Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Procedures for maintaining information about logical memory blocks.
   4 *
   5 * Peter Bergner, IBM Corp.	June 2001.
   6 * Copyright (C) 2001 Peter Bergner.
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/init.h>
  12#include <linux/bitops.h>
  13#include <linux/poison.h>
  14#include <linux/pfn.h>
  15#include <linux/debugfs.h>
  16#include <linux/kmemleak.h>
  17#include <linux/seq_file.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/sections.h>
  21#include <linux/io.h>
  22
  23#include "internal.h"
  24
  25#define INIT_MEMBLOCK_REGIONS			128
  26#define INIT_PHYSMEM_REGIONS			4
  27
  28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
  29# define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
  30#endif
  31
  32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
  33#define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
  34#endif
  35
  36/**
  37 * DOC: memblock overview
  38 *
  39 * Memblock is a method of managing memory regions during the early
  40 * boot period when the usual kernel memory allocators are not up and
  41 * running.
  42 *
  43 * Memblock views the system memory as collections of contiguous
  44 * regions. There are several types of these collections:
  45 *
  46 * * ``memory`` - describes the physical memory available to the
  47 *   kernel; this may differ from the actual physical memory installed
  48 *   in the system, for instance when the memory is restricted with
  49 *   ``mem=`` command line parameter
  50 * * ``reserved`` - describes the regions that were allocated
  51 * * ``physmem`` - describes the actual physical memory available during
  52 *   boot regardless of the possible restrictions and memory hot(un)plug;
  53 *   the ``physmem`` type is only available on some architectures.
  54 *
  55 * Each region is represented by struct memblock_region that
  56 * defines the region extents, its attributes and NUMA node id on NUMA
  57 * systems. Every memory type is described by the struct memblock_type
  58 * which contains an array of memory regions along with
  59 * the allocator metadata. The "memory" and "reserved" types are nicely
  60 * wrapped with struct memblock. This structure is statically
  61 * initialized at build time. The region arrays are initially sized to
  62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
  63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
  64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
  65 * The memblock_allow_resize() enables automatic resizing of the region
  66 * arrays during addition of new regions. This feature should be used
  67 * with care so that memory allocated for the region array will not
  68 * overlap with areas that should be reserved, for example initrd.
  69 *
  70 * The early architecture setup should tell memblock what the physical
  71 * memory layout is by using memblock_add() or memblock_add_node()
  72 * functions. The first function does not assign the region to a NUMA
  73 * node and it is appropriate for UMA systems. Yet, it is possible to
  74 * use it on NUMA systems as well and assign the region to a NUMA node
  75 * later in the setup process using memblock_set_node(). The
  76 * memblock_add_node() performs such an assignment directly.
  77 *
  78 * Once memblock is setup the memory can be allocated using one of the
  79 * API variants:
  80 *
  81 * * memblock_phys_alloc*() - these functions return the **physical**
  82 *   address of the allocated memory
  83 * * memblock_alloc*() - these functions return the **virtual** address
  84 *   of the allocated memory.
  85 *
  86 * Note, that both API variants use implicit assumptions about allowed
  87 * memory ranges and the fallback methods. Consult the documentation
  88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
  89 * functions for more elaborate description.
  90 *
  91 * As the system boot progresses, the architecture specific mem_init()
  92 * function frees all the memory to the buddy page allocator.
  93 *
  94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
  95 * memblock data structures (except "physmem") will be discarded after the
  96 * system initialization completes.
  97 */
  98
  99#ifndef CONFIG_NUMA
 100struct pglist_data __refdata contig_page_data;
 101EXPORT_SYMBOL(contig_page_data);
 102#endif
 103
 104unsigned long max_low_pfn;
 105unsigned long min_low_pfn;
 106unsigned long max_pfn;
 107unsigned long long max_possible_pfn;
 108
 109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
 110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
 111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
 113#endif
 114
 115struct memblock memblock __initdata_memblock = {
 116	.memory.regions		= memblock_memory_init_regions,
 117	.memory.cnt		= 1,	/* empty dummy entry */
 118	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
 119	.memory.name		= "memory",
 120
 121	.reserved.regions	= memblock_reserved_init_regions,
 122	.reserved.cnt		= 1,	/* empty dummy entry */
 123	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
 124	.reserved.name		= "reserved",
 125
 126	.bottom_up		= false,
 127	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
 128};
 129
 130#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 131struct memblock_type physmem = {
 132	.regions		= memblock_physmem_init_regions,
 133	.cnt			= 1,	/* empty dummy entry */
 134	.max			= INIT_PHYSMEM_REGIONS,
 135	.name			= "physmem",
 136};
 137#endif
 138
 139/*
 140 * keep a pointer to &memblock.memory in the text section to use it in
 141 * __next_mem_range() and its helpers.
 142 *  For architectures that do not keep memblock data after init, this
 143 * pointer will be reset to NULL at memblock_discard()
 144 */
 145static __refdata struct memblock_type *memblock_memory = &memblock.memory;
 146
 147#define for_each_memblock_type(i, memblock_type, rgn)			\
 148	for (i = 0, rgn = &memblock_type->regions[0];			\
 149	     i < memblock_type->cnt;					\
 150	     i++, rgn = &memblock_type->regions[i])
 151
 152#define memblock_dbg(fmt, ...)						\
 153	do {								\
 154		if (memblock_debug)					\
 155			pr_info(fmt, ##__VA_ARGS__);			\
 156	} while (0)
 157
 158static int memblock_debug __initdata_memblock;
 159static bool system_has_some_mirror __initdata_memblock = false;
 160static int memblock_can_resize __initdata_memblock;
 161static int memblock_memory_in_slab __initdata_memblock = 0;
 162static int memblock_reserved_in_slab __initdata_memblock = 0;
 
 
 
 
 
 163
 164static enum memblock_flags __init_memblock choose_memblock_flags(void)
 165{
 166	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 167}
 168
 169/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 170static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 171{
 172	return *size = min(*size, PHYS_ADDR_MAX - base);
 173}
 174
 175/*
 176 * Address comparison utilities
 177 */
 178static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
 179				       phys_addr_t base2, phys_addr_t size2)
 
 180{
 181	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 182}
 183
 184bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 185					phys_addr_t base, phys_addr_t size)
 186{
 187	unsigned long i;
 188
 189	memblock_cap_size(base, &size);
 190
 191	for (i = 0; i < type->cnt; i++)
 192		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 193					   type->regions[i].size))
 194			break;
 195	return i < type->cnt;
 196}
 197
 198/**
 199 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 200 * @start: start of candidate range
 201 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 202 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 203 * @size: size of free area to find
 204 * @align: alignment of free area to find
 205 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 206 * @flags: pick from blocks based on memory attributes
 207 *
 208 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 209 *
 210 * Return:
 211 * Found address on success, 0 on failure.
 212 */
 213static phys_addr_t __init_memblock
 214__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 215				phys_addr_t size, phys_addr_t align, int nid,
 216				enum memblock_flags flags)
 217{
 218	phys_addr_t this_start, this_end, cand;
 219	u64 i;
 220
 221	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 222		this_start = clamp(this_start, start, end);
 223		this_end = clamp(this_end, start, end);
 224
 225		cand = round_up(this_start, align);
 226		if (cand < this_end && this_end - cand >= size)
 227			return cand;
 228	}
 229
 230	return 0;
 231}
 232
 233/**
 234 * __memblock_find_range_top_down - find free area utility, in top-down
 235 * @start: start of candidate range
 236 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 237 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 238 * @size: size of free area to find
 239 * @align: alignment of free area to find
 240 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 241 * @flags: pick from blocks based on memory attributes
 242 *
 243 * Utility called from memblock_find_in_range_node(), find free area top-down.
 244 *
 245 * Return:
 246 * Found address on success, 0 on failure.
 247 */
 248static phys_addr_t __init_memblock
 249__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 250			       phys_addr_t size, phys_addr_t align, int nid,
 251			       enum memblock_flags flags)
 252{
 253	phys_addr_t this_start, this_end, cand;
 254	u64 i;
 255
 256	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 257					NULL) {
 258		this_start = clamp(this_start, start, end);
 259		this_end = clamp(this_end, start, end);
 260
 261		if (this_end < size)
 262			continue;
 263
 264		cand = round_down(this_end - size, align);
 265		if (cand >= this_start)
 266			return cand;
 267	}
 268
 269	return 0;
 270}
 271
 272/**
 273 * memblock_find_in_range_node - find free area in given range and node
 274 * @size: size of free area to find
 275 * @align: alignment of free area to find
 276 * @start: start of candidate range
 277 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 278 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 279 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 280 * @flags: pick from blocks based on memory attributes
 281 *
 282 * Find @size free area aligned to @align in the specified range and node.
 283 *
 284 * Return:
 285 * Found address on success, 0 on failure.
 286 */
 287static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 288					phys_addr_t align, phys_addr_t start,
 289					phys_addr_t end, int nid,
 290					enum memblock_flags flags)
 291{
 292	/* pump up @end */
 293	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
 294	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
 295		end = memblock.current_limit;
 296
 297	/* avoid allocating the first page */
 298	start = max_t(phys_addr_t, start, PAGE_SIZE);
 299	end = max(start, end);
 300
 301	if (memblock_bottom_up())
 302		return __memblock_find_range_bottom_up(start, end, size, align,
 303						       nid, flags);
 304	else
 305		return __memblock_find_range_top_down(start, end, size, align,
 306						      nid, flags);
 307}
 308
 309/**
 310 * memblock_find_in_range - find free area in given range
 311 * @start: start of candidate range
 312 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 313 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 314 * @size: size of free area to find
 315 * @align: alignment of free area to find
 316 *
 317 * Find @size free area aligned to @align in the specified range.
 318 *
 319 * Return:
 320 * Found address on success, 0 on failure.
 321 */
 322static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 323					phys_addr_t end, phys_addr_t size,
 324					phys_addr_t align)
 325{
 326	phys_addr_t ret;
 327	enum memblock_flags flags = choose_memblock_flags();
 328
 329again:
 330	ret = memblock_find_in_range_node(size, align, start, end,
 331					    NUMA_NO_NODE, flags);
 332
 333	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 334		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
 335			&size);
 336		flags &= ~MEMBLOCK_MIRROR;
 337		goto again;
 338	}
 339
 340	return ret;
 341}
 342
 343static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 344{
 345	type->total_size -= type->regions[r].size;
 346	memmove(&type->regions[r], &type->regions[r + 1],
 347		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 348	type->cnt--;
 349
 350	/* Special case for empty arrays */
 351	if (type->cnt == 0) {
 352		WARN_ON(type->total_size != 0);
 353		type->cnt = 1;
 354		type->regions[0].base = 0;
 355		type->regions[0].size = 0;
 356		type->regions[0].flags = 0;
 357		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 358	}
 359}
 360
 361#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
 362/**
 363 * memblock_discard - discard memory and reserved arrays if they were allocated
 364 */
 365void __init memblock_discard(void)
 366{
 367	phys_addr_t addr, size;
 368
 369	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 370		addr = __pa(memblock.reserved.regions);
 371		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 372				  memblock.reserved.max);
 373		if (memblock_reserved_in_slab)
 374			kfree(memblock.reserved.regions);
 375		else
 376			memblock_free_late(addr, size);
 377	}
 378
 379	if (memblock.memory.regions != memblock_memory_init_regions) {
 380		addr = __pa(memblock.memory.regions);
 381		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 382				  memblock.memory.max);
 383		if (memblock_memory_in_slab)
 384			kfree(memblock.memory.regions);
 385		else
 386			memblock_free_late(addr, size);
 387	}
 388
 389	memblock_memory = NULL;
 390}
 391#endif
 392
 393/**
 394 * memblock_double_array - double the size of the memblock regions array
 395 * @type: memblock type of the regions array being doubled
 396 * @new_area_start: starting address of memory range to avoid overlap with
 397 * @new_area_size: size of memory range to avoid overlap with
 398 *
 399 * Double the size of the @type regions array. If memblock is being used to
 400 * allocate memory for a new reserved regions array and there is a previously
 401 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
 402 * waiting to be reserved, ensure the memory used by the new array does
 403 * not overlap.
 404 *
 405 * Return:
 406 * 0 on success, -1 on failure.
 407 */
 408static int __init_memblock memblock_double_array(struct memblock_type *type,
 409						phys_addr_t new_area_start,
 410						phys_addr_t new_area_size)
 411{
 412	struct memblock_region *new_array, *old_array;
 413	phys_addr_t old_alloc_size, new_alloc_size;
 414	phys_addr_t old_size, new_size, addr, new_end;
 415	int use_slab = slab_is_available();
 416	int *in_slab;
 417
 418	/* We don't allow resizing until we know about the reserved regions
 419	 * of memory that aren't suitable for allocation
 420	 */
 421	if (!memblock_can_resize)
 422		return -1;
 423
 424	/* Calculate new doubled size */
 425	old_size = type->max * sizeof(struct memblock_region);
 426	new_size = old_size << 1;
 427	/*
 428	 * We need to allocated new one align to PAGE_SIZE,
 429	 *   so we can free them completely later.
 430	 */
 431	old_alloc_size = PAGE_ALIGN(old_size);
 432	new_alloc_size = PAGE_ALIGN(new_size);
 433
 434	/* Retrieve the slab flag */
 435	if (type == &memblock.memory)
 436		in_slab = &memblock_memory_in_slab;
 437	else
 438		in_slab = &memblock_reserved_in_slab;
 439
 440	/* Try to find some space for it */
 441	if (use_slab) {
 442		new_array = kmalloc(new_size, GFP_KERNEL);
 443		addr = new_array ? __pa(new_array) : 0;
 444	} else {
 445		/* only exclude range when trying to double reserved.regions */
 446		if (type != &memblock.reserved)
 447			new_area_start = new_area_size = 0;
 448
 449		addr = memblock_find_in_range(new_area_start + new_area_size,
 450						memblock.current_limit,
 451						new_alloc_size, PAGE_SIZE);
 452		if (!addr && new_area_size)
 453			addr = memblock_find_in_range(0,
 454				min(new_area_start, memblock.current_limit),
 455				new_alloc_size, PAGE_SIZE);
 456
 457		new_array = addr ? __va(addr) : NULL;
 458	}
 459	if (!addr) {
 460		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 461		       type->name, type->max, type->max * 2);
 462		return -1;
 463	}
 464
 465	new_end = addr + new_size - 1;
 466	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
 467			type->name, type->max * 2, &addr, &new_end);
 468
 469	/*
 470	 * Found space, we now need to move the array over before we add the
 471	 * reserved region since it may be our reserved array itself that is
 472	 * full.
 473	 */
 474	memcpy(new_array, type->regions, old_size);
 475	memset(new_array + type->max, 0, old_size);
 476	old_array = type->regions;
 477	type->regions = new_array;
 478	type->max <<= 1;
 479
 480	/* Free old array. We needn't free it if the array is the static one */
 481	if (*in_slab)
 482		kfree(old_array);
 483	else if (old_array != memblock_memory_init_regions &&
 484		 old_array != memblock_reserved_init_regions)
 485		memblock_free(old_array, old_alloc_size);
 486
 487	/*
 488	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 489	 * needn't do it
 490	 */
 491	if (!use_slab)
 492		BUG_ON(memblock_reserve(addr, new_alloc_size));
 493
 494	/* Update slab flag */
 495	*in_slab = use_slab;
 496
 497	return 0;
 498}
 499
 500/**
 501 * memblock_merge_regions - merge neighboring compatible regions
 502 * @type: memblock type to scan
 503 *
 504 * Scan @type and merge neighboring compatible regions.
 505 */
 506static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 
 
 
 507{
 508	int i = 0;
 509
 510	/* cnt never goes below 1 */
 511	while (i < type->cnt - 1) {
 
 512		struct memblock_region *this = &type->regions[i];
 513		struct memblock_region *next = &type->regions[i + 1];
 514
 515		if (this->base + this->size != next->base ||
 516		    memblock_get_region_node(this) !=
 517		    memblock_get_region_node(next) ||
 518		    this->flags != next->flags) {
 519			BUG_ON(this->base + this->size > next->base);
 520			i++;
 521			continue;
 522		}
 523
 524		this->size += next->size;
 525		/* move forward from next + 1, index of which is i + 2 */
 526		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 527		type->cnt--;
 
 528	}
 529}
 530
 531/**
 532 * memblock_insert_region - insert new memblock region
 533 * @type:	memblock type to insert into
 534 * @idx:	index for the insertion point
 535 * @base:	base address of the new region
 536 * @size:	size of the new region
 537 * @nid:	node id of the new region
 538 * @flags:	flags of the new region
 539 *
 540 * Insert new memblock region [@base, @base + @size) into @type at @idx.
 541 * @type must already have extra room to accommodate the new region.
 542 */
 543static void __init_memblock memblock_insert_region(struct memblock_type *type,
 544						   int idx, phys_addr_t base,
 545						   phys_addr_t size,
 546						   int nid,
 547						   enum memblock_flags flags)
 548{
 549	struct memblock_region *rgn = &type->regions[idx];
 550
 551	BUG_ON(type->cnt >= type->max);
 552	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 553	rgn->base = base;
 554	rgn->size = size;
 555	rgn->flags = flags;
 556	memblock_set_region_node(rgn, nid);
 557	type->cnt++;
 558	type->total_size += size;
 559}
 560
 561/**
 562 * memblock_add_range - add new memblock region
 563 * @type: memblock type to add new region into
 564 * @base: base address of the new region
 565 * @size: size of the new region
 566 * @nid: nid of the new region
 567 * @flags: flags of the new region
 568 *
 569 * Add new memblock region [@base, @base + @size) into @type.  The new region
 570 * is allowed to overlap with existing ones - overlaps don't affect already
 571 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 572 * compatible regions are merged) after the addition.
 573 *
 574 * Return:
 575 * 0 on success, -errno on failure.
 576 */
 577static int __init_memblock memblock_add_range(struct memblock_type *type,
 578				phys_addr_t base, phys_addr_t size,
 579				int nid, enum memblock_flags flags)
 580{
 581	bool insert = false;
 582	phys_addr_t obase = base;
 583	phys_addr_t end = base + memblock_cap_size(base, &size);
 584	int idx, nr_new;
 585	struct memblock_region *rgn;
 586
 587	if (!size)
 588		return 0;
 589
 590	/* special case for empty array */
 591	if (type->regions[0].size == 0) {
 592		WARN_ON(type->cnt != 1 || type->total_size);
 593		type->regions[0].base = base;
 594		type->regions[0].size = size;
 595		type->regions[0].flags = flags;
 596		memblock_set_region_node(&type->regions[0], nid);
 597		type->total_size = size;
 
 598		return 0;
 599	}
 600
 601	/*
 602	 * The worst case is when new range overlaps all existing regions,
 603	 * then we'll need type->cnt + 1 empty regions in @type. So if
 604	 * type->cnt * 2 + 1 is less than type->max, we know
 605	 * that there is enough empty regions in @type, and we can insert
 606	 * regions directly.
 607	 */
 608	if (type->cnt * 2 + 1 < type->max)
 609		insert = true;
 610
 611repeat:
 612	/*
 613	 * The following is executed twice.  Once with %false @insert and
 614	 * then with %true.  The first counts the number of regions needed
 615	 * to accommodate the new area.  The second actually inserts them.
 616	 */
 617	base = obase;
 618	nr_new = 0;
 619
 620	for_each_memblock_type(idx, type, rgn) {
 621		phys_addr_t rbase = rgn->base;
 622		phys_addr_t rend = rbase + rgn->size;
 623
 624		if (rbase >= end)
 625			break;
 626		if (rend <= base)
 627			continue;
 628		/*
 629		 * @rgn overlaps.  If it separates the lower part of new
 630		 * area, insert that portion.
 631		 */
 632		if (rbase > base) {
 633#ifdef CONFIG_NUMA
 634			WARN_ON(nid != memblock_get_region_node(rgn));
 635#endif
 636			WARN_ON(flags != rgn->flags);
 637			nr_new++;
 638			if (insert)
 
 
 
 639				memblock_insert_region(type, idx++, base,
 640						       rbase - base, nid,
 641						       flags);
 
 642		}
 643		/* area below @rend is dealt with, forget about it */
 644		base = min(rend, end);
 645	}
 646
 647	/* insert the remaining portion */
 648	if (base < end) {
 649		nr_new++;
 650		if (insert)
 
 
 
 651			memblock_insert_region(type, idx, base, end - base,
 652					       nid, flags);
 
 653	}
 654
 655	if (!nr_new)
 656		return 0;
 657
 658	/*
 659	 * If this was the first round, resize array and repeat for actual
 660	 * insertions; otherwise, merge and return.
 661	 */
 662	if (!insert) {
 663		while (type->cnt + nr_new > type->max)
 664			if (memblock_double_array(type, obase, size) < 0)
 665				return -ENOMEM;
 666		insert = true;
 667		goto repeat;
 668	} else {
 669		memblock_merge_regions(type);
 670		return 0;
 671	}
 672}
 673
 674/**
 675 * memblock_add_node - add new memblock region within a NUMA node
 676 * @base: base address of the new region
 677 * @size: size of the new region
 678 * @nid: nid of the new region
 679 * @flags: flags of the new region
 680 *
 681 * Add new memblock region [@base, @base + @size) to the "memory"
 682 * type. See memblock_add_range() description for mode details
 683 *
 684 * Return:
 685 * 0 on success, -errno on failure.
 686 */
 687int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 688				      int nid, enum memblock_flags flags)
 689{
 690	phys_addr_t end = base + size - 1;
 691
 692	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
 693		     &base, &end, nid, flags, (void *)_RET_IP_);
 694
 695	return memblock_add_range(&memblock.memory, base, size, nid, flags);
 696}
 697
 698/**
 699 * memblock_add - add new memblock region
 700 * @base: base address of the new region
 701 * @size: size of the new region
 702 *
 703 * Add new memblock region [@base, @base + @size) to the "memory"
 704 * type. See memblock_add_range() description for mode details
 705 *
 706 * Return:
 707 * 0 on success, -errno on failure.
 708 */
 709int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 710{
 711	phys_addr_t end = base + size - 1;
 712
 713	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 714		     &base, &end, (void *)_RET_IP_);
 715
 716	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 717}
 718
 719/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 720 * memblock_isolate_range - isolate given range into disjoint memblocks
 721 * @type: memblock type to isolate range for
 722 * @base: base of range to isolate
 723 * @size: size of range to isolate
 724 * @start_rgn: out parameter for the start of isolated region
 725 * @end_rgn: out parameter for the end of isolated region
 726 *
 727 * Walk @type and ensure that regions don't cross the boundaries defined by
 728 * [@base, @base + @size).  Crossing regions are split at the boundaries,
 729 * which may create at most two more regions.  The index of the first
 730 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 
 731 *
 732 * Return:
 733 * 0 on success, -errno on failure.
 734 */
 735static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 736					phys_addr_t base, phys_addr_t size,
 737					int *start_rgn, int *end_rgn)
 738{
 739	phys_addr_t end = base + memblock_cap_size(base, &size);
 740	int idx;
 741	struct memblock_region *rgn;
 742
 743	*start_rgn = *end_rgn = 0;
 744
 745	if (!size)
 746		return 0;
 747
 748	/* we'll create at most two more regions */
 749	while (type->cnt + 2 > type->max)
 750		if (memblock_double_array(type, base, size) < 0)
 751			return -ENOMEM;
 752
 753	for_each_memblock_type(idx, type, rgn) {
 754		phys_addr_t rbase = rgn->base;
 755		phys_addr_t rend = rbase + rgn->size;
 756
 757		if (rbase >= end)
 758			break;
 759		if (rend <= base)
 760			continue;
 761
 762		if (rbase < base) {
 763			/*
 764			 * @rgn intersects from below.  Split and continue
 765			 * to process the next region - the new top half.
 766			 */
 767			rgn->base = base;
 768			rgn->size -= base - rbase;
 769			type->total_size -= base - rbase;
 770			memblock_insert_region(type, idx, rbase, base - rbase,
 771					       memblock_get_region_node(rgn),
 772					       rgn->flags);
 773		} else if (rend > end) {
 774			/*
 775			 * @rgn intersects from above.  Split and redo the
 776			 * current region - the new bottom half.
 777			 */
 778			rgn->base = end;
 779			rgn->size -= end - rbase;
 780			type->total_size -= end - rbase;
 781			memblock_insert_region(type, idx--, rbase, end - rbase,
 782					       memblock_get_region_node(rgn),
 783					       rgn->flags);
 784		} else {
 785			/* @rgn is fully contained, record it */
 786			if (!*end_rgn)
 787				*start_rgn = idx;
 788			*end_rgn = idx + 1;
 789		}
 790	}
 791
 792	return 0;
 793}
 794
 795static int __init_memblock memblock_remove_range(struct memblock_type *type,
 796					  phys_addr_t base, phys_addr_t size)
 797{
 798	int start_rgn, end_rgn;
 799	int i, ret;
 800
 801	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 802	if (ret)
 803		return ret;
 804
 805	for (i = end_rgn - 1; i >= start_rgn; i--)
 806		memblock_remove_region(type, i);
 807	return 0;
 808}
 809
 810int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 811{
 812	phys_addr_t end = base + size - 1;
 813
 814	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 815		     &base, &end, (void *)_RET_IP_);
 816
 817	return memblock_remove_range(&memblock.memory, base, size);
 818}
 819
 820/**
 821 * memblock_free - free boot memory allocation
 822 * @ptr: starting address of the  boot memory allocation
 823 * @size: size of the boot memory block in bytes
 824 *
 825 * Free boot memory block previously allocated by memblock_alloc_xx() API.
 826 * The freeing memory will not be released to the buddy allocator.
 827 */
 828void __init_memblock memblock_free(void *ptr, size_t size)
 829{
 830	if (ptr)
 831		memblock_phys_free(__pa(ptr), size);
 832}
 833
 834/**
 835 * memblock_phys_free - free boot memory block
 836 * @base: phys starting address of the  boot memory block
 837 * @size: size of the boot memory block in bytes
 838 *
 839 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
 840 * The freeing memory will not be released to the buddy allocator.
 841 */
 842int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
 843{
 844	phys_addr_t end = base + size - 1;
 845
 846	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 847		     &base, &end, (void *)_RET_IP_);
 848
 849	kmemleak_free_part_phys(base, size);
 850	return memblock_remove_range(&memblock.reserved, base, size);
 851}
 852
 853int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 854{
 855	phys_addr_t end = base + size - 1;
 856
 857	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 858		     &base, &end, (void *)_RET_IP_);
 859
 860	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 861}
 862
 863#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 864int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
 865{
 866	phys_addr_t end = base + size - 1;
 867
 868	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 869		     &base, &end, (void *)_RET_IP_);
 870
 871	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
 872}
 873#endif
 874
 875/**
 876 * memblock_setclr_flag - set or clear flag for a memory region
 
 877 * @base: base address of the region
 878 * @size: size of the region
 879 * @set: set or clear the flag
 880 * @flag: the flag to update
 881 *
 882 * This function isolates region [@base, @base + @size), and sets/clears flag
 883 *
 884 * Return: 0 on success, -errno on failure.
 885 */
 886static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 887				phys_addr_t size, int set, int flag)
 888{
 889	struct memblock_type *type = &memblock.memory;
 890	int i, ret, start_rgn, end_rgn;
 891
 892	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 893	if (ret)
 894		return ret;
 895
 896	for (i = start_rgn; i < end_rgn; i++) {
 897		struct memblock_region *r = &type->regions[i];
 898
 899		if (set)
 900			r->flags |= flag;
 901		else
 902			r->flags &= ~flag;
 903	}
 904
 905	memblock_merge_regions(type);
 906	return 0;
 907}
 908
 909/**
 910 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 911 * @base: the base phys addr of the region
 912 * @size: the size of the region
 913 *
 914 * Return: 0 on success, -errno on failure.
 915 */
 916int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 917{
 918	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 919}
 920
 921/**
 922 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 923 * @base: the base phys addr of the region
 924 * @size: the size of the region
 925 *
 926 * Return: 0 on success, -errno on failure.
 927 */
 928int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 929{
 930	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 931}
 932
 933/**
 934 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 935 * @base: the base phys addr of the region
 936 * @size: the size of the region
 937 *
 938 * Return: 0 on success, -errno on failure.
 939 */
 940int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 941{
 942	if (!mirrored_kernelcore)
 943		return 0;
 944
 945	system_has_some_mirror = true;
 946
 947	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 948}
 949
 950/**
 951 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 952 * @base: the base phys addr of the region
 953 * @size: the size of the region
 954 *
 955 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
 956 * direct mapping of the physical memory. These regions will still be
 957 * covered by the memory map. The struct page representing NOMAP memory
 958 * frames in the memory map will be PageReserved()
 959 *
 960 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
 961 * memblock, the caller must inform kmemleak to ignore that memory
 962 *
 963 * Return: 0 on success, -errno on failure.
 964 */
 965int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 966{
 967	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 968}
 969
 970/**
 971 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 972 * @base: the base phys addr of the region
 973 * @size: the size of the region
 974 *
 975 * Return: 0 on success, -errno on failure.
 976 */
 977int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 978{
 979	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980}
 981
 982static bool should_skip_region(struct memblock_type *type,
 983			       struct memblock_region *m,
 984			       int nid, int flags)
 985{
 986	int m_nid = memblock_get_region_node(m);
 987
 988	/* we never skip regions when iterating memblock.reserved or physmem */
 989	if (type != memblock_memory)
 990		return false;
 991
 992	/* only memory regions are associated with nodes, check it */
 993	if (nid != NUMA_NO_NODE && nid != m_nid)
 994		return true;
 995
 996	/* skip hotpluggable memory regions if needed */
 997	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
 998	    !(flags & MEMBLOCK_HOTPLUG))
 999		return true;
1000
1001	/* if we want mirror memory skip non-mirror memory regions */
1002	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1003		return true;
1004
1005	/* skip nomap memory unless we were asked for it explicitly */
1006	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1007		return true;
1008
1009	/* skip driver-managed memory unless we were asked for it explicitly */
1010	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1011		return true;
1012
1013	return false;
1014}
1015
1016/**
1017 * __next_mem_range - next function for for_each_free_mem_range() etc.
1018 * @idx: pointer to u64 loop variable
1019 * @nid: node selector, %NUMA_NO_NODE for all nodes
1020 * @flags: pick from blocks based on memory attributes
1021 * @type_a: pointer to memblock_type from where the range is taken
1022 * @type_b: pointer to memblock_type which excludes memory from being taken
1023 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1024 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1025 * @out_nid: ptr to int for nid of the range, can be %NULL
1026 *
1027 * Find the first area from *@idx which matches @nid, fill the out
1028 * parameters, and update *@idx for the next iteration.  The lower 32bit of
1029 * *@idx contains index into type_a and the upper 32bit indexes the
1030 * areas before each region in type_b.	For example, if type_b regions
1031 * look like the following,
1032 *
1033 *	0:[0-16), 1:[32-48), 2:[128-130)
1034 *
1035 * The upper 32bit indexes the following regions.
1036 *
1037 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1038 *
1039 * As both region arrays are sorted, the function advances the two indices
1040 * in lockstep and returns each intersection.
1041 */
1042void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1043		      struct memblock_type *type_a,
1044		      struct memblock_type *type_b, phys_addr_t *out_start,
1045		      phys_addr_t *out_end, int *out_nid)
1046{
1047	int idx_a = *idx & 0xffffffff;
1048	int idx_b = *idx >> 32;
1049
1050	if (WARN_ONCE(nid == MAX_NUMNODES,
1051	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1052		nid = NUMA_NO_NODE;
1053
1054	for (; idx_a < type_a->cnt; idx_a++) {
1055		struct memblock_region *m = &type_a->regions[idx_a];
1056
1057		phys_addr_t m_start = m->base;
1058		phys_addr_t m_end = m->base + m->size;
1059		int	    m_nid = memblock_get_region_node(m);
1060
1061		if (should_skip_region(type_a, m, nid, flags))
1062			continue;
1063
1064		if (!type_b) {
1065			if (out_start)
1066				*out_start = m_start;
1067			if (out_end)
1068				*out_end = m_end;
1069			if (out_nid)
1070				*out_nid = m_nid;
1071			idx_a++;
1072			*idx = (u32)idx_a | (u64)idx_b << 32;
1073			return;
1074		}
1075
1076		/* scan areas before each reservation */
1077		for (; idx_b < type_b->cnt + 1; idx_b++) {
1078			struct memblock_region *r;
1079			phys_addr_t r_start;
1080			phys_addr_t r_end;
1081
1082			r = &type_b->regions[idx_b];
1083			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1084			r_end = idx_b < type_b->cnt ?
1085				r->base : PHYS_ADDR_MAX;
1086
1087			/*
1088			 * if idx_b advanced past idx_a,
1089			 * break out to advance idx_a
1090			 */
1091			if (r_start >= m_end)
1092				break;
1093			/* if the two regions intersect, we're done */
1094			if (m_start < r_end) {
1095				if (out_start)
1096					*out_start =
1097						max(m_start, r_start);
1098				if (out_end)
1099					*out_end = min(m_end, r_end);
1100				if (out_nid)
1101					*out_nid = m_nid;
1102				/*
1103				 * The region which ends first is
1104				 * advanced for the next iteration.
1105				 */
1106				if (m_end <= r_end)
1107					idx_a++;
1108				else
1109					idx_b++;
1110				*idx = (u32)idx_a | (u64)idx_b << 32;
1111				return;
1112			}
1113		}
1114	}
1115
1116	/* signal end of iteration */
1117	*idx = ULLONG_MAX;
1118}
1119
1120/**
1121 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1122 *
1123 * @idx: pointer to u64 loop variable
1124 * @nid: node selector, %NUMA_NO_NODE for all nodes
1125 * @flags: pick from blocks based on memory attributes
1126 * @type_a: pointer to memblock_type from where the range is taken
1127 * @type_b: pointer to memblock_type which excludes memory from being taken
1128 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1129 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1130 * @out_nid: ptr to int for nid of the range, can be %NULL
1131 *
1132 * Finds the next range from type_a which is not marked as unsuitable
1133 * in type_b.
1134 *
1135 * Reverse of __next_mem_range().
1136 */
1137void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1138					  enum memblock_flags flags,
1139					  struct memblock_type *type_a,
1140					  struct memblock_type *type_b,
1141					  phys_addr_t *out_start,
1142					  phys_addr_t *out_end, int *out_nid)
1143{
1144	int idx_a = *idx & 0xffffffff;
1145	int idx_b = *idx >> 32;
1146
1147	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1148		nid = NUMA_NO_NODE;
1149
1150	if (*idx == (u64)ULLONG_MAX) {
1151		idx_a = type_a->cnt - 1;
1152		if (type_b != NULL)
1153			idx_b = type_b->cnt;
1154		else
1155			idx_b = 0;
1156	}
1157
1158	for (; idx_a >= 0; idx_a--) {
1159		struct memblock_region *m = &type_a->regions[idx_a];
1160
1161		phys_addr_t m_start = m->base;
1162		phys_addr_t m_end = m->base + m->size;
1163		int m_nid = memblock_get_region_node(m);
1164
1165		if (should_skip_region(type_a, m, nid, flags))
1166			continue;
1167
1168		if (!type_b) {
1169			if (out_start)
1170				*out_start = m_start;
1171			if (out_end)
1172				*out_end = m_end;
1173			if (out_nid)
1174				*out_nid = m_nid;
1175			idx_a--;
1176			*idx = (u32)idx_a | (u64)idx_b << 32;
1177			return;
1178		}
1179
1180		/* scan areas before each reservation */
1181		for (; idx_b >= 0; idx_b--) {
1182			struct memblock_region *r;
1183			phys_addr_t r_start;
1184			phys_addr_t r_end;
1185
1186			r = &type_b->regions[idx_b];
1187			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1188			r_end = idx_b < type_b->cnt ?
1189				r->base : PHYS_ADDR_MAX;
1190			/*
1191			 * if idx_b advanced past idx_a,
1192			 * break out to advance idx_a
1193			 */
1194
1195			if (r_end <= m_start)
1196				break;
1197			/* if the two regions intersect, we're done */
1198			if (m_end > r_start) {
1199				if (out_start)
1200					*out_start = max(m_start, r_start);
1201				if (out_end)
1202					*out_end = min(m_end, r_end);
1203				if (out_nid)
1204					*out_nid = m_nid;
1205				if (m_start >= r_start)
1206					idx_a--;
1207				else
1208					idx_b--;
1209				*idx = (u32)idx_a | (u64)idx_b << 32;
1210				return;
1211			}
1212		}
1213	}
1214	/* signal end of iteration */
1215	*idx = ULLONG_MAX;
1216}
1217
1218/*
1219 * Common iterator interface used to define for_each_mem_pfn_range().
1220 */
1221void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1222				unsigned long *out_start_pfn,
1223				unsigned long *out_end_pfn, int *out_nid)
1224{
1225	struct memblock_type *type = &memblock.memory;
1226	struct memblock_region *r;
1227	int r_nid;
1228
1229	while (++*idx < type->cnt) {
1230		r = &type->regions[*idx];
1231		r_nid = memblock_get_region_node(r);
1232
1233		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1234			continue;
1235		if (nid == MAX_NUMNODES || nid == r_nid)
1236			break;
1237	}
1238	if (*idx >= type->cnt) {
1239		*idx = -1;
1240		return;
1241	}
1242
1243	if (out_start_pfn)
1244		*out_start_pfn = PFN_UP(r->base);
1245	if (out_end_pfn)
1246		*out_end_pfn = PFN_DOWN(r->base + r->size);
1247	if (out_nid)
1248		*out_nid = r_nid;
1249}
1250
1251/**
1252 * memblock_set_node - set node ID on memblock regions
1253 * @base: base of area to set node ID for
1254 * @size: size of area to set node ID for
1255 * @type: memblock type to set node ID for
1256 * @nid: node ID to set
1257 *
1258 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1259 * Regions which cross the area boundaries are split as necessary.
1260 *
1261 * Return:
1262 * 0 on success, -errno on failure.
1263 */
1264int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1265				      struct memblock_type *type, int nid)
1266{
1267#ifdef CONFIG_NUMA
1268	int start_rgn, end_rgn;
1269	int i, ret;
1270
1271	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1272	if (ret)
1273		return ret;
1274
1275	for (i = start_rgn; i < end_rgn; i++)
1276		memblock_set_region_node(&type->regions[i], nid);
1277
1278	memblock_merge_regions(type);
1279#endif
1280	return 0;
1281}
1282
1283#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1284/**
1285 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1286 *
1287 * @idx: pointer to u64 loop variable
1288 * @zone: zone in which all of the memory blocks reside
1289 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1290 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1291 *
1292 * This function is meant to be a zone/pfn specific wrapper for the
1293 * for_each_mem_range type iterators. Specifically they are used in the
1294 * deferred memory init routines and as such we were duplicating much of
1295 * this logic throughout the code. So instead of having it in multiple
1296 * locations it seemed like it would make more sense to centralize this to
1297 * one new iterator that does everything they need.
1298 */
1299void __init_memblock
1300__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1301			     unsigned long *out_spfn, unsigned long *out_epfn)
1302{
1303	int zone_nid = zone_to_nid(zone);
1304	phys_addr_t spa, epa;
1305
1306	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1307			 &memblock.memory, &memblock.reserved,
1308			 &spa, &epa, NULL);
1309
1310	while (*idx != U64_MAX) {
1311		unsigned long epfn = PFN_DOWN(epa);
1312		unsigned long spfn = PFN_UP(spa);
1313
1314		/*
1315		 * Verify the end is at least past the start of the zone and
1316		 * that we have at least one PFN to initialize.
1317		 */
1318		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1319			/* if we went too far just stop searching */
1320			if (zone_end_pfn(zone) <= spfn) {
1321				*idx = U64_MAX;
1322				break;
1323			}
1324
1325			if (out_spfn)
1326				*out_spfn = max(zone->zone_start_pfn, spfn);
1327			if (out_epfn)
1328				*out_epfn = min(zone_end_pfn(zone), epfn);
1329
1330			return;
1331		}
1332
1333		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1334				 &memblock.memory, &memblock.reserved,
1335				 &spa, &epa, NULL);
1336	}
1337
1338	/* signal end of iteration */
1339	if (out_spfn)
1340		*out_spfn = ULONG_MAX;
1341	if (out_epfn)
1342		*out_epfn = 0;
1343}
1344
1345#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1346
1347/**
1348 * memblock_alloc_range_nid - allocate boot memory block
1349 * @size: size of memory block to be allocated in bytes
1350 * @align: alignment of the region and block's size
1351 * @start: the lower bound of the memory region to allocate (phys address)
1352 * @end: the upper bound of the memory region to allocate (phys address)
1353 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1354 * @exact_nid: control the allocation fall back to other nodes
1355 *
1356 * The allocation is performed from memory region limited by
1357 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1358 *
1359 * If the specified node can not hold the requested memory and @exact_nid
1360 * is false, the allocation falls back to any node in the system.
1361 *
1362 * For systems with memory mirroring, the allocation is attempted first
1363 * from the regions with mirroring enabled and then retried from any
1364 * memory region.
1365 *
1366 * In addition, function using kmemleak_alloc_phys for allocated boot
1367 * memory block, it is never reported as leaks.
1368 *
1369 * Return:
1370 * Physical address of allocated memory block on success, %0 on failure.
1371 */
1372phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1373					phys_addr_t align, phys_addr_t start,
1374					phys_addr_t end, int nid,
1375					bool exact_nid)
1376{
1377	enum memblock_flags flags = choose_memblock_flags();
1378	phys_addr_t found;
1379
1380	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1381		nid = NUMA_NO_NODE;
 
 
 
 
 
 
 
 
1382
1383	if (!align) {
1384		/* Can't use WARNs this early in boot on powerpc */
1385		dump_stack();
1386		align = SMP_CACHE_BYTES;
1387	}
1388
1389again:
1390	found = memblock_find_in_range_node(size, align, start, end, nid,
1391					    flags);
1392	if (found && !memblock_reserve(found, size))
1393		goto done;
1394
1395	if (nid != NUMA_NO_NODE && !exact_nid) {
1396		found = memblock_find_in_range_node(size, align, start,
1397						    end, NUMA_NO_NODE,
1398						    flags);
1399		if (found && !memblock_reserve(found, size))
1400			goto done;
1401	}
1402
1403	if (flags & MEMBLOCK_MIRROR) {
1404		flags &= ~MEMBLOCK_MIRROR;
1405		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1406			&size);
1407		goto again;
1408	}
1409
1410	return 0;
1411
1412done:
1413	/*
1414	 * Skip kmemleak for those places like kasan_init() and
1415	 * early_pgtable_alloc() due to high volume.
1416	 */
1417	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1418		/*
1419		 * Memblock allocated blocks are never reported as
1420		 * leaks. This is because many of these blocks are
1421		 * only referred via the physical address which is
1422		 * not looked up by kmemleak.
1423		 */
1424		kmemleak_alloc_phys(found, size, 0);
1425
 
 
 
 
 
 
 
 
 
1426	return found;
1427}
1428
1429/**
1430 * memblock_phys_alloc_range - allocate a memory block inside specified range
1431 * @size: size of memory block to be allocated in bytes
1432 * @align: alignment of the region and block's size
1433 * @start: the lower bound of the memory region to allocate (physical address)
1434 * @end: the upper bound of the memory region to allocate (physical address)
1435 *
1436 * Allocate @size bytes in the between @start and @end.
1437 *
1438 * Return: physical address of the allocated memory block on success,
1439 * %0 on failure.
1440 */
1441phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1442					     phys_addr_t align,
1443					     phys_addr_t start,
1444					     phys_addr_t end)
1445{
1446	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1447		     __func__, (u64)size, (u64)align, &start, &end,
1448		     (void *)_RET_IP_);
1449	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1450					false);
1451}
1452
1453/**
1454 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1455 * @size: size of memory block to be allocated in bytes
1456 * @align: alignment of the region and block's size
1457 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1458 *
1459 * Allocates memory block from the specified NUMA node. If the node
1460 * has no available memory, attempts to allocated from any node in the
1461 * system.
1462 *
1463 * Return: physical address of the allocated memory block on success,
1464 * %0 on failure.
1465 */
1466phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1467{
1468	return memblock_alloc_range_nid(size, align, 0,
1469					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1470}
1471
1472/**
1473 * memblock_alloc_internal - allocate boot memory block
1474 * @size: size of memory block to be allocated in bytes
1475 * @align: alignment of the region and block's size
1476 * @min_addr: the lower bound of the memory region to allocate (phys address)
1477 * @max_addr: the upper bound of the memory region to allocate (phys address)
1478 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1479 * @exact_nid: control the allocation fall back to other nodes
1480 *
1481 * Allocates memory block using memblock_alloc_range_nid() and
1482 * converts the returned physical address to virtual.
1483 *
1484 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1485 * will fall back to memory below @min_addr. Other constraints, such
1486 * as node and mirrored memory will be handled again in
1487 * memblock_alloc_range_nid().
1488 *
1489 * Return:
1490 * Virtual address of allocated memory block on success, NULL on failure.
1491 */
1492static void * __init memblock_alloc_internal(
1493				phys_addr_t size, phys_addr_t align,
1494				phys_addr_t min_addr, phys_addr_t max_addr,
1495				int nid, bool exact_nid)
1496{
1497	phys_addr_t alloc;
1498
1499	/*
1500	 * Detect any accidental use of these APIs after slab is ready, as at
1501	 * this moment memblock may be deinitialized already and its
1502	 * internal data may be destroyed (after execution of memblock_free_all)
1503	 */
1504	if (WARN_ON_ONCE(slab_is_available()))
1505		return kzalloc_node(size, GFP_NOWAIT, nid);
1506
1507	if (max_addr > memblock.current_limit)
1508		max_addr = memblock.current_limit;
1509
1510	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1511					exact_nid);
1512
1513	/* retry allocation without lower limit */
1514	if (!alloc && min_addr)
1515		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1516						exact_nid);
1517
1518	if (!alloc)
1519		return NULL;
1520
1521	return phys_to_virt(alloc);
1522}
1523
1524/**
1525 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1526 * without zeroing memory
1527 * @size: size of memory block to be allocated in bytes
1528 * @align: alignment of the region and block's size
1529 * @min_addr: the lower bound of the memory region from where the allocation
1530 *	  is preferred (phys address)
1531 * @max_addr: the upper bound of the memory region from where the allocation
1532 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1533 *	      allocate only from memory limited by memblock.current_limit value
1534 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1535 *
1536 * Public function, provides additional debug information (including caller
1537 * info), if enabled. Does not zero allocated memory.
1538 *
1539 * Return:
1540 * Virtual address of allocated memory block on success, NULL on failure.
1541 */
1542void * __init memblock_alloc_exact_nid_raw(
1543			phys_addr_t size, phys_addr_t align,
1544			phys_addr_t min_addr, phys_addr_t max_addr,
1545			int nid)
1546{
1547	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1548		     __func__, (u64)size, (u64)align, nid, &min_addr,
1549		     &max_addr, (void *)_RET_IP_);
1550
1551	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1552				       true);
1553}
1554
1555/**
1556 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1557 * memory and without panicking
1558 * @size: size of memory block to be allocated in bytes
1559 * @align: alignment of the region and block's size
1560 * @min_addr: the lower bound of the memory region from where the allocation
1561 *	  is preferred (phys address)
1562 * @max_addr: the upper bound of the memory region from where the allocation
1563 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1564 *	      allocate only from memory limited by memblock.current_limit value
1565 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1566 *
1567 * Public function, provides additional debug information (including caller
1568 * info), if enabled. Does not zero allocated memory, does not panic if request
1569 * cannot be satisfied.
1570 *
1571 * Return:
1572 * Virtual address of allocated memory block on success, NULL on failure.
1573 */
1574void * __init memblock_alloc_try_nid_raw(
1575			phys_addr_t size, phys_addr_t align,
1576			phys_addr_t min_addr, phys_addr_t max_addr,
1577			int nid)
1578{
1579	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1580		     __func__, (u64)size, (u64)align, nid, &min_addr,
1581		     &max_addr, (void *)_RET_IP_);
1582
1583	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1584				       false);
1585}
1586
1587/**
1588 * memblock_alloc_try_nid - allocate boot memory block
1589 * @size: size of memory block to be allocated in bytes
1590 * @align: alignment of the region and block's size
1591 * @min_addr: the lower bound of the memory region from where the allocation
1592 *	  is preferred (phys address)
1593 * @max_addr: the upper bound of the memory region from where the allocation
1594 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1595 *	      allocate only from memory limited by memblock.current_limit value
1596 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1597 *
1598 * Public function, provides additional debug information (including caller
1599 * info), if enabled. This function zeroes the allocated memory.
1600 *
1601 * Return:
1602 * Virtual address of allocated memory block on success, NULL on failure.
1603 */
1604void * __init memblock_alloc_try_nid(
1605			phys_addr_t size, phys_addr_t align,
1606			phys_addr_t min_addr, phys_addr_t max_addr,
1607			int nid)
1608{
1609	void *ptr;
1610
1611	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1612		     __func__, (u64)size, (u64)align, nid, &min_addr,
1613		     &max_addr, (void *)_RET_IP_);
1614	ptr = memblock_alloc_internal(size, align,
1615					   min_addr, max_addr, nid, false);
1616	if (ptr)
1617		memset(ptr, 0, size);
1618
1619	return ptr;
1620}
1621
1622/**
1623 * memblock_free_late - free pages directly to buddy allocator
1624 * @base: phys starting address of the  boot memory block
1625 * @size: size of the boot memory block in bytes
1626 *
1627 * This is only useful when the memblock allocator has already been torn
1628 * down, but we are still initializing the system.  Pages are released directly
1629 * to the buddy allocator.
1630 */
1631void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1632{
1633	phys_addr_t cursor, end;
1634
1635	end = base + size - 1;
1636	memblock_dbg("%s: [%pa-%pa] %pS\n",
1637		     __func__, &base, &end, (void *)_RET_IP_);
1638	kmemleak_free_part_phys(base, size);
1639	cursor = PFN_UP(base);
1640	end = PFN_DOWN(base + size);
1641
1642	for (; cursor < end; cursor++) {
1643		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1644		totalram_pages_inc();
1645	}
1646}
1647
1648/*
1649 * Remaining API functions
1650 */
1651
1652phys_addr_t __init_memblock memblock_phys_mem_size(void)
1653{
1654	return memblock.memory.total_size;
1655}
1656
1657phys_addr_t __init_memblock memblock_reserved_size(void)
1658{
1659	return memblock.reserved.total_size;
1660}
1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1662/* lowest address */
1663phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1664{
1665	return memblock.memory.regions[0].base;
1666}
1667
1668phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1669{
1670	int idx = memblock.memory.cnt - 1;
1671
1672	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1673}
1674
1675static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1676{
1677	phys_addr_t max_addr = PHYS_ADDR_MAX;
1678	struct memblock_region *r;
1679
1680	/*
1681	 * translate the memory @limit size into the max address within one of
1682	 * the memory memblock regions, if the @limit exceeds the total size
1683	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1684	 */
1685	for_each_mem_region(r) {
1686		if (limit <= r->size) {
1687			max_addr = r->base + limit;
1688			break;
1689		}
1690		limit -= r->size;
1691	}
1692
1693	return max_addr;
1694}
1695
1696void __init memblock_enforce_memory_limit(phys_addr_t limit)
1697{
1698	phys_addr_t max_addr;
1699
1700	if (!limit)
1701		return;
1702
1703	max_addr = __find_max_addr(limit);
1704
1705	/* @limit exceeds the total size of the memory, do nothing */
1706	if (max_addr == PHYS_ADDR_MAX)
1707		return;
1708
1709	/* truncate both memory and reserved regions */
1710	memblock_remove_range(&memblock.memory, max_addr,
1711			      PHYS_ADDR_MAX);
1712	memblock_remove_range(&memblock.reserved, max_addr,
1713			      PHYS_ADDR_MAX);
1714}
1715
1716void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1717{
1718	int start_rgn, end_rgn;
1719	int i, ret;
1720
1721	if (!size)
1722		return;
1723
1724	if (!memblock_memory->total_size) {
1725		pr_warn("%s: No memory registered yet\n", __func__);
1726		return;
1727	}
1728
1729	ret = memblock_isolate_range(&memblock.memory, base, size,
1730						&start_rgn, &end_rgn);
1731	if (ret)
1732		return;
1733
1734	/* remove all the MAP regions */
1735	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1736		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1737			memblock_remove_region(&memblock.memory, i);
1738
1739	for (i = start_rgn - 1; i >= 0; i--)
1740		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1741			memblock_remove_region(&memblock.memory, i);
1742
1743	/* truncate the reserved regions */
1744	memblock_remove_range(&memblock.reserved, 0, base);
1745	memblock_remove_range(&memblock.reserved,
1746			base + size, PHYS_ADDR_MAX);
1747}
1748
1749void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1750{
1751	phys_addr_t max_addr;
1752
1753	if (!limit)
1754		return;
1755
1756	max_addr = __find_max_addr(limit);
1757
1758	/* @limit exceeds the total size of the memory, do nothing */
1759	if (max_addr == PHYS_ADDR_MAX)
1760		return;
1761
1762	memblock_cap_memory_range(0, max_addr);
1763}
1764
1765static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1766{
1767	unsigned int left = 0, right = type->cnt;
1768
1769	do {
1770		unsigned int mid = (right + left) / 2;
1771
1772		if (addr < type->regions[mid].base)
1773			right = mid;
1774		else if (addr >= (type->regions[mid].base +
1775				  type->regions[mid].size))
1776			left = mid + 1;
1777		else
1778			return mid;
1779	} while (left < right);
1780	return -1;
1781}
1782
1783bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1784{
1785	return memblock_search(&memblock.reserved, addr) != -1;
1786}
1787
1788bool __init_memblock memblock_is_memory(phys_addr_t addr)
1789{
1790	return memblock_search(&memblock.memory, addr) != -1;
1791}
1792
1793bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1794{
1795	int i = memblock_search(&memblock.memory, addr);
1796
1797	if (i == -1)
1798		return false;
1799	return !memblock_is_nomap(&memblock.memory.regions[i]);
1800}
1801
1802int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1803			 unsigned long *start_pfn, unsigned long *end_pfn)
1804{
1805	struct memblock_type *type = &memblock.memory;
1806	int mid = memblock_search(type, PFN_PHYS(pfn));
1807
1808	if (mid == -1)
1809		return -1;
1810
1811	*start_pfn = PFN_DOWN(type->regions[mid].base);
1812	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1813
1814	return memblock_get_region_node(&type->regions[mid]);
1815}
1816
1817/**
1818 * memblock_is_region_memory - check if a region is a subset of memory
1819 * @base: base of region to check
1820 * @size: size of region to check
1821 *
1822 * Check if the region [@base, @base + @size) is a subset of a memory block.
1823 *
1824 * Return:
1825 * 0 if false, non-zero if true
1826 */
1827bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1828{
1829	int idx = memblock_search(&memblock.memory, base);
1830	phys_addr_t end = base + memblock_cap_size(base, &size);
1831
1832	if (idx == -1)
1833		return false;
1834	return (memblock.memory.regions[idx].base +
1835		 memblock.memory.regions[idx].size) >= end;
1836}
1837
1838/**
1839 * memblock_is_region_reserved - check if a region intersects reserved memory
1840 * @base: base of region to check
1841 * @size: size of region to check
1842 *
1843 * Check if the region [@base, @base + @size) intersects a reserved
1844 * memory block.
1845 *
1846 * Return:
1847 * True if they intersect, false if not.
1848 */
1849bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1850{
1851	return memblock_overlaps_region(&memblock.reserved, base, size);
1852}
1853
1854void __init_memblock memblock_trim_memory(phys_addr_t align)
1855{
1856	phys_addr_t start, end, orig_start, orig_end;
1857	struct memblock_region *r;
1858
1859	for_each_mem_region(r) {
1860		orig_start = r->base;
1861		orig_end = r->base + r->size;
1862		start = round_up(orig_start, align);
1863		end = round_down(orig_end, align);
1864
1865		if (start == orig_start && end == orig_end)
1866			continue;
1867
1868		if (start < end) {
1869			r->base = start;
1870			r->size = end - start;
1871		} else {
1872			memblock_remove_region(&memblock.memory,
1873					       r - memblock.memory.regions);
1874			r--;
1875		}
1876	}
1877}
1878
1879void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1880{
1881	memblock.current_limit = limit;
1882}
1883
1884phys_addr_t __init_memblock memblock_get_current_limit(void)
1885{
1886	return memblock.current_limit;
1887}
1888
1889static void __init_memblock memblock_dump(struct memblock_type *type)
1890{
1891	phys_addr_t base, end, size;
1892	enum memblock_flags flags;
1893	int idx;
1894	struct memblock_region *rgn;
1895
1896	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1897
1898	for_each_memblock_type(idx, type, rgn) {
1899		char nid_buf[32] = "";
1900
1901		base = rgn->base;
1902		size = rgn->size;
1903		end = base + size - 1;
1904		flags = rgn->flags;
1905#ifdef CONFIG_NUMA
1906		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1907			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1908				 memblock_get_region_node(rgn));
1909#endif
1910		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1911			type->name, idx, &base, &end, &size, nid_buf, flags);
1912	}
1913}
1914
1915static void __init_memblock __memblock_dump_all(void)
1916{
1917	pr_info("MEMBLOCK configuration:\n");
1918	pr_info(" memory size = %pa reserved size = %pa\n",
1919		&memblock.memory.total_size,
1920		&memblock.reserved.total_size);
1921
1922	memblock_dump(&memblock.memory);
1923	memblock_dump(&memblock.reserved);
1924#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1925	memblock_dump(&physmem);
1926#endif
1927}
1928
1929void __init_memblock memblock_dump_all(void)
1930{
1931	if (memblock_debug)
1932		__memblock_dump_all();
1933}
1934
1935void __init memblock_allow_resize(void)
1936{
1937	memblock_can_resize = 1;
1938}
1939
1940static int __init early_memblock(char *p)
1941{
1942	if (p && strstr(p, "debug"))
1943		memblock_debug = 1;
1944	return 0;
1945}
1946early_param("memblock", early_memblock);
1947
1948static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1949{
1950	struct page *start_pg, *end_pg;
1951	phys_addr_t pg, pgend;
1952
1953	/*
1954	 * Convert start_pfn/end_pfn to a struct page pointer.
1955	 */
1956	start_pg = pfn_to_page(start_pfn - 1) + 1;
1957	end_pg = pfn_to_page(end_pfn - 1) + 1;
1958
1959	/*
1960	 * Convert to physical addresses, and round start upwards and end
1961	 * downwards.
1962	 */
1963	pg = PAGE_ALIGN(__pa(start_pg));
1964	pgend = __pa(end_pg) & PAGE_MASK;
1965
1966	/*
1967	 * If there are free pages between these, free the section of the
1968	 * memmap array.
1969	 */
1970	if (pg < pgend)
1971		memblock_phys_free(pg, pgend - pg);
1972}
1973
1974/*
1975 * The mem_map array can get very big.  Free the unused area of the memory map.
1976 */
1977static void __init free_unused_memmap(void)
1978{
1979	unsigned long start, end, prev_end = 0;
1980	int i;
1981
1982	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1983	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1984		return;
1985
1986	/*
1987	 * This relies on each bank being in address order.
1988	 * The banks are sorted previously in bootmem_init().
1989	 */
1990	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1991#ifdef CONFIG_SPARSEMEM
1992		/*
1993		 * Take care not to free memmap entries that don't exist
1994		 * due to SPARSEMEM sections which aren't present.
1995		 */
1996		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1997#endif
1998		/*
1999		 * Align down here since many operations in VM subsystem
2000		 * presume that there are no holes in the memory map inside
2001		 * a pageblock
2002		 */
2003		start = pageblock_start_pfn(start);
2004
2005		/*
2006		 * If we had a previous bank, and there is a space
2007		 * between the current bank and the previous, free it.
2008		 */
2009		if (prev_end && prev_end < start)
2010			free_memmap(prev_end, start);
2011
2012		/*
2013		 * Align up here since many operations in VM subsystem
2014		 * presume that there are no holes in the memory map inside
2015		 * a pageblock
2016		 */
2017		prev_end = pageblock_align(end);
2018	}
2019
2020#ifdef CONFIG_SPARSEMEM
2021	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2022		prev_end = pageblock_align(end);
2023		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2024	}
2025#endif
2026}
2027
2028static void __init __free_pages_memory(unsigned long start, unsigned long end)
2029{
2030	int order;
2031
2032	while (start < end) {
2033		order = min(MAX_ORDER - 1UL, __ffs(start));
 
 
 
 
 
 
 
 
 
 
2034
2035		while (start + (1UL << order) > end)
2036			order--;
2037
2038		memblock_free_pages(pfn_to_page(start), start, order);
2039
2040		start += (1UL << order);
2041	}
2042}
2043
2044static unsigned long __init __free_memory_core(phys_addr_t start,
2045				 phys_addr_t end)
2046{
2047	unsigned long start_pfn = PFN_UP(start);
2048	unsigned long end_pfn = min_t(unsigned long,
2049				      PFN_DOWN(end), max_low_pfn);
2050
2051	if (start_pfn >= end_pfn)
2052		return 0;
2053
2054	__free_pages_memory(start_pfn, end_pfn);
2055
2056	return end_pfn - start_pfn;
2057}
2058
2059static void __init memmap_init_reserved_pages(void)
2060{
2061	struct memblock_region *region;
2062	phys_addr_t start, end;
2063	u64 i;
2064
2065	/* initialize struct pages for the reserved regions */
2066	for_each_reserved_mem_range(i, &start, &end)
2067		reserve_bootmem_region(start, end);
2068
2069	/* and also treat struct pages for the NOMAP regions as PageReserved */
 
 
 
2070	for_each_mem_region(region) {
2071		if (memblock_is_nomap(region)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2072			start = region->base;
2073			end = start + region->size;
2074			reserve_bootmem_region(start, end);
 
 
 
 
2075		}
2076	}
2077}
2078
2079static unsigned long __init free_low_memory_core_early(void)
2080{
2081	unsigned long count = 0;
2082	phys_addr_t start, end;
2083	u64 i;
2084
2085	memblock_clear_hotplug(0, -1);
2086
2087	memmap_init_reserved_pages();
2088
2089	/*
2090	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2091	 *  because in some case like Node0 doesn't have RAM installed
2092	 *  low ram will be on Node1
2093	 */
2094	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2095				NULL)
2096		count += __free_memory_core(start, end);
2097
2098	return count;
2099}
2100
2101static int reset_managed_pages_done __initdata;
2102
2103void reset_node_managed_pages(pg_data_t *pgdat)
2104{
2105	struct zone *z;
2106
2107	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2108		atomic_long_set(&z->managed_pages, 0);
2109}
2110
2111void __init reset_all_zones_managed_pages(void)
2112{
2113	struct pglist_data *pgdat;
2114
2115	if (reset_managed_pages_done)
2116		return;
2117
2118	for_each_online_pgdat(pgdat)
2119		reset_node_managed_pages(pgdat);
2120
2121	reset_managed_pages_done = 1;
2122}
2123
2124/**
2125 * memblock_free_all - release free pages to the buddy allocator
2126 */
2127void __init memblock_free_all(void)
2128{
2129	unsigned long pages;
2130
2131	free_unused_memmap();
2132	reset_all_zones_managed_pages();
2133
2134	pages = free_low_memory_core_early();
2135	totalram_pages_add(pages);
2136}
2137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2138#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
 
 
 
 
 
 
 
2139
2140static int memblock_debug_show(struct seq_file *m, void *private)
2141{
2142	struct memblock_type *type = m->private;
2143	struct memblock_region *reg;
2144	int i;
 
2145	phys_addr_t end;
2146
2147	for (i = 0; i < type->cnt; i++) {
2148		reg = &type->regions[i];
2149		end = reg->base + reg->size - 1;
 
2150
2151		seq_printf(m, "%4d: ", i);
2152		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2153	}
2154	return 0;
2155}
2156DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2157
2158static int __init memblock_init_debugfs(void)
2159{
2160	struct dentry *root = debugfs_create_dir("memblock", NULL);
2161
2162	debugfs_create_file("memory", 0444, root,
2163			    &memblock.memory, &memblock_debug_fops);
2164	debugfs_create_file("reserved", 0444, root,
2165			    &memblock.reserved, &memblock_debug_fops);
2166#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2167	debugfs_create_file("physmem", 0444, root, &physmem,
2168			    &memblock_debug_fops);
2169#endif
2170
2171	return 0;
2172}
2173__initcall(memblock_init_debugfs);
2174
2175#endif /* CONFIG_DEBUG_FS */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Procedures for maintaining information about logical memory blocks.
   4 *
   5 * Peter Bergner, IBM Corp.	June 2001.
   6 * Copyright (C) 2001 Peter Bergner.
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/init.h>
  12#include <linux/bitops.h>
  13#include <linux/poison.h>
  14#include <linux/pfn.h>
  15#include <linux/debugfs.h>
  16#include <linux/kmemleak.h>
  17#include <linux/seq_file.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/sections.h>
  21#include <linux/io.h>
  22
  23#include "internal.h"
  24
  25#define INIT_MEMBLOCK_REGIONS			128
  26#define INIT_PHYSMEM_REGIONS			4
  27
  28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
  29# define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
  30#endif
  31
  32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
  33#define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
  34#endif
  35
  36/**
  37 * DOC: memblock overview
  38 *
  39 * Memblock is a method of managing memory regions during the early
  40 * boot period when the usual kernel memory allocators are not up and
  41 * running.
  42 *
  43 * Memblock views the system memory as collections of contiguous
  44 * regions. There are several types of these collections:
  45 *
  46 * * ``memory`` - describes the physical memory available to the
  47 *   kernel; this may differ from the actual physical memory installed
  48 *   in the system, for instance when the memory is restricted with
  49 *   ``mem=`` command line parameter
  50 * * ``reserved`` - describes the regions that were allocated
  51 * * ``physmem`` - describes the actual physical memory available during
  52 *   boot regardless of the possible restrictions and memory hot(un)plug;
  53 *   the ``physmem`` type is only available on some architectures.
  54 *
  55 * Each region is represented by struct memblock_region that
  56 * defines the region extents, its attributes and NUMA node id on NUMA
  57 * systems. Every memory type is described by the struct memblock_type
  58 * which contains an array of memory regions along with
  59 * the allocator metadata. The "memory" and "reserved" types are nicely
  60 * wrapped with struct memblock. This structure is statically
  61 * initialized at build time. The region arrays are initially sized to
  62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
  63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
  64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
  65 * The memblock_allow_resize() enables automatic resizing of the region
  66 * arrays during addition of new regions. This feature should be used
  67 * with care so that memory allocated for the region array will not
  68 * overlap with areas that should be reserved, for example initrd.
  69 *
  70 * The early architecture setup should tell memblock what the physical
  71 * memory layout is by using memblock_add() or memblock_add_node()
  72 * functions. The first function does not assign the region to a NUMA
  73 * node and it is appropriate for UMA systems. Yet, it is possible to
  74 * use it on NUMA systems as well and assign the region to a NUMA node
  75 * later in the setup process using memblock_set_node(). The
  76 * memblock_add_node() performs such an assignment directly.
  77 *
  78 * Once memblock is setup the memory can be allocated using one of the
  79 * API variants:
  80 *
  81 * * memblock_phys_alloc*() - these functions return the **physical**
  82 *   address of the allocated memory
  83 * * memblock_alloc*() - these functions return the **virtual** address
  84 *   of the allocated memory.
  85 *
  86 * Note, that both API variants use implicit assumptions about allowed
  87 * memory ranges and the fallback methods. Consult the documentation
  88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
  89 * functions for more elaborate description.
  90 *
  91 * As the system boot progresses, the architecture specific mem_init()
  92 * function frees all the memory to the buddy page allocator.
  93 *
  94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
  95 * memblock data structures (except "physmem") will be discarded after the
  96 * system initialization completes.
  97 */
  98
  99#ifndef CONFIG_NUMA
 100struct pglist_data __refdata contig_page_data;
 101EXPORT_SYMBOL(contig_page_data);
 102#endif
 103
 104unsigned long max_low_pfn;
 105unsigned long min_low_pfn;
 106unsigned long max_pfn;
 107unsigned long long max_possible_pfn;
 108
 109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
 110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
 111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
 113#endif
 114
 115struct memblock memblock __initdata_memblock = {
 116	.memory.regions		= memblock_memory_init_regions,
 
 117	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
 118	.memory.name		= "memory",
 119
 120	.reserved.regions	= memblock_reserved_init_regions,
 
 121	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
 122	.reserved.name		= "reserved",
 123
 124	.bottom_up		= false,
 125	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
 126};
 127
 128#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 129struct memblock_type physmem = {
 130	.regions		= memblock_physmem_init_regions,
 
 131	.max			= INIT_PHYSMEM_REGIONS,
 132	.name			= "physmem",
 133};
 134#endif
 135
 136/*
 137 * keep a pointer to &memblock.memory in the text section to use it in
 138 * __next_mem_range() and its helpers.
 139 *  For architectures that do not keep memblock data after init, this
 140 * pointer will be reset to NULL at memblock_discard()
 141 */
 142static __refdata struct memblock_type *memblock_memory = &memblock.memory;
 143
 144#define for_each_memblock_type(i, memblock_type, rgn)			\
 145	for (i = 0, rgn = &memblock_type->regions[0];			\
 146	     i < memblock_type->cnt;					\
 147	     i++, rgn = &memblock_type->regions[i])
 148
 149#define memblock_dbg(fmt, ...)						\
 150	do {								\
 151		if (memblock_debug)					\
 152			pr_info(fmt, ##__VA_ARGS__);			\
 153	} while (0)
 154
 155static int memblock_debug __initdata_memblock;
 156static bool system_has_some_mirror __initdata_memblock;
 157static int memblock_can_resize __initdata_memblock;
 158static int memblock_memory_in_slab __initdata_memblock;
 159static int memblock_reserved_in_slab __initdata_memblock;
 160
 161bool __init_memblock memblock_has_mirror(void)
 162{
 163	return system_has_some_mirror;
 164}
 165
 166static enum memblock_flags __init_memblock choose_memblock_flags(void)
 167{
 168	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 169}
 170
 171/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 172static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 173{
 174	return *size = min(*size, PHYS_ADDR_MAX - base);
 175}
 176
 177/*
 178 * Address comparison utilities
 179 */
 180unsigned long __init_memblock
 181memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
 182		       phys_addr_t size2)
 183{
 184	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 185}
 186
 187bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 188					phys_addr_t base, phys_addr_t size)
 189{
 190	unsigned long i;
 191
 192	memblock_cap_size(base, &size);
 193
 194	for (i = 0; i < type->cnt; i++)
 195		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 196					   type->regions[i].size))
 197			return true;
 198	return false;
 199}
 200
 201/**
 202 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 203 * @start: start of candidate range
 204 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 205 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 206 * @size: size of free area to find
 207 * @align: alignment of free area to find
 208 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 209 * @flags: pick from blocks based on memory attributes
 210 *
 211 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 212 *
 213 * Return:
 214 * Found address on success, 0 on failure.
 215 */
 216static phys_addr_t __init_memblock
 217__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 218				phys_addr_t size, phys_addr_t align, int nid,
 219				enum memblock_flags flags)
 220{
 221	phys_addr_t this_start, this_end, cand;
 222	u64 i;
 223
 224	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 225		this_start = clamp(this_start, start, end);
 226		this_end = clamp(this_end, start, end);
 227
 228		cand = round_up(this_start, align);
 229		if (cand < this_end && this_end - cand >= size)
 230			return cand;
 231	}
 232
 233	return 0;
 234}
 235
 236/**
 237 * __memblock_find_range_top_down - find free area utility, in top-down
 238 * @start: start of candidate range
 239 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 240 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 241 * @size: size of free area to find
 242 * @align: alignment of free area to find
 243 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 244 * @flags: pick from blocks based on memory attributes
 245 *
 246 * Utility called from memblock_find_in_range_node(), find free area top-down.
 247 *
 248 * Return:
 249 * Found address on success, 0 on failure.
 250 */
 251static phys_addr_t __init_memblock
 252__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 253			       phys_addr_t size, phys_addr_t align, int nid,
 254			       enum memblock_flags flags)
 255{
 256	phys_addr_t this_start, this_end, cand;
 257	u64 i;
 258
 259	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 260					NULL) {
 261		this_start = clamp(this_start, start, end);
 262		this_end = clamp(this_end, start, end);
 263
 264		if (this_end < size)
 265			continue;
 266
 267		cand = round_down(this_end - size, align);
 268		if (cand >= this_start)
 269			return cand;
 270	}
 271
 272	return 0;
 273}
 274
 275/**
 276 * memblock_find_in_range_node - find free area in given range and node
 277 * @size: size of free area to find
 278 * @align: alignment of free area to find
 279 * @start: start of candidate range
 280 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 281 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 282 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 283 * @flags: pick from blocks based on memory attributes
 284 *
 285 * Find @size free area aligned to @align in the specified range and node.
 286 *
 287 * Return:
 288 * Found address on success, 0 on failure.
 289 */
 290static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 291					phys_addr_t align, phys_addr_t start,
 292					phys_addr_t end, int nid,
 293					enum memblock_flags flags)
 294{
 295	/* pump up @end */
 296	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
 297	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
 298		end = memblock.current_limit;
 299
 300	/* avoid allocating the first page */
 301	start = max_t(phys_addr_t, start, PAGE_SIZE);
 302	end = max(start, end);
 303
 304	if (memblock_bottom_up())
 305		return __memblock_find_range_bottom_up(start, end, size, align,
 306						       nid, flags);
 307	else
 308		return __memblock_find_range_top_down(start, end, size, align,
 309						      nid, flags);
 310}
 311
 312/**
 313 * memblock_find_in_range - find free area in given range
 314 * @start: start of candidate range
 315 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 316 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 317 * @size: size of free area to find
 318 * @align: alignment of free area to find
 319 *
 320 * Find @size free area aligned to @align in the specified range.
 321 *
 322 * Return:
 323 * Found address on success, 0 on failure.
 324 */
 325static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 326					phys_addr_t end, phys_addr_t size,
 327					phys_addr_t align)
 328{
 329	phys_addr_t ret;
 330	enum memblock_flags flags = choose_memblock_flags();
 331
 332again:
 333	ret = memblock_find_in_range_node(size, align, start, end,
 334					    NUMA_NO_NODE, flags);
 335
 336	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 337		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
 338			&size);
 339		flags &= ~MEMBLOCK_MIRROR;
 340		goto again;
 341	}
 342
 343	return ret;
 344}
 345
 346static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 347{
 348	type->total_size -= type->regions[r].size;
 349	memmove(&type->regions[r], &type->regions[r + 1],
 350		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 351	type->cnt--;
 352
 353	/* Special case for empty arrays */
 354	if (type->cnt == 0) {
 355		WARN_ON(type->total_size != 0);
 
 356		type->regions[0].base = 0;
 357		type->regions[0].size = 0;
 358		type->regions[0].flags = 0;
 359		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 360	}
 361}
 362
 363#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
 364/**
 365 * memblock_discard - discard memory and reserved arrays if they were allocated
 366 */
 367void __init memblock_discard(void)
 368{
 369	phys_addr_t addr, size;
 370
 371	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 372		addr = __pa(memblock.reserved.regions);
 373		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 374				  memblock.reserved.max);
 375		if (memblock_reserved_in_slab)
 376			kfree(memblock.reserved.regions);
 377		else
 378			memblock_free_late(addr, size);
 379	}
 380
 381	if (memblock.memory.regions != memblock_memory_init_regions) {
 382		addr = __pa(memblock.memory.regions);
 383		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 384				  memblock.memory.max);
 385		if (memblock_memory_in_slab)
 386			kfree(memblock.memory.regions);
 387		else
 388			memblock_free_late(addr, size);
 389	}
 390
 391	memblock_memory = NULL;
 392}
 393#endif
 394
 395/**
 396 * memblock_double_array - double the size of the memblock regions array
 397 * @type: memblock type of the regions array being doubled
 398 * @new_area_start: starting address of memory range to avoid overlap with
 399 * @new_area_size: size of memory range to avoid overlap with
 400 *
 401 * Double the size of the @type regions array. If memblock is being used to
 402 * allocate memory for a new reserved regions array and there is a previously
 403 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
 404 * waiting to be reserved, ensure the memory used by the new array does
 405 * not overlap.
 406 *
 407 * Return:
 408 * 0 on success, -1 on failure.
 409 */
 410static int __init_memblock memblock_double_array(struct memblock_type *type,
 411						phys_addr_t new_area_start,
 412						phys_addr_t new_area_size)
 413{
 414	struct memblock_region *new_array, *old_array;
 415	phys_addr_t old_alloc_size, new_alloc_size;
 416	phys_addr_t old_size, new_size, addr, new_end;
 417	int use_slab = slab_is_available();
 418	int *in_slab;
 419
 420	/* We don't allow resizing until we know about the reserved regions
 421	 * of memory that aren't suitable for allocation
 422	 */
 423	if (!memblock_can_resize)
 424		panic("memblock: cannot resize %s array\n", type->name);
 425
 426	/* Calculate new doubled size */
 427	old_size = type->max * sizeof(struct memblock_region);
 428	new_size = old_size << 1;
 429	/*
 430	 * We need to allocated new one align to PAGE_SIZE,
 431	 *   so we can free them completely later.
 432	 */
 433	old_alloc_size = PAGE_ALIGN(old_size);
 434	new_alloc_size = PAGE_ALIGN(new_size);
 435
 436	/* Retrieve the slab flag */
 437	if (type == &memblock.memory)
 438		in_slab = &memblock_memory_in_slab;
 439	else
 440		in_slab = &memblock_reserved_in_slab;
 441
 442	/* Try to find some space for it */
 443	if (use_slab) {
 444		new_array = kmalloc(new_size, GFP_KERNEL);
 445		addr = new_array ? __pa(new_array) : 0;
 446	} else {
 447		/* only exclude range when trying to double reserved.regions */
 448		if (type != &memblock.reserved)
 449			new_area_start = new_area_size = 0;
 450
 451		addr = memblock_find_in_range(new_area_start + new_area_size,
 452						memblock.current_limit,
 453						new_alloc_size, PAGE_SIZE);
 454		if (!addr && new_area_size)
 455			addr = memblock_find_in_range(0,
 456				min(new_area_start, memblock.current_limit),
 457				new_alloc_size, PAGE_SIZE);
 458
 459		new_array = addr ? __va(addr) : NULL;
 460	}
 461	if (!addr) {
 462		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 463		       type->name, type->max, type->max * 2);
 464		return -1;
 465	}
 466
 467	new_end = addr + new_size - 1;
 468	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
 469			type->name, type->max * 2, &addr, &new_end);
 470
 471	/*
 472	 * Found space, we now need to move the array over before we add the
 473	 * reserved region since it may be our reserved array itself that is
 474	 * full.
 475	 */
 476	memcpy(new_array, type->regions, old_size);
 477	memset(new_array + type->max, 0, old_size);
 478	old_array = type->regions;
 479	type->regions = new_array;
 480	type->max <<= 1;
 481
 482	/* Free old array. We needn't free it if the array is the static one */
 483	if (*in_slab)
 484		kfree(old_array);
 485	else if (old_array != memblock_memory_init_regions &&
 486		 old_array != memblock_reserved_init_regions)
 487		memblock_free(old_array, old_alloc_size);
 488
 489	/*
 490	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 491	 * needn't do it
 492	 */
 493	if (!use_slab)
 494		BUG_ON(memblock_reserve(addr, new_alloc_size));
 495
 496	/* Update slab flag */
 497	*in_slab = use_slab;
 498
 499	return 0;
 500}
 501
 502/**
 503 * memblock_merge_regions - merge neighboring compatible regions
 504 * @type: memblock type to scan
 505 * @start_rgn: start scanning from (@start_rgn - 1)
 506 * @end_rgn: end scanning at (@end_rgn - 1)
 507 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
 508 */
 509static void __init_memblock memblock_merge_regions(struct memblock_type *type,
 510						   unsigned long start_rgn,
 511						   unsigned long end_rgn)
 512{
 513	int i = 0;
 514	if (start_rgn)
 515		i = start_rgn - 1;
 516	end_rgn = min(end_rgn, type->cnt - 1);
 517	while (i < end_rgn) {
 518		struct memblock_region *this = &type->regions[i];
 519		struct memblock_region *next = &type->regions[i + 1];
 520
 521		if (this->base + this->size != next->base ||
 522		    memblock_get_region_node(this) !=
 523		    memblock_get_region_node(next) ||
 524		    this->flags != next->flags) {
 525			BUG_ON(this->base + this->size > next->base);
 526			i++;
 527			continue;
 528		}
 529
 530		this->size += next->size;
 531		/* move forward from next + 1, index of which is i + 2 */
 532		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 533		type->cnt--;
 534		end_rgn--;
 535	}
 536}
 537
 538/**
 539 * memblock_insert_region - insert new memblock region
 540 * @type:	memblock type to insert into
 541 * @idx:	index for the insertion point
 542 * @base:	base address of the new region
 543 * @size:	size of the new region
 544 * @nid:	node id of the new region
 545 * @flags:	flags of the new region
 546 *
 547 * Insert new memblock region [@base, @base + @size) into @type at @idx.
 548 * @type must already have extra room to accommodate the new region.
 549 */
 550static void __init_memblock memblock_insert_region(struct memblock_type *type,
 551						   int idx, phys_addr_t base,
 552						   phys_addr_t size,
 553						   int nid,
 554						   enum memblock_flags flags)
 555{
 556	struct memblock_region *rgn = &type->regions[idx];
 557
 558	BUG_ON(type->cnt >= type->max);
 559	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 560	rgn->base = base;
 561	rgn->size = size;
 562	rgn->flags = flags;
 563	memblock_set_region_node(rgn, nid);
 564	type->cnt++;
 565	type->total_size += size;
 566}
 567
 568/**
 569 * memblock_add_range - add new memblock region
 570 * @type: memblock type to add new region into
 571 * @base: base address of the new region
 572 * @size: size of the new region
 573 * @nid: nid of the new region
 574 * @flags: flags of the new region
 575 *
 576 * Add new memblock region [@base, @base + @size) into @type.  The new region
 577 * is allowed to overlap with existing ones - overlaps don't affect already
 578 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 579 * compatible regions are merged) after the addition.
 580 *
 581 * Return:
 582 * 0 on success, -errno on failure.
 583 */
 584static int __init_memblock memblock_add_range(struct memblock_type *type,
 585				phys_addr_t base, phys_addr_t size,
 586				int nid, enum memblock_flags flags)
 587{
 588	bool insert = false;
 589	phys_addr_t obase = base;
 590	phys_addr_t end = base + memblock_cap_size(base, &size);
 591	int idx, nr_new, start_rgn = -1, end_rgn;
 592	struct memblock_region *rgn;
 593
 594	if (!size)
 595		return 0;
 596
 597	/* special case for empty array */
 598	if (type->regions[0].size == 0) {
 599		WARN_ON(type->cnt != 0 || type->total_size);
 600		type->regions[0].base = base;
 601		type->regions[0].size = size;
 602		type->regions[0].flags = flags;
 603		memblock_set_region_node(&type->regions[0], nid);
 604		type->total_size = size;
 605		type->cnt = 1;
 606		return 0;
 607	}
 608
 609	/*
 610	 * The worst case is when new range overlaps all existing regions,
 611	 * then we'll need type->cnt + 1 empty regions in @type. So if
 612	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
 613	 * that there is enough empty regions in @type, and we can insert
 614	 * regions directly.
 615	 */
 616	if (type->cnt * 2 + 1 <= type->max)
 617		insert = true;
 618
 619repeat:
 620	/*
 621	 * The following is executed twice.  Once with %false @insert and
 622	 * then with %true.  The first counts the number of regions needed
 623	 * to accommodate the new area.  The second actually inserts them.
 624	 */
 625	base = obase;
 626	nr_new = 0;
 627
 628	for_each_memblock_type(idx, type, rgn) {
 629		phys_addr_t rbase = rgn->base;
 630		phys_addr_t rend = rbase + rgn->size;
 631
 632		if (rbase >= end)
 633			break;
 634		if (rend <= base)
 635			continue;
 636		/*
 637		 * @rgn overlaps.  If it separates the lower part of new
 638		 * area, insert that portion.
 639		 */
 640		if (rbase > base) {
 641#ifdef CONFIG_NUMA
 642			WARN_ON(nid != memblock_get_region_node(rgn));
 643#endif
 644			WARN_ON(flags != rgn->flags);
 645			nr_new++;
 646			if (insert) {
 647				if (start_rgn == -1)
 648					start_rgn = idx;
 649				end_rgn = idx + 1;
 650				memblock_insert_region(type, idx++, base,
 651						       rbase - base, nid,
 652						       flags);
 653			}
 654		}
 655		/* area below @rend is dealt with, forget about it */
 656		base = min(rend, end);
 657	}
 658
 659	/* insert the remaining portion */
 660	if (base < end) {
 661		nr_new++;
 662		if (insert) {
 663			if (start_rgn == -1)
 664				start_rgn = idx;
 665			end_rgn = idx + 1;
 666			memblock_insert_region(type, idx, base, end - base,
 667					       nid, flags);
 668		}
 669	}
 670
 671	if (!nr_new)
 672		return 0;
 673
 674	/*
 675	 * If this was the first round, resize array and repeat for actual
 676	 * insertions; otherwise, merge and return.
 677	 */
 678	if (!insert) {
 679		while (type->cnt + nr_new > type->max)
 680			if (memblock_double_array(type, obase, size) < 0)
 681				return -ENOMEM;
 682		insert = true;
 683		goto repeat;
 684	} else {
 685		memblock_merge_regions(type, start_rgn, end_rgn);
 686		return 0;
 687	}
 688}
 689
 690/**
 691 * memblock_add_node - add new memblock region within a NUMA node
 692 * @base: base address of the new region
 693 * @size: size of the new region
 694 * @nid: nid of the new region
 695 * @flags: flags of the new region
 696 *
 697 * Add new memblock region [@base, @base + @size) to the "memory"
 698 * type. See memblock_add_range() description for mode details
 699 *
 700 * Return:
 701 * 0 on success, -errno on failure.
 702 */
 703int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 704				      int nid, enum memblock_flags flags)
 705{
 706	phys_addr_t end = base + size - 1;
 707
 708	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
 709		     &base, &end, nid, flags, (void *)_RET_IP_);
 710
 711	return memblock_add_range(&memblock.memory, base, size, nid, flags);
 712}
 713
 714/**
 715 * memblock_add - add new memblock region
 716 * @base: base address of the new region
 717 * @size: size of the new region
 718 *
 719 * Add new memblock region [@base, @base + @size) to the "memory"
 720 * type. See memblock_add_range() description for mode details
 721 *
 722 * Return:
 723 * 0 on success, -errno on failure.
 724 */
 725int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 726{
 727	phys_addr_t end = base + size - 1;
 728
 729	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 730		     &base, &end, (void *)_RET_IP_);
 731
 732	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 733}
 734
 735/**
 736 * memblock_validate_numa_coverage - check if amount of memory with
 737 * no node ID assigned is less than a threshold
 738 * @threshold_bytes: maximal memory size that can have unassigned node
 739 * ID (in bytes).
 740 *
 741 * A buggy firmware may report memory that does not belong to any node.
 742 * Check if amount of such memory is below @threshold_bytes.
 743 *
 744 * Return: true on success, false on failure.
 745 */
 746bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
 747{
 748	unsigned long nr_pages = 0;
 749	unsigned long start_pfn, end_pfn, mem_size_mb;
 750	int nid, i;
 751
 752	/* calculate lose page */
 753	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
 754		if (!numa_valid_node(nid))
 755			nr_pages += end_pfn - start_pfn;
 756	}
 757
 758	if ((nr_pages << PAGE_SHIFT) > threshold_bytes) {
 759		mem_size_mb = memblock_phys_mem_size() >> 20;
 760		pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
 761		       (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
 762		return false;
 763	}
 764
 765	return true;
 766}
 767
 768
 769/**
 770 * memblock_isolate_range - isolate given range into disjoint memblocks
 771 * @type: memblock type to isolate range for
 772 * @base: base of range to isolate
 773 * @size: size of range to isolate
 774 * @start_rgn: out parameter for the start of isolated region
 775 * @end_rgn: out parameter for the end of isolated region
 776 *
 777 * Walk @type and ensure that regions don't cross the boundaries defined by
 778 * [@base, @base + @size).  Crossing regions are split at the boundaries,
 779 * which may create at most two more regions.  The index of the first
 780 * region inside the range is returned in *@start_rgn and the index of the
 781 * first region after the range is returned in *@end_rgn.
 782 *
 783 * Return:
 784 * 0 on success, -errno on failure.
 785 */
 786static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 787					phys_addr_t base, phys_addr_t size,
 788					int *start_rgn, int *end_rgn)
 789{
 790	phys_addr_t end = base + memblock_cap_size(base, &size);
 791	int idx;
 792	struct memblock_region *rgn;
 793
 794	*start_rgn = *end_rgn = 0;
 795
 796	if (!size)
 797		return 0;
 798
 799	/* we'll create at most two more regions */
 800	while (type->cnt + 2 > type->max)
 801		if (memblock_double_array(type, base, size) < 0)
 802			return -ENOMEM;
 803
 804	for_each_memblock_type(idx, type, rgn) {
 805		phys_addr_t rbase = rgn->base;
 806		phys_addr_t rend = rbase + rgn->size;
 807
 808		if (rbase >= end)
 809			break;
 810		if (rend <= base)
 811			continue;
 812
 813		if (rbase < base) {
 814			/*
 815			 * @rgn intersects from below.  Split and continue
 816			 * to process the next region - the new top half.
 817			 */
 818			rgn->base = base;
 819			rgn->size -= base - rbase;
 820			type->total_size -= base - rbase;
 821			memblock_insert_region(type, idx, rbase, base - rbase,
 822					       memblock_get_region_node(rgn),
 823					       rgn->flags);
 824		} else if (rend > end) {
 825			/*
 826			 * @rgn intersects from above.  Split and redo the
 827			 * current region - the new bottom half.
 828			 */
 829			rgn->base = end;
 830			rgn->size -= end - rbase;
 831			type->total_size -= end - rbase;
 832			memblock_insert_region(type, idx--, rbase, end - rbase,
 833					       memblock_get_region_node(rgn),
 834					       rgn->flags);
 835		} else {
 836			/* @rgn is fully contained, record it */
 837			if (!*end_rgn)
 838				*start_rgn = idx;
 839			*end_rgn = idx + 1;
 840		}
 841	}
 842
 843	return 0;
 844}
 845
 846static int __init_memblock memblock_remove_range(struct memblock_type *type,
 847					  phys_addr_t base, phys_addr_t size)
 848{
 849	int start_rgn, end_rgn;
 850	int i, ret;
 851
 852	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 853	if (ret)
 854		return ret;
 855
 856	for (i = end_rgn - 1; i >= start_rgn; i--)
 857		memblock_remove_region(type, i);
 858	return 0;
 859}
 860
 861int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 862{
 863	phys_addr_t end = base + size - 1;
 864
 865	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 866		     &base, &end, (void *)_RET_IP_);
 867
 868	return memblock_remove_range(&memblock.memory, base, size);
 869}
 870
 871/**
 872 * memblock_free - free boot memory allocation
 873 * @ptr: starting address of the  boot memory allocation
 874 * @size: size of the boot memory block in bytes
 875 *
 876 * Free boot memory block previously allocated by memblock_alloc_xx() API.
 877 * The freeing memory will not be released to the buddy allocator.
 878 */
 879void __init_memblock memblock_free(void *ptr, size_t size)
 880{
 881	if (ptr)
 882		memblock_phys_free(__pa(ptr), size);
 883}
 884
 885/**
 886 * memblock_phys_free - free boot memory block
 887 * @base: phys starting address of the  boot memory block
 888 * @size: size of the boot memory block in bytes
 889 *
 890 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
 891 * The freeing memory will not be released to the buddy allocator.
 892 */
 893int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
 894{
 895	phys_addr_t end = base + size - 1;
 896
 897	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 898		     &base, &end, (void *)_RET_IP_);
 899
 900	kmemleak_free_part_phys(base, size);
 901	return memblock_remove_range(&memblock.reserved, base, size);
 902}
 903
 904int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 905{
 906	phys_addr_t end = base + size - 1;
 907
 908	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 909		     &base, &end, (void *)_RET_IP_);
 910
 911	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 912}
 913
 914#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 915int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
 916{
 917	phys_addr_t end = base + size - 1;
 918
 919	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 920		     &base, &end, (void *)_RET_IP_);
 921
 922	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
 923}
 924#endif
 925
 926/**
 927 * memblock_setclr_flag - set or clear flag for a memory region
 928 * @type: memblock type to set/clear flag for
 929 * @base: base address of the region
 930 * @size: size of the region
 931 * @set: set or clear the flag
 932 * @flag: the flag to update
 933 *
 934 * This function isolates region [@base, @base + @size), and sets/clears flag
 935 *
 936 * Return: 0 on success, -errno on failure.
 937 */
 938static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
 939				phys_addr_t base, phys_addr_t size, int set, int flag)
 940{
 
 941	int i, ret, start_rgn, end_rgn;
 942
 943	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 944	if (ret)
 945		return ret;
 946
 947	for (i = start_rgn; i < end_rgn; i++) {
 948		struct memblock_region *r = &type->regions[i];
 949
 950		if (set)
 951			r->flags |= flag;
 952		else
 953			r->flags &= ~flag;
 954	}
 955
 956	memblock_merge_regions(type, start_rgn, end_rgn);
 957	return 0;
 958}
 959
 960/**
 961 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 962 * @base: the base phys addr of the region
 963 * @size: the size of the region
 964 *
 965 * Return: 0 on success, -errno on failure.
 966 */
 967int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 968{
 969	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
 970}
 971
 972/**
 973 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 974 * @base: the base phys addr of the region
 975 * @size: the size of the region
 976 *
 977 * Return: 0 on success, -errno on failure.
 978 */
 979int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 980{
 981	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
 982}
 983
 984/**
 985 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 986 * @base: the base phys addr of the region
 987 * @size: the size of the region
 988 *
 989 * Return: 0 on success, -errno on failure.
 990 */
 991int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 992{
 993	if (!mirrored_kernelcore)
 994		return 0;
 995
 996	system_has_some_mirror = true;
 997
 998	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
 999}
1000
1001/**
1002 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1003 * @base: the base phys addr of the region
1004 * @size: the size of the region
1005 *
1006 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1007 * direct mapping of the physical memory. These regions will still be
1008 * covered by the memory map. The struct page representing NOMAP memory
1009 * frames in the memory map will be PageReserved()
1010 *
1011 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1012 * memblock, the caller must inform kmemleak to ignore that memory
1013 *
1014 * Return: 0 on success, -errno on failure.
1015 */
1016int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1017{
1018	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1019}
1020
1021/**
1022 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1023 * @base: the base phys addr of the region
1024 * @size: the size of the region
1025 *
1026 * Return: 0 on success, -errno on failure.
1027 */
1028int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1029{
1030	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1031}
1032
1033/**
1034 * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1035 * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1036 * for this region.
1037 * @base: the base phys addr of the region
1038 * @size: the size of the region
1039 *
1040 * struct pages will not be initialized for reserved memory regions marked with
1041 * %MEMBLOCK_RSRV_NOINIT.
1042 *
1043 * Return: 0 on success, -errno on failure.
1044 */
1045int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1046{
1047	return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1048				    MEMBLOCK_RSRV_NOINIT);
1049}
1050
1051static bool should_skip_region(struct memblock_type *type,
1052			       struct memblock_region *m,
1053			       int nid, int flags)
1054{
1055	int m_nid = memblock_get_region_node(m);
1056
1057	/* we never skip regions when iterating memblock.reserved or physmem */
1058	if (type != memblock_memory)
1059		return false;
1060
1061	/* only memory regions are associated with nodes, check it */
1062	if (numa_valid_node(nid) && nid != m_nid)
1063		return true;
1064
1065	/* skip hotpluggable memory regions if needed */
1066	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1067	    !(flags & MEMBLOCK_HOTPLUG))
1068		return true;
1069
1070	/* if we want mirror memory skip non-mirror memory regions */
1071	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1072		return true;
1073
1074	/* skip nomap memory unless we were asked for it explicitly */
1075	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1076		return true;
1077
1078	/* skip driver-managed memory unless we were asked for it explicitly */
1079	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1080		return true;
1081
1082	return false;
1083}
1084
1085/**
1086 * __next_mem_range - next function for for_each_free_mem_range() etc.
1087 * @idx: pointer to u64 loop variable
1088 * @nid: node selector, %NUMA_NO_NODE for all nodes
1089 * @flags: pick from blocks based on memory attributes
1090 * @type_a: pointer to memblock_type from where the range is taken
1091 * @type_b: pointer to memblock_type which excludes memory from being taken
1092 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1093 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1094 * @out_nid: ptr to int for nid of the range, can be %NULL
1095 *
1096 * Find the first area from *@idx which matches @nid, fill the out
1097 * parameters, and update *@idx for the next iteration.  The lower 32bit of
1098 * *@idx contains index into type_a and the upper 32bit indexes the
1099 * areas before each region in type_b.	For example, if type_b regions
1100 * look like the following,
1101 *
1102 *	0:[0-16), 1:[32-48), 2:[128-130)
1103 *
1104 * The upper 32bit indexes the following regions.
1105 *
1106 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1107 *
1108 * As both region arrays are sorted, the function advances the two indices
1109 * in lockstep and returns each intersection.
1110 */
1111void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1112		      struct memblock_type *type_a,
1113		      struct memblock_type *type_b, phys_addr_t *out_start,
1114		      phys_addr_t *out_end, int *out_nid)
1115{
1116	int idx_a = *idx & 0xffffffff;
1117	int idx_b = *idx >> 32;
1118
 
 
 
 
1119	for (; idx_a < type_a->cnt; idx_a++) {
1120		struct memblock_region *m = &type_a->regions[idx_a];
1121
1122		phys_addr_t m_start = m->base;
1123		phys_addr_t m_end = m->base + m->size;
1124		int	    m_nid = memblock_get_region_node(m);
1125
1126		if (should_skip_region(type_a, m, nid, flags))
1127			continue;
1128
1129		if (!type_b) {
1130			if (out_start)
1131				*out_start = m_start;
1132			if (out_end)
1133				*out_end = m_end;
1134			if (out_nid)
1135				*out_nid = m_nid;
1136			idx_a++;
1137			*idx = (u32)idx_a | (u64)idx_b << 32;
1138			return;
1139		}
1140
1141		/* scan areas before each reservation */
1142		for (; idx_b < type_b->cnt + 1; idx_b++) {
1143			struct memblock_region *r;
1144			phys_addr_t r_start;
1145			phys_addr_t r_end;
1146
1147			r = &type_b->regions[idx_b];
1148			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1149			r_end = idx_b < type_b->cnt ?
1150				r->base : PHYS_ADDR_MAX;
1151
1152			/*
1153			 * if idx_b advanced past idx_a,
1154			 * break out to advance idx_a
1155			 */
1156			if (r_start >= m_end)
1157				break;
1158			/* if the two regions intersect, we're done */
1159			if (m_start < r_end) {
1160				if (out_start)
1161					*out_start =
1162						max(m_start, r_start);
1163				if (out_end)
1164					*out_end = min(m_end, r_end);
1165				if (out_nid)
1166					*out_nid = m_nid;
1167				/*
1168				 * The region which ends first is
1169				 * advanced for the next iteration.
1170				 */
1171				if (m_end <= r_end)
1172					idx_a++;
1173				else
1174					idx_b++;
1175				*idx = (u32)idx_a | (u64)idx_b << 32;
1176				return;
1177			}
1178		}
1179	}
1180
1181	/* signal end of iteration */
1182	*idx = ULLONG_MAX;
1183}
1184
1185/**
1186 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1187 *
1188 * @idx: pointer to u64 loop variable
1189 * @nid: node selector, %NUMA_NO_NODE for all nodes
1190 * @flags: pick from blocks based on memory attributes
1191 * @type_a: pointer to memblock_type from where the range is taken
1192 * @type_b: pointer to memblock_type which excludes memory from being taken
1193 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1194 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1195 * @out_nid: ptr to int for nid of the range, can be %NULL
1196 *
1197 * Finds the next range from type_a which is not marked as unsuitable
1198 * in type_b.
1199 *
1200 * Reverse of __next_mem_range().
1201 */
1202void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1203					  enum memblock_flags flags,
1204					  struct memblock_type *type_a,
1205					  struct memblock_type *type_b,
1206					  phys_addr_t *out_start,
1207					  phys_addr_t *out_end, int *out_nid)
1208{
1209	int idx_a = *idx & 0xffffffff;
1210	int idx_b = *idx >> 32;
1211
 
 
 
1212	if (*idx == (u64)ULLONG_MAX) {
1213		idx_a = type_a->cnt - 1;
1214		if (type_b != NULL)
1215			idx_b = type_b->cnt;
1216		else
1217			idx_b = 0;
1218	}
1219
1220	for (; idx_a >= 0; idx_a--) {
1221		struct memblock_region *m = &type_a->regions[idx_a];
1222
1223		phys_addr_t m_start = m->base;
1224		phys_addr_t m_end = m->base + m->size;
1225		int m_nid = memblock_get_region_node(m);
1226
1227		if (should_skip_region(type_a, m, nid, flags))
1228			continue;
1229
1230		if (!type_b) {
1231			if (out_start)
1232				*out_start = m_start;
1233			if (out_end)
1234				*out_end = m_end;
1235			if (out_nid)
1236				*out_nid = m_nid;
1237			idx_a--;
1238			*idx = (u32)idx_a | (u64)idx_b << 32;
1239			return;
1240		}
1241
1242		/* scan areas before each reservation */
1243		for (; idx_b >= 0; idx_b--) {
1244			struct memblock_region *r;
1245			phys_addr_t r_start;
1246			phys_addr_t r_end;
1247
1248			r = &type_b->regions[idx_b];
1249			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1250			r_end = idx_b < type_b->cnt ?
1251				r->base : PHYS_ADDR_MAX;
1252			/*
1253			 * if idx_b advanced past idx_a,
1254			 * break out to advance idx_a
1255			 */
1256
1257			if (r_end <= m_start)
1258				break;
1259			/* if the two regions intersect, we're done */
1260			if (m_end > r_start) {
1261				if (out_start)
1262					*out_start = max(m_start, r_start);
1263				if (out_end)
1264					*out_end = min(m_end, r_end);
1265				if (out_nid)
1266					*out_nid = m_nid;
1267				if (m_start >= r_start)
1268					idx_a--;
1269				else
1270					idx_b--;
1271				*idx = (u32)idx_a | (u64)idx_b << 32;
1272				return;
1273			}
1274		}
1275	}
1276	/* signal end of iteration */
1277	*idx = ULLONG_MAX;
1278}
1279
1280/*
1281 * Common iterator interface used to define for_each_mem_pfn_range().
1282 */
1283void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1284				unsigned long *out_start_pfn,
1285				unsigned long *out_end_pfn, int *out_nid)
1286{
1287	struct memblock_type *type = &memblock.memory;
1288	struct memblock_region *r;
1289	int r_nid;
1290
1291	while (++*idx < type->cnt) {
1292		r = &type->regions[*idx];
1293		r_nid = memblock_get_region_node(r);
1294
1295		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1296			continue;
1297		if (!numa_valid_node(nid) || nid == r_nid)
1298			break;
1299	}
1300	if (*idx >= type->cnt) {
1301		*idx = -1;
1302		return;
1303	}
1304
1305	if (out_start_pfn)
1306		*out_start_pfn = PFN_UP(r->base);
1307	if (out_end_pfn)
1308		*out_end_pfn = PFN_DOWN(r->base + r->size);
1309	if (out_nid)
1310		*out_nid = r_nid;
1311}
1312
1313/**
1314 * memblock_set_node - set node ID on memblock regions
1315 * @base: base of area to set node ID for
1316 * @size: size of area to set node ID for
1317 * @type: memblock type to set node ID for
1318 * @nid: node ID to set
1319 *
1320 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1321 * Regions which cross the area boundaries are split as necessary.
1322 *
1323 * Return:
1324 * 0 on success, -errno on failure.
1325 */
1326int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1327				      struct memblock_type *type, int nid)
1328{
1329#ifdef CONFIG_NUMA
1330	int start_rgn, end_rgn;
1331	int i, ret;
1332
1333	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1334	if (ret)
1335		return ret;
1336
1337	for (i = start_rgn; i < end_rgn; i++)
1338		memblock_set_region_node(&type->regions[i], nid);
1339
1340	memblock_merge_regions(type, start_rgn, end_rgn);
1341#endif
1342	return 0;
1343}
1344
1345#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1346/**
1347 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1348 *
1349 * @idx: pointer to u64 loop variable
1350 * @zone: zone in which all of the memory blocks reside
1351 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1352 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1353 *
1354 * This function is meant to be a zone/pfn specific wrapper for the
1355 * for_each_mem_range type iterators. Specifically they are used in the
1356 * deferred memory init routines and as such we were duplicating much of
1357 * this logic throughout the code. So instead of having it in multiple
1358 * locations it seemed like it would make more sense to centralize this to
1359 * one new iterator that does everything they need.
1360 */
1361void __init_memblock
1362__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1363			     unsigned long *out_spfn, unsigned long *out_epfn)
1364{
1365	int zone_nid = zone_to_nid(zone);
1366	phys_addr_t spa, epa;
1367
1368	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1369			 &memblock.memory, &memblock.reserved,
1370			 &spa, &epa, NULL);
1371
1372	while (*idx != U64_MAX) {
1373		unsigned long epfn = PFN_DOWN(epa);
1374		unsigned long spfn = PFN_UP(spa);
1375
1376		/*
1377		 * Verify the end is at least past the start of the zone and
1378		 * that we have at least one PFN to initialize.
1379		 */
1380		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1381			/* if we went too far just stop searching */
1382			if (zone_end_pfn(zone) <= spfn) {
1383				*idx = U64_MAX;
1384				break;
1385			}
1386
1387			if (out_spfn)
1388				*out_spfn = max(zone->zone_start_pfn, spfn);
1389			if (out_epfn)
1390				*out_epfn = min(zone_end_pfn(zone), epfn);
1391
1392			return;
1393		}
1394
1395		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1396				 &memblock.memory, &memblock.reserved,
1397				 &spa, &epa, NULL);
1398	}
1399
1400	/* signal end of iteration */
1401	if (out_spfn)
1402		*out_spfn = ULONG_MAX;
1403	if (out_epfn)
1404		*out_epfn = 0;
1405}
1406
1407#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1408
1409/**
1410 * memblock_alloc_range_nid - allocate boot memory block
1411 * @size: size of memory block to be allocated in bytes
1412 * @align: alignment of the region and block's size
1413 * @start: the lower bound of the memory region to allocate (phys address)
1414 * @end: the upper bound of the memory region to allocate (phys address)
1415 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1416 * @exact_nid: control the allocation fall back to other nodes
1417 *
1418 * The allocation is performed from memory region limited by
1419 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1420 *
1421 * If the specified node can not hold the requested memory and @exact_nid
1422 * is false, the allocation falls back to any node in the system.
1423 *
1424 * For systems with memory mirroring, the allocation is attempted first
1425 * from the regions with mirroring enabled and then retried from any
1426 * memory region.
1427 *
1428 * In addition, function using kmemleak_alloc_phys for allocated boot
1429 * memory block, it is never reported as leaks.
1430 *
1431 * Return:
1432 * Physical address of allocated memory block on success, %0 on failure.
1433 */
1434phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1435					phys_addr_t align, phys_addr_t start,
1436					phys_addr_t end, int nid,
1437					bool exact_nid)
1438{
1439	enum memblock_flags flags = choose_memblock_flags();
1440	phys_addr_t found;
1441
1442	/*
1443	 * Detect any accidental use of these APIs after slab is ready, as at
1444	 * this moment memblock may be deinitialized already and its
1445	 * internal data may be destroyed (after execution of memblock_free_all)
1446	 */
1447	if (WARN_ON_ONCE(slab_is_available())) {
1448		void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid);
1449
1450		return vaddr ? virt_to_phys(vaddr) : 0;
1451	}
1452
1453	if (!align) {
1454		/* Can't use WARNs this early in boot on powerpc */
1455		dump_stack();
1456		align = SMP_CACHE_BYTES;
1457	}
1458
1459again:
1460	found = memblock_find_in_range_node(size, align, start, end, nid,
1461					    flags);
1462	if (found && !memblock_reserve(found, size))
1463		goto done;
1464
1465	if (numa_valid_node(nid) && !exact_nid) {
1466		found = memblock_find_in_range_node(size, align, start,
1467						    end, NUMA_NO_NODE,
1468						    flags);
1469		if (found && !memblock_reserve(found, size))
1470			goto done;
1471	}
1472
1473	if (flags & MEMBLOCK_MIRROR) {
1474		flags &= ~MEMBLOCK_MIRROR;
1475		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1476			&size);
1477		goto again;
1478	}
1479
1480	return 0;
1481
1482done:
1483	/*
1484	 * Skip kmemleak for those places like kasan_init() and
1485	 * early_pgtable_alloc() due to high volume.
1486	 */
1487	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1488		/*
1489		 * Memblock allocated blocks are never reported as
1490		 * leaks. This is because many of these blocks are
1491		 * only referred via the physical address which is
1492		 * not looked up by kmemleak.
1493		 */
1494		kmemleak_alloc_phys(found, size, 0);
1495
1496	/*
1497	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1498	 * require memory to be accepted before it can be used by the
1499	 * guest.
1500	 *
1501	 * Accept the memory of the allocated buffer.
1502	 */
1503	accept_memory(found, size);
1504
1505	return found;
1506}
1507
1508/**
1509 * memblock_phys_alloc_range - allocate a memory block inside specified range
1510 * @size: size of memory block to be allocated in bytes
1511 * @align: alignment of the region and block's size
1512 * @start: the lower bound of the memory region to allocate (physical address)
1513 * @end: the upper bound of the memory region to allocate (physical address)
1514 *
1515 * Allocate @size bytes in the between @start and @end.
1516 *
1517 * Return: physical address of the allocated memory block on success,
1518 * %0 on failure.
1519 */
1520phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1521					     phys_addr_t align,
1522					     phys_addr_t start,
1523					     phys_addr_t end)
1524{
1525	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1526		     __func__, (u64)size, (u64)align, &start, &end,
1527		     (void *)_RET_IP_);
1528	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1529					false);
1530}
1531
1532/**
1533 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1534 * @size: size of memory block to be allocated in bytes
1535 * @align: alignment of the region and block's size
1536 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1537 *
1538 * Allocates memory block from the specified NUMA node. If the node
1539 * has no available memory, attempts to allocated from any node in the
1540 * system.
1541 *
1542 * Return: physical address of the allocated memory block on success,
1543 * %0 on failure.
1544 */
1545phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1546{
1547	return memblock_alloc_range_nid(size, align, 0,
1548					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1549}
1550
1551/**
1552 * memblock_alloc_internal - allocate boot memory block
1553 * @size: size of memory block to be allocated in bytes
1554 * @align: alignment of the region and block's size
1555 * @min_addr: the lower bound of the memory region to allocate (phys address)
1556 * @max_addr: the upper bound of the memory region to allocate (phys address)
1557 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1558 * @exact_nid: control the allocation fall back to other nodes
1559 *
1560 * Allocates memory block using memblock_alloc_range_nid() and
1561 * converts the returned physical address to virtual.
1562 *
1563 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1564 * will fall back to memory below @min_addr. Other constraints, such
1565 * as node and mirrored memory will be handled again in
1566 * memblock_alloc_range_nid().
1567 *
1568 * Return:
1569 * Virtual address of allocated memory block on success, NULL on failure.
1570 */
1571static void * __init memblock_alloc_internal(
1572				phys_addr_t size, phys_addr_t align,
1573				phys_addr_t min_addr, phys_addr_t max_addr,
1574				int nid, bool exact_nid)
1575{
1576	phys_addr_t alloc;
1577
 
 
 
 
 
 
 
1578
1579	if (max_addr > memblock.current_limit)
1580		max_addr = memblock.current_limit;
1581
1582	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1583					exact_nid);
1584
1585	/* retry allocation without lower limit */
1586	if (!alloc && min_addr)
1587		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1588						exact_nid);
1589
1590	if (!alloc)
1591		return NULL;
1592
1593	return phys_to_virt(alloc);
1594}
1595
1596/**
1597 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1598 * without zeroing memory
1599 * @size: size of memory block to be allocated in bytes
1600 * @align: alignment of the region and block's size
1601 * @min_addr: the lower bound of the memory region from where the allocation
1602 *	  is preferred (phys address)
1603 * @max_addr: the upper bound of the memory region from where the allocation
1604 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1605 *	      allocate only from memory limited by memblock.current_limit value
1606 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1607 *
1608 * Public function, provides additional debug information (including caller
1609 * info), if enabled. Does not zero allocated memory.
1610 *
1611 * Return:
1612 * Virtual address of allocated memory block on success, NULL on failure.
1613 */
1614void * __init memblock_alloc_exact_nid_raw(
1615			phys_addr_t size, phys_addr_t align,
1616			phys_addr_t min_addr, phys_addr_t max_addr,
1617			int nid)
1618{
1619	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1620		     __func__, (u64)size, (u64)align, nid, &min_addr,
1621		     &max_addr, (void *)_RET_IP_);
1622
1623	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1624				       true);
1625}
1626
1627/**
1628 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1629 * memory and without panicking
1630 * @size: size of memory block to be allocated in bytes
1631 * @align: alignment of the region and block's size
1632 * @min_addr: the lower bound of the memory region from where the allocation
1633 *	  is preferred (phys address)
1634 * @max_addr: the upper bound of the memory region from where the allocation
1635 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1636 *	      allocate only from memory limited by memblock.current_limit value
1637 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1638 *
1639 * Public function, provides additional debug information (including caller
1640 * info), if enabled. Does not zero allocated memory, does not panic if request
1641 * cannot be satisfied.
1642 *
1643 * Return:
1644 * Virtual address of allocated memory block on success, NULL on failure.
1645 */
1646void * __init memblock_alloc_try_nid_raw(
1647			phys_addr_t size, phys_addr_t align,
1648			phys_addr_t min_addr, phys_addr_t max_addr,
1649			int nid)
1650{
1651	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1652		     __func__, (u64)size, (u64)align, nid, &min_addr,
1653		     &max_addr, (void *)_RET_IP_);
1654
1655	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1656				       false);
1657}
1658
1659/**
1660 * memblock_alloc_try_nid - allocate boot memory block
1661 * @size: size of memory block to be allocated in bytes
1662 * @align: alignment of the region and block's size
1663 * @min_addr: the lower bound of the memory region from where the allocation
1664 *	  is preferred (phys address)
1665 * @max_addr: the upper bound of the memory region from where the allocation
1666 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1667 *	      allocate only from memory limited by memblock.current_limit value
1668 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1669 *
1670 * Public function, provides additional debug information (including caller
1671 * info), if enabled. This function zeroes the allocated memory.
1672 *
1673 * Return:
1674 * Virtual address of allocated memory block on success, NULL on failure.
1675 */
1676void * __init memblock_alloc_try_nid(
1677			phys_addr_t size, phys_addr_t align,
1678			phys_addr_t min_addr, phys_addr_t max_addr,
1679			int nid)
1680{
1681	void *ptr;
1682
1683	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1684		     __func__, (u64)size, (u64)align, nid, &min_addr,
1685		     &max_addr, (void *)_RET_IP_);
1686	ptr = memblock_alloc_internal(size, align,
1687					   min_addr, max_addr, nid, false);
1688	if (ptr)
1689		memset(ptr, 0, size);
1690
1691	return ptr;
1692}
1693
1694/**
1695 * memblock_free_late - free pages directly to buddy allocator
1696 * @base: phys starting address of the  boot memory block
1697 * @size: size of the boot memory block in bytes
1698 *
1699 * This is only useful when the memblock allocator has already been torn
1700 * down, but we are still initializing the system.  Pages are released directly
1701 * to the buddy allocator.
1702 */
1703void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1704{
1705	phys_addr_t cursor, end;
1706
1707	end = base + size - 1;
1708	memblock_dbg("%s: [%pa-%pa] %pS\n",
1709		     __func__, &base, &end, (void *)_RET_IP_);
1710	kmemleak_free_part_phys(base, size);
1711	cursor = PFN_UP(base);
1712	end = PFN_DOWN(base + size);
1713
1714	for (; cursor < end; cursor++) {
1715		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1716		totalram_pages_inc();
1717	}
1718}
1719
1720/*
1721 * Remaining API functions
1722 */
1723
1724phys_addr_t __init_memblock memblock_phys_mem_size(void)
1725{
1726	return memblock.memory.total_size;
1727}
1728
1729phys_addr_t __init_memblock memblock_reserved_size(void)
1730{
1731	return memblock.reserved.total_size;
1732}
1733
1734/**
1735 * memblock_estimated_nr_free_pages - return estimated number of free pages
1736 * from memblock point of view
1737 *
1738 * During bootup, subsystems might need a rough estimate of the number of free
1739 * pages in the whole system, before precise numbers are available from the
1740 * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers
1741 * obtained from the buddy might be very imprecise during bootup.
1742 *
1743 * Return:
1744 * An estimated number of free pages from memblock point of view.
1745 */
1746unsigned long __init memblock_estimated_nr_free_pages(void)
1747{
1748	return PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size());
1749}
1750
1751/* lowest address */
1752phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1753{
1754	return memblock.memory.regions[0].base;
1755}
1756
1757phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1758{
1759	int idx = memblock.memory.cnt - 1;
1760
1761	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1762}
1763
1764static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1765{
1766	phys_addr_t max_addr = PHYS_ADDR_MAX;
1767	struct memblock_region *r;
1768
1769	/*
1770	 * translate the memory @limit size into the max address within one of
1771	 * the memory memblock regions, if the @limit exceeds the total size
1772	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1773	 */
1774	for_each_mem_region(r) {
1775		if (limit <= r->size) {
1776			max_addr = r->base + limit;
1777			break;
1778		}
1779		limit -= r->size;
1780	}
1781
1782	return max_addr;
1783}
1784
1785void __init memblock_enforce_memory_limit(phys_addr_t limit)
1786{
1787	phys_addr_t max_addr;
1788
1789	if (!limit)
1790		return;
1791
1792	max_addr = __find_max_addr(limit);
1793
1794	/* @limit exceeds the total size of the memory, do nothing */
1795	if (max_addr == PHYS_ADDR_MAX)
1796		return;
1797
1798	/* truncate both memory and reserved regions */
1799	memblock_remove_range(&memblock.memory, max_addr,
1800			      PHYS_ADDR_MAX);
1801	memblock_remove_range(&memblock.reserved, max_addr,
1802			      PHYS_ADDR_MAX);
1803}
1804
1805void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1806{
1807	int start_rgn, end_rgn;
1808	int i, ret;
1809
1810	if (!size)
1811		return;
1812
1813	if (!memblock_memory->total_size) {
1814		pr_warn("%s: No memory registered yet\n", __func__);
1815		return;
1816	}
1817
1818	ret = memblock_isolate_range(&memblock.memory, base, size,
1819						&start_rgn, &end_rgn);
1820	if (ret)
1821		return;
1822
1823	/* remove all the MAP regions */
1824	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1825		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1826			memblock_remove_region(&memblock.memory, i);
1827
1828	for (i = start_rgn - 1; i >= 0; i--)
1829		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1830			memblock_remove_region(&memblock.memory, i);
1831
1832	/* truncate the reserved regions */
1833	memblock_remove_range(&memblock.reserved, 0, base);
1834	memblock_remove_range(&memblock.reserved,
1835			base + size, PHYS_ADDR_MAX);
1836}
1837
1838void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1839{
1840	phys_addr_t max_addr;
1841
1842	if (!limit)
1843		return;
1844
1845	max_addr = __find_max_addr(limit);
1846
1847	/* @limit exceeds the total size of the memory, do nothing */
1848	if (max_addr == PHYS_ADDR_MAX)
1849		return;
1850
1851	memblock_cap_memory_range(0, max_addr);
1852}
1853
1854static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1855{
1856	unsigned int left = 0, right = type->cnt;
1857
1858	do {
1859		unsigned int mid = (right + left) / 2;
1860
1861		if (addr < type->regions[mid].base)
1862			right = mid;
1863		else if (addr >= (type->regions[mid].base +
1864				  type->regions[mid].size))
1865			left = mid + 1;
1866		else
1867			return mid;
1868	} while (left < right);
1869	return -1;
1870}
1871
1872bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1873{
1874	return memblock_search(&memblock.reserved, addr) != -1;
1875}
1876
1877bool __init_memblock memblock_is_memory(phys_addr_t addr)
1878{
1879	return memblock_search(&memblock.memory, addr) != -1;
1880}
1881
1882bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1883{
1884	int i = memblock_search(&memblock.memory, addr);
1885
1886	if (i == -1)
1887		return false;
1888	return !memblock_is_nomap(&memblock.memory.regions[i]);
1889}
1890
1891int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1892			 unsigned long *start_pfn, unsigned long *end_pfn)
1893{
1894	struct memblock_type *type = &memblock.memory;
1895	int mid = memblock_search(type, PFN_PHYS(pfn));
1896
1897	if (mid == -1)
1898		return NUMA_NO_NODE;
1899
1900	*start_pfn = PFN_DOWN(type->regions[mid].base);
1901	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1902
1903	return memblock_get_region_node(&type->regions[mid]);
1904}
1905
1906/**
1907 * memblock_is_region_memory - check if a region is a subset of memory
1908 * @base: base of region to check
1909 * @size: size of region to check
1910 *
1911 * Check if the region [@base, @base + @size) is a subset of a memory block.
1912 *
1913 * Return:
1914 * 0 if false, non-zero if true
1915 */
1916bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1917{
1918	int idx = memblock_search(&memblock.memory, base);
1919	phys_addr_t end = base + memblock_cap_size(base, &size);
1920
1921	if (idx == -1)
1922		return false;
1923	return (memblock.memory.regions[idx].base +
1924		 memblock.memory.regions[idx].size) >= end;
1925}
1926
1927/**
1928 * memblock_is_region_reserved - check if a region intersects reserved memory
1929 * @base: base of region to check
1930 * @size: size of region to check
1931 *
1932 * Check if the region [@base, @base + @size) intersects a reserved
1933 * memory block.
1934 *
1935 * Return:
1936 * True if they intersect, false if not.
1937 */
1938bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1939{
1940	return memblock_overlaps_region(&memblock.reserved, base, size);
1941}
1942
1943void __init_memblock memblock_trim_memory(phys_addr_t align)
1944{
1945	phys_addr_t start, end, orig_start, orig_end;
1946	struct memblock_region *r;
1947
1948	for_each_mem_region(r) {
1949		orig_start = r->base;
1950		orig_end = r->base + r->size;
1951		start = round_up(orig_start, align);
1952		end = round_down(orig_end, align);
1953
1954		if (start == orig_start && end == orig_end)
1955			continue;
1956
1957		if (start < end) {
1958			r->base = start;
1959			r->size = end - start;
1960		} else {
1961			memblock_remove_region(&memblock.memory,
1962					       r - memblock.memory.regions);
1963			r--;
1964		}
1965	}
1966}
1967
1968void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1969{
1970	memblock.current_limit = limit;
1971}
1972
1973phys_addr_t __init_memblock memblock_get_current_limit(void)
1974{
1975	return memblock.current_limit;
1976}
1977
1978static void __init_memblock memblock_dump(struct memblock_type *type)
1979{
1980	phys_addr_t base, end, size;
1981	enum memblock_flags flags;
1982	int idx;
1983	struct memblock_region *rgn;
1984
1985	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1986
1987	for_each_memblock_type(idx, type, rgn) {
1988		char nid_buf[32] = "";
1989
1990		base = rgn->base;
1991		size = rgn->size;
1992		end = base + size - 1;
1993		flags = rgn->flags;
1994#ifdef CONFIG_NUMA
1995		if (numa_valid_node(memblock_get_region_node(rgn)))
1996			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1997				 memblock_get_region_node(rgn));
1998#endif
1999		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
2000			type->name, idx, &base, &end, &size, nid_buf, flags);
2001	}
2002}
2003
2004static void __init_memblock __memblock_dump_all(void)
2005{
2006	pr_info("MEMBLOCK configuration:\n");
2007	pr_info(" memory size = %pa reserved size = %pa\n",
2008		&memblock.memory.total_size,
2009		&memblock.reserved.total_size);
2010
2011	memblock_dump(&memblock.memory);
2012	memblock_dump(&memblock.reserved);
2013#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2014	memblock_dump(&physmem);
2015#endif
2016}
2017
2018void __init_memblock memblock_dump_all(void)
2019{
2020	if (memblock_debug)
2021		__memblock_dump_all();
2022}
2023
2024void __init memblock_allow_resize(void)
2025{
2026	memblock_can_resize = 1;
2027}
2028
2029static int __init early_memblock(char *p)
2030{
2031	if (p && strstr(p, "debug"))
2032		memblock_debug = 1;
2033	return 0;
2034}
2035early_param("memblock", early_memblock);
2036
2037static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2038{
2039	struct page *start_pg, *end_pg;
2040	phys_addr_t pg, pgend;
2041
2042	/*
2043	 * Convert start_pfn/end_pfn to a struct page pointer.
2044	 */
2045	start_pg = pfn_to_page(start_pfn - 1) + 1;
2046	end_pg = pfn_to_page(end_pfn - 1) + 1;
2047
2048	/*
2049	 * Convert to physical addresses, and round start upwards and end
2050	 * downwards.
2051	 */
2052	pg = PAGE_ALIGN(__pa(start_pg));
2053	pgend = PAGE_ALIGN_DOWN(__pa(end_pg));
2054
2055	/*
2056	 * If there are free pages between these, free the section of the
2057	 * memmap array.
2058	 */
2059	if (pg < pgend)
2060		memblock_phys_free(pg, pgend - pg);
2061}
2062
2063/*
2064 * The mem_map array can get very big.  Free the unused area of the memory map.
2065 */
2066static void __init free_unused_memmap(void)
2067{
2068	unsigned long start, end, prev_end = 0;
2069	int i;
2070
2071	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2072	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2073		return;
2074
2075	/*
2076	 * This relies on each bank being in address order.
2077	 * The banks are sorted previously in bootmem_init().
2078	 */
2079	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2080#ifdef CONFIG_SPARSEMEM
2081		/*
2082		 * Take care not to free memmap entries that don't exist
2083		 * due to SPARSEMEM sections which aren't present.
2084		 */
2085		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2086#endif
2087		/*
2088		 * Align down here since many operations in VM subsystem
2089		 * presume that there are no holes in the memory map inside
2090		 * a pageblock
2091		 */
2092		start = pageblock_start_pfn(start);
2093
2094		/*
2095		 * If we had a previous bank, and there is a space
2096		 * between the current bank and the previous, free it.
2097		 */
2098		if (prev_end && prev_end < start)
2099			free_memmap(prev_end, start);
2100
2101		/*
2102		 * Align up here since many operations in VM subsystem
2103		 * presume that there are no holes in the memory map inside
2104		 * a pageblock
2105		 */
2106		prev_end = pageblock_align(end);
2107	}
2108
2109#ifdef CONFIG_SPARSEMEM
2110	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2111		prev_end = pageblock_align(end);
2112		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2113	}
2114#endif
2115}
2116
2117static void __init __free_pages_memory(unsigned long start, unsigned long end)
2118{
2119	int order;
2120
2121	while (start < end) {
2122		/*
2123		 * Free the pages in the largest chunks alignment allows.
2124		 *
2125		 * __ffs() behaviour is undefined for 0. start == 0 is
2126		 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2127		 * the case.
2128		 */
2129		if (start)
2130			order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2131		else
2132			order = MAX_PAGE_ORDER;
2133
2134		while (start + (1UL << order) > end)
2135			order--;
2136
2137		memblock_free_pages(pfn_to_page(start), start, order);
2138
2139		start += (1UL << order);
2140	}
2141}
2142
2143static unsigned long __init __free_memory_core(phys_addr_t start,
2144				 phys_addr_t end)
2145{
2146	unsigned long start_pfn = PFN_UP(start);
2147	unsigned long end_pfn = min_t(unsigned long,
2148				      PFN_DOWN(end), max_low_pfn);
2149
2150	if (start_pfn >= end_pfn)
2151		return 0;
2152
2153	__free_pages_memory(start_pfn, end_pfn);
2154
2155	return end_pfn - start_pfn;
2156}
2157
2158static void __init memmap_init_reserved_pages(void)
2159{
2160	struct memblock_region *region;
2161	phys_addr_t start, end;
2162	int nid;
 
 
 
 
2163
2164	/*
2165	 * set nid on all reserved pages and also treat struct
2166	 * pages for the NOMAP regions as PageReserved
2167	 */
2168	for_each_mem_region(region) {
2169		nid = memblock_get_region_node(region);
2170		start = region->base;
2171		end = start + region->size;
2172
2173		if (memblock_is_nomap(region))
2174			reserve_bootmem_region(start, end, nid);
2175
2176		memblock_set_node(start, end, &memblock.reserved, nid);
2177	}
2178
2179	/*
2180	 * initialize struct pages for reserved regions that don't have
2181	 * the MEMBLOCK_RSRV_NOINIT flag set
2182	 */
2183	for_each_reserved_mem_region(region) {
2184		if (!memblock_is_reserved_noinit(region)) {
2185			nid = memblock_get_region_node(region);
2186			start = region->base;
2187			end = start + region->size;
2188
2189			if (!numa_valid_node(nid))
2190				nid = early_pfn_to_nid(PFN_DOWN(start));
2191
2192			reserve_bootmem_region(start, end, nid);
2193		}
2194	}
2195}
2196
2197static unsigned long __init free_low_memory_core_early(void)
2198{
2199	unsigned long count = 0;
2200	phys_addr_t start, end;
2201	u64 i;
2202
2203	memblock_clear_hotplug(0, -1);
2204
2205	memmap_init_reserved_pages();
2206
2207	/*
2208	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2209	 *  because in some case like Node0 doesn't have RAM installed
2210	 *  low ram will be on Node1
2211	 */
2212	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2213				NULL)
2214		count += __free_memory_core(start, end);
2215
2216	return count;
2217}
2218
2219static int reset_managed_pages_done __initdata;
2220
2221static void __init reset_node_managed_pages(pg_data_t *pgdat)
2222{
2223	struct zone *z;
2224
2225	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2226		atomic_long_set(&z->managed_pages, 0);
2227}
2228
2229void __init reset_all_zones_managed_pages(void)
2230{
2231	struct pglist_data *pgdat;
2232
2233	if (reset_managed_pages_done)
2234		return;
2235
2236	for_each_online_pgdat(pgdat)
2237		reset_node_managed_pages(pgdat);
2238
2239	reset_managed_pages_done = 1;
2240}
2241
2242/**
2243 * memblock_free_all - release free pages to the buddy allocator
2244 */
2245void __init memblock_free_all(void)
2246{
2247	unsigned long pages;
2248
2249	free_unused_memmap();
2250	reset_all_zones_managed_pages();
2251
2252	pages = free_low_memory_core_early();
2253	totalram_pages_add(pages);
2254}
2255
2256/* Keep a table to reserve named memory */
2257#define RESERVE_MEM_MAX_ENTRIES		8
2258#define RESERVE_MEM_NAME_SIZE		16
2259struct reserve_mem_table {
2260	char			name[RESERVE_MEM_NAME_SIZE];
2261	phys_addr_t		start;
2262	phys_addr_t		size;
2263};
2264static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES];
2265static int reserved_mem_count;
2266
2267/* Add wildcard region with a lookup name */
2268static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size,
2269				   const char *name)
2270{
2271	struct reserve_mem_table *map;
2272
2273	map = &reserved_mem_table[reserved_mem_count++];
2274	map->start = start;
2275	map->size = size;
2276	strscpy(map->name, name);
2277}
2278
2279/**
2280 * reserve_mem_find_by_name - Find reserved memory region with a given name
2281 * @name: The name that is attached to a reserved memory region
2282 * @start: If found, holds the start address
2283 * @size: If found, holds the size of the address.
2284 *
2285 * @start and @size are only updated if @name is found.
2286 *
2287 * Returns: 1 if found or 0 if not found.
2288 */
2289int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size)
2290{
2291	struct reserve_mem_table *map;
2292	int i;
2293
2294	for (i = 0; i < reserved_mem_count; i++) {
2295		map = &reserved_mem_table[i];
2296		if (!map->size)
2297			continue;
2298		if (strcmp(name, map->name) == 0) {
2299			*start = map->start;
2300			*size = map->size;
2301			return 1;
2302		}
2303	}
2304	return 0;
2305}
2306EXPORT_SYMBOL_GPL(reserve_mem_find_by_name);
2307
2308/*
2309 * Parse reserve_mem=nn:align:name
2310 */
2311static int __init reserve_mem(char *p)
2312{
2313	phys_addr_t start, size, align, tmp;
2314	char *name;
2315	char *oldp;
2316	int len;
2317
2318	if (!p)
2319		return -EINVAL;
2320
2321	/* Check if there's room for more reserved memory */
2322	if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES)
2323		return -EBUSY;
2324
2325	oldp = p;
2326	size = memparse(p, &p);
2327	if (!size || p == oldp)
2328		return -EINVAL;
2329
2330	if (*p != ':')
2331		return -EINVAL;
2332
2333	align = memparse(p+1, &p);
2334	if (*p != ':')
2335		return -EINVAL;
2336
2337	/*
2338	 * memblock_phys_alloc() doesn't like a zero size align,
2339	 * but it is OK for this command to have it.
2340	 */
2341	if (align < SMP_CACHE_BYTES)
2342		align = SMP_CACHE_BYTES;
2343
2344	name = p + 1;
2345	len = strlen(name);
2346
2347	/* name needs to have length but not too big */
2348	if (!len || len >= RESERVE_MEM_NAME_SIZE)
2349		return -EINVAL;
2350
2351	/* Make sure that name has text */
2352	for (p = name; *p; p++) {
2353		if (!isspace(*p))
2354			break;
2355	}
2356	if (!*p)
2357		return -EINVAL;
2358
2359	/* Make sure the name is not already used */
2360	if (reserve_mem_find_by_name(name, &start, &tmp))
2361		return -EBUSY;
2362
2363	start = memblock_phys_alloc(size, align);
2364	if (!start)
2365		return -ENOMEM;
2366
2367	reserved_mem_add(start, size, name);
2368
2369	return 1;
2370}
2371__setup("reserve_mem=", reserve_mem);
2372
2373#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2374static const char * const flagname[] = {
2375	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2376	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2377	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2378	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2379	[ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2380};
2381
2382static int memblock_debug_show(struct seq_file *m, void *private)
2383{
2384	struct memblock_type *type = m->private;
2385	struct memblock_region *reg;
2386	int i, j, nid;
2387	unsigned int count = ARRAY_SIZE(flagname);
2388	phys_addr_t end;
2389
2390	for (i = 0; i < type->cnt; i++) {
2391		reg = &type->regions[i];
2392		end = reg->base + reg->size - 1;
2393		nid = memblock_get_region_node(reg);
2394
2395		seq_printf(m, "%4d: ", i);
2396		seq_printf(m, "%pa..%pa ", &reg->base, &end);
2397		if (numa_valid_node(nid))
2398			seq_printf(m, "%4d ", nid);
2399		else
2400			seq_printf(m, "%4c ", 'x');
2401		if (reg->flags) {
2402			for (j = 0; j < count; j++) {
2403				if (reg->flags & (1U << j)) {
2404					seq_printf(m, "%s\n", flagname[j]);
2405					break;
2406				}
2407			}
2408			if (j == count)
2409				seq_printf(m, "%s\n", "UNKNOWN");
2410		} else {
2411			seq_printf(m, "%s\n", "NONE");
2412		}
2413	}
2414	return 0;
2415}
2416DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2417
2418static int __init memblock_init_debugfs(void)
2419{
2420	struct dentry *root = debugfs_create_dir("memblock", NULL);
2421
2422	debugfs_create_file("memory", 0444, root,
2423			    &memblock.memory, &memblock_debug_fops);
2424	debugfs_create_file("reserved", 0444, root,
2425			    &memblock.reserved, &memblock_debug_fops);
2426#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2427	debugfs_create_file("physmem", 0444, root, &physmem,
2428			    &memblock_debug_fops);
2429#endif
2430
2431	return 0;
2432}
2433__initcall(memblock_init_debugfs);
2434
2435#endif /* CONFIG_DEBUG_FS */