Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Special handling for DW DMA core
  4 *
  5 * Copyright (c) 2009, 2014 Intel Corporation.
  6 */
  7
  8#include <linux/completion.h>
  9#include <linux/dma-mapping.h>
 10#include <linux/dmaengine.h>
 11#include <linux/irqreturn.h>
 12#include <linux/jiffies.h>
 13#include <linux/module.h>
 14#include <linux/pci.h>
 15#include <linux/platform_data/dma-dw.h>
 16#include <linux/spi/spi.h>
 17#include <linux/types.h>
 18
 19#include "spi-dw.h"
 20
 21#define DW_SPI_RX_BUSY		0
 22#define DW_SPI_RX_BURST_LEVEL	16
 23#define DW_SPI_TX_BUSY		1
 24#define DW_SPI_TX_BURST_LEVEL	16
 25
 26static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
 27{
 28	struct dw_dma_slave *s = param;
 29
 30	if (s->dma_dev != chan->device->dev)
 31		return false;
 32
 33	chan->private = s;
 34	return true;
 35}
 36
 37static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
 38{
 39	struct dma_slave_caps caps;
 40	u32 max_burst, def_burst;
 41	int ret;
 42
 43	def_burst = dws->fifo_len / 2;
 44
 45	ret = dma_get_slave_caps(dws->rxchan, &caps);
 46	if (!ret && caps.max_burst)
 47		max_burst = caps.max_burst;
 48	else
 49		max_burst = DW_SPI_RX_BURST_LEVEL;
 50
 51	dws->rxburst = min(max_burst, def_burst);
 52	dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
 53
 54	ret = dma_get_slave_caps(dws->txchan, &caps);
 55	if (!ret && caps.max_burst)
 56		max_burst = caps.max_burst;
 57	else
 58		max_burst = DW_SPI_TX_BURST_LEVEL;
 59
 60	/*
 61	 * Having a Rx DMA channel serviced with higher priority than a Tx DMA
 62	 * channel might not be enough to provide a well balanced DMA-based
 63	 * SPI transfer interface. There might still be moments when the Tx DMA
 64	 * channel is occasionally handled faster than the Rx DMA channel.
 65	 * That in its turn will eventually cause the SPI Rx FIFO overflow if
 66	 * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
 67	 * cleared by the Rx DMA channel. In order to fix the problem the Tx
 68	 * DMA activity is intentionally slowed down by limiting the SPI Tx
 69	 * FIFO depth with a value twice bigger than the Tx burst length.
 70	 */
 71	dws->txburst = min(max_burst, def_burst);
 72	dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
 73}
 74
 75static void dw_spi_dma_sg_burst_init(struct dw_spi *dws)
 76{
 77	struct dma_slave_caps tx = {0}, rx = {0};
 78
 79	dma_get_slave_caps(dws->txchan, &tx);
 80	dma_get_slave_caps(dws->rxchan, &rx);
 81
 82	if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
 83		dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
 84	else if (tx.max_sg_burst > 0)
 85		dws->dma_sg_burst = tx.max_sg_burst;
 86	else if (rx.max_sg_burst > 0)
 87		dws->dma_sg_burst = rx.max_sg_burst;
 88	else
 89		dws->dma_sg_burst = 0;
 90}
 91
 92static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
 93{
 94	struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
 95	struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
 96	struct pci_dev *dma_dev;
 97	dma_cap_mask_t mask;
 98
 99	/*
100	 * Get pci device for DMA controller, currently it could only
101	 * be the DMA controller of Medfield
102	 */
103	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
104	if (!dma_dev)
105		return -ENODEV;
106
107	dma_cap_zero(mask);
108	dma_cap_set(DMA_SLAVE, mask);
109
110	/* 1. Init rx channel */
111	rx->dma_dev = &dma_dev->dev;
112	dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
113	if (!dws->rxchan)
114		goto err_exit;
115
116	/* 2. Init tx channel */
117	tx->dma_dev = &dma_dev->dev;
118	dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
119	if (!dws->txchan)
120		goto free_rxchan;
121
122	dws->master->dma_rx = dws->rxchan;
123	dws->master->dma_tx = dws->txchan;
124
125	init_completion(&dws->dma_completion);
126
127	dw_spi_dma_maxburst_init(dws);
128
129	dw_spi_dma_sg_burst_init(dws);
130
131	pci_dev_put(dma_dev);
132
133	return 0;
134
135free_rxchan:
136	dma_release_channel(dws->rxchan);
137	dws->rxchan = NULL;
138err_exit:
139	pci_dev_put(dma_dev);
140	return -EBUSY;
141}
142
143static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
144{
145	int ret;
 
 
146
147	dws->rxchan = dma_request_chan(dev, "rx");
148	if (IS_ERR(dws->rxchan)) {
149		ret = PTR_ERR(dws->rxchan);
150		dws->rxchan = NULL;
151		goto err_exit;
152	}
153
154	dws->txchan = dma_request_chan(dev, "tx");
155	if (IS_ERR(dws->txchan)) {
156		ret = PTR_ERR(dws->txchan);
157		dws->txchan = NULL;
158		goto free_rxchan;
159	}
160
161	dws->master->dma_rx = dws->rxchan;
162	dws->master->dma_tx = dws->txchan;
163
164	init_completion(&dws->dma_completion);
165
166	dw_spi_dma_maxburst_init(dws);
167
168	dw_spi_dma_sg_burst_init(dws);
169
170	return 0;
171
172free_rxchan:
173	dma_release_channel(dws->rxchan);
174	dws->rxchan = NULL;
175err_exit:
176	return ret;
177}
178
179static void dw_spi_dma_exit(struct dw_spi *dws)
180{
181	if (dws->txchan) {
182		dmaengine_terminate_sync(dws->txchan);
183		dma_release_channel(dws->txchan);
184	}
185
186	if (dws->rxchan) {
187		dmaengine_terminate_sync(dws->rxchan);
188		dma_release_channel(dws->rxchan);
189	}
190}
191
192static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
193{
194	dw_spi_check_status(dws, false);
195
196	complete(&dws->dma_completion);
197
198	return IRQ_HANDLED;
199}
200
201static bool dw_spi_can_dma(struct spi_controller *master,
202			   struct spi_device *spi, struct spi_transfer *xfer)
203{
204	struct dw_spi *dws = spi_controller_get_devdata(master);
205
206	return xfer->len > dws->fifo_len;
207}
208
209static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
210{
211	if (n_bytes == 1)
212		return DMA_SLAVE_BUSWIDTH_1_BYTE;
213	else if (n_bytes == 2)
214		return DMA_SLAVE_BUSWIDTH_2_BYTES;
215
216	return DMA_SLAVE_BUSWIDTH_UNDEFINED;
217}
218
219static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
220{
221	unsigned long long ms;
222
223	ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
224	do_div(ms, speed);
225	ms += ms + 200;
226
227	if (ms > UINT_MAX)
228		ms = UINT_MAX;
229
230	ms = wait_for_completion_timeout(&dws->dma_completion,
231					 msecs_to_jiffies(ms));
232
233	if (ms == 0) {
234		dev_err(&dws->master->cur_msg->spi->dev,
235			"DMA transaction timed out\n");
236		return -ETIMEDOUT;
237	}
238
239	return 0;
240}
241
242static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
243{
244	return !(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_TF_EMPT);
245}
246
247static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
248				   struct spi_transfer *xfer)
249{
250	int retry = DW_SPI_WAIT_RETRIES;
251	struct spi_delay delay;
252	u32 nents;
253
254	nents = dw_readl(dws, DW_SPI_TXFLR);
255	delay.unit = SPI_DELAY_UNIT_SCK;
256	delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
257
258	while (dw_spi_dma_tx_busy(dws) && retry--)
259		spi_delay_exec(&delay, xfer);
260
261	if (retry < 0) {
262		dev_err(&dws->master->dev, "Tx hanged up\n");
263		return -EIO;
264	}
265
266	return 0;
267}
268
269/*
270 * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
271 * channel will clear a corresponding bit.
272 */
273static void dw_spi_dma_tx_done(void *arg)
274{
275	struct dw_spi *dws = arg;
276
277	clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
278	if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy))
279		return;
280
281	complete(&dws->dma_completion);
282}
283
284static int dw_spi_dma_config_tx(struct dw_spi *dws)
285{
286	struct dma_slave_config txconf;
287
288	memset(&txconf, 0, sizeof(txconf));
289	txconf.direction = DMA_MEM_TO_DEV;
290	txconf.dst_addr = dws->dma_addr;
291	txconf.dst_maxburst = dws->txburst;
292	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
293	txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
294	txconf.device_fc = false;
295
296	return dmaengine_slave_config(dws->txchan, &txconf);
297}
298
299static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
300				unsigned int nents)
301{
302	struct dma_async_tx_descriptor *txdesc;
303	dma_cookie_t cookie;
304	int ret;
305
306	txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
307					 DMA_MEM_TO_DEV,
308					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
309	if (!txdesc)
310		return -ENOMEM;
311
312	txdesc->callback = dw_spi_dma_tx_done;
313	txdesc->callback_param = dws;
314
315	cookie = dmaengine_submit(txdesc);
316	ret = dma_submit_error(cookie);
317	if (ret) {
318		dmaengine_terminate_sync(dws->txchan);
319		return ret;
320	}
321
322	set_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
323
324	return 0;
325}
326
327static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
328{
329	return !!(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_RF_NOT_EMPT);
330}
331
332static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
333{
334	int retry = DW_SPI_WAIT_RETRIES;
335	struct spi_delay delay;
336	unsigned long ns, us;
337	u32 nents;
338
339	/*
340	 * It's unlikely that DMA engine is still doing the data fetching, but
341	 * if it's let's give it some reasonable time. The timeout calculation
342	 * is based on the synchronous APB/SSI reference clock rate, on a
343	 * number of data entries left in the Rx FIFO, times a number of clock
344	 * periods normally needed for a single APB read/write transaction
345	 * without PREADY signal utilized (which is true for the DW APB SSI
346	 * controller).
347	 */
348	nents = dw_readl(dws, DW_SPI_RXFLR);
349	ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
350	if (ns <= NSEC_PER_USEC) {
351		delay.unit = SPI_DELAY_UNIT_NSECS;
352		delay.value = ns;
353	} else {
354		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
355		delay.unit = SPI_DELAY_UNIT_USECS;
356		delay.value = clamp_val(us, 0, USHRT_MAX);
357	}
358
359	while (dw_spi_dma_rx_busy(dws) && retry--)
360		spi_delay_exec(&delay, NULL);
361
362	if (retry < 0) {
363		dev_err(&dws->master->dev, "Rx hanged up\n");
364		return -EIO;
365	}
366
367	return 0;
368}
369
370/*
371 * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
372 * channel will clear a corresponding bit.
373 */
374static void dw_spi_dma_rx_done(void *arg)
375{
376	struct dw_spi *dws = arg;
377
378	clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
379	if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy))
380		return;
381
382	complete(&dws->dma_completion);
383}
384
385static int dw_spi_dma_config_rx(struct dw_spi *dws)
386{
387	struct dma_slave_config rxconf;
388
389	memset(&rxconf, 0, sizeof(rxconf));
390	rxconf.direction = DMA_DEV_TO_MEM;
391	rxconf.src_addr = dws->dma_addr;
392	rxconf.src_maxburst = dws->rxburst;
393	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
394	rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
395	rxconf.device_fc = false;
396
397	return dmaengine_slave_config(dws->rxchan, &rxconf);
398}
399
400static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
401				unsigned int nents)
402{
403	struct dma_async_tx_descriptor *rxdesc;
404	dma_cookie_t cookie;
405	int ret;
406
407	rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
408					 DMA_DEV_TO_MEM,
409					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
410	if (!rxdesc)
411		return -ENOMEM;
412
413	rxdesc->callback = dw_spi_dma_rx_done;
414	rxdesc->callback_param = dws;
415
416	cookie = dmaengine_submit(rxdesc);
417	ret = dma_submit_error(cookie);
418	if (ret) {
419		dmaengine_terminate_sync(dws->rxchan);
420		return ret;
421	}
422
423	set_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
424
425	return 0;
426}
427
428static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
429{
430	u16 imr, dma_ctrl;
431	int ret;
432
433	if (!xfer->tx_buf)
434		return -EINVAL;
435
436	/* Setup DMA channels */
437	ret = dw_spi_dma_config_tx(dws);
438	if (ret)
439		return ret;
440
441	if (xfer->rx_buf) {
442		ret = dw_spi_dma_config_rx(dws);
443		if (ret)
444			return ret;
445	}
446
447	/* Set the DMA handshaking interface */
448	dma_ctrl = DW_SPI_DMACR_TDMAE;
449	if (xfer->rx_buf)
450		dma_ctrl |= DW_SPI_DMACR_RDMAE;
451	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
452
453	/* Set the interrupt mask */
454	imr = DW_SPI_INT_TXOI;
455	if (xfer->rx_buf)
456		imr |= DW_SPI_INT_RXUI | DW_SPI_INT_RXOI;
457	dw_spi_umask_intr(dws, imr);
458
459	reinit_completion(&dws->dma_completion);
460
461	dws->transfer_handler = dw_spi_dma_transfer_handler;
462
463	return 0;
464}
465
466static int dw_spi_dma_transfer_all(struct dw_spi *dws,
467				   struct spi_transfer *xfer)
468{
469	int ret;
470
471	/* Submit the DMA Tx transfer */
472	ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
473	if (ret)
474		goto err_clear_dmac;
475
476	/* Submit the DMA Rx transfer if required */
477	if (xfer->rx_buf) {
478		ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
479					   xfer->rx_sg.nents);
480		if (ret)
481			goto err_clear_dmac;
482
483		/* rx must be started before tx due to spi instinct */
484		dma_async_issue_pending(dws->rxchan);
485	}
486
487	dma_async_issue_pending(dws->txchan);
488
489	ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);
490
491err_clear_dmac:
492	dw_writel(dws, DW_SPI_DMACR, 0);
493
494	return ret;
495}
496
497/*
498 * In case if at least one of the requested DMA channels doesn't support the
499 * hardware accelerated SG list entries traverse, the DMA driver will most
500 * likely work that around by performing the IRQ-based SG list entries
501 * resubmission. That might and will cause a problem if the DMA Tx channel is
502 * recharged and re-executed before the Rx DMA channel. Due to
503 * non-deterministic IRQ-handler execution latency the DMA Tx channel will
504 * start pushing data to the SPI bus before the Rx DMA channel is even
505 * reinitialized with the next inbound SG list entry. By doing so the DMA Tx
506 * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
507 * the DMA Rx channel being recharged and re-executed will eventually be
508 * overflown.
509 *
510 * In order to solve the problem we have to feed the DMA engine with SG list
511 * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
512 * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
513 * and rx_sg lists may have different number of entries of different lengths
514 * (though total length should match) let's virtually split the SG-lists to the
515 * set of DMA transfers, which length is a minimum of the ordered SG-entries
516 * lengths. An ASCII-sketch of the implemented algo is following:
517 *                  xfer->len
518 *                |___________|
519 * tx_sg list:    |___|____|__|
520 * rx_sg list:    |_|____|____|
521 * DMA transfers: |_|_|__|_|__|
522 *
523 * Note in order to have this workaround solving the denoted problem the DMA
524 * engine driver should properly initialize the max_sg_burst capability and set
525 * the DMA device max segment size parameter with maximum data block size the
526 * DMA engine supports.
527 */
528
529static int dw_spi_dma_transfer_one(struct dw_spi *dws,
530				   struct spi_transfer *xfer)
531{
532	struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
533	unsigned int tx_len = 0, rx_len = 0;
534	unsigned int base, len;
535	int ret;
536
537	sg_init_table(&tx_tmp, 1);
538	sg_init_table(&rx_tmp, 1);
539
540	for (base = 0, len = 0; base < xfer->len; base += len) {
541		/* Fetch next Tx DMA data chunk */
542		if (!tx_len) {
543			tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
544			sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
545			tx_len = sg_dma_len(tx_sg);
546		}
547
548		/* Fetch next Rx DMA data chunk */
549		if (!rx_len) {
550			rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
551			sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
552			rx_len = sg_dma_len(rx_sg);
553		}
554
555		len = min(tx_len, rx_len);
556
557		sg_dma_len(&tx_tmp) = len;
558		sg_dma_len(&rx_tmp) = len;
559
560		/* Submit DMA Tx transfer */
561		ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
562		if (ret)
563			break;
564
565		/* Submit DMA Rx transfer */
566		ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
567		if (ret)
568			break;
569
570		/* Rx must be started before Tx due to SPI instinct */
571		dma_async_issue_pending(dws->rxchan);
572
573		dma_async_issue_pending(dws->txchan);
574
575		/*
576		 * Here we only need to wait for the DMA transfer to be
577		 * finished since SPI controller is kept enabled during the
578		 * procedure this loop implements and there is no risk to lose
579		 * data left in the Tx/Rx FIFOs.
580		 */
581		ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
582		if (ret)
583			break;
584
585		reinit_completion(&dws->dma_completion);
586
587		sg_dma_address(&tx_tmp) += len;
588		sg_dma_address(&rx_tmp) += len;
589		tx_len -= len;
590		rx_len -= len;
591	}
592
593	dw_writel(dws, DW_SPI_DMACR, 0);
594
595	return ret;
596}
597
598static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
599{
600	unsigned int nents;
601	int ret;
602
603	nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
604
605	/*
606	 * Execute normal DMA-based transfer (which submits the Rx and Tx SG
607	 * lists directly to the DMA engine at once) if either full hardware
608	 * accelerated SG list traverse is supported by both channels, or the
609	 * Tx-only SPI transfer is requested, or the DMA engine is capable to
610	 * handle both SG lists on hardware accelerated basis.
611	 */
612	if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
613		ret = dw_spi_dma_transfer_all(dws, xfer);
614	else
615		ret = dw_spi_dma_transfer_one(dws, xfer);
616	if (ret)
617		return ret;
618
619	if (dws->master->cur_msg->status == -EINPROGRESS) {
620		ret = dw_spi_dma_wait_tx_done(dws, xfer);
621		if (ret)
622			return ret;
623	}
624
625	if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS)
626		ret = dw_spi_dma_wait_rx_done(dws);
627
628	return ret;
629}
630
631static void dw_spi_dma_stop(struct dw_spi *dws)
632{
633	if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) {
634		dmaengine_terminate_sync(dws->txchan);
635		clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
636	}
637	if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) {
638		dmaengine_terminate_sync(dws->rxchan);
639		clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
640	}
641}
642
643static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
644	.dma_init	= dw_spi_dma_init_mfld,
645	.dma_exit	= dw_spi_dma_exit,
646	.dma_setup	= dw_spi_dma_setup,
647	.can_dma	= dw_spi_can_dma,
648	.dma_transfer	= dw_spi_dma_transfer,
649	.dma_stop	= dw_spi_dma_stop,
650};
651
652void dw_spi_dma_setup_mfld(struct dw_spi *dws)
653{
654	dws->dma_ops = &dw_spi_dma_mfld_ops;
655}
656EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_mfld, SPI_DW_CORE);
657
658static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
659	.dma_init	= dw_spi_dma_init_generic,
660	.dma_exit	= dw_spi_dma_exit,
661	.dma_setup	= dw_spi_dma_setup,
662	.can_dma	= dw_spi_can_dma,
663	.dma_transfer	= dw_spi_dma_transfer,
664	.dma_stop	= dw_spi_dma_stop,
665};
666
667void dw_spi_dma_setup_generic(struct dw_spi *dws)
668{
669	dws->dma_ops = &dw_spi_dma_generic_ops;
670}
671EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_generic, SPI_DW_CORE);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Special handling for DW DMA core
  4 *
  5 * Copyright (c) 2009, 2014 Intel Corporation.
  6 */
  7
  8#include <linux/completion.h>
  9#include <linux/dma-mapping.h>
 10#include <linux/dmaengine.h>
 11#include <linux/irqreturn.h>
 12#include <linux/jiffies.h>
 
 13#include <linux/pci.h>
 14#include <linux/platform_data/dma-dw.h>
 15#include <linux/spi/spi.h>
 16#include <linux/types.h>
 17
 18#include "spi-dw.h"
 19
 20#define RX_BUSY		0
 21#define RX_BURST_LEVEL	16
 22#define TX_BUSY		1
 23#define TX_BURST_LEVEL	16
 24
 25static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
 26{
 27	struct dw_dma_slave *s = param;
 28
 29	if (s->dma_dev != chan->device->dev)
 30		return false;
 31
 32	chan->private = s;
 33	return true;
 34}
 35
 36static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
 37{
 38	struct dma_slave_caps caps;
 39	u32 max_burst, def_burst;
 40	int ret;
 41
 42	def_burst = dws->fifo_len / 2;
 43
 44	ret = dma_get_slave_caps(dws->rxchan, &caps);
 45	if (!ret && caps.max_burst)
 46		max_burst = caps.max_burst;
 47	else
 48		max_burst = RX_BURST_LEVEL;
 49
 50	dws->rxburst = min(max_burst, def_burst);
 51	dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
 52
 53	ret = dma_get_slave_caps(dws->txchan, &caps);
 54	if (!ret && caps.max_burst)
 55		max_burst = caps.max_burst;
 56	else
 57		max_burst = TX_BURST_LEVEL;
 58
 59	/*
 60	 * Having a Rx DMA channel serviced with higher priority than a Tx DMA
 61	 * channel might not be enough to provide a well balanced DMA-based
 62	 * SPI transfer interface. There might still be moments when the Tx DMA
 63	 * channel is occasionally handled faster than the Rx DMA channel.
 64	 * That in its turn will eventually cause the SPI Rx FIFO overflow if
 65	 * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
 66	 * cleared by the Rx DMA channel. In order to fix the problem the Tx
 67	 * DMA activity is intentionally slowed down by limiting the SPI Tx
 68	 * FIFO depth with a value twice bigger than the Tx burst length.
 69	 */
 70	dws->txburst = min(max_burst, def_burst);
 71	dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
 72}
 73
 74static void dw_spi_dma_sg_burst_init(struct dw_spi *dws)
 75{
 76	struct dma_slave_caps tx = {0}, rx = {0};
 77
 78	dma_get_slave_caps(dws->txchan, &tx);
 79	dma_get_slave_caps(dws->rxchan, &rx);
 80
 81	if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
 82		dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
 83	else if (tx.max_sg_burst > 0)
 84		dws->dma_sg_burst = tx.max_sg_burst;
 85	else if (rx.max_sg_burst > 0)
 86		dws->dma_sg_burst = rx.max_sg_burst;
 87	else
 88		dws->dma_sg_burst = 0;
 89}
 90
 91static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
 92{
 93	struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
 94	struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
 95	struct pci_dev *dma_dev;
 96	dma_cap_mask_t mask;
 97
 98	/*
 99	 * Get pci device for DMA controller, currently it could only
100	 * be the DMA controller of Medfield
101	 */
102	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
103	if (!dma_dev)
104		return -ENODEV;
105
106	dma_cap_zero(mask);
107	dma_cap_set(DMA_SLAVE, mask);
108
109	/* 1. Init rx channel */
110	rx->dma_dev = &dma_dev->dev;
111	dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
112	if (!dws->rxchan)
113		goto err_exit;
114
115	/* 2. Init tx channel */
116	tx->dma_dev = &dma_dev->dev;
117	dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
118	if (!dws->txchan)
119		goto free_rxchan;
120
121	dws->master->dma_rx = dws->rxchan;
122	dws->master->dma_tx = dws->txchan;
123
124	init_completion(&dws->dma_completion);
125
126	dw_spi_dma_maxburst_init(dws);
127
128	dw_spi_dma_sg_burst_init(dws);
129
 
 
130	return 0;
131
132free_rxchan:
133	dma_release_channel(dws->rxchan);
134	dws->rxchan = NULL;
135err_exit:
 
136	return -EBUSY;
137}
138
139static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
140{
141	dws->rxchan = dma_request_slave_channel(dev, "rx");
142	if (!dws->rxchan)
143		return -ENODEV;
144
145	dws->txchan = dma_request_slave_channel(dev, "tx");
146	if (!dws->txchan) {
147		dma_release_channel(dws->rxchan);
148		dws->rxchan = NULL;
149		return -ENODEV;
 
 
 
 
 
 
 
150	}
151
152	dws->master->dma_rx = dws->rxchan;
153	dws->master->dma_tx = dws->txchan;
154
155	init_completion(&dws->dma_completion);
156
157	dw_spi_dma_maxburst_init(dws);
158
159	dw_spi_dma_sg_burst_init(dws);
160
161	return 0;
 
 
 
 
 
 
162}
163
164static void dw_spi_dma_exit(struct dw_spi *dws)
165{
166	if (dws->txchan) {
167		dmaengine_terminate_sync(dws->txchan);
168		dma_release_channel(dws->txchan);
169	}
170
171	if (dws->rxchan) {
172		dmaengine_terminate_sync(dws->rxchan);
173		dma_release_channel(dws->rxchan);
174	}
175}
176
177static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
178{
179	dw_spi_check_status(dws, false);
180
181	complete(&dws->dma_completion);
182
183	return IRQ_HANDLED;
184}
185
186static bool dw_spi_can_dma(struct spi_controller *master,
187			   struct spi_device *spi, struct spi_transfer *xfer)
188{
189	struct dw_spi *dws = spi_controller_get_devdata(master);
190
191	return xfer->len > dws->fifo_len;
192}
193
194static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
195{
196	if (n_bytes == 1)
197		return DMA_SLAVE_BUSWIDTH_1_BYTE;
198	else if (n_bytes == 2)
199		return DMA_SLAVE_BUSWIDTH_2_BYTES;
200
201	return DMA_SLAVE_BUSWIDTH_UNDEFINED;
202}
203
204static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
205{
206	unsigned long long ms;
207
208	ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
209	do_div(ms, speed);
210	ms += ms + 200;
211
212	if (ms > UINT_MAX)
213		ms = UINT_MAX;
214
215	ms = wait_for_completion_timeout(&dws->dma_completion,
216					 msecs_to_jiffies(ms));
217
218	if (ms == 0) {
219		dev_err(&dws->master->cur_msg->spi->dev,
220			"DMA transaction timed out\n");
221		return -ETIMEDOUT;
222	}
223
224	return 0;
225}
226
227static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
228{
229	return !(dw_readl(dws, DW_SPI_SR) & SR_TF_EMPT);
230}
231
232static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
233				   struct spi_transfer *xfer)
234{
235	int retry = SPI_WAIT_RETRIES;
236	struct spi_delay delay;
237	u32 nents;
238
239	nents = dw_readl(dws, DW_SPI_TXFLR);
240	delay.unit = SPI_DELAY_UNIT_SCK;
241	delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
242
243	while (dw_spi_dma_tx_busy(dws) && retry--)
244		spi_delay_exec(&delay, xfer);
245
246	if (retry < 0) {
247		dev_err(&dws->master->dev, "Tx hanged up\n");
248		return -EIO;
249	}
250
251	return 0;
252}
253
254/*
255 * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
256 * channel will clear a corresponding bit.
257 */
258static void dw_spi_dma_tx_done(void *arg)
259{
260	struct dw_spi *dws = arg;
261
262	clear_bit(TX_BUSY, &dws->dma_chan_busy);
263	if (test_bit(RX_BUSY, &dws->dma_chan_busy))
264		return;
265
266	complete(&dws->dma_completion);
267}
268
269static int dw_spi_dma_config_tx(struct dw_spi *dws)
270{
271	struct dma_slave_config txconf;
272
273	memset(&txconf, 0, sizeof(txconf));
274	txconf.direction = DMA_MEM_TO_DEV;
275	txconf.dst_addr = dws->dma_addr;
276	txconf.dst_maxburst = dws->txburst;
277	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
278	txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
279	txconf.device_fc = false;
280
281	return dmaengine_slave_config(dws->txchan, &txconf);
282}
283
284static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
285				unsigned int nents)
286{
287	struct dma_async_tx_descriptor *txdesc;
288	dma_cookie_t cookie;
289	int ret;
290
291	txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
292					 DMA_MEM_TO_DEV,
293					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
294	if (!txdesc)
295		return -ENOMEM;
296
297	txdesc->callback = dw_spi_dma_tx_done;
298	txdesc->callback_param = dws;
299
300	cookie = dmaengine_submit(txdesc);
301	ret = dma_submit_error(cookie);
302	if (ret) {
303		dmaengine_terminate_sync(dws->txchan);
304		return ret;
305	}
306
307	set_bit(TX_BUSY, &dws->dma_chan_busy);
308
309	return 0;
310}
311
312static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
313{
314	return !!(dw_readl(dws, DW_SPI_SR) & SR_RF_NOT_EMPT);
315}
316
317static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
318{
319	int retry = SPI_WAIT_RETRIES;
320	struct spi_delay delay;
321	unsigned long ns, us;
322	u32 nents;
323
324	/*
325	 * It's unlikely that DMA engine is still doing the data fetching, but
326	 * if it's let's give it some reasonable time. The timeout calculation
327	 * is based on the synchronous APB/SSI reference clock rate, on a
328	 * number of data entries left in the Rx FIFO, times a number of clock
329	 * periods normally needed for a single APB read/write transaction
330	 * without PREADY signal utilized (which is true for the DW APB SSI
331	 * controller).
332	 */
333	nents = dw_readl(dws, DW_SPI_RXFLR);
334	ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
335	if (ns <= NSEC_PER_USEC) {
336		delay.unit = SPI_DELAY_UNIT_NSECS;
337		delay.value = ns;
338	} else {
339		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
340		delay.unit = SPI_DELAY_UNIT_USECS;
341		delay.value = clamp_val(us, 0, USHRT_MAX);
342	}
343
344	while (dw_spi_dma_rx_busy(dws) && retry--)
345		spi_delay_exec(&delay, NULL);
346
347	if (retry < 0) {
348		dev_err(&dws->master->dev, "Rx hanged up\n");
349		return -EIO;
350	}
351
352	return 0;
353}
354
355/*
356 * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
357 * channel will clear a corresponding bit.
358 */
359static void dw_spi_dma_rx_done(void *arg)
360{
361	struct dw_spi *dws = arg;
362
363	clear_bit(RX_BUSY, &dws->dma_chan_busy);
364	if (test_bit(TX_BUSY, &dws->dma_chan_busy))
365		return;
366
367	complete(&dws->dma_completion);
368}
369
370static int dw_spi_dma_config_rx(struct dw_spi *dws)
371{
372	struct dma_slave_config rxconf;
373
374	memset(&rxconf, 0, sizeof(rxconf));
375	rxconf.direction = DMA_DEV_TO_MEM;
376	rxconf.src_addr = dws->dma_addr;
377	rxconf.src_maxburst = dws->rxburst;
378	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
379	rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
380	rxconf.device_fc = false;
381
382	return dmaengine_slave_config(dws->rxchan, &rxconf);
383}
384
385static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
386				unsigned int nents)
387{
388	struct dma_async_tx_descriptor *rxdesc;
389	dma_cookie_t cookie;
390	int ret;
391
392	rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
393					 DMA_DEV_TO_MEM,
394					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
395	if (!rxdesc)
396		return -ENOMEM;
397
398	rxdesc->callback = dw_spi_dma_rx_done;
399	rxdesc->callback_param = dws;
400
401	cookie = dmaengine_submit(rxdesc);
402	ret = dma_submit_error(cookie);
403	if (ret) {
404		dmaengine_terminate_sync(dws->rxchan);
405		return ret;
406	}
407
408	set_bit(RX_BUSY, &dws->dma_chan_busy);
409
410	return 0;
411}
412
413static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
414{
415	u16 imr, dma_ctrl;
416	int ret;
417
418	if (!xfer->tx_buf)
419		return -EINVAL;
420
421	/* Setup DMA channels */
422	ret = dw_spi_dma_config_tx(dws);
423	if (ret)
424		return ret;
425
426	if (xfer->rx_buf) {
427		ret = dw_spi_dma_config_rx(dws);
428		if (ret)
429			return ret;
430	}
431
432	/* Set the DMA handshaking interface */
433	dma_ctrl = SPI_DMA_TDMAE;
434	if (xfer->rx_buf)
435		dma_ctrl |= SPI_DMA_RDMAE;
436	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
437
438	/* Set the interrupt mask */
439	imr = SPI_INT_TXOI;
440	if (xfer->rx_buf)
441		imr |= SPI_INT_RXUI | SPI_INT_RXOI;
442	spi_umask_intr(dws, imr);
443
444	reinit_completion(&dws->dma_completion);
445
446	dws->transfer_handler = dw_spi_dma_transfer_handler;
447
448	return 0;
449}
450
451static int dw_spi_dma_transfer_all(struct dw_spi *dws,
452				   struct spi_transfer *xfer)
453{
454	int ret;
455
456	/* Submit the DMA Tx transfer */
457	ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
458	if (ret)
459		goto err_clear_dmac;
460
461	/* Submit the DMA Rx transfer if required */
462	if (xfer->rx_buf) {
463		ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
464					   xfer->rx_sg.nents);
465		if (ret)
466			goto err_clear_dmac;
467
468		/* rx must be started before tx due to spi instinct */
469		dma_async_issue_pending(dws->rxchan);
470	}
471
472	dma_async_issue_pending(dws->txchan);
473
474	ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);
475
476err_clear_dmac:
477	dw_writel(dws, DW_SPI_DMACR, 0);
478
479	return ret;
480}
481
482/*
483 * In case if at least one of the requested DMA channels doesn't support the
484 * hardware accelerated SG list entries traverse, the DMA driver will most
485 * likely work that around by performing the IRQ-based SG list entries
486 * resubmission. That might and will cause a problem if the DMA Tx channel is
487 * recharged and re-executed before the Rx DMA channel. Due to
488 * non-deterministic IRQ-handler execution latency the DMA Tx channel will
489 * start pushing data to the SPI bus before the Rx DMA channel is even
490 * reinitialized with the next inbound SG list entry. By doing so the DMA Tx
491 * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
492 * the DMA Rx channel being recharged and re-executed will eventually be
493 * overflown.
494 *
495 * In order to solve the problem we have to feed the DMA engine with SG list
496 * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
497 * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
498 * and rx_sg lists may have different number of entries of different lengths
499 * (though total length should match) let's virtually split the SG-lists to the
500 * set of DMA transfers, which length is a minimum of the ordered SG-entries
501 * lengths. An ASCII-sketch of the implemented algo is following:
502 *                  xfer->len
503 *                |___________|
504 * tx_sg list:    |___|____|__|
505 * rx_sg list:    |_|____|____|
506 * DMA transfers: |_|_|__|_|__|
507 *
508 * Note in order to have this workaround solving the denoted problem the DMA
509 * engine driver should properly initialize the max_sg_burst capability and set
510 * the DMA device max segment size parameter with maximum data block size the
511 * DMA engine supports.
512 */
513
514static int dw_spi_dma_transfer_one(struct dw_spi *dws,
515				   struct spi_transfer *xfer)
516{
517	struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
518	unsigned int tx_len = 0, rx_len = 0;
519	unsigned int base, len;
520	int ret;
521
522	sg_init_table(&tx_tmp, 1);
523	sg_init_table(&rx_tmp, 1);
524
525	for (base = 0, len = 0; base < xfer->len; base += len) {
526		/* Fetch next Tx DMA data chunk */
527		if (!tx_len) {
528			tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
529			sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
530			tx_len = sg_dma_len(tx_sg);
531		}
532
533		/* Fetch next Rx DMA data chunk */
534		if (!rx_len) {
535			rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
536			sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
537			rx_len = sg_dma_len(rx_sg);
538		}
539
540		len = min(tx_len, rx_len);
541
542		sg_dma_len(&tx_tmp) = len;
543		sg_dma_len(&rx_tmp) = len;
544
545		/* Submit DMA Tx transfer */
546		ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
547		if (ret)
548			break;
549
550		/* Submit DMA Rx transfer */
551		ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
552		if (ret)
553			break;
554
555		/* Rx must be started before Tx due to SPI instinct */
556		dma_async_issue_pending(dws->rxchan);
557
558		dma_async_issue_pending(dws->txchan);
559
560		/*
561		 * Here we only need to wait for the DMA transfer to be
562		 * finished since SPI controller is kept enabled during the
563		 * procedure this loop implements and there is no risk to lose
564		 * data left in the Tx/Rx FIFOs.
565		 */
566		ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
567		if (ret)
568			break;
569
570		reinit_completion(&dws->dma_completion);
571
572		sg_dma_address(&tx_tmp) += len;
573		sg_dma_address(&rx_tmp) += len;
574		tx_len -= len;
575		rx_len -= len;
576	}
577
578	dw_writel(dws, DW_SPI_DMACR, 0);
579
580	return ret;
581}
582
583static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
584{
585	unsigned int nents;
586	int ret;
587
588	nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
589
590	/*
591	 * Execute normal DMA-based transfer (which submits the Rx and Tx SG
592	 * lists directly to the DMA engine at once) if either full hardware
593	 * accelerated SG list traverse is supported by both channels, or the
594	 * Tx-only SPI transfer is requested, or the DMA engine is capable to
595	 * handle both SG lists on hardware accelerated basis.
596	 */
597	if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
598		ret = dw_spi_dma_transfer_all(dws, xfer);
599	else
600		ret = dw_spi_dma_transfer_one(dws, xfer);
601	if (ret)
602		return ret;
603
604	if (dws->master->cur_msg->status == -EINPROGRESS) {
605		ret = dw_spi_dma_wait_tx_done(dws, xfer);
606		if (ret)
607			return ret;
608	}
609
610	if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS)
611		ret = dw_spi_dma_wait_rx_done(dws);
612
613	return ret;
614}
615
616static void dw_spi_dma_stop(struct dw_spi *dws)
617{
618	if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
619		dmaengine_terminate_sync(dws->txchan);
620		clear_bit(TX_BUSY, &dws->dma_chan_busy);
621	}
622	if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
623		dmaengine_terminate_sync(dws->rxchan);
624		clear_bit(RX_BUSY, &dws->dma_chan_busy);
625	}
626}
627
628static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
629	.dma_init	= dw_spi_dma_init_mfld,
630	.dma_exit	= dw_spi_dma_exit,
631	.dma_setup	= dw_spi_dma_setup,
632	.can_dma	= dw_spi_can_dma,
633	.dma_transfer	= dw_spi_dma_transfer,
634	.dma_stop	= dw_spi_dma_stop,
635};
636
637void dw_spi_dma_setup_mfld(struct dw_spi *dws)
638{
639	dws->dma_ops = &dw_spi_dma_mfld_ops;
640}
641EXPORT_SYMBOL_GPL(dw_spi_dma_setup_mfld);
642
643static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
644	.dma_init	= dw_spi_dma_init_generic,
645	.dma_exit	= dw_spi_dma_exit,
646	.dma_setup	= dw_spi_dma_setup,
647	.can_dma	= dw_spi_can_dma,
648	.dma_transfer	= dw_spi_dma_transfer,
649	.dma_stop	= dw_spi_dma_stop,
650};
651
652void dw_spi_dma_setup_generic(struct dw_spi *dws)
653{
654	dws->dma_ops = &dw_spi_dma_generic_ops;
655}
656EXPORT_SYMBOL_GPL(dw_spi_dma_setup_generic);