits *lim,
485		sector_t sector)
486{
487	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
488	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
489		<< SECTOR_SHIFT;
490
491	return (granularity + lim->alignment_offset - alignment) % granularity;
492}
493
494static unsigned int queue_limit_discard_alignment(
495		const struct queue_limits *lim, sector_t sector)
496{
497	unsigned int alignment, granularity, offset;
498
499	if (!lim->max_discard_sectors)
500		return 0;
501
502	/* Why are these in bytes, not sectors? */
503	alignment = lim->discard_alignment >> SECTOR_SHIFT;
504	granularity = lim->discard_granularity >> SECTOR_SHIFT;
505	if (!granularity)
506		return 0;
507
508	/* Offset of the partition start in 'granularity' sectors */
509	offset = sector_div(sector, granularity);
510
511	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
512	offset = (granularity + alignment - offset) % granularity;
513
514	/* Turn it back into bytes, gaah */
515	return offset << SECTOR_SHIFT;
516}
517
518static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
519{
520	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
521	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
522		sectors = PAGE_SIZE >> SECTOR_SHIFT;
523	return sectors;
524}
 
525
526/**
527 * blk_stack_limits - adjust queue_limits for stacked devices
528 * @t:	the stacking driver limits (top device)
529 * @b:  the underlying queue limits (bottom, component device)
530 * @start:  first data sector within component device
531 *
532 * Description:
533 *    This function is used by stacking drivers like MD and DM to ensure
534 *    that all component devices have compatible block sizes and
535 *    alignments.  The stacking driver must provide a queue_limits
536 *    struct (top) and then iteratively call the stacking function for
537 *    all component (bottom) devices.  The stacking function will
538 *    attempt to combine the values and ensure proper alignment.
539 *
540 *    Returns 0 if the top and bottom queue_limits are compatible.  The
541 *    top device's block sizes and alignment offsets may be adjusted to
542 *    ensure alignment with the bottom device. If no compatible sizes
543 *    and alignments exist, -1 is returned and the resulting top
544 *    queue_limits will have the misaligned flag set to indicate that
545 *    the alignment_offset is undefined.
546 */
547int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
548		     sector_t start)
549{
550	unsigned int top, bottom, alignment, ret = 0;
551
552	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
553	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
554	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
 
 
555	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
556					b->max_write_zeroes_sectors);
557	t->max_zone_append_sectors = min(t->max_zone_append_sectors,
558					b->max_zone_append_sectors);
559	t->bounce = max(t->bounce, b->bounce);
560
561	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
562					    b->seg_boundary_mask);
563	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
564					    b->virt_boundary_mask);
565
566	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
567	t->max_discard_segments = min_not_zero(t->max_discard_segments,
568					       b->max_discard_segments);
569	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
570						 b->max_integrity_segments);
571
572	t->max_segment_size = min_not_zero(t->max_segment_size,
573					   b->max_segment_size);
574
575	t->misaligned |= b->misaligned;
576
577	alignment = queue_limit_alignment_offset(b, start);
578
579	/* Bottom device has different alignment.  Check that it is
580	 * compatible with the current top alignment.
581	 */
582	if (t->alignment_offset != alignment) {
583
584		top = max(t->physical_block_size, t->io_min)
585			+ t->alignment_offset;
586		bottom = max(b->physical_block_size, b->io_min) + alignment;
587
588		/* Verify that top and bottom intervals line up */
589		if (max(top, bottom) % min(top, bottom)) {
590			t->misaligned = 1;
591			ret = -1;
592		}
593	}
594
595	t->logical_block_size = max(t->logical_block_size,
596				    b->logical_block_size);
597
598	t->physical_block_size = max(t->physical_block_size,
599				     b->physical_block_size);
600
601	t->io_min = max(t->io_min, b->io_min);
602	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
603	t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
604
605	/* Set non-power-of-2 compatible chunk_sectors boundary */
606	if (b->chunk_sectors)
607		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
608
609	/* Physical block size a multiple of the logical block size? */
610	if (t->physical_block_size & (t->logical_block_size - 1)) {
611		t->physical_block_size = t->logical_block_size;
612		t->misaligned = 1;
613		ret = -1;
614	}
615
616	/* Minimum I/O a multiple of the physical block size? */
617	if (t->io_min & (t->physical_block_size - 1)) {
618		t->io_min = t->physical_block_size;
619		t->misaligned = 1;
620		ret = -1;
621	}
622
623	/* Optimal I/O a multiple of the physical block size? */
624	if (t->io_opt & (t->physical_block_size - 1)) {
625		t->io_opt = 0;
626		t->misaligned = 1;
627		ret = -1;
628	}
629
630	/* chunk_sectors a multiple of the physical block size? */
631	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
632		t->chunk_sectors = 0;
633		t->misaligned = 1;
634		ret = -1;
635	}
636
637	t->raid_partial_stripes_expensive =
638		max(t->raid_partial_stripes_expensive,
639		    b->raid_partial_stripes_expensive);
640
641	/* Find lowest common alignment_offset */
642	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
643		% max(t->physical_block_size, t->io_min);
644
645	/* Verify that new alignment_offset is on a logical block boundary */
646	if (t->alignment_offset & (t->logical_block_size - 1)) {
647		t->misaligned = 1;
648		ret = -1;
649	}
650
651	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
652	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
653	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
654
655	/* Discard alignment and granularity */
656	if (b->discard_granularity) {
657		alignment = queue_limit_discard_alignment(b, start);
658
659		if (t->discard_granularity != 0 &&
660		    t->discard_alignment != alignment) {
661			top = t->discard_granularity + t->discard_alignment;
662			bottom = b->discard_granularity + alignment;
663
664			/* Verify that top and bottom intervals line up */
665			if ((max(top, bottom) % min(top, bottom)) != 0)
666				t->discard_misaligned = 1;
667		}
668
669		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
670						      b->max_discard_sectors);
671		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
672							 b->max_hw_discard_sectors);
673		t->discard_granularity = max(t->discard_granularity,
674					     b->discard_granularity);
675		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
676			t->discard_granularity;
677	}
678	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
679						   b->max_secure_erase_sectors);
680	t->zone_write_granularity = max(t->zone_write_granularity,
681					b->zone_write_granularity);
682	t->zoned = max(t->zoned, b->zoned);
683	return ret;
684}
685EXPORT_SYMBOL(blk_stack_limits);
686
687/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
688 * disk_stack_limits - adjust queue limits for stacked drivers
689 * @disk:  MD/DM gendisk (top)
690 * @bdev:  the underlying block device (bottom)
691 * @offset:  offset to beginning of data within component device
692 *
693 * Description:
694 *    Merges the limits for a top level gendisk and a bottom level
695 *    block_device.
696 */
697void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
698		       sector_t offset)
699{
700	struct request_queue *t = disk->queue;
701
702	if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
703			get_start_sect(bdev) + (offset >> 9)) < 0)
704		pr_notice("%s: Warning: Device %pg is misaligned\n",
705			disk->disk_name, bdev);
 
706
707	disk_update_readahead(disk);
 
 
708}
709EXPORT_SYMBOL(disk_stack_limits);
710
711/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
712 * blk_queue_update_dma_pad - update pad mask
713 * @q:     the request queue for the device
714 * @mask:  pad mask
715 *
716 * Update dma pad mask.
717 *
718 * Appending pad buffer to a request modifies the last entry of a
719 * scatter list such that it includes the pad buffer.
720 **/
721void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
722{
723	if (mask > q->dma_pad_mask)
724		q->dma_pad_mask = mask;
725}
726EXPORT_SYMBOL(blk_queue_update_dma_pad);
727
728/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729 * blk_queue_segment_boundary - set boundary rules for segment merging
730 * @q:  the request queue for the device
731 * @mask:  the memory boundary mask
732 **/
733void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
734{
735	if (mask < PAGE_SIZE - 1) {
736		mask = PAGE_SIZE - 1;
737		printk(KERN_INFO "%s: set to minimum %lx\n",
738		       __func__, mask);
739	}
740
741	q->limits.seg_boundary_mask = mask;
742}
743EXPORT_SYMBOL(blk_queue_segment_boundary);
744
745/**
746 * blk_queue_virt_boundary - set boundary rules for bio merging
747 * @q:  the request queue for the device
748 * @mask:  the memory boundary mask
749 **/
750void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
751{
752	q->limits.virt_boundary_mask = mask;
753
754	/*
755	 * Devices that require a virtual boundary do not support scatter/gather
756	 * I/O natively, but instead require a descriptor list entry for each
757	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
758	 * of that they are not limited by our notion of "segment size".
759	 */
760	if (mask)
761		q->limits.max_segment_size = UINT_MAX;
762}
763EXPORT_SYMBOL(blk_queue_virt_boundary);
764
765/**
766 * blk_queue_dma_alignment - set dma length and memory alignment
767 * @q:     the request queue for the device
768 * @mask:  alignment mask
769 *
770 * description:
771 *    set required memory and length alignment for direct dma transactions.
772 *    this is used when building direct io requests for the queue.
773 *
774 **/
775void blk_queue_dma_alignment(struct request_queue *q, int mask)
776{
777	q->limits.dma_alignment = mask;
778}
779EXPORT_SYMBOL(blk_queue_dma_alignment);
780
781/**
782 * blk_queue_update_dma_alignment - update dma length and memory alignment
783 * @q:     the request queue for the device
784 * @mask:  alignment mask
785 *
786 * description:
787 *    update required memory and length alignment for direct dma transactions.
788 *    If the requested alignment is larger than the current alignment, then
789 *    the current queue alignment is updated to the new value, otherwise it
790 *    is left alone.  The design of this is to allow multiple objects
791 *    (driver, device, transport etc) to set their respective
792 *    alignments without having them interfere.
793 *
794 **/
795void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
796{
797	BUG_ON(mask > PAGE_SIZE);
798
799	if (mask > q->limits.dma_alignment)
800		q->limits.dma_alignment = mask;
801}
802EXPORT_SYMBOL(blk_queue_update_dma_alignment);
803
 
 
 
 
 
 
 
 
 
 
 
804/**
805 * blk_set_queue_depth - tell the block layer about the device queue depth
806 * @q:		the request queue for the device
807 * @depth:		queue depth
808 *
809 */
810void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
811{
812	q->queue_depth = depth;
813	rq_qos_queue_depth_changed(q);
814}
815EXPORT_SYMBOL(blk_set_queue_depth);
816
817/**
818 * blk_queue_write_cache - configure queue's write cache
819 * @q:		the request queue for the device
820 * @wc:		write back cache on or off
821 * @fua:	device supports FUA writes, if true
822 *
823 * Tell the block layer about the write cache of @q.
824 */
825void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
826{
 
827	if (wc)
828		blk_queue_flag_set(QUEUE_FLAG_WC, q);
829	else
830		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
831	if (fua)
832		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
833	else
834		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
 
835
836	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
837}
838EXPORT_SYMBOL_GPL(blk_queue_write_cache);
839
840/**
841 * blk_queue_required_elevator_features - Set a queue required elevator features
842 * @q:		the request queue for the target device
843 * @features:	Required elevator features OR'ed together
844 *
845 * Tell the block layer that for the device controlled through @q, only the
846 * only elevators that can be used are those that implement at least the set of
847 * features specified by @features.
848 */
849void blk_queue_required_elevator_features(struct request_queue *q,
850					  unsigned int features)
851{
852	q->required_elevator_features = features;
853}
854EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
855
856/**
857 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
858 * @q:		the request queue for the device
859 * @dev:	the device pointer for dma
860 *
861 * Tell the block layer about merging the segments by dma map of @q.
862 */
863bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
864				       struct device *dev)
865{
866	unsigned long boundary = dma_get_merge_boundary(dev);
867
868	if (!boundary)
869		return false;
870
871	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
872	blk_queue_virt_boundary(q, boundary);
873
874	return true;
875}
876EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
877
878static bool disk_has_partitions(struct gendisk *disk)
879{
880	unsigned long idx;
881	struct block_device *part;
882	bool ret = false;
883
884	rcu_read_lock();
885	xa_for_each(&disk->part_tbl, idx, part) {
886		if (bdev_is_partition(part)) {
887			ret = true;
888			break;
889		}
890	}
891	rcu_read_unlock();
892
893	return ret;
894}
895
896/**
897 * disk_set_zoned - configure the zoned model for a disk
898 * @disk:	the gendisk of the queue to configure
899 * @model:	the zoned model to set
900 *
901 * Set the zoned model of @disk to @model.
902 *
903 * When @model is BLK_ZONED_HM (host managed), this should be called only
904 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
905 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
906 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
907 * on the disk.
908 */
909void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
910{
911	struct request_queue *q = disk->queue;
912
913	switch (model) {
914	case BLK_ZONED_HM:
915		/*
916		 * Host managed devices are supported only if
917		 * CONFIG_BLK_DEV_ZONED is enabled.
918		 */
919		WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
920		break;
921	case BLK_ZONED_HA:
922		/*
923		 * Host aware devices can be treated either as regular block
924		 * devices (similar to drive managed devices) or as zoned block
925		 * devices to take advantage of the zone command set, similarly
926		 * to host managed devices. We try the latter if there are no
927		 * partitions and zoned block device support is enabled, else
928		 * we do nothing special as far as the block layer is concerned.
929		 */
930		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
931		    disk_has_partitions(disk))
932			model = BLK_ZONED_NONE;
933		break;
934	case BLK_ZONED_NONE:
935	default:
936		if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
937			model = BLK_ZONED_NONE;
938		break;
939	}
940
941	q->limits.zoned = model;
942	if (model != BLK_ZONED_NONE) {
943		/*
944		 * Set the zone write granularity to the device logical block
945		 * size by default. The driver can change this value if needed.
946		 */
947		blk_queue_zone_write_granularity(q,
948						queue_logical_block_size(q));
949	} else {
950		disk_clear_zone_settings(disk);
951	}
952}
953EXPORT_SYMBOL_GPL(disk_set_zoned);
954
955int bdev_alignment_offset(struct block_device *bdev)
956{
957	struct request_queue *q = bdev_get_queue(bdev);
958
959	if (q->limits.misaligned)
960		return -1;
961	if (bdev_is_partition(bdev))
962		return queue_limit_alignment_offset(&q->limits,
963				bdev->bd_start_sect);
964	return q->limits.alignment_offset;
965}
966EXPORT_SYMBOL_GPL(bdev_alignment_offset);
967
968unsigned int bdev_discard_alignment(struct block_device *bdev)
969{
970	struct request_queue *q = bdev_get_queue(bdev);
971
972	if (bdev_is_partition(bdev))
973		return queue_limit_discard_alignment(&q->limits,
974				bdev->bd_start_sect);
975	return q->limits.discard_alignment;
976}
977EXPORT_SYMBOL_GPL(bdev_discard_alignment);
v4.10.11
 
  1/*
  2 * Functions related to setting various queue properties from drivers
  3 */
  4#include <linux/kernel.h>
  5#include <linux/module.h>
  6#include <linux/init.h>
  7#include <linux/bio.h>
  8#include <linux/blkdev.h>
  9#include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
 
 10#include <linux/gcd.h>
 11#include <linux/lcm.h>
 12#include <linux/jiffies.h>
 13#include <linux/gfp.h>
 
 14
 15#include "blk.h"
 16#include "blk-wbt.h"
 17
 18unsigned long blk_max_low_pfn;
 19EXPORT_SYMBOL(blk_max_low_pfn);
 20
 21unsigned long blk_max_pfn;
 22
 23/**
 24 * blk_queue_prep_rq - set a prepare_request function for queue
 25 * @q:		queue
 26 * @pfn:	prepare_request function
 27 *
 28 * It's possible for a queue to register a prepare_request callback which
 29 * is invoked before the request is handed to the request_fn. The goal of
 30 * the function is to prepare a request for I/O, it can be used to build a
 31 * cdb from the request data for instance.
 32 *
 33 */
 34void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
 35{
 36	q->prep_rq_fn = pfn;
 37}
 38EXPORT_SYMBOL(blk_queue_prep_rq);
 39
 40/**
 41 * blk_queue_unprep_rq - set an unprepare_request function for queue
 42 * @q:		queue
 43 * @ufn:	unprepare_request function
 44 *
 45 * It's possible for a queue to register an unprepare_request callback
 46 * which is invoked before the request is finally completed. The goal
 47 * of the function is to deallocate any data that was allocated in the
 48 * prepare_request callback.
 49 *
 50 */
 51void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
 52{
 53	q->unprep_rq_fn = ufn;
 54}
 55EXPORT_SYMBOL(blk_queue_unprep_rq);
 56
 57void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
 58{
 59	q->softirq_done_fn = fn;
 60}
 61EXPORT_SYMBOL(blk_queue_softirq_done);
 62
 63void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
 64{
 65	q->rq_timeout = timeout;
 66}
 67EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
 68
 69void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
 70{
 71	q->rq_timed_out_fn = fn;
 72}
 73EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
 74
 75void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
 76{
 77	q->lld_busy_fn = fn;
 78}
 79EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
 80
 81/**
 82 * blk_set_default_limits - reset limits to default values
 83 * @lim:  the queue_limits structure to reset
 84 *
 85 * Description:
 86 *   Returns a queue_limit struct to its default state.
 87 */
 88void blk_set_default_limits(struct queue_limits *lim)
 89{
 90	lim->max_segments = BLK_MAX_SEGMENTS;
 
 91	lim->max_integrity_segments = 0;
 92	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
 93	lim->virt_boundary_mask = 0;
 94	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
 95	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
 96	lim->max_dev_sectors = 0;
 97	lim->chunk_sectors = 0;
 98	lim->max_write_same_sectors = 0;
 99	lim->max_write_zeroes_sectors = 0;
 
100	lim->max_discard_sectors = 0;
101	lim->max_hw_discard_sectors = 0;
 
102	lim->discard_granularity = 0;
103	lim->discard_alignment = 0;
104	lim->discard_misaligned = 0;
105	lim->discard_zeroes_data = 0;
106	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
107	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
108	lim->alignment_offset = 0;
109	lim->io_opt = 0;
110	lim->misaligned = 0;
111	lim->cluster = 1;
112	lim->zoned = BLK_ZONED_NONE;
 
 
113}
114EXPORT_SYMBOL(blk_set_default_limits);
115
116/**
117 * blk_set_stacking_limits - set default limits for stacking devices
118 * @lim:  the queue_limits structure to reset
119 *
120 * Description:
121 *   Returns a queue_limit struct to its default state. Should be used
122 *   by stacking drivers like DM that have no internal limits.
123 */
124void blk_set_stacking_limits(struct queue_limits *lim)
125{
126	blk_set_default_limits(lim);
127
128	/* Inherit limits from component devices */
129	lim->discard_zeroes_data = 1;
130	lim->max_segments = USHRT_MAX;
 
131	lim->max_hw_sectors = UINT_MAX;
132	lim->max_segment_size = UINT_MAX;
133	lim->max_sectors = UINT_MAX;
134	lim->max_dev_sectors = UINT_MAX;
135	lim->max_write_same_sectors = UINT_MAX;
136	lim->max_write_zeroes_sectors = UINT_MAX;
 
137}
138EXPORT_SYMBOL(blk_set_stacking_limits);
139
140/**
141 * blk_queue_make_request - define an alternate make_request function for a device
142 * @q:  the request queue for the device to be affected
143 * @mfn: the alternate make_request function
144 *
145 * Description:
146 *    The normal way for &struct bios to be passed to a device
147 *    driver is for them to be collected into requests on a request
148 *    queue, and then to allow the device driver to select requests
149 *    off that queue when it is ready.  This works well for many block
150 *    devices. However some block devices (typically virtual devices
151 *    such as md or lvm) do not benefit from the processing on the
152 *    request queue, and are served best by having the requests passed
153 *    directly to them.  This can be achieved by providing a function
154 *    to blk_queue_make_request().
155 *
156 * Caveat:
157 *    The driver that does this *must* be able to deal appropriately
158 *    with buffers in "highmemory". This can be accomplished by either calling
159 *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
160 *    blk_queue_bounce() to create a buffer in normal memory.
161 **/
162void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
163{
164	/*
165	 * set defaults
166	 */
167	q->nr_requests = BLKDEV_MAX_RQ;
168
169	q->make_request_fn = mfn;
170	blk_queue_dma_alignment(q, 511);
171	blk_queue_congestion_threshold(q);
172	q->nr_batching = BLK_BATCH_REQ;
173
174	blk_set_default_limits(&q->limits);
175
176	/*
177	 * by default assume old behaviour and bounce for any highmem page
178	 */
179	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
180}
181EXPORT_SYMBOL(blk_queue_make_request);
182
183/**
184 * blk_queue_bounce_limit - set bounce buffer limit for queue
185 * @q: the request queue for the device
186 * @max_addr: the maximum address the device can handle
187 *
188 * Description:
189 *    Different hardware can have different requirements as to what pages
190 *    it can do I/O directly to. A low level driver can call
191 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
192 *    buffers for doing I/O to pages residing above @max_addr.
193 **/
194void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
195{
196	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
197	int dma = 0;
198
199	q->bounce_gfp = GFP_NOIO;
200#if BITS_PER_LONG == 64
201	/*
202	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
203	 * some IOMMUs can handle everything, but I don't know of a
204	 * way to test this here.
205	 */
206	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
207		dma = 1;
208	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
209#else
210	if (b_pfn < blk_max_low_pfn)
211		dma = 1;
212	q->limits.bounce_pfn = b_pfn;
213#endif
214	if (dma) {
215		init_emergency_isa_pool();
216		q->bounce_gfp = GFP_NOIO | GFP_DMA;
217		q->limits.bounce_pfn = b_pfn;
218	}
219}
220EXPORT_SYMBOL(blk_queue_bounce_limit);
221
222/**
223 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
224 * @q:  the request queue for the device
225 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
226 *
227 * Description:
228 *    Enables a low level driver to set a hard upper limit,
229 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
230 *    the device driver based upon the capabilities of the I/O
231 *    controller.
232 *
233 *    max_dev_sectors is a hard limit imposed by the storage device for
234 *    READ/WRITE requests. It is set by the disk driver.
235 *
236 *    max_sectors is a soft limit imposed by the block layer for
237 *    filesystem type requests.  This value can be overridden on a
238 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
239 *    The soft limit can not exceed max_hw_sectors.
240 **/
241void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
242{
243	struct queue_limits *limits = &q->limits;
244	unsigned int max_sectors;
245
246	if ((max_hw_sectors << 9) < PAGE_SIZE) {
247		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
248		printk(KERN_INFO "%s: set to minimum %d\n",
249		       __func__, max_hw_sectors);
250	}
251
 
 
252	limits->max_hw_sectors = max_hw_sectors;
 
253	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
254	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
 
 
255	limits->max_sectors = max_sectors;
256	q->backing_dev_info.io_pages = max_sectors >> (PAGE_SHIFT - 9);
 
 
 
257}
258EXPORT_SYMBOL(blk_queue_max_hw_sectors);
259
260/**
261 * blk_queue_chunk_sectors - set size of the chunk for this queue
262 * @q:  the request queue for the device
263 * @chunk_sectors:  chunk sectors in the usual 512b unit
264 *
265 * Description:
266 *    If a driver doesn't want IOs to cross a given chunk size, it can set
267 *    this limit and prevent merging across chunks. Note that the chunk size
268 *    must currently be a power-of-2 in sectors. Also note that the block
269 *    layer must accept a page worth of data at any offset. So if the
270 *    crossing of chunks is a hard limitation in the driver, it must still be
271 *    prepared to split single page bios.
272 **/
273void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
274{
275	BUG_ON(!is_power_of_2(chunk_sectors));
276	q->limits.chunk_sectors = chunk_sectors;
277}
278EXPORT_SYMBOL(blk_queue_chunk_sectors);
279
280/**
281 * blk_queue_max_discard_sectors - set max sectors for a single discard
282 * @q:  the request queue for the device
283 * @max_discard_sectors: maximum number of sectors to discard
284 **/
285void blk_queue_max_discard_sectors(struct request_queue *q,
286		unsigned int max_discard_sectors)
287{
288	q->limits.max_hw_discard_sectors = max_discard_sectors;
289	q->limits.max_discard_sectors = max_discard_sectors;
290}
291EXPORT_SYMBOL(blk_queue_max_discard_sectors);
292
293/**
294 * blk_queue_max_write_same_sectors - set max sectors for a single write same
295 * @q:  the request queue for the device
296 * @max_write_same_sectors: maximum number of sectors to write per command
297 **/
298void blk_queue_max_write_same_sectors(struct request_queue *q,
299				      unsigned int max_write_same_sectors)
300{
301	q->limits.max_write_same_sectors = max_write_same_sectors;
302}
303EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
304
305/**
306 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
307 *                                      write zeroes
308 * @q:  the request queue for the device
309 * @max_write_zeroes_sectors: maximum number of sectors to write per command
310 **/
311void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
312		unsigned int max_write_zeroes_sectors)
313{
314	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
315}
316EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
317
318/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319 * blk_queue_max_segments - set max hw segments for a request for this queue
320 * @q:  the request queue for the device
321 * @max_segments:  max number of segments
322 *
323 * Description:
324 *    Enables a low level driver to set an upper limit on the number of
325 *    hw data segments in a request.
326 **/
327void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
328{
329	if (!max_segments) {
330		max_segments = 1;
331		printk(KERN_INFO "%s: set to minimum %d\n",
332		       __func__, max_segments);
333	}
334
335	q->limits.max_segments = max_segments;
336}
337EXPORT_SYMBOL(blk_queue_max_segments);
338
339/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
341 * @q:  the request queue for the device
342 * @max_size:  max size of segment in bytes
343 *
344 * Description:
345 *    Enables a low level driver to set an upper limit on the size of a
346 *    coalesced segment
347 **/
348void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
349{
350	if (max_size < PAGE_SIZE) {
351		max_size = PAGE_SIZE;
352		printk(KERN_INFO "%s: set to minimum %d\n",
353		       __func__, max_size);
354	}
355
 
 
 
356	q->limits.max_segment_size = max_size;
357}
358EXPORT_SYMBOL(blk_queue_max_segment_size);
359
360/**
361 * blk_queue_logical_block_size - set logical block size for the queue
362 * @q:  the request queue for the device
363 * @size:  the logical block size, in bytes
364 *
365 * Description:
366 *   This should be set to the lowest possible block size that the
367 *   storage device can address.  The default of 512 covers most
368 *   hardware.
369 **/
370void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
371{
372	q->limits.logical_block_size = size;
373
374	if (q->limits.physical_block_size < size)
375		q->limits.physical_block_size = size;
376
377	if (q->limits.io_min < q->limits.physical_block_size)
378		q->limits.io_min = q->limits.physical_block_size;
 
 
 
 
 
 
 
 
379}
380EXPORT_SYMBOL(blk_queue_logical_block_size);
381
382/**
383 * blk_queue_physical_block_size - set physical block size for the queue
384 * @q:  the request queue for the device
385 * @size:  the physical block size, in bytes
386 *
387 * Description:
388 *   This should be set to the lowest possible sector size that the
389 *   hardware can operate on without reverting to read-modify-write
390 *   operations.
391 */
392void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
393{
394	q->limits.physical_block_size = size;
395
396	if (q->limits.physical_block_size < q->limits.logical_block_size)
397		q->limits.physical_block_size = q->limits.logical_block_size;
398
399	if (q->limits.io_min < q->limits.physical_block_size)
400		q->limits.io_min = q->limits.physical_block_size;
401}
402EXPORT_SYMBOL(blk_queue_physical_block_size);
403
404/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405 * blk_queue_alignment_offset - set physical block alignment offset
406 * @q:	the request queue for the device
407 * @offset: alignment offset in bytes
408 *
409 * Description:
410 *   Some devices are naturally misaligned to compensate for things like
411 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
412 *   should call this function for devices whose first sector is not
413 *   naturally aligned.
414 */
415void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
416{
417	q->limits.alignment_offset =
418		offset & (q->limits.physical_block_size - 1);
419	q->limits.misaligned = 0;
420}
421EXPORT_SYMBOL(blk_queue_alignment_offset);
422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423/**
424 * blk_limits_io_min - set minimum request size for a device
425 * @limits: the queue limits
426 * @min:  smallest I/O size in bytes
427 *
428 * Description:
429 *   Some devices have an internal block size bigger than the reported
430 *   hardware sector size.  This function can be used to signal the
431 *   smallest I/O the device can perform without incurring a performance
432 *   penalty.
433 */
434void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
435{
436	limits->io_min = min;
437
438	if (limits->io_min < limits->logical_block_size)
439		limits->io_min = limits->logical_block_size;
440
441	if (limits->io_min < limits->physical_block_size)
442		limits->io_min = limits->physical_block_size;
443}
444EXPORT_SYMBOL(blk_limits_io_min);
445
446/**
447 * blk_queue_io_min - set minimum request size for the queue
448 * @q:	the request queue for the device
449 * @min:  smallest I/O size in bytes
450 *
451 * Description:
452 *   Storage devices may report a granularity or preferred minimum I/O
453 *   size which is the smallest request the device can perform without
454 *   incurring a performance penalty.  For disk drives this is often the
455 *   physical block size.  For RAID arrays it is often the stripe chunk
456 *   size.  A properly aligned multiple of minimum_io_size is the
457 *   preferred request size for workloads where a high number of I/O
458 *   operations is desired.
459 */
460void blk_queue_io_min(struct request_queue *q, unsigned int min)
461{
462	blk_limits_io_min(&q->limits, min);
463}
464EXPORT_SYMBOL(blk_queue_io_min);
465
466/**
467 * blk_limits_io_opt - set optimal request size for a device
468 * @limits: the queue limits
469 * @opt:  smallest I/O size in bytes
470 *
471 * Description:
472 *   Storage devices may report an optimal I/O size, which is the
473 *   device's preferred unit for sustained I/O.  This is rarely reported
474 *   for disk drives.  For RAID arrays it is usually the stripe width or
475 *   the internal track size.  A properly aligned multiple of
476 *   optimal_io_size is the preferred request size for workloads where
477 *   sustained throughput is desired.
478 */
479void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
480{
481	limits->io_opt = opt;
482}
483EXPORT_SYMBOL(blk_limits_io_opt);
484
485/**
486 * blk_queue_io_opt - set optimal request size for the queue
487 * @q:	the request queue for the device
488 * @opt:  optimal request size in bytes
489 *
490 * Description:
491 *   Storage devices may report an optimal I/O size, which is the
492 *   device's preferred unit for sustained I/O.  This is rarely reported
493 *   for disk drives.  For RAID arrays it is usually the stripe width or
494 *   the internal track size.  A properly aligned multiple of
495 *   optimal_io_size is the preferred request size for workloads where
496 *   sustained throughput is desired.
497 */
498void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
499{
500	blk_limits_io_opt(&q->limits, opt);
 
 
 
 
501}
502EXPORT_SYMBOL(blk_queue_io_opt);
503
504/**
505 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
506 * @t:	the stacking driver (top)
507 * @b:  the underlying device (bottom)
508 **/
509void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510{
511	blk_stack_limits(&t->limits, &b->limits, 0);
 
 
 
512}
513EXPORT_SYMBOL(blk_queue_stack_limits);
514
515/**
516 * blk_stack_limits - adjust queue_limits for stacked devices
517 * @t:	the stacking driver limits (top device)
518 * @b:  the underlying queue limits (bottom, component device)
519 * @start:  first data sector within component device
520 *
521 * Description:
522 *    This function is used by stacking drivers like MD and DM to ensure
523 *    that all component devices have compatible block sizes and
524 *    alignments.  The stacking driver must provide a queue_limits
525 *    struct (top) and then iteratively call the stacking function for
526 *    all component (bottom) devices.  The stacking function will
527 *    attempt to combine the values and ensure proper alignment.
528 *
529 *    Returns 0 if the top and bottom queue_limits are compatible.  The
530 *    top device's block sizes and alignment offsets may be adjusted to
531 *    ensure alignment with the bottom device. If no compatible sizes
532 *    and alignments exist, -1 is returned and the resulting top
533 *    queue_limits will have the misaligned flag set to indicate that
534 *    the alignment_offset is undefined.
535 */
536int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
537		     sector_t start)
538{
539	unsigned int top, bottom, alignment, ret = 0;
540
541	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
542	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
543	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
544	t->max_write_same_sectors = min(t->max_write_same_sectors,
545					b->max_write_same_sectors);
546	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
547					b->max_write_zeroes_sectors);
548	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
 
 
549
550	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
551					    b->seg_boundary_mask);
552	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
553					    b->virt_boundary_mask);
554
555	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
 
 
556	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
557						 b->max_integrity_segments);
558
559	t->max_segment_size = min_not_zero(t->max_segment_size,
560					   b->max_segment_size);
561
562	t->misaligned |= b->misaligned;
563
564	alignment = queue_limit_alignment_offset(b, start);
565
566	/* Bottom device has different alignment.  Check that it is
567	 * compatible with the current top alignment.
568	 */
569	if (t->alignment_offset != alignment) {
570
571		top = max(t->physical_block_size, t->io_min)
572			+ t->alignment_offset;
573		bottom = max(b->physical_block_size, b->io_min) + alignment;
574
575		/* Verify that top and bottom intervals line up */
576		if (max(top, bottom) % min(top, bottom)) {
577			t->misaligned = 1;
578			ret = -1;
579		}
580	}
581
582	t->logical_block_size = max(t->logical_block_size,
583				    b->logical_block_size);
584
585	t->physical_block_size = max(t->physical_block_size,
586				     b->physical_block_size);
587
588	t->io_min = max(t->io_min, b->io_min);
589	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
 
590
591	t->cluster &= b->cluster;
592	t->discard_zeroes_data &= b->discard_zeroes_data;
 
593
594	/* Physical block size a multiple of the logical block size? */
595	if (t->physical_block_size & (t->logical_block_size - 1)) {
596		t->physical_block_size = t->logical_block_size;
597		t->misaligned = 1;
598		ret = -1;
599	}
600
601	/* Minimum I/O a multiple of the physical block size? */
602	if (t->io_min & (t->physical_block_size - 1)) {
603		t->io_min = t->physical_block_size;
604		t->misaligned = 1;
605		ret = -1;
606	}
607
608	/* Optimal I/O a multiple of the physical block size? */
609	if (t->io_opt & (t->physical_block_size - 1)) {
610		t->io_opt = 0;
611		t->misaligned = 1;
612		ret = -1;
613	}
614
 
 
 
 
 
 
 
615	t->raid_partial_stripes_expensive =
616		max(t->raid_partial_stripes_expensive,
617		    b->raid_partial_stripes_expensive);
618
619	/* Find lowest common alignment_offset */
620	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
621		% max(t->physical_block_size, t->io_min);
622
623	/* Verify that new alignment_offset is on a logical block boundary */
624	if (t->alignment_offset & (t->logical_block_size - 1)) {
625		t->misaligned = 1;
626		ret = -1;
627	}
628
 
 
 
 
629	/* Discard alignment and granularity */
630	if (b->discard_granularity) {
631		alignment = queue_limit_discard_alignment(b, start);
632
633		if (t->discard_granularity != 0 &&
634		    t->discard_alignment != alignment) {
635			top = t->discard_granularity + t->discard_alignment;
636			bottom = b->discard_granularity + alignment;
637
638			/* Verify that top and bottom intervals line up */
639			if ((max(top, bottom) % min(top, bottom)) != 0)
640				t->discard_misaligned = 1;
641		}
642
643		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
644						      b->max_discard_sectors);
645		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
646							 b->max_hw_discard_sectors);
647		t->discard_granularity = max(t->discard_granularity,
648					     b->discard_granularity);
649		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
650			t->discard_granularity;
651	}
652
653	if (b->chunk_sectors)
654		t->chunk_sectors = min_not_zero(t->chunk_sectors,
655						b->chunk_sectors);
656
657	return ret;
658}
659EXPORT_SYMBOL(blk_stack_limits);
660
661/**
662 * bdev_stack_limits - adjust queue limits for stacked drivers
663 * @t:	the stacking driver limits (top device)
664 * @bdev:  the component block_device (bottom)
665 * @start:  first data sector within component device
666 *
667 * Description:
668 *    Merges queue limits for a top device and a block_device.  Returns
669 *    0 if alignment didn't change.  Returns -1 if adding the bottom
670 *    device caused misalignment.
671 */
672int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
673		      sector_t start)
674{
675	struct request_queue *bq = bdev_get_queue(bdev);
676
677	start += get_start_sect(bdev);
678
679	return blk_stack_limits(t, &bq->limits, start);
680}
681EXPORT_SYMBOL(bdev_stack_limits);
682
683/**
684 * disk_stack_limits - adjust queue limits for stacked drivers
685 * @disk:  MD/DM gendisk (top)
686 * @bdev:  the underlying block device (bottom)
687 * @offset:  offset to beginning of data within component device
688 *
689 * Description:
690 *    Merges the limits for a top level gendisk and a bottom level
691 *    block_device.
692 */
693void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
694		       sector_t offset)
695{
696	struct request_queue *t = disk->queue;
697
698	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
699		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
700
701		disk_name(disk, 0, top);
702		bdevname(bdev, bottom);
703
704		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
705		       top, bottom);
706	}
707}
708EXPORT_SYMBOL(disk_stack_limits);
709
710/**
711 * blk_queue_dma_pad - set pad mask
712 * @q:     the request queue for the device
713 * @mask:  pad mask
714 *
715 * Set dma pad mask.
716 *
717 * Appending pad buffer to a request modifies the last entry of a
718 * scatter list such that it includes the pad buffer.
719 **/
720void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
721{
722	q->dma_pad_mask = mask;
723}
724EXPORT_SYMBOL(blk_queue_dma_pad);
725
726/**
727 * blk_queue_update_dma_pad - update pad mask
728 * @q:     the request queue for the device
729 * @mask:  pad mask
730 *
731 * Update dma pad mask.
732 *
733 * Appending pad buffer to a request modifies the last entry of a
734 * scatter list such that it includes the pad buffer.
735 **/
736void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
737{
738	if (mask > q->dma_pad_mask)
739		q->dma_pad_mask = mask;
740}
741EXPORT_SYMBOL(blk_queue_update_dma_pad);
742
743/**
744 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
745 * @q:  the request queue for the device
746 * @dma_drain_needed: fn which returns non-zero if drain is necessary
747 * @buf:	physically contiguous buffer
748 * @size:	size of the buffer in bytes
749 *
750 * Some devices have excess DMA problems and can't simply discard (or
751 * zero fill) the unwanted piece of the transfer.  They have to have a
752 * real area of memory to transfer it into.  The use case for this is
753 * ATAPI devices in DMA mode.  If the packet command causes a transfer
754 * bigger than the transfer size some HBAs will lock up if there
755 * aren't DMA elements to contain the excess transfer.  What this API
756 * does is adjust the queue so that the buf is always appended
757 * silently to the scatterlist.
758 *
759 * Note: This routine adjusts max_hw_segments to make room for appending
760 * the drain buffer.  If you call blk_queue_max_segments() after calling
761 * this routine, you must set the limit to one fewer than your device
762 * can support otherwise there won't be room for the drain buffer.
763 */
764int blk_queue_dma_drain(struct request_queue *q,
765			       dma_drain_needed_fn *dma_drain_needed,
766			       void *buf, unsigned int size)
767{
768	if (queue_max_segments(q) < 2)
769		return -EINVAL;
770	/* make room for appending the drain */
771	blk_queue_max_segments(q, queue_max_segments(q) - 1);
772	q->dma_drain_needed = dma_drain_needed;
773	q->dma_drain_buffer = buf;
774	q->dma_drain_size = size;
775
776	return 0;
777}
778EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
779
780/**
781 * blk_queue_segment_boundary - set boundary rules for segment merging
782 * @q:  the request queue for the device
783 * @mask:  the memory boundary mask
784 **/
785void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
786{
787	if (mask < PAGE_SIZE - 1) {
788		mask = PAGE_SIZE - 1;
789		printk(KERN_INFO "%s: set to minimum %lx\n",
790		       __func__, mask);
791	}
792
793	q->limits.seg_boundary_mask = mask;
794}
795EXPORT_SYMBOL(blk_queue_segment_boundary);
796
797/**
798 * blk_queue_virt_boundary - set boundary rules for bio merging
799 * @q:  the request queue for the device
800 * @mask:  the memory boundary mask
801 **/
802void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
803{
804	q->limits.virt_boundary_mask = mask;
 
 
 
 
 
 
 
 
 
805}
806EXPORT_SYMBOL(blk_queue_virt_boundary);
807
808/**
809 * blk_queue_dma_alignment - set dma length and memory alignment
810 * @q:     the request queue for the device
811 * @mask:  alignment mask
812 *
813 * description:
814 *    set required memory and length alignment for direct dma transactions.
815 *    this is used when building direct io requests for the queue.
816 *
817 **/
818void blk_queue_dma_alignment(struct request_queue *q, int mask)
819{
820	q->dma_alignment = mask;
821}
822EXPORT_SYMBOL(blk_queue_dma_alignment);
823
824/**
825 * blk_queue_update_dma_alignment - update dma length and memory alignment
826 * @q:     the request queue for the device
827 * @mask:  alignment mask
828 *
829 * description:
830 *    update required memory and length alignment for direct dma transactions.
831 *    If the requested alignment is larger than the current alignment, then
832 *    the current queue alignment is updated to the new value, otherwise it
833 *    is left alone.  The design of this is to allow multiple objects
834 *    (driver, device, transport etc) to set their respective
835 *    alignments without having them interfere.
836 *
837 **/
838void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
839{
840	BUG_ON(mask > PAGE_SIZE);
841
842	if (mask > q->dma_alignment)
843		q->dma_alignment = mask;
844}
845EXPORT_SYMBOL(blk_queue_update_dma_alignment);
846
847void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
848{
849	spin_lock_irq(q->queue_lock);
850	if (queueable)
851		clear_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
852	else
853		set_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
854	spin_unlock_irq(q->queue_lock);
855}
856EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
857
858/**
859 * blk_set_queue_depth - tell the block layer about the device queue depth
860 * @q:		the request queue for the device
861 * @depth:		queue depth
862 *
863 */
864void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
865{
866	q->queue_depth = depth;
867	wbt_set_queue_depth(q->rq_wb, depth);
868}
869EXPORT_SYMBOL(blk_set_queue_depth);
870
871/**
872 * blk_queue_write_cache - configure queue's write cache
873 * @q:		the request queue for the device
874 * @wc:		write back cache on or off
875 * @fua:	device supports FUA writes, if true
876 *
877 * Tell the block layer about the write cache of @q.
878 */
879void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
880{
881	spin_lock_irq(q->queue_lock);
882	if (wc)
883		queue_flag_set(QUEUE_FLAG_WC, q);
884	else
885		queue_flag_clear(QUEUE_FLAG_WC, q);
886	if (fua)
887		queue_flag_set(QUEUE_FLAG_FUA, q);
888	else
889		queue_flag_clear(QUEUE_FLAG_FUA, q);
890	spin_unlock_irq(q->queue_lock);
891
892	wbt_set_write_cache(q->rq_wb, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
893}
894EXPORT_SYMBOL_GPL(blk_queue_write_cache);
895
896static int __init blk_settings_init(void)
 
 
 
 
 
 
 
 
 
 
897{
898	blk_max_low_pfn = max_low_pfn - 1;
899	blk_max_pfn = max_pfn - 1;
900	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
901}
902subsys_initcall(blk_settings_init);