Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36static DEFINE_WW_CLASS(regulator_ww_class);
37static DEFINE_MUTEX(regulator_nesting_mutex);
38static DEFINE_MUTEX(regulator_list_mutex);
39static LIST_HEAD(regulator_map_list);
40static LIST_HEAD(regulator_ena_gpio_list);
41static LIST_HEAD(regulator_supply_alias_list);
42static LIST_HEAD(regulator_coupler_list);
43static bool has_full_constraints;
44
45static struct dentry *debugfs_root;
46
47/*
48 * struct regulator_map
49 *
50 * Used to provide symbolic supply names to devices.
51 */
52struct regulator_map {
53 struct list_head list;
54 const char *dev_name; /* The dev_name() for the consumer */
55 const char *supply;
56 struct regulator_dev *regulator;
57};
58
59/*
60 * struct regulator_enable_gpio
61 *
62 * Management for shared enable GPIO pin
63 */
64struct regulator_enable_gpio {
65 struct list_head list;
66 struct gpio_desc *gpiod;
67 u32 enable_count; /* a number of enabled shared GPIO */
68 u32 request_count; /* a number of requested shared GPIO */
69};
70
71/*
72 * struct regulator_supply_alias
73 *
74 * Used to map lookups for a supply onto an alternative device.
75 */
76struct regulator_supply_alias {
77 struct list_head list;
78 struct device *src_dev;
79 const char *src_supply;
80 struct device *alias_dev;
81 const char *alias_supply;
82};
83
84static int _regulator_is_enabled(struct regulator_dev *rdev);
85static int _regulator_disable(struct regulator *regulator);
86static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87static int _regulator_get_current_limit(struct regulator_dev *rdev);
88static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89static int _notifier_call_chain(struct regulator_dev *rdev,
90 unsigned long event, void *data);
91static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 int min_uV, int max_uV);
93static int regulator_balance_voltage(struct regulator_dev *rdev,
94 suspend_state_t state);
95static struct regulator *create_regulator(struct regulator_dev *rdev,
96 struct device *dev,
97 const char *supply_name);
98static void destroy_regulator(struct regulator *regulator);
99static void _regulator_put(struct regulator *regulator);
100
101const char *rdev_get_name(struct regulator_dev *rdev)
102{
103 if (rdev->constraints && rdev->constraints->name)
104 return rdev->constraints->name;
105 else if (rdev->desc->name)
106 return rdev->desc->name;
107 else
108 return "";
109}
110EXPORT_SYMBOL_GPL(rdev_get_name);
111
112static bool have_full_constraints(void)
113{
114 return has_full_constraints || of_have_populated_dt();
115}
116
117static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118{
119 if (!rdev->constraints) {
120 rdev_err(rdev, "no constraints\n");
121 return false;
122 }
123
124 if (rdev->constraints->valid_ops_mask & ops)
125 return true;
126
127 return false;
128}
129
130/**
131 * regulator_lock_nested - lock a single regulator
132 * @rdev: regulator source
133 * @ww_ctx: w/w mutex acquire context
134 *
135 * This function can be called many times by one task on
136 * a single regulator and its mutex will be locked only
137 * once. If a task, which is calling this function is other
138 * than the one, which initially locked the mutex, it will
139 * wait on mutex.
140 */
141static inline int regulator_lock_nested(struct regulator_dev *rdev,
142 struct ww_acquire_ctx *ww_ctx)
143{
144 bool lock = false;
145 int ret = 0;
146
147 mutex_lock(®ulator_nesting_mutex);
148
149 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150 if (rdev->mutex_owner == current)
151 rdev->ref_cnt++;
152 else
153 lock = true;
154
155 if (lock) {
156 mutex_unlock(®ulator_nesting_mutex);
157 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158 mutex_lock(®ulator_nesting_mutex);
159 }
160 } else {
161 lock = true;
162 }
163
164 if (lock && ret != -EDEADLK) {
165 rdev->ref_cnt++;
166 rdev->mutex_owner = current;
167 }
168
169 mutex_unlock(®ulator_nesting_mutex);
170
171 return ret;
172}
173
174/**
175 * regulator_lock - lock a single regulator
176 * @rdev: regulator source
177 *
178 * This function can be called many times by one task on
179 * a single regulator and its mutex will be locked only
180 * once. If a task, which is calling this function is other
181 * than the one, which initially locked the mutex, it will
182 * wait on mutex.
183 */
184static void regulator_lock(struct regulator_dev *rdev)
185{
186 regulator_lock_nested(rdev, NULL);
187}
188
189/**
190 * regulator_unlock - unlock a single regulator
191 * @rdev: regulator_source
192 *
193 * This function unlocks the mutex when the
194 * reference counter reaches 0.
195 */
196static void regulator_unlock(struct regulator_dev *rdev)
197{
198 mutex_lock(®ulator_nesting_mutex);
199
200 if (--rdev->ref_cnt == 0) {
201 rdev->mutex_owner = NULL;
202 ww_mutex_unlock(&rdev->mutex);
203 }
204
205 WARN_ON_ONCE(rdev->ref_cnt < 0);
206
207 mutex_unlock(®ulator_nesting_mutex);
208}
209
210static bool regulator_supply_is_couple(struct regulator_dev *rdev)
211{
212 struct regulator_dev *c_rdev;
213 int i;
214
215 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
216 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
217
218 if (rdev->supply->rdev == c_rdev)
219 return true;
220 }
221
222 return false;
223}
224
225static void regulator_unlock_recursive(struct regulator_dev *rdev,
226 unsigned int n_coupled)
227{
228 struct regulator_dev *c_rdev, *supply_rdev;
229 int i, supply_n_coupled;
230
231 for (i = n_coupled; i > 0; i--) {
232 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
233
234 if (!c_rdev)
235 continue;
236
237 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
238 supply_rdev = c_rdev->supply->rdev;
239 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
240
241 regulator_unlock_recursive(supply_rdev,
242 supply_n_coupled);
243 }
244
245 regulator_unlock(c_rdev);
246 }
247}
248
249static int regulator_lock_recursive(struct regulator_dev *rdev,
250 struct regulator_dev **new_contended_rdev,
251 struct regulator_dev **old_contended_rdev,
252 struct ww_acquire_ctx *ww_ctx)
253{
254 struct regulator_dev *c_rdev;
255 int i, err;
256
257 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
258 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
259
260 if (!c_rdev)
261 continue;
262
263 if (c_rdev != *old_contended_rdev) {
264 err = regulator_lock_nested(c_rdev, ww_ctx);
265 if (err) {
266 if (err == -EDEADLK) {
267 *new_contended_rdev = c_rdev;
268 goto err_unlock;
269 }
270
271 /* shouldn't happen */
272 WARN_ON_ONCE(err != -EALREADY);
273 }
274 } else {
275 *old_contended_rdev = NULL;
276 }
277
278 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
279 err = regulator_lock_recursive(c_rdev->supply->rdev,
280 new_contended_rdev,
281 old_contended_rdev,
282 ww_ctx);
283 if (err) {
284 regulator_unlock(c_rdev);
285 goto err_unlock;
286 }
287 }
288 }
289
290 return 0;
291
292err_unlock:
293 regulator_unlock_recursive(rdev, i);
294
295 return err;
296}
297
298/**
299 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
300 * regulators
301 * @rdev: regulator source
302 * @ww_ctx: w/w mutex acquire context
303 *
304 * Unlock all regulators related with rdev by coupling or supplying.
305 */
306static void regulator_unlock_dependent(struct regulator_dev *rdev,
307 struct ww_acquire_ctx *ww_ctx)
308{
309 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
310 ww_acquire_fini(ww_ctx);
311}
312
313/**
314 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
315 * @rdev: regulator source
316 * @ww_ctx: w/w mutex acquire context
317 *
318 * This function as a wrapper on regulator_lock_recursive(), which locks
319 * all regulators related with rdev by coupling or supplying.
320 */
321static void regulator_lock_dependent(struct regulator_dev *rdev,
322 struct ww_acquire_ctx *ww_ctx)
323{
324 struct regulator_dev *new_contended_rdev = NULL;
325 struct regulator_dev *old_contended_rdev = NULL;
326 int err;
327
328 mutex_lock(®ulator_list_mutex);
329
330 ww_acquire_init(ww_ctx, ®ulator_ww_class);
331
332 do {
333 if (new_contended_rdev) {
334 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
335 old_contended_rdev = new_contended_rdev;
336 old_contended_rdev->ref_cnt++;
337 }
338
339 err = regulator_lock_recursive(rdev,
340 &new_contended_rdev,
341 &old_contended_rdev,
342 ww_ctx);
343
344 if (old_contended_rdev)
345 regulator_unlock(old_contended_rdev);
346
347 } while (err == -EDEADLK);
348
349 ww_acquire_done(ww_ctx);
350
351 mutex_unlock(®ulator_list_mutex);
352}
353
354/**
355 * of_get_child_regulator - get a child regulator device node
356 * based on supply name
357 * @parent: Parent device node
358 * @prop_name: Combination regulator supply name and "-supply"
359 *
360 * Traverse all child nodes.
361 * Extract the child regulator device node corresponding to the supply name.
362 * returns the device node corresponding to the regulator if found, else
363 * returns NULL.
364 */
365static struct device_node *of_get_child_regulator(struct device_node *parent,
366 const char *prop_name)
367{
368 struct device_node *regnode = NULL;
369 struct device_node *child = NULL;
370
371 for_each_child_of_node(parent, child) {
372 regnode = of_parse_phandle(child, prop_name, 0);
373
374 if (!regnode) {
375 regnode = of_get_child_regulator(child, prop_name);
376 if (regnode)
377 goto err_node_put;
378 } else {
379 goto err_node_put;
380 }
381 }
382 return NULL;
383
384err_node_put:
385 of_node_put(child);
386 return regnode;
387}
388
389/**
390 * of_get_regulator - get a regulator device node based on supply name
391 * @dev: Device pointer for the consumer (of regulator) device
392 * @supply: regulator supply name
393 *
394 * Extract the regulator device node corresponding to the supply name.
395 * returns the device node corresponding to the regulator if found, else
396 * returns NULL.
397 */
398static struct device_node *of_get_regulator(struct device *dev, const char *supply)
399{
400 struct device_node *regnode = NULL;
401 char prop_name[64]; /* 64 is max size of property name */
402
403 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
404
405 snprintf(prop_name, 64, "%s-supply", supply);
406 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
407
408 if (!regnode) {
409 regnode = of_get_child_regulator(dev->of_node, prop_name);
410 if (regnode)
411 return regnode;
412
413 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
414 prop_name, dev->of_node);
415 return NULL;
416 }
417 return regnode;
418}
419
420/* Platform voltage constraint check */
421int regulator_check_voltage(struct regulator_dev *rdev,
422 int *min_uV, int *max_uV)
423{
424 BUG_ON(*min_uV > *max_uV);
425
426 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
427 rdev_err(rdev, "voltage operation not allowed\n");
428 return -EPERM;
429 }
430
431 if (*max_uV > rdev->constraints->max_uV)
432 *max_uV = rdev->constraints->max_uV;
433 if (*min_uV < rdev->constraints->min_uV)
434 *min_uV = rdev->constraints->min_uV;
435
436 if (*min_uV > *max_uV) {
437 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
438 *min_uV, *max_uV);
439 return -EINVAL;
440 }
441
442 return 0;
443}
444
445/* return 0 if the state is valid */
446static int regulator_check_states(suspend_state_t state)
447{
448 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
449}
450
451/* Make sure we select a voltage that suits the needs of all
452 * regulator consumers
453 */
454int regulator_check_consumers(struct regulator_dev *rdev,
455 int *min_uV, int *max_uV,
456 suspend_state_t state)
457{
458 struct regulator *regulator;
459 struct regulator_voltage *voltage;
460
461 list_for_each_entry(regulator, &rdev->consumer_list, list) {
462 voltage = ®ulator->voltage[state];
463 /*
464 * Assume consumers that didn't say anything are OK
465 * with anything in the constraint range.
466 */
467 if (!voltage->min_uV && !voltage->max_uV)
468 continue;
469
470 if (*max_uV > voltage->max_uV)
471 *max_uV = voltage->max_uV;
472 if (*min_uV < voltage->min_uV)
473 *min_uV = voltage->min_uV;
474 }
475
476 if (*min_uV > *max_uV) {
477 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
478 *min_uV, *max_uV);
479 return -EINVAL;
480 }
481
482 return 0;
483}
484
485/* current constraint check */
486static int regulator_check_current_limit(struct regulator_dev *rdev,
487 int *min_uA, int *max_uA)
488{
489 BUG_ON(*min_uA > *max_uA);
490
491 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
492 rdev_err(rdev, "current operation not allowed\n");
493 return -EPERM;
494 }
495
496 if (*max_uA > rdev->constraints->max_uA)
497 *max_uA = rdev->constraints->max_uA;
498 if (*min_uA < rdev->constraints->min_uA)
499 *min_uA = rdev->constraints->min_uA;
500
501 if (*min_uA > *max_uA) {
502 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
503 *min_uA, *max_uA);
504 return -EINVAL;
505 }
506
507 return 0;
508}
509
510/* operating mode constraint check */
511static int regulator_mode_constrain(struct regulator_dev *rdev,
512 unsigned int *mode)
513{
514 switch (*mode) {
515 case REGULATOR_MODE_FAST:
516 case REGULATOR_MODE_NORMAL:
517 case REGULATOR_MODE_IDLE:
518 case REGULATOR_MODE_STANDBY:
519 break;
520 default:
521 rdev_err(rdev, "invalid mode %x specified\n", *mode);
522 return -EINVAL;
523 }
524
525 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
526 rdev_err(rdev, "mode operation not allowed\n");
527 return -EPERM;
528 }
529
530 /* The modes are bitmasks, the most power hungry modes having
531 * the lowest values. If the requested mode isn't supported
532 * try higher modes.
533 */
534 while (*mode) {
535 if (rdev->constraints->valid_modes_mask & *mode)
536 return 0;
537 *mode /= 2;
538 }
539
540 return -EINVAL;
541}
542
543static inline struct regulator_state *
544regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
545{
546 if (rdev->constraints == NULL)
547 return NULL;
548
549 switch (state) {
550 case PM_SUSPEND_STANDBY:
551 return &rdev->constraints->state_standby;
552 case PM_SUSPEND_MEM:
553 return &rdev->constraints->state_mem;
554 case PM_SUSPEND_MAX:
555 return &rdev->constraints->state_disk;
556 default:
557 return NULL;
558 }
559}
560
561static const struct regulator_state *
562regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
563{
564 const struct regulator_state *rstate;
565
566 rstate = regulator_get_suspend_state(rdev, state);
567 if (rstate == NULL)
568 return NULL;
569
570 /* If we have no suspend mode configuration don't set anything;
571 * only warn if the driver implements set_suspend_voltage or
572 * set_suspend_mode callback.
573 */
574 if (rstate->enabled != ENABLE_IN_SUSPEND &&
575 rstate->enabled != DISABLE_IN_SUSPEND) {
576 if (rdev->desc->ops->set_suspend_voltage ||
577 rdev->desc->ops->set_suspend_mode)
578 rdev_warn(rdev, "No configuration\n");
579 return NULL;
580 }
581
582 return rstate;
583}
584
585static ssize_t microvolts_show(struct device *dev,
586 struct device_attribute *attr, char *buf)
587{
588 struct regulator_dev *rdev = dev_get_drvdata(dev);
589 int uV;
590
591 regulator_lock(rdev);
592 uV = regulator_get_voltage_rdev(rdev);
593 regulator_unlock(rdev);
594
595 if (uV < 0)
596 return uV;
597 return sprintf(buf, "%d\n", uV);
598}
599static DEVICE_ATTR_RO(microvolts);
600
601static ssize_t microamps_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
603{
604 struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
607}
608static DEVICE_ATTR_RO(microamps);
609
610static ssize_t name_show(struct device *dev, struct device_attribute *attr,
611 char *buf)
612{
613 struct regulator_dev *rdev = dev_get_drvdata(dev);
614
615 return sprintf(buf, "%s\n", rdev_get_name(rdev));
616}
617static DEVICE_ATTR_RO(name);
618
619static const char *regulator_opmode_to_str(int mode)
620{
621 switch (mode) {
622 case REGULATOR_MODE_FAST:
623 return "fast";
624 case REGULATOR_MODE_NORMAL:
625 return "normal";
626 case REGULATOR_MODE_IDLE:
627 return "idle";
628 case REGULATOR_MODE_STANDBY:
629 return "standby";
630 }
631 return "unknown";
632}
633
634static ssize_t regulator_print_opmode(char *buf, int mode)
635{
636 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
637}
638
639static ssize_t opmode_show(struct device *dev,
640 struct device_attribute *attr, char *buf)
641{
642 struct regulator_dev *rdev = dev_get_drvdata(dev);
643
644 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
645}
646static DEVICE_ATTR_RO(opmode);
647
648static ssize_t regulator_print_state(char *buf, int state)
649{
650 if (state > 0)
651 return sprintf(buf, "enabled\n");
652 else if (state == 0)
653 return sprintf(buf, "disabled\n");
654 else
655 return sprintf(buf, "unknown\n");
656}
657
658static ssize_t state_show(struct device *dev,
659 struct device_attribute *attr, char *buf)
660{
661 struct regulator_dev *rdev = dev_get_drvdata(dev);
662 ssize_t ret;
663
664 regulator_lock(rdev);
665 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
666 regulator_unlock(rdev);
667
668 return ret;
669}
670static DEVICE_ATTR_RO(state);
671
672static ssize_t status_show(struct device *dev,
673 struct device_attribute *attr, char *buf)
674{
675 struct regulator_dev *rdev = dev_get_drvdata(dev);
676 int status;
677 char *label;
678
679 status = rdev->desc->ops->get_status(rdev);
680 if (status < 0)
681 return status;
682
683 switch (status) {
684 case REGULATOR_STATUS_OFF:
685 label = "off";
686 break;
687 case REGULATOR_STATUS_ON:
688 label = "on";
689 break;
690 case REGULATOR_STATUS_ERROR:
691 label = "error";
692 break;
693 case REGULATOR_STATUS_FAST:
694 label = "fast";
695 break;
696 case REGULATOR_STATUS_NORMAL:
697 label = "normal";
698 break;
699 case REGULATOR_STATUS_IDLE:
700 label = "idle";
701 break;
702 case REGULATOR_STATUS_STANDBY:
703 label = "standby";
704 break;
705 case REGULATOR_STATUS_BYPASS:
706 label = "bypass";
707 break;
708 case REGULATOR_STATUS_UNDEFINED:
709 label = "undefined";
710 break;
711 default:
712 return -ERANGE;
713 }
714
715 return sprintf(buf, "%s\n", label);
716}
717static DEVICE_ATTR_RO(status);
718
719static ssize_t min_microamps_show(struct device *dev,
720 struct device_attribute *attr, char *buf)
721{
722 struct regulator_dev *rdev = dev_get_drvdata(dev);
723
724 if (!rdev->constraints)
725 return sprintf(buf, "constraint not defined\n");
726
727 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
728}
729static DEVICE_ATTR_RO(min_microamps);
730
731static ssize_t max_microamps_show(struct device *dev,
732 struct device_attribute *attr, char *buf)
733{
734 struct regulator_dev *rdev = dev_get_drvdata(dev);
735
736 if (!rdev->constraints)
737 return sprintf(buf, "constraint not defined\n");
738
739 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
740}
741static DEVICE_ATTR_RO(max_microamps);
742
743static ssize_t min_microvolts_show(struct device *dev,
744 struct device_attribute *attr, char *buf)
745{
746 struct regulator_dev *rdev = dev_get_drvdata(dev);
747
748 if (!rdev->constraints)
749 return sprintf(buf, "constraint not defined\n");
750
751 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
752}
753static DEVICE_ATTR_RO(min_microvolts);
754
755static ssize_t max_microvolts_show(struct device *dev,
756 struct device_attribute *attr, char *buf)
757{
758 struct regulator_dev *rdev = dev_get_drvdata(dev);
759
760 if (!rdev->constraints)
761 return sprintf(buf, "constraint not defined\n");
762
763 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
764}
765static DEVICE_ATTR_RO(max_microvolts);
766
767static ssize_t requested_microamps_show(struct device *dev,
768 struct device_attribute *attr, char *buf)
769{
770 struct regulator_dev *rdev = dev_get_drvdata(dev);
771 struct regulator *regulator;
772 int uA = 0;
773
774 regulator_lock(rdev);
775 list_for_each_entry(regulator, &rdev->consumer_list, list) {
776 if (regulator->enable_count)
777 uA += regulator->uA_load;
778 }
779 regulator_unlock(rdev);
780 return sprintf(buf, "%d\n", uA);
781}
782static DEVICE_ATTR_RO(requested_microamps);
783
784static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
785 char *buf)
786{
787 struct regulator_dev *rdev = dev_get_drvdata(dev);
788 return sprintf(buf, "%d\n", rdev->use_count);
789}
790static DEVICE_ATTR_RO(num_users);
791
792static ssize_t type_show(struct device *dev, struct device_attribute *attr,
793 char *buf)
794{
795 struct regulator_dev *rdev = dev_get_drvdata(dev);
796
797 switch (rdev->desc->type) {
798 case REGULATOR_VOLTAGE:
799 return sprintf(buf, "voltage\n");
800 case REGULATOR_CURRENT:
801 return sprintf(buf, "current\n");
802 }
803 return sprintf(buf, "unknown\n");
804}
805static DEVICE_ATTR_RO(type);
806
807static ssize_t suspend_mem_microvolts_show(struct device *dev,
808 struct device_attribute *attr, char *buf)
809{
810 struct regulator_dev *rdev = dev_get_drvdata(dev);
811
812 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
813}
814static DEVICE_ATTR_RO(suspend_mem_microvolts);
815
816static ssize_t suspend_disk_microvolts_show(struct device *dev,
817 struct device_attribute *attr, char *buf)
818{
819 struct regulator_dev *rdev = dev_get_drvdata(dev);
820
821 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
822}
823static DEVICE_ATTR_RO(suspend_disk_microvolts);
824
825static ssize_t suspend_standby_microvolts_show(struct device *dev,
826 struct device_attribute *attr, char *buf)
827{
828 struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
831}
832static DEVICE_ATTR_RO(suspend_standby_microvolts);
833
834static ssize_t suspend_mem_mode_show(struct device *dev,
835 struct device_attribute *attr, char *buf)
836{
837 struct regulator_dev *rdev = dev_get_drvdata(dev);
838
839 return regulator_print_opmode(buf,
840 rdev->constraints->state_mem.mode);
841}
842static DEVICE_ATTR_RO(suspend_mem_mode);
843
844static ssize_t suspend_disk_mode_show(struct device *dev,
845 struct device_attribute *attr, char *buf)
846{
847 struct regulator_dev *rdev = dev_get_drvdata(dev);
848
849 return regulator_print_opmode(buf,
850 rdev->constraints->state_disk.mode);
851}
852static DEVICE_ATTR_RO(suspend_disk_mode);
853
854static ssize_t suspend_standby_mode_show(struct device *dev,
855 struct device_attribute *attr, char *buf)
856{
857 struct regulator_dev *rdev = dev_get_drvdata(dev);
858
859 return regulator_print_opmode(buf,
860 rdev->constraints->state_standby.mode);
861}
862static DEVICE_ATTR_RO(suspend_standby_mode);
863
864static ssize_t suspend_mem_state_show(struct device *dev,
865 struct device_attribute *attr, char *buf)
866{
867 struct regulator_dev *rdev = dev_get_drvdata(dev);
868
869 return regulator_print_state(buf,
870 rdev->constraints->state_mem.enabled);
871}
872static DEVICE_ATTR_RO(suspend_mem_state);
873
874static ssize_t suspend_disk_state_show(struct device *dev,
875 struct device_attribute *attr, char *buf)
876{
877 struct regulator_dev *rdev = dev_get_drvdata(dev);
878
879 return regulator_print_state(buf,
880 rdev->constraints->state_disk.enabled);
881}
882static DEVICE_ATTR_RO(suspend_disk_state);
883
884static ssize_t suspend_standby_state_show(struct device *dev,
885 struct device_attribute *attr, char *buf)
886{
887 struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889 return regulator_print_state(buf,
890 rdev->constraints->state_standby.enabled);
891}
892static DEVICE_ATTR_RO(suspend_standby_state);
893
894static ssize_t bypass_show(struct device *dev,
895 struct device_attribute *attr, char *buf)
896{
897 struct regulator_dev *rdev = dev_get_drvdata(dev);
898 const char *report;
899 bool bypass;
900 int ret;
901
902 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
903
904 if (ret != 0)
905 report = "unknown";
906 else if (bypass)
907 report = "enabled";
908 else
909 report = "disabled";
910
911 return sprintf(buf, "%s\n", report);
912}
913static DEVICE_ATTR_RO(bypass);
914
915#define REGULATOR_ERROR_ATTR(name, bit) \
916 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
917 char *buf) \
918 { \
919 int ret; \
920 unsigned int flags; \
921 struct regulator_dev *rdev = dev_get_drvdata(dev); \
922 ret = _regulator_get_error_flags(rdev, &flags); \
923 if (ret) \
924 return ret; \
925 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
926 } \
927 static DEVICE_ATTR_RO(name)
928
929REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
930REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
931REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
932REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
933REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
934REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
935REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
936REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
937REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
938
939/* Calculate the new optimum regulator operating mode based on the new total
940 * consumer load. All locks held by caller
941 */
942static int drms_uA_update(struct regulator_dev *rdev)
943{
944 struct regulator *sibling;
945 int current_uA = 0, output_uV, input_uV, err;
946 unsigned int mode;
947
948 /*
949 * first check to see if we can set modes at all, otherwise just
950 * tell the consumer everything is OK.
951 */
952 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
953 rdev_dbg(rdev, "DRMS operation not allowed\n");
954 return 0;
955 }
956
957 if (!rdev->desc->ops->get_optimum_mode &&
958 !rdev->desc->ops->set_load)
959 return 0;
960
961 if (!rdev->desc->ops->set_mode &&
962 !rdev->desc->ops->set_load)
963 return -EINVAL;
964
965 /* calc total requested load */
966 list_for_each_entry(sibling, &rdev->consumer_list, list) {
967 if (sibling->enable_count)
968 current_uA += sibling->uA_load;
969 }
970
971 current_uA += rdev->constraints->system_load;
972
973 if (rdev->desc->ops->set_load) {
974 /* set the optimum mode for our new total regulator load */
975 err = rdev->desc->ops->set_load(rdev, current_uA);
976 if (err < 0)
977 rdev_err(rdev, "failed to set load %d: %pe\n",
978 current_uA, ERR_PTR(err));
979 } else {
980 /*
981 * Unfortunately in some cases the constraints->valid_ops has
982 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
983 * That's not really legit but we won't consider it a fatal
984 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
985 * wasn't set.
986 */
987 if (!rdev->constraints->valid_modes_mask) {
988 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
989 return 0;
990 }
991
992 /* get output voltage */
993 output_uV = regulator_get_voltage_rdev(rdev);
994
995 /*
996 * Don't return an error; if regulator driver cares about
997 * output_uV then it's up to the driver to validate.
998 */
999 if (output_uV <= 0)
1000 rdev_dbg(rdev, "invalid output voltage found\n");
1001
1002 /* get input voltage */
1003 input_uV = 0;
1004 if (rdev->supply)
1005 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1006 if (input_uV <= 0)
1007 input_uV = rdev->constraints->input_uV;
1008
1009 /*
1010 * Don't return an error; if regulator driver cares about
1011 * input_uV then it's up to the driver to validate.
1012 */
1013 if (input_uV <= 0)
1014 rdev_dbg(rdev, "invalid input voltage found\n");
1015
1016 /* now get the optimum mode for our new total regulator load */
1017 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1018 output_uV, current_uA);
1019
1020 /* check the new mode is allowed */
1021 err = regulator_mode_constrain(rdev, &mode);
1022 if (err < 0) {
1023 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1024 current_uA, input_uV, output_uV, ERR_PTR(err));
1025 return err;
1026 }
1027
1028 err = rdev->desc->ops->set_mode(rdev, mode);
1029 if (err < 0)
1030 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1031 mode, ERR_PTR(err));
1032 }
1033
1034 return err;
1035}
1036
1037static int __suspend_set_state(struct regulator_dev *rdev,
1038 const struct regulator_state *rstate)
1039{
1040 int ret = 0;
1041
1042 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1043 rdev->desc->ops->set_suspend_enable)
1044 ret = rdev->desc->ops->set_suspend_enable(rdev);
1045 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1046 rdev->desc->ops->set_suspend_disable)
1047 ret = rdev->desc->ops->set_suspend_disable(rdev);
1048 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1049 ret = 0;
1050
1051 if (ret < 0) {
1052 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1053 return ret;
1054 }
1055
1056 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1057 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1058 if (ret < 0) {
1059 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1060 return ret;
1061 }
1062 }
1063
1064 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1065 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1066 if (ret < 0) {
1067 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1068 return ret;
1069 }
1070 }
1071
1072 return ret;
1073}
1074
1075static int suspend_set_initial_state(struct regulator_dev *rdev)
1076{
1077 const struct regulator_state *rstate;
1078
1079 rstate = regulator_get_suspend_state_check(rdev,
1080 rdev->constraints->initial_state);
1081 if (!rstate)
1082 return 0;
1083
1084 return __suspend_set_state(rdev, rstate);
1085}
1086
1087#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1088static void print_constraints_debug(struct regulator_dev *rdev)
1089{
1090 struct regulation_constraints *constraints = rdev->constraints;
1091 char buf[160] = "";
1092 size_t len = sizeof(buf) - 1;
1093 int count = 0;
1094 int ret;
1095
1096 if (constraints->min_uV && constraints->max_uV) {
1097 if (constraints->min_uV == constraints->max_uV)
1098 count += scnprintf(buf + count, len - count, "%d mV ",
1099 constraints->min_uV / 1000);
1100 else
1101 count += scnprintf(buf + count, len - count,
1102 "%d <--> %d mV ",
1103 constraints->min_uV / 1000,
1104 constraints->max_uV / 1000);
1105 }
1106
1107 if (!constraints->min_uV ||
1108 constraints->min_uV != constraints->max_uV) {
1109 ret = regulator_get_voltage_rdev(rdev);
1110 if (ret > 0)
1111 count += scnprintf(buf + count, len - count,
1112 "at %d mV ", ret / 1000);
1113 }
1114
1115 if (constraints->uV_offset)
1116 count += scnprintf(buf + count, len - count, "%dmV offset ",
1117 constraints->uV_offset / 1000);
1118
1119 if (constraints->min_uA && constraints->max_uA) {
1120 if (constraints->min_uA == constraints->max_uA)
1121 count += scnprintf(buf + count, len - count, "%d mA ",
1122 constraints->min_uA / 1000);
1123 else
1124 count += scnprintf(buf + count, len - count,
1125 "%d <--> %d mA ",
1126 constraints->min_uA / 1000,
1127 constraints->max_uA / 1000);
1128 }
1129
1130 if (!constraints->min_uA ||
1131 constraints->min_uA != constraints->max_uA) {
1132 ret = _regulator_get_current_limit(rdev);
1133 if (ret > 0)
1134 count += scnprintf(buf + count, len - count,
1135 "at %d mA ", ret / 1000);
1136 }
1137
1138 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1139 count += scnprintf(buf + count, len - count, "fast ");
1140 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1141 count += scnprintf(buf + count, len - count, "normal ");
1142 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1143 count += scnprintf(buf + count, len - count, "idle ");
1144 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1145 count += scnprintf(buf + count, len - count, "standby ");
1146
1147 if (!count)
1148 count = scnprintf(buf, len, "no parameters");
1149 else
1150 --count;
1151
1152 count += scnprintf(buf + count, len - count, ", %s",
1153 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1154
1155 rdev_dbg(rdev, "%s\n", buf);
1156}
1157#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1158static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1159#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1160
1161static void print_constraints(struct regulator_dev *rdev)
1162{
1163 struct regulation_constraints *constraints = rdev->constraints;
1164
1165 print_constraints_debug(rdev);
1166
1167 if ((constraints->min_uV != constraints->max_uV) &&
1168 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1169 rdev_warn(rdev,
1170 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1171}
1172
1173static int machine_constraints_voltage(struct regulator_dev *rdev,
1174 struct regulation_constraints *constraints)
1175{
1176 const struct regulator_ops *ops = rdev->desc->ops;
1177 int ret;
1178
1179 /* do we need to apply the constraint voltage */
1180 if (rdev->constraints->apply_uV &&
1181 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1182 int target_min, target_max;
1183 int current_uV = regulator_get_voltage_rdev(rdev);
1184
1185 if (current_uV == -ENOTRECOVERABLE) {
1186 /* This regulator can't be read and must be initialized */
1187 rdev_info(rdev, "Setting %d-%duV\n",
1188 rdev->constraints->min_uV,
1189 rdev->constraints->max_uV);
1190 _regulator_do_set_voltage(rdev,
1191 rdev->constraints->min_uV,
1192 rdev->constraints->max_uV);
1193 current_uV = regulator_get_voltage_rdev(rdev);
1194 }
1195
1196 if (current_uV < 0) {
1197 if (current_uV != -EPROBE_DEFER)
1198 rdev_err(rdev,
1199 "failed to get the current voltage: %pe\n",
1200 ERR_PTR(current_uV));
1201 return current_uV;
1202 }
1203
1204 /*
1205 * If we're below the minimum voltage move up to the
1206 * minimum voltage, if we're above the maximum voltage
1207 * then move down to the maximum.
1208 */
1209 target_min = current_uV;
1210 target_max = current_uV;
1211
1212 if (current_uV < rdev->constraints->min_uV) {
1213 target_min = rdev->constraints->min_uV;
1214 target_max = rdev->constraints->min_uV;
1215 }
1216
1217 if (current_uV > rdev->constraints->max_uV) {
1218 target_min = rdev->constraints->max_uV;
1219 target_max = rdev->constraints->max_uV;
1220 }
1221
1222 if (target_min != current_uV || target_max != current_uV) {
1223 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1224 current_uV, target_min, target_max);
1225 ret = _regulator_do_set_voltage(
1226 rdev, target_min, target_max);
1227 if (ret < 0) {
1228 rdev_err(rdev,
1229 "failed to apply %d-%duV constraint: %pe\n",
1230 target_min, target_max, ERR_PTR(ret));
1231 return ret;
1232 }
1233 }
1234 }
1235
1236 /* constrain machine-level voltage specs to fit
1237 * the actual range supported by this regulator.
1238 */
1239 if (ops->list_voltage && rdev->desc->n_voltages) {
1240 int count = rdev->desc->n_voltages;
1241 int i;
1242 int min_uV = INT_MAX;
1243 int max_uV = INT_MIN;
1244 int cmin = constraints->min_uV;
1245 int cmax = constraints->max_uV;
1246
1247 /* it's safe to autoconfigure fixed-voltage supplies
1248 * and the constraints are used by list_voltage.
1249 */
1250 if (count == 1 && !cmin) {
1251 cmin = 1;
1252 cmax = INT_MAX;
1253 constraints->min_uV = cmin;
1254 constraints->max_uV = cmax;
1255 }
1256
1257 /* voltage constraints are optional */
1258 if ((cmin == 0) && (cmax == 0))
1259 return 0;
1260
1261 /* else require explicit machine-level constraints */
1262 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1263 rdev_err(rdev, "invalid voltage constraints\n");
1264 return -EINVAL;
1265 }
1266
1267 /* no need to loop voltages if range is continuous */
1268 if (rdev->desc->continuous_voltage_range)
1269 return 0;
1270
1271 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1272 for (i = 0; i < count; i++) {
1273 int value;
1274
1275 value = ops->list_voltage(rdev, i);
1276 if (value <= 0)
1277 continue;
1278
1279 /* maybe adjust [min_uV..max_uV] */
1280 if (value >= cmin && value < min_uV)
1281 min_uV = value;
1282 if (value <= cmax && value > max_uV)
1283 max_uV = value;
1284 }
1285
1286 /* final: [min_uV..max_uV] valid iff constraints valid */
1287 if (max_uV < min_uV) {
1288 rdev_err(rdev,
1289 "unsupportable voltage constraints %u-%uuV\n",
1290 min_uV, max_uV);
1291 return -EINVAL;
1292 }
1293
1294 /* use regulator's subset of machine constraints */
1295 if (constraints->min_uV < min_uV) {
1296 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1297 constraints->min_uV, min_uV);
1298 constraints->min_uV = min_uV;
1299 }
1300 if (constraints->max_uV > max_uV) {
1301 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1302 constraints->max_uV, max_uV);
1303 constraints->max_uV = max_uV;
1304 }
1305 }
1306
1307 return 0;
1308}
1309
1310static int machine_constraints_current(struct regulator_dev *rdev,
1311 struct regulation_constraints *constraints)
1312{
1313 const struct regulator_ops *ops = rdev->desc->ops;
1314 int ret;
1315
1316 if (!constraints->min_uA && !constraints->max_uA)
1317 return 0;
1318
1319 if (constraints->min_uA > constraints->max_uA) {
1320 rdev_err(rdev, "Invalid current constraints\n");
1321 return -EINVAL;
1322 }
1323
1324 if (!ops->set_current_limit || !ops->get_current_limit) {
1325 rdev_warn(rdev, "Operation of current configuration missing\n");
1326 return 0;
1327 }
1328
1329 /* Set regulator current in constraints range */
1330 ret = ops->set_current_limit(rdev, constraints->min_uA,
1331 constraints->max_uA);
1332 if (ret < 0) {
1333 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1334 return ret;
1335 }
1336
1337 return 0;
1338}
1339
1340static int _regulator_do_enable(struct regulator_dev *rdev);
1341
1342static int notif_set_limit(struct regulator_dev *rdev,
1343 int (*set)(struct regulator_dev *, int, int, bool),
1344 int limit, int severity)
1345{
1346 bool enable;
1347
1348 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1349 enable = false;
1350 limit = 0;
1351 } else {
1352 enable = true;
1353 }
1354
1355 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1356 limit = 0;
1357
1358 return set(rdev, limit, severity, enable);
1359}
1360
1361static int handle_notify_limits(struct regulator_dev *rdev,
1362 int (*set)(struct regulator_dev *, int, int, bool),
1363 struct notification_limit *limits)
1364{
1365 int ret = 0;
1366
1367 if (!set)
1368 return -EOPNOTSUPP;
1369
1370 if (limits->prot)
1371 ret = notif_set_limit(rdev, set, limits->prot,
1372 REGULATOR_SEVERITY_PROT);
1373 if (ret)
1374 return ret;
1375
1376 if (limits->err)
1377 ret = notif_set_limit(rdev, set, limits->err,
1378 REGULATOR_SEVERITY_ERR);
1379 if (ret)
1380 return ret;
1381
1382 if (limits->warn)
1383 ret = notif_set_limit(rdev, set, limits->warn,
1384 REGULATOR_SEVERITY_WARN);
1385
1386 return ret;
1387}
1388/**
1389 * set_machine_constraints - sets regulator constraints
1390 * @rdev: regulator source
1391 *
1392 * Allows platform initialisation code to define and constrain
1393 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1394 * Constraints *must* be set by platform code in order for some
1395 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396 * set_mode.
1397 */
1398static int set_machine_constraints(struct regulator_dev *rdev)
1399{
1400 int ret = 0;
1401 const struct regulator_ops *ops = rdev->desc->ops;
1402
1403 ret = machine_constraints_voltage(rdev, rdev->constraints);
1404 if (ret != 0)
1405 return ret;
1406
1407 ret = machine_constraints_current(rdev, rdev->constraints);
1408 if (ret != 0)
1409 return ret;
1410
1411 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412 ret = ops->set_input_current_limit(rdev,
1413 rdev->constraints->ilim_uA);
1414 if (ret < 0) {
1415 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416 return ret;
1417 }
1418 }
1419
1420 /* do we need to setup our suspend state */
1421 if (rdev->constraints->initial_state) {
1422 ret = suspend_set_initial_state(rdev);
1423 if (ret < 0) {
1424 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425 return ret;
1426 }
1427 }
1428
1429 if (rdev->constraints->initial_mode) {
1430 if (!ops->set_mode) {
1431 rdev_err(rdev, "no set_mode operation\n");
1432 return -EINVAL;
1433 }
1434
1435 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436 if (ret < 0) {
1437 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438 return ret;
1439 }
1440 } else if (rdev->constraints->system_load) {
1441 /*
1442 * We'll only apply the initial system load if an
1443 * initial mode wasn't specified.
1444 */
1445 drms_uA_update(rdev);
1446 }
1447
1448 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449 && ops->set_ramp_delay) {
1450 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451 if (ret < 0) {
1452 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453 return ret;
1454 }
1455 }
1456
1457 if (rdev->constraints->pull_down && ops->set_pull_down) {
1458 ret = ops->set_pull_down(rdev);
1459 if (ret < 0) {
1460 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461 return ret;
1462 }
1463 }
1464
1465 if (rdev->constraints->soft_start && ops->set_soft_start) {
1466 ret = ops->set_soft_start(rdev);
1467 if (ret < 0) {
1468 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469 return ret;
1470 }
1471 }
1472
1473 /*
1474 * Existing logic does not warn if over_current_protection is given as
1475 * a constraint but driver does not support that. I think we should
1476 * warn about this type of issues as it is possible someone changes
1477 * PMIC on board to another type - and the another PMIC's driver does
1478 * not support setting protection. Board composer may happily believe
1479 * the DT limits are respected - especially if the new PMIC HW also
1480 * supports protection but the driver does not. I won't change the logic
1481 * without hearing more experienced opinion on this though.
1482 *
1483 * If warning is seen as a good idea then we can merge handling the
1484 * over-curret protection and detection and get rid of this special
1485 * handling.
1486 */
1487 if (rdev->constraints->over_current_protection
1488 && ops->set_over_current_protection) {
1489 int lim = rdev->constraints->over_curr_limits.prot;
1490
1491 ret = ops->set_over_current_protection(rdev, lim,
1492 REGULATOR_SEVERITY_PROT,
1493 true);
1494 if (ret < 0) {
1495 rdev_err(rdev, "failed to set over current protection: %pe\n",
1496 ERR_PTR(ret));
1497 return ret;
1498 }
1499 }
1500
1501 if (rdev->constraints->over_current_detection)
1502 ret = handle_notify_limits(rdev,
1503 ops->set_over_current_protection,
1504 &rdev->constraints->over_curr_limits);
1505 if (ret) {
1506 if (ret != -EOPNOTSUPP) {
1507 rdev_err(rdev, "failed to set over current limits: %pe\n",
1508 ERR_PTR(ret));
1509 return ret;
1510 }
1511 rdev_warn(rdev,
1512 "IC does not support requested over-current limits\n");
1513 }
1514
1515 if (rdev->constraints->over_voltage_detection)
1516 ret = handle_notify_limits(rdev,
1517 ops->set_over_voltage_protection,
1518 &rdev->constraints->over_voltage_limits);
1519 if (ret) {
1520 if (ret != -EOPNOTSUPP) {
1521 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1522 ERR_PTR(ret));
1523 return ret;
1524 }
1525 rdev_warn(rdev,
1526 "IC does not support requested over voltage limits\n");
1527 }
1528
1529 if (rdev->constraints->under_voltage_detection)
1530 ret = handle_notify_limits(rdev,
1531 ops->set_under_voltage_protection,
1532 &rdev->constraints->under_voltage_limits);
1533 if (ret) {
1534 if (ret != -EOPNOTSUPP) {
1535 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1536 ERR_PTR(ret));
1537 return ret;
1538 }
1539 rdev_warn(rdev,
1540 "IC does not support requested under voltage limits\n");
1541 }
1542
1543 if (rdev->constraints->over_temp_detection)
1544 ret = handle_notify_limits(rdev,
1545 ops->set_thermal_protection,
1546 &rdev->constraints->temp_limits);
1547 if (ret) {
1548 if (ret != -EOPNOTSUPP) {
1549 rdev_err(rdev, "failed to set temperature limits %pe\n",
1550 ERR_PTR(ret));
1551 return ret;
1552 }
1553 rdev_warn(rdev,
1554 "IC does not support requested temperature limits\n");
1555 }
1556
1557 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1558 bool ad_state = (rdev->constraints->active_discharge ==
1559 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1560
1561 ret = ops->set_active_discharge(rdev, ad_state);
1562 if (ret < 0) {
1563 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1564 return ret;
1565 }
1566 }
1567
1568 /*
1569 * If there is no mechanism for controlling the regulator then
1570 * flag it as always_on so we don't end up duplicating checks
1571 * for this so much. Note that we could control the state of
1572 * a supply to control the output on a regulator that has no
1573 * direct control.
1574 */
1575 if (!rdev->ena_pin && !ops->enable) {
1576 if (rdev->supply_name && !rdev->supply)
1577 return -EPROBE_DEFER;
1578
1579 if (rdev->supply)
1580 rdev->constraints->always_on =
1581 rdev->supply->rdev->constraints->always_on;
1582 else
1583 rdev->constraints->always_on = true;
1584 }
1585
1586 if (rdev->desc->off_on_delay)
1587 rdev->last_off = ktime_get();
1588
1589 /* If the constraints say the regulator should be on at this point
1590 * and we have control then make sure it is enabled.
1591 */
1592 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1593 /* If we want to enable this regulator, make sure that we know
1594 * the supplying regulator.
1595 */
1596 if (rdev->supply_name && !rdev->supply)
1597 return -EPROBE_DEFER;
1598
1599 /* If supplying regulator has already been enabled,
1600 * it's not intended to have use_count increment
1601 * when rdev is only boot-on.
1602 */
1603 if (rdev->supply &&
1604 (rdev->constraints->always_on ||
1605 !regulator_is_enabled(rdev->supply))) {
1606 ret = regulator_enable(rdev->supply);
1607 if (ret < 0) {
1608 _regulator_put(rdev->supply);
1609 rdev->supply = NULL;
1610 return ret;
1611 }
1612 }
1613
1614 ret = _regulator_do_enable(rdev);
1615 if (ret < 0 && ret != -EINVAL) {
1616 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1617 return ret;
1618 }
1619
1620 if (rdev->constraints->always_on)
1621 rdev->use_count++;
1622 }
1623
1624 print_constraints(rdev);
1625 return 0;
1626}
1627
1628/**
1629 * set_supply - set regulator supply regulator
1630 * @rdev: regulator name
1631 * @supply_rdev: supply regulator name
1632 *
1633 * Called by platform initialisation code to set the supply regulator for this
1634 * regulator. This ensures that a regulators supply will also be enabled by the
1635 * core if it's child is enabled.
1636 */
1637static int set_supply(struct regulator_dev *rdev,
1638 struct regulator_dev *supply_rdev)
1639{
1640 int err;
1641
1642 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1643
1644 if (!try_module_get(supply_rdev->owner))
1645 return -ENODEV;
1646
1647 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1648 if (rdev->supply == NULL) {
1649 module_put(supply_rdev->owner);
1650 err = -ENOMEM;
1651 return err;
1652 }
1653 supply_rdev->open_count++;
1654
1655 return 0;
1656}
1657
1658/**
1659 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1660 * @rdev: regulator source
1661 * @consumer_dev_name: dev_name() string for device supply applies to
1662 * @supply: symbolic name for supply
1663 *
1664 * Allows platform initialisation code to map physical regulator
1665 * sources to symbolic names for supplies for use by devices. Devices
1666 * should use these symbolic names to request regulators, avoiding the
1667 * need to provide board-specific regulator names as platform data.
1668 */
1669static int set_consumer_device_supply(struct regulator_dev *rdev,
1670 const char *consumer_dev_name,
1671 const char *supply)
1672{
1673 struct regulator_map *node, *new_node;
1674 int has_dev;
1675
1676 if (supply == NULL)
1677 return -EINVAL;
1678
1679 if (consumer_dev_name != NULL)
1680 has_dev = 1;
1681 else
1682 has_dev = 0;
1683
1684 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1685 if (new_node == NULL)
1686 return -ENOMEM;
1687
1688 new_node->regulator = rdev;
1689 new_node->supply = supply;
1690
1691 if (has_dev) {
1692 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1693 if (new_node->dev_name == NULL) {
1694 kfree(new_node);
1695 return -ENOMEM;
1696 }
1697 }
1698
1699 mutex_lock(®ulator_list_mutex);
1700 list_for_each_entry(node, ®ulator_map_list, list) {
1701 if (node->dev_name && consumer_dev_name) {
1702 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1703 continue;
1704 } else if (node->dev_name || consumer_dev_name) {
1705 continue;
1706 }
1707
1708 if (strcmp(node->supply, supply) != 0)
1709 continue;
1710
1711 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1712 consumer_dev_name,
1713 dev_name(&node->regulator->dev),
1714 node->regulator->desc->name,
1715 supply,
1716 dev_name(&rdev->dev), rdev_get_name(rdev));
1717 goto fail;
1718 }
1719
1720 list_add(&new_node->list, ®ulator_map_list);
1721 mutex_unlock(®ulator_list_mutex);
1722
1723 return 0;
1724
1725fail:
1726 mutex_unlock(®ulator_list_mutex);
1727 kfree(new_node->dev_name);
1728 kfree(new_node);
1729 return -EBUSY;
1730}
1731
1732static void unset_regulator_supplies(struct regulator_dev *rdev)
1733{
1734 struct regulator_map *node, *n;
1735
1736 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1737 if (rdev == node->regulator) {
1738 list_del(&node->list);
1739 kfree(node->dev_name);
1740 kfree(node);
1741 }
1742 }
1743}
1744
1745#ifdef CONFIG_DEBUG_FS
1746static ssize_t constraint_flags_read_file(struct file *file,
1747 char __user *user_buf,
1748 size_t count, loff_t *ppos)
1749{
1750 const struct regulator *regulator = file->private_data;
1751 const struct regulation_constraints *c = regulator->rdev->constraints;
1752 char *buf;
1753 ssize_t ret;
1754
1755 if (!c)
1756 return 0;
1757
1758 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1759 if (!buf)
1760 return -ENOMEM;
1761
1762 ret = snprintf(buf, PAGE_SIZE,
1763 "always_on: %u\n"
1764 "boot_on: %u\n"
1765 "apply_uV: %u\n"
1766 "ramp_disable: %u\n"
1767 "soft_start: %u\n"
1768 "pull_down: %u\n"
1769 "over_current_protection: %u\n",
1770 c->always_on,
1771 c->boot_on,
1772 c->apply_uV,
1773 c->ramp_disable,
1774 c->soft_start,
1775 c->pull_down,
1776 c->over_current_protection);
1777
1778 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1779 kfree(buf);
1780
1781 return ret;
1782}
1783
1784#endif
1785
1786static const struct file_operations constraint_flags_fops = {
1787#ifdef CONFIG_DEBUG_FS
1788 .open = simple_open,
1789 .read = constraint_flags_read_file,
1790 .llseek = default_llseek,
1791#endif
1792};
1793
1794#define REG_STR_SIZE 64
1795
1796static struct regulator *create_regulator(struct regulator_dev *rdev,
1797 struct device *dev,
1798 const char *supply_name)
1799{
1800 struct regulator *regulator;
1801 int err = 0;
1802
1803 if (dev) {
1804 char buf[REG_STR_SIZE];
1805 int size;
1806
1807 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1808 dev->kobj.name, supply_name);
1809 if (size >= REG_STR_SIZE)
1810 return NULL;
1811
1812 supply_name = kstrdup(buf, GFP_KERNEL);
1813 if (supply_name == NULL)
1814 return NULL;
1815 } else {
1816 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1817 if (supply_name == NULL)
1818 return NULL;
1819 }
1820
1821 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1822 if (regulator == NULL) {
1823 kfree_const(supply_name);
1824 return NULL;
1825 }
1826
1827 regulator->rdev = rdev;
1828 regulator->supply_name = supply_name;
1829
1830 regulator_lock(rdev);
1831 list_add(®ulator->list, &rdev->consumer_list);
1832 regulator_unlock(rdev);
1833
1834 if (dev) {
1835 regulator->dev = dev;
1836
1837 /* Add a link to the device sysfs entry */
1838 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1839 supply_name);
1840 if (err) {
1841 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1842 dev->kobj.name, ERR_PTR(err));
1843 /* non-fatal */
1844 }
1845 }
1846
1847 if (err != -EEXIST)
1848 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1849 if (!regulator->debugfs) {
1850 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1851 } else {
1852 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1853 ®ulator->uA_load);
1854 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1855 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1856 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1857 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1858 debugfs_create_file("constraint_flags", 0444,
1859 regulator->debugfs, regulator,
1860 &constraint_flags_fops);
1861 }
1862
1863 /*
1864 * Check now if the regulator is an always on regulator - if
1865 * it is then we don't need to do nearly so much work for
1866 * enable/disable calls.
1867 */
1868 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1869 _regulator_is_enabled(rdev))
1870 regulator->always_on = true;
1871
1872 return regulator;
1873}
1874
1875static int _regulator_get_enable_time(struct regulator_dev *rdev)
1876{
1877 if (rdev->constraints && rdev->constraints->enable_time)
1878 return rdev->constraints->enable_time;
1879 if (rdev->desc->ops->enable_time)
1880 return rdev->desc->ops->enable_time(rdev);
1881 return rdev->desc->enable_time;
1882}
1883
1884static struct regulator_supply_alias *regulator_find_supply_alias(
1885 struct device *dev, const char *supply)
1886{
1887 struct regulator_supply_alias *map;
1888
1889 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1890 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1891 return map;
1892
1893 return NULL;
1894}
1895
1896static void regulator_supply_alias(struct device **dev, const char **supply)
1897{
1898 struct regulator_supply_alias *map;
1899
1900 map = regulator_find_supply_alias(*dev, *supply);
1901 if (map) {
1902 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1903 *supply, map->alias_supply,
1904 dev_name(map->alias_dev));
1905 *dev = map->alias_dev;
1906 *supply = map->alias_supply;
1907 }
1908}
1909
1910static int regulator_match(struct device *dev, const void *data)
1911{
1912 struct regulator_dev *r = dev_to_rdev(dev);
1913
1914 return strcmp(rdev_get_name(r), data) == 0;
1915}
1916
1917static struct regulator_dev *regulator_lookup_by_name(const char *name)
1918{
1919 struct device *dev;
1920
1921 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1922
1923 return dev ? dev_to_rdev(dev) : NULL;
1924}
1925
1926/**
1927 * regulator_dev_lookup - lookup a regulator device.
1928 * @dev: device for regulator "consumer".
1929 * @supply: Supply name or regulator ID.
1930 *
1931 * If successful, returns a struct regulator_dev that corresponds to the name
1932 * @supply and with the embedded struct device refcount incremented by one.
1933 * The refcount must be dropped by calling put_device().
1934 * On failure one of the following ERR-PTR-encoded values is returned:
1935 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1936 * in the future.
1937 */
1938static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1939 const char *supply)
1940{
1941 struct regulator_dev *r = NULL;
1942 struct device_node *node;
1943 struct regulator_map *map;
1944 const char *devname = NULL;
1945
1946 regulator_supply_alias(&dev, &supply);
1947
1948 /* first do a dt based lookup */
1949 if (dev && dev->of_node) {
1950 node = of_get_regulator(dev, supply);
1951 if (node) {
1952 r = of_find_regulator_by_node(node);
1953 of_node_put(node);
1954 if (r)
1955 return r;
1956
1957 /*
1958 * We have a node, but there is no device.
1959 * assume it has not registered yet.
1960 */
1961 return ERR_PTR(-EPROBE_DEFER);
1962 }
1963 }
1964
1965 /* if not found, try doing it non-dt way */
1966 if (dev)
1967 devname = dev_name(dev);
1968
1969 mutex_lock(®ulator_list_mutex);
1970 list_for_each_entry(map, ®ulator_map_list, list) {
1971 /* If the mapping has a device set up it must match */
1972 if (map->dev_name &&
1973 (!devname || strcmp(map->dev_name, devname)))
1974 continue;
1975
1976 if (strcmp(map->supply, supply) == 0 &&
1977 get_device(&map->regulator->dev)) {
1978 r = map->regulator;
1979 break;
1980 }
1981 }
1982 mutex_unlock(®ulator_list_mutex);
1983
1984 if (r)
1985 return r;
1986
1987 r = regulator_lookup_by_name(supply);
1988 if (r)
1989 return r;
1990
1991 return ERR_PTR(-ENODEV);
1992}
1993
1994static int regulator_resolve_supply(struct regulator_dev *rdev)
1995{
1996 struct regulator_dev *r;
1997 struct device *dev = rdev->dev.parent;
1998 int ret = 0;
1999
2000 /* No supply to resolve? */
2001 if (!rdev->supply_name)
2002 return 0;
2003
2004 /* Supply already resolved? (fast-path without locking contention) */
2005 if (rdev->supply)
2006 return 0;
2007
2008 r = regulator_dev_lookup(dev, rdev->supply_name);
2009 if (IS_ERR(r)) {
2010 ret = PTR_ERR(r);
2011
2012 /* Did the lookup explicitly defer for us? */
2013 if (ret == -EPROBE_DEFER)
2014 goto out;
2015
2016 if (have_full_constraints()) {
2017 r = dummy_regulator_rdev;
2018 get_device(&r->dev);
2019 } else {
2020 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2021 rdev->supply_name, rdev->desc->name);
2022 ret = -EPROBE_DEFER;
2023 goto out;
2024 }
2025 }
2026
2027 if (r == rdev) {
2028 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2029 rdev->desc->name, rdev->supply_name);
2030 if (!have_full_constraints()) {
2031 ret = -EINVAL;
2032 goto out;
2033 }
2034 r = dummy_regulator_rdev;
2035 get_device(&r->dev);
2036 }
2037
2038 /*
2039 * If the supply's parent device is not the same as the
2040 * regulator's parent device, then ensure the parent device
2041 * is bound before we resolve the supply, in case the parent
2042 * device get probe deferred and unregisters the supply.
2043 */
2044 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2045 if (!device_is_bound(r->dev.parent)) {
2046 put_device(&r->dev);
2047 ret = -EPROBE_DEFER;
2048 goto out;
2049 }
2050 }
2051
2052 /* Recursively resolve the supply of the supply */
2053 ret = regulator_resolve_supply(r);
2054 if (ret < 0) {
2055 put_device(&r->dev);
2056 goto out;
2057 }
2058
2059 /*
2060 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2061 * between rdev->supply null check and setting rdev->supply in
2062 * set_supply() from concurrent tasks.
2063 */
2064 regulator_lock(rdev);
2065
2066 /* Supply just resolved by a concurrent task? */
2067 if (rdev->supply) {
2068 regulator_unlock(rdev);
2069 put_device(&r->dev);
2070 goto out;
2071 }
2072
2073 ret = set_supply(rdev, r);
2074 if (ret < 0) {
2075 regulator_unlock(rdev);
2076 put_device(&r->dev);
2077 goto out;
2078 }
2079
2080 regulator_unlock(rdev);
2081
2082 /*
2083 * In set_machine_constraints() we may have turned this regulator on
2084 * but we couldn't propagate to the supply if it hadn't been resolved
2085 * yet. Do it now.
2086 */
2087 if (rdev->use_count) {
2088 ret = regulator_enable(rdev->supply);
2089 if (ret < 0) {
2090 _regulator_put(rdev->supply);
2091 rdev->supply = NULL;
2092 goto out;
2093 }
2094 }
2095
2096out:
2097 return ret;
2098}
2099
2100/* Internal regulator request function */
2101struct regulator *_regulator_get(struct device *dev, const char *id,
2102 enum regulator_get_type get_type)
2103{
2104 struct regulator_dev *rdev;
2105 struct regulator *regulator;
2106 struct device_link *link;
2107 int ret;
2108
2109 if (get_type >= MAX_GET_TYPE) {
2110 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2111 return ERR_PTR(-EINVAL);
2112 }
2113
2114 if (id == NULL) {
2115 pr_err("get() with no identifier\n");
2116 return ERR_PTR(-EINVAL);
2117 }
2118
2119 rdev = regulator_dev_lookup(dev, id);
2120 if (IS_ERR(rdev)) {
2121 ret = PTR_ERR(rdev);
2122
2123 /*
2124 * If regulator_dev_lookup() fails with error other
2125 * than -ENODEV our job here is done, we simply return it.
2126 */
2127 if (ret != -ENODEV)
2128 return ERR_PTR(ret);
2129
2130 if (!have_full_constraints()) {
2131 dev_warn(dev,
2132 "incomplete constraints, dummy supplies not allowed\n");
2133 return ERR_PTR(-ENODEV);
2134 }
2135
2136 switch (get_type) {
2137 case NORMAL_GET:
2138 /*
2139 * Assume that a regulator is physically present and
2140 * enabled, even if it isn't hooked up, and just
2141 * provide a dummy.
2142 */
2143 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2144 rdev = dummy_regulator_rdev;
2145 get_device(&rdev->dev);
2146 break;
2147
2148 case EXCLUSIVE_GET:
2149 dev_warn(dev,
2150 "dummy supplies not allowed for exclusive requests\n");
2151 fallthrough;
2152
2153 default:
2154 return ERR_PTR(-ENODEV);
2155 }
2156 }
2157
2158 if (rdev->exclusive) {
2159 regulator = ERR_PTR(-EPERM);
2160 put_device(&rdev->dev);
2161 return regulator;
2162 }
2163
2164 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2165 regulator = ERR_PTR(-EBUSY);
2166 put_device(&rdev->dev);
2167 return regulator;
2168 }
2169
2170 mutex_lock(®ulator_list_mutex);
2171 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2172 mutex_unlock(®ulator_list_mutex);
2173
2174 if (ret != 0) {
2175 regulator = ERR_PTR(-EPROBE_DEFER);
2176 put_device(&rdev->dev);
2177 return regulator;
2178 }
2179
2180 ret = regulator_resolve_supply(rdev);
2181 if (ret < 0) {
2182 regulator = ERR_PTR(ret);
2183 put_device(&rdev->dev);
2184 return regulator;
2185 }
2186
2187 if (!try_module_get(rdev->owner)) {
2188 regulator = ERR_PTR(-EPROBE_DEFER);
2189 put_device(&rdev->dev);
2190 return regulator;
2191 }
2192
2193 regulator = create_regulator(rdev, dev, id);
2194 if (regulator == NULL) {
2195 regulator = ERR_PTR(-ENOMEM);
2196 module_put(rdev->owner);
2197 put_device(&rdev->dev);
2198 return regulator;
2199 }
2200
2201 rdev->open_count++;
2202 if (get_type == EXCLUSIVE_GET) {
2203 rdev->exclusive = 1;
2204
2205 ret = _regulator_is_enabled(rdev);
2206 if (ret > 0) {
2207 rdev->use_count = 1;
2208 regulator->enable_count = 1;
2209 } else {
2210 rdev->use_count = 0;
2211 regulator->enable_count = 0;
2212 }
2213 }
2214
2215 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2216 if (!IS_ERR_OR_NULL(link))
2217 regulator->device_link = true;
2218
2219 return regulator;
2220}
2221
2222/**
2223 * regulator_get - lookup and obtain a reference to a regulator.
2224 * @dev: device for regulator "consumer"
2225 * @id: Supply name or regulator ID.
2226 *
2227 * Returns a struct regulator corresponding to the regulator producer,
2228 * or IS_ERR() condition containing errno.
2229 *
2230 * Use of supply names configured via set_consumer_device_supply() is
2231 * strongly encouraged. It is recommended that the supply name used
2232 * should match the name used for the supply and/or the relevant
2233 * device pins in the datasheet.
2234 */
2235struct regulator *regulator_get(struct device *dev, const char *id)
2236{
2237 return _regulator_get(dev, id, NORMAL_GET);
2238}
2239EXPORT_SYMBOL_GPL(regulator_get);
2240
2241/**
2242 * regulator_get_exclusive - obtain exclusive access to a regulator.
2243 * @dev: device for regulator "consumer"
2244 * @id: Supply name or regulator ID.
2245 *
2246 * Returns a struct regulator corresponding to the regulator producer,
2247 * or IS_ERR() condition containing errno. Other consumers will be
2248 * unable to obtain this regulator while this reference is held and the
2249 * use count for the regulator will be initialised to reflect the current
2250 * state of the regulator.
2251 *
2252 * This is intended for use by consumers which cannot tolerate shared
2253 * use of the regulator such as those which need to force the
2254 * regulator off for correct operation of the hardware they are
2255 * controlling.
2256 *
2257 * Use of supply names configured via set_consumer_device_supply() is
2258 * strongly encouraged. It is recommended that the supply name used
2259 * should match the name used for the supply and/or the relevant
2260 * device pins in the datasheet.
2261 */
2262struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2263{
2264 return _regulator_get(dev, id, EXCLUSIVE_GET);
2265}
2266EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2267
2268/**
2269 * regulator_get_optional - obtain optional access to a regulator.
2270 * @dev: device for regulator "consumer"
2271 * @id: Supply name or regulator ID.
2272 *
2273 * Returns a struct regulator corresponding to the regulator producer,
2274 * or IS_ERR() condition containing errno.
2275 *
2276 * This is intended for use by consumers for devices which can have
2277 * some supplies unconnected in normal use, such as some MMC devices.
2278 * It can allow the regulator core to provide stub supplies for other
2279 * supplies requested using normal regulator_get() calls without
2280 * disrupting the operation of drivers that can handle absent
2281 * supplies.
2282 *
2283 * Use of supply names configured via set_consumer_device_supply() is
2284 * strongly encouraged. It is recommended that the supply name used
2285 * should match the name used for the supply and/or the relevant
2286 * device pins in the datasheet.
2287 */
2288struct regulator *regulator_get_optional(struct device *dev, const char *id)
2289{
2290 return _regulator_get(dev, id, OPTIONAL_GET);
2291}
2292EXPORT_SYMBOL_GPL(regulator_get_optional);
2293
2294static void destroy_regulator(struct regulator *regulator)
2295{
2296 struct regulator_dev *rdev = regulator->rdev;
2297
2298 debugfs_remove_recursive(regulator->debugfs);
2299
2300 if (regulator->dev) {
2301 if (regulator->device_link)
2302 device_link_remove(regulator->dev, &rdev->dev);
2303
2304 /* remove any sysfs entries */
2305 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2306 }
2307
2308 regulator_lock(rdev);
2309 list_del(®ulator->list);
2310
2311 rdev->open_count--;
2312 rdev->exclusive = 0;
2313 regulator_unlock(rdev);
2314
2315 kfree_const(regulator->supply_name);
2316 kfree(regulator);
2317}
2318
2319/* regulator_list_mutex lock held by regulator_put() */
2320static void _regulator_put(struct regulator *regulator)
2321{
2322 struct regulator_dev *rdev;
2323
2324 if (IS_ERR_OR_NULL(regulator))
2325 return;
2326
2327 lockdep_assert_held_once(®ulator_list_mutex);
2328
2329 /* Docs say you must disable before calling regulator_put() */
2330 WARN_ON(regulator->enable_count);
2331
2332 rdev = regulator->rdev;
2333
2334 destroy_regulator(regulator);
2335
2336 module_put(rdev->owner);
2337 put_device(&rdev->dev);
2338}
2339
2340/**
2341 * regulator_put - "free" the regulator source
2342 * @regulator: regulator source
2343 *
2344 * Note: drivers must ensure that all regulator_enable calls made on this
2345 * regulator source are balanced by regulator_disable calls prior to calling
2346 * this function.
2347 */
2348void regulator_put(struct regulator *regulator)
2349{
2350 mutex_lock(®ulator_list_mutex);
2351 _regulator_put(regulator);
2352 mutex_unlock(®ulator_list_mutex);
2353}
2354EXPORT_SYMBOL_GPL(regulator_put);
2355
2356/**
2357 * regulator_register_supply_alias - Provide device alias for supply lookup
2358 *
2359 * @dev: device that will be given as the regulator "consumer"
2360 * @id: Supply name or regulator ID
2361 * @alias_dev: device that should be used to lookup the supply
2362 * @alias_id: Supply name or regulator ID that should be used to lookup the
2363 * supply
2364 *
2365 * All lookups for id on dev will instead be conducted for alias_id on
2366 * alias_dev.
2367 */
2368int regulator_register_supply_alias(struct device *dev, const char *id,
2369 struct device *alias_dev,
2370 const char *alias_id)
2371{
2372 struct regulator_supply_alias *map;
2373
2374 map = regulator_find_supply_alias(dev, id);
2375 if (map)
2376 return -EEXIST;
2377
2378 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2379 if (!map)
2380 return -ENOMEM;
2381
2382 map->src_dev = dev;
2383 map->src_supply = id;
2384 map->alias_dev = alias_dev;
2385 map->alias_supply = alias_id;
2386
2387 list_add(&map->list, ®ulator_supply_alias_list);
2388
2389 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2390 id, dev_name(dev), alias_id, dev_name(alias_dev));
2391
2392 return 0;
2393}
2394EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2395
2396/**
2397 * regulator_unregister_supply_alias - Remove device alias
2398 *
2399 * @dev: device that will be given as the regulator "consumer"
2400 * @id: Supply name or regulator ID
2401 *
2402 * Remove a lookup alias if one exists for id on dev.
2403 */
2404void regulator_unregister_supply_alias(struct device *dev, const char *id)
2405{
2406 struct regulator_supply_alias *map;
2407
2408 map = regulator_find_supply_alias(dev, id);
2409 if (map) {
2410 list_del(&map->list);
2411 kfree(map);
2412 }
2413}
2414EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2415
2416/**
2417 * regulator_bulk_register_supply_alias - register multiple aliases
2418 *
2419 * @dev: device that will be given as the regulator "consumer"
2420 * @id: List of supply names or regulator IDs
2421 * @alias_dev: device that should be used to lookup the supply
2422 * @alias_id: List of supply names or regulator IDs that should be used to
2423 * lookup the supply
2424 * @num_id: Number of aliases to register
2425 *
2426 * @return 0 on success, an errno on failure.
2427 *
2428 * This helper function allows drivers to register several supply
2429 * aliases in one operation. If any of the aliases cannot be
2430 * registered any aliases that were registered will be removed
2431 * before returning to the caller.
2432 */
2433int regulator_bulk_register_supply_alias(struct device *dev,
2434 const char *const *id,
2435 struct device *alias_dev,
2436 const char *const *alias_id,
2437 int num_id)
2438{
2439 int i;
2440 int ret;
2441
2442 for (i = 0; i < num_id; ++i) {
2443 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2444 alias_id[i]);
2445 if (ret < 0)
2446 goto err;
2447 }
2448
2449 return 0;
2450
2451err:
2452 dev_err(dev,
2453 "Failed to create supply alias %s,%s -> %s,%s\n",
2454 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2455
2456 while (--i >= 0)
2457 regulator_unregister_supply_alias(dev, id[i]);
2458
2459 return ret;
2460}
2461EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2462
2463/**
2464 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2465 *
2466 * @dev: device that will be given as the regulator "consumer"
2467 * @id: List of supply names or regulator IDs
2468 * @num_id: Number of aliases to unregister
2469 *
2470 * This helper function allows drivers to unregister several supply
2471 * aliases in one operation.
2472 */
2473void regulator_bulk_unregister_supply_alias(struct device *dev,
2474 const char *const *id,
2475 int num_id)
2476{
2477 int i;
2478
2479 for (i = 0; i < num_id; ++i)
2480 regulator_unregister_supply_alias(dev, id[i]);
2481}
2482EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2483
2484
2485/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2486static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2487 const struct regulator_config *config)
2488{
2489 struct regulator_enable_gpio *pin, *new_pin;
2490 struct gpio_desc *gpiod;
2491
2492 gpiod = config->ena_gpiod;
2493 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2494
2495 mutex_lock(®ulator_list_mutex);
2496
2497 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2498 if (pin->gpiod == gpiod) {
2499 rdev_dbg(rdev, "GPIO is already used\n");
2500 goto update_ena_gpio_to_rdev;
2501 }
2502 }
2503
2504 if (new_pin == NULL) {
2505 mutex_unlock(®ulator_list_mutex);
2506 return -ENOMEM;
2507 }
2508
2509 pin = new_pin;
2510 new_pin = NULL;
2511
2512 pin->gpiod = gpiod;
2513 list_add(&pin->list, ®ulator_ena_gpio_list);
2514
2515update_ena_gpio_to_rdev:
2516 pin->request_count++;
2517 rdev->ena_pin = pin;
2518
2519 mutex_unlock(®ulator_list_mutex);
2520 kfree(new_pin);
2521
2522 return 0;
2523}
2524
2525static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2526{
2527 struct regulator_enable_gpio *pin, *n;
2528
2529 if (!rdev->ena_pin)
2530 return;
2531
2532 /* Free the GPIO only in case of no use */
2533 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2534 if (pin != rdev->ena_pin)
2535 continue;
2536
2537 if (--pin->request_count)
2538 break;
2539
2540 gpiod_put(pin->gpiod);
2541 list_del(&pin->list);
2542 kfree(pin);
2543 break;
2544 }
2545
2546 rdev->ena_pin = NULL;
2547}
2548
2549/**
2550 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2551 * @rdev: regulator_dev structure
2552 * @enable: enable GPIO at initial use?
2553 *
2554 * GPIO is enabled in case of initial use. (enable_count is 0)
2555 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2556 */
2557static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2558{
2559 struct regulator_enable_gpio *pin = rdev->ena_pin;
2560
2561 if (!pin)
2562 return -EINVAL;
2563
2564 if (enable) {
2565 /* Enable GPIO at initial use */
2566 if (pin->enable_count == 0)
2567 gpiod_set_value_cansleep(pin->gpiod, 1);
2568
2569 pin->enable_count++;
2570 } else {
2571 if (pin->enable_count > 1) {
2572 pin->enable_count--;
2573 return 0;
2574 }
2575
2576 /* Disable GPIO if not used */
2577 if (pin->enable_count <= 1) {
2578 gpiod_set_value_cansleep(pin->gpiod, 0);
2579 pin->enable_count = 0;
2580 }
2581 }
2582
2583 return 0;
2584}
2585
2586/**
2587 * _regulator_delay_helper - a delay helper function
2588 * @delay: time to delay in microseconds
2589 *
2590 * Delay for the requested amount of time as per the guidelines in:
2591 *
2592 * Documentation/timers/timers-howto.rst
2593 *
2594 * The assumption here is that these regulator operations will never used in
2595 * atomic context and therefore sleeping functions can be used.
2596 */
2597static void _regulator_delay_helper(unsigned int delay)
2598{
2599 unsigned int ms = delay / 1000;
2600 unsigned int us = delay % 1000;
2601
2602 if (ms > 0) {
2603 /*
2604 * For small enough values, handle super-millisecond
2605 * delays in the usleep_range() call below.
2606 */
2607 if (ms < 20)
2608 us += ms * 1000;
2609 else
2610 msleep(ms);
2611 }
2612
2613 /*
2614 * Give the scheduler some room to coalesce with any other
2615 * wakeup sources. For delays shorter than 10 us, don't even
2616 * bother setting up high-resolution timers and just busy-
2617 * loop.
2618 */
2619 if (us >= 10)
2620 usleep_range(us, us + 100);
2621 else
2622 udelay(us);
2623}
2624
2625/**
2626 * _regulator_check_status_enabled
2627 *
2628 * A helper function to check if the regulator status can be interpreted
2629 * as 'regulator is enabled'.
2630 * @rdev: the regulator device to check
2631 *
2632 * Return:
2633 * * 1 - if status shows regulator is in enabled state
2634 * * 0 - if not enabled state
2635 * * Error Value - as received from ops->get_status()
2636 */
2637static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2638{
2639 int ret = rdev->desc->ops->get_status(rdev);
2640
2641 if (ret < 0) {
2642 rdev_info(rdev, "get_status returned error: %d\n", ret);
2643 return ret;
2644 }
2645
2646 switch (ret) {
2647 case REGULATOR_STATUS_OFF:
2648 case REGULATOR_STATUS_ERROR:
2649 case REGULATOR_STATUS_UNDEFINED:
2650 return 0;
2651 default:
2652 return 1;
2653 }
2654}
2655
2656static int _regulator_do_enable(struct regulator_dev *rdev)
2657{
2658 int ret, delay;
2659
2660 /* Query before enabling in case configuration dependent. */
2661 ret = _regulator_get_enable_time(rdev);
2662 if (ret >= 0) {
2663 delay = ret;
2664 } else {
2665 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2666 delay = 0;
2667 }
2668
2669 trace_regulator_enable(rdev_get_name(rdev));
2670
2671 if (rdev->desc->off_on_delay && rdev->last_off) {
2672 /* if needed, keep a distance of off_on_delay from last time
2673 * this regulator was disabled.
2674 */
2675 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2676 s64 remaining = ktime_us_delta(end, ktime_get());
2677
2678 if (remaining > 0)
2679 _regulator_delay_helper(remaining);
2680 }
2681
2682 if (rdev->ena_pin) {
2683 if (!rdev->ena_gpio_state) {
2684 ret = regulator_ena_gpio_ctrl(rdev, true);
2685 if (ret < 0)
2686 return ret;
2687 rdev->ena_gpio_state = 1;
2688 }
2689 } else if (rdev->desc->ops->enable) {
2690 ret = rdev->desc->ops->enable(rdev);
2691 if (ret < 0)
2692 return ret;
2693 } else {
2694 return -EINVAL;
2695 }
2696
2697 /* Allow the regulator to ramp; it would be useful to extend
2698 * this for bulk operations so that the regulators can ramp
2699 * together.
2700 */
2701 trace_regulator_enable_delay(rdev_get_name(rdev));
2702
2703 /* If poll_enabled_time is set, poll upto the delay calculated
2704 * above, delaying poll_enabled_time uS to check if the regulator
2705 * actually got enabled.
2706 * If the regulator isn't enabled after our delay helper has expired,
2707 * return -ETIMEDOUT.
2708 */
2709 if (rdev->desc->poll_enabled_time) {
2710 int time_remaining = delay;
2711
2712 while (time_remaining > 0) {
2713 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2714
2715 if (rdev->desc->ops->get_status) {
2716 ret = _regulator_check_status_enabled(rdev);
2717 if (ret < 0)
2718 return ret;
2719 else if (ret)
2720 break;
2721 } else if (rdev->desc->ops->is_enabled(rdev))
2722 break;
2723
2724 time_remaining -= rdev->desc->poll_enabled_time;
2725 }
2726
2727 if (time_remaining <= 0) {
2728 rdev_err(rdev, "Enabled check timed out\n");
2729 return -ETIMEDOUT;
2730 }
2731 } else {
2732 _regulator_delay_helper(delay);
2733 }
2734
2735 trace_regulator_enable_complete(rdev_get_name(rdev));
2736
2737 return 0;
2738}
2739
2740/**
2741 * _regulator_handle_consumer_enable - handle that a consumer enabled
2742 * @regulator: regulator source
2743 *
2744 * Some things on a regulator consumer (like the contribution towards total
2745 * load on the regulator) only have an effect when the consumer wants the
2746 * regulator enabled. Explained in example with two consumers of the same
2747 * regulator:
2748 * consumer A: set_load(100); => total load = 0
2749 * consumer A: regulator_enable(); => total load = 100
2750 * consumer B: set_load(1000); => total load = 100
2751 * consumer B: regulator_enable(); => total load = 1100
2752 * consumer A: regulator_disable(); => total_load = 1000
2753 *
2754 * This function (together with _regulator_handle_consumer_disable) is
2755 * responsible for keeping track of the refcount for a given regulator consumer
2756 * and applying / unapplying these things.
2757 *
2758 * Returns 0 upon no error; -error upon error.
2759 */
2760static int _regulator_handle_consumer_enable(struct regulator *regulator)
2761{
2762 int ret;
2763 struct regulator_dev *rdev = regulator->rdev;
2764
2765 lockdep_assert_held_once(&rdev->mutex.base);
2766
2767 regulator->enable_count++;
2768 if (regulator->uA_load && regulator->enable_count == 1) {
2769 ret = drms_uA_update(rdev);
2770 if (ret)
2771 regulator->enable_count--;
2772 return ret;
2773 }
2774
2775 return 0;
2776}
2777
2778/**
2779 * _regulator_handle_consumer_disable - handle that a consumer disabled
2780 * @regulator: regulator source
2781 *
2782 * The opposite of _regulator_handle_consumer_enable().
2783 *
2784 * Returns 0 upon no error; -error upon error.
2785 */
2786static int _regulator_handle_consumer_disable(struct regulator *regulator)
2787{
2788 struct regulator_dev *rdev = regulator->rdev;
2789
2790 lockdep_assert_held_once(&rdev->mutex.base);
2791
2792 if (!regulator->enable_count) {
2793 rdev_err(rdev, "Underflow of regulator enable count\n");
2794 return -EINVAL;
2795 }
2796
2797 regulator->enable_count--;
2798 if (regulator->uA_load && regulator->enable_count == 0)
2799 return drms_uA_update(rdev);
2800
2801 return 0;
2802}
2803
2804/* locks held by regulator_enable() */
2805static int _regulator_enable(struct regulator *regulator)
2806{
2807 struct regulator_dev *rdev = regulator->rdev;
2808 int ret;
2809
2810 lockdep_assert_held_once(&rdev->mutex.base);
2811
2812 if (rdev->use_count == 0 && rdev->supply) {
2813 ret = _regulator_enable(rdev->supply);
2814 if (ret < 0)
2815 return ret;
2816 }
2817
2818 /* balance only if there are regulators coupled */
2819 if (rdev->coupling_desc.n_coupled > 1) {
2820 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2821 if (ret < 0)
2822 goto err_disable_supply;
2823 }
2824
2825 ret = _regulator_handle_consumer_enable(regulator);
2826 if (ret < 0)
2827 goto err_disable_supply;
2828
2829 if (rdev->use_count == 0) {
2830 /*
2831 * The regulator may already be enabled if it's not switchable
2832 * or was left on
2833 */
2834 ret = _regulator_is_enabled(rdev);
2835 if (ret == -EINVAL || ret == 0) {
2836 if (!regulator_ops_is_valid(rdev,
2837 REGULATOR_CHANGE_STATUS)) {
2838 ret = -EPERM;
2839 goto err_consumer_disable;
2840 }
2841
2842 ret = _regulator_do_enable(rdev);
2843 if (ret < 0)
2844 goto err_consumer_disable;
2845
2846 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2847 NULL);
2848 } else if (ret < 0) {
2849 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2850 goto err_consumer_disable;
2851 }
2852 /* Fallthrough on positive return values - already enabled */
2853 }
2854
2855 rdev->use_count++;
2856
2857 return 0;
2858
2859err_consumer_disable:
2860 _regulator_handle_consumer_disable(regulator);
2861
2862err_disable_supply:
2863 if (rdev->use_count == 0 && rdev->supply)
2864 _regulator_disable(rdev->supply);
2865
2866 return ret;
2867}
2868
2869/**
2870 * regulator_enable - enable regulator output
2871 * @regulator: regulator source
2872 *
2873 * Request that the regulator be enabled with the regulator output at
2874 * the predefined voltage or current value. Calls to regulator_enable()
2875 * must be balanced with calls to regulator_disable().
2876 *
2877 * NOTE: the output value can be set by other drivers, boot loader or may be
2878 * hardwired in the regulator.
2879 */
2880int regulator_enable(struct regulator *regulator)
2881{
2882 struct regulator_dev *rdev = regulator->rdev;
2883 struct ww_acquire_ctx ww_ctx;
2884 int ret;
2885
2886 regulator_lock_dependent(rdev, &ww_ctx);
2887 ret = _regulator_enable(regulator);
2888 regulator_unlock_dependent(rdev, &ww_ctx);
2889
2890 return ret;
2891}
2892EXPORT_SYMBOL_GPL(regulator_enable);
2893
2894static int _regulator_do_disable(struct regulator_dev *rdev)
2895{
2896 int ret;
2897
2898 trace_regulator_disable(rdev_get_name(rdev));
2899
2900 if (rdev->ena_pin) {
2901 if (rdev->ena_gpio_state) {
2902 ret = regulator_ena_gpio_ctrl(rdev, false);
2903 if (ret < 0)
2904 return ret;
2905 rdev->ena_gpio_state = 0;
2906 }
2907
2908 } else if (rdev->desc->ops->disable) {
2909 ret = rdev->desc->ops->disable(rdev);
2910 if (ret != 0)
2911 return ret;
2912 }
2913
2914 if (rdev->desc->off_on_delay)
2915 rdev->last_off = ktime_get();
2916
2917 trace_regulator_disable_complete(rdev_get_name(rdev));
2918
2919 return 0;
2920}
2921
2922/* locks held by regulator_disable() */
2923static int _regulator_disable(struct regulator *regulator)
2924{
2925 struct regulator_dev *rdev = regulator->rdev;
2926 int ret = 0;
2927
2928 lockdep_assert_held_once(&rdev->mutex.base);
2929
2930 if (WARN(rdev->use_count <= 0,
2931 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2932 return -EIO;
2933
2934 /* are we the last user and permitted to disable ? */
2935 if (rdev->use_count == 1 &&
2936 (rdev->constraints && !rdev->constraints->always_on)) {
2937
2938 /* we are last user */
2939 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2940 ret = _notifier_call_chain(rdev,
2941 REGULATOR_EVENT_PRE_DISABLE,
2942 NULL);
2943 if (ret & NOTIFY_STOP_MASK)
2944 return -EINVAL;
2945
2946 ret = _regulator_do_disable(rdev);
2947 if (ret < 0) {
2948 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2949 _notifier_call_chain(rdev,
2950 REGULATOR_EVENT_ABORT_DISABLE,
2951 NULL);
2952 return ret;
2953 }
2954 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2955 NULL);
2956 }
2957
2958 rdev->use_count = 0;
2959 } else if (rdev->use_count > 1) {
2960 rdev->use_count--;
2961 }
2962
2963 if (ret == 0)
2964 ret = _regulator_handle_consumer_disable(regulator);
2965
2966 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2967 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2968
2969 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2970 ret = _regulator_disable(rdev->supply);
2971
2972 return ret;
2973}
2974
2975/**
2976 * regulator_disable - disable regulator output
2977 * @regulator: regulator source
2978 *
2979 * Disable the regulator output voltage or current. Calls to
2980 * regulator_enable() must be balanced with calls to
2981 * regulator_disable().
2982 *
2983 * NOTE: this will only disable the regulator output if no other consumer
2984 * devices have it enabled, the regulator device supports disabling and
2985 * machine constraints permit this operation.
2986 */
2987int regulator_disable(struct regulator *regulator)
2988{
2989 struct regulator_dev *rdev = regulator->rdev;
2990 struct ww_acquire_ctx ww_ctx;
2991 int ret;
2992
2993 regulator_lock_dependent(rdev, &ww_ctx);
2994 ret = _regulator_disable(regulator);
2995 regulator_unlock_dependent(rdev, &ww_ctx);
2996
2997 return ret;
2998}
2999EXPORT_SYMBOL_GPL(regulator_disable);
3000
3001/* locks held by regulator_force_disable() */
3002static int _regulator_force_disable(struct regulator_dev *rdev)
3003{
3004 int ret = 0;
3005
3006 lockdep_assert_held_once(&rdev->mutex.base);
3007
3008 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3009 REGULATOR_EVENT_PRE_DISABLE, NULL);
3010 if (ret & NOTIFY_STOP_MASK)
3011 return -EINVAL;
3012
3013 ret = _regulator_do_disable(rdev);
3014 if (ret < 0) {
3015 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3016 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3017 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3018 return ret;
3019 }
3020
3021 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3022 REGULATOR_EVENT_DISABLE, NULL);
3023
3024 return 0;
3025}
3026
3027/**
3028 * regulator_force_disable - force disable regulator output
3029 * @regulator: regulator source
3030 *
3031 * Forcibly disable the regulator output voltage or current.
3032 * NOTE: this *will* disable the regulator output even if other consumer
3033 * devices have it enabled. This should be used for situations when device
3034 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3035 */
3036int regulator_force_disable(struct regulator *regulator)
3037{
3038 struct regulator_dev *rdev = regulator->rdev;
3039 struct ww_acquire_ctx ww_ctx;
3040 int ret;
3041
3042 regulator_lock_dependent(rdev, &ww_ctx);
3043
3044 ret = _regulator_force_disable(regulator->rdev);
3045
3046 if (rdev->coupling_desc.n_coupled > 1)
3047 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3048
3049 if (regulator->uA_load) {
3050 regulator->uA_load = 0;
3051 ret = drms_uA_update(rdev);
3052 }
3053
3054 if (rdev->use_count != 0 && rdev->supply)
3055 _regulator_disable(rdev->supply);
3056
3057 regulator_unlock_dependent(rdev, &ww_ctx);
3058
3059 return ret;
3060}
3061EXPORT_SYMBOL_GPL(regulator_force_disable);
3062
3063static void regulator_disable_work(struct work_struct *work)
3064{
3065 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3066 disable_work.work);
3067 struct ww_acquire_ctx ww_ctx;
3068 int count, i, ret;
3069 struct regulator *regulator;
3070 int total_count = 0;
3071
3072 regulator_lock_dependent(rdev, &ww_ctx);
3073
3074 /*
3075 * Workqueue functions queue the new work instance while the previous
3076 * work instance is being processed. Cancel the queued work instance
3077 * as the work instance under processing does the job of the queued
3078 * work instance.
3079 */
3080 cancel_delayed_work(&rdev->disable_work);
3081
3082 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3083 count = regulator->deferred_disables;
3084
3085 if (!count)
3086 continue;
3087
3088 total_count += count;
3089 regulator->deferred_disables = 0;
3090
3091 for (i = 0; i < count; i++) {
3092 ret = _regulator_disable(regulator);
3093 if (ret != 0)
3094 rdev_err(rdev, "Deferred disable failed: %pe\n",
3095 ERR_PTR(ret));
3096 }
3097 }
3098 WARN_ON(!total_count);
3099
3100 if (rdev->coupling_desc.n_coupled > 1)
3101 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3102
3103 regulator_unlock_dependent(rdev, &ww_ctx);
3104}
3105
3106/**
3107 * regulator_disable_deferred - disable regulator output with delay
3108 * @regulator: regulator source
3109 * @ms: milliseconds until the regulator is disabled
3110 *
3111 * Execute regulator_disable() on the regulator after a delay. This
3112 * is intended for use with devices that require some time to quiesce.
3113 *
3114 * NOTE: this will only disable the regulator output if no other consumer
3115 * devices have it enabled, the regulator device supports disabling and
3116 * machine constraints permit this operation.
3117 */
3118int regulator_disable_deferred(struct regulator *regulator, int ms)
3119{
3120 struct regulator_dev *rdev = regulator->rdev;
3121
3122 if (!ms)
3123 return regulator_disable(regulator);
3124
3125 regulator_lock(rdev);
3126 regulator->deferred_disables++;
3127 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3128 msecs_to_jiffies(ms));
3129 regulator_unlock(rdev);
3130
3131 return 0;
3132}
3133EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3134
3135static int _regulator_is_enabled(struct regulator_dev *rdev)
3136{
3137 /* A GPIO control always takes precedence */
3138 if (rdev->ena_pin)
3139 return rdev->ena_gpio_state;
3140
3141 /* If we don't know then assume that the regulator is always on */
3142 if (!rdev->desc->ops->is_enabled)
3143 return 1;
3144
3145 return rdev->desc->ops->is_enabled(rdev);
3146}
3147
3148static int _regulator_list_voltage(struct regulator_dev *rdev,
3149 unsigned selector, int lock)
3150{
3151 const struct regulator_ops *ops = rdev->desc->ops;
3152 int ret;
3153
3154 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3155 return rdev->desc->fixed_uV;
3156
3157 if (ops->list_voltage) {
3158 if (selector >= rdev->desc->n_voltages)
3159 return -EINVAL;
3160 if (selector < rdev->desc->linear_min_sel)
3161 return 0;
3162 if (lock)
3163 regulator_lock(rdev);
3164 ret = ops->list_voltage(rdev, selector);
3165 if (lock)
3166 regulator_unlock(rdev);
3167 } else if (rdev->is_switch && rdev->supply) {
3168 ret = _regulator_list_voltage(rdev->supply->rdev,
3169 selector, lock);
3170 } else {
3171 return -EINVAL;
3172 }
3173
3174 if (ret > 0) {
3175 if (ret < rdev->constraints->min_uV)
3176 ret = 0;
3177 else if (ret > rdev->constraints->max_uV)
3178 ret = 0;
3179 }
3180
3181 return ret;
3182}
3183
3184/**
3185 * regulator_is_enabled - is the regulator output enabled
3186 * @regulator: regulator source
3187 *
3188 * Returns positive if the regulator driver backing the source/client
3189 * has requested that the device be enabled, zero if it hasn't, else a
3190 * negative errno code.
3191 *
3192 * Note that the device backing this regulator handle can have multiple
3193 * users, so it might be enabled even if regulator_enable() was never
3194 * called for this particular source.
3195 */
3196int regulator_is_enabled(struct regulator *regulator)
3197{
3198 int ret;
3199
3200 if (regulator->always_on)
3201 return 1;
3202
3203 regulator_lock(regulator->rdev);
3204 ret = _regulator_is_enabled(regulator->rdev);
3205 regulator_unlock(regulator->rdev);
3206
3207 return ret;
3208}
3209EXPORT_SYMBOL_GPL(regulator_is_enabled);
3210
3211/**
3212 * regulator_count_voltages - count regulator_list_voltage() selectors
3213 * @regulator: regulator source
3214 *
3215 * Returns number of selectors, or negative errno. Selectors are
3216 * numbered starting at zero, and typically correspond to bitfields
3217 * in hardware registers.
3218 */
3219int regulator_count_voltages(struct regulator *regulator)
3220{
3221 struct regulator_dev *rdev = regulator->rdev;
3222
3223 if (rdev->desc->n_voltages)
3224 return rdev->desc->n_voltages;
3225
3226 if (!rdev->is_switch || !rdev->supply)
3227 return -EINVAL;
3228
3229 return regulator_count_voltages(rdev->supply);
3230}
3231EXPORT_SYMBOL_GPL(regulator_count_voltages);
3232
3233/**
3234 * regulator_list_voltage - enumerate supported voltages
3235 * @regulator: regulator source
3236 * @selector: identify voltage to list
3237 * Context: can sleep
3238 *
3239 * Returns a voltage that can be passed to @regulator_set_voltage(),
3240 * zero if this selector code can't be used on this system, or a
3241 * negative errno.
3242 */
3243int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3244{
3245 return _regulator_list_voltage(regulator->rdev, selector, 1);
3246}
3247EXPORT_SYMBOL_GPL(regulator_list_voltage);
3248
3249/**
3250 * regulator_get_regmap - get the regulator's register map
3251 * @regulator: regulator source
3252 *
3253 * Returns the register map for the given regulator, or an ERR_PTR value
3254 * if the regulator doesn't use regmap.
3255 */
3256struct regmap *regulator_get_regmap(struct regulator *regulator)
3257{
3258 struct regmap *map = regulator->rdev->regmap;
3259
3260 return map ? map : ERR_PTR(-EOPNOTSUPP);
3261}
3262
3263/**
3264 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3265 * @regulator: regulator source
3266 * @vsel_reg: voltage selector register, output parameter
3267 * @vsel_mask: mask for voltage selector bitfield, output parameter
3268 *
3269 * Returns the hardware register offset and bitmask used for setting the
3270 * regulator voltage. This might be useful when configuring voltage-scaling
3271 * hardware or firmware that can make I2C requests behind the kernel's back,
3272 * for example.
3273 *
3274 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3275 * and 0 is returned, otherwise a negative errno is returned.
3276 */
3277int regulator_get_hardware_vsel_register(struct regulator *regulator,
3278 unsigned *vsel_reg,
3279 unsigned *vsel_mask)
3280{
3281 struct regulator_dev *rdev = regulator->rdev;
3282 const struct regulator_ops *ops = rdev->desc->ops;
3283
3284 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3285 return -EOPNOTSUPP;
3286
3287 *vsel_reg = rdev->desc->vsel_reg;
3288 *vsel_mask = rdev->desc->vsel_mask;
3289
3290 return 0;
3291}
3292EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3293
3294/**
3295 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3296 * @regulator: regulator source
3297 * @selector: identify voltage to list
3298 *
3299 * Converts the selector to a hardware-specific voltage selector that can be
3300 * directly written to the regulator registers. The address of the voltage
3301 * register can be determined by calling @regulator_get_hardware_vsel_register.
3302 *
3303 * On error a negative errno is returned.
3304 */
3305int regulator_list_hardware_vsel(struct regulator *regulator,
3306 unsigned selector)
3307{
3308 struct regulator_dev *rdev = regulator->rdev;
3309 const struct regulator_ops *ops = rdev->desc->ops;
3310
3311 if (selector >= rdev->desc->n_voltages)
3312 return -EINVAL;
3313 if (selector < rdev->desc->linear_min_sel)
3314 return 0;
3315 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3316 return -EOPNOTSUPP;
3317
3318 return selector;
3319}
3320EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3321
3322/**
3323 * regulator_get_linear_step - return the voltage step size between VSEL values
3324 * @regulator: regulator source
3325 *
3326 * Returns the voltage step size between VSEL values for linear
3327 * regulators, or return 0 if the regulator isn't a linear regulator.
3328 */
3329unsigned int regulator_get_linear_step(struct regulator *regulator)
3330{
3331 struct regulator_dev *rdev = regulator->rdev;
3332
3333 return rdev->desc->uV_step;
3334}
3335EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3336
3337/**
3338 * regulator_is_supported_voltage - check if a voltage range can be supported
3339 *
3340 * @regulator: Regulator to check.
3341 * @min_uV: Minimum required voltage in uV.
3342 * @max_uV: Maximum required voltage in uV.
3343 *
3344 * Returns a boolean.
3345 */
3346int regulator_is_supported_voltage(struct regulator *regulator,
3347 int min_uV, int max_uV)
3348{
3349 struct regulator_dev *rdev = regulator->rdev;
3350 int i, voltages, ret;
3351
3352 /* If we can't change voltage check the current voltage */
3353 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3354 ret = regulator_get_voltage(regulator);
3355 if (ret >= 0)
3356 return min_uV <= ret && ret <= max_uV;
3357 else
3358 return ret;
3359 }
3360
3361 /* Any voltage within constrains range is fine? */
3362 if (rdev->desc->continuous_voltage_range)
3363 return min_uV >= rdev->constraints->min_uV &&
3364 max_uV <= rdev->constraints->max_uV;
3365
3366 ret = regulator_count_voltages(regulator);
3367 if (ret < 0)
3368 return 0;
3369 voltages = ret;
3370
3371 for (i = 0; i < voltages; i++) {
3372 ret = regulator_list_voltage(regulator, i);
3373
3374 if (ret >= min_uV && ret <= max_uV)
3375 return 1;
3376 }
3377
3378 return 0;
3379}
3380EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3381
3382static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3383 int max_uV)
3384{
3385 const struct regulator_desc *desc = rdev->desc;
3386
3387 if (desc->ops->map_voltage)
3388 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3389
3390 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3391 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3392
3393 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3394 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3395
3396 if (desc->ops->list_voltage ==
3397 regulator_list_voltage_pickable_linear_range)
3398 return regulator_map_voltage_pickable_linear_range(rdev,
3399 min_uV, max_uV);
3400
3401 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3402}
3403
3404static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3405 int min_uV, int max_uV,
3406 unsigned *selector)
3407{
3408 struct pre_voltage_change_data data;
3409 int ret;
3410
3411 data.old_uV = regulator_get_voltage_rdev(rdev);
3412 data.min_uV = min_uV;
3413 data.max_uV = max_uV;
3414 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3415 &data);
3416 if (ret & NOTIFY_STOP_MASK)
3417 return -EINVAL;
3418
3419 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3420 if (ret >= 0)
3421 return ret;
3422
3423 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3424 (void *)data.old_uV);
3425
3426 return ret;
3427}
3428
3429static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3430 int uV, unsigned selector)
3431{
3432 struct pre_voltage_change_data data;
3433 int ret;
3434
3435 data.old_uV = regulator_get_voltage_rdev(rdev);
3436 data.min_uV = uV;
3437 data.max_uV = uV;
3438 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3439 &data);
3440 if (ret & NOTIFY_STOP_MASK)
3441 return -EINVAL;
3442
3443 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3444 if (ret >= 0)
3445 return ret;
3446
3447 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3448 (void *)data.old_uV);
3449
3450 return ret;
3451}
3452
3453static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3454 int uV, int new_selector)
3455{
3456 const struct regulator_ops *ops = rdev->desc->ops;
3457 int diff, old_sel, curr_sel, ret;
3458
3459 /* Stepping is only needed if the regulator is enabled. */
3460 if (!_regulator_is_enabled(rdev))
3461 goto final_set;
3462
3463 if (!ops->get_voltage_sel)
3464 return -EINVAL;
3465
3466 old_sel = ops->get_voltage_sel(rdev);
3467 if (old_sel < 0)
3468 return old_sel;
3469
3470 diff = new_selector - old_sel;
3471 if (diff == 0)
3472 return 0; /* No change needed. */
3473
3474 if (diff > 0) {
3475 /* Stepping up. */
3476 for (curr_sel = old_sel + rdev->desc->vsel_step;
3477 curr_sel < new_selector;
3478 curr_sel += rdev->desc->vsel_step) {
3479 /*
3480 * Call the callback directly instead of using
3481 * _regulator_call_set_voltage_sel() as we don't
3482 * want to notify anyone yet. Same in the branch
3483 * below.
3484 */
3485 ret = ops->set_voltage_sel(rdev, curr_sel);
3486 if (ret)
3487 goto try_revert;
3488 }
3489 } else {
3490 /* Stepping down. */
3491 for (curr_sel = old_sel - rdev->desc->vsel_step;
3492 curr_sel > new_selector;
3493 curr_sel -= rdev->desc->vsel_step) {
3494 ret = ops->set_voltage_sel(rdev, curr_sel);
3495 if (ret)
3496 goto try_revert;
3497 }
3498 }
3499
3500final_set:
3501 /* The final selector will trigger the notifiers. */
3502 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3503
3504try_revert:
3505 /*
3506 * At least try to return to the previous voltage if setting a new
3507 * one failed.
3508 */
3509 (void)ops->set_voltage_sel(rdev, old_sel);
3510 return ret;
3511}
3512
3513static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3514 int old_uV, int new_uV)
3515{
3516 unsigned int ramp_delay = 0;
3517
3518 if (rdev->constraints->ramp_delay)
3519 ramp_delay = rdev->constraints->ramp_delay;
3520 else if (rdev->desc->ramp_delay)
3521 ramp_delay = rdev->desc->ramp_delay;
3522 else if (rdev->constraints->settling_time)
3523 return rdev->constraints->settling_time;
3524 else if (rdev->constraints->settling_time_up &&
3525 (new_uV > old_uV))
3526 return rdev->constraints->settling_time_up;
3527 else if (rdev->constraints->settling_time_down &&
3528 (new_uV < old_uV))
3529 return rdev->constraints->settling_time_down;
3530
3531 if (ramp_delay == 0)
3532 return 0;
3533
3534 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3535}
3536
3537static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3538 int min_uV, int max_uV)
3539{
3540 int ret;
3541 int delay = 0;
3542 int best_val = 0;
3543 unsigned int selector;
3544 int old_selector = -1;
3545 const struct regulator_ops *ops = rdev->desc->ops;
3546 int old_uV = regulator_get_voltage_rdev(rdev);
3547
3548 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3549
3550 min_uV += rdev->constraints->uV_offset;
3551 max_uV += rdev->constraints->uV_offset;
3552
3553 /*
3554 * If we can't obtain the old selector there is not enough
3555 * info to call set_voltage_time_sel().
3556 */
3557 if (_regulator_is_enabled(rdev) &&
3558 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3559 old_selector = ops->get_voltage_sel(rdev);
3560 if (old_selector < 0)
3561 return old_selector;
3562 }
3563
3564 if (ops->set_voltage) {
3565 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3566 &selector);
3567
3568 if (ret >= 0) {
3569 if (ops->list_voltage)
3570 best_val = ops->list_voltage(rdev,
3571 selector);
3572 else
3573 best_val = regulator_get_voltage_rdev(rdev);
3574 }
3575
3576 } else if (ops->set_voltage_sel) {
3577 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3578 if (ret >= 0) {
3579 best_val = ops->list_voltage(rdev, ret);
3580 if (min_uV <= best_val && max_uV >= best_val) {
3581 selector = ret;
3582 if (old_selector == selector)
3583 ret = 0;
3584 else if (rdev->desc->vsel_step)
3585 ret = _regulator_set_voltage_sel_step(
3586 rdev, best_val, selector);
3587 else
3588 ret = _regulator_call_set_voltage_sel(
3589 rdev, best_val, selector);
3590 } else {
3591 ret = -EINVAL;
3592 }
3593 }
3594 } else {
3595 ret = -EINVAL;
3596 }
3597
3598 if (ret)
3599 goto out;
3600
3601 if (ops->set_voltage_time_sel) {
3602 /*
3603 * Call set_voltage_time_sel if successfully obtained
3604 * old_selector
3605 */
3606 if (old_selector >= 0 && old_selector != selector)
3607 delay = ops->set_voltage_time_sel(rdev, old_selector,
3608 selector);
3609 } else {
3610 if (old_uV != best_val) {
3611 if (ops->set_voltage_time)
3612 delay = ops->set_voltage_time(rdev, old_uV,
3613 best_val);
3614 else
3615 delay = _regulator_set_voltage_time(rdev,
3616 old_uV,
3617 best_val);
3618 }
3619 }
3620
3621 if (delay < 0) {
3622 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3623 delay = 0;
3624 }
3625
3626 /* Insert any necessary delays */
3627 _regulator_delay_helper(delay);
3628
3629 if (best_val >= 0) {
3630 unsigned long data = best_val;
3631
3632 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3633 (void *)data);
3634 }
3635
3636out:
3637 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3638
3639 return ret;
3640}
3641
3642static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3643 int min_uV, int max_uV, suspend_state_t state)
3644{
3645 struct regulator_state *rstate;
3646 int uV, sel;
3647
3648 rstate = regulator_get_suspend_state(rdev, state);
3649 if (rstate == NULL)
3650 return -EINVAL;
3651
3652 if (min_uV < rstate->min_uV)
3653 min_uV = rstate->min_uV;
3654 if (max_uV > rstate->max_uV)
3655 max_uV = rstate->max_uV;
3656
3657 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3658 if (sel < 0)
3659 return sel;
3660
3661 uV = rdev->desc->ops->list_voltage(rdev, sel);
3662 if (uV >= min_uV && uV <= max_uV)
3663 rstate->uV = uV;
3664
3665 return 0;
3666}
3667
3668static int regulator_set_voltage_unlocked(struct regulator *regulator,
3669 int min_uV, int max_uV,
3670 suspend_state_t state)
3671{
3672 struct regulator_dev *rdev = regulator->rdev;
3673 struct regulator_voltage *voltage = ®ulator->voltage[state];
3674 int ret = 0;
3675 int old_min_uV, old_max_uV;
3676 int current_uV;
3677
3678 /* If we're setting the same range as last time the change
3679 * should be a noop (some cpufreq implementations use the same
3680 * voltage for multiple frequencies, for example).
3681 */
3682 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3683 goto out;
3684
3685 /* If we're trying to set a range that overlaps the current voltage,
3686 * return successfully even though the regulator does not support
3687 * changing the voltage.
3688 */
3689 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3690 current_uV = regulator_get_voltage_rdev(rdev);
3691 if (min_uV <= current_uV && current_uV <= max_uV) {
3692 voltage->min_uV = min_uV;
3693 voltage->max_uV = max_uV;
3694 goto out;
3695 }
3696 }
3697
3698 /* sanity check */
3699 if (!rdev->desc->ops->set_voltage &&
3700 !rdev->desc->ops->set_voltage_sel) {
3701 ret = -EINVAL;
3702 goto out;
3703 }
3704
3705 /* constraints check */
3706 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3707 if (ret < 0)
3708 goto out;
3709
3710 /* restore original values in case of error */
3711 old_min_uV = voltage->min_uV;
3712 old_max_uV = voltage->max_uV;
3713 voltage->min_uV = min_uV;
3714 voltage->max_uV = max_uV;
3715
3716 /* for not coupled regulators this will just set the voltage */
3717 ret = regulator_balance_voltage(rdev, state);
3718 if (ret < 0) {
3719 voltage->min_uV = old_min_uV;
3720 voltage->max_uV = old_max_uV;
3721 }
3722
3723out:
3724 return ret;
3725}
3726
3727int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3728 int max_uV, suspend_state_t state)
3729{
3730 int best_supply_uV = 0;
3731 int supply_change_uV = 0;
3732 int ret;
3733
3734 if (rdev->supply &&
3735 regulator_ops_is_valid(rdev->supply->rdev,
3736 REGULATOR_CHANGE_VOLTAGE) &&
3737 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3738 rdev->desc->ops->get_voltage_sel))) {
3739 int current_supply_uV;
3740 int selector;
3741
3742 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3743 if (selector < 0) {
3744 ret = selector;
3745 goto out;
3746 }
3747
3748 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3749 if (best_supply_uV < 0) {
3750 ret = best_supply_uV;
3751 goto out;
3752 }
3753
3754 best_supply_uV += rdev->desc->min_dropout_uV;
3755
3756 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3757 if (current_supply_uV < 0) {
3758 ret = current_supply_uV;
3759 goto out;
3760 }
3761
3762 supply_change_uV = best_supply_uV - current_supply_uV;
3763 }
3764
3765 if (supply_change_uV > 0) {
3766 ret = regulator_set_voltage_unlocked(rdev->supply,
3767 best_supply_uV, INT_MAX, state);
3768 if (ret) {
3769 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3770 ERR_PTR(ret));
3771 goto out;
3772 }
3773 }
3774
3775 if (state == PM_SUSPEND_ON)
3776 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3777 else
3778 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3779 max_uV, state);
3780 if (ret < 0)
3781 goto out;
3782
3783 if (supply_change_uV < 0) {
3784 ret = regulator_set_voltage_unlocked(rdev->supply,
3785 best_supply_uV, INT_MAX, state);
3786 if (ret)
3787 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3788 ERR_PTR(ret));
3789 /* No need to fail here */
3790 ret = 0;
3791 }
3792
3793out:
3794 return ret;
3795}
3796EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3797
3798static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3799 int *current_uV, int *min_uV)
3800{
3801 struct regulation_constraints *constraints = rdev->constraints;
3802
3803 /* Limit voltage change only if necessary */
3804 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3805 return 1;
3806
3807 if (*current_uV < 0) {
3808 *current_uV = regulator_get_voltage_rdev(rdev);
3809
3810 if (*current_uV < 0)
3811 return *current_uV;
3812 }
3813
3814 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3815 return 1;
3816
3817 /* Clamp target voltage within the given step */
3818 if (*current_uV < *min_uV)
3819 *min_uV = min(*current_uV + constraints->max_uV_step,
3820 *min_uV);
3821 else
3822 *min_uV = max(*current_uV - constraints->max_uV_step,
3823 *min_uV);
3824
3825 return 0;
3826}
3827
3828static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3829 int *current_uV,
3830 int *min_uV, int *max_uV,
3831 suspend_state_t state,
3832 int n_coupled)
3833{
3834 struct coupling_desc *c_desc = &rdev->coupling_desc;
3835 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3836 struct regulation_constraints *constraints = rdev->constraints;
3837 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3838 int max_current_uV = 0, min_current_uV = INT_MAX;
3839 int highest_min_uV = 0, target_uV, possible_uV;
3840 int i, ret, max_spread;
3841 bool done;
3842
3843 *current_uV = -1;
3844
3845 /*
3846 * If there are no coupled regulators, simply set the voltage
3847 * demanded by consumers.
3848 */
3849 if (n_coupled == 1) {
3850 /*
3851 * If consumers don't provide any demands, set voltage
3852 * to min_uV
3853 */
3854 desired_min_uV = constraints->min_uV;
3855 desired_max_uV = constraints->max_uV;
3856
3857 ret = regulator_check_consumers(rdev,
3858 &desired_min_uV,
3859 &desired_max_uV, state);
3860 if (ret < 0)
3861 return ret;
3862
3863 possible_uV = desired_min_uV;
3864 done = true;
3865
3866 goto finish;
3867 }
3868
3869 /* Find highest min desired voltage */
3870 for (i = 0; i < n_coupled; i++) {
3871 int tmp_min = 0;
3872 int tmp_max = INT_MAX;
3873
3874 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3875
3876 ret = regulator_check_consumers(c_rdevs[i],
3877 &tmp_min,
3878 &tmp_max, state);
3879 if (ret < 0)
3880 return ret;
3881
3882 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3883 if (ret < 0)
3884 return ret;
3885
3886 highest_min_uV = max(highest_min_uV, tmp_min);
3887
3888 if (i == 0) {
3889 desired_min_uV = tmp_min;
3890 desired_max_uV = tmp_max;
3891 }
3892 }
3893
3894 max_spread = constraints->max_spread[0];
3895
3896 /*
3897 * Let target_uV be equal to the desired one if possible.
3898 * If not, set it to minimum voltage, allowed by other coupled
3899 * regulators.
3900 */
3901 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3902
3903 /*
3904 * Find min and max voltages, which currently aren't violating
3905 * max_spread.
3906 */
3907 for (i = 1; i < n_coupled; i++) {
3908 int tmp_act;
3909
3910 if (!_regulator_is_enabled(c_rdevs[i]))
3911 continue;
3912
3913 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3914 if (tmp_act < 0)
3915 return tmp_act;
3916
3917 min_current_uV = min(tmp_act, min_current_uV);
3918 max_current_uV = max(tmp_act, max_current_uV);
3919 }
3920
3921 /* There aren't any other regulators enabled */
3922 if (max_current_uV == 0) {
3923 possible_uV = target_uV;
3924 } else {
3925 /*
3926 * Correct target voltage, so as it currently isn't
3927 * violating max_spread
3928 */
3929 possible_uV = max(target_uV, max_current_uV - max_spread);
3930 possible_uV = min(possible_uV, min_current_uV + max_spread);
3931 }
3932
3933 if (possible_uV > desired_max_uV)
3934 return -EINVAL;
3935
3936 done = (possible_uV == target_uV);
3937 desired_min_uV = possible_uV;
3938
3939finish:
3940 /* Apply max_uV_step constraint if necessary */
3941 if (state == PM_SUSPEND_ON) {
3942 ret = regulator_limit_voltage_step(rdev, current_uV,
3943 &desired_min_uV);
3944 if (ret < 0)
3945 return ret;
3946
3947 if (ret == 0)
3948 done = false;
3949 }
3950
3951 /* Set current_uV if wasn't done earlier in the code and if necessary */
3952 if (n_coupled > 1 && *current_uV == -1) {
3953
3954 if (_regulator_is_enabled(rdev)) {
3955 ret = regulator_get_voltage_rdev(rdev);
3956 if (ret < 0)
3957 return ret;
3958
3959 *current_uV = ret;
3960 } else {
3961 *current_uV = desired_min_uV;
3962 }
3963 }
3964
3965 *min_uV = desired_min_uV;
3966 *max_uV = desired_max_uV;
3967
3968 return done;
3969}
3970
3971int regulator_do_balance_voltage(struct regulator_dev *rdev,
3972 suspend_state_t state, bool skip_coupled)
3973{
3974 struct regulator_dev **c_rdevs;
3975 struct regulator_dev *best_rdev;
3976 struct coupling_desc *c_desc = &rdev->coupling_desc;
3977 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3978 unsigned int delta, best_delta;
3979 unsigned long c_rdev_done = 0;
3980 bool best_c_rdev_done;
3981
3982 c_rdevs = c_desc->coupled_rdevs;
3983 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3984
3985 /*
3986 * Find the best possible voltage change on each loop. Leave the loop
3987 * if there isn't any possible change.
3988 */
3989 do {
3990 best_c_rdev_done = false;
3991 best_delta = 0;
3992 best_min_uV = 0;
3993 best_max_uV = 0;
3994 best_c_rdev = 0;
3995 best_rdev = NULL;
3996
3997 /*
3998 * Find highest difference between optimal voltage
3999 * and current voltage.
4000 */
4001 for (i = 0; i < n_coupled; i++) {
4002 /*
4003 * optimal_uV is the best voltage that can be set for
4004 * i-th regulator at the moment without violating
4005 * max_spread constraint in order to balance
4006 * the coupled voltages.
4007 */
4008 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4009
4010 if (test_bit(i, &c_rdev_done))
4011 continue;
4012
4013 ret = regulator_get_optimal_voltage(c_rdevs[i],
4014 ¤t_uV,
4015 &optimal_uV,
4016 &optimal_max_uV,
4017 state, n_coupled);
4018 if (ret < 0)
4019 goto out;
4020
4021 delta = abs(optimal_uV - current_uV);
4022
4023 if (delta && best_delta <= delta) {
4024 best_c_rdev_done = ret;
4025 best_delta = delta;
4026 best_rdev = c_rdevs[i];
4027 best_min_uV = optimal_uV;
4028 best_max_uV = optimal_max_uV;
4029 best_c_rdev = i;
4030 }
4031 }
4032
4033 /* Nothing to change, return successfully */
4034 if (!best_rdev) {
4035 ret = 0;
4036 goto out;
4037 }
4038
4039 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4040 best_max_uV, state);
4041
4042 if (ret < 0)
4043 goto out;
4044
4045 if (best_c_rdev_done)
4046 set_bit(best_c_rdev, &c_rdev_done);
4047
4048 } while (n_coupled > 1);
4049
4050out:
4051 return ret;
4052}
4053
4054static int regulator_balance_voltage(struct regulator_dev *rdev,
4055 suspend_state_t state)
4056{
4057 struct coupling_desc *c_desc = &rdev->coupling_desc;
4058 struct regulator_coupler *coupler = c_desc->coupler;
4059 bool skip_coupled = false;
4060
4061 /*
4062 * If system is in a state other than PM_SUSPEND_ON, don't check
4063 * other coupled regulators.
4064 */
4065 if (state != PM_SUSPEND_ON)
4066 skip_coupled = true;
4067
4068 if (c_desc->n_resolved < c_desc->n_coupled) {
4069 rdev_err(rdev, "Not all coupled regulators registered\n");
4070 return -EPERM;
4071 }
4072
4073 /* Invoke custom balancer for customized couplers */
4074 if (coupler && coupler->balance_voltage)
4075 return coupler->balance_voltage(coupler, rdev, state);
4076
4077 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4078}
4079
4080/**
4081 * regulator_set_voltage - set regulator output voltage
4082 * @regulator: regulator source
4083 * @min_uV: Minimum required voltage in uV
4084 * @max_uV: Maximum acceptable voltage in uV
4085 *
4086 * Sets a voltage regulator to the desired output voltage. This can be set
4087 * during any regulator state. IOW, regulator can be disabled or enabled.
4088 *
4089 * If the regulator is enabled then the voltage will change to the new value
4090 * immediately otherwise if the regulator is disabled the regulator will
4091 * output at the new voltage when enabled.
4092 *
4093 * NOTE: If the regulator is shared between several devices then the lowest
4094 * request voltage that meets the system constraints will be used.
4095 * Regulator system constraints must be set for this regulator before
4096 * calling this function otherwise this call will fail.
4097 */
4098int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4099{
4100 struct ww_acquire_ctx ww_ctx;
4101 int ret;
4102
4103 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4104
4105 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4106 PM_SUSPEND_ON);
4107
4108 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4109
4110 return ret;
4111}
4112EXPORT_SYMBOL_GPL(regulator_set_voltage);
4113
4114static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4115 suspend_state_t state, bool en)
4116{
4117 struct regulator_state *rstate;
4118
4119 rstate = regulator_get_suspend_state(rdev, state);
4120 if (rstate == NULL)
4121 return -EINVAL;
4122
4123 if (!rstate->changeable)
4124 return -EPERM;
4125
4126 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4127
4128 return 0;
4129}
4130
4131int regulator_suspend_enable(struct regulator_dev *rdev,
4132 suspend_state_t state)
4133{
4134 return regulator_suspend_toggle(rdev, state, true);
4135}
4136EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4137
4138int regulator_suspend_disable(struct regulator_dev *rdev,
4139 suspend_state_t state)
4140{
4141 struct regulator *regulator;
4142 struct regulator_voltage *voltage;
4143
4144 /*
4145 * if any consumer wants this regulator device keeping on in
4146 * suspend states, don't set it as disabled.
4147 */
4148 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4149 voltage = ®ulator->voltage[state];
4150 if (voltage->min_uV || voltage->max_uV)
4151 return 0;
4152 }
4153
4154 return regulator_suspend_toggle(rdev, state, false);
4155}
4156EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4157
4158static int _regulator_set_suspend_voltage(struct regulator *regulator,
4159 int min_uV, int max_uV,
4160 suspend_state_t state)
4161{
4162 struct regulator_dev *rdev = regulator->rdev;
4163 struct regulator_state *rstate;
4164
4165 rstate = regulator_get_suspend_state(rdev, state);
4166 if (rstate == NULL)
4167 return -EINVAL;
4168
4169 if (rstate->min_uV == rstate->max_uV) {
4170 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4171 return -EPERM;
4172 }
4173
4174 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4175}
4176
4177int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4178 int max_uV, suspend_state_t state)
4179{
4180 struct ww_acquire_ctx ww_ctx;
4181 int ret;
4182
4183 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4184 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4185 return -EINVAL;
4186
4187 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4188
4189 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4190 max_uV, state);
4191
4192 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4193
4194 return ret;
4195}
4196EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4197
4198/**
4199 * regulator_set_voltage_time - get raise/fall time
4200 * @regulator: regulator source
4201 * @old_uV: starting voltage in microvolts
4202 * @new_uV: target voltage in microvolts
4203 *
4204 * Provided with the starting and ending voltage, this function attempts to
4205 * calculate the time in microseconds required to rise or fall to this new
4206 * voltage.
4207 */
4208int regulator_set_voltage_time(struct regulator *regulator,
4209 int old_uV, int new_uV)
4210{
4211 struct regulator_dev *rdev = regulator->rdev;
4212 const struct regulator_ops *ops = rdev->desc->ops;
4213 int old_sel = -1;
4214 int new_sel = -1;
4215 int voltage;
4216 int i;
4217
4218 if (ops->set_voltage_time)
4219 return ops->set_voltage_time(rdev, old_uV, new_uV);
4220 else if (!ops->set_voltage_time_sel)
4221 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4222
4223 /* Currently requires operations to do this */
4224 if (!ops->list_voltage || !rdev->desc->n_voltages)
4225 return -EINVAL;
4226
4227 for (i = 0; i < rdev->desc->n_voltages; i++) {
4228 /* We only look for exact voltage matches here */
4229 if (i < rdev->desc->linear_min_sel)
4230 continue;
4231
4232 if (old_sel >= 0 && new_sel >= 0)
4233 break;
4234
4235 voltage = regulator_list_voltage(regulator, i);
4236 if (voltage < 0)
4237 return -EINVAL;
4238 if (voltage == 0)
4239 continue;
4240 if (voltage == old_uV)
4241 old_sel = i;
4242 if (voltage == new_uV)
4243 new_sel = i;
4244 }
4245
4246 if (old_sel < 0 || new_sel < 0)
4247 return -EINVAL;
4248
4249 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4250}
4251EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4252
4253/**
4254 * regulator_set_voltage_time_sel - get raise/fall time
4255 * @rdev: regulator source device
4256 * @old_selector: selector for starting voltage
4257 * @new_selector: selector for target voltage
4258 *
4259 * Provided with the starting and target voltage selectors, this function
4260 * returns time in microseconds required to rise or fall to this new voltage
4261 *
4262 * Drivers providing ramp_delay in regulation_constraints can use this as their
4263 * set_voltage_time_sel() operation.
4264 */
4265int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4266 unsigned int old_selector,
4267 unsigned int new_selector)
4268{
4269 int old_volt, new_volt;
4270
4271 /* sanity check */
4272 if (!rdev->desc->ops->list_voltage)
4273 return -EINVAL;
4274
4275 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4276 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4277
4278 if (rdev->desc->ops->set_voltage_time)
4279 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4280 new_volt);
4281 else
4282 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4283}
4284EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4285
4286int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4287{
4288 int ret;
4289
4290 regulator_lock(rdev);
4291
4292 if (!rdev->desc->ops->set_voltage &&
4293 !rdev->desc->ops->set_voltage_sel) {
4294 ret = -EINVAL;
4295 goto out;
4296 }
4297
4298 /* balance only, if regulator is coupled */
4299 if (rdev->coupling_desc.n_coupled > 1)
4300 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4301 else
4302 ret = -EOPNOTSUPP;
4303
4304out:
4305 regulator_unlock(rdev);
4306 return ret;
4307}
4308
4309/**
4310 * regulator_sync_voltage - re-apply last regulator output voltage
4311 * @regulator: regulator source
4312 *
4313 * Re-apply the last configured voltage. This is intended to be used
4314 * where some external control source the consumer is cooperating with
4315 * has caused the configured voltage to change.
4316 */
4317int regulator_sync_voltage(struct regulator *regulator)
4318{
4319 struct regulator_dev *rdev = regulator->rdev;
4320 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4321 int ret, min_uV, max_uV;
4322
4323 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4324 return 0;
4325
4326 regulator_lock(rdev);
4327
4328 if (!rdev->desc->ops->set_voltage &&
4329 !rdev->desc->ops->set_voltage_sel) {
4330 ret = -EINVAL;
4331 goto out;
4332 }
4333
4334 /* This is only going to work if we've had a voltage configured. */
4335 if (!voltage->min_uV && !voltage->max_uV) {
4336 ret = -EINVAL;
4337 goto out;
4338 }
4339
4340 min_uV = voltage->min_uV;
4341 max_uV = voltage->max_uV;
4342
4343 /* This should be a paranoia check... */
4344 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4345 if (ret < 0)
4346 goto out;
4347
4348 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4349 if (ret < 0)
4350 goto out;
4351
4352 /* balance only, if regulator is coupled */
4353 if (rdev->coupling_desc.n_coupled > 1)
4354 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4355 else
4356 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4357
4358out:
4359 regulator_unlock(rdev);
4360 return ret;
4361}
4362EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4363
4364int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4365{
4366 int sel, ret;
4367 bool bypassed;
4368
4369 if (rdev->desc->ops->get_bypass) {
4370 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4371 if (ret < 0)
4372 return ret;
4373 if (bypassed) {
4374 /* if bypassed the regulator must have a supply */
4375 if (!rdev->supply) {
4376 rdev_err(rdev,
4377 "bypassed regulator has no supply!\n");
4378 return -EPROBE_DEFER;
4379 }
4380
4381 return regulator_get_voltage_rdev(rdev->supply->rdev);
4382 }
4383 }
4384
4385 if (rdev->desc->ops->get_voltage_sel) {
4386 sel = rdev->desc->ops->get_voltage_sel(rdev);
4387 if (sel < 0)
4388 return sel;
4389 ret = rdev->desc->ops->list_voltage(rdev, sel);
4390 } else if (rdev->desc->ops->get_voltage) {
4391 ret = rdev->desc->ops->get_voltage(rdev);
4392 } else if (rdev->desc->ops->list_voltage) {
4393 ret = rdev->desc->ops->list_voltage(rdev, 0);
4394 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4395 ret = rdev->desc->fixed_uV;
4396 } else if (rdev->supply) {
4397 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4398 } else if (rdev->supply_name) {
4399 return -EPROBE_DEFER;
4400 } else {
4401 return -EINVAL;
4402 }
4403
4404 if (ret < 0)
4405 return ret;
4406 return ret - rdev->constraints->uV_offset;
4407}
4408EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4409
4410/**
4411 * regulator_get_voltage - get regulator output voltage
4412 * @regulator: regulator source
4413 *
4414 * This returns the current regulator voltage in uV.
4415 *
4416 * NOTE: If the regulator is disabled it will return the voltage value. This
4417 * function should not be used to determine regulator state.
4418 */
4419int regulator_get_voltage(struct regulator *regulator)
4420{
4421 struct ww_acquire_ctx ww_ctx;
4422 int ret;
4423
4424 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4425 ret = regulator_get_voltage_rdev(regulator->rdev);
4426 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4427
4428 return ret;
4429}
4430EXPORT_SYMBOL_GPL(regulator_get_voltage);
4431
4432/**
4433 * regulator_set_current_limit - set regulator output current limit
4434 * @regulator: regulator source
4435 * @min_uA: Minimum supported current in uA
4436 * @max_uA: Maximum supported current in uA
4437 *
4438 * Sets current sink to the desired output current. This can be set during
4439 * any regulator state. IOW, regulator can be disabled or enabled.
4440 *
4441 * If the regulator is enabled then the current will change to the new value
4442 * immediately otherwise if the regulator is disabled the regulator will
4443 * output at the new current when enabled.
4444 *
4445 * NOTE: Regulator system constraints must be set for this regulator before
4446 * calling this function otherwise this call will fail.
4447 */
4448int regulator_set_current_limit(struct regulator *regulator,
4449 int min_uA, int max_uA)
4450{
4451 struct regulator_dev *rdev = regulator->rdev;
4452 int ret;
4453
4454 regulator_lock(rdev);
4455
4456 /* sanity check */
4457 if (!rdev->desc->ops->set_current_limit) {
4458 ret = -EINVAL;
4459 goto out;
4460 }
4461
4462 /* constraints check */
4463 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4464 if (ret < 0)
4465 goto out;
4466
4467 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4468out:
4469 regulator_unlock(rdev);
4470 return ret;
4471}
4472EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4473
4474static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4475{
4476 /* sanity check */
4477 if (!rdev->desc->ops->get_current_limit)
4478 return -EINVAL;
4479
4480 return rdev->desc->ops->get_current_limit(rdev);
4481}
4482
4483static int _regulator_get_current_limit(struct regulator_dev *rdev)
4484{
4485 int ret;
4486
4487 regulator_lock(rdev);
4488 ret = _regulator_get_current_limit_unlocked(rdev);
4489 regulator_unlock(rdev);
4490
4491 return ret;
4492}
4493
4494/**
4495 * regulator_get_current_limit - get regulator output current
4496 * @regulator: regulator source
4497 *
4498 * This returns the current supplied by the specified current sink in uA.
4499 *
4500 * NOTE: If the regulator is disabled it will return the current value. This
4501 * function should not be used to determine regulator state.
4502 */
4503int regulator_get_current_limit(struct regulator *regulator)
4504{
4505 return _regulator_get_current_limit(regulator->rdev);
4506}
4507EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4508
4509/**
4510 * regulator_set_mode - set regulator operating mode
4511 * @regulator: regulator source
4512 * @mode: operating mode - one of the REGULATOR_MODE constants
4513 *
4514 * Set regulator operating mode to increase regulator efficiency or improve
4515 * regulation performance.
4516 *
4517 * NOTE: Regulator system constraints must be set for this regulator before
4518 * calling this function otherwise this call will fail.
4519 */
4520int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4521{
4522 struct regulator_dev *rdev = regulator->rdev;
4523 int ret;
4524 int regulator_curr_mode;
4525
4526 regulator_lock(rdev);
4527
4528 /* sanity check */
4529 if (!rdev->desc->ops->set_mode) {
4530 ret = -EINVAL;
4531 goto out;
4532 }
4533
4534 /* return if the same mode is requested */
4535 if (rdev->desc->ops->get_mode) {
4536 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4537 if (regulator_curr_mode == mode) {
4538 ret = 0;
4539 goto out;
4540 }
4541 }
4542
4543 /* constraints check */
4544 ret = regulator_mode_constrain(rdev, &mode);
4545 if (ret < 0)
4546 goto out;
4547
4548 ret = rdev->desc->ops->set_mode(rdev, mode);
4549out:
4550 regulator_unlock(rdev);
4551 return ret;
4552}
4553EXPORT_SYMBOL_GPL(regulator_set_mode);
4554
4555static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4556{
4557 /* sanity check */
4558 if (!rdev->desc->ops->get_mode)
4559 return -EINVAL;
4560
4561 return rdev->desc->ops->get_mode(rdev);
4562}
4563
4564static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4565{
4566 int ret;
4567
4568 regulator_lock(rdev);
4569 ret = _regulator_get_mode_unlocked(rdev);
4570 regulator_unlock(rdev);
4571
4572 return ret;
4573}
4574
4575/**
4576 * regulator_get_mode - get regulator operating mode
4577 * @regulator: regulator source
4578 *
4579 * Get the current regulator operating mode.
4580 */
4581unsigned int regulator_get_mode(struct regulator *regulator)
4582{
4583 return _regulator_get_mode(regulator->rdev);
4584}
4585EXPORT_SYMBOL_GPL(regulator_get_mode);
4586
4587static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4588{
4589 int ret = 0;
4590
4591 if (rdev->use_cached_err) {
4592 spin_lock(&rdev->err_lock);
4593 ret = rdev->cached_err;
4594 spin_unlock(&rdev->err_lock);
4595 }
4596 return ret;
4597}
4598
4599static int _regulator_get_error_flags(struct regulator_dev *rdev,
4600 unsigned int *flags)
4601{
4602 int cached_flags, ret = 0;
4603
4604 regulator_lock(rdev);
4605
4606 cached_flags = rdev_get_cached_err_flags(rdev);
4607
4608 if (rdev->desc->ops->get_error_flags)
4609 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4610 else if (!rdev->use_cached_err)
4611 ret = -EINVAL;
4612
4613 *flags |= cached_flags;
4614
4615 regulator_unlock(rdev);
4616
4617 return ret;
4618}
4619
4620/**
4621 * regulator_get_error_flags - get regulator error information
4622 * @regulator: regulator source
4623 * @flags: pointer to store error flags
4624 *
4625 * Get the current regulator error information.
4626 */
4627int regulator_get_error_flags(struct regulator *regulator,
4628 unsigned int *flags)
4629{
4630 return _regulator_get_error_flags(regulator->rdev, flags);
4631}
4632EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4633
4634/**
4635 * regulator_set_load - set regulator load
4636 * @regulator: regulator source
4637 * @uA_load: load current
4638 *
4639 * Notifies the regulator core of a new device load. This is then used by
4640 * DRMS (if enabled by constraints) to set the most efficient regulator
4641 * operating mode for the new regulator loading.
4642 *
4643 * Consumer devices notify their supply regulator of the maximum power
4644 * they will require (can be taken from device datasheet in the power
4645 * consumption tables) when they change operational status and hence power
4646 * state. Examples of operational state changes that can affect power
4647 * consumption are :-
4648 *
4649 * o Device is opened / closed.
4650 * o Device I/O is about to begin or has just finished.
4651 * o Device is idling in between work.
4652 *
4653 * This information is also exported via sysfs to userspace.
4654 *
4655 * DRMS will sum the total requested load on the regulator and change
4656 * to the most efficient operating mode if platform constraints allow.
4657 *
4658 * NOTE: when a regulator consumer requests to have a regulator
4659 * disabled then any load that consumer requested no longer counts
4660 * toward the total requested load. If the regulator is re-enabled
4661 * then the previously requested load will start counting again.
4662 *
4663 * If a regulator is an always-on regulator then an individual consumer's
4664 * load will still be removed if that consumer is fully disabled.
4665 *
4666 * On error a negative errno is returned.
4667 */
4668int regulator_set_load(struct regulator *regulator, int uA_load)
4669{
4670 struct regulator_dev *rdev = regulator->rdev;
4671 int old_uA_load;
4672 int ret = 0;
4673
4674 regulator_lock(rdev);
4675 old_uA_load = regulator->uA_load;
4676 regulator->uA_load = uA_load;
4677 if (regulator->enable_count && old_uA_load != uA_load) {
4678 ret = drms_uA_update(rdev);
4679 if (ret < 0)
4680 regulator->uA_load = old_uA_load;
4681 }
4682 regulator_unlock(rdev);
4683
4684 return ret;
4685}
4686EXPORT_SYMBOL_GPL(regulator_set_load);
4687
4688/**
4689 * regulator_allow_bypass - allow the regulator to go into bypass mode
4690 *
4691 * @regulator: Regulator to configure
4692 * @enable: enable or disable bypass mode
4693 *
4694 * Allow the regulator to go into bypass mode if all other consumers
4695 * for the regulator also enable bypass mode and the machine
4696 * constraints allow this. Bypass mode means that the regulator is
4697 * simply passing the input directly to the output with no regulation.
4698 */
4699int regulator_allow_bypass(struct regulator *regulator, bool enable)
4700{
4701 struct regulator_dev *rdev = regulator->rdev;
4702 const char *name = rdev_get_name(rdev);
4703 int ret = 0;
4704
4705 if (!rdev->desc->ops->set_bypass)
4706 return 0;
4707
4708 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4709 return 0;
4710
4711 regulator_lock(rdev);
4712
4713 if (enable && !regulator->bypass) {
4714 rdev->bypass_count++;
4715
4716 if (rdev->bypass_count == rdev->open_count) {
4717 trace_regulator_bypass_enable(name);
4718
4719 ret = rdev->desc->ops->set_bypass(rdev, enable);
4720 if (ret != 0)
4721 rdev->bypass_count--;
4722 else
4723 trace_regulator_bypass_enable_complete(name);
4724 }
4725
4726 } else if (!enable && regulator->bypass) {
4727 rdev->bypass_count--;
4728
4729 if (rdev->bypass_count != rdev->open_count) {
4730 trace_regulator_bypass_disable(name);
4731
4732 ret = rdev->desc->ops->set_bypass(rdev, enable);
4733 if (ret != 0)
4734 rdev->bypass_count++;
4735 else
4736 trace_regulator_bypass_disable_complete(name);
4737 }
4738 }
4739
4740 if (ret == 0)
4741 regulator->bypass = enable;
4742
4743 regulator_unlock(rdev);
4744
4745 return ret;
4746}
4747EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4748
4749/**
4750 * regulator_register_notifier - register regulator event notifier
4751 * @regulator: regulator source
4752 * @nb: notifier block
4753 *
4754 * Register notifier block to receive regulator events.
4755 */
4756int regulator_register_notifier(struct regulator *regulator,
4757 struct notifier_block *nb)
4758{
4759 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4760 nb);
4761}
4762EXPORT_SYMBOL_GPL(regulator_register_notifier);
4763
4764/**
4765 * regulator_unregister_notifier - unregister regulator event notifier
4766 * @regulator: regulator source
4767 * @nb: notifier block
4768 *
4769 * Unregister regulator event notifier block.
4770 */
4771int regulator_unregister_notifier(struct regulator *regulator,
4772 struct notifier_block *nb)
4773{
4774 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4775 nb);
4776}
4777EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4778
4779/* notify regulator consumers and downstream regulator consumers.
4780 * Note mutex must be held by caller.
4781 */
4782static int _notifier_call_chain(struct regulator_dev *rdev,
4783 unsigned long event, void *data)
4784{
4785 /* call rdev chain first */
4786 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4787}
4788
4789int _regulator_bulk_get(struct device *dev, int num_consumers,
4790 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4791{
4792 int i;
4793 int ret;
4794
4795 for (i = 0; i < num_consumers; i++)
4796 consumers[i].consumer = NULL;
4797
4798 for (i = 0; i < num_consumers; i++) {
4799 consumers[i].consumer = _regulator_get(dev,
4800 consumers[i].supply, get_type);
4801 if (IS_ERR(consumers[i].consumer)) {
4802 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4803 "Failed to get supply '%s'",
4804 consumers[i].supply);
4805 consumers[i].consumer = NULL;
4806 goto err;
4807 }
4808
4809 if (consumers[i].init_load_uA > 0) {
4810 ret = regulator_set_load(consumers[i].consumer,
4811 consumers[i].init_load_uA);
4812 if (ret) {
4813 i++;
4814 goto err;
4815 }
4816 }
4817 }
4818
4819 return 0;
4820
4821err:
4822 while (--i >= 0)
4823 regulator_put(consumers[i].consumer);
4824
4825 return ret;
4826}
4827
4828/**
4829 * regulator_bulk_get - get multiple regulator consumers
4830 *
4831 * @dev: Device to supply
4832 * @num_consumers: Number of consumers to register
4833 * @consumers: Configuration of consumers; clients are stored here.
4834 *
4835 * @return 0 on success, an errno on failure.
4836 *
4837 * This helper function allows drivers to get several regulator
4838 * consumers in one operation. If any of the regulators cannot be
4839 * acquired then any regulators that were allocated will be freed
4840 * before returning to the caller.
4841 */
4842int regulator_bulk_get(struct device *dev, int num_consumers,
4843 struct regulator_bulk_data *consumers)
4844{
4845 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4846}
4847EXPORT_SYMBOL_GPL(regulator_bulk_get);
4848
4849static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4850{
4851 struct regulator_bulk_data *bulk = data;
4852
4853 bulk->ret = regulator_enable(bulk->consumer);
4854}
4855
4856/**
4857 * regulator_bulk_enable - enable multiple regulator consumers
4858 *
4859 * @num_consumers: Number of consumers
4860 * @consumers: Consumer data; clients are stored here.
4861 * @return 0 on success, an errno on failure
4862 *
4863 * This convenience API allows consumers to enable multiple regulator
4864 * clients in a single API call. If any consumers cannot be enabled
4865 * then any others that were enabled will be disabled again prior to
4866 * return.
4867 */
4868int regulator_bulk_enable(int num_consumers,
4869 struct regulator_bulk_data *consumers)
4870{
4871 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4872 int i;
4873 int ret = 0;
4874
4875 for (i = 0; i < num_consumers; i++) {
4876 async_schedule_domain(regulator_bulk_enable_async,
4877 &consumers[i], &async_domain);
4878 }
4879
4880 async_synchronize_full_domain(&async_domain);
4881
4882 /* If any consumer failed we need to unwind any that succeeded */
4883 for (i = 0; i < num_consumers; i++) {
4884 if (consumers[i].ret != 0) {
4885 ret = consumers[i].ret;
4886 goto err;
4887 }
4888 }
4889
4890 return 0;
4891
4892err:
4893 for (i = 0; i < num_consumers; i++) {
4894 if (consumers[i].ret < 0)
4895 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4896 ERR_PTR(consumers[i].ret));
4897 else
4898 regulator_disable(consumers[i].consumer);
4899 }
4900
4901 return ret;
4902}
4903EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4904
4905/**
4906 * regulator_bulk_disable - disable multiple regulator consumers
4907 *
4908 * @num_consumers: Number of consumers
4909 * @consumers: Consumer data; clients are stored here.
4910 * @return 0 on success, an errno on failure
4911 *
4912 * This convenience API allows consumers to disable multiple regulator
4913 * clients in a single API call. If any consumers cannot be disabled
4914 * then any others that were disabled will be enabled again prior to
4915 * return.
4916 */
4917int regulator_bulk_disable(int num_consumers,
4918 struct regulator_bulk_data *consumers)
4919{
4920 int i;
4921 int ret, r;
4922
4923 for (i = num_consumers - 1; i >= 0; --i) {
4924 ret = regulator_disable(consumers[i].consumer);
4925 if (ret != 0)
4926 goto err;
4927 }
4928
4929 return 0;
4930
4931err:
4932 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4933 for (++i; i < num_consumers; ++i) {
4934 r = regulator_enable(consumers[i].consumer);
4935 if (r != 0)
4936 pr_err("Failed to re-enable %s: %pe\n",
4937 consumers[i].supply, ERR_PTR(r));
4938 }
4939
4940 return ret;
4941}
4942EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4943
4944/**
4945 * regulator_bulk_force_disable - force disable multiple regulator consumers
4946 *
4947 * @num_consumers: Number of consumers
4948 * @consumers: Consumer data; clients are stored here.
4949 * @return 0 on success, an errno on failure
4950 *
4951 * This convenience API allows consumers to forcibly disable multiple regulator
4952 * clients in a single API call.
4953 * NOTE: This should be used for situations when device damage will
4954 * likely occur if the regulators are not disabled (e.g. over temp).
4955 * Although regulator_force_disable function call for some consumers can
4956 * return error numbers, the function is called for all consumers.
4957 */
4958int regulator_bulk_force_disable(int num_consumers,
4959 struct regulator_bulk_data *consumers)
4960{
4961 int i;
4962 int ret = 0;
4963
4964 for (i = 0; i < num_consumers; i++) {
4965 consumers[i].ret =
4966 regulator_force_disable(consumers[i].consumer);
4967
4968 /* Store first error for reporting */
4969 if (consumers[i].ret && !ret)
4970 ret = consumers[i].ret;
4971 }
4972
4973 return ret;
4974}
4975EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4976
4977/**
4978 * regulator_bulk_free - free multiple regulator consumers
4979 *
4980 * @num_consumers: Number of consumers
4981 * @consumers: Consumer data; clients are stored here.
4982 *
4983 * This convenience API allows consumers to free multiple regulator
4984 * clients in a single API call.
4985 */
4986void regulator_bulk_free(int num_consumers,
4987 struct regulator_bulk_data *consumers)
4988{
4989 int i;
4990
4991 for (i = 0; i < num_consumers; i++) {
4992 regulator_put(consumers[i].consumer);
4993 consumers[i].consumer = NULL;
4994 }
4995}
4996EXPORT_SYMBOL_GPL(regulator_bulk_free);
4997
4998/**
4999 * regulator_notifier_call_chain - call regulator event notifier
5000 * @rdev: regulator source
5001 * @event: notifier block
5002 * @data: callback-specific data.
5003 *
5004 * Called by regulator drivers to notify clients a regulator event has
5005 * occurred.
5006 */
5007int regulator_notifier_call_chain(struct regulator_dev *rdev,
5008 unsigned long event, void *data)
5009{
5010 _notifier_call_chain(rdev, event, data);
5011 return NOTIFY_DONE;
5012
5013}
5014EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5015
5016/**
5017 * regulator_mode_to_status - convert a regulator mode into a status
5018 *
5019 * @mode: Mode to convert
5020 *
5021 * Convert a regulator mode into a status.
5022 */
5023int regulator_mode_to_status(unsigned int mode)
5024{
5025 switch (mode) {
5026 case REGULATOR_MODE_FAST:
5027 return REGULATOR_STATUS_FAST;
5028 case REGULATOR_MODE_NORMAL:
5029 return REGULATOR_STATUS_NORMAL;
5030 case REGULATOR_MODE_IDLE:
5031 return REGULATOR_STATUS_IDLE;
5032 case REGULATOR_MODE_STANDBY:
5033 return REGULATOR_STATUS_STANDBY;
5034 default:
5035 return REGULATOR_STATUS_UNDEFINED;
5036 }
5037}
5038EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5039
5040static struct attribute *regulator_dev_attrs[] = {
5041 &dev_attr_name.attr,
5042 &dev_attr_num_users.attr,
5043 &dev_attr_type.attr,
5044 &dev_attr_microvolts.attr,
5045 &dev_attr_microamps.attr,
5046 &dev_attr_opmode.attr,
5047 &dev_attr_state.attr,
5048 &dev_attr_status.attr,
5049 &dev_attr_bypass.attr,
5050 &dev_attr_requested_microamps.attr,
5051 &dev_attr_min_microvolts.attr,
5052 &dev_attr_max_microvolts.attr,
5053 &dev_attr_min_microamps.attr,
5054 &dev_attr_max_microamps.attr,
5055 &dev_attr_under_voltage.attr,
5056 &dev_attr_over_current.attr,
5057 &dev_attr_regulation_out.attr,
5058 &dev_attr_fail.attr,
5059 &dev_attr_over_temp.attr,
5060 &dev_attr_under_voltage_warn.attr,
5061 &dev_attr_over_current_warn.attr,
5062 &dev_attr_over_voltage_warn.attr,
5063 &dev_attr_over_temp_warn.attr,
5064 &dev_attr_suspend_standby_state.attr,
5065 &dev_attr_suspend_mem_state.attr,
5066 &dev_attr_suspend_disk_state.attr,
5067 &dev_attr_suspend_standby_microvolts.attr,
5068 &dev_attr_suspend_mem_microvolts.attr,
5069 &dev_attr_suspend_disk_microvolts.attr,
5070 &dev_attr_suspend_standby_mode.attr,
5071 &dev_attr_suspend_mem_mode.attr,
5072 &dev_attr_suspend_disk_mode.attr,
5073 NULL
5074};
5075
5076/*
5077 * To avoid cluttering sysfs (and memory) with useless state, only
5078 * create attributes that can be meaningfully displayed.
5079 */
5080static umode_t regulator_attr_is_visible(struct kobject *kobj,
5081 struct attribute *attr, int idx)
5082{
5083 struct device *dev = kobj_to_dev(kobj);
5084 struct regulator_dev *rdev = dev_to_rdev(dev);
5085 const struct regulator_ops *ops = rdev->desc->ops;
5086 umode_t mode = attr->mode;
5087
5088 /* these three are always present */
5089 if (attr == &dev_attr_name.attr ||
5090 attr == &dev_attr_num_users.attr ||
5091 attr == &dev_attr_type.attr)
5092 return mode;
5093
5094 /* some attributes need specific methods to be displayed */
5095 if (attr == &dev_attr_microvolts.attr) {
5096 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5097 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5098 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5099 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5100 return mode;
5101 return 0;
5102 }
5103
5104 if (attr == &dev_attr_microamps.attr)
5105 return ops->get_current_limit ? mode : 0;
5106
5107 if (attr == &dev_attr_opmode.attr)
5108 return ops->get_mode ? mode : 0;
5109
5110 if (attr == &dev_attr_state.attr)
5111 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5112
5113 if (attr == &dev_attr_status.attr)
5114 return ops->get_status ? mode : 0;
5115
5116 if (attr == &dev_attr_bypass.attr)
5117 return ops->get_bypass ? mode : 0;
5118
5119 if (attr == &dev_attr_under_voltage.attr ||
5120 attr == &dev_attr_over_current.attr ||
5121 attr == &dev_attr_regulation_out.attr ||
5122 attr == &dev_attr_fail.attr ||
5123 attr == &dev_attr_over_temp.attr ||
5124 attr == &dev_attr_under_voltage_warn.attr ||
5125 attr == &dev_attr_over_current_warn.attr ||
5126 attr == &dev_attr_over_voltage_warn.attr ||
5127 attr == &dev_attr_over_temp_warn.attr)
5128 return ops->get_error_flags ? mode : 0;
5129
5130 /* constraints need specific supporting methods */
5131 if (attr == &dev_attr_min_microvolts.attr ||
5132 attr == &dev_attr_max_microvolts.attr)
5133 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5134
5135 if (attr == &dev_attr_min_microamps.attr ||
5136 attr == &dev_attr_max_microamps.attr)
5137 return ops->set_current_limit ? mode : 0;
5138
5139 if (attr == &dev_attr_suspend_standby_state.attr ||
5140 attr == &dev_attr_suspend_mem_state.attr ||
5141 attr == &dev_attr_suspend_disk_state.attr)
5142 return mode;
5143
5144 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5145 attr == &dev_attr_suspend_mem_microvolts.attr ||
5146 attr == &dev_attr_suspend_disk_microvolts.attr)
5147 return ops->set_suspend_voltage ? mode : 0;
5148
5149 if (attr == &dev_attr_suspend_standby_mode.attr ||
5150 attr == &dev_attr_suspend_mem_mode.attr ||
5151 attr == &dev_attr_suspend_disk_mode.attr)
5152 return ops->set_suspend_mode ? mode : 0;
5153
5154 return mode;
5155}
5156
5157static const struct attribute_group regulator_dev_group = {
5158 .attrs = regulator_dev_attrs,
5159 .is_visible = regulator_attr_is_visible,
5160};
5161
5162static const struct attribute_group *regulator_dev_groups[] = {
5163 ®ulator_dev_group,
5164 NULL
5165};
5166
5167static void regulator_dev_release(struct device *dev)
5168{
5169 struct regulator_dev *rdev = dev_get_drvdata(dev);
5170
5171 debugfs_remove_recursive(rdev->debugfs);
5172 kfree(rdev->constraints);
5173 of_node_put(rdev->dev.of_node);
5174 kfree(rdev);
5175}
5176
5177static void rdev_init_debugfs(struct regulator_dev *rdev)
5178{
5179 struct device *parent = rdev->dev.parent;
5180 const char *rname = rdev_get_name(rdev);
5181 char name[NAME_MAX];
5182
5183 /* Avoid duplicate debugfs directory names */
5184 if (parent && rname == rdev->desc->name) {
5185 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5186 rname);
5187 rname = name;
5188 }
5189
5190 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5191 if (!rdev->debugfs) {
5192 rdev_warn(rdev, "Failed to create debugfs directory\n");
5193 return;
5194 }
5195
5196 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5197 &rdev->use_count);
5198 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5199 &rdev->open_count);
5200 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5201 &rdev->bypass_count);
5202}
5203
5204static int regulator_register_resolve_supply(struct device *dev, void *data)
5205{
5206 struct regulator_dev *rdev = dev_to_rdev(dev);
5207
5208 if (regulator_resolve_supply(rdev))
5209 rdev_dbg(rdev, "unable to resolve supply\n");
5210
5211 return 0;
5212}
5213
5214int regulator_coupler_register(struct regulator_coupler *coupler)
5215{
5216 mutex_lock(®ulator_list_mutex);
5217 list_add_tail(&coupler->list, ®ulator_coupler_list);
5218 mutex_unlock(®ulator_list_mutex);
5219
5220 return 0;
5221}
5222
5223static struct regulator_coupler *
5224regulator_find_coupler(struct regulator_dev *rdev)
5225{
5226 struct regulator_coupler *coupler;
5227 int err;
5228
5229 /*
5230 * Note that regulators are appended to the list and the generic
5231 * coupler is registered first, hence it will be attached at last
5232 * if nobody cared.
5233 */
5234 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5235 err = coupler->attach_regulator(coupler, rdev);
5236 if (!err) {
5237 if (!coupler->balance_voltage &&
5238 rdev->coupling_desc.n_coupled > 2)
5239 goto err_unsupported;
5240
5241 return coupler;
5242 }
5243
5244 if (err < 0)
5245 return ERR_PTR(err);
5246
5247 if (err == 1)
5248 continue;
5249
5250 break;
5251 }
5252
5253 return ERR_PTR(-EINVAL);
5254
5255err_unsupported:
5256 if (coupler->detach_regulator)
5257 coupler->detach_regulator(coupler, rdev);
5258
5259 rdev_err(rdev,
5260 "Voltage balancing for multiple regulator couples is unimplemented\n");
5261
5262 return ERR_PTR(-EPERM);
5263}
5264
5265static void regulator_resolve_coupling(struct regulator_dev *rdev)
5266{
5267 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5268 struct coupling_desc *c_desc = &rdev->coupling_desc;
5269 int n_coupled = c_desc->n_coupled;
5270 struct regulator_dev *c_rdev;
5271 int i;
5272
5273 for (i = 1; i < n_coupled; i++) {
5274 /* already resolved */
5275 if (c_desc->coupled_rdevs[i])
5276 continue;
5277
5278 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5279
5280 if (!c_rdev)
5281 continue;
5282
5283 if (c_rdev->coupling_desc.coupler != coupler) {
5284 rdev_err(rdev, "coupler mismatch with %s\n",
5285 rdev_get_name(c_rdev));
5286 return;
5287 }
5288
5289 c_desc->coupled_rdevs[i] = c_rdev;
5290 c_desc->n_resolved++;
5291
5292 regulator_resolve_coupling(c_rdev);
5293 }
5294}
5295
5296static void regulator_remove_coupling(struct regulator_dev *rdev)
5297{
5298 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5299 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5300 struct regulator_dev *__c_rdev, *c_rdev;
5301 unsigned int __n_coupled, n_coupled;
5302 int i, k;
5303 int err;
5304
5305 n_coupled = c_desc->n_coupled;
5306
5307 for (i = 1; i < n_coupled; i++) {
5308 c_rdev = c_desc->coupled_rdevs[i];
5309
5310 if (!c_rdev)
5311 continue;
5312
5313 regulator_lock(c_rdev);
5314
5315 __c_desc = &c_rdev->coupling_desc;
5316 __n_coupled = __c_desc->n_coupled;
5317
5318 for (k = 1; k < __n_coupled; k++) {
5319 __c_rdev = __c_desc->coupled_rdevs[k];
5320
5321 if (__c_rdev == rdev) {
5322 __c_desc->coupled_rdevs[k] = NULL;
5323 __c_desc->n_resolved--;
5324 break;
5325 }
5326 }
5327
5328 regulator_unlock(c_rdev);
5329
5330 c_desc->coupled_rdevs[i] = NULL;
5331 c_desc->n_resolved--;
5332 }
5333
5334 if (coupler && coupler->detach_regulator) {
5335 err = coupler->detach_regulator(coupler, rdev);
5336 if (err)
5337 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5338 ERR_PTR(err));
5339 }
5340
5341 kfree(rdev->coupling_desc.coupled_rdevs);
5342 rdev->coupling_desc.coupled_rdevs = NULL;
5343}
5344
5345static int regulator_init_coupling(struct regulator_dev *rdev)
5346{
5347 struct regulator_dev **coupled;
5348 int err, n_phandles;
5349
5350 if (!IS_ENABLED(CONFIG_OF))
5351 n_phandles = 0;
5352 else
5353 n_phandles = of_get_n_coupled(rdev);
5354
5355 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5356 if (!coupled)
5357 return -ENOMEM;
5358
5359 rdev->coupling_desc.coupled_rdevs = coupled;
5360
5361 /*
5362 * Every regulator should always have coupling descriptor filled with
5363 * at least pointer to itself.
5364 */
5365 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5366 rdev->coupling_desc.n_coupled = n_phandles + 1;
5367 rdev->coupling_desc.n_resolved++;
5368
5369 /* regulator isn't coupled */
5370 if (n_phandles == 0)
5371 return 0;
5372
5373 if (!of_check_coupling_data(rdev))
5374 return -EPERM;
5375
5376 mutex_lock(®ulator_list_mutex);
5377 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5378 mutex_unlock(®ulator_list_mutex);
5379
5380 if (IS_ERR(rdev->coupling_desc.coupler)) {
5381 err = PTR_ERR(rdev->coupling_desc.coupler);
5382 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5383 return err;
5384 }
5385
5386 return 0;
5387}
5388
5389static int generic_coupler_attach(struct regulator_coupler *coupler,
5390 struct regulator_dev *rdev)
5391{
5392 if (rdev->coupling_desc.n_coupled > 2) {
5393 rdev_err(rdev,
5394 "Voltage balancing for multiple regulator couples is unimplemented\n");
5395 return -EPERM;
5396 }
5397
5398 if (!rdev->constraints->always_on) {
5399 rdev_err(rdev,
5400 "Coupling of a non always-on regulator is unimplemented\n");
5401 return -ENOTSUPP;
5402 }
5403
5404 return 0;
5405}
5406
5407static struct regulator_coupler generic_regulator_coupler = {
5408 .attach_regulator = generic_coupler_attach,
5409};
5410
5411/**
5412 * regulator_register - register regulator
5413 * @dev: the device that drive the regulator
5414 * @regulator_desc: regulator to register
5415 * @cfg: runtime configuration for regulator
5416 *
5417 * Called by regulator drivers to register a regulator.
5418 * Returns a valid pointer to struct regulator_dev on success
5419 * or an ERR_PTR() on error.
5420 */
5421struct regulator_dev *
5422regulator_register(struct device *dev,
5423 const struct regulator_desc *regulator_desc,
5424 const struct regulator_config *cfg)
5425{
5426 const struct regulator_init_data *init_data;
5427 struct regulator_config *config = NULL;
5428 static atomic_t regulator_no = ATOMIC_INIT(-1);
5429 struct regulator_dev *rdev;
5430 bool dangling_cfg_gpiod = false;
5431 bool dangling_of_gpiod = false;
5432 int ret, i;
5433 bool resolved_early = false;
5434
5435 if (cfg == NULL)
5436 return ERR_PTR(-EINVAL);
5437 if (cfg->ena_gpiod)
5438 dangling_cfg_gpiod = true;
5439 if (regulator_desc == NULL) {
5440 ret = -EINVAL;
5441 goto rinse;
5442 }
5443
5444 WARN_ON(!dev || !cfg->dev);
5445
5446 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5447 ret = -EINVAL;
5448 goto rinse;
5449 }
5450
5451 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5452 regulator_desc->type != REGULATOR_CURRENT) {
5453 ret = -EINVAL;
5454 goto rinse;
5455 }
5456
5457 /* Only one of each should be implemented */
5458 WARN_ON(regulator_desc->ops->get_voltage &&
5459 regulator_desc->ops->get_voltage_sel);
5460 WARN_ON(regulator_desc->ops->set_voltage &&
5461 regulator_desc->ops->set_voltage_sel);
5462
5463 /* If we're using selectors we must implement list_voltage. */
5464 if (regulator_desc->ops->get_voltage_sel &&
5465 !regulator_desc->ops->list_voltage) {
5466 ret = -EINVAL;
5467 goto rinse;
5468 }
5469 if (regulator_desc->ops->set_voltage_sel &&
5470 !regulator_desc->ops->list_voltage) {
5471 ret = -EINVAL;
5472 goto rinse;
5473 }
5474
5475 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5476 if (rdev == NULL) {
5477 ret = -ENOMEM;
5478 goto rinse;
5479 }
5480 device_initialize(&rdev->dev);
5481 spin_lock_init(&rdev->err_lock);
5482
5483 /*
5484 * Duplicate the config so the driver could override it after
5485 * parsing init data.
5486 */
5487 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5488 if (config == NULL) {
5489 ret = -ENOMEM;
5490 goto clean;
5491 }
5492
5493 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5494 &rdev->dev.of_node);
5495
5496 /*
5497 * Sometimes not all resources are probed already so we need to take
5498 * that into account. This happens most the time if the ena_gpiod comes
5499 * from a gpio extender or something else.
5500 */
5501 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5502 ret = -EPROBE_DEFER;
5503 goto clean;
5504 }
5505
5506 /*
5507 * We need to keep track of any GPIO descriptor coming from the
5508 * device tree until we have handled it over to the core. If the
5509 * config that was passed in to this function DOES NOT contain
5510 * a descriptor, and the config after this call DOES contain
5511 * a descriptor, we definitely got one from parsing the device
5512 * tree.
5513 */
5514 if (!cfg->ena_gpiod && config->ena_gpiod)
5515 dangling_of_gpiod = true;
5516 if (!init_data) {
5517 init_data = config->init_data;
5518 rdev->dev.of_node = of_node_get(config->of_node);
5519 }
5520
5521 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5522 rdev->reg_data = config->driver_data;
5523 rdev->owner = regulator_desc->owner;
5524 rdev->desc = regulator_desc;
5525 if (config->regmap)
5526 rdev->regmap = config->regmap;
5527 else if (dev_get_regmap(dev, NULL))
5528 rdev->regmap = dev_get_regmap(dev, NULL);
5529 else if (dev->parent)
5530 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5531 INIT_LIST_HEAD(&rdev->consumer_list);
5532 INIT_LIST_HEAD(&rdev->list);
5533 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5534 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5535
5536 if (init_data && init_data->supply_regulator)
5537 rdev->supply_name = init_data->supply_regulator;
5538 else if (regulator_desc->supply_name)
5539 rdev->supply_name = regulator_desc->supply_name;
5540
5541 /* register with sysfs */
5542 rdev->dev.class = ®ulator_class;
5543 rdev->dev.parent = config->dev;
5544 dev_set_name(&rdev->dev, "regulator.%lu",
5545 (unsigned long) atomic_inc_return(®ulator_no));
5546 dev_set_drvdata(&rdev->dev, rdev);
5547
5548 /* set regulator constraints */
5549 if (init_data)
5550 rdev->constraints = kmemdup(&init_data->constraints,
5551 sizeof(*rdev->constraints),
5552 GFP_KERNEL);
5553 else
5554 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5555 GFP_KERNEL);
5556 if (!rdev->constraints) {
5557 ret = -ENOMEM;
5558 goto wash;
5559 }
5560
5561 if ((rdev->supply_name && !rdev->supply) &&
5562 (rdev->constraints->always_on ||
5563 rdev->constraints->boot_on)) {
5564 ret = regulator_resolve_supply(rdev);
5565 if (ret)
5566 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5567 ERR_PTR(ret));
5568
5569 resolved_early = true;
5570 }
5571
5572 /* perform any regulator specific init */
5573 if (init_data && init_data->regulator_init) {
5574 ret = init_data->regulator_init(rdev->reg_data);
5575 if (ret < 0)
5576 goto wash;
5577 }
5578
5579 if (config->ena_gpiod) {
5580 ret = regulator_ena_gpio_request(rdev, config);
5581 if (ret != 0) {
5582 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5583 ERR_PTR(ret));
5584 goto wash;
5585 }
5586 /* The regulator core took over the GPIO descriptor */
5587 dangling_cfg_gpiod = false;
5588 dangling_of_gpiod = false;
5589 }
5590
5591 ret = set_machine_constraints(rdev);
5592 if (ret == -EPROBE_DEFER && !resolved_early) {
5593 /* Regulator might be in bypass mode and so needs its supply
5594 * to set the constraints
5595 */
5596 /* FIXME: this currently triggers a chicken-and-egg problem
5597 * when creating -SUPPLY symlink in sysfs to a regulator
5598 * that is just being created
5599 */
5600 rdev_dbg(rdev, "will resolve supply early: %s\n",
5601 rdev->supply_name);
5602 ret = regulator_resolve_supply(rdev);
5603 if (!ret)
5604 ret = set_machine_constraints(rdev);
5605 else
5606 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5607 ERR_PTR(ret));
5608 }
5609 if (ret < 0)
5610 goto wash;
5611
5612 ret = regulator_init_coupling(rdev);
5613 if (ret < 0)
5614 goto wash;
5615
5616 /* add consumers devices */
5617 if (init_data) {
5618 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5619 ret = set_consumer_device_supply(rdev,
5620 init_data->consumer_supplies[i].dev_name,
5621 init_data->consumer_supplies[i].supply);
5622 if (ret < 0) {
5623 dev_err(dev, "Failed to set supply %s\n",
5624 init_data->consumer_supplies[i].supply);
5625 goto unset_supplies;
5626 }
5627 }
5628 }
5629
5630 if (!rdev->desc->ops->get_voltage &&
5631 !rdev->desc->ops->list_voltage &&
5632 !rdev->desc->fixed_uV)
5633 rdev->is_switch = true;
5634
5635 ret = device_add(&rdev->dev);
5636 if (ret != 0)
5637 goto unset_supplies;
5638
5639 rdev_init_debugfs(rdev);
5640
5641 /* try to resolve regulators coupling since a new one was registered */
5642 mutex_lock(®ulator_list_mutex);
5643 regulator_resolve_coupling(rdev);
5644 mutex_unlock(®ulator_list_mutex);
5645
5646 /* try to resolve regulators supply since a new one was registered */
5647 class_for_each_device(®ulator_class, NULL, NULL,
5648 regulator_register_resolve_supply);
5649 kfree(config);
5650 return rdev;
5651
5652unset_supplies:
5653 mutex_lock(®ulator_list_mutex);
5654 unset_regulator_supplies(rdev);
5655 regulator_remove_coupling(rdev);
5656 mutex_unlock(®ulator_list_mutex);
5657wash:
5658 regulator_put(rdev->supply);
5659 kfree(rdev->coupling_desc.coupled_rdevs);
5660 mutex_lock(®ulator_list_mutex);
5661 regulator_ena_gpio_free(rdev);
5662 mutex_unlock(®ulator_list_mutex);
5663 put_device(&rdev->dev);
5664 rdev = NULL;
5665clean:
5666 if (dangling_of_gpiod)
5667 gpiod_put(config->ena_gpiod);
5668 if (rdev && rdev->dev.of_node)
5669 of_node_put(rdev->dev.of_node);
5670 kfree(rdev);
5671 kfree(config);
5672rinse:
5673 if (dangling_cfg_gpiod)
5674 gpiod_put(cfg->ena_gpiod);
5675 return ERR_PTR(ret);
5676}
5677EXPORT_SYMBOL_GPL(regulator_register);
5678
5679/**
5680 * regulator_unregister - unregister regulator
5681 * @rdev: regulator to unregister
5682 *
5683 * Called by regulator drivers to unregister a regulator.
5684 */
5685void regulator_unregister(struct regulator_dev *rdev)
5686{
5687 if (rdev == NULL)
5688 return;
5689
5690 if (rdev->supply) {
5691 while (rdev->use_count--)
5692 regulator_disable(rdev->supply);
5693 regulator_put(rdev->supply);
5694 }
5695
5696 flush_work(&rdev->disable_work.work);
5697
5698 mutex_lock(®ulator_list_mutex);
5699
5700 WARN_ON(rdev->open_count);
5701 regulator_remove_coupling(rdev);
5702 unset_regulator_supplies(rdev);
5703 list_del(&rdev->list);
5704 regulator_ena_gpio_free(rdev);
5705 device_unregister(&rdev->dev);
5706
5707 mutex_unlock(®ulator_list_mutex);
5708}
5709EXPORT_SYMBOL_GPL(regulator_unregister);
5710
5711#ifdef CONFIG_SUSPEND
5712/**
5713 * regulator_suspend - prepare regulators for system wide suspend
5714 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5715 *
5716 * Configure each regulator with it's suspend operating parameters for state.
5717 */
5718static int regulator_suspend(struct device *dev)
5719{
5720 struct regulator_dev *rdev = dev_to_rdev(dev);
5721 suspend_state_t state = pm_suspend_target_state;
5722 int ret;
5723 const struct regulator_state *rstate;
5724
5725 rstate = regulator_get_suspend_state_check(rdev, state);
5726 if (!rstate)
5727 return 0;
5728
5729 regulator_lock(rdev);
5730 ret = __suspend_set_state(rdev, rstate);
5731 regulator_unlock(rdev);
5732
5733 return ret;
5734}
5735
5736static int regulator_resume(struct device *dev)
5737{
5738 suspend_state_t state = pm_suspend_target_state;
5739 struct regulator_dev *rdev = dev_to_rdev(dev);
5740 struct regulator_state *rstate;
5741 int ret = 0;
5742
5743 rstate = regulator_get_suspend_state(rdev, state);
5744 if (rstate == NULL)
5745 return 0;
5746
5747 /* Avoid grabbing the lock if we don't need to */
5748 if (!rdev->desc->ops->resume)
5749 return 0;
5750
5751 regulator_lock(rdev);
5752
5753 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5754 rstate->enabled == DISABLE_IN_SUSPEND)
5755 ret = rdev->desc->ops->resume(rdev);
5756
5757 regulator_unlock(rdev);
5758
5759 return ret;
5760}
5761#else /* !CONFIG_SUSPEND */
5762
5763#define regulator_suspend NULL
5764#define regulator_resume NULL
5765
5766#endif /* !CONFIG_SUSPEND */
5767
5768#ifdef CONFIG_PM
5769static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5770 .suspend = regulator_suspend,
5771 .resume = regulator_resume,
5772};
5773#endif
5774
5775struct class regulator_class = {
5776 .name = "regulator",
5777 .dev_release = regulator_dev_release,
5778 .dev_groups = regulator_dev_groups,
5779#ifdef CONFIG_PM
5780 .pm = ®ulator_pm_ops,
5781#endif
5782};
5783/**
5784 * regulator_has_full_constraints - the system has fully specified constraints
5785 *
5786 * Calling this function will cause the regulator API to disable all
5787 * regulators which have a zero use count and don't have an always_on
5788 * constraint in a late_initcall.
5789 *
5790 * The intention is that this will become the default behaviour in a
5791 * future kernel release so users are encouraged to use this facility
5792 * now.
5793 */
5794void regulator_has_full_constraints(void)
5795{
5796 has_full_constraints = 1;
5797}
5798EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5799
5800/**
5801 * rdev_get_drvdata - get rdev regulator driver data
5802 * @rdev: regulator
5803 *
5804 * Get rdev regulator driver private data. This call can be used in the
5805 * regulator driver context.
5806 */
5807void *rdev_get_drvdata(struct regulator_dev *rdev)
5808{
5809 return rdev->reg_data;
5810}
5811EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5812
5813/**
5814 * regulator_get_drvdata - get regulator driver data
5815 * @regulator: regulator
5816 *
5817 * Get regulator driver private data. This call can be used in the consumer
5818 * driver context when non API regulator specific functions need to be called.
5819 */
5820void *regulator_get_drvdata(struct regulator *regulator)
5821{
5822 return regulator->rdev->reg_data;
5823}
5824EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5825
5826/**
5827 * regulator_set_drvdata - set regulator driver data
5828 * @regulator: regulator
5829 * @data: data
5830 */
5831void regulator_set_drvdata(struct regulator *regulator, void *data)
5832{
5833 regulator->rdev->reg_data = data;
5834}
5835EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5836
5837/**
5838 * rdev_get_id - get regulator ID
5839 * @rdev: regulator
5840 */
5841int rdev_get_id(struct regulator_dev *rdev)
5842{
5843 return rdev->desc->id;
5844}
5845EXPORT_SYMBOL_GPL(rdev_get_id);
5846
5847struct device *rdev_get_dev(struct regulator_dev *rdev)
5848{
5849 return &rdev->dev;
5850}
5851EXPORT_SYMBOL_GPL(rdev_get_dev);
5852
5853struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5854{
5855 return rdev->regmap;
5856}
5857EXPORT_SYMBOL_GPL(rdev_get_regmap);
5858
5859void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5860{
5861 return reg_init_data->driver_data;
5862}
5863EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5864
5865#ifdef CONFIG_DEBUG_FS
5866static int supply_map_show(struct seq_file *sf, void *data)
5867{
5868 struct regulator_map *map;
5869
5870 list_for_each_entry(map, ®ulator_map_list, list) {
5871 seq_printf(sf, "%s -> %s.%s\n",
5872 rdev_get_name(map->regulator), map->dev_name,
5873 map->supply);
5874 }
5875
5876 return 0;
5877}
5878DEFINE_SHOW_ATTRIBUTE(supply_map);
5879
5880struct summary_data {
5881 struct seq_file *s;
5882 struct regulator_dev *parent;
5883 int level;
5884};
5885
5886static void regulator_summary_show_subtree(struct seq_file *s,
5887 struct regulator_dev *rdev,
5888 int level);
5889
5890static int regulator_summary_show_children(struct device *dev, void *data)
5891{
5892 struct regulator_dev *rdev = dev_to_rdev(dev);
5893 struct summary_data *summary_data = data;
5894
5895 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5896 regulator_summary_show_subtree(summary_data->s, rdev,
5897 summary_data->level + 1);
5898
5899 return 0;
5900}
5901
5902static void regulator_summary_show_subtree(struct seq_file *s,
5903 struct regulator_dev *rdev,
5904 int level)
5905{
5906 struct regulation_constraints *c;
5907 struct regulator *consumer;
5908 struct summary_data summary_data;
5909 unsigned int opmode;
5910
5911 if (!rdev)
5912 return;
5913
5914 opmode = _regulator_get_mode_unlocked(rdev);
5915 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5916 level * 3 + 1, "",
5917 30 - level * 3, rdev_get_name(rdev),
5918 rdev->use_count, rdev->open_count, rdev->bypass_count,
5919 regulator_opmode_to_str(opmode));
5920
5921 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5922 seq_printf(s, "%5dmA ",
5923 _regulator_get_current_limit_unlocked(rdev) / 1000);
5924
5925 c = rdev->constraints;
5926 if (c) {
5927 switch (rdev->desc->type) {
5928 case REGULATOR_VOLTAGE:
5929 seq_printf(s, "%5dmV %5dmV ",
5930 c->min_uV / 1000, c->max_uV / 1000);
5931 break;
5932 case REGULATOR_CURRENT:
5933 seq_printf(s, "%5dmA %5dmA ",
5934 c->min_uA / 1000, c->max_uA / 1000);
5935 break;
5936 }
5937 }
5938
5939 seq_puts(s, "\n");
5940
5941 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5942 if (consumer->dev && consumer->dev->class == ®ulator_class)
5943 continue;
5944
5945 seq_printf(s, "%*s%-*s ",
5946 (level + 1) * 3 + 1, "",
5947 30 - (level + 1) * 3,
5948 consumer->supply_name ? consumer->supply_name :
5949 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5950
5951 switch (rdev->desc->type) {
5952 case REGULATOR_VOLTAGE:
5953 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5954 consumer->enable_count,
5955 consumer->uA_load / 1000,
5956 consumer->uA_load && !consumer->enable_count ?
5957 '*' : ' ',
5958 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5959 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5960 break;
5961 case REGULATOR_CURRENT:
5962 break;
5963 }
5964
5965 seq_puts(s, "\n");
5966 }
5967
5968 summary_data.s = s;
5969 summary_data.level = level;
5970 summary_data.parent = rdev;
5971
5972 class_for_each_device(®ulator_class, NULL, &summary_data,
5973 regulator_summary_show_children);
5974}
5975
5976struct summary_lock_data {
5977 struct ww_acquire_ctx *ww_ctx;
5978 struct regulator_dev **new_contended_rdev;
5979 struct regulator_dev **old_contended_rdev;
5980};
5981
5982static int regulator_summary_lock_one(struct device *dev, void *data)
5983{
5984 struct regulator_dev *rdev = dev_to_rdev(dev);
5985 struct summary_lock_data *lock_data = data;
5986 int ret = 0;
5987
5988 if (rdev != *lock_data->old_contended_rdev) {
5989 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5990
5991 if (ret == -EDEADLK)
5992 *lock_data->new_contended_rdev = rdev;
5993 else
5994 WARN_ON_ONCE(ret);
5995 } else {
5996 *lock_data->old_contended_rdev = NULL;
5997 }
5998
5999 return ret;
6000}
6001
6002static int regulator_summary_unlock_one(struct device *dev, void *data)
6003{
6004 struct regulator_dev *rdev = dev_to_rdev(dev);
6005 struct summary_lock_data *lock_data = data;
6006
6007 if (lock_data) {
6008 if (rdev == *lock_data->new_contended_rdev)
6009 return -EDEADLK;
6010 }
6011
6012 regulator_unlock(rdev);
6013
6014 return 0;
6015}
6016
6017static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6018 struct regulator_dev **new_contended_rdev,
6019 struct regulator_dev **old_contended_rdev)
6020{
6021 struct summary_lock_data lock_data;
6022 int ret;
6023
6024 lock_data.ww_ctx = ww_ctx;
6025 lock_data.new_contended_rdev = new_contended_rdev;
6026 lock_data.old_contended_rdev = old_contended_rdev;
6027
6028 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6029 regulator_summary_lock_one);
6030 if (ret)
6031 class_for_each_device(®ulator_class, NULL, &lock_data,
6032 regulator_summary_unlock_one);
6033
6034 return ret;
6035}
6036
6037static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6038{
6039 struct regulator_dev *new_contended_rdev = NULL;
6040 struct regulator_dev *old_contended_rdev = NULL;
6041 int err;
6042
6043 mutex_lock(®ulator_list_mutex);
6044
6045 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6046
6047 do {
6048 if (new_contended_rdev) {
6049 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6050 old_contended_rdev = new_contended_rdev;
6051 old_contended_rdev->ref_cnt++;
6052 }
6053
6054 err = regulator_summary_lock_all(ww_ctx,
6055 &new_contended_rdev,
6056 &old_contended_rdev);
6057
6058 if (old_contended_rdev)
6059 regulator_unlock(old_contended_rdev);
6060
6061 } while (err == -EDEADLK);
6062
6063 ww_acquire_done(ww_ctx);
6064}
6065
6066static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6067{
6068 class_for_each_device(®ulator_class, NULL, NULL,
6069 regulator_summary_unlock_one);
6070 ww_acquire_fini(ww_ctx);
6071
6072 mutex_unlock(®ulator_list_mutex);
6073}
6074
6075static int regulator_summary_show_roots(struct device *dev, void *data)
6076{
6077 struct regulator_dev *rdev = dev_to_rdev(dev);
6078 struct seq_file *s = data;
6079
6080 if (!rdev->supply)
6081 regulator_summary_show_subtree(s, rdev, 0);
6082
6083 return 0;
6084}
6085
6086static int regulator_summary_show(struct seq_file *s, void *data)
6087{
6088 struct ww_acquire_ctx ww_ctx;
6089
6090 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6091 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6092
6093 regulator_summary_lock(&ww_ctx);
6094
6095 class_for_each_device(®ulator_class, NULL, s,
6096 regulator_summary_show_roots);
6097
6098 regulator_summary_unlock(&ww_ctx);
6099
6100 return 0;
6101}
6102DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6103#endif /* CONFIG_DEBUG_FS */
6104
6105static int __init regulator_init(void)
6106{
6107 int ret;
6108
6109 ret = class_register(®ulator_class);
6110
6111 debugfs_root = debugfs_create_dir("regulator", NULL);
6112 if (!debugfs_root)
6113 pr_warn("regulator: Failed to create debugfs directory\n");
6114
6115#ifdef CONFIG_DEBUG_FS
6116 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6117 &supply_map_fops);
6118
6119 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6120 NULL, ®ulator_summary_fops);
6121#endif
6122 regulator_dummy_init();
6123
6124 regulator_coupler_register(&generic_regulator_coupler);
6125
6126 return ret;
6127}
6128
6129/* init early to allow our consumers to complete system booting */
6130core_initcall(regulator_init);
6131
6132static int regulator_late_cleanup(struct device *dev, void *data)
6133{
6134 struct regulator_dev *rdev = dev_to_rdev(dev);
6135 struct regulation_constraints *c = rdev->constraints;
6136 int ret;
6137
6138 if (c && c->always_on)
6139 return 0;
6140
6141 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6142 return 0;
6143
6144 regulator_lock(rdev);
6145
6146 if (rdev->use_count)
6147 goto unlock;
6148
6149 /* If reading the status failed, assume that it's off. */
6150 if (_regulator_is_enabled(rdev) <= 0)
6151 goto unlock;
6152
6153 if (have_full_constraints()) {
6154 /* We log since this may kill the system if it goes
6155 * wrong.
6156 */
6157 rdev_info(rdev, "disabling\n");
6158 ret = _regulator_do_disable(rdev);
6159 if (ret != 0)
6160 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6161 } else {
6162 /* The intention is that in future we will
6163 * assume that full constraints are provided
6164 * so warn even if we aren't going to do
6165 * anything here.
6166 */
6167 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6168 }
6169
6170unlock:
6171 regulator_unlock(rdev);
6172
6173 return 0;
6174}
6175
6176static void regulator_init_complete_work_function(struct work_struct *work)
6177{
6178 /*
6179 * Regulators may had failed to resolve their input supplies
6180 * when were registered, either because the input supply was
6181 * not registered yet or because its parent device was not
6182 * bound yet. So attempt to resolve the input supplies for
6183 * pending regulators before trying to disable unused ones.
6184 */
6185 class_for_each_device(®ulator_class, NULL, NULL,
6186 regulator_register_resolve_supply);
6187
6188 /* If we have a full configuration then disable any regulators
6189 * we have permission to change the status for and which are
6190 * not in use or always_on. This is effectively the default
6191 * for DT and ACPI as they have full constraints.
6192 */
6193 class_for_each_device(®ulator_class, NULL, NULL,
6194 regulator_late_cleanup);
6195}
6196
6197static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6198 regulator_init_complete_work_function);
6199
6200static int __init regulator_init_complete(void)
6201{
6202 /*
6203 * Since DT doesn't provide an idiomatic mechanism for
6204 * enabling full constraints and since it's much more natural
6205 * with DT to provide them just assume that a DT enabled
6206 * system has full constraints.
6207 */
6208 if (of_have_populated_dt())
6209 has_full_constraints = true;
6210
6211 /*
6212 * We punt completion for an arbitrary amount of time since
6213 * systems like distros will load many drivers from userspace
6214 * so consumers might not always be ready yet, this is
6215 * particularly an issue with laptops where this might bounce
6216 * the display off then on. Ideally we'd get a notification
6217 * from userspace when this happens but we don't so just wait
6218 * a bit and hope we waited long enough. It'd be better if
6219 * we'd only do this on systems that need it, and a kernel
6220 * command line option might be useful.
6221 */
6222 schedule_delayed_work(®ulator_init_complete_work,
6223 msecs_to_jiffies(30000));
6224
6225 return 0;
6226}
6227late_initcall_sync(regulator_init_complete);
1/*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39#include "internal.h"
40
41#define rdev_crit(rdev, fmt, ...) \
42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_err(rdev, fmt, ...) \
44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_warn(rdev, fmt, ...) \
46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_info(rdev, fmt, ...) \
48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49#define rdev_dbg(rdev, fmt, ...) \
50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52static DEFINE_MUTEX(regulator_list_mutex);
53static LIST_HEAD(regulator_list);
54static LIST_HEAD(regulator_map_list);
55static LIST_HEAD(regulator_ena_gpio_list);
56static LIST_HEAD(regulator_supply_alias_list);
57static bool has_full_constraints;
58
59static struct dentry *debugfs_root;
60
61/*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66struct regulator_map {
67 struct list_head list;
68 const char *dev_name; /* The dev_name() for the consumer */
69 const char *supply;
70 struct regulator_dev *regulator;
71};
72
73/*
74 * struct regulator_enable_gpio
75 *
76 * Management for shared enable GPIO pin
77 */
78struct regulator_enable_gpio {
79 struct list_head list;
80 int gpio;
81 u32 enable_count; /* a number of enabled shared GPIO */
82 u32 request_count; /* a number of requested shared GPIO */
83 unsigned int ena_gpio_invert:1;
84};
85
86/*
87 * struct regulator_supply_alias
88 *
89 * Used to map lookups for a supply onto an alternative device.
90 */
91struct regulator_supply_alias {
92 struct list_head list;
93 struct device *src_dev;
94 const char *src_supply;
95 struct device *alias_dev;
96 const char *alias_supply;
97};
98
99static int _regulator_is_enabled(struct regulator_dev *rdev);
100static int _regulator_disable(struct regulator_dev *rdev);
101static int _regulator_get_voltage(struct regulator_dev *rdev);
102static int _regulator_get_current_limit(struct regulator_dev *rdev);
103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104static void _notifier_call_chain(struct regulator_dev *rdev,
105 unsigned long event, void *data);
106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 int min_uV, int max_uV);
108static struct regulator *create_regulator(struct regulator_dev *rdev,
109 struct device *dev,
110 const char *supply_name);
111
112static const char *rdev_get_name(struct regulator_dev *rdev)
113{
114 if (rdev->constraints && rdev->constraints->name)
115 return rdev->constraints->name;
116 else if (rdev->desc->name)
117 return rdev->desc->name;
118 else
119 return "";
120}
121
122static bool have_full_constraints(void)
123{
124 return has_full_constraints || of_have_populated_dt();
125}
126
127/**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137{
138 struct device_node *regnode = NULL;
139 char prop_name[32]; /* 32 is max size of property name */
140
141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143 snprintf(prop_name, 32, "%s-supply", supply);
144 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146 if (!regnode) {
147 dev_dbg(dev, "Looking up %s property in node %s failed",
148 prop_name, dev->of_node->full_name);
149 return NULL;
150 }
151 return regnode;
152}
153
154static int _regulator_can_change_status(struct regulator_dev *rdev)
155{
156 if (!rdev->constraints)
157 return 0;
158
159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 return 1;
161 else
162 return 0;
163}
164
165/* Platform voltage constraint check */
166static int regulator_check_voltage(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
168{
169 BUG_ON(*min_uV > *max_uV);
170
171 if (!rdev->constraints) {
172 rdev_err(rdev, "no constraints\n");
173 return -ENODEV;
174 }
175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 rdev_err(rdev, "operation not allowed\n");
177 return -EPERM;
178 }
179
180 if (*max_uV > rdev->constraints->max_uV)
181 *max_uV = rdev->constraints->max_uV;
182 if (*min_uV < rdev->constraints->min_uV)
183 *min_uV = rdev->constraints->min_uV;
184
185 if (*min_uV > *max_uV) {
186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 *min_uV, *max_uV);
188 return -EINVAL;
189 }
190
191 return 0;
192}
193
194/* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197static int regulator_check_consumers(struct regulator_dev *rdev,
198 int *min_uV, int *max_uV)
199{
200 struct regulator *regulator;
201
202 list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 /*
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
206 */
207 if (!regulator->min_uV && !regulator->max_uV)
208 continue;
209
210 if (*max_uV > regulator->max_uV)
211 *max_uV = regulator->max_uV;
212 if (*min_uV < regulator->min_uV)
213 *min_uV = regulator->min_uV;
214 }
215
216 if (*min_uV > *max_uV) {
217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 *min_uV, *max_uV);
219 return -EINVAL;
220 }
221
222 return 0;
223}
224
225/* current constraint check */
226static int regulator_check_current_limit(struct regulator_dev *rdev,
227 int *min_uA, int *max_uA)
228{
229 BUG_ON(*min_uA > *max_uA);
230
231 if (!rdev->constraints) {
232 rdev_err(rdev, "no constraints\n");
233 return -ENODEV;
234 }
235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 rdev_err(rdev, "operation not allowed\n");
237 return -EPERM;
238 }
239
240 if (*max_uA > rdev->constraints->max_uA)
241 *max_uA = rdev->constraints->max_uA;
242 if (*min_uA < rdev->constraints->min_uA)
243 *min_uA = rdev->constraints->min_uA;
244
245 if (*min_uA > *max_uA) {
246 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 *min_uA, *max_uA);
248 return -EINVAL;
249 }
250
251 return 0;
252}
253
254/* operating mode constraint check */
255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256{
257 switch (*mode) {
258 case REGULATOR_MODE_FAST:
259 case REGULATOR_MODE_NORMAL:
260 case REGULATOR_MODE_IDLE:
261 case REGULATOR_MODE_STANDBY:
262 break;
263 default:
264 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 return -EINVAL;
266 }
267
268 if (!rdev->constraints) {
269 rdev_err(rdev, "no constraints\n");
270 return -ENODEV;
271 }
272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 rdev_err(rdev, "operation not allowed\n");
274 return -EPERM;
275 }
276
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
280 while (*mode) {
281 if (rdev->constraints->valid_modes_mask & *mode)
282 return 0;
283 *mode /= 2;
284 }
285
286 return -EINVAL;
287}
288
289/* dynamic regulator mode switching constraint check */
290static int regulator_check_drms(struct regulator_dev *rdev)
291{
292 if (!rdev->constraints) {
293 rdev_err(rdev, "no constraints\n");
294 return -ENODEV;
295 }
296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 rdev_err(rdev, "operation not allowed\n");
298 return -EPERM;
299 }
300 return 0;
301}
302
303static ssize_t regulator_uV_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
305{
306 struct regulator_dev *rdev = dev_get_drvdata(dev);
307 ssize_t ret;
308
309 mutex_lock(&rdev->mutex);
310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 mutex_unlock(&rdev->mutex);
312
313 return ret;
314}
315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317static ssize_t regulator_uA_show(struct device *dev,
318 struct device_attribute *attr, char *buf)
319{
320 struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323}
324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327 char *buf)
328{
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331 return sprintf(buf, "%s\n", rdev_get_name(rdev));
332}
333static DEVICE_ATTR_RO(name);
334
335static ssize_t regulator_print_opmode(char *buf, int mode)
336{
337 switch (mode) {
338 case REGULATOR_MODE_FAST:
339 return sprintf(buf, "fast\n");
340 case REGULATOR_MODE_NORMAL:
341 return sprintf(buf, "normal\n");
342 case REGULATOR_MODE_IDLE:
343 return sprintf(buf, "idle\n");
344 case REGULATOR_MODE_STANDBY:
345 return sprintf(buf, "standby\n");
346 }
347 return sprintf(buf, "unknown\n");
348}
349
350static ssize_t regulator_opmode_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
352{
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356}
357static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359static ssize_t regulator_print_state(char *buf, int state)
360{
361 if (state > 0)
362 return sprintf(buf, "enabled\n");
363 else if (state == 0)
364 return sprintf(buf, "disabled\n");
365 else
366 return sprintf(buf, "unknown\n");
367}
368
369static ssize_t regulator_state_show(struct device *dev,
370 struct device_attribute *attr, char *buf)
371{
372 struct regulator_dev *rdev = dev_get_drvdata(dev);
373 ssize_t ret;
374
375 mutex_lock(&rdev->mutex);
376 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377 mutex_unlock(&rdev->mutex);
378
379 return ret;
380}
381static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383static ssize_t regulator_status_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
385{
386 struct regulator_dev *rdev = dev_get_drvdata(dev);
387 int status;
388 char *label;
389
390 status = rdev->desc->ops->get_status(rdev);
391 if (status < 0)
392 return status;
393
394 switch (status) {
395 case REGULATOR_STATUS_OFF:
396 label = "off";
397 break;
398 case REGULATOR_STATUS_ON:
399 label = "on";
400 break;
401 case REGULATOR_STATUS_ERROR:
402 label = "error";
403 break;
404 case REGULATOR_STATUS_FAST:
405 label = "fast";
406 break;
407 case REGULATOR_STATUS_NORMAL:
408 label = "normal";
409 break;
410 case REGULATOR_STATUS_IDLE:
411 label = "idle";
412 break;
413 case REGULATOR_STATUS_STANDBY:
414 label = "standby";
415 break;
416 case REGULATOR_STATUS_BYPASS:
417 label = "bypass";
418 break;
419 case REGULATOR_STATUS_UNDEFINED:
420 label = "undefined";
421 break;
422 default:
423 return -ERANGE;
424 }
425
426 return sprintf(buf, "%s\n", label);
427}
428static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430static ssize_t regulator_min_uA_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
432{
433 struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435 if (!rdev->constraints)
436 return sprintf(buf, "constraint not defined\n");
437
438 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439}
440static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442static ssize_t regulator_max_uA_show(struct device *dev,
443 struct device_attribute *attr, char *buf)
444{
445 struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447 if (!rdev->constraints)
448 return sprintf(buf, "constraint not defined\n");
449
450 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451}
452static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454static ssize_t regulator_min_uV_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
456{
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459 if (!rdev->constraints)
460 return sprintf(buf, "constraint not defined\n");
461
462 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463}
464static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466static ssize_t regulator_max_uV_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
468{
469 struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471 if (!rdev->constraints)
472 return sprintf(buf, "constraint not defined\n");
473
474 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475}
476static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478static ssize_t regulator_total_uA_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
480{
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
482 struct regulator *regulator;
483 int uA = 0;
484
485 mutex_lock(&rdev->mutex);
486 list_for_each_entry(regulator, &rdev->consumer_list, list)
487 uA += regulator->uA_load;
488 mutex_unlock(&rdev->mutex);
489 return sprintf(buf, "%d\n", uA);
490}
491static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494 char *buf)
495{
496 struct regulator_dev *rdev = dev_get_drvdata(dev);
497 return sprintf(buf, "%d\n", rdev->use_count);
498}
499static DEVICE_ATTR_RO(num_users);
500
501static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502 char *buf)
503{
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506 switch (rdev->desc->type) {
507 case REGULATOR_VOLTAGE:
508 return sprintf(buf, "voltage\n");
509 case REGULATOR_CURRENT:
510 return sprintf(buf, "current\n");
511 }
512 return sprintf(buf, "unknown\n");
513}
514static DEVICE_ATTR_RO(type);
515
516static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517 struct device_attribute *attr, char *buf)
518{
519 struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522}
523static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524 regulator_suspend_mem_uV_show, NULL);
525
526static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
528{
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532}
533static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534 regulator_suspend_disk_uV_show, NULL);
535
536static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537 struct device_attribute *attr, char *buf)
538{
539 struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542}
543static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544 regulator_suspend_standby_uV_show, NULL);
545
546static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547 struct device_attribute *attr, char *buf)
548{
549 struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551 return regulator_print_opmode(buf,
552 rdev->constraints->state_mem.mode);
553}
554static DEVICE_ATTR(suspend_mem_mode, 0444,
555 regulator_suspend_mem_mode_show, NULL);
556
557static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558 struct device_attribute *attr, char *buf)
559{
560 struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562 return regulator_print_opmode(buf,
563 rdev->constraints->state_disk.mode);
564}
565static DEVICE_ATTR(suspend_disk_mode, 0444,
566 regulator_suspend_disk_mode_show, NULL);
567
568static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569 struct device_attribute *attr, char *buf)
570{
571 struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573 return regulator_print_opmode(buf,
574 rdev->constraints->state_standby.mode);
575}
576static DEVICE_ATTR(suspend_standby_mode, 0444,
577 regulator_suspend_standby_mode_show, NULL);
578
579static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580 struct device_attribute *attr, char *buf)
581{
582 struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584 return regulator_print_state(buf,
585 rdev->constraints->state_mem.enabled);
586}
587static DEVICE_ATTR(suspend_mem_state, 0444,
588 regulator_suspend_mem_state_show, NULL);
589
590static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591 struct device_attribute *attr, char *buf)
592{
593 struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595 return regulator_print_state(buf,
596 rdev->constraints->state_disk.enabled);
597}
598static DEVICE_ATTR(suspend_disk_state, 0444,
599 regulator_suspend_disk_state_show, NULL);
600
601static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
603{
604 struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606 return regulator_print_state(buf,
607 rdev->constraints->state_standby.enabled);
608}
609static DEVICE_ATTR(suspend_standby_state, 0444,
610 regulator_suspend_standby_state_show, NULL);
611
612static ssize_t regulator_bypass_show(struct device *dev,
613 struct device_attribute *attr, char *buf)
614{
615 struct regulator_dev *rdev = dev_get_drvdata(dev);
616 const char *report;
617 bool bypass;
618 int ret;
619
620 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622 if (ret != 0)
623 report = "unknown";
624 else if (bypass)
625 report = "enabled";
626 else
627 report = "disabled";
628
629 return sprintf(buf, "%s\n", report);
630}
631static DEVICE_ATTR(bypass, 0444,
632 regulator_bypass_show, NULL);
633
634/*
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
637 */
638static struct attribute *regulator_dev_attrs[] = {
639 &dev_attr_name.attr,
640 &dev_attr_num_users.attr,
641 &dev_attr_type.attr,
642 NULL,
643};
644ATTRIBUTE_GROUPS(regulator_dev);
645
646static void regulator_dev_release(struct device *dev)
647{
648 struct regulator_dev *rdev = dev_get_drvdata(dev);
649 kfree(rdev);
650}
651
652static struct class regulator_class = {
653 .name = "regulator",
654 .dev_release = regulator_dev_release,
655 .dev_groups = regulator_dev_groups,
656};
657
658/* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660static void drms_uA_update(struct regulator_dev *rdev)
661{
662 struct regulator *sibling;
663 int current_uA = 0, output_uV, input_uV, err;
664 unsigned int mode;
665
666 err = regulator_check_drms(rdev);
667 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668 (!rdev->desc->ops->get_voltage &&
669 !rdev->desc->ops->get_voltage_sel) ||
670 !rdev->desc->ops->set_mode)
671 return;
672
673 /* get output voltage */
674 output_uV = _regulator_get_voltage(rdev);
675 if (output_uV <= 0)
676 return;
677
678 /* get input voltage */
679 input_uV = 0;
680 if (rdev->supply)
681 input_uV = regulator_get_voltage(rdev->supply);
682 if (input_uV <= 0)
683 input_uV = rdev->constraints->input_uV;
684 if (input_uV <= 0)
685 return;
686
687 /* calc total requested load */
688 list_for_each_entry(sibling, &rdev->consumer_list, list)
689 current_uA += sibling->uA_load;
690
691 /* now get the optimum mode for our new total regulator load */
692 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693 output_uV, current_uA);
694
695 /* check the new mode is allowed */
696 err = regulator_mode_constrain(rdev, &mode);
697 if (err == 0)
698 rdev->desc->ops->set_mode(rdev, mode);
699}
700
701static int suspend_set_state(struct regulator_dev *rdev,
702 struct regulator_state *rstate)
703{
704 int ret = 0;
705
706 /* If we have no suspend mode configration don't set anything;
707 * only warn if the driver implements set_suspend_voltage or
708 * set_suspend_mode callback.
709 */
710 if (!rstate->enabled && !rstate->disabled) {
711 if (rdev->desc->ops->set_suspend_voltage ||
712 rdev->desc->ops->set_suspend_mode)
713 rdev_warn(rdev, "No configuration\n");
714 return 0;
715 }
716
717 if (rstate->enabled && rstate->disabled) {
718 rdev_err(rdev, "invalid configuration\n");
719 return -EINVAL;
720 }
721
722 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723 ret = rdev->desc->ops->set_suspend_enable(rdev);
724 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725 ret = rdev->desc->ops->set_suspend_disable(rdev);
726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727 ret = 0;
728
729 if (ret < 0) {
730 rdev_err(rdev, "failed to enabled/disable\n");
731 return ret;
732 }
733
734 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736 if (ret < 0) {
737 rdev_err(rdev, "failed to set voltage\n");
738 return ret;
739 }
740 }
741
742 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744 if (ret < 0) {
745 rdev_err(rdev, "failed to set mode\n");
746 return ret;
747 }
748 }
749 return ret;
750}
751
752/* locks held by caller */
753static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754{
755 if (!rdev->constraints)
756 return -EINVAL;
757
758 switch (state) {
759 case PM_SUSPEND_STANDBY:
760 return suspend_set_state(rdev,
761 &rdev->constraints->state_standby);
762 case PM_SUSPEND_MEM:
763 return suspend_set_state(rdev,
764 &rdev->constraints->state_mem);
765 case PM_SUSPEND_MAX:
766 return suspend_set_state(rdev,
767 &rdev->constraints->state_disk);
768 default:
769 return -EINVAL;
770 }
771}
772
773static void print_constraints(struct regulator_dev *rdev)
774{
775 struct regulation_constraints *constraints = rdev->constraints;
776 char buf[80] = "";
777 int count = 0;
778 int ret;
779
780 if (constraints->min_uV && constraints->max_uV) {
781 if (constraints->min_uV == constraints->max_uV)
782 count += sprintf(buf + count, "%d mV ",
783 constraints->min_uV / 1000);
784 else
785 count += sprintf(buf + count, "%d <--> %d mV ",
786 constraints->min_uV / 1000,
787 constraints->max_uV / 1000);
788 }
789
790 if (!constraints->min_uV ||
791 constraints->min_uV != constraints->max_uV) {
792 ret = _regulator_get_voltage(rdev);
793 if (ret > 0)
794 count += sprintf(buf + count, "at %d mV ", ret / 1000);
795 }
796
797 if (constraints->uV_offset)
798 count += sprintf(buf, "%dmV offset ",
799 constraints->uV_offset / 1000);
800
801 if (constraints->min_uA && constraints->max_uA) {
802 if (constraints->min_uA == constraints->max_uA)
803 count += sprintf(buf + count, "%d mA ",
804 constraints->min_uA / 1000);
805 else
806 count += sprintf(buf + count, "%d <--> %d mA ",
807 constraints->min_uA / 1000,
808 constraints->max_uA / 1000);
809 }
810
811 if (!constraints->min_uA ||
812 constraints->min_uA != constraints->max_uA) {
813 ret = _regulator_get_current_limit(rdev);
814 if (ret > 0)
815 count += sprintf(buf + count, "at %d mA ", ret / 1000);
816 }
817
818 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819 count += sprintf(buf + count, "fast ");
820 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821 count += sprintf(buf + count, "normal ");
822 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823 count += sprintf(buf + count, "idle ");
824 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825 count += sprintf(buf + count, "standby");
826
827 if (!count)
828 sprintf(buf, "no parameters");
829
830 rdev_info(rdev, "%s\n", buf);
831
832 if ((constraints->min_uV != constraints->max_uV) &&
833 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834 rdev_warn(rdev,
835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836}
837
838static int machine_constraints_voltage(struct regulator_dev *rdev,
839 struct regulation_constraints *constraints)
840{
841 struct regulator_ops *ops = rdev->desc->ops;
842 int ret;
843
844 /* do we need to apply the constraint voltage */
845 if (rdev->constraints->apply_uV &&
846 rdev->constraints->min_uV == rdev->constraints->max_uV) {
847 ret = _regulator_do_set_voltage(rdev,
848 rdev->constraints->min_uV,
849 rdev->constraints->max_uV);
850 if (ret < 0) {
851 rdev_err(rdev, "failed to apply %duV constraint\n",
852 rdev->constraints->min_uV);
853 return ret;
854 }
855 }
856
857 /* constrain machine-level voltage specs to fit
858 * the actual range supported by this regulator.
859 */
860 if (ops->list_voltage && rdev->desc->n_voltages) {
861 int count = rdev->desc->n_voltages;
862 int i;
863 int min_uV = INT_MAX;
864 int max_uV = INT_MIN;
865 int cmin = constraints->min_uV;
866 int cmax = constraints->max_uV;
867
868 /* it's safe to autoconfigure fixed-voltage supplies
869 and the constraints are used by list_voltage. */
870 if (count == 1 && !cmin) {
871 cmin = 1;
872 cmax = INT_MAX;
873 constraints->min_uV = cmin;
874 constraints->max_uV = cmax;
875 }
876
877 /* voltage constraints are optional */
878 if ((cmin == 0) && (cmax == 0))
879 return 0;
880
881 /* else require explicit machine-level constraints */
882 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883 rdev_err(rdev, "invalid voltage constraints\n");
884 return -EINVAL;
885 }
886
887 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888 for (i = 0; i < count; i++) {
889 int value;
890
891 value = ops->list_voltage(rdev, i);
892 if (value <= 0)
893 continue;
894
895 /* maybe adjust [min_uV..max_uV] */
896 if (value >= cmin && value < min_uV)
897 min_uV = value;
898 if (value <= cmax && value > max_uV)
899 max_uV = value;
900 }
901
902 /* final: [min_uV..max_uV] valid iff constraints valid */
903 if (max_uV < min_uV) {
904 rdev_err(rdev,
905 "unsupportable voltage constraints %u-%uuV\n",
906 min_uV, max_uV);
907 return -EINVAL;
908 }
909
910 /* use regulator's subset of machine constraints */
911 if (constraints->min_uV < min_uV) {
912 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913 constraints->min_uV, min_uV);
914 constraints->min_uV = min_uV;
915 }
916 if (constraints->max_uV > max_uV) {
917 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918 constraints->max_uV, max_uV);
919 constraints->max_uV = max_uV;
920 }
921 }
922
923 return 0;
924}
925
926static int machine_constraints_current(struct regulator_dev *rdev,
927 struct regulation_constraints *constraints)
928{
929 struct regulator_ops *ops = rdev->desc->ops;
930 int ret;
931
932 if (!constraints->min_uA && !constraints->max_uA)
933 return 0;
934
935 if (constraints->min_uA > constraints->max_uA) {
936 rdev_err(rdev, "Invalid current constraints\n");
937 return -EINVAL;
938 }
939
940 if (!ops->set_current_limit || !ops->get_current_limit) {
941 rdev_warn(rdev, "Operation of current configuration missing\n");
942 return 0;
943 }
944
945 /* Set regulator current in constraints range */
946 ret = ops->set_current_limit(rdev, constraints->min_uA,
947 constraints->max_uA);
948 if (ret < 0) {
949 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
950 return ret;
951 }
952
953 return 0;
954}
955
956static int _regulator_do_enable(struct regulator_dev *rdev);
957
958/**
959 * set_machine_constraints - sets regulator constraints
960 * @rdev: regulator source
961 * @constraints: constraints to apply
962 *
963 * Allows platform initialisation code to define and constrain
964 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
965 * Constraints *must* be set by platform code in order for some
966 * regulator operations to proceed i.e. set_voltage, set_current_limit,
967 * set_mode.
968 */
969static int set_machine_constraints(struct regulator_dev *rdev,
970 const struct regulation_constraints *constraints)
971{
972 int ret = 0;
973 struct regulator_ops *ops = rdev->desc->ops;
974
975 if (constraints)
976 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
977 GFP_KERNEL);
978 else
979 rdev->constraints = kzalloc(sizeof(*constraints),
980 GFP_KERNEL);
981 if (!rdev->constraints)
982 return -ENOMEM;
983
984 ret = machine_constraints_voltage(rdev, rdev->constraints);
985 if (ret != 0)
986 goto out;
987
988 ret = machine_constraints_current(rdev, rdev->constraints);
989 if (ret != 0)
990 goto out;
991
992 /* do we need to setup our suspend state */
993 if (rdev->constraints->initial_state) {
994 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
995 if (ret < 0) {
996 rdev_err(rdev, "failed to set suspend state\n");
997 goto out;
998 }
999 }
1000
1001 if (rdev->constraints->initial_mode) {
1002 if (!ops->set_mode) {
1003 rdev_err(rdev, "no set_mode operation\n");
1004 ret = -EINVAL;
1005 goto out;
1006 }
1007
1008 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1009 if (ret < 0) {
1010 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1011 goto out;
1012 }
1013 }
1014
1015 /* If the constraints say the regulator should be on at this point
1016 * and we have control then make sure it is enabled.
1017 */
1018 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1019 ret = _regulator_do_enable(rdev);
1020 if (ret < 0 && ret != -EINVAL) {
1021 rdev_err(rdev, "failed to enable\n");
1022 goto out;
1023 }
1024 }
1025
1026 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1027 && ops->set_ramp_delay) {
1028 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1029 if (ret < 0) {
1030 rdev_err(rdev, "failed to set ramp_delay\n");
1031 goto out;
1032 }
1033 }
1034
1035 print_constraints(rdev);
1036 return 0;
1037out:
1038 kfree(rdev->constraints);
1039 rdev->constraints = NULL;
1040 return ret;
1041}
1042
1043/**
1044 * set_supply - set regulator supply regulator
1045 * @rdev: regulator name
1046 * @supply_rdev: supply regulator name
1047 *
1048 * Called by platform initialisation code to set the supply regulator for this
1049 * regulator. This ensures that a regulators supply will also be enabled by the
1050 * core if it's child is enabled.
1051 */
1052static int set_supply(struct regulator_dev *rdev,
1053 struct regulator_dev *supply_rdev)
1054{
1055 int err;
1056
1057 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1058
1059 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1060 if (rdev->supply == NULL) {
1061 err = -ENOMEM;
1062 return err;
1063 }
1064 supply_rdev->open_count++;
1065
1066 return 0;
1067}
1068
1069/**
1070 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1071 * @rdev: regulator source
1072 * @consumer_dev_name: dev_name() string for device supply applies to
1073 * @supply: symbolic name for supply
1074 *
1075 * Allows platform initialisation code to map physical regulator
1076 * sources to symbolic names for supplies for use by devices. Devices
1077 * should use these symbolic names to request regulators, avoiding the
1078 * need to provide board-specific regulator names as platform data.
1079 */
1080static int set_consumer_device_supply(struct regulator_dev *rdev,
1081 const char *consumer_dev_name,
1082 const char *supply)
1083{
1084 struct regulator_map *node;
1085 int has_dev;
1086
1087 if (supply == NULL)
1088 return -EINVAL;
1089
1090 if (consumer_dev_name != NULL)
1091 has_dev = 1;
1092 else
1093 has_dev = 0;
1094
1095 list_for_each_entry(node, ®ulator_map_list, list) {
1096 if (node->dev_name && consumer_dev_name) {
1097 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1098 continue;
1099 } else if (node->dev_name || consumer_dev_name) {
1100 continue;
1101 }
1102
1103 if (strcmp(node->supply, supply) != 0)
1104 continue;
1105
1106 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1107 consumer_dev_name,
1108 dev_name(&node->regulator->dev),
1109 node->regulator->desc->name,
1110 supply,
1111 dev_name(&rdev->dev), rdev_get_name(rdev));
1112 return -EBUSY;
1113 }
1114
1115 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1116 if (node == NULL)
1117 return -ENOMEM;
1118
1119 node->regulator = rdev;
1120 node->supply = supply;
1121
1122 if (has_dev) {
1123 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1124 if (node->dev_name == NULL) {
1125 kfree(node);
1126 return -ENOMEM;
1127 }
1128 }
1129
1130 list_add(&node->list, ®ulator_map_list);
1131 return 0;
1132}
1133
1134static void unset_regulator_supplies(struct regulator_dev *rdev)
1135{
1136 struct regulator_map *node, *n;
1137
1138 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1139 if (rdev == node->regulator) {
1140 list_del(&node->list);
1141 kfree(node->dev_name);
1142 kfree(node);
1143 }
1144 }
1145}
1146
1147#define REG_STR_SIZE 64
1148
1149static struct regulator *create_regulator(struct regulator_dev *rdev,
1150 struct device *dev,
1151 const char *supply_name)
1152{
1153 struct regulator *regulator;
1154 char buf[REG_STR_SIZE];
1155 int err, size;
1156
1157 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1158 if (regulator == NULL)
1159 return NULL;
1160
1161 mutex_lock(&rdev->mutex);
1162 regulator->rdev = rdev;
1163 list_add(®ulator->list, &rdev->consumer_list);
1164
1165 if (dev) {
1166 regulator->dev = dev;
1167
1168 /* Add a link to the device sysfs entry */
1169 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1170 dev->kobj.name, supply_name);
1171 if (size >= REG_STR_SIZE)
1172 goto overflow_err;
1173
1174 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1175 if (regulator->supply_name == NULL)
1176 goto overflow_err;
1177
1178 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1179 buf);
1180 if (err) {
1181 rdev_warn(rdev, "could not add device link %s err %d\n",
1182 dev->kobj.name, err);
1183 /* non-fatal */
1184 }
1185 } else {
1186 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1187 if (regulator->supply_name == NULL)
1188 goto overflow_err;
1189 }
1190
1191 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1192 rdev->debugfs);
1193 if (!regulator->debugfs) {
1194 rdev_warn(rdev, "Failed to create debugfs directory\n");
1195 } else {
1196 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1197 ®ulator->uA_load);
1198 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1199 ®ulator->min_uV);
1200 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1201 ®ulator->max_uV);
1202 }
1203
1204 /*
1205 * Check now if the regulator is an always on regulator - if
1206 * it is then we don't need to do nearly so much work for
1207 * enable/disable calls.
1208 */
1209 if (!_regulator_can_change_status(rdev) &&
1210 _regulator_is_enabled(rdev))
1211 regulator->always_on = true;
1212
1213 mutex_unlock(&rdev->mutex);
1214 return regulator;
1215overflow_err:
1216 list_del(®ulator->list);
1217 kfree(regulator);
1218 mutex_unlock(&rdev->mutex);
1219 return NULL;
1220}
1221
1222static int _regulator_get_enable_time(struct regulator_dev *rdev)
1223{
1224 if (rdev->constraints && rdev->constraints->enable_time)
1225 return rdev->constraints->enable_time;
1226 if (!rdev->desc->ops->enable_time)
1227 return rdev->desc->enable_time;
1228 return rdev->desc->ops->enable_time(rdev);
1229}
1230
1231static struct regulator_supply_alias *regulator_find_supply_alias(
1232 struct device *dev, const char *supply)
1233{
1234 struct regulator_supply_alias *map;
1235
1236 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1237 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1238 return map;
1239
1240 return NULL;
1241}
1242
1243static void regulator_supply_alias(struct device **dev, const char **supply)
1244{
1245 struct regulator_supply_alias *map;
1246
1247 map = regulator_find_supply_alias(*dev, *supply);
1248 if (map) {
1249 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1250 *supply, map->alias_supply,
1251 dev_name(map->alias_dev));
1252 *dev = map->alias_dev;
1253 *supply = map->alias_supply;
1254 }
1255}
1256
1257static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1258 const char *supply,
1259 int *ret)
1260{
1261 struct regulator_dev *r;
1262 struct device_node *node;
1263 struct regulator_map *map;
1264 const char *devname = NULL;
1265
1266 regulator_supply_alias(&dev, &supply);
1267
1268 /* first do a dt based lookup */
1269 if (dev && dev->of_node) {
1270 node = of_get_regulator(dev, supply);
1271 if (node) {
1272 list_for_each_entry(r, ®ulator_list, list)
1273 if (r->dev.parent &&
1274 node == r->dev.of_node)
1275 return r;
1276 *ret = -EPROBE_DEFER;
1277 return NULL;
1278 } else {
1279 /*
1280 * If we couldn't even get the node then it's
1281 * not just that the device didn't register
1282 * yet, there's no node and we'll never
1283 * succeed.
1284 */
1285 *ret = -ENODEV;
1286 }
1287 }
1288
1289 /* if not found, try doing it non-dt way */
1290 if (dev)
1291 devname = dev_name(dev);
1292
1293 list_for_each_entry(r, ®ulator_list, list)
1294 if (strcmp(rdev_get_name(r), supply) == 0)
1295 return r;
1296
1297 list_for_each_entry(map, ®ulator_map_list, list) {
1298 /* If the mapping has a device set up it must match */
1299 if (map->dev_name &&
1300 (!devname || strcmp(map->dev_name, devname)))
1301 continue;
1302
1303 if (strcmp(map->supply, supply) == 0)
1304 return map->regulator;
1305 }
1306
1307
1308 return NULL;
1309}
1310
1311/* Internal regulator request function */
1312static struct regulator *_regulator_get(struct device *dev, const char *id,
1313 bool exclusive, bool allow_dummy)
1314{
1315 struct regulator_dev *rdev;
1316 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1317 const char *devname = NULL;
1318 int ret;
1319
1320 if (id == NULL) {
1321 pr_err("get() with no identifier\n");
1322 return ERR_PTR(-EINVAL);
1323 }
1324
1325 if (dev)
1326 devname = dev_name(dev);
1327
1328 if (have_full_constraints())
1329 ret = -ENODEV;
1330 else
1331 ret = -EPROBE_DEFER;
1332
1333 mutex_lock(®ulator_list_mutex);
1334
1335 rdev = regulator_dev_lookup(dev, id, &ret);
1336 if (rdev)
1337 goto found;
1338
1339 regulator = ERR_PTR(ret);
1340
1341 /*
1342 * If we have return value from dev_lookup fail, we do not expect to
1343 * succeed, so, quit with appropriate error value
1344 */
1345 if (ret && ret != -ENODEV)
1346 goto out;
1347
1348 if (!devname)
1349 devname = "deviceless";
1350
1351 /*
1352 * Assume that a regulator is physically present and enabled
1353 * even if it isn't hooked up and just provide a dummy.
1354 */
1355 if (have_full_constraints() && allow_dummy) {
1356 pr_warn("%s supply %s not found, using dummy regulator\n",
1357 devname, id);
1358
1359 rdev = dummy_regulator_rdev;
1360 goto found;
1361 /* Don't log an error when called from regulator_get_optional() */
1362 } else if (!have_full_constraints() || exclusive) {
1363 dev_warn(dev, "dummy supplies not allowed\n");
1364 }
1365
1366 mutex_unlock(®ulator_list_mutex);
1367 return regulator;
1368
1369found:
1370 if (rdev->exclusive) {
1371 regulator = ERR_PTR(-EPERM);
1372 goto out;
1373 }
1374
1375 if (exclusive && rdev->open_count) {
1376 regulator = ERR_PTR(-EBUSY);
1377 goto out;
1378 }
1379
1380 if (!try_module_get(rdev->owner))
1381 goto out;
1382
1383 regulator = create_regulator(rdev, dev, id);
1384 if (regulator == NULL) {
1385 regulator = ERR_PTR(-ENOMEM);
1386 module_put(rdev->owner);
1387 goto out;
1388 }
1389
1390 rdev->open_count++;
1391 if (exclusive) {
1392 rdev->exclusive = 1;
1393
1394 ret = _regulator_is_enabled(rdev);
1395 if (ret > 0)
1396 rdev->use_count = 1;
1397 else
1398 rdev->use_count = 0;
1399 }
1400
1401out:
1402 mutex_unlock(®ulator_list_mutex);
1403
1404 return regulator;
1405}
1406
1407/**
1408 * regulator_get - lookup and obtain a reference to a regulator.
1409 * @dev: device for regulator "consumer"
1410 * @id: Supply name or regulator ID.
1411 *
1412 * Returns a struct regulator corresponding to the regulator producer,
1413 * or IS_ERR() condition containing errno.
1414 *
1415 * Use of supply names configured via regulator_set_device_supply() is
1416 * strongly encouraged. It is recommended that the supply name used
1417 * should match the name used for the supply and/or the relevant
1418 * device pins in the datasheet.
1419 */
1420struct regulator *regulator_get(struct device *dev, const char *id)
1421{
1422 return _regulator_get(dev, id, false, true);
1423}
1424EXPORT_SYMBOL_GPL(regulator_get);
1425
1426/**
1427 * regulator_get_exclusive - obtain exclusive access to a regulator.
1428 * @dev: device for regulator "consumer"
1429 * @id: Supply name or regulator ID.
1430 *
1431 * Returns a struct regulator corresponding to the regulator producer,
1432 * or IS_ERR() condition containing errno. Other consumers will be
1433 * unable to obtain this reference is held and the use count for the
1434 * regulator will be initialised to reflect the current state of the
1435 * regulator.
1436 *
1437 * This is intended for use by consumers which cannot tolerate shared
1438 * use of the regulator such as those which need to force the
1439 * regulator off for correct operation of the hardware they are
1440 * controlling.
1441 *
1442 * Use of supply names configured via regulator_set_device_supply() is
1443 * strongly encouraged. It is recommended that the supply name used
1444 * should match the name used for the supply and/or the relevant
1445 * device pins in the datasheet.
1446 */
1447struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1448{
1449 return _regulator_get(dev, id, true, false);
1450}
1451EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1452
1453/**
1454 * regulator_get_optional - obtain optional access to a regulator.
1455 * @dev: device for regulator "consumer"
1456 * @id: Supply name or regulator ID.
1457 *
1458 * Returns a struct regulator corresponding to the regulator producer,
1459 * or IS_ERR() condition containing errno. Other consumers will be
1460 * unable to obtain this reference is held and the use count for the
1461 * regulator will be initialised to reflect the current state of the
1462 * regulator.
1463 *
1464 * This is intended for use by consumers for devices which can have
1465 * some supplies unconnected in normal use, such as some MMC devices.
1466 * It can allow the regulator core to provide stub supplies for other
1467 * supplies requested using normal regulator_get() calls without
1468 * disrupting the operation of drivers that can handle absent
1469 * supplies.
1470 *
1471 * Use of supply names configured via regulator_set_device_supply() is
1472 * strongly encouraged. It is recommended that the supply name used
1473 * should match the name used for the supply and/or the relevant
1474 * device pins in the datasheet.
1475 */
1476struct regulator *regulator_get_optional(struct device *dev, const char *id)
1477{
1478 return _regulator_get(dev, id, false, false);
1479}
1480EXPORT_SYMBOL_GPL(regulator_get_optional);
1481
1482/* Locks held by regulator_put() */
1483static void _regulator_put(struct regulator *regulator)
1484{
1485 struct regulator_dev *rdev;
1486
1487 if (regulator == NULL || IS_ERR(regulator))
1488 return;
1489
1490 rdev = regulator->rdev;
1491
1492 debugfs_remove_recursive(regulator->debugfs);
1493
1494 /* remove any sysfs entries */
1495 if (regulator->dev)
1496 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1497 kfree(regulator->supply_name);
1498 list_del(®ulator->list);
1499 kfree(regulator);
1500
1501 rdev->open_count--;
1502 rdev->exclusive = 0;
1503
1504 module_put(rdev->owner);
1505}
1506
1507/**
1508 * regulator_put - "free" the regulator source
1509 * @regulator: regulator source
1510 *
1511 * Note: drivers must ensure that all regulator_enable calls made on this
1512 * regulator source are balanced by regulator_disable calls prior to calling
1513 * this function.
1514 */
1515void regulator_put(struct regulator *regulator)
1516{
1517 mutex_lock(®ulator_list_mutex);
1518 _regulator_put(regulator);
1519 mutex_unlock(®ulator_list_mutex);
1520}
1521EXPORT_SYMBOL_GPL(regulator_put);
1522
1523/**
1524 * regulator_register_supply_alias - Provide device alias for supply lookup
1525 *
1526 * @dev: device that will be given as the regulator "consumer"
1527 * @id: Supply name or regulator ID
1528 * @alias_dev: device that should be used to lookup the supply
1529 * @alias_id: Supply name or regulator ID that should be used to lookup the
1530 * supply
1531 *
1532 * All lookups for id on dev will instead be conducted for alias_id on
1533 * alias_dev.
1534 */
1535int regulator_register_supply_alias(struct device *dev, const char *id,
1536 struct device *alias_dev,
1537 const char *alias_id)
1538{
1539 struct regulator_supply_alias *map;
1540
1541 map = regulator_find_supply_alias(dev, id);
1542 if (map)
1543 return -EEXIST;
1544
1545 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1546 if (!map)
1547 return -ENOMEM;
1548
1549 map->src_dev = dev;
1550 map->src_supply = id;
1551 map->alias_dev = alias_dev;
1552 map->alias_supply = alias_id;
1553
1554 list_add(&map->list, ®ulator_supply_alias_list);
1555
1556 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1557 id, dev_name(dev), alias_id, dev_name(alias_dev));
1558
1559 return 0;
1560}
1561EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1562
1563/**
1564 * regulator_unregister_supply_alias - Remove device alias
1565 *
1566 * @dev: device that will be given as the regulator "consumer"
1567 * @id: Supply name or regulator ID
1568 *
1569 * Remove a lookup alias if one exists for id on dev.
1570 */
1571void regulator_unregister_supply_alias(struct device *dev, const char *id)
1572{
1573 struct regulator_supply_alias *map;
1574
1575 map = regulator_find_supply_alias(dev, id);
1576 if (map) {
1577 list_del(&map->list);
1578 kfree(map);
1579 }
1580}
1581EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1582
1583/**
1584 * regulator_bulk_register_supply_alias - register multiple aliases
1585 *
1586 * @dev: device that will be given as the regulator "consumer"
1587 * @id: List of supply names or regulator IDs
1588 * @alias_dev: device that should be used to lookup the supply
1589 * @alias_id: List of supply names or regulator IDs that should be used to
1590 * lookup the supply
1591 * @num_id: Number of aliases to register
1592 *
1593 * @return 0 on success, an errno on failure.
1594 *
1595 * This helper function allows drivers to register several supply
1596 * aliases in one operation. If any of the aliases cannot be
1597 * registered any aliases that were registered will be removed
1598 * before returning to the caller.
1599 */
1600int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1601 struct device *alias_dev,
1602 const char **alias_id,
1603 int num_id)
1604{
1605 int i;
1606 int ret;
1607
1608 for (i = 0; i < num_id; ++i) {
1609 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1610 alias_id[i]);
1611 if (ret < 0)
1612 goto err;
1613 }
1614
1615 return 0;
1616
1617err:
1618 dev_err(dev,
1619 "Failed to create supply alias %s,%s -> %s,%s\n",
1620 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1621
1622 while (--i >= 0)
1623 regulator_unregister_supply_alias(dev, id[i]);
1624
1625 return ret;
1626}
1627EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1628
1629/**
1630 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1631 *
1632 * @dev: device that will be given as the regulator "consumer"
1633 * @id: List of supply names or regulator IDs
1634 * @num_id: Number of aliases to unregister
1635 *
1636 * This helper function allows drivers to unregister several supply
1637 * aliases in one operation.
1638 */
1639void regulator_bulk_unregister_supply_alias(struct device *dev,
1640 const char **id,
1641 int num_id)
1642{
1643 int i;
1644
1645 for (i = 0; i < num_id; ++i)
1646 regulator_unregister_supply_alias(dev, id[i]);
1647}
1648EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1649
1650
1651/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1652static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1653 const struct regulator_config *config)
1654{
1655 struct regulator_enable_gpio *pin;
1656 int ret;
1657
1658 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
1659 if (pin->gpio == config->ena_gpio) {
1660 rdev_dbg(rdev, "GPIO %d is already used\n",
1661 config->ena_gpio);
1662 goto update_ena_gpio_to_rdev;
1663 }
1664 }
1665
1666 ret = gpio_request_one(config->ena_gpio,
1667 GPIOF_DIR_OUT | config->ena_gpio_flags,
1668 rdev_get_name(rdev));
1669 if (ret)
1670 return ret;
1671
1672 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1673 if (pin == NULL) {
1674 gpio_free(config->ena_gpio);
1675 return -ENOMEM;
1676 }
1677
1678 pin->gpio = config->ena_gpio;
1679 pin->ena_gpio_invert = config->ena_gpio_invert;
1680 list_add(&pin->list, ®ulator_ena_gpio_list);
1681
1682update_ena_gpio_to_rdev:
1683 pin->request_count++;
1684 rdev->ena_pin = pin;
1685 return 0;
1686}
1687
1688static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1689{
1690 struct regulator_enable_gpio *pin, *n;
1691
1692 if (!rdev->ena_pin)
1693 return;
1694
1695 /* Free the GPIO only in case of no use */
1696 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
1697 if (pin->gpio == rdev->ena_pin->gpio) {
1698 if (pin->request_count <= 1) {
1699 pin->request_count = 0;
1700 gpio_free(pin->gpio);
1701 list_del(&pin->list);
1702 kfree(pin);
1703 } else {
1704 pin->request_count--;
1705 }
1706 }
1707 }
1708}
1709
1710/**
1711 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1712 * @rdev: regulator_dev structure
1713 * @enable: enable GPIO at initial use?
1714 *
1715 * GPIO is enabled in case of initial use. (enable_count is 0)
1716 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1717 */
1718static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1719{
1720 struct regulator_enable_gpio *pin = rdev->ena_pin;
1721
1722 if (!pin)
1723 return -EINVAL;
1724
1725 if (enable) {
1726 /* Enable GPIO at initial use */
1727 if (pin->enable_count == 0)
1728 gpio_set_value_cansleep(pin->gpio,
1729 !pin->ena_gpio_invert);
1730
1731 pin->enable_count++;
1732 } else {
1733 if (pin->enable_count > 1) {
1734 pin->enable_count--;
1735 return 0;
1736 }
1737
1738 /* Disable GPIO if not used */
1739 if (pin->enable_count <= 1) {
1740 gpio_set_value_cansleep(pin->gpio,
1741 pin->ena_gpio_invert);
1742 pin->enable_count = 0;
1743 }
1744 }
1745
1746 return 0;
1747}
1748
1749static int _regulator_do_enable(struct regulator_dev *rdev)
1750{
1751 int ret, delay;
1752
1753 /* Query before enabling in case configuration dependent. */
1754 ret = _regulator_get_enable_time(rdev);
1755 if (ret >= 0) {
1756 delay = ret;
1757 } else {
1758 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1759 delay = 0;
1760 }
1761
1762 trace_regulator_enable(rdev_get_name(rdev));
1763
1764 if (rdev->ena_pin) {
1765 ret = regulator_ena_gpio_ctrl(rdev, true);
1766 if (ret < 0)
1767 return ret;
1768 rdev->ena_gpio_state = 1;
1769 } else if (rdev->desc->ops->enable) {
1770 ret = rdev->desc->ops->enable(rdev);
1771 if (ret < 0)
1772 return ret;
1773 } else {
1774 return -EINVAL;
1775 }
1776
1777 /* Allow the regulator to ramp; it would be useful to extend
1778 * this for bulk operations so that the regulators can ramp
1779 * together. */
1780 trace_regulator_enable_delay(rdev_get_name(rdev));
1781
1782 /*
1783 * Delay for the requested amount of time as per the guidelines in:
1784 *
1785 * Documentation/timers/timers-howto.txt
1786 *
1787 * The assumption here is that regulators will never be enabled in
1788 * atomic context and therefore sleeping functions can be used.
1789 */
1790 if (delay) {
1791 unsigned int ms = delay / 1000;
1792 unsigned int us = delay % 1000;
1793
1794 if (ms > 0) {
1795 /*
1796 * For small enough values, handle super-millisecond
1797 * delays in the usleep_range() call below.
1798 */
1799 if (ms < 20)
1800 us += ms * 1000;
1801 else
1802 msleep(ms);
1803 }
1804
1805 /*
1806 * Give the scheduler some room to coalesce with any other
1807 * wakeup sources. For delays shorter than 10 us, don't even
1808 * bother setting up high-resolution timers and just busy-
1809 * loop.
1810 */
1811 if (us >= 10)
1812 usleep_range(us, us + 100);
1813 else
1814 udelay(us);
1815 }
1816
1817 trace_regulator_enable_complete(rdev_get_name(rdev));
1818
1819 return 0;
1820}
1821
1822/* locks held by regulator_enable() */
1823static int _regulator_enable(struct regulator_dev *rdev)
1824{
1825 int ret;
1826
1827 /* check voltage and requested load before enabling */
1828 if (rdev->constraints &&
1829 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1830 drms_uA_update(rdev);
1831
1832 if (rdev->use_count == 0) {
1833 /* The regulator may on if it's not switchable or left on */
1834 ret = _regulator_is_enabled(rdev);
1835 if (ret == -EINVAL || ret == 0) {
1836 if (!_regulator_can_change_status(rdev))
1837 return -EPERM;
1838
1839 ret = _regulator_do_enable(rdev);
1840 if (ret < 0)
1841 return ret;
1842
1843 } else if (ret < 0) {
1844 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1845 return ret;
1846 }
1847 /* Fallthrough on positive return values - already enabled */
1848 }
1849
1850 rdev->use_count++;
1851
1852 return 0;
1853}
1854
1855/**
1856 * regulator_enable - enable regulator output
1857 * @regulator: regulator source
1858 *
1859 * Request that the regulator be enabled with the regulator output at
1860 * the predefined voltage or current value. Calls to regulator_enable()
1861 * must be balanced with calls to regulator_disable().
1862 *
1863 * NOTE: the output value can be set by other drivers, boot loader or may be
1864 * hardwired in the regulator.
1865 */
1866int regulator_enable(struct regulator *regulator)
1867{
1868 struct regulator_dev *rdev = regulator->rdev;
1869 int ret = 0;
1870
1871 if (regulator->always_on)
1872 return 0;
1873
1874 if (rdev->supply) {
1875 ret = regulator_enable(rdev->supply);
1876 if (ret != 0)
1877 return ret;
1878 }
1879
1880 mutex_lock(&rdev->mutex);
1881 ret = _regulator_enable(rdev);
1882 mutex_unlock(&rdev->mutex);
1883
1884 if (ret != 0 && rdev->supply)
1885 regulator_disable(rdev->supply);
1886
1887 return ret;
1888}
1889EXPORT_SYMBOL_GPL(regulator_enable);
1890
1891static int _regulator_do_disable(struct regulator_dev *rdev)
1892{
1893 int ret;
1894
1895 trace_regulator_disable(rdev_get_name(rdev));
1896
1897 if (rdev->ena_pin) {
1898 ret = regulator_ena_gpio_ctrl(rdev, false);
1899 if (ret < 0)
1900 return ret;
1901 rdev->ena_gpio_state = 0;
1902
1903 } else if (rdev->desc->ops->disable) {
1904 ret = rdev->desc->ops->disable(rdev);
1905 if (ret != 0)
1906 return ret;
1907 }
1908
1909 trace_regulator_disable_complete(rdev_get_name(rdev));
1910
1911 return 0;
1912}
1913
1914/* locks held by regulator_disable() */
1915static int _regulator_disable(struct regulator_dev *rdev)
1916{
1917 int ret = 0;
1918
1919 if (WARN(rdev->use_count <= 0,
1920 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1921 return -EIO;
1922
1923 /* are we the last user and permitted to disable ? */
1924 if (rdev->use_count == 1 &&
1925 (rdev->constraints && !rdev->constraints->always_on)) {
1926
1927 /* we are last user */
1928 if (_regulator_can_change_status(rdev)) {
1929 ret = _regulator_do_disable(rdev);
1930 if (ret < 0) {
1931 rdev_err(rdev, "failed to disable\n");
1932 return ret;
1933 }
1934 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1935 NULL);
1936 }
1937
1938 rdev->use_count = 0;
1939 } else if (rdev->use_count > 1) {
1940
1941 if (rdev->constraints &&
1942 (rdev->constraints->valid_ops_mask &
1943 REGULATOR_CHANGE_DRMS))
1944 drms_uA_update(rdev);
1945
1946 rdev->use_count--;
1947 }
1948
1949 return ret;
1950}
1951
1952/**
1953 * regulator_disable - disable regulator output
1954 * @regulator: regulator source
1955 *
1956 * Disable the regulator output voltage or current. Calls to
1957 * regulator_enable() must be balanced with calls to
1958 * regulator_disable().
1959 *
1960 * NOTE: this will only disable the regulator output if no other consumer
1961 * devices have it enabled, the regulator device supports disabling and
1962 * machine constraints permit this operation.
1963 */
1964int regulator_disable(struct regulator *regulator)
1965{
1966 struct regulator_dev *rdev = regulator->rdev;
1967 int ret = 0;
1968
1969 if (regulator->always_on)
1970 return 0;
1971
1972 mutex_lock(&rdev->mutex);
1973 ret = _regulator_disable(rdev);
1974 mutex_unlock(&rdev->mutex);
1975
1976 if (ret == 0 && rdev->supply)
1977 regulator_disable(rdev->supply);
1978
1979 return ret;
1980}
1981EXPORT_SYMBOL_GPL(regulator_disable);
1982
1983/* locks held by regulator_force_disable() */
1984static int _regulator_force_disable(struct regulator_dev *rdev)
1985{
1986 int ret = 0;
1987
1988 ret = _regulator_do_disable(rdev);
1989 if (ret < 0) {
1990 rdev_err(rdev, "failed to force disable\n");
1991 return ret;
1992 }
1993
1994 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1995 REGULATOR_EVENT_DISABLE, NULL);
1996
1997 return 0;
1998}
1999
2000/**
2001 * regulator_force_disable - force disable regulator output
2002 * @regulator: regulator source
2003 *
2004 * Forcibly disable the regulator output voltage or current.
2005 * NOTE: this *will* disable the regulator output even if other consumer
2006 * devices have it enabled. This should be used for situations when device
2007 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2008 */
2009int regulator_force_disable(struct regulator *regulator)
2010{
2011 struct regulator_dev *rdev = regulator->rdev;
2012 int ret;
2013
2014 mutex_lock(&rdev->mutex);
2015 regulator->uA_load = 0;
2016 ret = _regulator_force_disable(regulator->rdev);
2017 mutex_unlock(&rdev->mutex);
2018
2019 if (rdev->supply)
2020 while (rdev->open_count--)
2021 regulator_disable(rdev->supply);
2022
2023 return ret;
2024}
2025EXPORT_SYMBOL_GPL(regulator_force_disable);
2026
2027static void regulator_disable_work(struct work_struct *work)
2028{
2029 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2030 disable_work.work);
2031 int count, i, ret;
2032
2033 mutex_lock(&rdev->mutex);
2034
2035 BUG_ON(!rdev->deferred_disables);
2036
2037 count = rdev->deferred_disables;
2038 rdev->deferred_disables = 0;
2039
2040 for (i = 0; i < count; i++) {
2041 ret = _regulator_disable(rdev);
2042 if (ret != 0)
2043 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2044 }
2045
2046 mutex_unlock(&rdev->mutex);
2047
2048 if (rdev->supply) {
2049 for (i = 0; i < count; i++) {
2050 ret = regulator_disable(rdev->supply);
2051 if (ret != 0) {
2052 rdev_err(rdev,
2053 "Supply disable failed: %d\n", ret);
2054 }
2055 }
2056 }
2057}
2058
2059/**
2060 * regulator_disable_deferred - disable regulator output with delay
2061 * @regulator: regulator source
2062 * @ms: miliseconds until the regulator is disabled
2063 *
2064 * Execute regulator_disable() on the regulator after a delay. This
2065 * is intended for use with devices that require some time to quiesce.
2066 *
2067 * NOTE: this will only disable the regulator output if no other consumer
2068 * devices have it enabled, the regulator device supports disabling and
2069 * machine constraints permit this operation.
2070 */
2071int regulator_disable_deferred(struct regulator *regulator, int ms)
2072{
2073 struct regulator_dev *rdev = regulator->rdev;
2074 int ret;
2075
2076 if (regulator->always_on)
2077 return 0;
2078
2079 if (!ms)
2080 return regulator_disable(regulator);
2081
2082 mutex_lock(&rdev->mutex);
2083 rdev->deferred_disables++;
2084 mutex_unlock(&rdev->mutex);
2085
2086 ret = queue_delayed_work(system_power_efficient_wq,
2087 &rdev->disable_work,
2088 msecs_to_jiffies(ms));
2089 if (ret < 0)
2090 return ret;
2091 else
2092 return 0;
2093}
2094EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2095
2096static int _regulator_is_enabled(struct regulator_dev *rdev)
2097{
2098 /* A GPIO control always takes precedence */
2099 if (rdev->ena_pin)
2100 return rdev->ena_gpio_state;
2101
2102 /* If we don't know then assume that the regulator is always on */
2103 if (!rdev->desc->ops->is_enabled)
2104 return 1;
2105
2106 return rdev->desc->ops->is_enabled(rdev);
2107}
2108
2109/**
2110 * regulator_is_enabled - is the regulator output enabled
2111 * @regulator: regulator source
2112 *
2113 * Returns positive if the regulator driver backing the source/client
2114 * has requested that the device be enabled, zero if it hasn't, else a
2115 * negative errno code.
2116 *
2117 * Note that the device backing this regulator handle can have multiple
2118 * users, so it might be enabled even if regulator_enable() was never
2119 * called for this particular source.
2120 */
2121int regulator_is_enabled(struct regulator *regulator)
2122{
2123 int ret;
2124
2125 if (regulator->always_on)
2126 return 1;
2127
2128 mutex_lock(®ulator->rdev->mutex);
2129 ret = _regulator_is_enabled(regulator->rdev);
2130 mutex_unlock(®ulator->rdev->mutex);
2131
2132 return ret;
2133}
2134EXPORT_SYMBOL_GPL(regulator_is_enabled);
2135
2136/**
2137 * regulator_can_change_voltage - check if regulator can change voltage
2138 * @regulator: regulator source
2139 *
2140 * Returns positive if the regulator driver backing the source/client
2141 * can change its voltage, false otherwise. Useful for detecting fixed
2142 * or dummy regulators and disabling voltage change logic in the client
2143 * driver.
2144 */
2145int regulator_can_change_voltage(struct regulator *regulator)
2146{
2147 struct regulator_dev *rdev = regulator->rdev;
2148
2149 if (rdev->constraints &&
2150 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2151 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2152 return 1;
2153
2154 if (rdev->desc->continuous_voltage_range &&
2155 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2156 rdev->constraints->min_uV != rdev->constraints->max_uV)
2157 return 1;
2158 }
2159
2160 return 0;
2161}
2162EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2163
2164/**
2165 * regulator_count_voltages - count regulator_list_voltage() selectors
2166 * @regulator: regulator source
2167 *
2168 * Returns number of selectors, or negative errno. Selectors are
2169 * numbered starting at zero, and typically correspond to bitfields
2170 * in hardware registers.
2171 */
2172int regulator_count_voltages(struct regulator *regulator)
2173{
2174 struct regulator_dev *rdev = regulator->rdev;
2175
2176 return rdev->desc->n_voltages ? : -EINVAL;
2177}
2178EXPORT_SYMBOL_GPL(regulator_count_voltages);
2179
2180/**
2181 * regulator_list_voltage - enumerate supported voltages
2182 * @regulator: regulator source
2183 * @selector: identify voltage to list
2184 * Context: can sleep
2185 *
2186 * Returns a voltage that can be passed to @regulator_set_voltage(),
2187 * zero if this selector code can't be used on this system, or a
2188 * negative errno.
2189 */
2190int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2191{
2192 struct regulator_dev *rdev = regulator->rdev;
2193 struct regulator_ops *ops = rdev->desc->ops;
2194 int ret;
2195
2196 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2197 return rdev->desc->fixed_uV;
2198
2199 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2200 return -EINVAL;
2201
2202 mutex_lock(&rdev->mutex);
2203 ret = ops->list_voltage(rdev, selector);
2204 mutex_unlock(&rdev->mutex);
2205
2206 if (ret > 0) {
2207 if (ret < rdev->constraints->min_uV)
2208 ret = 0;
2209 else if (ret > rdev->constraints->max_uV)
2210 ret = 0;
2211 }
2212
2213 return ret;
2214}
2215EXPORT_SYMBOL_GPL(regulator_list_voltage);
2216
2217/**
2218 * regulator_get_linear_step - return the voltage step size between VSEL values
2219 * @regulator: regulator source
2220 *
2221 * Returns the voltage step size between VSEL values for linear
2222 * regulators, or return 0 if the regulator isn't a linear regulator.
2223 */
2224unsigned int regulator_get_linear_step(struct regulator *regulator)
2225{
2226 struct regulator_dev *rdev = regulator->rdev;
2227
2228 return rdev->desc->uV_step;
2229}
2230EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2231
2232/**
2233 * regulator_is_supported_voltage - check if a voltage range can be supported
2234 *
2235 * @regulator: Regulator to check.
2236 * @min_uV: Minimum required voltage in uV.
2237 * @max_uV: Maximum required voltage in uV.
2238 *
2239 * Returns a boolean or a negative error code.
2240 */
2241int regulator_is_supported_voltage(struct regulator *regulator,
2242 int min_uV, int max_uV)
2243{
2244 struct regulator_dev *rdev = regulator->rdev;
2245 int i, voltages, ret;
2246
2247 /* If we can't change voltage check the current voltage */
2248 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2249 ret = regulator_get_voltage(regulator);
2250 if (ret >= 0)
2251 return min_uV <= ret && ret <= max_uV;
2252 else
2253 return ret;
2254 }
2255
2256 /* Any voltage within constrains range is fine? */
2257 if (rdev->desc->continuous_voltage_range)
2258 return min_uV >= rdev->constraints->min_uV &&
2259 max_uV <= rdev->constraints->max_uV;
2260
2261 ret = regulator_count_voltages(regulator);
2262 if (ret < 0)
2263 return ret;
2264 voltages = ret;
2265
2266 for (i = 0; i < voltages; i++) {
2267 ret = regulator_list_voltage(regulator, i);
2268
2269 if (ret >= min_uV && ret <= max_uV)
2270 return 1;
2271 }
2272
2273 return 0;
2274}
2275EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2276
2277static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2278 int min_uV, int max_uV)
2279{
2280 int ret;
2281 int delay = 0;
2282 int best_val = 0;
2283 unsigned int selector;
2284 int old_selector = -1;
2285
2286 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2287
2288 min_uV += rdev->constraints->uV_offset;
2289 max_uV += rdev->constraints->uV_offset;
2290
2291 /*
2292 * If we can't obtain the old selector there is not enough
2293 * info to call set_voltage_time_sel().
2294 */
2295 if (_regulator_is_enabled(rdev) &&
2296 rdev->desc->ops->set_voltage_time_sel &&
2297 rdev->desc->ops->get_voltage_sel) {
2298 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2299 if (old_selector < 0)
2300 return old_selector;
2301 }
2302
2303 if (rdev->desc->ops->set_voltage) {
2304 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2305 &selector);
2306
2307 if (ret >= 0) {
2308 if (rdev->desc->ops->list_voltage)
2309 best_val = rdev->desc->ops->list_voltage(rdev,
2310 selector);
2311 else
2312 best_val = _regulator_get_voltage(rdev);
2313 }
2314
2315 } else if (rdev->desc->ops->set_voltage_sel) {
2316 if (rdev->desc->ops->map_voltage) {
2317 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2318 max_uV);
2319 } else {
2320 if (rdev->desc->ops->list_voltage ==
2321 regulator_list_voltage_linear)
2322 ret = regulator_map_voltage_linear(rdev,
2323 min_uV, max_uV);
2324 else
2325 ret = regulator_map_voltage_iterate(rdev,
2326 min_uV, max_uV);
2327 }
2328
2329 if (ret >= 0) {
2330 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2331 if (min_uV <= best_val && max_uV >= best_val) {
2332 selector = ret;
2333 if (old_selector == selector)
2334 ret = 0;
2335 else
2336 ret = rdev->desc->ops->set_voltage_sel(
2337 rdev, ret);
2338 } else {
2339 ret = -EINVAL;
2340 }
2341 }
2342 } else {
2343 ret = -EINVAL;
2344 }
2345
2346 /* Call set_voltage_time_sel if successfully obtained old_selector */
2347 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2348 && old_selector != selector) {
2349
2350 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2351 old_selector, selector);
2352 if (delay < 0) {
2353 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2354 delay);
2355 delay = 0;
2356 }
2357
2358 /* Insert any necessary delays */
2359 if (delay >= 1000) {
2360 mdelay(delay / 1000);
2361 udelay(delay % 1000);
2362 } else if (delay) {
2363 udelay(delay);
2364 }
2365 }
2366
2367 if (ret == 0 && best_val >= 0) {
2368 unsigned long data = best_val;
2369
2370 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2371 (void *)data);
2372 }
2373
2374 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2375
2376 return ret;
2377}
2378
2379/**
2380 * regulator_set_voltage - set regulator output voltage
2381 * @regulator: regulator source
2382 * @min_uV: Minimum required voltage in uV
2383 * @max_uV: Maximum acceptable voltage in uV
2384 *
2385 * Sets a voltage regulator to the desired output voltage. This can be set
2386 * during any regulator state. IOW, regulator can be disabled or enabled.
2387 *
2388 * If the regulator is enabled then the voltage will change to the new value
2389 * immediately otherwise if the regulator is disabled the regulator will
2390 * output at the new voltage when enabled.
2391 *
2392 * NOTE: If the regulator is shared between several devices then the lowest
2393 * request voltage that meets the system constraints will be used.
2394 * Regulator system constraints must be set for this regulator before
2395 * calling this function otherwise this call will fail.
2396 */
2397int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2398{
2399 struct regulator_dev *rdev = regulator->rdev;
2400 int ret = 0;
2401 int old_min_uV, old_max_uV;
2402 int current_uV;
2403
2404 mutex_lock(&rdev->mutex);
2405
2406 /* If we're setting the same range as last time the change
2407 * should be a noop (some cpufreq implementations use the same
2408 * voltage for multiple frequencies, for example).
2409 */
2410 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2411 goto out;
2412
2413 /* If we're trying to set a range that overlaps the current voltage,
2414 * return succesfully even though the regulator does not support
2415 * changing the voltage.
2416 */
2417 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2418 current_uV = _regulator_get_voltage(rdev);
2419 if (min_uV <= current_uV && current_uV <= max_uV) {
2420 regulator->min_uV = min_uV;
2421 regulator->max_uV = max_uV;
2422 goto out;
2423 }
2424 }
2425
2426 /* sanity check */
2427 if (!rdev->desc->ops->set_voltage &&
2428 !rdev->desc->ops->set_voltage_sel) {
2429 ret = -EINVAL;
2430 goto out;
2431 }
2432
2433 /* constraints check */
2434 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2435 if (ret < 0)
2436 goto out;
2437
2438 /* restore original values in case of error */
2439 old_min_uV = regulator->min_uV;
2440 old_max_uV = regulator->max_uV;
2441 regulator->min_uV = min_uV;
2442 regulator->max_uV = max_uV;
2443
2444 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2445 if (ret < 0)
2446 goto out2;
2447
2448 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2449 if (ret < 0)
2450 goto out2;
2451
2452out:
2453 mutex_unlock(&rdev->mutex);
2454 return ret;
2455out2:
2456 regulator->min_uV = old_min_uV;
2457 regulator->max_uV = old_max_uV;
2458 mutex_unlock(&rdev->mutex);
2459 return ret;
2460}
2461EXPORT_SYMBOL_GPL(regulator_set_voltage);
2462
2463/**
2464 * regulator_set_voltage_time - get raise/fall time
2465 * @regulator: regulator source
2466 * @old_uV: starting voltage in microvolts
2467 * @new_uV: target voltage in microvolts
2468 *
2469 * Provided with the starting and ending voltage, this function attempts to
2470 * calculate the time in microseconds required to rise or fall to this new
2471 * voltage.
2472 */
2473int regulator_set_voltage_time(struct regulator *regulator,
2474 int old_uV, int new_uV)
2475{
2476 struct regulator_dev *rdev = regulator->rdev;
2477 struct regulator_ops *ops = rdev->desc->ops;
2478 int old_sel = -1;
2479 int new_sel = -1;
2480 int voltage;
2481 int i;
2482
2483 /* Currently requires operations to do this */
2484 if (!ops->list_voltage || !ops->set_voltage_time_sel
2485 || !rdev->desc->n_voltages)
2486 return -EINVAL;
2487
2488 for (i = 0; i < rdev->desc->n_voltages; i++) {
2489 /* We only look for exact voltage matches here */
2490 voltage = regulator_list_voltage(regulator, i);
2491 if (voltage < 0)
2492 return -EINVAL;
2493 if (voltage == 0)
2494 continue;
2495 if (voltage == old_uV)
2496 old_sel = i;
2497 if (voltage == new_uV)
2498 new_sel = i;
2499 }
2500
2501 if (old_sel < 0 || new_sel < 0)
2502 return -EINVAL;
2503
2504 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2505}
2506EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2507
2508/**
2509 * regulator_set_voltage_time_sel - get raise/fall time
2510 * @rdev: regulator source device
2511 * @old_selector: selector for starting voltage
2512 * @new_selector: selector for target voltage
2513 *
2514 * Provided with the starting and target voltage selectors, this function
2515 * returns time in microseconds required to rise or fall to this new voltage
2516 *
2517 * Drivers providing ramp_delay in regulation_constraints can use this as their
2518 * set_voltage_time_sel() operation.
2519 */
2520int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2521 unsigned int old_selector,
2522 unsigned int new_selector)
2523{
2524 unsigned int ramp_delay = 0;
2525 int old_volt, new_volt;
2526
2527 if (rdev->constraints->ramp_delay)
2528 ramp_delay = rdev->constraints->ramp_delay;
2529 else if (rdev->desc->ramp_delay)
2530 ramp_delay = rdev->desc->ramp_delay;
2531
2532 if (ramp_delay == 0) {
2533 rdev_warn(rdev, "ramp_delay not set\n");
2534 return 0;
2535 }
2536
2537 /* sanity check */
2538 if (!rdev->desc->ops->list_voltage)
2539 return -EINVAL;
2540
2541 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2542 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2543
2544 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2545}
2546EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2547
2548/**
2549 * regulator_sync_voltage - re-apply last regulator output voltage
2550 * @regulator: regulator source
2551 *
2552 * Re-apply the last configured voltage. This is intended to be used
2553 * where some external control source the consumer is cooperating with
2554 * has caused the configured voltage to change.
2555 */
2556int regulator_sync_voltage(struct regulator *regulator)
2557{
2558 struct regulator_dev *rdev = regulator->rdev;
2559 int ret, min_uV, max_uV;
2560
2561 mutex_lock(&rdev->mutex);
2562
2563 if (!rdev->desc->ops->set_voltage &&
2564 !rdev->desc->ops->set_voltage_sel) {
2565 ret = -EINVAL;
2566 goto out;
2567 }
2568
2569 /* This is only going to work if we've had a voltage configured. */
2570 if (!regulator->min_uV && !regulator->max_uV) {
2571 ret = -EINVAL;
2572 goto out;
2573 }
2574
2575 min_uV = regulator->min_uV;
2576 max_uV = regulator->max_uV;
2577
2578 /* This should be a paranoia check... */
2579 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2580 if (ret < 0)
2581 goto out;
2582
2583 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2584 if (ret < 0)
2585 goto out;
2586
2587 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2588
2589out:
2590 mutex_unlock(&rdev->mutex);
2591 return ret;
2592}
2593EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2594
2595static int _regulator_get_voltage(struct regulator_dev *rdev)
2596{
2597 int sel, ret;
2598
2599 if (rdev->desc->ops->get_voltage_sel) {
2600 sel = rdev->desc->ops->get_voltage_sel(rdev);
2601 if (sel < 0)
2602 return sel;
2603 ret = rdev->desc->ops->list_voltage(rdev, sel);
2604 } else if (rdev->desc->ops->get_voltage) {
2605 ret = rdev->desc->ops->get_voltage(rdev);
2606 } else if (rdev->desc->ops->list_voltage) {
2607 ret = rdev->desc->ops->list_voltage(rdev, 0);
2608 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2609 ret = rdev->desc->fixed_uV;
2610 } else {
2611 return -EINVAL;
2612 }
2613
2614 if (ret < 0)
2615 return ret;
2616 return ret - rdev->constraints->uV_offset;
2617}
2618
2619/**
2620 * regulator_get_voltage - get regulator output voltage
2621 * @regulator: regulator source
2622 *
2623 * This returns the current regulator voltage in uV.
2624 *
2625 * NOTE: If the regulator is disabled it will return the voltage value. This
2626 * function should not be used to determine regulator state.
2627 */
2628int regulator_get_voltage(struct regulator *regulator)
2629{
2630 int ret;
2631
2632 mutex_lock(®ulator->rdev->mutex);
2633
2634 ret = _regulator_get_voltage(regulator->rdev);
2635
2636 mutex_unlock(®ulator->rdev->mutex);
2637
2638 return ret;
2639}
2640EXPORT_SYMBOL_GPL(regulator_get_voltage);
2641
2642/**
2643 * regulator_set_current_limit - set regulator output current limit
2644 * @regulator: regulator source
2645 * @min_uA: Minimum supported current in uA
2646 * @max_uA: Maximum supported current in uA
2647 *
2648 * Sets current sink to the desired output current. This can be set during
2649 * any regulator state. IOW, regulator can be disabled or enabled.
2650 *
2651 * If the regulator is enabled then the current will change to the new value
2652 * immediately otherwise if the regulator is disabled the regulator will
2653 * output at the new current when enabled.
2654 *
2655 * NOTE: Regulator system constraints must be set for this regulator before
2656 * calling this function otherwise this call will fail.
2657 */
2658int regulator_set_current_limit(struct regulator *regulator,
2659 int min_uA, int max_uA)
2660{
2661 struct regulator_dev *rdev = regulator->rdev;
2662 int ret;
2663
2664 mutex_lock(&rdev->mutex);
2665
2666 /* sanity check */
2667 if (!rdev->desc->ops->set_current_limit) {
2668 ret = -EINVAL;
2669 goto out;
2670 }
2671
2672 /* constraints check */
2673 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2674 if (ret < 0)
2675 goto out;
2676
2677 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2678out:
2679 mutex_unlock(&rdev->mutex);
2680 return ret;
2681}
2682EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2683
2684static int _regulator_get_current_limit(struct regulator_dev *rdev)
2685{
2686 int ret;
2687
2688 mutex_lock(&rdev->mutex);
2689
2690 /* sanity check */
2691 if (!rdev->desc->ops->get_current_limit) {
2692 ret = -EINVAL;
2693 goto out;
2694 }
2695
2696 ret = rdev->desc->ops->get_current_limit(rdev);
2697out:
2698 mutex_unlock(&rdev->mutex);
2699 return ret;
2700}
2701
2702/**
2703 * regulator_get_current_limit - get regulator output current
2704 * @regulator: regulator source
2705 *
2706 * This returns the current supplied by the specified current sink in uA.
2707 *
2708 * NOTE: If the regulator is disabled it will return the current value. This
2709 * function should not be used to determine regulator state.
2710 */
2711int regulator_get_current_limit(struct regulator *regulator)
2712{
2713 return _regulator_get_current_limit(regulator->rdev);
2714}
2715EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2716
2717/**
2718 * regulator_set_mode - set regulator operating mode
2719 * @regulator: regulator source
2720 * @mode: operating mode - one of the REGULATOR_MODE constants
2721 *
2722 * Set regulator operating mode to increase regulator efficiency or improve
2723 * regulation performance.
2724 *
2725 * NOTE: Regulator system constraints must be set for this regulator before
2726 * calling this function otherwise this call will fail.
2727 */
2728int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2729{
2730 struct regulator_dev *rdev = regulator->rdev;
2731 int ret;
2732 int regulator_curr_mode;
2733
2734 mutex_lock(&rdev->mutex);
2735
2736 /* sanity check */
2737 if (!rdev->desc->ops->set_mode) {
2738 ret = -EINVAL;
2739 goto out;
2740 }
2741
2742 /* return if the same mode is requested */
2743 if (rdev->desc->ops->get_mode) {
2744 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2745 if (regulator_curr_mode == mode) {
2746 ret = 0;
2747 goto out;
2748 }
2749 }
2750
2751 /* constraints check */
2752 ret = regulator_mode_constrain(rdev, &mode);
2753 if (ret < 0)
2754 goto out;
2755
2756 ret = rdev->desc->ops->set_mode(rdev, mode);
2757out:
2758 mutex_unlock(&rdev->mutex);
2759 return ret;
2760}
2761EXPORT_SYMBOL_GPL(regulator_set_mode);
2762
2763static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2764{
2765 int ret;
2766
2767 mutex_lock(&rdev->mutex);
2768
2769 /* sanity check */
2770 if (!rdev->desc->ops->get_mode) {
2771 ret = -EINVAL;
2772 goto out;
2773 }
2774
2775 ret = rdev->desc->ops->get_mode(rdev);
2776out:
2777 mutex_unlock(&rdev->mutex);
2778 return ret;
2779}
2780
2781/**
2782 * regulator_get_mode - get regulator operating mode
2783 * @regulator: regulator source
2784 *
2785 * Get the current regulator operating mode.
2786 */
2787unsigned int regulator_get_mode(struct regulator *regulator)
2788{
2789 return _regulator_get_mode(regulator->rdev);
2790}
2791EXPORT_SYMBOL_GPL(regulator_get_mode);
2792
2793/**
2794 * regulator_set_optimum_mode - set regulator optimum operating mode
2795 * @regulator: regulator source
2796 * @uA_load: load current
2797 *
2798 * Notifies the regulator core of a new device load. This is then used by
2799 * DRMS (if enabled by constraints) to set the most efficient regulator
2800 * operating mode for the new regulator loading.
2801 *
2802 * Consumer devices notify their supply regulator of the maximum power
2803 * they will require (can be taken from device datasheet in the power
2804 * consumption tables) when they change operational status and hence power
2805 * state. Examples of operational state changes that can affect power
2806 * consumption are :-
2807 *
2808 * o Device is opened / closed.
2809 * o Device I/O is about to begin or has just finished.
2810 * o Device is idling in between work.
2811 *
2812 * This information is also exported via sysfs to userspace.
2813 *
2814 * DRMS will sum the total requested load on the regulator and change
2815 * to the most efficient operating mode if platform constraints allow.
2816 *
2817 * Returns the new regulator mode or error.
2818 */
2819int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2820{
2821 struct regulator_dev *rdev = regulator->rdev;
2822 struct regulator *consumer;
2823 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2824 unsigned int mode;
2825
2826 if (rdev->supply)
2827 input_uV = regulator_get_voltage(rdev->supply);
2828
2829 mutex_lock(&rdev->mutex);
2830
2831 /*
2832 * first check to see if we can set modes at all, otherwise just
2833 * tell the consumer everything is OK.
2834 */
2835 regulator->uA_load = uA_load;
2836 ret = regulator_check_drms(rdev);
2837 if (ret < 0) {
2838 ret = 0;
2839 goto out;
2840 }
2841
2842 if (!rdev->desc->ops->get_optimum_mode)
2843 goto out;
2844
2845 /*
2846 * we can actually do this so any errors are indicators of
2847 * potential real failure.
2848 */
2849 ret = -EINVAL;
2850
2851 if (!rdev->desc->ops->set_mode)
2852 goto out;
2853
2854 /* get output voltage */
2855 output_uV = _regulator_get_voltage(rdev);
2856 if (output_uV <= 0) {
2857 rdev_err(rdev, "invalid output voltage found\n");
2858 goto out;
2859 }
2860
2861 /* No supply? Use constraint voltage */
2862 if (input_uV <= 0)
2863 input_uV = rdev->constraints->input_uV;
2864 if (input_uV <= 0) {
2865 rdev_err(rdev, "invalid input voltage found\n");
2866 goto out;
2867 }
2868
2869 /* calc total requested load for this regulator */
2870 list_for_each_entry(consumer, &rdev->consumer_list, list)
2871 total_uA_load += consumer->uA_load;
2872
2873 mode = rdev->desc->ops->get_optimum_mode(rdev,
2874 input_uV, output_uV,
2875 total_uA_load);
2876 ret = regulator_mode_constrain(rdev, &mode);
2877 if (ret < 0) {
2878 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2879 total_uA_load, input_uV, output_uV);
2880 goto out;
2881 }
2882
2883 ret = rdev->desc->ops->set_mode(rdev, mode);
2884 if (ret < 0) {
2885 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2886 goto out;
2887 }
2888 ret = mode;
2889out:
2890 mutex_unlock(&rdev->mutex);
2891 return ret;
2892}
2893EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2894
2895/**
2896 * regulator_allow_bypass - allow the regulator to go into bypass mode
2897 *
2898 * @regulator: Regulator to configure
2899 * @enable: enable or disable bypass mode
2900 *
2901 * Allow the regulator to go into bypass mode if all other consumers
2902 * for the regulator also enable bypass mode and the machine
2903 * constraints allow this. Bypass mode means that the regulator is
2904 * simply passing the input directly to the output with no regulation.
2905 */
2906int regulator_allow_bypass(struct regulator *regulator, bool enable)
2907{
2908 struct regulator_dev *rdev = regulator->rdev;
2909 int ret = 0;
2910
2911 if (!rdev->desc->ops->set_bypass)
2912 return 0;
2913
2914 if (rdev->constraints &&
2915 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2916 return 0;
2917
2918 mutex_lock(&rdev->mutex);
2919
2920 if (enable && !regulator->bypass) {
2921 rdev->bypass_count++;
2922
2923 if (rdev->bypass_count == rdev->open_count) {
2924 ret = rdev->desc->ops->set_bypass(rdev, enable);
2925 if (ret != 0)
2926 rdev->bypass_count--;
2927 }
2928
2929 } else if (!enable && regulator->bypass) {
2930 rdev->bypass_count--;
2931
2932 if (rdev->bypass_count != rdev->open_count) {
2933 ret = rdev->desc->ops->set_bypass(rdev, enable);
2934 if (ret != 0)
2935 rdev->bypass_count++;
2936 }
2937 }
2938
2939 if (ret == 0)
2940 regulator->bypass = enable;
2941
2942 mutex_unlock(&rdev->mutex);
2943
2944 return ret;
2945}
2946EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2947
2948/**
2949 * regulator_register_notifier - register regulator event notifier
2950 * @regulator: regulator source
2951 * @nb: notifier block
2952 *
2953 * Register notifier block to receive regulator events.
2954 */
2955int regulator_register_notifier(struct regulator *regulator,
2956 struct notifier_block *nb)
2957{
2958 return blocking_notifier_chain_register(®ulator->rdev->notifier,
2959 nb);
2960}
2961EXPORT_SYMBOL_GPL(regulator_register_notifier);
2962
2963/**
2964 * regulator_unregister_notifier - unregister regulator event notifier
2965 * @regulator: regulator source
2966 * @nb: notifier block
2967 *
2968 * Unregister regulator event notifier block.
2969 */
2970int regulator_unregister_notifier(struct regulator *regulator,
2971 struct notifier_block *nb)
2972{
2973 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
2974 nb);
2975}
2976EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2977
2978/* notify regulator consumers and downstream regulator consumers.
2979 * Note mutex must be held by caller.
2980 */
2981static void _notifier_call_chain(struct regulator_dev *rdev,
2982 unsigned long event, void *data)
2983{
2984 /* call rdev chain first */
2985 blocking_notifier_call_chain(&rdev->notifier, event, data);
2986}
2987
2988/**
2989 * regulator_bulk_get - get multiple regulator consumers
2990 *
2991 * @dev: Device to supply
2992 * @num_consumers: Number of consumers to register
2993 * @consumers: Configuration of consumers; clients are stored here.
2994 *
2995 * @return 0 on success, an errno on failure.
2996 *
2997 * This helper function allows drivers to get several regulator
2998 * consumers in one operation. If any of the regulators cannot be
2999 * acquired then any regulators that were allocated will be freed
3000 * before returning to the caller.
3001 */
3002int regulator_bulk_get(struct device *dev, int num_consumers,
3003 struct regulator_bulk_data *consumers)
3004{
3005 int i;
3006 int ret;
3007
3008 for (i = 0; i < num_consumers; i++)
3009 consumers[i].consumer = NULL;
3010
3011 for (i = 0; i < num_consumers; i++) {
3012 consumers[i].consumer = regulator_get(dev,
3013 consumers[i].supply);
3014 if (IS_ERR(consumers[i].consumer)) {
3015 ret = PTR_ERR(consumers[i].consumer);
3016 dev_err(dev, "Failed to get supply '%s': %d\n",
3017 consumers[i].supply, ret);
3018 consumers[i].consumer = NULL;
3019 goto err;
3020 }
3021 }
3022
3023 return 0;
3024
3025err:
3026 while (--i >= 0)
3027 regulator_put(consumers[i].consumer);
3028
3029 return ret;
3030}
3031EXPORT_SYMBOL_GPL(regulator_bulk_get);
3032
3033static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3034{
3035 struct regulator_bulk_data *bulk = data;
3036
3037 bulk->ret = regulator_enable(bulk->consumer);
3038}
3039
3040/**
3041 * regulator_bulk_enable - enable multiple regulator consumers
3042 *
3043 * @num_consumers: Number of consumers
3044 * @consumers: Consumer data; clients are stored here.
3045 * @return 0 on success, an errno on failure
3046 *
3047 * This convenience API allows consumers to enable multiple regulator
3048 * clients in a single API call. If any consumers cannot be enabled
3049 * then any others that were enabled will be disabled again prior to
3050 * return.
3051 */
3052int regulator_bulk_enable(int num_consumers,
3053 struct regulator_bulk_data *consumers)
3054{
3055 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3056 int i;
3057 int ret = 0;
3058
3059 for (i = 0; i < num_consumers; i++) {
3060 if (consumers[i].consumer->always_on)
3061 consumers[i].ret = 0;
3062 else
3063 async_schedule_domain(regulator_bulk_enable_async,
3064 &consumers[i], &async_domain);
3065 }
3066
3067 async_synchronize_full_domain(&async_domain);
3068
3069 /* If any consumer failed we need to unwind any that succeeded */
3070 for (i = 0; i < num_consumers; i++) {
3071 if (consumers[i].ret != 0) {
3072 ret = consumers[i].ret;
3073 goto err;
3074 }
3075 }
3076
3077 return 0;
3078
3079err:
3080 for (i = 0; i < num_consumers; i++) {
3081 if (consumers[i].ret < 0)
3082 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3083 consumers[i].ret);
3084 else
3085 regulator_disable(consumers[i].consumer);
3086 }
3087
3088 return ret;
3089}
3090EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3091
3092/**
3093 * regulator_bulk_disable - disable multiple regulator consumers
3094 *
3095 * @num_consumers: Number of consumers
3096 * @consumers: Consumer data; clients are stored here.
3097 * @return 0 on success, an errno on failure
3098 *
3099 * This convenience API allows consumers to disable multiple regulator
3100 * clients in a single API call. If any consumers cannot be disabled
3101 * then any others that were disabled will be enabled again prior to
3102 * return.
3103 */
3104int regulator_bulk_disable(int num_consumers,
3105 struct regulator_bulk_data *consumers)
3106{
3107 int i;
3108 int ret, r;
3109
3110 for (i = num_consumers - 1; i >= 0; --i) {
3111 ret = regulator_disable(consumers[i].consumer);
3112 if (ret != 0)
3113 goto err;
3114 }
3115
3116 return 0;
3117
3118err:
3119 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3120 for (++i; i < num_consumers; ++i) {
3121 r = regulator_enable(consumers[i].consumer);
3122 if (r != 0)
3123 pr_err("Failed to reename %s: %d\n",
3124 consumers[i].supply, r);
3125 }
3126
3127 return ret;
3128}
3129EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3130
3131/**
3132 * regulator_bulk_force_disable - force disable multiple regulator consumers
3133 *
3134 * @num_consumers: Number of consumers
3135 * @consumers: Consumer data; clients are stored here.
3136 * @return 0 on success, an errno on failure
3137 *
3138 * This convenience API allows consumers to forcibly disable multiple regulator
3139 * clients in a single API call.
3140 * NOTE: This should be used for situations when device damage will
3141 * likely occur if the regulators are not disabled (e.g. over temp).
3142 * Although regulator_force_disable function call for some consumers can
3143 * return error numbers, the function is called for all consumers.
3144 */
3145int regulator_bulk_force_disable(int num_consumers,
3146 struct regulator_bulk_data *consumers)
3147{
3148 int i;
3149 int ret;
3150
3151 for (i = 0; i < num_consumers; i++)
3152 consumers[i].ret =
3153 regulator_force_disable(consumers[i].consumer);
3154
3155 for (i = 0; i < num_consumers; i++) {
3156 if (consumers[i].ret != 0) {
3157 ret = consumers[i].ret;
3158 goto out;
3159 }
3160 }
3161
3162 return 0;
3163out:
3164 return ret;
3165}
3166EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3167
3168/**
3169 * regulator_bulk_free - free multiple regulator consumers
3170 *
3171 * @num_consumers: Number of consumers
3172 * @consumers: Consumer data; clients are stored here.
3173 *
3174 * This convenience API allows consumers to free multiple regulator
3175 * clients in a single API call.
3176 */
3177void regulator_bulk_free(int num_consumers,
3178 struct regulator_bulk_data *consumers)
3179{
3180 int i;
3181
3182 for (i = 0; i < num_consumers; i++) {
3183 regulator_put(consumers[i].consumer);
3184 consumers[i].consumer = NULL;
3185 }
3186}
3187EXPORT_SYMBOL_GPL(regulator_bulk_free);
3188
3189/**
3190 * regulator_notifier_call_chain - call regulator event notifier
3191 * @rdev: regulator source
3192 * @event: notifier block
3193 * @data: callback-specific data.
3194 *
3195 * Called by regulator drivers to notify clients a regulator event has
3196 * occurred. We also notify regulator clients downstream.
3197 * Note lock must be held by caller.
3198 */
3199int regulator_notifier_call_chain(struct regulator_dev *rdev,
3200 unsigned long event, void *data)
3201{
3202 _notifier_call_chain(rdev, event, data);
3203 return NOTIFY_DONE;
3204
3205}
3206EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3207
3208/**
3209 * regulator_mode_to_status - convert a regulator mode into a status
3210 *
3211 * @mode: Mode to convert
3212 *
3213 * Convert a regulator mode into a status.
3214 */
3215int regulator_mode_to_status(unsigned int mode)
3216{
3217 switch (mode) {
3218 case REGULATOR_MODE_FAST:
3219 return REGULATOR_STATUS_FAST;
3220 case REGULATOR_MODE_NORMAL:
3221 return REGULATOR_STATUS_NORMAL;
3222 case REGULATOR_MODE_IDLE:
3223 return REGULATOR_STATUS_IDLE;
3224 case REGULATOR_MODE_STANDBY:
3225 return REGULATOR_STATUS_STANDBY;
3226 default:
3227 return REGULATOR_STATUS_UNDEFINED;
3228 }
3229}
3230EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3231
3232/*
3233 * To avoid cluttering sysfs (and memory) with useless state, only
3234 * create attributes that can be meaningfully displayed.
3235 */
3236static int add_regulator_attributes(struct regulator_dev *rdev)
3237{
3238 struct device *dev = &rdev->dev;
3239 struct regulator_ops *ops = rdev->desc->ops;
3240 int status = 0;
3241
3242 /* some attributes need specific methods to be displayed */
3243 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3244 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3245 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3246 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3247 status = device_create_file(dev, &dev_attr_microvolts);
3248 if (status < 0)
3249 return status;
3250 }
3251 if (ops->get_current_limit) {
3252 status = device_create_file(dev, &dev_attr_microamps);
3253 if (status < 0)
3254 return status;
3255 }
3256 if (ops->get_mode) {
3257 status = device_create_file(dev, &dev_attr_opmode);
3258 if (status < 0)
3259 return status;
3260 }
3261 if (rdev->ena_pin || ops->is_enabled) {
3262 status = device_create_file(dev, &dev_attr_state);
3263 if (status < 0)
3264 return status;
3265 }
3266 if (ops->get_status) {
3267 status = device_create_file(dev, &dev_attr_status);
3268 if (status < 0)
3269 return status;
3270 }
3271 if (ops->get_bypass) {
3272 status = device_create_file(dev, &dev_attr_bypass);
3273 if (status < 0)
3274 return status;
3275 }
3276
3277 /* some attributes are type-specific */
3278 if (rdev->desc->type == REGULATOR_CURRENT) {
3279 status = device_create_file(dev, &dev_attr_requested_microamps);
3280 if (status < 0)
3281 return status;
3282 }
3283
3284 /* all the other attributes exist to support constraints;
3285 * don't show them if there are no constraints, or if the
3286 * relevant supporting methods are missing.
3287 */
3288 if (!rdev->constraints)
3289 return status;
3290
3291 /* constraints need specific supporting methods */
3292 if (ops->set_voltage || ops->set_voltage_sel) {
3293 status = device_create_file(dev, &dev_attr_min_microvolts);
3294 if (status < 0)
3295 return status;
3296 status = device_create_file(dev, &dev_attr_max_microvolts);
3297 if (status < 0)
3298 return status;
3299 }
3300 if (ops->set_current_limit) {
3301 status = device_create_file(dev, &dev_attr_min_microamps);
3302 if (status < 0)
3303 return status;
3304 status = device_create_file(dev, &dev_attr_max_microamps);
3305 if (status < 0)
3306 return status;
3307 }
3308
3309 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3310 if (status < 0)
3311 return status;
3312 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3313 if (status < 0)
3314 return status;
3315 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3316 if (status < 0)
3317 return status;
3318
3319 if (ops->set_suspend_voltage) {
3320 status = device_create_file(dev,
3321 &dev_attr_suspend_standby_microvolts);
3322 if (status < 0)
3323 return status;
3324 status = device_create_file(dev,
3325 &dev_attr_suspend_mem_microvolts);
3326 if (status < 0)
3327 return status;
3328 status = device_create_file(dev,
3329 &dev_attr_suspend_disk_microvolts);
3330 if (status < 0)
3331 return status;
3332 }
3333
3334 if (ops->set_suspend_mode) {
3335 status = device_create_file(dev,
3336 &dev_attr_suspend_standby_mode);
3337 if (status < 0)
3338 return status;
3339 status = device_create_file(dev,
3340 &dev_attr_suspend_mem_mode);
3341 if (status < 0)
3342 return status;
3343 status = device_create_file(dev,
3344 &dev_attr_suspend_disk_mode);
3345 if (status < 0)
3346 return status;
3347 }
3348
3349 return status;
3350}
3351
3352static void rdev_init_debugfs(struct regulator_dev *rdev)
3353{
3354 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3355 if (!rdev->debugfs) {
3356 rdev_warn(rdev, "Failed to create debugfs directory\n");
3357 return;
3358 }
3359
3360 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3361 &rdev->use_count);
3362 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3363 &rdev->open_count);
3364 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3365 &rdev->bypass_count);
3366}
3367
3368/**
3369 * regulator_register - register regulator
3370 * @regulator_desc: regulator to register
3371 * @config: runtime configuration for regulator
3372 *
3373 * Called by regulator drivers to register a regulator.
3374 * Returns a valid pointer to struct regulator_dev on success
3375 * or an ERR_PTR() on error.
3376 */
3377struct regulator_dev *
3378regulator_register(const struct regulator_desc *regulator_desc,
3379 const struct regulator_config *config)
3380{
3381 const struct regulation_constraints *constraints = NULL;
3382 const struct regulator_init_data *init_data;
3383 static atomic_t regulator_no = ATOMIC_INIT(0);
3384 struct regulator_dev *rdev;
3385 struct device *dev;
3386 int ret, i;
3387 const char *supply = NULL;
3388
3389 if (regulator_desc == NULL || config == NULL)
3390 return ERR_PTR(-EINVAL);
3391
3392 dev = config->dev;
3393 WARN_ON(!dev);
3394
3395 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3396 return ERR_PTR(-EINVAL);
3397
3398 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3399 regulator_desc->type != REGULATOR_CURRENT)
3400 return ERR_PTR(-EINVAL);
3401
3402 /* Only one of each should be implemented */
3403 WARN_ON(regulator_desc->ops->get_voltage &&
3404 regulator_desc->ops->get_voltage_sel);
3405 WARN_ON(regulator_desc->ops->set_voltage &&
3406 regulator_desc->ops->set_voltage_sel);
3407
3408 /* If we're using selectors we must implement list_voltage. */
3409 if (regulator_desc->ops->get_voltage_sel &&
3410 !regulator_desc->ops->list_voltage) {
3411 return ERR_PTR(-EINVAL);
3412 }
3413 if (regulator_desc->ops->set_voltage_sel &&
3414 !regulator_desc->ops->list_voltage) {
3415 return ERR_PTR(-EINVAL);
3416 }
3417
3418 init_data = config->init_data;
3419
3420 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3421 if (rdev == NULL)
3422 return ERR_PTR(-ENOMEM);
3423
3424 mutex_lock(®ulator_list_mutex);
3425
3426 mutex_init(&rdev->mutex);
3427 rdev->reg_data = config->driver_data;
3428 rdev->owner = regulator_desc->owner;
3429 rdev->desc = regulator_desc;
3430 if (config->regmap)
3431 rdev->regmap = config->regmap;
3432 else if (dev_get_regmap(dev, NULL))
3433 rdev->regmap = dev_get_regmap(dev, NULL);
3434 else if (dev->parent)
3435 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3436 INIT_LIST_HEAD(&rdev->consumer_list);
3437 INIT_LIST_HEAD(&rdev->list);
3438 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3439 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3440
3441 /* preform any regulator specific init */
3442 if (init_data && init_data->regulator_init) {
3443 ret = init_data->regulator_init(rdev->reg_data);
3444 if (ret < 0)
3445 goto clean;
3446 }
3447
3448 /* register with sysfs */
3449 rdev->dev.class = ®ulator_class;
3450 rdev->dev.of_node = config->of_node;
3451 rdev->dev.parent = dev;
3452 dev_set_name(&rdev->dev, "regulator.%d",
3453 atomic_inc_return(®ulator_no) - 1);
3454 ret = device_register(&rdev->dev);
3455 if (ret != 0) {
3456 put_device(&rdev->dev);
3457 goto clean;
3458 }
3459
3460 dev_set_drvdata(&rdev->dev, rdev);
3461
3462 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3463 ret = regulator_ena_gpio_request(rdev, config);
3464 if (ret != 0) {
3465 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3466 config->ena_gpio, ret);
3467 goto wash;
3468 }
3469
3470 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3471 rdev->ena_gpio_state = 1;
3472
3473 if (config->ena_gpio_invert)
3474 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3475 }
3476
3477 /* set regulator constraints */
3478 if (init_data)
3479 constraints = &init_data->constraints;
3480
3481 ret = set_machine_constraints(rdev, constraints);
3482 if (ret < 0)
3483 goto scrub;
3484
3485 /* add attributes supported by this regulator */
3486 ret = add_regulator_attributes(rdev);
3487 if (ret < 0)
3488 goto scrub;
3489
3490 if (init_data && init_data->supply_regulator)
3491 supply = init_data->supply_regulator;
3492 else if (regulator_desc->supply_name)
3493 supply = regulator_desc->supply_name;
3494
3495 if (supply) {
3496 struct regulator_dev *r;
3497
3498 r = regulator_dev_lookup(dev, supply, &ret);
3499
3500 if (ret == -ENODEV) {
3501 /*
3502 * No supply was specified for this regulator and
3503 * there will never be one.
3504 */
3505 ret = 0;
3506 goto add_dev;
3507 } else if (!r) {
3508 dev_err(dev, "Failed to find supply %s\n", supply);
3509 ret = -EPROBE_DEFER;
3510 goto scrub;
3511 }
3512
3513 ret = set_supply(rdev, r);
3514 if (ret < 0)
3515 goto scrub;
3516
3517 /* Enable supply if rail is enabled */
3518 if (_regulator_is_enabled(rdev)) {
3519 ret = regulator_enable(rdev->supply);
3520 if (ret < 0)
3521 goto scrub;
3522 }
3523 }
3524
3525add_dev:
3526 /* add consumers devices */
3527 if (init_data) {
3528 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3529 ret = set_consumer_device_supply(rdev,
3530 init_data->consumer_supplies[i].dev_name,
3531 init_data->consumer_supplies[i].supply);
3532 if (ret < 0) {
3533 dev_err(dev, "Failed to set supply %s\n",
3534 init_data->consumer_supplies[i].supply);
3535 goto unset_supplies;
3536 }
3537 }
3538 }
3539
3540 list_add(&rdev->list, ®ulator_list);
3541
3542 rdev_init_debugfs(rdev);
3543out:
3544 mutex_unlock(®ulator_list_mutex);
3545 return rdev;
3546
3547unset_supplies:
3548 unset_regulator_supplies(rdev);
3549
3550scrub:
3551 if (rdev->supply)
3552 _regulator_put(rdev->supply);
3553 regulator_ena_gpio_free(rdev);
3554 kfree(rdev->constraints);
3555wash:
3556 device_unregister(&rdev->dev);
3557 /* device core frees rdev */
3558 rdev = ERR_PTR(ret);
3559 goto out;
3560
3561clean:
3562 kfree(rdev);
3563 rdev = ERR_PTR(ret);
3564 goto out;
3565}
3566EXPORT_SYMBOL_GPL(regulator_register);
3567
3568/**
3569 * regulator_unregister - unregister regulator
3570 * @rdev: regulator to unregister
3571 *
3572 * Called by regulator drivers to unregister a regulator.
3573 */
3574void regulator_unregister(struct regulator_dev *rdev)
3575{
3576 if (rdev == NULL)
3577 return;
3578
3579 if (rdev->supply) {
3580 while (rdev->use_count--)
3581 regulator_disable(rdev->supply);
3582 regulator_put(rdev->supply);
3583 }
3584 mutex_lock(®ulator_list_mutex);
3585 debugfs_remove_recursive(rdev->debugfs);
3586 flush_work(&rdev->disable_work.work);
3587 WARN_ON(rdev->open_count);
3588 unset_regulator_supplies(rdev);
3589 list_del(&rdev->list);
3590 kfree(rdev->constraints);
3591 regulator_ena_gpio_free(rdev);
3592 device_unregister(&rdev->dev);
3593 mutex_unlock(®ulator_list_mutex);
3594}
3595EXPORT_SYMBOL_GPL(regulator_unregister);
3596
3597/**
3598 * regulator_suspend_prepare - prepare regulators for system wide suspend
3599 * @state: system suspend state
3600 *
3601 * Configure each regulator with it's suspend operating parameters for state.
3602 * This will usually be called by machine suspend code prior to supending.
3603 */
3604int regulator_suspend_prepare(suspend_state_t state)
3605{
3606 struct regulator_dev *rdev;
3607 int ret = 0;
3608
3609 /* ON is handled by regulator active state */
3610 if (state == PM_SUSPEND_ON)
3611 return -EINVAL;
3612
3613 mutex_lock(®ulator_list_mutex);
3614 list_for_each_entry(rdev, ®ulator_list, list) {
3615
3616 mutex_lock(&rdev->mutex);
3617 ret = suspend_prepare(rdev, state);
3618 mutex_unlock(&rdev->mutex);
3619
3620 if (ret < 0) {
3621 rdev_err(rdev, "failed to prepare\n");
3622 goto out;
3623 }
3624 }
3625out:
3626 mutex_unlock(®ulator_list_mutex);
3627 return ret;
3628}
3629EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3630
3631/**
3632 * regulator_suspend_finish - resume regulators from system wide suspend
3633 *
3634 * Turn on regulators that might be turned off by regulator_suspend_prepare
3635 * and that should be turned on according to the regulators properties.
3636 */
3637int regulator_suspend_finish(void)
3638{
3639 struct regulator_dev *rdev;
3640 int ret = 0, error;
3641
3642 mutex_lock(®ulator_list_mutex);
3643 list_for_each_entry(rdev, ®ulator_list, list) {
3644 mutex_lock(&rdev->mutex);
3645 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3646 error = _regulator_do_enable(rdev);
3647 if (error)
3648 ret = error;
3649 } else {
3650 if (!have_full_constraints())
3651 goto unlock;
3652 if (!_regulator_is_enabled(rdev))
3653 goto unlock;
3654
3655 error = _regulator_do_disable(rdev);
3656 if (error)
3657 ret = error;
3658 }
3659unlock:
3660 mutex_unlock(&rdev->mutex);
3661 }
3662 mutex_unlock(®ulator_list_mutex);
3663 return ret;
3664}
3665EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3666
3667/**
3668 * regulator_has_full_constraints - the system has fully specified constraints
3669 *
3670 * Calling this function will cause the regulator API to disable all
3671 * regulators which have a zero use count and don't have an always_on
3672 * constraint in a late_initcall.
3673 *
3674 * The intention is that this will become the default behaviour in a
3675 * future kernel release so users are encouraged to use this facility
3676 * now.
3677 */
3678void regulator_has_full_constraints(void)
3679{
3680 has_full_constraints = 1;
3681}
3682EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3683
3684/**
3685 * rdev_get_drvdata - get rdev regulator driver data
3686 * @rdev: regulator
3687 *
3688 * Get rdev regulator driver private data. This call can be used in the
3689 * regulator driver context.
3690 */
3691void *rdev_get_drvdata(struct regulator_dev *rdev)
3692{
3693 return rdev->reg_data;
3694}
3695EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3696
3697/**
3698 * regulator_get_drvdata - get regulator driver data
3699 * @regulator: regulator
3700 *
3701 * Get regulator driver private data. This call can be used in the consumer
3702 * driver context when non API regulator specific functions need to be called.
3703 */
3704void *regulator_get_drvdata(struct regulator *regulator)
3705{
3706 return regulator->rdev->reg_data;
3707}
3708EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3709
3710/**
3711 * regulator_set_drvdata - set regulator driver data
3712 * @regulator: regulator
3713 * @data: data
3714 */
3715void regulator_set_drvdata(struct regulator *regulator, void *data)
3716{
3717 regulator->rdev->reg_data = data;
3718}
3719EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3720
3721/**
3722 * regulator_get_id - get regulator ID
3723 * @rdev: regulator
3724 */
3725int rdev_get_id(struct regulator_dev *rdev)
3726{
3727 return rdev->desc->id;
3728}
3729EXPORT_SYMBOL_GPL(rdev_get_id);
3730
3731struct device *rdev_get_dev(struct regulator_dev *rdev)
3732{
3733 return &rdev->dev;
3734}
3735EXPORT_SYMBOL_GPL(rdev_get_dev);
3736
3737void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3738{
3739 return reg_init_data->driver_data;
3740}
3741EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3742
3743#ifdef CONFIG_DEBUG_FS
3744static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3745 size_t count, loff_t *ppos)
3746{
3747 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3748 ssize_t len, ret = 0;
3749 struct regulator_map *map;
3750
3751 if (!buf)
3752 return -ENOMEM;
3753
3754 list_for_each_entry(map, ®ulator_map_list, list) {
3755 len = snprintf(buf + ret, PAGE_SIZE - ret,
3756 "%s -> %s.%s\n",
3757 rdev_get_name(map->regulator), map->dev_name,
3758 map->supply);
3759 if (len >= 0)
3760 ret += len;
3761 if (ret > PAGE_SIZE) {
3762 ret = PAGE_SIZE;
3763 break;
3764 }
3765 }
3766
3767 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3768
3769 kfree(buf);
3770
3771 return ret;
3772}
3773#endif
3774
3775static const struct file_operations supply_map_fops = {
3776#ifdef CONFIG_DEBUG_FS
3777 .read = supply_map_read_file,
3778 .llseek = default_llseek,
3779#endif
3780};
3781
3782static int __init regulator_init(void)
3783{
3784 int ret;
3785
3786 ret = class_register(®ulator_class);
3787
3788 debugfs_root = debugfs_create_dir("regulator", NULL);
3789 if (!debugfs_root)
3790 pr_warn("regulator: Failed to create debugfs directory\n");
3791
3792 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3793 &supply_map_fops);
3794
3795 regulator_dummy_init();
3796
3797 return ret;
3798}
3799
3800/* init early to allow our consumers to complete system booting */
3801core_initcall(regulator_init);
3802
3803static int __init regulator_init_complete(void)
3804{
3805 struct regulator_dev *rdev;
3806 struct regulator_ops *ops;
3807 struct regulation_constraints *c;
3808 int enabled, ret;
3809
3810 /*
3811 * Since DT doesn't provide an idiomatic mechanism for
3812 * enabling full constraints and since it's much more natural
3813 * with DT to provide them just assume that a DT enabled
3814 * system has full constraints.
3815 */
3816 if (of_have_populated_dt())
3817 has_full_constraints = true;
3818
3819 mutex_lock(®ulator_list_mutex);
3820
3821 /* If we have a full configuration then disable any regulators
3822 * which are not in use or always_on. This will become the
3823 * default behaviour in the future.
3824 */
3825 list_for_each_entry(rdev, ®ulator_list, list) {
3826 ops = rdev->desc->ops;
3827 c = rdev->constraints;
3828
3829 if (c && c->always_on)
3830 continue;
3831
3832 mutex_lock(&rdev->mutex);
3833
3834 if (rdev->use_count)
3835 goto unlock;
3836
3837 /* If we can't read the status assume it's on. */
3838 if (ops->is_enabled)
3839 enabled = ops->is_enabled(rdev);
3840 else
3841 enabled = 1;
3842
3843 if (!enabled)
3844 goto unlock;
3845
3846 if (have_full_constraints()) {
3847 /* We log since this may kill the system if it
3848 * goes wrong. */
3849 rdev_info(rdev, "disabling\n");
3850 ret = _regulator_do_disable(rdev);
3851 if (ret != 0)
3852 rdev_err(rdev, "couldn't disable: %d\n", ret);
3853 } else {
3854 /* The intention is that in future we will
3855 * assume that full constraints are provided
3856 * so warn even if we aren't going to do
3857 * anything here.
3858 */
3859 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3860 }
3861
3862unlock:
3863 mutex_unlock(&rdev->mutex);
3864 }
3865
3866 mutex_unlock(®ulator_list_mutex);
3867
3868 return 0;
3869}
3870late_initcall(regulator_init_complete);