Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
 
  22#include <linux/regmap.h>
  23#include <linux/regulator/of_regulator.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/regulator/coupler.h>
  26#include <linux/regulator/driver.h>
  27#include <linux/regulator/machine.h>
  28#include <linux/module.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/regulator.h>
  32
  33#include "dummy.h"
  34#include "internal.h"
 
  35
  36static DEFINE_WW_CLASS(regulator_ww_class);
  37static DEFINE_MUTEX(regulator_nesting_mutex);
  38static DEFINE_MUTEX(regulator_list_mutex);
  39static LIST_HEAD(regulator_map_list);
  40static LIST_HEAD(regulator_ena_gpio_list);
  41static LIST_HEAD(regulator_supply_alias_list);
  42static LIST_HEAD(regulator_coupler_list);
  43static bool has_full_constraints;
  44
  45static struct dentry *debugfs_root;
  46
  47/*
  48 * struct regulator_map
  49 *
  50 * Used to provide symbolic supply names to devices.
  51 */
  52struct regulator_map {
  53	struct list_head list;
  54	const char *dev_name;   /* The dev_name() for the consumer */
  55	const char *supply;
  56	struct regulator_dev *regulator;
  57};
  58
  59/*
  60 * struct regulator_enable_gpio
  61 *
  62 * Management for shared enable GPIO pin
  63 */
  64struct regulator_enable_gpio {
  65	struct list_head list;
  66	struct gpio_desc *gpiod;
  67	u32 enable_count;	/* a number of enabled shared GPIO */
  68	u32 request_count;	/* a number of requested shared GPIO */
  69};
  70
  71/*
  72 * struct regulator_supply_alias
  73 *
  74 * Used to map lookups for a supply onto an alternative device.
  75 */
  76struct regulator_supply_alias {
  77	struct list_head list;
  78	struct device *src_dev;
  79	const char *src_supply;
  80	struct device *alias_dev;
  81	const char *alias_supply;
  82};
  83
  84static int _regulator_is_enabled(struct regulator_dev *rdev);
  85static int _regulator_disable(struct regulator *regulator);
  86static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
  87static int _regulator_get_current_limit(struct regulator_dev *rdev);
  88static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  89static int _notifier_call_chain(struct regulator_dev *rdev,
  90				  unsigned long event, void *data);
  91static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  92				     int min_uV, int max_uV);
  93static int regulator_balance_voltage(struct regulator_dev *rdev,
  94				     suspend_state_t state);
  95static struct regulator *create_regulator(struct regulator_dev *rdev,
  96					  struct device *dev,
  97					  const char *supply_name);
  98static void destroy_regulator(struct regulator *regulator);
  99static void _regulator_put(struct regulator *regulator);
 100
 101const char *rdev_get_name(struct regulator_dev *rdev)
 102{
 103	if (rdev->constraints && rdev->constraints->name)
 104		return rdev->constraints->name;
 105	else if (rdev->desc->name)
 106		return rdev->desc->name;
 107	else
 108		return "";
 109}
 110EXPORT_SYMBOL_GPL(rdev_get_name);
 111
 112static bool have_full_constraints(void)
 113{
 114	return has_full_constraints || of_have_populated_dt();
 115}
 116
 117static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 118{
 119	if (!rdev->constraints) {
 120		rdev_err(rdev, "no constraints\n");
 121		return false;
 122	}
 123
 124	if (rdev->constraints->valid_ops_mask & ops)
 125		return true;
 126
 127	return false;
 128}
 129
 130/**
 131 * regulator_lock_nested - lock a single regulator
 132 * @rdev:		regulator source
 133 * @ww_ctx:		w/w mutex acquire context
 134 *
 135 * This function can be called many times by one task on
 136 * a single regulator and its mutex will be locked only
 137 * once. If a task, which is calling this function is other
 138 * than the one, which initially locked the mutex, it will
 139 * wait on mutex.
 140 */
 141static inline int regulator_lock_nested(struct regulator_dev *rdev,
 142					struct ww_acquire_ctx *ww_ctx)
 143{
 144	bool lock = false;
 145	int ret = 0;
 146
 147	mutex_lock(&regulator_nesting_mutex);
 148
 149	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
 150		if (rdev->mutex_owner == current)
 151			rdev->ref_cnt++;
 152		else
 153			lock = true;
 154
 155		if (lock) {
 156			mutex_unlock(&regulator_nesting_mutex);
 157			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 158			mutex_lock(&regulator_nesting_mutex);
 159		}
 160	} else {
 161		lock = true;
 162	}
 163
 164	if (lock && ret != -EDEADLK) {
 165		rdev->ref_cnt++;
 166		rdev->mutex_owner = current;
 167	}
 168
 169	mutex_unlock(&regulator_nesting_mutex);
 170
 171	return ret;
 172}
 173
 174/**
 175 * regulator_lock - lock a single regulator
 176 * @rdev:		regulator source
 177 *
 178 * This function can be called many times by one task on
 179 * a single regulator and its mutex will be locked only
 180 * once. If a task, which is calling this function is other
 181 * than the one, which initially locked the mutex, it will
 182 * wait on mutex.
 183 */
 184static void regulator_lock(struct regulator_dev *rdev)
 185{
 186	regulator_lock_nested(rdev, NULL);
 187}
 188
 189/**
 190 * regulator_unlock - unlock a single regulator
 191 * @rdev:		regulator_source
 192 *
 193 * This function unlocks the mutex when the
 194 * reference counter reaches 0.
 195 */
 196static void regulator_unlock(struct regulator_dev *rdev)
 197{
 198	mutex_lock(&regulator_nesting_mutex);
 199
 200	if (--rdev->ref_cnt == 0) {
 201		rdev->mutex_owner = NULL;
 202		ww_mutex_unlock(&rdev->mutex);
 203	}
 204
 205	WARN_ON_ONCE(rdev->ref_cnt < 0);
 206
 207	mutex_unlock(&regulator_nesting_mutex);
 208}
 209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 211{
 212	struct regulator_dev *c_rdev;
 213	int i;
 214
 215	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 216		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 217
 218		if (rdev->supply->rdev == c_rdev)
 219			return true;
 220	}
 221
 222	return false;
 223}
 224
 225static void regulator_unlock_recursive(struct regulator_dev *rdev,
 226				       unsigned int n_coupled)
 227{
 228	struct regulator_dev *c_rdev, *supply_rdev;
 229	int i, supply_n_coupled;
 230
 231	for (i = n_coupled; i > 0; i--) {
 232		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 233
 234		if (!c_rdev)
 235			continue;
 236
 237		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 238			supply_rdev = c_rdev->supply->rdev;
 239			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
 240
 241			regulator_unlock_recursive(supply_rdev,
 242						   supply_n_coupled);
 243		}
 244
 245		regulator_unlock(c_rdev);
 246	}
 247}
 248
 249static int regulator_lock_recursive(struct regulator_dev *rdev,
 250				    struct regulator_dev **new_contended_rdev,
 251				    struct regulator_dev **old_contended_rdev,
 252				    struct ww_acquire_ctx *ww_ctx)
 253{
 254	struct regulator_dev *c_rdev;
 255	int i, err;
 256
 257	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 258		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 259
 260		if (!c_rdev)
 261			continue;
 262
 263		if (c_rdev != *old_contended_rdev) {
 264			err = regulator_lock_nested(c_rdev, ww_ctx);
 265			if (err) {
 266				if (err == -EDEADLK) {
 267					*new_contended_rdev = c_rdev;
 268					goto err_unlock;
 269				}
 270
 271				/* shouldn't happen */
 272				WARN_ON_ONCE(err != -EALREADY);
 273			}
 274		} else {
 275			*old_contended_rdev = NULL;
 276		}
 277
 278		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 279			err = regulator_lock_recursive(c_rdev->supply->rdev,
 280						       new_contended_rdev,
 281						       old_contended_rdev,
 282						       ww_ctx);
 283			if (err) {
 284				regulator_unlock(c_rdev);
 285				goto err_unlock;
 286			}
 287		}
 288	}
 289
 290	return 0;
 291
 292err_unlock:
 293	regulator_unlock_recursive(rdev, i);
 294
 295	return err;
 296}
 297
 298/**
 299 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 300 *				regulators
 301 * @rdev:			regulator source
 302 * @ww_ctx:			w/w mutex acquire context
 303 *
 304 * Unlock all regulators related with rdev by coupling or supplying.
 305 */
 306static void regulator_unlock_dependent(struct regulator_dev *rdev,
 307				       struct ww_acquire_ctx *ww_ctx)
 308{
 309	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 310	ww_acquire_fini(ww_ctx);
 311}
 312
 313/**
 314 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 315 * @rdev:			regulator source
 316 * @ww_ctx:			w/w mutex acquire context
 317 *
 318 * This function as a wrapper on regulator_lock_recursive(), which locks
 319 * all regulators related with rdev by coupling or supplying.
 320 */
 321static void regulator_lock_dependent(struct regulator_dev *rdev,
 322				     struct ww_acquire_ctx *ww_ctx)
 323{
 324	struct regulator_dev *new_contended_rdev = NULL;
 325	struct regulator_dev *old_contended_rdev = NULL;
 326	int err;
 327
 328	mutex_lock(&regulator_list_mutex);
 329
 330	ww_acquire_init(ww_ctx, &regulator_ww_class);
 331
 332	do {
 333		if (new_contended_rdev) {
 334			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 335			old_contended_rdev = new_contended_rdev;
 336			old_contended_rdev->ref_cnt++;
 
 337		}
 338
 339		err = regulator_lock_recursive(rdev,
 340					       &new_contended_rdev,
 341					       &old_contended_rdev,
 342					       ww_ctx);
 343
 344		if (old_contended_rdev)
 345			regulator_unlock(old_contended_rdev);
 346
 347	} while (err == -EDEADLK);
 348
 349	ww_acquire_done(ww_ctx);
 350
 351	mutex_unlock(&regulator_list_mutex);
 352}
 353
 354/**
 355 * of_get_child_regulator - get a child regulator device node
 356 * based on supply name
 357 * @parent: Parent device node
 358 * @prop_name: Combination regulator supply name and "-supply"
 359 *
 360 * Traverse all child nodes.
 361 * Extract the child regulator device node corresponding to the supply name.
 362 * returns the device node corresponding to the regulator if found, else
 363 * returns NULL.
 364 */
 365static struct device_node *of_get_child_regulator(struct device_node *parent,
 366						  const char *prop_name)
 367{
 368	struct device_node *regnode = NULL;
 369	struct device_node *child = NULL;
 370
 371	for_each_child_of_node(parent, child) {
 372		regnode = of_parse_phandle(child, prop_name, 0);
 373
 374		if (!regnode) {
 375			regnode = of_get_child_regulator(child, prop_name);
 376			if (regnode)
 377				goto err_node_put;
 378		} else {
 379			goto err_node_put;
 380		}
 381	}
 382	return NULL;
 383
 384err_node_put:
 385	of_node_put(child);
 386	return regnode;
 387}
 388
 389/**
 390 * of_get_regulator - get a regulator device node based on supply name
 391 * @dev: Device pointer for the consumer (of regulator) device
 392 * @supply: regulator supply name
 393 *
 394 * Extract the regulator device node corresponding to the supply name.
 395 * returns the device node corresponding to the regulator if found, else
 396 * returns NULL.
 397 */
 398static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 399{
 400	struct device_node *regnode = NULL;
 401	char prop_name[64]; /* 64 is max size of property name */
 402
 403	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 404
 405	snprintf(prop_name, 64, "%s-supply", supply);
 406	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 407
 408	if (!regnode) {
 409		regnode = of_get_child_regulator(dev->of_node, prop_name);
 410		if (regnode)
 411			return regnode;
 412
 413		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 414				prop_name, dev->of_node);
 415		return NULL;
 416	}
 417	return regnode;
 418}
 419
 420/* Platform voltage constraint check */
 421int regulator_check_voltage(struct regulator_dev *rdev,
 422			    int *min_uV, int *max_uV)
 423{
 424	BUG_ON(*min_uV > *max_uV);
 425
 426	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 427		rdev_err(rdev, "voltage operation not allowed\n");
 428		return -EPERM;
 429	}
 430
 431	if (*max_uV > rdev->constraints->max_uV)
 432		*max_uV = rdev->constraints->max_uV;
 433	if (*min_uV < rdev->constraints->min_uV)
 434		*min_uV = rdev->constraints->min_uV;
 435
 436	if (*min_uV > *max_uV) {
 437		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 438			 *min_uV, *max_uV);
 439		return -EINVAL;
 440	}
 441
 442	return 0;
 443}
 444
 445/* return 0 if the state is valid */
 446static int regulator_check_states(suspend_state_t state)
 447{
 448	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 449}
 450
 451/* Make sure we select a voltage that suits the needs of all
 452 * regulator consumers
 453 */
 454int regulator_check_consumers(struct regulator_dev *rdev,
 455			      int *min_uV, int *max_uV,
 456			      suspend_state_t state)
 457{
 458	struct regulator *regulator;
 459	struct regulator_voltage *voltage;
 460
 461	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 462		voltage = &regulator->voltage[state];
 463		/*
 464		 * Assume consumers that didn't say anything are OK
 465		 * with anything in the constraint range.
 466		 */
 467		if (!voltage->min_uV && !voltage->max_uV)
 468			continue;
 469
 470		if (*max_uV > voltage->max_uV)
 471			*max_uV = voltage->max_uV;
 472		if (*min_uV < voltage->min_uV)
 473			*min_uV = voltage->min_uV;
 474	}
 475
 476	if (*min_uV > *max_uV) {
 477		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 478			*min_uV, *max_uV);
 479		return -EINVAL;
 480	}
 481
 482	return 0;
 483}
 484
 485/* current constraint check */
 486static int regulator_check_current_limit(struct regulator_dev *rdev,
 487					int *min_uA, int *max_uA)
 488{
 489	BUG_ON(*min_uA > *max_uA);
 490
 491	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 492		rdev_err(rdev, "current operation not allowed\n");
 493		return -EPERM;
 494	}
 495
 496	if (*max_uA > rdev->constraints->max_uA)
 497		*max_uA = rdev->constraints->max_uA;
 498	if (*min_uA < rdev->constraints->min_uA)
 499		*min_uA = rdev->constraints->min_uA;
 500
 501	if (*min_uA > *max_uA) {
 502		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 503			 *min_uA, *max_uA);
 504		return -EINVAL;
 505	}
 506
 507	return 0;
 508}
 509
 510/* operating mode constraint check */
 511static int regulator_mode_constrain(struct regulator_dev *rdev,
 512				    unsigned int *mode)
 513{
 514	switch (*mode) {
 515	case REGULATOR_MODE_FAST:
 516	case REGULATOR_MODE_NORMAL:
 517	case REGULATOR_MODE_IDLE:
 518	case REGULATOR_MODE_STANDBY:
 519		break;
 520	default:
 521		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 522		return -EINVAL;
 523	}
 524
 525	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 526		rdev_err(rdev, "mode operation not allowed\n");
 527		return -EPERM;
 528	}
 529
 530	/* The modes are bitmasks, the most power hungry modes having
 531	 * the lowest values. If the requested mode isn't supported
 532	 * try higher modes.
 533	 */
 534	while (*mode) {
 535		if (rdev->constraints->valid_modes_mask & *mode)
 536			return 0;
 537		*mode /= 2;
 538	}
 539
 540	return -EINVAL;
 541}
 542
 543static inline struct regulator_state *
 544regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 545{
 546	if (rdev->constraints == NULL)
 547		return NULL;
 548
 549	switch (state) {
 550	case PM_SUSPEND_STANDBY:
 551		return &rdev->constraints->state_standby;
 552	case PM_SUSPEND_MEM:
 553		return &rdev->constraints->state_mem;
 554	case PM_SUSPEND_MAX:
 555		return &rdev->constraints->state_disk;
 556	default:
 557		return NULL;
 558	}
 559}
 560
 561static const struct regulator_state *
 562regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
 563{
 564	const struct regulator_state *rstate;
 565
 566	rstate = regulator_get_suspend_state(rdev, state);
 567	if (rstate == NULL)
 568		return NULL;
 569
 570	/* If we have no suspend mode configuration don't set anything;
 571	 * only warn if the driver implements set_suspend_voltage or
 572	 * set_suspend_mode callback.
 573	 */
 574	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 575	    rstate->enabled != DISABLE_IN_SUSPEND) {
 576		if (rdev->desc->ops->set_suspend_voltage ||
 577		    rdev->desc->ops->set_suspend_mode)
 578			rdev_warn(rdev, "No configuration\n");
 579		return NULL;
 580	}
 581
 582	return rstate;
 583}
 584
 585static ssize_t microvolts_show(struct device *dev,
 586			       struct device_attribute *attr, char *buf)
 587{
 588	struct regulator_dev *rdev = dev_get_drvdata(dev);
 589	int uV;
 590
 591	regulator_lock(rdev);
 592	uV = regulator_get_voltage_rdev(rdev);
 593	regulator_unlock(rdev);
 594
 595	if (uV < 0)
 596		return uV;
 597	return sprintf(buf, "%d\n", uV);
 598}
 599static DEVICE_ATTR_RO(microvolts);
 600
 601static ssize_t microamps_show(struct device *dev,
 602			      struct device_attribute *attr, char *buf)
 603{
 604	struct regulator_dev *rdev = dev_get_drvdata(dev);
 605
 606	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 607}
 608static DEVICE_ATTR_RO(microamps);
 609
 610static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 611			 char *buf)
 612{
 613	struct regulator_dev *rdev = dev_get_drvdata(dev);
 614
 615	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 616}
 617static DEVICE_ATTR_RO(name);
 618
 619static const char *regulator_opmode_to_str(int mode)
 620{
 621	switch (mode) {
 622	case REGULATOR_MODE_FAST:
 623		return "fast";
 624	case REGULATOR_MODE_NORMAL:
 625		return "normal";
 626	case REGULATOR_MODE_IDLE:
 627		return "idle";
 628	case REGULATOR_MODE_STANDBY:
 629		return "standby";
 630	}
 631	return "unknown";
 632}
 633
 634static ssize_t regulator_print_opmode(char *buf, int mode)
 635{
 636	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 637}
 638
 639static ssize_t opmode_show(struct device *dev,
 640			   struct device_attribute *attr, char *buf)
 641{
 642	struct regulator_dev *rdev = dev_get_drvdata(dev);
 643
 644	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 645}
 646static DEVICE_ATTR_RO(opmode);
 647
 648static ssize_t regulator_print_state(char *buf, int state)
 649{
 650	if (state > 0)
 651		return sprintf(buf, "enabled\n");
 652	else if (state == 0)
 653		return sprintf(buf, "disabled\n");
 654	else
 655		return sprintf(buf, "unknown\n");
 656}
 657
 658static ssize_t state_show(struct device *dev,
 659			  struct device_attribute *attr, char *buf)
 660{
 661	struct regulator_dev *rdev = dev_get_drvdata(dev);
 662	ssize_t ret;
 663
 664	regulator_lock(rdev);
 665	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 666	regulator_unlock(rdev);
 667
 668	return ret;
 669}
 670static DEVICE_ATTR_RO(state);
 671
 672static ssize_t status_show(struct device *dev,
 673			   struct device_attribute *attr, char *buf)
 674{
 675	struct regulator_dev *rdev = dev_get_drvdata(dev);
 676	int status;
 677	char *label;
 678
 679	status = rdev->desc->ops->get_status(rdev);
 680	if (status < 0)
 681		return status;
 682
 683	switch (status) {
 684	case REGULATOR_STATUS_OFF:
 685		label = "off";
 686		break;
 687	case REGULATOR_STATUS_ON:
 688		label = "on";
 689		break;
 690	case REGULATOR_STATUS_ERROR:
 691		label = "error";
 692		break;
 693	case REGULATOR_STATUS_FAST:
 694		label = "fast";
 695		break;
 696	case REGULATOR_STATUS_NORMAL:
 697		label = "normal";
 698		break;
 699	case REGULATOR_STATUS_IDLE:
 700		label = "idle";
 701		break;
 702	case REGULATOR_STATUS_STANDBY:
 703		label = "standby";
 704		break;
 705	case REGULATOR_STATUS_BYPASS:
 706		label = "bypass";
 707		break;
 708	case REGULATOR_STATUS_UNDEFINED:
 709		label = "undefined";
 710		break;
 711	default:
 712		return -ERANGE;
 713	}
 714
 715	return sprintf(buf, "%s\n", label);
 716}
 717static DEVICE_ATTR_RO(status);
 718
 719static ssize_t min_microamps_show(struct device *dev,
 720				  struct device_attribute *attr, char *buf)
 721{
 722	struct regulator_dev *rdev = dev_get_drvdata(dev);
 723
 724	if (!rdev->constraints)
 725		return sprintf(buf, "constraint not defined\n");
 726
 727	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 728}
 729static DEVICE_ATTR_RO(min_microamps);
 730
 731static ssize_t max_microamps_show(struct device *dev,
 732				  struct device_attribute *attr, char *buf)
 733{
 734	struct regulator_dev *rdev = dev_get_drvdata(dev);
 735
 736	if (!rdev->constraints)
 737		return sprintf(buf, "constraint not defined\n");
 738
 739	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 740}
 741static DEVICE_ATTR_RO(max_microamps);
 742
 743static ssize_t min_microvolts_show(struct device *dev,
 744				   struct device_attribute *attr, char *buf)
 745{
 746	struct regulator_dev *rdev = dev_get_drvdata(dev);
 747
 748	if (!rdev->constraints)
 749		return sprintf(buf, "constraint not defined\n");
 750
 751	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 752}
 753static DEVICE_ATTR_RO(min_microvolts);
 754
 755static ssize_t max_microvolts_show(struct device *dev,
 756				   struct device_attribute *attr, char *buf)
 757{
 758	struct regulator_dev *rdev = dev_get_drvdata(dev);
 759
 760	if (!rdev->constraints)
 761		return sprintf(buf, "constraint not defined\n");
 762
 763	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 764}
 765static DEVICE_ATTR_RO(max_microvolts);
 766
 767static ssize_t requested_microamps_show(struct device *dev,
 768					struct device_attribute *attr, char *buf)
 769{
 770	struct regulator_dev *rdev = dev_get_drvdata(dev);
 771	struct regulator *regulator;
 772	int uA = 0;
 773
 774	regulator_lock(rdev);
 775	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 776		if (regulator->enable_count)
 777			uA += regulator->uA_load;
 778	}
 779	regulator_unlock(rdev);
 780	return sprintf(buf, "%d\n", uA);
 781}
 782static DEVICE_ATTR_RO(requested_microamps);
 783
 784static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 785			      char *buf)
 786{
 787	struct regulator_dev *rdev = dev_get_drvdata(dev);
 788	return sprintf(buf, "%d\n", rdev->use_count);
 789}
 790static DEVICE_ATTR_RO(num_users);
 791
 792static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 793			 char *buf)
 794{
 795	struct regulator_dev *rdev = dev_get_drvdata(dev);
 796
 797	switch (rdev->desc->type) {
 798	case REGULATOR_VOLTAGE:
 799		return sprintf(buf, "voltage\n");
 800	case REGULATOR_CURRENT:
 801		return sprintf(buf, "current\n");
 802	}
 803	return sprintf(buf, "unknown\n");
 804}
 805static DEVICE_ATTR_RO(type);
 806
 807static ssize_t suspend_mem_microvolts_show(struct device *dev,
 808					   struct device_attribute *attr, char *buf)
 809{
 810	struct regulator_dev *rdev = dev_get_drvdata(dev);
 811
 812	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 813}
 814static DEVICE_ATTR_RO(suspend_mem_microvolts);
 815
 816static ssize_t suspend_disk_microvolts_show(struct device *dev,
 817					    struct device_attribute *attr, char *buf)
 818{
 819	struct regulator_dev *rdev = dev_get_drvdata(dev);
 820
 821	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 822}
 823static DEVICE_ATTR_RO(suspend_disk_microvolts);
 824
 825static ssize_t suspend_standby_microvolts_show(struct device *dev,
 826					       struct device_attribute *attr, char *buf)
 827{
 828	struct regulator_dev *rdev = dev_get_drvdata(dev);
 829
 830	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 831}
 832static DEVICE_ATTR_RO(suspend_standby_microvolts);
 833
 834static ssize_t suspend_mem_mode_show(struct device *dev,
 835				     struct device_attribute *attr, char *buf)
 836{
 837	struct regulator_dev *rdev = dev_get_drvdata(dev);
 838
 839	return regulator_print_opmode(buf,
 840		rdev->constraints->state_mem.mode);
 841}
 842static DEVICE_ATTR_RO(suspend_mem_mode);
 843
 844static ssize_t suspend_disk_mode_show(struct device *dev,
 845				      struct device_attribute *attr, char *buf)
 846{
 847	struct regulator_dev *rdev = dev_get_drvdata(dev);
 848
 849	return regulator_print_opmode(buf,
 850		rdev->constraints->state_disk.mode);
 851}
 852static DEVICE_ATTR_RO(suspend_disk_mode);
 853
 854static ssize_t suspend_standby_mode_show(struct device *dev,
 855					 struct device_attribute *attr, char *buf)
 856{
 857	struct regulator_dev *rdev = dev_get_drvdata(dev);
 858
 859	return regulator_print_opmode(buf,
 860		rdev->constraints->state_standby.mode);
 861}
 862static DEVICE_ATTR_RO(suspend_standby_mode);
 863
 864static ssize_t suspend_mem_state_show(struct device *dev,
 865				      struct device_attribute *attr, char *buf)
 866{
 867	struct regulator_dev *rdev = dev_get_drvdata(dev);
 868
 869	return regulator_print_state(buf,
 870			rdev->constraints->state_mem.enabled);
 871}
 872static DEVICE_ATTR_RO(suspend_mem_state);
 873
 874static ssize_t suspend_disk_state_show(struct device *dev,
 875				       struct device_attribute *attr, char *buf)
 876{
 877	struct regulator_dev *rdev = dev_get_drvdata(dev);
 878
 879	return regulator_print_state(buf,
 880			rdev->constraints->state_disk.enabled);
 881}
 882static DEVICE_ATTR_RO(suspend_disk_state);
 883
 884static ssize_t suspend_standby_state_show(struct device *dev,
 885					  struct device_attribute *attr, char *buf)
 886{
 887	struct regulator_dev *rdev = dev_get_drvdata(dev);
 888
 889	return regulator_print_state(buf,
 890			rdev->constraints->state_standby.enabled);
 891}
 892static DEVICE_ATTR_RO(suspend_standby_state);
 893
 894static ssize_t bypass_show(struct device *dev,
 895			   struct device_attribute *attr, char *buf)
 896{
 897	struct regulator_dev *rdev = dev_get_drvdata(dev);
 898	const char *report;
 899	bool bypass;
 900	int ret;
 901
 902	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 903
 904	if (ret != 0)
 905		report = "unknown";
 906	else if (bypass)
 907		report = "enabled";
 908	else
 909		report = "disabled";
 910
 911	return sprintf(buf, "%s\n", report);
 912}
 913static DEVICE_ATTR_RO(bypass);
 914
 915#define REGULATOR_ERROR_ATTR(name, bit)							\
 916	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
 917				   char *buf)						\
 918	{										\
 919		int ret;								\
 920		unsigned int flags;							\
 921		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
 922		ret = _regulator_get_error_flags(rdev, &flags);				\
 923		if (ret)								\
 924			return ret;							\
 925		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
 926	}										\
 927	static DEVICE_ATTR_RO(name)
 928
 929REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
 930REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
 931REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
 932REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
 933REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
 934REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
 935REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
 936REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
 937REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
 938
 939/* Calculate the new optimum regulator operating mode based on the new total
 940 * consumer load. All locks held by caller
 941 */
 942static int drms_uA_update(struct regulator_dev *rdev)
 943{
 944	struct regulator *sibling;
 945	int current_uA = 0, output_uV, input_uV, err;
 946	unsigned int mode;
 947
 948	/*
 949	 * first check to see if we can set modes at all, otherwise just
 950	 * tell the consumer everything is OK.
 951	 */
 952	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 953		rdev_dbg(rdev, "DRMS operation not allowed\n");
 954		return 0;
 955	}
 956
 957	if (!rdev->desc->ops->get_optimum_mode &&
 958	    !rdev->desc->ops->set_load)
 959		return 0;
 960
 961	if (!rdev->desc->ops->set_mode &&
 962	    !rdev->desc->ops->set_load)
 963		return -EINVAL;
 964
 965	/* calc total requested load */
 966	list_for_each_entry(sibling, &rdev->consumer_list, list) {
 967		if (sibling->enable_count)
 968			current_uA += sibling->uA_load;
 969	}
 970
 971	current_uA += rdev->constraints->system_load;
 972
 973	if (rdev->desc->ops->set_load) {
 974		/* set the optimum mode for our new total regulator load */
 975		err = rdev->desc->ops->set_load(rdev, current_uA);
 976		if (err < 0)
 977			rdev_err(rdev, "failed to set load %d: %pe\n",
 978				 current_uA, ERR_PTR(err));
 979	} else {
 980		/*
 981		 * Unfortunately in some cases the constraints->valid_ops has
 982		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
 983		 * That's not really legit but we won't consider it a fatal
 984		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
 985		 * wasn't set.
 986		 */
 987		if (!rdev->constraints->valid_modes_mask) {
 988			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
 989			return 0;
 990		}
 991
 992		/* get output voltage */
 993		output_uV = regulator_get_voltage_rdev(rdev);
 994
 995		/*
 996		 * Don't return an error; if regulator driver cares about
 997		 * output_uV then it's up to the driver to validate.
 998		 */
 999		if (output_uV <= 0)
1000			rdev_dbg(rdev, "invalid output voltage found\n");
1001
1002		/* get input voltage */
1003		input_uV = 0;
1004		if (rdev->supply)
1005			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1006		if (input_uV <= 0)
1007			input_uV = rdev->constraints->input_uV;
1008
1009		/*
1010		 * Don't return an error; if regulator driver cares about
1011		 * input_uV then it's up to the driver to validate.
1012		 */
1013		if (input_uV <= 0)
1014			rdev_dbg(rdev, "invalid input voltage found\n");
1015
1016		/* now get the optimum mode for our new total regulator load */
1017		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1018							 output_uV, current_uA);
1019
1020		/* check the new mode is allowed */
1021		err = regulator_mode_constrain(rdev, &mode);
1022		if (err < 0) {
1023			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1024				 current_uA, input_uV, output_uV, ERR_PTR(err));
1025			return err;
1026		}
1027
1028		err = rdev->desc->ops->set_mode(rdev, mode);
1029		if (err < 0)
1030			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1031				 mode, ERR_PTR(err));
1032	}
1033
1034	return err;
1035}
1036
1037static int __suspend_set_state(struct regulator_dev *rdev,
1038			       const struct regulator_state *rstate)
1039{
1040	int ret = 0;
1041
1042	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1043		rdev->desc->ops->set_suspend_enable)
1044		ret = rdev->desc->ops->set_suspend_enable(rdev);
1045	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1046		rdev->desc->ops->set_suspend_disable)
1047		ret = rdev->desc->ops->set_suspend_disable(rdev);
1048	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1049		ret = 0;
1050
1051	if (ret < 0) {
1052		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1053		return ret;
1054	}
1055
1056	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1057		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1058		if (ret < 0) {
1059			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1060			return ret;
1061		}
1062	}
1063
1064	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1065		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1066		if (ret < 0) {
1067			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1068			return ret;
1069		}
1070	}
1071
1072	return ret;
1073}
1074
1075static int suspend_set_initial_state(struct regulator_dev *rdev)
1076{
1077	const struct regulator_state *rstate;
1078
1079	rstate = regulator_get_suspend_state_check(rdev,
1080			rdev->constraints->initial_state);
1081	if (!rstate)
1082		return 0;
1083
1084	return __suspend_set_state(rdev, rstate);
1085}
1086
1087#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1088static void print_constraints_debug(struct regulator_dev *rdev)
1089{
1090	struct regulation_constraints *constraints = rdev->constraints;
1091	char buf[160] = "";
1092	size_t len = sizeof(buf) - 1;
1093	int count = 0;
1094	int ret;
1095
1096	if (constraints->min_uV && constraints->max_uV) {
1097		if (constraints->min_uV == constraints->max_uV)
1098			count += scnprintf(buf + count, len - count, "%d mV ",
1099					   constraints->min_uV / 1000);
1100		else
1101			count += scnprintf(buf + count, len - count,
1102					   "%d <--> %d mV ",
1103					   constraints->min_uV / 1000,
1104					   constraints->max_uV / 1000);
1105	}
1106
1107	if (!constraints->min_uV ||
1108	    constraints->min_uV != constraints->max_uV) {
1109		ret = regulator_get_voltage_rdev(rdev);
1110		if (ret > 0)
1111			count += scnprintf(buf + count, len - count,
1112					   "at %d mV ", ret / 1000);
1113	}
1114
1115	if (constraints->uV_offset)
1116		count += scnprintf(buf + count, len - count, "%dmV offset ",
1117				   constraints->uV_offset / 1000);
1118
1119	if (constraints->min_uA && constraints->max_uA) {
1120		if (constraints->min_uA == constraints->max_uA)
1121			count += scnprintf(buf + count, len - count, "%d mA ",
1122					   constraints->min_uA / 1000);
1123		else
1124			count += scnprintf(buf + count, len - count,
1125					   "%d <--> %d mA ",
1126					   constraints->min_uA / 1000,
1127					   constraints->max_uA / 1000);
1128	}
1129
1130	if (!constraints->min_uA ||
1131	    constraints->min_uA != constraints->max_uA) {
1132		ret = _regulator_get_current_limit(rdev);
1133		if (ret > 0)
1134			count += scnprintf(buf + count, len - count,
1135					   "at %d mA ", ret / 1000);
1136	}
1137
1138	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1139		count += scnprintf(buf + count, len - count, "fast ");
1140	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1141		count += scnprintf(buf + count, len - count, "normal ");
1142	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1143		count += scnprintf(buf + count, len - count, "idle ");
1144	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1145		count += scnprintf(buf + count, len - count, "standby ");
1146
1147	if (!count)
1148		count = scnprintf(buf, len, "no parameters");
1149	else
1150		--count;
1151
1152	count += scnprintf(buf + count, len - count, ", %s",
1153		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1154
1155	rdev_dbg(rdev, "%s\n", buf);
1156}
1157#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1158static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1159#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1160
1161static void print_constraints(struct regulator_dev *rdev)
1162{
1163	struct regulation_constraints *constraints = rdev->constraints;
1164
1165	print_constraints_debug(rdev);
1166
1167	if ((constraints->min_uV != constraints->max_uV) &&
1168	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1169		rdev_warn(rdev,
1170			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1171}
1172
1173static int machine_constraints_voltage(struct regulator_dev *rdev,
1174	struct regulation_constraints *constraints)
1175{
1176	const struct regulator_ops *ops = rdev->desc->ops;
1177	int ret;
1178
1179	/* do we need to apply the constraint voltage */
1180	if (rdev->constraints->apply_uV &&
1181	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1182		int target_min, target_max;
1183		int current_uV = regulator_get_voltage_rdev(rdev);
1184
1185		if (current_uV == -ENOTRECOVERABLE) {
1186			/* This regulator can't be read and must be initialized */
1187			rdev_info(rdev, "Setting %d-%duV\n",
1188				  rdev->constraints->min_uV,
1189				  rdev->constraints->max_uV);
1190			_regulator_do_set_voltage(rdev,
1191						  rdev->constraints->min_uV,
1192						  rdev->constraints->max_uV);
1193			current_uV = regulator_get_voltage_rdev(rdev);
1194		}
1195
1196		if (current_uV < 0) {
1197			if (current_uV != -EPROBE_DEFER)
1198				rdev_err(rdev,
1199					 "failed to get the current voltage: %pe\n",
1200					 ERR_PTR(current_uV));
1201			return current_uV;
1202		}
1203
1204		/*
1205		 * If we're below the minimum voltage move up to the
1206		 * minimum voltage, if we're above the maximum voltage
1207		 * then move down to the maximum.
1208		 */
1209		target_min = current_uV;
1210		target_max = current_uV;
1211
1212		if (current_uV < rdev->constraints->min_uV) {
1213			target_min = rdev->constraints->min_uV;
1214			target_max = rdev->constraints->min_uV;
1215		}
1216
1217		if (current_uV > rdev->constraints->max_uV) {
1218			target_min = rdev->constraints->max_uV;
1219			target_max = rdev->constraints->max_uV;
1220		}
1221
1222		if (target_min != current_uV || target_max != current_uV) {
1223			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1224				  current_uV, target_min, target_max);
1225			ret = _regulator_do_set_voltage(
1226				rdev, target_min, target_max);
1227			if (ret < 0) {
1228				rdev_err(rdev,
1229					"failed to apply %d-%duV constraint: %pe\n",
1230					target_min, target_max, ERR_PTR(ret));
1231				return ret;
1232			}
1233		}
1234	}
1235
1236	/* constrain machine-level voltage specs to fit
1237	 * the actual range supported by this regulator.
1238	 */
1239	if (ops->list_voltage && rdev->desc->n_voltages) {
1240		int	count = rdev->desc->n_voltages;
1241		int	i;
1242		int	min_uV = INT_MAX;
1243		int	max_uV = INT_MIN;
1244		int	cmin = constraints->min_uV;
1245		int	cmax = constraints->max_uV;
1246
1247		/* it's safe to autoconfigure fixed-voltage supplies
1248		 * and the constraints are used by list_voltage.
1249		 */
1250		if (count == 1 && !cmin) {
1251			cmin = 1;
1252			cmax = INT_MAX;
1253			constraints->min_uV = cmin;
1254			constraints->max_uV = cmax;
1255		}
1256
1257		/* voltage constraints are optional */
1258		if ((cmin == 0) && (cmax == 0))
1259			return 0;
1260
1261		/* else require explicit machine-level constraints */
1262		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1263			rdev_err(rdev, "invalid voltage constraints\n");
1264			return -EINVAL;
1265		}
1266
1267		/* no need to loop voltages if range is continuous */
1268		if (rdev->desc->continuous_voltage_range)
1269			return 0;
1270
1271		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1272		for (i = 0; i < count; i++) {
1273			int	value;
1274
1275			value = ops->list_voltage(rdev, i);
1276			if (value <= 0)
1277				continue;
1278
1279			/* maybe adjust [min_uV..max_uV] */
1280			if (value >= cmin && value < min_uV)
1281				min_uV = value;
1282			if (value <= cmax && value > max_uV)
1283				max_uV = value;
1284		}
1285
1286		/* final: [min_uV..max_uV] valid iff constraints valid */
1287		if (max_uV < min_uV) {
1288			rdev_err(rdev,
1289				 "unsupportable voltage constraints %u-%uuV\n",
1290				 min_uV, max_uV);
1291			return -EINVAL;
1292		}
1293
1294		/* use regulator's subset of machine constraints */
1295		if (constraints->min_uV < min_uV) {
1296			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1297				 constraints->min_uV, min_uV);
1298			constraints->min_uV = min_uV;
1299		}
1300		if (constraints->max_uV > max_uV) {
1301			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1302				 constraints->max_uV, max_uV);
1303			constraints->max_uV = max_uV;
1304		}
1305	}
1306
1307	return 0;
1308}
1309
1310static int machine_constraints_current(struct regulator_dev *rdev,
1311	struct regulation_constraints *constraints)
1312{
1313	const struct regulator_ops *ops = rdev->desc->ops;
1314	int ret;
1315
1316	if (!constraints->min_uA && !constraints->max_uA)
1317		return 0;
1318
1319	if (constraints->min_uA > constraints->max_uA) {
1320		rdev_err(rdev, "Invalid current constraints\n");
1321		return -EINVAL;
1322	}
1323
1324	if (!ops->set_current_limit || !ops->get_current_limit) {
1325		rdev_warn(rdev, "Operation of current configuration missing\n");
1326		return 0;
1327	}
1328
1329	/* Set regulator current in constraints range */
1330	ret = ops->set_current_limit(rdev, constraints->min_uA,
1331			constraints->max_uA);
1332	if (ret < 0) {
1333		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1334		return ret;
1335	}
1336
1337	return 0;
1338}
1339
1340static int _regulator_do_enable(struct regulator_dev *rdev);
1341
1342static int notif_set_limit(struct regulator_dev *rdev,
1343			   int (*set)(struct regulator_dev *, int, int, bool),
1344			   int limit, int severity)
1345{
1346	bool enable;
1347
1348	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1349		enable = false;
1350		limit = 0;
1351	} else {
1352		enable = true;
1353	}
1354
1355	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1356		limit = 0;
1357
1358	return set(rdev, limit, severity, enable);
1359}
1360
1361static int handle_notify_limits(struct regulator_dev *rdev,
1362			int (*set)(struct regulator_dev *, int, int, bool),
1363			struct notification_limit *limits)
1364{
1365	int ret = 0;
1366
1367	if (!set)
1368		return -EOPNOTSUPP;
1369
1370	if (limits->prot)
1371		ret = notif_set_limit(rdev, set, limits->prot,
1372				      REGULATOR_SEVERITY_PROT);
1373	if (ret)
1374		return ret;
1375
1376	if (limits->err)
1377		ret = notif_set_limit(rdev, set, limits->err,
1378				      REGULATOR_SEVERITY_ERR);
1379	if (ret)
1380		return ret;
1381
1382	if (limits->warn)
1383		ret = notif_set_limit(rdev, set, limits->warn,
1384				      REGULATOR_SEVERITY_WARN);
1385
1386	return ret;
1387}
1388/**
1389 * set_machine_constraints - sets regulator constraints
1390 * @rdev: regulator source
1391 *
1392 * Allows platform initialisation code to define and constrain
1393 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1394 * Constraints *must* be set by platform code in order for some
1395 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396 * set_mode.
1397 */
1398static int set_machine_constraints(struct regulator_dev *rdev)
1399{
1400	int ret = 0;
1401	const struct regulator_ops *ops = rdev->desc->ops;
1402
1403	ret = machine_constraints_voltage(rdev, rdev->constraints);
1404	if (ret != 0)
1405		return ret;
1406
1407	ret = machine_constraints_current(rdev, rdev->constraints);
1408	if (ret != 0)
1409		return ret;
1410
1411	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412		ret = ops->set_input_current_limit(rdev,
1413						   rdev->constraints->ilim_uA);
1414		if (ret < 0) {
1415			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416			return ret;
1417		}
1418	}
1419
1420	/* do we need to setup our suspend state */
1421	if (rdev->constraints->initial_state) {
1422		ret = suspend_set_initial_state(rdev);
1423		if (ret < 0) {
1424			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425			return ret;
1426		}
1427	}
1428
1429	if (rdev->constraints->initial_mode) {
1430		if (!ops->set_mode) {
1431			rdev_err(rdev, "no set_mode operation\n");
1432			return -EINVAL;
1433		}
1434
1435		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436		if (ret < 0) {
1437			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438			return ret;
1439		}
1440	} else if (rdev->constraints->system_load) {
1441		/*
1442		 * We'll only apply the initial system load if an
1443		 * initial mode wasn't specified.
1444		 */
1445		drms_uA_update(rdev);
1446	}
1447
1448	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449		&& ops->set_ramp_delay) {
1450		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451		if (ret < 0) {
1452			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453			return ret;
1454		}
1455	}
1456
1457	if (rdev->constraints->pull_down && ops->set_pull_down) {
1458		ret = ops->set_pull_down(rdev);
1459		if (ret < 0) {
1460			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461			return ret;
1462		}
1463	}
1464
1465	if (rdev->constraints->soft_start && ops->set_soft_start) {
1466		ret = ops->set_soft_start(rdev);
1467		if (ret < 0) {
1468			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469			return ret;
1470		}
1471	}
1472
1473	/*
1474	 * Existing logic does not warn if over_current_protection is given as
1475	 * a constraint but driver does not support that. I think we should
1476	 * warn about this type of issues as it is possible someone changes
1477	 * PMIC on board to another type - and the another PMIC's driver does
1478	 * not support setting protection. Board composer may happily believe
1479	 * the DT limits are respected - especially if the new PMIC HW also
1480	 * supports protection but the driver does not. I won't change the logic
1481	 * without hearing more experienced opinion on this though.
1482	 *
1483	 * If warning is seen as a good idea then we can merge handling the
1484	 * over-curret protection and detection and get rid of this special
1485	 * handling.
1486	 */
1487	if (rdev->constraints->over_current_protection
1488		&& ops->set_over_current_protection) {
1489		int lim = rdev->constraints->over_curr_limits.prot;
1490
1491		ret = ops->set_over_current_protection(rdev, lim,
1492						       REGULATOR_SEVERITY_PROT,
1493						       true);
1494		if (ret < 0) {
1495			rdev_err(rdev, "failed to set over current protection: %pe\n",
1496				 ERR_PTR(ret));
1497			return ret;
1498		}
1499	}
1500
1501	if (rdev->constraints->over_current_detection)
1502		ret = handle_notify_limits(rdev,
1503					   ops->set_over_current_protection,
1504					   &rdev->constraints->over_curr_limits);
1505	if (ret) {
1506		if (ret != -EOPNOTSUPP) {
1507			rdev_err(rdev, "failed to set over current limits: %pe\n",
1508				 ERR_PTR(ret));
1509			return ret;
1510		}
1511		rdev_warn(rdev,
1512			  "IC does not support requested over-current limits\n");
1513	}
1514
1515	if (rdev->constraints->over_voltage_detection)
1516		ret = handle_notify_limits(rdev,
1517					   ops->set_over_voltage_protection,
1518					   &rdev->constraints->over_voltage_limits);
1519	if (ret) {
1520		if (ret != -EOPNOTSUPP) {
1521			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1522				 ERR_PTR(ret));
1523			return ret;
1524		}
1525		rdev_warn(rdev,
1526			  "IC does not support requested over voltage limits\n");
1527	}
1528
1529	if (rdev->constraints->under_voltage_detection)
1530		ret = handle_notify_limits(rdev,
1531					   ops->set_under_voltage_protection,
1532					   &rdev->constraints->under_voltage_limits);
1533	if (ret) {
1534		if (ret != -EOPNOTSUPP) {
1535			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1536				 ERR_PTR(ret));
1537			return ret;
1538		}
1539		rdev_warn(rdev,
1540			  "IC does not support requested under voltage limits\n");
1541	}
1542
1543	if (rdev->constraints->over_temp_detection)
1544		ret = handle_notify_limits(rdev,
1545					   ops->set_thermal_protection,
1546					   &rdev->constraints->temp_limits);
1547	if (ret) {
1548		if (ret != -EOPNOTSUPP) {
1549			rdev_err(rdev, "failed to set temperature limits %pe\n",
1550				 ERR_PTR(ret));
1551			return ret;
1552		}
1553		rdev_warn(rdev,
1554			  "IC does not support requested temperature limits\n");
1555	}
1556
1557	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1558		bool ad_state = (rdev->constraints->active_discharge ==
1559			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1560
1561		ret = ops->set_active_discharge(rdev, ad_state);
1562		if (ret < 0) {
1563			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1564			return ret;
1565		}
1566	}
1567
1568	/*
1569	 * If there is no mechanism for controlling the regulator then
1570	 * flag it as always_on so we don't end up duplicating checks
1571	 * for this so much.  Note that we could control the state of
1572	 * a supply to control the output on a regulator that has no
1573	 * direct control.
1574	 */
1575	if (!rdev->ena_pin && !ops->enable) {
1576		if (rdev->supply_name && !rdev->supply)
1577			return -EPROBE_DEFER;
1578
1579		if (rdev->supply)
1580			rdev->constraints->always_on =
1581				rdev->supply->rdev->constraints->always_on;
1582		else
1583			rdev->constraints->always_on = true;
1584	}
1585
1586	if (rdev->desc->off_on_delay)
1587		rdev->last_off = ktime_get();
1588
1589	/* If the constraints say the regulator should be on at this point
1590	 * and we have control then make sure it is enabled.
1591	 */
1592	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1593		/* If we want to enable this regulator, make sure that we know
1594		 * the supplying regulator.
1595		 */
1596		if (rdev->supply_name && !rdev->supply)
1597			return -EPROBE_DEFER;
1598
1599		/* If supplying regulator has already been enabled,
1600		 * it's not intended to have use_count increment
1601		 * when rdev is only boot-on.
1602		 */
1603		if (rdev->supply &&
1604		    (rdev->constraints->always_on ||
1605		     !regulator_is_enabled(rdev->supply))) {
1606			ret = regulator_enable(rdev->supply);
1607			if (ret < 0) {
1608				_regulator_put(rdev->supply);
1609				rdev->supply = NULL;
1610				return ret;
1611			}
1612		}
1613
1614		ret = _regulator_do_enable(rdev);
1615		if (ret < 0 && ret != -EINVAL) {
1616			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1617			return ret;
1618		}
1619
1620		if (rdev->constraints->always_on)
1621			rdev->use_count++;
 
 
1622	}
1623
1624	print_constraints(rdev);
1625	return 0;
1626}
1627
1628/**
1629 * set_supply - set regulator supply regulator
1630 * @rdev: regulator name
1631 * @supply_rdev: supply regulator name
1632 *
1633 * Called by platform initialisation code to set the supply regulator for this
1634 * regulator. This ensures that a regulators supply will also be enabled by the
1635 * core if it's child is enabled.
1636 */
1637static int set_supply(struct regulator_dev *rdev,
1638		      struct regulator_dev *supply_rdev)
1639{
1640	int err;
1641
1642	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1643
1644	if (!try_module_get(supply_rdev->owner))
1645		return -ENODEV;
1646
1647	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1648	if (rdev->supply == NULL) {
1649		module_put(supply_rdev->owner);
1650		err = -ENOMEM;
1651		return err;
1652	}
1653	supply_rdev->open_count++;
1654
1655	return 0;
1656}
1657
1658/**
1659 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1660 * @rdev:         regulator source
1661 * @consumer_dev_name: dev_name() string for device supply applies to
1662 * @supply:       symbolic name for supply
1663 *
1664 * Allows platform initialisation code to map physical regulator
1665 * sources to symbolic names for supplies for use by devices.  Devices
1666 * should use these symbolic names to request regulators, avoiding the
1667 * need to provide board-specific regulator names as platform data.
1668 */
1669static int set_consumer_device_supply(struct regulator_dev *rdev,
1670				      const char *consumer_dev_name,
1671				      const char *supply)
1672{
1673	struct regulator_map *node, *new_node;
1674	int has_dev;
1675
1676	if (supply == NULL)
1677		return -EINVAL;
1678
1679	if (consumer_dev_name != NULL)
1680		has_dev = 1;
1681	else
1682		has_dev = 0;
1683
1684	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1685	if (new_node == NULL)
1686		return -ENOMEM;
1687
1688	new_node->regulator = rdev;
1689	new_node->supply = supply;
1690
1691	if (has_dev) {
1692		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1693		if (new_node->dev_name == NULL) {
1694			kfree(new_node);
1695			return -ENOMEM;
1696		}
1697	}
1698
1699	mutex_lock(&regulator_list_mutex);
1700	list_for_each_entry(node, &regulator_map_list, list) {
1701		if (node->dev_name && consumer_dev_name) {
1702			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1703				continue;
1704		} else if (node->dev_name || consumer_dev_name) {
1705			continue;
1706		}
1707
1708		if (strcmp(node->supply, supply) != 0)
1709			continue;
1710
1711		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1712			 consumer_dev_name,
1713			 dev_name(&node->regulator->dev),
1714			 node->regulator->desc->name,
1715			 supply,
1716			 dev_name(&rdev->dev), rdev_get_name(rdev));
1717		goto fail;
1718	}
1719
1720	list_add(&new_node->list, &regulator_map_list);
1721	mutex_unlock(&regulator_list_mutex);
1722
1723	return 0;
1724
1725fail:
1726	mutex_unlock(&regulator_list_mutex);
1727	kfree(new_node->dev_name);
1728	kfree(new_node);
1729	return -EBUSY;
1730}
1731
1732static void unset_regulator_supplies(struct regulator_dev *rdev)
1733{
1734	struct regulator_map *node, *n;
1735
1736	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1737		if (rdev == node->regulator) {
1738			list_del(&node->list);
1739			kfree(node->dev_name);
1740			kfree(node);
1741		}
1742	}
1743}
1744
1745#ifdef CONFIG_DEBUG_FS
1746static ssize_t constraint_flags_read_file(struct file *file,
1747					  char __user *user_buf,
1748					  size_t count, loff_t *ppos)
1749{
1750	const struct regulator *regulator = file->private_data;
1751	const struct regulation_constraints *c = regulator->rdev->constraints;
1752	char *buf;
1753	ssize_t ret;
1754
1755	if (!c)
1756		return 0;
1757
1758	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1759	if (!buf)
1760		return -ENOMEM;
1761
1762	ret = snprintf(buf, PAGE_SIZE,
1763			"always_on: %u\n"
1764			"boot_on: %u\n"
1765			"apply_uV: %u\n"
1766			"ramp_disable: %u\n"
1767			"soft_start: %u\n"
1768			"pull_down: %u\n"
1769			"over_current_protection: %u\n",
1770			c->always_on,
1771			c->boot_on,
1772			c->apply_uV,
1773			c->ramp_disable,
1774			c->soft_start,
1775			c->pull_down,
1776			c->over_current_protection);
1777
1778	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1779	kfree(buf);
1780
1781	return ret;
1782}
1783
1784#endif
1785
1786static const struct file_operations constraint_flags_fops = {
1787#ifdef CONFIG_DEBUG_FS
1788	.open = simple_open,
1789	.read = constraint_flags_read_file,
1790	.llseek = default_llseek,
1791#endif
1792};
1793
1794#define REG_STR_SIZE	64
1795
1796static struct regulator *create_regulator(struct regulator_dev *rdev,
1797					  struct device *dev,
1798					  const char *supply_name)
1799{
1800	struct regulator *regulator;
1801	int err = 0;
1802
 
 
1803	if (dev) {
1804		char buf[REG_STR_SIZE];
1805		int size;
1806
1807		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1808				dev->kobj.name, supply_name);
1809		if (size >= REG_STR_SIZE)
1810			return NULL;
1811
1812		supply_name = kstrdup(buf, GFP_KERNEL);
1813		if (supply_name == NULL)
1814			return NULL;
1815	} else {
1816		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1817		if (supply_name == NULL)
1818			return NULL;
1819	}
1820
1821	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1822	if (regulator == NULL) {
1823		kfree_const(supply_name);
1824		return NULL;
1825	}
1826
1827	regulator->rdev = rdev;
1828	regulator->supply_name = supply_name;
1829
1830	regulator_lock(rdev);
1831	list_add(&regulator->list, &rdev->consumer_list);
1832	regulator_unlock(rdev);
1833
1834	if (dev) {
1835		regulator->dev = dev;
1836
1837		/* Add a link to the device sysfs entry */
1838		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1839					       supply_name);
1840		if (err) {
1841			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1842				  dev->kobj.name, ERR_PTR(err));
1843			/* non-fatal */
1844		}
1845	}
1846
1847	if (err != -EEXIST)
1848		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1849	if (!regulator->debugfs) {
1850		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1851	} else {
1852		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1853				   &regulator->uA_load);
1854		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1855				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1856		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1857				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1858		debugfs_create_file("constraint_flags", 0444,
1859				    regulator->debugfs, regulator,
1860				    &constraint_flags_fops);
1861	}
1862
1863	/*
1864	 * Check now if the regulator is an always on regulator - if
1865	 * it is then we don't need to do nearly so much work for
1866	 * enable/disable calls.
1867	 */
1868	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1869	    _regulator_is_enabled(rdev))
1870		regulator->always_on = true;
1871
1872	return regulator;
1873}
1874
1875static int _regulator_get_enable_time(struct regulator_dev *rdev)
1876{
1877	if (rdev->constraints && rdev->constraints->enable_time)
1878		return rdev->constraints->enable_time;
1879	if (rdev->desc->ops->enable_time)
1880		return rdev->desc->ops->enable_time(rdev);
1881	return rdev->desc->enable_time;
1882}
1883
1884static struct regulator_supply_alias *regulator_find_supply_alias(
1885		struct device *dev, const char *supply)
1886{
1887	struct regulator_supply_alias *map;
1888
1889	list_for_each_entry(map, &regulator_supply_alias_list, list)
1890		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1891			return map;
1892
1893	return NULL;
1894}
1895
1896static void regulator_supply_alias(struct device **dev, const char **supply)
1897{
1898	struct regulator_supply_alias *map;
1899
1900	map = regulator_find_supply_alias(*dev, *supply);
1901	if (map) {
1902		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1903				*supply, map->alias_supply,
1904				dev_name(map->alias_dev));
1905		*dev = map->alias_dev;
1906		*supply = map->alias_supply;
1907	}
1908}
1909
1910static int regulator_match(struct device *dev, const void *data)
1911{
1912	struct regulator_dev *r = dev_to_rdev(dev);
1913
1914	return strcmp(rdev_get_name(r), data) == 0;
1915}
1916
1917static struct regulator_dev *regulator_lookup_by_name(const char *name)
1918{
1919	struct device *dev;
1920
1921	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1922
1923	return dev ? dev_to_rdev(dev) : NULL;
1924}
1925
1926/**
1927 * regulator_dev_lookup - lookup a regulator device.
1928 * @dev: device for regulator "consumer".
1929 * @supply: Supply name or regulator ID.
1930 *
1931 * If successful, returns a struct regulator_dev that corresponds to the name
1932 * @supply and with the embedded struct device refcount incremented by one.
1933 * The refcount must be dropped by calling put_device().
1934 * On failure one of the following ERR-PTR-encoded values is returned:
1935 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1936 * in the future.
1937 */
1938static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1939						  const char *supply)
1940{
1941	struct regulator_dev *r = NULL;
1942	struct device_node *node;
1943	struct regulator_map *map;
1944	const char *devname = NULL;
1945
1946	regulator_supply_alias(&dev, &supply);
1947
1948	/* first do a dt based lookup */
1949	if (dev && dev->of_node) {
1950		node = of_get_regulator(dev, supply);
1951		if (node) {
1952			r = of_find_regulator_by_node(node);
1953			of_node_put(node);
1954			if (r)
1955				return r;
1956
1957			/*
1958			 * We have a node, but there is no device.
1959			 * assume it has not registered yet.
1960			 */
1961			return ERR_PTR(-EPROBE_DEFER);
1962		}
1963	}
1964
1965	/* if not found, try doing it non-dt way */
1966	if (dev)
1967		devname = dev_name(dev);
1968
1969	mutex_lock(&regulator_list_mutex);
1970	list_for_each_entry(map, &regulator_map_list, list) {
1971		/* If the mapping has a device set up it must match */
1972		if (map->dev_name &&
1973		    (!devname || strcmp(map->dev_name, devname)))
1974			continue;
1975
1976		if (strcmp(map->supply, supply) == 0 &&
1977		    get_device(&map->regulator->dev)) {
1978			r = map->regulator;
1979			break;
1980		}
1981	}
1982	mutex_unlock(&regulator_list_mutex);
1983
1984	if (r)
1985		return r;
1986
1987	r = regulator_lookup_by_name(supply);
1988	if (r)
1989		return r;
1990
1991	return ERR_PTR(-ENODEV);
1992}
1993
1994static int regulator_resolve_supply(struct regulator_dev *rdev)
1995{
1996	struct regulator_dev *r;
1997	struct device *dev = rdev->dev.parent;
 
1998	int ret = 0;
1999
2000	/* No supply to resolve? */
2001	if (!rdev->supply_name)
2002		return 0;
2003
2004	/* Supply already resolved? (fast-path without locking contention) */
2005	if (rdev->supply)
2006		return 0;
2007
2008	r = regulator_dev_lookup(dev, rdev->supply_name);
2009	if (IS_ERR(r)) {
2010		ret = PTR_ERR(r);
2011
2012		/* Did the lookup explicitly defer for us? */
2013		if (ret == -EPROBE_DEFER)
2014			goto out;
2015
2016		if (have_full_constraints()) {
2017			r = dummy_regulator_rdev;
2018			get_device(&r->dev);
2019		} else {
2020			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2021				rdev->supply_name, rdev->desc->name);
2022			ret = -EPROBE_DEFER;
2023			goto out;
2024		}
2025	}
2026
2027	if (r == rdev) {
2028		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2029			rdev->desc->name, rdev->supply_name);
2030		if (!have_full_constraints()) {
2031			ret = -EINVAL;
2032			goto out;
2033		}
2034		r = dummy_regulator_rdev;
2035		get_device(&r->dev);
2036	}
2037
2038	/*
2039	 * If the supply's parent device is not the same as the
2040	 * regulator's parent device, then ensure the parent device
2041	 * is bound before we resolve the supply, in case the parent
2042	 * device get probe deferred and unregisters the supply.
2043	 */
2044	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2045		if (!device_is_bound(r->dev.parent)) {
2046			put_device(&r->dev);
2047			ret = -EPROBE_DEFER;
2048			goto out;
2049		}
2050	}
2051
2052	/* Recursively resolve the supply of the supply */
2053	ret = regulator_resolve_supply(r);
2054	if (ret < 0) {
2055		put_device(&r->dev);
2056		goto out;
2057	}
2058
2059	/*
2060	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2061	 * between rdev->supply null check and setting rdev->supply in
2062	 * set_supply() from concurrent tasks.
2063	 */
2064	regulator_lock(rdev);
2065
2066	/* Supply just resolved by a concurrent task? */
2067	if (rdev->supply) {
2068		regulator_unlock(rdev);
2069		put_device(&r->dev);
2070		goto out;
2071	}
2072
2073	ret = set_supply(rdev, r);
2074	if (ret < 0) {
2075		regulator_unlock(rdev);
2076		put_device(&r->dev);
2077		goto out;
2078	}
2079
2080	regulator_unlock(rdev);
2081
2082	/*
2083	 * In set_machine_constraints() we may have turned this regulator on
2084	 * but we couldn't propagate to the supply if it hadn't been resolved
2085	 * yet.  Do it now.
2086	 */
2087	if (rdev->use_count) {
2088		ret = regulator_enable(rdev->supply);
2089		if (ret < 0) {
2090			_regulator_put(rdev->supply);
2091			rdev->supply = NULL;
2092			goto out;
2093		}
2094	}
2095
2096out:
2097	return ret;
2098}
2099
2100/* Internal regulator request function */
2101struct regulator *_regulator_get(struct device *dev, const char *id,
2102				 enum regulator_get_type get_type)
2103{
2104	struct regulator_dev *rdev;
2105	struct regulator *regulator;
2106	struct device_link *link;
2107	int ret;
2108
2109	if (get_type >= MAX_GET_TYPE) {
2110		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2111		return ERR_PTR(-EINVAL);
2112	}
2113
2114	if (id == NULL) {
2115		pr_err("get() with no identifier\n");
2116		return ERR_PTR(-EINVAL);
2117	}
2118
2119	rdev = regulator_dev_lookup(dev, id);
2120	if (IS_ERR(rdev)) {
2121		ret = PTR_ERR(rdev);
2122
2123		/*
2124		 * If regulator_dev_lookup() fails with error other
2125		 * than -ENODEV our job here is done, we simply return it.
2126		 */
2127		if (ret != -ENODEV)
2128			return ERR_PTR(ret);
2129
2130		if (!have_full_constraints()) {
2131			dev_warn(dev,
2132				 "incomplete constraints, dummy supplies not allowed\n");
2133			return ERR_PTR(-ENODEV);
2134		}
2135
2136		switch (get_type) {
2137		case NORMAL_GET:
2138			/*
2139			 * Assume that a regulator is physically present and
2140			 * enabled, even if it isn't hooked up, and just
2141			 * provide a dummy.
2142			 */
2143			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2144			rdev = dummy_regulator_rdev;
2145			get_device(&rdev->dev);
2146			break;
2147
2148		case EXCLUSIVE_GET:
2149			dev_warn(dev,
2150				 "dummy supplies not allowed for exclusive requests\n");
2151			fallthrough;
2152
2153		default:
2154			return ERR_PTR(-ENODEV);
2155		}
2156	}
2157
2158	if (rdev->exclusive) {
2159		regulator = ERR_PTR(-EPERM);
2160		put_device(&rdev->dev);
2161		return regulator;
2162	}
2163
2164	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2165		regulator = ERR_PTR(-EBUSY);
2166		put_device(&rdev->dev);
2167		return regulator;
2168	}
2169
2170	mutex_lock(&regulator_list_mutex);
2171	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2172	mutex_unlock(&regulator_list_mutex);
2173
2174	if (ret != 0) {
2175		regulator = ERR_PTR(-EPROBE_DEFER);
2176		put_device(&rdev->dev);
2177		return regulator;
2178	}
2179
2180	ret = regulator_resolve_supply(rdev);
2181	if (ret < 0) {
2182		regulator = ERR_PTR(ret);
2183		put_device(&rdev->dev);
2184		return regulator;
2185	}
2186
2187	if (!try_module_get(rdev->owner)) {
2188		regulator = ERR_PTR(-EPROBE_DEFER);
2189		put_device(&rdev->dev);
2190		return regulator;
2191	}
2192
 
2193	regulator = create_regulator(rdev, dev, id);
 
2194	if (regulator == NULL) {
2195		regulator = ERR_PTR(-ENOMEM);
2196		module_put(rdev->owner);
2197		put_device(&rdev->dev);
2198		return regulator;
2199	}
2200
2201	rdev->open_count++;
2202	if (get_type == EXCLUSIVE_GET) {
2203		rdev->exclusive = 1;
2204
2205		ret = _regulator_is_enabled(rdev);
2206		if (ret > 0) {
2207			rdev->use_count = 1;
2208			regulator->enable_count = 1;
2209		} else {
2210			rdev->use_count = 0;
2211			regulator->enable_count = 0;
2212		}
2213	}
2214
2215	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2216	if (!IS_ERR_OR_NULL(link))
2217		regulator->device_link = true;
2218
2219	return regulator;
2220}
2221
2222/**
2223 * regulator_get - lookup and obtain a reference to a regulator.
2224 * @dev: device for regulator "consumer"
2225 * @id: Supply name or regulator ID.
2226 *
2227 * Returns a struct regulator corresponding to the regulator producer,
2228 * or IS_ERR() condition containing errno.
2229 *
2230 * Use of supply names configured via set_consumer_device_supply() is
2231 * strongly encouraged.  It is recommended that the supply name used
2232 * should match the name used for the supply and/or the relevant
2233 * device pins in the datasheet.
2234 */
2235struct regulator *regulator_get(struct device *dev, const char *id)
2236{
2237	return _regulator_get(dev, id, NORMAL_GET);
2238}
2239EXPORT_SYMBOL_GPL(regulator_get);
2240
2241/**
2242 * regulator_get_exclusive - obtain exclusive access to a regulator.
2243 * @dev: device for regulator "consumer"
2244 * @id: Supply name or regulator ID.
2245 *
2246 * Returns a struct regulator corresponding to the regulator producer,
2247 * or IS_ERR() condition containing errno.  Other consumers will be
2248 * unable to obtain this regulator while this reference is held and the
2249 * use count for the regulator will be initialised to reflect the current
2250 * state of the regulator.
2251 *
2252 * This is intended for use by consumers which cannot tolerate shared
2253 * use of the regulator such as those which need to force the
2254 * regulator off for correct operation of the hardware they are
2255 * controlling.
2256 *
2257 * Use of supply names configured via set_consumer_device_supply() is
2258 * strongly encouraged.  It is recommended that the supply name used
2259 * should match the name used for the supply and/or the relevant
2260 * device pins in the datasheet.
2261 */
2262struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2263{
2264	return _regulator_get(dev, id, EXCLUSIVE_GET);
2265}
2266EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2267
2268/**
2269 * regulator_get_optional - obtain optional access to a regulator.
2270 * @dev: device for regulator "consumer"
2271 * @id: Supply name or regulator ID.
2272 *
2273 * Returns a struct regulator corresponding to the regulator producer,
2274 * or IS_ERR() condition containing errno.
2275 *
2276 * This is intended for use by consumers for devices which can have
2277 * some supplies unconnected in normal use, such as some MMC devices.
2278 * It can allow the regulator core to provide stub supplies for other
2279 * supplies requested using normal regulator_get() calls without
2280 * disrupting the operation of drivers that can handle absent
2281 * supplies.
2282 *
2283 * Use of supply names configured via set_consumer_device_supply() is
2284 * strongly encouraged.  It is recommended that the supply name used
2285 * should match the name used for the supply and/or the relevant
2286 * device pins in the datasheet.
2287 */
2288struct regulator *regulator_get_optional(struct device *dev, const char *id)
2289{
2290	return _regulator_get(dev, id, OPTIONAL_GET);
2291}
2292EXPORT_SYMBOL_GPL(regulator_get_optional);
2293
2294static void destroy_regulator(struct regulator *regulator)
2295{
2296	struct regulator_dev *rdev = regulator->rdev;
2297
2298	debugfs_remove_recursive(regulator->debugfs);
2299
2300	if (regulator->dev) {
2301		if (regulator->device_link)
2302			device_link_remove(regulator->dev, &rdev->dev);
2303
2304		/* remove any sysfs entries */
2305		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2306	}
2307
2308	regulator_lock(rdev);
2309	list_del(&regulator->list);
2310
2311	rdev->open_count--;
2312	rdev->exclusive = 0;
2313	regulator_unlock(rdev);
2314
2315	kfree_const(regulator->supply_name);
2316	kfree(regulator);
2317}
2318
2319/* regulator_list_mutex lock held by regulator_put() */
2320static void _regulator_put(struct regulator *regulator)
2321{
2322	struct regulator_dev *rdev;
2323
2324	if (IS_ERR_OR_NULL(regulator))
2325		return;
2326
2327	lockdep_assert_held_once(&regulator_list_mutex);
2328
2329	/* Docs say you must disable before calling regulator_put() */
2330	WARN_ON(regulator->enable_count);
2331
2332	rdev = regulator->rdev;
2333
2334	destroy_regulator(regulator);
2335
2336	module_put(rdev->owner);
2337	put_device(&rdev->dev);
2338}
2339
2340/**
2341 * regulator_put - "free" the regulator source
2342 * @regulator: regulator source
2343 *
2344 * Note: drivers must ensure that all regulator_enable calls made on this
2345 * regulator source are balanced by regulator_disable calls prior to calling
2346 * this function.
2347 */
2348void regulator_put(struct regulator *regulator)
2349{
2350	mutex_lock(&regulator_list_mutex);
2351	_regulator_put(regulator);
2352	mutex_unlock(&regulator_list_mutex);
2353}
2354EXPORT_SYMBOL_GPL(regulator_put);
2355
2356/**
2357 * regulator_register_supply_alias - Provide device alias for supply lookup
2358 *
2359 * @dev: device that will be given as the regulator "consumer"
2360 * @id: Supply name or regulator ID
2361 * @alias_dev: device that should be used to lookup the supply
2362 * @alias_id: Supply name or regulator ID that should be used to lookup the
2363 * supply
2364 *
2365 * All lookups for id on dev will instead be conducted for alias_id on
2366 * alias_dev.
2367 */
2368int regulator_register_supply_alias(struct device *dev, const char *id,
2369				    struct device *alias_dev,
2370				    const char *alias_id)
2371{
2372	struct regulator_supply_alias *map;
2373
2374	map = regulator_find_supply_alias(dev, id);
2375	if (map)
2376		return -EEXIST;
2377
2378	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2379	if (!map)
2380		return -ENOMEM;
2381
2382	map->src_dev = dev;
2383	map->src_supply = id;
2384	map->alias_dev = alias_dev;
2385	map->alias_supply = alias_id;
2386
2387	list_add(&map->list, &regulator_supply_alias_list);
2388
2389	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2390		id, dev_name(dev), alias_id, dev_name(alias_dev));
2391
2392	return 0;
2393}
2394EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2395
2396/**
2397 * regulator_unregister_supply_alias - Remove device alias
2398 *
2399 * @dev: device that will be given as the regulator "consumer"
2400 * @id: Supply name or regulator ID
2401 *
2402 * Remove a lookup alias if one exists for id on dev.
2403 */
2404void regulator_unregister_supply_alias(struct device *dev, const char *id)
2405{
2406	struct regulator_supply_alias *map;
2407
2408	map = regulator_find_supply_alias(dev, id);
2409	if (map) {
2410		list_del(&map->list);
2411		kfree(map);
2412	}
2413}
2414EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2415
2416/**
2417 * regulator_bulk_register_supply_alias - register multiple aliases
2418 *
2419 * @dev: device that will be given as the regulator "consumer"
2420 * @id: List of supply names or regulator IDs
2421 * @alias_dev: device that should be used to lookup the supply
2422 * @alias_id: List of supply names or regulator IDs that should be used to
2423 * lookup the supply
2424 * @num_id: Number of aliases to register
2425 *
2426 * @return 0 on success, an errno on failure.
2427 *
2428 * This helper function allows drivers to register several supply
2429 * aliases in one operation.  If any of the aliases cannot be
2430 * registered any aliases that were registered will be removed
2431 * before returning to the caller.
2432 */
2433int regulator_bulk_register_supply_alias(struct device *dev,
2434					 const char *const *id,
2435					 struct device *alias_dev,
2436					 const char *const *alias_id,
2437					 int num_id)
2438{
2439	int i;
2440	int ret;
2441
2442	for (i = 0; i < num_id; ++i) {
2443		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2444						      alias_id[i]);
2445		if (ret < 0)
2446			goto err;
2447	}
2448
2449	return 0;
2450
2451err:
2452	dev_err(dev,
2453		"Failed to create supply alias %s,%s -> %s,%s\n",
2454		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2455
2456	while (--i >= 0)
2457		regulator_unregister_supply_alias(dev, id[i]);
2458
2459	return ret;
2460}
2461EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2462
2463/**
2464 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2465 *
2466 * @dev: device that will be given as the regulator "consumer"
2467 * @id: List of supply names or regulator IDs
2468 * @num_id: Number of aliases to unregister
2469 *
2470 * This helper function allows drivers to unregister several supply
2471 * aliases in one operation.
2472 */
2473void regulator_bulk_unregister_supply_alias(struct device *dev,
2474					    const char *const *id,
2475					    int num_id)
2476{
2477	int i;
2478
2479	for (i = 0; i < num_id; ++i)
2480		regulator_unregister_supply_alias(dev, id[i]);
2481}
2482EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2483
2484
2485/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2486static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2487				const struct regulator_config *config)
2488{
2489	struct regulator_enable_gpio *pin, *new_pin;
2490	struct gpio_desc *gpiod;
2491
2492	gpiod = config->ena_gpiod;
2493	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2494
2495	mutex_lock(&regulator_list_mutex);
2496
2497	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2498		if (pin->gpiod == gpiod) {
2499			rdev_dbg(rdev, "GPIO is already used\n");
2500			goto update_ena_gpio_to_rdev;
2501		}
2502	}
2503
2504	if (new_pin == NULL) {
2505		mutex_unlock(&regulator_list_mutex);
2506		return -ENOMEM;
2507	}
2508
2509	pin = new_pin;
2510	new_pin = NULL;
2511
2512	pin->gpiod = gpiod;
2513	list_add(&pin->list, &regulator_ena_gpio_list);
2514
2515update_ena_gpio_to_rdev:
2516	pin->request_count++;
2517	rdev->ena_pin = pin;
2518
2519	mutex_unlock(&regulator_list_mutex);
2520	kfree(new_pin);
2521
2522	return 0;
2523}
2524
2525static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2526{
2527	struct regulator_enable_gpio *pin, *n;
2528
2529	if (!rdev->ena_pin)
2530		return;
2531
2532	/* Free the GPIO only in case of no use */
2533	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2534		if (pin != rdev->ena_pin)
2535			continue;
2536
2537		if (--pin->request_count)
2538			break;
2539
2540		gpiod_put(pin->gpiod);
2541		list_del(&pin->list);
2542		kfree(pin);
2543		break;
2544	}
2545
2546	rdev->ena_pin = NULL;
2547}
2548
2549/**
2550 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2551 * @rdev: regulator_dev structure
2552 * @enable: enable GPIO at initial use?
2553 *
2554 * GPIO is enabled in case of initial use. (enable_count is 0)
2555 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2556 */
2557static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2558{
2559	struct regulator_enable_gpio *pin = rdev->ena_pin;
2560
2561	if (!pin)
2562		return -EINVAL;
2563
2564	if (enable) {
2565		/* Enable GPIO at initial use */
2566		if (pin->enable_count == 0)
2567			gpiod_set_value_cansleep(pin->gpiod, 1);
2568
2569		pin->enable_count++;
2570	} else {
2571		if (pin->enable_count > 1) {
2572			pin->enable_count--;
2573			return 0;
2574		}
2575
2576		/* Disable GPIO if not used */
2577		if (pin->enable_count <= 1) {
2578			gpiod_set_value_cansleep(pin->gpiod, 0);
2579			pin->enable_count = 0;
2580		}
2581	}
2582
2583	return 0;
2584}
2585
2586/**
2587 * _regulator_delay_helper - a delay helper function
2588 * @delay: time to delay in microseconds
2589 *
2590 * Delay for the requested amount of time as per the guidelines in:
2591 *
2592 *     Documentation/timers/timers-howto.rst
2593 *
2594 * The assumption here is that these regulator operations will never used in
2595 * atomic context and therefore sleeping functions can be used.
2596 */
2597static void _regulator_delay_helper(unsigned int delay)
2598{
2599	unsigned int ms = delay / 1000;
2600	unsigned int us = delay % 1000;
2601
2602	if (ms > 0) {
2603		/*
2604		 * For small enough values, handle super-millisecond
2605		 * delays in the usleep_range() call below.
2606		 */
2607		if (ms < 20)
2608			us += ms * 1000;
2609		else
2610			msleep(ms);
2611	}
2612
2613	/*
2614	 * Give the scheduler some room to coalesce with any other
2615	 * wakeup sources. For delays shorter than 10 us, don't even
2616	 * bother setting up high-resolution timers and just busy-
2617	 * loop.
2618	 */
2619	if (us >= 10)
2620		usleep_range(us, us + 100);
2621	else
2622		udelay(us);
2623}
2624
2625/**
2626 * _regulator_check_status_enabled
2627 *
2628 * A helper function to check if the regulator status can be interpreted
2629 * as 'regulator is enabled'.
2630 * @rdev: the regulator device to check
2631 *
2632 * Return:
2633 * * 1			- if status shows regulator is in enabled state
2634 * * 0			- if not enabled state
2635 * * Error Value	- as received from ops->get_status()
2636 */
2637static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2638{
2639	int ret = rdev->desc->ops->get_status(rdev);
2640
2641	if (ret < 0) {
2642		rdev_info(rdev, "get_status returned error: %d\n", ret);
2643		return ret;
2644	}
2645
2646	switch (ret) {
2647	case REGULATOR_STATUS_OFF:
2648	case REGULATOR_STATUS_ERROR:
2649	case REGULATOR_STATUS_UNDEFINED:
2650		return 0;
2651	default:
2652		return 1;
2653	}
2654}
2655
2656static int _regulator_do_enable(struct regulator_dev *rdev)
2657{
2658	int ret, delay;
2659
2660	/* Query before enabling in case configuration dependent.  */
2661	ret = _regulator_get_enable_time(rdev);
2662	if (ret >= 0) {
2663		delay = ret;
2664	} else {
2665		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2666		delay = 0;
2667	}
2668
2669	trace_regulator_enable(rdev_get_name(rdev));
2670
2671	if (rdev->desc->off_on_delay && rdev->last_off) {
2672		/* if needed, keep a distance of off_on_delay from last time
2673		 * this regulator was disabled.
2674		 */
2675		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2676		s64 remaining = ktime_us_delta(end, ktime_get());
2677
2678		if (remaining > 0)
2679			_regulator_delay_helper(remaining);
2680	}
2681
2682	if (rdev->ena_pin) {
2683		if (!rdev->ena_gpio_state) {
2684			ret = regulator_ena_gpio_ctrl(rdev, true);
2685			if (ret < 0)
2686				return ret;
2687			rdev->ena_gpio_state = 1;
2688		}
2689	} else if (rdev->desc->ops->enable) {
2690		ret = rdev->desc->ops->enable(rdev);
2691		if (ret < 0)
2692			return ret;
2693	} else {
2694		return -EINVAL;
2695	}
2696
2697	/* Allow the regulator to ramp; it would be useful to extend
2698	 * this for bulk operations so that the regulators can ramp
2699	 * together.
2700	 */
2701	trace_regulator_enable_delay(rdev_get_name(rdev));
2702
2703	/* If poll_enabled_time is set, poll upto the delay calculated
2704	 * above, delaying poll_enabled_time uS to check if the regulator
2705	 * actually got enabled.
2706	 * If the regulator isn't enabled after our delay helper has expired,
2707	 * return -ETIMEDOUT.
2708	 */
2709	if (rdev->desc->poll_enabled_time) {
2710		int time_remaining = delay;
2711
2712		while (time_remaining > 0) {
2713			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2714
2715			if (rdev->desc->ops->get_status) {
2716				ret = _regulator_check_status_enabled(rdev);
2717				if (ret < 0)
2718					return ret;
2719				else if (ret)
2720					break;
2721			} else if (rdev->desc->ops->is_enabled(rdev))
2722				break;
2723
2724			time_remaining -= rdev->desc->poll_enabled_time;
2725		}
2726
2727		if (time_remaining <= 0) {
2728			rdev_err(rdev, "Enabled check timed out\n");
2729			return -ETIMEDOUT;
2730		}
2731	} else {
2732		_regulator_delay_helper(delay);
2733	}
2734
2735	trace_regulator_enable_complete(rdev_get_name(rdev));
2736
2737	return 0;
2738}
2739
2740/**
2741 * _regulator_handle_consumer_enable - handle that a consumer enabled
2742 * @regulator: regulator source
2743 *
2744 * Some things on a regulator consumer (like the contribution towards total
2745 * load on the regulator) only have an effect when the consumer wants the
2746 * regulator enabled.  Explained in example with two consumers of the same
2747 * regulator:
2748 *   consumer A: set_load(100);       => total load = 0
2749 *   consumer A: regulator_enable();  => total load = 100
2750 *   consumer B: set_load(1000);      => total load = 100
2751 *   consumer B: regulator_enable();  => total load = 1100
2752 *   consumer A: regulator_disable(); => total_load = 1000
2753 *
2754 * This function (together with _regulator_handle_consumer_disable) is
2755 * responsible for keeping track of the refcount for a given regulator consumer
2756 * and applying / unapplying these things.
2757 *
2758 * Returns 0 upon no error; -error upon error.
2759 */
2760static int _regulator_handle_consumer_enable(struct regulator *regulator)
2761{
2762	int ret;
2763	struct regulator_dev *rdev = regulator->rdev;
2764
2765	lockdep_assert_held_once(&rdev->mutex.base);
2766
2767	regulator->enable_count++;
2768	if (regulator->uA_load && regulator->enable_count == 1) {
2769		ret = drms_uA_update(rdev);
2770		if (ret)
2771			regulator->enable_count--;
2772		return ret;
2773	}
2774
2775	return 0;
2776}
2777
2778/**
2779 * _regulator_handle_consumer_disable - handle that a consumer disabled
2780 * @regulator: regulator source
2781 *
2782 * The opposite of _regulator_handle_consumer_enable().
2783 *
2784 * Returns 0 upon no error; -error upon error.
2785 */
2786static int _regulator_handle_consumer_disable(struct regulator *regulator)
2787{
2788	struct regulator_dev *rdev = regulator->rdev;
2789
2790	lockdep_assert_held_once(&rdev->mutex.base);
2791
2792	if (!regulator->enable_count) {
2793		rdev_err(rdev, "Underflow of regulator enable count\n");
2794		return -EINVAL;
2795	}
2796
2797	regulator->enable_count--;
2798	if (regulator->uA_load && regulator->enable_count == 0)
2799		return drms_uA_update(rdev);
2800
2801	return 0;
2802}
2803
2804/* locks held by regulator_enable() */
2805static int _regulator_enable(struct regulator *regulator)
2806{
2807	struct regulator_dev *rdev = regulator->rdev;
2808	int ret;
2809
2810	lockdep_assert_held_once(&rdev->mutex.base);
2811
2812	if (rdev->use_count == 0 && rdev->supply) {
2813		ret = _regulator_enable(rdev->supply);
2814		if (ret < 0)
2815			return ret;
2816	}
2817
2818	/* balance only if there are regulators coupled */
2819	if (rdev->coupling_desc.n_coupled > 1) {
2820		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2821		if (ret < 0)
2822			goto err_disable_supply;
2823	}
2824
2825	ret = _regulator_handle_consumer_enable(regulator);
2826	if (ret < 0)
2827		goto err_disable_supply;
2828
2829	if (rdev->use_count == 0) {
2830		/*
2831		 * The regulator may already be enabled if it's not switchable
2832		 * or was left on
2833		 */
2834		ret = _regulator_is_enabled(rdev);
2835		if (ret == -EINVAL || ret == 0) {
2836			if (!regulator_ops_is_valid(rdev,
2837					REGULATOR_CHANGE_STATUS)) {
2838				ret = -EPERM;
2839				goto err_consumer_disable;
2840			}
2841
2842			ret = _regulator_do_enable(rdev);
2843			if (ret < 0)
2844				goto err_consumer_disable;
2845
2846			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2847					     NULL);
2848		} else if (ret < 0) {
2849			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2850			goto err_consumer_disable;
2851		}
2852		/* Fallthrough on positive return values - already enabled */
2853	}
2854
2855	rdev->use_count++;
 
2856
2857	return 0;
2858
2859err_consumer_disable:
2860	_regulator_handle_consumer_disable(regulator);
2861
2862err_disable_supply:
2863	if (rdev->use_count == 0 && rdev->supply)
2864		_regulator_disable(rdev->supply);
2865
2866	return ret;
2867}
2868
2869/**
2870 * regulator_enable - enable regulator output
2871 * @regulator: regulator source
2872 *
2873 * Request that the regulator be enabled with the regulator output at
2874 * the predefined voltage or current value.  Calls to regulator_enable()
2875 * must be balanced with calls to regulator_disable().
2876 *
2877 * NOTE: the output value can be set by other drivers, boot loader or may be
2878 * hardwired in the regulator.
2879 */
2880int regulator_enable(struct regulator *regulator)
2881{
2882	struct regulator_dev *rdev = regulator->rdev;
2883	struct ww_acquire_ctx ww_ctx;
2884	int ret;
2885
2886	regulator_lock_dependent(rdev, &ww_ctx);
2887	ret = _regulator_enable(regulator);
2888	regulator_unlock_dependent(rdev, &ww_ctx);
2889
2890	return ret;
2891}
2892EXPORT_SYMBOL_GPL(regulator_enable);
2893
2894static int _regulator_do_disable(struct regulator_dev *rdev)
2895{
2896	int ret;
2897
2898	trace_regulator_disable(rdev_get_name(rdev));
2899
2900	if (rdev->ena_pin) {
2901		if (rdev->ena_gpio_state) {
2902			ret = regulator_ena_gpio_ctrl(rdev, false);
2903			if (ret < 0)
2904				return ret;
2905			rdev->ena_gpio_state = 0;
2906		}
2907
2908	} else if (rdev->desc->ops->disable) {
2909		ret = rdev->desc->ops->disable(rdev);
2910		if (ret != 0)
2911			return ret;
2912	}
2913
2914	if (rdev->desc->off_on_delay)
2915		rdev->last_off = ktime_get();
2916
2917	trace_regulator_disable_complete(rdev_get_name(rdev));
2918
2919	return 0;
2920}
2921
2922/* locks held by regulator_disable() */
2923static int _regulator_disable(struct regulator *regulator)
2924{
2925	struct regulator_dev *rdev = regulator->rdev;
2926	int ret = 0;
2927
2928	lockdep_assert_held_once(&rdev->mutex.base);
2929
2930	if (WARN(rdev->use_count <= 0,
2931		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2932		return -EIO;
2933
2934	/* are we the last user and permitted to disable ? */
2935	if (rdev->use_count == 1 &&
2936	    (rdev->constraints && !rdev->constraints->always_on)) {
2937
2938		/* we are last user */
2939		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2940			ret = _notifier_call_chain(rdev,
2941						   REGULATOR_EVENT_PRE_DISABLE,
2942						   NULL);
2943			if (ret & NOTIFY_STOP_MASK)
2944				return -EINVAL;
2945
2946			ret = _regulator_do_disable(rdev);
2947			if (ret < 0) {
2948				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2949				_notifier_call_chain(rdev,
2950						REGULATOR_EVENT_ABORT_DISABLE,
 
 
 
 
 
 
2951						NULL);
2952				return ret;
2953			}
2954			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2955					NULL);
2956		}
2957
2958		rdev->use_count = 0;
2959	} else if (rdev->use_count > 1) {
2960		rdev->use_count--;
 
2961	}
2962
2963	if (ret == 0)
2964		ret = _regulator_handle_consumer_disable(regulator);
2965
2966	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2967		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2968
2969	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2970		ret = _regulator_disable(rdev->supply);
2971
2972	return ret;
2973}
2974
2975/**
2976 * regulator_disable - disable regulator output
2977 * @regulator: regulator source
2978 *
2979 * Disable the regulator output voltage or current.  Calls to
2980 * regulator_enable() must be balanced with calls to
2981 * regulator_disable().
2982 *
2983 * NOTE: this will only disable the regulator output if no other consumer
2984 * devices have it enabled, the regulator device supports disabling and
2985 * machine constraints permit this operation.
2986 */
2987int regulator_disable(struct regulator *regulator)
2988{
2989	struct regulator_dev *rdev = regulator->rdev;
2990	struct ww_acquire_ctx ww_ctx;
2991	int ret;
2992
2993	regulator_lock_dependent(rdev, &ww_ctx);
2994	ret = _regulator_disable(regulator);
2995	regulator_unlock_dependent(rdev, &ww_ctx);
2996
2997	return ret;
2998}
2999EXPORT_SYMBOL_GPL(regulator_disable);
3000
3001/* locks held by regulator_force_disable() */
3002static int _regulator_force_disable(struct regulator_dev *rdev)
3003{
3004	int ret = 0;
3005
3006	lockdep_assert_held_once(&rdev->mutex.base);
3007
3008	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3009			REGULATOR_EVENT_PRE_DISABLE, NULL);
3010	if (ret & NOTIFY_STOP_MASK)
3011		return -EINVAL;
3012
3013	ret = _regulator_do_disable(rdev);
3014	if (ret < 0) {
3015		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3016		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3017				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3018		return ret;
3019	}
3020
3021	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3022			REGULATOR_EVENT_DISABLE, NULL);
3023
3024	return 0;
3025}
3026
3027/**
3028 * regulator_force_disable - force disable regulator output
3029 * @regulator: regulator source
3030 *
3031 * Forcibly disable the regulator output voltage or current.
3032 * NOTE: this *will* disable the regulator output even if other consumer
3033 * devices have it enabled. This should be used for situations when device
3034 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3035 */
3036int regulator_force_disable(struct regulator *regulator)
3037{
3038	struct regulator_dev *rdev = regulator->rdev;
3039	struct ww_acquire_ctx ww_ctx;
3040	int ret;
3041
3042	regulator_lock_dependent(rdev, &ww_ctx);
3043
3044	ret = _regulator_force_disable(regulator->rdev);
3045
3046	if (rdev->coupling_desc.n_coupled > 1)
3047		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3048
3049	if (regulator->uA_load) {
3050		regulator->uA_load = 0;
3051		ret = drms_uA_update(rdev);
3052	}
3053
3054	if (rdev->use_count != 0 && rdev->supply)
3055		_regulator_disable(rdev->supply);
3056
3057	regulator_unlock_dependent(rdev, &ww_ctx);
3058
3059	return ret;
3060}
3061EXPORT_SYMBOL_GPL(regulator_force_disable);
3062
3063static void regulator_disable_work(struct work_struct *work)
3064{
3065	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3066						  disable_work.work);
3067	struct ww_acquire_ctx ww_ctx;
3068	int count, i, ret;
3069	struct regulator *regulator;
3070	int total_count = 0;
3071
3072	regulator_lock_dependent(rdev, &ww_ctx);
3073
3074	/*
3075	 * Workqueue functions queue the new work instance while the previous
3076	 * work instance is being processed. Cancel the queued work instance
3077	 * as the work instance under processing does the job of the queued
3078	 * work instance.
3079	 */
3080	cancel_delayed_work(&rdev->disable_work);
3081
3082	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3083		count = regulator->deferred_disables;
3084
3085		if (!count)
3086			continue;
3087
3088		total_count += count;
3089		regulator->deferred_disables = 0;
3090
3091		for (i = 0; i < count; i++) {
3092			ret = _regulator_disable(regulator);
3093			if (ret != 0)
3094				rdev_err(rdev, "Deferred disable failed: %pe\n",
3095					 ERR_PTR(ret));
3096		}
3097	}
3098	WARN_ON(!total_count);
3099
3100	if (rdev->coupling_desc.n_coupled > 1)
3101		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3102
3103	regulator_unlock_dependent(rdev, &ww_ctx);
3104}
3105
3106/**
3107 * regulator_disable_deferred - disable regulator output with delay
3108 * @regulator: regulator source
3109 * @ms: milliseconds until the regulator is disabled
3110 *
3111 * Execute regulator_disable() on the regulator after a delay.  This
3112 * is intended for use with devices that require some time to quiesce.
3113 *
3114 * NOTE: this will only disable the regulator output if no other consumer
3115 * devices have it enabled, the regulator device supports disabling and
3116 * machine constraints permit this operation.
3117 */
3118int regulator_disable_deferred(struct regulator *regulator, int ms)
3119{
3120	struct regulator_dev *rdev = regulator->rdev;
3121
3122	if (!ms)
3123		return regulator_disable(regulator);
3124
3125	regulator_lock(rdev);
3126	regulator->deferred_disables++;
3127	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3128			 msecs_to_jiffies(ms));
3129	regulator_unlock(rdev);
3130
3131	return 0;
3132}
3133EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3134
3135static int _regulator_is_enabled(struct regulator_dev *rdev)
3136{
3137	/* A GPIO control always takes precedence */
3138	if (rdev->ena_pin)
3139		return rdev->ena_gpio_state;
3140
3141	/* If we don't know then assume that the regulator is always on */
3142	if (!rdev->desc->ops->is_enabled)
3143		return 1;
3144
3145	return rdev->desc->ops->is_enabled(rdev);
3146}
3147
3148static int _regulator_list_voltage(struct regulator_dev *rdev,
3149				   unsigned selector, int lock)
3150{
3151	const struct regulator_ops *ops = rdev->desc->ops;
3152	int ret;
3153
3154	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3155		return rdev->desc->fixed_uV;
3156
3157	if (ops->list_voltage) {
3158		if (selector >= rdev->desc->n_voltages)
3159			return -EINVAL;
3160		if (selector < rdev->desc->linear_min_sel)
3161			return 0;
3162		if (lock)
3163			regulator_lock(rdev);
3164		ret = ops->list_voltage(rdev, selector);
3165		if (lock)
3166			regulator_unlock(rdev);
3167	} else if (rdev->is_switch && rdev->supply) {
3168		ret = _regulator_list_voltage(rdev->supply->rdev,
3169					      selector, lock);
3170	} else {
3171		return -EINVAL;
3172	}
3173
3174	if (ret > 0) {
3175		if (ret < rdev->constraints->min_uV)
3176			ret = 0;
3177		else if (ret > rdev->constraints->max_uV)
3178			ret = 0;
3179	}
3180
3181	return ret;
3182}
3183
3184/**
3185 * regulator_is_enabled - is the regulator output enabled
3186 * @regulator: regulator source
3187 *
3188 * Returns positive if the regulator driver backing the source/client
3189 * has requested that the device be enabled, zero if it hasn't, else a
3190 * negative errno code.
3191 *
3192 * Note that the device backing this regulator handle can have multiple
3193 * users, so it might be enabled even if regulator_enable() was never
3194 * called for this particular source.
3195 */
3196int regulator_is_enabled(struct regulator *regulator)
3197{
3198	int ret;
3199
3200	if (regulator->always_on)
3201		return 1;
3202
3203	regulator_lock(regulator->rdev);
3204	ret = _regulator_is_enabled(regulator->rdev);
3205	regulator_unlock(regulator->rdev);
3206
3207	return ret;
3208}
3209EXPORT_SYMBOL_GPL(regulator_is_enabled);
3210
3211/**
3212 * regulator_count_voltages - count regulator_list_voltage() selectors
3213 * @regulator: regulator source
3214 *
3215 * Returns number of selectors, or negative errno.  Selectors are
3216 * numbered starting at zero, and typically correspond to bitfields
3217 * in hardware registers.
3218 */
3219int regulator_count_voltages(struct regulator *regulator)
3220{
3221	struct regulator_dev	*rdev = regulator->rdev;
3222
3223	if (rdev->desc->n_voltages)
3224		return rdev->desc->n_voltages;
3225
3226	if (!rdev->is_switch || !rdev->supply)
3227		return -EINVAL;
3228
3229	return regulator_count_voltages(rdev->supply);
3230}
3231EXPORT_SYMBOL_GPL(regulator_count_voltages);
3232
3233/**
3234 * regulator_list_voltage - enumerate supported voltages
3235 * @regulator: regulator source
3236 * @selector: identify voltage to list
3237 * Context: can sleep
3238 *
3239 * Returns a voltage that can be passed to @regulator_set_voltage(),
3240 * zero if this selector code can't be used on this system, or a
3241 * negative errno.
3242 */
3243int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3244{
3245	return _regulator_list_voltage(regulator->rdev, selector, 1);
3246}
3247EXPORT_SYMBOL_GPL(regulator_list_voltage);
3248
3249/**
3250 * regulator_get_regmap - get the regulator's register map
3251 * @regulator: regulator source
3252 *
3253 * Returns the register map for the given regulator, or an ERR_PTR value
3254 * if the regulator doesn't use regmap.
3255 */
3256struct regmap *regulator_get_regmap(struct regulator *regulator)
3257{
3258	struct regmap *map = regulator->rdev->regmap;
3259
3260	return map ? map : ERR_PTR(-EOPNOTSUPP);
3261}
3262
3263/**
3264 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3265 * @regulator: regulator source
3266 * @vsel_reg: voltage selector register, output parameter
3267 * @vsel_mask: mask for voltage selector bitfield, output parameter
3268 *
3269 * Returns the hardware register offset and bitmask used for setting the
3270 * regulator voltage. This might be useful when configuring voltage-scaling
3271 * hardware or firmware that can make I2C requests behind the kernel's back,
3272 * for example.
3273 *
3274 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3275 * and 0 is returned, otherwise a negative errno is returned.
3276 */
3277int regulator_get_hardware_vsel_register(struct regulator *regulator,
3278					 unsigned *vsel_reg,
3279					 unsigned *vsel_mask)
3280{
3281	struct regulator_dev *rdev = regulator->rdev;
3282	const struct regulator_ops *ops = rdev->desc->ops;
3283
3284	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3285		return -EOPNOTSUPP;
3286
3287	*vsel_reg = rdev->desc->vsel_reg;
3288	*vsel_mask = rdev->desc->vsel_mask;
3289
3290	return 0;
3291}
3292EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3293
3294/**
3295 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3296 * @regulator: regulator source
3297 * @selector: identify voltage to list
3298 *
3299 * Converts the selector to a hardware-specific voltage selector that can be
3300 * directly written to the regulator registers. The address of the voltage
3301 * register can be determined by calling @regulator_get_hardware_vsel_register.
3302 *
3303 * On error a negative errno is returned.
3304 */
3305int regulator_list_hardware_vsel(struct regulator *regulator,
3306				 unsigned selector)
3307{
3308	struct regulator_dev *rdev = regulator->rdev;
3309	const struct regulator_ops *ops = rdev->desc->ops;
3310
3311	if (selector >= rdev->desc->n_voltages)
3312		return -EINVAL;
3313	if (selector < rdev->desc->linear_min_sel)
3314		return 0;
3315	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3316		return -EOPNOTSUPP;
3317
3318	return selector;
3319}
3320EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3321
3322/**
3323 * regulator_get_linear_step - return the voltage step size between VSEL values
3324 * @regulator: regulator source
3325 *
3326 * Returns the voltage step size between VSEL values for linear
3327 * regulators, or return 0 if the regulator isn't a linear regulator.
3328 */
3329unsigned int regulator_get_linear_step(struct regulator *regulator)
3330{
3331	struct regulator_dev *rdev = regulator->rdev;
3332
3333	return rdev->desc->uV_step;
3334}
3335EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3336
3337/**
3338 * regulator_is_supported_voltage - check if a voltage range can be supported
3339 *
3340 * @regulator: Regulator to check.
3341 * @min_uV: Minimum required voltage in uV.
3342 * @max_uV: Maximum required voltage in uV.
3343 *
3344 * Returns a boolean.
3345 */
3346int regulator_is_supported_voltage(struct regulator *regulator,
3347				   int min_uV, int max_uV)
3348{
3349	struct regulator_dev *rdev = regulator->rdev;
3350	int i, voltages, ret;
3351
3352	/* If we can't change voltage check the current voltage */
3353	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3354		ret = regulator_get_voltage(regulator);
3355		if (ret >= 0)
3356			return min_uV <= ret && ret <= max_uV;
3357		else
3358			return ret;
3359	}
3360
3361	/* Any voltage within constrains range is fine? */
3362	if (rdev->desc->continuous_voltage_range)
3363		return min_uV >= rdev->constraints->min_uV &&
3364				max_uV <= rdev->constraints->max_uV;
3365
3366	ret = regulator_count_voltages(regulator);
3367	if (ret < 0)
3368		return 0;
3369	voltages = ret;
3370
3371	for (i = 0; i < voltages; i++) {
3372		ret = regulator_list_voltage(regulator, i);
3373
3374		if (ret >= min_uV && ret <= max_uV)
3375			return 1;
3376	}
3377
3378	return 0;
3379}
3380EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3381
3382static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3383				 int max_uV)
3384{
3385	const struct regulator_desc *desc = rdev->desc;
3386
3387	if (desc->ops->map_voltage)
3388		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3389
3390	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3391		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3392
3393	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3394		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3395
3396	if (desc->ops->list_voltage ==
3397		regulator_list_voltage_pickable_linear_range)
3398		return regulator_map_voltage_pickable_linear_range(rdev,
3399							min_uV, max_uV);
3400
3401	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3402}
3403
3404static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3405				       int min_uV, int max_uV,
3406				       unsigned *selector)
3407{
3408	struct pre_voltage_change_data data;
3409	int ret;
3410
3411	data.old_uV = regulator_get_voltage_rdev(rdev);
3412	data.min_uV = min_uV;
3413	data.max_uV = max_uV;
3414	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3415				   &data);
3416	if (ret & NOTIFY_STOP_MASK)
3417		return -EINVAL;
3418
3419	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3420	if (ret >= 0)
3421		return ret;
3422
3423	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3424			     (void *)data.old_uV);
3425
3426	return ret;
3427}
3428
3429static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3430					   int uV, unsigned selector)
3431{
3432	struct pre_voltage_change_data data;
3433	int ret;
3434
3435	data.old_uV = regulator_get_voltage_rdev(rdev);
3436	data.min_uV = uV;
3437	data.max_uV = uV;
3438	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3439				   &data);
3440	if (ret & NOTIFY_STOP_MASK)
3441		return -EINVAL;
3442
3443	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3444	if (ret >= 0)
3445		return ret;
3446
3447	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3448			     (void *)data.old_uV);
3449
3450	return ret;
3451}
3452
3453static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3454					   int uV, int new_selector)
3455{
3456	const struct regulator_ops *ops = rdev->desc->ops;
3457	int diff, old_sel, curr_sel, ret;
3458
3459	/* Stepping is only needed if the regulator is enabled. */
3460	if (!_regulator_is_enabled(rdev))
3461		goto final_set;
3462
3463	if (!ops->get_voltage_sel)
3464		return -EINVAL;
3465
3466	old_sel = ops->get_voltage_sel(rdev);
3467	if (old_sel < 0)
3468		return old_sel;
3469
3470	diff = new_selector - old_sel;
3471	if (diff == 0)
3472		return 0; /* No change needed. */
3473
3474	if (diff > 0) {
3475		/* Stepping up. */
3476		for (curr_sel = old_sel + rdev->desc->vsel_step;
3477		     curr_sel < new_selector;
3478		     curr_sel += rdev->desc->vsel_step) {
3479			/*
3480			 * Call the callback directly instead of using
3481			 * _regulator_call_set_voltage_sel() as we don't
3482			 * want to notify anyone yet. Same in the branch
3483			 * below.
3484			 */
3485			ret = ops->set_voltage_sel(rdev, curr_sel);
3486			if (ret)
3487				goto try_revert;
3488		}
3489	} else {
3490		/* Stepping down. */
3491		for (curr_sel = old_sel - rdev->desc->vsel_step;
3492		     curr_sel > new_selector;
3493		     curr_sel -= rdev->desc->vsel_step) {
3494			ret = ops->set_voltage_sel(rdev, curr_sel);
3495			if (ret)
3496				goto try_revert;
3497		}
3498	}
3499
3500final_set:
3501	/* The final selector will trigger the notifiers. */
3502	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3503
3504try_revert:
3505	/*
3506	 * At least try to return to the previous voltage if setting a new
3507	 * one failed.
3508	 */
3509	(void)ops->set_voltage_sel(rdev, old_sel);
3510	return ret;
3511}
3512
3513static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3514				       int old_uV, int new_uV)
3515{
3516	unsigned int ramp_delay = 0;
3517
3518	if (rdev->constraints->ramp_delay)
3519		ramp_delay = rdev->constraints->ramp_delay;
3520	else if (rdev->desc->ramp_delay)
3521		ramp_delay = rdev->desc->ramp_delay;
3522	else if (rdev->constraints->settling_time)
3523		return rdev->constraints->settling_time;
3524	else if (rdev->constraints->settling_time_up &&
3525		 (new_uV > old_uV))
3526		return rdev->constraints->settling_time_up;
3527	else if (rdev->constraints->settling_time_down &&
3528		 (new_uV < old_uV))
3529		return rdev->constraints->settling_time_down;
3530
3531	if (ramp_delay == 0)
3532		return 0;
3533
3534	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3535}
3536
3537static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3538				     int min_uV, int max_uV)
3539{
3540	int ret;
3541	int delay = 0;
3542	int best_val = 0;
3543	unsigned int selector;
3544	int old_selector = -1;
3545	const struct regulator_ops *ops = rdev->desc->ops;
3546	int old_uV = regulator_get_voltage_rdev(rdev);
3547
3548	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3549
3550	min_uV += rdev->constraints->uV_offset;
3551	max_uV += rdev->constraints->uV_offset;
3552
3553	/*
3554	 * If we can't obtain the old selector there is not enough
3555	 * info to call set_voltage_time_sel().
3556	 */
3557	if (_regulator_is_enabled(rdev) &&
3558	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3559		old_selector = ops->get_voltage_sel(rdev);
3560		if (old_selector < 0)
3561			return old_selector;
3562	}
3563
3564	if (ops->set_voltage) {
3565		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3566						  &selector);
3567
3568		if (ret >= 0) {
3569			if (ops->list_voltage)
3570				best_val = ops->list_voltage(rdev,
3571							     selector);
3572			else
3573				best_val = regulator_get_voltage_rdev(rdev);
3574		}
3575
3576	} else if (ops->set_voltage_sel) {
3577		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3578		if (ret >= 0) {
3579			best_val = ops->list_voltage(rdev, ret);
3580			if (min_uV <= best_val && max_uV >= best_val) {
3581				selector = ret;
3582				if (old_selector == selector)
3583					ret = 0;
3584				else if (rdev->desc->vsel_step)
3585					ret = _regulator_set_voltage_sel_step(
3586						rdev, best_val, selector);
3587				else
3588					ret = _regulator_call_set_voltage_sel(
3589						rdev, best_val, selector);
3590			} else {
3591				ret = -EINVAL;
3592			}
3593		}
3594	} else {
3595		ret = -EINVAL;
3596	}
3597
3598	if (ret)
3599		goto out;
3600
3601	if (ops->set_voltage_time_sel) {
3602		/*
3603		 * Call set_voltage_time_sel if successfully obtained
3604		 * old_selector
3605		 */
3606		if (old_selector >= 0 && old_selector != selector)
3607			delay = ops->set_voltage_time_sel(rdev, old_selector,
3608							  selector);
3609	} else {
3610		if (old_uV != best_val) {
3611			if (ops->set_voltage_time)
3612				delay = ops->set_voltage_time(rdev, old_uV,
3613							      best_val);
3614			else
3615				delay = _regulator_set_voltage_time(rdev,
3616								    old_uV,
3617								    best_val);
3618		}
3619	}
3620
3621	if (delay < 0) {
3622		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3623		delay = 0;
3624	}
3625
3626	/* Insert any necessary delays */
3627	_regulator_delay_helper(delay);
3628
3629	if (best_val >= 0) {
3630		unsigned long data = best_val;
3631
3632		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3633				     (void *)data);
3634	}
3635
3636out:
3637	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3638
3639	return ret;
3640}
3641
3642static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3643				  int min_uV, int max_uV, suspend_state_t state)
3644{
3645	struct regulator_state *rstate;
3646	int uV, sel;
3647
3648	rstate = regulator_get_suspend_state(rdev, state);
3649	if (rstate == NULL)
3650		return -EINVAL;
3651
3652	if (min_uV < rstate->min_uV)
3653		min_uV = rstate->min_uV;
3654	if (max_uV > rstate->max_uV)
3655		max_uV = rstate->max_uV;
3656
3657	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3658	if (sel < 0)
3659		return sel;
3660
3661	uV = rdev->desc->ops->list_voltage(rdev, sel);
3662	if (uV >= min_uV && uV <= max_uV)
3663		rstate->uV = uV;
3664
3665	return 0;
3666}
3667
3668static int regulator_set_voltage_unlocked(struct regulator *regulator,
3669					  int min_uV, int max_uV,
3670					  suspend_state_t state)
3671{
3672	struct regulator_dev *rdev = regulator->rdev;
3673	struct regulator_voltage *voltage = &regulator->voltage[state];
3674	int ret = 0;
3675	int old_min_uV, old_max_uV;
3676	int current_uV;
3677
3678	/* If we're setting the same range as last time the change
3679	 * should be a noop (some cpufreq implementations use the same
3680	 * voltage for multiple frequencies, for example).
3681	 */
3682	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3683		goto out;
3684
3685	/* If we're trying to set a range that overlaps the current voltage,
3686	 * return successfully even though the regulator does not support
3687	 * changing the voltage.
3688	 */
3689	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3690		current_uV = regulator_get_voltage_rdev(rdev);
3691		if (min_uV <= current_uV && current_uV <= max_uV) {
3692			voltage->min_uV = min_uV;
3693			voltage->max_uV = max_uV;
3694			goto out;
3695		}
3696	}
3697
3698	/* sanity check */
3699	if (!rdev->desc->ops->set_voltage &&
3700	    !rdev->desc->ops->set_voltage_sel) {
3701		ret = -EINVAL;
3702		goto out;
3703	}
3704
3705	/* constraints check */
3706	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3707	if (ret < 0)
3708		goto out;
3709
3710	/* restore original values in case of error */
3711	old_min_uV = voltage->min_uV;
3712	old_max_uV = voltage->max_uV;
3713	voltage->min_uV = min_uV;
3714	voltage->max_uV = max_uV;
3715
3716	/* for not coupled regulators this will just set the voltage */
3717	ret = regulator_balance_voltage(rdev, state);
3718	if (ret < 0) {
3719		voltage->min_uV = old_min_uV;
3720		voltage->max_uV = old_max_uV;
3721	}
3722
3723out:
3724	return ret;
3725}
3726
3727int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3728			       int max_uV, suspend_state_t state)
3729{
3730	int best_supply_uV = 0;
3731	int supply_change_uV = 0;
3732	int ret;
3733
3734	if (rdev->supply &&
3735	    regulator_ops_is_valid(rdev->supply->rdev,
3736				   REGULATOR_CHANGE_VOLTAGE) &&
3737	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3738					   rdev->desc->ops->get_voltage_sel))) {
3739		int current_supply_uV;
3740		int selector;
3741
3742		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3743		if (selector < 0) {
3744			ret = selector;
3745			goto out;
3746		}
3747
3748		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3749		if (best_supply_uV < 0) {
3750			ret = best_supply_uV;
3751			goto out;
3752		}
3753
3754		best_supply_uV += rdev->desc->min_dropout_uV;
3755
3756		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3757		if (current_supply_uV < 0) {
3758			ret = current_supply_uV;
3759			goto out;
3760		}
3761
3762		supply_change_uV = best_supply_uV - current_supply_uV;
3763	}
3764
3765	if (supply_change_uV > 0) {
3766		ret = regulator_set_voltage_unlocked(rdev->supply,
3767				best_supply_uV, INT_MAX, state);
3768		if (ret) {
3769			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3770				ERR_PTR(ret));
3771			goto out;
3772		}
3773	}
3774
3775	if (state == PM_SUSPEND_ON)
3776		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3777	else
3778		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3779							max_uV, state);
3780	if (ret < 0)
3781		goto out;
3782
3783	if (supply_change_uV < 0) {
3784		ret = regulator_set_voltage_unlocked(rdev->supply,
3785				best_supply_uV, INT_MAX, state);
3786		if (ret)
3787			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3788				 ERR_PTR(ret));
3789		/* No need to fail here */
3790		ret = 0;
3791	}
3792
3793out:
3794	return ret;
3795}
3796EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3797
3798static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3799					int *current_uV, int *min_uV)
3800{
3801	struct regulation_constraints *constraints = rdev->constraints;
3802
3803	/* Limit voltage change only if necessary */
3804	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3805		return 1;
3806
3807	if (*current_uV < 0) {
3808		*current_uV = regulator_get_voltage_rdev(rdev);
3809
3810		if (*current_uV < 0)
3811			return *current_uV;
3812	}
3813
3814	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3815		return 1;
3816
3817	/* Clamp target voltage within the given step */
3818	if (*current_uV < *min_uV)
3819		*min_uV = min(*current_uV + constraints->max_uV_step,
3820			      *min_uV);
3821	else
3822		*min_uV = max(*current_uV - constraints->max_uV_step,
3823			      *min_uV);
3824
3825	return 0;
3826}
3827
3828static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3829					 int *current_uV,
3830					 int *min_uV, int *max_uV,
3831					 suspend_state_t state,
3832					 int n_coupled)
3833{
3834	struct coupling_desc *c_desc = &rdev->coupling_desc;
3835	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3836	struct regulation_constraints *constraints = rdev->constraints;
3837	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3838	int max_current_uV = 0, min_current_uV = INT_MAX;
3839	int highest_min_uV = 0, target_uV, possible_uV;
3840	int i, ret, max_spread;
3841	bool done;
3842
3843	*current_uV = -1;
3844
3845	/*
3846	 * If there are no coupled regulators, simply set the voltage
3847	 * demanded by consumers.
3848	 */
3849	if (n_coupled == 1) {
3850		/*
3851		 * If consumers don't provide any demands, set voltage
3852		 * to min_uV
3853		 */
3854		desired_min_uV = constraints->min_uV;
3855		desired_max_uV = constraints->max_uV;
3856
3857		ret = regulator_check_consumers(rdev,
3858						&desired_min_uV,
3859						&desired_max_uV, state);
3860		if (ret < 0)
3861			return ret;
3862
3863		possible_uV = desired_min_uV;
3864		done = true;
3865
3866		goto finish;
3867	}
3868
3869	/* Find highest min desired voltage */
3870	for (i = 0; i < n_coupled; i++) {
3871		int tmp_min = 0;
3872		int tmp_max = INT_MAX;
3873
3874		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3875
3876		ret = regulator_check_consumers(c_rdevs[i],
3877						&tmp_min,
3878						&tmp_max, state);
3879		if (ret < 0)
3880			return ret;
3881
3882		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3883		if (ret < 0)
3884			return ret;
3885
3886		highest_min_uV = max(highest_min_uV, tmp_min);
3887
3888		if (i == 0) {
3889			desired_min_uV = tmp_min;
3890			desired_max_uV = tmp_max;
3891		}
3892	}
3893
3894	max_spread = constraints->max_spread[0];
3895
3896	/*
3897	 * Let target_uV be equal to the desired one if possible.
3898	 * If not, set it to minimum voltage, allowed by other coupled
3899	 * regulators.
3900	 */
3901	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3902
3903	/*
3904	 * Find min and max voltages, which currently aren't violating
3905	 * max_spread.
3906	 */
3907	for (i = 1; i < n_coupled; i++) {
3908		int tmp_act;
3909
3910		if (!_regulator_is_enabled(c_rdevs[i]))
3911			continue;
3912
3913		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3914		if (tmp_act < 0)
3915			return tmp_act;
3916
3917		min_current_uV = min(tmp_act, min_current_uV);
3918		max_current_uV = max(tmp_act, max_current_uV);
3919	}
3920
3921	/* There aren't any other regulators enabled */
3922	if (max_current_uV == 0) {
3923		possible_uV = target_uV;
3924	} else {
3925		/*
3926		 * Correct target voltage, so as it currently isn't
3927		 * violating max_spread
3928		 */
3929		possible_uV = max(target_uV, max_current_uV - max_spread);
3930		possible_uV = min(possible_uV, min_current_uV + max_spread);
3931	}
3932
3933	if (possible_uV > desired_max_uV)
3934		return -EINVAL;
3935
3936	done = (possible_uV == target_uV);
3937	desired_min_uV = possible_uV;
3938
3939finish:
3940	/* Apply max_uV_step constraint if necessary */
3941	if (state == PM_SUSPEND_ON) {
3942		ret = regulator_limit_voltage_step(rdev, current_uV,
3943						   &desired_min_uV);
3944		if (ret < 0)
3945			return ret;
3946
3947		if (ret == 0)
3948			done = false;
3949	}
3950
3951	/* Set current_uV if wasn't done earlier in the code and if necessary */
3952	if (n_coupled > 1 && *current_uV == -1) {
3953
3954		if (_regulator_is_enabled(rdev)) {
3955			ret = regulator_get_voltage_rdev(rdev);
3956			if (ret < 0)
3957				return ret;
3958
3959			*current_uV = ret;
3960		} else {
3961			*current_uV = desired_min_uV;
3962		}
3963	}
3964
3965	*min_uV = desired_min_uV;
3966	*max_uV = desired_max_uV;
3967
3968	return done;
3969}
3970
3971int regulator_do_balance_voltage(struct regulator_dev *rdev,
3972				 suspend_state_t state, bool skip_coupled)
3973{
3974	struct regulator_dev **c_rdevs;
3975	struct regulator_dev *best_rdev;
3976	struct coupling_desc *c_desc = &rdev->coupling_desc;
3977	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3978	unsigned int delta, best_delta;
3979	unsigned long c_rdev_done = 0;
3980	bool best_c_rdev_done;
3981
3982	c_rdevs = c_desc->coupled_rdevs;
3983	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3984
3985	/*
3986	 * Find the best possible voltage change on each loop. Leave the loop
3987	 * if there isn't any possible change.
3988	 */
3989	do {
3990		best_c_rdev_done = false;
3991		best_delta = 0;
3992		best_min_uV = 0;
3993		best_max_uV = 0;
3994		best_c_rdev = 0;
3995		best_rdev = NULL;
3996
3997		/*
3998		 * Find highest difference between optimal voltage
3999		 * and current voltage.
4000		 */
4001		for (i = 0; i < n_coupled; i++) {
4002			/*
4003			 * optimal_uV is the best voltage that can be set for
4004			 * i-th regulator at the moment without violating
4005			 * max_spread constraint in order to balance
4006			 * the coupled voltages.
4007			 */
4008			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4009
4010			if (test_bit(i, &c_rdev_done))
4011				continue;
4012
4013			ret = regulator_get_optimal_voltage(c_rdevs[i],
4014							    &current_uV,
4015							    &optimal_uV,
4016							    &optimal_max_uV,
4017							    state, n_coupled);
4018			if (ret < 0)
4019				goto out;
4020
4021			delta = abs(optimal_uV - current_uV);
4022
4023			if (delta && best_delta <= delta) {
4024				best_c_rdev_done = ret;
4025				best_delta = delta;
4026				best_rdev = c_rdevs[i];
4027				best_min_uV = optimal_uV;
4028				best_max_uV = optimal_max_uV;
4029				best_c_rdev = i;
4030			}
4031		}
4032
4033		/* Nothing to change, return successfully */
4034		if (!best_rdev) {
4035			ret = 0;
4036			goto out;
4037		}
4038
4039		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4040						 best_max_uV, state);
4041
4042		if (ret < 0)
4043			goto out;
4044
4045		if (best_c_rdev_done)
4046			set_bit(best_c_rdev, &c_rdev_done);
4047
4048	} while (n_coupled > 1);
4049
4050out:
4051	return ret;
4052}
4053
4054static int regulator_balance_voltage(struct regulator_dev *rdev,
4055				     suspend_state_t state)
4056{
4057	struct coupling_desc *c_desc = &rdev->coupling_desc;
4058	struct regulator_coupler *coupler = c_desc->coupler;
4059	bool skip_coupled = false;
4060
4061	/*
4062	 * If system is in a state other than PM_SUSPEND_ON, don't check
4063	 * other coupled regulators.
4064	 */
4065	if (state != PM_SUSPEND_ON)
4066		skip_coupled = true;
4067
4068	if (c_desc->n_resolved < c_desc->n_coupled) {
4069		rdev_err(rdev, "Not all coupled regulators registered\n");
4070		return -EPERM;
4071	}
4072
4073	/* Invoke custom balancer for customized couplers */
4074	if (coupler && coupler->balance_voltage)
4075		return coupler->balance_voltage(coupler, rdev, state);
4076
4077	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4078}
4079
4080/**
4081 * regulator_set_voltage - set regulator output voltage
4082 * @regulator: regulator source
4083 * @min_uV: Minimum required voltage in uV
4084 * @max_uV: Maximum acceptable voltage in uV
4085 *
4086 * Sets a voltage regulator to the desired output voltage. This can be set
4087 * during any regulator state. IOW, regulator can be disabled or enabled.
4088 *
4089 * If the regulator is enabled then the voltage will change to the new value
4090 * immediately otherwise if the regulator is disabled the regulator will
4091 * output at the new voltage when enabled.
4092 *
4093 * NOTE: If the regulator is shared between several devices then the lowest
4094 * request voltage that meets the system constraints will be used.
4095 * Regulator system constraints must be set for this regulator before
4096 * calling this function otherwise this call will fail.
4097 */
4098int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4099{
4100	struct ww_acquire_ctx ww_ctx;
4101	int ret;
4102
4103	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4104
4105	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4106					     PM_SUSPEND_ON);
4107
4108	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4109
4110	return ret;
4111}
4112EXPORT_SYMBOL_GPL(regulator_set_voltage);
4113
4114static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4115					   suspend_state_t state, bool en)
4116{
4117	struct regulator_state *rstate;
4118
4119	rstate = regulator_get_suspend_state(rdev, state);
4120	if (rstate == NULL)
4121		return -EINVAL;
4122
4123	if (!rstate->changeable)
4124		return -EPERM;
4125
4126	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4127
4128	return 0;
4129}
4130
4131int regulator_suspend_enable(struct regulator_dev *rdev,
4132				    suspend_state_t state)
4133{
4134	return regulator_suspend_toggle(rdev, state, true);
4135}
4136EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4137
4138int regulator_suspend_disable(struct regulator_dev *rdev,
4139				     suspend_state_t state)
4140{
4141	struct regulator *regulator;
4142	struct regulator_voltage *voltage;
4143
4144	/*
4145	 * if any consumer wants this regulator device keeping on in
4146	 * suspend states, don't set it as disabled.
4147	 */
4148	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4149		voltage = &regulator->voltage[state];
4150		if (voltage->min_uV || voltage->max_uV)
4151			return 0;
4152	}
4153
4154	return regulator_suspend_toggle(rdev, state, false);
4155}
4156EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4157
4158static int _regulator_set_suspend_voltage(struct regulator *regulator,
4159					  int min_uV, int max_uV,
4160					  suspend_state_t state)
4161{
4162	struct regulator_dev *rdev = regulator->rdev;
4163	struct regulator_state *rstate;
4164
4165	rstate = regulator_get_suspend_state(rdev, state);
4166	if (rstate == NULL)
4167		return -EINVAL;
4168
4169	if (rstate->min_uV == rstate->max_uV) {
4170		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4171		return -EPERM;
4172	}
4173
4174	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4175}
4176
4177int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4178				  int max_uV, suspend_state_t state)
4179{
4180	struct ww_acquire_ctx ww_ctx;
4181	int ret;
4182
4183	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4184	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4185		return -EINVAL;
4186
4187	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4188
4189	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4190					     max_uV, state);
4191
4192	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4193
4194	return ret;
4195}
4196EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4197
4198/**
4199 * regulator_set_voltage_time - get raise/fall time
4200 * @regulator: regulator source
4201 * @old_uV: starting voltage in microvolts
4202 * @new_uV: target voltage in microvolts
4203 *
4204 * Provided with the starting and ending voltage, this function attempts to
4205 * calculate the time in microseconds required to rise or fall to this new
4206 * voltage.
4207 */
4208int regulator_set_voltage_time(struct regulator *regulator,
4209			       int old_uV, int new_uV)
4210{
4211	struct regulator_dev *rdev = regulator->rdev;
4212	const struct regulator_ops *ops = rdev->desc->ops;
4213	int old_sel = -1;
4214	int new_sel = -1;
4215	int voltage;
4216	int i;
4217
4218	if (ops->set_voltage_time)
4219		return ops->set_voltage_time(rdev, old_uV, new_uV);
4220	else if (!ops->set_voltage_time_sel)
4221		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4222
4223	/* Currently requires operations to do this */
4224	if (!ops->list_voltage || !rdev->desc->n_voltages)
4225		return -EINVAL;
4226
4227	for (i = 0; i < rdev->desc->n_voltages; i++) {
4228		/* We only look for exact voltage matches here */
4229		if (i < rdev->desc->linear_min_sel)
4230			continue;
4231
4232		if (old_sel >= 0 && new_sel >= 0)
4233			break;
4234
4235		voltage = regulator_list_voltage(regulator, i);
4236		if (voltage < 0)
4237			return -EINVAL;
4238		if (voltage == 0)
4239			continue;
4240		if (voltage == old_uV)
4241			old_sel = i;
4242		if (voltage == new_uV)
4243			new_sel = i;
4244	}
4245
4246	if (old_sel < 0 || new_sel < 0)
4247		return -EINVAL;
4248
4249	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4250}
4251EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4252
4253/**
4254 * regulator_set_voltage_time_sel - get raise/fall time
4255 * @rdev: regulator source device
4256 * @old_selector: selector for starting voltage
4257 * @new_selector: selector for target voltage
4258 *
4259 * Provided with the starting and target voltage selectors, this function
4260 * returns time in microseconds required to rise or fall to this new voltage
4261 *
4262 * Drivers providing ramp_delay in regulation_constraints can use this as their
4263 * set_voltage_time_sel() operation.
4264 */
4265int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4266				   unsigned int old_selector,
4267				   unsigned int new_selector)
4268{
4269	int old_volt, new_volt;
4270
4271	/* sanity check */
4272	if (!rdev->desc->ops->list_voltage)
4273		return -EINVAL;
4274
4275	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4276	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4277
4278	if (rdev->desc->ops->set_voltage_time)
4279		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4280							 new_volt);
4281	else
4282		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4283}
4284EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4285
4286int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4287{
4288	int ret;
4289
4290	regulator_lock(rdev);
4291
4292	if (!rdev->desc->ops->set_voltage &&
4293	    !rdev->desc->ops->set_voltage_sel) {
4294		ret = -EINVAL;
4295		goto out;
4296	}
4297
4298	/* balance only, if regulator is coupled */
4299	if (rdev->coupling_desc.n_coupled > 1)
4300		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4301	else
4302		ret = -EOPNOTSUPP;
4303
4304out:
4305	regulator_unlock(rdev);
4306	return ret;
4307}
4308
4309/**
4310 * regulator_sync_voltage - re-apply last regulator output voltage
4311 * @regulator: regulator source
4312 *
4313 * Re-apply the last configured voltage.  This is intended to be used
4314 * where some external control source the consumer is cooperating with
4315 * has caused the configured voltage to change.
4316 */
4317int regulator_sync_voltage(struct regulator *regulator)
4318{
4319	struct regulator_dev *rdev = regulator->rdev;
4320	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4321	int ret, min_uV, max_uV;
4322
4323	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4324		return 0;
4325
4326	regulator_lock(rdev);
4327
4328	if (!rdev->desc->ops->set_voltage &&
4329	    !rdev->desc->ops->set_voltage_sel) {
4330		ret = -EINVAL;
4331		goto out;
4332	}
4333
4334	/* This is only going to work if we've had a voltage configured. */
4335	if (!voltage->min_uV && !voltage->max_uV) {
4336		ret = -EINVAL;
4337		goto out;
4338	}
4339
4340	min_uV = voltage->min_uV;
4341	max_uV = voltage->max_uV;
4342
4343	/* This should be a paranoia check... */
4344	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4345	if (ret < 0)
4346		goto out;
4347
4348	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4349	if (ret < 0)
4350		goto out;
4351
4352	/* balance only, if regulator is coupled */
4353	if (rdev->coupling_desc.n_coupled > 1)
4354		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4355	else
4356		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4357
4358out:
4359	regulator_unlock(rdev);
4360	return ret;
4361}
4362EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4363
4364int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4365{
4366	int sel, ret;
4367	bool bypassed;
4368
4369	if (rdev->desc->ops->get_bypass) {
4370		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4371		if (ret < 0)
4372			return ret;
4373		if (bypassed) {
4374			/* if bypassed the regulator must have a supply */
4375			if (!rdev->supply) {
4376				rdev_err(rdev,
4377					 "bypassed regulator has no supply!\n");
4378				return -EPROBE_DEFER;
4379			}
4380
4381			return regulator_get_voltage_rdev(rdev->supply->rdev);
4382		}
4383	}
4384
4385	if (rdev->desc->ops->get_voltage_sel) {
4386		sel = rdev->desc->ops->get_voltage_sel(rdev);
4387		if (sel < 0)
4388			return sel;
4389		ret = rdev->desc->ops->list_voltage(rdev, sel);
4390	} else if (rdev->desc->ops->get_voltage) {
4391		ret = rdev->desc->ops->get_voltage(rdev);
4392	} else if (rdev->desc->ops->list_voltage) {
4393		ret = rdev->desc->ops->list_voltage(rdev, 0);
4394	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4395		ret = rdev->desc->fixed_uV;
4396	} else if (rdev->supply) {
4397		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4398	} else if (rdev->supply_name) {
4399		return -EPROBE_DEFER;
4400	} else {
4401		return -EINVAL;
4402	}
4403
4404	if (ret < 0)
4405		return ret;
4406	return ret - rdev->constraints->uV_offset;
4407}
4408EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4409
4410/**
4411 * regulator_get_voltage - get regulator output voltage
4412 * @regulator: regulator source
4413 *
4414 * This returns the current regulator voltage in uV.
4415 *
4416 * NOTE: If the regulator is disabled it will return the voltage value. This
4417 * function should not be used to determine regulator state.
4418 */
4419int regulator_get_voltage(struct regulator *regulator)
4420{
4421	struct ww_acquire_ctx ww_ctx;
4422	int ret;
4423
4424	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4425	ret = regulator_get_voltage_rdev(regulator->rdev);
4426	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4427
4428	return ret;
4429}
4430EXPORT_SYMBOL_GPL(regulator_get_voltage);
4431
4432/**
4433 * regulator_set_current_limit - set regulator output current limit
4434 * @regulator: regulator source
4435 * @min_uA: Minimum supported current in uA
4436 * @max_uA: Maximum supported current in uA
4437 *
4438 * Sets current sink to the desired output current. This can be set during
4439 * any regulator state. IOW, regulator can be disabled or enabled.
4440 *
4441 * If the regulator is enabled then the current will change to the new value
4442 * immediately otherwise if the regulator is disabled the regulator will
4443 * output at the new current when enabled.
4444 *
4445 * NOTE: Regulator system constraints must be set for this regulator before
4446 * calling this function otherwise this call will fail.
4447 */
4448int regulator_set_current_limit(struct regulator *regulator,
4449			       int min_uA, int max_uA)
4450{
4451	struct regulator_dev *rdev = regulator->rdev;
4452	int ret;
4453
4454	regulator_lock(rdev);
4455
4456	/* sanity check */
4457	if (!rdev->desc->ops->set_current_limit) {
4458		ret = -EINVAL;
4459		goto out;
4460	}
4461
4462	/* constraints check */
4463	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4464	if (ret < 0)
4465		goto out;
4466
4467	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4468out:
4469	regulator_unlock(rdev);
4470	return ret;
4471}
4472EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4473
4474static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4475{
4476	/* sanity check */
4477	if (!rdev->desc->ops->get_current_limit)
4478		return -EINVAL;
4479
4480	return rdev->desc->ops->get_current_limit(rdev);
4481}
4482
4483static int _regulator_get_current_limit(struct regulator_dev *rdev)
4484{
4485	int ret;
4486
4487	regulator_lock(rdev);
4488	ret = _regulator_get_current_limit_unlocked(rdev);
4489	regulator_unlock(rdev);
4490
4491	return ret;
4492}
4493
4494/**
4495 * regulator_get_current_limit - get regulator output current
4496 * @regulator: regulator source
4497 *
4498 * This returns the current supplied by the specified current sink in uA.
4499 *
4500 * NOTE: If the regulator is disabled it will return the current value. This
4501 * function should not be used to determine regulator state.
4502 */
4503int regulator_get_current_limit(struct regulator *regulator)
4504{
4505	return _regulator_get_current_limit(regulator->rdev);
4506}
4507EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4508
4509/**
4510 * regulator_set_mode - set regulator operating mode
4511 * @regulator: regulator source
4512 * @mode: operating mode - one of the REGULATOR_MODE constants
4513 *
4514 * Set regulator operating mode to increase regulator efficiency or improve
4515 * regulation performance.
4516 *
4517 * NOTE: Regulator system constraints must be set for this regulator before
4518 * calling this function otherwise this call will fail.
4519 */
4520int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4521{
4522	struct regulator_dev *rdev = regulator->rdev;
4523	int ret;
4524	int regulator_curr_mode;
4525
4526	regulator_lock(rdev);
4527
4528	/* sanity check */
4529	if (!rdev->desc->ops->set_mode) {
4530		ret = -EINVAL;
4531		goto out;
4532	}
4533
4534	/* return if the same mode is requested */
4535	if (rdev->desc->ops->get_mode) {
4536		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4537		if (regulator_curr_mode == mode) {
4538			ret = 0;
4539			goto out;
4540		}
4541	}
4542
4543	/* constraints check */
4544	ret = regulator_mode_constrain(rdev, &mode);
4545	if (ret < 0)
4546		goto out;
4547
4548	ret = rdev->desc->ops->set_mode(rdev, mode);
4549out:
4550	regulator_unlock(rdev);
4551	return ret;
4552}
4553EXPORT_SYMBOL_GPL(regulator_set_mode);
4554
4555static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4556{
4557	/* sanity check */
4558	if (!rdev->desc->ops->get_mode)
4559		return -EINVAL;
4560
4561	return rdev->desc->ops->get_mode(rdev);
4562}
4563
4564static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4565{
4566	int ret;
4567
4568	regulator_lock(rdev);
4569	ret = _regulator_get_mode_unlocked(rdev);
4570	regulator_unlock(rdev);
4571
4572	return ret;
4573}
4574
4575/**
4576 * regulator_get_mode - get regulator operating mode
4577 * @regulator: regulator source
4578 *
4579 * Get the current regulator operating mode.
4580 */
4581unsigned int regulator_get_mode(struct regulator *regulator)
4582{
4583	return _regulator_get_mode(regulator->rdev);
4584}
4585EXPORT_SYMBOL_GPL(regulator_get_mode);
4586
4587static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4588{
4589	int ret = 0;
4590
4591	if (rdev->use_cached_err) {
4592		spin_lock(&rdev->err_lock);
4593		ret = rdev->cached_err;
4594		spin_unlock(&rdev->err_lock);
4595	}
4596	return ret;
4597}
4598
4599static int _regulator_get_error_flags(struct regulator_dev *rdev,
4600					unsigned int *flags)
4601{
4602	int cached_flags, ret = 0;
4603
4604	regulator_lock(rdev);
4605
4606	cached_flags = rdev_get_cached_err_flags(rdev);
4607
4608	if (rdev->desc->ops->get_error_flags)
4609		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4610	else if (!rdev->use_cached_err)
4611		ret = -EINVAL;
4612
4613	*flags |= cached_flags;
4614
4615	regulator_unlock(rdev);
4616
4617	return ret;
4618}
4619
4620/**
4621 * regulator_get_error_flags - get regulator error information
4622 * @regulator: regulator source
4623 * @flags: pointer to store error flags
4624 *
4625 * Get the current regulator error information.
4626 */
4627int regulator_get_error_flags(struct regulator *regulator,
4628				unsigned int *flags)
4629{
4630	return _regulator_get_error_flags(regulator->rdev, flags);
4631}
4632EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4633
4634/**
4635 * regulator_set_load - set regulator load
4636 * @regulator: regulator source
4637 * @uA_load: load current
4638 *
4639 * Notifies the regulator core of a new device load. This is then used by
4640 * DRMS (if enabled by constraints) to set the most efficient regulator
4641 * operating mode for the new regulator loading.
4642 *
4643 * Consumer devices notify their supply regulator of the maximum power
4644 * they will require (can be taken from device datasheet in the power
4645 * consumption tables) when they change operational status and hence power
4646 * state. Examples of operational state changes that can affect power
4647 * consumption are :-
4648 *
4649 *    o Device is opened / closed.
4650 *    o Device I/O is about to begin or has just finished.
4651 *    o Device is idling in between work.
4652 *
4653 * This information is also exported via sysfs to userspace.
4654 *
4655 * DRMS will sum the total requested load on the regulator and change
4656 * to the most efficient operating mode if platform constraints allow.
4657 *
4658 * NOTE: when a regulator consumer requests to have a regulator
4659 * disabled then any load that consumer requested no longer counts
4660 * toward the total requested load.  If the regulator is re-enabled
4661 * then the previously requested load will start counting again.
4662 *
4663 * If a regulator is an always-on regulator then an individual consumer's
4664 * load will still be removed if that consumer is fully disabled.
4665 *
4666 * On error a negative errno is returned.
4667 */
4668int regulator_set_load(struct regulator *regulator, int uA_load)
4669{
4670	struct regulator_dev *rdev = regulator->rdev;
4671	int old_uA_load;
4672	int ret = 0;
4673
4674	regulator_lock(rdev);
4675	old_uA_load = regulator->uA_load;
4676	regulator->uA_load = uA_load;
4677	if (regulator->enable_count && old_uA_load != uA_load) {
4678		ret = drms_uA_update(rdev);
4679		if (ret < 0)
4680			regulator->uA_load = old_uA_load;
4681	}
4682	regulator_unlock(rdev);
4683
4684	return ret;
4685}
4686EXPORT_SYMBOL_GPL(regulator_set_load);
4687
4688/**
4689 * regulator_allow_bypass - allow the regulator to go into bypass mode
4690 *
4691 * @regulator: Regulator to configure
4692 * @enable: enable or disable bypass mode
4693 *
4694 * Allow the regulator to go into bypass mode if all other consumers
4695 * for the regulator also enable bypass mode and the machine
4696 * constraints allow this.  Bypass mode means that the regulator is
4697 * simply passing the input directly to the output with no regulation.
4698 */
4699int regulator_allow_bypass(struct regulator *regulator, bool enable)
4700{
4701	struct regulator_dev *rdev = regulator->rdev;
4702	const char *name = rdev_get_name(rdev);
4703	int ret = 0;
4704
4705	if (!rdev->desc->ops->set_bypass)
4706		return 0;
4707
4708	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4709		return 0;
4710
4711	regulator_lock(rdev);
4712
4713	if (enable && !regulator->bypass) {
4714		rdev->bypass_count++;
4715
4716		if (rdev->bypass_count == rdev->open_count) {
4717			trace_regulator_bypass_enable(name);
4718
4719			ret = rdev->desc->ops->set_bypass(rdev, enable);
4720			if (ret != 0)
4721				rdev->bypass_count--;
4722			else
4723				trace_regulator_bypass_enable_complete(name);
4724		}
4725
4726	} else if (!enable && regulator->bypass) {
4727		rdev->bypass_count--;
4728
4729		if (rdev->bypass_count != rdev->open_count) {
4730			trace_regulator_bypass_disable(name);
4731
4732			ret = rdev->desc->ops->set_bypass(rdev, enable);
4733			if (ret != 0)
4734				rdev->bypass_count++;
4735			else
4736				trace_regulator_bypass_disable_complete(name);
4737		}
4738	}
4739
4740	if (ret == 0)
4741		regulator->bypass = enable;
4742
4743	regulator_unlock(rdev);
4744
4745	return ret;
4746}
4747EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4748
4749/**
4750 * regulator_register_notifier - register regulator event notifier
4751 * @regulator: regulator source
4752 * @nb: notifier block
4753 *
4754 * Register notifier block to receive regulator events.
4755 */
4756int regulator_register_notifier(struct regulator *regulator,
4757			      struct notifier_block *nb)
4758{
4759	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4760						nb);
4761}
4762EXPORT_SYMBOL_GPL(regulator_register_notifier);
4763
4764/**
4765 * regulator_unregister_notifier - unregister regulator event notifier
4766 * @regulator: regulator source
4767 * @nb: notifier block
4768 *
4769 * Unregister regulator event notifier block.
4770 */
4771int regulator_unregister_notifier(struct regulator *regulator,
4772				struct notifier_block *nb)
4773{
4774	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4775						  nb);
4776}
4777EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4778
4779/* notify regulator consumers and downstream regulator consumers.
4780 * Note mutex must be held by caller.
4781 */
4782static int _notifier_call_chain(struct regulator_dev *rdev,
4783				  unsigned long event, void *data)
4784{
4785	/* call rdev chain first */
4786	return blocking_notifier_call_chain(&rdev->notifier, event, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4787}
4788
4789int _regulator_bulk_get(struct device *dev, int num_consumers,
4790			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4791{
4792	int i;
4793	int ret;
4794
4795	for (i = 0; i < num_consumers; i++)
4796		consumers[i].consumer = NULL;
4797
4798	for (i = 0; i < num_consumers; i++) {
4799		consumers[i].consumer = _regulator_get(dev,
4800						       consumers[i].supply, get_type);
4801		if (IS_ERR(consumers[i].consumer)) {
4802			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4803					    "Failed to get supply '%s'",
4804					    consumers[i].supply);
4805			consumers[i].consumer = NULL;
4806			goto err;
4807		}
4808
4809		if (consumers[i].init_load_uA > 0) {
4810			ret = regulator_set_load(consumers[i].consumer,
4811						 consumers[i].init_load_uA);
4812			if (ret) {
4813				i++;
4814				goto err;
4815			}
4816		}
4817	}
4818
4819	return 0;
4820
4821err:
4822	while (--i >= 0)
4823		regulator_put(consumers[i].consumer);
4824
4825	return ret;
4826}
4827
4828/**
4829 * regulator_bulk_get - get multiple regulator consumers
4830 *
4831 * @dev:           Device to supply
4832 * @num_consumers: Number of consumers to register
4833 * @consumers:     Configuration of consumers; clients are stored here.
4834 *
4835 * @return 0 on success, an errno on failure.
4836 *
4837 * This helper function allows drivers to get several regulator
4838 * consumers in one operation.  If any of the regulators cannot be
4839 * acquired then any regulators that were allocated will be freed
4840 * before returning to the caller.
4841 */
4842int regulator_bulk_get(struct device *dev, int num_consumers,
4843		       struct regulator_bulk_data *consumers)
4844{
4845	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4846}
4847EXPORT_SYMBOL_GPL(regulator_bulk_get);
4848
4849static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4850{
4851	struct regulator_bulk_data *bulk = data;
4852
4853	bulk->ret = regulator_enable(bulk->consumer);
4854}
4855
4856/**
4857 * regulator_bulk_enable - enable multiple regulator consumers
4858 *
4859 * @num_consumers: Number of consumers
4860 * @consumers:     Consumer data; clients are stored here.
4861 * @return         0 on success, an errno on failure
4862 *
4863 * This convenience API allows consumers to enable multiple regulator
4864 * clients in a single API call.  If any consumers cannot be enabled
4865 * then any others that were enabled will be disabled again prior to
4866 * return.
4867 */
4868int regulator_bulk_enable(int num_consumers,
4869			  struct regulator_bulk_data *consumers)
4870{
4871	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4872	int i;
4873	int ret = 0;
4874
4875	for (i = 0; i < num_consumers; i++) {
4876		async_schedule_domain(regulator_bulk_enable_async,
4877				      &consumers[i], &async_domain);
4878	}
4879
4880	async_synchronize_full_domain(&async_domain);
4881
4882	/* If any consumer failed we need to unwind any that succeeded */
4883	for (i = 0; i < num_consumers; i++) {
4884		if (consumers[i].ret != 0) {
4885			ret = consumers[i].ret;
4886			goto err;
4887		}
4888	}
4889
4890	return 0;
4891
4892err:
4893	for (i = 0; i < num_consumers; i++) {
4894		if (consumers[i].ret < 0)
4895			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4896			       ERR_PTR(consumers[i].ret));
4897		else
4898			regulator_disable(consumers[i].consumer);
4899	}
4900
4901	return ret;
4902}
4903EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4904
4905/**
4906 * regulator_bulk_disable - disable multiple regulator consumers
4907 *
4908 * @num_consumers: Number of consumers
4909 * @consumers:     Consumer data; clients are stored here.
4910 * @return         0 on success, an errno on failure
4911 *
4912 * This convenience API allows consumers to disable multiple regulator
4913 * clients in a single API call.  If any consumers cannot be disabled
4914 * then any others that were disabled will be enabled again prior to
4915 * return.
4916 */
4917int regulator_bulk_disable(int num_consumers,
4918			   struct regulator_bulk_data *consumers)
4919{
4920	int i;
4921	int ret, r;
4922
4923	for (i = num_consumers - 1; i >= 0; --i) {
4924		ret = regulator_disable(consumers[i].consumer);
4925		if (ret != 0)
4926			goto err;
4927	}
4928
4929	return 0;
4930
4931err:
4932	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4933	for (++i; i < num_consumers; ++i) {
4934		r = regulator_enable(consumers[i].consumer);
4935		if (r != 0)
4936			pr_err("Failed to re-enable %s: %pe\n",
4937			       consumers[i].supply, ERR_PTR(r));
4938	}
4939
4940	return ret;
4941}
4942EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4943
4944/**
4945 * regulator_bulk_force_disable - force disable multiple regulator consumers
4946 *
4947 * @num_consumers: Number of consumers
4948 * @consumers:     Consumer data; clients are stored here.
4949 * @return         0 on success, an errno on failure
4950 *
4951 * This convenience API allows consumers to forcibly disable multiple regulator
4952 * clients in a single API call.
4953 * NOTE: This should be used for situations when device damage will
4954 * likely occur if the regulators are not disabled (e.g. over temp).
4955 * Although regulator_force_disable function call for some consumers can
4956 * return error numbers, the function is called for all consumers.
4957 */
4958int regulator_bulk_force_disable(int num_consumers,
4959			   struct regulator_bulk_data *consumers)
4960{
4961	int i;
4962	int ret = 0;
4963
4964	for (i = 0; i < num_consumers; i++) {
4965		consumers[i].ret =
4966			    regulator_force_disable(consumers[i].consumer);
4967
4968		/* Store first error for reporting */
4969		if (consumers[i].ret && !ret)
4970			ret = consumers[i].ret;
4971	}
4972
4973	return ret;
4974}
4975EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4976
4977/**
4978 * regulator_bulk_free - free multiple regulator consumers
4979 *
4980 * @num_consumers: Number of consumers
4981 * @consumers:     Consumer data; clients are stored here.
4982 *
4983 * This convenience API allows consumers to free multiple regulator
4984 * clients in a single API call.
4985 */
4986void regulator_bulk_free(int num_consumers,
4987			 struct regulator_bulk_data *consumers)
4988{
4989	int i;
4990
4991	for (i = 0; i < num_consumers; i++) {
4992		regulator_put(consumers[i].consumer);
4993		consumers[i].consumer = NULL;
4994	}
4995}
4996EXPORT_SYMBOL_GPL(regulator_bulk_free);
4997
4998/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4999 * regulator_notifier_call_chain - call regulator event notifier
5000 * @rdev: regulator source
5001 * @event: notifier block
5002 * @data: callback-specific data.
5003 *
5004 * Called by regulator drivers to notify clients a regulator event has
5005 * occurred.
5006 */
5007int regulator_notifier_call_chain(struct regulator_dev *rdev,
5008				  unsigned long event, void *data)
5009{
 
 
5010	_notifier_call_chain(rdev, event, data);
5011	return NOTIFY_DONE;
5012
5013}
5014EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5015
5016/**
5017 * regulator_mode_to_status - convert a regulator mode into a status
5018 *
5019 * @mode: Mode to convert
5020 *
5021 * Convert a regulator mode into a status.
5022 */
5023int regulator_mode_to_status(unsigned int mode)
5024{
5025	switch (mode) {
5026	case REGULATOR_MODE_FAST:
5027		return REGULATOR_STATUS_FAST;
5028	case REGULATOR_MODE_NORMAL:
5029		return REGULATOR_STATUS_NORMAL;
5030	case REGULATOR_MODE_IDLE:
5031		return REGULATOR_STATUS_IDLE;
5032	case REGULATOR_MODE_STANDBY:
5033		return REGULATOR_STATUS_STANDBY;
5034	default:
5035		return REGULATOR_STATUS_UNDEFINED;
5036	}
5037}
5038EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5039
5040static struct attribute *regulator_dev_attrs[] = {
5041	&dev_attr_name.attr,
5042	&dev_attr_num_users.attr,
5043	&dev_attr_type.attr,
5044	&dev_attr_microvolts.attr,
5045	&dev_attr_microamps.attr,
5046	&dev_attr_opmode.attr,
5047	&dev_attr_state.attr,
5048	&dev_attr_status.attr,
5049	&dev_attr_bypass.attr,
5050	&dev_attr_requested_microamps.attr,
5051	&dev_attr_min_microvolts.attr,
5052	&dev_attr_max_microvolts.attr,
5053	&dev_attr_min_microamps.attr,
5054	&dev_attr_max_microamps.attr,
5055	&dev_attr_under_voltage.attr,
5056	&dev_attr_over_current.attr,
5057	&dev_attr_regulation_out.attr,
5058	&dev_attr_fail.attr,
5059	&dev_attr_over_temp.attr,
5060	&dev_attr_under_voltage_warn.attr,
5061	&dev_attr_over_current_warn.attr,
5062	&dev_attr_over_voltage_warn.attr,
5063	&dev_attr_over_temp_warn.attr,
5064	&dev_attr_suspend_standby_state.attr,
5065	&dev_attr_suspend_mem_state.attr,
5066	&dev_attr_suspend_disk_state.attr,
5067	&dev_attr_suspend_standby_microvolts.attr,
5068	&dev_attr_suspend_mem_microvolts.attr,
5069	&dev_attr_suspend_disk_microvolts.attr,
5070	&dev_attr_suspend_standby_mode.attr,
5071	&dev_attr_suspend_mem_mode.attr,
5072	&dev_attr_suspend_disk_mode.attr,
5073	NULL
5074};
5075
5076/*
5077 * To avoid cluttering sysfs (and memory) with useless state, only
5078 * create attributes that can be meaningfully displayed.
5079 */
5080static umode_t regulator_attr_is_visible(struct kobject *kobj,
5081					 struct attribute *attr, int idx)
5082{
5083	struct device *dev = kobj_to_dev(kobj);
5084	struct regulator_dev *rdev = dev_to_rdev(dev);
5085	const struct regulator_ops *ops = rdev->desc->ops;
5086	umode_t mode = attr->mode;
5087
5088	/* these three are always present */
5089	if (attr == &dev_attr_name.attr ||
5090	    attr == &dev_attr_num_users.attr ||
5091	    attr == &dev_attr_type.attr)
5092		return mode;
5093
5094	/* some attributes need specific methods to be displayed */
5095	if (attr == &dev_attr_microvolts.attr) {
5096		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5097		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5098		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5099		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5100			return mode;
5101		return 0;
5102	}
5103
5104	if (attr == &dev_attr_microamps.attr)
5105		return ops->get_current_limit ? mode : 0;
5106
5107	if (attr == &dev_attr_opmode.attr)
5108		return ops->get_mode ? mode : 0;
5109
5110	if (attr == &dev_attr_state.attr)
5111		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5112
5113	if (attr == &dev_attr_status.attr)
5114		return ops->get_status ? mode : 0;
5115
5116	if (attr == &dev_attr_bypass.attr)
5117		return ops->get_bypass ? mode : 0;
5118
5119	if (attr == &dev_attr_under_voltage.attr ||
5120	    attr == &dev_attr_over_current.attr ||
5121	    attr == &dev_attr_regulation_out.attr ||
5122	    attr == &dev_attr_fail.attr ||
5123	    attr == &dev_attr_over_temp.attr ||
5124	    attr == &dev_attr_under_voltage_warn.attr ||
5125	    attr == &dev_attr_over_current_warn.attr ||
5126	    attr == &dev_attr_over_voltage_warn.attr ||
5127	    attr == &dev_attr_over_temp_warn.attr)
5128		return ops->get_error_flags ? mode : 0;
5129
5130	/* constraints need specific supporting methods */
5131	if (attr == &dev_attr_min_microvolts.attr ||
5132	    attr == &dev_attr_max_microvolts.attr)
5133		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5134
5135	if (attr == &dev_attr_min_microamps.attr ||
5136	    attr == &dev_attr_max_microamps.attr)
5137		return ops->set_current_limit ? mode : 0;
5138
5139	if (attr == &dev_attr_suspend_standby_state.attr ||
5140	    attr == &dev_attr_suspend_mem_state.attr ||
5141	    attr == &dev_attr_suspend_disk_state.attr)
5142		return mode;
5143
5144	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5145	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5146	    attr == &dev_attr_suspend_disk_microvolts.attr)
5147		return ops->set_suspend_voltage ? mode : 0;
5148
5149	if (attr == &dev_attr_suspend_standby_mode.attr ||
5150	    attr == &dev_attr_suspend_mem_mode.attr ||
5151	    attr == &dev_attr_suspend_disk_mode.attr)
5152		return ops->set_suspend_mode ? mode : 0;
5153
5154	return mode;
5155}
5156
5157static const struct attribute_group regulator_dev_group = {
5158	.attrs = regulator_dev_attrs,
5159	.is_visible = regulator_attr_is_visible,
5160};
5161
5162static const struct attribute_group *regulator_dev_groups[] = {
5163	&regulator_dev_group,
5164	NULL
5165};
5166
5167static void regulator_dev_release(struct device *dev)
5168{
5169	struct regulator_dev *rdev = dev_get_drvdata(dev);
5170
5171	debugfs_remove_recursive(rdev->debugfs);
5172	kfree(rdev->constraints);
5173	of_node_put(rdev->dev.of_node);
5174	kfree(rdev);
5175}
5176
5177static void rdev_init_debugfs(struct regulator_dev *rdev)
5178{
5179	struct device *parent = rdev->dev.parent;
5180	const char *rname = rdev_get_name(rdev);
5181	char name[NAME_MAX];
5182
5183	/* Avoid duplicate debugfs directory names */
5184	if (parent && rname == rdev->desc->name) {
5185		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5186			 rname);
5187		rname = name;
5188	}
5189
5190	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5191	if (!rdev->debugfs) {
5192		rdev_warn(rdev, "Failed to create debugfs directory\n");
5193		return;
5194	}
5195
5196	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5197			   &rdev->use_count);
5198	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5199			   &rdev->open_count);
5200	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5201			   &rdev->bypass_count);
5202}
5203
5204static int regulator_register_resolve_supply(struct device *dev, void *data)
5205{
5206	struct regulator_dev *rdev = dev_to_rdev(dev);
5207
5208	if (regulator_resolve_supply(rdev))
5209		rdev_dbg(rdev, "unable to resolve supply\n");
5210
5211	return 0;
5212}
5213
5214int regulator_coupler_register(struct regulator_coupler *coupler)
5215{
5216	mutex_lock(&regulator_list_mutex);
5217	list_add_tail(&coupler->list, &regulator_coupler_list);
5218	mutex_unlock(&regulator_list_mutex);
5219
5220	return 0;
5221}
5222
5223static struct regulator_coupler *
5224regulator_find_coupler(struct regulator_dev *rdev)
5225{
5226	struct regulator_coupler *coupler;
5227	int err;
5228
5229	/*
5230	 * Note that regulators are appended to the list and the generic
5231	 * coupler is registered first, hence it will be attached at last
5232	 * if nobody cared.
5233	 */
5234	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5235		err = coupler->attach_regulator(coupler, rdev);
5236		if (!err) {
5237			if (!coupler->balance_voltage &&
5238			    rdev->coupling_desc.n_coupled > 2)
5239				goto err_unsupported;
5240
5241			return coupler;
5242		}
5243
5244		if (err < 0)
5245			return ERR_PTR(err);
5246
5247		if (err == 1)
5248			continue;
5249
5250		break;
5251	}
5252
5253	return ERR_PTR(-EINVAL);
5254
5255err_unsupported:
5256	if (coupler->detach_regulator)
5257		coupler->detach_regulator(coupler, rdev);
5258
5259	rdev_err(rdev,
5260		"Voltage balancing for multiple regulator couples is unimplemented\n");
5261
5262	return ERR_PTR(-EPERM);
5263}
5264
5265static void regulator_resolve_coupling(struct regulator_dev *rdev)
5266{
5267	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5268	struct coupling_desc *c_desc = &rdev->coupling_desc;
5269	int n_coupled = c_desc->n_coupled;
5270	struct regulator_dev *c_rdev;
5271	int i;
5272
5273	for (i = 1; i < n_coupled; i++) {
5274		/* already resolved */
5275		if (c_desc->coupled_rdevs[i])
5276			continue;
5277
5278		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5279
5280		if (!c_rdev)
5281			continue;
5282
5283		if (c_rdev->coupling_desc.coupler != coupler) {
5284			rdev_err(rdev, "coupler mismatch with %s\n",
5285				 rdev_get_name(c_rdev));
5286			return;
5287		}
5288
5289		c_desc->coupled_rdevs[i] = c_rdev;
5290		c_desc->n_resolved++;
5291
5292		regulator_resolve_coupling(c_rdev);
5293	}
5294}
5295
5296static void regulator_remove_coupling(struct regulator_dev *rdev)
5297{
5298	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5299	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5300	struct regulator_dev *__c_rdev, *c_rdev;
5301	unsigned int __n_coupled, n_coupled;
5302	int i, k;
5303	int err;
5304
5305	n_coupled = c_desc->n_coupled;
5306
5307	for (i = 1; i < n_coupled; i++) {
5308		c_rdev = c_desc->coupled_rdevs[i];
5309
5310		if (!c_rdev)
5311			continue;
5312
5313		regulator_lock(c_rdev);
5314
5315		__c_desc = &c_rdev->coupling_desc;
5316		__n_coupled = __c_desc->n_coupled;
5317
5318		for (k = 1; k < __n_coupled; k++) {
5319			__c_rdev = __c_desc->coupled_rdevs[k];
5320
5321			if (__c_rdev == rdev) {
5322				__c_desc->coupled_rdevs[k] = NULL;
5323				__c_desc->n_resolved--;
5324				break;
5325			}
5326		}
5327
5328		regulator_unlock(c_rdev);
5329
5330		c_desc->coupled_rdevs[i] = NULL;
5331		c_desc->n_resolved--;
5332	}
5333
5334	if (coupler && coupler->detach_regulator) {
5335		err = coupler->detach_regulator(coupler, rdev);
5336		if (err)
5337			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5338				 ERR_PTR(err));
5339	}
5340
5341	kfree(rdev->coupling_desc.coupled_rdevs);
5342	rdev->coupling_desc.coupled_rdevs = NULL;
5343}
5344
5345static int regulator_init_coupling(struct regulator_dev *rdev)
5346{
5347	struct regulator_dev **coupled;
5348	int err, n_phandles;
5349
5350	if (!IS_ENABLED(CONFIG_OF))
5351		n_phandles = 0;
5352	else
5353		n_phandles = of_get_n_coupled(rdev);
5354
5355	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5356	if (!coupled)
5357		return -ENOMEM;
5358
5359	rdev->coupling_desc.coupled_rdevs = coupled;
5360
5361	/*
5362	 * Every regulator should always have coupling descriptor filled with
5363	 * at least pointer to itself.
5364	 */
5365	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5366	rdev->coupling_desc.n_coupled = n_phandles + 1;
5367	rdev->coupling_desc.n_resolved++;
5368
5369	/* regulator isn't coupled */
5370	if (n_phandles == 0)
5371		return 0;
5372
5373	if (!of_check_coupling_data(rdev))
5374		return -EPERM;
5375
5376	mutex_lock(&regulator_list_mutex);
5377	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5378	mutex_unlock(&regulator_list_mutex);
5379
5380	if (IS_ERR(rdev->coupling_desc.coupler)) {
5381		err = PTR_ERR(rdev->coupling_desc.coupler);
5382		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5383		return err;
5384	}
5385
5386	return 0;
5387}
5388
5389static int generic_coupler_attach(struct regulator_coupler *coupler,
5390				  struct regulator_dev *rdev)
5391{
5392	if (rdev->coupling_desc.n_coupled > 2) {
5393		rdev_err(rdev,
5394			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5395		return -EPERM;
5396	}
5397
5398	if (!rdev->constraints->always_on) {
5399		rdev_err(rdev,
5400			 "Coupling of a non always-on regulator is unimplemented\n");
5401		return -ENOTSUPP;
5402	}
5403
5404	return 0;
5405}
5406
5407static struct regulator_coupler generic_regulator_coupler = {
5408	.attach_regulator = generic_coupler_attach,
5409};
5410
5411/**
5412 * regulator_register - register regulator
5413 * @dev: the device that drive the regulator
5414 * @regulator_desc: regulator to register
5415 * @cfg: runtime configuration for regulator
5416 *
5417 * Called by regulator drivers to register a regulator.
5418 * Returns a valid pointer to struct regulator_dev on success
5419 * or an ERR_PTR() on error.
5420 */
5421struct regulator_dev *
5422regulator_register(struct device *dev,
5423		   const struct regulator_desc *regulator_desc,
5424		   const struct regulator_config *cfg)
5425{
5426	const struct regulator_init_data *init_data;
5427	struct regulator_config *config = NULL;
5428	static atomic_t regulator_no = ATOMIC_INIT(-1);
5429	struct regulator_dev *rdev;
5430	bool dangling_cfg_gpiod = false;
5431	bool dangling_of_gpiod = false;
5432	int ret, i;
5433	bool resolved_early = false;
5434
5435	if (cfg == NULL)
5436		return ERR_PTR(-EINVAL);
5437	if (cfg->ena_gpiod)
5438		dangling_cfg_gpiod = true;
5439	if (regulator_desc == NULL) {
5440		ret = -EINVAL;
5441		goto rinse;
5442	}
5443
5444	WARN_ON(!dev || !cfg->dev);
5445
5446	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5447		ret = -EINVAL;
5448		goto rinse;
5449	}
5450
5451	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5452	    regulator_desc->type != REGULATOR_CURRENT) {
5453		ret = -EINVAL;
5454		goto rinse;
5455	}
5456
5457	/* Only one of each should be implemented */
5458	WARN_ON(regulator_desc->ops->get_voltage &&
5459		regulator_desc->ops->get_voltage_sel);
5460	WARN_ON(regulator_desc->ops->set_voltage &&
5461		regulator_desc->ops->set_voltage_sel);
5462
5463	/* If we're using selectors we must implement list_voltage. */
5464	if (regulator_desc->ops->get_voltage_sel &&
5465	    !regulator_desc->ops->list_voltage) {
5466		ret = -EINVAL;
5467		goto rinse;
5468	}
5469	if (regulator_desc->ops->set_voltage_sel &&
5470	    !regulator_desc->ops->list_voltage) {
5471		ret = -EINVAL;
5472		goto rinse;
5473	}
5474
5475	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5476	if (rdev == NULL) {
5477		ret = -ENOMEM;
5478		goto rinse;
5479	}
5480	device_initialize(&rdev->dev);
 
 
5481	spin_lock_init(&rdev->err_lock);
5482
5483	/*
5484	 * Duplicate the config so the driver could override it after
5485	 * parsing init data.
5486	 */
5487	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5488	if (config == NULL) {
5489		ret = -ENOMEM;
5490		goto clean;
5491	}
5492
5493	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5494					       &rdev->dev.of_node);
5495
5496	/*
5497	 * Sometimes not all resources are probed already so we need to take
5498	 * that into account. This happens most the time if the ena_gpiod comes
5499	 * from a gpio extender or something else.
5500	 */
5501	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5502		ret = -EPROBE_DEFER;
5503		goto clean;
5504	}
5505
5506	/*
5507	 * We need to keep track of any GPIO descriptor coming from the
5508	 * device tree until we have handled it over to the core. If the
5509	 * config that was passed in to this function DOES NOT contain
5510	 * a descriptor, and the config after this call DOES contain
5511	 * a descriptor, we definitely got one from parsing the device
5512	 * tree.
5513	 */
5514	if (!cfg->ena_gpiod && config->ena_gpiod)
5515		dangling_of_gpiod = true;
5516	if (!init_data) {
5517		init_data = config->init_data;
5518		rdev->dev.of_node = of_node_get(config->of_node);
5519	}
5520
5521	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5522	rdev->reg_data = config->driver_data;
5523	rdev->owner = regulator_desc->owner;
5524	rdev->desc = regulator_desc;
5525	if (config->regmap)
5526		rdev->regmap = config->regmap;
5527	else if (dev_get_regmap(dev, NULL))
5528		rdev->regmap = dev_get_regmap(dev, NULL);
5529	else if (dev->parent)
5530		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5531	INIT_LIST_HEAD(&rdev->consumer_list);
5532	INIT_LIST_HEAD(&rdev->list);
5533	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5534	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5535
5536	if (init_data && init_data->supply_regulator)
5537		rdev->supply_name = init_data->supply_regulator;
5538	else if (regulator_desc->supply_name)
5539		rdev->supply_name = regulator_desc->supply_name;
5540
5541	/* register with sysfs */
5542	rdev->dev.class = &regulator_class;
5543	rdev->dev.parent = config->dev;
5544	dev_set_name(&rdev->dev, "regulator.%lu",
5545		    (unsigned long) atomic_inc_return(&regulator_no));
5546	dev_set_drvdata(&rdev->dev, rdev);
5547
5548	/* set regulator constraints */
5549	if (init_data)
5550		rdev->constraints = kmemdup(&init_data->constraints,
5551					    sizeof(*rdev->constraints),
5552					    GFP_KERNEL);
5553	else
5554		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5555					    GFP_KERNEL);
5556	if (!rdev->constraints) {
5557		ret = -ENOMEM;
5558		goto wash;
5559	}
5560
5561	if ((rdev->supply_name && !rdev->supply) &&
5562		(rdev->constraints->always_on ||
5563		 rdev->constraints->boot_on)) {
5564		ret = regulator_resolve_supply(rdev);
5565		if (ret)
5566			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5567					 ERR_PTR(ret));
5568
5569		resolved_early = true;
5570	}
5571
5572	/* perform any regulator specific init */
5573	if (init_data && init_data->regulator_init) {
5574		ret = init_data->regulator_init(rdev->reg_data);
5575		if (ret < 0)
5576			goto wash;
5577	}
5578
5579	if (config->ena_gpiod) {
5580		ret = regulator_ena_gpio_request(rdev, config);
5581		if (ret != 0) {
5582			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5583				 ERR_PTR(ret));
5584			goto wash;
5585		}
5586		/* The regulator core took over the GPIO descriptor */
5587		dangling_cfg_gpiod = false;
5588		dangling_of_gpiod = false;
5589	}
5590
5591	ret = set_machine_constraints(rdev);
5592	if (ret == -EPROBE_DEFER && !resolved_early) {
5593		/* Regulator might be in bypass mode and so needs its supply
5594		 * to set the constraints
5595		 */
5596		/* FIXME: this currently triggers a chicken-and-egg problem
5597		 * when creating -SUPPLY symlink in sysfs to a regulator
5598		 * that is just being created
5599		 */
5600		rdev_dbg(rdev, "will resolve supply early: %s\n",
5601			 rdev->supply_name);
5602		ret = regulator_resolve_supply(rdev);
5603		if (!ret)
5604			ret = set_machine_constraints(rdev);
5605		else
5606			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5607				 ERR_PTR(ret));
5608	}
5609	if (ret < 0)
5610		goto wash;
5611
5612	ret = regulator_init_coupling(rdev);
5613	if (ret < 0)
5614		goto wash;
5615
5616	/* add consumers devices */
5617	if (init_data) {
5618		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5619			ret = set_consumer_device_supply(rdev,
5620				init_data->consumer_supplies[i].dev_name,
5621				init_data->consumer_supplies[i].supply);
5622			if (ret < 0) {
5623				dev_err(dev, "Failed to set supply %s\n",
5624					init_data->consumer_supplies[i].supply);
5625				goto unset_supplies;
5626			}
5627		}
5628	}
5629
5630	if (!rdev->desc->ops->get_voltage &&
5631	    !rdev->desc->ops->list_voltage &&
5632	    !rdev->desc->fixed_uV)
5633		rdev->is_switch = true;
5634
5635	ret = device_add(&rdev->dev);
5636	if (ret != 0)
5637		goto unset_supplies;
5638
5639	rdev_init_debugfs(rdev);
5640
5641	/* try to resolve regulators coupling since a new one was registered */
5642	mutex_lock(&regulator_list_mutex);
5643	regulator_resolve_coupling(rdev);
5644	mutex_unlock(&regulator_list_mutex);
5645
5646	/* try to resolve regulators supply since a new one was registered */
5647	class_for_each_device(&regulator_class, NULL, NULL,
5648			      regulator_register_resolve_supply);
5649	kfree(config);
5650	return rdev;
5651
5652unset_supplies:
5653	mutex_lock(&regulator_list_mutex);
5654	unset_regulator_supplies(rdev);
5655	regulator_remove_coupling(rdev);
5656	mutex_unlock(&regulator_list_mutex);
5657wash:
5658	regulator_put(rdev->supply);
5659	kfree(rdev->coupling_desc.coupled_rdevs);
5660	mutex_lock(&regulator_list_mutex);
5661	regulator_ena_gpio_free(rdev);
5662	mutex_unlock(&regulator_list_mutex);
5663	put_device(&rdev->dev);
5664	rdev = NULL;
5665clean:
5666	if (dangling_of_gpiod)
5667		gpiod_put(config->ena_gpiod);
5668	if (rdev && rdev->dev.of_node)
5669		of_node_put(rdev->dev.of_node);
5670	kfree(rdev);
5671	kfree(config);
 
5672rinse:
5673	if (dangling_cfg_gpiod)
5674		gpiod_put(cfg->ena_gpiod);
5675	return ERR_PTR(ret);
5676}
5677EXPORT_SYMBOL_GPL(regulator_register);
5678
5679/**
5680 * regulator_unregister - unregister regulator
5681 * @rdev: regulator to unregister
5682 *
5683 * Called by regulator drivers to unregister a regulator.
5684 */
5685void regulator_unregister(struct regulator_dev *rdev)
5686{
5687	if (rdev == NULL)
5688		return;
5689
5690	if (rdev->supply) {
5691		while (rdev->use_count--)
5692			regulator_disable(rdev->supply);
5693		regulator_put(rdev->supply);
5694	}
5695
5696	flush_work(&rdev->disable_work.work);
5697
5698	mutex_lock(&regulator_list_mutex);
5699
5700	WARN_ON(rdev->open_count);
5701	regulator_remove_coupling(rdev);
5702	unset_regulator_supplies(rdev);
5703	list_del(&rdev->list);
5704	regulator_ena_gpio_free(rdev);
5705	device_unregister(&rdev->dev);
5706
5707	mutex_unlock(&regulator_list_mutex);
5708}
5709EXPORT_SYMBOL_GPL(regulator_unregister);
5710
5711#ifdef CONFIG_SUSPEND
5712/**
5713 * regulator_suspend - prepare regulators for system wide suspend
5714 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5715 *
5716 * Configure each regulator with it's suspend operating parameters for state.
5717 */
5718static int regulator_suspend(struct device *dev)
5719{
5720	struct regulator_dev *rdev = dev_to_rdev(dev);
5721	suspend_state_t state = pm_suspend_target_state;
5722	int ret;
5723	const struct regulator_state *rstate;
5724
5725	rstate = regulator_get_suspend_state_check(rdev, state);
5726	if (!rstate)
5727		return 0;
5728
5729	regulator_lock(rdev);
5730	ret = __suspend_set_state(rdev, rstate);
5731	regulator_unlock(rdev);
5732
5733	return ret;
5734}
5735
5736static int regulator_resume(struct device *dev)
5737{
5738	suspend_state_t state = pm_suspend_target_state;
5739	struct regulator_dev *rdev = dev_to_rdev(dev);
5740	struct regulator_state *rstate;
5741	int ret = 0;
5742
5743	rstate = regulator_get_suspend_state(rdev, state);
5744	if (rstate == NULL)
5745		return 0;
5746
5747	/* Avoid grabbing the lock if we don't need to */
5748	if (!rdev->desc->ops->resume)
5749		return 0;
5750
5751	regulator_lock(rdev);
5752
5753	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5754	    rstate->enabled == DISABLE_IN_SUSPEND)
5755		ret = rdev->desc->ops->resume(rdev);
5756
5757	regulator_unlock(rdev);
5758
5759	return ret;
5760}
5761#else /* !CONFIG_SUSPEND */
5762
5763#define regulator_suspend	NULL
5764#define regulator_resume	NULL
5765
5766#endif /* !CONFIG_SUSPEND */
5767
5768#ifdef CONFIG_PM
5769static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5770	.suspend	= regulator_suspend,
5771	.resume		= regulator_resume,
5772};
5773#endif
5774
5775struct class regulator_class = {
5776	.name = "regulator",
5777	.dev_release = regulator_dev_release,
5778	.dev_groups = regulator_dev_groups,
5779#ifdef CONFIG_PM
5780	.pm = &regulator_pm_ops,
5781#endif
5782};
5783/**
5784 * regulator_has_full_constraints - the system has fully specified constraints
5785 *
5786 * Calling this function will cause the regulator API to disable all
5787 * regulators which have a zero use count and don't have an always_on
5788 * constraint in a late_initcall.
5789 *
5790 * The intention is that this will become the default behaviour in a
5791 * future kernel release so users are encouraged to use this facility
5792 * now.
5793 */
5794void regulator_has_full_constraints(void)
5795{
5796	has_full_constraints = 1;
5797}
5798EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5799
5800/**
5801 * rdev_get_drvdata - get rdev regulator driver data
5802 * @rdev: regulator
5803 *
5804 * Get rdev regulator driver private data. This call can be used in the
5805 * regulator driver context.
5806 */
5807void *rdev_get_drvdata(struct regulator_dev *rdev)
5808{
5809	return rdev->reg_data;
5810}
5811EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5812
5813/**
5814 * regulator_get_drvdata - get regulator driver data
5815 * @regulator: regulator
5816 *
5817 * Get regulator driver private data. This call can be used in the consumer
5818 * driver context when non API regulator specific functions need to be called.
5819 */
5820void *regulator_get_drvdata(struct regulator *regulator)
5821{
5822	return regulator->rdev->reg_data;
5823}
5824EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5825
5826/**
5827 * regulator_set_drvdata - set regulator driver data
5828 * @regulator: regulator
5829 * @data: data
5830 */
5831void regulator_set_drvdata(struct regulator *regulator, void *data)
5832{
5833	regulator->rdev->reg_data = data;
5834}
5835EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5836
5837/**
5838 * rdev_get_id - get regulator ID
5839 * @rdev: regulator
5840 */
5841int rdev_get_id(struct regulator_dev *rdev)
5842{
5843	return rdev->desc->id;
5844}
5845EXPORT_SYMBOL_GPL(rdev_get_id);
5846
5847struct device *rdev_get_dev(struct regulator_dev *rdev)
5848{
5849	return &rdev->dev;
5850}
5851EXPORT_SYMBOL_GPL(rdev_get_dev);
5852
5853struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5854{
5855	return rdev->regmap;
5856}
5857EXPORT_SYMBOL_GPL(rdev_get_regmap);
5858
5859void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5860{
5861	return reg_init_data->driver_data;
5862}
5863EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5864
5865#ifdef CONFIG_DEBUG_FS
5866static int supply_map_show(struct seq_file *sf, void *data)
5867{
5868	struct regulator_map *map;
5869
5870	list_for_each_entry(map, &regulator_map_list, list) {
5871		seq_printf(sf, "%s -> %s.%s\n",
5872				rdev_get_name(map->regulator), map->dev_name,
5873				map->supply);
5874	}
5875
5876	return 0;
5877}
5878DEFINE_SHOW_ATTRIBUTE(supply_map);
5879
5880struct summary_data {
5881	struct seq_file *s;
5882	struct regulator_dev *parent;
5883	int level;
5884};
5885
5886static void regulator_summary_show_subtree(struct seq_file *s,
5887					   struct regulator_dev *rdev,
5888					   int level);
5889
5890static int regulator_summary_show_children(struct device *dev, void *data)
5891{
5892	struct regulator_dev *rdev = dev_to_rdev(dev);
5893	struct summary_data *summary_data = data;
5894
5895	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5896		regulator_summary_show_subtree(summary_data->s, rdev,
5897					       summary_data->level + 1);
5898
5899	return 0;
5900}
5901
5902static void regulator_summary_show_subtree(struct seq_file *s,
5903					   struct regulator_dev *rdev,
5904					   int level)
5905{
5906	struct regulation_constraints *c;
5907	struct regulator *consumer;
5908	struct summary_data summary_data;
5909	unsigned int opmode;
5910
5911	if (!rdev)
5912		return;
5913
5914	opmode = _regulator_get_mode_unlocked(rdev);
5915	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5916		   level * 3 + 1, "",
5917		   30 - level * 3, rdev_get_name(rdev),
5918		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5919		   regulator_opmode_to_str(opmode));
5920
5921	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5922	seq_printf(s, "%5dmA ",
5923		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5924
5925	c = rdev->constraints;
5926	if (c) {
5927		switch (rdev->desc->type) {
5928		case REGULATOR_VOLTAGE:
5929			seq_printf(s, "%5dmV %5dmV ",
5930				   c->min_uV / 1000, c->max_uV / 1000);
5931			break;
5932		case REGULATOR_CURRENT:
5933			seq_printf(s, "%5dmA %5dmA ",
5934				   c->min_uA / 1000, c->max_uA / 1000);
5935			break;
5936		}
5937	}
5938
5939	seq_puts(s, "\n");
5940
5941	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5942		if (consumer->dev && consumer->dev->class == &regulator_class)
5943			continue;
5944
5945		seq_printf(s, "%*s%-*s ",
5946			   (level + 1) * 3 + 1, "",
5947			   30 - (level + 1) * 3,
5948			   consumer->supply_name ? consumer->supply_name :
5949			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5950
5951		switch (rdev->desc->type) {
5952		case REGULATOR_VOLTAGE:
5953			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5954				   consumer->enable_count,
5955				   consumer->uA_load / 1000,
5956				   consumer->uA_load && !consumer->enable_count ?
5957				   '*' : ' ',
5958				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5959				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5960			break;
5961		case REGULATOR_CURRENT:
5962			break;
5963		}
5964
5965		seq_puts(s, "\n");
5966	}
5967
5968	summary_data.s = s;
5969	summary_data.level = level;
5970	summary_data.parent = rdev;
5971
5972	class_for_each_device(&regulator_class, NULL, &summary_data,
5973			      regulator_summary_show_children);
5974}
5975
5976struct summary_lock_data {
5977	struct ww_acquire_ctx *ww_ctx;
5978	struct regulator_dev **new_contended_rdev;
5979	struct regulator_dev **old_contended_rdev;
5980};
5981
5982static int regulator_summary_lock_one(struct device *dev, void *data)
5983{
5984	struct regulator_dev *rdev = dev_to_rdev(dev);
5985	struct summary_lock_data *lock_data = data;
5986	int ret = 0;
5987
5988	if (rdev != *lock_data->old_contended_rdev) {
5989		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5990
5991		if (ret == -EDEADLK)
5992			*lock_data->new_contended_rdev = rdev;
5993		else
5994			WARN_ON_ONCE(ret);
5995	} else {
5996		*lock_data->old_contended_rdev = NULL;
5997	}
5998
5999	return ret;
6000}
6001
6002static int regulator_summary_unlock_one(struct device *dev, void *data)
6003{
6004	struct regulator_dev *rdev = dev_to_rdev(dev);
6005	struct summary_lock_data *lock_data = data;
6006
6007	if (lock_data) {
6008		if (rdev == *lock_data->new_contended_rdev)
6009			return -EDEADLK;
6010	}
6011
6012	regulator_unlock(rdev);
6013
6014	return 0;
6015}
6016
6017static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6018				      struct regulator_dev **new_contended_rdev,
6019				      struct regulator_dev **old_contended_rdev)
6020{
6021	struct summary_lock_data lock_data;
6022	int ret;
6023
6024	lock_data.ww_ctx = ww_ctx;
6025	lock_data.new_contended_rdev = new_contended_rdev;
6026	lock_data.old_contended_rdev = old_contended_rdev;
6027
6028	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6029				    regulator_summary_lock_one);
6030	if (ret)
6031		class_for_each_device(&regulator_class, NULL, &lock_data,
6032				      regulator_summary_unlock_one);
6033
6034	return ret;
6035}
6036
6037static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6038{
6039	struct regulator_dev *new_contended_rdev = NULL;
6040	struct regulator_dev *old_contended_rdev = NULL;
6041	int err;
6042
6043	mutex_lock(&regulator_list_mutex);
6044
6045	ww_acquire_init(ww_ctx, &regulator_ww_class);
6046
6047	do {
6048		if (new_contended_rdev) {
6049			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6050			old_contended_rdev = new_contended_rdev;
6051			old_contended_rdev->ref_cnt++;
 
6052		}
6053
6054		err = regulator_summary_lock_all(ww_ctx,
6055						 &new_contended_rdev,
6056						 &old_contended_rdev);
6057
6058		if (old_contended_rdev)
6059			regulator_unlock(old_contended_rdev);
6060
6061	} while (err == -EDEADLK);
6062
6063	ww_acquire_done(ww_ctx);
6064}
6065
6066static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6067{
6068	class_for_each_device(&regulator_class, NULL, NULL,
6069			      regulator_summary_unlock_one);
6070	ww_acquire_fini(ww_ctx);
6071
6072	mutex_unlock(&regulator_list_mutex);
6073}
6074
6075static int regulator_summary_show_roots(struct device *dev, void *data)
6076{
6077	struct regulator_dev *rdev = dev_to_rdev(dev);
6078	struct seq_file *s = data;
6079
6080	if (!rdev->supply)
6081		regulator_summary_show_subtree(s, rdev, 0);
6082
6083	return 0;
6084}
6085
6086static int regulator_summary_show(struct seq_file *s, void *data)
6087{
6088	struct ww_acquire_ctx ww_ctx;
6089
6090	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6091	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6092
6093	regulator_summary_lock(&ww_ctx);
6094
6095	class_for_each_device(&regulator_class, NULL, s,
6096			      regulator_summary_show_roots);
6097
6098	regulator_summary_unlock(&ww_ctx);
6099
6100	return 0;
6101}
6102DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6103#endif /* CONFIG_DEBUG_FS */
6104
6105static int __init regulator_init(void)
6106{
6107	int ret;
6108
6109	ret = class_register(&regulator_class);
6110
6111	debugfs_root = debugfs_create_dir("regulator", NULL);
6112	if (!debugfs_root)
6113		pr_warn("regulator: Failed to create debugfs directory\n");
6114
6115#ifdef CONFIG_DEBUG_FS
6116	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6117			    &supply_map_fops);
6118
6119	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6120			    NULL, &regulator_summary_fops);
6121#endif
6122	regulator_dummy_init();
6123
6124	regulator_coupler_register(&generic_regulator_coupler);
6125
6126	return ret;
6127}
6128
6129/* init early to allow our consumers to complete system booting */
6130core_initcall(regulator_init);
6131
6132static int regulator_late_cleanup(struct device *dev, void *data)
6133{
6134	struct regulator_dev *rdev = dev_to_rdev(dev);
6135	struct regulation_constraints *c = rdev->constraints;
6136	int ret;
6137
6138	if (c && c->always_on)
6139		return 0;
6140
6141	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6142		return 0;
6143
6144	regulator_lock(rdev);
6145
6146	if (rdev->use_count)
6147		goto unlock;
6148
6149	/* If reading the status failed, assume that it's off. */
6150	if (_regulator_is_enabled(rdev) <= 0)
6151		goto unlock;
6152
6153	if (have_full_constraints()) {
6154		/* We log since this may kill the system if it goes
6155		 * wrong.
6156		 */
6157		rdev_info(rdev, "disabling\n");
6158		ret = _regulator_do_disable(rdev);
6159		if (ret != 0)
6160			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6161	} else {
6162		/* The intention is that in future we will
6163		 * assume that full constraints are provided
6164		 * so warn even if we aren't going to do
6165		 * anything here.
6166		 */
6167		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6168	}
6169
6170unlock:
6171	regulator_unlock(rdev);
6172
6173	return 0;
6174}
6175
 
 
 
 
 
 
 
 
6176static void regulator_init_complete_work_function(struct work_struct *work)
6177{
6178	/*
6179	 * Regulators may had failed to resolve their input supplies
6180	 * when were registered, either because the input supply was
6181	 * not registered yet or because its parent device was not
6182	 * bound yet. So attempt to resolve the input supplies for
6183	 * pending regulators before trying to disable unused ones.
6184	 */
6185	class_for_each_device(&regulator_class, NULL, NULL,
6186			      regulator_register_resolve_supply);
 
 
 
 
 
 
 
 
 
6187
6188	/* If we have a full configuration then disable any regulators
6189	 * we have permission to change the status for and which are
6190	 * not in use or always_on.  This is effectively the default
6191	 * for DT and ACPI as they have full constraints.
6192	 */
6193	class_for_each_device(&regulator_class, NULL, NULL,
6194			      regulator_late_cleanup);
6195}
6196
6197static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6198			    regulator_init_complete_work_function);
6199
6200static int __init regulator_init_complete(void)
6201{
6202	/*
6203	 * Since DT doesn't provide an idiomatic mechanism for
6204	 * enabling full constraints and since it's much more natural
6205	 * with DT to provide them just assume that a DT enabled
6206	 * system has full constraints.
6207	 */
6208	if (of_have_populated_dt())
6209		has_full_constraints = true;
6210
6211	/*
6212	 * We punt completion for an arbitrary amount of time since
6213	 * systems like distros will load many drivers from userspace
6214	 * so consumers might not always be ready yet, this is
6215	 * particularly an issue with laptops where this might bounce
6216	 * the display off then on.  Ideally we'd get a notification
6217	 * from userspace when this happens but we don't so just wait
6218	 * a bit and hope we waited long enough.  It'd be better if
6219	 * we'd only do this on systems that need it, and a kernel
6220	 * command line option might be useful.
6221	 */
6222	schedule_delayed_work(&regulator_init_complete_work,
6223			      msecs_to_jiffies(30000));
6224
6225	return 0;
6226}
6227late_initcall_sync(regulator_init_complete);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/reboot.h>
  23#include <linux/regmap.h>
  24#include <linux/regulator/of_regulator.h>
  25#include <linux/regulator/consumer.h>
  26#include <linux/regulator/coupler.h>
  27#include <linux/regulator/driver.h>
  28#include <linux/regulator/machine.h>
  29#include <linux/module.h>
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/regulator.h>
  33
  34#include "dummy.h"
  35#include "internal.h"
  36#include "regnl.h"
  37
  38static DEFINE_WW_CLASS(regulator_ww_class);
  39static DEFINE_MUTEX(regulator_nesting_mutex);
  40static DEFINE_MUTEX(regulator_list_mutex);
  41static LIST_HEAD(regulator_map_list);
  42static LIST_HEAD(regulator_ena_gpio_list);
  43static LIST_HEAD(regulator_supply_alias_list);
  44static LIST_HEAD(regulator_coupler_list);
  45static bool has_full_constraints;
  46
  47static struct dentry *debugfs_root;
  48
  49/*
  50 * struct regulator_map
  51 *
  52 * Used to provide symbolic supply names to devices.
  53 */
  54struct regulator_map {
  55	struct list_head list;
  56	const char *dev_name;   /* The dev_name() for the consumer */
  57	const char *supply;
  58	struct regulator_dev *regulator;
  59};
  60
  61/*
  62 * struct regulator_enable_gpio
  63 *
  64 * Management for shared enable GPIO pin
  65 */
  66struct regulator_enable_gpio {
  67	struct list_head list;
  68	struct gpio_desc *gpiod;
  69	u32 enable_count;	/* a number of enabled shared GPIO */
  70	u32 request_count;	/* a number of requested shared GPIO */
  71};
  72
  73/*
  74 * struct regulator_supply_alias
  75 *
  76 * Used to map lookups for a supply onto an alternative device.
  77 */
  78struct regulator_supply_alias {
  79	struct list_head list;
  80	struct device *src_dev;
  81	const char *src_supply;
  82	struct device *alias_dev;
  83	const char *alias_supply;
  84};
  85
  86static int _regulator_is_enabled(struct regulator_dev *rdev);
  87static int _regulator_disable(struct regulator *regulator);
  88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
  89static int _regulator_get_current_limit(struct regulator_dev *rdev);
  90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  91static int _notifier_call_chain(struct regulator_dev *rdev,
  92				  unsigned long event, void *data);
  93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  94				     int min_uV, int max_uV);
  95static int regulator_balance_voltage(struct regulator_dev *rdev,
  96				     suspend_state_t state);
  97static struct regulator *create_regulator(struct regulator_dev *rdev,
  98					  struct device *dev,
  99					  const char *supply_name);
 100static void destroy_regulator(struct regulator *regulator);
 101static void _regulator_put(struct regulator *regulator);
 102
 103const char *rdev_get_name(struct regulator_dev *rdev)
 104{
 105	if (rdev->constraints && rdev->constraints->name)
 106		return rdev->constraints->name;
 107	else if (rdev->desc->name)
 108		return rdev->desc->name;
 109	else
 110		return "";
 111}
 112EXPORT_SYMBOL_GPL(rdev_get_name);
 113
 114static bool have_full_constraints(void)
 115{
 116	return has_full_constraints || of_have_populated_dt();
 117}
 118
 119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 120{
 121	if (!rdev->constraints) {
 122		rdev_err(rdev, "no constraints\n");
 123		return false;
 124	}
 125
 126	if (rdev->constraints->valid_ops_mask & ops)
 127		return true;
 128
 129	return false;
 130}
 131
 132/**
 133 * regulator_lock_nested - lock a single regulator
 134 * @rdev:		regulator source
 135 * @ww_ctx:		w/w mutex acquire context
 136 *
 137 * This function can be called many times by one task on
 138 * a single regulator and its mutex will be locked only
 139 * once. If a task, which is calling this function is other
 140 * than the one, which initially locked the mutex, it will
 141 * wait on mutex.
 142 */
 143static inline int regulator_lock_nested(struct regulator_dev *rdev,
 144					struct ww_acquire_ctx *ww_ctx)
 145{
 146	bool lock = false;
 147	int ret = 0;
 148
 149	mutex_lock(&regulator_nesting_mutex);
 150
 151	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
 152		if (rdev->mutex_owner == current)
 153			rdev->ref_cnt++;
 154		else
 155			lock = true;
 156
 157		if (lock) {
 158			mutex_unlock(&regulator_nesting_mutex);
 159			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 160			mutex_lock(&regulator_nesting_mutex);
 161		}
 162	} else {
 163		lock = true;
 164	}
 165
 166	if (lock && ret != -EDEADLK) {
 167		rdev->ref_cnt++;
 168		rdev->mutex_owner = current;
 169	}
 170
 171	mutex_unlock(&regulator_nesting_mutex);
 172
 173	return ret;
 174}
 175
 176/**
 177 * regulator_lock - lock a single regulator
 178 * @rdev:		regulator source
 179 *
 180 * This function can be called many times by one task on
 181 * a single regulator and its mutex will be locked only
 182 * once. If a task, which is calling this function is other
 183 * than the one, which initially locked the mutex, it will
 184 * wait on mutex.
 185 */
 186static void regulator_lock(struct regulator_dev *rdev)
 187{
 188	regulator_lock_nested(rdev, NULL);
 189}
 190
 191/**
 192 * regulator_unlock - unlock a single regulator
 193 * @rdev:		regulator_source
 194 *
 195 * This function unlocks the mutex when the
 196 * reference counter reaches 0.
 197 */
 198static void regulator_unlock(struct regulator_dev *rdev)
 199{
 200	mutex_lock(&regulator_nesting_mutex);
 201
 202	if (--rdev->ref_cnt == 0) {
 203		rdev->mutex_owner = NULL;
 204		ww_mutex_unlock(&rdev->mutex);
 205	}
 206
 207	WARN_ON_ONCE(rdev->ref_cnt < 0);
 208
 209	mutex_unlock(&regulator_nesting_mutex);
 210}
 211
 212/**
 213 * regulator_lock_two - lock two regulators
 214 * @rdev1:		first regulator
 215 * @rdev2:		second regulator
 216 * @ww_ctx:		w/w mutex acquire context
 217 *
 218 * Locks both rdevs using the regulator_ww_class.
 219 */
 220static void regulator_lock_two(struct regulator_dev *rdev1,
 221			       struct regulator_dev *rdev2,
 222			       struct ww_acquire_ctx *ww_ctx)
 223{
 224	struct regulator_dev *held, *contended;
 225	int ret;
 226
 227	ww_acquire_init(ww_ctx, &regulator_ww_class);
 228
 229	/* Try to just grab both of them */
 230	ret = regulator_lock_nested(rdev1, ww_ctx);
 231	WARN_ON(ret);
 232	ret = regulator_lock_nested(rdev2, ww_ctx);
 233	if (ret != -EDEADLOCK) {
 234		WARN_ON(ret);
 235		goto exit;
 236	}
 237
 238	held = rdev1;
 239	contended = rdev2;
 240	while (true) {
 241		regulator_unlock(held);
 242
 243		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
 244		contended->ref_cnt++;
 245		contended->mutex_owner = current;
 246		swap(held, contended);
 247		ret = regulator_lock_nested(contended, ww_ctx);
 248
 249		if (ret != -EDEADLOCK) {
 250			WARN_ON(ret);
 251			break;
 252		}
 253	}
 254
 255exit:
 256	ww_acquire_done(ww_ctx);
 257}
 258
 259/**
 260 * regulator_unlock_two - unlock two regulators
 261 * @rdev1:		first regulator
 262 * @rdev2:		second regulator
 263 * @ww_ctx:		w/w mutex acquire context
 264 *
 265 * The inverse of regulator_lock_two().
 266 */
 267
 268static void regulator_unlock_two(struct regulator_dev *rdev1,
 269				 struct regulator_dev *rdev2,
 270				 struct ww_acquire_ctx *ww_ctx)
 271{
 272	regulator_unlock(rdev2);
 273	regulator_unlock(rdev1);
 274	ww_acquire_fini(ww_ctx);
 275}
 276
 277static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 278{
 279	struct regulator_dev *c_rdev;
 280	int i;
 281
 282	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 283		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 284
 285		if (rdev->supply->rdev == c_rdev)
 286			return true;
 287	}
 288
 289	return false;
 290}
 291
 292static void regulator_unlock_recursive(struct regulator_dev *rdev,
 293				       unsigned int n_coupled)
 294{
 295	struct regulator_dev *c_rdev, *supply_rdev;
 296	int i, supply_n_coupled;
 297
 298	for (i = n_coupled; i > 0; i--) {
 299		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 300
 301		if (!c_rdev)
 302			continue;
 303
 304		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 305			supply_rdev = c_rdev->supply->rdev;
 306			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
 307
 308			regulator_unlock_recursive(supply_rdev,
 309						   supply_n_coupled);
 310		}
 311
 312		regulator_unlock(c_rdev);
 313	}
 314}
 315
 316static int regulator_lock_recursive(struct regulator_dev *rdev,
 317				    struct regulator_dev **new_contended_rdev,
 318				    struct regulator_dev **old_contended_rdev,
 319				    struct ww_acquire_ctx *ww_ctx)
 320{
 321	struct regulator_dev *c_rdev;
 322	int i, err;
 323
 324	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 325		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 326
 327		if (!c_rdev)
 328			continue;
 329
 330		if (c_rdev != *old_contended_rdev) {
 331			err = regulator_lock_nested(c_rdev, ww_ctx);
 332			if (err) {
 333				if (err == -EDEADLK) {
 334					*new_contended_rdev = c_rdev;
 335					goto err_unlock;
 336				}
 337
 338				/* shouldn't happen */
 339				WARN_ON_ONCE(err != -EALREADY);
 340			}
 341		} else {
 342			*old_contended_rdev = NULL;
 343		}
 344
 345		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 346			err = regulator_lock_recursive(c_rdev->supply->rdev,
 347						       new_contended_rdev,
 348						       old_contended_rdev,
 349						       ww_ctx);
 350			if (err) {
 351				regulator_unlock(c_rdev);
 352				goto err_unlock;
 353			}
 354		}
 355	}
 356
 357	return 0;
 358
 359err_unlock:
 360	regulator_unlock_recursive(rdev, i);
 361
 362	return err;
 363}
 364
 365/**
 366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 367 *				regulators
 368 * @rdev:			regulator source
 369 * @ww_ctx:			w/w mutex acquire context
 370 *
 371 * Unlock all regulators related with rdev by coupling or supplying.
 372 */
 373static void regulator_unlock_dependent(struct regulator_dev *rdev,
 374				       struct ww_acquire_ctx *ww_ctx)
 375{
 376	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 377	ww_acquire_fini(ww_ctx);
 378}
 379
 380/**
 381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 382 * @rdev:			regulator source
 383 * @ww_ctx:			w/w mutex acquire context
 384 *
 385 * This function as a wrapper on regulator_lock_recursive(), which locks
 386 * all regulators related with rdev by coupling or supplying.
 387 */
 388static void regulator_lock_dependent(struct regulator_dev *rdev,
 389				     struct ww_acquire_ctx *ww_ctx)
 390{
 391	struct regulator_dev *new_contended_rdev = NULL;
 392	struct regulator_dev *old_contended_rdev = NULL;
 393	int err;
 394
 395	mutex_lock(&regulator_list_mutex);
 396
 397	ww_acquire_init(ww_ctx, &regulator_ww_class);
 398
 399	do {
 400		if (new_contended_rdev) {
 401			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 402			old_contended_rdev = new_contended_rdev;
 403			old_contended_rdev->ref_cnt++;
 404			old_contended_rdev->mutex_owner = current;
 405		}
 406
 407		err = regulator_lock_recursive(rdev,
 408					       &new_contended_rdev,
 409					       &old_contended_rdev,
 410					       ww_ctx);
 411
 412		if (old_contended_rdev)
 413			regulator_unlock(old_contended_rdev);
 414
 415	} while (err == -EDEADLK);
 416
 417	ww_acquire_done(ww_ctx);
 418
 419	mutex_unlock(&regulator_list_mutex);
 420}
 421
 422/**
 423 * of_get_child_regulator - get a child regulator device node
 424 * based on supply name
 425 * @parent: Parent device node
 426 * @prop_name: Combination regulator supply name and "-supply"
 427 *
 428 * Traverse all child nodes.
 429 * Extract the child regulator device node corresponding to the supply name.
 430 * returns the device node corresponding to the regulator if found, else
 431 * returns NULL.
 432 */
 433static struct device_node *of_get_child_regulator(struct device_node *parent,
 434						  const char *prop_name)
 435{
 436	struct device_node *regnode = NULL;
 437	struct device_node *child = NULL;
 438
 439	for_each_child_of_node(parent, child) {
 440		regnode = of_parse_phandle(child, prop_name, 0);
 441
 442		if (!regnode) {
 443			regnode = of_get_child_regulator(child, prop_name);
 444			if (regnode)
 445				goto err_node_put;
 446		} else {
 447			goto err_node_put;
 448		}
 449	}
 450	return NULL;
 451
 452err_node_put:
 453	of_node_put(child);
 454	return regnode;
 455}
 456
 457/**
 458 * of_get_regulator - get a regulator device node based on supply name
 459 * @dev: Device pointer for the consumer (of regulator) device
 460 * @supply: regulator supply name
 461 *
 462 * Extract the regulator device node corresponding to the supply name.
 463 * returns the device node corresponding to the regulator if found, else
 464 * returns NULL.
 465 */
 466static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 467{
 468	struct device_node *regnode = NULL;
 469	char prop_name[64]; /* 64 is max size of property name */
 470
 471	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 472
 473	snprintf(prop_name, 64, "%s-supply", supply);
 474	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 475
 476	if (!regnode) {
 477		regnode = of_get_child_regulator(dev->of_node, prop_name);
 478		if (regnode)
 479			return regnode;
 480
 481		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 482				prop_name, dev->of_node);
 483		return NULL;
 484	}
 485	return regnode;
 486}
 487
 488/* Platform voltage constraint check */
 489int regulator_check_voltage(struct regulator_dev *rdev,
 490			    int *min_uV, int *max_uV)
 491{
 492	BUG_ON(*min_uV > *max_uV);
 493
 494	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 495		rdev_err(rdev, "voltage operation not allowed\n");
 496		return -EPERM;
 497	}
 498
 499	if (*max_uV > rdev->constraints->max_uV)
 500		*max_uV = rdev->constraints->max_uV;
 501	if (*min_uV < rdev->constraints->min_uV)
 502		*min_uV = rdev->constraints->min_uV;
 503
 504	if (*min_uV > *max_uV) {
 505		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 506			 *min_uV, *max_uV);
 507		return -EINVAL;
 508	}
 509
 510	return 0;
 511}
 512
 513/* return 0 if the state is valid */
 514static int regulator_check_states(suspend_state_t state)
 515{
 516	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 517}
 518
 519/* Make sure we select a voltage that suits the needs of all
 520 * regulator consumers
 521 */
 522int regulator_check_consumers(struct regulator_dev *rdev,
 523			      int *min_uV, int *max_uV,
 524			      suspend_state_t state)
 525{
 526	struct regulator *regulator;
 527	struct regulator_voltage *voltage;
 528
 529	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 530		voltage = &regulator->voltage[state];
 531		/*
 532		 * Assume consumers that didn't say anything are OK
 533		 * with anything in the constraint range.
 534		 */
 535		if (!voltage->min_uV && !voltage->max_uV)
 536			continue;
 537
 538		if (*max_uV > voltage->max_uV)
 539			*max_uV = voltage->max_uV;
 540		if (*min_uV < voltage->min_uV)
 541			*min_uV = voltage->min_uV;
 542	}
 543
 544	if (*min_uV > *max_uV) {
 545		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 546			*min_uV, *max_uV);
 547		return -EINVAL;
 548	}
 549
 550	return 0;
 551}
 552
 553/* current constraint check */
 554static int regulator_check_current_limit(struct regulator_dev *rdev,
 555					int *min_uA, int *max_uA)
 556{
 557	BUG_ON(*min_uA > *max_uA);
 558
 559	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 560		rdev_err(rdev, "current operation not allowed\n");
 561		return -EPERM;
 562	}
 563
 564	if (*max_uA > rdev->constraints->max_uA)
 565		*max_uA = rdev->constraints->max_uA;
 566	if (*min_uA < rdev->constraints->min_uA)
 567		*min_uA = rdev->constraints->min_uA;
 568
 569	if (*min_uA > *max_uA) {
 570		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 571			 *min_uA, *max_uA);
 572		return -EINVAL;
 573	}
 574
 575	return 0;
 576}
 577
 578/* operating mode constraint check */
 579static int regulator_mode_constrain(struct regulator_dev *rdev,
 580				    unsigned int *mode)
 581{
 582	switch (*mode) {
 583	case REGULATOR_MODE_FAST:
 584	case REGULATOR_MODE_NORMAL:
 585	case REGULATOR_MODE_IDLE:
 586	case REGULATOR_MODE_STANDBY:
 587		break;
 588	default:
 589		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 590		return -EINVAL;
 591	}
 592
 593	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 594		rdev_err(rdev, "mode operation not allowed\n");
 595		return -EPERM;
 596	}
 597
 598	/* The modes are bitmasks, the most power hungry modes having
 599	 * the lowest values. If the requested mode isn't supported
 600	 * try higher modes.
 601	 */
 602	while (*mode) {
 603		if (rdev->constraints->valid_modes_mask & *mode)
 604			return 0;
 605		*mode /= 2;
 606	}
 607
 608	return -EINVAL;
 609}
 610
 611static inline struct regulator_state *
 612regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 613{
 614	if (rdev->constraints == NULL)
 615		return NULL;
 616
 617	switch (state) {
 618	case PM_SUSPEND_STANDBY:
 619		return &rdev->constraints->state_standby;
 620	case PM_SUSPEND_MEM:
 621		return &rdev->constraints->state_mem;
 622	case PM_SUSPEND_MAX:
 623		return &rdev->constraints->state_disk;
 624	default:
 625		return NULL;
 626	}
 627}
 628
 629static const struct regulator_state *
 630regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
 631{
 632	const struct regulator_state *rstate;
 633
 634	rstate = regulator_get_suspend_state(rdev, state);
 635	if (rstate == NULL)
 636		return NULL;
 637
 638	/* If we have no suspend mode configuration don't set anything;
 639	 * only warn if the driver implements set_suspend_voltage or
 640	 * set_suspend_mode callback.
 641	 */
 642	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 643	    rstate->enabled != DISABLE_IN_SUSPEND) {
 644		if (rdev->desc->ops->set_suspend_voltage ||
 645		    rdev->desc->ops->set_suspend_mode)
 646			rdev_warn(rdev, "No configuration\n");
 647		return NULL;
 648	}
 649
 650	return rstate;
 651}
 652
 653static ssize_t microvolts_show(struct device *dev,
 654			       struct device_attribute *attr, char *buf)
 655{
 656	struct regulator_dev *rdev = dev_get_drvdata(dev);
 657	int uV;
 658
 659	regulator_lock(rdev);
 660	uV = regulator_get_voltage_rdev(rdev);
 661	regulator_unlock(rdev);
 662
 663	if (uV < 0)
 664		return uV;
 665	return sprintf(buf, "%d\n", uV);
 666}
 667static DEVICE_ATTR_RO(microvolts);
 668
 669static ssize_t microamps_show(struct device *dev,
 670			      struct device_attribute *attr, char *buf)
 671{
 672	struct regulator_dev *rdev = dev_get_drvdata(dev);
 673
 674	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 675}
 676static DEVICE_ATTR_RO(microamps);
 677
 678static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 679			 char *buf)
 680{
 681	struct regulator_dev *rdev = dev_get_drvdata(dev);
 682
 683	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 684}
 685static DEVICE_ATTR_RO(name);
 686
 687static const char *regulator_opmode_to_str(int mode)
 688{
 689	switch (mode) {
 690	case REGULATOR_MODE_FAST:
 691		return "fast";
 692	case REGULATOR_MODE_NORMAL:
 693		return "normal";
 694	case REGULATOR_MODE_IDLE:
 695		return "idle";
 696	case REGULATOR_MODE_STANDBY:
 697		return "standby";
 698	}
 699	return "unknown";
 700}
 701
 702static ssize_t regulator_print_opmode(char *buf, int mode)
 703{
 704	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 705}
 706
 707static ssize_t opmode_show(struct device *dev,
 708			   struct device_attribute *attr, char *buf)
 709{
 710	struct regulator_dev *rdev = dev_get_drvdata(dev);
 711
 712	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 713}
 714static DEVICE_ATTR_RO(opmode);
 715
 716static ssize_t regulator_print_state(char *buf, int state)
 717{
 718	if (state > 0)
 719		return sprintf(buf, "enabled\n");
 720	else if (state == 0)
 721		return sprintf(buf, "disabled\n");
 722	else
 723		return sprintf(buf, "unknown\n");
 724}
 725
 726static ssize_t state_show(struct device *dev,
 727			  struct device_attribute *attr, char *buf)
 728{
 729	struct regulator_dev *rdev = dev_get_drvdata(dev);
 730	ssize_t ret;
 731
 732	regulator_lock(rdev);
 733	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 734	regulator_unlock(rdev);
 735
 736	return ret;
 737}
 738static DEVICE_ATTR_RO(state);
 739
 740static ssize_t status_show(struct device *dev,
 741			   struct device_attribute *attr, char *buf)
 742{
 743	struct regulator_dev *rdev = dev_get_drvdata(dev);
 744	int status;
 745	char *label;
 746
 747	status = rdev->desc->ops->get_status(rdev);
 748	if (status < 0)
 749		return status;
 750
 751	switch (status) {
 752	case REGULATOR_STATUS_OFF:
 753		label = "off";
 754		break;
 755	case REGULATOR_STATUS_ON:
 756		label = "on";
 757		break;
 758	case REGULATOR_STATUS_ERROR:
 759		label = "error";
 760		break;
 761	case REGULATOR_STATUS_FAST:
 762		label = "fast";
 763		break;
 764	case REGULATOR_STATUS_NORMAL:
 765		label = "normal";
 766		break;
 767	case REGULATOR_STATUS_IDLE:
 768		label = "idle";
 769		break;
 770	case REGULATOR_STATUS_STANDBY:
 771		label = "standby";
 772		break;
 773	case REGULATOR_STATUS_BYPASS:
 774		label = "bypass";
 775		break;
 776	case REGULATOR_STATUS_UNDEFINED:
 777		label = "undefined";
 778		break;
 779	default:
 780		return -ERANGE;
 781	}
 782
 783	return sprintf(buf, "%s\n", label);
 784}
 785static DEVICE_ATTR_RO(status);
 786
 787static ssize_t min_microamps_show(struct device *dev,
 788				  struct device_attribute *attr, char *buf)
 789{
 790	struct regulator_dev *rdev = dev_get_drvdata(dev);
 791
 792	if (!rdev->constraints)
 793		return sprintf(buf, "constraint not defined\n");
 794
 795	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 796}
 797static DEVICE_ATTR_RO(min_microamps);
 798
 799static ssize_t max_microamps_show(struct device *dev,
 800				  struct device_attribute *attr, char *buf)
 801{
 802	struct regulator_dev *rdev = dev_get_drvdata(dev);
 803
 804	if (!rdev->constraints)
 805		return sprintf(buf, "constraint not defined\n");
 806
 807	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 808}
 809static DEVICE_ATTR_RO(max_microamps);
 810
 811static ssize_t min_microvolts_show(struct device *dev,
 812				   struct device_attribute *attr, char *buf)
 813{
 814	struct regulator_dev *rdev = dev_get_drvdata(dev);
 815
 816	if (!rdev->constraints)
 817		return sprintf(buf, "constraint not defined\n");
 818
 819	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 820}
 821static DEVICE_ATTR_RO(min_microvolts);
 822
 823static ssize_t max_microvolts_show(struct device *dev,
 824				   struct device_attribute *attr, char *buf)
 825{
 826	struct regulator_dev *rdev = dev_get_drvdata(dev);
 827
 828	if (!rdev->constraints)
 829		return sprintf(buf, "constraint not defined\n");
 830
 831	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 832}
 833static DEVICE_ATTR_RO(max_microvolts);
 834
 835static ssize_t requested_microamps_show(struct device *dev,
 836					struct device_attribute *attr, char *buf)
 837{
 838	struct regulator_dev *rdev = dev_get_drvdata(dev);
 839	struct regulator *regulator;
 840	int uA = 0;
 841
 842	regulator_lock(rdev);
 843	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 844		if (regulator->enable_count)
 845			uA += regulator->uA_load;
 846	}
 847	regulator_unlock(rdev);
 848	return sprintf(buf, "%d\n", uA);
 849}
 850static DEVICE_ATTR_RO(requested_microamps);
 851
 852static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 853			      char *buf)
 854{
 855	struct regulator_dev *rdev = dev_get_drvdata(dev);
 856	return sprintf(buf, "%d\n", rdev->use_count);
 857}
 858static DEVICE_ATTR_RO(num_users);
 859
 860static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 861			 char *buf)
 862{
 863	struct regulator_dev *rdev = dev_get_drvdata(dev);
 864
 865	switch (rdev->desc->type) {
 866	case REGULATOR_VOLTAGE:
 867		return sprintf(buf, "voltage\n");
 868	case REGULATOR_CURRENT:
 869		return sprintf(buf, "current\n");
 870	}
 871	return sprintf(buf, "unknown\n");
 872}
 873static DEVICE_ATTR_RO(type);
 874
 875static ssize_t suspend_mem_microvolts_show(struct device *dev,
 876					   struct device_attribute *attr, char *buf)
 877{
 878	struct regulator_dev *rdev = dev_get_drvdata(dev);
 879
 880	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 881}
 882static DEVICE_ATTR_RO(suspend_mem_microvolts);
 883
 884static ssize_t suspend_disk_microvolts_show(struct device *dev,
 885					    struct device_attribute *attr, char *buf)
 886{
 887	struct regulator_dev *rdev = dev_get_drvdata(dev);
 888
 889	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 890}
 891static DEVICE_ATTR_RO(suspend_disk_microvolts);
 892
 893static ssize_t suspend_standby_microvolts_show(struct device *dev,
 894					       struct device_attribute *attr, char *buf)
 895{
 896	struct regulator_dev *rdev = dev_get_drvdata(dev);
 897
 898	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 899}
 900static DEVICE_ATTR_RO(suspend_standby_microvolts);
 901
 902static ssize_t suspend_mem_mode_show(struct device *dev,
 903				     struct device_attribute *attr, char *buf)
 904{
 905	struct regulator_dev *rdev = dev_get_drvdata(dev);
 906
 907	return regulator_print_opmode(buf,
 908		rdev->constraints->state_mem.mode);
 909}
 910static DEVICE_ATTR_RO(suspend_mem_mode);
 911
 912static ssize_t suspend_disk_mode_show(struct device *dev,
 913				      struct device_attribute *attr, char *buf)
 914{
 915	struct regulator_dev *rdev = dev_get_drvdata(dev);
 916
 917	return regulator_print_opmode(buf,
 918		rdev->constraints->state_disk.mode);
 919}
 920static DEVICE_ATTR_RO(suspend_disk_mode);
 921
 922static ssize_t suspend_standby_mode_show(struct device *dev,
 923					 struct device_attribute *attr, char *buf)
 924{
 925	struct regulator_dev *rdev = dev_get_drvdata(dev);
 926
 927	return regulator_print_opmode(buf,
 928		rdev->constraints->state_standby.mode);
 929}
 930static DEVICE_ATTR_RO(suspend_standby_mode);
 931
 932static ssize_t suspend_mem_state_show(struct device *dev,
 933				      struct device_attribute *attr, char *buf)
 934{
 935	struct regulator_dev *rdev = dev_get_drvdata(dev);
 936
 937	return regulator_print_state(buf,
 938			rdev->constraints->state_mem.enabled);
 939}
 940static DEVICE_ATTR_RO(suspend_mem_state);
 941
 942static ssize_t suspend_disk_state_show(struct device *dev,
 943				       struct device_attribute *attr, char *buf)
 944{
 945	struct regulator_dev *rdev = dev_get_drvdata(dev);
 946
 947	return regulator_print_state(buf,
 948			rdev->constraints->state_disk.enabled);
 949}
 950static DEVICE_ATTR_RO(suspend_disk_state);
 951
 952static ssize_t suspend_standby_state_show(struct device *dev,
 953					  struct device_attribute *attr, char *buf)
 954{
 955	struct regulator_dev *rdev = dev_get_drvdata(dev);
 956
 957	return regulator_print_state(buf,
 958			rdev->constraints->state_standby.enabled);
 959}
 960static DEVICE_ATTR_RO(suspend_standby_state);
 961
 962static ssize_t bypass_show(struct device *dev,
 963			   struct device_attribute *attr, char *buf)
 964{
 965	struct regulator_dev *rdev = dev_get_drvdata(dev);
 966	const char *report;
 967	bool bypass;
 968	int ret;
 969
 970	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 971
 972	if (ret != 0)
 973		report = "unknown";
 974	else if (bypass)
 975		report = "enabled";
 976	else
 977		report = "disabled";
 978
 979	return sprintf(buf, "%s\n", report);
 980}
 981static DEVICE_ATTR_RO(bypass);
 982
 983#define REGULATOR_ERROR_ATTR(name, bit)							\
 984	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
 985				   char *buf)						\
 986	{										\
 987		int ret;								\
 988		unsigned int flags;							\
 989		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
 990		ret = _regulator_get_error_flags(rdev, &flags);				\
 991		if (ret)								\
 992			return ret;							\
 993		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
 994	}										\
 995	static DEVICE_ATTR_RO(name)
 996
 997REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
 998REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
 999REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1006
1007/* Calculate the new optimum regulator operating mode based on the new total
1008 * consumer load. All locks held by caller
1009 */
1010static int drms_uA_update(struct regulator_dev *rdev)
1011{
1012	struct regulator *sibling;
1013	int current_uA = 0, output_uV, input_uV, err;
1014	unsigned int mode;
1015
1016	/*
1017	 * first check to see if we can set modes at all, otherwise just
1018	 * tell the consumer everything is OK.
1019	 */
1020	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021		rdev_dbg(rdev, "DRMS operation not allowed\n");
1022		return 0;
1023	}
1024
1025	if (!rdev->desc->ops->get_optimum_mode &&
1026	    !rdev->desc->ops->set_load)
1027		return 0;
1028
1029	if (!rdev->desc->ops->set_mode &&
1030	    !rdev->desc->ops->set_load)
1031		return -EINVAL;
1032
1033	/* calc total requested load */
1034	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035		if (sibling->enable_count)
1036			current_uA += sibling->uA_load;
1037	}
1038
1039	current_uA += rdev->constraints->system_load;
1040
1041	if (rdev->desc->ops->set_load) {
1042		/* set the optimum mode for our new total regulator load */
1043		err = rdev->desc->ops->set_load(rdev, current_uA);
1044		if (err < 0)
1045			rdev_err(rdev, "failed to set load %d: %pe\n",
1046				 current_uA, ERR_PTR(err));
1047	} else {
1048		/*
1049		 * Unfortunately in some cases the constraints->valid_ops has
1050		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051		 * That's not really legit but we won't consider it a fatal
1052		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053		 * wasn't set.
1054		 */
1055		if (!rdev->constraints->valid_modes_mask) {
1056			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057			return 0;
1058		}
1059
1060		/* get output voltage */
1061		output_uV = regulator_get_voltage_rdev(rdev);
1062
1063		/*
1064		 * Don't return an error; if regulator driver cares about
1065		 * output_uV then it's up to the driver to validate.
1066		 */
1067		if (output_uV <= 0)
1068			rdev_dbg(rdev, "invalid output voltage found\n");
1069
1070		/* get input voltage */
1071		input_uV = 0;
1072		if (rdev->supply)
1073			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1074		if (input_uV <= 0)
1075			input_uV = rdev->constraints->input_uV;
1076
1077		/*
1078		 * Don't return an error; if regulator driver cares about
1079		 * input_uV then it's up to the driver to validate.
1080		 */
1081		if (input_uV <= 0)
1082			rdev_dbg(rdev, "invalid input voltage found\n");
1083
1084		/* now get the optimum mode for our new total regulator load */
1085		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086							 output_uV, current_uA);
1087
1088		/* check the new mode is allowed */
1089		err = regulator_mode_constrain(rdev, &mode);
1090		if (err < 0) {
1091			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092				 current_uA, input_uV, output_uV, ERR_PTR(err));
1093			return err;
1094		}
1095
1096		err = rdev->desc->ops->set_mode(rdev, mode);
1097		if (err < 0)
1098			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099				 mode, ERR_PTR(err));
1100	}
1101
1102	return err;
1103}
1104
1105static int __suspend_set_state(struct regulator_dev *rdev,
1106			       const struct regulator_state *rstate)
1107{
1108	int ret = 0;
1109
1110	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111		rdev->desc->ops->set_suspend_enable)
1112		ret = rdev->desc->ops->set_suspend_enable(rdev);
1113	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114		rdev->desc->ops->set_suspend_disable)
1115		ret = rdev->desc->ops->set_suspend_disable(rdev);
1116	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117		ret = 0;
1118
1119	if (ret < 0) {
1120		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121		return ret;
1122	}
1123
1124	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126		if (ret < 0) {
1127			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128			return ret;
1129		}
1130	}
1131
1132	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134		if (ret < 0) {
1135			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136			return ret;
1137		}
1138	}
1139
1140	return ret;
1141}
1142
1143static int suspend_set_initial_state(struct regulator_dev *rdev)
1144{
1145	const struct regulator_state *rstate;
1146
1147	rstate = regulator_get_suspend_state_check(rdev,
1148			rdev->constraints->initial_state);
1149	if (!rstate)
1150		return 0;
1151
1152	return __suspend_set_state(rdev, rstate);
1153}
1154
1155#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156static void print_constraints_debug(struct regulator_dev *rdev)
1157{
1158	struct regulation_constraints *constraints = rdev->constraints;
1159	char buf[160] = "";
1160	size_t len = sizeof(buf) - 1;
1161	int count = 0;
1162	int ret;
1163
1164	if (constraints->min_uV && constraints->max_uV) {
1165		if (constraints->min_uV == constraints->max_uV)
1166			count += scnprintf(buf + count, len - count, "%d mV ",
1167					   constraints->min_uV / 1000);
1168		else
1169			count += scnprintf(buf + count, len - count,
1170					   "%d <--> %d mV ",
1171					   constraints->min_uV / 1000,
1172					   constraints->max_uV / 1000);
1173	}
1174
1175	if (!constraints->min_uV ||
1176	    constraints->min_uV != constraints->max_uV) {
1177		ret = regulator_get_voltage_rdev(rdev);
1178		if (ret > 0)
1179			count += scnprintf(buf + count, len - count,
1180					   "at %d mV ", ret / 1000);
1181	}
1182
1183	if (constraints->uV_offset)
1184		count += scnprintf(buf + count, len - count, "%dmV offset ",
1185				   constraints->uV_offset / 1000);
1186
1187	if (constraints->min_uA && constraints->max_uA) {
1188		if (constraints->min_uA == constraints->max_uA)
1189			count += scnprintf(buf + count, len - count, "%d mA ",
1190					   constraints->min_uA / 1000);
1191		else
1192			count += scnprintf(buf + count, len - count,
1193					   "%d <--> %d mA ",
1194					   constraints->min_uA / 1000,
1195					   constraints->max_uA / 1000);
1196	}
1197
1198	if (!constraints->min_uA ||
1199	    constraints->min_uA != constraints->max_uA) {
1200		ret = _regulator_get_current_limit(rdev);
1201		if (ret > 0)
1202			count += scnprintf(buf + count, len - count,
1203					   "at %d mA ", ret / 1000);
1204	}
1205
1206	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207		count += scnprintf(buf + count, len - count, "fast ");
1208	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209		count += scnprintf(buf + count, len - count, "normal ");
1210	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211		count += scnprintf(buf + count, len - count, "idle ");
1212	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213		count += scnprintf(buf + count, len - count, "standby ");
1214
1215	if (!count)
1216		count = scnprintf(buf, len, "no parameters");
1217	else
1218		--count;
1219
1220	count += scnprintf(buf + count, len - count, ", %s",
1221		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1222
1223	rdev_dbg(rdev, "%s\n", buf);
1224}
1225#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1228
1229static void print_constraints(struct regulator_dev *rdev)
1230{
1231	struct regulation_constraints *constraints = rdev->constraints;
1232
1233	print_constraints_debug(rdev);
1234
1235	if ((constraints->min_uV != constraints->max_uV) &&
1236	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237		rdev_warn(rdev,
1238			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1239}
1240
1241static int machine_constraints_voltage(struct regulator_dev *rdev,
1242	struct regulation_constraints *constraints)
1243{
1244	const struct regulator_ops *ops = rdev->desc->ops;
1245	int ret;
1246
1247	/* do we need to apply the constraint voltage */
1248	if (rdev->constraints->apply_uV &&
1249	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250		int target_min, target_max;
1251		int current_uV = regulator_get_voltage_rdev(rdev);
1252
1253		if (current_uV == -ENOTRECOVERABLE) {
1254			/* This regulator can't be read and must be initialized */
1255			rdev_info(rdev, "Setting %d-%duV\n",
1256				  rdev->constraints->min_uV,
1257				  rdev->constraints->max_uV);
1258			_regulator_do_set_voltage(rdev,
1259						  rdev->constraints->min_uV,
1260						  rdev->constraints->max_uV);
1261			current_uV = regulator_get_voltage_rdev(rdev);
1262		}
1263
1264		if (current_uV < 0) {
1265			if (current_uV != -EPROBE_DEFER)
1266				rdev_err(rdev,
1267					 "failed to get the current voltage: %pe\n",
1268					 ERR_PTR(current_uV));
1269			return current_uV;
1270		}
1271
1272		/*
1273		 * If we're below the minimum voltage move up to the
1274		 * minimum voltage, if we're above the maximum voltage
1275		 * then move down to the maximum.
1276		 */
1277		target_min = current_uV;
1278		target_max = current_uV;
1279
1280		if (current_uV < rdev->constraints->min_uV) {
1281			target_min = rdev->constraints->min_uV;
1282			target_max = rdev->constraints->min_uV;
1283		}
1284
1285		if (current_uV > rdev->constraints->max_uV) {
1286			target_min = rdev->constraints->max_uV;
1287			target_max = rdev->constraints->max_uV;
1288		}
1289
1290		if (target_min != current_uV || target_max != current_uV) {
1291			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292				  current_uV, target_min, target_max);
1293			ret = _regulator_do_set_voltage(
1294				rdev, target_min, target_max);
1295			if (ret < 0) {
1296				rdev_err(rdev,
1297					"failed to apply %d-%duV constraint: %pe\n",
1298					target_min, target_max, ERR_PTR(ret));
1299				return ret;
1300			}
1301		}
1302	}
1303
1304	/* constrain machine-level voltage specs to fit
1305	 * the actual range supported by this regulator.
1306	 */
1307	if (ops->list_voltage && rdev->desc->n_voltages) {
1308		int	count = rdev->desc->n_voltages;
1309		int	i;
1310		int	min_uV = INT_MAX;
1311		int	max_uV = INT_MIN;
1312		int	cmin = constraints->min_uV;
1313		int	cmax = constraints->max_uV;
1314
1315		/* it's safe to autoconfigure fixed-voltage supplies
1316		 * and the constraints are used by list_voltage.
1317		 */
1318		if (count == 1 && !cmin) {
1319			cmin = 1;
1320			cmax = INT_MAX;
1321			constraints->min_uV = cmin;
1322			constraints->max_uV = cmax;
1323		}
1324
1325		/* voltage constraints are optional */
1326		if ((cmin == 0) && (cmax == 0))
1327			return 0;
1328
1329		/* else require explicit machine-level constraints */
1330		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331			rdev_err(rdev, "invalid voltage constraints\n");
1332			return -EINVAL;
1333		}
1334
1335		/* no need to loop voltages if range is continuous */
1336		if (rdev->desc->continuous_voltage_range)
1337			return 0;
1338
1339		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340		for (i = 0; i < count; i++) {
1341			int	value;
1342
1343			value = ops->list_voltage(rdev, i);
1344			if (value <= 0)
1345				continue;
1346
1347			/* maybe adjust [min_uV..max_uV] */
1348			if (value >= cmin && value < min_uV)
1349				min_uV = value;
1350			if (value <= cmax && value > max_uV)
1351				max_uV = value;
1352		}
1353
1354		/* final: [min_uV..max_uV] valid iff constraints valid */
1355		if (max_uV < min_uV) {
1356			rdev_err(rdev,
1357				 "unsupportable voltage constraints %u-%uuV\n",
1358				 min_uV, max_uV);
1359			return -EINVAL;
1360		}
1361
1362		/* use regulator's subset of machine constraints */
1363		if (constraints->min_uV < min_uV) {
1364			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365				 constraints->min_uV, min_uV);
1366			constraints->min_uV = min_uV;
1367		}
1368		if (constraints->max_uV > max_uV) {
1369			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370				 constraints->max_uV, max_uV);
1371			constraints->max_uV = max_uV;
1372		}
1373	}
1374
1375	return 0;
1376}
1377
1378static int machine_constraints_current(struct regulator_dev *rdev,
1379	struct regulation_constraints *constraints)
1380{
1381	const struct regulator_ops *ops = rdev->desc->ops;
1382	int ret;
1383
1384	if (!constraints->min_uA && !constraints->max_uA)
1385		return 0;
1386
1387	if (constraints->min_uA > constraints->max_uA) {
1388		rdev_err(rdev, "Invalid current constraints\n");
1389		return -EINVAL;
1390	}
1391
1392	if (!ops->set_current_limit || !ops->get_current_limit) {
1393		rdev_warn(rdev, "Operation of current configuration missing\n");
1394		return 0;
1395	}
1396
1397	/* Set regulator current in constraints range */
1398	ret = ops->set_current_limit(rdev, constraints->min_uA,
1399			constraints->max_uA);
1400	if (ret < 0) {
1401		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402		return ret;
1403	}
1404
1405	return 0;
1406}
1407
1408static int _regulator_do_enable(struct regulator_dev *rdev);
1409
1410static int notif_set_limit(struct regulator_dev *rdev,
1411			   int (*set)(struct regulator_dev *, int, int, bool),
1412			   int limit, int severity)
1413{
1414	bool enable;
1415
1416	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417		enable = false;
1418		limit = 0;
1419	} else {
1420		enable = true;
1421	}
1422
1423	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424		limit = 0;
1425
1426	return set(rdev, limit, severity, enable);
1427}
1428
1429static int handle_notify_limits(struct regulator_dev *rdev,
1430			int (*set)(struct regulator_dev *, int, int, bool),
1431			struct notification_limit *limits)
1432{
1433	int ret = 0;
1434
1435	if (!set)
1436		return -EOPNOTSUPP;
1437
1438	if (limits->prot)
1439		ret = notif_set_limit(rdev, set, limits->prot,
1440				      REGULATOR_SEVERITY_PROT);
1441	if (ret)
1442		return ret;
1443
1444	if (limits->err)
1445		ret = notif_set_limit(rdev, set, limits->err,
1446				      REGULATOR_SEVERITY_ERR);
1447	if (ret)
1448		return ret;
1449
1450	if (limits->warn)
1451		ret = notif_set_limit(rdev, set, limits->warn,
1452				      REGULATOR_SEVERITY_WARN);
1453
1454	return ret;
1455}
1456/**
1457 * set_machine_constraints - sets regulator constraints
1458 * @rdev: regulator source
1459 *
1460 * Allows platform initialisation code to define and constrain
1461 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1462 * Constraints *must* be set by platform code in order for some
1463 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464 * set_mode.
1465 */
1466static int set_machine_constraints(struct regulator_dev *rdev)
1467{
1468	int ret = 0;
1469	const struct regulator_ops *ops = rdev->desc->ops;
1470
1471	ret = machine_constraints_voltage(rdev, rdev->constraints);
1472	if (ret != 0)
1473		return ret;
1474
1475	ret = machine_constraints_current(rdev, rdev->constraints);
1476	if (ret != 0)
1477		return ret;
1478
1479	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480		ret = ops->set_input_current_limit(rdev,
1481						   rdev->constraints->ilim_uA);
1482		if (ret < 0) {
1483			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484			return ret;
1485		}
1486	}
1487
1488	/* do we need to setup our suspend state */
1489	if (rdev->constraints->initial_state) {
1490		ret = suspend_set_initial_state(rdev);
1491		if (ret < 0) {
1492			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493			return ret;
1494		}
1495	}
1496
1497	if (rdev->constraints->initial_mode) {
1498		if (!ops->set_mode) {
1499			rdev_err(rdev, "no set_mode operation\n");
1500			return -EINVAL;
1501		}
1502
1503		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504		if (ret < 0) {
1505			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1506			return ret;
1507		}
1508	} else if (rdev->constraints->system_load) {
1509		/*
1510		 * We'll only apply the initial system load if an
1511		 * initial mode wasn't specified.
1512		 */
1513		drms_uA_update(rdev);
1514	}
1515
1516	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517		&& ops->set_ramp_delay) {
1518		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519		if (ret < 0) {
1520			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521			return ret;
1522		}
1523	}
1524
1525	if (rdev->constraints->pull_down && ops->set_pull_down) {
1526		ret = ops->set_pull_down(rdev);
1527		if (ret < 0) {
1528			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529			return ret;
1530		}
1531	}
1532
1533	if (rdev->constraints->soft_start && ops->set_soft_start) {
1534		ret = ops->set_soft_start(rdev);
1535		if (ret < 0) {
1536			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537			return ret;
1538		}
1539	}
1540
1541	/*
1542	 * Existing logic does not warn if over_current_protection is given as
1543	 * a constraint but driver does not support that. I think we should
1544	 * warn about this type of issues as it is possible someone changes
1545	 * PMIC on board to another type - and the another PMIC's driver does
1546	 * not support setting protection. Board composer may happily believe
1547	 * the DT limits are respected - especially if the new PMIC HW also
1548	 * supports protection but the driver does not. I won't change the logic
1549	 * without hearing more experienced opinion on this though.
1550	 *
1551	 * If warning is seen as a good idea then we can merge handling the
1552	 * over-curret protection and detection and get rid of this special
1553	 * handling.
1554	 */
1555	if (rdev->constraints->over_current_protection
1556		&& ops->set_over_current_protection) {
1557		int lim = rdev->constraints->over_curr_limits.prot;
1558
1559		ret = ops->set_over_current_protection(rdev, lim,
1560						       REGULATOR_SEVERITY_PROT,
1561						       true);
1562		if (ret < 0) {
1563			rdev_err(rdev, "failed to set over current protection: %pe\n",
1564				 ERR_PTR(ret));
1565			return ret;
1566		}
1567	}
1568
1569	if (rdev->constraints->over_current_detection)
1570		ret = handle_notify_limits(rdev,
1571					   ops->set_over_current_protection,
1572					   &rdev->constraints->over_curr_limits);
1573	if (ret) {
1574		if (ret != -EOPNOTSUPP) {
1575			rdev_err(rdev, "failed to set over current limits: %pe\n",
1576				 ERR_PTR(ret));
1577			return ret;
1578		}
1579		rdev_warn(rdev,
1580			  "IC does not support requested over-current limits\n");
1581	}
1582
1583	if (rdev->constraints->over_voltage_detection)
1584		ret = handle_notify_limits(rdev,
1585					   ops->set_over_voltage_protection,
1586					   &rdev->constraints->over_voltage_limits);
1587	if (ret) {
1588		if (ret != -EOPNOTSUPP) {
1589			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590				 ERR_PTR(ret));
1591			return ret;
1592		}
1593		rdev_warn(rdev,
1594			  "IC does not support requested over voltage limits\n");
1595	}
1596
1597	if (rdev->constraints->under_voltage_detection)
1598		ret = handle_notify_limits(rdev,
1599					   ops->set_under_voltage_protection,
1600					   &rdev->constraints->under_voltage_limits);
1601	if (ret) {
1602		if (ret != -EOPNOTSUPP) {
1603			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604				 ERR_PTR(ret));
1605			return ret;
1606		}
1607		rdev_warn(rdev,
1608			  "IC does not support requested under voltage limits\n");
1609	}
1610
1611	if (rdev->constraints->over_temp_detection)
1612		ret = handle_notify_limits(rdev,
1613					   ops->set_thermal_protection,
1614					   &rdev->constraints->temp_limits);
1615	if (ret) {
1616		if (ret != -EOPNOTSUPP) {
1617			rdev_err(rdev, "failed to set temperature limits %pe\n",
1618				 ERR_PTR(ret));
1619			return ret;
1620		}
1621		rdev_warn(rdev,
1622			  "IC does not support requested temperature limits\n");
1623	}
1624
1625	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626		bool ad_state = (rdev->constraints->active_discharge ==
1627			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1628
1629		ret = ops->set_active_discharge(rdev, ad_state);
1630		if (ret < 0) {
1631			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632			return ret;
1633		}
1634	}
1635
1636	/*
1637	 * If there is no mechanism for controlling the regulator then
1638	 * flag it as always_on so we don't end up duplicating checks
1639	 * for this so much.  Note that we could control the state of
1640	 * a supply to control the output on a regulator that has no
1641	 * direct control.
1642	 */
1643	if (!rdev->ena_pin && !ops->enable) {
1644		if (rdev->supply_name && !rdev->supply)
1645			return -EPROBE_DEFER;
1646
1647		if (rdev->supply)
1648			rdev->constraints->always_on =
1649				rdev->supply->rdev->constraints->always_on;
1650		else
1651			rdev->constraints->always_on = true;
1652	}
1653
 
 
 
1654	/* If the constraints say the regulator should be on at this point
1655	 * and we have control then make sure it is enabled.
1656	 */
1657	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658		/* If we want to enable this regulator, make sure that we know
1659		 * the supplying regulator.
1660		 */
1661		if (rdev->supply_name && !rdev->supply)
1662			return -EPROBE_DEFER;
1663
1664		/* If supplying regulator has already been enabled,
1665		 * it's not intended to have use_count increment
1666		 * when rdev is only boot-on.
1667		 */
1668		if (rdev->supply &&
1669		    (rdev->constraints->always_on ||
1670		     !regulator_is_enabled(rdev->supply))) {
1671			ret = regulator_enable(rdev->supply);
1672			if (ret < 0) {
1673				_regulator_put(rdev->supply);
1674				rdev->supply = NULL;
1675				return ret;
1676			}
1677		}
1678
1679		ret = _regulator_do_enable(rdev);
1680		if (ret < 0 && ret != -EINVAL) {
1681			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682			return ret;
1683		}
1684
1685		if (rdev->constraints->always_on)
1686			rdev->use_count++;
1687	} else if (rdev->desc->off_on_delay) {
1688		rdev->last_off = ktime_get();
1689	}
1690
1691	print_constraints(rdev);
1692	return 0;
1693}
1694
1695/**
1696 * set_supply - set regulator supply regulator
1697 * @rdev: regulator (locked)
1698 * @supply_rdev: supply regulator (locked))
1699 *
1700 * Called by platform initialisation code to set the supply regulator for this
1701 * regulator. This ensures that a regulators supply will also be enabled by the
1702 * core if it's child is enabled.
1703 */
1704static int set_supply(struct regulator_dev *rdev,
1705		      struct regulator_dev *supply_rdev)
1706{
1707	int err;
1708
1709	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1710
1711	if (!try_module_get(supply_rdev->owner))
1712		return -ENODEV;
1713
1714	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1715	if (rdev->supply == NULL) {
1716		module_put(supply_rdev->owner);
1717		err = -ENOMEM;
1718		return err;
1719	}
1720	supply_rdev->open_count++;
1721
1722	return 0;
1723}
1724
1725/**
1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727 * @rdev:         regulator source
1728 * @consumer_dev_name: dev_name() string for device supply applies to
1729 * @supply:       symbolic name for supply
1730 *
1731 * Allows platform initialisation code to map physical regulator
1732 * sources to symbolic names for supplies for use by devices.  Devices
1733 * should use these symbolic names to request regulators, avoiding the
1734 * need to provide board-specific regulator names as platform data.
1735 */
1736static int set_consumer_device_supply(struct regulator_dev *rdev,
1737				      const char *consumer_dev_name,
1738				      const char *supply)
1739{
1740	struct regulator_map *node, *new_node;
1741	int has_dev;
1742
1743	if (supply == NULL)
1744		return -EINVAL;
1745
1746	if (consumer_dev_name != NULL)
1747		has_dev = 1;
1748	else
1749		has_dev = 0;
1750
1751	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1752	if (new_node == NULL)
1753		return -ENOMEM;
1754
1755	new_node->regulator = rdev;
1756	new_node->supply = supply;
1757
1758	if (has_dev) {
1759		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1760		if (new_node->dev_name == NULL) {
1761			kfree(new_node);
1762			return -ENOMEM;
1763		}
1764	}
1765
1766	mutex_lock(&regulator_list_mutex);
1767	list_for_each_entry(node, &regulator_map_list, list) {
1768		if (node->dev_name && consumer_dev_name) {
1769			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770				continue;
1771		} else if (node->dev_name || consumer_dev_name) {
1772			continue;
1773		}
1774
1775		if (strcmp(node->supply, supply) != 0)
1776			continue;
1777
1778		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779			 consumer_dev_name,
1780			 dev_name(&node->regulator->dev),
1781			 node->regulator->desc->name,
1782			 supply,
1783			 dev_name(&rdev->dev), rdev_get_name(rdev));
1784		goto fail;
1785	}
1786
1787	list_add(&new_node->list, &regulator_map_list);
1788	mutex_unlock(&regulator_list_mutex);
1789
1790	return 0;
1791
1792fail:
1793	mutex_unlock(&regulator_list_mutex);
1794	kfree(new_node->dev_name);
1795	kfree(new_node);
1796	return -EBUSY;
1797}
1798
1799static void unset_regulator_supplies(struct regulator_dev *rdev)
1800{
1801	struct regulator_map *node, *n;
1802
1803	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1804		if (rdev == node->regulator) {
1805			list_del(&node->list);
1806			kfree(node->dev_name);
1807			kfree(node);
1808		}
1809	}
1810}
1811
1812#ifdef CONFIG_DEBUG_FS
1813static ssize_t constraint_flags_read_file(struct file *file,
1814					  char __user *user_buf,
1815					  size_t count, loff_t *ppos)
1816{
1817	const struct regulator *regulator = file->private_data;
1818	const struct regulation_constraints *c = regulator->rdev->constraints;
1819	char *buf;
1820	ssize_t ret;
1821
1822	if (!c)
1823		return 0;
1824
1825	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826	if (!buf)
1827		return -ENOMEM;
1828
1829	ret = snprintf(buf, PAGE_SIZE,
1830			"always_on: %u\n"
1831			"boot_on: %u\n"
1832			"apply_uV: %u\n"
1833			"ramp_disable: %u\n"
1834			"soft_start: %u\n"
1835			"pull_down: %u\n"
1836			"over_current_protection: %u\n",
1837			c->always_on,
1838			c->boot_on,
1839			c->apply_uV,
1840			c->ramp_disable,
1841			c->soft_start,
1842			c->pull_down,
1843			c->over_current_protection);
1844
1845	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1846	kfree(buf);
1847
1848	return ret;
1849}
1850
1851#endif
1852
1853static const struct file_operations constraint_flags_fops = {
1854#ifdef CONFIG_DEBUG_FS
1855	.open = simple_open,
1856	.read = constraint_flags_read_file,
1857	.llseek = default_llseek,
1858#endif
1859};
1860
1861#define REG_STR_SIZE	64
1862
1863static struct regulator *create_regulator(struct regulator_dev *rdev,
1864					  struct device *dev,
1865					  const char *supply_name)
1866{
1867	struct regulator *regulator;
1868	int err = 0;
1869
1870	lockdep_assert_held_once(&rdev->mutex.base);
1871
1872	if (dev) {
1873		char buf[REG_STR_SIZE];
1874		int size;
1875
1876		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1877				dev->kobj.name, supply_name);
1878		if (size >= REG_STR_SIZE)
1879			return NULL;
1880
1881		supply_name = kstrdup(buf, GFP_KERNEL);
1882		if (supply_name == NULL)
1883			return NULL;
1884	} else {
1885		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1886		if (supply_name == NULL)
1887			return NULL;
1888	}
1889
1890	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1891	if (regulator == NULL) {
1892		kfree_const(supply_name);
1893		return NULL;
1894	}
1895
1896	regulator->rdev = rdev;
1897	regulator->supply_name = supply_name;
1898
 
1899	list_add(&regulator->list, &rdev->consumer_list);
 
1900
1901	if (dev) {
1902		regulator->dev = dev;
1903
1904		/* Add a link to the device sysfs entry */
1905		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1906					       supply_name);
1907		if (err) {
1908			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909				  dev->kobj.name, ERR_PTR(err));
1910			/* non-fatal */
1911		}
1912	}
1913
1914	if (err != -EEXIST)
1915		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1916	if (IS_ERR(regulator->debugfs))
1917		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1918
1919	debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1920			   &regulator->uA_load);
1921	debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1922			   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1923	debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1924			   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1925	debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1926			    regulator, &constraint_flags_fops);
 
 
1927
1928	/*
1929	 * Check now if the regulator is an always on regulator - if
1930	 * it is then we don't need to do nearly so much work for
1931	 * enable/disable calls.
1932	 */
1933	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1934	    _regulator_is_enabled(rdev))
1935		regulator->always_on = true;
1936
1937	return regulator;
1938}
1939
1940static int _regulator_get_enable_time(struct regulator_dev *rdev)
1941{
1942	if (rdev->constraints && rdev->constraints->enable_time)
1943		return rdev->constraints->enable_time;
1944	if (rdev->desc->ops->enable_time)
1945		return rdev->desc->ops->enable_time(rdev);
1946	return rdev->desc->enable_time;
1947}
1948
1949static struct regulator_supply_alias *regulator_find_supply_alias(
1950		struct device *dev, const char *supply)
1951{
1952	struct regulator_supply_alias *map;
1953
1954	list_for_each_entry(map, &regulator_supply_alias_list, list)
1955		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1956			return map;
1957
1958	return NULL;
1959}
1960
1961static void regulator_supply_alias(struct device **dev, const char **supply)
1962{
1963	struct regulator_supply_alias *map;
1964
1965	map = regulator_find_supply_alias(*dev, *supply);
1966	if (map) {
1967		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1968				*supply, map->alias_supply,
1969				dev_name(map->alias_dev));
1970		*dev = map->alias_dev;
1971		*supply = map->alias_supply;
1972	}
1973}
1974
1975static int regulator_match(struct device *dev, const void *data)
1976{
1977	struct regulator_dev *r = dev_to_rdev(dev);
1978
1979	return strcmp(rdev_get_name(r), data) == 0;
1980}
1981
1982static struct regulator_dev *regulator_lookup_by_name(const char *name)
1983{
1984	struct device *dev;
1985
1986	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1987
1988	return dev ? dev_to_rdev(dev) : NULL;
1989}
1990
1991/**
1992 * regulator_dev_lookup - lookup a regulator device.
1993 * @dev: device for regulator "consumer".
1994 * @supply: Supply name or regulator ID.
1995 *
1996 * If successful, returns a struct regulator_dev that corresponds to the name
1997 * @supply and with the embedded struct device refcount incremented by one.
1998 * The refcount must be dropped by calling put_device().
1999 * On failure one of the following ERR-PTR-encoded values is returned:
2000 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2001 * in the future.
2002 */
2003static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2004						  const char *supply)
2005{
2006	struct regulator_dev *r = NULL;
2007	struct device_node *node;
2008	struct regulator_map *map;
2009	const char *devname = NULL;
2010
2011	regulator_supply_alias(&dev, &supply);
2012
2013	/* first do a dt based lookup */
2014	if (dev && dev->of_node) {
2015		node = of_get_regulator(dev, supply);
2016		if (node) {
2017			r = of_find_regulator_by_node(node);
2018			of_node_put(node);
2019			if (r)
2020				return r;
2021
2022			/*
2023			 * We have a node, but there is no device.
2024			 * assume it has not registered yet.
2025			 */
2026			return ERR_PTR(-EPROBE_DEFER);
2027		}
2028	}
2029
2030	/* if not found, try doing it non-dt way */
2031	if (dev)
2032		devname = dev_name(dev);
2033
2034	mutex_lock(&regulator_list_mutex);
2035	list_for_each_entry(map, &regulator_map_list, list) {
2036		/* If the mapping has a device set up it must match */
2037		if (map->dev_name &&
2038		    (!devname || strcmp(map->dev_name, devname)))
2039			continue;
2040
2041		if (strcmp(map->supply, supply) == 0 &&
2042		    get_device(&map->regulator->dev)) {
2043			r = map->regulator;
2044			break;
2045		}
2046	}
2047	mutex_unlock(&regulator_list_mutex);
2048
2049	if (r)
2050		return r;
2051
2052	r = regulator_lookup_by_name(supply);
2053	if (r)
2054		return r;
2055
2056	return ERR_PTR(-ENODEV);
2057}
2058
2059static int regulator_resolve_supply(struct regulator_dev *rdev)
2060{
2061	struct regulator_dev *r;
2062	struct device *dev = rdev->dev.parent;
2063	struct ww_acquire_ctx ww_ctx;
2064	int ret = 0;
2065
2066	/* No supply to resolve? */
2067	if (!rdev->supply_name)
2068		return 0;
2069
2070	/* Supply already resolved? (fast-path without locking contention) */
2071	if (rdev->supply)
2072		return 0;
2073
2074	r = regulator_dev_lookup(dev, rdev->supply_name);
2075	if (IS_ERR(r)) {
2076		ret = PTR_ERR(r);
2077
2078		/* Did the lookup explicitly defer for us? */
2079		if (ret == -EPROBE_DEFER)
2080			goto out;
2081
2082		if (have_full_constraints()) {
2083			r = dummy_regulator_rdev;
2084			get_device(&r->dev);
2085		} else {
2086			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2087				rdev->supply_name, rdev->desc->name);
2088			ret = -EPROBE_DEFER;
2089			goto out;
2090		}
2091	}
2092
2093	if (r == rdev) {
2094		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2095			rdev->desc->name, rdev->supply_name);
2096		if (!have_full_constraints()) {
2097			ret = -EINVAL;
2098			goto out;
2099		}
2100		r = dummy_regulator_rdev;
2101		get_device(&r->dev);
2102	}
2103
2104	/*
2105	 * If the supply's parent device is not the same as the
2106	 * regulator's parent device, then ensure the parent device
2107	 * is bound before we resolve the supply, in case the parent
2108	 * device get probe deferred and unregisters the supply.
2109	 */
2110	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2111		if (!device_is_bound(r->dev.parent)) {
2112			put_device(&r->dev);
2113			ret = -EPROBE_DEFER;
2114			goto out;
2115		}
2116	}
2117
2118	/* Recursively resolve the supply of the supply */
2119	ret = regulator_resolve_supply(r);
2120	if (ret < 0) {
2121		put_device(&r->dev);
2122		goto out;
2123	}
2124
2125	/*
2126	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2127	 * between rdev->supply null check and setting rdev->supply in
2128	 * set_supply() from concurrent tasks.
2129	 */
2130	regulator_lock_two(rdev, r, &ww_ctx);
2131
2132	/* Supply just resolved by a concurrent task? */
2133	if (rdev->supply) {
2134		regulator_unlock_two(rdev, r, &ww_ctx);
2135		put_device(&r->dev);
2136		goto out;
2137	}
2138
2139	ret = set_supply(rdev, r);
2140	if (ret < 0) {
2141		regulator_unlock_two(rdev, r, &ww_ctx);
2142		put_device(&r->dev);
2143		goto out;
2144	}
2145
2146	regulator_unlock_two(rdev, r, &ww_ctx);
2147
2148	/*
2149	 * In set_machine_constraints() we may have turned this regulator on
2150	 * but we couldn't propagate to the supply if it hadn't been resolved
2151	 * yet.  Do it now.
2152	 */
2153	if (rdev->use_count) {
2154		ret = regulator_enable(rdev->supply);
2155		if (ret < 0) {
2156			_regulator_put(rdev->supply);
2157			rdev->supply = NULL;
2158			goto out;
2159		}
2160	}
2161
2162out:
2163	return ret;
2164}
2165
2166/* Internal regulator request function */
2167struct regulator *_regulator_get(struct device *dev, const char *id,
2168				 enum regulator_get_type get_type)
2169{
2170	struct regulator_dev *rdev;
2171	struct regulator *regulator;
2172	struct device_link *link;
2173	int ret;
2174
2175	if (get_type >= MAX_GET_TYPE) {
2176		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2177		return ERR_PTR(-EINVAL);
2178	}
2179
2180	if (id == NULL) {
2181		pr_err("get() with no identifier\n");
2182		return ERR_PTR(-EINVAL);
2183	}
2184
2185	rdev = regulator_dev_lookup(dev, id);
2186	if (IS_ERR(rdev)) {
2187		ret = PTR_ERR(rdev);
2188
2189		/*
2190		 * If regulator_dev_lookup() fails with error other
2191		 * than -ENODEV our job here is done, we simply return it.
2192		 */
2193		if (ret != -ENODEV)
2194			return ERR_PTR(ret);
2195
2196		if (!have_full_constraints()) {
2197			dev_warn(dev,
2198				 "incomplete constraints, dummy supplies not allowed\n");
2199			return ERR_PTR(-ENODEV);
2200		}
2201
2202		switch (get_type) {
2203		case NORMAL_GET:
2204			/*
2205			 * Assume that a regulator is physically present and
2206			 * enabled, even if it isn't hooked up, and just
2207			 * provide a dummy.
2208			 */
2209			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2210			rdev = dummy_regulator_rdev;
2211			get_device(&rdev->dev);
2212			break;
2213
2214		case EXCLUSIVE_GET:
2215			dev_warn(dev,
2216				 "dummy supplies not allowed for exclusive requests\n");
2217			fallthrough;
2218
2219		default:
2220			return ERR_PTR(-ENODEV);
2221		}
2222	}
2223
2224	if (rdev->exclusive) {
2225		regulator = ERR_PTR(-EPERM);
2226		put_device(&rdev->dev);
2227		return regulator;
2228	}
2229
2230	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2231		regulator = ERR_PTR(-EBUSY);
2232		put_device(&rdev->dev);
2233		return regulator;
2234	}
2235
2236	mutex_lock(&regulator_list_mutex);
2237	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2238	mutex_unlock(&regulator_list_mutex);
2239
2240	if (ret != 0) {
2241		regulator = ERR_PTR(-EPROBE_DEFER);
2242		put_device(&rdev->dev);
2243		return regulator;
2244	}
2245
2246	ret = regulator_resolve_supply(rdev);
2247	if (ret < 0) {
2248		regulator = ERR_PTR(ret);
2249		put_device(&rdev->dev);
2250		return regulator;
2251	}
2252
2253	if (!try_module_get(rdev->owner)) {
2254		regulator = ERR_PTR(-EPROBE_DEFER);
2255		put_device(&rdev->dev);
2256		return regulator;
2257	}
2258
2259	regulator_lock(rdev);
2260	regulator = create_regulator(rdev, dev, id);
2261	regulator_unlock(rdev);
2262	if (regulator == NULL) {
2263		regulator = ERR_PTR(-ENOMEM);
2264		module_put(rdev->owner);
2265		put_device(&rdev->dev);
2266		return regulator;
2267	}
2268
2269	rdev->open_count++;
2270	if (get_type == EXCLUSIVE_GET) {
2271		rdev->exclusive = 1;
2272
2273		ret = _regulator_is_enabled(rdev);
2274		if (ret > 0) {
2275			rdev->use_count = 1;
2276			regulator->enable_count = 1;
2277		} else {
2278			rdev->use_count = 0;
2279			regulator->enable_count = 0;
2280		}
2281	}
2282
2283	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2284	if (!IS_ERR_OR_NULL(link))
2285		regulator->device_link = true;
2286
2287	return regulator;
2288}
2289
2290/**
2291 * regulator_get - lookup and obtain a reference to a regulator.
2292 * @dev: device for regulator "consumer"
2293 * @id: Supply name or regulator ID.
2294 *
2295 * Returns a struct regulator corresponding to the regulator producer,
2296 * or IS_ERR() condition containing errno.
2297 *
2298 * Use of supply names configured via set_consumer_device_supply() is
2299 * strongly encouraged.  It is recommended that the supply name used
2300 * should match the name used for the supply and/or the relevant
2301 * device pins in the datasheet.
2302 */
2303struct regulator *regulator_get(struct device *dev, const char *id)
2304{
2305	return _regulator_get(dev, id, NORMAL_GET);
2306}
2307EXPORT_SYMBOL_GPL(regulator_get);
2308
2309/**
2310 * regulator_get_exclusive - obtain exclusive access to a regulator.
2311 * @dev: device for regulator "consumer"
2312 * @id: Supply name or regulator ID.
2313 *
2314 * Returns a struct regulator corresponding to the regulator producer,
2315 * or IS_ERR() condition containing errno.  Other consumers will be
2316 * unable to obtain this regulator while this reference is held and the
2317 * use count for the regulator will be initialised to reflect the current
2318 * state of the regulator.
2319 *
2320 * This is intended for use by consumers which cannot tolerate shared
2321 * use of the regulator such as those which need to force the
2322 * regulator off for correct operation of the hardware they are
2323 * controlling.
2324 *
2325 * Use of supply names configured via set_consumer_device_supply() is
2326 * strongly encouraged.  It is recommended that the supply name used
2327 * should match the name used for the supply and/or the relevant
2328 * device pins in the datasheet.
2329 */
2330struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2331{
2332	return _regulator_get(dev, id, EXCLUSIVE_GET);
2333}
2334EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2335
2336/**
2337 * regulator_get_optional - obtain optional access to a regulator.
2338 * @dev: device for regulator "consumer"
2339 * @id: Supply name or regulator ID.
2340 *
2341 * Returns a struct regulator corresponding to the regulator producer,
2342 * or IS_ERR() condition containing errno.
2343 *
2344 * This is intended for use by consumers for devices which can have
2345 * some supplies unconnected in normal use, such as some MMC devices.
2346 * It can allow the regulator core to provide stub supplies for other
2347 * supplies requested using normal regulator_get() calls without
2348 * disrupting the operation of drivers that can handle absent
2349 * supplies.
2350 *
2351 * Use of supply names configured via set_consumer_device_supply() is
2352 * strongly encouraged.  It is recommended that the supply name used
2353 * should match the name used for the supply and/or the relevant
2354 * device pins in the datasheet.
2355 */
2356struct regulator *regulator_get_optional(struct device *dev, const char *id)
2357{
2358	return _regulator_get(dev, id, OPTIONAL_GET);
2359}
2360EXPORT_SYMBOL_GPL(regulator_get_optional);
2361
2362static void destroy_regulator(struct regulator *regulator)
2363{
2364	struct regulator_dev *rdev = regulator->rdev;
2365
2366	debugfs_remove_recursive(regulator->debugfs);
2367
2368	if (regulator->dev) {
2369		if (regulator->device_link)
2370			device_link_remove(regulator->dev, &rdev->dev);
2371
2372		/* remove any sysfs entries */
2373		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2374	}
2375
2376	regulator_lock(rdev);
2377	list_del(&regulator->list);
2378
2379	rdev->open_count--;
2380	rdev->exclusive = 0;
2381	regulator_unlock(rdev);
2382
2383	kfree_const(regulator->supply_name);
2384	kfree(regulator);
2385}
2386
2387/* regulator_list_mutex lock held by regulator_put() */
2388static void _regulator_put(struct regulator *regulator)
2389{
2390	struct regulator_dev *rdev;
2391
2392	if (IS_ERR_OR_NULL(regulator))
2393		return;
2394
2395	lockdep_assert_held_once(&regulator_list_mutex);
2396
2397	/* Docs say you must disable before calling regulator_put() */
2398	WARN_ON(regulator->enable_count);
2399
2400	rdev = regulator->rdev;
2401
2402	destroy_regulator(regulator);
2403
2404	module_put(rdev->owner);
2405	put_device(&rdev->dev);
2406}
2407
2408/**
2409 * regulator_put - "free" the regulator source
2410 * @regulator: regulator source
2411 *
2412 * Note: drivers must ensure that all regulator_enable calls made on this
2413 * regulator source are balanced by regulator_disable calls prior to calling
2414 * this function.
2415 */
2416void regulator_put(struct regulator *regulator)
2417{
2418	mutex_lock(&regulator_list_mutex);
2419	_regulator_put(regulator);
2420	mutex_unlock(&regulator_list_mutex);
2421}
2422EXPORT_SYMBOL_GPL(regulator_put);
2423
2424/**
2425 * regulator_register_supply_alias - Provide device alias for supply lookup
2426 *
2427 * @dev: device that will be given as the regulator "consumer"
2428 * @id: Supply name or regulator ID
2429 * @alias_dev: device that should be used to lookup the supply
2430 * @alias_id: Supply name or regulator ID that should be used to lookup the
2431 * supply
2432 *
2433 * All lookups for id on dev will instead be conducted for alias_id on
2434 * alias_dev.
2435 */
2436int regulator_register_supply_alias(struct device *dev, const char *id,
2437				    struct device *alias_dev,
2438				    const char *alias_id)
2439{
2440	struct regulator_supply_alias *map;
2441
2442	map = regulator_find_supply_alias(dev, id);
2443	if (map)
2444		return -EEXIST;
2445
2446	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2447	if (!map)
2448		return -ENOMEM;
2449
2450	map->src_dev = dev;
2451	map->src_supply = id;
2452	map->alias_dev = alias_dev;
2453	map->alias_supply = alias_id;
2454
2455	list_add(&map->list, &regulator_supply_alias_list);
2456
2457	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2458		id, dev_name(dev), alias_id, dev_name(alias_dev));
2459
2460	return 0;
2461}
2462EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2463
2464/**
2465 * regulator_unregister_supply_alias - Remove device alias
2466 *
2467 * @dev: device that will be given as the regulator "consumer"
2468 * @id: Supply name or regulator ID
2469 *
2470 * Remove a lookup alias if one exists for id on dev.
2471 */
2472void regulator_unregister_supply_alias(struct device *dev, const char *id)
2473{
2474	struct regulator_supply_alias *map;
2475
2476	map = regulator_find_supply_alias(dev, id);
2477	if (map) {
2478		list_del(&map->list);
2479		kfree(map);
2480	}
2481}
2482EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2483
2484/**
2485 * regulator_bulk_register_supply_alias - register multiple aliases
2486 *
2487 * @dev: device that will be given as the regulator "consumer"
2488 * @id: List of supply names or regulator IDs
2489 * @alias_dev: device that should be used to lookup the supply
2490 * @alias_id: List of supply names or regulator IDs that should be used to
2491 * lookup the supply
2492 * @num_id: Number of aliases to register
2493 *
2494 * @return 0 on success, an errno on failure.
2495 *
2496 * This helper function allows drivers to register several supply
2497 * aliases in one operation.  If any of the aliases cannot be
2498 * registered any aliases that were registered will be removed
2499 * before returning to the caller.
2500 */
2501int regulator_bulk_register_supply_alias(struct device *dev,
2502					 const char *const *id,
2503					 struct device *alias_dev,
2504					 const char *const *alias_id,
2505					 int num_id)
2506{
2507	int i;
2508	int ret;
2509
2510	for (i = 0; i < num_id; ++i) {
2511		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2512						      alias_id[i]);
2513		if (ret < 0)
2514			goto err;
2515	}
2516
2517	return 0;
2518
2519err:
2520	dev_err(dev,
2521		"Failed to create supply alias %s,%s -> %s,%s\n",
2522		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2523
2524	while (--i >= 0)
2525		regulator_unregister_supply_alias(dev, id[i]);
2526
2527	return ret;
2528}
2529EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2530
2531/**
2532 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2533 *
2534 * @dev: device that will be given as the regulator "consumer"
2535 * @id: List of supply names or regulator IDs
2536 * @num_id: Number of aliases to unregister
2537 *
2538 * This helper function allows drivers to unregister several supply
2539 * aliases in one operation.
2540 */
2541void regulator_bulk_unregister_supply_alias(struct device *dev,
2542					    const char *const *id,
2543					    int num_id)
2544{
2545	int i;
2546
2547	for (i = 0; i < num_id; ++i)
2548		regulator_unregister_supply_alias(dev, id[i]);
2549}
2550EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2551
2552
2553/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2554static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2555				const struct regulator_config *config)
2556{
2557	struct regulator_enable_gpio *pin, *new_pin;
2558	struct gpio_desc *gpiod;
2559
2560	gpiod = config->ena_gpiod;
2561	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2562
2563	mutex_lock(&regulator_list_mutex);
2564
2565	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2566		if (pin->gpiod == gpiod) {
2567			rdev_dbg(rdev, "GPIO is already used\n");
2568			goto update_ena_gpio_to_rdev;
2569		}
2570	}
2571
2572	if (new_pin == NULL) {
2573		mutex_unlock(&regulator_list_mutex);
2574		return -ENOMEM;
2575	}
2576
2577	pin = new_pin;
2578	new_pin = NULL;
2579
2580	pin->gpiod = gpiod;
2581	list_add(&pin->list, &regulator_ena_gpio_list);
2582
2583update_ena_gpio_to_rdev:
2584	pin->request_count++;
2585	rdev->ena_pin = pin;
2586
2587	mutex_unlock(&regulator_list_mutex);
2588	kfree(new_pin);
2589
2590	return 0;
2591}
2592
2593static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2594{
2595	struct regulator_enable_gpio *pin, *n;
2596
2597	if (!rdev->ena_pin)
2598		return;
2599
2600	/* Free the GPIO only in case of no use */
2601	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2602		if (pin != rdev->ena_pin)
2603			continue;
2604
2605		if (--pin->request_count)
2606			break;
2607
2608		gpiod_put(pin->gpiod);
2609		list_del(&pin->list);
2610		kfree(pin);
2611		break;
2612	}
2613
2614	rdev->ena_pin = NULL;
2615}
2616
2617/**
2618 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2619 * @rdev: regulator_dev structure
2620 * @enable: enable GPIO at initial use?
2621 *
2622 * GPIO is enabled in case of initial use. (enable_count is 0)
2623 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2624 */
2625static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2626{
2627	struct regulator_enable_gpio *pin = rdev->ena_pin;
2628
2629	if (!pin)
2630		return -EINVAL;
2631
2632	if (enable) {
2633		/* Enable GPIO at initial use */
2634		if (pin->enable_count == 0)
2635			gpiod_set_value_cansleep(pin->gpiod, 1);
2636
2637		pin->enable_count++;
2638	} else {
2639		if (pin->enable_count > 1) {
2640			pin->enable_count--;
2641			return 0;
2642		}
2643
2644		/* Disable GPIO if not used */
2645		if (pin->enable_count <= 1) {
2646			gpiod_set_value_cansleep(pin->gpiod, 0);
2647			pin->enable_count = 0;
2648		}
2649	}
2650
2651	return 0;
2652}
2653
2654/**
2655 * _regulator_delay_helper - a delay helper function
2656 * @delay: time to delay in microseconds
2657 *
2658 * Delay for the requested amount of time as per the guidelines in:
2659 *
2660 *     Documentation/timers/timers-howto.rst
2661 *
2662 * The assumption here is that these regulator operations will never used in
2663 * atomic context and therefore sleeping functions can be used.
2664 */
2665static void _regulator_delay_helper(unsigned int delay)
2666{
2667	unsigned int ms = delay / 1000;
2668	unsigned int us = delay % 1000;
2669
2670	if (ms > 0) {
2671		/*
2672		 * For small enough values, handle super-millisecond
2673		 * delays in the usleep_range() call below.
2674		 */
2675		if (ms < 20)
2676			us += ms * 1000;
2677		else
2678			msleep(ms);
2679	}
2680
2681	/*
2682	 * Give the scheduler some room to coalesce with any other
2683	 * wakeup sources. For delays shorter than 10 us, don't even
2684	 * bother setting up high-resolution timers and just busy-
2685	 * loop.
2686	 */
2687	if (us >= 10)
2688		usleep_range(us, us + 100);
2689	else
2690		udelay(us);
2691}
2692
2693/**
2694 * _regulator_check_status_enabled
2695 *
2696 * A helper function to check if the regulator status can be interpreted
2697 * as 'regulator is enabled'.
2698 * @rdev: the regulator device to check
2699 *
2700 * Return:
2701 * * 1			- if status shows regulator is in enabled state
2702 * * 0			- if not enabled state
2703 * * Error Value	- as received from ops->get_status()
2704 */
2705static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2706{
2707	int ret = rdev->desc->ops->get_status(rdev);
2708
2709	if (ret < 0) {
2710		rdev_info(rdev, "get_status returned error: %d\n", ret);
2711		return ret;
2712	}
2713
2714	switch (ret) {
2715	case REGULATOR_STATUS_OFF:
2716	case REGULATOR_STATUS_ERROR:
2717	case REGULATOR_STATUS_UNDEFINED:
2718		return 0;
2719	default:
2720		return 1;
2721	}
2722}
2723
2724static int _regulator_do_enable(struct regulator_dev *rdev)
2725{
2726	int ret, delay;
2727
2728	/* Query before enabling in case configuration dependent.  */
2729	ret = _regulator_get_enable_time(rdev);
2730	if (ret >= 0) {
2731		delay = ret;
2732	} else {
2733		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2734		delay = 0;
2735	}
2736
2737	trace_regulator_enable(rdev_get_name(rdev));
2738
2739	if (rdev->desc->off_on_delay) {
2740		/* if needed, keep a distance of off_on_delay from last time
2741		 * this regulator was disabled.
2742		 */
2743		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2744		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2745
2746		if (remaining > 0)
2747			_regulator_delay_helper(remaining);
2748	}
2749
2750	if (rdev->ena_pin) {
2751		if (!rdev->ena_gpio_state) {
2752			ret = regulator_ena_gpio_ctrl(rdev, true);
2753			if (ret < 0)
2754				return ret;
2755			rdev->ena_gpio_state = 1;
2756		}
2757	} else if (rdev->desc->ops->enable) {
2758		ret = rdev->desc->ops->enable(rdev);
2759		if (ret < 0)
2760			return ret;
2761	} else {
2762		return -EINVAL;
2763	}
2764
2765	/* Allow the regulator to ramp; it would be useful to extend
2766	 * this for bulk operations so that the regulators can ramp
2767	 * together.
2768	 */
2769	trace_regulator_enable_delay(rdev_get_name(rdev));
2770
2771	/* If poll_enabled_time is set, poll upto the delay calculated
2772	 * above, delaying poll_enabled_time uS to check if the regulator
2773	 * actually got enabled.
2774	 * If the regulator isn't enabled after our delay helper has expired,
2775	 * return -ETIMEDOUT.
2776	 */
2777	if (rdev->desc->poll_enabled_time) {
2778		int time_remaining = delay;
2779
2780		while (time_remaining > 0) {
2781			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2782
2783			if (rdev->desc->ops->get_status) {
2784				ret = _regulator_check_status_enabled(rdev);
2785				if (ret < 0)
2786					return ret;
2787				else if (ret)
2788					break;
2789			} else if (rdev->desc->ops->is_enabled(rdev))
2790				break;
2791
2792			time_remaining -= rdev->desc->poll_enabled_time;
2793		}
2794
2795		if (time_remaining <= 0) {
2796			rdev_err(rdev, "Enabled check timed out\n");
2797			return -ETIMEDOUT;
2798		}
2799	} else {
2800		_regulator_delay_helper(delay);
2801	}
2802
2803	trace_regulator_enable_complete(rdev_get_name(rdev));
2804
2805	return 0;
2806}
2807
2808/**
2809 * _regulator_handle_consumer_enable - handle that a consumer enabled
2810 * @regulator: regulator source
2811 *
2812 * Some things on a regulator consumer (like the contribution towards total
2813 * load on the regulator) only have an effect when the consumer wants the
2814 * regulator enabled.  Explained in example with two consumers of the same
2815 * regulator:
2816 *   consumer A: set_load(100);       => total load = 0
2817 *   consumer A: regulator_enable();  => total load = 100
2818 *   consumer B: set_load(1000);      => total load = 100
2819 *   consumer B: regulator_enable();  => total load = 1100
2820 *   consumer A: regulator_disable(); => total_load = 1000
2821 *
2822 * This function (together with _regulator_handle_consumer_disable) is
2823 * responsible for keeping track of the refcount for a given regulator consumer
2824 * and applying / unapplying these things.
2825 *
2826 * Returns 0 upon no error; -error upon error.
2827 */
2828static int _regulator_handle_consumer_enable(struct regulator *regulator)
2829{
2830	int ret;
2831	struct regulator_dev *rdev = regulator->rdev;
2832
2833	lockdep_assert_held_once(&rdev->mutex.base);
2834
2835	regulator->enable_count++;
2836	if (regulator->uA_load && regulator->enable_count == 1) {
2837		ret = drms_uA_update(rdev);
2838		if (ret)
2839			regulator->enable_count--;
2840		return ret;
2841	}
2842
2843	return 0;
2844}
2845
2846/**
2847 * _regulator_handle_consumer_disable - handle that a consumer disabled
2848 * @regulator: regulator source
2849 *
2850 * The opposite of _regulator_handle_consumer_enable().
2851 *
2852 * Returns 0 upon no error; -error upon error.
2853 */
2854static int _regulator_handle_consumer_disable(struct regulator *regulator)
2855{
2856	struct regulator_dev *rdev = regulator->rdev;
2857
2858	lockdep_assert_held_once(&rdev->mutex.base);
2859
2860	if (!regulator->enable_count) {
2861		rdev_err(rdev, "Underflow of regulator enable count\n");
2862		return -EINVAL;
2863	}
2864
2865	regulator->enable_count--;
2866	if (regulator->uA_load && regulator->enable_count == 0)
2867		return drms_uA_update(rdev);
2868
2869	return 0;
2870}
2871
2872/* locks held by regulator_enable() */
2873static int _regulator_enable(struct regulator *regulator)
2874{
2875	struct regulator_dev *rdev = regulator->rdev;
2876	int ret;
2877
2878	lockdep_assert_held_once(&rdev->mutex.base);
2879
2880	if (rdev->use_count == 0 && rdev->supply) {
2881		ret = _regulator_enable(rdev->supply);
2882		if (ret < 0)
2883			return ret;
2884	}
2885
2886	/* balance only if there are regulators coupled */
2887	if (rdev->coupling_desc.n_coupled > 1) {
2888		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889		if (ret < 0)
2890			goto err_disable_supply;
2891	}
2892
2893	ret = _regulator_handle_consumer_enable(regulator);
2894	if (ret < 0)
2895		goto err_disable_supply;
2896
2897	if (rdev->use_count == 0) {
2898		/*
2899		 * The regulator may already be enabled if it's not switchable
2900		 * or was left on
2901		 */
2902		ret = _regulator_is_enabled(rdev);
2903		if (ret == -EINVAL || ret == 0) {
2904			if (!regulator_ops_is_valid(rdev,
2905					REGULATOR_CHANGE_STATUS)) {
2906				ret = -EPERM;
2907				goto err_consumer_disable;
2908			}
2909
2910			ret = _regulator_do_enable(rdev);
2911			if (ret < 0)
2912				goto err_consumer_disable;
2913
2914			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2915					     NULL);
2916		} else if (ret < 0) {
2917			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2918			goto err_consumer_disable;
2919		}
2920		/* Fallthrough on positive return values - already enabled */
2921	}
2922
2923	if (regulator->enable_count == 1)
2924		rdev->use_count++;
2925
2926	return 0;
2927
2928err_consumer_disable:
2929	_regulator_handle_consumer_disable(regulator);
2930
2931err_disable_supply:
2932	if (rdev->use_count == 0 && rdev->supply)
2933		_regulator_disable(rdev->supply);
2934
2935	return ret;
2936}
2937
2938/**
2939 * regulator_enable - enable regulator output
2940 * @regulator: regulator source
2941 *
2942 * Request that the regulator be enabled with the regulator output at
2943 * the predefined voltage or current value.  Calls to regulator_enable()
2944 * must be balanced with calls to regulator_disable().
2945 *
2946 * NOTE: the output value can be set by other drivers, boot loader or may be
2947 * hardwired in the regulator.
2948 */
2949int regulator_enable(struct regulator *regulator)
2950{
2951	struct regulator_dev *rdev = regulator->rdev;
2952	struct ww_acquire_ctx ww_ctx;
2953	int ret;
2954
2955	regulator_lock_dependent(rdev, &ww_ctx);
2956	ret = _regulator_enable(regulator);
2957	regulator_unlock_dependent(rdev, &ww_ctx);
2958
2959	return ret;
2960}
2961EXPORT_SYMBOL_GPL(regulator_enable);
2962
2963static int _regulator_do_disable(struct regulator_dev *rdev)
2964{
2965	int ret;
2966
2967	trace_regulator_disable(rdev_get_name(rdev));
2968
2969	if (rdev->ena_pin) {
2970		if (rdev->ena_gpio_state) {
2971			ret = regulator_ena_gpio_ctrl(rdev, false);
2972			if (ret < 0)
2973				return ret;
2974			rdev->ena_gpio_state = 0;
2975		}
2976
2977	} else if (rdev->desc->ops->disable) {
2978		ret = rdev->desc->ops->disable(rdev);
2979		if (ret != 0)
2980			return ret;
2981	}
2982
2983	if (rdev->desc->off_on_delay)
2984		rdev->last_off = ktime_get_boottime();
2985
2986	trace_regulator_disable_complete(rdev_get_name(rdev));
2987
2988	return 0;
2989}
2990
2991/* locks held by regulator_disable() */
2992static int _regulator_disable(struct regulator *regulator)
2993{
2994	struct regulator_dev *rdev = regulator->rdev;
2995	int ret = 0;
2996
2997	lockdep_assert_held_once(&rdev->mutex.base);
2998
2999	if (WARN(regulator->enable_count == 0,
3000		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3001		return -EIO;
3002
3003	if (regulator->enable_count == 1) {
3004	/* disabling last enable_count from this regulator */
3005		/* are we the last user and permitted to disable ? */
3006		if (rdev->use_count == 1 &&
3007		    (rdev->constraints && !rdev->constraints->always_on)) {
3008
3009			/* we are last user */
3010			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3011				ret = _notifier_call_chain(rdev,
3012							   REGULATOR_EVENT_PRE_DISABLE,
3013							   NULL);
3014				if (ret & NOTIFY_STOP_MASK)
3015					return -EINVAL;
3016
3017				ret = _regulator_do_disable(rdev);
3018				if (ret < 0) {
3019					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3020					_notifier_call_chain(rdev,
3021							REGULATOR_EVENT_ABORT_DISABLE,
3022							NULL);
3023					return ret;
3024				}
3025				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3026						NULL);
 
3027			}
 
 
 
3028
3029			rdev->use_count = 0;
3030		} else if (rdev->use_count > 1) {
3031			rdev->use_count--;
3032		}
3033	}
3034
3035	if (ret == 0)
3036		ret = _regulator_handle_consumer_disable(regulator);
3037
3038	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3039		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3040
3041	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3042		ret = _regulator_disable(rdev->supply);
3043
3044	return ret;
3045}
3046
3047/**
3048 * regulator_disable - disable regulator output
3049 * @regulator: regulator source
3050 *
3051 * Disable the regulator output voltage or current.  Calls to
3052 * regulator_enable() must be balanced with calls to
3053 * regulator_disable().
3054 *
3055 * NOTE: this will only disable the regulator output if no other consumer
3056 * devices have it enabled, the regulator device supports disabling and
3057 * machine constraints permit this operation.
3058 */
3059int regulator_disable(struct regulator *regulator)
3060{
3061	struct regulator_dev *rdev = regulator->rdev;
3062	struct ww_acquire_ctx ww_ctx;
3063	int ret;
3064
3065	regulator_lock_dependent(rdev, &ww_ctx);
3066	ret = _regulator_disable(regulator);
3067	regulator_unlock_dependent(rdev, &ww_ctx);
3068
3069	return ret;
3070}
3071EXPORT_SYMBOL_GPL(regulator_disable);
3072
3073/* locks held by regulator_force_disable() */
3074static int _regulator_force_disable(struct regulator_dev *rdev)
3075{
3076	int ret = 0;
3077
3078	lockdep_assert_held_once(&rdev->mutex.base);
3079
3080	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3081			REGULATOR_EVENT_PRE_DISABLE, NULL);
3082	if (ret & NOTIFY_STOP_MASK)
3083		return -EINVAL;
3084
3085	ret = _regulator_do_disable(rdev);
3086	if (ret < 0) {
3087		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3088		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3089				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3090		return ret;
3091	}
3092
3093	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3094			REGULATOR_EVENT_DISABLE, NULL);
3095
3096	return 0;
3097}
3098
3099/**
3100 * regulator_force_disable - force disable regulator output
3101 * @regulator: regulator source
3102 *
3103 * Forcibly disable the regulator output voltage or current.
3104 * NOTE: this *will* disable the regulator output even if other consumer
3105 * devices have it enabled. This should be used for situations when device
3106 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3107 */
3108int regulator_force_disable(struct regulator *regulator)
3109{
3110	struct regulator_dev *rdev = regulator->rdev;
3111	struct ww_acquire_ctx ww_ctx;
3112	int ret;
3113
3114	regulator_lock_dependent(rdev, &ww_ctx);
3115
3116	ret = _regulator_force_disable(regulator->rdev);
3117
3118	if (rdev->coupling_desc.n_coupled > 1)
3119		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3120
3121	if (regulator->uA_load) {
3122		regulator->uA_load = 0;
3123		ret = drms_uA_update(rdev);
3124	}
3125
3126	if (rdev->use_count != 0 && rdev->supply)
3127		_regulator_disable(rdev->supply);
3128
3129	regulator_unlock_dependent(rdev, &ww_ctx);
3130
3131	return ret;
3132}
3133EXPORT_SYMBOL_GPL(regulator_force_disable);
3134
3135static void regulator_disable_work(struct work_struct *work)
3136{
3137	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3138						  disable_work.work);
3139	struct ww_acquire_ctx ww_ctx;
3140	int count, i, ret;
3141	struct regulator *regulator;
3142	int total_count = 0;
3143
3144	regulator_lock_dependent(rdev, &ww_ctx);
3145
3146	/*
3147	 * Workqueue functions queue the new work instance while the previous
3148	 * work instance is being processed. Cancel the queued work instance
3149	 * as the work instance under processing does the job of the queued
3150	 * work instance.
3151	 */
3152	cancel_delayed_work(&rdev->disable_work);
3153
3154	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3155		count = regulator->deferred_disables;
3156
3157		if (!count)
3158			continue;
3159
3160		total_count += count;
3161		regulator->deferred_disables = 0;
3162
3163		for (i = 0; i < count; i++) {
3164			ret = _regulator_disable(regulator);
3165			if (ret != 0)
3166				rdev_err(rdev, "Deferred disable failed: %pe\n",
3167					 ERR_PTR(ret));
3168		}
3169	}
3170	WARN_ON(!total_count);
3171
3172	if (rdev->coupling_desc.n_coupled > 1)
3173		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3174
3175	regulator_unlock_dependent(rdev, &ww_ctx);
3176}
3177
3178/**
3179 * regulator_disable_deferred - disable regulator output with delay
3180 * @regulator: regulator source
3181 * @ms: milliseconds until the regulator is disabled
3182 *
3183 * Execute regulator_disable() on the regulator after a delay.  This
3184 * is intended for use with devices that require some time to quiesce.
3185 *
3186 * NOTE: this will only disable the regulator output if no other consumer
3187 * devices have it enabled, the regulator device supports disabling and
3188 * machine constraints permit this operation.
3189 */
3190int regulator_disable_deferred(struct regulator *regulator, int ms)
3191{
3192	struct regulator_dev *rdev = regulator->rdev;
3193
3194	if (!ms)
3195		return regulator_disable(regulator);
3196
3197	regulator_lock(rdev);
3198	regulator->deferred_disables++;
3199	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3200			 msecs_to_jiffies(ms));
3201	regulator_unlock(rdev);
3202
3203	return 0;
3204}
3205EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3206
3207static int _regulator_is_enabled(struct regulator_dev *rdev)
3208{
3209	/* A GPIO control always takes precedence */
3210	if (rdev->ena_pin)
3211		return rdev->ena_gpio_state;
3212
3213	/* If we don't know then assume that the regulator is always on */
3214	if (!rdev->desc->ops->is_enabled)
3215		return 1;
3216
3217	return rdev->desc->ops->is_enabled(rdev);
3218}
3219
3220static int _regulator_list_voltage(struct regulator_dev *rdev,
3221				   unsigned selector, int lock)
3222{
3223	const struct regulator_ops *ops = rdev->desc->ops;
3224	int ret;
3225
3226	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3227		return rdev->desc->fixed_uV;
3228
3229	if (ops->list_voltage) {
3230		if (selector >= rdev->desc->n_voltages)
3231			return -EINVAL;
3232		if (selector < rdev->desc->linear_min_sel)
3233			return 0;
3234		if (lock)
3235			regulator_lock(rdev);
3236		ret = ops->list_voltage(rdev, selector);
3237		if (lock)
3238			regulator_unlock(rdev);
3239	} else if (rdev->is_switch && rdev->supply) {
3240		ret = _regulator_list_voltage(rdev->supply->rdev,
3241					      selector, lock);
3242	} else {
3243		return -EINVAL;
3244	}
3245
3246	if (ret > 0) {
3247		if (ret < rdev->constraints->min_uV)
3248			ret = 0;
3249		else if (ret > rdev->constraints->max_uV)
3250			ret = 0;
3251	}
3252
3253	return ret;
3254}
3255
3256/**
3257 * regulator_is_enabled - is the regulator output enabled
3258 * @regulator: regulator source
3259 *
3260 * Returns positive if the regulator driver backing the source/client
3261 * has requested that the device be enabled, zero if it hasn't, else a
3262 * negative errno code.
3263 *
3264 * Note that the device backing this regulator handle can have multiple
3265 * users, so it might be enabled even if regulator_enable() was never
3266 * called for this particular source.
3267 */
3268int regulator_is_enabled(struct regulator *regulator)
3269{
3270	int ret;
3271
3272	if (regulator->always_on)
3273		return 1;
3274
3275	regulator_lock(regulator->rdev);
3276	ret = _regulator_is_enabled(regulator->rdev);
3277	regulator_unlock(regulator->rdev);
3278
3279	return ret;
3280}
3281EXPORT_SYMBOL_GPL(regulator_is_enabled);
3282
3283/**
3284 * regulator_count_voltages - count regulator_list_voltage() selectors
3285 * @regulator: regulator source
3286 *
3287 * Returns number of selectors, or negative errno.  Selectors are
3288 * numbered starting at zero, and typically correspond to bitfields
3289 * in hardware registers.
3290 */
3291int regulator_count_voltages(struct regulator *regulator)
3292{
3293	struct regulator_dev	*rdev = regulator->rdev;
3294
3295	if (rdev->desc->n_voltages)
3296		return rdev->desc->n_voltages;
3297
3298	if (!rdev->is_switch || !rdev->supply)
3299		return -EINVAL;
3300
3301	return regulator_count_voltages(rdev->supply);
3302}
3303EXPORT_SYMBOL_GPL(regulator_count_voltages);
3304
3305/**
3306 * regulator_list_voltage - enumerate supported voltages
3307 * @regulator: regulator source
3308 * @selector: identify voltage to list
3309 * Context: can sleep
3310 *
3311 * Returns a voltage that can be passed to @regulator_set_voltage(),
3312 * zero if this selector code can't be used on this system, or a
3313 * negative errno.
3314 */
3315int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3316{
3317	return _regulator_list_voltage(regulator->rdev, selector, 1);
3318}
3319EXPORT_SYMBOL_GPL(regulator_list_voltage);
3320
3321/**
3322 * regulator_get_regmap - get the regulator's register map
3323 * @regulator: regulator source
3324 *
3325 * Returns the register map for the given regulator, or an ERR_PTR value
3326 * if the regulator doesn't use regmap.
3327 */
3328struct regmap *regulator_get_regmap(struct regulator *regulator)
3329{
3330	struct regmap *map = regulator->rdev->regmap;
3331
3332	return map ? map : ERR_PTR(-EOPNOTSUPP);
3333}
3334
3335/**
3336 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3337 * @regulator: regulator source
3338 * @vsel_reg: voltage selector register, output parameter
3339 * @vsel_mask: mask for voltage selector bitfield, output parameter
3340 *
3341 * Returns the hardware register offset and bitmask used for setting the
3342 * regulator voltage. This might be useful when configuring voltage-scaling
3343 * hardware or firmware that can make I2C requests behind the kernel's back,
3344 * for example.
3345 *
3346 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3347 * and 0 is returned, otherwise a negative errno is returned.
3348 */
3349int regulator_get_hardware_vsel_register(struct regulator *regulator,
3350					 unsigned *vsel_reg,
3351					 unsigned *vsel_mask)
3352{
3353	struct regulator_dev *rdev = regulator->rdev;
3354	const struct regulator_ops *ops = rdev->desc->ops;
3355
3356	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3357		return -EOPNOTSUPP;
3358
3359	*vsel_reg = rdev->desc->vsel_reg;
3360	*vsel_mask = rdev->desc->vsel_mask;
3361
3362	return 0;
3363}
3364EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3365
3366/**
3367 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3368 * @regulator: regulator source
3369 * @selector: identify voltage to list
3370 *
3371 * Converts the selector to a hardware-specific voltage selector that can be
3372 * directly written to the regulator registers. The address of the voltage
3373 * register can be determined by calling @regulator_get_hardware_vsel_register.
3374 *
3375 * On error a negative errno is returned.
3376 */
3377int regulator_list_hardware_vsel(struct regulator *regulator,
3378				 unsigned selector)
3379{
3380	struct regulator_dev *rdev = regulator->rdev;
3381	const struct regulator_ops *ops = rdev->desc->ops;
3382
3383	if (selector >= rdev->desc->n_voltages)
3384		return -EINVAL;
3385	if (selector < rdev->desc->linear_min_sel)
3386		return 0;
3387	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3388		return -EOPNOTSUPP;
3389
3390	return selector;
3391}
3392EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3393
3394/**
3395 * regulator_get_linear_step - return the voltage step size between VSEL values
3396 * @regulator: regulator source
3397 *
3398 * Returns the voltage step size between VSEL values for linear
3399 * regulators, or return 0 if the regulator isn't a linear regulator.
3400 */
3401unsigned int regulator_get_linear_step(struct regulator *regulator)
3402{
3403	struct regulator_dev *rdev = regulator->rdev;
3404
3405	return rdev->desc->uV_step;
3406}
3407EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3408
3409/**
3410 * regulator_is_supported_voltage - check if a voltage range can be supported
3411 *
3412 * @regulator: Regulator to check.
3413 * @min_uV: Minimum required voltage in uV.
3414 * @max_uV: Maximum required voltage in uV.
3415 *
3416 * Returns a boolean.
3417 */
3418int regulator_is_supported_voltage(struct regulator *regulator,
3419				   int min_uV, int max_uV)
3420{
3421	struct regulator_dev *rdev = regulator->rdev;
3422	int i, voltages, ret;
3423
3424	/* If we can't change voltage check the current voltage */
3425	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3426		ret = regulator_get_voltage(regulator);
3427		if (ret >= 0)
3428			return min_uV <= ret && ret <= max_uV;
3429		else
3430			return ret;
3431	}
3432
3433	/* Any voltage within constrains range is fine? */
3434	if (rdev->desc->continuous_voltage_range)
3435		return min_uV >= rdev->constraints->min_uV &&
3436				max_uV <= rdev->constraints->max_uV;
3437
3438	ret = regulator_count_voltages(regulator);
3439	if (ret < 0)
3440		return 0;
3441	voltages = ret;
3442
3443	for (i = 0; i < voltages; i++) {
3444		ret = regulator_list_voltage(regulator, i);
3445
3446		if (ret >= min_uV && ret <= max_uV)
3447			return 1;
3448	}
3449
3450	return 0;
3451}
3452EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3453
3454static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3455				 int max_uV)
3456{
3457	const struct regulator_desc *desc = rdev->desc;
3458
3459	if (desc->ops->map_voltage)
3460		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3461
3462	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3463		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3464
3465	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3466		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3467
3468	if (desc->ops->list_voltage ==
3469		regulator_list_voltage_pickable_linear_range)
3470		return regulator_map_voltage_pickable_linear_range(rdev,
3471							min_uV, max_uV);
3472
3473	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3474}
3475
3476static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3477				       int min_uV, int max_uV,
3478				       unsigned *selector)
3479{
3480	struct pre_voltage_change_data data;
3481	int ret;
3482
3483	data.old_uV = regulator_get_voltage_rdev(rdev);
3484	data.min_uV = min_uV;
3485	data.max_uV = max_uV;
3486	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3487				   &data);
3488	if (ret & NOTIFY_STOP_MASK)
3489		return -EINVAL;
3490
3491	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3492	if (ret >= 0)
3493		return ret;
3494
3495	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3496			     (void *)data.old_uV);
3497
3498	return ret;
3499}
3500
3501static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3502					   int uV, unsigned selector)
3503{
3504	struct pre_voltage_change_data data;
3505	int ret;
3506
3507	data.old_uV = regulator_get_voltage_rdev(rdev);
3508	data.min_uV = uV;
3509	data.max_uV = uV;
3510	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3511				   &data);
3512	if (ret & NOTIFY_STOP_MASK)
3513		return -EINVAL;
3514
3515	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3516	if (ret >= 0)
3517		return ret;
3518
3519	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3520			     (void *)data.old_uV);
3521
3522	return ret;
3523}
3524
3525static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3526					   int uV, int new_selector)
3527{
3528	const struct regulator_ops *ops = rdev->desc->ops;
3529	int diff, old_sel, curr_sel, ret;
3530
3531	/* Stepping is only needed if the regulator is enabled. */
3532	if (!_regulator_is_enabled(rdev))
3533		goto final_set;
3534
3535	if (!ops->get_voltage_sel)
3536		return -EINVAL;
3537
3538	old_sel = ops->get_voltage_sel(rdev);
3539	if (old_sel < 0)
3540		return old_sel;
3541
3542	diff = new_selector - old_sel;
3543	if (diff == 0)
3544		return 0; /* No change needed. */
3545
3546	if (diff > 0) {
3547		/* Stepping up. */
3548		for (curr_sel = old_sel + rdev->desc->vsel_step;
3549		     curr_sel < new_selector;
3550		     curr_sel += rdev->desc->vsel_step) {
3551			/*
3552			 * Call the callback directly instead of using
3553			 * _regulator_call_set_voltage_sel() as we don't
3554			 * want to notify anyone yet. Same in the branch
3555			 * below.
3556			 */
3557			ret = ops->set_voltage_sel(rdev, curr_sel);
3558			if (ret)
3559				goto try_revert;
3560		}
3561	} else {
3562		/* Stepping down. */
3563		for (curr_sel = old_sel - rdev->desc->vsel_step;
3564		     curr_sel > new_selector;
3565		     curr_sel -= rdev->desc->vsel_step) {
3566			ret = ops->set_voltage_sel(rdev, curr_sel);
3567			if (ret)
3568				goto try_revert;
3569		}
3570	}
3571
3572final_set:
3573	/* The final selector will trigger the notifiers. */
3574	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3575
3576try_revert:
3577	/*
3578	 * At least try to return to the previous voltage if setting a new
3579	 * one failed.
3580	 */
3581	(void)ops->set_voltage_sel(rdev, old_sel);
3582	return ret;
3583}
3584
3585static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3586				       int old_uV, int new_uV)
3587{
3588	unsigned int ramp_delay = 0;
3589
3590	if (rdev->constraints->ramp_delay)
3591		ramp_delay = rdev->constraints->ramp_delay;
3592	else if (rdev->desc->ramp_delay)
3593		ramp_delay = rdev->desc->ramp_delay;
3594	else if (rdev->constraints->settling_time)
3595		return rdev->constraints->settling_time;
3596	else if (rdev->constraints->settling_time_up &&
3597		 (new_uV > old_uV))
3598		return rdev->constraints->settling_time_up;
3599	else if (rdev->constraints->settling_time_down &&
3600		 (new_uV < old_uV))
3601		return rdev->constraints->settling_time_down;
3602
3603	if (ramp_delay == 0)
3604		return 0;
3605
3606	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3607}
3608
3609static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3610				     int min_uV, int max_uV)
3611{
3612	int ret;
3613	int delay = 0;
3614	int best_val = 0;
3615	unsigned int selector;
3616	int old_selector = -1;
3617	const struct regulator_ops *ops = rdev->desc->ops;
3618	int old_uV = regulator_get_voltage_rdev(rdev);
3619
3620	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3621
3622	min_uV += rdev->constraints->uV_offset;
3623	max_uV += rdev->constraints->uV_offset;
3624
3625	/*
3626	 * If we can't obtain the old selector there is not enough
3627	 * info to call set_voltage_time_sel().
3628	 */
3629	if (_regulator_is_enabled(rdev) &&
3630	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3631		old_selector = ops->get_voltage_sel(rdev);
3632		if (old_selector < 0)
3633			return old_selector;
3634	}
3635
3636	if (ops->set_voltage) {
3637		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3638						  &selector);
3639
3640		if (ret >= 0) {
3641			if (ops->list_voltage)
3642				best_val = ops->list_voltage(rdev,
3643							     selector);
3644			else
3645				best_val = regulator_get_voltage_rdev(rdev);
3646		}
3647
3648	} else if (ops->set_voltage_sel) {
3649		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3650		if (ret >= 0) {
3651			best_val = ops->list_voltage(rdev, ret);
3652			if (min_uV <= best_val && max_uV >= best_val) {
3653				selector = ret;
3654				if (old_selector == selector)
3655					ret = 0;
3656				else if (rdev->desc->vsel_step)
3657					ret = _regulator_set_voltage_sel_step(
3658						rdev, best_val, selector);
3659				else
3660					ret = _regulator_call_set_voltage_sel(
3661						rdev, best_val, selector);
3662			} else {
3663				ret = -EINVAL;
3664			}
3665		}
3666	} else {
3667		ret = -EINVAL;
3668	}
3669
3670	if (ret)
3671		goto out;
3672
3673	if (ops->set_voltage_time_sel) {
3674		/*
3675		 * Call set_voltage_time_sel if successfully obtained
3676		 * old_selector
3677		 */
3678		if (old_selector >= 0 && old_selector != selector)
3679			delay = ops->set_voltage_time_sel(rdev, old_selector,
3680							  selector);
3681	} else {
3682		if (old_uV != best_val) {
3683			if (ops->set_voltage_time)
3684				delay = ops->set_voltage_time(rdev, old_uV,
3685							      best_val);
3686			else
3687				delay = _regulator_set_voltage_time(rdev,
3688								    old_uV,
3689								    best_val);
3690		}
3691	}
3692
3693	if (delay < 0) {
3694		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3695		delay = 0;
3696	}
3697
3698	/* Insert any necessary delays */
3699	_regulator_delay_helper(delay);
3700
3701	if (best_val >= 0) {
3702		unsigned long data = best_val;
3703
3704		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3705				     (void *)data);
3706	}
3707
3708out:
3709	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3710
3711	return ret;
3712}
3713
3714static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3715				  int min_uV, int max_uV, suspend_state_t state)
3716{
3717	struct regulator_state *rstate;
3718	int uV, sel;
3719
3720	rstate = regulator_get_suspend_state(rdev, state);
3721	if (rstate == NULL)
3722		return -EINVAL;
3723
3724	if (min_uV < rstate->min_uV)
3725		min_uV = rstate->min_uV;
3726	if (max_uV > rstate->max_uV)
3727		max_uV = rstate->max_uV;
3728
3729	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3730	if (sel < 0)
3731		return sel;
3732
3733	uV = rdev->desc->ops->list_voltage(rdev, sel);
3734	if (uV >= min_uV && uV <= max_uV)
3735		rstate->uV = uV;
3736
3737	return 0;
3738}
3739
3740static int regulator_set_voltage_unlocked(struct regulator *regulator,
3741					  int min_uV, int max_uV,
3742					  suspend_state_t state)
3743{
3744	struct regulator_dev *rdev = regulator->rdev;
3745	struct regulator_voltage *voltage = &regulator->voltage[state];
3746	int ret = 0;
3747	int old_min_uV, old_max_uV;
3748	int current_uV;
3749
3750	/* If we're setting the same range as last time the change
3751	 * should be a noop (some cpufreq implementations use the same
3752	 * voltage for multiple frequencies, for example).
3753	 */
3754	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3755		goto out;
3756
3757	/* If we're trying to set a range that overlaps the current voltage,
3758	 * return successfully even though the regulator does not support
3759	 * changing the voltage.
3760	 */
3761	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3762		current_uV = regulator_get_voltage_rdev(rdev);
3763		if (min_uV <= current_uV && current_uV <= max_uV) {
3764			voltage->min_uV = min_uV;
3765			voltage->max_uV = max_uV;
3766			goto out;
3767		}
3768	}
3769
3770	/* sanity check */
3771	if (!rdev->desc->ops->set_voltage &&
3772	    !rdev->desc->ops->set_voltage_sel) {
3773		ret = -EINVAL;
3774		goto out;
3775	}
3776
3777	/* constraints check */
3778	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3779	if (ret < 0)
3780		goto out;
3781
3782	/* restore original values in case of error */
3783	old_min_uV = voltage->min_uV;
3784	old_max_uV = voltage->max_uV;
3785	voltage->min_uV = min_uV;
3786	voltage->max_uV = max_uV;
3787
3788	/* for not coupled regulators this will just set the voltage */
3789	ret = regulator_balance_voltage(rdev, state);
3790	if (ret < 0) {
3791		voltage->min_uV = old_min_uV;
3792		voltage->max_uV = old_max_uV;
3793	}
3794
3795out:
3796	return ret;
3797}
3798
3799int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3800			       int max_uV, suspend_state_t state)
3801{
3802	int best_supply_uV = 0;
3803	int supply_change_uV = 0;
3804	int ret;
3805
3806	if (rdev->supply &&
3807	    regulator_ops_is_valid(rdev->supply->rdev,
3808				   REGULATOR_CHANGE_VOLTAGE) &&
3809	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3810					   rdev->desc->ops->get_voltage_sel))) {
3811		int current_supply_uV;
3812		int selector;
3813
3814		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3815		if (selector < 0) {
3816			ret = selector;
3817			goto out;
3818		}
3819
3820		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3821		if (best_supply_uV < 0) {
3822			ret = best_supply_uV;
3823			goto out;
3824		}
3825
3826		best_supply_uV += rdev->desc->min_dropout_uV;
3827
3828		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3829		if (current_supply_uV < 0) {
3830			ret = current_supply_uV;
3831			goto out;
3832		}
3833
3834		supply_change_uV = best_supply_uV - current_supply_uV;
3835	}
3836
3837	if (supply_change_uV > 0) {
3838		ret = regulator_set_voltage_unlocked(rdev->supply,
3839				best_supply_uV, INT_MAX, state);
3840		if (ret) {
3841			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3842				ERR_PTR(ret));
3843			goto out;
3844		}
3845	}
3846
3847	if (state == PM_SUSPEND_ON)
3848		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3849	else
3850		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3851							max_uV, state);
3852	if (ret < 0)
3853		goto out;
3854
3855	if (supply_change_uV < 0) {
3856		ret = regulator_set_voltage_unlocked(rdev->supply,
3857				best_supply_uV, INT_MAX, state);
3858		if (ret)
3859			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3860				 ERR_PTR(ret));
3861		/* No need to fail here */
3862		ret = 0;
3863	}
3864
3865out:
3866	return ret;
3867}
3868EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3869
3870static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3871					int *current_uV, int *min_uV)
3872{
3873	struct regulation_constraints *constraints = rdev->constraints;
3874
3875	/* Limit voltage change only if necessary */
3876	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3877		return 1;
3878
3879	if (*current_uV < 0) {
3880		*current_uV = regulator_get_voltage_rdev(rdev);
3881
3882		if (*current_uV < 0)
3883			return *current_uV;
3884	}
3885
3886	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3887		return 1;
3888
3889	/* Clamp target voltage within the given step */
3890	if (*current_uV < *min_uV)
3891		*min_uV = min(*current_uV + constraints->max_uV_step,
3892			      *min_uV);
3893	else
3894		*min_uV = max(*current_uV - constraints->max_uV_step,
3895			      *min_uV);
3896
3897	return 0;
3898}
3899
3900static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3901					 int *current_uV,
3902					 int *min_uV, int *max_uV,
3903					 suspend_state_t state,
3904					 int n_coupled)
3905{
3906	struct coupling_desc *c_desc = &rdev->coupling_desc;
3907	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3908	struct regulation_constraints *constraints = rdev->constraints;
3909	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3910	int max_current_uV = 0, min_current_uV = INT_MAX;
3911	int highest_min_uV = 0, target_uV, possible_uV;
3912	int i, ret, max_spread;
3913	bool done;
3914
3915	*current_uV = -1;
3916
3917	/*
3918	 * If there are no coupled regulators, simply set the voltage
3919	 * demanded by consumers.
3920	 */
3921	if (n_coupled == 1) {
3922		/*
3923		 * If consumers don't provide any demands, set voltage
3924		 * to min_uV
3925		 */
3926		desired_min_uV = constraints->min_uV;
3927		desired_max_uV = constraints->max_uV;
3928
3929		ret = regulator_check_consumers(rdev,
3930						&desired_min_uV,
3931						&desired_max_uV, state);
3932		if (ret < 0)
3933			return ret;
3934
3935		possible_uV = desired_min_uV;
3936		done = true;
3937
3938		goto finish;
3939	}
3940
3941	/* Find highest min desired voltage */
3942	for (i = 0; i < n_coupled; i++) {
3943		int tmp_min = 0;
3944		int tmp_max = INT_MAX;
3945
3946		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3947
3948		ret = regulator_check_consumers(c_rdevs[i],
3949						&tmp_min,
3950						&tmp_max, state);
3951		if (ret < 0)
3952			return ret;
3953
3954		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3955		if (ret < 0)
3956			return ret;
3957
3958		highest_min_uV = max(highest_min_uV, tmp_min);
3959
3960		if (i == 0) {
3961			desired_min_uV = tmp_min;
3962			desired_max_uV = tmp_max;
3963		}
3964	}
3965
3966	max_spread = constraints->max_spread[0];
3967
3968	/*
3969	 * Let target_uV be equal to the desired one if possible.
3970	 * If not, set it to minimum voltage, allowed by other coupled
3971	 * regulators.
3972	 */
3973	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3974
3975	/*
3976	 * Find min and max voltages, which currently aren't violating
3977	 * max_spread.
3978	 */
3979	for (i = 1; i < n_coupled; i++) {
3980		int tmp_act;
3981
3982		if (!_regulator_is_enabled(c_rdevs[i]))
3983			continue;
3984
3985		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3986		if (tmp_act < 0)
3987			return tmp_act;
3988
3989		min_current_uV = min(tmp_act, min_current_uV);
3990		max_current_uV = max(tmp_act, max_current_uV);
3991	}
3992
3993	/* There aren't any other regulators enabled */
3994	if (max_current_uV == 0) {
3995		possible_uV = target_uV;
3996	} else {
3997		/*
3998		 * Correct target voltage, so as it currently isn't
3999		 * violating max_spread
4000		 */
4001		possible_uV = max(target_uV, max_current_uV - max_spread);
4002		possible_uV = min(possible_uV, min_current_uV + max_spread);
4003	}
4004
4005	if (possible_uV > desired_max_uV)
4006		return -EINVAL;
4007
4008	done = (possible_uV == target_uV);
4009	desired_min_uV = possible_uV;
4010
4011finish:
4012	/* Apply max_uV_step constraint if necessary */
4013	if (state == PM_SUSPEND_ON) {
4014		ret = regulator_limit_voltage_step(rdev, current_uV,
4015						   &desired_min_uV);
4016		if (ret < 0)
4017			return ret;
4018
4019		if (ret == 0)
4020			done = false;
4021	}
4022
4023	/* Set current_uV if wasn't done earlier in the code and if necessary */
4024	if (n_coupled > 1 && *current_uV == -1) {
4025
4026		if (_regulator_is_enabled(rdev)) {
4027			ret = regulator_get_voltage_rdev(rdev);
4028			if (ret < 0)
4029				return ret;
4030
4031			*current_uV = ret;
4032		} else {
4033			*current_uV = desired_min_uV;
4034		}
4035	}
4036
4037	*min_uV = desired_min_uV;
4038	*max_uV = desired_max_uV;
4039
4040	return done;
4041}
4042
4043int regulator_do_balance_voltage(struct regulator_dev *rdev,
4044				 suspend_state_t state, bool skip_coupled)
4045{
4046	struct regulator_dev **c_rdevs;
4047	struct regulator_dev *best_rdev;
4048	struct coupling_desc *c_desc = &rdev->coupling_desc;
4049	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4050	unsigned int delta, best_delta;
4051	unsigned long c_rdev_done = 0;
4052	bool best_c_rdev_done;
4053
4054	c_rdevs = c_desc->coupled_rdevs;
4055	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4056
4057	/*
4058	 * Find the best possible voltage change on each loop. Leave the loop
4059	 * if there isn't any possible change.
4060	 */
4061	do {
4062		best_c_rdev_done = false;
4063		best_delta = 0;
4064		best_min_uV = 0;
4065		best_max_uV = 0;
4066		best_c_rdev = 0;
4067		best_rdev = NULL;
4068
4069		/*
4070		 * Find highest difference between optimal voltage
4071		 * and current voltage.
4072		 */
4073		for (i = 0; i < n_coupled; i++) {
4074			/*
4075			 * optimal_uV is the best voltage that can be set for
4076			 * i-th regulator at the moment without violating
4077			 * max_spread constraint in order to balance
4078			 * the coupled voltages.
4079			 */
4080			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4081
4082			if (test_bit(i, &c_rdev_done))
4083				continue;
4084
4085			ret = regulator_get_optimal_voltage(c_rdevs[i],
4086							    &current_uV,
4087							    &optimal_uV,
4088							    &optimal_max_uV,
4089							    state, n_coupled);
4090			if (ret < 0)
4091				goto out;
4092
4093			delta = abs(optimal_uV - current_uV);
4094
4095			if (delta && best_delta <= delta) {
4096				best_c_rdev_done = ret;
4097				best_delta = delta;
4098				best_rdev = c_rdevs[i];
4099				best_min_uV = optimal_uV;
4100				best_max_uV = optimal_max_uV;
4101				best_c_rdev = i;
4102			}
4103		}
4104
4105		/* Nothing to change, return successfully */
4106		if (!best_rdev) {
4107			ret = 0;
4108			goto out;
4109		}
4110
4111		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4112						 best_max_uV, state);
4113
4114		if (ret < 0)
4115			goto out;
4116
4117		if (best_c_rdev_done)
4118			set_bit(best_c_rdev, &c_rdev_done);
4119
4120	} while (n_coupled > 1);
4121
4122out:
4123	return ret;
4124}
4125
4126static int regulator_balance_voltage(struct regulator_dev *rdev,
4127				     suspend_state_t state)
4128{
4129	struct coupling_desc *c_desc = &rdev->coupling_desc;
4130	struct regulator_coupler *coupler = c_desc->coupler;
4131	bool skip_coupled = false;
4132
4133	/*
4134	 * If system is in a state other than PM_SUSPEND_ON, don't check
4135	 * other coupled regulators.
4136	 */
4137	if (state != PM_SUSPEND_ON)
4138		skip_coupled = true;
4139
4140	if (c_desc->n_resolved < c_desc->n_coupled) {
4141		rdev_err(rdev, "Not all coupled regulators registered\n");
4142		return -EPERM;
4143	}
4144
4145	/* Invoke custom balancer for customized couplers */
4146	if (coupler && coupler->balance_voltage)
4147		return coupler->balance_voltage(coupler, rdev, state);
4148
4149	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4150}
4151
4152/**
4153 * regulator_set_voltage - set regulator output voltage
4154 * @regulator: regulator source
4155 * @min_uV: Minimum required voltage in uV
4156 * @max_uV: Maximum acceptable voltage in uV
4157 *
4158 * Sets a voltage regulator to the desired output voltage. This can be set
4159 * during any regulator state. IOW, regulator can be disabled or enabled.
4160 *
4161 * If the regulator is enabled then the voltage will change to the new value
4162 * immediately otherwise if the regulator is disabled the regulator will
4163 * output at the new voltage when enabled.
4164 *
4165 * NOTE: If the regulator is shared between several devices then the lowest
4166 * request voltage that meets the system constraints will be used.
4167 * Regulator system constraints must be set for this regulator before
4168 * calling this function otherwise this call will fail.
4169 */
4170int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4171{
4172	struct ww_acquire_ctx ww_ctx;
4173	int ret;
4174
4175	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4176
4177	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4178					     PM_SUSPEND_ON);
4179
4180	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4181
4182	return ret;
4183}
4184EXPORT_SYMBOL_GPL(regulator_set_voltage);
4185
4186static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4187					   suspend_state_t state, bool en)
4188{
4189	struct regulator_state *rstate;
4190
4191	rstate = regulator_get_suspend_state(rdev, state);
4192	if (rstate == NULL)
4193		return -EINVAL;
4194
4195	if (!rstate->changeable)
4196		return -EPERM;
4197
4198	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4199
4200	return 0;
4201}
4202
4203int regulator_suspend_enable(struct regulator_dev *rdev,
4204				    suspend_state_t state)
4205{
4206	return regulator_suspend_toggle(rdev, state, true);
4207}
4208EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4209
4210int regulator_suspend_disable(struct regulator_dev *rdev,
4211				     suspend_state_t state)
4212{
4213	struct regulator *regulator;
4214	struct regulator_voltage *voltage;
4215
4216	/*
4217	 * if any consumer wants this regulator device keeping on in
4218	 * suspend states, don't set it as disabled.
4219	 */
4220	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4221		voltage = &regulator->voltage[state];
4222		if (voltage->min_uV || voltage->max_uV)
4223			return 0;
4224	}
4225
4226	return regulator_suspend_toggle(rdev, state, false);
4227}
4228EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4229
4230static int _regulator_set_suspend_voltage(struct regulator *regulator,
4231					  int min_uV, int max_uV,
4232					  suspend_state_t state)
4233{
4234	struct regulator_dev *rdev = regulator->rdev;
4235	struct regulator_state *rstate;
4236
4237	rstate = regulator_get_suspend_state(rdev, state);
4238	if (rstate == NULL)
4239		return -EINVAL;
4240
4241	if (rstate->min_uV == rstate->max_uV) {
4242		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4243		return -EPERM;
4244	}
4245
4246	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4247}
4248
4249int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4250				  int max_uV, suspend_state_t state)
4251{
4252	struct ww_acquire_ctx ww_ctx;
4253	int ret;
4254
4255	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4256	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4257		return -EINVAL;
4258
4259	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4260
4261	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4262					     max_uV, state);
4263
4264	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4265
4266	return ret;
4267}
4268EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4269
4270/**
4271 * regulator_set_voltage_time - get raise/fall time
4272 * @regulator: regulator source
4273 * @old_uV: starting voltage in microvolts
4274 * @new_uV: target voltage in microvolts
4275 *
4276 * Provided with the starting and ending voltage, this function attempts to
4277 * calculate the time in microseconds required to rise or fall to this new
4278 * voltage.
4279 */
4280int regulator_set_voltage_time(struct regulator *regulator,
4281			       int old_uV, int new_uV)
4282{
4283	struct regulator_dev *rdev = regulator->rdev;
4284	const struct regulator_ops *ops = rdev->desc->ops;
4285	int old_sel = -1;
4286	int new_sel = -1;
4287	int voltage;
4288	int i;
4289
4290	if (ops->set_voltage_time)
4291		return ops->set_voltage_time(rdev, old_uV, new_uV);
4292	else if (!ops->set_voltage_time_sel)
4293		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4294
4295	/* Currently requires operations to do this */
4296	if (!ops->list_voltage || !rdev->desc->n_voltages)
4297		return -EINVAL;
4298
4299	for (i = 0; i < rdev->desc->n_voltages; i++) {
4300		/* We only look for exact voltage matches here */
4301		if (i < rdev->desc->linear_min_sel)
4302			continue;
4303
4304		if (old_sel >= 0 && new_sel >= 0)
4305			break;
4306
4307		voltage = regulator_list_voltage(regulator, i);
4308		if (voltage < 0)
4309			return -EINVAL;
4310		if (voltage == 0)
4311			continue;
4312		if (voltage == old_uV)
4313			old_sel = i;
4314		if (voltage == new_uV)
4315			new_sel = i;
4316	}
4317
4318	if (old_sel < 0 || new_sel < 0)
4319		return -EINVAL;
4320
4321	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4322}
4323EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4324
4325/**
4326 * regulator_set_voltage_time_sel - get raise/fall time
4327 * @rdev: regulator source device
4328 * @old_selector: selector for starting voltage
4329 * @new_selector: selector for target voltage
4330 *
4331 * Provided with the starting and target voltage selectors, this function
4332 * returns time in microseconds required to rise or fall to this new voltage
4333 *
4334 * Drivers providing ramp_delay in regulation_constraints can use this as their
4335 * set_voltage_time_sel() operation.
4336 */
4337int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4338				   unsigned int old_selector,
4339				   unsigned int new_selector)
4340{
4341	int old_volt, new_volt;
4342
4343	/* sanity check */
4344	if (!rdev->desc->ops->list_voltage)
4345		return -EINVAL;
4346
4347	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4348	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4349
4350	if (rdev->desc->ops->set_voltage_time)
4351		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4352							 new_volt);
4353	else
4354		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4355}
4356EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4357
4358int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4359{
4360	int ret;
4361
4362	regulator_lock(rdev);
4363
4364	if (!rdev->desc->ops->set_voltage &&
4365	    !rdev->desc->ops->set_voltage_sel) {
4366		ret = -EINVAL;
4367		goto out;
4368	}
4369
4370	/* balance only, if regulator is coupled */
4371	if (rdev->coupling_desc.n_coupled > 1)
4372		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4373	else
4374		ret = -EOPNOTSUPP;
4375
4376out:
4377	regulator_unlock(rdev);
4378	return ret;
4379}
4380
4381/**
4382 * regulator_sync_voltage - re-apply last regulator output voltage
4383 * @regulator: regulator source
4384 *
4385 * Re-apply the last configured voltage.  This is intended to be used
4386 * where some external control source the consumer is cooperating with
4387 * has caused the configured voltage to change.
4388 */
4389int regulator_sync_voltage(struct regulator *regulator)
4390{
4391	struct regulator_dev *rdev = regulator->rdev;
4392	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4393	int ret, min_uV, max_uV;
4394
4395	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4396		return 0;
4397
4398	regulator_lock(rdev);
4399
4400	if (!rdev->desc->ops->set_voltage &&
4401	    !rdev->desc->ops->set_voltage_sel) {
4402		ret = -EINVAL;
4403		goto out;
4404	}
4405
4406	/* This is only going to work if we've had a voltage configured. */
4407	if (!voltage->min_uV && !voltage->max_uV) {
4408		ret = -EINVAL;
4409		goto out;
4410	}
4411
4412	min_uV = voltage->min_uV;
4413	max_uV = voltage->max_uV;
4414
4415	/* This should be a paranoia check... */
4416	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4417	if (ret < 0)
4418		goto out;
4419
4420	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4421	if (ret < 0)
4422		goto out;
4423
4424	/* balance only, if regulator is coupled */
4425	if (rdev->coupling_desc.n_coupled > 1)
4426		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4427	else
4428		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4429
4430out:
4431	regulator_unlock(rdev);
4432	return ret;
4433}
4434EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4435
4436int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4437{
4438	int sel, ret;
4439	bool bypassed;
4440
4441	if (rdev->desc->ops->get_bypass) {
4442		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4443		if (ret < 0)
4444			return ret;
4445		if (bypassed) {
4446			/* if bypassed the regulator must have a supply */
4447			if (!rdev->supply) {
4448				rdev_err(rdev,
4449					 "bypassed regulator has no supply!\n");
4450				return -EPROBE_DEFER;
4451			}
4452
4453			return regulator_get_voltage_rdev(rdev->supply->rdev);
4454		}
4455	}
4456
4457	if (rdev->desc->ops->get_voltage_sel) {
4458		sel = rdev->desc->ops->get_voltage_sel(rdev);
4459		if (sel < 0)
4460			return sel;
4461		ret = rdev->desc->ops->list_voltage(rdev, sel);
4462	} else if (rdev->desc->ops->get_voltage) {
4463		ret = rdev->desc->ops->get_voltage(rdev);
4464	} else if (rdev->desc->ops->list_voltage) {
4465		ret = rdev->desc->ops->list_voltage(rdev, 0);
4466	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4467		ret = rdev->desc->fixed_uV;
4468	} else if (rdev->supply) {
4469		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4470	} else if (rdev->supply_name) {
4471		return -EPROBE_DEFER;
4472	} else {
4473		return -EINVAL;
4474	}
4475
4476	if (ret < 0)
4477		return ret;
4478	return ret - rdev->constraints->uV_offset;
4479}
4480EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4481
4482/**
4483 * regulator_get_voltage - get regulator output voltage
4484 * @regulator: regulator source
4485 *
4486 * This returns the current regulator voltage in uV.
4487 *
4488 * NOTE: If the regulator is disabled it will return the voltage value. This
4489 * function should not be used to determine regulator state.
4490 */
4491int regulator_get_voltage(struct regulator *regulator)
4492{
4493	struct ww_acquire_ctx ww_ctx;
4494	int ret;
4495
4496	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4497	ret = regulator_get_voltage_rdev(regulator->rdev);
4498	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4499
4500	return ret;
4501}
4502EXPORT_SYMBOL_GPL(regulator_get_voltage);
4503
4504/**
4505 * regulator_set_current_limit - set regulator output current limit
4506 * @regulator: regulator source
4507 * @min_uA: Minimum supported current in uA
4508 * @max_uA: Maximum supported current in uA
4509 *
4510 * Sets current sink to the desired output current. This can be set during
4511 * any regulator state. IOW, regulator can be disabled or enabled.
4512 *
4513 * If the regulator is enabled then the current will change to the new value
4514 * immediately otherwise if the regulator is disabled the regulator will
4515 * output at the new current when enabled.
4516 *
4517 * NOTE: Regulator system constraints must be set for this regulator before
4518 * calling this function otherwise this call will fail.
4519 */
4520int regulator_set_current_limit(struct regulator *regulator,
4521			       int min_uA, int max_uA)
4522{
4523	struct regulator_dev *rdev = regulator->rdev;
4524	int ret;
4525
4526	regulator_lock(rdev);
4527
4528	/* sanity check */
4529	if (!rdev->desc->ops->set_current_limit) {
4530		ret = -EINVAL;
4531		goto out;
4532	}
4533
4534	/* constraints check */
4535	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4536	if (ret < 0)
4537		goto out;
4538
4539	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4540out:
4541	regulator_unlock(rdev);
4542	return ret;
4543}
4544EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4545
4546static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4547{
4548	/* sanity check */
4549	if (!rdev->desc->ops->get_current_limit)
4550		return -EINVAL;
4551
4552	return rdev->desc->ops->get_current_limit(rdev);
4553}
4554
4555static int _regulator_get_current_limit(struct regulator_dev *rdev)
4556{
4557	int ret;
4558
4559	regulator_lock(rdev);
4560	ret = _regulator_get_current_limit_unlocked(rdev);
4561	regulator_unlock(rdev);
4562
4563	return ret;
4564}
4565
4566/**
4567 * regulator_get_current_limit - get regulator output current
4568 * @regulator: regulator source
4569 *
4570 * This returns the current supplied by the specified current sink in uA.
4571 *
4572 * NOTE: If the regulator is disabled it will return the current value. This
4573 * function should not be used to determine regulator state.
4574 */
4575int regulator_get_current_limit(struct regulator *regulator)
4576{
4577	return _regulator_get_current_limit(regulator->rdev);
4578}
4579EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4580
4581/**
4582 * regulator_set_mode - set regulator operating mode
4583 * @regulator: regulator source
4584 * @mode: operating mode - one of the REGULATOR_MODE constants
4585 *
4586 * Set regulator operating mode to increase regulator efficiency or improve
4587 * regulation performance.
4588 *
4589 * NOTE: Regulator system constraints must be set for this regulator before
4590 * calling this function otherwise this call will fail.
4591 */
4592int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4593{
4594	struct regulator_dev *rdev = regulator->rdev;
4595	int ret;
4596	int regulator_curr_mode;
4597
4598	regulator_lock(rdev);
4599
4600	/* sanity check */
4601	if (!rdev->desc->ops->set_mode) {
4602		ret = -EINVAL;
4603		goto out;
4604	}
4605
4606	/* return if the same mode is requested */
4607	if (rdev->desc->ops->get_mode) {
4608		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4609		if (regulator_curr_mode == mode) {
4610			ret = 0;
4611			goto out;
4612		}
4613	}
4614
4615	/* constraints check */
4616	ret = regulator_mode_constrain(rdev, &mode);
4617	if (ret < 0)
4618		goto out;
4619
4620	ret = rdev->desc->ops->set_mode(rdev, mode);
4621out:
4622	regulator_unlock(rdev);
4623	return ret;
4624}
4625EXPORT_SYMBOL_GPL(regulator_set_mode);
4626
4627static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4628{
4629	/* sanity check */
4630	if (!rdev->desc->ops->get_mode)
4631		return -EINVAL;
4632
4633	return rdev->desc->ops->get_mode(rdev);
4634}
4635
4636static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4637{
4638	int ret;
4639
4640	regulator_lock(rdev);
4641	ret = _regulator_get_mode_unlocked(rdev);
4642	regulator_unlock(rdev);
4643
4644	return ret;
4645}
4646
4647/**
4648 * regulator_get_mode - get regulator operating mode
4649 * @regulator: regulator source
4650 *
4651 * Get the current regulator operating mode.
4652 */
4653unsigned int regulator_get_mode(struct regulator *regulator)
4654{
4655	return _regulator_get_mode(regulator->rdev);
4656}
4657EXPORT_SYMBOL_GPL(regulator_get_mode);
4658
4659static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4660{
4661	int ret = 0;
4662
4663	if (rdev->use_cached_err) {
4664		spin_lock(&rdev->err_lock);
4665		ret = rdev->cached_err;
4666		spin_unlock(&rdev->err_lock);
4667	}
4668	return ret;
4669}
4670
4671static int _regulator_get_error_flags(struct regulator_dev *rdev,
4672					unsigned int *flags)
4673{
4674	int cached_flags, ret = 0;
4675
4676	regulator_lock(rdev);
4677
4678	cached_flags = rdev_get_cached_err_flags(rdev);
4679
4680	if (rdev->desc->ops->get_error_flags)
4681		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4682	else if (!rdev->use_cached_err)
4683		ret = -EINVAL;
4684
4685	*flags |= cached_flags;
4686
4687	regulator_unlock(rdev);
4688
4689	return ret;
4690}
4691
4692/**
4693 * regulator_get_error_flags - get regulator error information
4694 * @regulator: regulator source
4695 * @flags: pointer to store error flags
4696 *
4697 * Get the current regulator error information.
4698 */
4699int regulator_get_error_flags(struct regulator *regulator,
4700				unsigned int *flags)
4701{
4702	return _regulator_get_error_flags(regulator->rdev, flags);
4703}
4704EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4705
4706/**
4707 * regulator_set_load - set regulator load
4708 * @regulator: regulator source
4709 * @uA_load: load current
4710 *
4711 * Notifies the regulator core of a new device load. This is then used by
4712 * DRMS (if enabled by constraints) to set the most efficient regulator
4713 * operating mode for the new regulator loading.
4714 *
4715 * Consumer devices notify their supply regulator of the maximum power
4716 * they will require (can be taken from device datasheet in the power
4717 * consumption tables) when they change operational status and hence power
4718 * state. Examples of operational state changes that can affect power
4719 * consumption are :-
4720 *
4721 *    o Device is opened / closed.
4722 *    o Device I/O is about to begin or has just finished.
4723 *    o Device is idling in between work.
4724 *
4725 * This information is also exported via sysfs to userspace.
4726 *
4727 * DRMS will sum the total requested load on the regulator and change
4728 * to the most efficient operating mode if platform constraints allow.
4729 *
4730 * NOTE: when a regulator consumer requests to have a regulator
4731 * disabled then any load that consumer requested no longer counts
4732 * toward the total requested load.  If the regulator is re-enabled
4733 * then the previously requested load will start counting again.
4734 *
4735 * If a regulator is an always-on regulator then an individual consumer's
4736 * load will still be removed if that consumer is fully disabled.
4737 *
4738 * On error a negative errno is returned.
4739 */
4740int regulator_set_load(struct regulator *regulator, int uA_load)
4741{
4742	struct regulator_dev *rdev = regulator->rdev;
4743	int old_uA_load;
4744	int ret = 0;
4745
4746	regulator_lock(rdev);
4747	old_uA_load = regulator->uA_load;
4748	regulator->uA_load = uA_load;
4749	if (regulator->enable_count && old_uA_load != uA_load) {
4750		ret = drms_uA_update(rdev);
4751		if (ret < 0)
4752			regulator->uA_load = old_uA_load;
4753	}
4754	regulator_unlock(rdev);
4755
4756	return ret;
4757}
4758EXPORT_SYMBOL_GPL(regulator_set_load);
4759
4760/**
4761 * regulator_allow_bypass - allow the regulator to go into bypass mode
4762 *
4763 * @regulator: Regulator to configure
4764 * @enable: enable or disable bypass mode
4765 *
4766 * Allow the regulator to go into bypass mode if all other consumers
4767 * for the regulator also enable bypass mode and the machine
4768 * constraints allow this.  Bypass mode means that the regulator is
4769 * simply passing the input directly to the output with no regulation.
4770 */
4771int regulator_allow_bypass(struct regulator *regulator, bool enable)
4772{
4773	struct regulator_dev *rdev = regulator->rdev;
4774	const char *name = rdev_get_name(rdev);
4775	int ret = 0;
4776
4777	if (!rdev->desc->ops->set_bypass)
4778		return 0;
4779
4780	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4781		return 0;
4782
4783	regulator_lock(rdev);
4784
4785	if (enable && !regulator->bypass) {
4786		rdev->bypass_count++;
4787
4788		if (rdev->bypass_count == rdev->open_count) {
4789			trace_regulator_bypass_enable(name);
4790
4791			ret = rdev->desc->ops->set_bypass(rdev, enable);
4792			if (ret != 0)
4793				rdev->bypass_count--;
4794			else
4795				trace_regulator_bypass_enable_complete(name);
4796		}
4797
4798	} else if (!enable && regulator->bypass) {
4799		rdev->bypass_count--;
4800
4801		if (rdev->bypass_count != rdev->open_count) {
4802			trace_regulator_bypass_disable(name);
4803
4804			ret = rdev->desc->ops->set_bypass(rdev, enable);
4805			if (ret != 0)
4806				rdev->bypass_count++;
4807			else
4808				trace_regulator_bypass_disable_complete(name);
4809		}
4810	}
4811
4812	if (ret == 0)
4813		regulator->bypass = enable;
4814
4815	regulator_unlock(rdev);
4816
4817	return ret;
4818}
4819EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4820
4821/**
4822 * regulator_register_notifier - register regulator event notifier
4823 * @regulator: regulator source
4824 * @nb: notifier block
4825 *
4826 * Register notifier block to receive regulator events.
4827 */
4828int regulator_register_notifier(struct regulator *regulator,
4829			      struct notifier_block *nb)
4830{
4831	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4832						nb);
4833}
4834EXPORT_SYMBOL_GPL(regulator_register_notifier);
4835
4836/**
4837 * regulator_unregister_notifier - unregister regulator event notifier
4838 * @regulator: regulator source
4839 * @nb: notifier block
4840 *
4841 * Unregister regulator event notifier block.
4842 */
4843int regulator_unregister_notifier(struct regulator *regulator,
4844				struct notifier_block *nb)
4845{
4846	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4847						  nb);
4848}
4849EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4850
4851/* notify regulator consumers and downstream regulator consumers.
4852 * Note mutex must be held by caller.
4853 */
4854static int _notifier_call_chain(struct regulator_dev *rdev,
4855				  unsigned long event, void *data)
4856{
4857	/* call rdev chain first */
4858	int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data);
4859
4860	if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4861		struct device *parent = rdev->dev.parent;
4862		const char *rname = rdev_get_name(rdev);
4863		char name[32];
4864
4865		/* Avoid duplicate debugfs directory names */
4866		if (parent && rname == rdev->desc->name) {
4867			snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4868				 rname);
4869			rname = name;
4870		}
4871		reg_generate_netlink_event(rname, event);
4872	}
4873
4874	return ret;
4875}
4876
4877int _regulator_bulk_get(struct device *dev, int num_consumers,
4878			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4879{
4880	int i;
4881	int ret;
4882
4883	for (i = 0; i < num_consumers; i++)
4884		consumers[i].consumer = NULL;
4885
4886	for (i = 0; i < num_consumers; i++) {
4887		consumers[i].consumer = _regulator_get(dev,
4888						       consumers[i].supply, get_type);
4889		if (IS_ERR(consumers[i].consumer)) {
4890			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4891					    "Failed to get supply '%s'",
4892					    consumers[i].supply);
4893			consumers[i].consumer = NULL;
4894			goto err;
4895		}
4896
4897		if (consumers[i].init_load_uA > 0) {
4898			ret = regulator_set_load(consumers[i].consumer,
4899						 consumers[i].init_load_uA);
4900			if (ret) {
4901				i++;
4902				goto err;
4903			}
4904		}
4905	}
4906
4907	return 0;
4908
4909err:
4910	while (--i >= 0)
4911		regulator_put(consumers[i].consumer);
4912
4913	return ret;
4914}
4915
4916/**
4917 * regulator_bulk_get - get multiple regulator consumers
4918 *
4919 * @dev:           Device to supply
4920 * @num_consumers: Number of consumers to register
4921 * @consumers:     Configuration of consumers; clients are stored here.
4922 *
4923 * @return 0 on success, an errno on failure.
4924 *
4925 * This helper function allows drivers to get several regulator
4926 * consumers in one operation.  If any of the regulators cannot be
4927 * acquired then any regulators that were allocated will be freed
4928 * before returning to the caller.
4929 */
4930int regulator_bulk_get(struct device *dev, int num_consumers,
4931		       struct regulator_bulk_data *consumers)
4932{
4933	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4934}
4935EXPORT_SYMBOL_GPL(regulator_bulk_get);
4936
4937static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4938{
4939	struct regulator_bulk_data *bulk = data;
4940
4941	bulk->ret = regulator_enable(bulk->consumer);
4942}
4943
4944/**
4945 * regulator_bulk_enable - enable multiple regulator consumers
4946 *
4947 * @num_consumers: Number of consumers
4948 * @consumers:     Consumer data; clients are stored here.
4949 * @return         0 on success, an errno on failure
4950 *
4951 * This convenience API allows consumers to enable multiple regulator
4952 * clients in a single API call.  If any consumers cannot be enabled
4953 * then any others that were enabled will be disabled again prior to
4954 * return.
4955 */
4956int regulator_bulk_enable(int num_consumers,
4957			  struct regulator_bulk_data *consumers)
4958{
4959	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4960	int i;
4961	int ret = 0;
4962
4963	for (i = 0; i < num_consumers; i++) {
4964		async_schedule_domain(regulator_bulk_enable_async,
4965				      &consumers[i], &async_domain);
4966	}
4967
4968	async_synchronize_full_domain(&async_domain);
4969
4970	/* If any consumer failed we need to unwind any that succeeded */
4971	for (i = 0; i < num_consumers; i++) {
4972		if (consumers[i].ret != 0) {
4973			ret = consumers[i].ret;
4974			goto err;
4975		}
4976	}
4977
4978	return 0;
4979
4980err:
4981	for (i = 0; i < num_consumers; i++) {
4982		if (consumers[i].ret < 0)
4983			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4984			       ERR_PTR(consumers[i].ret));
4985		else
4986			regulator_disable(consumers[i].consumer);
4987	}
4988
4989	return ret;
4990}
4991EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4992
4993/**
4994 * regulator_bulk_disable - disable multiple regulator consumers
4995 *
4996 * @num_consumers: Number of consumers
4997 * @consumers:     Consumer data; clients are stored here.
4998 * @return         0 on success, an errno on failure
4999 *
5000 * This convenience API allows consumers to disable multiple regulator
5001 * clients in a single API call.  If any consumers cannot be disabled
5002 * then any others that were disabled will be enabled again prior to
5003 * return.
5004 */
5005int regulator_bulk_disable(int num_consumers,
5006			   struct regulator_bulk_data *consumers)
5007{
5008	int i;
5009	int ret, r;
5010
5011	for (i = num_consumers - 1; i >= 0; --i) {
5012		ret = regulator_disable(consumers[i].consumer);
5013		if (ret != 0)
5014			goto err;
5015	}
5016
5017	return 0;
5018
5019err:
5020	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5021	for (++i; i < num_consumers; ++i) {
5022		r = regulator_enable(consumers[i].consumer);
5023		if (r != 0)
5024			pr_err("Failed to re-enable %s: %pe\n",
5025			       consumers[i].supply, ERR_PTR(r));
5026	}
5027
5028	return ret;
5029}
5030EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5031
5032/**
5033 * regulator_bulk_force_disable - force disable multiple regulator consumers
5034 *
5035 * @num_consumers: Number of consumers
5036 * @consumers:     Consumer data; clients are stored here.
5037 * @return         0 on success, an errno on failure
5038 *
5039 * This convenience API allows consumers to forcibly disable multiple regulator
5040 * clients in a single API call.
5041 * NOTE: This should be used for situations when device damage will
5042 * likely occur if the regulators are not disabled (e.g. over temp).
5043 * Although regulator_force_disable function call for some consumers can
5044 * return error numbers, the function is called for all consumers.
5045 */
5046int regulator_bulk_force_disable(int num_consumers,
5047			   struct regulator_bulk_data *consumers)
5048{
5049	int i;
5050	int ret = 0;
5051
5052	for (i = 0; i < num_consumers; i++) {
5053		consumers[i].ret =
5054			    regulator_force_disable(consumers[i].consumer);
5055
5056		/* Store first error for reporting */
5057		if (consumers[i].ret && !ret)
5058			ret = consumers[i].ret;
5059	}
5060
5061	return ret;
5062}
5063EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5064
5065/**
5066 * regulator_bulk_free - free multiple regulator consumers
5067 *
5068 * @num_consumers: Number of consumers
5069 * @consumers:     Consumer data; clients are stored here.
5070 *
5071 * This convenience API allows consumers to free multiple regulator
5072 * clients in a single API call.
5073 */
5074void regulator_bulk_free(int num_consumers,
5075			 struct regulator_bulk_data *consumers)
5076{
5077	int i;
5078
5079	for (i = 0; i < num_consumers; i++) {
5080		regulator_put(consumers[i].consumer);
5081		consumers[i].consumer = NULL;
5082	}
5083}
5084EXPORT_SYMBOL_GPL(regulator_bulk_free);
5085
5086/**
5087 * regulator_handle_critical - Handle events for system-critical regulators.
5088 * @rdev: The regulator device.
5089 * @event: The event being handled.
5090 *
5091 * This function handles critical events such as under-voltage, over-current,
5092 * and unknown errors for regulators deemed system-critical. On detecting such
5093 * events, it triggers a hardware protection shutdown with a defined timeout.
5094 */
5095static void regulator_handle_critical(struct regulator_dev *rdev,
5096				      unsigned long event)
5097{
5098	const char *reason = NULL;
5099
5100	if (!rdev->constraints->system_critical)
5101		return;
5102
5103	switch (event) {
5104	case REGULATOR_EVENT_UNDER_VOLTAGE:
5105		reason = "System critical regulator: voltage drop detected";
5106		break;
5107	case REGULATOR_EVENT_OVER_CURRENT:
5108		reason = "System critical regulator: over-current detected";
5109		break;
5110	case REGULATOR_EVENT_FAIL:
5111		reason = "System critical regulator: unknown error";
5112	}
5113
5114	if (!reason)
5115		return;
5116
5117	hw_protection_shutdown(reason,
5118			       rdev->constraints->uv_less_critical_window_ms);
5119}
5120
5121/**
5122 * regulator_notifier_call_chain - call regulator event notifier
5123 * @rdev: regulator source
5124 * @event: notifier block
5125 * @data: callback-specific data.
5126 *
5127 * Called by regulator drivers to notify clients a regulator event has
5128 * occurred.
5129 */
5130int regulator_notifier_call_chain(struct regulator_dev *rdev,
5131				  unsigned long event, void *data)
5132{
5133	regulator_handle_critical(rdev, event);
5134
5135	_notifier_call_chain(rdev, event, data);
5136	return NOTIFY_DONE;
5137
5138}
5139EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5140
5141/**
5142 * regulator_mode_to_status - convert a regulator mode into a status
5143 *
5144 * @mode: Mode to convert
5145 *
5146 * Convert a regulator mode into a status.
5147 */
5148int regulator_mode_to_status(unsigned int mode)
5149{
5150	switch (mode) {
5151	case REGULATOR_MODE_FAST:
5152		return REGULATOR_STATUS_FAST;
5153	case REGULATOR_MODE_NORMAL:
5154		return REGULATOR_STATUS_NORMAL;
5155	case REGULATOR_MODE_IDLE:
5156		return REGULATOR_STATUS_IDLE;
5157	case REGULATOR_MODE_STANDBY:
5158		return REGULATOR_STATUS_STANDBY;
5159	default:
5160		return REGULATOR_STATUS_UNDEFINED;
5161	}
5162}
5163EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5164
5165static struct attribute *regulator_dev_attrs[] = {
5166	&dev_attr_name.attr,
5167	&dev_attr_num_users.attr,
5168	&dev_attr_type.attr,
5169	&dev_attr_microvolts.attr,
5170	&dev_attr_microamps.attr,
5171	&dev_attr_opmode.attr,
5172	&dev_attr_state.attr,
5173	&dev_attr_status.attr,
5174	&dev_attr_bypass.attr,
5175	&dev_attr_requested_microamps.attr,
5176	&dev_attr_min_microvolts.attr,
5177	&dev_attr_max_microvolts.attr,
5178	&dev_attr_min_microamps.attr,
5179	&dev_attr_max_microamps.attr,
5180	&dev_attr_under_voltage.attr,
5181	&dev_attr_over_current.attr,
5182	&dev_attr_regulation_out.attr,
5183	&dev_attr_fail.attr,
5184	&dev_attr_over_temp.attr,
5185	&dev_attr_under_voltage_warn.attr,
5186	&dev_attr_over_current_warn.attr,
5187	&dev_attr_over_voltage_warn.attr,
5188	&dev_attr_over_temp_warn.attr,
5189	&dev_attr_suspend_standby_state.attr,
5190	&dev_attr_suspend_mem_state.attr,
5191	&dev_attr_suspend_disk_state.attr,
5192	&dev_attr_suspend_standby_microvolts.attr,
5193	&dev_attr_suspend_mem_microvolts.attr,
5194	&dev_attr_suspend_disk_microvolts.attr,
5195	&dev_attr_suspend_standby_mode.attr,
5196	&dev_attr_suspend_mem_mode.attr,
5197	&dev_attr_suspend_disk_mode.attr,
5198	NULL
5199};
5200
5201/*
5202 * To avoid cluttering sysfs (and memory) with useless state, only
5203 * create attributes that can be meaningfully displayed.
5204 */
5205static umode_t regulator_attr_is_visible(struct kobject *kobj,
5206					 struct attribute *attr, int idx)
5207{
5208	struct device *dev = kobj_to_dev(kobj);
5209	struct regulator_dev *rdev = dev_to_rdev(dev);
5210	const struct regulator_ops *ops = rdev->desc->ops;
5211	umode_t mode = attr->mode;
5212
5213	/* these three are always present */
5214	if (attr == &dev_attr_name.attr ||
5215	    attr == &dev_attr_num_users.attr ||
5216	    attr == &dev_attr_type.attr)
5217		return mode;
5218
5219	/* some attributes need specific methods to be displayed */
5220	if (attr == &dev_attr_microvolts.attr) {
5221		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5222		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5223		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5224		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5225			return mode;
5226		return 0;
5227	}
5228
5229	if (attr == &dev_attr_microamps.attr)
5230		return ops->get_current_limit ? mode : 0;
5231
5232	if (attr == &dev_attr_opmode.attr)
5233		return ops->get_mode ? mode : 0;
5234
5235	if (attr == &dev_attr_state.attr)
5236		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5237
5238	if (attr == &dev_attr_status.attr)
5239		return ops->get_status ? mode : 0;
5240
5241	if (attr == &dev_attr_bypass.attr)
5242		return ops->get_bypass ? mode : 0;
5243
5244	if (attr == &dev_attr_under_voltage.attr ||
5245	    attr == &dev_attr_over_current.attr ||
5246	    attr == &dev_attr_regulation_out.attr ||
5247	    attr == &dev_attr_fail.attr ||
5248	    attr == &dev_attr_over_temp.attr ||
5249	    attr == &dev_attr_under_voltage_warn.attr ||
5250	    attr == &dev_attr_over_current_warn.attr ||
5251	    attr == &dev_attr_over_voltage_warn.attr ||
5252	    attr == &dev_attr_over_temp_warn.attr)
5253		return ops->get_error_flags ? mode : 0;
5254
5255	/* constraints need specific supporting methods */
5256	if (attr == &dev_attr_min_microvolts.attr ||
5257	    attr == &dev_attr_max_microvolts.attr)
5258		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5259
5260	if (attr == &dev_attr_min_microamps.attr ||
5261	    attr == &dev_attr_max_microamps.attr)
5262		return ops->set_current_limit ? mode : 0;
5263
5264	if (attr == &dev_attr_suspend_standby_state.attr ||
5265	    attr == &dev_attr_suspend_mem_state.attr ||
5266	    attr == &dev_attr_suspend_disk_state.attr)
5267		return mode;
5268
5269	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5270	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5271	    attr == &dev_attr_suspend_disk_microvolts.attr)
5272		return ops->set_suspend_voltage ? mode : 0;
5273
5274	if (attr == &dev_attr_suspend_standby_mode.attr ||
5275	    attr == &dev_attr_suspend_mem_mode.attr ||
5276	    attr == &dev_attr_suspend_disk_mode.attr)
5277		return ops->set_suspend_mode ? mode : 0;
5278
5279	return mode;
5280}
5281
5282static const struct attribute_group regulator_dev_group = {
5283	.attrs = regulator_dev_attrs,
5284	.is_visible = regulator_attr_is_visible,
5285};
5286
5287static const struct attribute_group *regulator_dev_groups[] = {
5288	&regulator_dev_group,
5289	NULL
5290};
5291
5292static void regulator_dev_release(struct device *dev)
5293{
5294	struct regulator_dev *rdev = dev_get_drvdata(dev);
5295
5296	debugfs_remove_recursive(rdev->debugfs);
5297	kfree(rdev->constraints);
5298	of_node_put(rdev->dev.of_node);
5299	kfree(rdev);
5300}
5301
5302static void rdev_init_debugfs(struct regulator_dev *rdev)
5303{
5304	struct device *parent = rdev->dev.parent;
5305	const char *rname = rdev_get_name(rdev);
5306	char name[NAME_MAX];
5307
5308	/* Avoid duplicate debugfs directory names */
5309	if (parent && rname == rdev->desc->name) {
5310		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5311			 rname);
5312		rname = name;
5313	}
5314
5315	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5316	if (IS_ERR(rdev->debugfs))
5317		rdev_dbg(rdev, "Failed to create debugfs directory\n");
 
 
5318
5319	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5320			   &rdev->use_count);
5321	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5322			   &rdev->open_count);
5323	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5324			   &rdev->bypass_count);
5325}
5326
5327static int regulator_register_resolve_supply(struct device *dev, void *data)
5328{
5329	struct regulator_dev *rdev = dev_to_rdev(dev);
5330
5331	if (regulator_resolve_supply(rdev))
5332		rdev_dbg(rdev, "unable to resolve supply\n");
5333
5334	return 0;
5335}
5336
5337int regulator_coupler_register(struct regulator_coupler *coupler)
5338{
5339	mutex_lock(&regulator_list_mutex);
5340	list_add_tail(&coupler->list, &regulator_coupler_list);
5341	mutex_unlock(&regulator_list_mutex);
5342
5343	return 0;
5344}
5345
5346static struct regulator_coupler *
5347regulator_find_coupler(struct regulator_dev *rdev)
5348{
5349	struct regulator_coupler *coupler;
5350	int err;
5351
5352	/*
5353	 * Note that regulators are appended to the list and the generic
5354	 * coupler is registered first, hence it will be attached at last
5355	 * if nobody cared.
5356	 */
5357	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5358		err = coupler->attach_regulator(coupler, rdev);
5359		if (!err) {
5360			if (!coupler->balance_voltage &&
5361			    rdev->coupling_desc.n_coupled > 2)
5362				goto err_unsupported;
5363
5364			return coupler;
5365		}
5366
5367		if (err < 0)
5368			return ERR_PTR(err);
5369
5370		if (err == 1)
5371			continue;
5372
5373		break;
5374	}
5375
5376	return ERR_PTR(-EINVAL);
5377
5378err_unsupported:
5379	if (coupler->detach_regulator)
5380		coupler->detach_regulator(coupler, rdev);
5381
5382	rdev_err(rdev,
5383		"Voltage balancing for multiple regulator couples is unimplemented\n");
5384
5385	return ERR_PTR(-EPERM);
5386}
5387
5388static void regulator_resolve_coupling(struct regulator_dev *rdev)
5389{
5390	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5391	struct coupling_desc *c_desc = &rdev->coupling_desc;
5392	int n_coupled = c_desc->n_coupled;
5393	struct regulator_dev *c_rdev;
5394	int i;
5395
5396	for (i = 1; i < n_coupled; i++) {
5397		/* already resolved */
5398		if (c_desc->coupled_rdevs[i])
5399			continue;
5400
5401		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5402
5403		if (!c_rdev)
5404			continue;
5405
5406		if (c_rdev->coupling_desc.coupler != coupler) {
5407			rdev_err(rdev, "coupler mismatch with %s\n",
5408				 rdev_get_name(c_rdev));
5409			return;
5410		}
5411
5412		c_desc->coupled_rdevs[i] = c_rdev;
5413		c_desc->n_resolved++;
5414
5415		regulator_resolve_coupling(c_rdev);
5416	}
5417}
5418
5419static void regulator_remove_coupling(struct regulator_dev *rdev)
5420{
5421	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5422	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5423	struct regulator_dev *__c_rdev, *c_rdev;
5424	unsigned int __n_coupled, n_coupled;
5425	int i, k;
5426	int err;
5427
5428	n_coupled = c_desc->n_coupled;
5429
5430	for (i = 1; i < n_coupled; i++) {
5431		c_rdev = c_desc->coupled_rdevs[i];
5432
5433		if (!c_rdev)
5434			continue;
5435
5436		regulator_lock(c_rdev);
5437
5438		__c_desc = &c_rdev->coupling_desc;
5439		__n_coupled = __c_desc->n_coupled;
5440
5441		for (k = 1; k < __n_coupled; k++) {
5442			__c_rdev = __c_desc->coupled_rdevs[k];
5443
5444			if (__c_rdev == rdev) {
5445				__c_desc->coupled_rdevs[k] = NULL;
5446				__c_desc->n_resolved--;
5447				break;
5448			}
5449		}
5450
5451		regulator_unlock(c_rdev);
5452
5453		c_desc->coupled_rdevs[i] = NULL;
5454		c_desc->n_resolved--;
5455	}
5456
5457	if (coupler && coupler->detach_regulator) {
5458		err = coupler->detach_regulator(coupler, rdev);
5459		if (err)
5460			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5461				 ERR_PTR(err));
5462	}
5463
5464	kfree(rdev->coupling_desc.coupled_rdevs);
5465	rdev->coupling_desc.coupled_rdevs = NULL;
5466}
5467
5468static int regulator_init_coupling(struct regulator_dev *rdev)
5469{
5470	struct regulator_dev **coupled;
5471	int err, n_phandles;
5472
5473	if (!IS_ENABLED(CONFIG_OF))
5474		n_phandles = 0;
5475	else
5476		n_phandles = of_get_n_coupled(rdev);
5477
5478	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5479	if (!coupled)
5480		return -ENOMEM;
5481
5482	rdev->coupling_desc.coupled_rdevs = coupled;
5483
5484	/*
5485	 * Every regulator should always have coupling descriptor filled with
5486	 * at least pointer to itself.
5487	 */
5488	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5489	rdev->coupling_desc.n_coupled = n_phandles + 1;
5490	rdev->coupling_desc.n_resolved++;
5491
5492	/* regulator isn't coupled */
5493	if (n_phandles == 0)
5494		return 0;
5495
5496	if (!of_check_coupling_data(rdev))
5497		return -EPERM;
5498
5499	mutex_lock(&regulator_list_mutex);
5500	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5501	mutex_unlock(&regulator_list_mutex);
5502
5503	if (IS_ERR(rdev->coupling_desc.coupler)) {
5504		err = PTR_ERR(rdev->coupling_desc.coupler);
5505		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5506		return err;
5507	}
5508
5509	return 0;
5510}
5511
5512static int generic_coupler_attach(struct regulator_coupler *coupler,
5513				  struct regulator_dev *rdev)
5514{
5515	if (rdev->coupling_desc.n_coupled > 2) {
5516		rdev_err(rdev,
5517			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5518		return -EPERM;
5519	}
5520
5521	if (!rdev->constraints->always_on) {
5522		rdev_err(rdev,
5523			 "Coupling of a non always-on regulator is unimplemented\n");
5524		return -ENOTSUPP;
5525	}
5526
5527	return 0;
5528}
5529
5530static struct regulator_coupler generic_regulator_coupler = {
5531	.attach_regulator = generic_coupler_attach,
5532};
5533
5534/**
5535 * regulator_register - register regulator
5536 * @dev: the device that drive the regulator
5537 * @regulator_desc: regulator to register
5538 * @cfg: runtime configuration for regulator
5539 *
5540 * Called by regulator drivers to register a regulator.
5541 * Returns a valid pointer to struct regulator_dev on success
5542 * or an ERR_PTR() on error.
5543 */
5544struct regulator_dev *
5545regulator_register(struct device *dev,
5546		   const struct regulator_desc *regulator_desc,
5547		   const struct regulator_config *cfg)
5548{
5549	const struct regulator_init_data *init_data;
5550	struct regulator_config *config = NULL;
5551	static atomic_t regulator_no = ATOMIC_INIT(-1);
5552	struct regulator_dev *rdev;
5553	bool dangling_cfg_gpiod = false;
5554	bool dangling_of_gpiod = false;
5555	int ret, i;
5556	bool resolved_early = false;
5557
5558	if (cfg == NULL)
5559		return ERR_PTR(-EINVAL);
5560	if (cfg->ena_gpiod)
5561		dangling_cfg_gpiod = true;
5562	if (regulator_desc == NULL) {
5563		ret = -EINVAL;
5564		goto rinse;
5565	}
5566
5567	WARN_ON(!dev || !cfg->dev);
5568
5569	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5570		ret = -EINVAL;
5571		goto rinse;
5572	}
5573
5574	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5575	    regulator_desc->type != REGULATOR_CURRENT) {
5576		ret = -EINVAL;
5577		goto rinse;
5578	}
5579
5580	/* Only one of each should be implemented */
5581	WARN_ON(regulator_desc->ops->get_voltage &&
5582		regulator_desc->ops->get_voltage_sel);
5583	WARN_ON(regulator_desc->ops->set_voltage &&
5584		regulator_desc->ops->set_voltage_sel);
5585
5586	/* If we're using selectors we must implement list_voltage. */
5587	if (regulator_desc->ops->get_voltage_sel &&
5588	    !regulator_desc->ops->list_voltage) {
5589		ret = -EINVAL;
5590		goto rinse;
5591	}
5592	if (regulator_desc->ops->set_voltage_sel &&
5593	    !regulator_desc->ops->list_voltage) {
5594		ret = -EINVAL;
5595		goto rinse;
5596	}
5597
5598	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5599	if (rdev == NULL) {
5600		ret = -ENOMEM;
5601		goto rinse;
5602	}
5603	device_initialize(&rdev->dev);
5604	dev_set_drvdata(&rdev->dev, rdev);
5605	rdev->dev.class = &regulator_class;
5606	spin_lock_init(&rdev->err_lock);
5607
5608	/*
5609	 * Duplicate the config so the driver could override it after
5610	 * parsing init data.
5611	 */
5612	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5613	if (config == NULL) {
5614		ret = -ENOMEM;
5615		goto clean;
5616	}
5617
5618	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5619					       &rdev->dev.of_node);
5620
5621	/*
5622	 * Sometimes not all resources are probed already so we need to take
5623	 * that into account. This happens most the time if the ena_gpiod comes
5624	 * from a gpio extender or something else.
5625	 */
5626	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5627		ret = -EPROBE_DEFER;
5628		goto clean;
5629	}
5630
5631	/*
5632	 * We need to keep track of any GPIO descriptor coming from the
5633	 * device tree until we have handled it over to the core. If the
5634	 * config that was passed in to this function DOES NOT contain
5635	 * a descriptor, and the config after this call DOES contain
5636	 * a descriptor, we definitely got one from parsing the device
5637	 * tree.
5638	 */
5639	if (!cfg->ena_gpiod && config->ena_gpiod)
5640		dangling_of_gpiod = true;
5641	if (!init_data) {
5642		init_data = config->init_data;
5643		rdev->dev.of_node = of_node_get(config->of_node);
5644	}
5645
5646	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5647	rdev->reg_data = config->driver_data;
5648	rdev->owner = regulator_desc->owner;
5649	rdev->desc = regulator_desc;
5650	if (config->regmap)
5651		rdev->regmap = config->regmap;
5652	else if (dev_get_regmap(dev, NULL))
5653		rdev->regmap = dev_get_regmap(dev, NULL);
5654	else if (dev->parent)
5655		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5656	INIT_LIST_HEAD(&rdev->consumer_list);
5657	INIT_LIST_HEAD(&rdev->list);
5658	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5659	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5660
5661	if (init_data && init_data->supply_regulator)
5662		rdev->supply_name = init_data->supply_regulator;
5663	else if (regulator_desc->supply_name)
5664		rdev->supply_name = regulator_desc->supply_name;
5665
5666	/* register with sysfs */
 
5667	rdev->dev.parent = config->dev;
5668	dev_set_name(&rdev->dev, "regulator.%lu",
5669		    (unsigned long) atomic_inc_return(&regulator_no));
 
5670
5671	/* set regulator constraints */
5672	if (init_data)
5673		rdev->constraints = kmemdup(&init_data->constraints,
5674					    sizeof(*rdev->constraints),
5675					    GFP_KERNEL);
5676	else
5677		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5678					    GFP_KERNEL);
5679	if (!rdev->constraints) {
5680		ret = -ENOMEM;
5681		goto wash;
5682	}
5683
5684	if ((rdev->supply_name && !rdev->supply) &&
5685		(rdev->constraints->always_on ||
5686		 rdev->constraints->boot_on)) {
5687		ret = regulator_resolve_supply(rdev);
5688		if (ret)
5689			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5690					 ERR_PTR(ret));
5691
5692		resolved_early = true;
5693	}
5694
5695	/* perform any regulator specific init */
5696	if (init_data && init_data->regulator_init) {
5697		ret = init_data->regulator_init(rdev->reg_data);
5698		if (ret < 0)
5699			goto wash;
5700	}
5701
5702	if (config->ena_gpiod) {
5703		ret = regulator_ena_gpio_request(rdev, config);
5704		if (ret != 0) {
5705			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5706				 ERR_PTR(ret));
5707			goto wash;
5708		}
5709		/* The regulator core took over the GPIO descriptor */
5710		dangling_cfg_gpiod = false;
5711		dangling_of_gpiod = false;
5712	}
5713
5714	ret = set_machine_constraints(rdev);
5715	if (ret == -EPROBE_DEFER && !resolved_early) {
5716		/* Regulator might be in bypass mode and so needs its supply
5717		 * to set the constraints
5718		 */
5719		/* FIXME: this currently triggers a chicken-and-egg problem
5720		 * when creating -SUPPLY symlink in sysfs to a regulator
5721		 * that is just being created
5722		 */
5723		rdev_dbg(rdev, "will resolve supply early: %s\n",
5724			 rdev->supply_name);
5725		ret = regulator_resolve_supply(rdev);
5726		if (!ret)
5727			ret = set_machine_constraints(rdev);
5728		else
5729			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5730				 ERR_PTR(ret));
5731	}
5732	if (ret < 0)
5733		goto wash;
5734
5735	ret = regulator_init_coupling(rdev);
5736	if (ret < 0)
5737		goto wash;
5738
5739	/* add consumers devices */
5740	if (init_data) {
5741		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5742			ret = set_consumer_device_supply(rdev,
5743				init_data->consumer_supplies[i].dev_name,
5744				init_data->consumer_supplies[i].supply);
5745			if (ret < 0) {
5746				dev_err(dev, "Failed to set supply %s\n",
5747					init_data->consumer_supplies[i].supply);
5748				goto unset_supplies;
5749			}
5750		}
5751	}
5752
5753	if (!rdev->desc->ops->get_voltage &&
5754	    !rdev->desc->ops->list_voltage &&
5755	    !rdev->desc->fixed_uV)
5756		rdev->is_switch = true;
5757
5758	ret = device_add(&rdev->dev);
5759	if (ret != 0)
5760		goto unset_supplies;
5761
5762	rdev_init_debugfs(rdev);
5763
5764	/* try to resolve regulators coupling since a new one was registered */
5765	mutex_lock(&regulator_list_mutex);
5766	regulator_resolve_coupling(rdev);
5767	mutex_unlock(&regulator_list_mutex);
5768
5769	/* try to resolve regulators supply since a new one was registered */
5770	class_for_each_device(&regulator_class, NULL, NULL,
5771			      regulator_register_resolve_supply);
5772	kfree(config);
5773	return rdev;
5774
5775unset_supplies:
5776	mutex_lock(&regulator_list_mutex);
5777	unset_regulator_supplies(rdev);
5778	regulator_remove_coupling(rdev);
5779	mutex_unlock(&regulator_list_mutex);
5780wash:
5781	regulator_put(rdev->supply);
5782	kfree(rdev->coupling_desc.coupled_rdevs);
5783	mutex_lock(&regulator_list_mutex);
5784	regulator_ena_gpio_free(rdev);
5785	mutex_unlock(&regulator_list_mutex);
 
 
5786clean:
5787	if (dangling_of_gpiod)
5788		gpiod_put(config->ena_gpiod);
 
 
 
5789	kfree(config);
5790	put_device(&rdev->dev);
5791rinse:
5792	if (dangling_cfg_gpiod)
5793		gpiod_put(cfg->ena_gpiod);
5794	return ERR_PTR(ret);
5795}
5796EXPORT_SYMBOL_GPL(regulator_register);
5797
5798/**
5799 * regulator_unregister - unregister regulator
5800 * @rdev: regulator to unregister
5801 *
5802 * Called by regulator drivers to unregister a regulator.
5803 */
5804void regulator_unregister(struct regulator_dev *rdev)
5805{
5806	if (rdev == NULL)
5807		return;
5808
5809	if (rdev->supply) {
5810		while (rdev->use_count--)
5811			regulator_disable(rdev->supply);
5812		regulator_put(rdev->supply);
5813	}
5814
5815	flush_work(&rdev->disable_work.work);
5816
5817	mutex_lock(&regulator_list_mutex);
5818
5819	WARN_ON(rdev->open_count);
5820	regulator_remove_coupling(rdev);
5821	unset_regulator_supplies(rdev);
5822	list_del(&rdev->list);
5823	regulator_ena_gpio_free(rdev);
5824	device_unregister(&rdev->dev);
5825
5826	mutex_unlock(&regulator_list_mutex);
5827}
5828EXPORT_SYMBOL_GPL(regulator_unregister);
5829
5830#ifdef CONFIG_SUSPEND
5831/**
5832 * regulator_suspend - prepare regulators for system wide suspend
5833 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5834 *
5835 * Configure each regulator with it's suspend operating parameters for state.
5836 */
5837static int regulator_suspend(struct device *dev)
5838{
5839	struct regulator_dev *rdev = dev_to_rdev(dev);
5840	suspend_state_t state = pm_suspend_target_state;
5841	int ret;
5842	const struct regulator_state *rstate;
5843
5844	rstate = regulator_get_suspend_state_check(rdev, state);
5845	if (!rstate)
5846		return 0;
5847
5848	regulator_lock(rdev);
5849	ret = __suspend_set_state(rdev, rstate);
5850	regulator_unlock(rdev);
5851
5852	return ret;
5853}
5854
5855static int regulator_resume(struct device *dev)
5856{
5857	suspend_state_t state = pm_suspend_target_state;
5858	struct regulator_dev *rdev = dev_to_rdev(dev);
5859	struct regulator_state *rstate;
5860	int ret = 0;
5861
5862	rstate = regulator_get_suspend_state(rdev, state);
5863	if (rstate == NULL)
5864		return 0;
5865
5866	/* Avoid grabbing the lock if we don't need to */
5867	if (!rdev->desc->ops->resume)
5868		return 0;
5869
5870	regulator_lock(rdev);
5871
5872	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5873	    rstate->enabled == DISABLE_IN_SUSPEND)
5874		ret = rdev->desc->ops->resume(rdev);
5875
5876	regulator_unlock(rdev);
5877
5878	return ret;
5879}
5880#else /* !CONFIG_SUSPEND */
5881
5882#define regulator_suspend	NULL
5883#define regulator_resume	NULL
5884
5885#endif /* !CONFIG_SUSPEND */
5886
5887#ifdef CONFIG_PM
5888static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5889	.suspend	= regulator_suspend,
5890	.resume		= regulator_resume,
5891};
5892#endif
5893
5894struct class regulator_class = {
5895	.name = "regulator",
5896	.dev_release = regulator_dev_release,
5897	.dev_groups = regulator_dev_groups,
5898#ifdef CONFIG_PM
5899	.pm = &regulator_pm_ops,
5900#endif
5901};
5902/**
5903 * regulator_has_full_constraints - the system has fully specified constraints
5904 *
5905 * Calling this function will cause the regulator API to disable all
5906 * regulators which have a zero use count and don't have an always_on
5907 * constraint in a late_initcall.
5908 *
5909 * The intention is that this will become the default behaviour in a
5910 * future kernel release so users are encouraged to use this facility
5911 * now.
5912 */
5913void regulator_has_full_constraints(void)
5914{
5915	has_full_constraints = 1;
5916}
5917EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5918
5919/**
5920 * rdev_get_drvdata - get rdev regulator driver data
5921 * @rdev: regulator
5922 *
5923 * Get rdev regulator driver private data. This call can be used in the
5924 * regulator driver context.
5925 */
5926void *rdev_get_drvdata(struct regulator_dev *rdev)
5927{
5928	return rdev->reg_data;
5929}
5930EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5931
5932/**
5933 * regulator_get_drvdata - get regulator driver data
5934 * @regulator: regulator
5935 *
5936 * Get regulator driver private data. This call can be used in the consumer
5937 * driver context when non API regulator specific functions need to be called.
5938 */
5939void *regulator_get_drvdata(struct regulator *regulator)
5940{
5941	return regulator->rdev->reg_data;
5942}
5943EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5944
5945/**
5946 * regulator_set_drvdata - set regulator driver data
5947 * @regulator: regulator
5948 * @data: data
5949 */
5950void regulator_set_drvdata(struct regulator *regulator, void *data)
5951{
5952	regulator->rdev->reg_data = data;
5953}
5954EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5955
5956/**
5957 * rdev_get_id - get regulator ID
5958 * @rdev: regulator
5959 */
5960int rdev_get_id(struct regulator_dev *rdev)
5961{
5962	return rdev->desc->id;
5963}
5964EXPORT_SYMBOL_GPL(rdev_get_id);
5965
5966struct device *rdev_get_dev(struct regulator_dev *rdev)
5967{
5968	return &rdev->dev;
5969}
5970EXPORT_SYMBOL_GPL(rdev_get_dev);
5971
5972struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5973{
5974	return rdev->regmap;
5975}
5976EXPORT_SYMBOL_GPL(rdev_get_regmap);
5977
5978void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5979{
5980	return reg_init_data->driver_data;
5981}
5982EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5983
5984#ifdef CONFIG_DEBUG_FS
5985static int supply_map_show(struct seq_file *sf, void *data)
5986{
5987	struct regulator_map *map;
5988
5989	list_for_each_entry(map, &regulator_map_list, list) {
5990		seq_printf(sf, "%s -> %s.%s\n",
5991				rdev_get_name(map->regulator), map->dev_name,
5992				map->supply);
5993	}
5994
5995	return 0;
5996}
5997DEFINE_SHOW_ATTRIBUTE(supply_map);
5998
5999struct summary_data {
6000	struct seq_file *s;
6001	struct regulator_dev *parent;
6002	int level;
6003};
6004
6005static void regulator_summary_show_subtree(struct seq_file *s,
6006					   struct regulator_dev *rdev,
6007					   int level);
6008
6009static int regulator_summary_show_children(struct device *dev, void *data)
6010{
6011	struct regulator_dev *rdev = dev_to_rdev(dev);
6012	struct summary_data *summary_data = data;
6013
6014	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6015		regulator_summary_show_subtree(summary_data->s, rdev,
6016					       summary_data->level + 1);
6017
6018	return 0;
6019}
6020
6021static void regulator_summary_show_subtree(struct seq_file *s,
6022					   struct regulator_dev *rdev,
6023					   int level)
6024{
6025	struct regulation_constraints *c;
6026	struct regulator *consumer;
6027	struct summary_data summary_data;
6028	unsigned int opmode;
6029
6030	if (!rdev)
6031		return;
6032
6033	opmode = _regulator_get_mode_unlocked(rdev);
6034	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6035		   level * 3 + 1, "",
6036		   30 - level * 3, rdev_get_name(rdev),
6037		   rdev->use_count, rdev->open_count, rdev->bypass_count,
6038		   regulator_opmode_to_str(opmode));
6039
6040	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6041	seq_printf(s, "%5dmA ",
6042		   _regulator_get_current_limit_unlocked(rdev) / 1000);
6043
6044	c = rdev->constraints;
6045	if (c) {
6046		switch (rdev->desc->type) {
6047		case REGULATOR_VOLTAGE:
6048			seq_printf(s, "%5dmV %5dmV ",
6049				   c->min_uV / 1000, c->max_uV / 1000);
6050			break;
6051		case REGULATOR_CURRENT:
6052			seq_printf(s, "%5dmA %5dmA ",
6053				   c->min_uA / 1000, c->max_uA / 1000);
6054			break;
6055		}
6056	}
6057
6058	seq_puts(s, "\n");
6059
6060	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6061		if (consumer->dev && consumer->dev->class == &regulator_class)
6062			continue;
6063
6064		seq_printf(s, "%*s%-*s ",
6065			   (level + 1) * 3 + 1, "",
6066			   30 - (level + 1) * 3,
6067			   consumer->supply_name ? consumer->supply_name :
6068			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6069
6070		switch (rdev->desc->type) {
6071		case REGULATOR_VOLTAGE:
6072			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6073				   consumer->enable_count,
6074				   consumer->uA_load / 1000,
6075				   consumer->uA_load && !consumer->enable_count ?
6076				   '*' : ' ',
6077				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6078				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6079			break;
6080		case REGULATOR_CURRENT:
6081			break;
6082		}
6083
6084		seq_puts(s, "\n");
6085	}
6086
6087	summary_data.s = s;
6088	summary_data.level = level;
6089	summary_data.parent = rdev;
6090
6091	class_for_each_device(&regulator_class, NULL, &summary_data,
6092			      regulator_summary_show_children);
6093}
6094
6095struct summary_lock_data {
6096	struct ww_acquire_ctx *ww_ctx;
6097	struct regulator_dev **new_contended_rdev;
6098	struct regulator_dev **old_contended_rdev;
6099};
6100
6101static int regulator_summary_lock_one(struct device *dev, void *data)
6102{
6103	struct regulator_dev *rdev = dev_to_rdev(dev);
6104	struct summary_lock_data *lock_data = data;
6105	int ret = 0;
6106
6107	if (rdev != *lock_data->old_contended_rdev) {
6108		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6109
6110		if (ret == -EDEADLK)
6111			*lock_data->new_contended_rdev = rdev;
6112		else
6113			WARN_ON_ONCE(ret);
6114	} else {
6115		*lock_data->old_contended_rdev = NULL;
6116	}
6117
6118	return ret;
6119}
6120
6121static int regulator_summary_unlock_one(struct device *dev, void *data)
6122{
6123	struct regulator_dev *rdev = dev_to_rdev(dev);
6124	struct summary_lock_data *lock_data = data;
6125
6126	if (lock_data) {
6127		if (rdev == *lock_data->new_contended_rdev)
6128			return -EDEADLK;
6129	}
6130
6131	regulator_unlock(rdev);
6132
6133	return 0;
6134}
6135
6136static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6137				      struct regulator_dev **new_contended_rdev,
6138				      struct regulator_dev **old_contended_rdev)
6139{
6140	struct summary_lock_data lock_data;
6141	int ret;
6142
6143	lock_data.ww_ctx = ww_ctx;
6144	lock_data.new_contended_rdev = new_contended_rdev;
6145	lock_data.old_contended_rdev = old_contended_rdev;
6146
6147	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6148				    regulator_summary_lock_one);
6149	if (ret)
6150		class_for_each_device(&regulator_class, NULL, &lock_data,
6151				      regulator_summary_unlock_one);
6152
6153	return ret;
6154}
6155
6156static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6157{
6158	struct regulator_dev *new_contended_rdev = NULL;
6159	struct regulator_dev *old_contended_rdev = NULL;
6160	int err;
6161
6162	mutex_lock(&regulator_list_mutex);
6163
6164	ww_acquire_init(ww_ctx, &regulator_ww_class);
6165
6166	do {
6167		if (new_contended_rdev) {
6168			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6169			old_contended_rdev = new_contended_rdev;
6170			old_contended_rdev->ref_cnt++;
6171			old_contended_rdev->mutex_owner = current;
6172		}
6173
6174		err = regulator_summary_lock_all(ww_ctx,
6175						 &new_contended_rdev,
6176						 &old_contended_rdev);
6177
6178		if (old_contended_rdev)
6179			regulator_unlock(old_contended_rdev);
6180
6181	} while (err == -EDEADLK);
6182
6183	ww_acquire_done(ww_ctx);
6184}
6185
6186static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6187{
6188	class_for_each_device(&regulator_class, NULL, NULL,
6189			      regulator_summary_unlock_one);
6190	ww_acquire_fini(ww_ctx);
6191
6192	mutex_unlock(&regulator_list_mutex);
6193}
6194
6195static int regulator_summary_show_roots(struct device *dev, void *data)
6196{
6197	struct regulator_dev *rdev = dev_to_rdev(dev);
6198	struct seq_file *s = data;
6199
6200	if (!rdev->supply)
6201		regulator_summary_show_subtree(s, rdev, 0);
6202
6203	return 0;
6204}
6205
6206static int regulator_summary_show(struct seq_file *s, void *data)
6207{
6208	struct ww_acquire_ctx ww_ctx;
6209
6210	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6211	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6212
6213	regulator_summary_lock(&ww_ctx);
6214
6215	class_for_each_device(&regulator_class, NULL, s,
6216			      regulator_summary_show_roots);
6217
6218	regulator_summary_unlock(&ww_ctx);
6219
6220	return 0;
6221}
6222DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6223#endif /* CONFIG_DEBUG_FS */
6224
6225static int __init regulator_init(void)
6226{
6227	int ret;
6228
6229	ret = class_register(&regulator_class);
6230
6231	debugfs_root = debugfs_create_dir("regulator", NULL);
6232	if (IS_ERR(debugfs_root))
6233		pr_debug("regulator: Failed to create debugfs directory\n");
6234
6235#ifdef CONFIG_DEBUG_FS
6236	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6237			    &supply_map_fops);
6238
6239	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6240			    NULL, &regulator_summary_fops);
6241#endif
6242	regulator_dummy_init();
6243
6244	regulator_coupler_register(&generic_regulator_coupler);
6245
6246	return ret;
6247}
6248
6249/* init early to allow our consumers to complete system booting */
6250core_initcall(regulator_init);
6251
6252static int regulator_late_cleanup(struct device *dev, void *data)
6253{
6254	struct regulator_dev *rdev = dev_to_rdev(dev);
6255	struct regulation_constraints *c = rdev->constraints;
6256	int ret;
6257
6258	if (c && c->always_on)
6259		return 0;
6260
6261	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6262		return 0;
6263
6264	regulator_lock(rdev);
6265
6266	if (rdev->use_count)
6267		goto unlock;
6268
6269	/* If reading the status failed, assume that it's off. */
6270	if (_regulator_is_enabled(rdev) <= 0)
6271		goto unlock;
6272
6273	if (have_full_constraints()) {
6274		/* We log since this may kill the system if it goes
6275		 * wrong.
6276		 */
6277		rdev_info(rdev, "disabling\n");
6278		ret = _regulator_do_disable(rdev);
6279		if (ret != 0)
6280			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6281	} else {
6282		/* The intention is that in future we will
6283		 * assume that full constraints are provided
6284		 * so warn even if we aren't going to do
6285		 * anything here.
6286		 */
6287		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6288	}
6289
6290unlock:
6291	regulator_unlock(rdev);
6292
6293	return 0;
6294}
6295
6296static bool regulator_ignore_unused;
6297static int __init regulator_ignore_unused_setup(char *__unused)
6298{
6299	regulator_ignore_unused = true;
6300	return 1;
6301}
6302__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6303
6304static void regulator_init_complete_work_function(struct work_struct *work)
6305{
6306	/*
6307	 * Regulators may had failed to resolve their input supplies
6308	 * when were registered, either because the input supply was
6309	 * not registered yet or because its parent device was not
6310	 * bound yet. So attempt to resolve the input supplies for
6311	 * pending regulators before trying to disable unused ones.
6312	 */
6313	class_for_each_device(&regulator_class, NULL, NULL,
6314			      regulator_register_resolve_supply);
6315
6316	/*
6317	 * For debugging purposes, it may be useful to prevent unused
6318	 * regulators from being disabled.
6319	 */
6320	if (regulator_ignore_unused) {
6321		pr_warn("regulator: Not disabling unused regulators\n");
6322		return;
6323	}
6324
6325	/* If we have a full configuration then disable any regulators
6326	 * we have permission to change the status for and which are
6327	 * not in use or always_on.  This is effectively the default
6328	 * for DT and ACPI as they have full constraints.
6329	 */
6330	class_for_each_device(&regulator_class, NULL, NULL,
6331			      regulator_late_cleanup);
6332}
6333
6334static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6335			    regulator_init_complete_work_function);
6336
6337static int __init regulator_init_complete(void)
6338{
6339	/*
6340	 * Since DT doesn't provide an idiomatic mechanism for
6341	 * enabling full constraints and since it's much more natural
6342	 * with DT to provide them just assume that a DT enabled
6343	 * system has full constraints.
6344	 */
6345	if (of_have_populated_dt())
6346		has_full_constraints = true;
6347
6348	/*
6349	 * We punt completion for an arbitrary amount of time since
6350	 * systems like distros will load many drivers from userspace
6351	 * so consumers might not always be ready yet, this is
6352	 * particularly an issue with laptops where this might bounce
6353	 * the display off then on.  Ideally we'd get a notification
6354	 * from userspace when this happens but we don't so just wait
6355	 * a bit and hope we waited long enough.  It'd be better if
6356	 * we'd only do this on systems that need it, and a kernel
6357	 * command line option might be useful.
6358	 */
6359	schedule_delayed_work(&regulator_init_complete_work,
6360			      msecs_to_jiffies(30000));
6361
6362	return 0;
6363}
6364late_initcall_sync(regulator_init_complete);