Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9#include <linux/kernel.h>
10#include <linux/slab.h>
11#include <linux/init.h>
12#include <linux/bitops.h>
13#include <linux/poison.h>
14#include <linux/pfn.h>
15#include <linux/debugfs.h>
16#include <linux/kmemleak.h>
17#include <linux/seq_file.h>
18#include <linux/memblock.h>
19
20#include <asm/sections.h>
21#include <linux/io.h>
22
23#include "internal.h"
24
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33#define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
34#endif
35
36/**
37 * DOC: memblock overview
38 *
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
41 * running.
42 *
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
45 *
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
53 * the ``physmem`` type is only available on some architectures.
54 *
55 * Each region is represented by struct memblock_region that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
59 * the allocator metadata. The "memory" and "reserved" types are nicely
60 * wrapped with struct memblock. This structure is statically
61 * initialized at build time. The region arrays are initially sized to
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
69 *
70 * The early architecture setup should tell memblock what the physical
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
77 *
78 * Once memblock is setup the memory can be allocated using one of the
79 * API variants:
80 *
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
85 *
86 * Note, that both API variants use implicit assumptions about allowed
87 * memory ranges and the fallback methods. Consult the documentation
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
90 *
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
93 *
94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
97 */
98
99#ifndef CONFIG_NUMA
100struct pglist_data __refdata contig_page_data;
101EXPORT_SYMBOL(contig_page_data);
102#endif
103
104unsigned long max_low_pfn;
105unsigned long min_low_pfn;
106unsigned long max_pfn;
107unsigned long long max_possible_pfn;
108
109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113#endif
114
115struct memblock memblock __initdata_memblock = {
116 .memory.regions = memblock_memory_init_regions,
117 .memory.cnt = 1, /* empty dummy entry */
118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
119 .memory.name = "memory",
120
121 .reserved.regions = memblock_reserved_init_regions,
122 .reserved.cnt = 1, /* empty dummy entry */
123 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
124 .reserved.name = "reserved",
125
126 .bottom_up = false,
127 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
128};
129
130#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131struct memblock_type physmem = {
132 .regions = memblock_physmem_init_regions,
133 .cnt = 1, /* empty dummy entry */
134 .max = INIT_PHYSMEM_REGIONS,
135 .name = "physmem",
136};
137#endif
138
139/*
140 * keep a pointer to &memblock.memory in the text section to use it in
141 * __next_mem_range() and its helpers.
142 * For architectures that do not keep memblock data after init, this
143 * pointer will be reset to NULL at memblock_discard()
144 */
145static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146
147#define for_each_memblock_type(i, memblock_type, rgn) \
148 for (i = 0, rgn = &memblock_type->regions[0]; \
149 i < memblock_type->cnt; \
150 i++, rgn = &memblock_type->regions[i])
151
152#define memblock_dbg(fmt, ...) \
153 do { \
154 if (memblock_debug) \
155 pr_info(fmt, ##__VA_ARGS__); \
156 } while (0)
157
158static int memblock_debug __initdata_memblock;
159static bool system_has_some_mirror __initdata_memblock = false;
160static int memblock_can_resize __initdata_memblock;
161static int memblock_memory_in_slab __initdata_memblock = 0;
162static int memblock_reserved_in_slab __initdata_memblock = 0;
163
164static enum memblock_flags __init_memblock choose_memblock_flags(void)
165{
166 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
167}
168
169/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
170static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
171{
172 return *size = min(*size, PHYS_ADDR_MAX - base);
173}
174
175/*
176 * Address comparison utilities
177 */
178static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
179 phys_addr_t base2, phys_addr_t size2)
180{
181 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
182}
183
184bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
185 phys_addr_t base, phys_addr_t size)
186{
187 unsigned long i;
188
189 memblock_cap_size(base, &size);
190
191 for (i = 0; i < type->cnt; i++)
192 if (memblock_addrs_overlap(base, size, type->regions[i].base,
193 type->regions[i].size))
194 break;
195 return i < type->cnt;
196}
197
198/**
199 * __memblock_find_range_bottom_up - find free area utility in bottom-up
200 * @start: start of candidate range
201 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
202 * %MEMBLOCK_ALLOC_ACCESSIBLE
203 * @size: size of free area to find
204 * @align: alignment of free area to find
205 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
206 * @flags: pick from blocks based on memory attributes
207 *
208 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
209 *
210 * Return:
211 * Found address on success, 0 on failure.
212 */
213static phys_addr_t __init_memblock
214__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
215 phys_addr_t size, phys_addr_t align, int nid,
216 enum memblock_flags flags)
217{
218 phys_addr_t this_start, this_end, cand;
219 u64 i;
220
221 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
222 this_start = clamp(this_start, start, end);
223 this_end = clamp(this_end, start, end);
224
225 cand = round_up(this_start, align);
226 if (cand < this_end && this_end - cand >= size)
227 return cand;
228 }
229
230 return 0;
231}
232
233/**
234 * __memblock_find_range_top_down - find free area utility, in top-down
235 * @start: start of candidate range
236 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
237 * %MEMBLOCK_ALLOC_ACCESSIBLE
238 * @size: size of free area to find
239 * @align: alignment of free area to find
240 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
241 * @flags: pick from blocks based on memory attributes
242 *
243 * Utility called from memblock_find_in_range_node(), find free area top-down.
244 *
245 * Return:
246 * Found address on success, 0 on failure.
247 */
248static phys_addr_t __init_memblock
249__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
250 phys_addr_t size, phys_addr_t align, int nid,
251 enum memblock_flags flags)
252{
253 phys_addr_t this_start, this_end, cand;
254 u64 i;
255
256 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
257 NULL) {
258 this_start = clamp(this_start, start, end);
259 this_end = clamp(this_end, start, end);
260
261 if (this_end < size)
262 continue;
263
264 cand = round_down(this_end - size, align);
265 if (cand >= this_start)
266 return cand;
267 }
268
269 return 0;
270}
271
272/**
273 * memblock_find_in_range_node - find free area in given range and node
274 * @size: size of free area to find
275 * @align: alignment of free area to find
276 * @start: start of candidate range
277 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
278 * %MEMBLOCK_ALLOC_ACCESSIBLE
279 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
280 * @flags: pick from blocks based on memory attributes
281 *
282 * Find @size free area aligned to @align in the specified range and node.
283 *
284 * Return:
285 * Found address on success, 0 on failure.
286 */
287static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
288 phys_addr_t align, phys_addr_t start,
289 phys_addr_t end, int nid,
290 enum memblock_flags flags)
291{
292 /* pump up @end */
293 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
294 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
295 end = memblock.current_limit;
296
297 /* avoid allocating the first page */
298 start = max_t(phys_addr_t, start, PAGE_SIZE);
299 end = max(start, end);
300
301 if (memblock_bottom_up())
302 return __memblock_find_range_bottom_up(start, end, size, align,
303 nid, flags);
304 else
305 return __memblock_find_range_top_down(start, end, size, align,
306 nid, flags);
307}
308
309/**
310 * memblock_find_in_range - find free area in given range
311 * @start: start of candidate range
312 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
313 * %MEMBLOCK_ALLOC_ACCESSIBLE
314 * @size: size of free area to find
315 * @align: alignment of free area to find
316 *
317 * Find @size free area aligned to @align in the specified range.
318 *
319 * Return:
320 * Found address on success, 0 on failure.
321 */
322static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
323 phys_addr_t end, phys_addr_t size,
324 phys_addr_t align)
325{
326 phys_addr_t ret;
327 enum memblock_flags flags = choose_memblock_flags();
328
329again:
330 ret = memblock_find_in_range_node(size, align, start, end,
331 NUMA_NO_NODE, flags);
332
333 if (!ret && (flags & MEMBLOCK_MIRROR)) {
334 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
335 &size);
336 flags &= ~MEMBLOCK_MIRROR;
337 goto again;
338 }
339
340 return ret;
341}
342
343static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
344{
345 type->total_size -= type->regions[r].size;
346 memmove(&type->regions[r], &type->regions[r + 1],
347 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
348 type->cnt--;
349
350 /* Special case for empty arrays */
351 if (type->cnt == 0) {
352 WARN_ON(type->total_size != 0);
353 type->cnt = 1;
354 type->regions[0].base = 0;
355 type->regions[0].size = 0;
356 type->regions[0].flags = 0;
357 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
358 }
359}
360
361#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
362/**
363 * memblock_discard - discard memory and reserved arrays if they were allocated
364 */
365void __init memblock_discard(void)
366{
367 phys_addr_t addr, size;
368
369 if (memblock.reserved.regions != memblock_reserved_init_regions) {
370 addr = __pa(memblock.reserved.regions);
371 size = PAGE_ALIGN(sizeof(struct memblock_region) *
372 memblock.reserved.max);
373 if (memblock_reserved_in_slab)
374 kfree(memblock.reserved.regions);
375 else
376 memblock_free_late(addr, size);
377 }
378
379 if (memblock.memory.regions != memblock_memory_init_regions) {
380 addr = __pa(memblock.memory.regions);
381 size = PAGE_ALIGN(sizeof(struct memblock_region) *
382 memblock.memory.max);
383 if (memblock_memory_in_slab)
384 kfree(memblock.memory.regions);
385 else
386 memblock_free_late(addr, size);
387 }
388
389 memblock_memory = NULL;
390}
391#endif
392
393/**
394 * memblock_double_array - double the size of the memblock regions array
395 * @type: memblock type of the regions array being doubled
396 * @new_area_start: starting address of memory range to avoid overlap with
397 * @new_area_size: size of memory range to avoid overlap with
398 *
399 * Double the size of the @type regions array. If memblock is being used to
400 * allocate memory for a new reserved regions array and there is a previously
401 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
402 * waiting to be reserved, ensure the memory used by the new array does
403 * not overlap.
404 *
405 * Return:
406 * 0 on success, -1 on failure.
407 */
408static int __init_memblock memblock_double_array(struct memblock_type *type,
409 phys_addr_t new_area_start,
410 phys_addr_t new_area_size)
411{
412 struct memblock_region *new_array, *old_array;
413 phys_addr_t old_alloc_size, new_alloc_size;
414 phys_addr_t old_size, new_size, addr, new_end;
415 int use_slab = slab_is_available();
416 int *in_slab;
417
418 /* We don't allow resizing until we know about the reserved regions
419 * of memory that aren't suitable for allocation
420 */
421 if (!memblock_can_resize)
422 return -1;
423
424 /* Calculate new doubled size */
425 old_size = type->max * sizeof(struct memblock_region);
426 new_size = old_size << 1;
427 /*
428 * We need to allocated new one align to PAGE_SIZE,
429 * so we can free them completely later.
430 */
431 old_alloc_size = PAGE_ALIGN(old_size);
432 new_alloc_size = PAGE_ALIGN(new_size);
433
434 /* Retrieve the slab flag */
435 if (type == &memblock.memory)
436 in_slab = &memblock_memory_in_slab;
437 else
438 in_slab = &memblock_reserved_in_slab;
439
440 /* Try to find some space for it */
441 if (use_slab) {
442 new_array = kmalloc(new_size, GFP_KERNEL);
443 addr = new_array ? __pa(new_array) : 0;
444 } else {
445 /* only exclude range when trying to double reserved.regions */
446 if (type != &memblock.reserved)
447 new_area_start = new_area_size = 0;
448
449 addr = memblock_find_in_range(new_area_start + new_area_size,
450 memblock.current_limit,
451 new_alloc_size, PAGE_SIZE);
452 if (!addr && new_area_size)
453 addr = memblock_find_in_range(0,
454 min(new_area_start, memblock.current_limit),
455 new_alloc_size, PAGE_SIZE);
456
457 new_array = addr ? __va(addr) : NULL;
458 }
459 if (!addr) {
460 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
461 type->name, type->max, type->max * 2);
462 return -1;
463 }
464
465 new_end = addr + new_size - 1;
466 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
467 type->name, type->max * 2, &addr, &new_end);
468
469 /*
470 * Found space, we now need to move the array over before we add the
471 * reserved region since it may be our reserved array itself that is
472 * full.
473 */
474 memcpy(new_array, type->regions, old_size);
475 memset(new_array + type->max, 0, old_size);
476 old_array = type->regions;
477 type->regions = new_array;
478 type->max <<= 1;
479
480 /* Free old array. We needn't free it if the array is the static one */
481 if (*in_slab)
482 kfree(old_array);
483 else if (old_array != memblock_memory_init_regions &&
484 old_array != memblock_reserved_init_regions)
485 memblock_free(old_array, old_alloc_size);
486
487 /*
488 * Reserve the new array if that comes from the memblock. Otherwise, we
489 * needn't do it
490 */
491 if (!use_slab)
492 BUG_ON(memblock_reserve(addr, new_alloc_size));
493
494 /* Update slab flag */
495 *in_slab = use_slab;
496
497 return 0;
498}
499
500/**
501 * memblock_merge_regions - merge neighboring compatible regions
502 * @type: memblock type to scan
503 *
504 * Scan @type and merge neighboring compatible regions.
505 */
506static void __init_memblock memblock_merge_regions(struct memblock_type *type)
507{
508 int i = 0;
509
510 /* cnt never goes below 1 */
511 while (i < type->cnt - 1) {
512 struct memblock_region *this = &type->regions[i];
513 struct memblock_region *next = &type->regions[i + 1];
514
515 if (this->base + this->size != next->base ||
516 memblock_get_region_node(this) !=
517 memblock_get_region_node(next) ||
518 this->flags != next->flags) {
519 BUG_ON(this->base + this->size > next->base);
520 i++;
521 continue;
522 }
523
524 this->size += next->size;
525 /* move forward from next + 1, index of which is i + 2 */
526 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
527 type->cnt--;
528 }
529}
530
531/**
532 * memblock_insert_region - insert new memblock region
533 * @type: memblock type to insert into
534 * @idx: index for the insertion point
535 * @base: base address of the new region
536 * @size: size of the new region
537 * @nid: node id of the new region
538 * @flags: flags of the new region
539 *
540 * Insert new memblock region [@base, @base + @size) into @type at @idx.
541 * @type must already have extra room to accommodate the new region.
542 */
543static void __init_memblock memblock_insert_region(struct memblock_type *type,
544 int idx, phys_addr_t base,
545 phys_addr_t size,
546 int nid,
547 enum memblock_flags flags)
548{
549 struct memblock_region *rgn = &type->regions[idx];
550
551 BUG_ON(type->cnt >= type->max);
552 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
553 rgn->base = base;
554 rgn->size = size;
555 rgn->flags = flags;
556 memblock_set_region_node(rgn, nid);
557 type->cnt++;
558 type->total_size += size;
559}
560
561/**
562 * memblock_add_range - add new memblock region
563 * @type: memblock type to add new region into
564 * @base: base address of the new region
565 * @size: size of the new region
566 * @nid: nid of the new region
567 * @flags: flags of the new region
568 *
569 * Add new memblock region [@base, @base + @size) into @type. The new region
570 * is allowed to overlap with existing ones - overlaps don't affect already
571 * existing regions. @type is guaranteed to be minimal (all neighbouring
572 * compatible regions are merged) after the addition.
573 *
574 * Return:
575 * 0 on success, -errno on failure.
576 */
577static int __init_memblock memblock_add_range(struct memblock_type *type,
578 phys_addr_t base, phys_addr_t size,
579 int nid, enum memblock_flags flags)
580{
581 bool insert = false;
582 phys_addr_t obase = base;
583 phys_addr_t end = base + memblock_cap_size(base, &size);
584 int idx, nr_new;
585 struct memblock_region *rgn;
586
587 if (!size)
588 return 0;
589
590 /* special case for empty array */
591 if (type->regions[0].size == 0) {
592 WARN_ON(type->cnt != 1 || type->total_size);
593 type->regions[0].base = base;
594 type->regions[0].size = size;
595 type->regions[0].flags = flags;
596 memblock_set_region_node(&type->regions[0], nid);
597 type->total_size = size;
598 return 0;
599 }
600
601 /*
602 * The worst case is when new range overlaps all existing regions,
603 * then we'll need type->cnt + 1 empty regions in @type. So if
604 * type->cnt * 2 + 1 is less than type->max, we know
605 * that there is enough empty regions in @type, and we can insert
606 * regions directly.
607 */
608 if (type->cnt * 2 + 1 < type->max)
609 insert = true;
610
611repeat:
612 /*
613 * The following is executed twice. Once with %false @insert and
614 * then with %true. The first counts the number of regions needed
615 * to accommodate the new area. The second actually inserts them.
616 */
617 base = obase;
618 nr_new = 0;
619
620 for_each_memblock_type(idx, type, rgn) {
621 phys_addr_t rbase = rgn->base;
622 phys_addr_t rend = rbase + rgn->size;
623
624 if (rbase >= end)
625 break;
626 if (rend <= base)
627 continue;
628 /*
629 * @rgn overlaps. If it separates the lower part of new
630 * area, insert that portion.
631 */
632 if (rbase > base) {
633#ifdef CONFIG_NUMA
634 WARN_ON(nid != memblock_get_region_node(rgn));
635#endif
636 WARN_ON(flags != rgn->flags);
637 nr_new++;
638 if (insert)
639 memblock_insert_region(type, idx++, base,
640 rbase - base, nid,
641 flags);
642 }
643 /* area below @rend is dealt with, forget about it */
644 base = min(rend, end);
645 }
646
647 /* insert the remaining portion */
648 if (base < end) {
649 nr_new++;
650 if (insert)
651 memblock_insert_region(type, idx, base, end - base,
652 nid, flags);
653 }
654
655 if (!nr_new)
656 return 0;
657
658 /*
659 * If this was the first round, resize array and repeat for actual
660 * insertions; otherwise, merge and return.
661 */
662 if (!insert) {
663 while (type->cnt + nr_new > type->max)
664 if (memblock_double_array(type, obase, size) < 0)
665 return -ENOMEM;
666 insert = true;
667 goto repeat;
668 } else {
669 memblock_merge_regions(type);
670 return 0;
671 }
672}
673
674/**
675 * memblock_add_node - add new memblock region within a NUMA node
676 * @base: base address of the new region
677 * @size: size of the new region
678 * @nid: nid of the new region
679 * @flags: flags of the new region
680 *
681 * Add new memblock region [@base, @base + @size) to the "memory"
682 * type. See memblock_add_range() description for mode details
683 *
684 * Return:
685 * 0 on success, -errno on failure.
686 */
687int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
688 int nid, enum memblock_flags flags)
689{
690 phys_addr_t end = base + size - 1;
691
692 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
693 &base, &end, nid, flags, (void *)_RET_IP_);
694
695 return memblock_add_range(&memblock.memory, base, size, nid, flags);
696}
697
698/**
699 * memblock_add - add new memblock region
700 * @base: base address of the new region
701 * @size: size of the new region
702 *
703 * Add new memblock region [@base, @base + @size) to the "memory"
704 * type. See memblock_add_range() description for mode details
705 *
706 * Return:
707 * 0 on success, -errno on failure.
708 */
709int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
710{
711 phys_addr_t end = base + size - 1;
712
713 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
714 &base, &end, (void *)_RET_IP_);
715
716 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
717}
718
719/**
720 * memblock_isolate_range - isolate given range into disjoint memblocks
721 * @type: memblock type to isolate range for
722 * @base: base of range to isolate
723 * @size: size of range to isolate
724 * @start_rgn: out parameter for the start of isolated region
725 * @end_rgn: out parameter for the end of isolated region
726 *
727 * Walk @type and ensure that regions don't cross the boundaries defined by
728 * [@base, @base + @size). Crossing regions are split at the boundaries,
729 * which may create at most two more regions. The index of the first
730 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
731 *
732 * Return:
733 * 0 on success, -errno on failure.
734 */
735static int __init_memblock memblock_isolate_range(struct memblock_type *type,
736 phys_addr_t base, phys_addr_t size,
737 int *start_rgn, int *end_rgn)
738{
739 phys_addr_t end = base + memblock_cap_size(base, &size);
740 int idx;
741 struct memblock_region *rgn;
742
743 *start_rgn = *end_rgn = 0;
744
745 if (!size)
746 return 0;
747
748 /* we'll create at most two more regions */
749 while (type->cnt + 2 > type->max)
750 if (memblock_double_array(type, base, size) < 0)
751 return -ENOMEM;
752
753 for_each_memblock_type(idx, type, rgn) {
754 phys_addr_t rbase = rgn->base;
755 phys_addr_t rend = rbase + rgn->size;
756
757 if (rbase >= end)
758 break;
759 if (rend <= base)
760 continue;
761
762 if (rbase < base) {
763 /*
764 * @rgn intersects from below. Split and continue
765 * to process the next region - the new top half.
766 */
767 rgn->base = base;
768 rgn->size -= base - rbase;
769 type->total_size -= base - rbase;
770 memblock_insert_region(type, idx, rbase, base - rbase,
771 memblock_get_region_node(rgn),
772 rgn->flags);
773 } else if (rend > end) {
774 /*
775 * @rgn intersects from above. Split and redo the
776 * current region - the new bottom half.
777 */
778 rgn->base = end;
779 rgn->size -= end - rbase;
780 type->total_size -= end - rbase;
781 memblock_insert_region(type, idx--, rbase, end - rbase,
782 memblock_get_region_node(rgn),
783 rgn->flags);
784 } else {
785 /* @rgn is fully contained, record it */
786 if (!*end_rgn)
787 *start_rgn = idx;
788 *end_rgn = idx + 1;
789 }
790 }
791
792 return 0;
793}
794
795static int __init_memblock memblock_remove_range(struct memblock_type *type,
796 phys_addr_t base, phys_addr_t size)
797{
798 int start_rgn, end_rgn;
799 int i, ret;
800
801 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
802 if (ret)
803 return ret;
804
805 for (i = end_rgn - 1; i >= start_rgn; i--)
806 memblock_remove_region(type, i);
807 return 0;
808}
809
810int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
811{
812 phys_addr_t end = base + size - 1;
813
814 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
815 &base, &end, (void *)_RET_IP_);
816
817 return memblock_remove_range(&memblock.memory, base, size);
818}
819
820/**
821 * memblock_free - free boot memory allocation
822 * @ptr: starting address of the boot memory allocation
823 * @size: size of the boot memory block in bytes
824 *
825 * Free boot memory block previously allocated by memblock_alloc_xx() API.
826 * The freeing memory will not be released to the buddy allocator.
827 */
828void __init_memblock memblock_free(void *ptr, size_t size)
829{
830 if (ptr)
831 memblock_phys_free(__pa(ptr), size);
832}
833
834/**
835 * memblock_phys_free - free boot memory block
836 * @base: phys starting address of the boot memory block
837 * @size: size of the boot memory block in bytes
838 *
839 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
840 * The freeing memory will not be released to the buddy allocator.
841 */
842int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
843{
844 phys_addr_t end = base + size - 1;
845
846 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
847 &base, &end, (void *)_RET_IP_);
848
849 kmemleak_free_part_phys(base, size);
850 return memblock_remove_range(&memblock.reserved, base, size);
851}
852
853int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
854{
855 phys_addr_t end = base + size - 1;
856
857 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
858 &base, &end, (void *)_RET_IP_);
859
860 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
861}
862
863#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
864int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
865{
866 phys_addr_t end = base + size - 1;
867
868 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
869 &base, &end, (void *)_RET_IP_);
870
871 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
872}
873#endif
874
875/**
876 * memblock_setclr_flag - set or clear flag for a memory region
877 * @base: base address of the region
878 * @size: size of the region
879 * @set: set or clear the flag
880 * @flag: the flag to update
881 *
882 * This function isolates region [@base, @base + @size), and sets/clears flag
883 *
884 * Return: 0 on success, -errno on failure.
885 */
886static int __init_memblock memblock_setclr_flag(phys_addr_t base,
887 phys_addr_t size, int set, int flag)
888{
889 struct memblock_type *type = &memblock.memory;
890 int i, ret, start_rgn, end_rgn;
891
892 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
893 if (ret)
894 return ret;
895
896 for (i = start_rgn; i < end_rgn; i++) {
897 struct memblock_region *r = &type->regions[i];
898
899 if (set)
900 r->flags |= flag;
901 else
902 r->flags &= ~flag;
903 }
904
905 memblock_merge_regions(type);
906 return 0;
907}
908
909/**
910 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
911 * @base: the base phys addr of the region
912 * @size: the size of the region
913 *
914 * Return: 0 on success, -errno on failure.
915 */
916int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
917{
918 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
919}
920
921/**
922 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
923 * @base: the base phys addr of the region
924 * @size: the size of the region
925 *
926 * Return: 0 on success, -errno on failure.
927 */
928int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
929{
930 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
931}
932
933/**
934 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
935 * @base: the base phys addr of the region
936 * @size: the size of the region
937 *
938 * Return: 0 on success, -errno on failure.
939 */
940int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
941{
942 if (!mirrored_kernelcore)
943 return 0;
944
945 system_has_some_mirror = true;
946
947 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
948}
949
950/**
951 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
952 * @base: the base phys addr of the region
953 * @size: the size of the region
954 *
955 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
956 * direct mapping of the physical memory. These regions will still be
957 * covered by the memory map. The struct page representing NOMAP memory
958 * frames in the memory map will be PageReserved()
959 *
960 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
961 * memblock, the caller must inform kmemleak to ignore that memory
962 *
963 * Return: 0 on success, -errno on failure.
964 */
965int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
966{
967 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
968}
969
970/**
971 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
972 * @base: the base phys addr of the region
973 * @size: the size of the region
974 *
975 * Return: 0 on success, -errno on failure.
976 */
977int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
978{
979 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
980}
981
982static bool should_skip_region(struct memblock_type *type,
983 struct memblock_region *m,
984 int nid, int flags)
985{
986 int m_nid = memblock_get_region_node(m);
987
988 /* we never skip regions when iterating memblock.reserved or physmem */
989 if (type != memblock_memory)
990 return false;
991
992 /* only memory regions are associated with nodes, check it */
993 if (nid != NUMA_NO_NODE && nid != m_nid)
994 return true;
995
996 /* skip hotpluggable memory regions if needed */
997 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
998 !(flags & MEMBLOCK_HOTPLUG))
999 return true;
1000
1001 /* if we want mirror memory skip non-mirror memory regions */
1002 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1003 return true;
1004
1005 /* skip nomap memory unless we were asked for it explicitly */
1006 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1007 return true;
1008
1009 /* skip driver-managed memory unless we were asked for it explicitly */
1010 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1011 return true;
1012
1013 return false;
1014}
1015
1016/**
1017 * __next_mem_range - next function for for_each_free_mem_range() etc.
1018 * @idx: pointer to u64 loop variable
1019 * @nid: node selector, %NUMA_NO_NODE for all nodes
1020 * @flags: pick from blocks based on memory attributes
1021 * @type_a: pointer to memblock_type from where the range is taken
1022 * @type_b: pointer to memblock_type which excludes memory from being taken
1023 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1024 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1025 * @out_nid: ptr to int for nid of the range, can be %NULL
1026 *
1027 * Find the first area from *@idx which matches @nid, fill the out
1028 * parameters, and update *@idx for the next iteration. The lower 32bit of
1029 * *@idx contains index into type_a and the upper 32bit indexes the
1030 * areas before each region in type_b. For example, if type_b regions
1031 * look like the following,
1032 *
1033 * 0:[0-16), 1:[32-48), 2:[128-130)
1034 *
1035 * The upper 32bit indexes the following regions.
1036 *
1037 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1038 *
1039 * As both region arrays are sorted, the function advances the two indices
1040 * in lockstep and returns each intersection.
1041 */
1042void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1043 struct memblock_type *type_a,
1044 struct memblock_type *type_b, phys_addr_t *out_start,
1045 phys_addr_t *out_end, int *out_nid)
1046{
1047 int idx_a = *idx & 0xffffffff;
1048 int idx_b = *idx >> 32;
1049
1050 if (WARN_ONCE(nid == MAX_NUMNODES,
1051 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1052 nid = NUMA_NO_NODE;
1053
1054 for (; idx_a < type_a->cnt; idx_a++) {
1055 struct memblock_region *m = &type_a->regions[idx_a];
1056
1057 phys_addr_t m_start = m->base;
1058 phys_addr_t m_end = m->base + m->size;
1059 int m_nid = memblock_get_region_node(m);
1060
1061 if (should_skip_region(type_a, m, nid, flags))
1062 continue;
1063
1064 if (!type_b) {
1065 if (out_start)
1066 *out_start = m_start;
1067 if (out_end)
1068 *out_end = m_end;
1069 if (out_nid)
1070 *out_nid = m_nid;
1071 idx_a++;
1072 *idx = (u32)idx_a | (u64)idx_b << 32;
1073 return;
1074 }
1075
1076 /* scan areas before each reservation */
1077 for (; idx_b < type_b->cnt + 1; idx_b++) {
1078 struct memblock_region *r;
1079 phys_addr_t r_start;
1080 phys_addr_t r_end;
1081
1082 r = &type_b->regions[idx_b];
1083 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1084 r_end = idx_b < type_b->cnt ?
1085 r->base : PHYS_ADDR_MAX;
1086
1087 /*
1088 * if idx_b advanced past idx_a,
1089 * break out to advance idx_a
1090 */
1091 if (r_start >= m_end)
1092 break;
1093 /* if the two regions intersect, we're done */
1094 if (m_start < r_end) {
1095 if (out_start)
1096 *out_start =
1097 max(m_start, r_start);
1098 if (out_end)
1099 *out_end = min(m_end, r_end);
1100 if (out_nid)
1101 *out_nid = m_nid;
1102 /*
1103 * The region which ends first is
1104 * advanced for the next iteration.
1105 */
1106 if (m_end <= r_end)
1107 idx_a++;
1108 else
1109 idx_b++;
1110 *idx = (u32)idx_a | (u64)idx_b << 32;
1111 return;
1112 }
1113 }
1114 }
1115
1116 /* signal end of iteration */
1117 *idx = ULLONG_MAX;
1118}
1119
1120/**
1121 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1122 *
1123 * @idx: pointer to u64 loop variable
1124 * @nid: node selector, %NUMA_NO_NODE for all nodes
1125 * @flags: pick from blocks based on memory attributes
1126 * @type_a: pointer to memblock_type from where the range is taken
1127 * @type_b: pointer to memblock_type which excludes memory from being taken
1128 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1129 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1130 * @out_nid: ptr to int for nid of the range, can be %NULL
1131 *
1132 * Finds the next range from type_a which is not marked as unsuitable
1133 * in type_b.
1134 *
1135 * Reverse of __next_mem_range().
1136 */
1137void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1138 enum memblock_flags flags,
1139 struct memblock_type *type_a,
1140 struct memblock_type *type_b,
1141 phys_addr_t *out_start,
1142 phys_addr_t *out_end, int *out_nid)
1143{
1144 int idx_a = *idx & 0xffffffff;
1145 int idx_b = *idx >> 32;
1146
1147 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1148 nid = NUMA_NO_NODE;
1149
1150 if (*idx == (u64)ULLONG_MAX) {
1151 idx_a = type_a->cnt - 1;
1152 if (type_b != NULL)
1153 idx_b = type_b->cnt;
1154 else
1155 idx_b = 0;
1156 }
1157
1158 for (; idx_a >= 0; idx_a--) {
1159 struct memblock_region *m = &type_a->regions[idx_a];
1160
1161 phys_addr_t m_start = m->base;
1162 phys_addr_t m_end = m->base + m->size;
1163 int m_nid = memblock_get_region_node(m);
1164
1165 if (should_skip_region(type_a, m, nid, flags))
1166 continue;
1167
1168 if (!type_b) {
1169 if (out_start)
1170 *out_start = m_start;
1171 if (out_end)
1172 *out_end = m_end;
1173 if (out_nid)
1174 *out_nid = m_nid;
1175 idx_a--;
1176 *idx = (u32)idx_a | (u64)idx_b << 32;
1177 return;
1178 }
1179
1180 /* scan areas before each reservation */
1181 for (; idx_b >= 0; idx_b--) {
1182 struct memblock_region *r;
1183 phys_addr_t r_start;
1184 phys_addr_t r_end;
1185
1186 r = &type_b->regions[idx_b];
1187 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1188 r_end = idx_b < type_b->cnt ?
1189 r->base : PHYS_ADDR_MAX;
1190 /*
1191 * if idx_b advanced past idx_a,
1192 * break out to advance idx_a
1193 */
1194
1195 if (r_end <= m_start)
1196 break;
1197 /* if the two regions intersect, we're done */
1198 if (m_end > r_start) {
1199 if (out_start)
1200 *out_start = max(m_start, r_start);
1201 if (out_end)
1202 *out_end = min(m_end, r_end);
1203 if (out_nid)
1204 *out_nid = m_nid;
1205 if (m_start >= r_start)
1206 idx_a--;
1207 else
1208 idx_b--;
1209 *idx = (u32)idx_a | (u64)idx_b << 32;
1210 return;
1211 }
1212 }
1213 }
1214 /* signal end of iteration */
1215 *idx = ULLONG_MAX;
1216}
1217
1218/*
1219 * Common iterator interface used to define for_each_mem_pfn_range().
1220 */
1221void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1222 unsigned long *out_start_pfn,
1223 unsigned long *out_end_pfn, int *out_nid)
1224{
1225 struct memblock_type *type = &memblock.memory;
1226 struct memblock_region *r;
1227 int r_nid;
1228
1229 while (++*idx < type->cnt) {
1230 r = &type->regions[*idx];
1231 r_nid = memblock_get_region_node(r);
1232
1233 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1234 continue;
1235 if (nid == MAX_NUMNODES || nid == r_nid)
1236 break;
1237 }
1238 if (*idx >= type->cnt) {
1239 *idx = -1;
1240 return;
1241 }
1242
1243 if (out_start_pfn)
1244 *out_start_pfn = PFN_UP(r->base);
1245 if (out_end_pfn)
1246 *out_end_pfn = PFN_DOWN(r->base + r->size);
1247 if (out_nid)
1248 *out_nid = r_nid;
1249}
1250
1251/**
1252 * memblock_set_node - set node ID on memblock regions
1253 * @base: base of area to set node ID for
1254 * @size: size of area to set node ID for
1255 * @type: memblock type to set node ID for
1256 * @nid: node ID to set
1257 *
1258 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1259 * Regions which cross the area boundaries are split as necessary.
1260 *
1261 * Return:
1262 * 0 on success, -errno on failure.
1263 */
1264int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1265 struct memblock_type *type, int nid)
1266{
1267#ifdef CONFIG_NUMA
1268 int start_rgn, end_rgn;
1269 int i, ret;
1270
1271 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1272 if (ret)
1273 return ret;
1274
1275 for (i = start_rgn; i < end_rgn; i++)
1276 memblock_set_region_node(&type->regions[i], nid);
1277
1278 memblock_merge_regions(type);
1279#endif
1280 return 0;
1281}
1282
1283#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1284/**
1285 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1286 *
1287 * @idx: pointer to u64 loop variable
1288 * @zone: zone in which all of the memory blocks reside
1289 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1290 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1291 *
1292 * This function is meant to be a zone/pfn specific wrapper for the
1293 * for_each_mem_range type iterators. Specifically they are used in the
1294 * deferred memory init routines and as such we were duplicating much of
1295 * this logic throughout the code. So instead of having it in multiple
1296 * locations it seemed like it would make more sense to centralize this to
1297 * one new iterator that does everything they need.
1298 */
1299void __init_memblock
1300__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1301 unsigned long *out_spfn, unsigned long *out_epfn)
1302{
1303 int zone_nid = zone_to_nid(zone);
1304 phys_addr_t spa, epa;
1305
1306 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1307 &memblock.memory, &memblock.reserved,
1308 &spa, &epa, NULL);
1309
1310 while (*idx != U64_MAX) {
1311 unsigned long epfn = PFN_DOWN(epa);
1312 unsigned long spfn = PFN_UP(spa);
1313
1314 /*
1315 * Verify the end is at least past the start of the zone and
1316 * that we have at least one PFN to initialize.
1317 */
1318 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1319 /* if we went too far just stop searching */
1320 if (zone_end_pfn(zone) <= spfn) {
1321 *idx = U64_MAX;
1322 break;
1323 }
1324
1325 if (out_spfn)
1326 *out_spfn = max(zone->zone_start_pfn, spfn);
1327 if (out_epfn)
1328 *out_epfn = min(zone_end_pfn(zone), epfn);
1329
1330 return;
1331 }
1332
1333 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1334 &memblock.memory, &memblock.reserved,
1335 &spa, &epa, NULL);
1336 }
1337
1338 /* signal end of iteration */
1339 if (out_spfn)
1340 *out_spfn = ULONG_MAX;
1341 if (out_epfn)
1342 *out_epfn = 0;
1343}
1344
1345#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1346
1347/**
1348 * memblock_alloc_range_nid - allocate boot memory block
1349 * @size: size of memory block to be allocated in bytes
1350 * @align: alignment of the region and block's size
1351 * @start: the lower bound of the memory region to allocate (phys address)
1352 * @end: the upper bound of the memory region to allocate (phys address)
1353 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1354 * @exact_nid: control the allocation fall back to other nodes
1355 *
1356 * The allocation is performed from memory region limited by
1357 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1358 *
1359 * If the specified node can not hold the requested memory and @exact_nid
1360 * is false, the allocation falls back to any node in the system.
1361 *
1362 * For systems with memory mirroring, the allocation is attempted first
1363 * from the regions with mirroring enabled and then retried from any
1364 * memory region.
1365 *
1366 * In addition, function using kmemleak_alloc_phys for allocated boot
1367 * memory block, it is never reported as leaks.
1368 *
1369 * Return:
1370 * Physical address of allocated memory block on success, %0 on failure.
1371 */
1372phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1373 phys_addr_t align, phys_addr_t start,
1374 phys_addr_t end, int nid,
1375 bool exact_nid)
1376{
1377 enum memblock_flags flags = choose_memblock_flags();
1378 phys_addr_t found;
1379
1380 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1381 nid = NUMA_NO_NODE;
1382
1383 if (!align) {
1384 /* Can't use WARNs this early in boot on powerpc */
1385 dump_stack();
1386 align = SMP_CACHE_BYTES;
1387 }
1388
1389again:
1390 found = memblock_find_in_range_node(size, align, start, end, nid,
1391 flags);
1392 if (found && !memblock_reserve(found, size))
1393 goto done;
1394
1395 if (nid != NUMA_NO_NODE && !exact_nid) {
1396 found = memblock_find_in_range_node(size, align, start,
1397 end, NUMA_NO_NODE,
1398 flags);
1399 if (found && !memblock_reserve(found, size))
1400 goto done;
1401 }
1402
1403 if (flags & MEMBLOCK_MIRROR) {
1404 flags &= ~MEMBLOCK_MIRROR;
1405 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1406 &size);
1407 goto again;
1408 }
1409
1410 return 0;
1411
1412done:
1413 /*
1414 * Skip kmemleak for those places like kasan_init() and
1415 * early_pgtable_alloc() due to high volume.
1416 */
1417 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1418 /*
1419 * Memblock allocated blocks are never reported as
1420 * leaks. This is because many of these blocks are
1421 * only referred via the physical address which is
1422 * not looked up by kmemleak.
1423 */
1424 kmemleak_alloc_phys(found, size, 0);
1425
1426 return found;
1427}
1428
1429/**
1430 * memblock_phys_alloc_range - allocate a memory block inside specified range
1431 * @size: size of memory block to be allocated in bytes
1432 * @align: alignment of the region and block's size
1433 * @start: the lower bound of the memory region to allocate (physical address)
1434 * @end: the upper bound of the memory region to allocate (physical address)
1435 *
1436 * Allocate @size bytes in the between @start and @end.
1437 *
1438 * Return: physical address of the allocated memory block on success,
1439 * %0 on failure.
1440 */
1441phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1442 phys_addr_t align,
1443 phys_addr_t start,
1444 phys_addr_t end)
1445{
1446 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1447 __func__, (u64)size, (u64)align, &start, &end,
1448 (void *)_RET_IP_);
1449 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1450 false);
1451}
1452
1453/**
1454 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1455 * @size: size of memory block to be allocated in bytes
1456 * @align: alignment of the region and block's size
1457 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1458 *
1459 * Allocates memory block from the specified NUMA node. If the node
1460 * has no available memory, attempts to allocated from any node in the
1461 * system.
1462 *
1463 * Return: physical address of the allocated memory block on success,
1464 * %0 on failure.
1465 */
1466phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1467{
1468 return memblock_alloc_range_nid(size, align, 0,
1469 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1470}
1471
1472/**
1473 * memblock_alloc_internal - allocate boot memory block
1474 * @size: size of memory block to be allocated in bytes
1475 * @align: alignment of the region and block's size
1476 * @min_addr: the lower bound of the memory region to allocate (phys address)
1477 * @max_addr: the upper bound of the memory region to allocate (phys address)
1478 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1479 * @exact_nid: control the allocation fall back to other nodes
1480 *
1481 * Allocates memory block using memblock_alloc_range_nid() and
1482 * converts the returned physical address to virtual.
1483 *
1484 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1485 * will fall back to memory below @min_addr. Other constraints, such
1486 * as node and mirrored memory will be handled again in
1487 * memblock_alloc_range_nid().
1488 *
1489 * Return:
1490 * Virtual address of allocated memory block on success, NULL on failure.
1491 */
1492static void * __init memblock_alloc_internal(
1493 phys_addr_t size, phys_addr_t align,
1494 phys_addr_t min_addr, phys_addr_t max_addr,
1495 int nid, bool exact_nid)
1496{
1497 phys_addr_t alloc;
1498
1499 /*
1500 * Detect any accidental use of these APIs after slab is ready, as at
1501 * this moment memblock may be deinitialized already and its
1502 * internal data may be destroyed (after execution of memblock_free_all)
1503 */
1504 if (WARN_ON_ONCE(slab_is_available()))
1505 return kzalloc_node(size, GFP_NOWAIT, nid);
1506
1507 if (max_addr > memblock.current_limit)
1508 max_addr = memblock.current_limit;
1509
1510 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1511 exact_nid);
1512
1513 /* retry allocation without lower limit */
1514 if (!alloc && min_addr)
1515 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1516 exact_nid);
1517
1518 if (!alloc)
1519 return NULL;
1520
1521 return phys_to_virt(alloc);
1522}
1523
1524/**
1525 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1526 * without zeroing memory
1527 * @size: size of memory block to be allocated in bytes
1528 * @align: alignment of the region and block's size
1529 * @min_addr: the lower bound of the memory region from where the allocation
1530 * is preferred (phys address)
1531 * @max_addr: the upper bound of the memory region from where the allocation
1532 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1533 * allocate only from memory limited by memblock.current_limit value
1534 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1535 *
1536 * Public function, provides additional debug information (including caller
1537 * info), if enabled. Does not zero allocated memory.
1538 *
1539 * Return:
1540 * Virtual address of allocated memory block on success, NULL on failure.
1541 */
1542void * __init memblock_alloc_exact_nid_raw(
1543 phys_addr_t size, phys_addr_t align,
1544 phys_addr_t min_addr, phys_addr_t max_addr,
1545 int nid)
1546{
1547 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1548 __func__, (u64)size, (u64)align, nid, &min_addr,
1549 &max_addr, (void *)_RET_IP_);
1550
1551 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1552 true);
1553}
1554
1555/**
1556 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1557 * memory and without panicking
1558 * @size: size of memory block to be allocated in bytes
1559 * @align: alignment of the region and block's size
1560 * @min_addr: the lower bound of the memory region from where the allocation
1561 * is preferred (phys address)
1562 * @max_addr: the upper bound of the memory region from where the allocation
1563 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1564 * allocate only from memory limited by memblock.current_limit value
1565 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1566 *
1567 * Public function, provides additional debug information (including caller
1568 * info), if enabled. Does not zero allocated memory, does not panic if request
1569 * cannot be satisfied.
1570 *
1571 * Return:
1572 * Virtual address of allocated memory block on success, NULL on failure.
1573 */
1574void * __init memblock_alloc_try_nid_raw(
1575 phys_addr_t size, phys_addr_t align,
1576 phys_addr_t min_addr, phys_addr_t max_addr,
1577 int nid)
1578{
1579 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1580 __func__, (u64)size, (u64)align, nid, &min_addr,
1581 &max_addr, (void *)_RET_IP_);
1582
1583 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1584 false);
1585}
1586
1587/**
1588 * memblock_alloc_try_nid - allocate boot memory block
1589 * @size: size of memory block to be allocated in bytes
1590 * @align: alignment of the region and block's size
1591 * @min_addr: the lower bound of the memory region from where the allocation
1592 * is preferred (phys address)
1593 * @max_addr: the upper bound of the memory region from where the allocation
1594 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1595 * allocate only from memory limited by memblock.current_limit value
1596 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1597 *
1598 * Public function, provides additional debug information (including caller
1599 * info), if enabled. This function zeroes the allocated memory.
1600 *
1601 * Return:
1602 * Virtual address of allocated memory block on success, NULL on failure.
1603 */
1604void * __init memblock_alloc_try_nid(
1605 phys_addr_t size, phys_addr_t align,
1606 phys_addr_t min_addr, phys_addr_t max_addr,
1607 int nid)
1608{
1609 void *ptr;
1610
1611 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1612 __func__, (u64)size, (u64)align, nid, &min_addr,
1613 &max_addr, (void *)_RET_IP_);
1614 ptr = memblock_alloc_internal(size, align,
1615 min_addr, max_addr, nid, false);
1616 if (ptr)
1617 memset(ptr, 0, size);
1618
1619 return ptr;
1620}
1621
1622/**
1623 * memblock_free_late - free pages directly to buddy allocator
1624 * @base: phys starting address of the boot memory block
1625 * @size: size of the boot memory block in bytes
1626 *
1627 * This is only useful when the memblock allocator has already been torn
1628 * down, but we are still initializing the system. Pages are released directly
1629 * to the buddy allocator.
1630 */
1631void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1632{
1633 phys_addr_t cursor, end;
1634
1635 end = base + size - 1;
1636 memblock_dbg("%s: [%pa-%pa] %pS\n",
1637 __func__, &base, &end, (void *)_RET_IP_);
1638 kmemleak_free_part_phys(base, size);
1639 cursor = PFN_UP(base);
1640 end = PFN_DOWN(base + size);
1641
1642 for (; cursor < end; cursor++) {
1643 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1644 totalram_pages_inc();
1645 }
1646}
1647
1648/*
1649 * Remaining API functions
1650 */
1651
1652phys_addr_t __init_memblock memblock_phys_mem_size(void)
1653{
1654 return memblock.memory.total_size;
1655}
1656
1657phys_addr_t __init_memblock memblock_reserved_size(void)
1658{
1659 return memblock.reserved.total_size;
1660}
1661
1662/* lowest address */
1663phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1664{
1665 return memblock.memory.regions[0].base;
1666}
1667
1668phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1669{
1670 int idx = memblock.memory.cnt - 1;
1671
1672 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1673}
1674
1675static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1676{
1677 phys_addr_t max_addr = PHYS_ADDR_MAX;
1678 struct memblock_region *r;
1679
1680 /*
1681 * translate the memory @limit size into the max address within one of
1682 * the memory memblock regions, if the @limit exceeds the total size
1683 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1684 */
1685 for_each_mem_region(r) {
1686 if (limit <= r->size) {
1687 max_addr = r->base + limit;
1688 break;
1689 }
1690 limit -= r->size;
1691 }
1692
1693 return max_addr;
1694}
1695
1696void __init memblock_enforce_memory_limit(phys_addr_t limit)
1697{
1698 phys_addr_t max_addr;
1699
1700 if (!limit)
1701 return;
1702
1703 max_addr = __find_max_addr(limit);
1704
1705 /* @limit exceeds the total size of the memory, do nothing */
1706 if (max_addr == PHYS_ADDR_MAX)
1707 return;
1708
1709 /* truncate both memory and reserved regions */
1710 memblock_remove_range(&memblock.memory, max_addr,
1711 PHYS_ADDR_MAX);
1712 memblock_remove_range(&memblock.reserved, max_addr,
1713 PHYS_ADDR_MAX);
1714}
1715
1716void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1717{
1718 int start_rgn, end_rgn;
1719 int i, ret;
1720
1721 if (!size)
1722 return;
1723
1724 if (!memblock_memory->total_size) {
1725 pr_warn("%s: No memory registered yet\n", __func__);
1726 return;
1727 }
1728
1729 ret = memblock_isolate_range(&memblock.memory, base, size,
1730 &start_rgn, &end_rgn);
1731 if (ret)
1732 return;
1733
1734 /* remove all the MAP regions */
1735 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1736 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1737 memblock_remove_region(&memblock.memory, i);
1738
1739 for (i = start_rgn - 1; i >= 0; i--)
1740 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1741 memblock_remove_region(&memblock.memory, i);
1742
1743 /* truncate the reserved regions */
1744 memblock_remove_range(&memblock.reserved, 0, base);
1745 memblock_remove_range(&memblock.reserved,
1746 base + size, PHYS_ADDR_MAX);
1747}
1748
1749void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1750{
1751 phys_addr_t max_addr;
1752
1753 if (!limit)
1754 return;
1755
1756 max_addr = __find_max_addr(limit);
1757
1758 /* @limit exceeds the total size of the memory, do nothing */
1759 if (max_addr == PHYS_ADDR_MAX)
1760 return;
1761
1762 memblock_cap_memory_range(0, max_addr);
1763}
1764
1765static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1766{
1767 unsigned int left = 0, right = type->cnt;
1768
1769 do {
1770 unsigned int mid = (right + left) / 2;
1771
1772 if (addr < type->regions[mid].base)
1773 right = mid;
1774 else if (addr >= (type->regions[mid].base +
1775 type->regions[mid].size))
1776 left = mid + 1;
1777 else
1778 return mid;
1779 } while (left < right);
1780 return -1;
1781}
1782
1783bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1784{
1785 return memblock_search(&memblock.reserved, addr) != -1;
1786}
1787
1788bool __init_memblock memblock_is_memory(phys_addr_t addr)
1789{
1790 return memblock_search(&memblock.memory, addr) != -1;
1791}
1792
1793bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1794{
1795 int i = memblock_search(&memblock.memory, addr);
1796
1797 if (i == -1)
1798 return false;
1799 return !memblock_is_nomap(&memblock.memory.regions[i]);
1800}
1801
1802int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1803 unsigned long *start_pfn, unsigned long *end_pfn)
1804{
1805 struct memblock_type *type = &memblock.memory;
1806 int mid = memblock_search(type, PFN_PHYS(pfn));
1807
1808 if (mid == -1)
1809 return -1;
1810
1811 *start_pfn = PFN_DOWN(type->regions[mid].base);
1812 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1813
1814 return memblock_get_region_node(&type->regions[mid]);
1815}
1816
1817/**
1818 * memblock_is_region_memory - check if a region is a subset of memory
1819 * @base: base of region to check
1820 * @size: size of region to check
1821 *
1822 * Check if the region [@base, @base + @size) is a subset of a memory block.
1823 *
1824 * Return:
1825 * 0 if false, non-zero if true
1826 */
1827bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1828{
1829 int idx = memblock_search(&memblock.memory, base);
1830 phys_addr_t end = base + memblock_cap_size(base, &size);
1831
1832 if (idx == -1)
1833 return false;
1834 return (memblock.memory.regions[idx].base +
1835 memblock.memory.regions[idx].size) >= end;
1836}
1837
1838/**
1839 * memblock_is_region_reserved - check if a region intersects reserved memory
1840 * @base: base of region to check
1841 * @size: size of region to check
1842 *
1843 * Check if the region [@base, @base + @size) intersects a reserved
1844 * memory block.
1845 *
1846 * Return:
1847 * True if they intersect, false if not.
1848 */
1849bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1850{
1851 return memblock_overlaps_region(&memblock.reserved, base, size);
1852}
1853
1854void __init_memblock memblock_trim_memory(phys_addr_t align)
1855{
1856 phys_addr_t start, end, orig_start, orig_end;
1857 struct memblock_region *r;
1858
1859 for_each_mem_region(r) {
1860 orig_start = r->base;
1861 orig_end = r->base + r->size;
1862 start = round_up(orig_start, align);
1863 end = round_down(orig_end, align);
1864
1865 if (start == orig_start && end == orig_end)
1866 continue;
1867
1868 if (start < end) {
1869 r->base = start;
1870 r->size = end - start;
1871 } else {
1872 memblock_remove_region(&memblock.memory,
1873 r - memblock.memory.regions);
1874 r--;
1875 }
1876 }
1877}
1878
1879void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1880{
1881 memblock.current_limit = limit;
1882}
1883
1884phys_addr_t __init_memblock memblock_get_current_limit(void)
1885{
1886 return memblock.current_limit;
1887}
1888
1889static void __init_memblock memblock_dump(struct memblock_type *type)
1890{
1891 phys_addr_t base, end, size;
1892 enum memblock_flags flags;
1893 int idx;
1894 struct memblock_region *rgn;
1895
1896 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1897
1898 for_each_memblock_type(idx, type, rgn) {
1899 char nid_buf[32] = "";
1900
1901 base = rgn->base;
1902 size = rgn->size;
1903 end = base + size - 1;
1904 flags = rgn->flags;
1905#ifdef CONFIG_NUMA
1906 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1907 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1908 memblock_get_region_node(rgn));
1909#endif
1910 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1911 type->name, idx, &base, &end, &size, nid_buf, flags);
1912 }
1913}
1914
1915static void __init_memblock __memblock_dump_all(void)
1916{
1917 pr_info("MEMBLOCK configuration:\n");
1918 pr_info(" memory size = %pa reserved size = %pa\n",
1919 &memblock.memory.total_size,
1920 &memblock.reserved.total_size);
1921
1922 memblock_dump(&memblock.memory);
1923 memblock_dump(&memblock.reserved);
1924#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1925 memblock_dump(&physmem);
1926#endif
1927}
1928
1929void __init_memblock memblock_dump_all(void)
1930{
1931 if (memblock_debug)
1932 __memblock_dump_all();
1933}
1934
1935void __init memblock_allow_resize(void)
1936{
1937 memblock_can_resize = 1;
1938}
1939
1940static int __init early_memblock(char *p)
1941{
1942 if (p && strstr(p, "debug"))
1943 memblock_debug = 1;
1944 return 0;
1945}
1946early_param("memblock", early_memblock);
1947
1948static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1949{
1950 struct page *start_pg, *end_pg;
1951 phys_addr_t pg, pgend;
1952
1953 /*
1954 * Convert start_pfn/end_pfn to a struct page pointer.
1955 */
1956 start_pg = pfn_to_page(start_pfn - 1) + 1;
1957 end_pg = pfn_to_page(end_pfn - 1) + 1;
1958
1959 /*
1960 * Convert to physical addresses, and round start upwards and end
1961 * downwards.
1962 */
1963 pg = PAGE_ALIGN(__pa(start_pg));
1964 pgend = __pa(end_pg) & PAGE_MASK;
1965
1966 /*
1967 * If there are free pages between these, free the section of the
1968 * memmap array.
1969 */
1970 if (pg < pgend)
1971 memblock_phys_free(pg, pgend - pg);
1972}
1973
1974/*
1975 * The mem_map array can get very big. Free the unused area of the memory map.
1976 */
1977static void __init free_unused_memmap(void)
1978{
1979 unsigned long start, end, prev_end = 0;
1980 int i;
1981
1982 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1983 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1984 return;
1985
1986 /*
1987 * This relies on each bank being in address order.
1988 * The banks are sorted previously in bootmem_init().
1989 */
1990 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1991#ifdef CONFIG_SPARSEMEM
1992 /*
1993 * Take care not to free memmap entries that don't exist
1994 * due to SPARSEMEM sections which aren't present.
1995 */
1996 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1997#endif
1998 /*
1999 * Align down here since many operations in VM subsystem
2000 * presume that there are no holes in the memory map inside
2001 * a pageblock
2002 */
2003 start = pageblock_start_pfn(start);
2004
2005 /*
2006 * If we had a previous bank, and there is a space
2007 * between the current bank and the previous, free it.
2008 */
2009 if (prev_end && prev_end < start)
2010 free_memmap(prev_end, start);
2011
2012 /*
2013 * Align up here since many operations in VM subsystem
2014 * presume that there are no holes in the memory map inside
2015 * a pageblock
2016 */
2017 prev_end = pageblock_align(end);
2018 }
2019
2020#ifdef CONFIG_SPARSEMEM
2021 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2022 prev_end = pageblock_align(end);
2023 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2024 }
2025#endif
2026}
2027
2028static void __init __free_pages_memory(unsigned long start, unsigned long end)
2029{
2030 int order;
2031
2032 while (start < end) {
2033 order = min(MAX_ORDER - 1UL, __ffs(start));
2034
2035 while (start + (1UL << order) > end)
2036 order--;
2037
2038 memblock_free_pages(pfn_to_page(start), start, order);
2039
2040 start += (1UL << order);
2041 }
2042}
2043
2044static unsigned long __init __free_memory_core(phys_addr_t start,
2045 phys_addr_t end)
2046{
2047 unsigned long start_pfn = PFN_UP(start);
2048 unsigned long end_pfn = min_t(unsigned long,
2049 PFN_DOWN(end), max_low_pfn);
2050
2051 if (start_pfn >= end_pfn)
2052 return 0;
2053
2054 __free_pages_memory(start_pfn, end_pfn);
2055
2056 return end_pfn - start_pfn;
2057}
2058
2059static void __init memmap_init_reserved_pages(void)
2060{
2061 struct memblock_region *region;
2062 phys_addr_t start, end;
2063 u64 i;
2064
2065 /* initialize struct pages for the reserved regions */
2066 for_each_reserved_mem_range(i, &start, &end)
2067 reserve_bootmem_region(start, end);
2068
2069 /* and also treat struct pages for the NOMAP regions as PageReserved */
2070 for_each_mem_region(region) {
2071 if (memblock_is_nomap(region)) {
2072 start = region->base;
2073 end = start + region->size;
2074 reserve_bootmem_region(start, end);
2075 }
2076 }
2077}
2078
2079static unsigned long __init free_low_memory_core_early(void)
2080{
2081 unsigned long count = 0;
2082 phys_addr_t start, end;
2083 u64 i;
2084
2085 memblock_clear_hotplug(0, -1);
2086
2087 memmap_init_reserved_pages();
2088
2089 /*
2090 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2091 * because in some case like Node0 doesn't have RAM installed
2092 * low ram will be on Node1
2093 */
2094 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2095 NULL)
2096 count += __free_memory_core(start, end);
2097
2098 return count;
2099}
2100
2101static int reset_managed_pages_done __initdata;
2102
2103void reset_node_managed_pages(pg_data_t *pgdat)
2104{
2105 struct zone *z;
2106
2107 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2108 atomic_long_set(&z->managed_pages, 0);
2109}
2110
2111void __init reset_all_zones_managed_pages(void)
2112{
2113 struct pglist_data *pgdat;
2114
2115 if (reset_managed_pages_done)
2116 return;
2117
2118 for_each_online_pgdat(pgdat)
2119 reset_node_managed_pages(pgdat);
2120
2121 reset_managed_pages_done = 1;
2122}
2123
2124/**
2125 * memblock_free_all - release free pages to the buddy allocator
2126 */
2127void __init memblock_free_all(void)
2128{
2129 unsigned long pages;
2130
2131 free_unused_memmap();
2132 reset_all_zones_managed_pages();
2133
2134 pages = free_low_memory_core_early();
2135 totalram_pages_add(pages);
2136}
2137
2138#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2139
2140static int memblock_debug_show(struct seq_file *m, void *private)
2141{
2142 struct memblock_type *type = m->private;
2143 struct memblock_region *reg;
2144 int i;
2145 phys_addr_t end;
2146
2147 for (i = 0; i < type->cnt; i++) {
2148 reg = &type->regions[i];
2149 end = reg->base + reg->size - 1;
2150
2151 seq_printf(m, "%4d: ", i);
2152 seq_printf(m, "%pa..%pa\n", ®->base, &end);
2153 }
2154 return 0;
2155}
2156DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2157
2158static int __init memblock_init_debugfs(void)
2159{
2160 struct dentry *root = debugfs_create_dir("memblock", NULL);
2161
2162 debugfs_create_file("memory", 0444, root,
2163 &memblock.memory, &memblock_debug_fops);
2164 debugfs_create_file("reserved", 0444, root,
2165 &memblock.reserved, &memblock_debug_fops);
2166#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2167 debugfs_create_file("physmem", 0444, root, &physmem,
2168 &memblock_debug_fops);
2169#endif
2170
2171 return 0;
2172}
2173__initcall(memblock_init_debugfs);
2174
2175#endif /* CONFIG_DEBUG_FS */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9#include <linux/kernel.h>
10#include <linux/slab.h>
11#include <linux/init.h>
12#include <linux/bitops.h>
13#include <linux/poison.h>
14#include <linux/pfn.h>
15#include <linux/debugfs.h>
16#include <linux/kmemleak.h>
17#include <linux/seq_file.h>
18#include <linux/memblock.h>
19
20#include <asm/sections.h>
21#include <linux/io.h>
22
23#include "internal.h"
24
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
32/**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
50 *
51 * Each region is represented by :c:type:`struct memblock_region` that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the :c:type:`struct
54 * memblock_type` which contains an array of memory regions along with
55 * the allocator metadata. The "memory" and "reserved" types are nicely
56 * wrapped with :c:type:`struct memblock`. This structure is statically
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
65 *
66 * The early architecture setup should tell memblock what the physical
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
73 *
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
81 *
82 * Note, that both API variants use implicit assumptions about allowed
83 * memory ranges and the fallback methods. Consult the documentation
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
86 *
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
89 *
90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
93 */
94
95#ifndef CONFIG_NEED_MULTIPLE_NODES
96struct pglist_data __refdata contig_page_data;
97EXPORT_SYMBOL(contig_page_data);
98#endif
99
100unsigned long max_low_pfn;
101unsigned long min_low_pfn;
102unsigned long max_pfn;
103unsigned long long max_possible_pfn;
104
105static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109#endif
110
111struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
115 .memory.name = "memory",
116
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
120 .reserved.name = "reserved",
121
122 .bottom_up = false,
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
124};
125
126#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
131 .name = "physmem",
132};
133#endif
134
135int memblock_debug __initdata_memblock;
136static bool system_has_some_mirror __initdata_memblock = false;
137static int memblock_can_resize __initdata_memblock;
138static int memblock_memory_in_slab __initdata_memblock = 0;
139static int memblock_reserved_in_slab __initdata_memblock = 0;
140
141static enum memblock_flags __init_memblock choose_memblock_flags(void)
142{
143 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
144}
145
146/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
147static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
148{
149 return *size = min(*size, PHYS_ADDR_MAX - base);
150}
151
152/*
153 * Address comparison utilities
154 */
155static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
156 phys_addr_t base2, phys_addr_t size2)
157{
158 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
159}
160
161bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
162 phys_addr_t base, phys_addr_t size)
163{
164 unsigned long i;
165
166 for (i = 0; i < type->cnt; i++)
167 if (memblock_addrs_overlap(base, size, type->regions[i].base,
168 type->regions[i].size))
169 break;
170 return i < type->cnt;
171}
172
173/**
174 * __memblock_find_range_bottom_up - find free area utility in bottom-up
175 * @start: start of candidate range
176 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
177 * %MEMBLOCK_ALLOC_ACCESSIBLE
178 * @size: size of free area to find
179 * @align: alignment of free area to find
180 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
181 * @flags: pick from blocks based on memory attributes
182 *
183 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
184 *
185 * Return:
186 * Found address on success, 0 on failure.
187 */
188static phys_addr_t __init_memblock
189__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
190 phys_addr_t size, phys_addr_t align, int nid,
191 enum memblock_flags flags)
192{
193 phys_addr_t this_start, this_end, cand;
194 u64 i;
195
196 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
197 this_start = clamp(this_start, start, end);
198 this_end = clamp(this_end, start, end);
199
200 cand = round_up(this_start, align);
201 if (cand < this_end && this_end - cand >= size)
202 return cand;
203 }
204
205 return 0;
206}
207
208/**
209 * __memblock_find_range_top_down - find free area utility, in top-down
210 * @start: start of candidate range
211 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
212 * %MEMBLOCK_ALLOC_ACCESSIBLE
213 * @size: size of free area to find
214 * @align: alignment of free area to find
215 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
216 * @flags: pick from blocks based on memory attributes
217 *
218 * Utility called from memblock_find_in_range_node(), find free area top-down.
219 *
220 * Return:
221 * Found address on success, 0 on failure.
222 */
223static phys_addr_t __init_memblock
224__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
225 phys_addr_t size, phys_addr_t align, int nid,
226 enum memblock_flags flags)
227{
228 phys_addr_t this_start, this_end, cand;
229 u64 i;
230
231 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
232 NULL) {
233 this_start = clamp(this_start, start, end);
234 this_end = clamp(this_end, start, end);
235
236 if (this_end < size)
237 continue;
238
239 cand = round_down(this_end - size, align);
240 if (cand >= this_start)
241 return cand;
242 }
243
244 return 0;
245}
246
247/**
248 * memblock_find_in_range_node - find free area in given range and node
249 * @size: size of free area to find
250 * @align: alignment of free area to find
251 * @start: start of candidate range
252 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
253 * %MEMBLOCK_ALLOC_ACCESSIBLE
254 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
255 * @flags: pick from blocks based on memory attributes
256 *
257 * Find @size free area aligned to @align in the specified range and node.
258 *
259 * When allocation direction is bottom-up, the @start should be greater
260 * than the end of the kernel image. Otherwise, it will be trimmed. The
261 * reason is that we want the bottom-up allocation just near the kernel
262 * image so it is highly likely that the allocated memory and the kernel
263 * will reside in the same node.
264 *
265 * If bottom-up allocation failed, will try to allocate memory top-down.
266 *
267 * Return:
268 * Found address on success, 0 on failure.
269 */
270static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
271 phys_addr_t align, phys_addr_t start,
272 phys_addr_t end, int nid,
273 enum memblock_flags flags)
274{
275 phys_addr_t kernel_end, ret;
276
277 /* pump up @end */
278 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
279 end == MEMBLOCK_ALLOC_KASAN)
280 end = memblock.current_limit;
281
282 /* avoid allocating the first page */
283 start = max_t(phys_addr_t, start, PAGE_SIZE);
284 end = max(start, end);
285 kernel_end = __pa_symbol(_end);
286
287 /*
288 * try bottom-up allocation only when bottom-up mode
289 * is set and @end is above the kernel image.
290 */
291 if (memblock_bottom_up() && end > kernel_end) {
292 phys_addr_t bottom_up_start;
293
294 /* make sure we will allocate above the kernel */
295 bottom_up_start = max(start, kernel_end);
296
297 /* ok, try bottom-up allocation first */
298 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
299 size, align, nid, flags);
300 if (ret)
301 return ret;
302
303 /*
304 * we always limit bottom-up allocation above the kernel,
305 * but top-down allocation doesn't have the limit, so
306 * retrying top-down allocation may succeed when bottom-up
307 * allocation failed.
308 *
309 * bottom-up allocation is expected to be fail very rarely,
310 * so we use WARN_ONCE() here to see the stack trace if
311 * fail happens.
312 */
313 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
314 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
315 }
316
317 return __memblock_find_range_top_down(start, end, size, align, nid,
318 flags);
319}
320
321/**
322 * memblock_find_in_range - find free area in given range
323 * @start: start of candidate range
324 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
325 * %MEMBLOCK_ALLOC_ACCESSIBLE
326 * @size: size of free area to find
327 * @align: alignment of free area to find
328 *
329 * Find @size free area aligned to @align in the specified range.
330 *
331 * Return:
332 * Found address on success, 0 on failure.
333 */
334phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
335 phys_addr_t end, phys_addr_t size,
336 phys_addr_t align)
337{
338 phys_addr_t ret;
339 enum memblock_flags flags = choose_memblock_flags();
340
341again:
342 ret = memblock_find_in_range_node(size, align, start, end,
343 NUMA_NO_NODE, flags);
344
345 if (!ret && (flags & MEMBLOCK_MIRROR)) {
346 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
347 &size);
348 flags &= ~MEMBLOCK_MIRROR;
349 goto again;
350 }
351
352 return ret;
353}
354
355static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
356{
357 type->total_size -= type->regions[r].size;
358 memmove(&type->regions[r], &type->regions[r + 1],
359 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
360 type->cnt--;
361
362 /* Special case for empty arrays */
363 if (type->cnt == 0) {
364 WARN_ON(type->total_size != 0);
365 type->cnt = 1;
366 type->regions[0].base = 0;
367 type->regions[0].size = 0;
368 type->regions[0].flags = 0;
369 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
370 }
371}
372
373#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
374/**
375 * memblock_discard - discard memory and reserved arrays if they were allocated
376 */
377void __init memblock_discard(void)
378{
379 phys_addr_t addr, size;
380
381 if (memblock.reserved.regions != memblock_reserved_init_regions) {
382 addr = __pa(memblock.reserved.regions);
383 size = PAGE_ALIGN(sizeof(struct memblock_region) *
384 memblock.reserved.max);
385 __memblock_free_late(addr, size);
386 }
387
388 if (memblock.memory.regions != memblock_memory_init_regions) {
389 addr = __pa(memblock.memory.regions);
390 size = PAGE_ALIGN(sizeof(struct memblock_region) *
391 memblock.memory.max);
392 __memblock_free_late(addr, size);
393 }
394}
395#endif
396
397/**
398 * memblock_double_array - double the size of the memblock regions array
399 * @type: memblock type of the regions array being doubled
400 * @new_area_start: starting address of memory range to avoid overlap with
401 * @new_area_size: size of memory range to avoid overlap with
402 *
403 * Double the size of the @type regions array. If memblock is being used to
404 * allocate memory for a new reserved regions array and there is a previously
405 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
406 * waiting to be reserved, ensure the memory used by the new array does
407 * not overlap.
408 *
409 * Return:
410 * 0 on success, -1 on failure.
411 */
412static int __init_memblock memblock_double_array(struct memblock_type *type,
413 phys_addr_t new_area_start,
414 phys_addr_t new_area_size)
415{
416 struct memblock_region *new_array, *old_array;
417 phys_addr_t old_alloc_size, new_alloc_size;
418 phys_addr_t old_size, new_size, addr, new_end;
419 int use_slab = slab_is_available();
420 int *in_slab;
421
422 /* We don't allow resizing until we know about the reserved regions
423 * of memory that aren't suitable for allocation
424 */
425 if (!memblock_can_resize)
426 return -1;
427
428 /* Calculate new doubled size */
429 old_size = type->max * sizeof(struct memblock_region);
430 new_size = old_size << 1;
431 /*
432 * We need to allocated new one align to PAGE_SIZE,
433 * so we can free them completely later.
434 */
435 old_alloc_size = PAGE_ALIGN(old_size);
436 new_alloc_size = PAGE_ALIGN(new_size);
437
438 /* Retrieve the slab flag */
439 if (type == &memblock.memory)
440 in_slab = &memblock_memory_in_slab;
441 else
442 in_slab = &memblock_reserved_in_slab;
443
444 /* Try to find some space for it */
445 if (use_slab) {
446 new_array = kmalloc(new_size, GFP_KERNEL);
447 addr = new_array ? __pa(new_array) : 0;
448 } else {
449 /* only exclude range when trying to double reserved.regions */
450 if (type != &memblock.reserved)
451 new_area_start = new_area_size = 0;
452
453 addr = memblock_find_in_range(new_area_start + new_area_size,
454 memblock.current_limit,
455 new_alloc_size, PAGE_SIZE);
456 if (!addr && new_area_size)
457 addr = memblock_find_in_range(0,
458 min(new_area_start, memblock.current_limit),
459 new_alloc_size, PAGE_SIZE);
460
461 new_array = addr ? __va(addr) : NULL;
462 }
463 if (!addr) {
464 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
465 type->name, type->max, type->max * 2);
466 return -1;
467 }
468
469 new_end = addr + new_size - 1;
470 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
471 type->name, type->max * 2, &addr, &new_end);
472
473 /*
474 * Found space, we now need to move the array over before we add the
475 * reserved region since it may be our reserved array itself that is
476 * full.
477 */
478 memcpy(new_array, type->regions, old_size);
479 memset(new_array + type->max, 0, old_size);
480 old_array = type->regions;
481 type->regions = new_array;
482 type->max <<= 1;
483
484 /* Free old array. We needn't free it if the array is the static one */
485 if (*in_slab)
486 kfree(old_array);
487 else if (old_array != memblock_memory_init_regions &&
488 old_array != memblock_reserved_init_regions)
489 memblock_free(__pa(old_array), old_alloc_size);
490
491 /*
492 * Reserve the new array if that comes from the memblock. Otherwise, we
493 * needn't do it
494 */
495 if (!use_slab)
496 BUG_ON(memblock_reserve(addr, new_alloc_size));
497
498 /* Update slab flag */
499 *in_slab = use_slab;
500
501 return 0;
502}
503
504/**
505 * memblock_merge_regions - merge neighboring compatible regions
506 * @type: memblock type to scan
507 *
508 * Scan @type and merge neighboring compatible regions.
509 */
510static void __init_memblock memblock_merge_regions(struct memblock_type *type)
511{
512 int i = 0;
513
514 /* cnt never goes below 1 */
515 while (i < type->cnt - 1) {
516 struct memblock_region *this = &type->regions[i];
517 struct memblock_region *next = &type->regions[i + 1];
518
519 if (this->base + this->size != next->base ||
520 memblock_get_region_node(this) !=
521 memblock_get_region_node(next) ||
522 this->flags != next->flags) {
523 BUG_ON(this->base + this->size > next->base);
524 i++;
525 continue;
526 }
527
528 this->size += next->size;
529 /* move forward from next + 1, index of which is i + 2 */
530 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
531 type->cnt--;
532 }
533}
534
535/**
536 * memblock_insert_region - insert new memblock region
537 * @type: memblock type to insert into
538 * @idx: index for the insertion point
539 * @base: base address of the new region
540 * @size: size of the new region
541 * @nid: node id of the new region
542 * @flags: flags of the new region
543 *
544 * Insert new memblock region [@base, @base + @size) into @type at @idx.
545 * @type must already have extra room to accommodate the new region.
546 */
547static void __init_memblock memblock_insert_region(struct memblock_type *type,
548 int idx, phys_addr_t base,
549 phys_addr_t size,
550 int nid,
551 enum memblock_flags flags)
552{
553 struct memblock_region *rgn = &type->regions[idx];
554
555 BUG_ON(type->cnt >= type->max);
556 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
557 rgn->base = base;
558 rgn->size = size;
559 rgn->flags = flags;
560 memblock_set_region_node(rgn, nid);
561 type->cnt++;
562 type->total_size += size;
563}
564
565/**
566 * memblock_add_range - add new memblock region
567 * @type: memblock type to add new region into
568 * @base: base address of the new region
569 * @size: size of the new region
570 * @nid: nid of the new region
571 * @flags: flags of the new region
572 *
573 * Add new memblock region [@base, @base + @size) into @type. The new region
574 * is allowed to overlap with existing ones - overlaps don't affect already
575 * existing regions. @type is guaranteed to be minimal (all neighbouring
576 * compatible regions are merged) after the addition.
577 *
578 * Return:
579 * 0 on success, -errno on failure.
580 */
581static int __init_memblock memblock_add_range(struct memblock_type *type,
582 phys_addr_t base, phys_addr_t size,
583 int nid, enum memblock_flags flags)
584{
585 bool insert = false;
586 phys_addr_t obase = base;
587 phys_addr_t end = base + memblock_cap_size(base, &size);
588 int idx, nr_new;
589 struct memblock_region *rgn;
590
591 if (!size)
592 return 0;
593
594 /* special case for empty array */
595 if (type->regions[0].size == 0) {
596 WARN_ON(type->cnt != 1 || type->total_size);
597 type->regions[0].base = base;
598 type->regions[0].size = size;
599 type->regions[0].flags = flags;
600 memblock_set_region_node(&type->regions[0], nid);
601 type->total_size = size;
602 return 0;
603 }
604repeat:
605 /*
606 * The following is executed twice. Once with %false @insert and
607 * then with %true. The first counts the number of regions needed
608 * to accommodate the new area. The second actually inserts them.
609 */
610 base = obase;
611 nr_new = 0;
612
613 for_each_memblock_type(idx, type, rgn) {
614 phys_addr_t rbase = rgn->base;
615 phys_addr_t rend = rbase + rgn->size;
616
617 if (rbase >= end)
618 break;
619 if (rend <= base)
620 continue;
621 /*
622 * @rgn overlaps. If it separates the lower part of new
623 * area, insert that portion.
624 */
625 if (rbase > base) {
626#ifdef CONFIG_NEED_MULTIPLE_NODES
627 WARN_ON(nid != memblock_get_region_node(rgn));
628#endif
629 WARN_ON(flags != rgn->flags);
630 nr_new++;
631 if (insert)
632 memblock_insert_region(type, idx++, base,
633 rbase - base, nid,
634 flags);
635 }
636 /* area below @rend is dealt with, forget about it */
637 base = min(rend, end);
638 }
639
640 /* insert the remaining portion */
641 if (base < end) {
642 nr_new++;
643 if (insert)
644 memblock_insert_region(type, idx, base, end - base,
645 nid, flags);
646 }
647
648 if (!nr_new)
649 return 0;
650
651 /*
652 * If this was the first round, resize array and repeat for actual
653 * insertions; otherwise, merge and return.
654 */
655 if (!insert) {
656 while (type->cnt + nr_new > type->max)
657 if (memblock_double_array(type, obase, size) < 0)
658 return -ENOMEM;
659 insert = true;
660 goto repeat;
661 } else {
662 memblock_merge_regions(type);
663 return 0;
664 }
665}
666
667/**
668 * memblock_add_node - add new memblock region within a NUMA node
669 * @base: base address of the new region
670 * @size: size of the new region
671 * @nid: nid of the new region
672 *
673 * Add new memblock region [@base, @base + @size) to the "memory"
674 * type. See memblock_add_range() description for mode details
675 *
676 * Return:
677 * 0 on success, -errno on failure.
678 */
679int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
680 int nid)
681{
682 return memblock_add_range(&memblock.memory, base, size, nid, 0);
683}
684
685/**
686 * memblock_add - add new memblock region
687 * @base: base address of the new region
688 * @size: size of the new region
689 *
690 * Add new memblock region [@base, @base + @size) to the "memory"
691 * type. See memblock_add_range() description for mode details
692 *
693 * Return:
694 * 0 on success, -errno on failure.
695 */
696int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
697{
698 phys_addr_t end = base + size - 1;
699
700 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
701 &base, &end, (void *)_RET_IP_);
702
703 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
704}
705
706/**
707 * memblock_isolate_range - isolate given range into disjoint memblocks
708 * @type: memblock type to isolate range for
709 * @base: base of range to isolate
710 * @size: size of range to isolate
711 * @start_rgn: out parameter for the start of isolated region
712 * @end_rgn: out parameter for the end of isolated region
713 *
714 * Walk @type and ensure that regions don't cross the boundaries defined by
715 * [@base, @base + @size). Crossing regions are split at the boundaries,
716 * which may create at most two more regions. The index of the first
717 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
718 *
719 * Return:
720 * 0 on success, -errno on failure.
721 */
722static int __init_memblock memblock_isolate_range(struct memblock_type *type,
723 phys_addr_t base, phys_addr_t size,
724 int *start_rgn, int *end_rgn)
725{
726 phys_addr_t end = base + memblock_cap_size(base, &size);
727 int idx;
728 struct memblock_region *rgn;
729
730 *start_rgn = *end_rgn = 0;
731
732 if (!size)
733 return 0;
734
735 /* we'll create at most two more regions */
736 while (type->cnt + 2 > type->max)
737 if (memblock_double_array(type, base, size) < 0)
738 return -ENOMEM;
739
740 for_each_memblock_type(idx, type, rgn) {
741 phys_addr_t rbase = rgn->base;
742 phys_addr_t rend = rbase + rgn->size;
743
744 if (rbase >= end)
745 break;
746 if (rend <= base)
747 continue;
748
749 if (rbase < base) {
750 /*
751 * @rgn intersects from below. Split and continue
752 * to process the next region - the new top half.
753 */
754 rgn->base = base;
755 rgn->size -= base - rbase;
756 type->total_size -= base - rbase;
757 memblock_insert_region(type, idx, rbase, base - rbase,
758 memblock_get_region_node(rgn),
759 rgn->flags);
760 } else if (rend > end) {
761 /*
762 * @rgn intersects from above. Split and redo the
763 * current region - the new bottom half.
764 */
765 rgn->base = end;
766 rgn->size -= end - rbase;
767 type->total_size -= end - rbase;
768 memblock_insert_region(type, idx--, rbase, end - rbase,
769 memblock_get_region_node(rgn),
770 rgn->flags);
771 } else {
772 /* @rgn is fully contained, record it */
773 if (!*end_rgn)
774 *start_rgn = idx;
775 *end_rgn = idx + 1;
776 }
777 }
778
779 return 0;
780}
781
782static int __init_memblock memblock_remove_range(struct memblock_type *type,
783 phys_addr_t base, phys_addr_t size)
784{
785 int start_rgn, end_rgn;
786 int i, ret;
787
788 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
789 if (ret)
790 return ret;
791
792 for (i = end_rgn - 1; i >= start_rgn; i--)
793 memblock_remove_region(type, i);
794 return 0;
795}
796
797int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
798{
799 phys_addr_t end = base + size - 1;
800
801 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
802 &base, &end, (void *)_RET_IP_);
803
804 return memblock_remove_range(&memblock.memory, base, size);
805}
806
807/**
808 * memblock_free - free boot memory block
809 * @base: phys starting address of the boot memory block
810 * @size: size of the boot memory block in bytes
811 *
812 * Free boot memory block previously allocated by memblock_alloc_xx() API.
813 * The freeing memory will not be released to the buddy allocator.
814 */
815int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
816{
817 phys_addr_t end = base + size - 1;
818
819 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
820 &base, &end, (void *)_RET_IP_);
821
822 kmemleak_free_part_phys(base, size);
823 return memblock_remove_range(&memblock.reserved, base, size);
824}
825
826int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
827{
828 phys_addr_t end = base + size - 1;
829
830 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
831 &base, &end, (void *)_RET_IP_);
832
833 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
834}
835
836#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
837int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
838{
839 phys_addr_t end = base + size - 1;
840
841 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
842 &base, &end, (void *)_RET_IP_);
843
844 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
845}
846#endif
847
848/**
849 * memblock_setclr_flag - set or clear flag for a memory region
850 * @base: base address of the region
851 * @size: size of the region
852 * @set: set or clear the flag
853 * @flag: the flag to udpate
854 *
855 * This function isolates region [@base, @base + @size), and sets/clears flag
856 *
857 * Return: 0 on success, -errno on failure.
858 */
859static int __init_memblock memblock_setclr_flag(phys_addr_t base,
860 phys_addr_t size, int set, int flag)
861{
862 struct memblock_type *type = &memblock.memory;
863 int i, ret, start_rgn, end_rgn;
864
865 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
866 if (ret)
867 return ret;
868
869 for (i = start_rgn; i < end_rgn; i++) {
870 struct memblock_region *r = &type->regions[i];
871
872 if (set)
873 r->flags |= flag;
874 else
875 r->flags &= ~flag;
876 }
877
878 memblock_merge_regions(type);
879 return 0;
880}
881
882/**
883 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
884 * @base: the base phys addr of the region
885 * @size: the size of the region
886 *
887 * Return: 0 on success, -errno on failure.
888 */
889int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
890{
891 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
892}
893
894/**
895 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
896 * @base: the base phys addr of the region
897 * @size: the size of the region
898 *
899 * Return: 0 on success, -errno on failure.
900 */
901int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
902{
903 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
904}
905
906/**
907 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
908 * @base: the base phys addr of the region
909 * @size: the size of the region
910 *
911 * Return: 0 on success, -errno on failure.
912 */
913int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
914{
915 system_has_some_mirror = true;
916
917 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
918}
919
920/**
921 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
922 * @base: the base phys addr of the region
923 * @size: the size of the region
924 *
925 * Return: 0 on success, -errno on failure.
926 */
927int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
928{
929 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
930}
931
932/**
933 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
934 * @base: the base phys addr of the region
935 * @size: the size of the region
936 *
937 * Return: 0 on success, -errno on failure.
938 */
939int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
940{
941 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
942}
943
944/**
945 * __next_reserved_mem_region - next function for for_each_reserved_region()
946 * @idx: pointer to u64 loop variable
947 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
948 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
949 *
950 * Iterate over all reserved memory regions.
951 */
952void __init_memblock __next_reserved_mem_region(u64 *idx,
953 phys_addr_t *out_start,
954 phys_addr_t *out_end)
955{
956 struct memblock_type *type = &memblock.reserved;
957
958 if (*idx < type->cnt) {
959 struct memblock_region *r = &type->regions[*idx];
960 phys_addr_t base = r->base;
961 phys_addr_t size = r->size;
962
963 if (out_start)
964 *out_start = base;
965 if (out_end)
966 *out_end = base + size - 1;
967
968 *idx += 1;
969 return;
970 }
971
972 /* signal end of iteration */
973 *idx = ULLONG_MAX;
974}
975
976static bool should_skip_region(struct memblock_region *m, int nid, int flags)
977{
978 int m_nid = memblock_get_region_node(m);
979
980 /* only memory regions are associated with nodes, check it */
981 if (nid != NUMA_NO_NODE && nid != m_nid)
982 return true;
983
984 /* skip hotpluggable memory regions if needed */
985 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
986 return true;
987
988 /* if we want mirror memory skip non-mirror memory regions */
989 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
990 return true;
991
992 /* skip nomap memory unless we were asked for it explicitly */
993 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
994 return true;
995
996 return false;
997}
998
999/**
1000 * __next_mem_range - next function for for_each_free_mem_range() etc.
1001 * @idx: pointer to u64 loop variable
1002 * @nid: node selector, %NUMA_NO_NODE for all nodes
1003 * @flags: pick from blocks based on memory attributes
1004 * @type_a: pointer to memblock_type from where the range is taken
1005 * @type_b: pointer to memblock_type which excludes memory from being taken
1006 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1007 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1008 * @out_nid: ptr to int for nid of the range, can be %NULL
1009 *
1010 * Find the first area from *@idx which matches @nid, fill the out
1011 * parameters, and update *@idx for the next iteration. The lower 32bit of
1012 * *@idx contains index into type_a and the upper 32bit indexes the
1013 * areas before each region in type_b. For example, if type_b regions
1014 * look like the following,
1015 *
1016 * 0:[0-16), 1:[32-48), 2:[128-130)
1017 *
1018 * The upper 32bit indexes the following regions.
1019 *
1020 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1021 *
1022 * As both region arrays are sorted, the function advances the two indices
1023 * in lockstep and returns each intersection.
1024 */
1025void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1026 struct memblock_type *type_a,
1027 struct memblock_type *type_b, phys_addr_t *out_start,
1028 phys_addr_t *out_end, int *out_nid)
1029{
1030 int idx_a = *idx & 0xffffffff;
1031 int idx_b = *idx >> 32;
1032
1033 if (WARN_ONCE(nid == MAX_NUMNODES,
1034 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1035 nid = NUMA_NO_NODE;
1036
1037 for (; idx_a < type_a->cnt; idx_a++) {
1038 struct memblock_region *m = &type_a->regions[idx_a];
1039
1040 phys_addr_t m_start = m->base;
1041 phys_addr_t m_end = m->base + m->size;
1042 int m_nid = memblock_get_region_node(m);
1043
1044 if (should_skip_region(m, nid, flags))
1045 continue;
1046
1047 if (!type_b) {
1048 if (out_start)
1049 *out_start = m_start;
1050 if (out_end)
1051 *out_end = m_end;
1052 if (out_nid)
1053 *out_nid = m_nid;
1054 idx_a++;
1055 *idx = (u32)idx_a | (u64)idx_b << 32;
1056 return;
1057 }
1058
1059 /* scan areas before each reservation */
1060 for (; idx_b < type_b->cnt + 1; idx_b++) {
1061 struct memblock_region *r;
1062 phys_addr_t r_start;
1063 phys_addr_t r_end;
1064
1065 r = &type_b->regions[idx_b];
1066 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1067 r_end = idx_b < type_b->cnt ?
1068 r->base : PHYS_ADDR_MAX;
1069
1070 /*
1071 * if idx_b advanced past idx_a,
1072 * break out to advance idx_a
1073 */
1074 if (r_start >= m_end)
1075 break;
1076 /* if the two regions intersect, we're done */
1077 if (m_start < r_end) {
1078 if (out_start)
1079 *out_start =
1080 max(m_start, r_start);
1081 if (out_end)
1082 *out_end = min(m_end, r_end);
1083 if (out_nid)
1084 *out_nid = m_nid;
1085 /*
1086 * The region which ends first is
1087 * advanced for the next iteration.
1088 */
1089 if (m_end <= r_end)
1090 idx_a++;
1091 else
1092 idx_b++;
1093 *idx = (u32)idx_a | (u64)idx_b << 32;
1094 return;
1095 }
1096 }
1097 }
1098
1099 /* signal end of iteration */
1100 *idx = ULLONG_MAX;
1101}
1102
1103/**
1104 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1105 *
1106 * @idx: pointer to u64 loop variable
1107 * @nid: node selector, %NUMA_NO_NODE for all nodes
1108 * @flags: pick from blocks based on memory attributes
1109 * @type_a: pointer to memblock_type from where the range is taken
1110 * @type_b: pointer to memblock_type which excludes memory from being taken
1111 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1112 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1113 * @out_nid: ptr to int for nid of the range, can be %NULL
1114 *
1115 * Finds the next range from type_a which is not marked as unsuitable
1116 * in type_b.
1117 *
1118 * Reverse of __next_mem_range().
1119 */
1120void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1121 enum memblock_flags flags,
1122 struct memblock_type *type_a,
1123 struct memblock_type *type_b,
1124 phys_addr_t *out_start,
1125 phys_addr_t *out_end, int *out_nid)
1126{
1127 int idx_a = *idx & 0xffffffff;
1128 int idx_b = *idx >> 32;
1129
1130 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1131 nid = NUMA_NO_NODE;
1132
1133 if (*idx == (u64)ULLONG_MAX) {
1134 idx_a = type_a->cnt - 1;
1135 if (type_b != NULL)
1136 idx_b = type_b->cnt;
1137 else
1138 idx_b = 0;
1139 }
1140
1141 for (; idx_a >= 0; idx_a--) {
1142 struct memblock_region *m = &type_a->regions[idx_a];
1143
1144 phys_addr_t m_start = m->base;
1145 phys_addr_t m_end = m->base + m->size;
1146 int m_nid = memblock_get_region_node(m);
1147
1148 if (should_skip_region(m, nid, flags))
1149 continue;
1150
1151 if (!type_b) {
1152 if (out_start)
1153 *out_start = m_start;
1154 if (out_end)
1155 *out_end = m_end;
1156 if (out_nid)
1157 *out_nid = m_nid;
1158 idx_a--;
1159 *idx = (u32)idx_a | (u64)idx_b << 32;
1160 return;
1161 }
1162
1163 /* scan areas before each reservation */
1164 for (; idx_b >= 0; idx_b--) {
1165 struct memblock_region *r;
1166 phys_addr_t r_start;
1167 phys_addr_t r_end;
1168
1169 r = &type_b->regions[idx_b];
1170 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1171 r_end = idx_b < type_b->cnt ?
1172 r->base : PHYS_ADDR_MAX;
1173 /*
1174 * if idx_b advanced past idx_a,
1175 * break out to advance idx_a
1176 */
1177
1178 if (r_end <= m_start)
1179 break;
1180 /* if the two regions intersect, we're done */
1181 if (m_end > r_start) {
1182 if (out_start)
1183 *out_start = max(m_start, r_start);
1184 if (out_end)
1185 *out_end = min(m_end, r_end);
1186 if (out_nid)
1187 *out_nid = m_nid;
1188 if (m_start >= r_start)
1189 idx_a--;
1190 else
1191 idx_b--;
1192 *idx = (u32)idx_a | (u64)idx_b << 32;
1193 return;
1194 }
1195 }
1196 }
1197 /* signal end of iteration */
1198 *idx = ULLONG_MAX;
1199}
1200
1201/*
1202 * Common iterator interface used to define for_each_mem_pfn_range().
1203 */
1204void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1205 unsigned long *out_start_pfn,
1206 unsigned long *out_end_pfn, int *out_nid)
1207{
1208 struct memblock_type *type = &memblock.memory;
1209 struct memblock_region *r;
1210 int r_nid;
1211
1212 while (++*idx < type->cnt) {
1213 r = &type->regions[*idx];
1214 r_nid = memblock_get_region_node(r);
1215
1216 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1217 continue;
1218 if (nid == MAX_NUMNODES || nid == r_nid)
1219 break;
1220 }
1221 if (*idx >= type->cnt) {
1222 *idx = -1;
1223 return;
1224 }
1225
1226 if (out_start_pfn)
1227 *out_start_pfn = PFN_UP(r->base);
1228 if (out_end_pfn)
1229 *out_end_pfn = PFN_DOWN(r->base + r->size);
1230 if (out_nid)
1231 *out_nid = r_nid;
1232}
1233
1234/**
1235 * memblock_set_node - set node ID on memblock regions
1236 * @base: base of area to set node ID for
1237 * @size: size of area to set node ID for
1238 * @type: memblock type to set node ID for
1239 * @nid: node ID to set
1240 *
1241 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1242 * Regions which cross the area boundaries are split as necessary.
1243 *
1244 * Return:
1245 * 0 on success, -errno on failure.
1246 */
1247int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1248 struct memblock_type *type, int nid)
1249{
1250#ifdef CONFIG_NEED_MULTIPLE_NODES
1251 int start_rgn, end_rgn;
1252 int i, ret;
1253
1254 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1255 if (ret)
1256 return ret;
1257
1258 for (i = start_rgn; i < end_rgn; i++)
1259 memblock_set_region_node(&type->regions[i], nid);
1260
1261 memblock_merge_regions(type);
1262#endif
1263 return 0;
1264}
1265
1266#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1267/**
1268 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1269 *
1270 * @idx: pointer to u64 loop variable
1271 * @zone: zone in which all of the memory blocks reside
1272 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1273 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1274 *
1275 * This function is meant to be a zone/pfn specific wrapper for the
1276 * for_each_mem_range type iterators. Specifically they are used in the
1277 * deferred memory init routines and as such we were duplicating much of
1278 * this logic throughout the code. So instead of having it in multiple
1279 * locations it seemed like it would make more sense to centralize this to
1280 * one new iterator that does everything they need.
1281 */
1282void __init_memblock
1283__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1284 unsigned long *out_spfn, unsigned long *out_epfn)
1285{
1286 int zone_nid = zone_to_nid(zone);
1287 phys_addr_t spa, epa;
1288 int nid;
1289
1290 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1291 &memblock.memory, &memblock.reserved,
1292 &spa, &epa, &nid);
1293
1294 while (*idx != U64_MAX) {
1295 unsigned long epfn = PFN_DOWN(epa);
1296 unsigned long spfn = PFN_UP(spa);
1297
1298 /*
1299 * Verify the end is at least past the start of the zone and
1300 * that we have at least one PFN to initialize.
1301 */
1302 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1303 /* if we went too far just stop searching */
1304 if (zone_end_pfn(zone) <= spfn) {
1305 *idx = U64_MAX;
1306 break;
1307 }
1308
1309 if (out_spfn)
1310 *out_spfn = max(zone->zone_start_pfn, spfn);
1311 if (out_epfn)
1312 *out_epfn = min(zone_end_pfn(zone), epfn);
1313
1314 return;
1315 }
1316
1317 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1318 &memblock.memory, &memblock.reserved,
1319 &spa, &epa, &nid);
1320 }
1321
1322 /* signal end of iteration */
1323 if (out_spfn)
1324 *out_spfn = ULONG_MAX;
1325 if (out_epfn)
1326 *out_epfn = 0;
1327}
1328
1329#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1330
1331/**
1332 * memblock_alloc_range_nid - allocate boot memory block
1333 * @size: size of memory block to be allocated in bytes
1334 * @align: alignment of the region and block's size
1335 * @start: the lower bound of the memory region to allocate (phys address)
1336 * @end: the upper bound of the memory region to allocate (phys address)
1337 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1338 * @exact_nid: control the allocation fall back to other nodes
1339 *
1340 * The allocation is performed from memory region limited by
1341 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1342 *
1343 * If the specified node can not hold the requested memory and @exact_nid
1344 * is false, the allocation falls back to any node in the system.
1345 *
1346 * For systems with memory mirroring, the allocation is attempted first
1347 * from the regions with mirroring enabled and then retried from any
1348 * memory region.
1349 *
1350 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1351 * allocated boot memory block, so that it is never reported as leaks.
1352 *
1353 * Return:
1354 * Physical address of allocated memory block on success, %0 on failure.
1355 */
1356phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1357 phys_addr_t align, phys_addr_t start,
1358 phys_addr_t end, int nid,
1359 bool exact_nid)
1360{
1361 enum memblock_flags flags = choose_memblock_flags();
1362 phys_addr_t found;
1363
1364 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1365 nid = NUMA_NO_NODE;
1366
1367 if (!align) {
1368 /* Can't use WARNs this early in boot on powerpc */
1369 dump_stack();
1370 align = SMP_CACHE_BYTES;
1371 }
1372
1373again:
1374 found = memblock_find_in_range_node(size, align, start, end, nid,
1375 flags);
1376 if (found && !memblock_reserve(found, size))
1377 goto done;
1378
1379 if (nid != NUMA_NO_NODE && !exact_nid) {
1380 found = memblock_find_in_range_node(size, align, start,
1381 end, NUMA_NO_NODE,
1382 flags);
1383 if (found && !memblock_reserve(found, size))
1384 goto done;
1385 }
1386
1387 if (flags & MEMBLOCK_MIRROR) {
1388 flags &= ~MEMBLOCK_MIRROR;
1389 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1390 &size);
1391 goto again;
1392 }
1393
1394 return 0;
1395
1396done:
1397 /* Skip kmemleak for kasan_init() due to high volume. */
1398 if (end != MEMBLOCK_ALLOC_KASAN)
1399 /*
1400 * The min_count is set to 0 so that memblock allocated
1401 * blocks are never reported as leaks. This is because many
1402 * of these blocks are only referred via the physical
1403 * address which is not looked up by kmemleak.
1404 */
1405 kmemleak_alloc_phys(found, size, 0, 0);
1406
1407 return found;
1408}
1409
1410/**
1411 * memblock_phys_alloc_range - allocate a memory block inside specified range
1412 * @size: size of memory block to be allocated in bytes
1413 * @align: alignment of the region and block's size
1414 * @start: the lower bound of the memory region to allocate (physical address)
1415 * @end: the upper bound of the memory region to allocate (physical address)
1416 *
1417 * Allocate @size bytes in the between @start and @end.
1418 *
1419 * Return: physical address of the allocated memory block on success,
1420 * %0 on failure.
1421 */
1422phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1423 phys_addr_t align,
1424 phys_addr_t start,
1425 phys_addr_t end)
1426{
1427 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1428 false);
1429}
1430
1431/**
1432 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1433 * @size: size of memory block to be allocated in bytes
1434 * @align: alignment of the region and block's size
1435 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1436 *
1437 * Allocates memory block from the specified NUMA node. If the node
1438 * has no available memory, attempts to allocated from any node in the
1439 * system.
1440 *
1441 * Return: physical address of the allocated memory block on success,
1442 * %0 on failure.
1443 */
1444phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1445{
1446 return memblock_alloc_range_nid(size, align, 0,
1447 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1448}
1449
1450/**
1451 * memblock_alloc_internal - allocate boot memory block
1452 * @size: size of memory block to be allocated in bytes
1453 * @align: alignment of the region and block's size
1454 * @min_addr: the lower bound of the memory region to allocate (phys address)
1455 * @max_addr: the upper bound of the memory region to allocate (phys address)
1456 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1457 * @exact_nid: control the allocation fall back to other nodes
1458 *
1459 * Allocates memory block using memblock_alloc_range_nid() and
1460 * converts the returned physical address to virtual.
1461 *
1462 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1463 * will fall back to memory below @min_addr. Other constraints, such
1464 * as node and mirrored memory will be handled again in
1465 * memblock_alloc_range_nid().
1466 *
1467 * Return:
1468 * Virtual address of allocated memory block on success, NULL on failure.
1469 */
1470static void * __init memblock_alloc_internal(
1471 phys_addr_t size, phys_addr_t align,
1472 phys_addr_t min_addr, phys_addr_t max_addr,
1473 int nid, bool exact_nid)
1474{
1475 phys_addr_t alloc;
1476
1477 /*
1478 * Detect any accidental use of these APIs after slab is ready, as at
1479 * this moment memblock may be deinitialized already and its
1480 * internal data may be destroyed (after execution of memblock_free_all)
1481 */
1482 if (WARN_ON_ONCE(slab_is_available()))
1483 return kzalloc_node(size, GFP_NOWAIT, nid);
1484
1485 if (max_addr > memblock.current_limit)
1486 max_addr = memblock.current_limit;
1487
1488 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1489 exact_nid);
1490
1491 /* retry allocation without lower limit */
1492 if (!alloc && min_addr)
1493 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1494 exact_nid);
1495
1496 if (!alloc)
1497 return NULL;
1498
1499 return phys_to_virt(alloc);
1500}
1501
1502/**
1503 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1504 * without zeroing memory
1505 * @size: size of memory block to be allocated in bytes
1506 * @align: alignment of the region and block's size
1507 * @min_addr: the lower bound of the memory region from where the allocation
1508 * is preferred (phys address)
1509 * @max_addr: the upper bound of the memory region from where the allocation
1510 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1511 * allocate only from memory limited by memblock.current_limit value
1512 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1513 *
1514 * Public function, provides additional debug information (including caller
1515 * info), if enabled. Does not zero allocated memory.
1516 *
1517 * Return:
1518 * Virtual address of allocated memory block on success, NULL on failure.
1519 */
1520void * __init memblock_alloc_exact_nid_raw(
1521 phys_addr_t size, phys_addr_t align,
1522 phys_addr_t min_addr, phys_addr_t max_addr,
1523 int nid)
1524{
1525 void *ptr;
1526
1527 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1528 __func__, (u64)size, (u64)align, nid, &min_addr,
1529 &max_addr, (void *)_RET_IP_);
1530
1531 ptr = memblock_alloc_internal(size, align,
1532 min_addr, max_addr, nid, true);
1533 if (ptr && size > 0)
1534 page_init_poison(ptr, size);
1535
1536 return ptr;
1537}
1538
1539/**
1540 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1541 * memory and without panicking
1542 * @size: size of memory block to be allocated in bytes
1543 * @align: alignment of the region and block's size
1544 * @min_addr: the lower bound of the memory region from where the allocation
1545 * is preferred (phys address)
1546 * @max_addr: the upper bound of the memory region from where the allocation
1547 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1548 * allocate only from memory limited by memblock.current_limit value
1549 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1550 *
1551 * Public function, provides additional debug information (including caller
1552 * info), if enabled. Does not zero allocated memory, does not panic if request
1553 * cannot be satisfied.
1554 *
1555 * Return:
1556 * Virtual address of allocated memory block on success, NULL on failure.
1557 */
1558void * __init memblock_alloc_try_nid_raw(
1559 phys_addr_t size, phys_addr_t align,
1560 phys_addr_t min_addr, phys_addr_t max_addr,
1561 int nid)
1562{
1563 void *ptr;
1564
1565 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1566 __func__, (u64)size, (u64)align, nid, &min_addr,
1567 &max_addr, (void *)_RET_IP_);
1568
1569 ptr = memblock_alloc_internal(size, align,
1570 min_addr, max_addr, nid, false);
1571 if (ptr && size > 0)
1572 page_init_poison(ptr, size);
1573
1574 return ptr;
1575}
1576
1577/**
1578 * memblock_alloc_try_nid - allocate boot memory block
1579 * @size: size of memory block to be allocated in bytes
1580 * @align: alignment of the region and block's size
1581 * @min_addr: the lower bound of the memory region from where the allocation
1582 * is preferred (phys address)
1583 * @max_addr: the upper bound of the memory region from where the allocation
1584 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1585 * allocate only from memory limited by memblock.current_limit value
1586 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1587 *
1588 * Public function, provides additional debug information (including caller
1589 * info), if enabled. This function zeroes the allocated memory.
1590 *
1591 * Return:
1592 * Virtual address of allocated memory block on success, NULL on failure.
1593 */
1594void * __init memblock_alloc_try_nid(
1595 phys_addr_t size, phys_addr_t align,
1596 phys_addr_t min_addr, phys_addr_t max_addr,
1597 int nid)
1598{
1599 void *ptr;
1600
1601 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1602 __func__, (u64)size, (u64)align, nid, &min_addr,
1603 &max_addr, (void *)_RET_IP_);
1604 ptr = memblock_alloc_internal(size, align,
1605 min_addr, max_addr, nid, false);
1606 if (ptr)
1607 memset(ptr, 0, size);
1608
1609 return ptr;
1610}
1611
1612/**
1613 * __memblock_free_late - free pages directly to buddy allocator
1614 * @base: phys starting address of the boot memory block
1615 * @size: size of the boot memory block in bytes
1616 *
1617 * This is only useful when the memblock allocator has already been torn
1618 * down, but we are still initializing the system. Pages are released directly
1619 * to the buddy allocator.
1620 */
1621void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1622{
1623 phys_addr_t cursor, end;
1624
1625 end = base + size - 1;
1626 memblock_dbg("%s: [%pa-%pa] %pS\n",
1627 __func__, &base, &end, (void *)_RET_IP_);
1628 kmemleak_free_part_phys(base, size);
1629 cursor = PFN_UP(base);
1630 end = PFN_DOWN(base + size);
1631
1632 for (; cursor < end; cursor++) {
1633 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1634 totalram_pages_inc();
1635 }
1636}
1637
1638/*
1639 * Remaining API functions
1640 */
1641
1642phys_addr_t __init_memblock memblock_phys_mem_size(void)
1643{
1644 return memblock.memory.total_size;
1645}
1646
1647phys_addr_t __init_memblock memblock_reserved_size(void)
1648{
1649 return memblock.reserved.total_size;
1650}
1651
1652phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1653{
1654 unsigned long pages = 0;
1655 struct memblock_region *r;
1656 unsigned long start_pfn, end_pfn;
1657
1658 for_each_memblock(memory, r) {
1659 start_pfn = memblock_region_memory_base_pfn(r);
1660 end_pfn = memblock_region_memory_end_pfn(r);
1661 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1662 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1663 pages += end_pfn - start_pfn;
1664 }
1665
1666 return PFN_PHYS(pages);
1667}
1668
1669/* lowest address */
1670phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1671{
1672 return memblock.memory.regions[0].base;
1673}
1674
1675phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1676{
1677 int idx = memblock.memory.cnt - 1;
1678
1679 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1680}
1681
1682static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1683{
1684 phys_addr_t max_addr = PHYS_ADDR_MAX;
1685 struct memblock_region *r;
1686
1687 /*
1688 * translate the memory @limit size into the max address within one of
1689 * the memory memblock regions, if the @limit exceeds the total size
1690 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1691 */
1692 for_each_memblock(memory, r) {
1693 if (limit <= r->size) {
1694 max_addr = r->base + limit;
1695 break;
1696 }
1697 limit -= r->size;
1698 }
1699
1700 return max_addr;
1701}
1702
1703void __init memblock_enforce_memory_limit(phys_addr_t limit)
1704{
1705 phys_addr_t max_addr;
1706
1707 if (!limit)
1708 return;
1709
1710 max_addr = __find_max_addr(limit);
1711
1712 /* @limit exceeds the total size of the memory, do nothing */
1713 if (max_addr == PHYS_ADDR_MAX)
1714 return;
1715
1716 /* truncate both memory and reserved regions */
1717 memblock_remove_range(&memblock.memory, max_addr,
1718 PHYS_ADDR_MAX);
1719 memblock_remove_range(&memblock.reserved, max_addr,
1720 PHYS_ADDR_MAX);
1721}
1722
1723void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1724{
1725 int start_rgn, end_rgn;
1726 int i, ret;
1727
1728 if (!size)
1729 return;
1730
1731 ret = memblock_isolate_range(&memblock.memory, base, size,
1732 &start_rgn, &end_rgn);
1733 if (ret)
1734 return;
1735
1736 /* remove all the MAP regions */
1737 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1738 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1739 memblock_remove_region(&memblock.memory, i);
1740
1741 for (i = start_rgn - 1; i >= 0; i--)
1742 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1743 memblock_remove_region(&memblock.memory, i);
1744
1745 /* truncate the reserved regions */
1746 memblock_remove_range(&memblock.reserved, 0, base);
1747 memblock_remove_range(&memblock.reserved,
1748 base + size, PHYS_ADDR_MAX);
1749}
1750
1751void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1752{
1753 phys_addr_t max_addr;
1754
1755 if (!limit)
1756 return;
1757
1758 max_addr = __find_max_addr(limit);
1759
1760 /* @limit exceeds the total size of the memory, do nothing */
1761 if (max_addr == PHYS_ADDR_MAX)
1762 return;
1763
1764 memblock_cap_memory_range(0, max_addr);
1765}
1766
1767static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1768{
1769 unsigned int left = 0, right = type->cnt;
1770
1771 do {
1772 unsigned int mid = (right + left) / 2;
1773
1774 if (addr < type->regions[mid].base)
1775 right = mid;
1776 else if (addr >= (type->regions[mid].base +
1777 type->regions[mid].size))
1778 left = mid + 1;
1779 else
1780 return mid;
1781 } while (left < right);
1782 return -1;
1783}
1784
1785bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1786{
1787 return memblock_search(&memblock.reserved, addr) != -1;
1788}
1789
1790bool __init_memblock memblock_is_memory(phys_addr_t addr)
1791{
1792 return memblock_search(&memblock.memory, addr) != -1;
1793}
1794
1795bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1796{
1797 int i = memblock_search(&memblock.memory, addr);
1798
1799 if (i == -1)
1800 return false;
1801 return !memblock_is_nomap(&memblock.memory.regions[i]);
1802}
1803
1804int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1805 unsigned long *start_pfn, unsigned long *end_pfn)
1806{
1807 struct memblock_type *type = &memblock.memory;
1808 int mid = memblock_search(type, PFN_PHYS(pfn));
1809
1810 if (mid == -1)
1811 return -1;
1812
1813 *start_pfn = PFN_DOWN(type->regions[mid].base);
1814 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1815
1816 return memblock_get_region_node(&type->regions[mid]);
1817}
1818
1819/**
1820 * memblock_is_region_memory - check if a region is a subset of memory
1821 * @base: base of region to check
1822 * @size: size of region to check
1823 *
1824 * Check if the region [@base, @base + @size) is a subset of a memory block.
1825 *
1826 * Return:
1827 * 0 if false, non-zero if true
1828 */
1829bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1830{
1831 int idx = memblock_search(&memblock.memory, base);
1832 phys_addr_t end = base + memblock_cap_size(base, &size);
1833
1834 if (idx == -1)
1835 return false;
1836 return (memblock.memory.regions[idx].base +
1837 memblock.memory.regions[idx].size) >= end;
1838}
1839
1840/**
1841 * memblock_is_region_reserved - check if a region intersects reserved memory
1842 * @base: base of region to check
1843 * @size: size of region to check
1844 *
1845 * Check if the region [@base, @base + @size) intersects a reserved
1846 * memory block.
1847 *
1848 * Return:
1849 * True if they intersect, false if not.
1850 */
1851bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1852{
1853 memblock_cap_size(base, &size);
1854 return memblock_overlaps_region(&memblock.reserved, base, size);
1855}
1856
1857void __init_memblock memblock_trim_memory(phys_addr_t align)
1858{
1859 phys_addr_t start, end, orig_start, orig_end;
1860 struct memblock_region *r;
1861
1862 for_each_memblock(memory, r) {
1863 orig_start = r->base;
1864 orig_end = r->base + r->size;
1865 start = round_up(orig_start, align);
1866 end = round_down(orig_end, align);
1867
1868 if (start == orig_start && end == orig_end)
1869 continue;
1870
1871 if (start < end) {
1872 r->base = start;
1873 r->size = end - start;
1874 } else {
1875 memblock_remove_region(&memblock.memory,
1876 r - memblock.memory.regions);
1877 r--;
1878 }
1879 }
1880}
1881
1882void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1883{
1884 memblock.current_limit = limit;
1885}
1886
1887phys_addr_t __init_memblock memblock_get_current_limit(void)
1888{
1889 return memblock.current_limit;
1890}
1891
1892static void __init_memblock memblock_dump(struct memblock_type *type)
1893{
1894 phys_addr_t base, end, size;
1895 enum memblock_flags flags;
1896 int idx;
1897 struct memblock_region *rgn;
1898
1899 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1900
1901 for_each_memblock_type(idx, type, rgn) {
1902 char nid_buf[32] = "";
1903
1904 base = rgn->base;
1905 size = rgn->size;
1906 end = base + size - 1;
1907 flags = rgn->flags;
1908#ifdef CONFIG_NEED_MULTIPLE_NODES
1909 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1910 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1911 memblock_get_region_node(rgn));
1912#endif
1913 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1914 type->name, idx, &base, &end, &size, nid_buf, flags);
1915 }
1916}
1917
1918void __init_memblock __memblock_dump_all(void)
1919{
1920 pr_info("MEMBLOCK configuration:\n");
1921 pr_info(" memory size = %pa reserved size = %pa\n",
1922 &memblock.memory.total_size,
1923 &memblock.reserved.total_size);
1924
1925 memblock_dump(&memblock.memory);
1926 memblock_dump(&memblock.reserved);
1927#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1928 memblock_dump(&physmem);
1929#endif
1930}
1931
1932void __init memblock_allow_resize(void)
1933{
1934 memblock_can_resize = 1;
1935}
1936
1937static int __init early_memblock(char *p)
1938{
1939 if (p && strstr(p, "debug"))
1940 memblock_debug = 1;
1941 return 0;
1942}
1943early_param("memblock", early_memblock);
1944
1945static void __init __free_pages_memory(unsigned long start, unsigned long end)
1946{
1947 int order;
1948
1949 while (start < end) {
1950 order = min(MAX_ORDER - 1UL, __ffs(start));
1951
1952 while (start + (1UL << order) > end)
1953 order--;
1954
1955 memblock_free_pages(pfn_to_page(start), start, order);
1956
1957 start += (1UL << order);
1958 }
1959}
1960
1961static unsigned long __init __free_memory_core(phys_addr_t start,
1962 phys_addr_t end)
1963{
1964 unsigned long start_pfn = PFN_UP(start);
1965 unsigned long end_pfn = min_t(unsigned long,
1966 PFN_DOWN(end), max_low_pfn);
1967
1968 if (start_pfn >= end_pfn)
1969 return 0;
1970
1971 __free_pages_memory(start_pfn, end_pfn);
1972
1973 return end_pfn - start_pfn;
1974}
1975
1976static unsigned long __init free_low_memory_core_early(void)
1977{
1978 unsigned long count = 0;
1979 phys_addr_t start, end;
1980 u64 i;
1981
1982 memblock_clear_hotplug(0, -1);
1983
1984 for_each_reserved_mem_region(i, &start, &end)
1985 reserve_bootmem_region(start, end);
1986
1987 /*
1988 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1989 * because in some case like Node0 doesn't have RAM installed
1990 * low ram will be on Node1
1991 */
1992 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1993 NULL)
1994 count += __free_memory_core(start, end);
1995
1996 return count;
1997}
1998
1999static int reset_managed_pages_done __initdata;
2000
2001void reset_node_managed_pages(pg_data_t *pgdat)
2002{
2003 struct zone *z;
2004
2005 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2006 atomic_long_set(&z->managed_pages, 0);
2007}
2008
2009void __init reset_all_zones_managed_pages(void)
2010{
2011 struct pglist_data *pgdat;
2012
2013 if (reset_managed_pages_done)
2014 return;
2015
2016 for_each_online_pgdat(pgdat)
2017 reset_node_managed_pages(pgdat);
2018
2019 reset_managed_pages_done = 1;
2020}
2021
2022/**
2023 * memblock_free_all - release free pages to the buddy allocator
2024 *
2025 * Return: the number of pages actually released.
2026 */
2027unsigned long __init memblock_free_all(void)
2028{
2029 unsigned long pages;
2030
2031 reset_all_zones_managed_pages();
2032
2033 pages = free_low_memory_core_early();
2034 totalram_pages_add(pages);
2035
2036 return pages;
2037}
2038
2039#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2040
2041static int memblock_debug_show(struct seq_file *m, void *private)
2042{
2043 struct memblock_type *type = m->private;
2044 struct memblock_region *reg;
2045 int i;
2046 phys_addr_t end;
2047
2048 for (i = 0; i < type->cnt; i++) {
2049 reg = &type->regions[i];
2050 end = reg->base + reg->size - 1;
2051
2052 seq_printf(m, "%4d: ", i);
2053 seq_printf(m, "%pa..%pa\n", ®->base, &end);
2054 }
2055 return 0;
2056}
2057DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2058
2059static int __init memblock_init_debugfs(void)
2060{
2061 struct dentry *root = debugfs_create_dir("memblock", NULL);
2062
2063 debugfs_create_file("memory", 0444, root,
2064 &memblock.memory, &memblock_debug_fops);
2065 debugfs_create_file("reserved", 0444, root,
2066 &memblock.reserved, &memblock_debug_fops);
2067#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2068 debugfs_create_file("physmem", 0444, root, &physmem,
2069 &memblock_debug_fops);
2070#endif
2071
2072 return 0;
2073}
2074__initcall(memblock_init_debugfs);
2075
2076#endif /* CONFIG_DEBUG_FS */