Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
   9#include "messages.h"
  10#include "ctree.h"
  11#include "delayed-ref.h"
  12#include "transaction.h"
  13#include "qgroup.h"
  14#include "space-info.h"
  15#include "tree-mod-log.h"
  16#include "fs.h"
  17
  18struct kmem_cache *btrfs_delayed_ref_head_cachep;
  19struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  20struct kmem_cache *btrfs_delayed_data_ref_cachep;
  21struct kmem_cache *btrfs_delayed_extent_op_cachep;
  22/*
  23 * delayed back reference update tracking.  For subvolume trees
  24 * we queue up extent allocations and backref maintenance for
  25 * delayed processing.   This avoids deep call chains where we
  26 * add extents in the middle of btrfs_search_slot, and it allows
  27 * us to buffer up frequently modified backrefs in an rb tree instead
  28 * of hammering updates on the extent allocation tree.
  29 */
  30
  31bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  32{
  33	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  34	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  35	bool ret = false;
  36	u64 reserved;
  37
  38	spin_lock(&global_rsv->lock);
  39	reserved = global_rsv->reserved;
  40	spin_unlock(&global_rsv->lock);
  41
  42	/*
  43	 * Since the global reserve is just kind of magic we don't really want
  44	 * to rely on it to save our bacon, so if our size is more than the
  45	 * delayed_refs_rsv and the global rsv then it's time to think about
  46	 * bailing.
  47	 */
  48	spin_lock(&delayed_refs_rsv->lock);
  49	reserved += delayed_refs_rsv->reserved;
  50	if (delayed_refs_rsv->size >= reserved)
  51		ret = true;
  52	spin_unlock(&delayed_refs_rsv->lock);
  53	return ret;
  54}
  55
  56int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
  57{
  58	u64 num_entries =
  59		atomic_read(&trans->transaction->delayed_refs.num_entries);
  60	u64 avg_runtime;
  61	u64 val;
  62
  63	smp_mb();
  64	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
  65	val = num_entries * avg_runtime;
  66	if (val >= NSEC_PER_SEC)
  67		return 1;
  68	if (val >= NSEC_PER_SEC / 2)
  69		return 2;
  70
  71	return btrfs_check_space_for_delayed_refs(trans->fs_info);
  72}
  73
  74/*
  75 * Release a ref head's reservation.
  76 *
  77 * @fs_info:  the filesystem
  78 * @nr:       number of items to drop
 
  79 *
  80 * Drops the delayed ref head's count from the delayed refs rsv and free any
  81 * excess reservation we had.
  82 */
  83void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
  84{
  85	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  86	u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
  87	u64 released = 0;
  88
  89	/*
  90	 * We have to check the mount option here because we could be enabling
  91	 * the free space tree for the first time and don't have the compat_ro
  92	 * option set yet.
  93	 *
  94	 * We need extra reservations if we have the free space tree because
  95	 * we'll have to modify that tree as well.
  96	 */
  97	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
  98		num_bytes *= 2;
  99
 100	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
 101	if (released)
 102		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 103					      0, released, 0);
 104}
 105
 106/*
 107 * Adjust the size of the delayed refs rsv.
 108 *
 109 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
 110 * it'll calculate the additional size and add it to the delayed_refs_rsv.
 
 111 */
 112void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
 113{
 114	struct btrfs_fs_info *fs_info = trans->fs_info;
 115	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 
 116	u64 num_bytes;
 
 
 
 
 
 117
 118	if (!trans->delayed_ref_updates)
 119		return;
 120
 121	num_bytes = btrfs_calc_insert_metadata_size(fs_info,
 122						    trans->delayed_ref_updates);
 123	/*
 124	 * We have to check the mount option here because we could be enabling
 125	 * the free space tree for the first time and don't have the compat_ro
 126	 * option set yet.
 127	 *
 128	 * We need extra reservations if we have the free space tree because
 129	 * we'll have to modify that tree as well.
 
 
 130	 */
 131	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
 132		num_bytes *= 2;
 
 
 
 133
 134	spin_lock(&delayed_rsv->lock);
 135	delayed_rsv->size += num_bytes;
 136	delayed_rsv->full = false;
 
 137	spin_unlock(&delayed_rsv->lock);
 138	trans->delayed_ref_updates = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139}
 140
 141/*
 142 * Transfer bytes to our delayed refs rsv.
 143 *
 144 * @fs_info:   the filesystem
 145 * @src:       source block rsv to transfer from
 146 * @num_bytes: number of bytes to transfer
 147 *
 148 * This transfers up to the num_bytes amount from the src rsv to the
 149 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 150 */
 151void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 152				       struct btrfs_block_rsv *src,
 153				       u64 num_bytes)
 154{
 155	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 156	u64 to_free = 0;
 157
 158	spin_lock(&src->lock);
 159	src->reserved -= num_bytes;
 160	src->size -= num_bytes;
 161	spin_unlock(&src->lock);
 162
 163	spin_lock(&delayed_refs_rsv->lock);
 164	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 165		u64 delta = delayed_refs_rsv->size -
 166			delayed_refs_rsv->reserved;
 167		if (num_bytes > delta) {
 168			to_free = num_bytes - delta;
 169			num_bytes = delta;
 170		}
 171	} else {
 172		to_free = num_bytes;
 173		num_bytes = 0;
 174	}
 175
 176	if (num_bytes)
 177		delayed_refs_rsv->reserved += num_bytes;
 178	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 179		delayed_refs_rsv->full = true;
 180	spin_unlock(&delayed_refs_rsv->lock);
 181
 182	if (num_bytes)
 183		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 184					      0, num_bytes, 1);
 185	if (to_free)
 186		btrfs_space_info_free_bytes_may_use(fs_info,
 187				delayed_refs_rsv->space_info, to_free);
 188}
 189
 190/*
 191 * Refill based on our delayed refs usage.
 192 *
 193 * @fs_info: the filesystem
 194 * @flush:   control how we can flush for this reservation.
 195 *
 196 * This will refill the delayed block_rsv up to 1 items size worth of space and
 197 * will return -ENOSPC if we can't make the reservation.
 198 */
 199int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 200				  enum btrfs_reserve_flush_enum flush)
 201{
 202	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 203	u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
 
 204	u64 num_bytes = 0;
 
 
 205	int ret = -ENOSPC;
 206
 207	spin_lock(&block_rsv->lock);
 208	if (block_rsv->reserved < block_rsv->size) {
 209		num_bytes = block_rsv->size - block_rsv->reserved;
 210		num_bytes = min(num_bytes, limit);
 211	}
 212	spin_unlock(&block_rsv->lock);
 213
 214	if (!num_bytes)
 215		return 0;
 216
 217	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
 218	if (ret)
 219		return ret;
 220	btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
 221	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 222				      0, num_bytes, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223	return 0;
 224}
 225
 226/*
 227 * compare two delayed tree backrefs with same bytenr and type
 228 */
 229static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 230			  struct btrfs_delayed_tree_ref *ref2)
 231{
 232	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 233		if (ref1->root < ref2->root)
 234			return -1;
 235		if (ref1->root > ref2->root)
 236			return 1;
 237	} else {
 238		if (ref1->parent < ref2->parent)
 239			return -1;
 240		if (ref1->parent > ref2->parent)
 241			return 1;
 242	}
 243	return 0;
 244}
 245
 246/*
 247 * compare two delayed data backrefs with same bytenr and type
 248 */
 249static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 250			  struct btrfs_delayed_data_ref *ref2)
 251{
 252	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 253		if (ref1->root < ref2->root)
 254			return -1;
 255		if (ref1->root > ref2->root)
 256			return 1;
 257		if (ref1->objectid < ref2->objectid)
 258			return -1;
 259		if (ref1->objectid > ref2->objectid)
 260			return 1;
 261		if (ref1->offset < ref2->offset)
 262			return -1;
 263		if (ref1->offset > ref2->offset)
 264			return 1;
 265	} else {
 266		if (ref1->parent < ref2->parent)
 267			return -1;
 268		if (ref1->parent > ref2->parent)
 269			return 1;
 270	}
 271	return 0;
 272}
 273
 274static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 275		     struct btrfs_delayed_ref_node *ref2,
 276		     bool check_seq)
 277{
 278	int ret = 0;
 279
 280	if (ref1->type < ref2->type)
 281		return -1;
 282	if (ref1->type > ref2->type)
 283		return 1;
 284	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 285	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 286		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 287				     btrfs_delayed_node_to_tree_ref(ref2));
 288	else
 289		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 290				     btrfs_delayed_node_to_data_ref(ref2));
 291	if (ret)
 292		return ret;
 293	if (check_seq) {
 294		if (ref1->seq < ref2->seq)
 295			return -1;
 296		if (ref1->seq > ref2->seq)
 297			return 1;
 298	}
 299	return 0;
 300}
 301
 302/* insert a new ref to head ref rbtree */
 303static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 304						   struct rb_node *node)
 305{
 306	struct rb_node **p = &root->rb_root.rb_node;
 307	struct rb_node *parent_node = NULL;
 308	struct btrfs_delayed_ref_head *entry;
 309	struct btrfs_delayed_ref_head *ins;
 310	u64 bytenr;
 311	bool leftmost = true;
 312
 313	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 314	bytenr = ins->bytenr;
 315	while (*p) {
 316		parent_node = *p;
 317		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 318				 href_node);
 319
 320		if (bytenr < entry->bytenr) {
 321			p = &(*p)->rb_left;
 322		} else if (bytenr > entry->bytenr) {
 323			p = &(*p)->rb_right;
 324			leftmost = false;
 325		} else {
 326			return entry;
 327		}
 328	}
 329
 330	rb_link_node(node, parent_node, p);
 331	rb_insert_color_cached(node, root, leftmost);
 332	return NULL;
 333}
 334
 335static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 336		struct btrfs_delayed_ref_node *ins)
 337{
 338	struct rb_node **p = &root->rb_root.rb_node;
 339	struct rb_node *node = &ins->ref_node;
 340	struct rb_node *parent_node = NULL;
 341	struct btrfs_delayed_ref_node *entry;
 342	bool leftmost = true;
 343
 344	while (*p) {
 345		int comp;
 346
 347		parent_node = *p;
 348		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 349				 ref_node);
 350		comp = comp_refs(ins, entry, true);
 351		if (comp < 0) {
 352			p = &(*p)->rb_left;
 353		} else if (comp > 0) {
 354			p = &(*p)->rb_right;
 355			leftmost = false;
 356		} else {
 357			return entry;
 358		}
 359	}
 360
 361	rb_link_node(node, parent_node, p);
 362	rb_insert_color_cached(node, root, leftmost);
 363	return NULL;
 364}
 365
 366static struct btrfs_delayed_ref_head *find_first_ref_head(
 367		struct btrfs_delayed_ref_root *dr)
 368{
 369	struct rb_node *n;
 370	struct btrfs_delayed_ref_head *entry;
 371
 372	n = rb_first_cached(&dr->href_root);
 373	if (!n)
 374		return NULL;
 375
 376	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 377
 378	return entry;
 379}
 380
 381/*
 382 * Find a head entry based on bytenr. This returns the delayed ref head if it
 383 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 384 * is given, the next bigger entry is returned if no exact match is found.
 385 */
 386static struct btrfs_delayed_ref_head *find_ref_head(
 387		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 388		bool return_bigger)
 389{
 390	struct rb_root *root = &dr->href_root.rb_root;
 391	struct rb_node *n;
 392	struct btrfs_delayed_ref_head *entry;
 393
 394	n = root->rb_node;
 395	entry = NULL;
 396	while (n) {
 397		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 398
 399		if (bytenr < entry->bytenr)
 400			n = n->rb_left;
 401		else if (bytenr > entry->bytenr)
 402			n = n->rb_right;
 403		else
 404			return entry;
 405	}
 406	if (entry && return_bigger) {
 407		if (bytenr > entry->bytenr) {
 408			n = rb_next(&entry->href_node);
 409			if (!n)
 410				return NULL;
 411			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 412					 href_node);
 413		}
 414		return entry;
 415	}
 416	return NULL;
 417}
 418
 419int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 420			   struct btrfs_delayed_ref_head *head)
 421{
 422	lockdep_assert_held(&delayed_refs->lock);
 423	if (mutex_trylock(&head->mutex))
 424		return 0;
 425
 426	refcount_inc(&head->refs);
 427	spin_unlock(&delayed_refs->lock);
 428
 429	mutex_lock(&head->mutex);
 430	spin_lock(&delayed_refs->lock);
 431	if (RB_EMPTY_NODE(&head->href_node)) {
 432		mutex_unlock(&head->mutex);
 433		btrfs_put_delayed_ref_head(head);
 434		return -EAGAIN;
 435	}
 436	btrfs_put_delayed_ref_head(head);
 437	return 0;
 438}
 439
 440static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
 441				    struct btrfs_delayed_ref_root *delayed_refs,
 442				    struct btrfs_delayed_ref_head *head,
 443				    struct btrfs_delayed_ref_node *ref)
 444{
 445	lockdep_assert_held(&head->lock);
 446	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 447	RB_CLEAR_NODE(&ref->ref_node);
 448	if (!list_empty(&ref->add_list))
 449		list_del(&ref->add_list);
 450	ref->in_tree = 0;
 451	btrfs_put_delayed_ref(ref);
 452	atomic_dec(&delayed_refs->num_entries);
 
 453}
 454
 455static bool merge_ref(struct btrfs_trans_handle *trans,
 456		      struct btrfs_delayed_ref_root *delayed_refs,
 457		      struct btrfs_delayed_ref_head *head,
 458		      struct btrfs_delayed_ref_node *ref,
 459		      u64 seq)
 460{
 461	struct btrfs_delayed_ref_node *next;
 462	struct rb_node *node = rb_next(&ref->ref_node);
 463	bool done = false;
 464
 465	while (!done && node) {
 466		int mod;
 467
 468		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 469		node = rb_next(node);
 470		if (seq && next->seq >= seq)
 471			break;
 472		if (comp_refs(ref, next, false))
 473			break;
 474
 475		if (ref->action == next->action) {
 476			mod = next->ref_mod;
 477		} else {
 478			if (ref->ref_mod < next->ref_mod) {
 479				swap(ref, next);
 480				done = true;
 481			}
 482			mod = -next->ref_mod;
 483		}
 484
 485		drop_delayed_ref(trans, delayed_refs, head, next);
 486		ref->ref_mod += mod;
 487		if (ref->ref_mod == 0) {
 488			drop_delayed_ref(trans, delayed_refs, head, ref);
 489			done = true;
 490		} else {
 491			/*
 492			 * Can't have multiples of the same ref on a tree block.
 493			 */
 494			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 495				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 496		}
 497	}
 498
 499	return done;
 500}
 501
 502void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
 503			      struct btrfs_delayed_ref_root *delayed_refs,
 504			      struct btrfs_delayed_ref_head *head)
 505{
 506	struct btrfs_fs_info *fs_info = trans->fs_info;
 507	struct btrfs_delayed_ref_node *ref;
 508	struct rb_node *node;
 509	u64 seq = 0;
 510
 511	lockdep_assert_held(&head->lock);
 512
 513	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 514		return;
 515
 516	/* We don't have too many refs to merge for data. */
 517	if (head->is_data)
 518		return;
 519
 520	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 521again:
 522	for (node = rb_first_cached(&head->ref_tree); node;
 523	     node = rb_next(node)) {
 524		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 525		if (seq && ref->seq >= seq)
 526			continue;
 527		if (merge_ref(trans, delayed_refs, head, ref, seq))
 528			goto again;
 529	}
 530}
 531
 532int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 533{
 534	int ret = 0;
 535	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 536
 537	if (min_seq != 0 && seq >= min_seq) {
 538		btrfs_debug(fs_info,
 539			    "holding back delayed_ref %llu, lowest is %llu",
 540			    seq, min_seq);
 541		ret = 1;
 542	}
 543
 544	return ret;
 545}
 546
 547struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 548		struct btrfs_delayed_ref_root *delayed_refs)
 549{
 550	struct btrfs_delayed_ref_head *head;
 551
 
 552again:
 553	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 554			     true);
 555	if (!head && delayed_refs->run_delayed_start != 0) {
 556		delayed_refs->run_delayed_start = 0;
 557		head = find_first_ref_head(delayed_refs);
 558	}
 559	if (!head)
 560		return NULL;
 561
 562	while (head->processing) {
 563		struct rb_node *node;
 564
 565		node = rb_next(&head->href_node);
 566		if (!node) {
 567			if (delayed_refs->run_delayed_start == 0)
 568				return NULL;
 569			delayed_refs->run_delayed_start = 0;
 570			goto again;
 571		}
 572		head = rb_entry(node, struct btrfs_delayed_ref_head,
 573				href_node);
 574	}
 575
 576	head->processing = 1;
 577	WARN_ON(delayed_refs->num_heads_ready == 0);
 578	delayed_refs->num_heads_ready--;
 579	delayed_refs->run_delayed_start = head->bytenr +
 580		head->num_bytes;
 581	return head;
 582}
 583
 584void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 585			   struct btrfs_delayed_ref_head *head)
 586{
 587	lockdep_assert_held(&delayed_refs->lock);
 588	lockdep_assert_held(&head->lock);
 589
 590	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 591	RB_CLEAR_NODE(&head->href_node);
 592	atomic_dec(&delayed_refs->num_entries);
 593	delayed_refs->num_heads--;
 594	if (head->processing == 0)
 595		delayed_refs->num_heads_ready--;
 596}
 597
 598/*
 599 * Helper to insert the ref_node to the tail or merge with tail.
 600 *
 601 * Return 0 for insert.
 602 * Return >0 for merge.
 
 603 */
 604static int insert_delayed_ref(struct btrfs_trans_handle *trans,
 605			      struct btrfs_delayed_ref_root *root,
 606			      struct btrfs_delayed_ref_head *href,
 607			      struct btrfs_delayed_ref_node *ref)
 608{
 
 609	struct btrfs_delayed_ref_node *exist;
 610	int mod;
 611	int ret = 0;
 612
 613	spin_lock(&href->lock);
 614	exist = tree_insert(&href->ref_tree, ref);
 615	if (!exist)
 616		goto inserted;
 
 
 
 
 
 
 617
 618	/* Now we are sure we can merge */
 619	ret = 1;
 620	if (exist->action == ref->action) {
 621		mod = ref->ref_mod;
 622	} else {
 623		/* Need to change action */
 624		if (exist->ref_mod < ref->ref_mod) {
 625			exist->action = ref->action;
 626			mod = -exist->ref_mod;
 627			exist->ref_mod = ref->ref_mod;
 628			if (ref->action == BTRFS_ADD_DELAYED_REF)
 629				list_add_tail(&exist->add_list,
 630					      &href->ref_add_list);
 631			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 632				ASSERT(!list_empty(&exist->add_list));
 633				list_del(&exist->add_list);
 634			} else {
 635				ASSERT(0);
 636			}
 637		} else
 638			mod = -ref->ref_mod;
 639	}
 640	exist->ref_mod += mod;
 641
 642	/* remove existing tail if its ref_mod is zero */
 643	if (exist->ref_mod == 0)
 644		drop_delayed_ref(trans, root, href, exist);
 645	spin_unlock(&href->lock);
 646	return ret;
 647inserted:
 648	if (ref->action == BTRFS_ADD_DELAYED_REF)
 649		list_add_tail(&ref->add_list, &href->ref_add_list);
 650	atomic_inc(&root->num_entries);
 651	spin_unlock(&href->lock);
 652	return ret;
 653}
 654
 655/*
 656 * helper function to update the accounting in the head ref
 657 * existing and update must have the same bytenr
 658 */
 659static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 660			 struct btrfs_delayed_ref_head *existing,
 661			 struct btrfs_delayed_ref_head *update)
 662{
 663	struct btrfs_delayed_ref_root *delayed_refs =
 664		&trans->transaction->delayed_refs;
 665	struct btrfs_fs_info *fs_info = trans->fs_info;
 666	int old_ref_mod;
 667
 668	BUG_ON(existing->is_data != update->is_data);
 669
 670	spin_lock(&existing->lock);
 
 
 
 
 
 
 
 
 
 671	if (update->must_insert_reserved) {
 672		/* if the extent was freed and then
 673		 * reallocated before the delayed ref
 674		 * entries were processed, we can end up
 675		 * with an existing head ref without
 676		 * the must_insert_reserved flag set.
 677		 * Set it again here
 678		 */
 679		existing->must_insert_reserved = update->must_insert_reserved;
 
 680
 681		/*
 682		 * update the num_bytes so we make sure the accounting
 683		 * is done correctly
 684		 */
 685		existing->num_bytes = update->num_bytes;
 686
 687	}
 688
 689	if (update->extent_op) {
 690		if (!existing->extent_op) {
 691			existing->extent_op = update->extent_op;
 692		} else {
 693			if (update->extent_op->update_key) {
 694				memcpy(&existing->extent_op->key,
 695				       &update->extent_op->key,
 696				       sizeof(update->extent_op->key));
 697				existing->extent_op->update_key = true;
 698			}
 699			if (update->extent_op->update_flags) {
 700				existing->extent_op->flags_to_set |=
 701					update->extent_op->flags_to_set;
 702				existing->extent_op->update_flags = true;
 703			}
 704			btrfs_free_delayed_extent_op(update->extent_op);
 705		}
 706	}
 707	/*
 708	 * update the reference mod on the head to reflect this new operation,
 709	 * only need the lock for this case cause we could be processing it
 710	 * currently, for refs we just added we know we're a-ok.
 711	 */
 712	old_ref_mod = existing->total_ref_mod;
 713	existing->ref_mod += update->ref_mod;
 714	existing->total_ref_mod += update->ref_mod;
 715
 716	/*
 717	 * If we are going to from a positive ref mod to a negative or vice
 718	 * versa we need to make sure to adjust pending_csums accordingly.
 
 
 719	 */
 720	if (existing->is_data) {
 721		u64 csum_leaves =
 722			btrfs_csum_bytes_to_leaves(fs_info,
 723						   existing->num_bytes);
 724
 725		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 726			delayed_refs->pending_csums -= existing->num_bytes;
 727			btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
 728		}
 729		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 730			delayed_refs->pending_csums += existing->num_bytes;
 731			trans->delayed_ref_updates += csum_leaves;
 732		}
 733	}
 734
 735	spin_unlock(&existing->lock);
 736}
 737
 738static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 739				  struct btrfs_qgroup_extent_record *qrecord,
 740				  u64 bytenr, u64 num_bytes, u64 ref_root,
 741				  u64 reserved, int action, bool is_data,
 742				  bool is_system)
 743{
 744	int count_mod = 1;
 745	int must_insert_reserved = 0;
 746
 747	/* If reserved is provided, it must be a data extent. */
 748	BUG_ON(!is_data && reserved);
 749
 750	/*
 751	 * The head node stores the sum of all the mods, so dropping a ref
 752	 * should drop the sum in the head node by one.
 753	 */
 754	if (action == BTRFS_UPDATE_DELAYED_HEAD)
 755		count_mod = 0;
 756	else if (action == BTRFS_DROP_DELAYED_REF)
 
 
 
 
 
 757		count_mod = -1;
 758
 759	/*
 760	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
 761	 * accounting when the extent is finally added, or if a later
 762	 * modification deletes the delayed ref without ever inserting the
 763	 * extent into the extent allocation tree.  ref->must_insert_reserved
 764	 * is the flag used to record that accounting mods are required.
 765	 *
 766	 * Once we record must_insert_reserved, switch the action to
 767	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
 768	 */
 769	if (action == BTRFS_ADD_DELAYED_EXTENT)
 770		must_insert_reserved = 1;
 771	else
 772		must_insert_reserved = 0;
 
 
 773
 774	refcount_set(&head_ref->refs, 1);
 775	head_ref->bytenr = bytenr;
 776	head_ref->num_bytes = num_bytes;
 777	head_ref->ref_mod = count_mod;
 
 778	head_ref->must_insert_reserved = must_insert_reserved;
 
 779	head_ref->is_data = is_data;
 780	head_ref->is_system = is_system;
 781	head_ref->ref_tree = RB_ROOT_CACHED;
 782	INIT_LIST_HEAD(&head_ref->ref_add_list);
 783	RB_CLEAR_NODE(&head_ref->href_node);
 784	head_ref->processing = 0;
 785	head_ref->total_ref_mod = count_mod;
 786	spin_lock_init(&head_ref->lock);
 787	mutex_init(&head_ref->mutex);
 788
 789	if (qrecord) {
 790		if (ref_root && reserved) {
 791			qrecord->data_rsv = reserved;
 792			qrecord->data_rsv_refroot = ref_root;
 793		}
 794		qrecord->bytenr = bytenr;
 795		qrecord->num_bytes = num_bytes;
 796		qrecord->old_roots = NULL;
 797	}
 798}
 799
 800/*
 801 * helper function to actually insert a head node into the rbtree.
 802 * this does all the dirty work in terms of maintaining the correct
 803 * overall modification count.
 804 */
 805static noinline struct btrfs_delayed_ref_head *
 806add_delayed_ref_head(struct btrfs_trans_handle *trans,
 807		     struct btrfs_delayed_ref_head *head_ref,
 808		     struct btrfs_qgroup_extent_record *qrecord,
 809		     int action, int *qrecord_inserted_ret)
 810{
 811	struct btrfs_delayed_ref_head *existing;
 812	struct btrfs_delayed_ref_root *delayed_refs;
 813	int qrecord_inserted = 0;
 814
 815	delayed_refs = &trans->transaction->delayed_refs;
 816
 817	/* Record qgroup extent info if provided */
 818	if (qrecord) {
 819		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 820					delayed_refs, qrecord))
 821			kfree(qrecord);
 822		else
 823			qrecord_inserted = 1;
 824	}
 825
 826	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 827
 828	existing = htree_insert(&delayed_refs->href_root,
 829				&head_ref->href_node);
 830	if (existing) {
 831		update_existing_head_ref(trans, existing, head_ref);
 832		/*
 833		 * we've updated the existing ref, free the newly
 834		 * allocated ref
 835		 */
 836		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 837		head_ref = existing;
 838	} else {
 
 
 
 
 
 
 839		if (head_ref->is_data && head_ref->ref_mod < 0) {
 840			delayed_refs->pending_csums += head_ref->num_bytes;
 841			trans->delayed_ref_updates +=
 842				btrfs_csum_bytes_to_leaves(trans->fs_info,
 843							   head_ref->num_bytes);
 844		}
 845		delayed_refs->num_heads++;
 846		delayed_refs->num_heads_ready++;
 847		atomic_inc(&delayed_refs->num_entries);
 848		trans->delayed_ref_updates++;
 849	}
 850	if (qrecord_inserted_ret)
 851		*qrecord_inserted_ret = qrecord_inserted;
 852
 853	return head_ref;
 854}
 855
 856/*
 857 * init_delayed_ref_common - Initialize the structure which represents a
 858 *			     modification to a an extent.
 859 *
 860 * @fs_info:    Internal to the mounted filesystem mount structure.
 861 *
 862 * @ref:	The structure which is going to be initialized.
 863 *
 864 * @bytenr:	The logical address of the extent for which a modification is
 865 *		going to be recorded.
 866 *
 867 * @num_bytes:  Size of the extent whose modification is being recorded.
 868 *
 869 * @ref_root:	The id of the root where this modification has originated, this
 870 *		can be either one of the well-known metadata trees or the
 871 *		subvolume id which references this extent.
 872 *
 873 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 874 *		BTRFS_ADD_DELAYED_EXTENT
 875 *
 876 * @ref_type:	Holds the type of the extent which is being recorded, can be
 877 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 878 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 879 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 880 */
 881static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 882				    struct btrfs_delayed_ref_node *ref,
 883				    u64 bytenr, u64 num_bytes, u64 ref_root,
 884				    int action, u8 ref_type)
 885{
 886	u64 seq = 0;
 887
 888	if (action == BTRFS_ADD_DELAYED_EXTENT)
 889		action = BTRFS_ADD_DELAYED_REF;
 890
 891	if (is_fstree(ref_root))
 892		seq = atomic64_read(&fs_info->tree_mod_seq);
 893
 894	refcount_set(&ref->refs, 1);
 895	ref->bytenr = bytenr;
 896	ref->num_bytes = num_bytes;
 897	ref->ref_mod = 1;
 898	ref->action = action;
 899	ref->is_head = 0;
 900	ref->in_tree = 1;
 901	ref->seq = seq;
 902	ref->type = ref_type;
 903	RB_CLEAR_NODE(&ref->ref_node);
 904	INIT_LIST_HEAD(&ref->add_list);
 905}
 906
 907/*
 908 * add a delayed tree ref.  This does all of the accounting required
 909 * to make sure the delayed ref is eventually processed before this
 910 * transaction commits.
 911 */
 912int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
 913			       struct btrfs_ref *generic_ref,
 914			       struct btrfs_delayed_extent_op *extent_op)
 915{
 916	struct btrfs_fs_info *fs_info = trans->fs_info;
 917	struct btrfs_delayed_tree_ref *ref;
 918	struct btrfs_delayed_ref_head *head_ref;
 919	struct btrfs_delayed_ref_root *delayed_refs;
 920	struct btrfs_qgroup_extent_record *record = NULL;
 921	int qrecord_inserted;
 922	bool is_system;
 
 923	int action = generic_ref->action;
 924	int level = generic_ref->tree_ref.level;
 925	int ret;
 926	u64 bytenr = generic_ref->bytenr;
 927	u64 num_bytes = generic_ref->len;
 928	u64 parent = generic_ref->parent;
 929	u8 ref_type;
 930
 931	is_system = (generic_ref->tree_ref.owning_root == BTRFS_CHUNK_TREE_OBJECTID);
 932
 933	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
 934	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
 935	if (!ref)
 936		return -ENOMEM;
 937
 938	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
 939	if (!head_ref) {
 940		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 941		return -ENOMEM;
 942	}
 943
 944	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
 945	    !generic_ref->skip_qgroup) {
 946		record = kzalloc(sizeof(*record), GFP_NOFS);
 947		if (!record) {
 948			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 949			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 950			return -ENOMEM;
 951		}
 952	}
 953
 954	if (parent)
 955		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
 956	else
 957		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
 958
 959	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
 960				generic_ref->tree_ref.owning_root, action,
 961				ref_type);
 962	ref->root = generic_ref->tree_ref.owning_root;
 963	ref->parent = parent;
 964	ref->level = level;
 965
 966	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
 967			      generic_ref->tree_ref.owning_root, 0, action,
 968			      false, is_system);
 969	head_ref->extent_op = extent_op;
 970
 971	delayed_refs = &trans->transaction->delayed_refs;
 972	spin_lock(&delayed_refs->lock);
 973
 974	/*
 975	 * insert both the head node and the new ref without dropping
 976	 * the spin lock
 977	 */
 978	head_ref = add_delayed_ref_head(trans, head_ref, record,
 979					action, &qrecord_inserted);
 980
 981	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
 982	spin_unlock(&delayed_refs->lock);
 983
 984	/*
 985	 * Need to update the delayed_refs_rsv with any changes we may have
 986	 * made.
 987	 */
 988	btrfs_update_delayed_refs_rsv(trans);
 989
 990	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
 991				   action == BTRFS_ADD_DELAYED_EXTENT ?
 992				   BTRFS_ADD_DELAYED_REF : action);
 993	if (ret > 0)
 994		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 995
 996	if (qrecord_inserted)
 997		btrfs_qgroup_trace_extent_post(trans, record);
 998
 999	return 0;
1000}
1001
1002/*
1003 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1004 */
1005int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1006			       struct btrfs_ref *generic_ref,
1007			       u64 reserved)
1008{
1009	struct btrfs_fs_info *fs_info = trans->fs_info;
1010	struct btrfs_delayed_data_ref *ref;
1011	struct btrfs_delayed_ref_head *head_ref;
1012	struct btrfs_delayed_ref_root *delayed_refs;
1013	struct btrfs_qgroup_extent_record *record = NULL;
1014	int qrecord_inserted;
1015	int action = generic_ref->action;
1016	int ret;
1017	u64 bytenr = generic_ref->bytenr;
1018	u64 num_bytes = generic_ref->len;
1019	u64 parent = generic_ref->parent;
1020	u64 ref_root = generic_ref->data_ref.owning_root;
1021	u64 owner = generic_ref->data_ref.ino;
1022	u64 offset = generic_ref->data_ref.offset;
1023	u8 ref_type;
1024
1025	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1026	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1027	if (!ref)
1028		return -ENOMEM;
1029
1030	if (parent)
1031	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1032	else
1033	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1034	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1035				ref_root, action, ref_type);
1036	ref->root = ref_root;
1037	ref->parent = parent;
1038	ref->objectid = owner;
1039	ref->offset = offset;
1040
1041
1042	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1043	if (!head_ref) {
1044		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1045		return -ENOMEM;
1046	}
1047
1048	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1049	    !generic_ref->skip_qgroup) {
1050		record = kzalloc(sizeof(*record), GFP_NOFS);
1051		if (!record) {
1052			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1053			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1054					head_ref);
1055			return -ENOMEM;
1056		}
1057	}
1058
1059	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1060			      reserved, action, true, false);
1061	head_ref->extent_op = NULL;
1062
1063	delayed_refs = &trans->transaction->delayed_refs;
1064	spin_lock(&delayed_refs->lock);
1065
1066	/*
1067	 * insert both the head node and the new ref without dropping
1068	 * the spin lock
1069	 */
1070	head_ref = add_delayed_ref_head(trans, head_ref, record,
1071					action, &qrecord_inserted);
1072
1073	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
1074	spin_unlock(&delayed_refs->lock);
1075
1076	/*
1077	 * Need to update the delayed_refs_rsv with any changes we may have
1078	 * made.
1079	 */
1080	btrfs_update_delayed_refs_rsv(trans);
1081
1082	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1083				   action == BTRFS_ADD_DELAYED_EXTENT ?
1084				   BTRFS_ADD_DELAYED_REF : action);
1085	if (ret > 0)
1086		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1087
1088
1089	if (qrecord_inserted)
1090		return btrfs_qgroup_trace_extent_post(trans, record);
1091	return 0;
1092}
1093
1094int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1095				u64 bytenr, u64 num_bytes,
1096				struct btrfs_delayed_extent_op *extent_op)
1097{
1098	struct btrfs_delayed_ref_head *head_ref;
1099	struct btrfs_delayed_ref_root *delayed_refs;
1100
1101	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1102	if (!head_ref)
1103		return -ENOMEM;
1104
1105	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1106			      BTRFS_UPDATE_DELAYED_HEAD, false, false);
1107	head_ref->extent_op = extent_op;
1108
1109	delayed_refs = &trans->transaction->delayed_refs;
1110	spin_lock(&delayed_refs->lock);
1111
1112	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1113			     NULL);
1114
1115	spin_unlock(&delayed_refs->lock);
1116
1117	/*
1118	 * Need to update the delayed_refs_rsv with any changes we may have
1119	 * made.
1120	 */
1121	btrfs_update_delayed_refs_rsv(trans);
1122	return 0;
1123}
1124
1125/*
1126 * This does a simple search for the head node for a given extent.  Returns the
1127 * head node if found, or NULL if not.
1128 */
1129struct btrfs_delayed_ref_head *
1130btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1131{
1132	lockdep_assert_held(&delayed_refs->lock);
1133
1134	return find_ref_head(delayed_refs, bytenr, false);
1135}
1136
1137void __cold btrfs_delayed_ref_exit(void)
1138{
1139	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1140	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1141	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1142	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1143}
1144
1145int __init btrfs_delayed_ref_init(void)
1146{
1147	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1148				"btrfs_delayed_ref_head",
1149				sizeof(struct btrfs_delayed_ref_head), 0,
1150				SLAB_MEM_SPREAD, NULL);
1151	if (!btrfs_delayed_ref_head_cachep)
1152		goto fail;
1153
1154	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1155				"btrfs_delayed_tree_ref",
1156				sizeof(struct btrfs_delayed_tree_ref), 0,
1157				SLAB_MEM_SPREAD, NULL);
1158	if (!btrfs_delayed_tree_ref_cachep)
1159		goto fail;
1160
1161	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1162				"btrfs_delayed_data_ref",
1163				sizeof(struct btrfs_delayed_data_ref), 0,
1164				SLAB_MEM_SPREAD, NULL);
1165	if (!btrfs_delayed_data_ref_cachep)
1166		goto fail;
1167
1168	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1169				"btrfs_delayed_extent_op",
1170				sizeof(struct btrfs_delayed_extent_op), 0,
1171				SLAB_MEM_SPREAD, NULL);
1172	if (!btrfs_delayed_extent_op_cachep)
1173		goto fail;
1174
1175	return 0;
1176fail:
1177	btrfs_delayed_ref_exit();
1178	return -ENOMEM;
1179}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
   9#include "messages.h"
  10#include "ctree.h"
  11#include "delayed-ref.h"
  12#include "transaction.h"
  13#include "qgroup.h"
  14#include "space-info.h"
  15#include "tree-mod-log.h"
  16#include "fs.h"
  17
  18struct kmem_cache *btrfs_delayed_ref_head_cachep;
  19struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  20struct kmem_cache *btrfs_delayed_data_ref_cachep;
  21struct kmem_cache *btrfs_delayed_extent_op_cachep;
  22/*
  23 * delayed back reference update tracking.  For subvolume trees
  24 * we queue up extent allocations and backref maintenance for
  25 * delayed processing.   This avoids deep call chains where we
  26 * add extents in the middle of btrfs_search_slot, and it allows
  27 * us to buffer up frequently modified backrefs in an rb tree instead
  28 * of hammering updates on the extent allocation tree.
  29 */
  30
  31bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  32{
  33	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  34	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  35	bool ret = false;
  36	u64 reserved;
  37
  38	spin_lock(&global_rsv->lock);
  39	reserved = global_rsv->reserved;
  40	spin_unlock(&global_rsv->lock);
  41
  42	/*
  43	 * Since the global reserve is just kind of magic we don't really want
  44	 * to rely on it to save our bacon, so if our size is more than the
  45	 * delayed_refs_rsv and the global rsv then it's time to think about
  46	 * bailing.
  47	 */
  48	spin_lock(&delayed_refs_rsv->lock);
  49	reserved += delayed_refs_rsv->reserved;
  50	if (delayed_refs_rsv->size >= reserved)
  51		ret = true;
  52	spin_unlock(&delayed_refs_rsv->lock);
  53	return ret;
  54}
  55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56/*
  57 * Release a ref head's reservation.
  58 *
  59 * @fs_info:  the filesystem
  60 * @nr_refs:  number of delayed refs to drop
  61 * @nr_csums: number of csum items to drop
  62 *
  63 * Drops the delayed ref head's count from the delayed refs rsv and free any
  64 * excess reservation we had.
  65 */
  66void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
  67{
  68	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  69	u64 num_bytes;
  70	u64 released;
  71
  72	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
  73	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
 
 
 
 
 
 
 
 
  74
  75	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
  76	if (released)
  77		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
  78					      0, released, 0);
  79}
  80
  81/*
  82 * Adjust the size of the delayed refs rsv.
  83 *
  84 * This is to be called anytime we may have adjusted trans->delayed_ref_updates
  85 * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
  86 * add it to the delayed_refs_rsv.
  87 */
  88void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
  89{
  90	struct btrfs_fs_info *fs_info = trans->fs_info;
  91	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
  92	struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
  93	u64 num_bytes;
  94	u64 reserved_bytes;
  95
  96	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
  97	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
  98						       trans->delayed_ref_csum_deletions);
  99
 100	if (num_bytes == 0)
 101		return;
 102
 
 
 103	/*
 104	 * Try to take num_bytes from the transaction's local delayed reserve.
 105	 * If not possible, try to take as much as it's available. If the local
 106	 * reserve doesn't have enough reserved space, the delayed refs reserve
 107	 * will be refilled next time btrfs_delayed_refs_rsv_refill() is called
 108	 * by someone or if a transaction commit is triggered before that, the
 109	 * global block reserve will be used. We want to minimize using the
 110	 * global block reserve for cases we can account for in advance, to
 111	 * avoid exhausting it and reach -ENOSPC during a transaction commit.
 112	 */
 113	spin_lock(&local_rsv->lock);
 114	reserved_bytes = min(num_bytes, local_rsv->reserved);
 115	local_rsv->reserved -= reserved_bytes;
 116	local_rsv->full = (local_rsv->reserved >= local_rsv->size);
 117	spin_unlock(&local_rsv->lock);
 118
 119	spin_lock(&delayed_rsv->lock);
 120	delayed_rsv->size += num_bytes;
 121	delayed_rsv->reserved += reserved_bytes;
 122	delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
 123	spin_unlock(&delayed_rsv->lock);
 124	trans->delayed_ref_updates = 0;
 125	trans->delayed_ref_csum_deletions = 0;
 126}
 127
 128/*
 129 * Adjust the size of the delayed refs block reserve for 1 block group item
 130 * insertion, used after allocating a block group.
 131 */
 132void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
 133{
 134	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 135
 136	spin_lock(&delayed_rsv->lock);
 137	/*
 138	 * Inserting a block group item does not require changing the free space
 139	 * tree, only the extent tree or the block group tree, so this is all we
 140	 * need.
 141	 */
 142	delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
 143	delayed_rsv->full = false;
 144	spin_unlock(&delayed_rsv->lock);
 145}
 146
 147/*
 148 * Adjust the size of the delayed refs block reserve to release space for 1
 149 * block group item insertion.
 150 */
 151void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
 152{
 153	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 154	const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 155	u64 released;
 156
 157	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
 158	if (released > 0)
 159		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 160					      0, released, 0);
 161}
 162
 163/*
 164 * Adjust the size of the delayed refs block reserve for 1 block group item
 165 * update.
 166 */
 167void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
 168{
 169	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 170
 171	spin_lock(&delayed_rsv->lock);
 172	/*
 173	 * Updating a block group item does not result in new nodes/leaves and
 174	 * does not require changing the free space tree, only the extent tree
 175	 * or the block group tree, so this is all we need.
 176	 */
 177	delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
 178	delayed_rsv->full = false;
 179	spin_unlock(&delayed_rsv->lock);
 180}
 181
 182/*
 183 * Adjust the size of the delayed refs block reserve to release space for 1
 184 * block group item update.
 185 */
 186void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
 187{
 188	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 189	const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 190	u64 released;
 191
 192	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
 193	if (released > 0)
 194		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 195					      0, released, 0);
 196}
 197
 198/*
 199 * Transfer bytes to our delayed refs rsv.
 200 *
 201 * @fs_info:   the filesystem
 
 202 * @num_bytes: number of bytes to transfer
 203 *
 204 * This transfers up to the num_bytes amount, previously reserved, to the
 205 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 206 */
 207void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 
 208				       u64 num_bytes)
 209{
 210	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 211	u64 to_free = 0;
 212
 
 
 
 
 
 213	spin_lock(&delayed_refs_rsv->lock);
 214	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 215		u64 delta = delayed_refs_rsv->size -
 216			delayed_refs_rsv->reserved;
 217		if (num_bytes > delta) {
 218			to_free = num_bytes - delta;
 219			num_bytes = delta;
 220		}
 221	} else {
 222		to_free = num_bytes;
 223		num_bytes = 0;
 224	}
 225
 226	if (num_bytes)
 227		delayed_refs_rsv->reserved += num_bytes;
 228	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 229		delayed_refs_rsv->full = true;
 230	spin_unlock(&delayed_refs_rsv->lock);
 231
 232	if (num_bytes)
 233		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 234					      0, num_bytes, 1);
 235	if (to_free)
 236		btrfs_space_info_free_bytes_may_use(fs_info,
 237				delayed_refs_rsv->space_info, to_free);
 238}
 239
 240/*
 241 * Refill based on our delayed refs usage.
 242 *
 243 * @fs_info: the filesystem
 244 * @flush:   control how we can flush for this reservation.
 245 *
 246 * This will refill the delayed block_rsv up to 1 items size worth of space and
 247 * will return -ENOSPC if we can't make the reservation.
 248 */
 249int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 250				  enum btrfs_reserve_flush_enum flush)
 251{
 252	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 253	struct btrfs_space_info *space_info = block_rsv->space_info;
 254	u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
 255	u64 num_bytes = 0;
 256	u64 refilled_bytes;
 257	u64 to_free;
 258	int ret = -ENOSPC;
 259
 260	spin_lock(&block_rsv->lock);
 261	if (block_rsv->reserved < block_rsv->size) {
 262		num_bytes = block_rsv->size - block_rsv->reserved;
 263		num_bytes = min(num_bytes, limit);
 264	}
 265	spin_unlock(&block_rsv->lock);
 266
 267	if (!num_bytes)
 268		return 0;
 269
 270	ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
 271	if (ret)
 272		return ret;
 273
 274	/*
 275	 * We may have raced with someone else, so check again if we the block
 276	 * reserve is still not full and release any excess space.
 277	 */
 278	spin_lock(&block_rsv->lock);
 279	if (block_rsv->reserved < block_rsv->size) {
 280		u64 needed = block_rsv->size - block_rsv->reserved;
 281
 282		if (num_bytes >= needed) {
 283			block_rsv->reserved += needed;
 284			block_rsv->full = true;
 285			to_free = num_bytes - needed;
 286			refilled_bytes = needed;
 287		} else {
 288			block_rsv->reserved += num_bytes;
 289			to_free = 0;
 290			refilled_bytes = num_bytes;
 291		}
 292	} else {
 293		to_free = num_bytes;
 294		refilled_bytes = 0;
 295	}
 296	spin_unlock(&block_rsv->lock);
 297
 298	if (to_free > 0)
 299		btrfs_space_info_free_bytes_may_use(fs_info, space_info, to_free);
 300
 301	if (refilled_bytes > 0)
 302		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
 303					      refilled_bytes, 1);
 304	return 0;
 305}
 306
 307/*
 308 * compare two delayed tree backrefs with same bytenr and type
 309 */
 310static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 311			  struct btrfs_delayed_tree_ref *ref2)
 312{
 313	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 314		if (ref1->root < ref2->root)
 315			return -1;
 316		if (ref1->root > ref2->root)
 317			return 1;
 318	} else {
 319		if (ref1->parent < ref2->parent)
 320			return -1;
 321		if (ref1->parent > ref2->parent)
 322			return 1;
 323	}
 324	return 0;
 325}
 326
 327/*
 328 * compare two delayed data backrefs with same bytenr and type
 329 */
 330static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 331			  struct btrfs_delayed_data_ref *ref2)
 332{
 333	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 334		if (ref1->root < ref2->root)
 335			return -1;
 336		if (ref1->root > ref2->root)
 337			return 1;
 338		if (ref1->objectid < ref2->objectid)
 339			return -1;
 340		if (ref1->objectid > ref2->objectid)
 341			return 1;
 342		if (ref1->offset < ref2->offset)
 343			return -1;
 344		if (ref1->offset > ref2->offset)
 345			return 1;
 346	} else {
 347		if (ref1->parent < ref2->parent)
 348			return -1;
 349		if (ref1->parent > ref2->parent)
 350			return 1;
 351	}
 352	return 0;
 353}
 354
 355static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 356		     struct btrfs_delayed_ref_node *ref2,
 357		     bool check_seq)
 358{
 359	int ret = 0;
 360
 361	if (ref1->type < ref2->type)
 362		return -1;
 363	if (ref1->type > ref2->type)
 364		return 1;
 365	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 366	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 367		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 368				     btrfs_delayed_node_to_tree_ref(ref2));
 369	else
 370		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 371				     btrfs_delayed_node_to_data_ref(ref2));
 372	if (ret)
 373		return ret;
 374	if (check_seq) {
 375		if (ref1->seq < ref2->seq)
 376			return -1;
 377		if (ref1->seq > ref2->seq)
 378			return 1;
 379	}
 380	return 0;
 381}
 382
 383/* insert a new ref to head ref rbtree */
 384static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 385						   struct rb_node *node)
 386{
 387	struct rb_node **p = &root->rb_root.rb_node;
 388	struct rb_node *parent_node = NULL;
 389	struct btrfs_delayed_ref_head *entry;
 390	struct btrfs_delayed_ref_head *ins;
 391	u64 bytenr;
 392	bool leftmost = true;
 393
 394	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 395	bytenr = ins->bytenr;
 396	while (*p) {
 397		parent_node = *p;
 398		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 399				 href_node);
 400
 401		if (bytenr < entry->bytenr) {
 402			p = &(*p)->rb_left;
 403		} else if (bytenr > entry->bytenr) {
 404			p = &(*p)->rb_right;
 405			leftmost = false;
 406		} else {
 407			return entry;
 408		}
 409	}
 410
 411	rb_link_node(node, parent_node, p);
 412	rb_insert_color_cached(node, root, leftmost);
 413	return NULL;
 414}
 415
 416static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 417		struct btrfs_delayed_ref_node *ins)
 418{
 419	struct rb_node **p = &root->rb_root.rb_node;
 420	struct rb_node *node = &ins->ref_node;
 421	struct rb_node *parent_node = NULL;
 422	struct btrfs_delayed_ref_node *entry;
 423	bool leftmost = true;
 424
 425	while (*p) {
 426		int comp;
 427
 428		parent_node = *p;
 429		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 430				 ref_node);
 431		comp = comp_refs(ins, entry, true);
 432		if (comp < 0) {
 433			p = &(*p)->rb_left;
 434		} else if (comp > 0) {
 435			p = &(*p)->rb_right;
 436			leftmost = false;
 437		} else {
 438			return entry;
 439		}
 440	}
 441
 442	rb_link_node(node, parent_node, p);
 443	rb_insert_color_cached(node, root, leftmost);
 444	return NULL;
 445}
 446
 447static struct btrfs_delayed_ref_head *find_first_ref_head(
 448		struct btrfs_delayed_ref_root *dr)
 449{
 450	struct rb_node *n;
 451	struct btrfs_delayed_ref_head *entry;
 452
 453	n = rb_first_cached(&dr->href_root);
 454	if (!n)
 455		return NULL;
 456
 457	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 458
 459	return entry;
 460}
 461
 462/*
 463 * Find a head entry based on bytenr. This returns the delayed ref head if it
 464 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 465 * is given, the next bigger entry is returned if no exact match is found.
 466 */
 467static struct btrfs_delayed_ref_head *find_ref_head(
 468		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 469		bool return_bigger)
 470{
 471	struct rb_root *root = &dr->href_root.rb_root;
 472	struct rb_node *n;
 473	struct btrfs_delayed_ref_head *entry;
 474
 475	n = root->rb_node;
 476	entry = NULL;
 477	while (n) {
 478		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 479
 480		if (bytenr < entry->bytenr)
 481			n = n->rb_left;
 482		else if (bytenr > entry->bytenr)
 483			n = n->rb_right;
 484		else
 485			return entry;
 486	}
 487	if (entry && return_bigger) {
 488		if (bytenr > entry->bytenr) {
 489			n = rb_next(&entry->href_node);
 490			if (!n)
 491				return NULL;
 492			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 493					 href_node);
 494		}
 495		return entry;
 496	}
 497	return NULL;
 498}
 499
 500int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 501			   struct btrfs_delayed_ref_head *head)
 502{
 503	lockdep_assert_held(&delayed_refs->lock);
 504	if (mutex_trylock(&head->mutex))
 505		return 0;
 506
 507	refcount_inc(&head->refs);
 508	spin_unlock(&delayed_refs->lock);
 509
 510	mutex_lock(&head->mutex);
 511	spin_lock(&delayed_refs->lock);
 512	if (RB_EMPTY_NODE(&head->href_node)) {
 513		mutex_unlock(&head->mutex);
 514		btrfs_put_delayed_ref_head(head);
 515		return -EAGAIN;
 516	}
 517	btrfs_put_delayed_ref_head(head);
 518	return 0;
 519}
 520
 521static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
 522				    struct btrfs_delayed_ref_root *delayed_refs,
 523				    struct btrfs_delayed_ref_head *head,
 524				    struct btrfs_delayed_ref_node *ref)
 525{
 526	lockdep_assert_held(&head->lock);
 527	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 528	RB_CLEAR_NODE(&ref->ref_node);
 529	if (!list_empty(&ref->add_list))
 530		list_del(&ref->add_list);
 
 531	btrfs_put_delayed_ref(ref);
 532	atomic_dec(&delayed_refs->num_entries);
 533	btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
 534}
 535
 536static bool merge_ref(struct btrfs_fs_info *fs_info,
 537		      struct btrfs_delayed_ref_root *delayed_refs,
 538		      struct btrfs_delayed_ref_head *head,
 539		      struct btrfs_delayed_ref_node *ref,
 540		      u64 seq)
 541{
 542	struct btrfs_delayed_ref_node *next;
 543	struct rb_node *node = rb_next(&ref->ref_node);
 544	bool done = false;
 545
 546	while (!done && node) {
 547		int mod;
 548
 549		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 550		node = rb_next(node);
 551		if (seq && next->seq >= seq)
 552			break;
 553		if (comp_refs(ref, next, false))
 554			break;
 555
 556		if (ref->action == next->action) {
 557			mod = next->ref_mod;
 558		} else {
 559			if (ref->ref_mod < next->ref_mod) {
 560				swap(ref, next);
 561				done = true;
 562			}
 563			mod = -next->ref_mod;
 564		}
 565
 566		drop_delayed_ref(fs_info, delayed_refs, head, next);
 567		ref->ref_mod += mod;
 568		if (ref->ref_mod == 0) {
 569			drop_delayed_ref(fs_info, delayed_refs, head, ref);
 570			done = true;
 571		} else {
 572			/*
 573			 * Can't have multiples of the same ref on a tree block.
 574			 */
 575			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 576				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 577		}
 578	}
 579
 580	return done;
 581}
 582
 583void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
 584			      struct btrfs_delayed_ref_root *delayed_refs,
 585			      struct btrfs_delayed_ref_head *head)
 586{
 
 587	struct btrfs_delayed_ref_node *ref;
 588	struct rb_node *node;
 589	u64 seq = 0;
 590
 591	lockdep_assert_held(&head->lock);
 592
 593	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 594		return;
 595
 596	/* We don't have too many refs to merge for data. */
 597	if (head->is_data)
 598		return;
 599
 600	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 601again:
 602	for (node = rb_first_cached(&head->ref_tree); node;
 603	     node = rb_next(node)) {
 604		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 605		if (seq && ref->seq >= seq)
 606			continue;
 607		if (merge_ref(fs_info, delayed_refs, head, ref, seq))
 608			goto again;
 609	}
 610}
 611
 612int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 613{
 614	int ret = 0;
 615	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 616
 617	if (min_seq != 0 && seq >= min_seq) {
 618		btrfs_debug(fs_info,
 619			    "holding back delayed_ref %llu, lowest is %llu",
 620			    seq, min_seq);
 621		ret = 1;
 622	}
 623
 624	return ret;
 625}
 626
 627struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 628		struct btrfs_delayed_ref_root *delayed_refs)
 629{
 630	struct btrfs_delayed_ref_head *head;
 631
 632	lockdep_assert_held(&delayed_refs->lock);
 633again:
 634	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 635			     true);
 636	if (!head && delayed_refs->run_delayed_start != 0) {
 637		delayed_refs->run_delayed_start = 0;
 638		head = find_first_ref_head(delayed_refs);
 639	}
 640	if (!head)
 641		return NULL;
 642
 643	while (head->processing) {
 644		struct rb_node *node;
 645
 646		node = rb_next(&head->href_node);
 647		if (!node) {
 648			if (delayed_refs->run_delayed_start == 0)
 649				return NULL;
 650			delayed_refs->run_delayed_start = 0;
 651			goto again;
 652		}
 653		head = rb_entry(node, struct btrfs_delayed_ref_head,
 654				href_node);
 655	}
 656
 657	head->processing = true;
 658	WARN_ON(delayed_refs->num_heads_ready == 0);
 659	delayed_refs->num_heads_ready--;
 660	delayed_refs->run_delayed_start = head->bytenr +
 661		head->num_bytes;
 662	return head;
 663}
 664
 665void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 666			   struct btrfs_delayed_ref_head *head)
 667{
 668	lockdep_assert_held(&delayed_refs->lock);
 669	lockdep_assert_held(&head->lock);
 670
 671	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 672	RB_CLEAR_NODE(&head->href_node);
 673	atomic_dec(&delayed_refs->num_entries);
 674	delayed_refs->num_heads--;
 675	if (!head->processing)
 676		delayed_refs->num_heads_ready--;
 677}
 678
 679/*
 680 * Helper to insert the ref_node to the tail or merge with tail.
 681 *
 682 * Return false if the ref was inserted.
 683 * Return true if the ref was merged into an existing one (and therefore can be
 684 * freed by the caller).
 685 */
 686static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
 687			       struct btrfs_delayed_ref_head *href,
 688			       struct btrfs_delayed_ref_node *ref)
 
 689{
 690	struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
 691	struct btrfs_delayed_ref_node *exist;
 692	int mod;
 
 693
 694	spin_lock(&href->lock);
 695	exist = tree_insert(&href->ref_tree, ref);
 696	if (!exist) {
 697		if (ref->action == BTRFS_ADD_DELAYED_REF)
 698			list_add_tail(&ref->add_list, &href->ref_add_list);
 699		atomic_inc(&root->num_entries);
 700		spin_unlock(&href->lock);
 701		trans->delayed_ref_updates++;
 702		return false;
 703	}
 704
 705	/* Now we are sure we can merge */
 
 706	if (exist->action == ref->action) {
 707		mod = ref->ref_mod;
 708	} else {
 709		/* Need to change action */
 710		if (exist->ref_mod < ref->ref_mod) {
 711			exist->action = ref->action;
 712			mod = -exist->ref_mod;
 713			exist->ref_mod = ref->ref_mod;
 714			if (ref->action == BTRFS_ADD_DELAYED_REF)
 715				list_add_tail(&exist->add_list,
 716					      &href->ref_add_list);
 717			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 718				ASSERT(!list_empty(&exist->add_list));
 719				list_del(&exist->add_list);
 720			} else {
 721				ASSERT(0);
 722			}
 723		} else
 724			mod = -ref->ref_mod;
 725	}
 726	exist->ref_mod += mod;
 727
 728	/* remove existing tail if its ref_mod is zero */
 729	if (exist->ref_mod == 0)
 730		drop_delayed_ref(trans->fs_info, root, href, exist);
 
 
 
 
 
 
 731	spin_unlock(&href->lock);
 732	return true;
 733}
 734
 735/*
 736 * helper function to update the accounting in the head ref
 737 * existing and update must have the same bytenr
 738 */
 739static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 740			 struct btrfs_delayed_ref_head *existing,
 741			 struct btrfs_delayed_ref_head *update)
 742{
 743	struct btrfs_delayed_ref_root *delayed_refs =
 744		&trans->transaction->delayed_refs;
 745	struct btrfs_fs_info *fs_info = trans->fs_info;
 746	int old_ref_mod;
 747
 748	BUG_ON(existing->is_data != update->is_data);
 749
 750	spin_lock(&existing->lock);
 751
 752	/*
 753	 * When freeing an extent, we may not know the owning root when we
 754	 * first create the head_ref. However, some deref before the last deref
 755	 * will know it, so we just need to update the head_ref accordingly.
 756	 */
 757	if (!existing->owning_root)
 758		existing->owning_root = update->owning_root;
 759
 760	if (update->must_insert_reserved) {
 761		/* if the extent was freed and then
 762		 * reallocated before the delayed ref
 763		 * entries were processed, we can end up
 764		 * with an existing head ref without
 765		 * the must_insert_reserved flag set.
 766		 * Set it again here
 767		 */
 768		existing->must_insert_reserved = update->must_insert_reserved;
 769		existing->owning_root = update->owning_root;
 770
 771		/*
 772		 * update the num_bytes so we make sure the accounting
 773		 * is done correctly
 774		 */
 775		existing->num_bytes = update->num_bytes;
 776
 777	}
 778
 779	if (update->extent_op) {
 780		if (!existing->extent_op) {
 781			existing->extent_op = update->extent_op;
 782		} else {
 783			if (update->extent_op->update_key) {
 784				memcpy(&existing->extent_op->key,
 785				       &update->extent_op->key,
 786				       sizeof(update->extent_op->key));
 787				existing->extent_op->update_key = true;
 788			}
 789			if (update->extent_op->update_flags) {
 790				existing->extent_op->flags_to_set |=
 791					update->extent_op->flags_to_set;
 792				existing->extent_op->update_flags = true;
 793			}
 794			btrfs_free_delayed_extent_op(update->extent_op);
 795		}
 796	}
 797	/*
 798	 * update the reference mod on the head to reflect this new operation,
 799	 * only need the lock for this case cause we could be processing it
 800	 * currently, for refs we just added we know we're a-ok.
 801	 */
 802	old_ref_mod = existing->total_ref_mod;
 803	existing->ref_mod += update->ref_mod;
 804	existing->total_ref_mod += update->ref_mod;
 805
 806	/*
 807	 * If we are going to from a positive ref mod to a negative or vice
 808	 * versa we need to make sure to adjust pending_csums accordingly.
 809	 * We reserve bytes for csum deletion when adding or updating a ref head
 810	 * see add_delayed_ref_head() for more details.
 811	 */
 812	if (existing->is_data) {
 813		u64 csum_leaves =
 814			btrfs_csum_bytes_to_leaves(fs_info,
 815						   existing->num_bytes);
 816
 817		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 818			delayed_refs->pending_csums -= existing->num_bytes;
 819			btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
 820		}
 821		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 822			delayed_refs->pending_csums += existing->num_bytes;
 823			trans->delayed_ref_csum_deletions += csum_leaves;
 824		}
 825	}
 826
 827	spin_unlock(&existing->lock);
 828}
 829
 830static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 831				  struct btrfs_qgroup_extent_record *qrecord,
 832				  u64 bytenr, u64 num_bytes, u64 ref_root,
 833				  u64 reserved, int action, bool is_data,
 834				  bool is_system, u64 owning_root)
 835{
 836	int count_mod = 1;
 837	bool must_insert_reserved = false;
 838
 839	/* If reserved is provided, it must be a data extent. */
 840	BUG_ON(!is_data && reserved);
 841
 842	switch (action) {
 843	case BTRFS_UPDATE_DELAYED_HEAD:
 
 
 
 844		count_mod = 0;
 845		break;
 846	case BTRFS_DROP_DELAYED_REF:
 847		/*
 848		 * The head node stores the sum of all the mods, so dropping a ref
 849		 * should drop the sum in the head node by one.
 850		 */
 851		count_mod = -1;
 852		break;
 853	case BTRFS_ADD_DELAYED_EXTENT:
 854		/*
 855		 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
 856		 * reserved accounting when the extent is finally added, or if a
 857		 * later modification deletes the delayed ref without ever
 858		 * inserting the extent into the extent allocation tree.
 859		 * ref->must_insert_reserved is the flag used to record that
 860		 * accounting mods are required.
 861		 *
 862		 * Once we record must_insert_reserved, switch the action to
 863		 * BTRFS_ADD_DELAYED_REF because other special casing is not
 864		 * required.
 865		 */
 866		must_insert_reserved = true;
 867		break;
 868	}
 869
 870	refcount_set(&head_ref->refs, 1);
 871	head_ref->bytenr = bytenr;
 872	head_ref->num_bytes = num_bytes;
 873	head_ref->ref_mod = count_mod;
 874	head_ref->reserved_bytes = reserved;
 875	head_ref->must_insert_reserved = must_insert_reserved;
 876	head_ref->owning_root = owning_root;
 877	head_ref->is_data = is_data;
 878	head_ref->is_system = is_system;
 879	head_ref->ref_tree = RB_ROOT_CACHED;
 880	INIT_LIST_HEAD(&head_ref->ref_add_list);
 881	RB_CLEAR_NODE(&head_ref->href_node);
 882	head_ref->processing = false;
 883	head_ref->total_ref_mod = count_mod;
 884	spin_lock_init(&head_ref->lock);
 885	mutex_init(&head_ref->mutex);
 886
 887	if (qrecord) {
 888		if (ref_root && reserved) {
 889			qrecord->data_rsv = reserved;
 890			qrecord->data_rsv_refroot = ref_root;
 891		}
 892		qrecord->bytenr = bytenr;
 893		qrecord->num_bytes = num_bytes;
 894		qrecord->old_roots = NULL;
 895	}
 896}
 897
 898/*
 899 * helper function to actually insert a head node into the rbtree.
 900 * this does all the dirty work in terms of maintaining the correct
 901 * overall modification count.
 902 */
 903static noinline struct btrfs_delayed_ref_head *
 904add_delayed_ref_head(struct btrfs_trans_handle *trans,
 905		     struct btrfs_delayed_ref_head *head_ref,
 906		     struct btrfs_qgroup_extent_record *qrecord,
 907		     int action, bool *qrecord_inserted_ret)
 908{
 909	struct btrfs_delayed_ref_head *existing;
 910	struct btrfs_delayed_ref_root *delayed_refs;
 911	bool qrecord_inserted = false;
 912
 913	delayed_refs = &trans->transaction->delayed_refs;
 914
 915	/* Record qgroup extent info if provided */
 916	if (qrecord) {
 917		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 918					delayed_refs, qrecord))
 919			kfree(qrecord);
 920		else
 921			qrecord_inserted = true;
 922	}
 923
 924	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 925
 926	existing = htree_insert(&delayed_refs->href_root,
 927				&head_ref->href_node);
 928	if (existing) {
 929		update_existing_head_ref(trans, existing, head_ref);
 930		/*
 931		 * we've updated the existing ref, free the newly
 932		 * allocated ref
 933		 */
 934		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 935		head_ref = existing;
 936	} else {
 937		/*
 938		 * We reserve the amount of bytes needed to delete csums when
 939		 * adding the ref head and not when adding individual drop refs
 940		 * since the csum items are deleted only after running the last
 941		 * delayed drop ref (the data extent's ref count drops to 0).
 942		 */
 943		if (head_ref->is_data && head_ref->ref_mod < 0) {
 944			delayed_refs->pending_csums += head_ref->num_bytes;
 945			trans->delayed_ref_csum_deletions +=
 946				btrfs_csum_bytes_to_leaves(trans->fs_info,
 947							   head_ref->num_bytes);
 948		}
 949		delayed_refs->num_heads++;
 950		delayed_refs->num_heads_ready++;
 951		atomic_inc(&delayed_refs->num_entries);
 
 952	}
 953	if (qrecord_inserted_ret)
 954		*qrecord_inserted_ret = qrecord_inserted;
 955
 956	return head_ref;
 957}
 958
 959/*
 960 * Initialize the structure which represents a modification to a an extent.
 
 961 *
 962 * @fs_info:    Internal to the mounted filesystem mount structure.
 963 *
 964 * @ref:	The structure which is going to be initialized.
 965 *
 966 * @bytenr:	The logical address of the extent for which a modification is
 967 *		going to be recorded.
 968 *
 969 * @num_bytes:  Size of the extent whose modification is being recorded.
 970 *
 971 * @ref_root:	The id of the root where this modification has originated, this
 972 *		can be either one of the well-known metadata trees or the
 973 *		subvolume id which references this extent.
 974 *
 975 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 976 *		BTRFS_ADD_DELAYED_EXTENT
 977 *
 978 * @ref_type:	Holds the type of the extent which is being recorded, can be
 979 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 980 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 981 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 982 */
 983static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 984				    struct btrfs_delayed_ref_node *ref,
 985				    u64 bytenr, u64 num_bytes, u64 ref_root,
 986				    int action, u8 ref_type)
 987{
 988	u64 seq = 0;
 989
 990	if (action == BTRFS_ADD_DELAYED_EXTENT)
 991		action = BTRFS_ADD_DELAYED_REF;
 992
 993	if (is_fstree(ref_root))
 994		seq = atomic64_read(&fs_info->tree_mod_seq);
 995
 996	refcount_set(&ref->refs, 1);
 997	ref->bytenr = bytenr;
 998	ref->num_bytes = num_bytes;
 999	ref->ref_mod = 1;
1000	ref->action = action;
 
 
1001	ref->seq = seq;
1002	ref->type = ref_type;
1003	RB_CLEAR_NODE(&ref->ref_node);
1004	INIT_LIST_HEAD(&ref->add_list);
1005}
1006
1007/*
1008 * add a delayed tree ref.  This does all of the accounting required
1009 * to make sure the delayed ref is eventually processed before this
1010 * transaction commits.
1011 */
1012int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1013			       struct btrfs_ref *generic_ref,
1014			       struct btrfs_delayed_extent_op *extent_op)
1015{
1016	struct btrfs_fs_info *fs_info = trans->fs_info;
1017	struct btrfs_delayed_tree_ref *ref;
1018	struct btrfs_delayed_ref_head *head_ref;
1019	struct btrfs_delayed_ref_root *delayed_refs;
1020	struct btrfs_qgroup_extent_record *record = NULL;
1021	bool qrecord_inserted;
1022	bool is_system;
1023	bool merged;
1024	int action = generic_ref->action;
1025	int level = generic_ref->tree_ref.level;
 
1026	u64 bytenr = generic_ref->bytenr;
1027	u64 num_bytes = generic_ref->len;
1028	u64 parent = generic_ref->parent;
1029	u8 ref_type;
1030
1031	is_system = (generic_ref->tree_ref.ref_root == BTRFS_CHUNK_TREE_OBJECTID);
1032
1033	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
1034	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
1035	if (!ref)
1036		return -ENOMEM;
1037
1038	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1039	if (!head_ref) {
1040		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1041		return -ENOMEM;
1042	}
1043
1044	if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
 
1045		record = kzalloc(sizeof(*record), GFP_NOFS);
1046		if (!record) {
1047			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1048			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1049			return -ENOMEM;
1050		}
1051	}
1052
1053	if (parent)
1054		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
1055	else
1056		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
1057
1058	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1059				generic_ref->tree_ref.ref_root, action,
1060				ref_type);
1061	ref->root = generic_ref->tree_ref.ref_root;
1062	ref->parent = parent;
1063	ref->level = level;
1064
1065	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
1066			      generic_ref->tree_ref.ref_root, 0, action,
1067			      false, is_system, generic_ref->owning_root);
1068	head_ref->extent_op = extent_op;
1069
1070	delayed_refs = &trans->transaction->delayed_refs;
1071	spin_lock(&delayed_refs->lock);
1072
1073	/*
1074	 * insert both the head node and the new ref without dropping
1075	 * the spin lock
1076	 */
1077	head_ref = add_delayed_ref_head(trans, head_ref, record,
1078					action, &qrecord_inserted);
1079
1080	merged = insert_delayed_ref(trans, head_ref, &ref->node);
1081	spin_unlock(&delayed_refs->lock);
1082
1083	/*
1084	 * Need to update the delayed_refs_rsv with any changes we may have
1085	 * made.
1086	 */
1087	btrfs_update_delayed_refs_rsv(trans);
1088
1089	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
1090				   action == BTRFS_ADD_DELAYED_EXTENT ?
1091				   BTRFS_ADD_DELAYED_REF : action);
1092	if (merged)
1093		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1094
1095	if (qrecord_inserted)
1096		btrfs_qgroup_trace_extent_post(trans, record);
1097
1098	return 0;
1099}
1100
1101/*
1102 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1103 */
1104int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1105			       struct btrfs_ref *generic_ref,
1106			       u64 reserved)
1107{
1108	struct btrfs_fs_info *fs_info = trans->fs_info;
1109	struct btrfs_delayed_data_ref *ref;
1110	struct btrfs_delayed_ref_head *head_ref;
1111	struct btrfs_delayed_ref_root *delayed_refs;
1112	struct btrfs_qgroup_extent_record *record = NULL;
1113	bool qrecord_inserted;
1114	int action = generic_ref->action;
1115	bool merged;
1116	u64 bytenr = generic_ref->bytenr;
1117	u64 num_bytes = generic_ref->len;
1118	u64 parent = generic_ref->parent;
1119	u64 ref_root = generic_ref->data_ref.ref_root;
1120	u64 owner = generic_ref->data_ref.ino;
1121	u64 offset = generic_ref->data_ref.offset;
1122	u8 ref_type;
1123
1124	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1125	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1126	if (!ref)
1127		return -ENOMEM;
1128
1129	if (parent)
1130	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1131	else
1132	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1133	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1134				ref_root, action, ref_type);
1135	ref->root = ref_root;
1136	ref->parent = parent;
1137	ref->objectid = owner;
1138	ref->offset = offset;
1139
1140
1141	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1142	if (!head_ref) {
1143		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1144		return -ENOMEM;
1145	}
1146
1147	if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
 
1148		record = kzalloc(sizeof(*record), GFP_NOFS);
1149		if (!record) {
1150			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1151			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1152					head_ref);
1153			return -ENOMEM;
1154		}
1155	}
1156
1157	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1158			      reserved, action, true, false, generic_ref->owning_root);
1159	head_ref->extent_op = NULL;
1160
1161	delayed_refs = &trans->transaction->delayed_refs;
1162	spin_lock(&delayed_refs->lock);
1163
1164	/*
1165	 * insert both the head node and the new ref without dropping
1166	 * the spin lock
1167	 */
1168	head_ref = add_delayed_ref_head(trans, head_ref, record,
1169					action, &qrecord_inserted);
1170
1171	merged = insert_delayed_ref(trans, head_ref, &ref->node);
1172	spin_unlock(&delayed_refs->lock);
1173
1174	/*
1175	 * Need to update the delayed_refs_rsv with any changes we may have
1176	 * made.
1177	 */
1178	btrfs_update_delayed_refs_rsv(trans);
1179
1180	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1181				   action == BTRFS_ADD_DELAYED_EXTENT ?
1182				   BTRFS_ADD_DELAYED_REF : action);
1183	if (merged)
1184		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1185
1186
1187	if (qrecord_inserted)
1188		return btrfs_qgroup_trace_extent_post(trans, record);
1189	return 0;
1190}
1191
1192int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1193				u64 bytenr, u64 num_bytes,
1194				struct btrfs_delayed_extent_op *extent_op)
1195{
1196	struct btrfs_delayed_ref_head *head_ref;
1197	struct btrfs_delayed_ref_root *delayed_refs;
1198
1199	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1200	if (!head_ref)
1201		return -ENOMEM;
1202
1203	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1204			      BTRFS_UPDATE_DELAYED_HEAD, false, false, 0);
1205	head_ref->extent_op = extent_op;
1206
1207	delayed_refs = &trans->transaction->delayed_refs;
1208	spin_lock(&delayed_refs->lock);
1209
1210	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1211			     NULL);
1212
1213	spin_unlock(&delayed_refs->lock);
1214
1215	/*
1216	 * Need to update the delayed_refs_rsv with any changes we may have
1217	 * made.
1218	 */
1219	btrfs_update_delayed_refs_rsv(trans);
1220	return 0;
1221}
1222
1223/*
1224 * This does a simple search for the head node for a given extent.  Returns the
1225 * head node if found, or NULL if not.
1226 */
1227struct btrfs_delayed_ref_head *
1228btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1229{
1230	lockdep_assert_held(&delayed_refs->lock);
1231
1232	return find_ref_head(delayed_refs, bytenr, false);
1233}
1234
1235void __cold btrfs_delayed_ref_exit(void)
1236{
1237	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1238	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1239	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1240	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1241}
1242
1243int __init btrfs_delayed_ref_init(void)
1244{
1245	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1246				"btrfs_delayed_ref_head",
1247				sizeof(struct btrfs_delayed_ref_head), 0,
1248				SLAB_MEM_SPREAD, NULL);
1249	if (!btrfs_delayed_ref_head_cachep)
1250		goto fail;
1251
1252	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1253				"btrfs_delayed_tree_ref",
1254				sizeof(struct btrfs_delayed_tree_ref), 0,
1255				SLAB_MEM_SPREAD, NULL);
1256	if (!btrfs_delayed_tree_ref_cachep)
1257		goto fail;
1258
1259	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1260				"btrfs_delayed_data_ref",
1261				sizeof(struct btrfs_delayed_data_ref), 0,
1262				SLAB_MEM_SPREAD, NULL);
1263	if (!btrfs_delayed_data_ref_cachep)
1264		goto fail;
1265
1266	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1267				"btrfs_delayed_extent_op",
1268				sizeof(struct btrfs_delayed_extent_op), 0,
1269				SLAB_MEM_SPREAD, NULL);
1270	if (!btrfs_delayed_extent_op_cachep)
1271		goto fail;
1272
1273	return 0;
1274fail:
1275	btrfs_delayed_ref_exit();
1276	return -ENOMEM;
1277}