Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Special handling for DW DMA core
  4 *
  5 * Copyright (c) 2009, 2014 Intel Corporation.
  6 */
  7
  8#include <linux/completion.h>
  9#include <linux/dma-mapping.h>
 10#include <linux/dmaengine.h>
 11#include <linux/irqreturn.h>
 12#include <linux/jiffies.h>
 13#include <linux/module.h>
 14#include <linux/pci.h>
 15#include <linux/platform_data/dma-dw.h>
 16#include <linux/spi/spi.h>
 17#include <linux/types.h>
 18
 19#include "spi-dw.h"
 20
 21#define DW_SPI_RX_BUSY		0
 22#define DW_SPI_RX_BURST_LEVEL	16
 23#define DW_SPI_TX_BUSY		1
 24#define DW_SPI_TX_BURST_LEVEL	16
 25
 26static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
 27{
 28	struct dw_dma_slave *s = param;
 29
 30	if (s->dma_dev != chan->device->dev)
 31		return false;
 32
 33	chan->private = s;
 34	return true;
 35}
 36
 37static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
 38{
 39	struct dma_slave_caps caps;
 40	u32 max_burst, def_burst;
 41	int ret;
 42
 43	def_burst = dws->fifo_len / 2;
 44
 45	ret = dma_get_slave_caps(dws->rxchan, &caps);
 46	if (!ret && caps.max_burst)
 47		max_burst = caps.max_burst;
 48	else
 49		max_burst = DW_SPI_RX_BURST_LEVEL;
 50
 51	dws->rxburst = min(max_burst, def_burst);
 52	dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
 53
 54	ret = dma_get_slave_caps(dws->txchan, &caps);
 55	if (!ret && caps.max_burst)
 56		max_burst = caps.max_burst;
 57	else
 58		max_burst = DW_SPI_TX_BURST_LEVEL;
 59
 60	/*
 61	 * Having a Rx DMA channel serviced with higher priority than a Tx DMA
 62	 * channel might not be enough to provide a well balanced DMA-based
 63	 * SPI transfer interface. There might still be moments when the Tx DMA
 64	 * channel is occasionally handled faster than the Rx DMA channel.
 65	 * That in its turn will eventually cause the SPI Rx FIFO overflow if
 66	 * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
 67	 * cleared by the Rx DMA channel. In order to fix the problem the Tx
 68	 * DMA activity is intentionally slowed down by limiting the SPI Tx
 69	 * FIFO depth with a value twice bigger than the Tx burst length.
 70	 */
 71	dws->txburst = min(max_burst, def_burst);
 72	dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
 73}
 74
 75static void dw_spi_dma_sg_burst_init(struct dw_spi *dws)
 76{
 77	struct dma_slave_caps tx = {0}, rx = {0};
 
 
 
 
 
 78
 79	dma_get_slave_caps(dws->txchan, &tx);
 80	dma_get_slave_caps(dws->rxchan, &rx);
 
 
 
 
 
 81
 82	if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
 83		dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
 84	else if (tx.max_sg_burst > 0)
 85		dws->dma_sg_burst = tx.max_sg_burst;
 86	else if (rx.max_sg_burst > 0)
 87		dws->dma_sg_burst = rx.max_sg_burst;
 88	else
 89		dws->dma_sg_burst = 0;
 
 
 
 
 
 
 
 
 
 90}
 91
 92static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
 93{
 94	struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
 95	struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
 96	struct pci_dev *dma_dev;
 97	dma_cap_mask_t mask;
 
 98
 99	/*
100	 * Get pci device for DMA controller, currently it could only
101	 * be the DMA controller of Medfield
102	 */
103	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
104	if (!dma_dev)
105		return -ENODEV;
106
107	dma_cap_zero(mask);
108	dma_cap_set(DMA_SLAVE, mask);
109
110	/* 1. Init rx channel */
111	rx->dma_dev = &dma_dev->dev;
112	dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
113	if (!dws->rxchan)
114		goto err_exit;
115
116	/* 2. Init tx channel */
117	tx->dma_dev = &dma_dev->dev;
118	dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
119	if (!dws->txchan)
120		goto free_rxchan;
121
122	dws->master->dma_rx = dws->rxchan;
123	dws->master->dma_tx = dws->txchan;
124
125	init_completion(&dws->dma_completion);
126
127	dw_spi_dma_maxburst_init(dws);
 
 
128
129	dw_spi_dma_sg_burst_init(dws);
130
131	pci_dev_put(dma_dev);
132
133	return 0;
134
 
 
 
135free_rxchan:
136	dma_release_channel(dws->rxchan);
137	dws->rxchan = NULL;
138err_exit:
139	pci_dev_put(dma_dev);
140	return -EBUSY;
141}
142
143static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
144{
145	int ret;
146
147	dws->rxchan = dma_request_chan(dev, "rx");
148	if (IS_ERR(dws->rxchan)) {
149		ret = PTR_ERR(dws->rxchan);
150		dws->rxchan = NULL;
151		goto err_exit;
152	}
153
154	dws->txchan = dma_request_chan(dev, "tx");
155	if (IS_ERR(dws->txchan)) {
156		ret = PTR_ERR(dws->txchan);
157		dws->txchan = NULL;
158		goto free_rxchan;
159	}
160
161	dws->master->dma_rx = dws->rxchan;
162	dws->master->dma_tx = dws->txchan;
163
164	init_completion(&dws->dma_completion);
165
166	dw_spi_dma_maxburst_init(dws);
 
 
167
168	dw_spi_dma_sg_burst_init(dws);
169
170	return 0;
171
 
 
 
172free_rxchan:
173	dma_release_channel(dws->rxchan);
174	dws->rxchan = NULL;
175err_exit:
176	return ret;
177}
178
179static void dw_spi_dma_exit(struct dw_spi *dws)
180{
181	if (dws->txchan) {
182		dmaengine_terminate_sync(dws->txchan);
183		dma_release_channel(dws->txchan);
184	}
185
186	if (dws->rxchan) {
187		dmaengine_terminate_sync(dws->rxchan);
188		dma_release_channel(dws->rxchan);
189	}
190}
191
192static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
193{
194	dw_spi_check_status(dws, false);
195
196	complete(&dws->dma_completion);
197
198	return IRQ_HANDLED;
199}
200
201static bool dw_spi_can_dma(struct spi_controller *master,
202			   struct spi_device *spi, struct spi_transfer *xfer)
203{
204	struct dw_spi *dws = spi_controller_get_devdata(master);
205
206	return xfer->len > dws->fifo_len;
207}
208
209static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
210{
211	if (n_bytes == 1)
 
212		return DMA_SLAVE_BUSWIDTH_1_BYTE;
213	else if (n_bytes == 2)
214		return DMA_SLAVE_BUSWIDTH_2_BYTES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215
216	return DMA_SLAVE_BUSWIDTH_UNDEFINED;
217}
218
219static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
220{
221	unsigned long long ms;
222
223	ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
224	do_div(ms, speed);
225	ms += ms + 200;
226
227	if (ms > UINT_MAX)
228		ms = UINT_MAX;
229
230	ms = wait_for_completion_timeout(&dws->dma_completion,
231					 msecs_to_jiffies(ms));
232
233	if (ms == 0) {
234		dev_err(&dws->master->cur_msg->spi->dev,
235			"DMA transaction timed out\n");
236		return -ETIMEDOUT;
237	}
238
239	return 0;
240}
241
242static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
243{
244	return !(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_TF_EMPT);
245}
246
247static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
248				   struct spi_transfer *xfer)
249{
250	int retry = DW_SPI_WAIT_RETRIES;
251	struct spi_delay delay;
252	u32 nents;
253
254	nents = dw_readl(dws, DW_SPI_TXFLR);
255	delay.unit = SPI_DELAY_UNIT_SCK;
256	delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
257
258	while (dw_spi_dma_tx_busy(dws) && retry--)
259		spi_delay_exec(&delay, xfer);
260
261	if (retry < 0) {
262		dev_err(&dws->master->dev, "Tx hanged up\n");
263		return -EIO;
264	}
265
266	return 0;
267}
268
269/*
270 * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
271 * channel will clear a corresponding bit.
272 */
273static void dw_spi_dma_tx_done(void *arg)
274{
275	struct dw_spi *dws = arg;
276
277	clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
278	if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy))
279		return;
280
281	complete(&dws->dma_completion);
282}
283
284static int dw_spi_dma_config_tx(struct dw_spi *dws)
285{
286	struct dma_slave_config txconf;
287
288	memset(&txconf, 0, sizeof(txconf));
289	txconf.direction = DMA_MEM_TO_DEV;
290	txconf.dst_addr = dws->dma_addr;
291	txconf.dst_maxburst = dws->txburst;
292	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
293	txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
294	txconf.device_fc = false;
295
296	return dmaengine_slave_config(dws->txchan, &txconf);
297}
298
299static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
300				unsigned int nents)
301{
302	struct dma_async_tx_descriptor *txdesc;
303	dma_cookie_t cookie;
304	int ret;
305
306	txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
307					 DMA_MEM_TO_DEV,
308					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
309	if (!txdesc)
310		return -ENOMEM;
311
312	txdesc->callback = dw_spi_dma_tx_done;
313	txdesc->callback_param = dws;
314
315	cookie = dmaengine_submit(txdesc);
316	ret = dma_submit_error(cookie);
317	if (ret) {
318		dmaengine_terminate_sync(dws->txchan);
319		return ret;
320	}
321
322	set_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
323
324	return 0;
325}
326
327static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
328{
329	return !!(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_RF_NOT_EMPT);
330}
331
332static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
333{
334	int retry = DW_SPI_WAIT_RETRIES;
335	struct spi_delay delay;
336	unsigned long ns, us;
337	u32 nents;
338
339	/*
340	 * It's unlikely that DMA engine is still doing the data fetching, but
341	 * if it's let's give it some reasonable time. The timeout calculation
342	 * is based on the synchronous APB/SSI reference clock rate, on a
343	 * number of data entries left in the Rx FIFO, times a number of clock
344	 * periods normally needed for a single APB read/write transaction
345	 * without PREADY signal utilized (which is true for the DW APB SSI
346	 * controller).
347	 */
348	nents = dw_readl(dws, DW_SPI_RXFLR);
349	ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
350	if (ns <= NSEC_PER_USEC) {
351		delay.unit = SPI_DELAY_UNIT_NSECS;
352		delay.value = ns;
353	} else {
354		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
355		delay.unit = SPI_DELAY_UNIT_USECS;
356		delay.value = clamp_val(us, 0, USHRT_MAX);
357	}
358
359	while (dw_spi_dma_rx_busy(dws) && retry--)
360		spi_delay_exec(&delay, NULL);
361
362	if (retry < 0) {
363		dev_err(&dws->master->dev, "Rx hanged up\n");
364		return -EIO;
365	}
366
367	return 0;
368}
369
370/*
371 * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
372 * channel will clear a corresponding bit.
373 */
374static void dw_spi_dma_rx_done(void *arg)
375{
376	struct dw_spi *dws = arg;
377
378	clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
379	if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy))
380		return;
381
382	complete(&dws->dma_completion);
383}
384
385static int dw_spi_dma_config_rx(struct dw_spi *dws)
386{
387	struct dma_slave_config rxconf;
388
389	memset(&rxconf, 0, sizeof(rxconf));
390	rxconf.direction = DMA_DEV_TO_MEM;
391	rxconf.src_addr = dws->dma_addr;
392	rxconf.src_maxburst = dws->rxburst;
393	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
394	rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
395	rxconf.device_fc = false;
396
397	return dmaengine_slave_config(dws->rxchan, &rxconf);
398}
399
400static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
401				unsigned int nents)
402{
403	struct dma_async_tx_descriptor *rxdesc;
404	dma_cookie_t cookie;
405	int ret;
406
407	rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
408					 DMA_DEV_TO_MEM,
409					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
410	if (!rxdesc)
411		return -ENOMEM;
412
413	rxdesc->callback = dw_spi_dma_rx_done;
414	rxdesc->callback_param = dws;
415
416	cookie = dmaengine_submit(rxdesc);
417	ret = dma_submit_error(cookie);
418	if (ret) {
419		dmaengine_terminate_sync(dws->rxchan);
420		return ret;
421	}
422
423	set_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
424
425	return 0;
426}
427
428static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
429{
430	u16 imr, dma_ctrl;
431	int ret;
432
433	if (!xfer->tx_buf)
434		return -EINVAL;
435
436	/* Setup DMA channels */
437	ret = dw_spi_dma_config_tx(dws);
438	if (ret)
439		return ret;
440
441	if (xfer->rx_buf) {
442		ret = dw_spi_dma_config_rx(dws);
443		if (ret)
444			return ret;
445	}
446
447	/* Set the DMA handshaking interface */
448	dma_ctrl = DW_SPI_DMACR_TDMAE;
449	if (xfer->rx_buf)
450		dma_ctrl |= DW_SPI_DMACR_RDMAE;
451	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
452
453	/* Set the interrupt mask */
454	imr = DW_SPI_INT_TXOI;
455	if (xfer->rx_buf)
456		imr |= DW_SPI_INT_RXUI | DW_SPI_INT_RXOI;
457	dw_spi_umask_intr(dws, imr);
458
459	reinit_completion(&dws->dma_completion);
460
461	dws->transfer_handler = dw_spi_dma_transfer_handler;
462
463	return 0;
464}
465
466static int dw_spi_dma_transfer_all(struct dw_spi *dws,
467				   struct spi_transfer *xfer)
468{
469	int ret;
470
471	/* Submit the DMA Tx transfer */
472	ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
473	if (ret)
474		goto err_clear_dmac;
475
476	/* Submit the DMA Rx transfer if required */
477	if (xfer->rx_buf) {
478		ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
479					   xfer->rx_sg.nents);
480		if (ret)
481			goto err_clear_dmac;
482
483		/* rx must be started before tx due to spi instinct */
484		dma_async_issue_pending(dws->rxchan);
485	}
486
487	dma_async_issue_pending(dws->txchan);
488
489	ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);
490
491err_clear_dmac:
492	dw_writel(dws, DW_SPI_DMACR, 0);
493
494	return ret;
495}
496
497/*
498 * In case if at least one of the requested DMA channels doesn't support the
499 * hardware accelerated SG list entries traverse, the DMA driver will most
500 * likely work that around by performing the IRQ-based SG list entries
501 * resubmission. That might and will cause a problem if the DMA Tx channel is
502 * recharged and re-executed before the Rx DMA channel. Due to
503 * non-deterministic IRQ-handler execution latency the DMA Tx channel will
504 * start pushing data to the SPI bus before the Rx DMA channel is even
505 * reinitialized with the next inbound SG list entry. By doing so the DMA Tx
506 * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
507 * the DMA Rx channel being recharged and re-executed will eventually be
508 * overflown.
509 *
510 * In order to solve the problem we have to feed the DMA engine with SG list
511 * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
512 * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
513 * and rx_sg lists may have different number of entries of different lengths
514 * (though total length should match) let's virtually split the SG-lists to the
515 * set of DMA transfers, which length is a minimum of the ordered SG-entries
516 * lengths. An ASCII-sketch of the implemented algo is following:
517 *                  xfer->len
518 *                |___________|
519 * tx_sg list:    |___|____|__|
520 * rx_sg list:    |_|____|____|
521 * DMA transfers: |_|_|__|_|__|
522 *
523 * Note in order to have this workaround solving the denoted problem the DMA
524 * engine driver should properly initialize the max_sg_burst capability and set
525 * the DMA device max segment size parameter with maximum data block size the
526 * DMA engine supports.
527 */
528
529static int dw_spi_dma_transfer_one(struct dw_spi *dws,
530				   struct spi_transfer *xfer)
531{
532	struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
533	unsigned int tx_len = 0, rx_len = 0;
534	unsigned int base, len;
535	int ret;
536
537	sg_init_table(&tx_tmp, 1);
538	sg_init_table(&rx_tmp, 1);
539
540	for (base = 0, len = 0; base < xfer->len; base += len) {
541		/* Fetch next Tx DMA data chunk */
542		if (!tx_len) {
543			tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
544			sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
545			tx_len = sg_dma_len(tx_sg);
546		}
547
548		/* Fetch next Rx DMA data chunk */
549		if (!rx_len) {
550			rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
551			sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
552			rx_len = sg_dma_len(rx_sg);
553		}
554
555		len = min(tx_len, rx_len);
556
557		sg_dma_len(&tx_tmp) = len;
558		sg_dma_len(&rx_tmp) = len;
559
560		/* Submit DMA Tx transfer */
561		ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
562		if (ret)
563			break;
564
565		/* Submit DMA Rx transfer */
566		ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
567		if (ret)
568			break;
569
570		/* Rx must be started before Tx due to SPI instinct */
571		dma_async_issue_pending(dws->rxchan);
572
573		dma_async_issue_pending(dws->txchan);
574
575		/*
576		 * Here we only need to wait for the DMA transfer to be
577		 * finished since SPI controller is kept enabled during the
578		 * procedure this loop implements and there is no risk to lose
579		 * data left in the Tx/Rx FIFOs.
580		 */
581		ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
582		if (ret)
583			break;
584
585		reinit_completion(&dws->dma_completion);
586
587		sg_dma_address(&tx_tmp) += len;
588		sg_dma_address(&rx_tmp) += len;
589		tx_len -= len;
590		rx_len -= len;
591	}
592
593	dw_writel(dws, DW_SPI_DMACR, 0);
594
595	return ret;
596}
597
598static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
599{
600	unsigned int nents;
601	int ret;
602
603	nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
604
605	/*
606	 * Execute normal DMA-based transfer (which submits the Rx and Tx SG
607	 * lists directly to the DMA engine at once) if either full hardware
608	 * accelerated SG list traverse is supported by both channels, or the
609	 * Tx-only SPI transfer is requested, or the DMA engine is capable to
610	 * handle both SG lists on hardware accelerated basis.
611	 */
612	if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
613		ret = dw_spi_dma_transfer_all(dws, xfer);
614	else
615		ret = dw_spi_dma_transfer_one(dws, xfer);
616	if (ret)
617		return ret;
618
619	if (dws->master->cur_msg->status == -EINPROGRESS) {
620		ret = dw_spi_dma_wait_tx_done(dws, xfer);
621		if (ret)
622			return ret;
623	}
624
625	if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS)
626		ret = dw_spi_dma_wait_rx_done(dws);
627
628	return ret;
629}
630
631static void dw_spi_dma_stop(struct dw_spi *dws)
632{
633	if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) {
634		dmaengine_terminate_sync(dws->txchan);
635		clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
636	}
637	if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) {
638		dmaengine_terminate_sync(dws->rxchan);
639		clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
640	}
641}
642
643static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
644	.dma_init	= dw_spi_dma_init_mfld,
645	.dma_exit	= dw_spi_dma_exit,
646	.dma_setup	= dw_spi_dma_setup,
647	.can_dma	= dw_spi_can_dma,
648	.dma_transfer	= dw_spi_dma_transfer,
649	.dma_stop	= dw_spi_dma_stop,
650};
651
652void dw_spi_dma_setup_mfld(struct dw_spi *dws)
653{
654	dws->dma_ops = &dw_spi_dma_mfld_ops;
655}
656EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_mfld, SPI_DW_CORE);
657
658static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
659	.dma_init	= dw_spi_dma_init_generic,
660	.dma_exit	= dw_spi_dma_exit,
661	.dma_setup	= dw_spi_dma_setup,
662	.can_dma	= dw_spi_can_dma,
663	.dma_transfer	= dw_spi_dma_transfer,
664	.dma_stop	= dw_spi_dma_stop,
665};
666
667void dw_spi_dma_setup_generic(struct dw_spi *dws)
668{
669	dws->dma_ops = &dw_spi_dma_generic_ops;
670}
671EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_generic, SPI_DW_CORE);
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Special handling for DW DMA core
  4 *
  5 * Copyright (c) 2009, 2014 Intel Corporation.
  6 */
  7
  8#include <linux/completion.h>
  9#include <linux/dma-mapping.h>
 10#include <linux/dmaengine.h>
 11#include <linux/irqreturn.h>
 12#include <linux/jiffies.h>
 13#include <linux/module.h>
 14#include <linux/pci.h>
 15#include <linux/platform_data/dma-dw.h>
 16#include <linux/spi/spi.h>
 17#include <linux/types.h>
 18
 19#include "spi-dw.h"
 20
 21#define DW_SPI_RX_BUSY		0
 22#define DW_SPI_RX_BURST_LEVEL	16
 23#define DW_SPI_TX_BUSY		1
 24#define DW_SPI_TX_BURST_LEVEL	16
 25
 26static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
 27{
 28	struct dw_dma_slave *s = param;
 29
 30	if (s->dma_dev != chan->device->dev)
 31		return false;
 32
 33	chan->private = s;
 34	return true;
 35}
 36
 37static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
 38{
 39	struct dma_slave_caps caps;
 40	u32 max_burst, def_burst;
 41	int ret;
 42
 43	def_burst = dws->fifo_len / 2;
 44
 45	ret = dma_get_slave_caps(dws->rxchan, &caps);
 46	if (!ret && caps.max_burst)
 47		max_burst = caps.max_burst;
 48	else
 49		max_burst = DW_SPI_RX_BURST_LEVEL;
 50
 51	dws->rxburst = min(max_burst, def_burst);
 52	dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
 53
 54	ret = dma_get_slave_caps(dws->txchan, &caps);
 55	if (!ret && caps.max_burst)
 56		max_burst = caps.max_burst;
 57	else
 58		max_burst = DW_SPI_TX_BURST_LEVEL;
 59
 60	/*
 61	 * Having a Rx DMA channel serviced with higher priority than a Tx DMA
 62	 * channel might not be enough to provide a well balanced DMA-based
 63	 * SPI transfer interface. There might still be moments when the Tx DMA
 64	 * channel is occasionally handled faster than the Rx DMA channel.
 65	 * That in its turn will eventually cause the SPI Rx FIFO overflow if
 66	 * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
 67	 * cleared by the Rx DMA channel. In order to fix the problem the Tx
 68	 * DMA activity is intentionally slowed down by limiting the SPI Tx
 69	 * FIFO depth with a value twice bigger than the Tx burst length.
 70	 */
 71	dws->txburst = min(max_burst, def_burst);
 72	dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
 73}
 74
 75static int dw_spi_dma_caps_init(struct dw_spi *dws)
 76{
 77	struct dma_slave_caps tx, rx;
 78	int ret;
 79
 80	ret = dma_get_slave_caps(dws->txchan, &tx);
 81	if (ret)
 82		return ret;
 83
 84	ret = dma_get_slave_caps(dws->rxchan, &rx);
 85	if (ret)
 86		return ret;
 87
 88	if (!(tx.directions & BIT(DMA_MEM_TO_DEV) &&
 89	      rx.directions & BIT(DMA_DEV_TO_MEM)))
 90		return -ENXIO;
 91
 92	if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
 93		dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
 94	else if (tx.max_sg_burst > 0)
 95		dws->dma_sg_burst = tx.max_sg_burst;
 96	else if (rx.max_sg_burst > 0)
 97		dws->dma_sg_burst = rx.max_sg_burst;
 98	else
 99		dws->dma_sg_burst = 0;
100
101	/*
102	 * Assuming both channels belong to the same DMA controller hence the
103	 * peripheral side address width capabilities most likely would be
104	 * the same.
105	 */
106	dws->dma_addr_widths = tx.dst_addr_widths & rx.src_addr_widths;
107
108	return 0;
109}
110
111static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
112{
113	struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
114	struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
115	struct pci_dev *dma_dev;
116	dma_cap_mask_t mask;
117	int ret = -EBUSY;
118
119	/*
120	 * Get pci device for DMA controller, currently it could only
121	 * be the DMA controller of Medfield
122	 */
123	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
124	if (!dma_dev)
125		return -ENODEV;
126
127	dma_cap_zero(mask);
128	dma_cap_set(DMA_SLAVE, mask);
129
130	/* 1. Init rx channel */
131	rx->dma_dev = &dma_dev->dev;
132	dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
133	if (!dws->rxchan)
134		goto err_exit;
135
136	/* 2. Init tx channel */
137	tx->dma_dev = &dma_dev->dev;
138	dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
139	if (!dws->txchan)
140		goto free_rxchan;
141
142	dws->host->dma_rx = dws->rxchan;
143	dws->host->dma_tx = dws->txchan;
144
145	init_completion(&dws->dma_completion);
146
147	ret = dw_spi_dma_caps_init(dws);
148	if (ret)
149		goto free_txchan;
150
151	dw_spi_dma_maxburst_init(dws);
152
153	pci_dev_put(dma_dev);
154
155	return 0;
156
157free_txchan:
158	dma_release_channel(dws->txchan);
159	dws->txchan = NULL;
160free_rxchan:
161	dma_release_channel(dws->rxchan);
162	dws->rxchan = NULL;
163err_exit:
164	pci_dev_put(dma_dev);
165	return ret;
166}
167
168static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
169{
170	int ret;
171
172	dws->rxchan = dma_request_chan(dev, "rx");
173	if (IS_ERR(dws->rxchan)) {
174		ret = PTR_ERR(dws->rxchan);
175		dws->rxchan = NULL;
176		goto err_exit;
177	}
178
179	dws->txchan = dma_request_chan(dev, "tx");
180	if (IS_ERR(dws->txchan)) {
181		ret = PTR_ERR(dws->txchan);
182		dws->txchan = NULL;
183		goto free_rxchan;
184	}
185
186	dws->host->dma_rx = dws->rxchan;
187	dws->host->dma_tx = dws->txchan;
188
189	init_completion(&dws->dma_completion);
190
191	ret = dw_spi_dma_caps_init(dws);
192	if (ret)
193		goto free_txchan;
194
195	dw_spi_dma_maxburst_init(dws);
196
197	return 0;
198
199free_txchan:
200	dma_release_channel(dws->txchan);
201	dws->txchan = NULL;
202free_rxchan:
203	dma_release_channel(dws->rxchan);
204	dws->rxchan = NULL;
205err_exit:
206	return ret;
207}
208
209static void dw_spi_dma_exit(struct dw_spi *dws)
210{
211	if (dws->txchan) {
212		dmaengine_terminate_sync(dws->txchan);
213		dma_release_channel(dws->txchan);
214	}
215
216	if (dws->rxchan) {
217		dmaengine_terminate_sync(dws->rxchan);
218		dma_release_channel(dws->rxchan);
219	}
220}
221
222static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
223{
224	dw_spi_check_status(dws, false);
225
226	complete(&dws->dma_completion);
227
228	return IRQ_HANDLED;
229}
230
 
 
 
 
 
 
 
 
231static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
232{
233	switch (n_bytes) {
234	case 1:
235		return DMA_SLAVE_BUSWIDTH_1_BYTE;
236	case 2:
237		return DMA_SLAVE_BUSWIDTH_2_BYTES;
238	case 4:
239		return DMA_SLAVE_BUSWIDTH_4_BYTES;
240	default:
241		return DMA_SLAVE_BUSWIDTH_UNDEFINED;
242	}
243}
244
245static bool dw_spi_can_dma(struct spi_controller *host,
246			   struct spi_device *spi, struct spi_transfer *xfer)
247{
248	struct dw_spi *dws = spi_controller_get_devdata(host);
249	enum dma_slave_buswidth dma_bus_width;
250
251	if (xfer->len <= dws->fifo_len)
252		return false;
253
254	dma_bus_width = dw_spi_dma_convert_width(dws->n_bytes);
255
256	return dws->dma_addr_widths & BIT(dma_bus_width);
257}
258
259static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
260{
261	unsigned long long ms;
262
263	ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
264	do_div(ms, speed);
265	ms += ms + 200;
266
267	if (ms > UINT_MAX)
268		ms = UINT_MAX;
269
270	ms = wait_for_completion_timeout(&dws->dma_completion,
271					 msecs_to_jiffies(ms));
272
273	if (ms == 0) {
274		dev_err(&dws->host->cur_msg->spi->dev,
275			"DMA transaction timed out\n");
276		return -ETIMEDOUT;
277	}
278
279	return 0;
280}
281
282static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
283{
284	return !(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_TF_EMPT);
285}
286
287static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
288				   struct spi_transfer *xfer)
289{
290	int retry = DW_SPI_WAIT_RETRIES;
291	struct spi_delay delay;
292	u32 nents;
293
294	nents = dw_readl(dws, DW_SPI_TXFLR);
295	delay.unit = SPI_DELAY_UNIT_SCK;
296	delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
297
298	while (dw_spi_dma_tx_busy(dws) && retry--)
299		spi_delay_exec(&delay, xfer);
300
301	if (retry < 0) {
302		dev_err(&dws->host->dev, "Tx hanged up\n");
303		return -EIO;
304	}
305
306	return 0;
307}
308
309/*
310 * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
311 * channel will clear a corresponding bit.
312 */
313static void dw_spi_dma_tx_done(void *arg)
314{
315	struct dw_spi *dws = arg;
316
317	clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
318	if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy))
319		return;
320
321	complete(&dws->dma_completion);
322}
323
324static int dw_spi_dma_config_tx(struct dw_spi *dws)
325{
326	struct dma_slave_config txconf;
327
328	memset(&txconf, 0, sizeof(txconf));
329	txconf.direction = DMA_MEM_TO_DEV;
330	txconf.dst_addr = dws->dma_addr;
331	txconf.dst_maxburst = dws->txburst;
332	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
333	txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
334	txconf.device_fc = false;
335
336	return dmaengine_slave_config(dws->txchan, &txconf);
337}
338
339static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
340				unsigned int nents)
341{
342	struct dma_async_tx_descriptor *txdesc;
343	dma_cookie_t cookie;
344	int ret;
345
346	txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
347					 DMA_MEM_TO_DEV,
348					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
349	if (!txdesc)
350		return -ENOMEM;
351
352	txdesc->callback = dw_spi_dma_tx_done;
353	txdesc->callback_param = dws;
354
355	cookie = dmaengine_submit(txdesc);
356	ret = dma_submit_error(cookie);
357	if (ret) {
358		dmaengine_terminate_sync(dws->txchan);
359		return ret;
360	}
361
362	set_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
363
364	return 0;
365}
366
367static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
368{
369	return !!(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_RF_NOT_EMPT);
370}
371
372static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
373{
374	int retry = DW_SPI_WAIT_RETRIES;
375	struct spi_delay delay;
376	unsigned long ns, us;
377	u32 nents;
378
379	/*
380	 * It's unlikely that DMA engine is still doing the data fetching, but
381	 * if it's let's give it some reasonable time. The timeout calculation
382	 * is based on the synchronous APB/SSI reference clock rate, on a
383	 * number of data entries left in the Rx FIFO, times a number of clock
384	 * periods normally needed for a single APB read/write transaction
385	 * without PREADY signal utilized (which is true for the DW APB SSI
386	 * controller).
387	 */
388	nents = dw_readl(dws, DW_SPI_RXFLR);
389	ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
390	if (ns <= NSEC_PER_USEC) {
391		delay.unit = SPI_DELAY_UNIT_NSECS;
392		delay.value = ns;
393	} else {
394		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
395		delay.unit = SPI_DELAY_UNIT_USECS;
396		delay.value = clamp_val(us, 0, USHRT_MAX);
397	}
398
399	while (dw_spi_dma_rx_busy(dws) && retry--)
400		spi_delay_exec(&delay, NULL);
401
402	if (retry < 0) {
403		dev_err(&dws->host->dev, "Rx hanged up\n");
404		return -EIO;
405	}
406
407	return 0;
408}
409
410/*
411 * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
412 * channel will clear a corresponding bit.
413 */
414static void dw_spi_dma_rx_done(void *arg)
415{
416	struct dw_spi *dws = arg;
417
418	clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
419	if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy))
420		return;
421
422	complete(&dws->dma_completion);
423}
424
425static int dw_spi_dma_config_rx(struct dw_spi *dws)
426{
427	struct dma_slave_config rxconf;
428
429	memset(&rxconf, 0, sizeof(rxconf));
430	rxconf.direction = DMA_DEV_TO_MEM;
431	rxconf.src_addr = dws->dma_addr;
432	rxconf.src_maxburst = dws->rxburst;
433	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
434	rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
435	rxconf.device_fc = false;
436
437	return dmaengine_slave_config(dws->rxchan, &rxconf);
438}
439
440static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
441				unsigned int nents)
442{
443	struct dma_async_tx_descriptor *rxdesc;
444	dma_cookie_t cookie;
445	int ret;
446
447	rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
448					 DMA_DEV_TO_MEM,
449					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
450	if (!rxdesc)
451		return -ENOMEM;
452
453	rxdesc->callback = dw_spi_dma_rx_done;
454	rxdesc->callback_param = dws;
455
456	cookie = dmaengine_submit(rxdesc);
457	ret = dma_submit_error(cookie);
458	if (ret) {
459		dmaengine_terminate_sync(dws->rxchan);
460		return ret;
461	}
462
463	set_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
464
465	return 0;
466}
467
468static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
469{
470	u16 imr, dma_ctrl;
471	int ret;
472
473	if (!xfer->tx_buf)
474		return -EINVAL;
475
476	/* Setup DMA channels */
477	ret = dw_spi_dma_config_tx(dws);
478	if (ret)
479		return ret;
480
481	if (xfer->rx_buf) {
482		ret = dw_spi_dma_config_rx(dws);
483		if (ret)
484			return ret;
485	}
486
487	/* Set the DMA handshaking interface */
488	dma_ctrl = DW_SPI_DMACR_TDMAE;
489	if (xfer->rx_buf)
490		dma_ctrl |= DW_SPI_DMACR_RDMAE;
491	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
492
493	/* Set the interrupt mask */
494	imr = DW_SPI_INT_TXOI;
495	if (xfer->rx_buf)
496		imr |= DW_SPI_INT_RXUI | DW_SPI_INT_RXOI;
497	dw_spi_umask_intr(dws, imr);
498
499	reinit_completion(&dws->dma_completion);
500
501	dws->transfer_handler = dw_spi_dma_transfer_handler;
502
503	return 0;
504}
505
506static int dw_spi_dma_transfer_all(struct dw_spi *dws,
507				   struct spi_transfer *xfer)
508{
509	int ret;
510
511	/* Submit the DMA Tx transfer */
512	ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
513	if (ret)
514		goto err_clear_dmac;
515
516	/* Submit the DMA Rx transfer if required */
517	if (xfer->rx_buf) {
518		ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
519					   xfer->rx_sg.nents);
520		if (ret)
521			goto err_clear_dmac;
522
523		/* rx must be started before tx due to spi instinct */
524		dma_async_issue_pending(dws->rxchan);
525	}
526
527	dma_async_issue_pending(dws->txchan);
528
529	ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);
530
531err_clear_dmac:
532	dw_writel(dws, DW_SPI_DMACR, 0);
533
534	return ret;
535}
536
537/*
538 * In case if at least one of the requested DMA channels doesn't support the
539 * hardware accelerated SG list entries traverse, the DMA driver will most
540 * likely work that around by performing the IRQ-based SG list entries
541 * resubmission. That might and will cause a problem if the DMA Tx channel is
542 * recharged and re-executed before the Rx DMA channel. Due to
543 * non-deterministic IRQ-handler execution latency the DMA Tx channel will
544 * start pushing data to the SPI bus before the Rx DMA channel is even
545 * reinitialized with the next inbound SG list entry. By doing so the DMA Tx
546 * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
547 * the DMA Rx channel being recharged and re-executed will eventually be
548 * overflown.
549 *
550 * In order to solve the problem we have to feed the DMA engine with SG list
551 * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
552 * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
553 * and rx_sg lists may have different number of entries of different lengths
554 * (though total length should match) let's virtually split the SG-lists to the
555 * set of DMA transfers, which length is a minimum of the ordered SG-entries
556 * lengths. An ASCII-sketch of the implemented algo is following:
557 *                  xfer->len
558 *                |___________|
559 * tx_sg list:    |___|____|__|
560 * rx_sg list:    |_|____|____|
561 * DMA transfers: |_|_|__|_|__|
562 *
563 * Note in order to have this workaround solving the denoted problem the DMA
564 * engine driver should properly initialize the max_sg_burst capability and set
565 * the DMA device max segment size parameter with maximum data block size the
566 * DMA engine supports.
567 */
568
569static int dw_spi_dma_transfer_one(struct dw_spi *dws,
570				   struct spi_transfer *xfer)
571{
572	struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
573	unsigned int tx_len = 0, rx_len = 0;
574	unsigned int base, len;
575	int ret;
576
577	sg_init_table(&tx_tmp, 1);
578	sg_init_table(&rx_tmp, 1);
579
580	for (base = 0, len = 0; base < xfer->len; base += len) {
581		/* Fetch next Tx DMA data chunk */
582		if (!tx_len) {
583			tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
584			sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
585			tx_len = sg_dma_len(tx_sg);
586		}
587
588		/* Fetch next Rx DMA data chunk */
589		if (!rx_len) {
590			rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
591			sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
592			rx_len = sg_dma_len(rx_sg);
593		}
594
595		len = min(tx_len, rx_len);
596
597		sg_dma_len(&tx_tmp) = len;
598		sg_dma_len(&rx_tmp) = len;
599
600		/* Submit DMA Tx transfer */
601		ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
602		if (ret)
603			break;
604
605		/* Submit DMA Rx transfer */
606		ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
607		if (ret)
608			break;
609
610		/* Rx must be started before Tx due to SPI instinct */
611		dma_async_issue_pending(dws->rxchan);
612
613		dma_async_issue_pending(dws->txchan);
614
615		/*
616		 * Here we only need to wait for the DMA transfer to be
617		 * finished since SPI controller is kept enabled during the
618		 * procedure this loop implements and there is no risk to lose
619		 * data left in the Tx/Rx FIFOs.
620		 */
621		ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
622		if (ret)
623			break;
624
625		reinit_completion(&dws->dma_completion);
626
627		sg_dma_address(&tx_tmp) += len;
628		sg_dma_address(&rx_tmp) += len;
629		tx_len -= len;
630		rx_len -= len;
631	}
632
633	dw_writel(dws, DW_SPI_DMACR, 0);
634
635	return ret;
636}
637
638static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
639{
640	unsigned int nents;
641	int ret;
642
643	nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
644
645	/*
646	 * Execute normal DMA-based transfer (which submits the Rx and Tx SG
647	 * lists directly to the DMA engine at once) if either full hardware
648	 * accelerated SG list traverse is supported by both channels, or the
649	 * Tx-only SPI transfer is requested, or the DMA engine is capable to
650	 * handle both SG lists on hardware accelerated basis.
651	 */
652	if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
653		ret = dw_spi_dma_transfer_all(dws, xfer);
654	else
655		ret = dw_spi_dma_transfer_one(dws, xfer);
656	if (ret)
657		return ret;
658
659	if (dws->host->cur_msg->status == -EINPROGRESS) {
660		ret = dw_spi_dma_wait_tx_done(dws, xfer);
661		if (ret)
662			return ret;
663	}
664
665	if (xfer->rx_buf && dws->host->cur_msg->status == -EINPROGRESS)
666		ret = dw_spi_dma_wait_rx_done(dws);
667
668	return ret;
669}
670
671static void dw_spi_dma_stop(struct dw_spi *dws)
672{
673	if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) {
674		dmaengine_terminate_sync(dws->txchan);
675		clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
676	}
677	if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) {
678		dmaengine_terminate_sync(dws->rxchan);
679		clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
680	}
681}
682
683static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
684	.dma_init	= dw_spi_dma_init_mfld,
685	.dma_exit	= dw_spi_dma_exit,
686	.dma_setup	= dw_spi_dma_setup,
687	.can_dma	= dw_spi_can_dma,
688	.dma_transfer	= dw_spi_dma_transfer,
689	.dma_stop	= dw_spi_dma_stop,
690};
691
692void dw_spi_dma_setup_mfld(struct dw_spi *dws)
693{
694	dws->dma_ops = &dw_spi_dma_mfld_ops;
695}
696EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_mfld, SPI_DW_CORE);
697
698static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
699	.dma_init	= dw_spi_dma_init_generic,
700	.dma_exit	= dw_spi_dma_exit,
701	.dma_setup	= dw_spi_dma_setup,
702	.can_dma	= dw_spi_can_dma,
703	.dma_transfer	= dw_spi_dma_transfer,
704	.dma_stop	= dw_spi_dma_stop,
705};
706
707void dw_spi_dma_setup_generic(struct dw_spi *dws)
708{
709	dws->dma_ops = &dw_spi_dma_generic_ops;
710}
711EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_generic, SPI_DW_CORE);