Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Procedures for maintaining information about logical memory blocks.
   4 *
   5 * Peter Bergner, IBM Corp.	June 2001.
   6 * Copyright (C) 2001 Peter Bergner.
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/init.h>
  12#include <linux/bitops.h>
  13#include <linux/poison.h>
  14#include <linux/pfn.h>
  15#include <linux/debugfs.h>
  16#include <linux/kmemleak.h>
  17#include <linux/seq_file.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/sections.h>
  21#include <linux/io.h>
  22
  23#include "internal.h"
  24
  25#define INIT_MEMBLOCK_REGIONS			128
  26#define INIT_PHYSMEM_REGIONS			4
  27
  28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
  29# define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
  30#endif
  31
  32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
  33#define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
  34#endif
  35
  36/**
  37 * DOC: memblock overview
  38 *
  39 * Memblock is a method of managing memory regions during the early
  40 * boot period when the usual kernel memory allocators are not up and
  41 * running.
  42 *
  43 * Memblock views the system memory as collections of contiguous
  44 * regions. There are several types of these collections:
  45 *
  46 * * ``memory`` - describes the physical memory available to the
  47 *   kernel; this may differ from the actual physical memory installed
  48 *   in the system, for instance when the memory is restricted with
  49 *   ``mem=`` command line parameter
  50 * * ``reserved`` - describes the regions that were allocated
  51 * * ``physmem`` - describes the actual physical memory available during
  52 *   boot regardless of the possible restrictions and memory hot(un)plug;
  53 *   the ``physmem`` type is only available on some architectures.
  54 *
  55 * Each region is represented by struct memblock_region that
  56 * defines the region extents, its attributes and NUMA node id on NUMA
  57 * systems. Every memory type is described by the struct memblock_type
  58 * which contains an array of memory regions along with
  59 * the allocator metadata. The "memory" and "reserved" types are nicely
  60 * wrapped with struct memblock. This structure is statically
  61 * initialized at build time. The region arrays are initially sized to
  62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
  63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
  64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
  65 * The memblock_allow_resize() enables automatic resizing of the region
  66 * arrays during addition of new regions. This feature should be used
  67 * with care so that memory allocated for the region array will not
  68 * overlap with areas that should be reserved, for example initrd.
  69 *
  70 * The early architecture setup should tell memblock what the physical
  71 * memory layout is by using memblock_add() or memblock_add_node()
  72 * functions. The first function does not assign the region to a NUMA
  73 * node and it is appropriate for UMA systems. Yet, it is possible to
  74 * use it on NUMA systems as well and assign the region to a NUMA node
  75 * later in the setup process using memblock_set_node(). The
  76 * memblock_add_node() performs such an assignment directly.
  77 *
  78 * Once memblock is setup the memory can be allocated using one of the
  79 * API variants:
  80 *
  81 * * memblock_phys_alloc*() - these functions return the **physical**
  82 *   address of the allocated memory
  83 * * memblock_alloc*() - these functions return the **virtual** address
  84 *   of the allocated memory.
  85 *
  86 * Note, that both API variants use implicit assumptions about allowed
  87 * memory ranges and the fallback methods. Consult the documentation
  88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
  89 * functions for more elaborate description.
  90 *
  91 * As the system boot progresses, the architecture specific mem_init()
  92 * function frees all the memory to the buddy page allocator.
  93 *
  94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
  95 * memblock data structures (except "physmem") will be discarded after the
  96 * system initialization completes.
  97 */
  98
  99#ifndef CONFIG_NUMA
 100struct pglist_data __refdata contig_page_data;
 101EXPORT_SYMBOL(contig_page_data);
 102#endif
 103
 104unsigned long max_low_pfn;
 105unsigned long min_low_pfn;
 106unsigned long max_pfn;
 107unsigned long long max_possible_pfn;
 108
 109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
 110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
 111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
 113#endif
 114
 115struct memblock memblock __initdata_memblock = {
 116	.memory.regions		= memblock_memory_init_regions,
 117	.memory.cnt		= 1,	/* empty dummy entry */
 118	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
 119	.memory.name		= "memory",
 120
 121	.reserved.regions	= memblock_reserved_init_regions,
 122	.reserved.cnt		= 1,	/* empty dummy entry */
 123	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
 124	.reserved.name		= "reserved",
 125
 126	.bottom_up		= false,
 127	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
 128};
 129
 130#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 131struct memblock_type physmem = {
 132	.regions		= memblock_physmem_init_regions,
 133	.cnt			= 1,	/* empty dummy entry */
 134	.max			= INIT_PHYSMEM_REGIONS,
 135	.name			= "physmem",
 136};
 137#endif
 138
 139/*
 140 * keep a pointer to &memblock.memory in the text section to use it in
 141 * __next_mem_range() and its helpers.
 142 *  For architectures that do not keep memblock data after init, this
 143 * pointer will be reset to NULL at memblock_discard()
 144 */
 145static __refdata struct memblock_type *memblock_memory = &memblock.memory;
 146
 147#define for_each_memblock_type(i, memblock_type, rgn)			\
 148	for (i = 0, rgn = &memblock_type->regions[0];			\
 149	     i < memblock_type->cnt;					\
 150	     i++, rgn = &memblock_type->regions[i])
 151
 152#define memblock_dbg(fmt, ...)						\
 153	do {								\
 154		if (memblock_debug)					\
 155			pr_info(fmt, ##__VA_ARGS__);			\
 156	} while (0)
 157
 158static int memblock_debug __initdata_memblock;
 159static bool system_has_some_mirror __initdata_memblock = false;
 160static int memblock_can_resize __initdata_memblock;
 161static int memblock_memory_in_slab __initdata_memblock = 0;
 162static int memblock_reserved_in_slab __initdata_memblock = 0;
 
 
 
 
 
 163
 164static enum memblock_flags __init_memblock choose_memblock_flags(void)
 165{
 166	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 167}
 168
 169/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 170static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 171{
 172	return *size = min(*size, PHYS_ADDR_MAX - base);
 173}
 174
 175/*
 176 * Address comparison utilities
 177 */
 178static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
 179				       phys_addr_t base2, phys_addr_t size2)
 
 180{
 181	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 182}
 183
 184bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 185					phys_addr_t base, phys_addr_t size)
 186{
 187	unsigned long i;
 188
 189	memblock_cap_size(base, &size);
 190
 191	for (i = 0; i < type->cnt; i++)
 192		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 193					   type->regions[i].size))
 194			break;
 195	return i < type->cnt;
 196}
 197
 198/**
 199 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 200 * @start: start of candidate range
 201 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 202 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 203 * @size: size of free area to find
 204 * @align: alignment of free area to find
 205 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 206 * @flags: pick from blocks based on memory attributes
 207 *
 208 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 209 *
 210 * Return:
 211 * Found address on success, 0 on failure.
 212 */
 213static phys_addr_t __init_memblock
 214__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 215				phys_addr_t size, phys_addr_t align, int nid,
 216				enum memblock_flags flags)
 217{
 218	phys_addr_t this_start, this_end, cand;
 219	u64 i;
 220
 221	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 222		this_start = clamp(this_start, start, end);
 223		this_end = clamp(this_end, start, end);
 224
 225		cand = round_up(this_start, align);
 226		if (cand < this_end && this_end - cand >= size)
 227			return cand;
 228	}
 229
 230	return 0;
 231}
 232
 233/**
 234 * __memblock_find_range_top_down - find free area utility, in top-down
 235 * @start: start of candidate range
 236 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 237 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 238 * @size: size of free area to find
 239 * @align: alignment of free area to find
 240 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 241 * @flags: pick from blocks based on memory attributes
 242 *
 243 * Utility called from memblock_find_in_range_node(), find free area top-down.
 244 *
 245 * Return:
 246 * Found address on success, 0 on failure.
 247 */
 248static phys_addr_t __init_memblock
 249__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 250			       phys_addr_t size, phys_addr_t align, int nid,
 251			       enum memblock_flags flags)
 252{
 253	phys_addr_t this_start, this_end, cand;
 254	u64 i;
 255
 256	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 257					NULL) {
 258		this_start = clamp(this_start, start, end);
 259		this_end = clamp(this_end, start, end);
 260
 261		if (this_end < size)
 262			continue;
 263
 264		cand = round_down(this_end - size, align);
 265		if (cand >= this_start)
 266			return cand;
 267	}
 268
 269	return 0;
 270}
 271
 272/**
 273 * memblock_find_in_range_node - find free area in given range and node
 274 * @size: size of free area to find
 275 * @align: alignment of free area to find
 276 * @start: start of candidate range
 277 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 278 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 279 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 280 * @flags: pick from blocks based on memory attributes
 281 *
 282 * Find @size free area aligned to @align in the specified range and node.
 283 *
 284 * Return:
 285 * Found address on success, 0 on failure.
 286 */
 287static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 288					phys_addr_t align, phys_addr_t start,
 289					phys_addr_t end, int nid,
 290					enum memblock_flags flags)
 291{
 292	/* pump up @end */
 293	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
 294	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
 295		end = memblock.current_limit;
 296
 297	/* avoid allocating the first page */
 298	start = max_t(phys_addr_t, start, PAGE_SIZE);
 299	end = max(start, end);
 300
 301	if (memblock_bottom_up())
 302		return __memblock_find_range_bottom_up(start, end, size, align,
 303						       nid, flags);
 304	else
 305		return __memblock_find_range_top_down(start, end, size, align,
 306						      nid, flags);
 307}
 308
 309/**
 310 * memblock_find_in_range - find free area in given range
 311 * @start: start of candidate range
 312 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 313 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 314 * @size: size of free area to find
 315 * @align: alignment of free area to find
 316 *
 317 * Find @size free area aligned to @align in the specified range.
 318 *
 319 * Return:
 320 * Found address on success, 0 on failure.
 321 */
 322static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 323					phys_addr_t end, phys_addr_t size,
 324					phys_addr_t align)
 325{
 326	phys_addr_t ret;
 327	enum memblock_flags flags = choose_memblock_flags();
 328
 329again:
 330	ret = memblock_find_in_range_node(size, align, start, end,
 331					    NUMA_NO_NODE, flags);
 332
 333	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 334		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
 335			&size);
 336		flags &= ~MEMBLOCK_MIRROR;
 337		goto again;
 338	}
 339
 340	return ret;
 341}
 342
 343static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 344{
 345	type->total_size -= type->regions[r].size;
 346	memmove(&type->regions[r], &type->regions[r + 1],
 347		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 348	type->cnt--;
 349
 350	/* Special case for empty arrays */
 351	if (type->cnt == 0) {
 352		WARN_ON(type->total_size != 0);
 353		type->cnt = 1;
 354		type->regions[0].base = 0;
 355		type->regions[0].size = 0;
 356		type->regions[0].flags = 0;
 357		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 358	}
 359}
 360
 361#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
 362/**
 363 * memblock_discard - discard memory and reserved arrays if they were allocated
 364 */
 365void __init memblock_discard(void)
 366{
 367	phys_addr_t addr, size;
 368
 369	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 370		addr = __pa(memblock.reserved.regions);
 371		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 372				  memblock.reserved.max);
 373		if (memblock_reserved_in_slab)
 374			kfree(memblock.reserved.regions);
 375		else
 376			memblock_free_late(addr, size);
 377	}
 378
 379	if (memblock.memory.regions != memblock_memory_init_regions) {
 380		addr = __pa(memblock.memory.regions);
 381		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 382				  memblock.memory.max);
 383		if (memblock_memory_in_slab)
 384			kfree(memblock.memory.regions);
 385		else
 386			memblock_free_late(addr, size);
 387	}
 388
 389	memblock_memory = NULL;
 390}
 391#endif
 392
 393/**
 394 * memblock_double_array - double the size of the memblock regions array
 395 * @type: memblock type of the regions array being doubled
 396 * @new_area_start: starting address of memory range to avoid overlap with
 397 * @new_area_size: size of memory range to avoid overlap with
 398 *
 399 * Double the size of the @type regions array. If memblock is being used to
 400 * allocate memory for a new reserved regions array and there is a previously
 401 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
 402 * waiting to be reserved, ensure the memory used by the new array does
 403 * not overlap.
 404 *
 405 * Return:
 406 * 0 on success, -1 on failure.
 407 */
 408static int __init_memblock memblock_double_array(struct memblock_type *type,
 409						phys_addr_t new_area_start,
 410						phys_addr_t new_area_size)
 411{
 412	struct memblock_region *new_array, *old_array;
 413	phys_addr_t old_alloc_size, new_alloc_size;
 414	phys_addr_t old_size, new_size, addr, new_end;
 415	int use_slab = slab_is_available();
 416	int *in_slab;
 417
 418	/* We don't allow resizing until we know about the reserved regions
 419	 * of memory that aren't suitable for allocation
 420	 */
 421	if (!memblock_can_resize)
 422		return -1;
 423
 424	/* Calculate new doubled size */
 425	old_size = type->max * sizeof(struct memblock_region);
 426	new_size = old_size << 1;
 427	/*
 428	 * We need to allocated new one align to PAGE_SIZE,
 429	 *   so we can free them completely later.
 430	 */
 431	old_alloc_size = PAGE_ALIGN(old_size);
 432	new_alloc_size = PAGE_ALIGN(new_size);
 433
 434	/* Retrieve the slab flag */
 435	if (type == &memblock.memory)
 436		in_slab = &memblock_memory_in_slab;
 437	else
 438		in_slab = &memblock_reserved_in_slab;
 439
 440	/* Try to find some space for it */
 441	if (use_slab) {
 442		new_array = kmalloc(new_size, GFP_KERNEL);
 443		addr = new_array ? __pa(new_array) : 0;
 444	} else {
 445		/* only exclude range when trying to double reserved.regions */
 446		if (type != &memblock.reserved)
 447			new_area_start = new_area_size = 0;
 448
 449		addr = memblock_find_in_range(new_area_start + new_area_size,
 450						memblock.current_limit,
 451						new_alloc_size, PAGE_SIZE);
 452		if (!addr && new_area_size)
 453			addr = memblock_find_in_range(0,
 454				min(new_area_start, memblock.current_limit),
 455				new_alloc_size, PAGE_SIZE);
 456
 457		new_array = addr ? __va(addr) : NULL;
 458	}
 459	if (!addr) {
 460		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 461		       type->name, type->max, type->max * 2);
 462		return -1;
 463	}
 464
 465	new_end = addr + new_size - 1;
 466	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
 467			type->name, type->max * 2, &addr, &new_end);
 468
 469	/*
 470	 * Found space, we now need to move the array over before we add the
 471	 * reserved region since it may be our reserved array itself that is
 472	 * full.
 473	 */
 474	memcpy(new_array, type->regions, old_size);
 475	memset(new_array + type->max, 0, old_size);
 476	old_array = type->regions;
 477	type->regions = new_array;
 478	type->max <<= 1;
 479
 480	/* Free old array. We needn't free it if the array is the static one */
 481	if (*in_slab)
 482		kfree(old_array);
 483	else if (old_array != memblock_memory_init_regions &&
 484		 old_array != memblock_reserved_init_regions)
 485		memblock_free(old_array, old_alloc_size);
 486
 487	/*
 488	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 489	 * needn't do it
 490	 */
 491	if (!use_slab)
 492		BUG_ON(memblock_reserve(addr, new_alloc_size));
 493
 494	/* Update slab flag */
 495	*in_slab = use_slab;
 496
 497	return 0;
 498}
 499
 500/**
 501 * memblock_merge_regions - merge neighboring compatible regions
 502 * @type: memblock type to scan
 503 *
 504 * Scan @type and merge neighboring compatible regions.
 505 */
 506static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 
 
 
 507{
 508	int i = 0;
 509
 510	/* cnt never goes below 1 */
 511	while (i < type->cnt - 1) {
 
 512		struct memblock_region *this = &type->regions[i];
 513		struct memblock_region *next = &type->regions[i + 1];
 514
 515		if (this->base + this->size != next->base ||
 516		    memblock_get_region_node(this) !=
 517		    memblock_get_region_node(next) ||
 518		    this->flags != next->flags) {
 519			BUG_ON(this->base + this->size > next->base);
 520			i++;
 521			continue;
 522		}
 523
 524		this->size += next->size;
 525		/* move forward from next + 1, index of which is i + 2 */
 526		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 527		type->cnt--;
 
 528	}
 529}
 530
 531/**
 532 * memblock_insert_region - insert new memblock region
 533 * @type:	memblock type to insert into
 534 * @idx:	index for the insertion point
 535 * @base:	base address of the new region
 536 * @size:	size of the new region
 537 * @nid:	node id of the new region
 538 * @flags:	flags of the new region
 539 *
 540 * Insert new memblock region [@base, @base + @size) into @type at @idx.
 541 * @type must already have extra room to accommodate the new region.
 542 */
 543static void __init_memblock memblock_insert_region(struct memblock_type *type,
 544						   int idx, phys_addr_t base,
 545						   phys_addr_t size,
 546						   int nid,
 547						   enum memblock_flags flags)
 548{
 549	struct memblock_region *rgn = &type->regions[idx];
 550
 551	BUG_ON(type->cnt >= type->max);
 552	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 553	rgn->base = base;
 554	rgn->size = size;
 555	rgn->flags = flags;
 556	memblock_set_region_node(rgn, nid);
 557	type->cnt++;
 558	type->total_size += size;
 559}
 560
 561/**
 562 * memblock_add_range - add new memblock region
 563 * @type: memblock type to add new region into
 564 * @base: base address of the new region
 565 * @size: size of the new region
 566 * @nid: nid of the new region
 567 * @flags: flags of the new region
 568 *
 569 * Add new memblock region [@base, @base + @size) into @type.  The new region
 570 * is allowed to overlap with existing ones - overlaps don't affect already
 571 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 572 * compatible regions are merged) after the addition.
 573 *
 574 * Return:
 575 * 0 on success, -errno on failure.
 576 */
 577static int __init_memblock memblock_add_range(struct memblock_type *type,
 578				phys_addr_t base, phys_addr_t size,
 579				int nid, enum memblock_flags flags)
 580{
 581	bool insert = false;
 582	phys_addr_t obase = base;
 583	phys_addr_t end = base + memblock_cap_size(base, &size);
 584	int idx, nr_new;
 585	struct memblock_region *rgn;
 586
 587	if (!size)
 588		return 0;
 589
 590	/* special case for empty array */
 591	if (type->regions[0].size == 0) {
 592		WARN_ON(type->cnt != 1 || type->total_size);
 593		type->regions[0].base = base;
 594		type->regions[0].size = size;
 595		type->regions[0].flags = flags;
 596		memblock_set_region_node(&type->regions[0], nid);
 597		type->total_size = size;
 598		return 0;
 599	}
 600
 601	/*
 602	 * The worst case is when new range overlaps all existing regions,
 603	 * then we'll need type->cnt + 1 empty regions in @type. So if
 604	 * type->cnt * 2 + 1 is less than type->max, we know
 605	 * that there is enough empty regions in @type, and we can insert
 606	 * regions directly.
 607	 */
 608	if (type->cnt * 2 + 1 < type->max)
 609		insert = true;
 610
 611repeat:
 612	/*
 613	 * The following is executed twice.  Once with %false @insert and
 614	 * then with %true.  The first counts the number of regions needed
 615	 * to accommodate the new area.  The second actually inserts them.
 616	 */
 617	base = obase;
 618	nr_new = 0;
 619
 620	for_each_memblock_type(idx, type, rgn) {
 621		phys_addr_t rbase = rgn->base;
 622		phys_addr_t rend = rbase + rgn->size;
 623
 624		if (rbase >= end)
 625			break;
 626		if (rend <= base)
 627			continue;
 628		/*
 629		 * @rgn overlaps.  If it separates the lower part of new
 630		 * area, insert that portion.
 631		 */
 632		if (rbase > base) {
 633#ifdef CONFIG_NUMA
 634			WARN_ON(nid != memblock_get_region_node(rgn));
 635#endif
 636			WARN_ON(flags != rgn->flags);
 637			nr_new++;
 638			if (insert)
 
 
 
 639				memblock_insert_region(type, idx++, base,
 640						       rbase - base, nid,
 641						       flags);
 
 642		}
 643		/* area below @rend is dealt with, forget about it */
 644		base = min(rend, end);
 645	}
 646
 647	/* insert the remaining portion */
 648	if (base < end) {
 649		nr_new++;
 650		if (insert)
 
 
 
 651			memblock_insert_region(type, idx, base, end - base,
 652					       nid, flags);
 
 653	}
 654
 655	if (!nr_new)
 656		return 0;
 657
 658	/*
 659	 * If this was the first round, resize array and repeat for actual
 660	 * insertions; otherwise, merge and return.
 661	 */
 662	if (!insert) {
 663		while (type->cnt + nr_new > type->max)
 664			if (memblock_double_array(type, obase, size) < 0)
 665				return -ENOMEM;
 666		insert = true;
 667		goto repeat;
 668	} else {
 669		memblock_merge_regions(type);
 670		return 0;
 671	}
 672}
 673
 674/**
 675 * memblock_add_node - add new memblock region within a NUMA node
 676 * @base: base address of the new region
 677 * @size: size of the new region
 678 * @nid: nid of the new region
 679 * @flags: flags of the new region
 680 *
 681 * Add new memblock region [@base, @base + @size) to the "memory"
 682 * type. See memblock_add_range() description for mode details
 683 *
 684 * Return:
 685 * 0 on success, -errno on failure.
 686 */
 687int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 688				      int nid, enum memblock_flags flags)
 689{
 690	phys_addr_t end = base + size - 1;
 691
 692	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
 693		     &base, &end, nid, flags, (void *)_RET_IP_);
 694
 695	return memblock_add_range(&memblock.memory, base, size, nid, flags);
 696}
 697
 698/**
 699 * memblock_add - add new memblock region
 700 * @base: base address of the new region
 701 * @size: size of the new region
 702 *
 703 * Add new memblock region [@base, @base + @size) to the "memory"
 704 * type. See memblock_add_range() description for mode details
 705 *
 706 * Return:
 707 * 0 on success, -errno on failure.
 708 */
 709int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 710{
 711	phys_addr_t end = base + size - 1;
 712
 713	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 714		     &base, &end, (void *)_RET_IP_);
 715
 716	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 717}
 718
 719/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 720 * memblock_isolate_range - isolate given range into disjoint memblocks
 721 * @type: memblock type to isolate range for
 722 * @base: base of range to isolate
 723 * @size: size of range to isolate
 724 * @start_rgn: out parameter for the start of isolated region
 725 * @end_rgn: out parameter for the end of isolated region
 726 *
 727 * Walk @type and ensure that regions don't cross the boundaries defined by
 728 * [@base, @base + @size).  Crossing regions are split at the boundaries,
 729 * which may create at most two more regions.  The index of the first
 730 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 731 *
 732 * Return:
 733 * 0 on success, -errno on failure.
 734 */
 735static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 736					phys_addr_t base, phys_addr_t size,
 737					int *start_rgn, int *end_rgn)
 738{
 739	phys_addr_t end = base + memblock_cap_size(base, &size);
 740	int idx;
 741	struct memblock_region *rgn;
 742
 743	*start_rgn = *end_rgn = 0;
 744
 745	if (!size)
 746		return 0;
 747
 748	/* we'll create at most two more regions */
 749	while (type->cnt + 2 > type->max)
 750		if (memblock_double_array(type, base, size) < 0)
 751			return -ENOMEM;
 752
 753	for_each_memblock_type(idx, type, rgn) {
 754		phys_addr_t rbase = rgn->base;
 755		phys_addr_t rend = rbase + rgn->size;
 756
 757		if (rbase >= end)
 758			break;
 759		if (rend <= base)
 760			continue;
 761
 762		if (rbase < base) {
 763			/*
 764			 * @rgn intersects from below.  Split and continue
 765			 * to process the next region - the new top half.
 766			 */
 767			rgn->base = base;
 768			rgn->size -= base - rbase;
 769			type->total_size -= base - rbase;
 770			memblock_insert_region(type, idx, rbase, base - rbase,
 771					       memblock_get_region_node(rgn),
 772					       rgn->flags);
 773		} else if (rend > end) {
 774			/*
 775			 * @rgn intersects from above.  Split and redo the
 776			 * current region - the new bottom half.
 777			 */
 778			rgn->base = end;
 779			rgn->size -= end - rbase;
 780			type->total_size -= end - rbase;
 781			memblock_insert_region(type, idx--, rbase, end - rbase,
 782					       memblock_get_region_node(rgn),
 783					       rgn->flags);
 784		} else {
 785			/* @rgn is fully contained, record it */
 786			if (!*end_rgn)
 787				*start_rgn = idx;
 788			*end_rgn = idx + 1;
 789		}
 790	}
 791
 792	return 0;
 793}
 794
 795static int __init_memblock memblock_remove_range(struct memblock_type *type,
 796					  phys_addr_t base, phys_addr_t size)
 797{
 798	int start_rgn, end_rgn;
 799	int i, ret;
 800
 801	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 802	if (ret)
 803		return ret;
 804
 805	for (i = end_rgn - 1; i >= start_rgn; i--)
 806		memblock_remove_region(type, i);
 807	return 0;
 808}
 809
 810int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 811{
 812	phys_addr_t end = base + size - 1;
 813
 814	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 815		     &base, &end, (void *)_RET_IP_);
 816
 817	return memblock_remove_range(&memblock.memory, base, size);
 818}
 819
 820/**
 821 * memblock_free - free boot memory allocation
 822 * @ptr: starting address of the  boot memory allocation
 823 * @size: size of the boot memory block in bytes
 824 *
 825 * Free boot memory block previously allocated by memblock_alloc_xx() API.
 826 * The freeing memory will not be released to the buddy allocator.
 827 */
 828void __init_memblock memblock_free(void *ptr, size_t size)
 829{
 830	if (ptr)
 831		memblock_phys_free(__pa(ptr), size);
 832}
 833
 834/**
 835 * memblock_phys_free - free boot memory block
 836 * @base: phys starting address of the  boot memory block
 837 * @size: size of the boot memory block in bytes
 838 *
 839 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
 840 * The freeing memory will not be released to the buddy allocator.
 841 */
 842int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
 843{
 844	phys_addr_t end = base + size - 1;
 845
 846	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 847		     &base, &end, (void *)_RET_IP_);
 848
 849	kmemleak_free_part_phys(base, size);
 850	return memblock_remove_range(&memblock.reserved, base, size);
 851}
 852
 853int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 854{
 855	phys_addr_t end = base + size - 1;
 856
 857	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 858		     &base, &end, (void *)_RET_IP_);
 859
 860	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 861}
 862
 863#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 864int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
 865{
 866	phys_addr_t end = base + size - 1;
 867
 868	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 869		     &base, &end, (void *)_RET_IP_);
 870
 871	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
 872}
 873#endif
 874
 875/**
 876 * memblock_setclr_flag - set or clear flag for a memory region
 
 877 * @base: base address of the region
 878 * @size: size of the region
 879 * @set: set or clear the flag
 880 * @flag: the flag to update
 881 *
 882 * This function isolates region [@base, @base + @size), and sets/clears flag
 883 *
 884 * Return: 0 on success, -errno on failure.
 885 */
 886static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 887				phys_addr_t size, int set, int flag)
 888{
 889	struct memblock_type *type = &memblock.memory;
 890	int i, ret, start_rgn, end_rgn;
 891
 892	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 893	if (ret)
 894		return ret;
 895
 896	for (i = start_rgn; i < end_rgn; i++) {
 897		struct memblock_region *r = &type->regions[i];
 898
 899		if (set)
 900			r->flags |= flag;
 901		else
 902			r->flags &= ~flag;
 903	}
 904
 905	memblock_merge_regions(type);
 906	return 0;
 907}
 908
 909/**
 910 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 911 * @base: the base phys addr of the region
 912 * @size: the size of the region
 913 *
 914 * Return: 0 on success, -errno on failure.
 915 */
 916int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 917{
 918	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 919}
 920
 921/**
 922 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 923 * @base: the base phys addr of the region
 924 * @size: the size of the region
 925 *
 926 * Return: 0 on success, -errno on failure.
 927 */
 928int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 929{
 930	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 931}
 932
 933/**
 934 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 935 * @base: the base phys addr of the region
 936 * @size: the size of the region
 937 *
 938 * Return: 0 on success, -errno on failure.
 939 */
 940int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 941{
 942	if (!mirrored_kernelcore)
 943		return 0;
 944
 945	system_has_some_mirror = true;
 946
 947	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 948}
 949
 950/**
 951 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 952 * @base: the base phys addr of the region
 953 * @size: the size of the region
 954 *
 955 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
 956 * direct mapping of the physical memory. These regions will still be
 957 * covered by the memory map. The struct page representing NOMAP memory
 958 * frames in the memory map will be PageReserved()
 959 *
 960 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
 961 * memblock, the caller must inform kmemleak to ignore that memory
 962 *
 963 * Return: 0 on success, -errno on failure.
 964 */
 965int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 966{
 967	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 968}
 969
 970/**
 971 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 972 * @base: the base phys addr of the region
 973 * @size: the size of the region
 974 *
 975 * Return: 0 on success, -errno on failure.
 976 */
 977int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 978{
 979	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980}
 981
 982static bool should_skip_region(struct memblock_type *type,
 983			       struct memblock_region *m,
 984			       int nid, int flags)
 985{
 986	int m_nid = memblock_get_region_node(m);
 987
 988	/* we never skip regions when iterating memblock.reserved or physmem */
 989	if (type != memblock_memory)
 990		return false;
 991
 992	/* only memory regions are associated with nodes, check it */
 993	if (nid != NUMA_NO_NODE && nid != m_nid)
 994		return true;
 995
 996	/* skip hotpluggable memory regions if needed */
 997	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
 998	    !(flags & MEMBLOCK_HOTPLUG))
 999		return true;
1000
1001	/* if we want mirror memory skip non-mirror memory regions */
1002	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1003		return true;
1004
1005	/* skip nomap memory unless we were asked for it explicitly */
1006	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1007		return true;
1008
1009	/* skip driver-managed memory unless we were asked for it explicitly */
1010	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1011		return true;
1012
1013	return false;
1014}
1015
1016/**
1017 * __next_mem_range - next function for for_each_free_mem_range() etc.
1018 * @idx: pointer to u64 loop variable
1019 * @nid: node selector, %NUMA_NO_NODE for all nodes
1020 * @flags: pick from blocks based on memory attributes
1021 * @type_a: pointer to memblock_type from where the range is taken
1022 * @type_b: pointer to memblock_type which excludes memory from being taken
1023 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1024 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1025 * @out_nid: ptr to int for nid of the range, can be %NULL
1026 *
1027 * Find the first area from *@idx which matches @nid, fill the out
1028 * parameters, and update *@idx for the next iteration.  The lower 32bit of
1029 * *@idx contains index into type_a and the upper 32bit indexes the
1030 * areas before each region in type_b.	For example, if type_b regions
1031 * look like the following,
1032 *
1033 *	0:[0-16), 1:[32-48), 2:[128-130)
1034 *
1035 * The upper 32bit indexes the following regions.
1036 *
1037 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1038 *
1039 * As both region arrays are sorted, the function advances the two indices
1040 * in lockstep and returns each intersection.
1041 */
1042void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1043		      struct memblock_type *type_a,
1044		      struct memblock_type *type_b, phys_addr_t *out_start,
1045		      phys_addr_t *out_end, int *out_nid)
1046{
1047	int idx_a = *idx & 0xffffffff;
1048	int idx_b = *idx >> 32;
1049
1050	if (WARN_ONCE(nid == MAX_NUMNODES,
1051	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1052		nid = NUMA_NO_NODE;
1053
1054	for (; idx_a < type_a->cnt; idx_a++) {
1055		struct memblock_region *m = &type_a->regions[idx_a];
1056
1057		phys_addr_t m_start = m->base;
1058		phys_addr_t m_end = m->base + m->size;
1059		int	    m_nid = memblock_get_region_node(m);
1060
1061		if (should_skip_region(type_a, m, nid, flags))
1062			continue;
1063
1064		if (!type_b) {
1065			if (out_start)
1066				*out_start = m_start;
1067			if (out_end)
1068				*out_end = m_end;
1069			if (out_nid)
1070				*out_nid = m_nid;
1071			idx_a++;
1072			*idx = (u32)idx_a | (u64)idx_b << 32;
1073			return;
1074		}
1075
1076		/* scan areas before each reservation */
1077		for (; idx_b < type_b->cnt + 1; idx_b++) {
1078			struct memblock_region *r;
1079			phys_addr_t r_start;
1080			phys_addr_t r_end;
1081
1082			r = &type_b->regions[idx_b];
1083			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1084			r_end = idx_b < type_b->cnt ?
1085				r->base : PHYS_ADDR_MAX;
1086
1087			/*
1088			 * if idx_b advanced past idx_a,
1089			 * break out to advance idx_a
1090			 */
1091			if (r_start >= m_end)
1092				break;
1093			/* if the two regions intersect, we're done */
1094			if (m_start < r_end) {
1095				if (out_start)
1096					*out_start =
1097						max(m_start, r_start);
1098				if (out_end)
1099					*out_end = min(m_end, r_end);
1100				if (out_nid)
1101					*out_nid = m_nid;
1102				/*
1103				 * The region which ends first is
1104				 * advanced for the next iteration.
1105				 */
1106				if (m_end <= r_end)
1107					idx_a++;
1108				else
1109					idx_b++;
1110				*idx = (u32)idx_a | (u64)idx_b << 32;
1111				return;
1112			}
1113		}
1114	}
1115
1116	/* signal end of iteration */
1117	*idx = ULLONG_MAX;
1118}
1119
1120/**
1121 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1122 *
1123 * @idx: pointer to u64 loop variable
1124 * @nid: node selector, %NUMA_NO_NODE for all nodes
1125 * @flags: pick from blocks based on memory attributes
1126 * @type_a: pointer to memblock_type from where the range is taken
1127 * @type_b: pointer to memblock_type which excludes memory from being taken
1128 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1129 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1130 * @out_nid: ptr to int for nid of the range, can be %NULL
1131 *
1132 * Finds the next range from type_a which is not marked as unsuitable
1133 * in type_b.
1134 *
1135 * Reverse of __next_mem_range().
1136 */
1137void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1138					  enum memblock_flags flags,
1139					  struct memblock_type *type_a,
1140					  struct memblock_type *type_b,
1141					  phys_addr_t *out_start,
1142					  phys_addr_t *out_end, int *out_nid)
1143{
1144	int idx_a = *idx & 0xffffffff;
1145	int idx_b = *idx >> 32;
1146
1147	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1148		nid = NUMA_NO_NODE;
1149
1150	if (*idx == (u64)ULLONG_MAX) {
1151		idx_a = type_a->cnt - 1;
1152		if (type_b != NULL)
1153			idx_b = type_b->cnt;
1154		else
1155			idx_b = 0;
1156	}
1157
1158	for (; idx_a >= 0; idx_a--) {
1159		struct memblock_region *m = &type_a->regions[idx_a];
1160
1161		phys_addr_t m_start = m->base;
1162		phys_addr_t m_end = m->base + m->size;
1163		int m_nid = memblock_get_region_node(m);
1164
1165		if (should_skip_region(type_a, m, nid, flags))
1166			continue;
1167
1168		if (!type_b) {
1169			if (out_start)
1170				*out_start = m_start;
1171			if (out_end)
1172				*out_end = m_end;
1173			if (out_nid)
1174				*out_nid = m_nid;
1175			idx_a--;
1176			*idx = (u32)idx_a | (u64)idx_b << 32;
1177			return;
1178		}
1179
1180		/* scan areas before each reservation */
1181		for (; idx_b >= 0; idx_b--) {
1182			struct memblock_region *r;
1183			phys_addr_t r_start;
1184			phys_addr_t r_end;
1185
1186			r = &type_b->regions[idx_b];
1187			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1188			r_end = idx_b < type_b->cnt ?
1189				r->base : PHYS_ADDR_MAX;
1190			/*
1191			 * if idx_b advanced past idx_a,
1192			 * break out to advance idx_a
1193			 */
1194
1195			if (r_end <= m_start)
1196				break;
1197			/* if the two regions intersect, we're done */
1198			if (m_end > r_start) {
1199				if (out_start)
1200					*out_start = max(m_start, r_start);
1201				if (out_end)
1202					*out_end = min(m_end, r_end);
1203				if (out_nid)
1204					*out_nid = m_nid;
1205				if (m_start >= r_start)
1206					idx_a--;
1207				else
1208					idx_b--;
1209				*idx = (u32)idx_a | (u64)idx_b << 32;
1210				return;
1211			}
1212		}
1213	}
1214	/* signal end of iteration */
1215	*idx = ULLONG_MAX;
1216}
1217
1218/*
1219 * Common iterator interface used to define for_each_mem_pfn_range().
1220 */
1221void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1222				unsigned long *out_start_pfn,
1223				unsigned long *out_end_pfn, int *out_nid)
1224{
1225	struct memblock_type *type = &memblock.memory;
1226	struct memblock_region *r;
1227	int r_nid;
1228
1229	while (++*idx < type->cnt) {
1230		r = &type->regions[*idx];
1231		r_nid = memblock_get_region_node(r);
1232
1233		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1234			continue;
1235		if (nid == MAX_NUMNODES || nid == r_nid)
1236			break;
1237	}
1238	if (*idx >= type->cnt) {
1239		*idx = -1;
1240		return;
1241	}
1242
1243	if (out_start_pfn)
1244		*out_start_pfn = PFN_UP(r->base);
1245	if (out_end_pfn)
1246		*out_end_pfn = PFN_DOWN(r->base + r->size);
1247	if (out_nid)
1248		*out_nid = r_nid;
1249}
1250
1251/**
1252 * memblock_set_node - set node ID on memblock regions
1253 * @base: base of area to set node ID for
1254 * @size: size of area to set node ID for
1255 * @type: memblock type to set node ID for
1256 * @nid: node ID to set
1257 *
1258 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1259 * Regions which cross the area boundaries are split as necessary.
1260 *
1261 * Return:
1262 * 0 on success, -errno on failure.
1263 */
1264int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1265				      struct memblock_type *type, int nid)
1266{
1267#ifdef CONFIG_NUMA
1268	int start_rgn, end_rgn;
1269	int i, ret;
1270
1271	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1272	if (ret)
1273		return ret;
1274
1275	for (i = start_rgn; i < end_rgn; i++)
1276		memblock_set_region_node(&type->regions[i], nid);
1277
1278	memblock_merge_regions(type);
1279#endif
1280	return 0;
1281}
1282
1283#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1284/**
1285 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1286 *
1287 * @idx: pointer to u64 loop variable
1288 * @zone: zone in which all of the memory blocks reside
1289 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1290 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1291 *
1292 * This function is meant to be a zone/pfn specific wrapper for the
1293 * for_each_mem_range type iterators. Specifically they are used in the
1294 * deferred memory init routines and as such we were duplicating much of
1295 * this logic throughout the code. So instead of having it in multiple
1296 * locations it seemed like it would make more sense to centralize this to
1297 * one new iterator that does everything they need.
1298 */
1299void __init_memblock
1300__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1301			     unsigned long *out_spfn, unsigned long *out_epfn)
1302{
1303	int zone_nid = zone_to_nid(zone);
1304	phys_addr_t spa, epa;
1305
1306	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1307			 &memblock.memory, &memblock.reserved,
1308			 &spa, &epa, NULL);
1309
1310	while (*idx != U64_MAX) {
1311		unsigned long epfn = PFN_DOWN(epa);
1312		unsigned long spfn = PFN_UP(spa);
1313
1314		/*
1315		 * Verify the end is at least past the start of the zone and
1316		 * that we have at least one PFN to initialize.
1317		 */
1318		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1319			/* if we went too far just stop searching */
1320			if (zone_end_pfn(zone) <= spfn) {
1321				*idx = U64_MAX;
1322				break;
1323			}
1324
1325			if (out_spfn)
1326				*out_spfn = max(zone->zone_start_pfn, spfn);
1327			if (out_epfn)
1328				*out_epfn = min(zone_end_pfn(zone), epfn);
1329
1330			return;
1331		}
1332
1333		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1334				 &memblock.memory, &memblock.reserved,
1335				 &spa, &epa, NULL);
1336	}
1337
1338	/* signal end of iteration */
1339	if (out_spfn)
1340		*out_spfn = ULONG_MAX;
1341	if (out_epfn)
1342		*out_epfn = 0;
1343}
1344
1345#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1346
1347/**
1348 * memblock_alloc_range_nid - allocate boot memory block
1349 * @size: size of memory block to be allocated in bytes
1350 * @align: alignment of the region and block's size
1351 * @start: the lower bound of the memory region to allocate (phys address)
1352 * @end: the upper bound of the memory region to allocate (phys address)
1353 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1354 * @exact_nid: control the allocation fall back to other nodes
1355 *
1356 * The allocation is performed from memory region limited by
1357 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1358 *
1359 * If the specified node can not hold the requested memory and @exact_nid
1360 * is false, the allocation falls back to any node in the system.
1361 *
1362 * For systems with memory mirroring, the allocation is attempted first
1363 * from the regions with mirroring enabled and then retried from any
1364 * memory region.
1365 *
1366 * In addition, function using kmemleak_alloc_phys for allocated boot
1367 * memory block, it is never reported as leaks.
1368 *
1369 * Return:
1370 * Physical address of allocated memory block on success, %0 on failure.
1371 */
1372phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1373					phys_addr_t align, phys_addr_t start,
1374					phys_addr_t end, int nid,
1375					bool exact_nid)
1376{
1377	enum memblock_flags flags = choose_memblock_flags();
1378	phys_addr_t found;
1379
1380	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1381		nid = NUMA_NO_NODE;
1382
1383	if (!align) {
1384		/* Can't use WARNs this early in boot on powerpc */
1385		dump_stack();
1386		align = SMP_CACHE_BYTES;
1387	}
1388
1389again:
1390	found = memblock_find_in_range_node(size, align, start, end, nid,
1391					    flags);
1392	if (found && !memblock_reserve(found, size))
1393		goto done;
1394
1395	if (nid != NUMA_NO_NODE && !exact_nid) {
1396		found = memblock_find_in_range_node(size, align, start,
1397						    end, NUMA_NO_NODE,
1398						    flags);
1399		if (found && !memblock_reserve(found, size))
1400			goto done;
1401	}
1402
1403	if (flags & MEMBLOCK_MIRROR) {
1404		flags &= ~MEMBLOCK_MIRROR;
1405		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1406			&size);
1407		goto again;
1408	}
1409
1410	return 0;
1411
1412done:
1413	/*
1414	 * Skip kmemleak for those places like kasan_init() and
1415	 * early_pgtable_alloc() due to high volume.
1416	 */
1417	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1418		/*
1419		 * Memblock allocated blocks are never reported as
1420		 * leaks. This is because many of these blocks are
1421		 * only referred via the physical address which is
1422		 * not looked up by kmemleak.
1423		 */
1424		kmemleak_alloc_phys(found, size, 0);
1425
 
 
 
 
 
 
 
 
 
1426	return found;
1427}
1428
1429/**
1430 * memblock_phys_alloc_range - allocate a memory block inside specified range
1431 * @size: size of memory block to be allocated in bytes
1432 * @align: alignment of the region and block's size
1433 * @start: the lower bound of the memory region to allocate (physical address)
1434 * @end: the upper bound of the memory region to allocate (physical address)
1435 *
1436 * Allocate @size bytes in the between @start and @end.
1437 *
1438 * Return: physical address of the allocated memory block on success,
1439 * %0 on failure.
1440 */
1441phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1442					     phys_addr_t align,
1443					     phys_addr_t start,
1444					     phys_addr_t end)
1445{
1446	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1447		     __func__, (u64)size, (u64)align, &start, &end,
1448		     (void *)_RET_IP_);
1449	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1450					false);
1451}
1452
1453/**
1454 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1455 * @size: size of memory block to be allocated in bytes
1456 * @align: alignment of the region and block's size
1457 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1458 *
1459 * Allocates memory block from the specified NUMA node. If the node
1460 * has no available memory, attempts to allocated from any node in the
1461 * system.
1462 *
1463 * Return: physical address of the allocated memory block on success,
1464 * %0 on failure.
1465 */
1466phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1467{
1468	return memblock_alloc_range_nid(size, align, 0,
1469					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1470}
1471
1472/**
1473 * memblock_alloc_internal - allocate boot memory block
1474 * @size: size of memory block to be allocated in bytes
1475 * @align: alignment of the region and block's size
1476 * @min_addr: the lower bound of the memory region to allocate (phys address)
1477 * @max_addr: the upper bound of the memory region to allocate (phys address)
1478 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1479 * @exact_nid: control the allocation fall back to other nodes
1480 *
1481 * Allocates memory block using memblock_alloc_range_nid() and
1482 * converts the returned physical address to virtual.
1483 *
1484 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1485 * will fall back to memory below @min_addr. Other constraints, such
1486 * as node and mirrored memory will be handled again in
1487 * memblock_alloc_range_nid().
1488 *
1489 * Return:
1490 * Virtual address of allocated memory block on success, NULL on failure.
1491 */
1492static void * __init memblock_alloc_internal(
1493				phys_addr_t size, phys_addr_t align,
1494				phys_addr_t min_addr, phys_addr_t max_addr,
1495				int nid, bool exact_nid)
1496{
1497	phys_addr_t alloc;
1498
1499	/*
1500	 * Detect any accidental use of these APIs after slab is ready, as at
1501	 * this moment memblock may be deinitialized already and its
1502	 * internal data may be destroyed (after execution of memblock_free_all)
1503	 */
1504	if (WARN_ON_ONCE(slab_is_available()))
1505		return kzalloc_node(size, GFP_NOWAIT, nid);
1506
1507	if (max_addr > memblock.current_limit)
1508		max_addr = memblock.current_limit;
1509
1510	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1511					exact_nid);
1512
1513	/* retry allocation without lower limit */
1514	if (!alloc && min_addr)
1515		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1516						exact_nid);
1517
1518	if (!alloc)
1519		return NULL;
1520
1521	return phys_to_virt(alloc);
1522}
1523
1524/**
1525 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1526 * without zeroing memory
1527 * @size: size of memory block to be allocated in bytes
1528 * @align: alignment of the region and block's size
1529 * @min_addr: the lower bound of the memory region from where the allocation
1530 *	  is preferred (phys address)
1531 * @max_addr: the upper bound of the memory region from where the allocation
1532 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1533 *	      allocate only from memory limited by memblock.current_limit value
1534 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1535 *
1536 * Public function, provides additional debug information (including caller
1537 * info), if enabled. Does not zero allocated memory.
1538 *
1539 * Return:
1540 * Virtual address of allocated memory block on success, NULL on failure.
1541 */
1542void * __init memblock_alloc_exact_nid_raw(
1543			phys_addr_t size, phys_addr_t align,
1544			phys_addr_t min_addr, phys_addr_t max_addr,
1545			int nid)
1546{
1547	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1548		     __func__, (u64)size, (u64)align, nid, &min_addr,
1549		     &max_addr, (void *)_RET_IP_);
1550
1551	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1552				       true);
1553}
1554
1555/**
1556 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1557 * memory and without panicking
1558 * @size: size of memory block to be allocated in bytes
1559 * @align: alignment of the region and block's size
1560 * @min_addr: the lower bound of the memory region from where the allocation
1561 *	  is preferred (phys address)
1562 * @max_addr: the upper bound of the memory region from where the allocation
1563 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1564 *	      allocate only from memory limited by memblock.current_limit value
1565 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1566 *
1567 * Public function, provides additional debug information (including caller
1568 * info), if enabled. Does not zero allocated memory, does not panic if request
1569 * cannot be satisfied.
1570 *
1571 * Return:
1572 * Virtual address of allocated memory block on success, NULL on failure.
1573 */
1574void * __init memblock_alloc_try_nid_raw(
1575			phys_addr_t size, phys_addr_t align,
1576			phys_addr_t min_addr, phys_addr_t max_addr,
1577			int nid)
1578{
1579	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1580		     __func__, (u64)size, (u64)align, nid, &min_addr,
1581		     &max_addr, (void *)_RET_IP_);
1582
1583	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1584				       false);
1585}
1586
1587/**
1588 * memblock_alloc_try_nid - allocate boot memory block
1589 * @size: size of memory block to be allocated in bytes
1590 * @align: alignment of the region and block's size
1591 * @min_addr: the lower bound of the memory region from where the allocation
1592 *	  is preferred (phys address)
1593 * @max_addr: the upper bound of the memory region from where the allocation
1594 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1595 *	      allocate only from memory limited by memblock.current_limit value
1596 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1597 *
1598 * Public function, provides additional debug information (including caller
1599 * info), if enabled. This function zeroes the allocated memory.
1600 *
1601 * Return:
1602 * Virtual address of allocated memory block on success, NULL on failure.
1603 */
1604void * __init memblock_alloc_try_nid(
1605			phys_addr_t size, phys_addr_t align,
1606			phys_addr_t min_addr, phys_addr_t max_addr,
1607			int nid)
1608{
1609	void *ptr;
1610
1611	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1612		     __func__, (u64)size, (u64)align, nid, &min_addr,
1613		     &max_addr, (void *)_RET_IP_);
1614	ptr = memblock_alloc_internal(size, align,
1615					   min_addr, max_addr, nid, false);
1616	if (ptr)
1617		memset(ptr, 0, size);
1618
1619	return ptr;
1620}
1621
1622/**
1623 * memblock_free_late - free pages directly to buddy allocator
1624 * @base: phys starting address of the  boot memory block
1625 * @size: size of the boot memory block in bytes
1626 *
1627 * This is only useful when the memblock allocator has already been torn
1628 * down, but we are still initializing the system.  Pages are released directly
1629 * to the buddy allocator.
1630 */
1631void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1632{
1633	phys_addr_t cursor, end;
1634
1635	end = base + size - 1;
1636	memblock_dbg("%s: [%pa-%pa] %pS\n",
1637		     __func__, &base, &end, (void *)_RET_IP_);
1638	kmemleak_free_part_phys(base, size);
1639	cursor = PFN_UP(base);
1640	end = PFN_DOWN(base + size);
1641
1642	for (; cursor < end; cursor++) {
1643		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1644		totalram_pages_inc();
1645	}
1646}
1647
1648/*
1649 * Remaining API functions
1650 */
1651
1652phys_addr_t __init_memblock memblock_phys_mem_size(void)
1653{
1654	return memblock.memory.total_size;
1655}
1656
1657phys_addr_t __init_memblock memblock_reserved_size(void)
1658{
1659	return memblock.reserved.total_size;
1660}
1661
1662/* lowest address */
1663phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1664{
1665	return memblock.memory.regions[0].base;
1666}
1667
1668phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1669{
1670	int idx = memblock.memory.cnt - 1;
1671
1672	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1673}
1674
1675static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1676{
1677	phys_addr_t max_addr = PHYS_ADDR_MAX;
1678	struct memblock_region *r;
1679
1680	/*
1681	 * translate the memory @limit size into the max address within one of
1682	 * the memory memblock regions, if the @limit exceeds the total size
1683	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1684	 */
1685	for_each_mem_region(r) {
1686		if (limit <= r->size) {
1687			max_addr = r->base + limit;
1688			break;
1689		}
1690		limit -= r->size;
1691	}
1692
1693	return max_addr;
1694}
1695
1696void __init memblock_enforce_memory_limit(phys_addr_t limit)
1697{
1698	phys_addr_t max_addr;
1699
1700	if (!limit)
1701		return;
1702
1703	max_addr = __find_max_addr(limit);
1704
1705	/* @limit exceeds the total size of the memory, do nothing */
1706	if (max_addr == PHYS_ADDR_MAX)
1707		return;
1708
1709	/* truncate both memory and reserved regions */
1710	memblock_remove_range(&memblock.memory, max_addr,
1711			      PHYS_ADDR_MAX);
1712	memblock_remove_range(&memblock.reserved, max_addr,
1713			      PHYS_ADDR_MAX);
1714}
1715
1716void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1717{
1718	int start_rgn, end_rgn;
1719	int i, ret;
1720
1721	if (!size)
1722		return;
1723
1724	if (!memblock_memory->total_size) {
1725		pr_warn("%s: No memory registered yet\n", __func__);
1726		return;
1727	}
1728
1729	ret = memblock_isolate_range(&memblock.memory, base, size,
1730						&start_rgn, &end_rgn);
1731	if (ret)
1732		return;
1733
1734	/* remove all the MAP regions */
1735	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1736		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1737			memblock_remove_region(&memblock.memory, i);
1738
1739	for (i = start_rgn - 1; i >= 0; i--)
1740		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1741			memblock_remove_region(&memblock.memory, i);
1742
1743	/* truncate the reserved regions */
1744	memblock_remove_range(&memblock.reserved, 0, base);
1745	memblock_remove_range(&memblock.reserved,
1746			base + size, PHYS_ADDR_MAX);
1747}
1748
1749void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1750{
1751	phys_addr_t max_addr;
1752
1753	if (!limit)
1754		return;
1755
1756	max_addr = __find_max_addr(limit);
1757
1758	/* @limit exceeds the total size of the memory, do nothing */
1759	if (max_addr == PHYS_ADDR_MAX)
1760		return;
1761
1762	memblock_cap_memory_range(0, max_addr);
1763}
1764
1765static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1766{
1767	unsigned int left = 0, right = type->cnt;
1768
1769	do {
1770		unsigned int mid = (right + left) / 2;
1771
1772		if (addr < type->regions[mid].base)
1773			right = mid;
1774		else if (addr >= (type->regions[mid].base +
1775				  type->regions[mid].size))
1776			left = mid + 1;
1777		else
1778			return mid;
1779	} while (left < right);
1780	return -1;
1781}
1782
1783bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1784{
1785	return memblock_search(&memblock.reserved, addr) != -1;
1786}
1787
1788bool __init_memblock memblock_is_memory(phys_addr_t addr)
1789{
1790	return memblock_search(&memblock.memory, addr) != -1;
1791}
1792
1793bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1794{
1795	int i = memblock_search(&memblock.memory, addr);
1796
1797	if (i == -1)
1798		return false;
1799	return !memblock_is_nomap(&memblock.memory.regions[i]);
1800}
1801
1802int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1803			 unsigned long *start_pfn, unsigned long *end_pfn)
1804{
1805	struct memblock_type *type = &memblock.memory;
1806	int mid = memblock_search(type, PFN_PHYS(pfn));
1807
1808	if (mid == -1)
1809		return -1;
1810
1811	*start_pfn = PFN_DOWN(type->regions[mid].base);
1812	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1813
1814	return memblock_get_region_node(&type->regions[mid]);
1815}
1816
1817/**
1818 * memblock_is_region_memory - check if a region is a subset of memory
1819 * @base: base of region to check
1820 * @size: size of region to check
1821 *
1822 * Check if the region [@base, @base + @size) is a subset of a memory block.
1823 *
1824 * Return:
1825 * 0 if false, non-zero if true
1826 */
1827bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1828{
1829	int idx = memblock_search(&memblock.memory, base);
1830	phys_addr_t end = base + memblock_cap_size(base, &size);
1831
1832	if (idx == -1)
1833		return false;
1834	return (memblock.memory.regions[idx].base +
1835		 memblock.memory.regions[idx].size) >= end;
1836}
1837
1838/**
1839 * memblock_is_region_reserved - check if a region intersects reserved memory
1840 * @base: base of region to check
1841 * @size: size of region to check
1842 *
1843 * Check if the region [@base, @base + @size) intersects a reserved
1844 * memory block.
1845 *
1846 * Return:
1847 * True if they intersect, false if not.
1848 */
1849bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1850{
1851	return memblock_overlaps_region(&memblock.reserved, base, size);
1852}
1853
1854void __init_memblock memblock_trim_memory(phys_addr_t align)
1855{
1856	phys_addr_t start, end, orig_start, orig_end;
1857	struct memblock_region *r;
1858
1859	for_each_mem_region(r) {
1860		orig_start = r->base;
1861		orig_end = r->base + r->size;
1862		start = round_up(orig_start, align);
1863		end = round_down(orig_end, align);
1864
1865		if (start == orig_start && end == orig_end)
1866			continue;
1867
1868		if (start < end) {
1869			r->base = start;
1870			r->size = end - start;
1871		} else {
1872			memblock_remove_region(&memblock.memory,
1873					       r - memblock.memory.regions);
1874			r--;
1875		}
1876	}
1877}
1878
1879void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1880{
1881	memblock.current_limit = limit;
1882}
1883
1884phys_addr_t __init_memblock memblock_get_current_limit(void)
1885{
1886	return memblock.current_limit;
1887}
1888
1889static void __init_memblock memblock_dump(struct memblock_type *type)
1890{
1891	phys_addr_t base, end, size;
1892	enum memblock_flags flags;
1893	int idx;
1894	struct memblock_region *rgn;
1895
1896	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1897
1898	for_each_memblock_type(idx, type, rgn) {
1899		char nid_buf[32] = "";
1900
1901		base = rgn->base;
1902		size = rgn->size;
1903		end = base + size - 1;
1904		flags = rgn->flags;
1905#ifdef CONFIG_NUMA
1906		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1907			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1908				 memblock_get_region_node(rgn));
1909#endif
1910		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1911			type->name, idx, &base, &end, &size, nid_buf, flags);
1912	}
1913}
1914
1915static void __init_memblock __memblock_dump_all(void)
1916{
1917	pr_info("MEMBLOCK configuration:\n");
1918	pr_info(" memory size = %pa reserved size = %pa\n",
1919		&memblock.memory.total_size,
1920		&memblock.reserved.total_size);
1921
1922	memblock_dump(&memblock.memory);
1923	memblock_dump(&memblock.reserved);
1924#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1925	memblock_dump(&physmem);
1926#endif
1927}
1928
1929void __init_memblock memblock_dump_all(void)
1930{
1931	if (memblock_debug)
1932		__memblock_dump_all();
1933}
1934
1935void __init memblock_allow_resize(void)
1936{
1937	memblock_can_resize = 1;
1938}
1939
1940static int __init early_memblock(char *p)
1941{
1942	if (p && strstr(p, "debug"))
1943		memblock_debug = 1;
1944	return 0;
1945}
1946early_param("memblock", early_memblock);
1947
1948static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1949{
1950	struct page *start_pg, *end_pg;
1951	phys_addr_t pg, pgend;
1952
1953	/*
1954	 * Convert start_pfn/end_pfn to a struct page pointer.
1955	 */
1956	start_pg = pfn_to_page(start_pfn - 1) + 1;
1957	end_pg = pfn_to_page(end_pfn - 1) + 1;
1958
1959	/*
1960	 * Convert to physical addresses, and round start upwards and end
1961	 * downwards.
1962	 */
1963	pg = PAGE_ALIGN(__pa(start_pg));
1964	pgend = __pa(end_pg) & PAGE_MASK;
1965
1966	/*
1967	 * If there are free pages between these, free the section of the
1968	 * memmap array.
1969	 */
1970	if (pg < pgend)
1971		memblock_phys_free(pg, pgend - pg);
1972}
1973
1974/*
1975 * The mem_map array can get very big.  Free the unused area of the memory map.
1976 */
1977static void __init free_unused_memmap(void)
1978{
1979	unsigned long start, end, prev_end = 0;
1980	int i;
1981
1982	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1983	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1984		return;
1985
1986	/*
1987	 * This relies on each bank being in address order.
1988	 * The banks are sorted previously in bootmem_init().
1989	 */
1990	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1991#ifdef CONFIG_SPARSEMEM
1992		/*
1993		 * Take care not to free memmap entries that don't exist
1994		 * due to SPARSEMEM sections which aren't present.
1995		 */
1996		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1997#endif
1998		/*
1999		 * Align down here since many operations in VM subsystem
2000		 * presume that there are no holes in the memory map inside
2001		 * a pageblock
2002		 */
2003		start = pageblock_start_pfn(start);
2004
2005		/*
2006		 * If we had a previous bank, and there is a space
2007		 * between the current bank and the previous, free it.
2008		 */
2009		if (prev_end && prev_end < start)
2010			free_memmap(prev_end, start);
2011
2012		/*
2013		 * Align up here since many operations in VM subsystem
2014		 * presume that there are no holes in the memory map inside
2015		 * a pageblock
2016		 */
2017		prev_end = pageblock_align(end);
2018	}
2019
2020#ifdef CONFIG_SPARSEMEM
2021	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2022		prev_end = pageblock_align(end);
2023		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2024	}
2025#endif
2026}
2027
2028static void __init __free_pages_memory(unsigned long start, unsigned long end)
2029{
2030	int order;
2031
2032	while (start < end) {
2033		order = min(MAX_ORDER - 1UL, __ffs(start));
 
 
 
 
 
 
 
 
 
 
2034
2035		while (start + (1UL << order) > end)
2036			order--;
2037
2038		memblock_free_pages(pfn_to_page(start), start, order);
2039
2040		start += (1UL << order);
2041	}
2042}
2043
2044static unsigned long __init __free_memory_core(phys_addr_t start,
2045				 phys_addr_t end)
2046{
2047	unsigned long start_pfn = PFN_UP(start);
2048	unsigned long end_pfn = min_t(unsigned long,
2049				      PFN_DOWN(end), max_low_pfn);
2050
2051	if (start_pfn >= end_pfn)
2052		return 0;
2053
2054	__free_pages_memory(start_pfn, end_pfn);
2055
2056	return end_pfn - start_pfn;
2057}
2058
2059static void __init memmap_init_reserved_pages(void)
2060{
2061	struct memblock_region *region;
2062	phys_addr_t start, end;
2063	u64 i;
2064
2065	/* initialize struct pages for the reserved regions */
2066	for_each_reserved_mem_range(i, &start, &end)
2067		reserve_bootmem_region(start, end);
2068
2069	/* and also treat struct pages for the NOMAP regions as PageReserved */
 
 
 
2070	for_each_mem_region(region) {
2071		if (memblock_is_nomap(region)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2072			start = region->base;
2073			end = start + region->size;
2074			reserve_bootmem_region(start, end);
 
 
 
 
2075		}
2076	}
2077}
2078
2079static unsigned long __init free_low_memory_core_early(void)
2080{
2081	unsigned long count = 0;
2082	phys_addr_t start, end;
2083	u64 i;
2084
2085	memblock_clear_hotplug(0, -1);
2086
2087	memmap_init_reserved_pages();
2088
2089	/*
2090	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2091	 *  because in some case like Node0 doesn't have RAM installed
2092	 *  low ram will be on Node1
2093	 */
2094	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2095				NULL)
2096		count += __free_memory_core(start, end);
2097
2098	return count;
2099}
2100
2101static int reset_managed_pages_done __initdata;
2102
2103void reset_node_managed_pages(pg_data_t *pgdat)
2104{
2105	struct zone *z;
2106
2107	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2108		atomic_long_set(&z->managed_pages, 0);
2109}
2110
2111void __init reset_all_zones_managed_pages(void)
2112{
2113	struct pglist_data *pgdat;
2114
2115	if (reset_managed_pages_done)
2116		return;
2117
2118	for_each_online_pgdat(pgdat)
2119		reset_node_managed_pages(pgdat);
2120
2121	reset_managed_pages_done = 1;
2122}
2123
2124/**
2125 * memblock_free_all - release free pages to the buddy allocator
2126 */
2127void __init memblock_free_all(void)
2128{
2129	unsigned long pages;
2130
2131	free_unused_memmap();
2132	reset_all_zones_managed_pages();
2133
2134	pages = free_low_memory_core_early();
2135	totalram_pages_add(pages);
2136}
2137
2138#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
 
 
 
 
 
 
 
2139
2140static int memblock_debug_show(struct seq_file *m, void *private)
2141{
2142	struct memblock_type *type = m->private;
2143	struct memblock_region *reg;
2144	int i;
 
2145	phys_addr_t end;
2146
2147	for (i = 0; i < type->cnt; i++) {
2148		reg = &type->regions[i];
2149		end = reg->base + reg->size - 1;
 
2150
2151		seq_printf(m, "%4d: ", i);
2152		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2153	}
2154	return 0;
2155}
2156DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2157
2158static int __init memblock_init_debugfs(void)
2159{
2160	struct dentry *root = debugfs_create_dir("memblock", NULL);
2161
2162	debugfs_create_file("memory", 0444, root,
2163			    &memblock.memory, &memblock_debug_fops);
2164	debugfs_create_file("reserved", 0444, root,
2165			    &memblock.reserved, &memblock_debug_fops);
2166#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2167	debugfs_create_file("physmem", 0444, root, &physmem,
2168			    &memblock_debug_fops);
2169#endif
2170
2171	return 0;
2172}
2173__initcall(memblock_init_debugfs);
2174
2175#endif /* CONFIG_DEBUG_FS */
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Procedures for maintaining information about logical memory blocks.
   4 *
   5 * Peter Bergner, IBM Corp.	June 2001.
   6 * Copyright (C) 2001 Peter Bergner.
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/init.h>
  12#include <linux/bitops.h>
  13#include <linux/poison.h>
  14#include <linux/pfn.h>
  15#include <linux/debugfs.h>
  16#include <linux/kmemleak.h>
  17#include <linux/seq_file.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/sections.h>
  21#include <linux/io.h>
  22
  23#include "internal.h"
  24
  25#define INIT_MEMBLOCK_REGIONS			128
  26#define INIT_PHYSMEM_REGIONS			4
  27
  28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
  29# define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
  30#endif
  31
  32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
  33#define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
  34#endif
  35
  36/**
  37 * DOC: memblock overview
  38 *
  39 * Memblock is a method of managing memory regions during the early
  40 * boot period when the usual kernel memory allocators are not up and
  41 * running.
  42 *
  43 * Memblock views the system memory as collections of contiguous
  44 * regions. There are several types of these collections:
  45 *
  46 * * ``memory`` - describes the physical memory available to the
  47 *   kernel; this may differ from the actual physical memory installed
  48 *   in the system, for instance when the memory is restricted with
  49 *   ``mem=`` command line parameter
  50 * * ``reserved`` - describes the regions that were allocated
  51 * * ``physmem`` - describes the actual physical memory available during
  52 *   boot regardless of the possible restrictions and memory hot(un)plug;
  53 *   the ``physmem`` type is only available on some architectures.
  54 *
  55 * Each region is represented by struct memblock_region that
  56 * defines the region extents, its attributes and NUMA node id on NUMA
  57 * systems. Every memory type is described by the struct memblock_type
  58 * which contains an array of memory regions along with
  59 * the allocator metadata. The "memory" and "reserved" types are nicely
  60 * wrapped with struct memblock. This structure is statically
  61 * initialized at build time. The region arrays are initially sized to
  62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
  63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
  64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
  65 * The memblock_allow_resize() enables automatic resizing of the region
  66 * arrays during addition of new regions. This feature should be used
  67 * with care so that memory allocated for the region array will not
  68 * overlap with areas that should be reserved, for example initrd.
  69 *
  70 * The early architecture setup should tell memblock what the physical
  71 * memory layout is by using memblock_add() or memblock_add_node()
  72 * functions. The first function does not assign the region to a NUMA
  73 * node and it is appropriate for UMA systems. Yet, it is possible to
  74 * use it on NUMA systems as well and assign the region to a NUMA node
  75 * later in the setup process using memblock_set_node(). The
  76 * memblock_add_node() performs such an assignment directly.
  77 *
  78 * Once memblock is setup the memory can be allocated using one of the
  79 * API variants:
  80 *
  81 * * memblock_phys_alloc*() - these functions return the **physical**
  82 *   address of the allocated memory
  83 * * memblock_alloc*() - these functions return the **virtual** address
  84 *   of the allocated memory.
  85 *
  86 * Note, that both API variants use implicit assumptions about allowed
  87 * memory ranges and the fallback methods. Consult the documentation
  88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
  89 * functions for more elaborate description.
  90 *
  91 * As the system boot progresses, the architecture specific mem_init()
  92 * function frees all the memory to the buddy page allocator.
  93 *
  94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
  95 * memblock data structures (except "physmem") will be discarded after the
  96 * system initialization completes.
  97 */
  98
  99#ifndef CONFIG_NUMA
 100struct pglist_data __refdata contig_page_data;
 101EXPORT_SYMBOL(contig_page_data);
 102#endif
 103
 104unsigned long max_low_pfn;
 105unsigned long min_low_pfn;
 106unsigned long max_pfn;
 107unsigned long long max_possible_pfn;
 108
 109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
 110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
 111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
 113#endif
 114
 115struct memblock memblock __initdata_memblock = {
 116	.memory.regions		= memblock_memory_init_regions,
 117	.memory.cnt		= 1,	/* empty dummy entry */
 118	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
 119	.memory.name		= "memory",
 120
 121	.reserved.regions	= memblock_reserved_init_regions,
 122	.reserved.cnt		= 1,	/* empty dummy entry */
 123	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
 124	.reserved.name		= "reserved",
 125
 126	.bottom_up		= false,
 127	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
 128};
 129
 130#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 131struct memblock_type physmem = {
 132	.regions		= memblock_physmem_init_regions,
 133	.cnt			= 1,	/* empty dummy entry */
 134	.max			= INIT_PHYSMEM_REGIONS,
 135	.name			= "physmem",
 136};
 137#endif
 138
 139/*
 140 * keep a pointer to &memblock.memory in the text section to use it in
 141 * __next_mem_range() and its helpers.
 142 *  For architectures that do not keep memblock data after init, this
 143 * pointer will be reset to NULL at memblock_discard()
 144 */
 145static __refdata struct memblock_type *memblock_memory = &memblock.memory;
 146
 147#define for_each_memblock_type(i, memblock_type, rgn)			\
 148	for (i = 0, rgn = &memblock_type->regions[0];			\
 149	     i < memblock_type->cnt;					\
 150	     i++, rgn = &memblock_type->regions[i])
 151
 152#define memblock_dbg(fmt, ...)						\
 153	do {								\
 154		if (memblock_debug)					\
 155			pr_info(fmt, ##__VA_ARGS__);			\
 156	} while (0)
 157
 158static int memblock_debug __initdata_memblock;
 159static bool system_has_some_mirror __initdata_memblock;
 160static int memblock_can_resize __initdata_memblock;
 161static int memblock_memory_in_slab __initdata_memblock;
 162static int memblock_reserved_in_slab __initdata_memblock;
 163
 164bool __init_memblock memblock_has_mirror(void)
 165{
 166	return system_has_some_mirror;
 167}
 168
 169static enum memblock_flags __init_memblock choose_memblock_flags(void)
 170{
 171	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 172}
 173
 174/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 175static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 176{
 177	return *size = min(*size, PHYS_ADDR_MAX - base);
 178}
 179
 180/*
 181 * Address comparison utilities
 182 */
 183unsigned long __init_memblock
 184memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
 185		       phys_addr_t size2)
 186{
 187	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 188}
 189
 190bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 191					phys_addr_t base, phys_addr_t size)
 192{
 193	unsigned long i;
 194
 195	memblock_cap_size(base, &size);
 196
 197	for (i = 0; i < type->cnt; i++)
 198		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 199					   type->regions[i].size))
 200			break;
 201	return i < type->cnt;
 202}
 203
 204/**
 205 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 206 * @start: start of candidate range
 207 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 208 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 209 * @size: size of free area to find
 210 * @align: alignment of free area to find
 211 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 212 * @flags: pick from blocks based on memory attributes
 213 *
 214 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 215 *
 216 * Return:
 217 * Found address on success, 0 on failure.
 218 */
 219static phys_addr_t __init_memblock
 220__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 221				phys_addr_t size, phys_addr_t align, int nid,
 222				enum memblock_flags flags)
 223{
 224	phys_addr_t this_start, this_end, cand;
 225	u64 i;
 226
 227	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 228		this_start = clamp(this_start, start, end);
 229		this_end = clamp(this_end, start, end);
 230
 231		cand = round_up(this_start, align);
 232		if (cand < this_end && this_end - cand >= size)
 233			return cand;
 234	}
 235
 236	return 0;
 237}
 238
 239/**
 240 * __memblock_find_range_top_down - find free area utility, in top-down
 241 * @start: start of candidate range
 242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 243 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 244 * @size: size of free area to find
 245 * @align: alignment of free area to find
 246 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 247 * @flags: pick from blocks based on memory attributes
 248 *
 249 * Utility called from memblock_find_in_range_node(), find free area top-down.
 250 *
 251 * Return:
 252 * Found address on success, 0 on failure.
 253 */
 254static phys_addr_t __init_memblock
 255__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 256			       phys_addr_t size, phys_addr_t align, int nid,
 257			       enum memblock_flags flags)
 258{
 259	phys_addr_t this_start, this_end, cand;
 260	u64 i;
 261
 262	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 263					NULL) {
 264		this_start = clamp(this_start, start, end);
 265		this_end = clamp(this_end, start, end);
 266
 267		if (this_end < size)
 268			continue;
 269
 270		cand = round_down(this_end - size, align);
 271		if (cand >= this_start)
 272			return cand;
 273	}
 274
 275	return 0;
 276}
 277
 278/**
 279 * memblock_find_in_range_node - find free area in given range and node
 280 * @size: size of free area to find
 281 * @align: alignment of free area to find
 282 * @start: start of candidate range
 283 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 284 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 285 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 286 * @flags: pick from blocks based on memory attributes
 287 *
 288 * Find @size free area aligned to @align in the specified range and node.
 289 *
 290 * Return:
 291 * Found address on success, 0 on failure.
 292 */
 293static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 294					phys_addr_t align, phys_addr_t start,
 295					phys_addr_t end, int nid,
 296					enum memblock_flags flags)
 297{
 298	/* pump up @end */
 299	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
 300	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
 301		end = memblock.current_limit;
 302
 303	/* avoid allocating the first page */
 304	start = max_t(phys_addr_t, start, PAGE_SIZE);
 305	end = max(start, end);
 306
 307	if (memblock_bottom_up())
 308		return __memblock_find_range_bottom_up(start, end, size, align,
 309						       nid, flags);
 310	else
 311		return __memblock_find_range_top_down(start, end, size, align,
 312						      nid, flags);
 313}
 314
 315/**
 316 * memblock_find_in_range - find free area in given range
 317 * @start: start of candidate range
 318 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 319 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 320 * @size: size of free area to find
 321 * @align: alignment of free area to find
 322 *
 323 * Find @size free area aligned to @align in the specified range.
 324 *
 325 * Return:
 326 * Found address on success, 0 on failure.
 327 */
 328static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 329					phys_addr_t end, phys_addr_t size,
 330					phys_addr_t align)
 331{
 332	phys_addr_t ret;
 333	enum memblock_flags flags = choose_memblock_flags();
 334
 335again:
 336	ret = memblock_find_in_range_node(size, align, start, end,
 337					    NUMA_NO_NODE, flags);
 338
 339	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 340		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
 341			&size);
 342		flags &= ~MEMBLOCK_MIRROR;
 343		goto again;
 344	}
 345
 346	return ret;
 347}
 348
 349static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 350{
 351	type->total_size -= type->regions[r].size;
 352	memmove(&type->regions[r], &type->regions[r + 1],
 353		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 354	type->cnt--;
 355
 356	/* Special case for empty arrays */
 357	if (type->cnt == 0) {
 358		WARN_ON(type->total_size != 0);
 359		type->cnt = 1;
 360		type->regions[0].base = 0;
 361		type->regions[0].size = 0;
 362		type->regions[0].flags = 0;
 363		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 364	}
 365}
 366
 367#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
 368/**
 369 * memblock_discard - discard memory and reserved arrays if they were allocated
 370 */
 371void __init memblock_discard(void)
 372{
 373	phys_addr_t addr, size;
 374
 375	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 376		addr = __pa(memblock.reserved.regions);
 377		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 378				  memblock.reserved.max);
 379		if (memblock_reserved_in_slab)
 380			kfree(memblock.reserved.regions);
 381		else
 382			memblock_free_late(addr, size);
 383	}
 384
 385	if (memblock.memory.regions != memblock_memory_init_regions) {
 386		addr = __pa(memblock.memory.regions);
 387		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 388				  memblock.memory.max);
 389		if (memblock_memory_in_slab)
 390			kfree(memblock.memory.regions);
 391		else
 392			memblock_free_late(addr, size);
 393	}
 394
 395	memblock_memory = NULL;
 396}
 397#endif
 398
 399/**
 400 * memblock_double_array - double the size of the memblock regions array
 401 * @type: memblock type of the regions array being doubled
 402 * @new_area_start: starting address of memory range to avoid overlap with
 403 * @new_area_size: size of memory range to avoid overlap with
 404 *
 405 * Double the size of the @type regions array. If memblock is being used to
 406 * allocate memory for a new reserved regions array and there is a previously
 407 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
 408 * waiting to be reserved, ensure the memory used by the new array does
 409 * not overlap.
 410 *
 411 * Return:
 412 * 0 on success, -1 on failure.
 413 */
 414static int __init_memblock memblock_double_array(struct memblock_type *type,
 415						phys_addr_t new_area_start,
 416						phys_addr_t new_area_size)
 417{
 418	struct memblock_region *new_array, *old_array;
 419	phys_addr_t old_alloc_size, new_alloc_size;
 420	phys_addr_t old_size, new_size, addr, new_end;
 421	int use_slab = slab_is_available();
 422	int *in_slab;
 423
 424	/* We don't allow resizing until we know about the reserved regions
 425	 * of memory that aren't suitable for allocation
 426	 */
 427	if (!memblock_can_resize)
 428		panic("memblock: cannot resize %s array\n", type->name);
 429
 430	/* Calculate new doubled size */
 431	old_size = type->max * sizeof(struct memblock_region);
 432	new_size = old_size << 1;
 433	/*
 434	 * We need to allocated new one align to PAGE_SIZE,
 435	 *   so we can free them completely later.
 436	 */
 437	old_alloc_size = PAGE_ALIGN(old_size);
 438	new_alloc_size = PAGE_ALIGN(new_size);
 439
 440	/* Retrieve the slab flag */
 441	if (type == &memblock.memory)
 442		in_slab = &memblock_memory_in_slab;
 443	else
 444		in_slab = &memblock_reserved_in_slab;
 445
 446	/* Try to find some space for it */
 447	if (use_slab) {
 448		new_array = kmalloc(new_size, GFP_KERNEL);
 449		addr = new_array ? __pa(new_array) : 0;
 450	} else {
 451		/* only exclude range when trying to double reserved.regions */
 452		if (type != &memblock.reserved)
 453			new_area_start = new_area_size = 0;
 454
 455		addr = memblock_find_in_range(new_area_start + new_area_size,
 456						memblock.current_limit,
 457						new_alloc_size, PAGE_SIZE);
 458		if (!addr && new_area_size)
 459			addr = memblock_find_in_range(0,
 460				min(new_area_start, memblock.current_limit),
 461				new_alloc_size, PAGE_SIZE);
 462
 463		new_array = addr ? __va(addr) : NULL;
 464	}
 465	if (!addr) {
 466		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 467		       type->name, type->max, type->max * 2);
 468		return -1;
 469	}
 470
 471	new_end = addr + new_size - 1;
 472	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
 473			type->name, type->max * 2, &addr, &new_end);
 474
 475	/*
 476	 * Found space, we now need to move the array over before we add the
 477	 * reserved region since it may be our reserved array itself that is
 478	 * full.
 479	 */
 480	memcpy(new_array, type->regions, old_size);
 481	memset(new_array + type->max, 0, old_size);
 482	old_array = type->regions;
 483	type->regions = new_array;
 484	type->max <<= 1;
 485
 486	/* Free old array. We needn't free it if the array is the static one */
 487	if (*in_slab)
 488		kfree(old_array);
 489	else if (old_array != memblock_memory_init_regions &&
 490		 old_array != memblock_reserved_init_regions)
 491		memblock_free(old_array, old_alloc_size);
 492
 493	/*
 494	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 495	 * needn't do it
 496	 */
 497	if (!use_slab)
 498		BUG_ON(memblock_reserve(addr, new_alloc_size));
 499
 500	/* Update slab flag */
 501	*in_slab = use_slab;
 502
 503	return 0;
 504}
 505
 506/**
 507 * memblock_merge_regions - merge neighboring compatible regions
 508 * @type: memblock type to scan
 509 * @start_rgn: start scanning from (@start_rgn - 1)
 510 * @end_rgn: end scanning at (@end_rgn - 1)
 511 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
 512 */
 513static void __init_memblock memblock_merge_regions(struct memblock_type *type,
 514						   unsigned long start_rgn,
 515						   unsigned long end_rgn)
 516{
 517	int i = 0;
 518	if (start_rgn)
 519		i = start_rgn - 1;
 520	end_rgn = min(end_rgn, type->cnt - 1);
 521	while (i < end_rgn) {
 522		struct memblock_region *this = &type->regions[i];
 523		struct memblock_region *next = &type->regions[i + 1];
 524
 525		if (this->base + this->size != next->base ||
 526		    memblock_get_region_node(this) !=
 527		    memblock_get_region_node(next) ||
 528		    this->flags != next->flags) {
 529			BUG_ON(this->base + this->size > next->base);
 530			i++;
 531			continue;
 532		}
 533
 534		this->size += next->size;
 535		/* move forward from next + 1, index of which is i + 2 */
 536		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 537		type->cnt--;
 538		end_rgn--;
 539	}
 540}
 541
 542/**
 543 * memblock_insert_region - insert new memblock region
 544 * @type:	memblock type to insert into
 545 * @idx:	index for the insertion point
 546 * @base:	base address of the new region
 547 * @size:	size of the new region
 548 * @nid:	node id of the new region
 549 * @flags:	flags of the new region
 550 *
 551 * Insert new memblock region [@base, @base + @size) into @type at @idx.
 552 * @type must already have extra room to accommodate the new region.
 553 */
 554static void __init_memblock memblock_insert_region(struct memblock_type *type,
 555						   int idx, phys_addr_t base,
 556						   phys_addr_t size,
 557						   int nid,
 558						   enum memblock_flags flags)
 559{
 560	struct memblock_region *rgn = &type->regions[idx];
 561
 562	BUG_ON(type->cnt >= type->max);
 563	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 564	rgn->base = base;
 565	rgn->size = size;
 566	rgn->flags = flags;
 567	memblock_set_region_node(rgn, nid);
 568	type->cnt++;
 569	type->total_size += size;
 570}
 571
 572/**
 573 * memblock_add_range - add new memblock region
 574 * @type: memblock type to add new region into
 575 * @base: base address of the new region
 576 * @size: size of the new region
 577 * @nid: nid of the new region
 578 * @flags: flags of the new region
 579 *
 580 * Add new memblock region [@base, @base + @size) into @type.  The new region
 581 * is allowed to overlap with existing ones - overlaps don't affect already
 582 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 583 * compatible regions are merged) after the addition.
 584 *
 585 * Return:
 586 * 0 on success, -errno on failure.
 587 */
 588static int __init_memblock memblock_add_range(struct memblock_type *type,
 589				phys_addr_t base, phys_addr_t size,
 590				int nid, enum memblock_flags flags)
 591{
 592	bool insert = false;
 593	phys_addr_t obase = base;
 594	phys_addr_t end = base + memblock_cap_size(base, &size);
 595	int idx, nr_new, start_rgn = -1, end_rgn;
 596	struct memblock_region *rgn;
 597
 598	if (!size)
 599		return 0;
 600
 601	/* special case for empty array */
 602	if (type->regions[0].size == 0) {
 603		WARN_ON(type->cnt != 1 || type->total_size);
 604		type->regions[0].base = base;
 605		type->regions[0].size = size;
 606		type->regions[0].flags = flags;
 607		memblock_set_region_node(&type->regions[0], nid);
 608		type->total_size = size;
 609		return 0;
 610	}
 611
 612	/*
 613	 * The worst case is when new range overlaps all existing regions,
 614	 * then we'll need type->cnt + 1 empty regions in @type. So if
 615	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
 616	 * that there is enough empty regions in @type, and we can insert
 617	 * regions directly.
 618	 */
 619	if (type->cnt * 2 + 1 <= type->max)
 620		insert = true;
 621
 622repeat:
 623	/*
 624	 * The following is executed twice.  Once with %false @insert and
 625	 * then with %true.  The first counts the number of regions needed
 626	 * to accommodate the new area.  The second actually inserts them.
 627	 */
 628	base = obase;
 629	nr_new = 0;
 630
 631	for_each_memblock_type(idx, type, rgn) {
 632		phys_addr_t rbase = rgn->base;
 633		phys_addr_t rend = rbase + rgn->size;
 634
 635		if (rbase >= end)
 636			break;
 637		if (rend <= base)
 638			continue;
 639		/*
 640		 * @rgn overlaps.  If it separates the lower part of new
 641		 * area, insert that portion.
 642		 */
 643		if (rbase > base) {
 644#ifdef CONFIG_NUMA
 645			WARN_ON(nid != memblock_get_region_node(rgn));
 646#endif
 647			WARN_ON(flags != rgn->flags);
 648			nr_new++;
 649			if (insert) {
 650				if (start_rgn == -1)
 651					start_rgn = idx;
 652				end_rgn = idx + 1;
 653				memblock_insert_region(type, idx++, base,
 654						       rbase - base, nid,
 655						       flags);
 656			}
 657		}
 658		/* area below @rend is dealt with, forget about it */
 659		base = min(rend, end);
 660	}
 661
 662	/* insert the remaining portion */
 663	if (base < end) {
 664		nr_new++;
 665		if (insert) {
 666			if (start_rgn == -1)
 667				start_rgn = idx;
 668			end_rgn = idx + 1;
 669			memblock_insert_region(type, idx, base, end - base,
 670					       nid, flags);
 671		}
 672	}
 673
 674	if (!nr_new)
 675		return 0;
 676
 677	/*
 678	 * If this was the first round, resize array and repeat for actual
 679	 * insertions; otherwise, merge and return.
 680	 */
 681	if (!insert) {
 682		while (type->cnt + nr_new > type->max)
 683			if (memblock_double_array(type, obase, size) < 0)
 684				return -ENOMEM;
 685		insert = true;
 686		goto repeat;
 687	} else {
 688		memblock_merge_regions(type, start_rgn, end_rgn);
 689		return 0;
 690	}
 691}
 692
 693/**
 694 * memblock_add_node - add new memblock region within a NUMA node
 695 * @base: base address of the new region
 696 * @size: size of the new region
 697 * @nid: nid of the new region
 698 * @flags: flags of the new region
 699 *
 700 * Add new memblock region [@base, @base + @size) to the "memory"
 701 * type. See memblock_add_range() description for mode details
 702 *
 703 * Return:
 704 * 0 on success, -errno on failure.
 705 */
 706int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 707				      int nid, enum memblock_flags flags)
 708{
 709	phys_addr_t end = base + size - 1;
 710
 711	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
 712		     &base, &end, nid, flags, (void *)_RET_IP_);
 713
 714	return memblock_add_range(&memblock.memory, base, size, nid, flags);
 715}
 716
 717/**
 718 * memblock_add - add new memblock region
 719 * @base: base address of the new region
 720 * @size: size of the new region
 721 *
 722 * Add new memblock region [@base, @base + @size) to the "memory"
 723 * type. See memblock_add_range() description for mode details
 724 *
 725 * Return:
 726 * 0 on success, -errno on failure.
 727 */
 728int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 729{
 730	phys_addr_t end = base + size - 1;
 731
 732	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 733		     &base, &end, (void *)_RET_IP_);
 734
 735	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 736}
 737
 738/**
 739 * memblock_validate_numa_coverage - check if amount of memory with
 740 * no node ID assigned is less than a threshold
 741 * @threshold_bytes: maximal number of pages that can have unassigned node
 742 * ID (in bytes).
 743 *
 744 * A buggy firmware may report memory that does not belong to any node.
 745 * Check if amount of such memory is below @threshold_bytes.
 746 *
 747 * Return: true on success, false on failure.
 748 */
 749bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
 750{
 751	unsigned long nr_pages = 0;
 752	unsigned long start_pfn, end_pfn, mem_size_mb;
 753	int nid, i;
 754
 755	/* calculate lose page */
 756	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
 757		if (nid == NUMA_NO_NODE)
 758			nr_pages += end_pfn - start_pfn;
 759	}
 760
 761	if ((nr_pages << PAGE_SHIFT) >= threshold_bytes) {
 762		mem_size_mb = memblock_phys_mem_size() >> 20;
 763		pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
 764		       (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
 765		return false;
 766	}
 767
 768	return true;
 769}
 770
 771
 772/**
 773 * memblock_isolate_range - isolate given range into disjoint memblocks
 774 * @type: memblock type to isolate range for
 775 * @base: base of range to isolate
 776 * @size: size of range to isolate
 777 * @start_rgn: out parameter for the start of isolated region
 778 * @end_rgn: out parameter for the end of isolated region
 779 *
 780 * Walk @type and ensure that regions don't cross the boundaries defined by
 781 * [@base, @base + @size).  Crossing regions are split at the boundaries,
 782 * which may create at most two more regions.  The index of the first
 783 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 784 *
 785 * Return:
 786 * 0 on success, -errno on failure.
 787 */
 788static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 789					phys_addr_t base, phys_addr_t size,
 790					int *start_rgn, int *end_rgn)
 791{
 792	phys_addr_t end = base + memblock_cap_size(base, &size);
 793	int idx;
 794	struct memblock_region *rgn;
 795
 796	*start_rgn = *end_rgn = 0;
 797
 798	if (!size)
 799		return 0;
 800
 801	/* we'll create at most two more regions */
 802	while (type->cnt + 2 > type->max)
 803		if (memblock_double_array(type, base, size) < 0)
 804			return -ENOMEM;
 805
 806	for_each_memblock_type(idx, type, rgn) {
 807		phys_addr_t rbase = rgn->base;
 808		phys_addr_t rend = rbase + rgn->size;
 809
 810		if (rbase >= end)
 811			break;
 812		if (rend <= base)
 813			continue;
 814
 815		if (rbase < base) {
 816			/*
 817			 * @rgn intersects from below.  Split and continue
 818			 * to process the next region - the new top half.
 819			 */
 820			rgn->base = base;
 821			rgn->size -= base - rbase;
 822			type->total_size -= base - rbase;
 823			memblock_insert_region(type, idx, rbase, base - rbase,
 824					       memblock_get_region_node(rgn),
 825					       rgn->flags);
 826		} else if (rend > end) {
 827			/*
 828			 * @rgn intersects from above.  Split and redo the
 829			 * current region - the new bottom half.
 830			 */
 831			rgn->base = end;
 832			rgn->size -= end - rbase;
 833			type->total_size -= end - rbase;
 834			memblock_insert_region(type, idx--, rbase, end - rbase,
 835					       memblock_get_region_node(rgn),
 836					       rgn->flags);
 837		} else {
 838			/* @rgn is fully contained, record it */
 839			if (!*end_rgn)
 840				*start_rgn = idx;
 841			*end_rgn = idx + 1;
 842		}
 843	}
 844
 845	return 0;
 846}
 847
 848static int __init_memblock memblock_remove_range(struct memblock_type *type,
 849					  phys_addr_t base, phys_addr_t size)
 850{
 851	int start_rgn, end_rgn;
 852	int i, ret;
 853
 854	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 855	if (ret)
 856		return ret;
 857
 858	for (i = end_rgn - 1; i >= start_rgn; i--)
 859		memblock_remove_region(type, i);
 860	return 0;
 861}
 862
 863int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 864{
 865	phys_addr_t end = base + size - 1;
 866
 867	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 868		     &base, &end, (void *)_RET_IP_);
 869
 870	return memblock_remove_range(&memblock.memory, base, size);
 871}
 872
 873/**
 874 * memblock_free - free boot memory allocation
 875 * @ptr: starting address of the  boot memory allocation
 876 * @size: size of the boot memory block in bytes
 877 *
 878 * Free boot memory block previously allocated by memblock_alloc_xx() API.
 879 * The freeing memory will not be released to the buddy allocator.
 880 */
 881void __init_memblock memblock_free(void *ptr, size_t size)
 882{
 883	if (ptr)
 884		memblock_phys_free(__pa(ptr), size);
 885}
 886
 887/**
 888 * memblock_phys_free - free boot memory block
 889 * @base: phys starting address of the  boot memory block
 890 * @size: size of the boot memory block in bytes
 891 *
 892 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
 893 * The freeing memory will not be released to the buddy allocator.
 894 */
 895int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
 896{
 897	phys_addr_t end = base + size - 1;
 898
 899	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 900		     &base, &end, (void *)_RET_IP_);
 901
 902	kmemleak_free_part_phys(base, size);
 903	return memblock_remove_range(&memblock.reserved, base, size);
 904}
 905
 906int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 907{
 908	phys_addr_t end = base + size - 1;
 909
 910	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 911		     &base, &end, (void *)_RET_IP_);
 912
 913	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 914}
 915
 916#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 917int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
 918{
 919	phys_addr_t end = base + size - 1;
 920
 921	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 922		     &base, &end, (void *)_RET_IP_);
 923
 924	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
 925}
 926#endif
 927
 928/**
 929 * memblock_setclr_flag - set or clear flag for a memory region
 930 * @type: memblock type to set/clear flag for
 931 * @base: base address of the region
 932 * @size: size of the region
 933 * @set: set or clear the flag
 934 * @flag: the flag to update
 935 *
 936 * This function isolates region [@base, @base + @size), and sets/clears flag
 937 *
 938 * Return: 0 on success, -errno on failure.
 939 */
 940static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
 941				phys_addr_t base, phys_addr_t size, int set, int flag)
 942{
 
 943	int i, ret, start_rgn, end_rgn;
 944
 945	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 946	if (ret)
 947		return ret;
 948
 949	for (i = start_rgn; i < end_rgn; i++) {
 950		struct memblock_region *r = &type->regions[i];
 951
 952		if (set)
 953			r->flags |= flag;
 954		else
 955			r->flags &= ~flag;
 956	}
 957
 958	memblock_merge_regions(type, start_rgn, end_rgn);
 959	return 0;
 960}
 961
 962/**
 963 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 964 * @base: the base phys addr of the region
 965 * @size: the size of the region
 966 *
 967 * Return: 0 on success, -errno on failure.
 968 */
 969int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 970{
 971	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
 972}
 973
 974/**
 975 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 976 * @base: the base phys addr of the region
 977 * @size: the size of the region
 978 *
 979 * Return: 0 on success, -errno on failure.
 980 */
 981int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 982{
 983	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
 984}
 985
 986/**
 987 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 988 * @base: the base phys addr of the region
 989 * @size: the size of the region
 990 *
 991 * Return: 0 on success, -errno on failure.
 992 */
 993int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 994{
 995	if (!mirrored_kernelcore)
 996		return 0;
 997
 998	system_has_some_mirror = true;
 999
1000	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
1001}
1002
1003/**
1004 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1005 * @base: the base phys addr of the region
1006 * @size: the size of the region
1007 *
1008 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1009 * direct mapping of the physical memory. These regions will still be
1010 * covered by the memory map. The struct page representing NOMAP memory
1011 * frames in the memory map will be PageReserved()
1012 *
1013 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1014 * memblock, the caller must inform kmemleak to ignore that memory
1015 *
1016 * Return: 0 on success, -errno on failure.
1017 */
1018int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1019{
1020	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1021}
1022
1023/**
1024 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1025 * @base: the base phys addr of the region
1026 * @size: the size of the region
1027 *
1028 * Return: 0 on success, -errno on failure.
1029 */
1030int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1031{
1032	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1033}
1034
1035/**
1036 * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1037 * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1038 * for this region.
1039 * @base: the base phys addr of the region
1040 * @size: the size of the region
1041 *
1042 * struct pages will not be initialized for reserved memory regions marked with
1043 * %MEMBLOCK_RSRV_NOINIT.
1044 *
1045 * Return: 0 on success, -errno on failure.
1046 */
1047int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1048{
1049	return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1050				    MEMBLOCK_RSRV_NOINIT);
1051}
1052
1053static bool should_skip_region(struct memblock_type *type,
1054			       struct memblock_region *m,
1055			       int nid, int flags)
1056{
1057	int m_nid = memblock_get_region_node(m);
1058
1059	/* we never skip regions when iterating memblock.reserved or physmem */
1060	if (type != memblock_memory)
1061		return false;
1062
1063	/* only memory regions are associated with nodes, check it */
1064	if (nid != NUMA_NO_NODE && nid != m_nid)
1065		return true;
1066
1067	/* skip hotpluggable memory regions if needed */
1068	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1069	    !(flags & MEMBLOCK_HOTPLUG))
1070		return true;
1071
1072	/* if we want mirror memory skip non-mirror memory regions */
1073	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1074		return true;
1075
1076	/* skip nomap memory unless we were asked for it explicitly */
1077	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1078		return true;
1079
1080	/* skip driver-managed memory unless we were asked for it explicitly */
1081	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1082		return true;
1083
1084	return false;
1085}
1086
1087/**
1088 * __next_mem_range - next function for for_each_free_mem_range() etc.
1089 * @idx: pointer to u64 loop variable
1090 * @nid: node selector, %NUMA_NO_NODE for all nodes
1091 * @flags: pick from blocks based on memory attributes
1092 * @type_a: pointer to memblock_type from where the range is taken
1093 * @type_b: pointer to memblock_type which excludes memory from being taken
1094 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1095 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1096 * @out_nid: ptr to int for nid of the range, can be %NULL
1097 *
1098 * Find the first area from *@idx which matches @nid, fill the out
1099 * parameters, and update *@idx for the next iteration.  The lower 32bit of
1100 * *@idx contains index into type_a and the upper 32bit indexes the
1101 * areas before each region in type_b.	For example, if type_b regions
1102 * look like the following,
1103 *
1104 *	0:[0-16), 1:[32-48), 2:[128-130)
1105 *
1106 * The upper 32bit indexes the following regions.
1107 *
1108 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1109 *
1110 * As both region arrays are sorted, the function advances the two indices
1111 * in lockstep and returns each intersection.
1112 */
1113void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1114		      struct memblock_type *type_a,
1115		      struct memblock_type *type_b, phys_addr_t *out_start,
1116		      phys_addr_t *out_end, int *out_nid)
1117{
1118	int idx_a = *idx & 0xffffffff;
1119	int idx_b = *idx >> 32;
1120
1121	if (WARN_ONCE(nid == MAX_NUMNODES,
1122	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1123		nid = NUMA_NO_NODE;
1124
1125	for (; idx_a < type_a->cnt; idx_a++) {
1126		struct memblock_region *m = &type_a->regions[idx_a];
1127
1128		phys_addr_t m_start = m->base;
1129		phys_addr_t m_end = m->base + m->size;
1130		int	    m_nid = memblock_get_region_node(m);
1131
1132		if (should_skip_region(type_a, m, nid, flags))
1133			continue;
1134
1135		if (!type_b) {
1136			if (out_start)
1137				*out_start = m_start;
1138			if (out_end)
1139				*out_end = m_end;
1140			if (out_nid)
1141				*out_nid = m_nid;
1142			idx_a++;
1143			*idx = (u32)idx_a | (u64)idx_b << 32;
1144			return;
1145		}
1146
1147		/* scan areas before each reservation */
1148		for (; idx_b < type_b->cnt + 1; idx_b++) {
1149			struct memblock_region *r;
1150			phys_addr_t r_start;
1151			phys_addr_t r_end;
1152
1153			r = &type_b->regions[idx_b];
1154			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1155			r_end = idx_b < type_b->cnt ?
1156				r->base : PHYS_ADDR_MAX;
1157
1158			/*
1159			 * if idx_b advanced past idx_a,
1160			 * break out to advance idx_a
1161			 */
1162			if (r_start >= m_end)
1163				break;
1164			/* if the two regions intersect, we're done */
1165			if (m_start < r_end) {
1166				if (out_start)
1167					*out_start =
1168						max(m_start, r_start);
1169				if (out_end)
1170					*out_end = min(m_end, r_end);
1171				if (out_nid)
1172					*out_nid = m_nid;
1173				/*
1174				 * The region which ends first is
1175				 * advanced for the next iteration.
1176				 */
1177				if (m_end <= r_end)
1178					idx_a++;
1179				else
1180					idx_b++;
1181				*idx = (u32)idx_a | (u64)idx_b << 32;
1182				return;
1183			}
1184		}
1185	}
1186
1187	/* signal end of iteration */
1188	*idx = ULLONG_MAX;
1189}
1190
1191/**
1192 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1193 *
1194 * @idx: pointer to u64 loop variable
1195 * @nid: node selector, %NUMA_NO_NODE for all nodes
1196 * @flags: pick from blocks based on memory attributes
1197 * @type_a: pointer to memblock_type from where the range is taken
1198 * @type_b: pointer to memblock_type which excludes memory from being taken
1199 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1200 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1201 * @out_nid: ptr to int for nid of the range, can be %NULL
1202 *
1203 * Finds the next range from type_a which is not marked as unsuitable
1204 * in type_b.
1205 *
1206 * Reverse of __next_mem_range().
1207 */
1208void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1209					  enum memblock_flags flags,
1210					  struct memblock_type *type_a,
1211					  struct memblock_type *type_b,
1212					  phys_addr_t *out_start,
1213					  phys_addr_t *out_end, int *out_nid)
1214{
1215	int idx_a = *idx & 0xffffffff;
1216	int idx_b = *idx >> 32;
1217
1218	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1219		nid = NUMA_NO_NODE;
1220
1221	if (*idx == (u64)ULLONG_MAX) {
1222		idx_a = type_a->cnt - 1;
1223		if (type_b != NULL)
1224			idx_b = type_b->cnt;
1225		else
1226			idx_b = 0;
1227	}
1228
1229	for (; idx_a >= 0; idx_a--) {
1230		struct memblock_region *m = &type_a->regions[idx_a];
1231
1232		phys_addr_t m_start = m->base;
1233		phys_addr_t m_end = m->base + m->size;
1234		int m_nid = memblock_get_region_node(m);
1235
1236		if (should_skip_region(type_a, m, nid, flags))
1237			continue;
1238
1239		if (!type_b) {
1240			if (out_start)
1241				*out_start = m_start;
1242			if (out_end)
1243				*out_end = m_end;
1244			if (out_nid)
1245				*out_nid = m_nid;
1246			idx_a--;
1247			*idx = (u32)idx_a | (u64)idx_b << 32;
1248			return;
1249		}
1250
1251		/* scan areas before each reservation */
1252		for (; idx_b >= 0; idx_b--) {
1253			struct memblock_region *r;
1254			phys_addr_t r_start;
1255			phys_addr_t r_end;
1256
1257			r = &type_b->regions[idx_b];
1258			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1259			r_end = idx_b < type_b->cnt ?
1260				r->base : PHYS_ADDR_MAX;
1261			/*
1262			 * if idx_b advanced past idx_a,
1263			 * break out to advance idx_a
1264			 */
1265
1266			if (r_end <= m_start)
1267				break;
1268			/* if the two regions intersect, we're done */
1269			if (m_end > r_start) {
1270				if (out_start)
1271					*out_start = max(m_start, r_start);
1272				if (out_end)
1273					*out_end = min(m_end, r_end);
1274				if (out_nid)
1275					*out_nid = m_nid;
1276				if (m_start >= r_start)
1277					idx_a--;
1278				else
1279					idx_b--;
1280				*idx = (u32)idx_a | (u64)idx_b << 32;
1281				return;
1282			}
1283		}
1284	}
1285	/* signal end of iteration */
1286	*idx = ULLONG_MAX;
1287}
1288
1289/*
1290 * Common iterator interface used to define for_each_mem_pfn_range().
1291 */
1292void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1293				unsigned long *out_start_pfn,
1294				unsigned long *out_end_pfn, int *out_nid)
1295{
1296	struct memblock_type *type = &memblock.memory;
1297	struct memblock_region *r;
1298	int r_nid;
1299
1300	while (++*idx < type->cnt) {
1301		r = &type->regions[*idx];
1302		r_nid = memblock_get_region_node(r);
1303
1304		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1305			continue;
1306		if (nid == MAX_NUMNODES || nid == r_nid)
1307			break;
1308	}
1309	if (*idx >= type->cnt) {
1310		*idx = -1;
1311		return;
1312	}
1313
1314	if (out_start_pfn)
1315		*out_start_pfn = PFN_UP(r->base);
1316	if (out_end_pfn)
1317		*out_end_pfn = PFN_DOWN(r->base + r->size);
1318	if (out_nid)
1319		*out_nid = r_nid;
1320}
1321
1322/**
1323 * memblock_set_node - set node ID on memblock regions
1324 * @base: base of area to set node ID for
1325 * @size: size of area to set node ID for
1326 * @type: memblock type to set node ID for
1327 * @nid: node ID to set
1328 *
1329 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1330 * Regions which cross the area boundaries are split as necessary.
1331 *
1332 * Return:
1333 * 0 on success, -errno on failure.
1334 */
1335int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1336				      struct memblock_type *type, int nid)
1337{
1338#ifdef CONFIG_NUMA
1339	int start_rgn, end_rgn;
1340	int i, ret;
1341
1342	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1343	if (ret)
1344		return ret;
1345
1346	for (i = start_rgn; i < end_rgn; i++)
1347		memblock_set_region_node(&type->regions[i], nid);
1348
1349	memblock_merge_regions(type, start_rgn, end_rgn);
1350#endif
1351	return 0;
1352}
1353
1354#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1355/**
1356 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1357 *
1358 * @idx: pointer to u64 loop variable
1359 * @zone: zone in which all of the memory blocks reside
1360 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1361 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1362 *
1363 * This function is meant to be a zone/pfn specific wrapper for the
1364 * for_each_mem_range type iterators. Specifically they are used in the
1365 * deferred memory init routines and as such we were duplicating much of
1366 * this logic throughout the code. So instead of having it in multiple
1367 * locations it seemed like it would make more sense to centralize this to
1368 * one new iterator that does everything they need.
1369 */
1370void __init_memblock
1371__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1372			     unsigned long *out_spfn, unsigned long *out_epfn)
1373{
1374	int zone_nid = zone_to_nid(zone);
1375	phys_addr_t spa, epa;
1376
1377	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1378			 &memblock.memory, &memblock.reserved,
1379			 &spa, &epa, NULL);
1380
1381	while (*idx != U64_MAX) {
1382		unsigned long epfn = PFN_DOWN(epa);
1383		unsigned long spfn = PFN_UP(spa);
1384
1385		/*
1386		 * Verify the end is at least past the start of the zone and
1387		 * that we have at least one PFN to initialize.
1388		 */
1389		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1390			/* if we went too far just stop searching */
1391			if (zone_end_pfn(zone) <= spfn) {
1392				*idx = U64_MAX;
1393				break;
1394			}
1395
1396			if (out_spfn)
1397				*out_spfn = max(zone->zone_start_pfn, spfn);
1398			if (out_epfn)
1399				*out_epfn = min(zone_end_pfn(zone), epfn);
1400
1401			return;
1402		}
1403
1404		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1405				 &memblock.memory, &memblock.reserved,
1406				 &spa, &epa, NULL);
1407	}
1408
1409	/* signal end of iteration */
1410	if (out_spfn)
1411		*out_spfn = ULONG_MAX;
1412	if (out_epfn)
1413		*out_epfn = 0;
1414}
1415
1416#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1417
1418/**
1419 * memblock_alloc_range_nid - allocate boot memory block
1420 * @size: size of memory block to be allocated in bytes
1421 * @align: alignment of the region and block's size
1422 * @start: the lower bound of the memory region to allocate (phys address)
1423 * @end: the upper bound of the memory region to allocate (phys address)
1424 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1425 * @exact_nid: control the allocation fall back to other nodes
1426 *
1427 * The allocation is performed from memory region limited by
1428 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1429 *
1430 * If the specified node can not hold the requested memory and @exact_nid
1431 * is false, the allocation falls back to any node in the system.
1432 *
1433 * For systems with memory mirroring, the allocation is attempted first
1434 * from the regions with mirroring enabled and then retried from any
1435 * memory region.
1436 *
1437 * In addition, function using kmemleak_alloc_phys for allocated boot
1438 * memory block, it is never reported as leaks.
1439 *
1440 * Return:
1441 * Physical address of allocated memory block on success, %0 on failure.
1442 */
1443phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1444					phys_addr_t align, phys_addr_t start,
1445					phys_addr_t end, int nid,
1446					bool exact_nid)
1447{
1448	enum memblock_flags flags = choose_memblock_flags();
1449	phys_addr_t found;
1450
1451	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1452		nid = NUMA_NO_NODE;
1453
1454	if (!align) {
1455		/* Can't use WARNs this early in boot on powerpc */
1456		dump_stack();
1457		align = SMP_CACHE_BYTES;
1458	}
1459
1460again:
1461	found = memblock_find_in_range_node(size, align, start, end, nid,
1462					    flags);
1463	if (found && !memblock_reserve(found, size))
1464		goto done;
1465
1466	if (nid != NUMA_NO_NODE && !exact_nid) {
1467		found = memblock_find_in_range_node(size, align, start,
1468						    end, NUMA_NO_NODE,
1469						    flags);
1470		if (found && !memblock_reserve(found, size))
1471			goto done;
1472	}
1473
1474	if (flags & MEMBLOCK_MIRROR) {
1475		flags &= ~MEMBLOCK_MIRROR;
1476		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1477			&size);
1478		goto again;
1479	}
1480
1481	return 0;
1482
1483done:
1484	/*
1485	 * Skip kmemleak for those places like kasan_init() and
1486	 * early_pgtable_alloc() due to high volume.
1487	 */
1488	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1489		/*
1490		 * Memblock allocated blocks are never reported as
1491		 * leaks. This is because many of these blocks are
1492		 * only referred via the physical address which is
1493		 * not looked up by kmemleak.
1494		 */
1495		kmemleak_alloc_phys(found, size, 0);
1496
1497	/*
1498	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1499	 * require memory to be accepted before it can be used by the
1500	 * guest.
1501	 *
1502	 * Accept the memory of the allocated buffer.
1503	 */
1504	accept_memory(found, found + size);
1505
1506	return found;
1507}
1508
1509/**
1510 * memblock_phys_alloc_range - allocate a memory block inside specified range
1511 * @size: size of memory block to be allocated in bytes
1512 * @align: alignment of the region and block's size
1513 * @start: the lower bound of the memory region to allocate (physical address)
1514 * @end: the upper bound of the memory region to allocate (physical address)
1515 *
1516 * Allocate @size bytes in the between @start and @end.
1517 *
1518 * Return: physical address of the allocated memory block on success,
1519 * %0 on failure.
1520 */
1521phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1522					     phys_addr_t align,
1523					     phys_addr_t start,
1524					     phys_addr_t end)
1525{
1526	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1527		     __func__, (u64)size, (u64)align, &start, &end,
1528		     (void *)_RET_IP_);
1529	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1530					false);
1531}
1532
1533/**
1534 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1535 * @size: size of memory block to be allocated in bytes
1536 * @align: alignment of the region and block's size
1537 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1538 *
1539 * Allocates memory block from the specified NUMA node. If the node
1540 * has no available memory, attempts to allocated from any node in the
1541 * system.
1542 *
1543 * Return: physical address of the allocated memory block on success,
1544 * %0 on failure.
1545 */
1546phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1547{
1548	return memblock_alloc_range_nid(size, align, 0,
1549					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1550}
1551
1552/**
1553 * memblock_alloc_internal - allocate boot memory block
1554 * @size: size of memory block to be allocated in bytes
1555 * @align: alignment of the region and block's size
1556 * @min_addr: the lower bound of the memory region to allocate (phys address)
1557 * @max_addr: the upper bound of the memory region to allocate (phys address)
1558 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1559 * @exact_nid: control the allocation fall back to other nodes
1560 *
1561 * Allocates memory block using memblock_alloc_range_nid() and
1562 * converts the returned physical address to virtual.
1563 *
1564 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1565 * will fall back to memory below @min_addr. Other constraints, such
1566 * as node and mirrored memory will be handled again in
1567 * memblock_alloc_range_nid().
1568 *
1569 * Return:
1570 * Virtual address of allocated memory block on success, NULL on failure.
1571 */
1572static void * __init memblock_alloc_internal(
1573				phys_addr_t size, phys_addr_t align,
1574				phys_addr_t min_addr, phys_addr_t max_addr,
1575				int nid, bool exact_nid)
1576{
1577	phys_addr_t alloc;
1578
1579	/*
1580	 * Detect any accidental use of these APIs after slab is ready, as at
1581	 * this moment memblock may be deinitialized already and its
1582	 * internal data may be destroyed (after execution of memblock_free_all)
1583	 */
1584	if (WARN_ON_ONCE(slab_is_available()))
1585		return kzalloc_node(size, GFP_NOWAIT, nid);
1586
1587	if (max_addr > memblock.current_limit)
1588		max_addr = memblock.current_limit;
1589
1590	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1591					exact_nid);
1592
1593	/* retry allocation without lower limit */
1594	if (!alloc && min_addr)
1595		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1596						exact_nid);
1597
1598	if (!alloc)
1599		return NULL;
1600
1601	return phys_to_virt(alloc);
1602}
1603
1604/**
1605 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1606 * without zeroing memory
1607 * @size: size of memory block to be allocated in bytes
1608 * @align: alignment of the region and block's size
1609 * @min_addr: the lower bound of the memory region from where the allocation
1610 *	  is preferred (phys address)
1611 * @max_addr: the upper bound of the memory region from where the allocation
1612 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1613 *	      allocate only from memory limited by memblock.current_limit value
1614 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1615 *
1616 * Public function, provides additional debug information (including caller
1617 * info), if enabled. Does not zero allocated memory.
1618 *
1619 * Return:
1620 * Virtual address of allocated memory block on success, NULL on failure.
1621 */
1622void * __init memblock_alloc_exact_nid_raw(
1623			phys_addr_t size, phys_addr_t align,
1624			phys_addr_t min_addr, phys_addr_t max_addr,
1625			int nid)
1626{
1627	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1628		     __func__, (u64)size, (u64)align, nid, &min_addr,
1629		     &max_addr, (void *)_RET_IP_);
1630
1631	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1632				       true);
1633}
1634
1635/**
1636 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1637 * memory and without panicking
1638 * @size: size of memory block to be allocated in bytes
1639 * @align: alignment of the region and block's size
1640 * @min_addr: the lower bound of the memory region from where the allocation
1641 *	  is preferred (phys address)
1642 * @max_addr: the upper bound of the memory region from where the allocation
1643 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1644 *	      allocate only from memory limited by memblock.current_limit value
1645 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1646 *
1647 * Public function, provides additional debug information (including caller
1648 * info), if enabled. Does not zero allocated memory, does not panic if request
1649 * cannot be satisfied.
1650 *
1651 * Return:
1652 * Virtual address of allocated memory block on success, NULL on failure.
1653 */
1654void * __init memblock_alloc_try_nid_raw(
1655			phys_addr_t size, phys_addr_t align,
1656			phys_addr_t min_addr, phys_addr_t max_addr,
1657			int nid)
1658{
1659	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1660		     __func__, (u64)size, (u64)align, nid, &min_addr,
1661		     &max_addr, (void *)_RET_IP_);
1662
1663	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1664				       false);
1665}
1666
1667/**
1668 * memblock_alloc_try_nid - allocate boot memory block
1669 * @size: size of memory block to be allocated in bytes
1670 * @align: alignment of the region and block's size
1671 * @min_addr: the lower bound of the memory region from where the allocation
1672 *	  is preferred (phys address)
1673 * @max_addr: the upper bound of the memory region from where the allocation
1674 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1675 *	      allocate only from memory limited by memblock.current_limit value
1676 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1677 *
1678 * Public function, provides additional debug information (including caller
1679 * info), if enabled. This function zeroes the allocated memory.
1680 *
1681 * Return:
1682 * Virtual address of allocated memory block on success, NULL on failure.
1683 */
1684void * __init memblock_alloc_try_nid(
1685			phys_addr_t size, phys_addr_t align,
1686			phys_addr_t min_addr, phys_addr_t max_addr,
1687			int nid)
1688{
1689	void *ptr;
1690
1691	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1692		     __func__, (u64)size, (u64)align, nid, &min_addr,
1693		     &max_addr, (void *)_RET_IP_);
1694	ptr = memblock_alloc_internal(size, align,
1695					   min_addr, max_addr, nid, false);
1696	if (ptr)
1697		memset(ptr, 0, size);
1698
1699	return ptr;
1700}
1701
1702/**
1703 * memblock_free_late - free pages directly to buddy allocator
1704 * @base: phys starting address of the  boot memory block
1705 * @size: size of the boot memory block in bytes
1706 *
1707 * This is only useful when the memblock allocator has already been torn
1708 * down, but we are still initializing the system.  Pages are released directly
1709 * to the buddy allocator.
1710 */
1711void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1712{
1713	phys_addr_t cursor, end;
1714
1715	end = base + size - 1;
1716	memblock_dbg("%s: [%pa-%pa] %pS\n",
1717		     __func__, &base, &end, (void *)_RET_IP_);
1718	kmemleak_free_part_phys(base, size);
1719	cursor = PFN_UP(base);
1720	end = PFN_DOWN(base + size);
1721
1722	for (; cursor < end; cursor++) {
1723		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1724		totalram_pages_inc();
1725	}
1726}
1727
1728/*
1729 * Remaining API functions
1730 */
1731
1732phys_addr_t __init_memblock memblock_phys_mem_size(void)
1733{
1734	return memblock.memory.total_size;
1735}
1736
1737phys_addr_t __init_memblock memblock_reserved_size(void)
1738{
1739	return memblock.reserved.total_size;
1740}
1741
1742/* lowest address */
1743phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1744{
1745	return memblock.memory.regions[0].base;
1746}
1747
1748phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1749{
1750	int idx = memblock.memory.cnt - 1;
1751
1752	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1753}
1754
1755static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1756{
1757	phys_addr_t max_addr = PHYS_ADDR_MAX;
1758	struct memblock_region *r;
1759
1760	/*
1761	 * translate the memory @limit size into the max address within one of
1762	 * the memory memblock regions, if the @limit exceeds the total size
1763	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1764	 */
1765	for_each_mem_region(r) {
1766		if (limit <= r->size) {
1767			max_addr = r->base + limit;
1768			break;
1769		}
1770		limit -= r->size;
1771	}
1772
1773	return max_addr;
1774}
1775
1776void __init memblock_enforce_memory_limit(phys_addr_t limit)
1777{
1778	phys_addr_t max_addr;
1779
1780	if (!limit)
1781		return;
1782
1783	max_addr = __find_max_addr(limit);
1784
1785	/* @limit exceeds the total size of the memory, do nothing */
1786	if (max_addr == PHYS_ADDR_MAX)
1787		return;
1788
1789	/* truncate both memory and reserved regions */
1790	memblock_remove_range(&memblock.memory, max_addr,
1791			      PHYS_ADDR_MAX);
1792	memblock_remove_range(&memblock.reserved, max_addr,
1793			      PHYS_ADDR_MAX);
1794}
1795
1796void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1797{
1798	int start_rgn, end_rgn;
1799	int i, ret;
1800
1801	if (!size)
1802		return;
1803
1804	if (!memblock_memory->total_size) {
1805		pr_warn("%s: No memory registered yet\n", __func__);
1806		return;
1807	}
1808
1809	ret = memblock_isolate_range(&memblock.memory, base, size,
1810						&start_rgn, &end_rgn);
1811	if (ret)
1812		return;
1813
1814	/* remove all the MAP regions */
1815	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1816		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1817			memblock_remove_region(&memblock.memory, i);
1818
1819	for (i = start_rgn - 1; i >= 0; i--)
1820		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1821			memblock_remove_region(&memblock.memory, i);
1822
1823	/* truncate the reserved regions */
1824	memblock_remove_range(&memblock.reserved, 0, base);
1825	memblock_remove_range(&memblock.reserved,
1826			base + size, PHYS_ADDR_MAX);
1827}
1828
1829void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1830{
1831	phys_addr_t max_addr;
1832
1833	if (!limit)
1834		return;
1835
1836	max_addr = __find_max_addr(limit);
1837
1838	/* @limit exceeds the total size of the memory, do nothing */
1839	if (max_addr == PHYS_ADDR_MAX)
1840		return;
1841
1842	memblock_cap_memory_range(0, max_addr);
1843}
1844
1845static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1846{
1847	unsigned int left = 0, right = type->cnt;
1848
1849	do {
1850		unsigned int mid = (right + left) / 2;
1851
1852		if (addr < type->regions[mid].base)
1853			right = mid;
1854		else if (addr >= (type->regions[mid].base +
1855				  type->regions[mid].size))
1856			left = mid + 1;
1857		else
1858			return mid;
1859	} while (left < right);
1860	return -1;
1861}
1862
1863bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1864{
1865	return memblock_search(&memblock.reserved, addr) != -1;
1866}
1867
1868bool __init_memblock memblock_is_memory(phys_addr_t addr)
1869{
1870	return memblock_search(&memblock.memory, addr) != -1;
1871}
1872
1873bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1874{
1875	int i = memblock_search(&memblock.memory, addr);
1876
1877	if (i == -1)
1878		return false;
1879	return !memblock_is_nomap(&memblock.memory.regions[i]);
1880}
1881
1882int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1883			 unsigned long *start_pfn, unsigned long *end_pfn)
1884{
1885	struct memblock_type *type = &memblock.memory;
1886	int mid = memblock_search(type, PFN_PHYS(pfn));
1887
1888	if (mid == -1)
1889		return NUMA_NO_NODE;
1890
1891	*start_pfn = PFN_DOWN(type->regions[mid].base);
1892	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1893
1894	return memblock_get_region_node(&type->regions[mid]);
1895}
1896
1897/**
1898 * memblock_is_region_memory - check if a region is a subset of memory
1899 * @base: base of region to check
1900 * @size: size of region to check
1901 *
1902 * Check if the region [@base, @base + @size) is a subset of a memory block.
1903 *
1904 * Return:
1905 * 0 if false, non-zero if true
1906 */
1907bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1908{
1909	int idx = memblock_search(&memblock.memory, base);
1910	phys_addr_t end = base + memblock_cap_size(base, &size);
1911
1912	if (idx == -1)
1913		return false;
1914	return (memblock.memory.regions[idx].base +
1915		 memblock.memory.regions[idx].size) >= end;
1916}
1917
1918/**
1919 * memblock_is_region_reserved - check if a region intersects reserved memory
1920 * @base: base of region to check
1921 * @size: size of region to check
1922 *
1923 * Check if the region [@base, @base + @size) intersects a reserved
1924 * memory block.
1925 *
1926 * Return:
1927 * True if they intersect, false if not.
1928 */
1929bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1930{
1931	return memblock_overlaps_region(&memblock.reserved, base, size);
1932}
1933
1934void __init_memblock memblock_trim_memory(phys_addr_t align)
1935{
1936	phys_addr_t start, end, orig_start, orig_end;
1937	struct memblock_region *r;
1938
1939	for_each_mem_region(r) {
1940		orig_start = r->base;
1941		orig_end = r->base + r->size;
1942		start = round_up(orig_start, align);
1943		end = round_down(orig_end, align);
1944
1945		if (start == orig_start && end == orig_end)
1946			continue;
1947
1948		if (start < end) {
1949			r->base = start;
1950			r->size = end - start;
1951		} else {
1952			memblock_remove_region(&memblock.memory,
1953					       r - memblock.memory.regions);
1954			r--;
1955		}
1956	}
1957}
1958
1959void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1960{
1961	memblock.current_limit = limit;
1962}
1963
1964phys_addr_t __init_memblock memblock_get_current_limit(void)
1965{
1966	return memblock.current_limit;
1967}
1968
1969static void __init_memblock memblock_dump(struct memblock_type *type)
1970{
1971	phys_addr_t base, end, size;
1972	enum memblock_flags flags;
1973	int idx;
1974	struct memblock_region *rgn;
1975
1976	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1977
1978	for_each_memblock_type(idx, type, rgn) {
1979		char nid_buf[32] = "";
1980
1981		base = rgn->base;
1982		size = rgn->size;
1983		end = base + size - 1;
1984		flags = rgn->flags;
1985#ifdef CONFIG_NUMA
1986		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1987			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1988				 memblock_get_region_node(rgn));
1989#endif
1990		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1991			type->name, idx, &base, &end, &size, nid_buf, flags);
1992	}
1993}
1994
1995static void __init_memblock __memblock_dump_all(void)
1996{
1997	pr_info("MEMBLOCK configuration:\n");
1998	pr_info(" memory size = %pa reserved size = %pa\n",
1999		&memblock.memory.total_size,
2000		&memblock.reserved.total_size);
2001
2002	memblock_dump(&memblock.memory);
2003	memblock_dump(&memblock.reserved);
2004#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2005	memblock_dump(&physmem);
2006#endif
2007}
2008
2009void __init_memblock memblock_dump_all(void)
2010{
2011	if (memblock_debug)
2012		__memblock_dump_all();
2013}
2014
2015void __init memblock_allow_resize(void)
2016{
2017	memblock_can_resize = 1;
2018}
2019
2020static int __init early_memblock(char *p)
2021{
2022	if (p && strstr(p, "debug"))
2023		memblock_debug = 1;
2024	return 0;
2025}
2026early_param("memblock", early_memblock);
2027
2028static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2029{
2030	struct page *start_pg, *end_pg;
2031	phys_addr_t pg, pgend;
2032
2033	/*
2034	 * Convert start_pfn/end_pfn to a struct page pointer.
2035	 */
2036	start_pg = pfn_to_page(start_pfn - 1) + 1;
2037	end_pg = pfn_to_page(end_pfn - 1) + 1;
2038
2039	/*
2040	 * Convert to physical addresses, and round start upwards and end
2041	 * downwards.
2042	 */
2043	pg = PAGE_ALIGN(__pa(start_pg));
2044	pgend = __pa(end_pg) & PAGE_MASK;
2045
2046	/*
2047	 * If there are free pages between these, free the section of the
2048	 * memmap array.
2049	 */
2050	if (pg < pgend)
2051		memblock_phys_free(pg, pgend - pg);
2052}
2053
2054/*
2055 * The mem_map array can get very big.  Free the unused area of the memory map.
2056 */
2057static void __init free_unused_memmap(void)
2058{
2059	unsigned long start, end, prev_end = 0;
2060	int i;
2061
2062	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2063	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2064		return;
2065
2066	/*
2067	 * This relies on each bank being in address order.
2068	 * The banks are sorted previously in bootmem_init().
2069	 */
2070	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2071#ifdef CONFIG_SPARSEMEM
2072		/*
2073		 * Take care not to free memmap entries that don't exist
2074		 * due to SPARSEMEM sections which aren't present.
2075		 */
2076		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2077#endif
2078		/*
2079		 * Align down here since many operations in VM subsystem
2080		 * presume that there are no holes in the memory map inside
2081		 * a pageblock
2082		 */
2083		start = pageblock_start_pfn(start);
2084
2085		/*
2086		 * If we had a previous bank, and there is a space
2087		 * between the current bank and the previous, free it.
2088		 */
2089		if (prev_end && prev_end < start)
2090			free_memmap(prev_end, start);
2091
2092		/*
2093		 * Align up here since many operations in VM subsystem
2094		 * presume that there are no holes in the memory map inside
2095		 * a pageblock
2096		 */
2097		prev_end = pageblock_align(end);
2098	}
2099
2100#ifdef CONFIG_SPARSEMEM
2101	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2102		prev_end = pageblock_align(end);
2103		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2104	}
2105#endif
2106}
2107
2108static void __init __free_pages_memory(unsigned long start, unsigned long end)
2109{
2110	int order;
2111
2112	while (start < end) {
2113		/*
2114		 * Free the pages in the largest chunks alignment allows.
2115		 *
2116		 * __ffs() behaviour is undefined for 0. start == 0 is
2117		 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2118		 * the case.
2119		 */
2120		if (start)
2121			order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2122		else
2123			order = MAX_PAGE_ORDER;
2124
2125		while (start + (1UL << order) > end)
2126			order--;
2127
2128		memblock_free_pages(pfn_to_page(start), start, order);
2129
2130		start += (1UL << order);
2131	}
2132}
2133
2134static unsigned long __init __free_memory_core(phys_addr_t start,
2135				 phys_addr_t end)
2136{
2137	unsigned long start_pfn = PFN_UP(start);
2138	unsigned long end_pfn = min_t(unsigned long,
2139				      PFN_DOWN(end), max_low_pfn);
2140
2141	if (start_pfn >= end_pfn)
2142		return 0;
2143
2144	__free_pages_memory(start_pfn, end_pfn);
2145
2146	return end_pfn - start_pfn;
2147}
2148
2149static void __init memmap_init_reserved_pages(void)
2150{
2151	struct memblock_region *region;
2152	phys_addr_t start, end;
2153	int nid;
 
 
 
 
2154
2155	/*
2156	 * set nid on all reserved pages and also treat struct
2157	 * pages for the NOMAP regions as PageReserved
2158	 */
2159	for_each_mem_region(region) {
2160		nid = memblock_get_region_node(region);
2161		start = region->base;
2162		end = start + region->size;
2163
2164		if (memblock_is_nomap(region))
2165			reserve_bootmem_region(start, end, nid);
2166
2167		memblock_set_node(start, end, &memblock.reserved, nid);
2168	}
2169
2170	/*
2171	 * initialize struct pages for reserved regions that don't have
2172	 * the MEMBLOCK_RSRV_NOINIT flag set
2173	 */
2174	for_each_reserved_mem_region(region) {
2175		if (!memblock_is_reserved_noinit(region)) {
2176			nid = memblock_get_region_node(region);
2177			start = region->base;
2178			end = start + region->size;
2179
2180			if (nid == NUMA_NO_NODE || nid >= MAX_NUMNODES)
2181				nid = early_pfn_to_nid(PFN_DOWN(start));
2182
2183			reserve_bootmem_region(start, end, nid);
2184		}
2185	}
2186}
2187
2188static unsigned long __init free_low_memory_core_early(void)
2189{
2190	unsigned long count = 0;
2191	phys_addr_t start, end;
2192	u64 i;
2193
2194	memblock_clear_hotplug(0, -1);
2195
2196	memmap_init_reserved_pages();
2197
2198	/*
2199	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2200	 *  because in some case like Node0 doesn't have RAM installed
2201	 *  low ram will be on Node1
2202	 */
2203	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2204				NULL)
2205		count += __free_memory_core(start, end);
2206
2207	return count;
2208}
2209
2210static int reset_managed_pages_done __initdata;
2211
2212static void __init reset_node_managed_pages(pg_data_t *pgdat)
2213{
2214	struct zone *z;
2215
2216	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2217		atomic_long_set(&z->managed_pages, 0);
2218}
2219
2220void __init reset_all_zones_managed_pages(void)
2221{
2222	struct pglist_data *pgdat;
2223
2224	if (reset_managed_pages_done)
2225		return;
2226
2227	for_each_online_pgdat(pgdat)
2228		reset_node_managed_pages(pgdat);
2229
2230	reset_managed_pages_done = 1;
2231}
2232
2233/**
2234 * memblock_free_all - release free pages to the buddy allocator
2235 */
2236void __init memblock_free_all(void)
2237{
2238	unsigned long pages;
2239
2240	free_unused_memmap();
2241	reset_all_zones_managed_pages();
2242
2243	pages = free_low_memory_core_early();
2244	totalram_pages_add(pages);
2245}
2246
2247#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2248static const char * const flagname[] = {
2249	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2250	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2251	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2252	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2253	[ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2254};
2255
2256static int memblock_debug_show(struct seq_file *m, void *private)
2257{
2258	struct memblock_type *type = m->private;
2259	struct memblock_region *reg;
2260	int i, j, nid;
2261	unsigned int count = ARRAY_SIZE(flagname);
2262	phys_addr_t end;
2263
2264	for (i = 0; i < type->cnt; i++) {
2265		reg = &type->regions[i];
2266		end = reg->base + reg->size - 1;
2267		nid = memblock_get_region_node(reg);
2268
2269		seq_printf(m, "%4d: ", i);
2270		seq_printf(m, "%pa..%pa ", &reg->base, &end);
2271		if (nid != MAX_NUMNODES)
2272			seq_printf(m, "%4d ", nid);
2273		else
2274			seq_printf(m, "%4c ", 'x');
2275		if (reg->flags) {
2276			for (j = 0; j < count; j++) {
2277				if (reg->flags & (1U << j)) {
2278					seq_printf(m, "%s\n", flagname[j]);
2279					break;
2280				}
2281			}
2282			if (j == count)
2283				seq_printf(m, "%s\n", "UNKNOWN");
2284		} else {
2285			seq_printf(m, "%s\n", "NONE");
2286		}
2287	}
2288	return 0;
2289}
2290DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2291
2292static int __init memblock_init_debugfs(void)
2293{
2294	struct dentry *root = debugfs_create_dir("memblock", NULL);
2295
2296	debugfs_create_file("memory", 0444, root,
2297			    &memblock.memory, &memblock_debug_fops);
2298	debugfs_create_file("reserved", 0444, root,
2299			    &memblock.reserved, &memblock_debug_fops);
2300#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2301	debugfs_create_file("physmem", 0444, root, &physmem,
2302			    &memblock_debug_fops);
2303#endif
2304
2305	return 0;
2306}
2307__initcall(memblock_init_debugfs);
2308
2309#endif /* CONFIG_DEBUG_FS */