Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
 
 
 
 
 
 
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
 
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/regmap.h>
  23#include <linux/regulator/of_regulator.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/regulator/coupler.h>
  26#include <linux/regulator/driver.h>
  27#include <linux/regulator/machine.h>
  28#include <linux/module.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/regulator.h>
  32
  33#include "dummy.h"
  34#include "internal.h"
  35
  36static DEFINE_WW_CLASS(regulator_ww_class);
  37static DEFINE_MUTEX(regulator_nesting_mutex);
 
 
 
 
 
 
 
 
 
  38static DEFINE_MUTEX(regulator_list_mutex);
  39static LIST_HEAD(regulator_map_list);
  40static LIST_HEAD(regulator_ena_gpio_list);
  41static LIST_HEAD(regulator_supply_alias_list);
  42static LIST_HEAD(regulator_coupler_list);
  43static bool has_full_constraints;
  44
  45static struct dentry *debugfs_root;
  46
 
 
  47/*
  48 * struct regulator_map
  49 *
  50 * Used to provide symbolic supply names to devices.
  51 */
  52struct regulator_map {
  53	struct list_head list;
  54	const char *dev_name;   /* The dev_name() for the consumer */
  55	const char *supply;
  56	struct regulator_dev *regulator;
  57};
  58
  59/*
  60 * struct regulator_enable_gpio
  61 *
  62 * Management for shared enable GPIO pin
  63 */
  64struct regulator_enable_gpio {
  65	struct list_head list;
  66	struct gpio_desc *gpiod;
  67	u32 enable_count;	/* a number of enabled shared GPIO */
  68	u32 request_count;	/* a number of requested shared GPIO */
 
  69};
  70
  71/*
  72 * struct regulator_supply_alias
  73 *
  74 * Used to map lookups for a supply onto an alternative device.
  75 */
  76struct regulator_supply_alias {
  77	struct list_head list;
  78	struct device *src_dev;
  79	const char *src_supply;
  80	struct device *alias_dev;
  81	const char *alias_supply;
  82};
  83
  84static int _regulator_is_enabled(struct regulator_dev *rdev);
  85static int _regulator_disable(struct regulator *regulator);
  86static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
  87static int _regulator_get_current_limit(struct regulator_dev *rdev);
  88static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  89static int _notifier_call_chain(struct regulator_dev *rdev,
  90				  unsigned long event, void *data);
  91static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  92				     int min_uV, int max_uV);
  93static int regulator_balance_voltage(struct regulator_dev *rdev,
  94				     suspend_state_t state);
  95static struct regulator *create_regulator(struct regulator_dev *rdev,
  96					  struct device *dev,
  97					  const char *supply_name);
  98static void destroy_regulator(struct regulator *regulator);
  99static void _regulator_put(struct regulator *regulator);
 100
 101const char *rdev_get_name(struct regulator_dev *rdev)
 
 
 
 
 
 102{
 103	if (rdev->constraints && rdev->constraints->name)
 104		return rdev->constraints->name;
 105	else if (rdev->desc->name)
 106		return rdev->desc->name;
 107	else
 108		return "";
 109}
 110EXPORT_SYMBOL_GPL(rdev_get_name);
 111
 112static bool have_full_constraints(void)
 113{
 114	return has_full_constraints || of_have_populated_dt();
 115}
 116
 117static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 118{
 119	if (!rdev->constraints) {
 120		rdev_err(rdev, "no constraints\n");
 121		return false;
 122	}
 123
 124	if (rdev->constraints->valid_ops_mask & ops)
 125		return true;
 126
 127	return false;
 128}
 129
 130/**
 131 * regulator_lock_nested - lock a single regulator
 132 * @rdev:		regulator source
 133 * @ww_ctx:		w/w mutex acquire context
 134 *
 135 * This function can be called many times by one task on
 136 * a single regulator and its mutex will be locked only
 137 * once. If a task, which is calling this function is other
 138 * than the one, which initially locked the mutex, it will
 139 * wait on mutex.
 140 */
 141static inline int regulator_lock_nested(struct regulator_dev *rdev,
 142					struct ww_acquire_ctx *ww_ctx)
 143{
 144	bool lock = false;
 145	int ret = 0;
 146
 147	mutex_lock(&regulator_nesting_mutex);
 148
 149	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
 150		if (rdev->mutex_owner == current)
 151			rdev->ref_cnt++;
 152		else
 153			lock = true;
 154
 155		if (lock) {
 156			mutex_unlock(&regulator_nesting_mutex);
 157			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 158			mutex_lock(&regulator_nesting_mutex);
 159		}
 160	} else {
 161		lock = true;
 162	}
 163
 164	if (lock && ret != -EDEADLK) {
 165		rdev->ref_cnt++;
 166		rdev->mutex_owner = current;
 167	}
 168
 169	mutex_unlock(&regulator_nesting_mutex);
 170
 171	return ret;
 172}
 173
 174/**
 175 * regulator_lock - lock a single regulator
 176 * @rdev:		regulator source
 177 *
 178 * This function can be called many times by one task on
 179 * a single regulator and its mutex will be locked only
 180 * once. If a task, which is calling this function is other
 181 * than the one, which initially locked the mutex, it will
 182 * wait on mutex.
 183 */
 184static void regulator_lock(struct regulator_dev *rdev)
 185{
 186	regulator_lock_nested(rdev, NULL);
 187}
 188
 189/**
 190 * regulator_unlock - unlock a single regulator
 191 * @rdev:		regulator_source
 192 *
 193 * This function unlocks the mutex when the
 194 * reference counter reaches 0.
 195 */
 196static void regulator_unlock(struct regulator_dev *rdev)
 197{
 198	mutex_lock(&regulator_nesting_mutex);
 199
 200	if (--rdev->ref_cnt == 0) {
 201		rdev->mutex_owner = NULL;
 202		ww_mutex_unlock(&rdev->mutex);
 203	}
 204
 205	WARN_ON_ONCE(rdev->ref_cnt < 0);
 206
 207	mutex_unlock(&regulator_nesting_mutex);
 208}
 209
 210static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 211{
 212	struct regulator_dev *c_rdev;
 213	int i;
 214
 215	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 216		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 217
 218		if (rdev->supply->rdev == c_rdev)
 219			return true;
 220	}
 221
 222	return false;
 223}
 224
 225static void regulator_unlock_recursive(struct regulator_dev *rdev,
 226				       unsigned int n_coupled)
 227{
 228	struct regulator_dev *c_rdev, *supply_rdev;
 229	int i, supply_n_coupled;
 230
 231	for (i = n_coupled; i > 0; i--) {
 232		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 233
 234		if (!c_rdev)
 235			continue;
 236
 237		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 238			supply_rdev = c_rdev->supply->rdev;
 239			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
 240
 241			regulator_unlock_recursive(supply_rdev,
 242						   supply_n_coupled);
 243		}
 244
 245		regulator_unlock(c_rdev);
 246	}
 247}
 248
 249static int regulator_lock_recursive(struct regulator_dev *rdev,
 250				    struct regulator_dev **new_contended_rdev,
 251				    struct regulator_dev **old_contended_rdev,
 252				    struct ww_acquire_ctx *ww_ctx)
 253{
 254	struct regulator_dev *c_rdev;
 255	int i, err;
 256
 257	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 258		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 259
 260		if (!c_rdev)
 261			continue;
 262
 263		if (c_rdev != *old_contended_rdev) {
 264			err = regulator_lock_nested(c_rdev, ww_ctx);
 265			if (err) {
 266				if (err == -EDEADLK) {
 267					*new_contended_rdev = c_rdev;
 268					goto err_unlock;
 269				}
 270
 271				/* shouldn't happen */
 272				WARN_ON_ONCE(err != -EALREADY);
 273			}
 274		} else {
 275			*old_contended_rdev = NULL;
 276		}
 277
 278		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 279			err = regulator_lock_recursive(c_rdev->supply->rdev,
 280						       new_contended_rdev,
 281						       old_contended_rdev,
 282						       ww_ctx);
 283			if (err) {
 284				regulator_unlock(c_rdev);
 285				goto err_unlock;
 286			}
 287		}
 288	}
 289
 290	return 0;
 291
 292err_unlock:
 293	regulator_unlock_recursive(rdev, i);
 294
 295	return err;
 296}
 297
 298/**
 299 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 300 *				regulators
 301 * @rdev:			regulator source
 302 * @ww_ctx:			w/w mutex acquire context
 303 *
 304 * Unlock all regulators related with rdev by coupling or supplying.
 305 */
 306static void regulator_unlock_dependent(struct regulator_dev *rdev,
 307				       struct ww_acquire_ctx *ww_ctx)
 308{
 309	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 310	ww_acquire_fini(ww_ctx);
 311}
 312
 313/**
 314 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 315 * @rdev:			regulator source
 316 * @ww_ctx:			w/w mutex acquire context
 317 *
 318 * This function as a wrapper on regulator_lock_recursive(), which locks
 319 * all regulators related with rdev by coupling or supplying.
 320 */
 321static void regulator_lock_dependent(struct regulator_dev *rdev,
 322				     struct ww_acquire_ctx *ww_ctx)
 323{
 324	struct regulator_dev *new_contended_rdev = NULL;
 325	struct regulator_dev *old_contended_rdev = NULL;
 326	int err;
 327
 328	mutex_lock(&regulator_list_mutex);
 329
 330	ww_acquire_init(ww_ctx, &regulator_ww_class);
 331
 332	do {
 333		if (new_contended_rdev) {
 334			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 335			old_contended_rdev = new_contended_rdev;
 336			old_contended_rdev->ref_cnt++;
 337		}
 338
 339		err = regulator_lock_recursive(rdev,
 340					       &new_contended_rdev,
 341					       &old_contended_rdev,
 342					       ww_ctx);
 343
 344		if (old_contended_rdev)
 345			regulator_unlock(old_contended_rdev);
 346
 347	} while (err == -EDEADLK);
 348
 349	ww_acquire_done(ww_ctx);
 350
 351	mutex_unlock(&regulator_list_mutex);
 352}
 353
 354/**
 355 * of_get_child_regulator - get a child regulator device node
 356 * based on supply name
 357 * @parent: Parent device node
 358 * @prop_name: Combination regulator supply name and "-supply"
 359 *
 360 * Traverse all child nodes.
 361 * Extract the child regulator device node corresponding to the supply name.
 362 * returns the device node corresponding to the regulator if found, else
 363 * returns NULL.
 364 */
 365static struct device_node *of_get_child_regulator(struct device_node *parent,
 366						  const char *prop_name)
 367{
 368	struct device_node *regnode = NULL;
 369	struct device_node *child = NULL;
 370
 371	for_each_child_of_node(parent, child) {
 372		regnode = of_parse_phandle(child, prop_name, 0);
 373
 374		if (!regnode) {
 375			regnode = of_get_child_regulator(child, prop_name);
 376			if (regnode)
 377				goto err_node_put;
 378		} else {
 379			goto err_node_put;
 380		}
 381	}
 382	return NULL;
 383
 384err_node_put:
 385	of_node_put(child);
 386	return regnode;
 387}
 388
 389/**
 390 * of_get_regulator - get a regulator device node based on supply name
 391 * @dev: Device pointer for the consumer (of regulator) device
 392 * @supply: regulator supply name
 393 *
 394 * Extract the regulator device node corresponding to the supply name.
 395 * returns the device node corresponding to the regulator if found, else
 396 * returns NULL.
 397 */
 398static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 399{
 400	struct device_node *regnode = NULL;
 401	char prop_name[64]; /* 64 is max size of property name */
 402
 403	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 404
 405	snprintf(prop_name, 64, "%s-supply", supply);
 406	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 407
 408	if (!regnode) {
 409		regnode = of_get_child_regulator(dev->of_node, prop_name);
 410		if (regnode)
 411			return regnode;
 412
 413		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 414				prop_name, dev->of_node);
 415		return NULL;
 416	}
 417	return regnode;
 418}
 419
 420/* Platform voltage constraint check */
 421int regulator_check_voltage(struct regulator_dev *rdev,
 422			    int *min_uV, int *max_uV)
 423{
 424	BUG_ON(*min_uV > *max_uV);
 425
 426	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 427		rdev_err(rdev, "voltage operation not allowed\n");
 428		return -EPERM;
 429	}
 430
 431	if (*max_uV > rdev->constraints->max_uV)
 432		*max_uV = rdev->constraints->max_uV;
 433	if (*min_uV < rdev->constraints->min_uV)
 434		*min_uV = rdev->constraints->min_uV;
 435
 436	if (*min_uV > *max_uV) {
 437		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 438			 *min_uV, *max_uV);
 439		return -EINVAL;
 440	}
 441
 442	return 0;
 443}
 444
 445/* return 0 if the state is valid */
 446static int regulator_check_states(suspend_state_t state)
 447{
 448	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 449}
 450
 451/* Make sure we select a voltage that suits the needs of all
 452 * regulator consumers
 453 */
 454int regulator_check_consumers(struct regulator_dev *rdev,
 455			      int *min_uV, int *max_uV,
 456			      suspend_state_t state)
 457{
 458	struct regulator *regulator;
 459	struct regulator_voltage *voltage;
 460
 461	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 462		voltage = &regulator->voltage[state];
 463		/*
 464		 * Assume consumers that didn't say anything are OK
 465		 * with anything in the constraint range.
 466		 */
 467		if (!voltage->min_uV && !voltage->max_uV)
 468			continue;
 469
 470		if (*max_uV > voltage->max_uV)
 471			*max_uV = voltage->max_uV;
 472		if (*min_uV < voltage->min_uV)
 473			*min_uV = voltage->min_uV;
 474	}
 475
 476	if (*min_uV > *max_uV) {
 477		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 478			*min_uV, *max_uV);
 479		return -EINVAL;
 480	}
 481
 482	return 0;
 483}
 484
 485/* current constraint check */
 486static int regulator_check_current_limit(struct regulator_dev *rdev,
 487					int *min_uA, int *max_uA)
 488{
 489	BUG_ON(*min_uA > *max_uA);
 490
 491	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 492		rdev_err(rdev, "current operation not allowed\n");
 493		return -EPERM;
 494	}
 495
 496	if (*max_uA > rdev->constraints->max_uA)
 497		*max_uA = rdev->constraints->max_uA;
 498	if (*min_uA < rdev->constraints->min_uA)
 499		*min_uA = rdev->constraints->min_uA;
 500
 501	if (*min_uA > *max_uA) {
 502		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 503			 *min_uA, *max_uA);
 504		return -EINVAL;
 505	}
 506
 507	return 0;
 508}
 509
 510/* operating mode constraint check */
 511static int regulator_mode_constrain(struct regulator_dev *rdev,
 512				    unsigned int *mode)
 513{
 514	switch (*mode) {
 515	case REGULATOR_MODE_FAST:
 516	case REGULATOR_MODE_NORMAL:
 517	case REGULATOR_MODE_IDLE:
 518	case REGULATOR_MODE_STANDBY:
 519		break;
 520	default:
 521		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 522		return -EINVAL;
 523	}
 524
 525	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 526		rdev_err(rdev, "mode operation not allowed\n");
 527		return -EPERM;
 528	}
 529
 530	/* The modes are bitmasks, the most power hungry modes having
 531	 * the lowest values. If the requested mode isn't supported
 532	 * try higher modes.
 533	 */
 534	while (*mode) {
 535		if (rdev->constraints->valid_modes_mask & *mode)
 536			return 0;
 537		*mode /= 2;
 538	}
 539
 540	return -EINVAL;
 541}
 542
 543static inline struct regulator_state *
 544regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 545{
 546	if (rdev->constraints == NULL)
 547		return NULL;
 548
 549	switch (state) {
 550	case PM_SUSPEND_STANDBY:
 551		return &rdev->constraints->state_standby;
 552	case PM_SUSPEND_MEM:
 553		return &rdev->constraints->state_mem;
 554	case PM_SUSPEND_MAX:
 555		return &rdev->constraints->state_disk;
 556	default:
 557		return NULL;
 558	}
 559}
 560
 561static const struct regulator_state *
 562regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
 563{
 564	const struct regulator_state *rstate;
 565
 566	rstate = regulator_get_suspend_state(rdev, state);
 567	if (rstate == NULL)
 568		return NULL;
 569
 570	/* If we have no suspend mode configuration don't set anything;
 571	 * only warn if the driver implements set_suspend_voltage or
 572	 * set_suspend_mode callback.
 573	 */
 574	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 575	    rstate->enabled != DISABLE_IN_SUSPEND) {
 576		if (rdev->desc->ops->set_suspend_voltage ||
 577		    rdev->desc->ops->set_suspend_mode)
 578			rdev_warn(rdev, "No configuration\n");
 579		return NULL;
 580	}
 581
 582	return rstate;
 583}
 584
 585static ssize_t microvolts_show(struct device *dev,
 586			       struct device_attribute *attr, char *buf)
 587{
 588	struct regulator_dev *rdev = dev_get_drvdata(dev);
 589	int uV;
 590
 591	regulator_lock(rdev);
 592	uV = regulator_get_voltage_rdev(rdev);
 593	regulator_unlock(rdev);
 594
 595	if (uV < 0)
 596		return uV;
 597	return sprintf(buf, "%d\n", uV);
 598}
 599static DEVICE_ATTR_RO(microvolts);
 600
 601static ssize_t microamps_show(struct device *dev,
 602			      struct device_attribute *attr, char *buf)
 603{
 604	struct regulator_dev *rdev = dev_get_drvdata(dev);
 605
 606	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 607}
 608static DEVICE_ATTR_RO(microamps);
 609
 610static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 611			 char *buf)
 612{
 613	struct regulator_dev *rdev = dev_get_drvdata(dev);
 614
 615	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 616}
 617static DEVICE_ATTR_RO(name);
 618
 619static const char *regulator_opmode_to_str(int mode)
 620{
 621	switch (mode) {
 622	case REGULATOR_MODE_FAST:
 623		return "fast";
 624	case REGULATOR_MODE_NORMAL:
 625		return "normal";
 626	case REGULATOR_MODE_IDLE:
 627		return "idle";
 628	case REGULATOR_MODE_STANDBY:
 629		return "standby";
 630	}
 631	return "unknown";
 632}
 633
 634static ssize_t regulator_print_opmode(char *buf, int mode)
 635{
 636	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 637}
 638
 639static ssize_t opmode_show(struct device *dev,
 640			   struct device_attribute *attr, char *buf)
 641{
 642	struct regulator_dev *rdev = dev_get_drvdata(dev);
 643
 644	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 645}
 646static DEVICE_ATTR_RO(opmode);
 647
 648static ssize_t regulator_print_state(char *buf, int state)
 649{
 650	if (state > 0)
 651		return sprintf(buf, "enabled\n");
 652	else if (state == 0)
 653		return sprintf(buf, "disabled\n");
 654	else
 655		return sprintf(buf, "unknown\n");
 656}
 657
 658static ssize_t state_show(struct device *dev,
 659			  struct device_attribute *attr, char *buf)
 660{
 661	struct regulator_dev *rdev = dev_get_drvdata(dev);
 662	ssize_t ret;
 663
 664	regulator_lock(rdev);
 665	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 666	regulator_unlock(rdev);
 667
 668	return ret;
 669}
 670static DEVICE_ATTR_RO(state);
 671
 672static ssize_t status_show(struct device *dev,
 673			   struct device_attribute *attr, char *buf)
 674{
 675	struct regulator_dev *rdev = dev_get_drvdata(dev);
 676	int status;
 677	char *label;
 678
 679	status = rdev->desc->ops->get_status(rdev);
 680	if (status < 0)
 681		return status;
 682
 683	switch (status) {
 684	case REGULATOR_STATUS_OFF:
 685		label = "off";
 686		break;
 687	case REGULATOR_STATUS_ON:
 688		label = "on";
 689		break;
 690	case REGULATOR_STATUS_ERROR:
 691		label = "error";
 692		break;
 693	case REGULATOR_STATUS_FAST:
 694		label = "fast";
 695		break;
 696	case REGULATOR_STATUS_NORMAL:
 697		label = "normal";
 698		break;
 699	case REGULATOR_STATUS_IDLE:
 700		label = "idle";
 701		break;
 702	case REGULATOR_STATUS_STANDBY:
 703		label = "standby";
 704		break;
 705	case REGULATOR_STATUS_BYPASS:
 706		label = "bypass";
 707		break;
 708	case REGULATOR_STATUS_UNDEFINED:
 709		label = "undefined";
 710		break;
 711	default:
 712		return -ERANGE;
 713	}
 714
 715	return sprintf(buf, "%s\n", label);
 716}
 717static DEVICE_ATTR_RO(status);
 718
 719static ssize_t min_microamps_show(struct device *dev,
 720				  struct device_attribute *attr, char *buf)
 721{
 722	struct regulator_dev *rdev = dev_get_drvdata(dev);
 723
 724	if (!rdev->constraints)
 725		return sprintf(buf, "constraint not defined\n");
 726
 727	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 728}
 729static DEVICE_ATTR_RO(min_microamps);
 730
 731static ssize_t max_microamps_show(struct device *dev,
 732				  struct device_attribute *attr, char *buf)
 733{
 734	struct regulator_dev *rdev = dev_get_drvdata(dev);
 735
 736	if (!rdev->constraints)
 737		return sprintf(buf, "constraint not defined\n");
 738
 739	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 740}
 741static DEVICE_ATTR_RO(max_microamps);
 742
 743static ssize_t min_microvolts_show(struct device *dev,
 744				   struct device_attribute *attr, char *buf)
 745{
 746	struct regulator_dev *rdev = dev_get_drvdata(dev);
 747
 748	if (!rdev->constraints)
 749		return sprintf(buf, "constraint not defined\n");
 750
 751	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 752}
 753static DEVICE_ATTR_RO(min_microvolts);
 754
 755static ssize_t max_microvolts_show(struct device *dev,
 756				   struct device_attribute *attr, char *buf)
 757{
 758	struct regulator_dev *rdev = dev_get_drvdata(dev);
 759
 760	if (!rdev->constraints)
 761		return sprintf(buf, "constraint not defined\n");
 762
 763	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 764}
 765static DEVICE_ATTR_RO(max_microvolts);
 766
 767static ssize_t requested_microamps_show(struct device *dev,
 768					struct device_attribute *attr, char *buf)
 769{
 770	struct regulator_dev *rdev = dev_get_drvdata(dev);
 771	struct regulator *regulator;
 772	int uA = 0;
 773
 774	regulator_lock(rdev);
 775	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 776		if (regulator->enable_count)
 777			uA += regulator->uA_load;
 778	}
 779	regulator_unlock(rdev);
 780	return sprintf(buf, "%d\n", uA);
 781}
 782static DEVICE_ATTR_RO(requested_microamps);
 783
 784static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 785			      char *buf)
 786{
 787	struct regulator_dev *rdev = dev_get_drvdata(dev);
 788	return sprintf(buf, "%d\n", rdev->use_count);
 789}
 790static DEVICE_ATTR_RO(num_users);
 791
 792static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 793			 char *buf)
 794{
 795	struct regulator_dev *rdev = dev_get_drvdata(dev);
 796
 797	switch (rdev->desc->type) {
 798	case REGULATOR_VOLTAGE:
 799		return sprintf(buf, "voltage\n");
 800	case REGULATOR_CURRENT:
 801		return sprintf(buf, "current\n");
 802	}
 803	return sprintf(buf, "unknown\n");
 804}
 805static DEVICE_ATTR_RO(type);
 806
 807static ssize_t suspend_mem_microvolts_show(struct device *dev,
 808					   struct device_attribute *attr, char *buf)
 809{
 810	struct regulator_dev *rdev = dev_get_drvdata(dev);
 811
 812	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 813}
 814static DEVICE_ATTR_RO(suspend_mem_microvolts);
 
 815
 816static ssize_t suspend_disk_microvolts_show(struct device *dev,
 817					    struct device_attribute *attr, char *buf)
 818{
 819	struct regulator_dev *rdev = dev_get_drvdata(dev);
 820
 821	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 822}
 823static DEVICE_ATTR_RO(suspend_disk_microvolts);
 
 824
 825static ssize_t suspend_standby_microvolts_show(struct device *dev,
 826					       struct device_attribute *attr, char *buf)
 827{
 828	struct regulator_dev *rdev = dev_get_drvdata(dev);
 829
 830	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 831}
 832static DEVICE_ATTR_RO(suspend_standby_microvolts);
 
 833
 834static ssize_t suspend_mem_mode_show(struct device *dev,
 835				     struct device_attribute *attr, char *buf)
 836{
 837	struct regulator_dev *rdev = dev_get_drvdata(dev);
 838
 839	return regulator_print_opmode(buf,
 840		rdev->constraints->state_mem.mode);
 841}
 842static DEVICE_ATTR_RO(suspend_mem_mode);
 
 843
 844static ssize_t suspend_disk_mode_show(struct device *dev,
 845				      struct device_attribute *attr, char *buf)
 846{
 847	struct regulator_dev *rdev = dev_get_drvdata(dev);
 848
 849	return regulator_print_opmode(buf,
 850		rdev->constraints->state_disk.mode);
 851}
 852static DEVICE_ATTR_RO(suspend_disk_mode);
 
 853
 854static ssize_t suspend_standby_mode_show(struct device *dev,
 855					 struct device_attribute *attr, char *buf)
 856{
 857	struct regulator_dev *rdev = dev_get_drvdata(dev);
 858
 859	return regulator_print_opmode(buf,
 860		rdev->constraints->state_standby.mode);
 861}
 862static DEVICE_ATTR_RO(suspend_standby_mode);
 
 863
 864static ssize_t suspend_mem_state_show(struct device *dev,
 865				      struct device_attribute *attr, char *buf)
 866{
 867	struct regulator_dev *rdev = dev_get_drvdata(dev);
 868
 869	return regulator_print_state(buf,
 870			rdev->constraints->state_mem.enabled);
 871}
 872static DEVICE_ATTR_RO(suspend_mem_state);
 
 873
 874static ssize_t suspend_disk_state_show(struct device *dev,
 875				       struct device_attribute *attr, char *buf)
 876{
 877	struct regulator_dev *rdev = dev_get_drvdata(dev);
 878
 879	return regulator_print_state(buf,
 880			rdev->constraints->state_disk.enabled);
 881}
 882static DEVICE_ATTR_RO(suspend_disk_state);
 
 883
 884static ssize_t suspend_standby_state_show(struct device *dev,
 885					  struct device_attribute *attr, char *buf)
 886{
 887	struct regulator_dev *rdev = dev_get_drvdata(dev);
 888
 889	return regulator_print_state(buf,
 890			rdev->constraints->state_standby.enabled);
 891}
 892static DEVICE_ATTR_RO(suspend_standby_state);
 
 893
 894static ssize_t bypass_show(struct device *dev,
 895			   struct device_attribute *attr, char *buf)
 896{
 897	struct regulator_dev *rdev = dev_get_drvdata(dev);
 898	const char *report;
 899	bool bypass;
 900	int ret;
 901
 902	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 903
 904	if (ret != 0)
 905		report = "unknown";
 906	else if (bypass)
 907		report = "enabled";
 908	else
 909		report = "disabled";
 910
 911	return sprintf(buf, "%s\n", report);
 912}
 913static DEVICE_ATTR_RO(bypass);
 914
 915#define REGULATOR_ERROR_ATTR(name, bit)							\
 916	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
 917				   char *buf)						\
 918	{										\
 919		int ret;								\
 920		unsigned int flags;							\
 921		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
 922		ret = _regulator_get_error_flags(rdev, &flags);				\
 923		if (ret)								\
 924			return ret;							\
 925		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
 926	}										\
 927	static DEVICE_ATTR_RO(name)
 928
 929REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
 930REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
 931REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
 932REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
 933REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
 934REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
 935REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
 936REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
 937REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
 938
 939/* Calculate the new optimum regulator operating mode based on the new total
 940 * consumer load. All locks held by caller
 941 */
 942static int drms_uA_update(struct regulator_dev *rdev)
 943{
 944	struct regulator *sibling;
 945	int current_uA = 0, output_uV, input_uV, err;
 946	unsigned int mode;
 947
 
 
 948	/*
 949	 * first check to see if we can set modes at all, otherwise just
 950	 * tell the consumer everything is OK.
 951	 */
 952	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 953		rdev_dbg(rdev, "DRMS operation not allowed\n");
 954		return 0;
 955	}
 956
 957	if (!rdev->desc->ops->get_optimum_mode &&
 958	    !rdev->desc->ops->set_load)
 959		return 0;
 960
 961	if (!rdev->desc->ops->set_mode &&
 962	    !rdev->desc->ops->set_load)
 963		return -EINVAL;
 964
 965	/* calc total requested load */
 966	list_for_each_entry(sibling, &rdev->consumer_list, list) {
 967		if (sibling->enable_count)
 968			current_uA += sibling->uA_load;
 969	}
 970
 971	current_uA += rdev->constraints->system_load;
 972
 973	if (rdev->desc->ops->set_load) {
 974		/* set the optimum mode for our new total regulator load */
 975		err = rdev->desc->ops->set_load(rdev, current_uA);
 976		if (err < 0)
 977			rdev_err(rdev, "failed to set load %d: %pe\n",
 978				 current_uA, ERR_PTR(err));
 979	} else {
 980		/*
 981		 * Unfortunately in some cases the constraints->valid_ops has
 982		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
 983		 * That's not really legit but we won't consider it a fatal
 984		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
 985		 * wasn't set.
 986		 */
 987		if (!rdev->constraints->valid_modes_mask) {
 988			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
 989			return 0;
 990		}
 991
 992		/* get output voltage */
 993		output_uV = regulator_get_voltage_rdev(rdev);
 994
 995		/*
 996		 * Don't return an error; if regulator driver cares about
 997		 * output_uV then it's up to the driver to validate.
 998		 */
 999		if (output_uV <= 0)
1000			rdev_dbg(rdev, "invalid output voltage found\n");
1001
1002		/* get input voltage */
1003		input_uV = 0;
1004		if (rdev->supply)
1005			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1006		if (input_uV <= 0)
1007			input_uV = rdev->constraints->input_uV;
1008
1009		/*
1010		 * Don't return an error; if regulator driver cares about
1011		 * input_uV then it's up to the driver to validate.
1012		 */
1013		if (input_uV <= 0)
1014			rdev_dbg(rdev, "invalid input voltage found\n");
1015
1016		/* now get the optimum mode for our new total regulator load */
1017		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1018							 output_uV, current_uA);
1019
1020		/* check the new mode is allowed */
1021		err = regulator_mode_constrain(rdev, &mode);
1022		if (err < 0) {
1023			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1024				 current_uA, input_uV, output_uV, ERR_PTR(err));
1025			return err;
1026		}
1027
1028		err = rdev->desc->ops->set_mode(rdev, mode);
1029		if (err < 0)
1030			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1031				 mode, ERR_PTR(err));
1032	}
1033
1034	return err;
1035}
1036
1037static int __suspend_set_state(struct regulator_dev *rdev,
1038			       const struct regulator_state *rstate)
1039{
1040	int ret = 0;
1041
1042	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1043		rdev->desc->ops->set_suspend_enable)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044		ret = rdev->desc->ops->set_suspend_enable(rdev);
1045	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1046		rdev->desc->ops->set_suspend_disable)
1047		ret = rdev->desc->ops->set_suspend_disable(rdev);
1048	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1049		ret = 0;
1050
1051	if (ret < 0) {
1052		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1053		return ret;
1054	}
1055
1056	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1057		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1058		if (ret < 0) {
1059			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1060			return ret;
1061		}
1062	}
1063
1064	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1065		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1066		if (ret < 0) {
1067			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1068			return ret;
1069		}
1070	}
1071
1072	return ret;
1073}
1074
1075static int suspend_set_initial_state(struct regulator_dev *rdev)
 
1076{
1077	const struct regulator_state *rstate;
1078
1079	rstate = regulator_get_suspend_state_check(rdev,
1080			rdev->constraints->initial_state);
1081	if (!rstate)
1082		return 0;
1083
1084	return __suspend_set_state(rdev, rstate);
 
 
 
 
 
 
 
 
 
 
 
 
1085}
1086
1087#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1088static void print_constraints_debug(struct regulator_dev *rdev)
1089{
1090	struct regulation_constraints *constraints = rdev->constraints;
1091	char buf[160] = "";
1092	size_t len = sizeof(buf) - 1;
1093	int count = 0;
1094	int ret;
1095
1096	if (constraints->min_uV && constraints->max_uV) {
1097		if (constraints->min_uV == constraints->max_uV)
1098			count += scnprintf(buf + count, len - count, "%d mV ",
1099					   constraints->min_uV / 1000);
1100		else
1101			count += scnprintf(buf + count, len - count,
1102					   "%d <--> %d mV ",
1103					   constraints->min_uV / 1000,
1104					   constraints->max_uV / 1000);
1105	}
1106
1107	if (!constraints->min_uV ||
1108	    constraints->min_uV != constraints->max_uV) {
1109		ret = regulator_get_voltage_rdev(rdev);
1110		if (ret > 0)
1111			count += scnprintf(buf + count, len - count,
1112					   "at %d mV ", ret / 1000);
1113	}
1114
1115	if (constraints->uV_offset)
1116		count += scnprintf(buf + count, len - count, "%dmV offset ",
1117				   constraints->uV_offset / 1000);
1118
1119	if (constraints->min_uA && constraints->max_uA) {
1120		if (constraints->min_uA == constraints->max_uA)
1121			count += scnprintf(buf + count, len - count, "%d mA ",
1122					   constraints->min_uA / 1000);
1123		else
1124			count += scnprintf(buf + count, len - count,
1125					   "%d <--> %d mA ",
1126					   constraints->min_uA / 1000,
1127					   constraints->max_uA / 1000);
1128	}
1129
1130	if (!constraints->min_uA ||
1131	    constraints->min_uA != constraints->max_uA) {
1132		ret = _regulator_get_current_limit(rdev);
1133		if (ret > 0)
1134			count += scnprintf(buf + count, len - count,
1135					   "at %d mA ", ret / 1000);
1136	}
1137
1138	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1139		count += scnprintf(buf + count, len - count, "fast ");
1140	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1141		count += scnprintf(buf + count, len - count, "normal ");
1142	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1143		count += scnprintf(buf + count, len - count, "idle ");
1144	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1145		count += scnprintf(buf + count, len - count, "standby ");
1146
1147	if (!count)
1148		count = scnprintf(buf, len, "no parameters");
1149	else
1150		--count;
1151
1152	count += scnprintf(buf + count, len - count, ", %s",
1153		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1154
1155	rdev_dbg(rdev, "%s\n", buf);
1156}
1157#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1158static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1159#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1160
1161static void print_constraints(struct regulator_dev *rdev)
1162{
1163	struct regulation_constraints *constraints = rdev->constraints;
1164
1165	print_constraints_debug(rdev);
1166
1167	if ((constraints->min_uV != constraints->max_uV) &&
1168	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1169		rdev_warn(rdev,
1170			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1171}
1172
1173static int machine_constraints_voltage(struct regulator_dev *rdev,
1174	struct regulation_constraints *constraints)
1175{
1176	const struct regulator_ops *ops = rdev->desc->ops;
1177	int ret;
1178
1179	/* do we need to apply the constraint voltage */
1180	if (rdev->constraints->apply_uV &&
1181	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1182		int target_min, target_max;
1183		int current_uV = regulator_get_voltage_rdev(rdev);
1184
1185		if (current_uV == -ENOTRECOVERABLE) {
1186			/* This regulator can't be read and must be initialized */
1187			rdev_info(rdev, "Setting %d-%duV\n",
1188				  rdev->constraints->min_uV,
1189				  rdev->constraints->max_uV);
1190			_regulator_do_set_voltage(rdev,
1191						  rdev->constraints->min_uV,
1192						  rdev->constraints->max_uV);
1193			current_uV = regulator_get_voltage_rdev(rdev);
1194		}
1195
1196		if (current_uV < 0) {
1197			if (current_uV != -EPROBE_DEFER)
1198				rdev_err(rdev,
1199					 "failed to get the current voltage: %pe\n",
1200					 ERR_PTR(current_uV));
1201			return current_uV;
1202		}
1203
1204		/*
1205		 * If we're below the minimum voltage move up to the
1206		 * minimum voltage, if we're above the maximum voltage
1207		 * then move down to the maximum.
1208		 */
1209		target_min = current_uV;
1210		target_max = current_uV;
1211
1212		if (current_uV < rdev->constraints->min_uV) {
1213			target_min = rdev->constraints->min_uV;
1214			target_max = rdev->constraints->min_uV;
1215		}
1216
1217		if (current_uV > rdev->constraints->max_uV) {
1218			target_min = rdev->constraints->max_uV;
1219			target_max = rdev->constraints->max_uV;
1220		}
1221
1222		if (target_min != current_uV || target_max != current_uV) {
1223			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1224				  current_uV, target_min, target_max);
1225			ret = _regulator_do_set_voltage(
1226				rdev, target_min, target_max);
1227			if (ret < 0) {
1228				rdev_err(rdev,
1229					"failed to apply %d-%duV constraint: %pe\n",
1230					target_min, target_max, ERR_PTR(ret));
1231				return ret;
1232			}
1233		}
1234	}
1235
1236	/* constrain machine-level voltage specs to fit
1237	 * the actual range supported by this regulator.
1238	 */
1239	if (ops->list_voltage && rdev->desc->n_voltages) {
1240		int	count = rdev->desc->n_voltages;
1241		int	i;
1242		int	min_uV = INT_MAX;
1243		int	max_uV = INT_MIN;
1244		int	cmin = constraints->min_uV;
1245		int	cmax = constraints->max_uV;
1246
1247		/* it's safe to autoconfigure fixed-voltage supplies
1248		 * and the constraints are used by list_voltage.
1249		 */
1250		if (count == 1 && !cmin) {
1251			cmin = 1;
1252			cmax = INT_MAX;
1253			constraints->min_uV = cmin;
1254			constraints->max_uV = cmax;
1255		}
1256
1257		/* voltage constraints are optional */
1258		if ((cmin == 0) && (cmax == 0))
1259			return 0;
1260
1261		/* else require explicit machine-level constraints */
1262		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1263			rdev_err(rdev, "invalid voltage constraints\n");
1264			return -EINVAL;
1265		}
1266
1267		/* no need to loop voltages if range is continuous */
1268		if (rdev->desc->continuous_voltage_range)
1269			return 0;
1270
1271		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1272		for (i = 0; i < count; i++) {
1273			int	value;
1274
1275			value = ops->list_voltage(rdev, i);
1276			if (value <= 0)
1277				continue;
1278
1279			/* maybe adjust [min_uV..max_uV] */
1280			if (value >= cmin && value < min_uV)
1281				min_uV = value;
1282			if (value <= cmax && value > max_uV)
1283				max_uV = value;
1284		}
1285
1286		/* final: [min_uV..max_uV] valid iff constraints valid */
1287		if (max_uV < min_uV) {
1288			rdev_err(rdev,
1289				 "unsupportable voltage constraints %u-%uuV\n",
1290				 min_uV, max_uV);
1291			return -EINVAL;
1292		}
1293
1294		/* use regulator's subset of machine constraints */
1295		if (constraints->min_uV < min_uV) {
1296			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1297				 constraints->min_uV, min_uV);
1298			constraints->min_uV = min_uV;
1299		}
1300		if (constraints->max_uV > max_uV) {
1301			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1302				 constraints->max_uV, max_uV);
1303			constraints->max_uV = max_uV;
1304		}
1305	}
1306
1307	return 0;
1308}
1309
1310static int machine_constraints_current(struct regulator_dev *rdev,
1311	struct regulation_constraints *constraints)
1312{
1313	const struct regulator_ops *ops = rdev->desc->ops;
1314	int ret;
1315
1316	if (!constraints->min_uA && !constraints->max_uA)
1317		return 0;
1318
1319	if (constraints->min_uA > constraints->max_uA) {
1320		rdev_err(rdev, "Invalid current constraints\n");
1321		return -EINVAL;
1322	}
1323
1324	if (!ops->set_current_limit || !ops->get_current_limit) {
1325		rdev_warn(rdev, "Operation of current configuration missing\n");
1326		return 0;
1327	}
1328
1329	/* Set regulator current in constraints range */
1330	ret = ops->set_current_limit(rdev, constraints->min_uA,
1331			constraints->max_uA);
1332	if (ret < 0) {
1333		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1334		return ret;
1335	}
1336
1337	return 0;
1338}
1339
1340static int _regulator_do_enable(struct regulator_dev *rdev);
1341
1342static int notif_set_limit(struct regulator_dev *rdev,
1343			   int (*set)(struct regulator_dev *, int, int, bool),
1344			   int limit, int severity)
1345{
1346	bool enable;
1347
1348	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1349		enable = false;
1350		limit = 0;
1351	} else {
1352		enable = true;
1353	}
1354
1355	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1356		limit = 0;
1357
1358	return set(rdev, limit, severity, enable);
1359}
1360
1361static int handle_notify_limits(struct regulator_dev *rdev,
1362			int (*set)(struct regulator_dev *, int, int, bool),
1363			struct notification_limit *limits)
1364{
1365	int ret = 0;
1366
1367	if (!set)
1368		return -EOPNOTSUPP;
1369
1370	if (limits->prot)
1371		ret = notif_set_limit(rdev, set, limits->prot,
1372				      REGULATOR_SEVERITY_PROT);
1373	if (ret)
1374		return ret;
1375
1376	if (limits->err)
1377		ret = notif_set_limit(rdev, set, limits->err,
1378				      REGULATOR_SEVERITY_ERR);
1379	if (ret)
1380		return ret;
1381
1382	if (limits->warn)
1383		ret = notif_set_limit(rdev, set, limits->warn,
1384				      REGULATOR_SEVERITY_WARN);
1385
1386	return ret;
1387}
1388/**
1389 * set_machine_constraints - sets regulator constraints
1390 * @rdev: regulator source
 
1391 *
1392 * Allows platform initialisation code to define and constrain
1393 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1394 * Constraints *must* be set by platform code in order for some
1395 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396 * set_mode.
1397 */
1398static int set_machine_constraints(struct regulator_dev *rdev)
 
1399{
1400	int ret = 0;
1401	const struct regulator_ops *ops = rdev->desc->ops;
1402
 
 
 
 
 
 
 
 
 
1403	ret = machine_constraints_voltage(rdev, rdev->constraints);
1404	if (ret != 0)
1405		return ret;
1406
1407	ret = machine_constraints_current(rdev, rdev->constraints);
1408	if (ret != 0)
1409		return ret;
1410
1411	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412		ret = ops->set_input_current_limit(rdev,
1413						   rdev->constraints->ilim_uA);
1414		if (ret < 0) {
1415			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416			return ret;
1417		}
1418	}
1419
1420	/* do we need to setup our suspend state */
1421	if (rdev->constraints->initial_state) {
1422		ret = suspend_set_initial_state(rdev);
1423		if (ret < 0) {
1424			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425			return ret;
1426		}
1427	}
1428
1429	if (rdev->constraints->initial_mode) {
1430		if (!ops->set_mode) {
1431			rdev_err(rdev, "no set_mode operation\n");
1432			return -EINVAL;
1433		}
1434
1435		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436		if (ret < 0) {
1437			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
 
 
 
 
 
 
 
 
 
 
 
1438			return ret;
1439		}
1440	} else if (rdev->constraints->system_load) {
1441		/*
1442		 * We'll only apply the initial system load if an
1443		 * initial mode wasn't specified.
1444		 */
1445		drms_uA_update(rdev);
1446	}
1447
1448	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449		&& ops->set_ramp_delay) {
1450		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451		if (ret < 0) {
1452			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453			return ret;
1454		}
1455	}
1456
1457	if (rdev->constraints->pull_down && ops->set_pull_down) {
1458		ret = ops->set_pull_down(rdev);
1459		if (ret < 0) {
1460			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461			return ret;
1462		}
1463	}
1464
1465	if (rdev->constraints->soft_start && ops->set_soft_start) {
1466		ret = ops->set_soft_start(rdev);
1467		if (ret < 0) {
1468			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469			return ret;
1470		}
1471	}
1472
1473	/*
1474	 * Existing logic does not warn if over_current_protection is given as
1475	 * a constraint but driver does not support that. I think we should
1476	 * warn about this type of issues as it is possible someone changes
1477	 * PMIC on board to another type - and the another PMIC's driver does
1478	 * not support setting protection. Board composer may happily believe
1479	 * the DT limits are respected - especially if the new PMIC HW also
1480	 * supports protection but the driver does not. I won't change the logic
1481	 * without hearing more experienced opinion on this though.
1482	 *
1483	 * If warning is seen as a good idea then we can merge handling the
1484	 * over-curret protection and detection and get rid of this special
1485	 * handling.
1486	 */
1487	if (rdev->constraints->over_current_protection
1488		&& ops->set_over_current_protection) {
1489		int lim = rdev->constraints->over_curr_limits.prot;
1490
1491		ret = ops->set_over_current_protection(rdev, lim,
1492						       REGULATOR_SEVERITY_PROT,
1493						       true);
1494		if (ret < 0) {
1495			rdev_err(rdev, "failed to set over current protection: %pe\n",
1496				 ERR_PTR(ret));
1497			return ret;
1498		}
1499	}
1500
1501	if (rdev->constraints->over_current_detection)
1502		ret = handle_notify_limits(rdev,
1503					   ops->set_over_current_protection,
1504					   &rdev->constraints->over_curr_limits);
1505	if (ret) {
1506		if (ret != -EOPNOTSUPP) {
1507			rdev_err(rdev, "failed to set over current limits: %pe\n",
1508				 ERR_PTR(ret));
1509			return ret;
1510		}
1511		rdev_warn(rdev,
1512			  "IC does not support requested over-current limits\n");
1513	}
1514
1515	if (rdev->constraints->over_voltage_detection)
1516		ret = handle_notify_limits(rdev,
1517					   ops->set_over_voltage_protection,
1518					   &rdev->constraints->over_voltage_limits);
1519	if (ret) {
1520		if (ret != -EOPNOTSUPP) {
1521			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1522				 ERR_PTR(ret));
1523			return ret;
1524		}
1525		rdev_warn(rdev,
1526			  "IC does not support requested over voltage limits\n");
1527	}
1528
1529	if (rdev->constraints->under_voltage_detection)
1530		ret = handle_notify_limits(rdev,
1531					   ops->set_under_voltage_protection,
1532					   &rdev->constraints->under_voltage_limits);
1533	if (ret) {
1534		if (ret != -EOPNOTSUPP) {
1535			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1536				 ERR_PTR(ret));
1537			return ret;
1538		}
1539		rdev_warn(rdev,
1540			  "IC does not support requested under voltage limits\n");
1541	}
1542
1543	if (rdev->constraints->over_temp_detection)
1544		ret = handle_notify_limits(rdev,
1545					   ops->set_thermal_protection,
1546					   &rdev->constraints->temp_limits);
1547	if (ret) {
1548		if (ret != -EOPNOTSUPP) {
1549			rdev_err(rdev, "failed to set temperature limits %pe\n",
1550				 ERR_PTR(ret));
1551			return ret;
1552		}
1553		rdev_warn(rdev,
1554			  "IC does not support requested temperature limits\n");
1555	}
1556
1557	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1558		bool ad_state = (rdev->constraints->active_discharge ==
1559			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1560
1561		ret = ops->set_active_discharge(rdev, ad_state);
1562		if (ret < 0) {
1563			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1564			return ret;
1565		}
1566	}
1567
1568	/*
1569	 * If there is no mechanism for controlling the regulator then
1570	 * flag it as always_on so we don't end up duplicating checks
1571	 * for this so much.  Note that we could control the state of
1572	 * a supply to control the output on a regulator that has no
1573	 * direct control.
1574	 */
1575	if (!rdev->ena_pin && !ops->enable) {
1576		if (rdev->supply_name && !rdev->supply)
1577			return -EPROBE_DEFER;
1578
1579		if (rdev->supply)
1580			rdev->constraints->always_on =
1581				rdev->supply->rdev->constraints->always_on;
1582		else
1583			rdev->constraints->always_on = true;
1584	}
1585
1586	if (rdev->desc->off_on_delay)
1587		rdev->last_off = ktime_get();
1588
1589	/* If the constraints say the regulator should be on at this point
1590	 * and we have control then make sure it is enabled.
1591	 */
1592	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1593		/* If we want to enable this regulator, make sure that we know
1594		 * the supplying regulator.
1595		 */
1596		if (rdev->supply_name && !rdev->supply)
1597			return -EPROBE_DEFER;
1598
1599		/* If supplying regulator has already been enabled,
1600		 * it's not intended to have use_count increment
1601		 * when rdev is only boot-on.
1602		 */
1603		if (rdev->supply &&
1604		    (rdev->constraints->always_on ||
1605		     !regulator_is_enabled(rdev->supply))) {
1606			ret = regulator_enable(rdev->supply);
1607			if (ret < 0) {
1608				_regulator_put(rdev->supply);
1609				rdev->supply = NULL;
1610				return ret;
1611			}
1612		}
1613
1614		ret = _regulator_do_enable(rdev);
1615		if (ret < 0 && ret != -EINVAL) {
1616			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1617			return ret;
1618		}
1619
1620		if (rdev->constraints->always_on)
1621			rdev->use_count++;
1622	}
1623
1624	print_constraints(rdev);
1625	return 0;
1626}
1627
1628/**
1629 * set_supply - set regulator supply regulator
1630 * @rdev: regulator name
1631 * @supply_rdev: supply regulator name
1632 *
1633 * Called by platform initialisation code to set the supply regulator for this
1634 * regulator. This ensures that a regulators supply will also be enabled by the
1635 * core if it's child is enabled.
1636 */
1637static int set_supply(struct regulator_dev *rdev,
1638		      struct regulator_dev *supply_rdev)
1639{
1640	int err;
1641
1642	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1643
1644	if (!try_module_get(supply_rdev->owner))
1645		return -ENODEV;
1646
1647	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1648	if (rdev->supply == NULL) {
1649		module_put(supply_rdev->owner);
1650		err = -ENOMEM;
1651		return err;
1652	}
1653	supply_rdev->open_count++;
1654
1655	return 0;
1656}
1657
1658/**
1659 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1660 * @rdev:         regulator source
1661 * @consumer_dev_name: dev_name() string for device supply applies to
1662 * @supply:       symbolic name for supply
1663 *
1664 * Allows platform initialisation code to map physical regulator
1665 * sources to symbolic names for supplies for use by devices.  Devices
1666 * should use these symbolic names to request regulators, avoiding the
1667 * need to provide board-specific regulator names as platform data.
1668 */
1669static int set_consumer_device_supply(struct regulator_dev *rdev,
1670				      const char *consumer_dev_name,
1671				      const char *supply)
1672{
1673	struct regulator_map *node, *new_node;
1674	int has_dev;
1675
1676	if (supply == NULL)
1677		return -EINVAL;
1678
1679	if (consumer_dev_name != NULL)
1680		has_dev = 1;
1681	else
1682		has_dev = 0;
1683
1684	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1685	if (new_node == NULL)
1686		return -ENOMEM;
1687
1688	new_node->regulator = rdev;
1689	new_node->supply = supply;
1690
1691	if (has_dev) {
1692		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1693		if (new_node->dev_name == NULL) {
1694			kfree(new_node);
1695			return -ENOMEM;
1696		}
1697	}
1698
1699	mutex_lock(&regulator_list_mutex);
1700	list_for_each_entry(node, &regulator_map_list, list) {
1701		if (node->dev_name && consumer_dev_name) {
1702			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1703				continue;
1704		} else if (node->dev_name || consumer_dev_name) {
1705			continue;
1706		}
1707
1708		if (strcmp(node->supply, supply) != 0)
1709			continue;
1710
1711		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1712			 consumer_dev_name,
1713			 dev_name(&node->regulator->dev),
1714			 node->regulator->desc->name,
1715			 supply,
1716			 dev_name(&rdev->dev), rdev_get_name(rdev));
1717		goto fail;
1718	}
1719
1720	list_add(&new_node->list, &regulator_map_list);
1721	mutex_unlock(&regulator_list_mutex);
 
1722
1723	return 0;
 
1724
1725fail:
1726	mutex_unlock(&regulator_list_mutex);
1727	kfree(new_node->dev_name);
1728	kfree(new_node);
1729	return -EBUSY;
 
 
 
 
 
1730}
1731
1732static void unset_regulator_supplies(struct regulator_dev *rdev)
1733{
1734	struct regulator_map *node, *n;
1735
1736	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1737		if (rdev == node->regulator) {
1738			list_del(&node->list);
1739			kfree(node->dev_name);
1740			kfree(node);
1741		}
1742	}
1743}
1744
1745#ifdef CONFIG_DEBUG_FS
1746static ssize_t constraint_flags_read_file(struct file *file,
1747					  char __user *user_buf,
1748					  size_t count, loff_t *ppos)
1749{
1750	const struct regulator *regulator = file->private_data;
1751	const struct regulation_constraints *c = regulator->rdev->constraints;
1752	char *buf;
1753	ssize_t ret;
1754
1755	if (!c)
1756		return 0;
1757
1758	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1759	if (!buf)
1760		return -ENOMEM;
1761
1762	ret = snprintf(buf, PAGE_SIZE,
1763			"always_on: %u\n"
1764			"boot_on: %u\n"
1765			"apply_uV: %u\n"
1766			"ramp_disable: %u\n"
1767			"soft_start: %u\n"
1768			"pull_down: %u\n"
1769			"over_current_protection: %u\n",
1770			c->always_on,
1771			c->boot_on,
1772			c->apply_uV,
1773			c->ramp_disable,
1774			c->soft_start,
1775			c->pull_down,
1776			c->over_current_protection);
1777
1778	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1779	kfree(buf);
1780
1781	return ret;
1782}
1783
1784#endif
1785
1786static const struct file_operations constraint_flags_fops = {
1787#ifdef CONFIG_DEBUG_FS
1788	.open = simple_open,
1789	.read = constraint_flags_read_file,
1790	.llseek = default_llseek,
1791#endif
1792};
1793
1794#define REG_STR_SIZE	64
1795
1796static struct regulator *create_regulator(struct regulator_dev *rdev,
1797					  struct device *dev,
1798					  const char *supply_name)
1799{
1800	struct regulator *regulator;
1801	int err = 0;
1802
1803	if (dev) {
1804		char buf[REG_STR_SIZE];
1805		int size;
1806
1807		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1808				dev->kobj.name, supply_name);
1809		if (size >= REG_STR_SIZE)
1810			return NULL;
1811
1812		supply_name = kstrdup(buf, GFP_KERNEL);
1813		if (supply_name == NULL)
1814			return NULL;
1815	} else {
1816		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1817		if (supply_name == NULL)
1818			return NULL;
1819	}
1820
1821	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1822	if (regulator == NULL) {
1823		kfree_const(supply_name);
1824		return NULL;
1825	}
1826
 
1827	regulator->rdev = rdev;
1828	regulator->supply_name = supply_name;
1829
1830	regulator_lock(rdev);
1831	list_add(&regulator->list, &rdev->consumer_list);
1832	regulator_unlock(rdev);
1833
1834	if (dev) {
1835		regulator->dev = dev;
1836
1837		/* Add a link to the device sysfs entry */
 
 
 
 
 
 
 
 
 
1838		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1839					       supply_name);
1840		if (err) {
1841			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1842				  dev->kobj.name, ERR_PTR(err));
1843			/* non-fatal */
1844		}
 
 
 
 
1845	}
1846
1847	if (err != -EEXIST)
1848		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1849	if (!regulator->debugfs) {
1850		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1851	} else {
1852		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1853				   &regulator->uA_load);
1854		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1855				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1856		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1857				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1858		debugfs_create_file("constraint_flags", 0444,
1859				    regulator->debugfs, regulator,
1860				    &constraint_flags_fops);
1861	}
1862
1863	/*
1864	 * Check now if the regulator is an always on regulator - if
1865	 * it is then we don't need to do nearly so much work for
1866	 * enable/disable calls.
1867	 */
1868	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1869	    _regulator_is_enabled(rdev))
1870		regulator->always_on = true;
1871
 
1872	return regulator;
 
 
 
 
 
1873}
1874
1875static int _regulator_get_enable_time(struct regulator_dev *rdev)
1876{
1877	if (rdev->constraints && rdev->constraints->enable_time)
1878		return rdev->constraints->enable_time;
1879	if (rdev->desc->ops->enable_time)
1880		return rdev->desc->ops->enable_time(rdev);
1881	return rdev->desc->enable_time;
1882}
1883
1884static struct regulator_supply_alias *regulator_find_supply_alias(
1885		struct device *dev, const char *supply)
1886{
1887	struct regulator_supply_alias *map;
1888
1889	list_for_each_entry(map, &regulator_supply_alias_list, list)
1890		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1891			return map;
1892
1893	return NULL;
1894}
1895
1896static void regulator_supply_alias(struct device **dev, const char **supply)
1897{
1898	struct regulator_supply_alias *map;
1899
1900	map = regulator_find_supply_alias(*dev, *supply);
1901	if (map) {
1902		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1903				*supply, map->alias_supply,
1904				dev_name(map->alias_dev));
1905		*dev = map->alias_dev;
1906		*supply = map->alias_supply;
1907	}
1908}
1909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910static int regulator_match(struct device *dev, const void *data)
1911{
1912	struct regulator_dev *r = dev_to_rdev(dev);
1913
1914	return strcmp(rdev_get_name(r), data) == 0;
1915}
1916
1917static struct regulator_dev *regulator_lookup_by_name(const char *name)
1918{
1919	struct device *dev;
1920
1921	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1922
1923	return dev ? dev_to_rdev(dev) : NULL;
1924}
1925
1926/**
1927 * regulator_dev_lookup - lookup a regulator device.
1928 * @dev: device for regulator "consumer".
1929 * @supply: Supply name or regulator ID.
 
 
1930 *
1931 * If successful, returns a struct regulator_dev that corresponds to the name
1932 * @supply and with the embedded struct device refcount incremented by one.
1933 * The refcount must be dropped by calling put_device().
1934 * On failure one of the following ERR-PTR-encoded values is returned:
1935 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1936 * in the future.
1937 */
1938static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1939						  const char *supply)
 
1940{
1941	struct regulator_dev *r = NULL;
1942	struct device_node *node;
1943	struct regulator_map *map;
1944	const char *devname = NULL;
1945
1946	regulator_supply_alias(&dev, &supply);
1947
1948	/* first do a dt based lookup */
1949	if (dev && dev->of_node) {
1950		node = of_get_regulator(dev, supply);
1951		if (node) {
1952			r = of_find_regulator_by_node(node);
1953			of_node_put(node);
1954			if (r)
1955				return r;
1956
 
 
1957			/*
1958			 * We have a node, but there is no device.
1959			 * assume it has not registered yet.
 
 
1960			 */
1961			return ERR_PTR(-EPROBE_DEFER);
1962		}
1963	}
1964
1965	/* if not found, try doing it non-dt way */
1966	if (dev)
1967		devname = dev_name(dev);
1968
 
 
 
 
1969	mutex_lock(&regulator_list_mutex);
1970	list_for_each_entry(map, &regulator_map_list, list) {
1971		/* If the mapping has a device set up it must match */
1972		if (map->dev_name &&
1973		    (!devname || strcmp(map->dev_name, devname)))
1974			continue;
1975
1976		if (strcmp(map->supply, supply) == 0 &&
1977		    get_device(&map->regulator->dev)) {
1978			r = map->regulator;
1979			break;
1980		}
1981	}
1982	mutex_unlock(&regulator_list_mutex);
1983
1984	if (r)
1985		return r;
1986
1987	r = regulator_lookup_by_name(supply);
1988	if (r)
1989		return r;
1990
1991	return ERR_PTR(-ENODEV);
1992}
1993
1994static int regulator_resolve_supply(struct regulator_dev *rdev)
1995{
1996	struct regulator_dev *r;
1997	struct device *dev = rdev->dev.parent;
1998	int ret = 0;
1999
2000	/* No supply to resolve? */
2001	if (!rdev->supply_name)
2002		return 0;
2003
2004	/* Supply already resolved? (fast-path without locking contention) */
2005	if (rdev->supply)
2006		return 0;
2007
2008	r = regulator_dev_lookup(dev, rdev->supply_name);
2009	if (IS_ERR(r)) {
2010		ret = PTR_ERR(r);
 
 
 
 
 
 
2011
2012		/* Did the lookup explicitly defer for us? */
2013		if (ret == -EPROBE_DEFER)
2014			goto out;
2015
2016		if (have_full_constraints()) {
2017			r = dummy_regulator_rdev;
2018			get_device(&r->dev);
2019		} else {
2020			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2021				rdev->supply_name, rdev->desc->name);
2022			ret = -EPROBE_DEFER;
2023			goto out;
2024		}
2025	}
2026
2027	if (r == rdev) {
2028		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2029			rdev->desc->name, rdev->supply_name);
2030		if (!have_full_constraints()) {
2031			ret = -EINVAL;
2032			goto out;
2033		}
2034		r = dummy_regulator_rdev;
2035		get_device(&r->dev);
2036	}
2037
2038	/*
2039	 * If the supply's parent device is not the same as the
2040	 * regulator's parent device, then ensure the parent device
2041	 * is bound before we resolve the supply, in case the parent
2042	 * device get probe deferred and unregisters the supply.
2043	 */
2044	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2045		if (!device_is_bound(r->dev.parent)) {
2046			put_device(&r->dev);
2047			ret = -EPROBE_DEFER;
2048			goto out;
2049		}
2050	}
2051
2052	/* Recursively resolve the supply of the supply */
2053	ret = regulator_resolve_supply(r);
2054	if (ret < 0) {
2055		put_device(&r->dev);
2056		goto out;
2057	}
2058
2059	/*
2060	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2061	 * between rdev->supply null check and setting rdev->supply in
2062	 * set_supply() from concurrent tasks.
2063	 */
2064	regulator_lock(rdev);
2065
2066	/* Supply just resolved by a concurrent task? */
2067	if (rdev->supply) {
2068		regulator_unlock(rdev);
2069		put_device(&r->dev);
2070		goto out;
2071	}
2072
2073	ret = set_supply(rdev, r);
2074	if (ret < 0) {
2075		regulator_unlock(rdev);
2076		put_device(&r->dev);
2077		goto out;
2078	}
2079
2080	regulator_unlock(rdev);
2081
2082	/*
2083	 * In set_machine_constraints() we may have turned this regulator on
2084	 * but we couldn't propagate to the supply if it hadn't been resolved
2085	 * yet.  Do it now.
2086	 */
2087	if (rdev->use_count) {
2088		ret = regulator_enable(rdev->supply);
2089		if (ret < 0) {
2090			_regulator_put(rdev->supply);
2091			rdev->supply = NULL;
2092			goto out;
2093		}
2094	}
2095
2096out:
2097	return ret;
2098}
2099
2100/* Internal regulator request function */
2101struct regulator *_regulator_get(struct device *dev, const char *id,
2102				 enum regulator_get_type get_type)
2103{
2104	struct regulator_dev *rdev;
2105	struct regulator *regulator;
2106	struct device_link *link;
2107	int ret;
2108
2109	if (get_type >= MAX_GET_TYPE) {
2110		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2111		return ERR_PTR(-EINVAL);
2112	}
2113
2114	if (id == NULL) {
2115		pr_err("get() with no identifier\n");
2116		return ERR_PTR(-EINVAL);
2117	}
2118
2119	rdev = regulator_dev_lookup(dev, id);
2120	if (IS_ERR(rdev)) {
2121		ret = PTR_ERR(rdev);
2122
2123		/*
2124		 * If regulator_dev_lookup() fails with error other
2125		 * than -ENODEV our job here is done, we simply return it.
2126		 */
2127		if (ret != -ENODEV)
2128			return ERR_PTR(ret);
2129
2130		if (!have_full_constraints()) {
2131			dev_warn(dev,
2132				 "incomplete constraints, dummy supplies not allowed\n");
2133			return ERR_PTR(-ENODEV);
2134		}
2135
2136		switch (get_type) {
2137		case NORMAL_GET:
2138			/*
2139			 * Assume that a regulator is physically present and
2140			 * enabled, even if it isn't hooked up, and just
2141			 * provide a dummy.
2142			 */
2143			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2144			rdev = dummy_regulator_rdev;
2145			get_device(&rdev->dev);
2146			break;
2147
2148		case EXCLUSIVE_GET:
2149			dev_warn(dev,
2150				 "dummy supplies not allowed for exclusive requests\n");
2151			fallthrough;
2152
2153		default:
2154			return ERR_PTR(-ENODEV);
2155		}
 
 
 
 
 
 
 
 
 
 
 
2156	}
2157
 
 
 
2158	if (rdev->exclusive) {
2159		regulator = ERR_PTR(-EPERM);
2160		put_device(&rdev->dev);
2161		return regulator;
2162	}
2163
2164	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2165		regulator = ERR_PTR(-EBUSY);
2166		put_device(&rdev->dev);
2167		return regulator;
2168	}
2169
2170	mutex_lock(&regulator_list_mutex);
2171	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2172	mutex_unlock(&regulator_list_mutex);
2173
2174	if (ret != 0) {
2175		regulator = ERR_PTR(-EPROBE_DEFER);
2176		put_device(&rdev->dev);
2177		return regulator;
2178	}
2179
2180	ret = regulator_resolve_supply(rdev);
2181	if (ret < 0) {
2182		regulator = ERR_PTR(ret);
2183		put_device(&rdev->dev);
2184		return regulator;
2185	}
2186
2187	if (!try_module_get(rdev->owner)) {
2188		regulator = ERR_PTR(-EPROBE_DEFER);
2189		put_device(&rdev->dev);
2190		return regulator;
2191	}
2192
2193	regulator = create_regulator(rdev, dev, id);
2194	if (regulator == NULL) {
2195		regulator = ERR_PTR(-ENOMEM);
2196		module_put(rdev->owner);
2197		put_device(&rdev->dev);
 
2198		return regulator;
2199	}
2200
2201	rdev->open_count++;
2202	if (get_type == EXCLUSIVE_GET) {
2203		rdev->exclusive = 1;
2204
2205		ret = _regulator_is_enabled(rdev);
2206		if (ret > 0) {
2207			rdev->use_count = 1;
2208			regulator->enable_count = 1;
2209		} else {
2210			rdev->use_count = 0;
2211			regulator->enable_count = 0;
2212		}
2213	}
2214
2215	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2216	if (!IS_ERR_OR_NULL(link))
2217		regulator->device_link = true;
2218
2219	return regulator;
2220}
2221
2222/**
2223 * regulator_get - lookup and obtain a reference to a regulator.
2224 * @dev: device for regulator "consumer"
2225 * @id: Supply name or regulator ID.
2226 *
2227 * Returns a struct regulator corresponding to the regulator producer,
2228 * or IS_ERR() condition containing errno.
2229 *
2230 * Use of supply names configured via set_consumer_device_supply() is
2231 * strongly encouraged.  It is recommended that the supply name used
2232 * should match the name used for the supply and/or the relevant
2233 * device pins in the datasheet.
2234 */
2235struct regulator *regulator_get(struct device *dev, const char *id)
2236{
2237	return _regulator_get(dev, id, NORMAL_GET);
2238}
2239EXPORT_SYMBOL_GPL(regulator_get);
2240
2241/**
2242 * regulator_get_exclusive - obtain exclusive access to a regulator.
2243 * @dev: device for regulator "consumer"
2244 * @id: Supply name or regulator ID.
2245 *
2246 * Returns a struct regulator corresponding to the regulator producer,
2247 * or IS_ERR() condition containing errno.  Other consumers will be
2248 * unable to obtain this regulator while this reference is held and the
2249 * use count for the regulator will be initialised to reflect the current
2250 * state of the regulator.
2251 *
2252 * This is intended for use by consumers which cannot tolerate shared
2253 * use of the regulator such as those which need to force the
2254 * regulator off for correct operation of the hardware they are
2255 * controlling.
2256 *
2257 * Use of supply names configured via set_consumer_device_supply() is
2258 * strongly encouraged.  It is recommended that the supply name used
2259 * should match the name used for the supply and/or the relevant
2260 * device pins in the datasheet.
2261 */
2262struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2263{
2264	return _regulator_get(dev, id, EXCLUSIVE_GET);
2265}
2266EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2267
2268/**
2269 * regulator_get_optional - obtain optional access to a regulator.
2270 * @dev: device for regulator "consumer"
2271 * @id: Supply name or regulator ID.
2272 *
2273 * Returns a struct regulator corresponding to the regulator producer,
2274 * or IS_ERR() condition containing errno.
2275 *
2276 * This is intended for use by consumers for devices which can have
2277 * some supplies unconnected in normal use, such as some MMC devices.
2278 * It can allow the regulator core to provide stub supplies for other
2279 * supplies requested using normal regulator_get() calls without
2280 * disrupting the operation of drivers that can handle absent
2281 * supplies.
2282 *
2283 * Use of supply names configured via set_consumer_device_supply() is
2284 * strongly encouraged.  It is recommended that the supply name used
2285 * should match the name used for the supply and/or the relevant
2286 * device pins in the datasheet.
2287 */
2288struct regulator *regulator_get_optional(struct device *dev, const char *id)
2289{
2290	return _regulator_get(dev, id, OPTIONAL_GET);
2291}
2292EXPORT_SYMBOL_GPL(regulator_get_optional);
2293
2294static void destroy_regulator(struct regulator *regulator)
2295{
2296	struct regulator_dev *rdev = regulator->rdev;
2297
2298	debugfs_remove_recursive(regulator->debugfs);
2299
2300	if (regulator->dev) {
2301		if (regulator->device_link)
2302			device_link_remove(regulator->dev, &rdev->dev);
2303
2304		/* remove any sysfs entries */
2305		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2306	}
2307
2308	regulator_lock(rdev);
2309	list_del(&regulator->list);
2310
2311	rdev->open_count--;
2312	rdev->exclusive = 0;
2313	regulator_unlock(rdev);
2314
2315	kfree_const(regulator->supply_name);
2316	kfree(regulator);
2317}
2318
2319/* regulator_list_mutex lock held by regulator_put() */
2320static void _regulator_put(struct regulator *regulator)
2321{
2322	struct regulator_dev *rdev;
2323
2324	if (IS_ERR_OR_NULL(regulator))
2325		return;
2326
2327	lockdep_assert_held_once(&regulator_list_mutex);
2328
2329	/* Docs say you must disable before calling regulator_put() */
2330	WARN_ON(regulator->enable_count);
2331
2332	rdev = regulator->rdev;
2333
2334	destroy_regulator(regulator);
2335
2336	module_put(rdev->owner);
 
 
 
 
 
 
 
2337	put_device(&rdev->dev);
 
 
 
 
 
 
2338}
2339
2340/**
2341 * regulator_put - "free" the regulator source
2342 * @regulator: regulator source
2343 *
2344 * Note: drivers must ensure that all regulator_enable calls made on this
2345 * regulator source are balanced by regulator_disable calls prior to calling
2346 * this function.
2347 */
2348void regulator_put(struct regulator *regulator)
2349{
2350	mutex_lock(&regulator_list_mutex);
2351	_regulator_put(regulator);
2352	mutex_unlock(&regulator_list_mutex);
2353}
2354EXPORT_SYMBOL_GPL(regulator_put);
2355
2356/**
2357 * regulator_register_supply_alias - Provide device alias for supply lookup
2358 *
2359 * @dev: device that will be given as the regulator "consumer"
2360 * @id: Supply name or regulator ID
2361 * @alias_dev: device that should be used to lookup the supply
2362 * @alias_id: Supply name or regulator ID that should be used to lookup the
2363 * supply
2364 *
2365 * All lookups for id on dev will instead be conducted for alias_id on
2366 * alias_dev.
2367 */
2368int regulator_register_supply_alias(struct device *dev, const char *id,
2369				    struct device *alias_dev,
2370				    const char *alias_id)
2371{
2372	struct regulator_supply_alias *map;
2373
2374	map = regulator_find_supply_alias(dev, id);
2375	if (map)
2376		return -EEXIST;
2377
2378	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2379	if (!map)
2380		return -ENOMEM;
2381
2382	map->src_dev = dev;
2383	map->src_supply = id;
2384	map->alias_dev = alias_dev;
2385	map->alias_supply = alias_id;
2386
2387	list_add(&map->list, &regulator_supply_alias_list);
2388
2389	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2390		id, dev_name(dev), alias_id, dev_name(alias_dev));
2391
2392	return 0;
2393}
2394EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2395
2396/**
2397 * regulator_unregister_supply_alias - Remove device alias
2398 *
2399 * @dev: device that will be given as the regulator "consumer"
2400 * @id: Supply name or regulator ID
2401 *
2402 * Remove a lookup alias if one exists for id on dev.
2403 */
2404void regulator_unregister_supply_alias(struct device *dev, const char *id)
2405{
2406	struct regulator_supply_alias *map;
2407
2408	map = regulator_find_supply_alias(dev, id);
2409	if (map) {
2410		list_del(&map->list);
2411		kfree(map);
2412	}
2413}
2414EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2415
2416/**
2417 * regulator_bulk_register_supply_alias - register multiple aliases
2418 *
2419 * @dev: device that will be given as the regulator "consumer"
2420 * @id: List of supply names or regulator IDs
2421 * @alias_dev: device that should be used to lookup the supply
2422 * @alias_id: List of supply names or regulator IDs that should be used to
2423 * lookup the supply
2424 * @num_id: Number of aliases to register
2425 *
2426 * @return 0 on success, an errno on failure.
2427 *
2428 * This helper function allows drivers to register several supply
2429 * aliases in one operation.  If any of the aliases cannot be
2430 * registered any aliases that were registered will be removed
2431 * before returning to the caller.
2432 */
2433int regulator_bulk_register_supply_alias(struct device *dev,
2434					 const char *const *id,
2435					 struct device *alias_dev,
2436					 const char *const *alias_id,
2437					 int num_id)
2438{
2439	int i;
2440	int ret;
2441
2442	for (i = 0; i < num_id; ++i) {
2443		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2444						      alias_id[i]);
2445		if (ret < 0)
2446			goto err;
2447	}
2448
2449	return 0;
2450
2451err:
2452	dev_err(dev,
2453		"Failed to create supply alias %s,%s -> %s,%s\n",
2454		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2455
2456	while (--i >= 0)
2457		regulator_unregister_supply_alias(dev, id[i]);
2458
2459	return ret;
2460}
2461EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2462
2463/**
2464 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2465 *
2466 * @dev: device that will be given as the regulator "consumer"
2467 * @id: List of supply names or regulator IDs
2468 * @num_id: Number of aliases to unregister
2469 *
2470 * This helper function allows drivers to unregister several supply
2471 * aliases in one operation.
2472 */
2473void regulator_bulk_unregister_supply_alias(struct device *dev,
2474					    const char *const *id,
2475					    int num_id)
2476{
2477	int i;
2478
2479	for (i = 0; i < num_id; ++i)
2480		regulator_unregister_supply_alias(dev, id[i]);
2481}
2482EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2483
2484
2485/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2486static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2487				const struct regulator_config *config)
2488{
2489	struct regulator_enable_gpio *pin, *new_pin;
2490	struct gpio_desc *gpiod;
 
2491
2492	gpiod = config->ena_gpiod;
2493	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2494
2495	mutex_lock(&regulator_list_mutex);
2496
2497	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2498		if (pin->gpiod == gpiod) {
2499			rdev_dbg(rdev, "GPIO is already used\n");
 
2500			goto update_ena_gpio_to_rdev;
2501		}
2502	}
2503
2504	if (new_pin == NULL) {
2505		mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
 
2506		return -ENOMEM;
2507	}
2508
2509	pin = new_pin;
2510	new_pin = NULL;
2511
2512	pin->gpiod = gpiod;
 
2513	list_add(&pin->list, &regulator_ena_gpio_list);
2514
2515update_ena_gpio_to_rdev:
2516	pin->request_count++;
2517	rdev->ena_pin = pin;
2518
2519	mutex_unlock(&regulator_list_mutex);
2520	kfree(new_pin);
2521
2522	return 0;
2523}
2524
2525static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2526{
2527	struct regulator_enable_gpio *pin, *n;
2528
2529	if (!rdev->ena_pin)
2530		return;
2531
2532	/* Free the GPIO only in case of no use */
2533	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2534		if (pin != rdev->ena_pin)
2535			continue;
2536
2537		if (--pin->request_count)
2538			break;
2539
2540		gpiod_put(pin->gpiod);
2541		list_del(&pin->list);
2542		kfree(pin);
2543		break;
 
 
2544	}
2545
2546	rdev->ena_pin = NULL;
2547}
2548
2549/**
2550 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2551 * @rdev: regulator_dev structure
2552 * @enable: enable GPIO at initial use?
2553 *
2554 * GPIO is enabled in case of initial use. (enable_count is 0)
2555 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2556 */
2557static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2558{
2559	struct regulator_enable_gpio *pin = rdev->ena_pin;
2560
2561	if (!pin)
2562		return -EINVAL;
2563
2564	if (enable) {
2565		/* Enable GPIO at initial use */
2566		if (pin->enable_count == 0)
2567			gpiod_set_value_cansleep(pin->gpiod, 1);
 
2568
2569		pin->enable_count++;
2570	} else {
2571		if (pin->enable_count > 1) {
2572			pin->enable_count--;
2573			return 0;
2574		}
2575
2576		/* Disable GPIO if not used */
2577		if (pin->enable_count <= 1) {
2578			gpiod_set_value_cansleep(pin->gpiod, 0);
 
2579			pin->enable_count = 0;
2580		}
2581	}
2582
2583	return 0;
2584}
2585
2586/**
2587 * _regulator_delay_helper - a delay helper function
2588 * @delay: time to delay in microseconds
2589 *
2590 * Delay for the requested amount of time as per the guidelines in:
2591 *
2592 *     Documentation/timers/timers-howto.rst
2593 *
2594 * The assumption here is that these regulator operations will never used in
2595 * atomic context and therefore sleeping functions can be used.
2596 */
2597static void _regulator_delay_helper(unsigned int delay)
2598{
2599	unsigned int ms = delay / 1000;
2600	unsigned int us = delay % 1000;
2601
2602	if (ms > 0) {
2603		/*
2604		 * For small enough values, handle super-millisecond
2605		 * delays in the usleep_range() call below.
2606		 */
2607		if (ms < 20)
2608			us += ms * 1000;
2609		else
2610			msleep(ms);
2611	}
2612
2613	/*
2614	 * Give the scheduler some room to coalesce with any other
2615	 * wakeup sources. For delays shorter than 10 us, don't even
2616	 * bother setting up high-resolution timers and just busy-
2617	 * loop.
2618	 */
2619	if (us >= 10)
2620		usleep_range(us, us + 100);
2621	else
2622		udelay(us);
2623}
2624
2625/**
2626 * _regulator_check_status_enabled
2627 *
2628 * A helper function to check if the regulator status can be interpreted
2629 * as 'regulator is enabled'.
2630 * @rdev: the regulator device to check
2631 *
2632 * Return:
2633 * * 1			- if status shows regulator is in enabled state
2634 * * 0			- if not enabled state
2635 * * Error Value	- as received from ops->get_status()
2636 */
2637static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2638{
2639	int ret = rdev->desc->ops->get_status(rdev);
2640
2641	if (ret < 0) {
2642		rdev_info(rdev, "get_status returned error: %d\n", ret);
2643		return ret;
2644	}
2645
2646	switch (ret) {
2647	case REGULATOR_STATUS_OFF:
2648	case REGULATOR_STATUS_ERROR:
2649	case REGULATOR_STATUS_UNDEFINED:
2650		return 0;
2651	default:
2652		return 1;
2653	}
2654}
2655
2656static int _regulator_do_enable(struct regulator_dev *rdev)
2657{
2658	int ret, delay;
2659
2660	/* Query before enabling in case configuration dependent.  */
2661	ret = _regulator_get_enable_time(rdev);
2662	if (ret >= 0) {
2663		delay = ret;
2664	} else {
2665		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2666		delay = 0;
2667	}
2668
2669	trace_regulator_enable(rdev_get_name(rdev));
2670
2671	if (rdev->desc->off_on_delay && rdev->last_off) {
2672		/* if needed, keep a distance of off_on_delay from last time
2673		 * this regulator was disabled.
2674		 */
2675		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2676		s64 remaining = ktime_us_delta(end, ktime_get());
 
 
 
2677
2678		if (remaining > 0)
2679			_regulator_delay_helper(remaining);
 
 
 
 
 
 
 
 
 
 
 
2680	}
2681
2682	if (rdev->ena_pin) {
2683		if (!rdev->ena_gpio_state) {
2684			ret = regulator_ena_gpio_ctrl(rdev, true);
2685			if (ret < 0)
2686				return ret;
2687			rdev->ena_gpio_state = 1;
2688		}
2689	} else if (rdev->desc->ops->enable) {
2690		ret = rdev->desc->ops->enable(rdev);
2691		if (ret < 0)
2692			return ret;
2693	} else {
2694		return -EINVAL;
2695	}
2696
2697	/* Allow the regulator to ramp; it would be useful to extend
2698	 * this for bulk operations so that the regulators can ramp
2699	 * together.
2700	 */
2701	trace_regulator_enable_delay(rdev_get_name(rdev));
2702
2703	/* If poll_enabled_time is set, poll upto the delay calculated
2704	 * above, delaying poll_enabled_time uS to check if the regulator
2705	 * actually got enabled.
2706	 * If the regulator isn't enabled after our delay helper has expired,
2707	 * return -ETIMEDOUT.
2708	 */
2709	if (rdev->desc->poll_enabled_time) {
2710		int time_remaining = delay;
2711
2712		while (time_remaining > 0) {
2713			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2714
2715			if (rdev->desc->ops->get_status) {
2716				ret = _regulator_check_status_enabled(rdev);
2717				if (ret < 0)
2718					return ret;
2719				else if (ret)
2720					break;
2721			} else if (rdev->desc->ops->is_enabled(rdev))
2722				break;
2723
2724			time_remaining -= rdev->desc->poll_enabled_time;
2725		}
2726
2727		if (time_remaining <= 0) {
2728			rdev_err(rdev, "Enabled check timed out\n");
2729			return -ETIMEDOUT;
2730		}
2731	} else {
2732		_regulator_delay_helper(delay);
2733	}
2734
2735	trace_regulator_enable_complete(rdev_get_name(rdev));
2736
2737	return 0;
2738}
2739
2740/**
2741 * _regulator_handle_consumer_enable - handle that a consumer enabled
2742 * @regulator: regulator source
2743 *
2744 * Some things on a regulator consumer (like the contribution towards total
2745 * load on the regulator) only have an effect when the consumer wants the
2746 * regulator enabled.  Explained in example with two consumers of the same
2747 * regulator:
2748 *   consumer A: set_load(100);       => total load = 0
2749 *   consumer A: regulator_enable();  => total load = 100
2750 *   consumer B: set_load(1000);      => total load = 100
2751 *   consumer B: regulator_enable();  => total load = 1100
2752 *   consumer A: regulator_disable(); => total_load = 1000
2753 *
2754 * This function (together with _regulator_handle_consumer_disable) is
2755 * responsible for keeping track of the refcount for a given regulator consumer
2756 * and applying / unapplying these things.
2757 *
2758 * Returns 0 upon no error; -error upon error.
2759 */
2760static int _regulator_handle_consumer_enable(struct regulator *regulator)
2761{
2762	int ret;
2763	struct regulator_dev *rdev = regulator->rdev;
2764
2765	lockdep_assert_held_once(&rdev->mutex.base);
2766
2767	regulator->enable_count++;
2768	if (regulator->uA_load && regulator->enable_count == 1) {
2769		ret = drms_uA_update(rdev);
2770		if (ret)
2771			regulator->enable_count--;
2772		return ret;
2773	}
2774
2775	return 0;
2776}
2777
2778/**
2779 * _regulator_handle_consumer_disable - handle that a consumer disabled
2780 * @regulator: regulator source
2781 *
2782 * The opposite of _regulator_handle_consumer_enable().
2783 *
2784 * Returns 0 upon no error; -error upon error.
2785 */
2786static int _regulator_handle_consumer_disable(struct regulator *regulator)
2787{
2788	struct regulator_dev *rdev = regulator->rdev;
2789
2790	lockdep_assert_held_once(&rdev->mutex.base);
2791
2792	if (!regulator->enable_count) {
2793		rdev_err(rdev, "Underflow of regulator enable count\n");
2794		return -EINVAL;
2795	}
2796
2797	regulator->enable_count--;
2798	if (regulator->uA_load && regulator->enable_count == 0)
2799		return drms_uA_update(rdev);
2800
2801	return 0;
2802}
2803
2804/* locks held by regulator_enable() */
2805static int _regulator_enable(struct regulator *regulator)
2806{
2807	struct regulator_dev *rdev = regulator->rdev;
2808	int ret;
2809
2810	lockdep_assert_held_once(&rdev->mutex.base);
2811
2812	if (rdev->use_count == 0 && rdev->supply) {
2813		ret = _regulator_enable(rdev->supply);
2814		if (ret < 0)
2815			return ret;
2816	}
2817
2818	/* balance only if there are regulators coupled */
2819	if (rdev->coupling_desc.n_coupled > 1) {
2820		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2821		if (ret < 0)
2822			goto err_disable_supply;
2823	}
2824
2825	ret = _regulator_handle_consumer_enable(regulator);
2826	if (ret < 0)
2827		goto err_disable_supply;
2828
2829	if (rdev->use_count == 0) {
2830		/*
2831		 * The regulator may already be enabled if it's not switchable
2832		 * or was left on
2833		 */
2834		ret = _regulator_is_enabled(rdev);
2835		if (ret == -EINVAL || ret == 0) {
2836			if (!regulator_ops_is_valid(rdev,
2837					REGULATOR_CHANGE_STATUS)) {
2838				ret = -EPERM;
2839				goto err_consumer_disable;
2840			}
2841
2842			ret = _regulator_do_enable(rdev);
2843			if (ret < 0)
2844				goto err_consumer_disable;
2845
2846			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2847					     NULL);
2848		} else if (ret < 0) {
2849			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2850			goto err_consumer_disable;
2851		}
2852		/* Fallthrough on positive return values - already enabled */
2853	}
2854
2855	rdev->use_count++;
2856
2857	return 0;
2858
2859err_consumer_disable:
2860	_regulator_handle_consumer_disable(regulator);
2861
2862err_disable_supply:
2863	if (rdev->use_count == 0 && rdev->supply)
2864		_regulator_disable(rdev->supply);
2865
2866	return ret;
2867}
2868
2869/**
2870 * regulator_enable - enable regulator output
2871 * @regulator: regulator source
2872 *
2873 * Request that the regulator be enabled with the regulator output at
2874 * the predefined voltage or current value.  Calls to regulator_enable()
2875 * must be balanced with calls to regulator_disable().
2876 *
2877 * NOTE: the output value can be set by other drivers, boot loader or may be
2878 * hardwired in the regulator.
2879 */
2880int regulator_enable(struct regulator *regulator)
2881{
2882	struct regulator_dev *rdev = regulator->rdev;
2883	struct ww_acquire_ctx ww_ctx;
2884	int ret;
2885
2886	regulator_lock_dependent(rdev, &ww_ctx);
2887	ret = _regulator_enable(regulator);
2888	regulator_unlock_dependent(rdev, &ww_ctx);
 
 
 
 
 
 
 
 
 
 
 
 
2889
2890	return ret;
2891}
2892EXPORT_SYMBOL_GPL(regulator_enable);
2893
2894static int _regulator_do_disable(struct regulator_dev *rdev)
2895{
2896	int ret;
2897
2898	trace_regulator_disable(rdev_get_name(rdev));
2899
2900	if (rdev->ena_pin) {
2901		if (rdev->ena_gpio_state) {
2902			ret = regulator_ena_gpio_ctrl(rdev, false);
2903			if (ret < 0)
2904				return ret;
2905			rdev->ena_gpio_state = 0;
2906		}
2907
2908	} else if (rdev->desc->ops->disable) {
2909		ret = rdev->desc->ops->disable(rdev);
2910		if (ret != 0)
2911			return ret;
2912	}
2913
 
 
 
2914	if (rdev->desc->off_on_delay)
2915		rdev->last_off = ktime_get();
2916
2917	trace_regulator_disable_complete(rdev_get_name(rdev));
2918
2919	return 0;
2920}
2921
2922/* locks held by regulator_disable() */
2923static int _regulator_disable(struct regulator *regulator)
2924{
2925	struct regulator_dev *rdev = regulator->rdev;
2926	int ret = 0;
2927
2928	lockdep_assert_held_once(&rdev->mutex.base);
2929
2930	if (WARN(rdev->use_count <= 0,
2931		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2932		return -EIO;
2933
2934	/* are we the last user and permitted to disable ? */
2935	if (rdev->use_count == 1 &&
2936	    (rdev->constraints && !rdev->constraints->always_on)) {
2937
2938		/* we are last user */
2939		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2940			ret = _notifier_call_chain(rdev,
2941						   REGULATOR_EVENT_PRE_DISABLE,
2942						   NULL);
2943			if (ret & NOTIFY_STOP_MASK)
2944				return -EINVAL;
2945
2946			ret = _regulator_do_disable(rdev);
2947			if (ret < 0) {
2948				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2949				_notifier_call_chain(rdev,
2950						REGULATOR_EVENT_ABORT_DISABLE,
2951						NULL);
2952				return ret;
2953			}
2954			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2955					NULL);
2956		}
2957
2958		rdev->use_count = 0;
2959	} else if (rdev->use_count > 1) {
 
 
 
2960		rdev->use_count--;
2961	}
2962
2963	if (ret == 0)
2964		ret = _regulator_handle_consumer_disable(regulator);
2965
2966	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2967		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2968
2969	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2970		ret = _regulator_disable(rdev->supply);
2971
2972	return ret;
2973}
2974
2975/**
2976 * regulator_disable - disable regulator output
2977 * @regulator: regulator source
2978 *
2979 * Disable the regulator output voltage or current.  Calls to
2980 * regulator_enable() must be balanced with calls to
2981 * regulator_disable().
2982 *
2983 * NOTE: this will only disable the regulator output if no other consumer
2984 * devices have it enabled, the regulator device supports disabling and
2985 * machine constraints permit this operation.
2986 */
2987int regulator_disable(struct regulator *regulator)
2988{
2989	struct regulator_dev *rdev = regulator->rdev;
2990	struct ww_acquire_ctx ww_ctx;
2991	int ret;
2992
2993	regulator_lock_dependent(rdev, &ww_ctx);
2994	ret = _regulator_disable(regulator);
2995	regulator_unlock_dependent(rdev, &ww_ctx);
 
 
 
 
 
 
2996
2997	return ret;
2998}
2999EXPORT_SYMBOL_GPL(regulator_disable);
3000
3001/* locks held by regulator_force_disable() */
3002static int _regulator_force_disable(struct regulator_dev *rdev)
3003{
3004	int ret = 0;
3005
3006	lockdep_assert_held_once(&rdev->mutex.base);
3007
3008	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3009			REGULATOR_EVENT_PRE_DISABLE, NULL);
3010	if (ret & NOTIFY_STOP_MASK)
3011		return -EINVAL;
3012
3013	ret = _regulator_do_disable(rdev);
3014	if (ret < 0) {
3015		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3016		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3017				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3018		return ret;
3019	}
3020
3021	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3022			REGULATOR_EVENT_DISABLE, NULL);
3023
3024	return 0;
3025}
3026
3027/**
3028 * regulator_force_disable - force disable regulator output
3029 * @regulator: regulator source
3030 *
3031 * Forcibly disable the regulator output voltage or current.
3032 * NOTE: this *will* disable the regulator output even if other consumer
3033 * devices have it enabled. This should be used for situations when device
3034 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3035 */
3036int regulator_force_disable(struct regulator *regulator)
3037{
3038	struct regulator_dev *rdev = regulator->rdev;
3039	struct ww_acquire_ctx ww_ctx;
3040	int ret;
3041
3042	regulator_lock_dependent(rdev, &ww_ctx);
3043
3044	ret = _regulator_force_disable(regulator->rdev);
 
3045
3046	if (rdev->coupling_desc.n_coupled > 1)
3047		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3048
3049	if (regulator->uA_load) {
3050		regulator->uA_load = 0;
3051		ret = drms_uA_update(rdev);
3052	}
3053
3054	if (rdev->use_count != 0 && rdev->supply)
3055		_regulator_disable(rdev->supply);
3056
3057	regulator_unlock_dependent(rdev, &ww_ctx);
3058
3059	return ret;
3060}
3061EXPORT_SYMBOL_GPL(regulator_force_disable);
3062
3063static void regulator_disable_work(struct work_struct *work)
3064{
3065	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3066						  disable_work.work);
3067	struct ww_acquire_ctx ww_ctx;
3068	int count, i, ret;
3069	struct regulator *regulator;
3070	int total_count = 0;
3071
3072	regulator_lock_dependent(rdev, &ww_ctx);
3073
3074	/*
3075	 * Workqueue functions queue the new work instance while the previous
3076	 * work instance is being processed. Cancel the queued work instance
3077	 * as the work instance under processing does the job of the queued
3078	 * work instance.
3079	 */
3080	cancel_delayed_work(&rdev->disable_work);
3081
3082	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3083		count = regulator->deferred_disables;
3084
3085		if (!count)
3086			continue;
 
 
 
3087
3088		total_count += count;
3089		regulator->deferred_disables = 0;
3090
 
3091		for (i = 0; i < count; i++) {
3092			ret = _regulator_disable(regulator);
3093			if (ret != 0)
3094				rdev_err(rdev, "Deferred disable failed: %pe\n",
3095					 ERR_PTR(ret));
 
3096		}
3097	}
3098	WARN_ON(!total_count);
3099
3100	if (rdev->coupling_desc.n_coupled > 1)
3101		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3102
3103	regulator_unlock_dependent(rdev, &ww_ctx);
3104}
3105
3106/**
3107 * regulator_disable_deferred - disable regulator output with delay
3108 * @regulator: regulator source
3109 * @ms: milliseconds until the regulator is disabled
3110 *
3111 * Execute regulator_disable() on the regulator after a delay.  This
3112 * is intended for use with devices that require some time to quiesce.
3113 *
3114 * NOTE: this will only disable the regulator output if no other consumer
3115 * devices have it enabled, the regulator device supports disabling and
3116 * machine constraints permit this operation.
3117 */
3118int regulator_disable_deferred(struct regulator *regulator, int ms)
3119{
3120	struct regulator_dev *rdev = regulator->rdev;
3121
 
 
 
3122	if (!ms)
3123		return regulator_disable(regulator);
3124
3125	regulator_lock(rdev);
3126	regulator->deferred_disables++;
3127	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3128			 msecs_to_jiffies(ms));
3129	regulator_unlock(rdev);
3130
 
 
3131	return 0;
3132}
3133EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3134
3135static int _regulator_is_enabled(struct regulator_dev *rdev)
3136{
3137	/* A GPIO control always takes precedence */
3138	if (rdev->ena_pin)
3139		return rdev->ena_gpio_state;
3140
3141	/* If we don't know then assume that the regulator is always on */
3142	if (!rdev->desc->ops->is_enabled)
3143		return 1;
3144
3145	return rdev->desc->ops->is_enabled(rdev);
3146}
3147
3148static int _regulator_list_voltage(struct regulator_dev *rdev,
3149				   unsigned selector, int lock)
3150{
 
3151	const struct regulator_ops *ops = rdev->desc->ops;
3152	int ret;
3153
3154	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3155		return rdev->desc->fixed_uV;
3156
3157	if (ops->list_voltage) {
3158		if (selector >= rdev->desc->n_voltages)
3159			return -EINVAL;
3160		if (selector < rdev->desc->linear_min_sel)
3161			return 0;
3162		if (lock)
3163			regulator_lock(rdev);
3164		ret = ops->list_voltage(rdev, selector);
3165		if (lock)
3166			regulator_unlock(rdev);
3167	} else if (rdev->is_switch && rdev->supply) {
3168		ret = _regulator_list_voltage(rdev->supply->rdev,
3169					      selector, lock);
3170	} else {
3171		return -EINVAL;
3172	}
3173
3174	if (ret > 0) {
3175		if (ret < rdev->constraints->min_uV)
3176			ret = 0;
3177		else if (ret > rdev->constraints->max_uV)
3178			ret = 0;
3179	}
3180
3181	return ret;
3182}
3183
3184/**
3185 * regulator_is_enabled - is the regulator output enabled
3186 * @regulator: regulator source
3187 *
3188 * Returns positive if the regulator driver backing the source/client
3189 * has requested that the device be enabled, zero if it hasn't, else a
3190 * negative errno code.
3191 *
3192 * Note that the device backing this regulator handle can have multiple
3193 * users, so it might be enabled even if regulator_enable() was never
3194 * called for this particular source.
3195 */
3196int regulator_is_enabled(struct regulator *regulator)
3197{
3198	int ret;
3199
3200	if (regulator->always_on)
3201		return 1;
3202
3203	regulator_lock(regulator->rdev);
3204	ret = _regulator_is_enabled(regulator->rdev);
3205	regulator_unlock(regulator->rdev);
3206
3207	return ret;
3208}
3209EXPORT_SYMBOL_GPL(regulator_is_enabled);
3210
3211/**
3212 * regulator_count_voltages - count regulator_list_voltage() selectors
3213 * @regulator: regulator source
3214 *
3215 * Returns number of selectors, or negative errno.  Selectors are
3216 * numbered starting at zero, and typically correspond to bitfields
3217 * in hardware registers.
3218 */
3219int regulator_count_voltages(struct regulator *regulator)
3220{
3221	struct regulator_dev	*rdev = regulator->rdev;
3222
3223	if (rdev->desc->n_voltages)
3224		return rdev->desc->n_voltages;
3225
3226	if (!rdev->is_switch || !rdev->supply)
3227		return -EINVAL;
3228
3229	return regulator_count_voltages(rdev->supply);
3230}
3231EXPORT_SYMBOL_GPL(regulator_count_voltages);
3232
3233/**
3234 * regulator_list_voltage - enumerate supported voltages
3235 * @regulator: regulator source
3236 * @selector: identify voltage to list
3237 * Context: can sleep
3238 *
3239 * Returns a voltage that can be passed to @regulator_set_voltage(),
3240 * zero if this selector code can't be used on this system, or a
3241 * negative errno.
3242 */
3243int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3244{
3245	return _regulator_list_voltage(regulator->rdev, selector, 1);
3246}
3247EXPORT_SYMBOL_GPL(regulator_list_voltage);
3248
3249/**
3250 * regulator_get_regmap - get the regulator's register map
3251 * @regulator: regulator source
3252 *
3253 * Returns the register map for the given regulator, or an ERR_PTR value
3254 * if the regulator doesn't use regmap.
3255 */
3256struct regmap *regulator_get_regmap(struct regulator *regulator)
3257{
3258	struct regmap *map = regulator->rdev->regmap;
3259
3260	return map ? map : ERR_PTR(-EOPNOTSUPP);
3261}
3262
3263/**
3264 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3265 * @regulator: regulator source
3266 * @vsel_reg: voltage selector register, output parameter
3267 * @vsel_mask: mask for voltage selector bitfield, output parameter
3268 *
3269 * Returns the hardware register offset and bitmask used for setting the
3270 * regulator voltage. This might be useful when configuring voltage-scaling
3271 * hardware or firmware that can make I2C requests behind the kernel's back,
3272 * for example.
3273 *
3274 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3275 * and 0 is returned, otherwise a negative errno is returned.
3276 */
3277int regulator_get_hardware_vsel_register(struct regulator *regulator,
3278					 unsigned *vsel_reg,
3279					 unsigned *vsel_mask)
3280{
3281	struct regulator_dev *rdev = regulator->rdev;
3282	const struct regulator_ops *ops = rdev->desc->ops;
3283
3284	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3285		return -EOPNOTSUPP;
3286
3287	*vsel_reg = rdev->desc->vsel_reg;
3288	*vsel_mask = rdev->desc->vsel_mask;
3289
3290	return 0;
3291}
3292EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3293
3294/**
3295 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3296 * @regulator: regulator source
3297 * @selector: identify voltage to list
3298 *
3299 * Converts the selector to a hardware-specific voltage selector that can be
3300 * directly written to the regulator registers. The address of the voltage
3301 * register can be determined by calling @regulator_get_hardware_vsel_register.
3302 *
3303 * On error a negative errno is returned.
3304 */
3305int regulator_list_hardware_vsel(struct regulator *regulator,
3306				 unsigned selector)
3307{
3308	struct regulator_dev *rdev = regulator->rdev;
3309	const struct regulator_ops *ops = rdev->desc->ops;
3310
3311	if (selector >= rdev->desc->n_voltages)
3312		return -EINVAL;
3313	if (selector < rdev->desc->linear_min_sel)
3314		return 0;
3315	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3316		return -EOPNOTSUPP;
3317
3318	return selector;
3319}
3320EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3321
3322/**
3323 * regulator_get_linear_step - return the voltage step size between VSEL values
3324 * @regulator: regulator source
3325 *
3326 * Returns the voltage step size between VSEL values for linear
3327 * regulators, or return 0 if the regulator isn't a linear regulator.
3328 */
3329unsigned int regulator_get_linear_step(struct regulator *regulator)
3330{
3331	struct regulator_dev *rdev = regulator->rdev;
3332
3333	return rdev->desc->uV_step;
3334}
3335EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3336
3337/**
3338 * regulator_is_supported_voltage - check if a voltage range can be supported
3339 *
3340 * @regulator: Regulator to check.
3341 * @min_uV: Minimum required voltage in uV.
3342 * @max_uV: Maximum required voltage in uV.
3343 *
3344 * Returns a boolean.
3345 */
3346int regulator_is_supported_voltage(struct regulator *regulator,
3347				   int min_uV, int max_uV)
3348{
3349	struct regulator_dev *rdev = regulator->rdev;
3350	int i, voltages, ret;
3351
3352	/* If we can't change voltage check the current voltage */
3353	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3354		ret = regulator_get_voltage(regulator);
3355		if (ret >= 0)
3356			return min_uV <= ret && ret <= max_uV;
3357		else
3358			return ret;
3359	}
3360
3361	/* Any voltage within constrains range is fine? */
3362	if (rdev->desc->continuous_voltage_range)
3363		return min_uV >= rdev->constraints->min_uV &&
3364				max_uV <= rdev->constraints->max_uV;
3365
3366	ret = regulator_count_voltages(regulator);
3367	if (ret < 0)
3368		return 0;
3369	voltages = ret;
3370
3371	for (i = 0; i < voltages; i++) {
3372		ret = regulator_list_voltage(regulator, i);
3373
3374		if (ret >= min_uV && ret <= max_uV)
3375			return 1;
3376	}
3377
3378	return 0;
3379}
3380EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3381
3382static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3383				 int max_uV)
3384{
3385	const struct regulator_desc *desc = rdev->desc;
3386
3387	if (desc->ops->map_voltage)
3388		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3389
3390	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3391		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3392
3393	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3394		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3395
3396	if (desc->ops->list_voltage ==
3397		regulator_list_voltage_pickable_linear_range)
3398		return regulator_map_voltage_pickable_linear_range(rdev,
3399							min_uV, max_uV);
3400
3401	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3402}
3403
3404static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3405				       int min_uV, int max_uV,
3406				       unsigned *selector)
3407{
3408	struct pre_voltage_change_data data;
3409	int ret;
3410
3411	data.old_uV = regulator_get_voltage_rdev(rdev);
3412	data.min_uV = min_uV;
3413	data.max_uV = max_uV;
3414	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3415				   &data);
3416	if (ret & NOTIFY_STOP_MASK)
3417		return -EINVAL;
3418
3419	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3420	if (ret >= 0)
3421		return ret;
3422
3423	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3424			     (void *)data.old_uV);
3425
3426	return ret;
3427}
3428
3429static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3430					   int uV, unsigned selector)
3431{
3432	struct pre_voltage_change_data data;
3433	int ret;
3434
3435	data.old_uV = regulator_get_voltage_rdev(rdev);
3436	data.min_uV = uV;
3437	data.max_uV = uV;
3438	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3439				   &data);
3440	if (ret & NOTIFY_STOP_MASK)
3441		return -EINVAL;
3442
3443	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3444	if (ret >= 0)
3445		return ret;
3446
3447	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3448			     (void *)data.old_uV);
3449
3450	return ret;
3451}
3452
3453static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3454					   int uV, int new_selector)
3455{
3456	const struct regulator_ops *ops = rdev->desc->ops;
3457	int diff, old_sel, curr_sel, ret;
3458
3459	/* Stepping is only needed if the regulator is enabled. */
3460	if (!_regulator_is_enabled(rdev))
3461		goto final_set;
3462
3463	if (!ops->get_voltage_sel)
3464		return -EINVAL;
3465
3466	old_sel = ops->get_voltage_sel(rdev);
3467	if (old_sel < 0)
3468		return old_sel;
3469
3470	diff = new_selector - old_sel;
3471	if (diff == 0)
3472		return 0; /* No change needed. */
3473
3474	if (diff > 0) {
3475		/* Stepping up. */
3476		for (curr_sel = old_sel + rdev->desc->vsel_step;
3477		     curr_sel < new_selector;
3478		     curr_sel += rdev->desc->vsel_step) {
3479			/*
3480			 * Call the callback directly instead of using
3481			 * _regulator_call_set_voltage_sel() as we don't
3482			 * want to notify anyone yet. Same in the branch
3483			 * below.
3484			 */
3485			ret = ops->set_voltage_sel(rdev, curr_sel);
3486			if (ret)
3487				goto try_revert;
3488		}
3489	} else {
3490		/* Stepping down. */
3491		for (curr_sel = old_sel - rdev->desc->vsel_step;
3492		     curr_sel > new_selector;
3493		     curr_sel -= rdev->desc->vsel_step) {
3494			ret = ops->set_voltage_sel(rdev, curr_sel);
3495			if (ret)
3496				goto try_revert;
3497		}
3498	}
3499
3500final_set:
3501	/* The final selector will trigger the notifiers. */
3502	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3503
3504try_revert:
3505	/*
3506	 * At least try to return to the previous voltage if setting a new
3507	 * one failed.
3508	 */
3509	(void)ops->set_voltage_sel(rdev, old_sel);
3510	return ret;
3511}
3512
3513static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3514				       int old_uV, int new_uV)
3515{
3516	unsigned int ramp_delay = 0;
3517
3518	if (rdev->constraints->ramp_delay)
3519		ramp_delay = rdev->constraints->ramp_delay;
3520	else if (rdev->desc->ramp_delay)
3521		ramp_delay = rdev->desc->ramp_delay;
3522	else if (rdev->constraints->settling_time)
3523		return rdev->constraints->settling_time;
3524	else if (rdev->constraints->settling_time_up &&
3525		 (new_uV > old_uV))
3526		return rdev->constraints->settling_time_up;
3527	else if (rdev->constraints->settling_time_down &&
3528		 (new_uV < old_uV))
3529		return rdev->constraints->settling_time_down;
3530
3531	if (ramp_delay == 0)
 
3532		return 0;
 
3533
3534	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3535}
3536
3537static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3538				     int min_uV, int max_uV)
3539{
3540	int ret;
3541	int delay = 0;
3542	int best_val = 0;
3543	unsigned int selector;
3544	int old_selector = -1;
3545	const struct regulator_ops *ops = rdev->desc->ops;
3546	int old_uV = regulator_get_voltage_rdev(rdev);
3547
3548	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3549
3550	min_uV += rdev->constraints->uV_offset;
3551	max_uV += rdev->constraints->uV_offset;
3552
3553	/*
3554	 * If we can't obtain the old selector there is not enough
3555	 * info to call set_voltage_time_sel().
3556	 */
3557	if (_regulator_is_enabled(rdev) &&
3558	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3559		old_selector = ops->get_voltage_sel(rdev);
3560		if (old_selector < 0)
3561			return old_selector;
3562	}
3563
3564	if (ops->set_voltage) {
3565		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3566						  &selector);
3567
3568		if (ret >= 0) {
3569			if (ops->list_voltage)
3570				best_val = ops->list_voltage(rdev,
3571							     selector);
3572			else
3573				best_val = regulator_get_voltage_rdev(rdev);
3574		}
3575
3576	} else if (ops->set_voltage_sel) {
3577		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3578		if (ret >= 0) {
3579			best_val = ops->list_voltage(rdev, ret);
3580			if (min_uV <= best_val && max_uV >= best_val) {
3581				selector = ret;
3582				if (old_selector == selector)
3583					ret = 0;
3584				else if (rdev->desc->vsel_step)
3585					ret = _regulator_set_voltage_sel_step(
3586						rdev, best_val, selector);
3587				else
3588					ret = _regulator_call_set_voltage_sel(
3589						rdev, best_val, selector);
3590			} else {
3591				ret = -EINVAL;
3592			}
3593		}
3594	} else {
3595		ret = -EINVAL;
3596	}
3597
3598	if (ret)
3599		goto out;
3600
3601	if (ops->set_voltage_time_sel) {
3602		/*
3603		 * Call set_voltage_time_sel if successfully obtained
3604		 * old_selector
3605		 */
3606		if (old_selector >= 0 && old_selector != selector)
3607			delay = ops->set_voltage_time_sel(rdev, old_selector,
3608							  selector);
3609	} else {
3610		if (old_uV != best_val) {
3611			if (ops->set_voltage_time)
3612				delay = ops->set_voltage_time(rdev, old_uV,
3613							      best_val);
3614			else
3615				delay = _regulator_set_voltage_time(rdev,
3616								    old_uV,
3617								    best_val);
3618		}
3619	}
3620
3621	if (delay < 0) {
3622		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3623		delay = 0;
3624	}
3625
3626	/* Insert any necessary delays */
3627	_regulator_delay_helper(delay);
 
 
 
 
 
3628
3629	if (best_val >= 0) {
3630		unsigned long data = best_val;
3631
3632		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3633				     (void *)data);
3634	}
3635
3636out:
3637	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3638
3639	return ret;
3640}
3641
3642static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3643				  int min_uV, int max_uV, suspend_state_t state)
3644{
3645	struct regulator_state *rstate;
3646	int uV, sel;
3647
3648	rstate = regulator_get_suspend_state(rdev, state);
3649	if (rstate == NULL)
3650		return -EINVAL;
3651
3652	if (min_uV < rstate->min_uV)
3653		min_uV = rstate->min_uV;
3654	if (max_uV > rstate->max_uV)
3655		max_uV = rstate->max_uV;
3656
3657	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3658	if (sel < 0)
3659		return sel;
3660
3661	uV = rdev->desc->ops->list_voltage(rdev, sel);
3662	if (uV >= min_uV && uV <= max_uV)
3663		rstate->uV = uV;
3664
3665	return 0;
3666}
3667
3668static int regulator_set_voltage_unlocked(struct regulator *regulator,
3669					  int min_uV, int max_uV,
3670					  suspend_state_t state)
3671{
3672	struct regulator_dev *rdev = regulator->rdev;
3673	struct regulator_voltage *voltage = &regulator->voltage[state];
3674	int ret = 0;
3675	int old_min_uV, old_max_uV;
3676	int current_uV;
 
 
3677
3678	/* If we're setting the same range as last time the change
3679	 * should be a noop (some cpufreq implementations use the same
3680	 * voltage for multiple frequencies, for example).
3681	 */
3682	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3683		goto out;
3684
3685	/* If we're trying to set a range that overlaps the current voltage,
3686	 * return successfully even though the regulator does not support
3687	 * changing the voltage.
3688	 */
3689	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3690		current_uV = regulator_get_voltage_rdev(rdev);
3691		if (min_uV <= current_uV && current_uV <= max_uV) {
3692			voltage->min_uV = min_uV;
3693			voltage->max_uV = max_uV;
3694			goto out;
3695		}
3696	}
3697
3698	/* sanity check */
3699	if (!rdev->desc->ops->set_voltage &&
3700	    !rdev->desc->ops->set_voltage_sel) {
3701		ret = -EINVAL;
3702		goto out;
3703	}
3704
3705	/* constraints check */
3706	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3707	if (ret < 0)
3708		goto out;
3709
3710	/* restore original values in case of error */
3711	old_min_uV = voltage->min_uV;
3712	old_max_uV = voltage->max_uV;
3713	voltage->min_uV = min_uV;
3714	voltage->max_uV = max_uV;
3715
3716	/* for not coupled regulators this will just set the voltage */
3717	ret = regulator_balance_voltage(rdev, state);
3718	if (ret < 0) {
3719		voltage->min_uV = old_min_uV;
3720		voltage->max_uV = old_max_uV;
3721	}
3722
3723out:
3724	return ret;
3725}
3726
3727int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3728			       int max_uV, suspend_state_t state)
3729{
3730	int best_supply_uV = 0;
3731	int supply_change_uV = 0;
3732	int ret;
3733
3734	if (rdev->supply &&
3735	    regulator_ops_is_valid(rdev->supply->rdev,
3736				   REGULATOR_CHANGE_VOLTAGE) &&
3737	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3738					   rdev->desc->ops->get_voltage_sel))) {
3739		int current_supply_uV;
3740		int selector;
3741
3742		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3743		if (selector < 0) {
3744			ret = selector;
3745			goto out;
3746		}
3747
3748		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3749		if (best_supply_uV < 0) {
3750			ret = best_supply_uV;
3751			goto out;
3752		}
3753
3754		best_supply_uV += rdev->desc->min_dropout_uV;
3755
3756		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3757		if (current_supply_uV < 0) {
3758			ret = current_supply_uV;
3759			goto out;
3760		}
3761
3762		supply_change_uV = best_supply_uV - current_supply_uV;
3763	}
3764
3765	if (supply_change_uV > 0) {
3766		ret = regulator_set_voltage_unlocked(rdev->supply,
3767				best_supply_uV, INT_MAX, state);
3768		if (ret) {
3769			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3770				ERR_PTR(ret));
3771			goto out;
3772		}
3773	}
3774
3775	if (state == PM_SUSPEND_ON)
3776		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3777	else
3778		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3779							max_uV, state);
3780	if (ret < 0)
3781		goto out;
3782
3783	if (supply_change_uV < 0) {
3784		ret = regulator_set_voltage_unlocked(rdev->supply,
3785				best_supply_uV, INT_MAX, state);
3786		if (ret)
3787			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3788				 ERR_PTR(ret));
3789		/* No need to fail here */
3790		ret = 0;
3791	}
3792
3793out:
3794	return ret;
3795}
3796EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3797
3798static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3799					int *current_uV, int *min_uV)
3800{
3801	struct regulation_constraints *constraints = rdev->constraints;
3802
3803	/* Limit voltage change only if necessary */
3804	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3805		return 1;
3806
3807	if (*current_uV < 0) {
3808		*current_uV = regulator_get_voltage_rdev(rdev);
3809
3810		if (*current_uV < 0)
3811			return *current_uV;
3812	}
3813
3814	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3815		return 1;
3816
3817	/* Clamp target voltage within the given step */
3818	if (*current_uV < *min_uV)
3819		*min_uV = min(*current_uV + constraints->max_uV_step,
3820			      *min_uV);
3821	else
3822		*min_uV = max(*current_uV - constraints->max_uV_step,
3823			      *min_uV);
3824
3825	return 0;
3826}
3827
3828static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3829					 int *current_uV,
3830					 int *min_uV, int *max_uV,
3831					 suspend_state_t state,
3832					 int n_coupled)
3833{
3834	struct coupling_desc *c_desc = &rdev->coupling_desc;
3835	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3836	struct regulation_constraints *constraints = rdev->constraints;
3837	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3838	int max_current_uV = 0, min_current_uV = INT_MAX;
3839	int highest_min_uV = 0, target_uV, possible_uV;
3840	int i, ret, max_spread;
3841	bool done;
3842
3843	*current_uV = -1;
3844
3845	/*
3846	 * If there are no coupled regulators, simply set the voltage
3847	 * demanded by consumers.
3848	 */
3849	if (n_coupled == 1) {
3850		/*
3851		 * If consumers don't provide any demands, set voltage
3852		 * to min_uV
3853		 */
3854		desired_min_uV = constraints->min_uV;
3855		desired_max_uV = constraints->max_uV;
3856
3857		ret = regulator_check_consumers(rdev,
3858						&desired_min_uV,
3859						&desired_max_uV, state);
3860		if (ret < 0)
3861			return ret;
3862
3863		possible_uV = desired_min_uV;
3864		done = true;
3865
3866		goto finish;
3867	}
3868
3869	/* Find highest min desired voltage */
3870	for (i = 0; i < n_coupled; i++) {
3871		int tmp_min = 0;
3872		int tmp_max = INT_MAX;
3873
3874		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3875
3876		ret = regulator_check_consumers(c_rdevs[i],
3877						&tmp_min,
3878						&tmp_max, state);
3879		if (ret < 0)
3880			return ret;
3881
3882		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3883		if (ret < 0)
3884			return ret;
3885
3886		highest_min_uV = max(highest_min_uV, tmp_min);
3887
3888		if (i == 0) {
3889			desired_min_uV = tmp_min;
3890			desired_max_uV = tmp_max;
3891		}
3892	}
3893
3894	max_spread = constraints->max_spread[0];
3895
3896	/*
3897	 * Let target_uV be equal to the desired one if possible.
3898	 * If not, set it to minimum voltage, allowed by other coupled
3899	 * regulators.
3900	 */
3901	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3902
3903	/*
3904	 * Find min and max voltages, which currently aren't violating
3905	 * max_spread.
3906	 */
3907	for (i = 1; i < n_coupled; i++) {
3908		int tmp_act;
3909
3910		if (!_regulator_is_enabled(c_rdevs[i]))
3911			continue;
3912
3913		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3914		if (tmp_act < 0)
3915			return tmp_act;
3916
3917		min_current_uV = min(tmp_act, min_current_uV);
3918		max_current_uV = max(tmp_act, max_current_uV);
3919	}
3920
3921	/* There aren't any other regulators enabled */
3922	if (max_current_uV == 0) {
3923		possible_uV = target_uV;
3924	} else {
3925		/*
3926		 * Correct target voltage, so as it currently isn't
3927		 * violating max_spread
3928		 */
3929		possible_uV = max(target_uV, max_current_uV - max_spread);
3930		possible_uV = min(possible_uV, min_current_uV + max_spread);
3931	}
3932
3933	if (possible_uV > desired_max_uV)
3934		return -EINVAL;
3935
3936	done = (possible_uV == target_uV);
3937	desired_min_uV = possible_uV;
3938
3939finish:
3940	/* Apply max_uV_step constraint if necessary */
3941	if (state == PM_SUSPEND_ON) {
3942		ret = regulator_limit_voltage_step(rdev, current_uV,
3943						   &desired_min_uV);
3944		if (ret < 0)
3945			return ret;
3946
3947		if (ret == 0)
3948			done = false;
3949	}
3950
3951	/* Set current_uV if wasn't done earlier in the code and if necessary */
3952	if (n_coupled > 1 && *current_uV == -1) {
3953
3954		if (_regulator_is_enabled(rdev)) {
3955			ret = regulator_get_voltage_rdev(rdev);
3956			if (ret < 0)
3957				return ret;
3958
3959			*current_uV = ret;
3960		} else {
3961			*current_uV = desired_min_uV;
3962		}
3963	}
3964
3965	*min_uV = desired_min_uV;
3966	*max_uV = desired_max_uV;
3967
3968	return done;
3969}
3970
3971int regulator_do_balance_voltage(struct regulator_dev *rdev,
3972				 suspend_state_t state, bool skip_coupled)
3973{
3974	struct regulator_dev **c_rdevs;
3975	struct regulator_dev *best_rdev;
3976	struct coupling_desc *c_desc = &rdev->coupling_desc;
3977	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3978	unsigned int delta, best_delta;
3979	unsigned long c_rdev_done = 0;
3980	bool best_c_rdev_done;
3981
3982	c_rdevs = c_desc->coupled_rdevs;
3983	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3984
3985	/*
3986	 * Find the best possible voltage change on each loop. Leave the loop
3987	 * if there isn't any possible change.
3988	 */
3989	do {
3990		best_c_rdev_done = false;
3991		best_delta = 0;
3992		best_min_uV = 0;
3993		best_max_uV = 0;
3994		best_c_rdev = 0;
3995		best_rdev = NULL;
3996
3997		/*
3998		 * Find highest difference between optimal voltage
3999		 * and current voltage.
4000		 */
4001		for (i = 0; i < n_coupled; i++) {
4002			/*
4003			 * optimal_uV is the best voltage that can be set for
4004			 * i-th regulator at the moment without violating
4005			 * max_spread constraint in order to balance
4006			 * the coupled voltages.
4007			 */
4008			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4009
4010			if (test_bit(i, &c_rdev_done))
4011				continue;
4012
4013			ret = regulator_get_optimal_voltage(c_rdevs[i],
4014							    &current_uV,
4015							    &optimal_uV,
4016							    &optimal_max_uV,
4017							    state, n_coupled);
4018			if (ret < 0)
4019				goto out;
4020
4021			delta = abs(optimal_uV - current_uV);
4022
4023			if (delta && best_delta <= delta) {
4024				best_c_rdev_done = ret;
4025				best_delta = delta;
4026				best_rdev = c_rdevs[i];
4027				best_min_uV = optimal_uV;
4028				best_max_uV = optimal_max_uV;
4029				best_c_rdev = i;
4030			}
4031		}
4032
4033		/* Nothing to change, return successfully */
4034		if (!best_rdev) {
4035			ret = 0;
4036			goto out;
4037		}
4038
4039		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4040						 best_max_uV, state);
4041
4042		if (ret < 0)
4043			goto out;
4044
4045		if (best_c_rdev_done)
4046			set_bit(best_c_rdev, &c_rdev_done);
4047
4048	} while (n_coupled > 1);
4049
4050out:
4051	return ret;
4052}
4053
4054static int regulator_balance_voltage(struct regulator_dev *rdev,
4055				     suspend_state_t state)
4056{
4057	struct coupling_desc *c_desc = &rdev->coupling_desc;
4058	struct regulator_coupler *coupler = c_desc->coupler;
4059	bool skip_coupled = false;
4060
4061	/*
4062	 * If system is in a state other than PM_SUSPEND_ON, don't check
4063	 * other coupled regulators.
4064	 */
4065	if (state != PM_SUSPEND_ON)
4066		skip_coupled = true;
4067
4068	if (c_desc->n_resolved < c_desc->n_coupled) {
4069		rdev_err(rdev, "Not all coupled regulators registered\n");
4070		return -EPERM;
4071	}
4072
4073	/* Invoke custom balancer for customized couplers */
4074	if (coupler && coupler->balance_voltage)
4075		return coupler->balance_voltage(coupler, rdev, state);
4076
4077	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4078}
4079
4080/**
4081 * regulator_set_voltage - set regulator output voltage
4082 * @regulator: regulator source
4083 * @min_uV: Minimum required voltage in uV
4084 * @max_uV: Maximum acceptable voltage in uV
4085 *
4086 * Sets a voltage regulator to the desired output voltage. This can be set
4087 * during any regulator state. IOW, regulator can be disabled or enabled.
4088 *
4089 * If the regulator is enabled then the voltage will change to the new value
4090 * immediately otherwise if the regulator is disabled the regulator will
4091 * output at the new voltage when enabled.
4092 *
4093 * NOTE: If the regulator is shared between several devices then the lowest
4094 * request voltage that meets the system constraints will be used.
4095 * Regulator system constraints must be set for this regulator before
4096 * calling this function otherwise this call will fail.
4097 */
4098int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4099{
4100	struct ww_acquire_ctx ww_ctx;
4101	int ret;
4102
4103	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4104
4105	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4106					     PM_SUSPEND_ON);
4107
4108	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4109
4110	return ret;
4111}
4112EXPORT_SYMBOL_GPL(regulator_set_voltage);
4113
4114static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4115					   suspend_state_t state, bool en)
4116{
4117	struct regulator_state *rstate;
4118
4119	rstate = regulator_get_suspend_state(rdev, state);
4120	if (rstate == NULL)
4121		return -EINVAL;
4122
4123	if (!rstate->changeable)
4124		return -EPERM;
4125
4126	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4127
4128	return 0;
4129}
4130
4131int regulator_suspend_enable(struct regulator_dev *rdev,
4132				    suspend_state_t state)
4133{
4134	return regulator_suspend_toggle(rdev, state, true);
4135}
4136EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4137
4138int regulator_suspend_disable(struct regulator_dev *rdev,
4139				     suspend_state_t state)
4140{
4141	struct regulator *regulator;
4142	struct regulator_voltage *voltage;
4143
4144	/*
4145	 * if any consumer wants this regulator device keeping on in
4146	 * suspend states, don't set it as disabled.
4147	 */
4148	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4149		voltage = &regulator->voltage[state];
4150		if (voltage->min_uV || voltage->max_uV)
4151			return 0;
4152	}
4153
4154	return regulator_suspend_toggle(rdev, state, false);
4155}
4156EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4157
4158static int _regulator_set_suspend_voltage(struct regulator *regulator,
4159					  int min_uV, int max_uV,
4160					  suspend_state_t state)
4161{
4162	struct regulator_dev *rdev = regulator->rdev;
4163	struct regulator_state *rstate;
4164
4165	rstate = regulator_get_suspend_state(rdev, state);
4166	if (rstate == NULL)
4167		return -EINVAL;
4168
4169	if (rstate->min_uV == rstate->max_uV) {
4170		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4171		return -EPERM;
4172	}
4173
4174	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4175}
4176
4177int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4178				  int max_uV, suspend_state_t state)
4179{
4180	struct ww_acquire_ctx ww_ctx;
4181	int ret;
4182
4183	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4184	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4185		return -EINVAL;
4186
4187	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4188
4189	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4190					     max_uV, state);
4191
4192	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4193
4194	return ret;
4195}
4196EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4197
4198/**
4199 * regulator_set_voltage_time - get raise/fall time
4200 * @regulator: regulator source
4201 * @old_uV: starting voltage in microvolts
4202 * @new_uV: target voltage in microvolts
4203 *
4204 * Provided with the starting and ending voltage, this function attempts to
4205 * calculate the time in microseconds required to rise or fall to this new
4206 * voltage.
4207 */
4208int regulator_set_voltage_time(struct regulator *regulator,
4209			       int old_uV, int new_uV)
4210{
4211	struct regulator_dev *rdev = regulator->rdev;
4212	const struct regulator_ops *ops = rdev->desc->ops;
4213	int old_sel = -1;
4214	int new_sel = -1;
4215	int voltage;
4216	int i;
4217
4218	if (ops->set_voltage_time)
4219		return ops->set_voltage_time(rdev, old_uV, new_uV);
4220	else if (!ops->set_voltage_time_sel)
4221		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4222
4223	/* Currently requires operations to do this */
4224	if (!ops->list_voltage || !rdev->desc->n_voltages)
4225		return -EINVAL;
4226
4227	for (i = 0; i < rdev->desc->n_voltages; i++) {
4228		/* We only look for exact voltage matches here */
4229		if (i < rdev->desc->linear_min_sel)
4230			continue;
4231
4232		if (old_sel >= 0 && new_sel >= 0)
4233			break;
4234
4235		voltage = regulator_list_voltage(regulator, i);
4236		if (voltage < 0)
4237			return -EINVAL;
4238		if (voltage == 0)
4239			continue;
4240		if (voltage == old_uV)
4241			old_sel = i;
4242		if (voltage == new_uV)
4243			new_sel = i;
4244	}
4245
4246	if (old_sel < 0 || new_sel < 0)
4247		return -EINVAL;
4248
4249	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4250}
4251EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4252
4253/**
4254 * regulator_set_voltage_time_sel - get raise/fall time
4255 * @rdev: regulator source device
4256 * @old_selector: selector for starting voltage
4257 * @new_selector: selector for target voltage
4258 *
4259 * Provided with the starting and target voltage selectors, this function
4260 * returns time in microseconds required to rise or fall to this new voltage
4261 *
4262 * Drivers providing ramp_delay in regulation_constraints can use this as their
4263 * set_voltage_time_sel() operation.
4264 */
4265int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4266				   unsigned int old_selector,
4267				   unsigned int new_selector)
4268{
4269	int old_volt, new_volt;
4270
4271	/* sanity check */
4272	if (!rdev->desc->ops->list_voltage)
4273		return -EINVAL;
4274
4275	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4276	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4277
4278	if (rdev->desc->ops->set_voltage_time)
4279		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4280							 new_volt);
4281	else
4282		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4283}
4284EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4285
4286int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4287{
4288	int ret;
4289
4290	regulator_lock(rdev);
4291
4292	if (!rdev->desc->ops->set_voltage &&
4293	    !rdev->desc->ops->set_voltage_sel) {
4294		ret = -EINVAL;
4295		goto out;
4296	}
4297
4298	/* balance only, if regulator is coupled */
4299	if (rdev->coupling_desc.n_coupled > 1)
4300		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4301	else
4302		ret = -EOPNOTSUPP;
4303
4304out:
4305	regulator_unlock(rdev);
4306	return ret;
4307}
4308
4309/**
4310 * regulator_sync_voltage - re-apply last regulator output voltage
4311 * @regulator: regulator source
4312 *
4313 * Re-apply the last configured voltage.  This is intended to be used
4314 * where some external control source the consumer is cooperating with
4315 * has caused the configured voltage to change.
4316 */
4317int regulator_sync_voltage(struct regulator *regulator)
4318{
4319	struct regulator_dev *rdev = regulator->rdev;
4320	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4321	int ret, min_uV, max_uV;
4322
4323	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4324		return 0;
4325
4326	regulator_lock(rdev);
4327
4328	if (!rdev->desc->ops->set_voltage &&
4329	    !rdev->desc->ops->set_voltage_sel) {
4330		ret = -EINVAL;
4331		goto out;
4332	}
4333
4334	/* This is only going to work if we've had a voltage configured. */
4335	if (!voltage->min_uV && !voltage->max_uV) {
4336		ret = -EINVAL;
4337		goto out;
4338	}
4339
4340	min_uV = voltage->min_uV;
4341	max_uV = voltage->max_uV;
4342
4343	/* This should be a paranoia check... */
4344	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4345	if (ret < 0)
4346		goto out;
4347
4348	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4349	if (ret < 0)
4350		goto out;
4351
4352	/* balance only, if regulator is coupled */
4353	if (rdev->coupling_desc.n_coupled > 1)
4354		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4355	else
4356		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4357
4358out:
4359	regulator_unlock(rdev);
4360	return ret;
4361}
4362EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4363
4364int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4365{
4366	int sel, ret;
4367	bool bypassed;
4368
4369	if (rdev->desc->ops->get_bypass) {
4370		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4371		if (ret < 0)
4372			return ret;
4373		if (bypassed) {
4374			/* if bypassed the regulator must have a supply */
4375			if (!rdev->supply) {
4376				rdev_err(rdev,
4377					 "bypassed regulator has no supply!\n");
4378				return -EPROBE_DEFER;
4379			}
4380
4381			return regulator_get_voltage_rdev(rdev->supply->rdev);
4382		}
4383	}
4384
4385	if (rdev->desc->ops->get_voltage_sel) {
4386		sel = rdev->desc->ops->get_voltage_sel(rdev);
4387		if (sel < 0)
4388			return sel;
4389		ret = rdev->desc->ops->list_voltage(rdev, sel);
4390	} else if (rdev->desc->ops->get_voltage) {
4391		ret = rdev->desc->ops->get_voltage(rdev);
4392	} else if (rdev->desc->ops->list_voltage) {
4393		ret = rdev->desc->ops->list_voltage(rdev, 0);
4394	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4395		ret = rdev->desc->fixed_uV;
4396	} else if (rdev->supply) {
4397		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4398	} else if (rdev->supply_name) {
4399		return -EPROBE_DEFER;
4400	} else {
4401		return -EINVAL;
4402	}
4403
4404	if (ret < 0)
4405		return ret;
4406	return ret - rdev->constraints->uV_offset;
4407}
4408EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4409
4410/**
4411 * regulator_get_voltage - get regulator output voltage
4412 * @regulator: regulator source
4413 *
4414 * This returns the current regulator voltage in uV.
4415 *
4416 * NOTE: If the regulator is disabled it will return the voltage value. This
4417 * function should not be used to determine regulator state.
4418 */
4419int regulator_get_voltage(struct regulator *regulator)
4420{
4421	struct ww_acquire_ctx ww_ctx;
4422	int ret;
4423
4424	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4425	ret = regulator_get_voltage_rdev(regulator->rdev);
4426	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
 
 
4427
4428	return ret;
4429}
4430EXPORT_SYMBOL_GPL(regulator_get_voltage);
4431
4432/**
4433 * regulator_set_current_limit - set regulator output current limit
4434 * @regulator: regulator source
4435 * @min_uA: Minimum supported current in uA
4436 * @max_uA: Maximum supported current in uA
4437 *
4438 * Sets current sink to the desired output current. This can be set during
4439 * any regulator state. IOW, regulator can be disabled or enabled.
4440 *
4441 * If the regulator is enabled then the current will change to the new value
4442 * immediately otherwise if the regulator is disabled the regulator will
4443 * output at the new current when enabled.
4444 *
4445 * NOTE: Regulator system constraints must be set for this regulator before
4446 * calling this function otherwise this call will fail.
4447 */
4448int regulator_set_current_limit(struct regulator *regulator,
4449			       int min_uA, int max_uA)
4450{
4451	struct regulator_dev *rdev = regulator->rdev;
4452	int ret;
4453
4454	regulator_lock(rdev);
4455
4456	/* sanity check */
4457	if (!rdev->desc->ops->set_current_limit) {
4458		ret = -EINVAL;
4459		goto out;
4460	}
4461
4462	/* constraints check */
4463	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4464	if (ret < 0)
4465		goto out;
4466
4467	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4468out:
4469	regulator_unlock(rdev);
4470	return ret;
4471}
4472EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4473
4474static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4475{
4476	/* sanity check */
4477	if (!rdev->desc->ops->get_current_limit)
4478		return -EINVAL;
4479
4480	return rdev->desc->ops->get_current_limit(rdev);
4481}
4482
4483static int _regulator_get_current_limit(struct regulator_dev *rdev)
4484{
4485	int ret;
4486
4487	regulator_lock(rdev);
4488	ret = _regulator_get_current_limit_unlocked(rdev);
4489	regulator_unlock(rdev);
 
 
 
 
4490
 
 
 
4491	return ret;
4492}
4493
4494/**
4495 * regulator_get_current_limit - get regulator output current
4496 * @regulator: regulator source
4497 *
4498 * This returns the current supplied by the specified current sink in uA.
4499 *
4500 * NOTE: If the regulator is disabled it will return the current value. This
4501 * function should not be used to determine regulator state.
4502 */
4503int regulator_get_current_limit(struct regulator *regulator)
4504{
4505	return _regulator_get_current_limit(regulator->rdev);
4506}
4507EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4508
4509/**
4510 * regulator_set_mode - set regulator operating mode
4511 * @regulator: regulator source
4512 * @mode: operating mode - one of the REGULATOR_MODE constants
4513 *
4514 * Set regulator operating mode to increase regulator efficiency or improve
4515 * regulation performance.
4516 *
4517 * NOTE: Regulator system constraints must be set for this regulator before
4518 * calling this function otherwise this call will fail.
4519 */
4520int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4521{
4522	struct regulator_dev *rdev = regulator->rdev;
4523	int ret;
4524	int regulator_curr_mode;
4525
4526	regulator_lock(rdev);
4527
4528	/* sanity check */
4529	if (!rdev->desc->ops->set_mode) {
4530		ret = -EINVAL;
4531		goto out;
4532	}
4533
4534	/* return if the same mode is requested */
4535	if (rdev->desc->ops->get_mode) {
4536		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4537		if (regulator_curr_mode == mode) {
4538			ret = 0;
4539			goto out;
4540		}
4541	}
4542
4543	/* constraints check */
4544	ret = regulator_mode_constrain(rdev, &mode);
4545	if (ret < 0)
4546		goto out;
4547
4548	ret = rdev->desc->ops->set_mode(rdev, mode);
4549out:
4550	regulator_unlock(rdev);
4551	return ret;
4552}
4553EXPORT_SYMBOL_GPL(regulator_set_mode);
4554
4555static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4556{
4557	/* sanity check */
4558	if (!rdev->desc->ops->get_mode)
4559		return -EINVAL;
4560
4561	return rdev->desc->ops->get_mode(rdev);
4562}
4563
4564static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4565{
4566	int ret;
4567
4568	regulator_lock(rdev);
4569	ret = _regulator_get_mode_unlocked(rdev);
4570	regulator_unlock(rdev);
4571
 
 
 
 
 
 
 
 
 
4572	return ret;
4573}
4574
4575/**
4576 * regulator_get_mode - get regulator operating mode
4577 * @regulator: regulator source
4578 *
4579 * Get the current regulator operating mode.
4580 */
4581unsigned int regulator_get_mode(struct regulator *regulator)
4582{
4583	return _regulator_get_mode(regulator->rdev);
4584}
4585EXPORT_SYMBOL_GPL(regulator_get_mode);
4586
4587static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4588{
4589	int ret = 0;
4590
4591	if (rdev->use_cached_err) {
4592		spin_lock(&rdev->err_lock);
4593		ret = rdev->cached_err;
4594		spin_unlock(&rdev->err_lock);
4595	}
4596	return ret;
4597}
4598
4599static int _regulator_get_error_flags(struct regulator_dev *rdev,
4600					unsigned int *flags)
4601{
4602	int cached_flags, ret = 0;
4603
4604	regulator_lock(rdev);
4605
4606	cached_flags = rdev_get_cached_err_flags(rdev);
4607
4608	if (rdev->desc->ops->get_error_flags)
4609		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4610	else if (!rdev->use_cached_err)
4611		ret = -EINVAL;
 
 
4612
4613	*flags |= cached_flags;
4614
4615	regulator_unlock(rdev);
4616
4617	return ret;
4618}
4619
4620/**
4621 * regulator_get_error_flags - get regulator error information
4622 * @regulator: regulator source
4623 * @flags: pointer to store error flags
4624 *
4625 * Get the current regulator error information.
4626 */
4627int regulator_get_error_flags(struct regulator *regulator,
4628				unsigned int *flags)
4629{
4630	return _regulator_get_error_flags(regulator->rdev, flags);
4631}
4632EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4633
4634/**
4635 * regulator_set_load - set regulator load
4636 * @regulator: regulator source
4637 * @uA_load: load current
4638 *
4639 * Notifies the regulator core of a new device load. This is then used by
4640 * DRMS (if enabled by constraints) to set the most efficient regulator
4641 * operating mode for the new regulator loading.
4642 *
4643 * Consumer devices notify their supply regulator of the maximum power
4644 * they will require (can be taken from device datasheet in the power
4645 * consumption tables) when they change operational status and hence power
4646 * state. Examples of operational state changes that can affect power
4647 * consumption are :-
4648 *
4649 *    o Device is opened / closed.
4650 *    o Device I/O is about to begin or has just finished.
4651 *    o Device is idling in between work.
4652 *
4653 * This information is also exported via sysfs to userspace.
4654 *
4655 * DRMS will sum the total requested load on the regulator and change
4656 * to the most efficient operating mode if platform constraints allow.
4657 *
4658 * NOTE: when a regulator consumer requests to have a regulator
4659 * disabled then any load that consumer requested no longer counts
4660 * toward the total requested load.  If the regulator is re-enabled
4661 * then the previously requested load will start counting again.
4662 *
4663 * If a regulator is an always-on regulator then an individual consumer's
4664 * load will still be removed if that consumer is fully disabled.
4665 *
4666 * On error a negative errno is returned.
4667 */
4668int regulator_set_load(struct regulator *regulator, int uA_load)
4669{
4670	struct regulator_dev *rdev = regulator->rdev;
4671	int old_uA_load;
4672	int ret = 0;
4673
4674	regulator_lock(rdev);
4675	old_uA_load = regulator->uA_load;
4676	regulator->uA_load = uA_load;
4677	if (regulator->enable_count && old_uA_load != uA_load) {
4678		ret = drms_uA_update(rdev);
4679		if (ret < 0)
4680			regulator->uA_load = old_uA_load;
4681	}
4682	regulator_unlock(rdev);
4683
4684	return ret;
4685}
4686EXPORT_SYMBOL_GPL(regulator_set_load);
4687
4688/**
4689 * regulator_allow_bypass - allow the regulator to go into bypass mode
4690 *
4691 * @regulator: Regulator to configure
4692 * @enable: enable or disable bypass mode
4693 *
4694 * Allow the regulator to go into bypass mode if all other consumers
4695 * for the regulator also enable bypass mode and the machine
4696 * constraints allow this.  Bypass mode means that the regulator is
4697 * simply passing the input directly to the output with no regulation.
4698 */
4699int regulator_allow_bypass(struct regulator *regulator, bool enable)
4700{
4701	struct regulator_dev *rdev = regulator->rdev;
4702	const char *name = rdev_get_name(rdev);
4703	int ret = 0;
4704
4705	if (!rdev->desc->ops->set_bypass)
4706		return 0;
4707
4708	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4709		return 0;
4710
4711	regulator_lock(rdev);
4712
4713	if (enable && !regulator->bypass) {
4714		rdev->bypass_count++;
4715
4716		if (rdev->bypass_count == rdev->open_count) {
4717			trace_regulator_bypass_enable(name);
4718
4719			ret = rdev->desc->ops->set_bypass(rdev, enable);
4720			if (ret != 0)
4721				rdev->bypass_count--;
4722			else
4723				trace_regulator_bypass_enable_complete(name);
4724		}
4725
4726	} else if (!enable && regulator->bypass) {
4727		rdev->bypass_count--;
4728
4729		if (rdev->bypass_count != rdev->open_count) {
4730			trace_regulator_bypass_disable(name);
4731
4732			ret = rdev->desc->ops->set_bypass(rdev, enable);
4733			if (ret != 0)
4734				rdev->bypass_count++;
4735			else
4736				trace_regulator_bypass_disable_complete(name);
4737		}
4738	}
4739
4740	if (ret == 0)
4741		regulator->bypass = enable;
4742
4743	regulator_unlock(rdev);
4744
4745	return ret;
4746}
4747EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4748
4749/**
4750 * regulator_register_notifier - register regulator event notifier
4751 * @regulator: regulator source
4752 * @nb: notifier block
4753 *
4754 * Register notifier block to receive regulator events.
4755 */
4756int regulator_register_notifier(struct regulator *regulator,
4757			      struct notifier_block *nb)
4758{
4759	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4760						nb);
4761}
4762EXPORT_SYMBOL_GPL(regulator_register_notifier);
4763
4764/**
4765 * regulator_unregister_notifier - unregister regulator event notifier
4766 * @regulator: regulator source
4767 * @nb: notifier block
4768 *
4769 * Unregister regulator event notifier block.
4770 */
4771int regulator_unregister_notifier(struct regulator *regulator,
4772				struct notifier_block *nb)
4773{
4774	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4775						  nb);
4776}
4777EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4778
4779/* notify regulator consumers and downstream regulator consumers.
4780 * Note mutex must be held by caller.
4781 */
4782static int _notifier_call_chain(struct regulator_dev *rdev,
4783				  unsigned long event, void *data)
4784{
4785	/* call rdev chain first */
4786	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4787}
4788
4789int _regulator_bulk_get(struct device *dev, int num_consumers,
4790			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4791{
4792	int i;
4793	int ret;
4794
4795	for (i = 0; i < num_consumers; i++)
4796		consumers[i].consumer = NULL;
4797
4798	for (i = 0; i < num_consumers; i++) {
4799		consumers[i].consumer = _regulator_get(dev,
4800						       consumers[i].supply, get_type);
4801		if (IS_ERR(consumers[i].consumer)) {
4802			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4803					    "Failed to get supply '%s'",
4804					    consumers[i].supply);
4805			consumers[i].consumer = NULL;
4806			goto err;
4807		}
4808
4809		if (consumers[i].init_load_uA > 0) {
4810			ret = regulator_set_load(consumers[i].consumer,
4811						 consumers[i].init_load_uA);
4812			if (ret) {
4813				i++;
4814				goto err;
4815			}
4816		}
4817	}
4818
4819	return 0;
4820
4821err:
4822	while (--i >= 0)
4823		regulator_put(consumers[i].consumer);
4824
4825	return ret;
4826}
4827
4828/**
4829 * regulator_bulk_get - get multiple regulator consumers
4830 *
4831 * @dev:           Device to supply
4832 * @num_consumers: Number of consumers to register
4833 * @consumers:     Configuration of consumers; clients are stored here.
4834 *
4835 * @return 0 on success, an errno on failure.
4836 *
4837 * This helper function allows drivers to get several regulator
4838 * consumers in one operation.  If any of the regulators cannot be
4839 * acquired then any regulators that were allocated will be freed
4840 * before returning to the caller.
4841 */
4842int regulator_bulk_get(struct device *dev, int num_consumers,
4843		       struct regulator_bulk_data *consumers)
4844{
4845	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4846}
4847EXPORT_SYMBOL_GPL(regulator_bulk_get);
4848
4849static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4850{
4851	struct regulator_bulk_data *bulk = data;
4852
4853	bulk->ret = regulator_enable(bulk->consumer);
4854}
4855
4856/**
4857 * regulator_bulk_enable - enable multiple regulator consumers
4858 *
4859 * @num_consumers: Number of consumers
4860 * @consumers:     Consumer data; clients are stored here.
4861 * @return         0 on success, an errno on failure
4862 *
4863 * This convenience API allows consumers to enable multiple regulator
4864 * clients in a single API call.  If any consumers cannot be enabled
4865 * then any others that were enabled will be disabled again prior to
4866 * return.
4867 */
4868int regulator_bulk_enable(int num_consumers,
4869			  struct regulator_bulk_data *consumers)
4870{
4871	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4872	int i;
4873	int ret = 0;
4874
4875	for (i = 0; i < num_consumers; i++) {
4876		async_schedule_domain(regulator_bulk_enable_async,
4877				      &consumers[i], &async_domain);
 
 
 
4878	}
4879
4880	async_synchronize_full_domain(&async_domain);
4881
4882	/* If any consumer failed we need to unwind any that succeeded */
4883	for (i = 0; i < num_consumers; i++) {
4884		if (consumers[i].ret != 0) {
4885			ret = consumers[i].ret;
4886			goto err;
4887		}
4888	}
4889
4890	return 0;
4891
4892err:
4893	for (i = 0; i < num_consumers; i++) {
4894		if (consumers[i].ret < 0)
4895			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4896			       ERR_PTR(consumers[i].ret));
4897		else
4898			regulator_disable(consumers[i].consumer);
4899	}
4900
4901	return ret;
4902}
4903EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4904
4905/**
4906 * regulator_bulk_disable - disable multiple regulator consumers
4907 *
4908 * @num_consumers: Number of consumers
4909 * @consumers:     Consumer data; clients are stored here.
4910 * @return         0 on success, an errno on failure
4911 *
4912 * This convenience API allows consumers to disable multiple regulator
4913 * clients in a single API call.  If any consumers cannot be disabled
4914 * then any others that were disabled will be enabled again prior to
4915 * return.
4916 */
4917int regulator_bulk_disable(int num_consumers,
4918			   struct regulator_bulk_data *consumers)
4919{
4920	int i;
4921	int ret, r;
4922
4923	for (i = num_consumers - 1; i >= 0; --i) {
4924		ret = regulator_disable(consumers[i].consumer);
4925		if (ret != 0)
4926			goto err;
4927	}
4928
4929	return 0;
4930
4931err:
4932	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4933	for (++i; i < num_consumers; ++i) {
4934		r = regulator_enable(consumers[i].consumer);
4935		if (r != 0)
4936			pr_err("Failed to re-enable %s: %pe\n",
4937			       consumers[i].supply, ERR_PTR(r));
4938	}
4939
4940	return ret;
4941}
4942EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4943
4944/**
4945 * regulator_bulk_force_disable - force disable multiple regulator consumers
4946 *
4947 * @num_consumers: Number of consumers
4948 * @consumers:     Consumer data; clients are stored here.
4949 * @return         0 on success, an errno on failure
4950 *
4951 * This convenience API allows consumers to forcibly disable multiple regulator
4952 * clients in a single API call.
4953 * NOTE: This should be used for situations when device damage will
4954 * likely occur if the regulators are not disabled (e.g. over temp).
4955 * Although regulator_force_disable function call for some consumers can
4956 * return error numbers, the function is called for all consumers.
4957 */
4958int regulator_bulk_force_disable(int num_consumers,
4959			   struct regulator_bulk_data *consumers)
4960{
4961	int i;
4962	int ret = 0;
4963
4964	for (i = 0; i < num_consumers; i++) {
4965		consumers[i].ret =
4966			    regulator_force_disable(consumers[i].consumer);
4967
4968		/* Store first error for reporting */
4969		if (consumers[i].ret && !ret)
4970			ret = consumers[i].ret;
 
 
4971	}
4972
 
 
4973	return ret;
4974}
4975EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4976
4977/**
4978 * regulator_bulk_free - free multiple regulator consumers
4979 *
4980 * @num_consumers: Number of consumers
4981 * @consumers:     Consumer data; clients are stored here.
4982 *
4983 * This convenience API allows consumers to free multiple regulator
4984 * clients in a single API call.
4985 */
4986void regulator_bulk_free(int num_consumers,
4987			 struct regulator_bulk_data *consumers)
4988{
4989	int i;
4990
4991	for (i = 0; i < num_consumers; i++) {
4992		regulator_put(consumers[i].consumer);
4993		consumers[i].consumer = NULL;
4994	}
4995}
4996EXPORT_SYMBOL_GPL(regulator_bulk_free);
4997
4998/**
4999 * regulator_notifier_call_chain - call regulator event notifier
5000 * @rdev: regulator source
5001 * @event: notifier block
5002 * @data: callback-specific data.
5003 *
5004 * Called by regulator drivers to notify clients a regulator event has
5005 * occurred.
 
5006 */
5007int regulator_notifier_call_chain(struct regulator_dev *rdev,
5008				  unsigned long event, void *data)
5009{
 
 
5010	_notifier_call_chain(rdev, event, data);
5011	return NOTIFY_DONE;
5012
5013}
5014EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5015
5016/**
5017 * regulator_mode_to_status - convert a regulator mode into a status
5018 *
5019 * @mode: Mode to convert
5020 *
5021 * Convert a regulator mode into a status.
5022 */
5023int regulator_mode_to_status(unsigned int mode)
5024{
5025	switch (mode) {
5026	case REGULATOR_MODE_FAST:
5027		return REGULATOR_STATUS_FAST;
5028	case REGULATOR_MODE_NORMAL:
5029		return REGULATOR_STATUS_NORMAL;
5030	case REGULATOR_MODE_IDLE:
5031		return REGULATOR_STATUS_IDLE;
5032	case REGULATOR_MODE_STANDBY:
5033		return REGULATOR_STATUS_STANDBY;
5034	default:
5035		return REGULATOR_STATUS_UNDEFINED;
5036	}
5037}
5038EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5039
5040static struct attribute *regulator_dev_attrs[] = {
5041	&dev_attr_name.attr,
5042	&dev_attr_num_users.attr,
5043	&dev_attr_type.attr,
5044	&dev_attr_microvolts.attr,
5045	&dev_attr_microamps.attr,
5046	&dev_attr_opmode.attr,
5047	&dev_attr_state.attr,
5048	&dev_attr_status.attr,
5049	&dev_attr_bypass.attr,
5050	&dev_attr_requested_microamps.attr,
5051	&dev_attr_min_microvolts.attr,
5052	&dev_attr_max_microvolts.attr,
5053	&dev_attr_min_microamps.attr,
5054	&dev_attr_max_microamps.attr,
5055	&dev_attr_under_voltage.attr,
5056	&dev_attr_over_current.attr,
5057	&dev_attr_regulation_out.attr,
5058	&dev_attr_fail.attr,
5059	&dev_attr_over_temp.attr,
5060	&dev_attr_under_voltage_warn.attr,
5061	&dev_attr_over_current_warn.attr,
5062	&dev_attr_over_voltage_warn.attr,
5063	&dev_attr_over_temp_warn.attr,
5064	&dev_attr_suspend_standby_state.attr,
5065	&dev_attr_suspend_mem_state.attr,
5066	&dev_attr_suspend_disk_state.attr,
5067	&dev_attr_suspend_standby_microvolts.attr,
5068	&dev_attr_suspend_mem_microvolts.attr,
5069	&dev_attr_suspend_disk_microvolts.attr,
5070	&dev_attr_suspend_standby_mode.attr,
5071	&dev_attr_suspend_mem_mode.attr,
5072	&dev_attr_suspend_disk_mode.attr,
5073	NULL
5074};
5075
5076/*
5077 * To avoid cluttering sysfs (and memory) with useless state, only
5078 * create attributes that can be meaningfully displayed.
5079 */
5080static umode_t regulator_attr_is_visible(struct kobject *kobj,
5081					 struct attribute *attr, int idx)
5082{
5083	struct device *dev = kobj_to_dev(kobj);
5084	struct regulator_dev *rdev = dev_to_rdev(dev);
5085	const struct regulator_ops *ops = rdev->desc->ops;
5086	umode_t mode = attr->mode;
5087
5088	/* these three are always present */
5089	if (attr == &dev_attr_name.attr ||
5090	    attr == &dev_attr_num_users.attr ||
5091	    attr == &dev_attr_type.attr)
5092		return mode;
5093
5094	/* some attributes need specific methods to be displayed */
5095	if (attr == &dev_attr_microvolts.attr) {
5096		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5097		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5098		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5099		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5100			return mode;
5101		return 0;
5102	}
5103
5104	if (attr == &dev_attr_microamps.attr)
5105		return ops->get_current_limit ? mode : 0;
5106
5107	if (attr == &dev_attr_opmode.attr)
5108		return ops->get_mode ? mode : 0;
5109
5110	if (attr == &dev_attr_state.attr)
5111		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5112
5113	if (attr == &dev_attr_status.attr)
5114		return ops->get_status ? mode : 0;
5115
5116	if (attr == &dev_attr_bypass.attr)
5117		return ops->get_bypass ? mode : 0;
5118
5119	if (attr == &dev_attr_under_voltage.attr ||
5120	    attr == &dev_attr_over_current.attr ||
5121	    attr == &dev_attr_regulation_out.attr ||
5122	    attr == &dev_attr_fail.attr ||
5123	    attr == &dev_attr_over_temp.attr ||
5124	    attr == &dev_attr_under_voltage_warn.attr ||
5125	    attr == &dev_attr_over_current_warn.attr ||
5126	    attr == &dev_attr_over_voltage_warn.attr ||
5127	    attr == &dev_attr_over_temp_warn.attr)
5128		return ops->get_error_flags ? mode : 0;
5129
5130	/* constraints need specific supporting methods */
5131	if (attr == &dev_attr_min_microvolts.attr ||
5132	    attr == &dev_attr_max_microvolts.attr)
5133		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5134
5135	if (attr == &dev_attr_min_microamps.attr ||
5136	    attr == &dev_attr_max_microamps.attr)
5137		return ops->set_current_limit ? mode : 0;
5138
5139	if (attr == &dev_attr_suspend_standby_state.attr ||
5140	    attr == &dev_attr_suspend_mem_state.attr ||
5141	    attr == &dev_attr_suspend_disk_state.attr)
5142		return mode;
5143
5144	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5145	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5146	    attr == &dev_attr_suspend_disk_microvolts.attr)
5147		return ops->set_suspend_voltage ? mode : 0;
5148
5149	if (attr == &dev_attr_suspend_standby_mode.attr ||
5150	    attr == &dev_attr_suspend_mem_mode.attr ||
5151	    attr == &dev_attr_suspend_disk_mode.attr)
5152		return ops->set_suspend_mode ? mode : 0;
5153
5154	return mode;
5155}
5156
5157static const struct attribute_group regulator_dev_group = {
5158	.attrs = regulator_dev_attrs,
5159	.is_visible = regulator_attr_is_visible,
5160};
5161
5162static const struct attribute_group *regulator_dev_groups[] = {
5163	&regulator_dev_group,
5164	NULL
5165};
5166
5167static void regulator_dev_release(struct device *dev)
5168{
5169	struct regulator_dev *rdev = dev_get_drvdata(dev);
5170
5171	debugfs_remove_recursive(rdev->debugfs);
5172	kfree(rdev->constraints);
5173	of_node_put(rdev->dev.of_node);
5174	kfree(rdev);
5175}
5176
 
 
 
 
 
 
5177static void rdev_init_debugfs(struct regulator_dev *rdev)
5178{
5179	struct device *parent = rdev->dev.parent;
5180	const char *rname = rdev_get_name(rdev);
5181	char name[NAME_MAX];
5182
5183	/* Avoid duplicate debugfs directory names */
5184	if (parent && rname == rdev->desc->name) {
5185		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5186			 rname);
5187		rname = name;
5188	}
5189
5190	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5191	if (!rdev->debugfs) {
5192		rdev_warn(rdev, "Failed to create debugfs directory\n");
5193		return;
5194	}
5195
5196	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5197			   &rdev->use_count);
5198	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5199			   &rdev->open_count);
5200	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5201			   &rdev->bypass_count);
5202}
5203
5204static int regulator_register_resolve_supply(struct device *dev, void *data)
5205{
5206	struct regulator_dev *rdev = dev_to_rdev(dev);
5207
5208	if (regulator_resolve_supply(rdev))
5209		rdev_dbg(rdev, "unable to resolve supply\n");
5210
5211	return 0;
5212}
5213
5214int regulator_coupler_register(struct regulator_coupler *coupler)
5215{
5216	mutex_lock(&regulator_list_mutex);
5217	list_add_tail(&coupler->list, &regulator_coupler_list);
5218	mutex_unlock(&regulator_list_mutex);
5219
5220	return 0;
5221}
5222
5223static struct regulator_coupler *
5224regulator_find_coupler(struct regulator_dev *rdev)
5225{
5226	struct regulator_coupler *coupler;
5227	int err;
5228
5229	/*
5230	 * Note that regulators are appended to the list and the generic
5231	 * coupler is registered first, hence it will be attached at last
5232	 * if nobody cared.
5233	 */
5234	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5235		err = coupler->attach_regulator(coupler, rdev);
5236		if (!err) {
5237			if (!coupler->balance_voltage &&
5238			    rdev->coupling_desc.n_coupled > 2)
5239				goto err_unsupported;
5240
5241			return coupler;
5242		}
5243
5244		if (err < 0)
5245			return ERR_PTR(err);
5246
5247		if (err == 1)
5248			continue;
5249
5250		break;
5251	}
5252
5253	return ERR_PTR(-EINVAL);
5254
5255err_unsupported:
5256	if (coupler->detach_regulator)
5257		coupler->detach_regulator(coupler, rdev);
5258
5259	rdev_err(rdev,
5260		"Voltage balancing for multiple regulator couples is unimplemented\n");
5261
5262	return ERR_PTR(-EPERM);
5263}
5264
5265static void regulator_resolve_coupling(struct regulator_dev *rdev)
5266{
5267	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5268	struct coupling_desc *c_desc = &rdev->coupling_desc;
5269	int n_coupled = c_desc->n_coupled;
5270	struct regulator_dev *c_rdev;
5271	int i;
5272
5273	for (i = 1; i < n_coupled; i++) {
5274		/* already resolved */
5275		if (c_desc->coupled_rdevs[i])
5276			continue;
5277
5278		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5279
5280		if (!c_rdev)
5281			continue;
5282
5283		if (c_rdev->coupling_desc.coupler != coupler) {
5284			rdev_err(rdev, "coupler mismatch with %s\n",
5285				 rdev_get_name(c_rdev));
5286			return;
5287		}
5288
5289		c_desc->coupled_rdevs[i] = c_rdev;
5290		c_desc->n_resolved++;
5291
5292		regulator_resolve_coupling(c_rdev);
5293	}
5294}
5295
5296static void regulator_remove_coupling(struct regulator_dev *rdev)
5297{
5298	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5299	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5300	struct regulator_dev *__c_rdev, *c_rdev;
5301	unsigned int __n_coupled, n_coupled;
5302	int i, k;
5303	int err;
5304
5305	n_coupled = c_desc->n_coupled;
5306
5307	for (i = 1; i < n_coupled; i++) {
5308		c_rdev = c_desc->coupled_rdevs[i];
5309
5310		if (!c_rdev)
5311			continue;
5312
5313		regulator_lock(c_rdev);
5314
5315		__c_desc = &c_rdev->coupling_desc;
5316		__n_coupled = __c_desc->n_coupled;
5317
5318		for (k = 1; k < __n_coupled; k++) {
5319			__c_rdev = __c_desc->coupled_rdevs[k];
5320
5321			if (__c_rdev == rdev) {
5322				__c_desc->coupled_rdevs[k] = NULL;
5323				__c_desc->n_resolved--;
5324				break;
5325			}
5326		}
5327
5328		regulator_unlock(c_rdev);
5329
5330		c_desc->coupled_rdevs[i] = NULL;
5331		c_desc->n_resolved--;
5332	}
5333
5334	if (coupler && coupler->detach_regulator) {
5335		err = coupler->detach_regulator(coupler, rdev);
5336		if (err)
5337			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5338				 ERR_PTR(err));
5339	}
5340
5341	kfree(rdev->coupling_desc.coupled_rdevs);
5342	rdev->coupling_desc.coupled_rdevs = NULL;
5343}
5344
5345static int regulator_init_coupling(struct regulator_dev *rdev)
5346{
5347	struct regulator_dev **coupled;
5348	int err, n_phandles;
5349
5350	if (!IS_ENABLED(CONFIG_OF))
5351		n_phandles = 0;
5352	else
5353		n_phandles = of_get_n_coupled(rdev);
5354
5355	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5356	if (!coupled)
5357		return -ENOMEM;
5358
5359	rdev->coupling_desc.coupled_rdevs = coupled;
5360
5361	/*
5362	 * Every regulator should always have coupling descriptor filled with
5363	 * at least pointer to itself.
5364	 */
5365	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5366	rdev->coupling_desc.n_coupled = n_phandles + 1;
5367	rdev->coupling_desc.n_resolved++;
5368
5369	/* regulator isn't coupled */
5370	if (n_phandles == 0)
5371		return 0;
5372
5373	if (!of_check_coupling_data(rdev))
5374		return -EPERM;
5375
5376	mutex_lock(&regulator_list_mutex);
5377	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5378	mutex_unlock(&regulator_list_mutex);
5379
5380	if (IS_ERR(rdev->coupling_desc.coupler)) {
5381		err = PTR_ERR(rdev->coupling_desc.coupler);
5382		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5383		return err;
5384	}
5385
5386	return 0;
5387}
5388
5389static int generic_coupler_attach(struct regulator_coupler *coupler,
5390				  struct regulator_dev *rdev)
5391{
5392	if (rdev->coupling_desc.n_coupled > 2) {
5393		rdev_err(rdev,
5394			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5395		return -EPERM;
5396	}
5397
5398	if (!rdev->constraints->always_on) {
5399		rdev_err(rdev,
5400			 "Coupling of a non always-on regulator is unimplemented\n");
5401		return -ENOTSUPP;
5402	}
5403
5404	return 0;
5405}
5406
5407static struct regulator_coupler generic_regulator_coupler = {
5408	.attach_regulator = generic_coupler_attach,
5409};
5410
5411/**
5412 * regulator_register - register regulator
5413 * @dev: the device that drive the regulator
5414 * @regulator_desc: regulator to register
5415 * @cfg: runtime configuration for regulator
5416 *
5417 * Called by regulator drivers to register a regulator.
5418 * Returns a valid pointer to struct regulator_dev on success
5419 * or an ERR_PTR() on error.
5420 */
5421struct regulator_dev *
5422regulator_register(struct device *dev,
5423		   const struct regulator_desc *regulator_desc,
5424		   const struct regulator_config *cfg)
5425{
 
5426	const struct regulator_init_data *init_data;
5427	struct regulator_config *config = NULL;
5428	static atomic_t regulator_no = ATOMIC_INIT(-1);
5429	struct regulator_dev *rdev;
5430	bool dangling_cfg_gpiod = false;
5431	bool dangling_of_gpiod = false;
5432	int ret, i;
5433	bool resolved_early = false;
5434
5435	if (cfg == NULL)
5436		return ERR_PTR(-EINVAL);
5437	if (cfg->ena_gpiod)
5438		dangling_cfg_gpiod = true;
5439	if (regulator_desc == NULL) {
5440		ret = -EINVAL;
5441		goto rinse;
5442	}
5443
5444	WARN_ON(!dev || !cfg->dev);
 
5445
5446	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5447		ret = -EINVAL;
5448		goto rinse;
5449	}
5450
5451	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5452	    regulator_desc->type != REGULATOR_CURRENT) {
5453		ret = -EINVAL;
5454		goto rinse;
5455	}
5456
5457	/* Only one of each should be implemented */
5458	WARN_ON(regulator_desc->ops->get_voltage &&
5459		regulator_desc->ops->get_voltage_sel);
5460	WARN_ON(regulator_desc->ops->set_voltage &&
5461		regulator_desc->ops->set_voltage_sel);
5462
5463	/* If we're using selectors we must implement list_voltage. */
5464	if (regulator_desc->ops->get_voltage_sel &&
5465	    !regulator_desc->ops->list_voltage) {
5466		ret = -EINVAL;
5467		goto rinse;
5468	}
5469	if (regulator_desc->ops->set_voltage_sel &&
5470	    !regulator_desc->ops->list_voltage) {
5471		ret = -EINVAL;
5472		goto rinse;
5473	}
5474
5475	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5476	if (rdev == NULL) {
5477		ret = -ENOMEM;
5478		goto rinse;
5479	}
5480	device_initialize(&rdev->dev);
5481	spin_lock_init(&rdev->err_lock);
5482
5483	/*
5484	 * Duplicate the config so the driver could override it after
5485	 * parsing init data.
5486	 */
5487	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5488	if (config == NULL) {
5489		ret = -ENOMEM;
5490		goto clean;
5491	}
5492
5493	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5494					       &rdev->dev.of_node);
5495
5496	/*
5497	 * Sometimes not all resources are probed already so we need to take
5498	 * that into account. This happens most the time if the ena_gpiod comes
5499	 * from a gpio extender or something else.
5500	 */
5501	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5502		ret = -EPROBE_DEFER;
5503		goto clean;
5504	}
5505
5506	/*
5507	 * We need to keep track of any GPIO descriptor coming from the
5508	 * device tree until we have handled it over to the core. If the
5509	 * config that was passed in to this function DOES NOT contain
5510	 * a descriptor, and the config after this call DOES contain
5511	 * a descriptor, we definitely got one from parsing the device
5512	 * tree.
5513	 */
5514	if (!cfg->ena_gpiod && config->ena_gpiod)
5515		dangling_of_gpiod = true;
5516	if (!init_data) {
5517		init_data = config->init_data;
5518		rdev->dev.of_node = of_node_get(config->of_node);
5519	}
5520
5521	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5522	rdev->reg_data = config->driver_data;
5523	rdev->owner = regulator_desc->owner;
5524	rdev->desc = regulator_desc;
5525	if (config->regmap)
5526		rdev->regmap = config->regmap;
5527	else if (dev_get_regmap(dev, NULL))
5528		rdev->regmap = dev_get_regmap(dev, NULL);
5529	else if (dev->parent)
5530		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5531	INIT_LIST_HEAD(&rdev->consumer_list);
5532	INIT_LIST_HEAD(&rdev->list);
5533	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5534	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5535
5536	if (init_data && init_data->supply_regulator)
5537		rdev->supply_name = init_data->supply_regulator;
5538	else if (regulator_desc->supply_name)
5539		rdev->supply_name = regulator_desc->supply_name;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5540
5541	/* register with sysfs */
5542	rdev->dev.class = &regulator_class;
5543	rdev->dev.parent = config->dev;
5544	dev_set_name(&rdev->dev, "regulator.%lu",
5545		    (unsigned long) atomic_inc_return(&regulator_no));
5546	dev_set_drvdata(&rdev->dev, rdev);
5547
5548	/* set regulator constraints */
5549	if (init_data)
5550		rdev->constraints = kmemdup(&init_data->constraints,
5551					    sizeof(*rdev->constraints),
5552					    GFP_KERNEL);
5553	else
5554		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5555					    GFP_KERNEL);
5556	if (!rdev->constraints) {
5557		ret = -ENOMEM;
5558		goto wash;
5559	}
5560
5561	if ((rdev->supply_name && !rdev->supply) &&
5562		(rdev->constraints->always_on ||
5563		 rdev->constraints->boot_on)) {
5564		ret = regulator_resolve_supply(rdev);
5565		if (ret)
5566			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5567					 ERR_PTR(ret));
5568
5569		resolved_early = true;
5570	}
5571
5572	/* perform any regulator specific init */
5573	if (init_data && init_data->regulator_init) {
5574		ret = init_data->regulator_init(rdev->reg_data);
5575		if (ret < 0)
5576			goto wash;
5577	}
5578
5579	if (config->ena_gpiod) {
5580		ret = regulator_ena_gpio_request(rdev, config);
5581		if (ret != 0) {
5582			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5583				 ERR_PTR(ret));
5584			goto wash;
5585		}
5586		/* The regulator core took over the GPIO descriptor */
5587		dangling_cfg_gpiod = false;
5588		dangling_of_gpiod = false;
5589	}
5590
5591	ret = set_machine_constraints(rdev);
5592	if (ret == -EPROBE_DEFER && !resolved_early) {
5593		/* Regulator might be in bypass mode and so needs its supply
5594		 * to set the constraints
5595		 */
5596		/* FIXME: this currently triggers a chicken-and-egg problem
5597		 * when creating -SUPPLY symlink in sysfs to a regulator
5598		 * that is just being created
5599		 */
5600		rdev_dbg(rdev, "will resolve supply early: %s\n",
5601			 rdev->supply_name);
5602		ret = regulator_resolve_supply(rdev);
5603		if (!ret)
5604			ret = set_machine_constraints(rdev);
5605		else
5606			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5607				 ERR_PTR(ret));
5608	}
5609	if (ret < 0)
5610		goto wash;
5611
5612	ret = regulator_init_coupling(rdev);
5613	if (ret < 0)
5614		goto wash;
5615
5616	/* add consumers devices */
5617	if (init_data) {
 
5618		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5619			ret = set_consumer_device_supply(rdev,
5620				init_data->consumer_supplies[i].dev_name,
5621				init_data->consumer_supplies[i].supply);
5622			if (ret < 0) {
 
5623				dev_err(dev, "Failed to set supply %s\n",
5624					init_data->consumer_supplies[i].supply);
5625				goto unset_supplies;
5626			}
5627		}
 
5628	}
5629
5630	if (!rdev->desc->ops->get_voltage &&
5631	    !rdev->desc->ops->list_voltage &&
5632	    !rdev->desc->fixed_uV)
5633		rdev->is_switch = true;
5634
5635	ret = device_add(&rdev->dev);
5636	if (ret != 0)
5637		goto unset_supplies;
 
5638
 
5639	rdev_init_debugfs(rdev);
5640
5641	/* try to resolve regulators coupling since a new one was registered */
5642	mutex_lock(&regulator_list_mutex);
5643	regulator_resolve_coupling(rdev);
5644	mutex_unlock(&regulator_list_mutex);
5645
5646	/* try to resolve regulators supply since a new one was registered */
5647	class_for_each_device(&regulator_class, NULL, NULL,
5648			      regulator_register_resolve_supply);
5649	kfree(config);
5650	return rdev;
5651
5652unset_supplies:
5653	mutex_lock(&regulator_list_mutex);
5654	unset_regulator_supplies(rdev);
5655	regulator_remove_coupling(rdev);
5656	mutex_unlock(&regulator_list_mutex);
5657wash:
5658	regulator_put(rdev->supply);
5659	kfree(rdev->coupling_desc.coupled_rdevs);
5660	mutex_lock(&regulator_list_mutex);
5661	regulator_ena_gpio_free(rdev);
5662	mutex_unlock(&regulator_list_mutex);
5663	put_device(&rdev->dev);
5664	rdev = NULL;
5665clean:
5666	if (dangling_of_gpiod)
5667		gpiod_put(config->ena_gpiod);
5668	if (rdev && rdev->dev.of_node)
5669		of_node_put(rdev->dev.of_node);
5670	kfree(rdev);
5671	kfree(config);
5672rinse:
5673	if (dangling_cfg_gpiod)
5674		gpiod_put(cfg->ena_gpiod);
5675	return ERR_PTR(ret);
5676}
5677EXPORT_SYMBOL_GPL(regulator_register);
5678
5679/**
5680 * regulator_unregister - unregister regulator
5681 * @rdev: regulator to unregister
5682 *
5683 * Called by regulator drivers to unregister a regulator.
5684 */
5685void regulator_unregister(struct regulator_dev *rdev)
5686{
5687	if (rdev == NULL)
5688		return;
5689
5690	if (rdev->supply) {
5691		while (rdev->use_count--)
5692			regulator_disable(rdev->supply);
5693		regulator_put(rdev->supply);
5694	}
5695
5696	flush_work(&rdev->disable_work.work);
5697
5698	mutex_lock(&regulator_list_mutex);
5699
 
5700	WARN_ON(rdev->open_count);
5701	regulator_remove_coupling(rdev);
5702	unset_regulator_supplies(rdev);
5703	list_del(&rdev->list);
5704	regulator_ena_gpio_free(rdev);
5705	device_unregister(&rdev->dev);
5706
5707	mutex_unlock(&regulator_list_mutex);
 
5708}
5709EXPORT_SYMBOL_GPL(regulator_unregister);
5710
5711#ifdef CONFIG_SUSPEND
5712/**
5713 * regulator_suspend - prepare regulators for system wide suspend
5714 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5715 *
5716 * Configure each regulator with it's suspend operating parameters for state.
5717 */
5718static int regulator_suspend(struct device *dev)
5719{
5720	struct regulator_dev *rdev = dev_to_rdev(dev);
5721	suspend_state_t state = pm_suspend_target_state;
5722	int ret;
5723	const struct regulator_state *rstate;
5724
5725	rstate = regulator_get_suspend_state_check(rdev, state);
5726	if (!rstate)
5727		return 0;
5728
5729	regulator_lock(rdev);
5730	ret = __suspend_set_state(rdev, rstate);
5731	regulator_unlock(rdev);
5732
5733	return ret;
5734}
5735
5736static int regulator_resume(struct device *dev)
 
 
 
 
 
 
 
5737{
5738	suspend_state_t state = pm_suspend_target_state;
5739	struct regulator_dev *rdev = dev_to_rdev(dev);
5740	struct regulator_state *rstate;
5741	int ret = 0;
5742
5743	rstate = regulator_get_suspend_state(rdev, state);
5744	if (rstate == NULL)
5745		return 0;
5746
5747	/* Avoid grabbing the lock if we don't need to */
5748	if (!rdev->desc->ops->resume)
5749		return 0;
 
5750
5751	regulator_lock(rdev);
 
 
 
5752
5753	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5754	    rstate->enabled == DISABLE_IN_SUSPEND)
5755		ret = rdev->desc->ops->resume(rdev);
 
 
 
 
 
 
 
 
 
 
 
5756
5757	regulator_unlock(rdev);
 
 
 
 
 
5758
5759	return ret;
 
5760}
5761#else /* !CONFIG_SUSPEND */
5762
5763#define regulator_suspend	NULL
5764#define regulator_resume	NULL
5765
5766#endif /* !CONFIG_SUSPEND */
5767
5768#ifdef CONFIG_PM
5769static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5770	.suspend	= regulator_suspend,
5771	.resume		= regulator_resume,
5772};
5773#endif
 
 
 
 
5774
5775struct class regulator_class = {
5776	.name = "regulator",
5777	.dev_release = regulator_dev_release,
5778	.dev_groups = regulator_dev_groups,
5779#ifdef CONFIG_PM
5780	.pm = &regulator_pm_ops,
5781#endif
5782};
5783/**
5784 * regulator_has_full_constraints - the system has fully specified constraints
5785 *
5786 * Calling this function will cause the regulator API to disable all
5787 * regulators which have a zero use count and don't have an always_on
5788 * constraint in a late_initcall.
5789 *
5790 * The intention is that this will become the default behaviour in a
5791 * future kernel release so users are encouraged to use this facility
5792 * now.
5793 */
5794void regulator_has_full_constraints(void)
5795{
5796	has_full_constraints = 1;
5797}
5798EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5799
5800/**
5801 * rdev_get_drvdata - get rdev regulator driver data
5802 * @rdev: regulator
5803 *
5804 * Get rdev regulator driver private data. This call can be used in the
5805 * regulator driver context.
5806 */
5807void *rdev_get_drvdata(struct regulator_dev *rdev)
5808{
5809	return rdev->reg_data;
5810}
5811EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5812
5813/**
5814 * regulator_get_drvdata - get regulator driver data
5815 * @regulator: regulator
5816 *
5817 * Get regulator driver private data. This call can be used in the consumer
5818 * driver context when non API regulator specific functions need to be called.
5819 */
5820void *regulator_get_drvdata(struct regulator *regulator)
5821{
5822	return regulator->rdev->reg_data;
5823}
5824EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5825
5826/**
5827 * regulator_set_drvdata - set regulator driver data
5828 * @regulator: regulator
5829 * @data: data
5830 */
5831void regulator_set_drvdata(struct regulator *regulator, void *data)
5832{
5833	regulator->rdev->reg_data = data;
5834}
5835EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5836
5837/**
5838 * rdev_get_id - get regulator ID
5839 * @rdev: regulator
5840 */
5841int rdev_get_id(struct regulator_dev *rdev)
5842{
5843	return rdev->desc->id;
5844}
5845EXPORT_SYMBOL_GPL(rdev_get_id);
5846
5847struct device *rdev_get_dev(struct regulator_dev *rdev)
5848{
5849	return &rdev->dev;
5850}
5851EXPORT_SYMBOL_GPL(rdev_get_dev);
5852
5853struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5854{
5855	return rdev->regmap;
5856}
5857EXPORT_SYMBOL_GPL(rdev_get_regmap);
5858
5859void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5860{
5861	return reg_init_data->driver_data;
5862}
5863EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5864
5865#ifdef CONFIG_DEBUG_FS
5866static int supply_map_show(struct seq_file *sf, void *data)
 
5867{
 
 
5868	struct regulator_map *map;
5869
 
 
 
5870	list_for_each_entry(map, &regulator_map_list, list) {
5871		seq_printf(sf, "%s -> %s.%s\n",
5872				rdev_get_name(map->regulator), map->dev_name,
5873				map->supply);
 
 
 
 
 
 
 
5874	}
5875
5876	return 0;
 
 
 
 
5877}
5878DEFINE_SHOW_ATTRIBUTE(supply_map);
5879
 
 
 
 
 
 
 
 
5880struct summary_data {
5881	struct seq_file *s;
5882	struct regulator_dev *parent;
5883	int level;
5884};
5885
5886static void regulator_summary_show_subtree(struct seq_file *s,
5887					   struct regulator_dev *rdev,
5888					   int level);
5889
5890static int regulator_summary_show_children(struct device *dev, void *data)
5891{
5892	struct regulator_dev *rdev = dev_to_rdev(dev);
5893	struct summary_data *summary_data = data;
5894
5895	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5896		regulator_summary_show_subtree(summary_data->s, rdev,
5897					       summary_data->level + 1);
5898
5899	return 0;
5900}
5901
5902static void regulator_summary_show_subtree(struct seq_file *s,
5903					   struct regulator_dev *rdev,
5904					   int level)
5905{
5906	struct regulation_constraints *c;
5907	struct regulator *consumer;
5908	struct summary_data summary_data;
5909	unsigned int opmode;
5910
5911	if (!rdev)
5912		return;
5913
5914	opmode = _regulator_get_mode_unlocked(rdev);
5915	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5916		   level * 3 + 1, "",
5917		   30 - level * 3, rdev_get_name(rdev),
5918		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5919		   regulator_opmode_to_str(opmode));
5920
5921	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5922	seq_printf(s, "%5dmA ",
5923		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5924
5925	c = rdev->constraints;
5926	if (c) {
5927		switch (rdev->desc->type) {
5928		case REGULATOR_VOLTAGE:
5929			seq_printf(s, "%5dmV %5dmV ",
5930				   c->min_uV / 1000, c->max_uV / 1000);
5931			break;
5932		case REGULATOR_CURRENT:
5933			seq_printf(s, "%5dmA %5dmA ",
5934				   c->min_uA / 1000, c->max_uA / 1000);
5935			break;
5936		}
5937	}
5938
5939	seq_puts(s, "\n");
5940
5941	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5942		if (consumer->dev && consumer->dev->class == &regulator_class)
5943			continue;
5944
5945		seq_printf(s, "%*s%-*s ",
5946			   (level + 1) * 3 + 1, "",
5947			   30 - (level + 1) * 3,
5948			   consumer->supply_name ? consumer->supply_name :
5949			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5950
5951		switch (rdev->desc->type) {
5952		case REGULATOR_VOLTAGE:
5953			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5954				   consumer->enable_count,
5955				   consumer->uA_load / 1000,
5956				   consumer->uA_load && !consumer->enable_count ?
5957				   '*' : ' ',
5958				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5959				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5960			break;
5961		case REGULATOR_CURRENT:
5962			break;
5963		}
5964
5965		seq_puts(s, "\n");
5966	}
5967
5968	summary_data.s = s;
5969	summary_data.level = level;
5970	summary_data.parent = rdev;
5971
5972	class_for_each_device(&regulator_class, NULL, &summary_data,
5973			      regulator_summary_show_children);
5974}
5975
5976struct summary_lock_data {
5977	struct ww_acquire_ctx *ww_ctx;
5978	struct regulator_dev **new_contended_rdev;
5979	struct regulator_dev **old_contended_rdev;
5980};
5981
5982static int regulator_summary_lock_one(struct device *dev, void *data)
5983{
5984	struct regulator_dev *rdev = dev_to_rdev(dev);
5985	struct summary_lock_data *lock_data = data;
5986	int ret = 0;
5987
5988	if (rdev != *lock_data->old_contended_rdev) {
5989		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5990
5991		if (ret == -EDEADLK)
5992			*lock_data->new_contended_rdev = rdev;
5993		else
5994			WARN_ON_ONCE(ret);
5995	} else {
5996		*lock_data->old_contended_rdev = NULL;
5997	}
5998
5999	return ret;
6000}
6001
6002static int regulator_summary_unlock_one(struct device *dev, void *data)
6003{
6004	struct regulator_dev *rdev = dev_to_rdev(dev);
6005	struct summary_lock_data *lock_data = data;
6006
6007	if (lock_data) {
6008		if (rdev == *lock_data->new_contended_rdev)
6009			return -EDEADLK;
6010	}
6011
6012	regulator_unlock(rdev);
6013
6014	return 0;
6015}
6016
6017static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6018				      struct regulator_dev **new_contended_rdev,
6019				      struct regulator_dev **old_contended_rdev)
6020{
6021	struct summary_lock_data lock_data;
6022	int ret;
6023
6024	lock_data.ww_ctx = ww_ctx;
6025	lock_data.new_contended_rdev = new_contended_rdev;
6026	lock_data.old_contended_rdev = old_contended_rdev;
6027
6028	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6029				    regulator_summary_lock_one);
6030	if (ret)
6031		class_for_each_device(&regulator_class, NULL, &lock_data,
6032				      regulator_summary_unlock_one);
6033
6034	return ret;
6035}
6036
6037static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6038{
6039	struct regulator_dev *new_contended_rdev = NULL;
6040	struct regulator_dev *old_contended_rdev = NULL;
6041	int err;
6042
6043	mutex_lock(&regulator_list_mutex);
6044
6045	ww_acquire_init(ww_ctx, &regulator_ww_class);
6046
6047	do {
6048		if (new_contended_rdev) {
6049			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6050			old_contended_rdev = new_contended_rdev;
6051			old_contended_rdev->ref_cnt++;
6052		}
6053
6054		err = regulator_summary_lock_all(ww_ctx,
6055						 &new_contended_rdev,
6056						 &old_contended_rdev);
6057
6058		if (old_contended_rdev)
6059			regulator_unlock(old_contended_rdev);
6060
6061	} while (err == -EDEADLK);
6062
6063	ww_acquire_done(ww_ctx);
6064}
6065
6066static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6067{
6068	class_for_each_device(&regulator_class, NULL, NULL,
6069			      regulator_summary_unlock_one);
6070	ww_acquire_fini(ww_ctx);
6071
6072	mutex_unlock(&regulator_list_mutex);
6073}
6074
6075static int regulator_summary_show_roots(struct device *dev, void *data)
6076{
6077	struct regulator_dev *rdev = dev_to_rdev(dev);
6078	struct seq_file *s = data;
6079
6080	if (!rdev->supply)
6081		regulator_summary_show_subtree(s, rdev, 0);
6082
6083	return 0;
6084}
6085
6086static int regulator_summary_show(struct seq_file *s, void *data)
6087{
6088	struct ww_acquire_ctx ww_ctx;
6089
6090	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6091	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6092
6093	regulator_summary_lock(&ww_ctx);
6094
6095	class_for_each_device(&regulator_class, NULL, s,
6096			      regulator_summary_show_roots);
6097
6098	regulator_summary_unlock(&ww_ctx);
6099
6100	return 0;
6101}
6102DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6103#endif /* CONFIG_DEBUG_FS */
 
 
 
 
 
 
 
 
 
 
 
 
 
6104
6105static int __init regulator_init(void)
6106{
6107	int ret;
6108
6109	ret = class_register(&regulator_class);
6110
6111	debugfs_root = debugfs_create_dir("regulator", NULL);
6112	if (!debugfs_root)
6113		pr_warn("regulator: Failed to create debugfs directory\n");
6114
6115#ifdef CONFIG_DEBUG_FS
6116	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6117			    &supply_map_fops);
6118
6119	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6120			    NULL, &regulator_summary_fops);
6121#endif
6122	regulator_dummy_init();
6123
6124	regulator_coupler_register(&generic_regulator_coupler);
6125
6126	return ret;
6127}
6128
6129/* init early to allow our consumers to complete system booting */
6130core_initcall(regulator_init);
6131
6132static int regulator_late_cleanup(struct device *dev, void *data)
6133{
6134	struct regulator_dev *rdev = dev_to_rdev(dev);
 
6135	struct regulation_constraints *c = rdev->constraints;
6136	int ret;
6137
6138	if (c && c->always_on)
6139		return 0;
6140
6141	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6142		return 0;
6143
6144	regulator_lock(rdev);
6145
6146	if (rdev->use_count)
6147		goto unlock;
6148
6149	/* If reading the status failed, assume that it's off. */
6150	if (_regulator_is_enabled(rdev) <= 0)
 
 
 
 
 
6151		goto unlock;
6152
6153	if (have_full_constraints()) {
6154		/* We log since this may kill the system if it goes
6155		 * wrong.
6156		 */
6157		rdev_info(rdev, "disabling\n");
6158		ret = _regulator_do_disable(rdev);
6159		if (ret != 0)
6160			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6161	} else {
6162		/* The intention is that in future we will
6163		 * assume that full constraints are provided
6164		 * so warn even if we aren't going to do
6165		 * anything here.
6166		 */
6167		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6168	}
6169
6170unlock:
6171	regulator_unlock(rdev);
6172
6173	return 0;
6174}
6175
6176static void regulator_init_complete_work_function(struct work_struct *work)
6177{
6178	/*
6179	 * Regulators may had failed to resolve their input supplies
6180	 * when were registered, either because the input supply was
6181	 * not registered yet or because its parent device was not
6182	 * bound yet. So attempt to resolve the input supplies for
6183	 * pending regulators before trying to disable unused ones.
6184	 */
6185	class_for_each_device(&regulator_class, NULL, NULL,
6186			      regulator_register_resolve_supply);
6187
6188	/* If we have a full configuration then disable any regulators
6189	 * we have permission to change the status for and which are
6190	 * not in use or always_on.  This is effectively the default
6191	 * for DT and ACPI as they have full constraints.
6192	 */
6193	class_for_each_device(&regulator_class, NULL, NULL,
6194			      regulator_late_cleanup);
6195}
6196
6197static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6198			    regulator_init_complete_work_function);
6199
6200static int __init regulator_init_complete(void)
6201{
6202	/*
6203	 * Since DT doesn't provide an idiomatic mechanism for
6204	 * enabling full constraints and since it's much more natural
6205	 * with DT to provide them just assume that a DT enabled
6206	 * system has full constraints.
6207	 */
6208	if (of_have_populated_dt())
6209		has_full_constraints = true;
6210
6211	/*
6212	 * We punt completion for an arbitrary amount of time since
6213	 * systems like distros will load many drivers from userspace
6214	 * so consumers might not always be ready yet, this is
6215	 * particularly an issue with laptops where this might bounce
6216	 * the display off then on.  Ideally we'd get a notification
6217	 * from userspace when this happens but we don't so just wait
6218	 * a bit and hope we waited long enough.  It'd be better if
6219	 * we'd only do this on systems that need it, and a kernel
6220	 * command line option might be useful.
6221	 */
6222	schedule_delayed_work(&regulator_init_complete_work,
6223			      msecs_to_jiffies(30000));
6224
6225	return 0;
6226}
6227late_initcall_sync(regulator_init_complete);
v4.10.11
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/gpio/consumer.h>
  28#include <linux/of.h>
  29#include <linux/regmap.h>
  30#include <linux/regulator/of_regulator.h>
  31#include <linux/regulator/consumer.h>
 
  32#include <linux/regulator/driver.h>
  33#include <linux/regulator/machine.h>
  34#include <linux/module.h>
  35
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/regulator.h>
  38
  39#include "dummy.h"
  40#include "internal.h"
  41
  42#define rdev_crit(rdev, fmt, ...)					\
  43	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_err(rdev, fmt, ...)					\
  45	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_warn(rdev, fmt, ...)					\
  47	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48#define rdev_info(rdev, fmt, ...)					\
  49	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  50#define rdev_dbg(rdev, fmt, ...)					\
  51	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  52
  53static DEFINE_MUTEX(regulator_list_mutex);
  54static LIST_HEAD(regulator_map_list);
  55static LIST_HEAD(regulator_ena_gpio_list);
  56static LIST_HEAD(regulator_supply_alias_list);
 
  57static bool has_full_constraints;
  58
  59static struct dentry *debugfs_root;
  60
  61static struct class regulator_class;
  62
  63/*
  64 * struct regulator_map
  65 *
  66 * Used to provide symbolic supply names to devices.
  67 */
  68struct regulator_map {
  69	struct list_head list;
  70	const char *dev_name;   /* The dev_name() for the consumer */
  71	const char *supply;
  72	struct regulator_dev *regulator;
  73};
  74
  75/*
  76 * struct regulator_enable_gpio
  77 *
  78 * Management for shared enable GPIO pin
  79 */
  80struct regulator_enable_gpio {
  81	struct list_head list;
  82	struct gpio_desc *gpiod;
  83	u32 enable_count;	/* a number of enabled shared GPIO */
  84	u32 request_count;	/* a number of requested shared GPIO */
  85	unsigned int ena_gpio_invert:1;
  86};
  87
  88/*
  89 * struct regulator_supply_alias
  90 *
  91 * Used to map lookups for a supply onto an alternative device.
  92 */
  93struct regulator_supply_alias {
  94	struct list_head list;
  95	struct device *src_dev;
  96	const char *src_supply;
  97	struct device *alias_dev;
  98	const char *alias_supply;
  99};
 100
 101static int _regulator_is_enabled(struct regulator_dev *rdev);
 102static int _regulator_disable(struct regulator_dev *rdev);
 103static int _regulator_get_voltage(struct regulator_dev *rdev);
 104static int _regulator_get_current_limit(struct regulator_dev *rdev);
 105static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 106static int _notifier_call_chain(struct regulator_dev *rdev,
 107				  unsigned long event, void *data);
 108static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 109				     int min_uV, int max_uV);
 
 
 110static struct regulator *create_regulator(struct regulator_dev *rdev,
 111					  struct device *dev,
 112					  const char *supply_name);
 
 113static void _regulator_put(struct regulator *regulator);
 114
 115static struct regulator_dev *dev_to_rdev(struct device *dev)
 116{
 117	return container_of(dev, struct regulator_dev, dev);
 118}
 119
 120static const char *rdev_get_name(struct regulator_dev *rdev)
 121{
 122	if (rdev->constraints && rdev->constraints->name)
 123		return rdev->constraints->name;
 124	else if (rdev->desc->name)
 125		return rdev->desc->name;
 126	else
 127		return "";
 128}
 
 129
 130static bool have_full_constraints(void)
 131{
 132	return has_full_constraints || of_have_populated_dt();
 133}
 134
 135static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 136{
 137	if (!rdev->constraints) {
 138		rdev_err(rdev, "no constraints\n");
 139		return false;
 140	}
 141
 142	if (rdev->constraints->valid_ops_mask & ops)
 143		return true;
 144
 145	return false;
 146}
 147
 148static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
 
 
 
 
 
 
 
 
 
 
 
 
 149{
 150	if (rdev && rdev->supply)
 151		return rdev->supply->rdev;
 
 
 
 
 
 
 
 
 152
 153	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154}
 155
 156/**
 157 * regulator_lock_supply - lock a regulator and its supplies
 158 * @rdev:         regulator source
 
 
 
 159 */
 160static void regulator_lock_supply(struct regulator_dev *rdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 161{
 
 162	int i;
 163
 164	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
 165		mutex_lock_nested(&rdev->mutex, i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166}
 167
 168/**
 169 * regulator_unlock_supply - unlock a regulator and its supplies
 170 * @rdev:         regulator source
 
 
 
 
 171 */
 172static void regulator_unlock_supply(struct regulator_dev *rdev)
 
 173{
 174	struct regulator *supply;
 
 
 175
 176	while (1) {
 177		mutex_unlock(&rdev->mutex);
 178		supply = rdev->supply;
 
 
 
 
 
 
 
 
 
 
 
 179
 180		if (!rdev->supply)
 181			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182
 183		rdev = supply->rdev;
 
 
 
 
 
 
 184	}
 
 
 
 
 
 185}
 186
 187/**
 188 * of_get_regulator - get a regulator device node based on supply name
 189 * @dev: Device pointer for the consumer (of regulator) device
 190 * @supply: regulator supply name
 191 *
 192 * Extract the regulator device node corresponding to the supply name.
 193 * returns the device node corresponding to the regulator if found, else
 194 * returns NULL.
 195 */
 196static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 197{
 198	struct device_node *regnode = NULL;
 199	char prop_name[32]; /* 32 is max size of property name */
 200
 201	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 202
 203	snprintf(prop_name, 32, "%s-supply", supply);
 204	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 205
 206	if (!regnode) {
 207		dev_dbg(dev, "Looking up %s property in node %s failed\n",
 208				prop_name, dev->of_node->full_name);
 
 
 
 
 209		return NULL;
 210	}
 211	return regnode;
 212}
 213
 214/* Platform voltage constraint check */
 215static int regulator_check_voltage(struct regulator_dev *rdev,
 216				   int *min_uV, int *max_uV)
 217{
 218	BUG_ON(*min_uV > *max_uV);
 219
 220	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 221		rdev_err(rdev, "voltage operation not allowed\n");
 222		return -EPERM;
 223	}
 224
 225	if (*max_uV > rdev->constraints->max_uV)
 226		*max_uV = rdev->constraints->max_uV;
 227	if (*min_uV < rdev->constraints->min_uV)
 228		*min_uV = rdev->constraints->min_uV;
 229
 230	if (*min_uV > *max_uV) {
 231		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 232			 *min_uV, *max_uV);
 233		return -EINVAL;
 234	}
 235
 236	return 0;
 237}
 238
 
 
 
 
 
 
 239/* Make sure we select a voltage that suits the needs of all
 240 * regulator consumers
 241 */
 242static int regulator_check_consumers(struct regulator_dev *rdev,
 243				     int *min_uV, int *max_uV)
 
 244{
 245	struct regulator *regulator;
 
 246
 247	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 
 248		/*
 249		 * Assume consumers that didn't say anything are OK
 250		 * with anything in the constraint range.
 251		 */
 252		if (!regulator->min_uV && !regulator->max_uV)
 253			continue;
 254
 255		if (*max_uV > regulator->max_uV)
 256			*max_uV = regulator->max_uV;
 257		if (*min_uV < regulator->min_uV)
 258			*min_uV = regulator->min_uV;
 259	}
 260
 261	if (*min_uV > *max_uV) {
 262		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 263			*min_uV, *max_uV);
 264		return -EINVAL;
 265	}
 266
 267	return 0;
 268}
 269
 270/* current constraint check */
 271static int regulator_check_current_limit(struct regulator_dev *rdev,
 272					int *min_uA, int *max_uA)
 273{
 274	BUG_ON(*min_uA > *max_uA);
 275
 276	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 277		rdev_err(rdev, "current operation not allowed\n");
 278		return -EPERM;
 279	}
 280
 281	if (*max_uA > rdev->constraints->max_uA)
 282		*max_uA = rdev->constraints->max_uA;
 283	if (*min_uA < rdev->constraints->min_uA)
 284		*min_uA = rdev->constraints->min_uA;
 285
 286	if (*min_uA > *max_uA) {
 287		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 288			 *min_uA, *max_uA);
 289		return -EINVAL;
 290	}
 291
 292	return 0;
 293}
 294
 295/* operating mode constraint check */
 296static int regulator_mode_constrain(struct regulator_dev *rdev,
 297				    unsigned int *mode)
 298{
 299	switch (*mode) {
 300	case REGULATOR_MODE_FAST:
 301	case REGULATOR_MODE_NORMAL:
 302	case REGULATOR_MODE_IDLE:
 303	case REGULATOR_MODE_STANDBY:
 304		break;
 305	default:
 306		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 307		return -EINVAL;
 308	}
 309
 310	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 311		rdev_err(rdev, "mode operation not allowed\n");
 312		return -EPERM;
 313	}
 314
 315	/* The modes are bitmasks, the most power hungry modes having
 316	 * the lowest values. If the requested mode isn't supported
 317	 * try higher modes. */
 
 318	while (*mode) {
 319		if (rdev->constraints->valid_modes_mask & *mode)
 320			return 0;
 321		*mode /= 2;
 322	}
 323
 324	return -EINVAL;
 325}
 326
 327static ssize_t regulator_uV_show(struct device *dev,
 328				struct device_attribute *attr, char *buf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329{
 330	struct regulator_dev *rdev = dev_get_drvdata(dev);
 331	ssize_t ret;
 332
 333	mutex_lock(&rdev->mutex);
 334	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 335	mutex_unlock(&rdev->mutex);
 336
 337	return ret;
 
 
 338}
 339static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 340
 341static ssize_t regulator_uA_show(struct device *dev,
 342				struct device_attribute *attr, char *buf)
 343{
 344	struct regulator_dev *rdev = dev_get_drvdata(dev);
 345
 346	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 347}
 348static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 349
 350static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 351			 char *buf)
 352{
 353	struct regulator_dev *rdev = dev_get_drvdata(dev);
 354
 355	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 356}
 357static DEVICE_ATTR_RO(name);
 358
 359static ssize_t regulator_print_opmode(char *buf, int mode)
 360{
 361	switch (mode) {
 362	case REGULATOR_MODE_FAST:
 363		return sprintf(buf, "fast\n");
 364	case REGULATOR_MODE_NORMAL:
 365		return sprintf(buf, "normal\n");
 366	case REGULATOR_MODE_IDLE:
 367		return sprintf(buf, "idle\n");
 368	case REGULATOR_MODE_STANDBY:
 369		return sprintf(buf, "standby\n");
 370	}
 371	return sprintf(buf, "unknown\n");
 
 
 
 
 
 372}
 373
 374static ssize_t regulator_opmode_show(struct device *dev,
 375				    struct device_attribute *attr, char *buf)
 376{
 377	struct regulator_dev *rdev = dev_get_drvdata(dev);
 378
 379	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 380}
 381static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 382
 383static ssize_t regulator_print_state(char *buf, int state)
 384{
 385	if (state > 0)
 386		return sprintf(buf, "enabled\n");
 387	else if (state == 0)
 388		return sprintf(buf, "disabled\n");
 389	else
 390		return sprintf(buf, "unknown\n");
 391}
 392
 393static ssize_t regulator_state_show(struct device *dev,
 394				   struct device_attribute *attr, char *buf)
 395{
 396	struct regulator_dev *rdev = dev_get_drvdata(dev);
 397	ssize_t ret;
 398
 399	mutex_lock(&rdev->mutex);
 400	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 401	mutex_unlock(&rdev->mutex);
 402
 403	return ret;
 404}
 405static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 406
 407static ssize_t regulator_status_show(struct device *dev,
 408				   struct device_attribute *attr, char *buf)
 409{
 410	struct regulator_dev *rdev = dev_get_drvdata(dev);
 411	int status;
 412	char *label;
 413
 414	status = rdev->desc->ops->get_status(rdev);
 415	if (status < 0)
 416		return status;
 417
 418	switch (status) {
 419	case REGULATOR_STATUS_OFF:
 420		label = "off";
 421		break;
 422	case REGULATOR_STATUS_ON:
 423		label = "on";
 424		break;
 425	case REGULATOR_STATUS_ERROR:
 426		label = "error";
 427		break;
 428	case REGULATOR_STATUS_FAST:
 429		label = "fast";
 430		break;
 431	case REGULATOR_STATUS_NORMAL:
 432		label = "normal";
 433		break;
 434	case REGULATOR_STATUS_IDLE:
 435		label = "idle";
 436		break;
 437	case REGULATOR_STATUS_STANDBY:
 438		label = "standby";
 439		break;
 440	case REGULATOR_STATUS_BYPASS:
 441		label = "bypass";
 442		break;
 443	case REGULATOR_STATUS_UNDEFINED:
 444		label = "undefined";
 445		break;
 446	default:
 447		return -ERANGE;
 448	}
 449
 450	return sprintf(buf, "%s\n", label);
 451}
 452static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 453
 454static ssize_t regulator_min_uA_show(struct device *dev,
 455				    struct device_attribute *attr, char *buf)
 456{
 457	struct regulator_dev *rdev = dev_get_drvdata(dev);
 458
 459	if (!rdev->constraints)
 460		return sprintf(buf, "constraint not defined\n");
 461
 462	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 463}
 464static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 465
 466static ssize_t regulator_max_uA_show(struct device *dev,
 467				    struct device_attribute *attr, char *buf)
 468{
 469	struct regulator_dev *rdev = dev_get_drvdata(dev);
 470
 471	if (!rdev->constraints)
 472		return sprintf(buf, "constraint not defined\n");
 473
 474	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 475}
 476static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 477
 478static ssize_t regulator_min_uV_show(struct device *dev,
 479				    struct device_attribute *attr, char *buf)
 480{
 481	struct regulator_dev *rdev = dev_get_drvdata(dev);
 482
 483	if (!rdev->constraints)
 484		return sprintf(buf, "constraint not defined\n");
 485
 486	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 487}
 488static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 489
 490static ssize_t regulator_max_uV_show(struct device *dev,
 491				    struct device_attribute *attr, char *buf)
 492{
 493	struct regulator_dev *rdev = dev_get_drvdata(dev);
 494
 495	if (!rdev->constraints)
 496		return sprintf(buf, "constraint not defined\n");
 497
 498	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 499}
 500static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 501
 502static ssize_t regulator_total_uA_show(struct device *dev,
 503				      struct device_attribute *attr, char *buf)
 504{
 505	struct regulator_dev *rdev = dev_get_drvdata(dev);
 506	struct regulator *regulator;
 507	int uA = 0;
 508
 509	mutex_lock(&rdev->mutex);
 510	list_for_each_entry(regulator, &rdev->consumer_list, list)
 511		uA += regulator->uA_load;
 512	mutex_unlock(&rdev->mutex);
 
 
 513	return sprintf(buf, "%d\n", uA);
 514}
 515static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 516
 517static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 518			      char *buf)
 519{
 520	struct regulator_dev *rdev = dev_get_drvdata(dev);
 521	return sprintf(buf, "%d\n", rdev->use_count);
 522}
 523static DEVICE_ATTR_RO(num_users);
 524
 525static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 526			 char *buf)
 527{
 528	struct regulator_dev *rdev = dev_get_drvdata(dev);
 529
 530	switch (rdev->desc->type) {
 531	case REGULATOR_VOLTAGE:
 532		return sprintf(buf, "voltage\n");
 533	case REGULATOR_CURRENT:
 534		return sprintf(buf, "current\n");
 535	}
 536	return sprintf(buf, "unknown\n");
 537}
 538static DEVICE_ATTR_RO(type);
 539
 540static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 541				struct device_attribute *attr, char *buf)
 542{
 543	struct regulator_dev *rdev = dev_get_drvdata(dev);
 544
 545	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 546}
 547static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 548		regulator_suspend_mem_uV_show, NULL);
 549
 550static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 551				struct device_attribute *attr, char *buf)
 552{
 553	struct regulator_dev *rdev = dev_get_drvdata(dev);
 554
 555	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 556}
 557static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 558		regulator_suspend_disk_uV_show, NULL);
 559
 560static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 561				struct device_attribute *attr, char *buf)
 562{
 563	struct regulator_dev *rdev = dev_get_drvdata(dev);
 564
 565	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 566}
 567static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 568		regulator_suspend_standby_uV_show, NULL);
 569
 570static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 571				struct device_attribute *attr, char *buf)
 572{
 573	struct regulator_dev *rdev = dev_get_drvdata(dev);
 574
 575	return regulator_print_opmode(buf,
 576		rdev->constraints->state_mem.mode);
 577}
 578static DEVICE_ATTR(suspend_mem_mode, 0444,
 579		regulator_suspend_mem_mode_show, NULL);
 580
 581static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 582				struct device_attribute *attr, char *buf)
 583{
 584	struct regulator_dev *rdev = dev_get_drvdata(dev);
 585
 586	return regulator_print_opmode(buf,
 587		rdev->constraints->state_disk.mode);
 588}
 589static DEVICE_ATTR(suspend_disk_mode, 0444,
 590		regulator_suspend_disk_mode_show, NULL);
 591
 592static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 593				struct device_attribute *attr, char *buf)
 594{
 595	struct regulator_dev *rdev = dev_get_drvdata(dev);
 596
 597	return regulator_print_opmode(buf,
 598		rdev->constraints->state_standby.mode);
 599}
 600static DEVICE_ATTR(suspend_standby_mode, 0444,
 601		regulator_suspend_standby_mode_show, NULL);
 602
 603static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 604				   struct device_attribute *attr, char *buf)
 605{
 606	struct regulator_dev *rdev = dev_get_drvdata(dev);
 607
 608	return regulator_print_state(buf,
 609			rdev->constraints->state_mem.enabled);
 610}
 611static DEVICE_ATTR(suspend_mem_state, 0444,
 612		regulator_suspend_mem_state_show, NULL);
 613
 614static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 615				   struct device_attribute *attr, char *buf)
 616{
 617	struct regulator_dev *rdev = dev_get_drvdata(dev);
 618
 619	return regulator_print_state(buf,
 620			rdev->constraints->state_disk.enabled);
 621}
 622static DEVICE_ATTR(suspend_disk_state, 0444,
 623		regulator_suspend_disk_state_show, NULL);
 624
 625static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 626				   struct device_attribute *attr, char *buf)
 627{
 628	struct regulator_dev *rdev = dev_get_drvdata(dev);
 629
 630	return regulator_print_state(buf,
 631			rdev->constraints->state_standby.enabled);
 632}
 633static DEVICE_ATTR(suspend_standby_state, 0444,
 634		regulator_suspend_standby_state_show, NULL);
 635
 636static ssize_t regulator_bypass_show(struct device *dev,
 637				     struct device_attribute *attr, char *buf)
 638{
 639	struct regulator_dev *rdev = dev_get_drvdata(dev);
 640	const char *report;
 641	bool bypass;
 642	int ret;
 643
 644	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 645
 646	if (ret != 0)
 647		report = "unknown";
 648	else if (bypass)
 649		report = "enabled";
 650	else
 651		report = "disabled";
 652
 653	return sprintf(buf, "%s\n", report);
 654}
 655static DEVICE_ATTR(bypass, 0444,
 656		   regulator_bypass_show, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657
 658/* Calculate the new optimum regulator operating mode based on the new total
 659 * consumer load. All locks held by caller */
 
 660static int drms_uA_update(struct regulator_dev *rdev)
 661{
 662	struct regulator *sibling;
 663	int current_uA = 0, output_uV, input_uV, err;
 664	unsigned int mode;
 665
 666	lockdep_assert_held_once(&rdev->mutex);
 667
 668	/*
 669	 * first check to see if we can set modes at all, otherwise just
 670	 * tell the consumer everything is OK.
 671	 */
 672	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
 
 673		return 0;
 
 674
 675	if (!rdev->desc->ops->get_optimum_mode &&
 676	    !rdev->desc->ops->set_load)
 677		return 0;
 678
 679	if (!rdev->desc->ops->set_mode &&
 680	    !rdev->desc->ops->set_load)
 681		return -EINVAL;
 682
 683	/* calc total requested load */
 684	list_for_each_entry(sibling, &rdev->consumer_list, list)
 685		current_uA += sibling->uA_load;
 
 
 686
 687	current_uA += rdev->constraints->system_load;
 688
 689	if (rdev->desc->ops->set_load) {
 690		/* set the optimum mode for our new total regulator load */
 691		err = rdev->desc->ops->set_load(rdev, current_uA);
 692		if (err < 0)
 693			rdev_err(rdev, "failed to set load %d\n", current_uA);
 
 694	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 695		/* get output voltage */
 696		output_uV = _regulator_get_voltage(rdev);
 697		if (output_uV <= 0) {
 698			rdev_err(rdev, "invalid output voltage found\n");
 699			return -EINVAL;
 700		}
 
 
 
 701
 702		/* get input voltage */
 703		input_uV = 0;
 704		if (rdev->supply)
 705			input_uV = regulator_get_voltage(rdev->supply);
 706		if (input_uV <= 0)
 707			input_uV = rdev->constraints->input_uV;
 708		if (input_uV <= 0) {
 709			rdev_err(rdev, "invalid input voltage found\n");
 710			return -EINVAL;
 711		}
 
 
 
 712
 713		/* now get the optimum mode for our new total regulator load */
 714		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 715							 output_uV, current_uA);
 716
 717		/* check the new mode is allowed */
 718		err = regulator_mode_constrain(rdev, &mode);
 719		if (err < 0) {
 720			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 721				 current_uA, input_uV, output_uV);
 722			return err;
 723		}
 724
 725		err = rdev->desc->ops->set_mode(rdev, mode);
 726		if (err < 0)
 727			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 
 728	}
 729
 730	return err;
 731}
 732
 733static int suspend_set_state(struct regulator_dev *rdev,
 734	struct regulator_state *rstate)
 735{
 736	int ret = 0;
 737
 738	/* If we have no suspend mode configration don't set anything;
 739	 * only warn if the driver implements set_suspend_voltage or
 740	 * set_suspend_mode callback.
 741	 */
 742	if (!rstate->enabled && !rstate->disabled) {
 743		if (rdev->desc->ops->set_suspend_voltage ||
 744		    rdev->desc->ops->set_suspend_mode)
 745			rdev_warn(rdev, "No configuration\n");
 746		return 0;
 747	}
 748
 749	if (rstate->enabled && rstate->disabled) {
 750		rdev_err(rdev, "invalid configuration\n");
 751		return -EINVAL;
 752	}
 753
 754	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 755		ret = rdev->desc->ops->set_suspend_enable(rdev);
 756	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 
 757		ret = rdev->desc->ops->set_suspend_disable(rdev);
 758	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 759		ret = 0;
 760
 761	if (ret < 0) {
 762		rdev_err(rdev, "failed to enabled/disable\n");
 763		return ret;
 764	}
 765
 766	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 767		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 768		if (ret < 0) {
 769			rdev_err(rdev, "failed to set voltage\n");
 770			return ret;
 771		}
 772	}
 773
 774	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 775		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 776		if (ret < 0) {
 777			rdev_err(rdev, "failed to set mode\n");
 778			return ret;
 779		}
 780	}
 
 781	return ret;
 782}
 783
 784/* locks held by caller */
 785static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 786{
 787	if (!rdev->constraints)
 788		return -EINVAL;
 
 
 
 
 789
 790	switch (state) {
 791	case PM_SUSPEND_STANDBY:
 792		return suspend_set_state(rdev,
 793			&rdev->constraints->state_standby);
 794	case PM_SUSPEND_MEM:
 795		return suspend_set_state(rdev,
 796			&rdev->constraints->state_mem);
 797	case PM_SUSPEND_MAX:
 798		return suspend_set_state(rdev,
 799			&rdev->constraints->state_disk);
 800	default:
 801		return -EINVAL;
 802	}
 803}
 804
 805static void print_constraints(struct regulator_dev *rdev)
 
 806{
 807	struct regulation_constraints *constraints = rdev->constraints;
 808	char buf[160] = "";
 809	size_t len = sizeof(buf) - 1;
 810	int count = 0;
 811	int ret;
 812
 813	if (constraints->min_uV && constraints->max_uV) {
 814		if (constraints->min_uV == constraints->max_uV)
 815			count += scnprintf(buf + count, len - count, "%d mV ",
 816					   constraints->min_uV / 1000);
 817		else
 818			count += scnprintf(buf + count, len - count,
 819					   "%d <--> %d mV ",
 820					   constraints->min_uV / 1000,
 821					   constraints->max_uV / 1000);
 822	}
 823
 824	if (!constraints->min_uV ||
 825	    constraints->min_uV != constraints->max_uV) {
 826		ret = _regulator_get_voltage(rdev);
 827		if (ret > 0)
 828			count += scnprintf(buf + count, len - count,
 829					   "at %d mV ", ret / 1000);
 830	}
 831
 832	if (constraints->uV_offset)
 833		count += scnprintf(buf + count, len - count, "%dmV offset ",
 834				   constraints->uV_offset / 1000);
 835
 836	if (constraints->min_uA && constraints->max_uA) {
 837		if (constraints->min_uA == constraints->max_uA)
 838			count += scnprintf(buf + count, len - count, "%d mA ",
 839					   constraints->min_uA / 1000);
 840		else
 841			count += scnprintf(buf + count, len - count,
 842					   "%d <--> %d mA ",
 843					   constraints->min_uA / 1000,
 844					   constraints->max_uA / 1000);
 845	}
 846
 847	if (!constraints->min_uA ||
 848	    constraints->min_uA != constraints->max_uA) {
 849		ret = _regulator_get_current_limit(rdev);
 850		if (ret > 0)
 851			count += scnprintf(buf + count, len - count,
 852					   "at %d mA ", ret / 1000);
 853	}
 854
 855	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 856		count += scnprintf(buf + count, len - count, "fast ");
 857	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 858		count += scnprintf(buf + count, len - count, "normal ");
 859	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 860		count += scnprintf(buf + count, len - count, "idle ");
 861	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 862		count += scnprintf(buf + count, len - count, "standby");
 863
 864	if (!count)
 865		scnprintf(buf, len, "no parameters");
 
 
 
 
 
 866
 867	rdev_dbg(rdev, "%s\n", buf);
 
 
 
 
 
 
 
 
 
 
 868
 869	if ((constraints->min_uV != constraints->max_uV) &&
 870	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
 871		rdev_warn(rdev,
 872			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 873}
 874
 875static int machine_constraints_voltage(struct regulator_dev *rdev,
 876	struct regulation_constraints *constraints)
 877{
 878	const struct regulator_ops *ops = rdev->desc->ops;
 879	int ret;
 880
 881	/* do we need to apply the constraint voltage */
 882	if (rdev->constraints->apply_uV &&
 883	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
 884		int target_min, target_max;
 885		int current_uV = _regulator_get_voltage(rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 886		if (current_uV < 0) {
 887			rdev_err(rdev,
 888				 "failed to get the current voltage(%d)\n",
 889				 current_uV);
 
 890			return current_uV;
 891		}
 892
 893		/*
 894		 * If we're below the minimum voltage move up to the
 895		 * minimum voltage, if we're above the maximum voltage
 896		 * then move down to the maximum.
 897		 */
 898		target_min = current_uV;
 899		target_max = current_uV;
 900
 901		if (current_uV < rdev->constraints->min_uV) {
 902			target_min = rdev->constraints->min_uV;
 903			target_max = rdev->constraints->min_uV;
 904		}
 905
 906		if (current_uV > rdev->constraints->max_uV) {
 907			target_min = rdev->constraints->max_uV;
 908			target_max = rdev->constraints->max_uV;
 909		}
 910
 911		if (target_min != current_uV || target_max != current_uV) {
 912			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
 913				  current_uV, target_min, target_max);
 914			ret = _regulator_do_set_voltage(
 915				rdev, target_min, target_max);
 916			if (ret < 0) {
 917				rdev_err(rdev,
 918					"failed to apply %d-%duV constraint(%d)\n",
 919					target_min, target_max, ret);
 920				return ret;
 921			}
 922		}
 923	}
 924
 925	/* constrain machine-level voltage specs to fit
 926	 * the actual range supported by this regulator.
 927	 */
 928	if (ops->list_voltage && rdev->desc->n_voltages) {
 929		int	count = rdev->desc->n_voltages;
 930		int	i;
 931		int	min_uV = INT_MAX;
 932		int	max_uV = INT_MIN;
 933		int	cmin = constraints->min_uV;
 934		int	cmax = constraints->max_uV;
 935
 936		/* it's safe to autoconfigure fixed-voltage supplies
 937		   and the constraints are used by list_voltage. */
 
 938		if (count == 1 && !cmin) {
 939			cmin = 1;
 940			cmax = INT_MAX;
 941			constraints->min_uV = cmin;
 942			constraints->max_uV = cmax;
 943		}
 944
 945		/* voltage constraints are optional */
 946		if ((cmin == 0) && (cmax == 0))
 947			return 0;
 948
 949		/* else require explicit machine-level constraints */
 950		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 951			rdev_err(rdev, "invalid voltage constraints\n");
 952			return -EINVAL;
 953		}
 954
 
 
 
 
 955		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 956		for (i = 0; i < count; i++) {
 957			int	value;
 958
 959			value = ops->list_voltage(rdev, i);
 960			if (value <= 0)
 961				continue;
 962
 963			/* maybe adjust [min_uV..max_uV] */
 964			if (value >= cmin && value < min_uV)
 965				min_uV = value;
 966			if (value <= cmax && value > max_uV)
 967				max_uV = value;
 968		}
 969
 970		/* final: [min_uV..max_uV] valid iff constraints valid */
 971		if (max_uV < min_uV) {
 972			rdev_err(rdev,
 973				 "unsupportable voltage constraints %u-%uuV\n",
 974				 min_uV, max_uV);
 975			return -EINVAL;
 976		}
 977
 978		/* use regulator's subset of machine constraints */
 979		if (constraints->min_uV < min_uV) {
 980			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 981				 constraints->min_uV, min_uV);
 982			constraints->min_uV = min_uV;
 983		}
 984		if (constraints->max_uV > max_uV) {
 985			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 986				 constraints->max_uV, max_uV);
 987			constraints->max_uV = max_uV;
 988		}
 989	}
 990
 991	return 0;
 992}
 993
 994static int machine_constraints_current(struct regulator_dev *rdev,
 995	struct regulation_constraints *constraints)
 996{
 997	const struct regulator_ops *ops = rdev->desc->ops;
 998	int ret;
 999
1000	if (!constraints->min_uA && !constraints->max_uA)
1001		return 0;
1002
1003	if (constraints->min_uA > constraints->max_uA) {
1004		rdev_err(rdev, "Invalid current constraints\n");
1005		return -EINVAL;
1006	}
1007
1008	if (!ops->set_current_limit || !ops->get_current_limit) {
1009		rdev_warn(rdev, "Operation of current configuration missing\n");
1010		return 0;
1011	}
1012
1013	/* Set regulator current in constraints range */
1014	ret = ops->set_current_limit(rdev, constraints->min_uA,
1015			constraints->max_uA);
1016	if (ret < 0) {
1017		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018		return ret;
1019	}
1020
1021	return 0;
1022}
1023
1024static int _regulator_do_enable(struct regulator_dev *rdev);
1025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026/**
1027 * set_machine_constraints - sets regulator constraints
1028 * @rdev: regulator source
1029 * @constraints: constraints to apply
1030 *
1031 * Allows platform initialisation code to define and constrain
1032 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1033 * Constraints *must* be set by platform code in order for some
1034 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1035 * set_mode.
1036 */
1037static int set_machine_constraints(struct regulator_dev *rdev,
1038	const struct regulation_constraints *constraints)
1039{
1040	int ret = 0;
1041	const struct regulator_ops *ops = rdev->desc->ops;
1042
1043	if (constraints)
1044		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1045					    GFP_KERNEL);
1046	else
1047		rdev->constraints = kzalloc(sizeof(*constraints),
1048					    GFP_KERNEL);
1049	if (!rdev->constraints)
1050		return -ENOMEM;
1051
1052	ret = machine_constraints_voltage(rdev, rdev->constraints);
1053	if (ret != 0)
1054		return ret;
1055
1056	ret = machine_constraints_current(rdev, rdev->constraints);
1057	if (ret != 0)
1058		return ret;
1059
1060	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061		ret = ops->set_input_current_limit(rdev,
1062						   rdev->constraints->ilim_uA);
1063		if (ret < 0) {
1064			rdev_err(rdev, "failed to set input limit\n");
1065			return ret;
1066		}
1067	}
1068
1069	/* do we need to setup our suspend state */
1070	if (rdev->constraints->initial_state) {
1071		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1072		if (ret < 0) {
1073			rdev_err(rdev, "failed to set suspend state\n");
1074			return ret;
1075		}
1076	}
1077
1078	if (rdev->constraints->initial_mode) {
1079		if (!ops->set_mode) {
1080			rdev_err(rdev, "no set_mode operation\n");
1081			return -EINVAL;
1082		}
1083
1084		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085		if (ret < 0) {
1086			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087			return ret;
1088		}
1089	}
1090
1091	/* If the constraints say the regulator should be on at this point
1092	 * and we have control then make sure it is enabled.
1093	 */
1094	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095		ret = _regulator_do_enable(rdev);
1096		if (ret < 0 && ret != -EINVAL) {
1097			rdev_err(rdev, "failed to enable\n");
1098			return ret;
1099		}
 
 
 
 
 
 
1100	}
1101
1102	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103		&& ops->set_ramp_delay) {
1104		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1105		if (ret < 0) {
1106			rdev_err(rdev, "failed to set ramp_delay\n");
1107			return ret;
1108		}
1109	}
1110
1111	if (rdev->constraints->pull_down && ops->set_pull_down) {
1112		ret = ops->set_pull_down(rdev);
1113		if (ret < 0) {
1114			rdev_err(rdev, "failed to set pull down\n");
1115			return ret;
1116		}
1117	}
1118
1119	if (rdev->constraints->soft_start && ops->set_soft_start) {
1120		ret = ops->set_soft_start(rdev);
1121		if (ret < 0) {
1122			rdev_err(rdev, "failed to set soft start\n");
1123			return ret;
1124		}
1125	}
1126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127	if (rdev->constraints->over_current_protection
1128		&& ops->set_over_current_protection) {
1129		ret = ops->set_over_current_protection(rdev);
 
 
 
 
1130		if (ret < 0) {
1131			rdev_err(rdev, "failed to set over current protection\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132			return ret;
1133		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134	}
1135
1136	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137		bool ad_state = (rdev->constraints->active_discharge ==
1138			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1139
1140		ret = ops->set_active_discharge(rdev, ad_state);
1141		if (ret < 0) {
1142			rdev_err(rdev, "failed to set active discharge\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1143			return ret;
1144		}
 
 
 
1145	}
1146
1147	print_constraints(rdev);
1148	return 0;
1149}
1150
1151/**
1152 * set_supply - set regulator supply regulator
1153 * @rdev: regulator name
1154 * @supply_rdev: supply regulator name
1155 *
1156 * Called by platform initialisation code to set the supply regulator for this
1157 * regulator. This ensures that a regulators supply will also be enabled by the
1158 * core if it's child is enabled.
1159 */
1160static int set_supply(struct regulator_dev *rdev,
1161		      struct regulator_dev *supply_rdev)
1162{
1163	int err;
1164
1165	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166
1167	if (!try_module_get(supply_rdev->owner))
1168		return -ENODEV;
1169
1170	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171	if (rdev->supply == NULL) {
 
1172		err = -ENOMEM;
1173		return err;
1174	}
1175	supply_rdev->open_count++;
1176
1177	return 0;
1178}
1179
1180/**
1181 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182 * @rdev:         regulator source
1183 * @consumer_dev_name: dev_name() string for device supply applies to
1184 * @supply:       symbolic name for supply
1185 *
1186 * Allows platform initialisation code to map physical regulator
1187 * sources to symbolic names for supplies for use by devices.  Devices
1188 * should use these symbolic names to request regulators, avoiding the
1189 * need to provide board-specific regulator names as platform data.
1190 */
1191static int set_consumer_device_supply(struct regulator_dev *rdev,
1192				      const char *consumer_dev_name,
1193				      const char *supply)
1194{
1195	struct regulator_map *node;
1196	int has_dev;
1197
1198	if (supply == NULL)
1199		return -EINVAL;
1200
1201	if (consumer_dev_name != NULL)
1202		has_dev = 1;
1203	else
1204		has_dev = 0;
1205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1206	list_for_each_entry(node, &regulator_map_list, list) {
1207		if (node->dev_name && consumer_dev_name) {
1208			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209				continue;
1210		} else if (node->dev_name || consumer_dev_name) {
1211			continue;
1212		}
1213
1214		if (strcmp(node->supply, supply) != 0)
1215			continue;
1216
1217		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218			 consumer_dev_name,
1219			 dev_name(&node->regulator->dev),
1220			 node->regulator->desc->name,
1221			 supply,
1222			 dev_name(&rdev->dev), rdev_get_name(rdev));
1223		return -EBUSY;
1224	}
1225
1226	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227	if (node == NULL)
1228		return -ENOMEM;
1229
1230	node->regulator = rdev;
1231	node->supply = supply;
1232
1233	if (has_dev) {
1234		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235		if (node->dev_name == NULL) {
1236			kfree(node);
1237			return -ENOMEM;
1238		}
1239	}
1240
1241	list_add(&node->list, &regulator_map_list);
1242	return 0;
1243}
1244
1245static void unset_regulator_supplies(struct regulator_dev *rdev)
1246{
1247	struct regulator_map *node, *n;
1248
1249	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250		if (rdev == node->regulator) {
1251			list_del(&node->list);
1252			kfree(node->dev_name);
1253			kfree(node);
1254		}
1255	}
1256}
1257
1258#ifdef CONFIG_DEBUG_FS
1259static ssize_t constraint_flags_read_file(struct file *file,
1260					  char __user *user_buf,
1261					  size_t count, loff_t *ppos)
1262{
1263	const struct regulator *regulator = file->private_data;
1264	const struct regulation_constraints *c = regulator->rdev->constraints;
1265	char *buf;
1266	ssize_t ret;
1267
1268	if (!c)
1269		return 0;
1270
1271	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1272	if (!buf)
1273		return -ENOMEM;
1274
1275	ret = snprintf(buf, PAGE_SIZE,
1276			"always_on: %u\n"
1277			"boot_on: %u\n"
1278			"apply_uV: %u\n"
1279			"ramp_disable: %u\n"
1280			"soft_start: %u\n"
1281			"pull_down: %u\n"
1282			"over_current_protection: %u\n",
1283			c->always_on,
1284			c->boot_on,
1285			c->apply_uV,
1286			c->ramp_disable,
1287			c->soft_start,
1288			c->pull_down,
1289			c->over_current_protection);
1290
1291	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1292	kfree(buf);
1293
1294	return ret;
1295}
1296
1297#endif
1298
1299static const struct file_operations constraint_flags_fops = {
1300#ifdef CONFIG_DEBUG_FS
1301	.open = simple_open,
1302	.read = constraint_flags_read_file,
1303	.llseek = default_llseek,
1304#endif
1305};
1306
1307#define REG_STR_SIZE	64
1308
1309static struct regulator *create_regulator(struct regulator_dev *rdev,
1310					  struct device *dev,
1311					  const char *supply_name)
1312{
1313	struct regulator *regulator;
1314	char buf[REG_STR_SIZE];
1315	int err, size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316
1317	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318	if (regulator == NULL)
 
1319		return NULL;
 
1320
1321	mutex_lock(&rdev->mutex);
1322	regulator->rdev = rdev;
 
 
 
1323	list_add(&regulator->list, &rdev->consumer_list);
 
1324
1325	if (dev) {
1326		regulator->dev = dev;
1327
1328		/* Add a link to the device sysfs entry */
1329		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1330				 dev->kobj.name, supply_name);
1331		if (size >= REG_STR_SIZE)
1332			goto overflow_err;
1333
1334		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335		if (regulator->supply_name == NULL)
1336			goto overflow_err;
1337
1338		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1339					buf);
1340		if (err) {
1341			rdev_dbg(rdev, "could not add device link %s err %d\n",
1342				  dev->kobj.name, err);
1343			/* non-fatal */
1344		}
1345	} else {
1346		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1347		if (regulator->supply_name == NULL)
1348			goto overflow_err;
1349	}
1350
1351	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1352						rdev->debugfs);
1353	if (!regulator->debugfs) {
1354		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1355	} else {
1356		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357				   &regulator->uA_load);
1358		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359				   &regulator->min_uV);
1360		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361				   &regulator->max_uV);
1362		debugfs_create_file("constraint_flags", 0444,
1363				    regulator->debugfs, regulator,
1364				    &constraint_flags_fops);
1365	}
1366
1367	/*
1368	 * Check now if the regulator is an always on regulator - if
1369	 * it is then we don't need to do nearly so much work for
1370	 * enable/disable calls.
1371	 */
1372	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373	    _regulator_is_enabled(rdev))
1374		regulator->always_on = true;
1375
1376	mutex_unlock(&rdev->mutex);
1377	return regulator;
1378overflow_err:
1379	list_del(&regulator->list);
1380	kfree(regulator);
1381	mutex_unlock(&rdev->mutex);
1382	return NULL;
1383}
1384
1385static int _regulator_get_enable_time(struct regulator_dev *rdev)
1386{
1387	if (rdev->constraints && rdev->constraints->enable_time)
1388		return rdev->constraints->enable_time;
1389	if (!rdev->desc->ops->enable_time)
1390		return rdev->desc->enable_time;
1391	return rdev->desc->ops->enable_time(rdev);
1392}
1393
1394static struct regulator_supply_alias *regulator_find_supply_alias(
1395		struct device *dev, const char *supply)
1396{
1397	struct regulator_supply_alias *map;
1398
1399	list_for_each_entry(map, &regulator_supply_alias_list, list)
1400		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1401			return map;
1402
1403	return NULL;
1404}
1405
1406static void regulator_supply_alias(struct device **dev, const char **supply)
1407{
1408	struct regulator_supply_alias *map;
1409
1410	map = regulator_find_supply_alias(*dev, *supply);
1411	if (map) {
1412		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413				*supply, map->alias_supply,
1414				dev_name(map->alias_dev));
1415		*dev = map->alias_dev;
1416		*supply = map->alias_supply;
1417	}
1418}
1419
1420static int of_node_match(struct device *dev, const void *data)
1421{
1422	return dev->of_node == data;
1423}
1424
1425static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1426{
1427	struct device *dev;
1428
1429	dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1430
1431	return dev ? dev_to_rdev(dev) : NULL;
1432}
1433
1434static int regulator_match(struct device *dev, const void *data)
1435{
1436	struct regulator_dev *r = dev_to_rdev(dev);
1437
1438	return strcmp(rdev_get_name(r), data) == 0;
1439}
1440
1441static struct regulator_dev *regulator_lookup_by_name(const char *name)
1442{
1443	struct device *dev;
1444
1445	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1446
1447	return dev ? dev_to_rdev(dev) : NULL;
1448}
1449
1450/**
1451 * regulator_dev_lookup - lookup a regulator device.
1452 * @dev: device for regulator "consumer".
1453 * @supply: Supply name or regulator ID.
1454 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1455 * lookup could succeed in the future.
1456 *
1457 * If successful, returns a struct regulator_dev that corresponds to the name
1458 * @supply and with the embedded struct device refcount incremented by one,
1459 * or NULL on failure. The refcount must be dropped by calling put_device().
 
 
 
1460 */
1461static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1462						  const char *supply,
1463						  int *ret)
1464{
1465	struct regulator_dev *r;
1466	struct device_node *node;
1467	struct regulator_map *map;
1468	const char *devname = NULL;
1469
1470	regulator_supply_alias(&dev, &supply);
1471
1472	/* first do a dt based lookup */
1473	if (dev && dev->of_node) {
1474		node = of_get_regulator(dev, supply);
1475		if (node) {
1476			r = of_find_regulator_by_node(node);
 
1477			if (r)
1478				return r;
1479			*ret = -EPROBE_DEFER;
1480			return NULL;
1481		} else {
1482			/*
1483			 * If we couldn't even get the node then it's
1484			 * not just that the device didn't register
1485			 * yet, there's no node and we'll never
1486			 * succeed.
1487			 */
1488			*ret = -ENODEV;
1489		}
1490	}
1491
1492	/* if not found, try doing it non-dt way */
1493	if (dev)
1494		devname = dev_name(dev);
1495
1496	r = regulator_lookup_by_name(supply);
1497	if (r)
1498		return r;
1499
1500	mutex_lock(&regulator_list_mutex);
1501	list_for_each_entry(map, &regulator_map_list, list) {
1502		/* If the mapping has a device set up it must match */
1503		if (map->dev_name &&
1504		    (!devname || strcmp(map->dev_name, devname)))
1505			continue;
1506
1507		if (strcmp(map->supply, supply) == 0 &&
1508		    get_device(&map->regulator->dev)) {
1509			mutex_unlock(&regulator_list_mutex);
1510			return map->regulator;
1511		}
1512	}
1513	mutex_unlock(&regulator_list_mutex);
1514
1515	return NULL;
 
 
 
 
 
 
 
1516}
1517
1518static int regulator_resolve_supply(struct regulator_dev *rdev)
1519{
1520	struct regulator_dev *r;
1521	struct device *dev = rdev->dev.parent;
1522	int ret;
1523
1524	/* No supply to resovle? */
1525	if (!rdev->supply_name)
1526		return 0;
1527
1528	/* Supply already resolved? */
1529	if (rdev->supply)
1530		return 0;
1531
1532	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1533	if (!r) {
1534		if (ret == -ENODEV) {
1535			/*
1536			 * No supply was specified for this regulator and
1537			 * there will never be one.
1538			 */
1539			return 0;
1540		}
1541
1542		/* Did the lookup explicitly defer for us? */
1543		if (ret == -EPROBE_DEFER)
1544			return ret;
1545
1546		if (have_full_constraints()) {
1547			r = dummy_regulator_rdev;
1548			get_device(&r->dev);
1549		} else {
1550			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1551				rdev->supply_name, rdev->desc->name);
1552			return -EPROBE_DEFER;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1553		}
1554	}
1555
1556	/* Recursively resolve the supply of the supply */
1557	ret = regulator_resolve_supply(r);
1558	if (ret < 0) {
1559		put_device(&r->dev);
1560		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1561	}
1562
1563	ret = set_supply(rdev, r);
1564	if (ret < 0) {
 
1565		put_device(&r->dev);
1566		return ret;
1567	}
1568
1569	/* Cascade always-on state to supply */
1570	if (_regulator_is_enabled(rdev)) {
 
 
 
 
 
 
1571		ret = regulator_enable(rdev->supply);
1572		if (ret < 0) {
1573			_regulator_put(rdev->supply);
1574			rdev->supply = NULL;
1575			return ret;
1576		}
1577	}
1578
1579	return 0;
 
1580}
1581
1582/* Internal regulator request function */
1583static struct regulator *_regulator_get(struct device *dev, const char *id,
1584					bool exclusive, bool allow_dummy)
1585{
1586	struct regulator_dev *rdev;
1587	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1588	const char *devname = NULL;
1589	int ret;
1590
 
 
 
 
 
1591	if (id == NULL) {
1592		pr_err("get() with no identifier\n");
1593		return ERR_PTR(-EINVAL);
1594	}
1595
1596	if (dev)
1597		devname = dev_name(dev);
 
1598
1599	if (have_full_constraints())
1600		ret = -ENODEV;
1601	else
1602		ret = -EPROBE_DEFER;
 
 
1603
1604	rdev = regulator_dev_lookup(dev, id, &ret);
1605	if (rdev)
1606		goto found;
 
 
1607
1608	regulator = ERR_PTR(ret);
1609
1610	/*
1611	 * If we have return value from dev_lookup fail, we do not expect to
1612	 * succeed, so, quit with appropriate error value
1613	 */
1614	if (ret && ret != -ENODEV)
1615		return regulator;
 
 
 
1616
1617	if (!devname)
1618		devname = "deviceless";
 
 
1619
1620	/*
1621	 * Assume that a regulator is physically present and enabled
1622	 * even if it isn't hooked up and just provide a dummy.
1623	 */
1624	if (have_full_constraints() && allow_dummy) {
1625		pr_warn("%s supply %s not found, using dummy regulator\n",
1626			devname, id);
1627
1628		rdev = dummy_regulator_rdev;
1629		get_device(&rdev->dev);
1630		goto found;
1631	/* Don't log an error when called from regulator_get_optional() */
1632	} else if (!have_full_constraints() || exclusive) {
1633		dev_warn(dev, "dummy supplies not allowed\n");
1634	}
1635
1636	return regulator;
1637
1638found:
1639	if (rdev->exclusive) {
1640		regulator = ERR_PTR(-EPERM);
1641		put_device(&rdev->dev);
1642		return regulator;
1643	}
1644
1645	if (exclusive && rdev->open_count) {
1646		regulator = ERR_PTR(-EBUSY);
1647		put_device(&rdev->dev);
1648		return regulator;
1649	}
1650
 
 
 
 
 
 
 
 
 
 
1651	ret = regulator_resolve_supply(rdev);
1652	if (ret < 0) {
1653		regulator = ERR_PTR(ret);
1654		put_device(&rdev->dev);
1655		return regulator;
1656	}
1657
1658	if (!try_module_get(rdev->owner)) {
 
1659		put_device(&rdev->dev);
1660		return regulator;
1661	}
1662
1663	regulator = create_regulator(rdev, dev, id);
1664	if (regulator == NULL) {
1665		regulator = ERR_PTR(-ENOMEM);
 
1666		put_device(&rdev->dev);
1667		module_put(rdev->owner);
1668		return regulator;
1669	}
1670
1671	rdev->open_count++;
1672	if (exclusive) {
1673		rdev->exclusive = 1;
1674
1675		ret = _regulator_is_enabled(rdev);
1676		if (ret > 0)
1677			rdev->use_count = 1;
1678		else
 
1679			rdev->use_count = 0;
 
 
1680	}
1681
 
 
 
 
1682	return regulator;
1683}
1684
1685/**
1686 * regulator_get - lookup and obtain a reference to a regulator.
1687 * @dev: device for regulator "consumer"
1688 * @id: Supply name or regulator ID.
1689 *
1690 * Returns a struct regulator corresponding to the regulator producer,
1691 * or IS_ERR() condition containing errno.
1692 *
1693 * Use of supply names configured via regulator_set_device_supply() is
1694 * strongly encouraged.  It is recommended that the supply name used
1695 * should match the name used for the supply and/or the relevant
1696 * device pins in the datasheet.
1697 */
1698struct regulator *regulator_get(struct device *dev, const char *id)
1699{
1700	return _regulator_get(dev, id, false, true);
1701}
1702EXPORT_SYMBOL_GPL(regulator_get);
1703
1704/**
1705 * regulator_get_exclusive - obtain exclusive access to a regulator.
1706 * @dev: device for regulator "consumer"
1707 * @id: Supply name or regulator ID.
1708 *
1709 * Returns a struct regulator corresponding to the regulator producer,
1710 * or IS_ERR() condition containing errno.  Other consumers will be
1711 * unable to obtain this regulator while this reference is held and the
1712 * use count for the regulator will be initialised to reflect the current
1713 * state of the regulator.
1714 *
1715 * This is intended for use by consumers which cannot tolerate shared
1716 * use of the regulator such as those which need to force the
1717 * regulator off for correct operation of the hardware they are
1718 * controlling.
1719 *
1720 * Use of supply names configured via regulator_set_device_supply() is
1721 * strongly encouraged.  It is recommended that the supply name used
1722 * should match the name used for the supply and/or the relevant
1723 * device pins in the datasheet.
1724 */
1725struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1726{
1727	return _regulator_get(dev, id, true, false);
1728}
1729EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1730
1731/**
1732 * regulator_get_optional - obtain optional access to a regulator.
1733 * @dev: device for regulator "consumer"
1734 * @id: Supply name or regulator ID.
1735 *
1736 * Returns a struct regulator corresponding to the regulator producer,
1737 * or IS_ERR() condition containing errno.
1738 *
1739 * This is intended for use by consumers for devices which can have
1740 * some supplies unconnected in normal use, such as some MMC devices.
1741 * It can allow the regulator core to provide stub supplies for other
1742 * supplies requested using normal regulator_get() calls without
1743 * disrupting the operation of drivers that can handle absent
1744 * supplies.
1745 *
1746 * Use of supply names configured via regulator_set_device_supply() is
1747 * strongly encouraged.  It is recommended that the supply name used
1748 * should match the name used for the supply and/or the relevant
1749 * device pins in the datasheet.
1750 */
1751struct regulator *regulator_get_optional(struct device *dev, const char *id)
1752{
1753	return _regulator_get(dev, id, false, false);
1754}
1755EXPORT_SYMBOL_GPL(regulator_get_optional);
1756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1757/* regulator_list_mutex lock held by regulator_put() */
1758static void _regulator_put(struct regulator *regulator)
1759{
1760	struct regulator_dev *rdev;
1761
1762	if (IS_ERR_OR_NULL(regulator))
1763		return;
1764
1765	lockdep_assert_held_once(&regulator_list_mutex);
1766
 
 
 
1767	rdev = regulator->rdev;
1768
1769	debugfs_remove_recursive(regulator->debugfs);
1770
1771	/* remove any sysfs entries */
1772	if (regulator->dev)
1773		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1774	mutex_lock(&rdev->mutex);
1775	list_del(&regulator->list);
1776
1777	rdev->open_count--;
1778	rdev->exclusive = 0;
1779	put_device(&rdev->dev);
1780	mutex_unlock(&rdev->mutex);
1781
1782	kfree(regulator->supply_name);
1783	kfree(regulator);
1784
1785	module_put(rdev->owner);
1786}
1787
1788/**
1789 * regulator_put - "free" the regulator source
1790 * @regulator: regulator source
1791 *
1792 * Note: drivers must ensure that all regulator_enable calls made on this
1793 * regulator source are balanced by regulator_disable calls prior to calling
1794 * this function.
1795 */
1796void regulator_put(struct regulator *regulator)
1797{
1798	mutex_lock(&regulator_list_mutex);
1799	_regulator_put(regulator);
1800	mutex_unlock(&regulator_list_mutex);
1801}
1802EXPORT_SYMBOL_GPL(regulator_put);
1803
1804/**
1805 * regulator_register_supply_alias - Provide device alias for supply lookup
1806 *
1807 * @dev: device that will be given as the regulator "consumer"
1808 * @id: Supply name or regulator ID
1809 * @alias_dev: device that should be used to lookup the supply
1810 * @alias_id: Supply name or regulator ID that should be used to lookup the
1811 * supply
1812 *
1813 * All lookups for id on dev will instead be conducted for alias_id on
1814 * alias_dev.
1815 */
1816int regulator_register_supply_alias(struct device *dev, const char *id,
1817				    struct device *alias_dev,
1818				    const char *alias_id)
1819{
1820	struct regulator_supply_alias *map;
1821
1822	map = regulator_find_supply_alias(dev, id);
1823	if (map)
1824		return -EEXIST;
1825
1826	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1827	if (!map)
1828		return -ENOMEM;
1829
1830	map->src_dev = dev;
1831	map->src_supply = id;
1832	map->alias_dev = alias_dev;
1833	map->alias_supply = alias_id;
1834
1835	list_add(&map->list, &regulator_supply_alias_list);
1836
1837	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1838		id, dev_name(dev), alias_id, dev_name(alias_dev));
1839
1840	return 0;
1841}
1842EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1843
1844/**
1845 * regulator_unregister_supply_alias - Remove device alias
1846 *
1847 * @dev: device that will be given as the regulator "consumer"
1848 * @id: Supply name or regulator ID
1849 *
1850 * Remove a lookup alias if one exists for id on dev.
1851 */
1852void regulator_unregister_supply_alias(struct device *dev, const char *id)
1853{
1854	struct regulator_supply_alias *map;
1855
1856	map = regulator_find_supply_alias(dev, id);
1857	if (map) {
1858		list_del(&map->list);
1859		kfree(map);
1860	}
1861}
1862EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1863
1864/**
1865 * regulator_bulk_register_supply_alias - register multiple aliases
1866 *
1867 * @dev: device that will be given as the regulator "consumer"
1868 * @id: List of supply names or regulator IDs
1869 * @alias_dev: device that should be used to lookup the supply
1870 * @alias_id: List of supply names or regulator IDs that should be used to
1871 * lookup the supply
1872 * @num_id: Number of aliases to register
1873 *
1874 * @return 0 on success, an errno on failure.
1875 *
1876 * This helper function allows drivers to register several supply
1877 * aliases in one operation.  If any of the aliases cannot be
1878 * registered any aliases that were registered will be removed
1879 * before returning to the caller.
1880 */
1881int regulator_bulk_register_supply_alias(struct device *dev,
1882					 const char *const *id,
1883					 struct device *alias_dev,
1884					 const char *const *alias_id,
1885					 int num_id)
1886{
1887	int i;
1888	int ret;
1889
1890	for (i = 0; i < num_id; ++i) {
1891		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1892						      alias_id[i]);
1893		if (ret < 0)
1894			goto err;
1895	}
1896
1897	return 0;
1898
1899err:
1900	dev_err(dev,
1901		"Failed to create supply alias %s,%s -> %s,%s\n",
1902		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1903
1904	while (--i >= 0)
1905		regulator_unregister_supply_alias(dev, id[i]);
1906
1907	return ret;
1908}
1909EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1910
1911/**
1912 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1913 *
1914 * @dev: device that will be given as the regulator "consumer"
1915 * @id: List of supply names or regulator IDs
1916 * @num_id: Number of aliases to unregister
1917 *
1918 * This helper function allows drivers to unregister several supply
1919 * aliases in one operation.
1920 */
1921void regulator_bulk_unregister_supply_alias(struct device *dev,
1922					    const char *const *id,
1923					    int num_id)
1924{
1925	int i;
1926
1927	for (i = 0; i < num_id; ++i)
1928		regulator_unregister_supply_alias(dev, id[i]);
1929}
1930EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1931
1932
1933/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1934static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1935				const struct regulator_config *config)
1936{
1937	struct regulator_enable_gpio *pin;
1938	struct gpio_desc *gpiod;
1939	int ret;
1940
1941	gpiod = gpio_to_desc(config->ena_gpio);
 
 
 
1942
1943	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1944		if (pin->gpiod == gpiod) {
1945			rdev_dbg(rdev, "GPIO %d is already used\n",
1946				config->ena_gpio);
1947			goto update_ena_gpio_to_rdev;
1948		}
1949	}
1950
1951	ret = gpio_request_one(config->ena_gpio,
1952				GPIOF_DIR_OUT | config->ena_gpio_flags,
1953				rdev_get_name(rdev));
1954	if (ret)
1955		return ret;
1956
1957	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1958	if (pin == NULL) {
1959		gpio_free(config->ena_gpio);
1960		return -ENOMEM;
1961	}
1962
 
 
 
1963	pin->gpiod = gpiod;
1964	pin->ena_gpio_invert = config->ena_gpio_invert;
1965	list_add(&pin->list, &regulator_ena_gpio_list);
1966
1967update_ena_gpio_to_rdev:
1968	pin->request_count++;
1969	rdev->ena_pin = pin;
 
 
 
 
1970	return 0;
1971}
1972
1973static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1974{
1975	struct regulator_enable_gpio *pin, *n;
1976
1977	if (!rdev->ena_pin)
1978		return;
1979
1980	/* Free the GPIO only in case of no use */
1981	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1982		if (pin->gpiod == rdev->ena_pin->gpiod) {
1983			if (pin->request_count <= 1) {
1984				pin->request_count = 0;
1985				gpiod_put(pin->gpiod);
1986				list_del(&pin->list);
1987				kfree(pin);
1988				rdev->ena_pin = NULL;
1989				return;
1990			} else {
1991				pin->request_count--;
1992			}
1993		}
1994	}
 
 
1995}
1996
1997/**
1998 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1999 * @rdev: regulator_dev structure
2000 * @enable: enable GPIO at initial use?
2001 *
2002 * GPIO is enabled in case of initial use. (enable_count is 0)
2003 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2004 */
2005static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2006{
2007	struct regulator_enable_gpio *pin = rdev->ena_pin;
2008
2009	if (!pin)
2010		return -EINVAL;
2011
2012	if (enable) {
2013		/* Enable GPIO at initial use */
2014		if (pin->enable_count == 0)
2015			gpiod_set_value_cansleep(pin->gpiod,
2016						 !pin->ena_gpio_invert);
2017
2018		pin->enable_count++;
2019	} else {
2020		if (pin->enable_count > 1) {
2021			pin->enable_count--;
2022			return 0;
2023		}
2024
2025		/* Disable GPIO if not used */
2026		if (pin->enable_count <= 1) {
2027			gpiod_set_value_cansleep(pin->gpiod,
2028						 pin->ena_gpio_invert);
2029			pin->enable_count = 0;
2030		}
2031	}
2032
2033	return 0;
2034}
2035
2036/**
2037 * _regulator_enable_delay - a delay helper function
2038 * @delay: time to delay in microseconds
2039 *
2040 * Delay for the requested amount of time as per the guidelines in:
2041 *
2042 *     Documentation/timers/timers-howto.txt
2043 *
2044 * The assumption here is that regulators will never be enabled in
2045 * atomic context and therefore sleeping functions can be used.
2046 */
2047static void _regulator_enable_delay(unsigned int delay)
2048{
2049	unsigned int ms = delay / 1000;
2050	unsigned int us = delay % 1000;
2051
2052	if (ms > 0) {
2053		/*
2054		 * For small enough values, handle super-millisecond
2055		 * delays in the usleep_range() call below.
2056		 */
2057		if (ms < 20)
2058			us += ms * 1000;
2059		else
2060			msleep(ms);
2061	}
2062
2063	/*
2064	 * Give the scheduler some room to coalesce with any other
2065	 * wakeup sources. For delays shorter than 10 us, don't even
2066	 * bother setting up high-resolution timers and just busy-
2067	 * loop.
2068	 */
2069	if (us >= 10)
2070		usleep_range(us, us + 100);
2071	else
2072		udelay(us);
2073}
2074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2075static int _regulator_do_enable(struct regulator_dev *rdev)
2076{
2077	int ret, delay;
2078
2079	/* Query before enabling in case configuration dependent.  */
2080	ret = _regulator_get_enable_time(rdev);
2081	if (ret >= 0) {
2082		delay = ret;
2083	} else {
2084		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2085		delay = 0;
2086	}
2087
2088	trace_regulator_enable(rdev_get_name(rdev));
2089
2090	if (rdev->desc->off_on_delay) {
2091		/* if needed, keep a distance of off_on_delay from last time
2092		 * this regulator was disabled.
2093		 */
2094		unsigned long start_jiffy = jiffies;
2095		unsigned long intended, max_delay, remaining;
2096
2097		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2098		intended = rdev->last_off_jiffy + max_delay;
2099
2100		if (time_before(start_jiffy, intended)) {
2101			/* calc remaining jiffies to deal with one-time
2102			 * timer wrapping.
2103			 * in case of multiple timer wrapping, either it can be
2104			 * detected by out-of-range remaining, or it cannot be
2105			 * detected and we gets a panelty of
2106			 * _regulator_enable_delay().
2107			 */
2108			remaining = intended - start_jiffy;
2109			if (remaining <= max_delay)
2110				_regulator_enable_delay(
2111						jiffies_to_usecs(remaining));
2112		}
2113	}
2114
2115	if (rdev->ena_pin) {
2116		if (!rdev->ena_gpio_state) {
2117			ret = regulator_ena_gpio_ctrl(rdev, true);
2118			if (ret < 0)
2119				return ret;
2120			rdev->ena_gpio_state = 1;
2121		}
2122	} else if (rdev->desc->ops->enable) {
2123		ret = rdev->desc->ops->enable(rdev);
2124		if (ret < 0)
2125			return ret;
2126	} else {
2127		return -EINVAL;
2128	}
2129
2130	/* Allow the regulator to ramp; it would be useful to extend
2131	 * this for bulk operations so that the regulators can ramp
2132	 * together.  */
 
2133	trace_regulator_enable_delay(rdev_get_name(rdev));
2134
2135	_regulator_enable_delay(delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2136
2137	trace_regulator_enable_complete(rdev_get_name(rdev));
2138
2139	return 0;
2140}
2141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2142/* locks held by regulator_enable() */
2143static int _regulator_enable(struct regulator_dev *rdev)
2144{
 
2145	int ret;
2146
2147	lockdep_assert_held_once(&rdev->mutex);
 
 
 
 
 
 
2148
2149	/* check voltage and requested load before enabling */
2150	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2151		drms_uA_update(rdev);
 
 
 
 
 
 
 
2152
2153	if (rdev->use_count == 0) {
2154		/* The regulator may on if it's not switchable or left on */
 
 
 
2155		ret = _regulator_is_enabled(rdev);
2156		if (ret == -EINVAL || ret == 0) {
2157			if (!regulator_ops_is_valid(rdev,
2158					REGULATOR_CHANGE_STATUS))
2159				return -EPERM;
 
 
2160
2161			ret = _regulator_do_enable(rdev);
2162			if (ret < 0)
2163				return ret;
2164
 
 
2165		} else if (ret < 0) {
2166			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2167			return ret;
2168		}
2169		/* Fallthrough on positive return values - already enabled */
2170	}
2171
2172	rdev->use_count++;
2173
2174	return 0;
 
 
 
 
 
 
 
 
 
2175}
2176
2177/**
2178 * regulator_enable - enable regulator output
2179 * @regulator: regulator source
2180 *
2181 * Request that the regulator be enabled with the regulator output at
2182 * the predefined voltage or current value.  Calls to regulator_enable()
2183 * must be balanced with calls to regulator_disable().
2184 *
2185 * NOTE: the output value can be set by other drivers, boot loader or may be
2186 * hardwired in the regulator.
2187 */
2188int regulator_enable(struct regulator *regulator)
2189{
2190	struct regulator_dev *rdev = regulator->rdev;
2191	int ret = 0;
 
2192
2193	if (regulator->always_on)
2194		return 0;
2195
2196	if (rdev->supply) {
2197		ret = regulator_enable(rdev->supply);
2198		if (ret != 0)
2199			return ret;
2200	}
2201
2202	mutex_lock(&rdev->mutex);
2203	ret = _regulator_enable(rdev);
2204	mutex_unlock(&rdev->mutex);
2205
2206	if (ret != 0 && rdev->supply)
2207		regulator_disable(rdev->supply);
2208
2209	return ret;
2210}
2211EXPORT_SYMBOL_GPL(regulator_enable);
2212
2213static int _regulator_do_disable(struct regulator_dev *rdev)
2214{
2215	int ret;
2216
2217	trace_regulator_disable(rdev_get_name(rdev));
2218
2219	if (rdev->ena_pin) {
2220		if (rdev->ena_gpio_state) {
2221			ret = regulator_ena_gpio_ctrl(rdev, false);
2222			if (ret < 0)
2223				return ret;
2224			rdev->ena_gpio_state = 0;
2225		}
2226
2227	} else if (rdev->desc->ops->disable) {
2228		ret = rdev->desc->ops->disable(rdev);
2229		if (ret != 0)
2230			return ret;
2231	}
2232
2233	/* cares about last_off_jiffy only if off_on_delay is required by
2234	 * device.
2235	 */
2236	if (rdev->desc->off_on_delay)
2237		rdev->last_off_jiffy = jiffies;
2238
2239	trace_regulator_disable_complete(rdev_get_name(rdev));
2240
2241	return 0;
2242}
2243
2244/* locks held by regulator_disable() */
2245static int _regulator_disable(struct regulator_dev *rdev)
2246{
 
2247	int ret = 0;
2248
2249	lockdep_assert_held_once(&rdev->mutex);
2250
2251	if (WARN(rdev->use_count <= 0,
2252		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2253		return -EIO;
2254
2255	/* are we the last user and permitted to disable ? */
2256	if (rdev->use_count == 1 &&
2257	    (rdev->constraints && !rdev->constraints->always_on)) {
2258
2259		/* we are last user */
2260		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2261			ret = _notifier_call_chain(rdev,
2262						   REGULATOR_EVENT_PRE_DISABLE,
2263						   NULL);
2264			if (ret & NOTIFY_STOP_MASK)
2265				return -EINVAL;
2266
2267			ret = _regulator_do_disable(rdev);
2268			if (ret < 0) {
2269				rdev_err(rdev, "failed to disable\n");
2270				_notifier_call_chain(rdev,
2271						REGULATOR_EVENT_ABORT_DISABLE,
2272						NULL);
2273				return ret;
2274			}
2275			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2276					NULL);
2277		}
2278
2279		rdev->use_count = 0;
2280	} else if (rdev->use_count > 1) {
2281		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2282			drms_uA_update(rdev);
2283
2284		rdev->use_count--;
2285	}
2286
 
 
 
 
 
 
 
 
 
2287	return ret;
2288}
2289
2290/**
2291 * regulator_disable - disable regulator output
2292 * @regulator: regulator source
2293 *
2294 * Disable the regulator output voltage or current.  Calls to
2295 * regulator_enable() must be balanced with calls to
2296 * regulator_disable().
2297 *
2298 * NOTE: this will only disable the regulator output if no other consumer
2299 * devices have it enabled, the regulator device supports disabling and
2300 * machine constraints permit this operation.
2301 */
2302int regulator_disable(struct regulator *regulator)
2303{
2304	struct regulator_dev *rdev = regulator->rdev;
2305	int ret = 0;
 
2306
2307	if (regulator->always_on)
2308		return 0;
2309
2310	mutex_lock(&rdev->mutex);
2311	ret = _regulator_disable(rdev);
2312	mutex_unlock(&rdev->mutex);
2313
2314	if (ret == 0 && rdev->supply)
2315		regulator_disable(rdev->supply);
2316
2317	return ret;
2318}
2319EXPORT_SYMBOL_GPL(regulator_disable);
2320
2321/* locks held by regulator_force_disable() */
2322static int _regulator_force_disable(struct regulator_dev *rdev)
2323{
2324	int ret = 0;
2325
2326	lockdep_assert_held_once(&rdev->mutex);
2327
2328	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2329			REGULATOR_EVENT_PRE_DISABLE, NULL);
2330	if (ret & NOTIFY_STOP_MASK)
2331		return -EINVAL;
2332
2333	ret = _regulator_do_disable(rdev);
2334	if (ret < 0) {
2335		rdev_err(rdev, "failed to force disable\n");
2336		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2337				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2338		return ret;
2339	}
2340
2341	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2342			REGULATOR_EVENT_DISABLE, NULL);
2343
2344	return 0;
2345}
2346
2347/**
2348 * regulator_force_disable - force disable regulator output
2349 * @regulator: regulator source
2350 *
2351 * Forcibly disable the regulator output voltage or current.
2352 * NOTE: this *will* disable the regulator output even if other consumer
2353 * devices have it enabled. This should be used for situations when device
2354 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2355 */
2356int regulator_force_disable(struct regulator *regulator)
2357{
2358	struct regulator_dev *rdev = regulator->rdev;
 
2359	int ret;
2360
2361	mutex_lock(&rdev->mutex);
2362	regulator->uA_load = 0;
2363	ret = _regulator_force_disable(regulator->rdev);
2364	mutex_unlock(&rdev->mutex);
2365
2366	if (rdev->supply)
2367		while (rdev->open_count--)
2368			regulator_disable(rdev->supply);
 
 
 
 
 
 
 
 
 
2369
2370	return ret;
2371}
2372EXPORT_SYMBOL_GPL(regulator_force_disable);
2373
2374static void regulator_disable_work(struct work_struct *work)
2375{
2376	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2377						  disable_work.work);
 
2378	int count, i, ret;
 
 
2379
2380	mutex_lock(&rdev->mutex);
2381
2382	BUG_ON(!rdev->deferred_disables);
 
 
 
 
 
 
2383
2384	count = rdev->deferred_disables;
2385	rdev->deferred_disables = 0;
2386
2387	for (i = 0; i < count; i++) {
2388		ret = _regulator_disable(rdev);
2389		if (ret != 0)
2390			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2391	}
2392
2393	mutex_unlock(&rdev->mutex);
 
2394
2395	if (rdev->supply) {
2396		for (i = 0; i < count; i++) {
2397			ret = regulator_disable(rdev->supply);
2398			if (ret != 0) {
2399				rdev_err(rdev,
2400					 "Supply disable failed: %d\n", ret);
2401			}
2402		}
2403	}
 
 
 
 
 
 
2404}
2405
2406/**
2407 * regulator_disable_deferred - disable regulator output with delay
2408 * @regulator: regulator source
2409 * @ms: miliseconds until the regulator is disabled
2410 *
2411 * Execute regulator_disable() on the regulator after a delay.  This
2412 * is intended for use with devices that require some time to quiesce.
2413 *
2414 * NOTE: this will only disable the regulator output if no other consumer
2415 * devices have it enabled, the regulator device supports disabling and
2416 * machine constraints permit this operation.
2417 */
2418int regulator_disable_deferred(struct regulator *regulator, int ms)
2419{
2420	struct regulator_dev *rdev = regulator->rdev;
2421
2422	if (regulator->always_on)
2423		return 0;
2424
2425	if (!ms)
2426		return regulator_disable(regulator);
2427
2428	mutex_lock(&rdev->mutex);
2429	rdev->deferred_disables++;
2430	mutex_unlock(&rdev->mutex);
 
 
2431
2432	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2433			   msecs_to_jiffies(ms));
2434	return 0;
2435}
2436EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2437
2438static int _regulator_is_enabled(struct regulator_dev *rdev)
2439{
2440	/* A GPIO control always takes precedence */
2441	if (rdev->ena_pin)
2442		return rdev->ena_gpio_state;
2443
2444	/* If we don't know then assume that the regulator is always on */
2445	if (!rdev->desc->ops->is_enabled)
2446		return 1;
2447
2448	return rdev->desc->ops->is_enabled(rdev);
2449}
2450
2451static int _regulator_list_voltage(struct regulator *regulator,
2452				    unsigned selector, int lock)
2453{
2454	struct regulator_dev *rdev = regulator->rdev;
2455	const struct regulator_ops *ops = rdev->desc->ops;
2456	int ret;
2457
2458	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2459		return rdev->desc->fixed_uV;
2460
2461	if (ops->list_voltage) {
2462		if (selector >= rdev->desc->n_voltages)
2463			return -EINVAL;
 
 
2464		if (lock)
2465			mutex_lock(&rdev->mutex);
2466		ret = ops->list_voltage(rdev, selector);
2467		if (lock)
2468			mutex_unlock(&rdev->mutex);
2469	} else if (rdev->supply) {
2470		ret = _regulator_list_voltage(rdev->supply, selector, lock);
 
2471	} else {
2472		return -EINVAL;
2473	}
2474
2475	if (ret > 0) {
2476		if (ret < rdev->constraints->min_uV)
2477			ret = 0;
2478		else if (ret > rdev->constraints->max_uV)
2479			ret = 0;
2480	}
2481
2482	return ret;
2483}
2484
2485/**
2486 * regulator_is_enabled - is the regulator output enabled
2487 * @regulator: regulator source
2488 *
2489 * Returns positive if the regulator driver backing the source/client
2490 * has requested that the device be enabled, zero if it hasn't, else a
2491 * negative errno code.
2492 *
2493 * Note that the device backing this regulator handle can have multiple
2494 * users, so it might be enabled even if regulator_enable() was never
2495 * called for this particular source.
2496 */
2497int regulator_is_enabled(struct regulator *regulator)
2498{
2499	int ret;
2500
2501	if (regulator->always_on)
2502		return 1;
2503
2504	mutex_lock(&regulator->rdev->mutex);
2505	ret = _regulator_is_enabled(regulator->rdev);
2506	mutex_unlock(&regulator->rdev->mutex);
2507
2508	return ret;
2509}
2510EXPORT_SYMBOL_GPL(regulator_is_enabled);
2511
2512/**
2513 * regulator_count_voltages - count regulator_list_voltage() selectors
2514 * @regulator: regulator source
2515 *
2516 * Returns number of selectors, or negative errno.  Selectors are
2517 * numbered starting at zero, and typically correspond to bitfields
2518 * in hardware registers.
2519 */
2520int regulator_count_voltages(struct regulator *regulator)
2521{
2522	struct regulator_dev	*rdev = regulator->rdev;
2523
2524	if (rdev->desc->n_voltages)
2525		return rdev->desc->n_voltages;
2526
2527	if (!rdev->supply)
2528		return -EINVAL;
2529
2530	return regulator_count_voltages(rdev->supply);
2531}
2532EXPORT_SYMBOL_GPL(regulator_count_voltages);
2533
2534/**
2535 * regulator_list_voltage - enumerate supported voltages
2536 * @regulator: regulator source
2537 * @selector: identify voltage to list
2538 * Context: can sleep
2539 *
2540 * Returns a voltage that can be passed to @regulator_set_voltage(),
2541 * zero if this selector code can't be used on this system, or a
2542 * negative errno.
2543 */
2544int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2545{
2546	return _regulator_list_voltage(regulator, selector, 1);
2547}
2548EXPORT_SYMBOL_GPL(regulator_list_voltage);
2549
2550/**
2551 * regulator_get_regmap - get the regulator's register map
2552 * @regulator: regulator source
2553 *
2554 * Returns the register map for the given regulator, or an ERR_PTR value
2555 * if the regulator doesn't use regmap.
2556 */
2557struct regmap *regulator_get_regmap(struct regulator *regulator)
2558{
2559	struct regmap *map = regulator->rdev->regmap;
2560
2561	return map ? map : ERR_PTR(-EOPNOTSUPP);
2562}
2563
2564/**
2565 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2566 * @regulator: regulator source
2567 * @vsel_reg: voltage selector register, output parameter
2568 * @vsel_mask: mask for voltage selector bitfield, output parameter
2569 *
2570 * Returns the hardware register offset and bitmask used for setting the
2571 * regulator voltage. This might be useful when configuring voltage-scaling
2572 * hardware or firmware that can make I2C requests behind the kernel's back,
2573 * for example.
2574 *
2575 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2576 * and 0 is returned, otherwise a negative errno is returned.
2577 */
2578int regulator_get_hardware_vsel_register(struct regulator *regulator,
2579					 unsigned *vsel_reg,
2580					 unsigned *vsel_mask)
2581{
2582	struct regulator_dev *rdev = regulator->rdev;
2583	const struct regulator_ops *ops = rdev->desc->ops;
2584
2585	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2586		return -EOPNOTSUPP;
2587
2588	 *vsel_reg = rdev->desc->vsel_reg;
2589	 *vsel_mask = rdev->desc->vsel_mask;
2590
2591	 return 0;
2592}
2593EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2594
2595/**
2596 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2597 * @regulator: regulator source
2598 * @selector: identify voltage to list
2599 *
2600 * Converts the selector to a hardware-specific voltage selector that can be
2601 * directly written to the regulator registers. The address of the voltage
2602 * register can be determined by calling @regulator_get_hardware_vsel_register.
2603 *
2604 * On error a negative errno is returned.
2605 */
2606int regulator_list_hardware_vsel(struct regulator *regulator,
2607				 unsigned selector)
2608{
2609	struct regulator_dev *rdev = regulator->rdev;
2610	const struct regulator_ops *ops = rdev->desc->ops;
2611
2612	if (selector >= rdev->desc->n_voltages)
2613		return -EINVAL;
 
 
2614	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2615		return -EOPNOTSUPP;
2616
2617	return selector;
2618}
2619EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2620
2621/**
2622 * regulator_get_linear_step - return the voltage step size between VSEL values
2623 * @regulator: regulator source
2624 *
2625 * Returns the voltage step size between VSEL values for linear
2626 * regulators, or return 0 if the regulator isn't a linear regulator.
2627 */
2628unsigned int regulator_get_linear_step(struct regulator *regulator)
2629{
2630	struct regulator_dev *rdev = regulator->rdev;
2631
2632	return rdev->desc->uV_step;
2633}
2634EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2635
2636/**
2637 * regulator_is_supported_voltage - check if a voltage range can be supported
2638 *
2639 * @regulator: Regulator to check.
2640 * @min_uV: Minimum required voltage in uV.
2641 * @max_uV: Maximum required voltage in uV.
2642 *
2643 * Returns a boolean or a negative error code.
2644 */
2645int regulator_is_supported_voltage(struct regulator *regulator,
2646				   int min_uV, int max_uV)
2647{
2648	struct regulator_dev *rdev = regulator->rdev;
2649	int i, voltages, ret;
2650
2651	/* If we can't change voltage check the current voltage */
2652	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2653		ret = regulator_get_voltage(regulator);
2654		if (ret >= 0)
2655			return min_uV <= ret && ret <= max_uV;
2656		else
2657			return ret;
2658	}
2659
2660	/* Any voltage within constrains range is fine? */
2661	if (rdev->desc->continuous_voltage_range)
2662		return min_uV >= rdev->constraints->min_uV &&
2663				max_uV <= rdev->constraints->max_uV;
2664
2665	ret = regulator_count_voltages(regulator);
2666	if (ret < 0)
2667		return ret;
2668	voltages = ret;
2669
2670	for (i = 0; i < voltages; i++) {
2671		ret = regulator_list_voltage(regulator, i);
2672
2673		if (ret >= min_uV && ret <= max_uV)
2674			return 1;
2675	}
2676
2677	return 0;
2678}
2679EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2680
2681static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2682				 int max_uV)
2683{
2684	const struct regulator_desc *desc = rdev->desc;
2685
2686	if (desc->ops->map_voltage)
2687		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2688
2689	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2690		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2691
2692	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2693		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2694
 
 
 
 
 
2695	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2696}
2697
2698static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2699				       int min_uV, int max_uV,
2700				       unsigned *selector)
2701{
2702	struct pre_voltage_change_data data;
2703	int ret;
2704
2705	data.old_uV = _regulator_get_voltage(rdev);
2706	data.min_uV = min_uV;
2707	data.max_uV = max_uV;
2708	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2709				   &data);
2710	if (ret & NOTIFY_STOP_MASK)
2711		return -EINVAL;
2712
2713	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2714	if (ret >= 0)
2715		return ret;
2716
2717	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2718			     (void *)data.old_uV);
2719
2720	return ret;
2721}
2722
2723static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2724					   int uV, unsigned selector)
2725{
2726	struct pre_voltage_change_data data;
2727	int ret;
2728
2729	data.old_uV = _regulator_get_voltage(rdev);
2730	data.min_uV = uV;
2731	data.max_uV = uV;
2732	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2733				   &data);
2734	if (ret & NOTIFY_STOP_MASK)
2735		return -EINVAL;
2736
2737	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2738	if (ret >= 0)
2739		return ret;
2740
2741	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2742			     (void *)data.old_uV);
2743
2744	return ret;
2745}
2746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2747static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2748				       int old_uV, int new_uV)
2749{
2750	unsigned int ramp_delay = 0;
2751
2752	if (rdev->constraints->ramp_delay)
2753		ramp_delay = rdev->constraints->ramp_delay;
2754	else if (rdev->desc->ramp_delay)
2755		ramp_delay = rdev->desc->ramp_delay;
 
 
 
 
 
 
 
 
2756
2757	if (ramp_delay == 0) {
2758		rdev_dbg(rdev, "ramp_delay not set\n");
2759		return 0;
2760	}
2761
2762	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2763}
2764
2765static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2766				     int min_uV, int max_uV)
2767{
2768	int ret;
2769	int delay = 0;
2770	int best_val = 0;
2771	unsigned int selector;
2772	int old_selector = -1;
2773	const struct regulator_ops *ops = rdev->desc->ops;
2774	int old_uV = _regulator_get_voltage(rdev);
2775
2776	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2777
2778	min_uV += rdev->constraints->uV_offset;
2779	max_uV += rdev->constraints->uV_offset;
2780
2781	/*
2782	 * If we can't obtain the old selector there is not enough
2783	 * info to call set_voltage_time_sel().
2784	 */
2785	if (_regulator_is_enabled(rdev) &&
2786	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
2787		old_selector = ops->get_voltage_sel(rdev);
2788		if (old_selector < 0)
2789			return old_selector;
2790	}
2791
2792	if (ops->set_voltage) {
2793		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2794						  &selector);
2795
2796		if (ret >= 0) {
2797			if (ops->list_voltage)
2798				best_val = ops->list_voltage(rdev,
2799							     selector);
2800			else
2801				best_val = _regulator_get_voltage(rdev);
2802		}
2803
2804	} else if (ops->set_voltage_sel) {
2805		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2806		if (ret >= 0) {
2807			best_val = ops->list_voltage(rdev, ret);
2808			if (min_uV <= best_val && max_uV >= best_val) {
2809				selector = ret;
2810				if (old_selector == selector)
2811					ret = 0;
 
 
 
2812				else
2813					ret = _regulator_call_set_voltage_sel(
2814						rdev, best_val, selector);
2815			} else {
2816				ret = -EINVAL;
2817			}
2818		}
2819	} else {
2820		ret = -EINVAL;
2821	}
2822
2823	if (ret)
2824		goto out;
2825
2826	if (ops->set_voltage_time_sel) {
2827		/*
2828		 * Call set_voltage_time_sel if successfully obtained
2829		 * old_selector
2830		 */
2831		if (old_selector >= 0 && old_selector != selector)
2832			delay = ops->set_voltage_time_sel(rdev, old_selector,
2833							  selector);
2834	} else {
2835		if (old_uV != best_val) {
2836			if (ops->set_voltage_time)
2837				delay = ops->set_voltage_time(rdev, old_uV,
2838							      best_val);
2839			else
2840				delay = _regulator_set_voltage_time(rdev,
2841								    old_uV,
2842								    best_val);
2843		}
2844	}
2845
2846	if (delay < 0) {
2847		rdev_warn(rdev, "failed to get delay: %d\n", delay);
2848		delay = 0;
2849	}
2850
2851	/* Insert any necessary delays */
2852	if (delay >= 1000) {
2853		mdelay(delay / 1000);
2854		udelay(delay % 1000);
2855	} else if (delay) {
2856		udelay(delay);
2857	}
2858
2859	if (best_val >= 0) {
2860		unsigned long data = best_val;
2861
2862		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2863				     (void *)data);
2864	}
2865
2866out:
2867	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2868
2869	return ret;
2870}
2871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2872static int regulator_set_voltage_unlocked(struct regulator *regulator,
2873					  int min_uV, int max_uV)
 
2874{
2875	struct regulator_dev *rdev = regulator->rdev;
 
2876	int ret = 0;
2877	int old_min_uV, old_max_uV;
2878	int current_uV;
2879	int best_supply_uV = 0;
2880	int supply_change_uV = 0;
2881
2882	/* If we're setting the same range as last time the change
2883	 * should be a noop (some cpufreq implementations use the same
2884	 * voltage for multiple frequencies, for example).
2885	 */
2886	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2887		goto out;
2888
2889	/* If we're trying to set a range that overlaps the current voltage,
2890	 * return successfully even though the regulator does not support
2891	 * changing the voltage.
2892	 */
2893	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2894		current_uV = _regulator_get_voltage(rdev);
2895		if (min_uV <= current_uV && current_uV <= max_uV) {
2896			regulator->min_uV = min_uV;
2897			regulator->max_uV = max_uV;
2898			goto out;
2899		}
2900	}
2901
2902	/* sanity check */
2903	if (!rdev->desc->ops->set_voltage &&
2904	    !rdev->desc->ops->set_voltage_sel) {
2905		ret = -EINVAL;
2906		goto out;
2907	}
2908
2909	/* constraints check */
2910	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2911	if (ret < 0)
2912		goto out;
2913
2914	/* restore original values in case of error */
2915	old_min_uV = regulator->min_uV;
2916	old_max_uV = regulator->max_uV;
2917	regulator->min_uV = min_uV;
2918	regulator->max_uV = max_uV;
2919
2920	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2921	if (ret < 0)
2922		goto out2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2923
2924	if (rdev->supply && (rdev->desc->min_dropout_uV ||
2925				!rdev->desc->ops->get_voltage)) {
 
 
 
2926		int current_supply_uV;
2927		int selector;
2928
2929		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2930		if (selector < 0) {
2931			ret = selector;
2932			goto out2;
2933		}
2934
2935		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2936		if (best_supply_uV < 0) {
2937			ret = best_supply_uV;
2938			goto out2;
2939		}
2940
2941		best_supply_uV += rdev->desc->min_dropout_uV;
2942
2943		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2944		if (current_supply_uV < 0) {
2945			ret = current_supply_uV;
2946			goto out2;
2947		}
2948
2949		supply_change_uV = best_supply_uV - current_supply_uV;
2950	}
2951
2952	if (supply_change_uV > 0) {
2953		ret = regulator_set_voltage_unlocked(rdev->supply,
2954				best_supply_uV, INT_MAX);
2955		if (ret) {
2956			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2957					ret);
2958			goto out2;
2959		}
2960	}
2961
2962	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
 
 
 
 
2963	if (ret < 0)
2964		goto out2;
2965
2966	if (supply_change_uV < 0) {
2967		ret = regulator_set_voltage_unlocked(rdev->supply,
2968				best_supply_uV, INT_MAX);
2969		if (ret)
2970			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2971					ret);
2972		/* No need to fail here */
2973		ret = 0;
2974	}
2975
2976out:
2977	return ret;
2978out2:
2979	regulator->min_uV = old_min_uV;
2980	regulator->max_uV = old_max_uV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2982	return ret;
2983}
2984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2985/**
2986 * regulator_set_voltage - set regulator output voltage
2987 * @regulator: regulator source
2988 * @min_uV: Minimum required voltage in uV
2989 * @max_uV: Maximum acceptable voltage in uV
2990 *
2991 * Sets a voltage regulator to the desired output voltage. This can be set
2992 * during any regulator state. IOW, regulator can be disabled or enabled.
2993 *
2994 * If the regulator is enabled then the voltage will change to the new value
2995 * immediately otherwise if the regulator is disabled the regulator will
2996 * output at the new voltage when enabled.
2997 *
2998 * NOTE: If the regulator is shared between several devices then the lowest
2999 * request voltage that meets the system constraints will be used.
3000 * Regulator system constraints must be set for this regulator before
3001 * calling this function otherwise this call will fail.
3002 */
3003int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3004{
3005	int ret = 0;
 
3006
3007	regulator_lock_supply(regulator->rdev);
3008
3009	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
 
3010
3011	regulator_unlock_supply(regulator->rdev);
3012
3013	return ret;
3014}
3015EXPORT_SYMBOL_GPL(regulator_set_voltage);
3016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3017/**
3018 * regulator_set_voltage_time - get raise/fall time
3019 * @regulator: regulator source
3020 * @old_uV: starting voltage in microvolts
3021 * @new_uV: target voltage in microvolts
3022 *
3023 * Provided with the starting and ending voltage, this function attempts to
3024 * calculate the time in microseconds required to rise or fall to this new
3025 * voltage.
3026 */
3027int regulator_set_voltage_time(struct regulator *regulator,
3028			       int old_uV, int new_uV)
3029{
3030	struct regulator_dev *rdev = regulator->rdev;
3031	const struct regulator_ops *ops = rdev->desc->ops;
3032	int old_sel = -1;
3033	int new_sel = -1;
3034	int voltage;
3035	int i;
3036
3037	if (ops->set_voltage_time)
3038		return ops->set_voltage_time(rdev, old_uV, new_uV);
3039	else if (!ops->set_voltage_time_sel)
3040		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3041
3042	/* Currently requires operations to do this */
3043	if (!ops->list_voltage || !rdev->desc->n_voltages)
3044		return -EINVAL;
3045
3046	for (i = 0; i < rdev->desc->n_voltages; i++) {
3047		/* We only look for exact voltage matches here */
 
 
 
 
 
 
3048		voltage = regulator_list_voltage(regulator, i);
3049		if (voltage < 0)
3050			return -EINVAL;
3051		if (voltage == 0)
3052			continue;
3053		if (voltage == old_uV)
3054			old_sel = i;
3055		if (voltage == new_uV)
3056			new_sel = i;
3057	}
3058
3059	if (old_sel < 0 || new_sel < 0)
3060		return -EINVAL;
3061
3062	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3063}
3064EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3065
3066/**
3067 * regulator_set_voltage_time_sel - get raise/fall time
3068 * @rdev: regulator source device
3069 * @old_selector: selector for starting voltage
3070 * @new_selector: selector for target voltage
3071 *
3072 * Provided with the starting and target voltage selectors, this function
3073 * returns time in microseconds required to rise or fall to this new voltage
3074 *
3075 * Drivers providing ramp_delay in regulation_constraints can use this as their
3076 * set_voltage_time_sel() operation.
3077 */
3078int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3079				   unsigned int old_selector,
3080				   unsigned int new_selector)
3081{
3082	int old_volt, new_volt;
3083
3084	/* sanity check */
3085	if (!rdev->desc->ops->list_voltage)
3086		return -EINVAL;
3087
3088	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3089	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3090
3091	if (rdev->desc->ops->set_voltage_time)
3092		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3093							 new_volt);
3094	else
3095		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3096}
3097EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3098
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3099/**
3100 * regulator_sync_voltage - re-apply last regulator output voltage
3101 * @regulator: regulator source
3102 *
3103 * Re-apply the last configured voltage.  This is intended to be used
3104 * where some external control source the consumer is cooperating with
3105 * has caused the configured voltage to change.
3106 */
3107int regulator_sync_voltage(struct regulator *regulator)
3108{
3109	struct regulator_dev *rdev = regulator->rdev;
 
3110	int ret, min_uV, max_uV;
3111
3112	mutex_lock(&rdev->mutex);
 
 
 
3113
3114	if (!rdev->desc->ops->set_voltage &&
3115	    !rdev->desc->ops->set_voltage_sel) {
3116		ret = -EINVAL;
3117		goto out;
3118	}
3119
3120	/* This is only going to work if we've had a voltage configured. */
3121	if (!regulator->min_uV && !regulator->max_uV) {
3122		ret = -EINVAL;
3123		goto out;
3124	}
3125
3126	min_uV = regulator->min_uV;
3127	max_uV = regulator->max_uV;
3128
3129	/* This should be a paranoia check... */
3130	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3131	if (ret < 0)
3132		goto out;
3133
3134	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3135	if (ret < 0)
3136		goto out;
3137
3138	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
 
 
 
 
3139
3140out:
3141	mutex_unlock(&rdev->mutex);
3142	return ret;
3143}
3144EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3145
3146static int _regulator_get_voltage(struct regulator_dev *rdev)
3147{
3148	int sel, ret;
3149	bool bypassed;
3150
3151	if (rdev->desc->ops->get_bypass) {
3152		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3153		if (ret < 0)
3154			return ret;
3155		if (bypassed) {
3156			/* if bypassed the regulator must have a supply */
3157			if (!rdev->supply) {
3158				rdev_err(rdev,
3159					 "bypassed regulator has no supply!\n");
3160				return -EPROBE_DEFER;
3161			}
3162
3163			return _regulator_get_voltage(rdev->supply->rdev);
3164		}
3165	}
3166
3167	if (rdev->desc->ops->get_voltage_sel) {
3168		sel = rdev->desc->ops->get_voltage_sel(rdev);
3169		if (sel < 0)
3170			return sel;
3171		ret = rdev->desc->ops->list_voltage(rdev, sel);
3172	} else if (rdev->desc->ops->get_voltage) {
3173		ret = rdev->desc->ops->get_voltage(rdev);
3174	} else if (rdev->desc->ops->list_voltage) {
3175		ret = rdev->desc->ops->list_voltage(rdev, 0);
3176	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3177		ret = rdev->desc->fixed_uV;
3178	} else if (rdev->supply) {
3179		ret = _regulator_get_voltage(rdev->supply->rdev);
 
 
3180	} else {
3181		return -EINVAL;
3182	}
3183
3184	if (ret < 0)
3185		return ret;
3186	return ret - rdev->constraints->uV_offset;
3187}
 
3188
3189/**
3190 * regulator_get_voltage - get regulator output voltage
3191 * @regulator: regulator source
3192 *
3193 * This returns the current regulator voltage in uV.
3194 *
3195 * NOTE: If the regulator is disabled it will return the voltage value. This
3196 * function should not be used to determine regulator state.
3197 */
3198int regulator_get_voltage(struct regulator *regulator)
3199{
 
3200	int ret;
3201
3202	regulator_lock_supply(regulator->rdev);
3203
3204	ret = _regulator_get_voltage(regulator->rdev);
3205
3206	regulator_unlock_supply(regulator->rdev);
3207
3208	return ret;
3209}
3210EXPORT_SYMBOL_GPL(regulator_get_voltage);
3211
3212/**
3213 * regulator_set_current_limit - set regulator output current limit
3214 * @regulator: regulator source
3215 * @min_uA: Minimum supported current in uA
3216 * @max_uA: Maximum supported current in uA
3217 *
3218 * Sets current sink to the desired output current. This can be set during
3219 * any regulator state. IOW, regulator can be disabled or enabled.
3220 *
3221 * If the regulator is enabled then the current will change to the new value
3222 * immediately otherwise if the regulator is disabled the regulator will
3223 * output at the new current when enabled.
3224 *
3225 * NOTE: Regulator system constraints must be set for this regulator before
3226 * calling this function otherwise this call will fail.
3227 */
3228int regulator_set_current_limit(struct regulator *regulator,
3229			       int min_uA, int max_uA)
3230{
3231	struct regulator_dev *rdev = regulator->rdev;
3232	int ret;
3233
3234	mutex_lock(&rdev->mutex);
3235
3236	/* sanity check */
3237	if (!rdev->desc->ops->set_current_limit) {
3238		ret = -EINVAL;
3239		goto out;
3240	}
3241
3242	/* constraints check */
3243	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3244	if (ret < 0)
3245		goto out;
3246
3247	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3248out:
3249	mutex_unlock(&rdev->mutex);
3250	return ret;
3251}
3252EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3253
 
 
 
 
 
 
 
 
 
3254static int _regulator_get_current_limit(struct regulator_dev *rdev)
3255{
3256	int ret;
3257
3258	mutex_lock(&rdev->mutex);
3259
3260	/* sanity check */
3261	if (!rdev->desc->ops->get_current_limit) {
3262		ret = -EINVAL;
3263		goto out;
3264	}
3265
3266	ret = rdev->desc->ops->get_current_limit(rdev);
3267out:
3268	mutex_unlock(&rdev->mutex);
3269	return ret;
3270}
3271
3272/**
3273 * regulator_get_current_limit - get regulator output current
3274 * @regulator: regulator source
3275 *
3276 * This returns the current supplied by the specified current sink in uA.
3277 *
3278 * NOTE: If the regulator is disabled it will return the current value. This
3279 * function should not be used to determine regulator state.
3280 */
3281int regulator_get_current_limit(struct regulator *regulator)
3282{
3283	return _regulator_get_current_limit(regulator->rdev);
3284}
3285EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3286
3287/**
3288 * regulator_set_mode - set regulator operating mode
3289 * @regulator: regulator source
3290 * @mode: operating mode - one of the REGULATOR_MODE constants
3291 *
3292 * Set regulator operating mode to increase regulator efficiency or improve
3293 * regulation performance.
3294 *
3295 * NOTE: Regulator system constraints must be set for this regulator before
3296 * calling this function otherwise this call will fail.
3297 */
3298int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3299{
3300	struct regulator_dev *rdev = regulator->rdev;
3301	int ret;
3302	int regulator_curr_mode;
3303
3304	mutex_lock(&rdev->mutex);
3305
3306	/* sanity check */
3307	if (!rdev->desc->ops->set_mode) {
3308		ret = -EINVAL;
3309		goto out;
3310	}
3311
3312	/* return if the same mode is requested */
3313	if (rdev->desc->ops->get_mode) {
3314		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3315		if (regulator_curr_mode == mode) {
3316			ret = 0;
3317			goto out;
3318		}
3319	}
3320
3321	/* constraints check */
3322	ret = regulator_mode_constrain(rdev, &mode);
3323	if (ret < 0)
3324		goto out;
3325
3326	ret = rdev->desc->ops->set_mode(rdev, mode);
3327out:
3328	mutex_unlock(&rdev->mutex);
3329	return ret;
3330}
3331EXPORT_SYMBOL_GPL(regulator_set_mode);
3332
 
 
 
 
 
 
 
 
 
3333static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3334{
3335	int ret;
3336
3337	mutex_lock(&rdev->mutex);
 
 
3338
3339	/* sanity check */
3340	if (!rdev->desc->ops->get_mode) {
3341		ret = -EINVAL;
3342		goto out;
3343	}
3344
3345	ret = rdev->desc->ops->get_mode(rdev);
3346out:
3347	mutex_unlock(&rdev->mutex);
3348	return ret;
3349}
3350
3351/**
3352 * regulator_get_mode - get regulator operating mode
3353 * @regulator: regulator source
3354 *
3355 * Get the current regulator operating mode.
3356 */
3357unsigned int regulator_get_mode(struct regulator *regulator)
3358{
3359	return _regulator_get_mode(regulator->rdev);
3360}
3361EXPORT_SYMBOL_GPL(regulator_get_mode);
3362
 
 
 
 
 
 
 
 
 
 
 
 
3363static int _regulator_get_error_flags(struct regulator_dev *rdev,
3364					unsigned int *flags)
3365{
3366	int ret;
 
 
3367
3368	mutex_lock(&rdev->mutex);
3369
3370	/* sanity check */
3371	if (!rdev->desc->ops->get_error_flags) {
 
3372		ret = -EINVAL;
3373		goto out;
3374	}
3375
3376	ret = rdev->desc->ops->get_error_flags(rdev, flags);
3377out:
3378	mutex_unlock(&rdev->mutex);
 
3379	return ret;
3380}
3381
3382/**
3383 * regulator_get_error_flags - get regulator error information
3384 * @regulator: regulator source
3385 * @flags: pointer to store error flags
3386 *
3387 * Get the current regulator error information.
3388 */
3389int regulator_get_error_flags(struct regulator *regulator,
3390				unsigned int *flags)
3391{
3392	return _regulator_get_error_flags(regulator->rdev, flags);
3393}
3394EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3395
3396/**
3397 * regulator_set_load - set regulator load
3398 * @regulator: regulator source
3399 * @uA_load: load current
3400 *
3401 * Notifies the regulator core of a new device load. This is then used by
3402 * DRMS (if enabled by constraints) to set the most efficient regulator
3403 * operating mode for the new regulator loading.
3404 *
3405 * Consumer devices notify their supply regulator of the maximum power
3406 * they will require (can be taken from device datasheet in the power
3407 * consumption tables) when they change operational status and hence power
3408 * state. Examples of operational state changes that can affect power
3409 * consumption are :-
3410 *
3411 *    o Device is opened / closed.
3412 *    o Device I/O is about to begin or has just finished.
3413 *    o Device is idling in between work.
3414 *
3415 * This information is also exported via sysfs to userspace.
3416 *
3417 * DRMS will sum the total requested load on the regulator and change
3418 * to the most efficient operating mode if platform constraints allow.
3419 *
 
 
 
 
 
 
 
 
3420 * On error a negative errno is returned.
3421 */
3422int regulator_set_load(struct regulator *regulator, int uA_load)
3423{
3424	struct regulator_dev *rdev = regulator->rdev;
3425	int ret;
 
3426
3427	mutex_lock(&rdev->mutex);
 
3428	regulator->uA_load = uA_load;
3429	ret = drms_uA_update(rdev);
3430	mutex_unlock(&rdev->mutex);
 
 
 
 
3431
3432	return ret;
3433}
3434EXPORT_SYMBOL_GPL(regulator_set_load);
3435
3436/**
3437 * regulator_allow_bypass - allow the regulator to go into bypass mode
3438 *
3439 * @regulator: Regulator to configure
3440 * @enable: enable or disable bypass mode
3441 *
3442 * Allow the regulator to go into bypass mode if all other consumers
3443 * for the regulator also enable bypass mode and the machine
3444 * constraints allow this.  Bypass mode means that the regulator is
3445 * simply passing the input directly to the output with no regulation.
3446 */
3447int regulator_allow_bypass(struct regulator *regulator, bool enable)
3448{
3449	struct regulator_dev *rdev = regulator->rdev;
 
3450	int ret = 0;
3451
3452	if (!rdev->desc->ops->set_bypass)
3453		return 0;
3454
3455	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3456		return 0;
3457
3458	mutex_lock(&rdev->mutex);
3459
3460	if (enable && !regulator->bypass) {
3461		rdev->bypass_count++;
3462
3463		if (rdev->bypass_count == rdev->open_count) {
 
 
3464			ret = rdev->desc->ops->set_bypass(rdev, enable);
3465			if (ret != 0)
3466				rdev->bypass_count--;
 
 
3467		}
3468
3469	} else if (!enable && regulator->bypass) {
3470		rdev->bypass_count--;
3471
3472		if (rdev->bypass_count != rdev->open_count) {
 
 
3473			ret = rdev->desc->ops->set_bypass(rdev, enable);
3474			if (ret != 0)
3475				rdev->bypass_count++;
 
 
3476		}
3477	}
3478
3479	if (ret == 0)
3480		regulator->bypass = enable;
3481
3482	mutex_unlock(&rdev->mutex);
3483
3484	return ret;
3485}
3486EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3487
3488/**
3489 * regulator_register_notifier - register regulator event notifier
3490 * @regulator: regulator source
3491 * @nb: notifier block
3492 *
3493 * Register notifier block to receive regulator events.
3494 */
3495int regulator_register_notifier(struct regulator *regulator,
3496			      struct notifier_block *nb)
3497{
3498	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3499						nb);
3500}
3501EXPORT_SYMBOL_GPL(regulator_register_notifier);
3502
3503/**
3504 * regulator_unregister_notifier - unregister regulator event notifier
3505 * @regulator: regulator source
3506 * @nb: notifier block
3507 *
3508 * Unregister regulator event notifier block.
3509 */
3510int regulator_unregister_notifier(struct regulator *regulator,
3511				struct notifier_block *nb)
3512{
3513	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3514						  nb);
3515}
3516EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3517
3518/* notify regulator consumers and downstream regulator consumers.
3519 * Note mutex must be held by caller.
3520 */
3521static int _notifier_call_chain(struct regulator_dev *rdev,
3522				  unsigned long event, void *data)
3523{
3524	/* call rdev chain first */
3525	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3526}
3527
3528/**
3529 * regulator_bulk_get - get multiple regulator consumers
3530 *
3531 * @dev:           Device to supply
3532 * @num_consumers: Number of consumers to register
3533 * @consumers:     Configuration of consumers; clients are stored here.
3534 *
3535 * @return 0 on success, an errno on failure.
3536 *
3537 * This helper function allows drivers to get several regulator
3538 * consumers in one operation.  If any of the regulators cannot be
3539 * acquired then any regulators that were allocated will be freed
3540 * before returning to the caller.
3541 */
3542int regulator_bulk_get(struct device *dev, int num_consumers,
3543		       struct regulator_bulk_data *consumers)
3544{
3545	int i;
3546	int ret;
3547
3548	for (i = 0; i < num_consumers; i++)
3549		consumers[i].consumer = NULL;
3550
3551	for (i = 0; i < num_consumers; i++) {
3552		consumers[i].consumer = regulator_get(dev,
3553						      consumers[i].supply);
3554		if (IS_ERR(consumers[i].consumer)) {
3555			ret = PTR_ERR(consumers[i].consumer);
3556			dev_err(dev, "Failed to get supply '%s': %d\n",
3557				consumers[i].supply, ret);
3558			consumers[i].consumer = NULL;
3559			goto err;
3560		}
 
 
 
 
 
 
 
 
 
3561	}
3562
3563	return 0;
3564
3565err:
3566	while (--i >= 0)
3567		regulator_put(consumers[i].consumer);
3568
3569	return ret;
3570}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3571EXPORT_SYMBOL_GPL(regulator_bulk_get);
3572
3573static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3574{
3575	struct regulator_bulk_data *bulk = data;
3576
3577	bulk->ret = regulator_enable(bulk->consumer);
3578}
3579
3580/**
3581 * regulator_bulk_enable - enable multiple regulator consumers
3582 *
3583 * @num_consumers: Number of consumers
3584 * @consumers:     Consumer data; clients are stored here.
3585 * @return         0 on success, an errno on failure
3586 *
3587 * This convenience API allows consumers to enable multiple regulator
3588 * clients in a single API call.  If any consumers cannot be enabled
3589 * then any others that were enabled will be disabled again prior to
3590 * return.
3591 */
3592int regulator_bulk_enable(int num_consumers,
3593			  struct regulator_bulk_data *consumers)
3594{
3595	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3596	int i;
3597	int ret = 0;
3598
3599	for (i = 0; i < num_consumers; i++) {
3600		if (consumers[i].consumer->always_on)
3601			consumers[i].ret = 0;
3602		else
3603			async_schedule_domain(regulator_bulk_enable_async,
3604					      &consumers[i], &async_domain);
3605	}
3606
3607	async_synchronize_full_domain(&async_domain);
3608
3609	/* If any consumer failed we need to unwind any that succeeded */
3610	for (i = 0; i < num_consumers; i++) {
3611		if (consumers[i].ret != 0) {
3612			ret = consumers[i].ret;
3613			goto err;
3614		}
3615	}
3616
3617	return 0;
3618
3619err:
3620	for (i = 0; i < num_consumers; i++) {
3621		if (consumers[i].ret < 0)
3622			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3623			       consumers[i].ret);
3624		else
3625			regulator_disable(consumers[i].consumer);
3626	}
3627
3628	return ret;
3629}
3630EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3631
3632/**
3633 * regulator_bulk_disable - disable multiple regulator consumers
3634 *
3635 * @num_consumers: Number of consumers
3636 * @consumers:     Consumer data; clients are stored here.
3637 * @return         0 on success, an errno on failure
3638 *
3639 * This convenience API allows consumers to disable multiple regulator
3640 * clients in a single API call.  If any consumers cannot be disabled
3641 * then any others that were disabled will be enabled again prior to
3642 * return.
3643 */
3644int regulator_bulk_disable(int num_consumers,
3645			   struct regulator_bulk_data *consumers)
3646{
3647	int i;
3648	int ret, r;
3649
3650	for (i = num_consumers - 1; i >= 0; --i) {
3651		ret = regulator_disable(consumers[i].consumer);
3652		if (ret != 0)
3653			goto err;
3654	}
3655
3656	return 0;
3657
3658err:
3659	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3660	for (++i; i < num_consumers; ++i) {
3661		r = regulator_enable(consumers[i].consumer);
3662		if (r != 0)
3663			pr_err("Failed to reename %s: %d\n",
3664			       consumers[i].supply, r);
3665	}
3666
3667	return ret;
3668}
3669EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3670
3671/**
3672 * regulator_bulk_force_disable - force disable multiple regulator consumers
3673 *
3674 * @num_consumers: Number of consumers
3675 * @consumers:     Consumer data; clients are stored here.
3676 * @return         0 on success, an errno on failure
3677 *
3678 * This convenience API allows consumers to forcibly disable multiple regulator
3679 * clients in a single API call.
3680 * NOTE: This should be used for situations when device damage will
3681 * likely occur if the regulators are not disabled (e.g. over temp).
3682 * Although regulator_force_disable function call for some consumers can
3683 * return error numbers, the function is called for all consumers.
3684 */
3685int regulator_bulk_force_disable(int num_consumers,
3686			   struct regulator_bulk_data *consumers)
3687{
3688	int i;
3689	int ret;
3690
3691	for (i = 0; i < num_consumers; i++)
3692		consumers[i].ret =
3693			    regulator_force_disable(consumers[i].consumer);
3694
3695	for (i = 0; i < num_consumers; i++) {
3696		if (consumers[i].ret != 0) {
3697			ret = consumers[i].ret;
3698			goto out;
3699		}
3700	}
3701
3702	return 0;
3703out:
3704	return ret;
3705}
3706EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3707
3708/**
3709 * regulator_bulk_free - free multiple regulator consumers
3710 *
3711 * @num_consumers: Number of consumers
3712 * @consumers:     Consumer data; clients are stored here.
3713 *
3714 * This convenience API allows consumers to free multiple regulator
3715 * clients in a single API call.
3716 */
3717void regulator_bulk_free(int num_consumers,
3718			 struct regulator_bulk_data *consumers)
3719{
3720	int i;
3721
3722	for (i = 0; i < num_consumers; i++) {
3723		regulator_put(consumers[i].consumer);
3724		consumers[i].consumer = NULL;
3725	}
3726}
3727EXPORT_SYMBOL_GPL(regulator_bulk_free);
3728
3729/**
3730 * regulator_notifier_call_chain - call regulator event notifier
3731 * @rdev: regulator source
3732 * @event: notifier block
3733 * @data: callback-specific data.
3734 *
3735 * Called by regulator drivers to notify clients a regulator event has
3736 * occurred. We also notify regulator clients downstream.
3737 * Note lock must be held by caller.
3738 */
3739int regulator_notifier_call_chain(struct regulator_dev *rdev,
3740				  unsigned long event, void *data)
3741{
3742	lockdep_assert_held_once(&rdev->mutex);
3743
3744	_notifier_call_chain(rdev, event, data);
3745	return NOTIFY_DONE;
3746
3747}
3748EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3749
3750/**
3751 * regulator_mode_to_status - convert a regulator mode into a status
3752 *
3753 * @mode: Mode to convert
3754 *
3755 * Convert a regulator mode into a status.
3756 */
3757int regulator_mode_to_status(unsigned int mode)
3758{
3759	switch (mode) {
3760	case REGULATOR_MODE_FAST:
3761		return REGULATOR_STATUS_FAST;
3762	case REGULATOR_MODE_NORMAL:
3763		return REGULATOR_STATUS_NORMAL;
3764	case REGULATOR_MODE_IDLE:
3765		return REGULATOR_STATUS_IDLE;
3766	case REGULATOR_MODE_STANDBY:
3767		return REGULATOR_STATUS_STANDBY;
3768	default:
3769		return REGULATOR_STATUS_UNDEFINED;
3770	}
3771}
3772EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3773
3774static struct attribute *regulator_dev_attrs[] = {
3775	&dev_attr_name.attr,
3776	&dev_attr_num_users.attr,
3777	&dev_attr_type.attr,
3778	&dev_attr_microvolts.attr,
3779	&dev_attr_microamps.attr,
3780	&dev_attr_opmode.attr,
3781	&dev_attr_state.attr,
3782	&dev_attr_status.attr,
3783	&dev_attr_bypass.attr,
3784	&dev_attr_requested_microamps.attr,
3785	&dev_attr_min_microvolts.attr,
3786	&dev_attr_max_microvolts.attr,
3787	&dev_attr_min_microamps.attr,
3788	&dev_attr_max_microamps.attr,
 
 
 
 
 
 
 
 
 
3789	&dev_attr_suspend_standby_state.attr,
3790	&dev_attr_suspend_mem_state.attr,
3791	&dev_attr_suspend_disk_state.attr,
3792	&dev_attr_suspend_standby_microvolts.attr,
3793	&dev_attr_suspend_mem_microvolts.attr,
3794	&dev_attr_suspend_disk_microvolts.attr,
3795	&dev_attr_suspend_standby_mode.attr,
3796	&dev_attr_suspend_mem_mode.attr,
3797	&dev_attr_suspend_disk_mode.attr,
3798	NULL
3799};
3800
3801/*
3802 * To avoid cluttering sysfs (and memory) with useless state, only
3803 * create attributes that can be meaningfully displayed.
3804 */
3805static umode_t regulator_attr_is_visible(struct kobject *kobj,
3806					 struct attribute *attr, int idx)
3807{
3808	struct device *dev = kobj_to_dev(kobj);
3809	struct regulator_dev *rdev = dev_to_rdev(dev);
3810	const struct regulator_ops *ops = rdev->desc->ops;
3811	umode_t mode = attr->mode;
3812
3813	/* these three are always present */
3814	if (attr == &dev_attr_name.attr ||
3815	    attr == &dev_attr_num_users.attr ||
3816	    attr == &dev_attr_type.attr)
3817		return mode;
3818
3819	/* some attributes need specific methods to be displayed */
3820	if (attr == &dev_attr_microvolts.attr) {
3821		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3822		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3823		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3824		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3825			return mode;
3826		return 0;
3827	}
3828
3829	if (attr == &dev_attr_microamps.attr)
3830		return ops->get_current_limit ? mode : 0;
3831
3832	if (attr == &dev_attr_opmode.attr)
3833		return ops->get_mode ? mode : 0;
3834
3835	if (attr == &dev_attr_state.attr)
3836		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3837
3838	if (attr == &dev_attr_status.attr)
3839		return ops->get_status ? mode : 0;
3840
3841	if (attr == &dev_attr_bypass.attr)
3842		return ops->get_bypass ? mode : 0;
3843
3844	/* some attributes are type-specific */
3845	if (attr == &dev_attr_requested_microamps.attr)
3846		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
 
 
 
 
 
 
 
3847
3848	/* constraints need specific supporting methods */
3849	if (attr == &dev_attr_min_microvolts.attr ||
3850	    attr == &dev_attr_max_microvolts.attr)
3851		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3852
3853	if (attr == &dev_attr_min_microamps.attr ||
3854	    attr == &dev_attr_max_microamps.attr)
3855		return ops->set_current_limit ? mode : 0;
3856
3857	if (attr == &dev_attr_suspend_standby_state.attr ||
3858	    attr == &dev_attr_suspend_mem_state.attr ||
3859	    attr == &dev_attr_suspend_disk_state.attr)
3860		return mode;
3861
3862	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3863	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3864	    attr == &dev_attr_suspend_disk_microvolts.attr)
3865		return ops->set_suspend_voltage ? mode : 0;
3866
3867	if (attr == &dev_attr_suspend_standby_mode.attr ||
3868	    attr == &dev_attr_suspend_mem_mode.attr ||
3869	    attr == &dev_attr_suspend_disk_mode.attr)
3870		return ops->set_suspend_mode ? mode : 0;
3871
3872	return mode;
3873}
3874
3875static const struct attribute_group regulator_dev_group = {
3876	.attrs = regulator_dev_attrs,
3877	.is_visible = regulator_attr_is_visible,
3878};
3879
3880static const struct attribute_group *regulator_dev_groups[] = {
3881	&regulator_dev_group,
3882	NULL
3883};
3884
3885static void regulator_dev_release(struct device *dev)
3886{
3887	struct regulator_dev *rdev = dev_get_drvdata(dev);
3888
 
3889	kfree(rdev->constraints);
3890	of_node_put(rdev->dev.of_node);
3891	kfree(rdev);
3892}
3893
3894static struct class regulator_class = {
3895	.name = "regulator",
3896	.dev_release = regulator_dev_release,
3897	.dev_groups = regulator_dev_groups,
3898};
3899
3900static void rdev_init_debugfs(struct regulator_dev *rdev)
3901{
3902	struct device *parent = rdev->dev.parent;
3903	const char *rname = rdev_get_name(rdev);
3904	char name[NAME_MAX];
3905
3906	/* Avoid duplicate debugfs directory names */
3907	if (parent && rname == rdev->desc->name) {
3908		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3909			 rname);
3910		rname = name;
3911	}
3912
3913	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3914	if (!rdev->debugfs) {
3915		rdev_warn(rdev, "Failed to create debugfs directory\n");
3916		return;
3917	}
3918
3919	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3920			   &rdev->use_count);
3921	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3922			   &rdev->open_count);
3923	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3924			   &rdev->bypass_count);
3925}
3926
3927static int regulator_register_resolve_supply(struct device *dev, void *data)
3928{
3929	struct regulator_dev *rdev = dev_to_rdev(dev);
3930
3931	if (regulator_resolve_supply(rdev))
3932		rdev_dbg(rdev, "unable to resolve supply\n");
3933
3934	return 0;
3935}
3936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3937/**
3938 * regulator_register - register regulator
 
3939 * @regulator_desc: regulator to register
3940 * @cfg: runtime configuration for regulator
3941 *
3942 * Called by regulator drivers to register a regulator.
3943 * Returns a valid pointer to struct regulator_dev on success
3944 * or an ERR_PTR() on error.
3945 */
3946struct regulator_dev *
3947regulator_register(const struct regulator_desc *regulator_desc,
 
3948		   const struct regulator_config *cfg)
3949{
3950	const struct regulation_constraints *constraints = NULL;
3951	const struct regulator_init_data *init_data;
3952	struct regulator_config *config = NULL;
3953	static atomic_t regulator_no = ATOMIC_INIT(-1);
3954	struct regulator_dev *rdev;
3955	struct device *dev;
 
3956	int ret, i;
 
3957
3958	if (regulator_desc == NULL || cfg == NULL)
3959		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
3960
3961	dev = cfg->dev;
3962	WARN_ON(!dev);
3963
3964	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3965		return ERR_PTR(-EINVAL);
 
 
3966
3967	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3968	    regulator_desc->type != REGULATOR_CURRENT)
3969		return ERR_PTR(-EINVAL);
 
 
3970
3971	/* Only one of each should be implemented */
3972	WARN_ON(regulator_desc->ops->get_voltage &&
3973		regulator_desc->ops->get_voltage_sel);
3974	WARN_ON(regulator_desc->ops->set_voltage &&
3975		regulator_desc->ops->set_voltage_sel);
3976
3977	/* If we're using selectors we must implement list_voltage. */
3978	if (regulator_desc->ops->get_voltage_sel &&
3979	    !regulator_desc->ops->list_voltage) {
3980		return ERR_PTR(-EINVAL);
 
3981	}
3982	if (regulator_desc->ops->set_voltage_sel &&
3983	    !regulator_desc->ops->list_voltage) {
3984		return ERR_PTR(-EINVAL);
 
3985	}
3986
3987	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3988	if (rdev == NULL)
3989		return ERR_PTR(-ENOMEM);
 
 
 
 
3990
3991	/*
3992	 * Duplicate the config so the driver could override it after
3993	 * parsing init data.
3994	 */
3995	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3996	if (config == NULL) {
3997		kfree(rdev);
3998		return ERR_PTR(-ENOMEM);
3999	}
4000
4001	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4002					       &rdev->dev.of_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4003	if (!init_data) {
4004		init_data = config->init_data;
4005		rdev->dev.of_node = of_node_get(config->of_node);
4006	}
4007
4008	mutex_init(&rdev->mutex);
4009	rdev->reg_data = config->driver_data;
4010	rdev->owner = regulator_desc->owner;
4011	rdev->desc = regulator_desc;
4012	if (config->regmap)
4013		rdev->regmap = config->regmap;
4014	else if (dev_get_regmap(dev, NULL))
4015		rdev->regmap = dev_get_regmap(dev, NULL);
4016	else if (dev->parent)
4017		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4018	INIT_LIST_HEAD(&rdev->consumer_list);
4019	INIT_LIST_HEAD(&rdev->list);
4020	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4021	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4022
4023	/* preform any regulator specific init */
4024	if (init_data && init_data->regulator_init) {
4025		ret = init_data->regulator_init(rdev->reg_data);
4026		if (ret < 0)
4027			goto clean;
4028	}
4029
4030	if ((config->ena_gpio || config->ena_gpio_initialized) &&
4031	    gpio_is_valid(config->ena_gpio)) {
4032		mutex_lock(&regulator_list_mutex);
4033		ret = regulator_ena_gpio_request(rdev, config);
4034		mutex_unlock(&regulator_list_mutex);
4035		if (ret != 0) {
4036			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4037				 config->ena_gpio, ret);
4038			goto clean;
4039		}
4040	}
4041
4042	/* register with sysfs */
4043	rdev->dev.class = &regulator_class;
4044	rdev->dev.parent = dev;
4045	dev_set_name(&rdev->dev, "regulator.%lu",
4046		    (unsigned long) atomic_inc_return(&regulator_no));
 
4047
4048	/* set regulator constraints */
4049	if (init_data)
4050		constraints = &init_data->constraints;
 
 
 
 
 
 
 
 
 
4051
4052	if (init_data && init_data->supply_regulator)
4053		rdev->supply_name = init_data->supply_regulator;
4054	else if (regulator_desc->supply_name)
4055		rdev->supply_name = regulator_desc->supply_name;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4056
4057	/*
4058	 * Attempt to resolve the regulator supply, if specified,
4059	 * but don't return an error if we fail because we will try
4060	 * to resolve it again later as more regulators are added.
4061	 */
4062	if (regulator_resolve_supply(rdev))
4063		rdev_dbg(rdev, "unable to resolve supply\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
4064
4065	ret = set_machine_constraints(rdev, constraints);
4066	if (ret < 0)
4067		goto wash;
4068
4069	/* add consumers devices */
4070	if (init_data) {
4071		mutex_lock(&regulator_list_mutex);
4072		for (i = 0; i < init_data->num_consumer_supplies; i++) {
4073			ret = set_consumer_device_supply(rdev,
4074				init_data->consumer_supplies[i].dev_name,
4075				init_data->consumer_supplies[i].supply);
4076			if (ret < 0) {
4077				mutex_unlock(&regulator_list_mutex);
4078				dev_err(dev, "Failed to set supply %s\n",
4079					init_data->consumer_supplies[i].supply);
4080				goto unset_supplies;
4081			}
4082		}
4083		mutex_unlock(&regulator_list_mutex);
4084	}
4085
4086	ret = device_register(&rdev->dev);
4087	if (ret != 0) {
4088		put_device(&rdev->dev);
 
 
 
 
4089		goto unset_supplies;
4090	}
4091
4092	dev_set_drvdata(&rdev->dev, rdev);
4093	rdev_init_debugfs(rdev);
4094
 
 
 
 
 
4095	/* try to resolve regulators supply since a new one was registered */
4096	class_for_each_device(&regulator_class, NULL, NULL,
4097			      regulator_register_resolve_supply);
4098	kfree(config);
4099	return rdev;
4100
4101unset_supplies:
4102	mutex_lock(&regulator_list_mutex);
4103	unset_regulator_supplies(rdev);
 
4104	mutex_unlock(&regulator_list_mutex);
4105wash:
4106	kfree(rdev->constraints);
 
4107	mutex_lock(&regulator_list_mutex);
4108	regulator_ena_gpio_free(rdev);
4109	mutex_unlock(&regulator_list_mutex);
 
 
4110clean:
 
 
 
 
4111	kfree(rdev);
4112	kfree(config);
 
 
 
4113	return ERR_PTR(ret);
4114}
4115EXPORT_SYMBOL_GPL(regulator_register);
4116
4117/**
4118 * regulator_unregister - unregister regulator
4119 * @rdev: regulator to unregister
4120 *
4121 * Called by regulator drivers to unregister a regulator.
4122 */
4123void regulator_unregister(struct regulator_dev *rdev)
4124{
4125	if (rdev == NULL)
4126		return;
4127
4128	if (rdev->supply) {
4129		while (rdev->use_count--)
4130			regulator_disable(rdev->supply);
4131		regulator_put(rdev->supply);
4132	}
 
 
 
4133	mutex_lock(&regulator_list_mutex);
4134	debugfs_remove_recursive(rdev->debugfs);
4135	flush_work(&rdev->disable_work.work);
4136	WARN_ON(rdev->open_count);
 
4137	unset_regulator_supplies(rdev);
4138	list_del(&rdev->list);
4139	regulator_ena_gpio_free(rdev);
 
 
4140	mutex_unlock(&regulator_list_mutex);
4141	device_unregister(&rdev->dev);
4142}
4143EXPORT_SYMBOL_GPL(regulator_unregister);
4144
4145static int _regulator_suspend_prepare(struct device *dev, void *data)
 
 
 
 
 
 
 
4146{
4147	struct regulator_dev *rdev = dev_to_rdev(dev);
4148	const suspend_state_t *state = data;
4149	int ret;
 
 
 
 
 
4150
4151	mutex_lock(&rdev->mutex);
4152	ret = suspend_prepare(rdev, *state);
4153	mutex_unlock(&rdev->mutex);
4154
4155	return ret;
4156}
4157
4158/**
4159 * regulator_suspend_prepare - prepare regulators for system wide suspend
4160 * @state: system suspend state
4161 *
4162 * Configure each regulator with it's suspend operating parameters for state.
4163 * This will usually be called by machine suspend code prior to supending.
4164 */
4165int regulator_suspend_prepare(suspend_state_t state)
4166{
4167	/* ON is handled by regulator active state */
4168	if (state == PM_SUSPEND_ON)
4169		return -EINVAL;
 
 
 
 
 
4170
4171	return class_for_each_device(&regulator_class, NULL, &state,
4172				     _regulator_suspend_prepare);
4173}
4174EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4175
4176static int _regulator_suspend_finish(struct device *dev, void *data)
4177{
4178	struct regulator_dev *rdev = dev_to_rdev(dev);
4179	int ret;
4180
4181	mutex_lock(&rdev->mutex);
4182	if (rdev->use_count > 0  || rdev->constraints->always_on) {
4183		if (!_regulator_is_enabled(rdev)) {
4184			ret = _regulator_do_enable(rdev);
4185			if (ret)
4186				dev_err(dev,
4187					"Failed to resume regulator %d\n",
4188					ret);
4189		}
4190	} else {
4191		if (!have_full_constraints())
4192			goto unlock;
4193		if (!_regulator_is_enabled(rdev))
4194			goto unlock;
4195
4196		ret = _regulator_do_disable(rdev);
4197		if (ret)
4198			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4199	}
4200unlock:
4201	mutex_unlock(&rdev->mutex);
4202
4203	/* Keep processing regulators in spite of any errors */
4204	return 0;
4205}
 
 
 
 
4206
4207/**
4208 * regulator_suspend_finish - resume regulators from system wide suspend
4209 *
4210 * Turn on regulators that might be turned off by regulator_suspend_prepare
4211 * and that should be turned on according to the regulators properties.
4212 */
4213int regulator_suspend_finish(void)
4214{
4215	return class_for_each_device(&regulator_class, NULL, NULL,
4216				     _regulator_suspend_finish);
4217}
4218EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4219
 
 
 
 
 
 
 
 
4220/**
4221 * regulator_has_full_constraints - the system has fully specified constraints
4222 *
4223 * Calling this function will cause the regulator API to disable all
4224 * regulators which have a zero use count and don't have an always_on
4225 * constraint in a late_initcall.
4226 *
4227 * The intention is that this will become the default behaviour in a
4228 * future kernel release so users are encouraged to use this facility
4229 * now.
4230 */
4231void regulator_has_full_constraints(void)
4232{
4233	has_full_constraints = 1;
4234}
4235EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4236
4237/**
4238 * rdev_get_drvdata - get rdev regulator driver data
4239 * @rdev: regulator
4240 *
4241 * Get rdev regulator driver private data. This call can be used in the
4242 * regulator driver context.
4243 */
4244void *rdev_get_drvdata(struct regulator_dev *rdev)
4245{
4246	return rdev->reg_data;
4247}
4248EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4249
4250/**
4251 * regulator_get_drvdata - get regulator driver data
4252 * @regulator: regulator
4253 *
4254 * Get regulator driver private data. This call can be used in the consumer
4255 * driver context when non API regulator specific functions need to be called.
4256 */
4257void *regulator_get_drvdata(struct regulator *regulator)
4258{
4259	return regulator->rdev->reg_data;
4260}
4261EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4262
4263/**
4264 * regulator_set_drvdata - set regulator driver data
4265 * @regulator: regulator
4266 * @data: data
4267 */
4268void regulator_set_drvdata(struct regulator *regulator, void *data)
4269{
4270	regulator->rdev->reg_data = data;
4271}
4272EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4273
4274/**
4275 * regulator_get_id - get regulator ID
4276 * @rdev: regulator
4277 */
4278int rdev_get_id(struct regulator_dev *rdev)
4279{
4280	return rdev->desc->id;
4281}
4282EXPORT_SYMBOL_GPL(rdev_get_id);
4283
4284struct device *rdev_get_dev(struct regulator_dev *rdev)
4285{
4286	return &rdev->dev;
4287}
4288EXPORT_SYMBOL_GPL(rdev_get_dev);
4289
 
 
 
 
 
 
4290void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4291{
4292	return reg_init_data->driver_data;
4293}
4294EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4295
4296#ifdef CONFIG_DEBUG_FS
4297static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4298				    size_t count, loff_t *ppos)
4299{
4300	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4301	ssize_t len, ret = 0;
4302	struct regulator_map *map;
4303
4304	if (!buf)
4305		return -ENOMEM;
4306
4307	list_for_each_entry(map, &regulator_map_list, list) {
4308		len = snprintf(buf + ret, PAGE_SIZE - ret,
4309			       "%s -> %s.%s\n",
4310			       rdev_get_name(map->regulator), map->dev_name,
4311			       map->supply);
4312		if (len >= 0)
4313			ret += len;
4314		if (ret > PAGE_SIZE) {
4315			ret = PAGE_SIZE;
4316			break;
4317		}
4318	}
4319
4320	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4321
4322	kfree(buf);
4323
4324	return ret;
4325}
4326#endif
4327
4328static const struct file_operations supply_map_fops = {
4329#ifdef CONFIG_DEBUG_FS
4330	.read = supply_map_read_file,
4331	.llseek = default_llseek,
4332#endif
4333};
4334
4335#ifdef CONFIG_DEBUG_FS
4336struct summary_data {
4337	struct seq_file *s;
4338	struct regulator_dev *parent;
4339	int level;
4340};
4341
4342static void regulator_summary_show_subtree(struct seq_file *s,
4343					   struct regulator_dev *rdev,
4344					   int level);
4345
4346static int regulator_summary_show_children(struct device *dev, void *data)
4347{
4348	struct regulator_dev *rdev = dev_to_rdev(dev);
4349	struct summary_data *summary_data = data;
4350
4351	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4352		regulator_summary_show_subtree(summary_data->s, rdev,
4353					       summary_data->level + 1);
4354
4355	return 0;
4356}
4357
4358static void regulator_summary_show_subtree(struct seq_file *s,
4359					   struct regulator_dev *rdev,
4360					   int level)
4361{
4362	struct regulation_constraints *c;
4363	struct regulator *consumer;
4364	struct summary_data summary_data;
 
4365
4366	if (!rdev)
4367		return;
4368
4369	seq_printf(s, "%*s%-*s %3d %4d %6d ",
 
4370		   level * 3 + 1, "",
4371		   30 - level * 3, rdev_get_name(rdev),
4372		   rdev->use_count, rdev->open_count, rdev->bypass_count);
 
4373
4374	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4375	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
 
4376
4377	c = rdev->constraints;
4378	if (c) {
4379		switch (rdev->desc->type) {
4380		case REGULATOR_VOLTAGE:
4381			seq_printf(s, "%5dmV %5dmV ",
4382				   c->min_uV / 1000, c->max_uV / 1000);
4383			break;
4384		case REGULATOR_CURRENT:
4385			seq_printf(s, "%5dmA %5dmA ",
4386				   c->min_uA / 1000, c->max_uA / 1000);
4387			break;
4388		}
4389	}
4390
4391	seq_puts(s, "\n");
4392
4393	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4394		if (consumer->dev && consumer->dev->class == &regulator_class)
4395			continue;
4396
4397		seq_printf(s, "%*s%-*s ",
4398			   (level + 1) * 3 + 1, "",
4399			   30 - (level + 1) * 3,
 
4400			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4401
4402		switch (rdev->desc->type) {
4403		case REGULATOR_VOLTAGE:
4404			seq_printf(s, "%37dmV %5dmV",
4405				   consumer->min_uV / 1000,
4406				   consumer->max_uV / 1000);
 
 
 
 
4407			break;
4408		case REGULATOR_CURRENT:
4409			break;
4410		}
4411
4412		seq_puts(s, "\n");
4413	}
4414
4415	summary_data.s = s;
4416	summary_data.level = level;
4417	summary_data.parent = rdev;
4418
4419	class_for_each_device(&regulator_class, NULL, &summary_data,
4420			      regulator_summary_show_children);
4421}
4422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4423static int regulator_summary_show_roots(struct device *dev, void *data)
4424{
4425	struct regulator_dev *rdev = dev_to_rdev(dev);
4426	struct seq_file *s = data;
4427
4428	if (!rdev->supply)
4429		regulator_summary_show_subtree(s, rdev, 0);
4430
4431	return 0;
4432}
4433
4434static int regulator_summary_show(struct seq_file *s, void *data)
4435{
4436	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4437	seq_puts(s, "-------------------------------------------------------------------------------\n");
 
 
 
 
4438
4439	class_for_each_device(&regulator_class, NULL, s,
4440			      regulator_summary_show_roots);
4441
 
 
4442	return 0;
4443}
4444
4445static int regulator_summary_open(struct inode *inode, struct file *file)
4446{
4447	return single_open(file, regulator_summary_show, inode->i_private);
4448}
4449#endif
4450
4451static const struct file_operations regulator_summary_fops = {
4452#ifdef CONFIG_DEBUG_FS
4453	.open		= regulator_summary_open,
4454	.read		= seq_read,
4455	.llseek		= seq_lseek,
4456	.release	= single_release,
4457#endif
4458};
4459
4460static int __init regulator_init(void)
4461{
4462	int ret;
4463
4464	ret = class_register(&regulator_class);
4465
4466	debugfs_root = debugfs_create_dir("regulator", NULL);
4467	if (!debugfs_root)
4468		pr_warn("regulator: Failed to create debugfs directory\n");
4469
 
4470	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4471			    &supply_map_fops);
4472
4473	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4474			    NULL, &regulator_summary_fops);
 
 
4475
4476	regulator_dummy_init();
4477
4478	return ret;
4479}
4480
4481/* init early to allow our consumers to complete system booting */
4482core_initcall(regulator_init);
4483
4484static int __init regulator_late_cleanup(struct device *dev, void *data)
4485{
4486	struct regulator_dev *rdev = dev_to_rdev(dev);
4487	const struct regulator_ops *ops = rdev->desc->ops;
4488	struct regulation_constraints *c = rdev->constraints;
4489	int enabled, ret;
4490
4491	if (c && c->always_on)
4492		return 0;
4493
4494	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4495		return 0;
4496
4497	mutex_lock(&rdev->mutex);
4498
4499	if (rdev->use_count)
4500		goto unlock;
4501
4502	/* If we can't read the status assume it's on. */
4503	if (ops->is_enabled)
4504		enabled = ops->is_enabled(rdev);
4505	else
4506		enabled = 1;
4507
4508	if (!enabled)
4509		goto unlock;
4510
4511	if (have_full_constraints()) {
4512		/* We log since this may kill the system if it goes
4513		 * wrong. */
 
4514		rdev_info(rdev, "disabling\n");
4515		ret = _regulator_do_disable(rdev);
4516		if (ret != 0)
4517			rdev_err(rdev, "couldn't disable: %d\n", ret);
4518	} else {
4519		/* The intention is that in future we will
4520		 * assume that full constraints are provided
4521		 * so warn even if we aren't going to do
4522		 * anything here.
4523		 */
4524		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4525	}
4526
4527unlock:
4528	mutex_unlock(&rdev->mutex);
4529
4530	return 0;
4531}
4532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4533static int __init regulator_init_complete(void)
4534{
4535	/*
4536	 * Since DT doesn't provide an idiomatic mechanism for
4537	 * enabling full constraints and since it's much more natural
4538	 * with DT to provide them just assume that a DT enabled
4539	 * system has full constraints.
4540	 */
4541	if (of_have_populated_dt())
4542		has_full_constraints = true;
4543
4544	/* If we have a full configuration then disable any regulators
4545	 * we have permission to change the status for and which are
4546	 * not in use or always_on.  This is effectively the default
4547	 * for DT and ACPI as they have full constraints.
 
 
 
 
 
 
4548	 */
4549	class_for_each_device(&regulator_class, NULL, NULL,
4550			      regulator_late_cleanup);
4551
4552	return 0;
4553}
4554late_initcall_sync(regulator_init_complete);