Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Special handling for DW DMA core
  4 *
  5 * Copyright (c) 2009, 2014 Intel Corporation.
  6 */
  7
  8#include <linux/completion.h>
  9#include <linux/dma-mapping.h>
 10#include <linux/dmaengine.h>
 11#include <linux/irqreturn.h>
 12#include <linux/jiffies.h>
 13#include <linux/module.h>
 14#include <linux/pci.h>
 15#include <linux/platform_data/dma-dw.h>
 16#include <linux/spi/spi.h>
 17#include <linux/types.h>
 18
 19#include "spi-dw.h"
 20
 21#define DW_SPI_RX_BUSY		0
 22#define DW_SPI_RX_BURST_LEVEL	16
 23#define DW_SPI_TX_BUSY		1
 24#define DW_SPI_TX_BURST_LEVEL	16
 25
 26static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
 27{
 28	struct dw_dma_slave *s = param;
 29
 30	if (s->dma_dev != chan->device->dev)
 31		return false;
 32
 33	chan->private = s;
 34	return true;
 35}
 36
 37static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
 38{
 39	struct dma_slave_caps caps;
 40	u32 max_burst, def_burst;
 41	int ret;
 42
 43	def_burst = dws->fifo_len / 2;
 44
 45	ret = dma_get_slave_caps(dws->rxchan, &caps);
 46	if (!ret && caps.max_burst)
 47		max_burst = caps.max_burst;
 48	else
 49		max_burst = DW_SPI_RX_BURST_LEVEL;
 50
 51	dws->rxburst = min(max_burst, def_burst);
 52	dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
 53
 54	ret = dma_get_slave_caps(dws->txchan, &caps);
 55	if (!ret && caps.max_burst)
 56		max_burst = caps.max_burst;
 57	else
 58		max_burst = DW_SPI_TX_BURST_LEVEL;
 59
 60	/*
 61	 * Having a Rx DMA channel serviced with higher priority than a Tx DMA
 62	 * channel might not be enough to provide a well balanced DMA-based
 63	 * SPI transfer interface. There might still be moments when the Tx DMA
 64	 * channel is occasionally handled faster than the Rx DMA channel.
 65	 * That in its turn will eventually cause the SPI Rx FIFO overflow if
 66	 * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
 67	 * cleared by the Rx DMA channel. In order to fix the problem the Tx
 68	 * DMA activity is intentionally slowed down by limiting the SPI Tx
 69	 * FIFO depth with a value twice bigger than the Tx burst length.
 70	 */
 71	dws->txburst = min(max_burst, def_burst);
 72	dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
 73}
 74
 75static void dw_spi_dma_sg_burst_init(struct dw_spi *dws)
 76{
 77	struct dma_slave_caps tx = {0}, rx = {0};
 78
 79	dma_get_slave_caps(dws->txchan, &tx);
 80	dma_get_slave_caps(dws->rxchan, &rx);
 81
 82	if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
 83		dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
 84	else if (tx.max_sg_burst > 0)
 85		dws->dma_sg_burst = tx.max_sg_burst;
 86	else if (rx.max_sg_burst > 0)
 87		dws->dma_sg_burst = rx.max_sg_burst;
 88	else
 89		dws->dma_sg_burst = 0;
 90}
 91
 92static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
 93{
 94	struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
 95	struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
 96	struct pci_dev *dma_dev;
 97	dma_cap_mask_t mask;
 98
 99	/*
100	 * Get pci device for DMA controller, currently it could only
101	 * be the DMA controller of Medfield
102	 */
103	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
104	if (!dma_dev)
105		return -ENODEV;
106
107	dma_cap_zero(mask);
108	dma_cap_set(DMA_SLAVE, mask);
109
110	/* 1. Init rx channel */
111	rx->dma_dev = &dma_dev->dev;
112	dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
113	if (!dws->rxchan)
114		goto err_exit;
115
116	/* 2. Init tx channel */
117	tx->dma_dev = &dma_dev->dev;
118	dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
119	if (!dws->txchan)
120		goto free_rxchan;
121
122	dws->master->dma_rx = dws->rxchan;
123	dws->master->dma_tx = dws->txchan;
124
125	init_completion(&dws->dma_completion);
126
127	dw_spi_dma_maxburst_init(dws);
128
129	dw_spi_dma_sg_burst_init(dws);
130
131	pci_dev_put(dma_dev);
132
133	return 0;
134
135free_rxchan:
136	dma_release_channel(dws->rxchan);
137	dws->rxchan = NULL;
138err_exit:
139	pci_dev_put(dma_dev);
140	return -EBUSY;
141}
142
143static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
144{
145	int ret;
146
147	dws->rxchan = dma_request_chan(dev, "rx");
148	if (IS_ERR(dws->rxchan)) {
149		ret = PTR_ERR(dws->rxchan);
150		dws->rxchan = NULL;
151		goto err_exit;
152	}
153
154	dws->txchan = dma_request_chan(dev, "tx");
155	if (IS_ERR(dws->txchan)) {
156		ret = PTR_ERR(dws->txchan);
157		dws->txchan = NULL;
158		goto free_rxchan;
159	}
160
161	dws->master->dma_rx = dws->rxchan;
162	dws->master->dma_tx = dws->txchan;
163
164	init_completion(&dws->dma_completion);
165
166	dw_spi_dma_maxburst_init(dws);
167
168	dw_spi_dma_sg_burst_init(dws);
169
170	return 0;
171
172free_rxchan:
173	dma_release_channel(dws->rxchan);
174	dws->rxchan = NULL;
175err_exit:
176	return ret;
177}
178
179static void dw_spi_dma_exit(struct dw_spi *dws)
180{
181	if (dws->txchan) {
182		dmaengine_terminate_sync(dws->txchan);
183		dma_release_channel(dws->txchan);
184	}
185
186	if (dws->rxchan) {
187		dmaengine_terminate_sync(dws->rxchan);
188		dma_release_channel(dws->rxchan);
189	}
190}
191
192static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
193{
194	dw_spi_check_status(dws, false);
195
196	complete(&dws->dma_completion);
197
198	return IRQ_HANDLED;
199}
200
201static bool dw_spi_can_dma(struct spi_controller *master,
202			   struct spi_device *spi, struct spi_transfer *xfer)
203{
204	struct dw_spi *dws = spi_controller_get_devdata(master);
205
206	return xfer->len > dws->fifo_len;
207}
208
209static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
210{
211	if (n_bytes == 1)
212		return DMA_SLAVE_BUSWIDTH_1_BYTE;
213	else if (n_bytes == 2)
214		return DMA_SLAVE_BUSWIDTH_2_BYTES;
215
216	return DMA_SLAVE_BUSWIDTH_UNDEFINED;
217}
218
219static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
220{
221	unsigned long long ms;
222
223	ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
224	do_div(ms, speed);
225	ms += ms + 200;
226
227	if (ms > UINT_MAX)
228		ms = UINT_MAX;
229
230	ms = wait_for_completion_timeout(&dws->dma_completion,
231					 msecs_to_jiffies(ms));
232
233	if (ms == 0) {
234		dev_err(&dws->master->cur_msg->spi->dev,
235			"DMA transaction timed out\n");
236		return -ETIMEDOUT;
237	}
238
239	return 0;
240}
241
242static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
243{
244	return !(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_TF_EMPT);
245}
246
247static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
248				   struct spi_transfer *xfer)
249{
250	int retry = DW_SPI_WAIT_RETRIES;
251	struct spi_delay delay;
252	u32 nents;
253
254	nents = dw_readl(dws, DW_SPI_TXFLR);
255	delay.unit = SPI_DELAY_UNIT_SCK;
256	delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
257
258	while (dw_spi_dma_tx_busy(dws) && retry--)
259		spi_delay_exec(&delay, xfer);
260
261	if (retry < 0) {
262		dev_err(&dws->master->dev, "Tx hanged up\n");
263		return -EIO;
264	}
265
266	return 0;
267}
268
269/*
270 * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
271 * channel will clear a corresponding bit.
272 */
273static void dw_spi_dma_tx_done(void *arg)
274{
275	struct dw_spi *dws = arg;
276
277	clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
278	if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy))
279		return;
280
281	complete(&dws->dma_completion);
282}
283
284static int dw_spi_dma_config_tx(struct dw_spi *dws)
285{
286	struct dma_slave_config txconf;
287
288	memset(&txconf, 0, sizeof(txconf));
289	txconf.direction = DMA_MEM_TO_DEV;
290	txconf.dst_addr = dws->dma_addr;
291	txconf.dst_maxburst = dws->txburst;
292	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
293	txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
294	txconf.device_fc = false;
295
296	return dmaengine_slave_config(dws->txchan, &txconf);
297}
298
299static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
300				unsigned int nents)
301{
302	struct dma_async_tx_descriptor *txdesc;
303	dma_cookie_t cookie;
304	int ret;
305
306	txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
307					 DMA_MEM_TO_DEV,
308					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
309	if (!txdesc)
310		return -ENOMEM;
311
312	txdesc->callback = dw_spi_dma_tx_done;
313	txdesc->callback_param = dws;
314
315	cookie = dmaengine_submit(txdesc);
316	ret = dma_submit_error(cookie);
317	if (ret) {
318		dmaengine_terminate_sync(dws->txchan);
319		return ret;
320	}
321
322	set_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
323
324	return 0;
325}
326
327static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
328{
329	return !!(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_RF_NOT_EMPT);
330}
331
332static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
333{
334	int retry = DW_SPI_WAIT_RETRIES;
335	struct spi_delay delay;
336	unsigned long ns, us;
337	u32 nents;
338
339	/*
340	 * It's unlikely that DMA engine is still doing the data fetching, but
341	 * if it's let's give it some reasonable time. The timeout calculation
342	 * is based on the synchronous APB/SSI reference clock rate, on a
343	 * number of data entries left in the Rx FIFO, times a number of clock
344	 * periods normally needed for a single APB read/write transaction
345	 * without PREADY signal utilized (which is true for the DW APB SSI
346	 * controller).
347	 */
348	nents = dw_readl(dws, DW_SPI_RXFLR);
349	ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
350	if (ns <= NSEC_PER_USEC) {
351		delay.unit = SPI_DELAY_UNIT_NSECS;
352		delay.value = ns;
353	} else {
354		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
355		delay.unit = SPI_DELAY_UNIT_USECS;
356		delay.value = clamp_val(us, 0, USHRT_MAX);
357	}
358
359	while (dw_spi_dma_rx_busy(dws) && retry--)
360		spi_delay_exec(&delay, NULL);
361
362	if (retry < 0) {
363		dev_err(&dws->master->dev, "Rx hanged up\n");
364		return -EIO;
365	}
366
367	return 0;
368}
369
370/*
371 * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
372 * channel will clear a corresponding bit.
373 */
374static void dw_spi_dma_rx_done(void *arg)
375{
376	struct dw_spi *dws = arg;
377
378	clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
379	if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy))
380		return;
381
382	complete(&dws->dma_completion);
383}
384
385static int dw_spi_dma_config_rx(struct dw_spi *dws)
386{
387	struct dma_slave_config rxconf;
388
389	memset(&rxconf, 0, sizeof(rxconf));
390	rxconf.direction = DMA_DEV_TO_MEM;
391	rxconf.src_addr = dws->dma_addr;
392	rxconf.src_maxburst = dws->rxburst;
393	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
394	rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
395	rxconf.device_fc = false;
396
397	return dmaengine_slave_config(dws->rxchan, &rxconf);
398}
399
400static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
401				unsigned int nents)
402{
403	struct dma_async_tx_descriptor *rxdesc;
404	dma_cookie_t cookie;
405	int ret;
406
407	rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
408					 DMA_DEV_TO_MEM,
409					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
410	if (!rxdesc)
411		return -ENOMEM;
412
413	rxdesc->callback = dw_spi_dma_rx_done;
414	rxdesc->callback_param = dws;
415
416	cookie = dmaengine_submit(rxdesc);
417	ret = dma_submit_error(cookie);
418	if (ret) {
419		dmaengine_terminate_sync(dws->rxchan);
420		return ret;
421	}
422
423	set_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
424
425	return 0;
426}
427
428static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
429{
430	u16 imr, dma_ctrl;
431	int ret;
432
433	if (!xfer->tx_buf)
434		return -EINVAL;
435
436	/* Setup DMA channels */
437	ret = dw_spi_dma_config_tx(dws);
438	if (ret)
439		return ret;
440
441	if (xfer->rx_buf) {
442		ret = dw_spi_dma_config_rx(dws);
443		if (ret)
444			return ret;
445	}
446
447	/* Set the DMA handshaking interface */
448	dma_ctrl = DW_SPI_DMACR_TDMAE;
449	if (xfer->rx_buf)
450		dma_ctrl |= DW_SPI_DMACR_RDMAE;
451	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
452
453	/* Set the interrupt mask */
454	imr = DW_SPI_INT_TXOI;
455	if (xfer->rx_buf)
456		imr |= DW_SPI_INT_RXUI | DW_SPI_INT_RXOI;
457	dw_spi_umask_intr(dws, imr);
458
459	reinit_completion(&dws->dma_completion);
460
461	dws->transfer_handler = dw_spi_dma_transfer_handler;
462
463	return 0;
464}
465
466static int dw_spi_dma_transfer_all(struct dw_spi *dws,
467				   struct spi_transfer *xfer)
468{
469	int ret;
470
471	/* Submit the DMA Tx transfer */
472	ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
473	if (ret)
474		goto err_clear_dmac;
475
476	/* Submit the DMA Rx transfer if required */
477	if (xfer->rx_buf) {
478		ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
479					   xfer->rx_sg.nents);
480		if (ret)
481			goto err_clear_dmac;
482
483		/* rx must be started before tx due to spi instinct */
484		dma_async_issue_pending(dws->rxchan);
485	}
486
487	dma_async_issue_pending(dws->txchan);
488
489	ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);
490
491err_clear_dmac:
492	dw_writel(dws, DW_SPI_DMACR, 0);
493
494	return ret;
495}
496
497/*
498 * In case if at least one of the requested DMA channels doesn't support the
499 * hardware accelerated SG list entries traverse, the DMA driver will most
500 * likely work that around by performing the IRQ-based SG list entries
501 * resubmission. That might and will cause a problem if the DMA Tx channel is
502 * recharged and re-executed before the Rx DMA channel. Due to
503 * non-deterministic IRQ-handler execution latency the DMA Tx channel will
504 * start pushing data to the SPI bus before the Rx DMA channel is even
505 * reinitialized with the next inbound SG list entry. By doing so the DMA Tx
506 * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
507 * the DMA Rx channel being recharged and re-executed will eventually be
508 * overflown.
509 *
510 * In order to solve the problem we have to feed the DMA engine with SG list
511 * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
512 * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
513 * and rx_sg lists may have different number of entries of different lengths
514 * (though total length should match) let's virtually split the SG-lists to the
515 * set of DMA transfers, which length is a minimum of the ordered SG-entries
516 * lengths. An ASCII-sketch of the implemented algo is following:
517 *                  xfer->len
518 *                |___________|
519 * tx_sg list:    |___|____|__|
520 * rx_sg list:    |_|____|____|
521 * DMA transfers: |_|_|__|_|__|
522 *
523 * Note in order to have this workaround solving the denoted problem the DMA
524 * engine driver should properly initialize the max_sg_burst capability and set
525 * the DMA device max segment size parameter with maximum data block size the
526 * DMA engine supports.
527 */
528
529static int dw_spi_dma_transfer_one(struct dw_spi *dws,
530				   struct spi_transfer *xfer)
531{
532	struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
533	unsigned int tx_len = 0, rx_len = 0;
534	unsigned int base, len;
535	int ret;
536
537	sg_init_table(&tx_tmp, 1);
538	sg_init_table(&rx_tmp, 1);
539
540	for (base = 0, len = 0; base < xfer->len; base += len) {
541		/* Fetch next Tx DMA data chunk */
542		if (!tx_len) {
543			tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
544			sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
545			tx_len = sg_dma_len(tx_sg);
546		}
547
548		/* Fetch next Rx DMA data chunk */
549		if (!rx_len) {
550			rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
551			sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
552			rx_len = sg_dma_len(rx_sg);
553		}
554
555		len = min(tx_len, rx_len);
556
557		sg_dma_len(&tx_tmp) = len;
558		sg_dma_len(&rx_tmp) = len;
559
560		/* Submit DMA Tx transfer */
561		ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
562		if (ret)
563			break;
564
565		/* Submit DMA Rx transfer */
566		ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
567		if (ret)
568			break;
569
570		/* Rx must be started before Tx due to SPI instinct */
571		dma_async_issue_pending(dws->rxchan);
572
573		dma_async_issue_pending(dws->txchan);
574
575		/*
576		 * Here we only need to wait for the DMA transfer to be
577		 * finished since SPI controller is kept enabled during the
578		 * procedure this loop implements and there is no risk to lose
579		 * data left in the Tx/Rx FIFOs.
580		 */
581		ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
582		if (ret)
583			break;
584
585		reinit_completion(&dws->dma_completion);
586
587		sg_dma_address(&tx_tmp) += len;
588		sg_dma_address(&rx_tmp) += len;
589		tx_len -= len;
590		rx_len -= len;
591	}
592
593	dw_writel(dws, DW_SPI_DMACR, 0);
594
595	return ret;
596}
597
598static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
599{
600	unsigned int nents;
601	int ret;
602
603	nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
604
605	/*
606	 * Execute normal DMA-based transfer (which submits the Rx and Tx SG
607	 * lists directly to the DMA engine at once) if either full hardware
608	 * accelerated SG list traverse is supported by both channels, or the
609	 * Tx-only SPI transfer is requested, or the DMA engine is capable to
610	 * handle both SG lists on hardware accelerated basis.
611	 */
612	if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
613		ret = dw_spi_dma_transfer_all(dws, xfer);
614	else
615		ret = dw_spi_dma_transfer_one(dws, xfer);
616	if (ret)
617		return ret;
618
619	if (dws->master->cur_msg->status == -EINPROGRESS) {
620		ret = dw_spi_dma_wait_tx_done(dws, xfer);
621		if (ret)
622			return ret;
623	}
624
625	if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS)
626		ret = dw_spi_dma_wait_rx_done(dws);
627
628	return ret;
629}
630
631static void dw_spi_dma_stop(struct dw_spi *dws)
632{
633	if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) {
634		dmaengine_terminate_sync(dws->txchan);
635		clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
636	}
637	if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) {
638		dmaengine_terminate_sync(dws->rxchan);
639		clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
640	}
641}
642
643static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
644	.dma_init	= dw_spi_dma_init_mfld,
645	.dma_exit	= dw_spi_dma_exit,
646	.dma_setup	= dw_spi_dma_setup,
647	.can_dma	= dw_spi_can_dma,
648	.dma_transfer	= dw_spi_dma_transfer,
649	.dma_stop	= dw_spi_dma_stop,
650};
651
652void dw_spi_dma_setup_mfld(struct dw_spi *dws)
653{
654	dws->dma_ops = &dw_spi_dma_mfld_ops;
655}
656EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_mfld, SPI_DW_CORE);
657
658static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
659	.dma_init	= dw_spi_dma_init_generic,
660	.dma_exit	= dw_spi_dma_exit,
661	.dma_setup	= dw_spi_dma_setup,
662	.can_dma	= dw_spi_can_dma,
663	.dma_transfer	= dw_spi_dma_transfer,
664	.dma_stop	= dw_spi_dma_stop,
665};
666
667void dw_spi_dma_setup_generic(struct dw_spi *dws)
668{
669	dws->dma_ops = &dw_spi_dma_generic_ops;
670}
671EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_generic, SPI_DW_CORE);